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ABSTRACT

USING GEOSTATISTICAL MODELS TO STUDY NEIGHBORHOOD

EFFECTS: AN ALTERNATIVE TO USING HIERARCHICAL LINEAR MODELS

By

Steven James Pierce

Neighborhoods are important ecological contexts that influence the development,

behavior, health, and welfare of their residents. Community psychologists studying

neighborhood effects usually turn to hierarchical linear modeling (HLM) to test

multilevel theories that explain neighborhood effects by examining the links between

neighborhood characteristics and resident outcomes.

Geostatistical modeling (GSM) can also test such theories, but it relies on a

different way of conceptualizing neighborhoods than used in HLM and few social

scientists have ever applied this method. This study developed an argument for why GSM

may be a valuable alternative to HLM, then applied both methods to study the effects of

neighborhood crime and neighborhood socioeconomic status (NSES) on residents’

perceptions of neighborhood problems. Applying them to the same data allowed the

study to examine the effect of varying the neighborhood boundaries used to measure

crime and NSES and to explore whether the conceptual and statistical differences

between HLM and GSM led to different scientific inferences about crime and NSES

effects on residents’ perceptions.

While HLM and GSM models detected similar amounts of neighborhood-level

variance and autocorrelation in perceived neighborhood problems, GSM provided a

better description of the data from this sample because crucial HLM assumptions about

the independence of the residuals were violated. The specific neighborhood boundaries



used to measure crime and NSES in this study had important implications for the size and

statistical significance of their effects.

For this sample, GSM showed that circular buffers centered on residents’ homes

provided better operational definitions of the neighborhoods than the fixed cluster

boundaries required by HLM. The HLM models overestimated the size and significance

of the NSES effect on perceived neighborhood problems due to inaccurate assumptions

about the residuals at both levels of analysis. The GSM models did not suffer problems

with their residuals and showed that while a cluster-based NSES measure did not affect

residents’ perceptions in these data, NSES measured in 0.2 km radius buffers around

residents’ homes did (but not as strongly as indicated by the HLM models).

The GSM models showed that residents’ perceptions of neighborhood problems

were more sensitive to crime occurring inside 1.] km radius buffers around their homes

than they were to the level of crime occurring inside the much smaller neighborhood

cluster boundaries used in the HLM models. Thus, HLM underestimated how strongly

crime affected residents’ perceptions in this study because crime was not measured on the

' right spatial scale, despite following “best-practice” advice from the HLM literature to

choose the smallest neighborhood units that are feasible.

The study concludes by discussing the implications of the findings for

conceptualizing and operationally defining neighborhoods, measuring neighborhood-

level constructs, and applying research findings to inform community intervention

efforts. Future directions for research are suggested, as are some ways of dealing with the

practical issues of using GSM.
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USING GEOSTATISTICAL MODELS TO STUDY NEIGHBORHOOD EFFECTS: AN

ALTERNATIVE TO USING HIERARCHICAL LINEAR MODELS

INTRODUCTION

Neighborhoods are potent ecological contexts that influence the development,

behavior, health, and welfare of residents in a variety of ways (Gephart, 1997; Leventhal

& Brooks-Gunn, 2000; Sampson, Morenoff, & Gannon-Rowley, 2002; Shinn & Toohey,

2003). As a result, many social scientists have developed multilevel theories linking

neighborhood contextual conditions to outcomes for residents. Two recent papers

illustrate such theories. Roosa, Jones, Tein, and Cree (2003) proposed a theoretical model

where neighborhood characteristics influence residents’ perceptions and experiences;

those, in cascading fashion, then affect the ways that families and children react to

neighborhood conditions, which in turn mediate influence on outcomes for children.

Drawing on environmental stress and social disorganization theories, Kruger, Reischl,

and Gee (2007) found support for their hypothesis that neighborhood physical

deterioration would exert indirect effects on depression and stress through its impact on

residents’ social behaviors and their perceptions of social conditions in their

neighborhoods. Both papers describe multilevel theories because they propose that

neighborhood-level constructs represent contextual conditions that have consequences for

individual-level outcomes; they postulate the existence of cross-level effects (Shinn &

Rapkin, 2000) originating from the neighborhood level that, with appropriate research

design and analytical methods, can be empirically tested.

Arguing that multilevel theories demand analytical methods that better capture,

represent, and answer questions about context, Luke (2005) recommended that



community psychologists testing these theories increase their use of hierarchical linear

modeling (HLM) and geographic information systems (GIS). HLM is an extension of

regression that is designed to handle grouped data in which the intercept and/or slope

coefficients are allowed to vary fiom group to group (Gelrnan & Hill, 2007; Raudenbush

& Bryk, 2002; Shinn & Rapkin, 2000). Researchers can apply HLM in neighborhood

research by grouping residents according to the neighborhoods in which they live.

GIS generally refers to software used for capturing, storing, and managing

spatially-referenced data and then displaying those data with maps (Haining, 2003), but it

also includes methods for spatial statistical analysis (Bailey & Gatrell, 1995; Haining,

2003; Luke, 2005). Because neighborhoods can be viewed as geographic places (Burton,

Price-Spratlen, & Spencer, 1997; Coulton, Cook, & Irwin, 2004; Diez Roux, 2001;

Gephart, 1997; Guest & Lee, 1984; Lee, 2001; Lee & Campbell, 1997; Leventhal &

Brooks-Gunn, 2000; Sampson, et al., 2002) GIS statistical methods may also be

applicable to neighborhood research.

Both HLM and GIS methods can link contextual characteristics of neighborhoods

to outcomes among residents in ways that are consistent with multilevel theories and both

also offer potential solutions to the statistical problem posed by the lack ‘of independence

among observations1 in the samples needed to test theories about neighborhood effects

(Haining, 2003; Raudenbush & Bryk, 2002). When the values of the same variable from

different observations in a dataset are not independent from each other, they are said to be

autocorrelated. The presence of autocorrelation simply means there is some structured

relationship between the values of that variable associated with different observations.

 

Violating the Independence assumption In a regressron model Inflates the Type 1 error rate for statistical

inferences about the regression coefficients because the standard errors are underestimated.



From a statistical perspective, the idea that neighborhoods influence residents implies that

they somehow induce whatever autocorrelation exists in resident outcomes. Therefore, it

is necessary to find an appropriate way to describe that autocorrelation and to build

statistical models that can explain it. The two types of autocorrelation relevant to this

study—hierarchical autocorrelation (associated with HLM) and spatial autocorrelation

(associated with GIS methods)—are alternative ways of describing and modeling the

structures that could be observed in a dataset if neighborhood effects are present. So, both

ofthe methods advocated by Luke (2005) can be employed in neighborhood research, but

they have not been applied with equal frequency in our discipline and have rarely been

compared. HLM has been the tool of choice for quantitative studies of neighborhood

effects recently, leaving GIS methods underutilized.

This study identifies some limitations associated with using HLM to study

neighborhood effects, then develops an argument for why a specific GIS method called

geostatistical modeling (GSM) (Chaix, et al., 2006; Chaix, Merlo, & Chauvin, 2005;

Chaix, Merlo, Subramanian, Lynch, & Chauvin, 2005) may be a valuable alternative to

HLM. GSM is an extension of regression designed for analyzing relationships between

variables when the spatial locations ofthe observations are known. In HLM, geographic

space is conceptualized as a discontinuous phenomenon that is divided into discrete

neighborhood units with fixed boundaries, while in GSM geographic space is

conceptualized as a continuous phenomenon in which neighborhoods are more loosely

defined as the areas immediately surrounding particular locations. This study compared

the results Of applying both HLM and GSM methods to a single set of data to examine

whether the conceptual differences between HLM and GSM led to differences in their



statistical performance and in the scientific inferences they allow us to make about the

phenomena under study that warrant further use of GSM.

Using HLM to Study Neighborhood Effects

Until now, most community psychologists have relied on HLM for answering

questions about contextual effects, perhaps because its terminology maps directly onto

the levels of analysis in our theories (Luke, 2005) and it provides the flexibility to test a

wide range of multilevel hypotheses (Merlo, 2003; Merlo, et al., 2006; Merlo, Chaix,

Yang, Lynch, & Rastam, 2005a, 2005b; Merlo, Yang, Chaix, Lynch, & Rastam, 2005).

The consensus, both within community psychology and in other social sciences, is that

HLM represents a substantial improvement over using ordinary least squares (OLS)

regression models to study contextual effects (Bingenheimer & Raudenbush, 2004; C.

Duncan, Jones, & Moon, 1998; Hofrnann, Griffin, & Gavin, 2000; Roosa, et al., 2003).

One ofthe reasons for that viewpoint is that HLM explicitly models autocorrelation in the

data rather than assuming independence among the observations, which allows HLM to

control Type I error rates better than OLS regression.

In HLM studies of neighborhood effects, one ofthe key premises is that the

outcomes for different residents who belong to the same neighborhood are autocorrelated

because something about living in that specific neighborhood actually induces similarity

in the residents’ outcomes. For example, living in a high-crime neighborhood might

cause higher levels of fear among residents than living in a low-crime neighborhood.

Because the residents are hierarchically nested within neighborhoods in HLM, we can be

more specific and say that this method assumes a hierarchical autocorrelation structure:

Part of each person’s score on the outcome variable is assumed to be a shared residual



- component‘that'reflects the influence-living in-that specific neighborhoodhas on its

residents.

The popularity ofHLM among community psychologists for quantitative studies

of neighborhood effects is quite evident in the literature. Recent papers in the American

Journal ofCommunity Psychology have used HLM to study neighborhood effects on

children’s behavior problems and cognitive development (Beyers, Bates, Pettit, & Dodge,

2003; Caughy, Nettles, & O'Campo, 2008; Caughy & O'Campo, 2006), residents’

perceptions of collective efficacy (T. E. Duncan, Duncan, Okut, Strycker, & Hix-Small,

2003), and use of illicit drugs among low-income women (Sunder, Grady, & Wu, 2007).

These and other researchers have used HLM to pursue questions about how much and in

what ways neighborhoods matter by treating them as ecological settings that occupy

geographic places with fixed, non-overlapping boundaries and possess contextual

characteristics reflecting local conditions inside those boundaries. For example, Sampson

and Raudenbush (2004) aggregated police, census, and observational data to create

contextual measures of crime, poverty, disorder, and other neighborhood conditions for

the block groups they used as neighborhoods in their HLM analyses.

Neighborhoods as places in discontinuous space. In focusing on neighborhoods

as geographic places, HLM studies ask how much resident outcomes vary from place to

place and what neighborhood characteristics predict that spatial variation in outcomes. To

answer those questions, most HLM studies operationalize neighborhoods with

administratively defined geographic units such as census tracts or block groups

(Leventhal & Brooks-Gunn, 2000; Roosa et al., 2003; Sampson et al., 2002). The US.

Census Bureau divides the nation into a hierarchically organized set of small geographic



units (see Figure 1) to facilitate the collection and tabulation of census data (U.S. Census

Bureau, 1994, 2002). Blocks are the smallest units in that boundary system, while block

groups are somewhat larger because each one is composed of multiple blocks and census

tracts are still larger units (each tract often encompasses multiple block groups). Tracts

are the units most routinely used for reporting census data.

Studies that use block groups or census tracts to operationalize neighborhoods

inherit a boundary system in which space is divided into units that occupy mutually

exclusive geographic areas (U.8. Census Bureau, 1994, 2002). That makes it easy to

unambiguously group residents into neighborhoods based on the locations of their homes,

which is crucial to ensm'ing that each resident is associated with only one neighborhood.2

That hierarchical nesting structure allows HLM to treat outcomes among residents of the

same neighborhood as correlated with each other but uncorrelated with the outcomes of

all other residents. Thus, this application ofHLM relies on a discontinuous

conceptualization of geographic space that is fragmented into discrete, place-based

geographic units that do not overlap in order to group residents. Taking that view of

space facilitates detecting spatial variation in outcomes by modeling it as autocorrelation

that is a function of whether or not residents live in the same place.

 

2

If there are multiple levels of geographic units (e.g., block groups at level 2 and census tracts at level 3),

then the goal is to ensure that each resident is associated with only one geographic unit at each level.
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Figure l: Hierarchical nesting of blocks and block groups within three census tracts in

Battle Creek, Michigan. The two larger tracts are subdivided into multiple block

groups, but the smallest tract contains only one block group; all block groups are

further subdivided into blocks. Source: Map produced by the author from GIS

files prepared by the US. Census Bureau (2007a, 2007b, 2007c).

The conceptualization of geographic space in neighborhood research also informs

decisions about measuring neighborhood characteristics. Viewing a neighborhood as a

discrete geographic unit that cannot overlap with other neighborhood units demands that



the boundary separating it from other neighborhoods be meaningful: people, objects, and

events inside the boundary are part of that setting, but anything outside the boundary is

part of a different neighborhood setting. So, the same boundary that groups residents into

a neighborhood should also be used to define the geographic area within which all

neighborhood-level characteristics should be measured, regardless of whether one is

aggregating survey data to measure collective efficacy (Sampson, Raudenbush, & Earls,

1997), police data to estimate crime rates (Sampson & Raudenbush, 2004), census data to

measure neighborhood poverty and racial composition (Franzini, Caughy, Nettles, &

O'Campo, 2008), or measuring some other characteristic of the neighborhood setting.

Using different boundaries for measuring a neighborhood characteristic than for grouping

residents (at a particular level of analysis) would be undesirable because it would -

contaminate the measurements with data from outside the neighborhood setting.

Problems with neighborhoods as places in discontinuous space. The practice

of treating neighborhoods as places within discontinuous space leads to the modifiable

areal unitproblem (M4 UP), which breaks down into two more specific issues: the .

boundaryproblem, and the scale problem (Downey, 2006). The MAUP refers to the

problems caused by the fact that there are many different ways in which a region can be

subdivided into smaller areal units. The boundary problem manifests when one considers

what might happen to the study results if the researcher changes where the boundaries

between units are placed while holding the number of units constant; the scale problem

manifests when one considers the potential impact of changing the number of the units

(and hence their size or geographic scale and also their boundaries). In either

manifestation ofthe MAUP, choosing different geographic definitions of the



neighborhood turits would reallocate portions of the population from one unit to another

(thereby changing how people are grouped) and change the geographic area over which

neighborhood constructs are measured for each area (Bailey & Gatrell, 1995; Coulton et

al., 2004). As a result, the variances of the neighborhood constructs would change, as

would their covariances and correlations with other variables (Downey, 2006).

Lack ofmeaningful boundaries. Despite its extensive use in neighborhood

research, HLM makes four assumptions that may be inconsistent with the underlying

phenomena in neighborhood research (Mowbray, et al., 2007), some ofwhich are closely

related to aspects ofthe MAUP. First, HLM studies assume that the boundaries of a

neighborhood unit accurately group residents with the people they see as their neighbors

and adequately capture the geographic area ofthe neighborhood setting that really

matters in terms of influencing resident outcomes. There is some research evidence to

suggest that this is not always the case.

If neighborhoods are discrete, bounded entities, one would expect high agreement

on where their boundaries lie, but there tends to be low agreement on the precise

boundaries for particular places and residents’ notions ofwhere the boundaries lie rarely

match those of census defined tmits (Coulton et al., 2004; Coulton, Korbin, Chan, & Su,

2001; Montello et al., 2003). Simply put, residents do not agree on where to draw

neighborhood boundaries. That challenges the validity of using census-based units to

define neighborhoods and suggests that we should pay more attention to how residents

define neighborhoods. How they define their own neighborhoods may be quite important

because it may affect whether events like crimes exert any contextual influence. For

example, crimes occurring inside what a resident considers his or her own neighborhood



may be more salient and more likely to influence the resident’s perception of

neighborhood safety than crimes occurring outside that neighborhood, regardless of

whether they occurred in the resident’s census tract. The lack of agreement among

residents about neighborhood boundaries makes it very difficult to argue that the kind of

fixed boundaries needed for use with HLM are equally suitable for capturing the

geographic areas relevant to different residents.

Furthermore, if neighborhoods are discrete, bounded entities, one would also

expect that their boundaries would be good at capturing the patterns of spatial variation in

all contextual measures. However, even if census-based neighborhood boundaries are

well suited for their intended purpose ofmeasuring neighborhood demographic

characteristics, they are poorly suited to measuring other contextual characteristics that

were not considered when defining those boundaries, such as crime (McCord & Ratcliffe,

2007), because the spatial distributions of these other characteristics do not necessarily

match the spatial distributions of the demographic characteristics that informed the

selection of the census boundaries. This undermines the assumption that all neighborhood

characteristics should be measured in the same boundaries, further calling into question

whether the representation of neighborhoods in HLM is adequate.

I Without good reasons to believe that a particular discrete boundary system

represents a meaningful and widely agreed upon method for dividing a study region into

neighborhoods, the boundary problem associated with the MAUP takes on particular

significance. In essence, different boundaries lead to different answers about what

impacts (if any) neighborhoods actually have and there is little basis for singling out any

particular set of boundaries and declaring it the one that provides the best answers.
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Ignoring spatialproximity. Second, HLM focuses on residents’ own

neighborhoods, neglecting the fact that neighborhoods are embedded in a broader spatial

context. The spatial arrangement of residents and neighborhoods is important because

physical proximity plays a role in many aspects of daily life. For example, people living

close to each other but separated by the (typically arbitrary) boundary between two

census tracts may have more similar environments than people living on opposite ends of

a large tract (Downey, 2006) and they may even consider themselves to be part of the

Same neighborhood (Coulton, Korbin, Chan, & Su, 2001). Routine activities such as

traveling to work, visiting friends and relatives, shopping, and attending religious

services can bring people into contact with other nearby block groups and residents

(Sastry, Pebley, & Zonta, 2002). So, the relevant neighborhood setting for a resident may

not really be confined to the boundaries of units like block groups or census tracts.

By ignoring spatial proximity between neighborhoods and treating them as if they

are independent of and disconnected from one another, HLM assumes that all spatial

correlation in resident outcomes is within-neighborhood correlation, but other spatial

patterns may be apparent in the actual data, such as correlation that declines as a function

of the distance between residents’ homes without regard to neighborhood boundaries

(Bass & Lambert, 2004; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et

al., 2005; Mowbray, et al., 2007). In short, most HLM analyses are purely place-based:

they attend to the importance of the (narrowly defined) places residents inhabit, but

ignore where those places are located in the wider geographical space and the potential

importance of other nearby places that may affect residents.

11



Ignoring spatial variability in contextual conditions. Third, HLM assumes that

contextual conditions are identical for all residents within a neighborhood (Roosa, et al.,

2003). That amounts to asserting that residents are equally exposed to and affected by the

conditions, events, resources, and social processes in the neighborhood unit to which they

belong, regardless of where they live inside it. This may or may not be appropriate

depending on the size of the neighborhood unit and the nature of the characteristic in

question. A census tract with a high crime rate may contain a block plagued by frequent

crimes, but otherwise consist of blocks where crime is rare. Surely the local environment

with respect to crime is different for residents ofthe block experiencing the crime hotspot

than for residents living elsewhere in the same tract, but a tract-level crime measure

would ignore that local spatial variability. HLM cannot represent spatial variability in

contextual conditions within neighborhood units without either entirely switching to

smaller neighborhood units (e.g., from tracts to blocks) or using multiple levels of

neighborhood units (e.g., both tracts and blocks) so that some characteristics could be

measured at one level while others could be measured at a different level. Pursuing either

of those options may increase the complexity of the research design and sampling

procedures and will increase the sample size required for the study. This limits HLM’s

utility whenever contextual conditions do indeed exhibit important spatial variability

within the selected neighborhood units.

Poor handling ofspatial scale. Fourth, HLM is limited in its ability to answer

questions about the geographical or spatial scale on which neighborhood characteristics

influence outcomes. This usage of the term spatial scale refers to the size of the

geographic area over which neighborhood characteristics are measured. In HLM, the

12



spatial scale for a contextual characteristic can be described by referring to the

geographic units of analysis (e.g., blocks, census tracts) for which it is measured.3

Because ofthe nested nature of census geography, block level measures are at a smaller

spatial scale than measures at the block group or tract levels (U.S. Census Bureau, 2002).

Finding the spatial scale at which a neighborhood characteristic operates requires

examining how the strength of its effect on outcomes changes as one varies the spatial

scale on which it is measured. The spatial scale associated with the measurement that

produces the strongest relationship with outcomes and the best model fit indices may be

considered the scale at which the neighborhood characteristic operates (Chaix, Merlo, &

Chauvin, 2005).

Without a priori theoretical reasons to expect that a particular spatial scale will be

the right one to use, it is insufficient to test for the effects of a neighborhood

characteristic at only one spatial scale because the scale chosen may be too small or too

large, leading to incorrect inferences about the magnitude and/or significance of that

predictor’s effect. The crime example above postulated a situation where there was

important spatial variability at the block level within a census tract. If residents are most

sensitive to crime occurring quite close to their homes, then measuring crime at the tract

level might obscure the relationship between crime and outcomes and it might be better

to use a smaller spatial scale (e.g., block-level) for the crime measure. If on the other

hand, residents are sensitive to crime within wider areas surrounding their homes, then a

block group or tract level measure of crime might be better than a block-level measure.

 

Ifthose units vary in size, descriptive statistics for the amount of area they occupy should be reported.
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- _ Unfortunately, HLM can only test the geographical scale on which contextual

conditions like crime rates matter by associating them with pre-assigned geographic units

that differ in size, such as block groups and census tracts. That limits HLM’s flexibility

because the available geographic units may not be the right size to best capture the effect

of a specific contextual factor. In addition, few HLM studies of neighborhood effects

‘ have assessed how sensitive their conclusions about the effects of contextual factors are

(to varying the spatial scale ofthe neighborhood units. Instead, the (largely untested)

assumption appears to be that all contextual characteristics operate on the spatial scale

associated with the single set of neighborhood units selected by the researcher.

Summary. Neighborhood studies employing HLM methods have produced many

interesting findings, but as described above, there are a number of spatial issues that they

do not address well. One risk of using HLM is that it ignores the potential importance of

spatial proximity; as a result, we may underestimate the amount of variability attributable

to neighborhoods if the underlying pattern of autocorrelation in the data is not really

hierarchically structured. Similarly, we may fail to detect, or underestimate the strength

of, the effects of theoretically important contextual characteristics when we use HLM if

the sizes or shapes of the neighborhood units used to measure those characteristics do not

match the geographic areas really relevant to residents. Finally, HLM provides imprecise

information about the spatial scale on which outcomes are autocorrelated and on which

neighborhood characteristics operate because it does not directly quantify these concepts.

Spatial scale can only be described in HLM approaches by describing the size of the

geographic units used, but because census-based units vary in size (U.8. Census Bureau,

1994, 2002), HLM provides only a crude method of addressing questions about spatial
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scale. Community psychology may benefit from examining alternative approaches to

defining neighborhoods and studying neighborhood effects that can address some of the

problems with HLM. GIS methods like GSM provide one such alternative.

Using GIS to Study Neighborhood Effects

Papers on GIS methods are just starting to appear in the community psychology

literature (Bass & Lambert, 2004; Kruger, 2008; Kruger, Reischl, & Gee, 2007;

Mowbray, et al., 2007), so there are few examples ofhow to apply GIS methods in our

discipline. Nevertheless, GIS methods hold great promise as tools for our discipline

because they allow researchers to adopt a more flexible conceptualization of geographic

space and of neighborhoods as places than HLM. In GIS approaches, a place can be

considered an ecological setting that is tied to a geographic location and possesses

contextual characteristics that reflect local conditions in the geographic area surrounding

that location. However, conceptualizing geographic space as a continuous rather than

discontinuous phenomenon allows us to discard some of the constraints tied to the

conceptualization of space required by HLM. Unlike in HLM, places do not need to have

sharp, fixed boundaries (Montello, Goodchild, Gottsegen, & Fohl, 2003) and they may

partially overlap with other places (Coulton, et al., 2004).

One of the advantages of GIS is that it gives researchers a framework that focuses

on both place and space. Places certainly play an important role in GIS approaches to

studying neighborhood effects: questions about how much resident outcomes vary from

place to place and what characteristics of places predict that spatial variation are just as

prominent in studies that use GIS methods as they are in HLM studies, if not more so.

However, unlike HLM, GIS methods like GSM do not ignore the fact that neighborhoods

15



exist within a larger geographic space. Researchers using GSM can ask new questions

about the roles of spatial proximity and spatial scale in neighborhood phenomena and can

customize the neighborhood boundaries used to measure different contextual

characteristics, thereby addressing some ofthe problems with HLM.

Accounting for spatial proximity with GIS. Researchers can go beyond purely

place-based analyses by applying GIS methods that treat physical proximity and spatial

relationships between places as important features of the data (Chaix, et al., 2006; Chaix,

Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Downey, 2006).

Rather than ignoring proximity and spatial relationships, GIS-based analyses can attend

to these issues in ways that HLM does not by incorporating distance-based spatial

autocorrelation directly into statistical models. Spatial autocorrelation refers to the

phenomenon where the values on the same variable observed at different spatial locations

(such as at the homes of different residents) are correlated, usually to different degrees

based on how much distance lies between them (Bailey & Gatrell, 1995). This is a

slightly different way of thinking about autocorrelation than the hierarchical

autocorrelation structure used in HLM because now the relative positions of residents in

space are what matters. Spatial autocorrelation in GIS approaches depends on spatial

proximity between residents, not simply whether or not they live in the same arbitrary

neighborhood boundary (such as a particular census tract).

For example, Bass and Lambert (2004) used a type of GIS-based spatial analysis

called the variogram4 to Show that perceptions ofneighborhood disorder were more

 

A variogram plots the average dissimilarity (i.e., variance) in either raw variable values or residuals from

a statistical model (on the vertical axis) between data points separated by a particular physical distance (on

the horizontal axis; Goovaerts, 1997). Empirical variograms can usually be summarized by a mathematical
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similar among adolescents who lived close together than among those who lived far

apart, regardless of whether they lived in the same or different census tracts, even after

controlling for levels of poverty, homicide, and juvenile arrest rates in the participants’

own census tracts. Their study suggests (that some processes influencing residents span

the borders between census tracts and are a function of spatial proximity; it also

illustrates how GIS methods can detect and model spatial patterns that HLM cannot

handle because they require accounting for both place (e.g., census tract characteristics)

and space (e.g., spatial proximity between observations).

GIS methods like GSM account for spatial proximity through the way they model

autocorrelation as a decreasing function of the distance between observations (Banerjee,

Carlin, & Gelfand, 2004). So while HLM treats two observations as similar if they belong

to the same neighborhood unit regardless of the distance between them, GSM assumes

that the degree of similarity between any two observations largely depends on how far

apart they are located. GSM methods focus on spatial rather than hierarchical structure,

so they ignore things like census boundaries when modeling autocorrelation and focus on

the shape ofthe function relating autocorrelation to distance. This means researchers can

ask several questions about the nature of that spatial autocorrelation, such as: how far

does spatial autocorrelation reach for a particular outcome (i.e., what is the spatial scale

at which it is evident)? How quickly does spatial autocorrelation decrease as distance

between observations increases? What is the shape of the curve that describes how the

 

model that draws a smooth curve based on a few parameters. Spatial autocorrelation frequently manifests

as a curve showing low dissimilarity at short distances and rising toward a plateau or limit that indicates

that data are no longer autocorrelated alter exceeding a certain distance between observations. Variograms

can be converted into either covariance or correlation metrics (i.e., from a dissimilarity measure into a

similarity measure), which will typically start with high values and then decrease with distance.
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level of spatial autocorrelation changes with increasing distance between observations?

None of these questions can be answered with HLM.

The models of autocorrelation implemented by HLM and GSM both serve to

group data so that researchers can detect spatial variability in outcomes. By estimating

neighborhood- and individual-level variance components, they provide the means for

quantifying autocorrelation. Despite the fact that GSM and HLM make different

assumptions about how to detect and model autocorrelation, both do so for the same

reason: accounting for autocorrelation allows them to correct for violations of the

independence assumption that otherwise cause regression models to perform poorly.

Measuring neighborhood characteristics with GIS. Although GSM does not

rely on neighborhood boundaries for grouping residents the way HLM does, one still

needs to draw neighborhood boundaries for the purpose of measuring neighborhood

characteristics when using GSM to study neighborhood effects. As noted above, any

given neighborhood boundary may serve quite well for capturing some contextual

characteristics, but poorly for capturing others. O’Carnpo (2003) suggested solving this

problem by using multiple operational definitions of neighborhood within the same study.

Other authors agree that the geographic area over which neighborhood characteristics are

most relevant to outcomes may depend on the specific characteristic in question and have

also suggested that different characteristics may need to be measured within different

boundaries surrounding a resident’s home (Galster, 2001; Kruger, 2008).

GIS provides this flexibility. For example, Kruger (2008) measured deterioration

of both residential and commercial buildings in circular buffers centered on each

resident’s home, but used buffers of different sizes for the two measures. He found that
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deterioration in commercial buildings correlated most strongly with fear of crime when

measured in a 1.00 mile radius, but deterioration in residential buildings correlated most

Strongly with fear of crime when measured in a 0.25 mile radius. Thus, different

geographical boundaries mattered for these two contextual variables when they are used

to predict fear of crime.

Kruger’s (2008) study also illustrates how neighborhoods can be allowed to

partially overlap in GIS analyses. Because the buffers were centered on residents’ homes,

each resident effectively had a unique neighborhood boundary for each contextual

measure. However, the neighborhood buffers for two residents living less than 0.25 miles

apart would substantially overlap; they would only be identical if the two residents lived

at the same location. Buffers surrounding participants’ homes have also been used to

operationalize neighborhood boundaries for measuring contextual conditions in

epidemiological studies that relied on GSM (Chaix, et al., 2006; Chaix, Merlo,

Subramanian, et al., 2005).

Using buffers to represent neighborhood boundaries that are positioned relative to

residents’ homes also allows GSM models to accommodate the fact that residents often

think of their homes as the center of their neighborhood (Coulton, et al., 2001). It may be

particularly useful when the contextual characteristic shows spatial variability within the

boundaries of the kinds of neighborhood units used in HLM. Allowing buffers to overlap

preserves the intuitive notion that people living close together are exposed to similar

environments, but permits people who are farther apart to have more distinct

neighborhood environments.
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Another advantage of GIS methods is that they enable researchers to construct

new kinds of contextual measures that take location and spatial relationships into

consideration and to easily vary the spatial scale on which those measures are calculated

(I-Iaining, 2003; Luke, 2005). As an example of measuring contextual variables from a

spatial perspective, GIS could measure access to health care by calculating whether the

distance between a person’s home and the nearest health care provider is less than some

criterion, such as 2 km. Varying the spatial scale of that access measure is a simple matter

of changing the distance criterion (e.g., from 2 km to 4 km). This flexibility in varying

the spatial scale over which contextual factors are measured enables researchers to learn

more about the geographic scale on which contextual factors matter for residents by

comparing alternative models that differ only in the size ofthe area over which a measure

is calculated (Chaix, et al., 2006; Chaix, Merlo, Subramanian, et al., 2005).

HLM can examine the spatial scale on which neighborhood characteristics matter

by comparing models that differ in terms of the size of the neighborhood units, but only

when the data can be matched to another available type of geographic unit. In contrast,

GSM can directly examine the scale on which neighborhood characteristics matter even

when it is larger or smaller than available units by using buffers to represent

neighborhood boundaries (Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian

et al., 2005). This is useful because it allows researchers to (a) independently vary the

spatial scale on which different neighborhood characteristics are measured, (b) ask

questions about the spatial scale on which a particular neighborhood characteristic exerts

the strongest influence on outcomes (c), precisely quantify that scale, and ((1) compare the

spatial scales on which different neighborhood characteristics operate.
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In an HLM framework, which requires a place-only conceptualization of

neighborhoods, the access to care measure described above might be reduced to

recording whether or not there was a health care provider in the resident’s neighborhood.

In other words, the measurement of the contextual variable is confined within the

perimeter of a neighborhood area that encloses a fixed, absolute portion of geographic

space. This approach has limitations, especially for people living near the edges of

neighborhoods, because it might treat people whose own neighborhood had no providers

but who could cross the street into another neighborhood to see a nearby provider as if

they had no access to care. GSM can solve that problem by using buffersthat define the

neighborhood boundaries for the access to care measure so that they enclose the portion

of space immediately surrounding the resident’s home (out to some specified distance),

allowing the buffer to cross the boundaries of traditional neighborhood units like block

groups or census tracts.

Summary. GIS methods like GSM can address some of the limitations inherent

in the way neighborhoods must be defined in order to use HLM to study neighborhood

effects. The fact that community psychologists have rarely applied methods that can

address these spatial issues represents a missed opportunity. The‘relative neglect of GIS

methods means we are unnecessarily restricting the range of questions we can answer,

excluding important spatial issues from our theories, and failing to model spatial patterns

“that may exist in our data. If we wish to understand neighborhood phenomena but do not

attend to the spatial aspects ofthose phenomena, we may be missing incredibly important

parts ofthe story and we risk arriving at inaccurate conclusions with respect to the role of

some contextual factors. Neighborhood research in community psychology will benefit
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from taking a closer look at the spatial issues surrounding how neighborhoods are defined

and testing alternative ways to represent them in our statistical models.

The Current Study: Comparing GSM and HLM

There has been little discussion in the community psychology literature about

whether there is a better way to represent neighborhoods and geographic space in

multilevel neighborhood research than that offered by HLM. Consistent with the call to

utilize GIS techniques and adopt statistical methods that reveal and explain a wider array

of patterns in our data (Luke, 2005; Mowbray et al., 2007), this study examined whether

GSM provides a valuable alternative to HLM for rigorously studying neighborhood

effects on residents—one that considers both place and space and that offers a wider

array of options for defining neighborhood boundaries.

So far, very few studies have directly compared HLM and GSM approaches to

studying neighborhood effects (Boyd, Flanders, Addiss, & Waller, 2005; Chaix, Merlo,

& Chauvin, 2005 ; Chaix, Merlo, Subramanian, et al., 2005). There are several differences

between these methods that may affect which one is better suited to the task of studying

neighborhood effects on residents. For example, the present study contributes to the

literature by investigating the relative value of two different conceptualizations of

geographic space and neighborhoods. The discontinuous view of space underlying how

neighborhoods are defined in HLM studies constrains how they are represented in

statistical analyses and is poorly aligned with some empirical findings about the nature of

neighborhoods. In contrast, the continuous view of space underlying GIS methods like

GSM may permit models to more closely match the nature of neighborhood phenomena.
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Focal constructs. This study used both HLM and GSM to quantify the amount of

autocorrelation in residents’ perceptions ofneighborhood problems and to examine

whether neighborhood crime and neighborhood socioeconomic status (NSES) exert

contextual influences on those perceptions. It compared the HLM and GSM results in

order to answer the research questions laid out below. The study focused on perceived

neighborhood problems (Foster-Fishman, Cantillon, Pierce, & Van Egeren, 2007; Foster—

Fishman, Pierce, & Van Egeren, 2009) because both HLM methods (Coulton, et al.,

2004) and GIS methods (Bass & Lambert, 2004; Pierce, 2006) have previously found

evidence of neighborhood-level variability in this outcome, but no prior study has

examined it with both methods.

Crime and NSES (Leventhal & Brooks-Gunn, 2000; Sampson, et al., 2002) are

contextual predictors that appear frequently in the neighborhood effects literature, have

clear theoretical links with perceived problems, and can be measured within any set of

neighborhood boundaries by aggregating point-based crime incident and parcel-based

housing value data. In addition, crime and NSES are examples of neighborhood

characteristics that may not be adequately captured by the boundaries of census-based

units typically used in HLM studies (McCord & Ratcliffe, 2007).

Both neighborhood crime and NSES are salient to residents. Residents regard the

presence of crime as a problem (Sampson.& Raudenbush, 2004), while neighborhood

poverty is often associated with observable signs of social and physical disorder

(Sampson, 2001; Sampson, et al., 2002), hence both crime and NSES may predict

perceived neighborhood problems simply because they are observable indicators of the

kinds ofproblems assessed in those perceptions. However, the stigma associated with
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poverty may also prime residents of poor neighborhoods to perceive more problems than

can be accounted for by observable disorder alone (Sampson & Raudenbush, 2004).

This study also controlled for several individual-level predictors of perceived

neighborhood problems. Factors such as age, sex, and race are known to be associated

with this outcome (Franzini, et al., 2008; Meersman, 2005; Quillian & Pager, 2001;

Sampson & Raudenbush, 2004) and may also be related to where people live through

social processes that produce various forms of residential segregation. That made it

important to control for the composition of the neighborhood population by adding

individual-level predictors to the models to obtain better estimates of the effects of

neighborhood-level predictors (C. Duncan, et al., 1998; Merlo, Yang, et al., 2005).

Research questions. IfGSM yields better statistical models than HLM, it would

suggest that we may need to replace the simple conceptualization of neighborhoods

associated with HLM with one that is more sophisticated and more compatible with what

we know about the nature of neighborhoods. In HLM, neighborhoods are places with

sharp, fixed boundaries that never overlap, while in GSM they are places with fuzzy,

overlapping boundaries. Whether the differences in how GSM and HLM represent

neighborhoods matter in practical terms depends partly on whether the two methods yield

different answers about how much variance in outcomes is attributable to neighborhoods.

So, the first research question for the present study is: how do GSM estimates of

neighborhood-level variance and autocorrelation compare to HLM estimates?

Partitioning the variance in resident outcomes into neighborhood- and individual-

level variability is vital to multilevel neighborhood research because testing whether

particular neighborhood characteristics influence outcomes is only worthwhile when
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there is neighborhood-level variability to be explained. The practice of defining

neighborhoods in geographic terms means that neighborhood-level variability is spatial

variability, so multilevel analysis methods must be able to detect spatial variability in

outcomes and assess the degree to which adding predictors to a statistical model explains

that variability. Spatial variability implies that neighboring residents’ outcomes are more

similar than they would be if people were randomly distributed across geographic space,

so it shows up as lack of independence between observations. Thus, autocorrelation is

simply another name for a structured form of spatial variability.

Part of the statistical rationale for using either HLM or GSM instead of OLS

regression is that failure to account for autocorrelation leads to artificially small standard

errors for the regression coefficients and increased Type I error rates. HLM and GSM

methods differ in how they handle autocorrelation. While HLM assumes that the

autocorrelation is hierarchically structured and derives from shared membership in

discrete neighborhoods units, GSM assumes it is spatially structured and a firnction of

distance between observations. The ability ofHLM and GSM to detect spatial variability

and control for autocorrelation depends on how well their assumptions about

autocorrelation match up with the actual structure in the data. Thus, whether HLM or

GSM is more appropriate may ultimately depend on the kind of data being analyzed, but

the existing empirical literature provides very limited information that might guide

decisions about which method to use.

In one ofthe few HLM studies that has varied the size of the neighborhood units,

Coulton et a1. (2004) examined how the intraclass correlations (ICCs) for residents’

perceptions of neighborhood safety, social cohesion, informal social control, police
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relations, and disorder and incivilities varied when aggregated under different

neighborhood definitions. They used five different types of geographic units. The first

four types of units correspond to units of steadily decreasing size: sites selected by the

Making Connections initiative, project-designated sub-areas within those sites, census

tracts, and block groups. The last unit, named neighborhoods, vary in size and may be

larger or smaller than most of the other units, but are always smaller than the Making

Connections sites.

Coulton et al. (2004) found that the ICCs were higher for smaller spatial

definitions ofneighborhoods and that both statistics were more sensitive to changes in

neighborhood size for some constructs (perceived safety and disorder/incivilities) than for

the other constructs. Still, four of the five outcomes examined (including the measure of

disorder and incivilities), showed higher levels of autocorrelation when the neighborhood

units were smaller. This suggests that the geographic scale of spatial variation for

different constructs may differ. They speculated that perceived safety and

disorder/incivilities varied more on a block to block scale than the other constructs

because the questions asked about more concrete, observable phenomena, so that the

geographical area over which residents might agree in their assessments would be

smaller. Overall, their results suggest that the underlying structure of the data may be

better modeled as spatial rather than hierarchical autocorrelation'because if

autocorrelation decays with increasing distance between observations, grouping

observations within larger geographic units should reduce the average level of

autocorrelation observed as compared to grouping them within small geographic units.
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Unfortunately, Coulton and colleagues (2004) did not try analyzing their data with

spatial models like GSM, which might have provided direct evidence about whether their

data showed spatial autocorrelation. Other authors have argued that HLM does not fully

account for autocorrelation because spatial autocorrelation can still be discerned in HLM

residuals (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005), but no studies have yet

reported whether hierarchical autocorrelation can still be discerned in GSM residuals.

Thus, we do not yet know which technique more fully accounts for autocorrelation

because previous comparisons between HLM and GSM models are incomplete.

Accordingly, the second research question for the present study is: which method (HLM

or GSM) is more effective at modeling the autocorrelation actually observed in data from

neighborhood residents? Autocorrelation is a prerequisite for finding neighborhood

effects because neither occurs unless at least some variance is attributable to

neighborhoods. Detecting autocorrelation and testing neighborhood effects should work

best when we fit statistical models consistent with the underlying structure in the data.

The difference between HLM and GSM goes beyond how they each group

observations to model autocorrelation. The two different approaches to defining

neighborhoods have important implications for the measurement of neighborhood

characteristics. GSM provides more flexibility to customize the boundaries used for each

contextual variable than HLM and can use boundaries that are set relative to the

resident’s location. While that flexibility is conceptually appealing, the most important

test ofwhether GSM offers a superior method for representing neighborhoods depends on

whether the two methods yield different answers about how strong the effects of

neighborhood-level predictors are and how well the resulting statistical models fit the

27



observed data. Therefore, the third research question is: how do GSM estimates of

contextual effects and model fit compare to HLM estimates?

Finally, HLM and GSM also differ in how they handle questions about the spatial

scale on which neighborhood characteristics influence outcomes. Attending to issues of

spatial scale will highlight new aspects of neighborhood effects that need to be explained,

thereby opening up new avenues for theory development. HLM studies frequently use

only a single type of geographic unit to represent neighborhoods and thus do not attempt

to study whether different contextual predictors operate at different Spatial scales. They

simply assume that studying all aspects ofthe neighborhood phenomena at a single

spatial scale is appropriate. There are presumably reasons why researchers using GIS

methods have found that the strength of the relationship between neighborhood-level

predictors and a given outcome depends on the size of the area over which the predictor

is measured and on the specific predictor being studied (Kruger, 2008; Meersman, 2005),

but there is currently little theory to explain those findings. With appropriate theory, we

could predict and explain which outcomes might vary on small versus large geographic

scales and what geographic scale to use when measuring specific neighborhood

characteristics (Messer, 2007).

Unfortunately, studies have rarely tried varying the definition of neighborhoods,

so we have few empirical findings to guide hypotheses about the geographic scale at

which we should expect to see the effect of a particular neighborhood characteristic on a

given outcome (Diez Roux, Mujahid, Morenoff, & Raghunathan, 2007). Applying GSM

in the present study has the potential to add to the emerging body of empirical evidence

about the spatial scale ofneighborhood effects that will then permit us to develop theOries
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that explain when and why a predictor should be operating on a particular scale. So, the

fourth research question for the present study is: in a dataset originally collected with use

ofHLM methods in mind, how do the geographical scales on which different contextual

factors operate (as estimated with GSM) compare to each other and to the size of the

neighborhood units used in HLM?

Organization of the text. To lay the conceptual foundations for this study, the

first section of the literature review focuses on neighborhoods and multilevel research,

highlighting why neighborhoods are important contexts and discussing key multilevel

assumptions about residents and neighborhoods as units of analysis. The second section

focuses on the conceptualization of neighborhoods as places within geographic space.

The third section focuses on the HLM approach to testing contextual effects, explaining

its strengths and limitations for studies of neighborhood effects. It describes why HLM

has become a popular tool in neighborhood research and the assumptions, advantages,

and disadvantages associated with it. The fourth section focuses on the origin and

conceptual underpinnings of the GSM approach to testing contextual effects, explaining

how it relates to the conceptualization of neighborhoods and measurement of

neighborhood context, how it addresses some of the limitations in HLM, the kinds of

questions it can answer, and its recent applications in the social sciences. The fifth section

reviews the handful ofprevious studies that have compared HLM and GSM approaches.

The sixth section provides background material relevant to the specific substantive

example that was used to compare HLM and GSM, which involved using contextual

measures of crime and NSES to predict residents’ perceptions of neighborhood problems.

The seventh section then identifies gaps in that literature, and presents the hypotheses for
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the study. Finally, the literature review closes with a brief summary of the goals and

objectives of the study and a short discussion of its limitations. Following that, the

methods employed in this study are described, and then the results are presented. The

document concludes with a discussion ofthe findings and their implications for

neighborhood research.
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LITERATURE REVIEW

Neighborhoods and Multilevel Research

Studying the connections between human behavior and the ecological contexts

within which it unfolds has always been a prominent theme in community psychology

(Anderson, et al., 1966; Livert & Hughes, 2002; Maton, Perkins, & Saegert, 2006). This

ecological perspective contributes to community psychologists’ enduring interest in

research that spans multiple levels of analysis (Dalton, Elias, & Wandersman, 2001)

because it positions contexts as phenomena to be studied right along with human

behavior. Researching contextual phenomena requires careful attention to identifying and

conceptualizing the units of analysis that constitute the context of interest, how to

measure the theoretical constructs at each level of analysis (Linney, 2000), and the

application of methods suited to answering questions about contextual effects (Luke,

2005; Shinn & Rapkin, 2000).

Neighborhoods as meaningful contexts for residents. A multilevel, ecological

perspective lies at the heart of the most basic premise in neighborhood research, which is

that neighborhoods are meaningful contexts for their residents. So, why do

neighborhoods merit study—what makes them meaningful contexts? People, especially

children, spend substantial amounts of time in neighborhood settings, allowing ample

opportunity for environmental conditions, events, and social processes in these Settings to

influence individuals. Because the world is not uniform and has different characteristics

from place to place, neighborhoods offer varying levels of access to material,

institutional, and social resources (e.g., housing, public services, schools, social

interaction, etc.) that may affect residents’ welfare and prospects in life (Galster, 2001).
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Neighborhoods often take on symbolic identities and importance, as evidenced by the

way people attach nMes to their neighborhoods (Lee & Campbell, 1997). Residents can

form deep emotional attachments to these places and to their neighbors (Manzo &

Perkins, 2006; Unger & Wandersman, 1985); they also sometimes form voluntary

associations to express their identification as members of a shared neighborhood or to

advocate for their collective interests (Unger & Wandersman, 1983).

Yet another reason to study neighborhoods is that government agencies,

philanthropic foundations, and other organizations set policies, develop programs, offer

services, and engage in other forms of intervention with respect to neighborhoods,

treating them as identifiable units for planning and action related to social change

(Chaskin, 1998). Finally, empirical research has provided extensive evidence that

neighborhood conditions influence outcomes such as school readiness and achievement

among children, teen pregnancy, physical and mental health, perceptions of crime and

disorder in the neighborhood environment, and rates of violent crime (Franzini, Caughy,

Spears, & Esquer, 2005; Gephart, 1997; Kruger et al., 2007; Leventhal & Brooks-Gunn,

2000; Quillian & Pager, 2001; Sampson et al., 2002; Sampson, Raudenbush, & Earls,

1997; Shinn & Toohey, 2003; Wyant, 2008). For all of these reasons, neighborhoods are

contextual settings that merit our attention. \

Theoretical mechanisms underlying neighborhood effects. Neighborhood

researchers have described numerous theoretical mechanisms through which

neighborhoods may influence residents’ welfare, behavior, and development including

collective socialization, institutional resources, contagion, competition, and relative

deprivation theories, among others (Leventhal & Brooks-Gunn, 2000; Sampson, et al.,
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2002). Authors categorize and label these mechanisms differently and some write about

mechanisms not discussed by others. A comprehensive review of these theoretical

mechanisms is beyond the scope of this study, so what follows is only a brief discussion

of some key mechanisms that have been widely discussed. For example, collective

socialization has been described as a mechanism through which social groups exert

influence on residents’ attitudes, values, and behavior by providing a structured social

environment with role models, parental supervision and monitoring, routines, and

deviation-countering social interactions, all ofwhich tend to produce conformity with

group norms (Galster, 2001; Leventhal & Brooks-Gunn, 2000; Shinn & Rapkin, 2000).

Institutional resources provide another mechanism through which neighborhoods

can influence residents (Sampson, et al., 2002). Because neighborhoods vary in the

availability, accessibility, and quality of resources such as libraries, community centers,

public services, and recreational programs that promote learning and development,

institutional resources provide a mechanism for explaining some neighborhood effects

(Leventhal & Brooks-Gunn, 2000). For example, adolescent girls living in neighborhoods

with more parks engage in more physical activity, suggesting that parks (particularly

those that have more amenities conducive to walking and physical activities) are

institutional resources that promote exercise among residents (Cohen, et al., 2006).

Contagion models posit that the behavior of a resident might directly influence the

same behavior in his or her neighbors, leading to (typically negative) behaviors that

spread like epidemics within neighborhoods (Leventhal & Brooks-Gunn, 2000). With

respect to outcomes such as attitudes or perceptions, neighbors engaging in the social
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construction of reality might share information and mutually influence each other’s

perceptions (Shinn & Rapkin, 2000), leading to a contagion effect.

Competition for access to and control over scarce resources, in which one

person’s gain necessarily comes as a loss to others, provides another mechanism through

which neighborhoods may influence residents (Dietz, 2002; Galster, 2008; Leventhal &

Brooks-Gunn, 2000). When neighborhoods influence resident outcomes through

residents’ comparison of their own situation to that of their neighbors, the concept of

relative deprivation may explain neighborhood effects (Dietz, 2002; Galster, 2008; '

Leventhal & Brooks-Gunn, 2000). For example, relative deprivation might explain why

the presence ofhomeowners in a neighborhood could have a detrimental effect on nearby

renters (Haurin, Dietz, & Weinberg, 2003).

Finally, attraction, selection, and attrition processes (Shinn & Rapkin, 2000)

account for the fact that the composition of neighborhoods is rarely a random sample of

the larger population. Processes that affect who is attracted to a particular neighborhood,

opts to live there, or decides to leave may contribute to the geographical clustering of

similar people within neighborhoods. If the individual-level characteristics on which

residents are similar are also related to the outcome of interest, neighborhood effects may

be present because of varying composition rather than varying contextual conditions.

Therefore, controlling for the composition ofneighborhoods when testing for contextual

effects (Bingenheimer & Raudenbush, 2004; C. Duncan, et al., 1998; Merlo, Yang, et al.,

2005) is important to avoid confounds.

Given the variety of theoretical mechanisms for neighborhood effects already

identified, it is clear that the specific mechanisms that could explain an effect will depend
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on the specific constructs involved in a given study. For example, institutional resource

theory may be particularly well-suited to explaining why the presence of youth- service

organizations in a neighborhood can contribute to the social development of the youth

who live there (Quane & Rankin, 2006). However, authors such as Papachristos and Kirk

(2006) have argued that theoretical mechanisms such as collective efficacy and informal

social control play a strong role in controlling how much gang violence occurs in a

neighborhood. It is also important to recognize that multiple theoretical mechanisms may

be working in concert to produce neighborhood effects. Thus, a researcher might

incorporate several predictors into a statistical model, each of which may represent the

influence of a distinct theoretical mechanism.

In the present study, contextual effects of crime and NSES represent two different

theoretical mechanisms through which neighborhoods might affect residents’ perceptions

of neighborhood problems. According to broken windows theory (J. Q. Wilson &

Kelling, 1982), visible signs ofphysical and social disorder in a neighborhood exert a

direct contextual influence on residents’ perceptions ofneighborhood problems (Quillian

& Pager, 2001; Sampson & Raudenbush, 2004). Exposure to higher levels of actual

crime, which is an extreme form of social disorder (Sampson & Raudenbush, 1999),

should lead to higher levels of perceived problems. In contrast, NSES may exert a

contextual influence on residents’ perceptions because poor neighborhoods have become

stigmatized as disorderly places where problems are rampant (Sampson & Raudenbush,

2004). Thus, residents living in places with low NSES may perceive more problems than

they would in a wealthier, but otherwise similar, neighborhood.
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Because the present study focused on comparing HLM and GSM with respect to

testing the effects of contextual characteristics of neighborhoods, it was important to

control for neighborhood effects that could be explained by individual-level factors

associated with residents’ perceptions working in concert with theoretical mechanisms

that might lead to geographical clustering of similar individuals. To do that, several

individual-level predictors were used in to control for the effects of unobserved

attraction, selection, and attrition processes that might generate neighborhood effects on

perceived neighborhood problems through their influences on neighborhood composition.

Finally, contagion processes resulting fi'om social interaction and information

sharing among residents (Shinn & Rapkin, 2000) could easily lead to mutual influence on

residents’ perceptions of the neighborhood. Such a mechanism might account for residual

autocorrelation remaining in residents’ perceptions after accounting for neighborhood

composition, crime, and NSES effects. Thus, the statistical models in the present study

incorporate variables representing several different theoretical mechanisms that can

explain neighborhood effects. ,

Multilevel assumptions in neighborhood research. Inherent in the premise that

neighborhoods are meaningful contexts that exert influence on resident outcomes are

some key multilevel assumptions. Those include: (a) neighborhoods and individuals are

separate kinds of observable units, with the former at a higher level of analysis than the

latter because individuals live within neighborhoods, (b) neighborhoods differ from each

other in important ways such that their characteristics define, at least in part, the nature of

the environmental context affecting their residents, and (c) neighborhood characteristics

can directly or indirectly influence resident-level processes and outcomes. Subjecting that
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last assumption to inquiry is the point of studying neighborhood effects, which also

requires grappling with the second assumption because identifying dimensions on which

neighborhoods vary from one another is a prerequisite to explaining contextual effects.

But before we can measure neighborhood characteristics we need a conceptual definition

of neighborhoods as units of analysis and a way to operationally define them that is

aligned with that conceptual definition.

Defining Neighborhoods

Before delving into the conceptual definitions ofneighborhoods adopted by

researchers, it is useful to explore residents’ colloquial definitions of neighborhoods.

When Guest and Lee (1984) asked residents of Seattle, Washington to define the word

neighborhood and the boundaries of their neighborhoods, over 76% ofthe residents they

interviewed defined neighborhoods in terms of a geographic area or territory, although

only 30% relied on solely physical definitions. Almost 60% ofthe residents defined

neighborhood in terms of nearby people; 39% endorsed social definitions based on sense

of community and social cohesion. Finally, about 10% defined neighborhood in terms of

local institutions (e.g., schools, shopping centers, parks, and so on). Guest and Lee

concluded that one major dimension in their data was a contrast between geographic and

social definitions ofneighborhood. They also found that residents who provided

institutional definitions reported having larger neighborhoods than people who provided

other kinds of neighborhood definitions.

More recent work by Lee and Campbell (1997) in Nashville, Tennessee, further

clarifies how residents think about the nature of neighborhoods. Nearly 87% of their

sample endorsed a territorial definition, showing that the notion of neighborhoods as

37



geographic places is widespread. The social dimension, tapping both definitions based on

nearby people and definitions based on sense of community, was endorsed by a little over

40% ofthe residents. Most of the residents (59%) gave egocentric definitions wherein

their own home served as a spatial referent. The final dimension in this study was a

structural one that defined neighborhood in terms of physical structures, similar to Guest

and Lee’s (1984) institutional definition. Lee and Campbell also found that the perceived

size of a neighborhood varied considerably even among people who agreed on the name.

Another interesting set of findings about how people think about places comes

from work by Montello, Goodchild, Gottsegen, and Fohl (2003), who were investigating

how people spatially define named places. Comparing maps drawn by different

participants, they found strong evidence that people varied in where they drew the

boundaries of downtown Santa Barbara, California despite the fact that this place has a

strong symbolic identity. While there was a core area where most, if not all, of the maps

overlapped, they concluded that it may be better to think of places as having fuzzy or

probabilistic boundaries, rather than sharply defined edges because fewer maps

overlapped locations farther out from the core area.

The findings discussed above provide insight into what typical residents mean

when they talk about neighborhoods, which very often includes an element of place, but

frequently has social elements too. Both HLM and GSM approaches ultimately define

neighborhoods in geographic terms, but they differ in how they do that because they

make different assumptions. In HLM, geographic space is treated as a discontinuous

phenomenon, so neighborhoods are places with fixed, non-overlapping boundaries that

apply equally to all neighborhood characteristics. In GSM, geographic space is treated at
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a continuous phenomenon, so neighborhoods are places defined relative to where

residents live and may have different boundaries depending on what neighborhood

characteristic is being measured. As a result, neighborhoods in GSM may overlap and do

not have fixed boundaries.

The findings above suggest that the HLM assumption that neighborhoods are

clearly bounded places may oversirnplify the phenomenon. Residents appear to have very

idiosyncratic and egocentric notions about what constitutes their neighborhoods. That

Suggests that neighborhood-level constructs for residents living at the center of discrete

geographic units like census tracts or block groups may contain less measurement error

than they do for residents living on the edges ofthose units. The residents along the edges

may be more likely to consider areas outside that unit as being part of their neighborhood,

but the HLM approach would exclude those additional areas from the measurement of

neighborhood characteristics, thereby introducing additional error into the measurement.

Fortunately, GSM is compatible with a wider range of ways to define neighborhoods than

HLM, including egocentric definitions that treat the space within a certain distance of

one’s home as the neighborhood. In other words, GSM methods may fit resident

conceptions of neighborhoods better than HLM. This serves as a useful point of reference

as the review now moves on to discuss the conceptual definition of neighborhoods.

Defining neighborhoods: Social versus geographical units. Scholars from a

wide array of scientific disciplines have written about how to conceptualize

neighborhoods (of, Chaskin, 1997; Galster, 2001; Nicotera, 2007). Comparing the many

definitions reveals a consensus that neighborhoods are complex, multidimensional

entities comprised of a combination of objective physical and environmental
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characteristics tied to geographic places and subjective, socially constructed

characteristics that emerge from social interactions and lived experience. However,

different authors emphasize different aspects of neighborhoods. One strand in the

literature primarily views neighborhoods as communities (social units) that have

developed naturally through the processes involved in the growth of cities (Chaskin,

1997; Suttles, 1972), while another strand emphasizes viewing them as geographic places

or territories (geographic units). As will be shown below, these are not mutually

exclusive perspectives (Chaskin, 1997).

Neighborhoods as social units. Viewing neighborhoods as natural communities

focuses attention on things like the presence of social networks, a sense of community,

shared culture and values, place attachment and identity, social cohesion, and other social

processes such as economic exchange relationships (Chaskin, 1997; Forrest & Keams,

2001). While neighborhoods conceptualized as local communities may not be strictly

confined within small geographic areas, they are often spatially concentrated in ways that

anchor them to particular places (Chaskin, 1997). According to a recent community

psychology textbook, “Neighborhoods might be defined as local communities that are

bounded together spatially where residents feel a sense of social cohesion and interaction,

homogeneity, as well as place identity” (Duffy & Wong, 2002, p. 18). Specifying that

neighborhoods are spatially bounded acknowledges that even definitions emphasizing the

Social aspect ofneighborhoods (as Duffy and Wong’s does) must also recognize that

local communities occupy identifiable geographic places.

Neighborhoods as geographic units Meanwhile, viewing neighborhoods

primarily as geographic units focuses attention more on identifying the boundaries that
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demarcate the geographical areas they occupy. Boundaries can be delineated by asking

residents to identify them (Coulton et al., 2004; Coulton et al., 2001; Guest & Lee, 1984;

Lee & Campbell, 1997), looking at physical features of the environment like the layout of

the street network (Grannis, 1998; Guo & Bhat, 2007), or by relying on boundaries set by

government agencies and other external organizations to facilitate their own activities

(Chaskin, 1997). Of course, local stakeholders often use their knowledge about the social

aspects of neighborhoods to inform the selection of those geographical boundaries

(Chaskin, 1997; US. Census Bureau, 1994, 2002).

Consistent with the approach taken in most studies ofneighborhood effects

(Burton, Price-Spratlen, & Spencer, 1997; Coulton et al., 2004; Diez Roux, 2001;

Gephart, 1997; Lee, 2001; Leventhal & Brooks-Gunn, 2000; Sampson et al., 2002), this

study defines neighborhoods geographically (i.e., as places that occupy areas within

geographic space). This was crucial to operationalizing neighborhoods for the purpose of

measuring contextual characteriStics that are known to vary across geographic space (e.g.,

crime and NSES). But, defining neighborhoods requires considering an aspect of their

geographical representation that is rarely discussed in the community psychology

literature on neighborhood effects: the relationship between place and space.

Relatingplaces to geographic space. Geographical space stretches across the

entire surface of the earth: it is the physical environment within which nearly all human

activity is embedded. Maps show where various features of the world can be found

within geographic space. Locations within geographical space can be precisely identified

by spatial coordinates (e.g., latitude and longitude), but places tend to be larger than

simple point-referenced locations. Instead, places are subsets of geographic space (i.e.,
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contiguous collections of locations). Perhaps more importantly, places are portions of

space that have been imbued with identity, meaning, or purpose through human activities,

experiences, cognitions, and intentions (Relph, 1976). For example, political maps

illustrate how geographic space is divided into various countries, which are large places

controlled by sovereign national governments.

Residential neighborhoods are important places because they are settings in which

people engage in routine activities of life. There are two major options for linking places

to space, each of which has implications for how we study neighborhoods. Geographic

space can be conceptualized as discontinuous and fragmented into mutually exclusive

places that have fixed boundaries, or as a continuous field in which places may overlap

and may have variable or indeterminate boundaries. The next two sections deal with these

contrasting conceptualizations of the relationship between place and space in

neighborhood research, describing the implications of each, particularly with respect to

how neighborhood characteristics are measured.

Neighborhoods as places in discontinuous geographic space. The vast majority

of multilevel neighborhood effects studies use administrative areas such as census tracts

or block groups as the geographical boundaries of neighborhoods (Burton et al., 1997;

Coulton et al., 2004; Diez Roux, 2001; Gephart, 1997; Lee, 2001; Leventhal & Brooks-

Gunn, 2000; Sampson et al., 2002), although some studies have used larger geographical

units comprised of multiple census tracts grouped together (Browning & Cagney, 2002;

Browning, Feinberg, & Dietz, 2004; Sampson et al., 1997). Using these administratively

defined areas as neighborhoods makes it easy and cost effective to measure some

neighborhood characteristics with census data, which may contribute to the prevalence of
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this practice (Lebel, Pampalon, & Villeneuve, 2007). However, few ofthose studies

discuss the conceptual definition of neighborhoods or the conceptualization of geographic

space underlying their neighborhood definitions. So, a closer look at how census

geographic units are constructed and what using them implies about the relationship

between geographic space and place is warranted.

Census geography.The Census Bureau works extensively with local governments

and other stakeholders to develop a hierarchical system ofboundaries that divides the

nation into many small geographic units for use in collecting and tabulating decennial

census data (U.8. Census Bureau, 1994, 2002). The foundation of that system is a

discontinuous conceptualization of geographic space in which boundaries divide space

into distinct geographic units that occupy mutually exclusive areas: census units at the

Same level of the hierarchy never overlap. As shown in Figure 1 above, the three lowest

levels in the hierarchy of geographic units used by the Census Bureau (in order of

increasing size) are blocks, block groups, and census tracts. Census data are most

routinely tabulated at the tract level.

Units like block groups and tracts are useful to neighborhood researchers who

want to use HLM. Using them to represent neighborhoods allows researchers to adopt a

well-known boundary system that is grounded in a discontinuous conceptualization of

space. Studies employing HLM for neighborhood research rely on that conceptualization

because they must be able to identify which residents to group together. At any given

level of analysis (e.g., block groups), the key issue is that each neighborhood must be a

place with an unambiguous boundary demarcating the division between the portion of

space that belongs to it and the portion that belongs to other neighborhoods to ensure
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unambiguous sorting of residents into neighborhoods. Census geographic units clearly

fulfill that requirement and ensure that each resident will belong to one and only one

neighborhood at any given level of analysis.

Both in the census boundary system and in custom boundary systems developed

by researchers, visible geographic features (e.g., major streets, waterways, railroads,

parks, etc.) often define most of the boundaries between neighborhoods, but some

boundaries are selected to ensure that the resulting neighborhoods are intemally

homogenous and externally heterogeneous with respect to important demographic and

socioeconomic characteristics (Sampson et al., 1997; US. Census Bureau, 2002; Weiss,

Ompad, Galea, & Vlahov, 2007). For neighborhood researchers, the overarching goal is

to obtain neighborhood units that are ecologically meaningful units. Because all space

outside a neighborhood’s boundary belongs to some other neighborhood, the

discontinuous View of space implies that measuring a neighborhood characteristic over

any area stretching beyond that boundary would contaminate the measurement with data

from a different neighborhood and lead to measurement error. Thus, the discontinuous

view of space fosters defining neighborhoods as discrete entities with fixed boundaries

that apply to all neighborhood attributes measured at a given level of analysis.

The [MAUP. Unfortunately, there are many alternative ways to subdivide any

geographic region, each of which might group residents differently and each of which can

result in different values for the neighborhood attributes that might be associated with a

resident. This is what causes the MAUP. Because of the MAUP, the specific set of

boundaries chosen by a researcher to divide space into neighborhood units influences the

results of analyses (Bailey & Gatrell, 1995; Downey, 2006). So if two researchers set out
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to test the same theoretical model using data from the same study region, their studies can

yield different statistical results if they use different sets of neighborhoods boundaries.

The sensitivity of statistical inferences about contextual effects to the specific

boundary system used to define neighborhoods may lead researchers to draw inaccurate

conclusions or make poor policy recommendations (Bailey & Gatrell, 1995; Guo & Bhat,

2007). For example, Kruger (2008) found that the correlation between residents’

satisfaction with their neighborhood and the number of deteriorated residential buildings

in the neighborhoods varied depending on whether deterioration was measured at the ZIP

code level (r = .034) or the census tract level (r = .137). Because ZIP codes are larger

than census tracts, they are more likely to be internally heterogeneous with respect to the

levels of deterioration. Because tracts are closer in size to what residents think of as their

neighborhoods than ZIP codes (Coulton, et al., 2001), that heterogeneity may increase

measurement error for the neighborhood-level construct, thereby weakening its

correlation with residents’ satisfaction.

Lack ofmeaningful boundaries.Defining neighborhoods as geographic units

within discontinuous space assumes neighborhoods have sharply defined, fixed

boundaries that are meaningful and recognizable. If that were true, the boundary problem

(an aspect of the MAUP) would not be as pressing because there would be a good

foundation for identifying which of the many possible boundary systems yielded the

neighborhood units most relevant to residents. But if neighborhoods are indeed such

discrete entities, people should agree on where the boundaries between them actually lie.

As stated previously, even residents who live close together often disagree about

the size and boundaries of their neighborhood and resident defined boundaries rarely
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match census boundaries (Coulton et al., 2004; Coulton et al., 2001). For example,

Coulton et a1. (2001) found that neighborhood maps drawn by residents were roughly

Similar in size to census tracts, but typically contained parts of two census tracts and three

block groups. They also found that different residents drew maps with unique boundaries,

in part because most residents thought of their home as the center of their neighborhood.

Coulton et al.’s (2004; 2001) findings are the not the only ones that conflict with

the HLM assumption that census-derived boundaries correspond to meaningful

boundaries for geographic neighborhoods. A neighborhood’s perceived size can vary

considerably even among people who agree on its name, indicating that the presence of a

shared symbolic identity does not induce agreement on boundaries (Lee & Campbell,

1997). The results of cognitive mapping research show that geographic places do not

have the kind of sharp, fixed boundaries assumed to exist under a discontinuous view of

space (Montello, et al., 2003). So part of the boundary problem is that we need to group

residents and measure neighborhood characteristics within boundaries that are

psychologically meaningful to residents, but administratively defined units like census

tracts and block groups impose artificial boundaries that may not be relevant.

These problems with the validity of census-based neighborhood boundaries have

serious implications for neighborhood research because of the boundary problem.

Without a meaningful natural boundary system, researchers have little basis for deciding

which of the many alternative ways to divide a study region into neighborhoods generates

the most appropriate set of neighborhood units and every option can conceivably lead to

different answers about what effects (if any) neighborhoods have on residents.
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Part of the problem is that the boundaries are used to group residents, presumably

with each group representing a set of people who all consider each other neighbors and

who all consider people outside the group non-neighbors. Using boundaries that are

misaligned with residents’ notions of the geographic area of their neighborhoods may

group together residents that do not consider themselves neighbors and separate residents

who do think of each other as neighbors. Similarly, it may increase measurement error in

neighborhood characteristics because measures would be based on only part ofthe

geographic area relevant to a resident while other relevant parts might be excluded. That

is particularly likely to occur with people living on the edges of the neighborhood units.

These are serious conceptual problems with defining neighborhoods as fixed geographic

areas. In contrast, defining neighborhoods as buffers surrounding each resident’s

location, as may be done in GSM, never leaves anyone living at the edge of his or her

own neighborhood because the neighborhood is defined relative to the individual’s

location, rather than via an absolute position in space.

The lack of support for neighborhoods being discrete entities calls into question

the assmnption that all neighborhood characteristics should be measured within the same

boundary. While some contextual constructs probably do naturally have fixed, known

boundaries, such as social policies that apply within the jurisdiction of a governmental

agency (assuming that the jurisdiction boundaries match those of the neighborhood

units), there is little reason to expect that the most relevant boundaries for all contextual

conditions will match those of the researcher’s chosen set of neighborhood units or of any

other available fixed boundary system (Guo & Bhat, 2007; O'Campo, 2003). For

example, block groups are poorly suited to capturing the spatial patterns of crime because
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census boundaries often run along the centerlines of streets that are the loci for crime

hotspots, which means that hotspots can get bisected such that crimes on one side of the

street get assigned to one block group and those on the other side to a different block

group despite the fact that they are part of coherent spatial grouping of crimes (McCord

& Ratcliffe, 2007). Yet, a person living on or near that street might legitimately be

affected by or concerned about all of the crimes in a hotspot.

Similarly, the impact of pollution generated by a factory is unlikely to be confined

to the census tract where the factory is located and unlikely to affect everyone in either

the host tract or other nearby tracts equally due to the location of factories along major

transportation routes that serve as tract boundaries and because prevailing wind patterns

affect the dispersal of pollutants (Downey, 2006). Thus, tracts would be a poor

approximation of local neighborhoods for the purpose of measuring pollution levels, even

if they are excellent for measuring other contextual characteristics.

Ignoring spatialproximity. Another major problem with defining neighborhoods

as places in discontinuous space is that this ignores the broader spatial context within

which residents live. One ofthe implicit assumptions in many neighborhood studies is

that neighborhoods are self-contained, independent settings representing “intact social

systems, functioning as islands unto themselves” (Sampson, 2004, p. 164). This meshes

neatly with the HLM assumption that the units at the highest level of analysis are

statistically independent of each other (Hofrnann et al., 2000; Raudenbush & Bryk,

2002), but it means that most HLM analyses ignore the spatial arrangement of

neighborhoods with respect to each other. In effect, it asserts that only the context in

one’s own neighborhood unit influences outcomes.
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However, there are important social, economic, and institutional ties that link

residents fi'om different neighborhood units and can create forms of spatial dependence

that argue against this idea that neighborhoods are independent (Sampson, 2004). For

example, the fact that some neighborhoods are close together while others are far apart

matters because physical proximity is an important factor in predicting the number of

social trips between different census tracts: people make more frequent trips to tracts that

are close to their own tract than to more distant tracts (Wheeler & Stutz, 1971).

Furthermore, assuming that only the conditions within a resident’s own census tract or

block group matter ignores the fact that people frequently cross the boundaries between

such units when commuting to work, shopping, or attending religious services (Sastry, et

al., 2002). That challenges the idea that discrete neighborhood units represent the best

approximation ofthe relevant neighborhood setting for any given resident because

residents may be exposed to conditions, events, and social processes from other nearby

neighborhood units in addition to the those from their own unit.

There are statistical methods that permit modeling spatial influences between

neighborhoods (Bailey & (Gatrell, 1995; Haining, 2003), but they are designed for studies

where all the data come from the neighborhood level of analysis, not for multilevel

studies. The few HLM-based neighborhood effects studies that have considered whether

outcomes in one neighborhood are influenced by conditions in adjacent neighborhoods

have found that surrounding neighborhoods do indeed matter (Caughy, Hayslett-McCall,

& O'Campo, 2007; Morenoff, 2003; Morenoff, Sampson, & Raudenbush, 2001; Swaroop

& Morenoff, 2006). But, researchers have mostly had to apply GIS methods to the

neighborhood-level residuals fiom HLM analyses to test those hypotheses because HLM
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lacks a method for incorporating spatial autocorrelation between neighborhoods at the

highest level of analysis (O'Campo, 2003). The scarcity ofHLM studies that have looked

for such spatial effects suggests that the discontinuous view of geographic space required

by HLM leads researchers to treat neighborhoods as independent places, which de-

emphasizes thinking about spatial relationships between them.

Ignoring spaa'al variability in contextual conditions.When a contextual

characteristic is measured at the neighborhood level and used in HLM analyses, it implies

that contextual conditions are identical for all residents of that unit. But the spatial

distribution of contextual characteristics within a neighborhood is often not that uniform

(Roosa, et al., 2003). As an example, consider racial composition, which is often

measured by the percentage of residents who belong to a particular minority group, such

as African Americans (Quillian & Pager, 200]; Sampson & Raudenbush, 2004). If 20%

of the population in a particular census tract are African Americans, that does not mean

that this is true on every individual face block in that tract: residential segregation occurs

even on a relatively small spatial scale (Grannis, 1998), so there is likely to be within-

tract variation in racial composition that would be ignored in studies using tracts as

neighborhood units. Such within-neighborhood spatial variability in contextual

characteristics may be important when the spatial scale on which residents are sensitive

to that characteristic is smaller than the neighborhood units selected by the researcher.

Thus, this problem is tied to other issues related to spatial scale, to which we now turn.

Poor handling ofspatial scale issues. There is a conceptual aspect to the scale

problem associated with the MAUP. Recall that the scale problem is that as the size of

the neighborhood units used to subdivide a region changes, the variances of the
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contextual characteristics change, as do their correlations with other variables. The net

result is that the statistical conclusions about neighborhood effects may depend on the

size of the neighborhood units chosen. Using a single, fixed definition ofneighborhood

boundaries Suffers from a scale problem because it assumes that all contextual conditions

vary on the same geographical scale and that the neighborhood units are in fact the right

size to best capture each and every contextual effect (Guo & Bhat, 2007).

If the chosen neighborhood units are too small or too large relative to the actual

geographical scale on which a particular construct actually matters, the spatial patterns

may be obscured and estimates of the relationships between contextual conditions and

outcomes may be biased, possibly leading to erroneous statistical inferences (Lery, 2008).

Using the example of crime hotspots and pollution, it is reasonable to expect that a

smaller geographical scale would be more appropriate for considering effects of crime

hotspots on nearby residents whereas a larger scale may be more appropriate for the

effects of pollution given the spread via prevailing winds.

Clearly, using a single set ofneighborhood units (e.g., block groups) does nOt

permit researchers to measure different contextual conditions at different spatial scales.

The obvious solution to that dilemma would be to use multiple levels of neighborhood

units with different contextual characteristics measured at each level. Several researchers

have argued that neighborhood is a multilevel concept and that residents can and do

distinguish between multiple spatial scales at which their neighborhoods could be

described (Galster, 2001; Kearns & Parkinson, 2001; Suttles, 1972). For example, Suttles

(1972) proposed a multilevel conceptualization of neighborhood that integrates social and

spatial aspects to define neighborhoods at four distinct spatial scales. Starting with the
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face-block5 on which one lives then moving up to successively larger spatial scales he

called the defended neighborhood, the community of limited liability, and the expanded

community of limited liability. Kearns and Parkinson (2001), simplified Suttles’

conceptualization by trimming it down to three scales (home area, locality, and urban

district or region) and argued that each is loosely coupled with a predominant function for

residents. So, there is conceptual support for the idea that neighborhoods exist at multiple

spatial scales and that each spatial scale may be important to residents, but for different

reasons. However, some ofthe spatial scales in these two conceptualizations are vaguely

defined and little research has been done that would allow researchers to argue that

specific census-based geographic units correspond to the different spatial scales described

by these authors.

Despite this conceptual support for a multilevel representation of neighborhoods,

most neighborhood studies still use only a single level of geographic units to represent

neighborhoods (Beyers et al., 2003; Caughy et al., 2008; Caughy & O'Campo, 2006; T.

E. Duncan et al., 2003; Franzini et al., 2005; Rankin & Quane, 2000; Sampson et al.,

1997; Sunder et al., 2007). So, while HLM could easily represent neighborhoods with

multiple levels of geographic units (e.g., block groups nested within census tracts) so that

different characteristics could be measured at each level, this is simply not common

practice. Instead, all of a given neighborhood’s characteristics are usually measured

within the same geographic boundary. Few authors discuss why they choose not to use

multiple levels of geographic units, but feasibility issues probably influence that decision.

One such issue is that using multiple levels of geographic units would increase sample

 

A face-block is comprised of both sides of a street bounded on either end by cross-streets.
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size requirements, making it more costly to collect data. Finally, even if the use of

multiple levels of geographic neighborhood units increased, HLM-based studies would

still be limited in their ability to examine the spatial scale on which neighborhood effects

operate because they would still rely on the dubious assumption that at least one ofthe

available levels of units is the right size to capture the effect of interest.

Ideally, theory and findings reported in the literature should guide researchers in

selecting the spatial scales on which specific neighborhood-level factors should be

measured (Messer, 2007), but there is a dearth of research that directly addresses this

issue. Careful consideration of the pathways through which neighborhood conditions are

believed to influence resident outcomes might allow researchers to extract clues about the

relevant spatial scale from studies ofthe spatial aspects of related phenomena such as

social networks and urban social travel (Greenbaum, 1982; Greenbaum & Greenbaum,

1985; Stutz, 1973; Welhnan, 1996; Wheeler & Stutz, 1971) or travel to activities such as

grocery shopping and commuting to work (Sastry, et al., 2002). However, research that

directly investigates the spatial scale on which contextual factors operate by comparing

the results of statistical models which differ only in the way neighborhoods are

operationalized for measurement purposes would be far more valuable (Chaix, et al.,

2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Kruger,

2008; Meersman, 2005).

Summary. The problems noted above (the MAUP, the boundary problem, and the

scale problem) are interrelated. They derive from the fact that a narrow conceptualization

ofneighborhoods that presumes they are adequately represented by a single set of spatial

boundaries leads to operational definitions that are sometimes poorly aligned with the
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actual nature of the phenomena under study. However, to use HLM, researchers must

adopt a discontinuous conceptualization of space that treats neighborhoods as discrete

entities and constrains how neighborhoods are operationalized for the purpose of

measuring neighborhood characteristics.

The discontinuous view of space also encourages researchers to view

neighborhoods as independent of one another by focusing narrowly on neighborhoods as

places and de-emphasizing the fact that they are embedded in a larger spatial context.

But, if the phenomena we are modeling are not so neat and tidy, we need to adopt

modeling tools that fit better with empirical reality and accommodate a more flexible

conceptualization of neighborhoods. Conceptualizing neighborhoods as places within

Continuous space offers researchers a way to begin addressing these problems by opening

up new ways to operationalize neighborhoods when measuring contextual characteristics.

As shall become clear below, GSM methods are compatible with this more flexible

conceptualization of neighborhoods, but HLM is not. A

Neighborhoods as places in continuous geographic space. Adopting a

conceptualization of geographic space that emphasizes its continuous, connected nature

makes distance between locations (and sometimes direction) relevant and decreases the

importance of potentially arbitrary boundaries between discrete units like census tracts.

Downey (2006) argued that while a discrete view of space is sometimes practical, a more

sophisticated perspective recognizes that continuous representations of space are also

useful because the social impact or sphere of influence for various goods, objects, or

events is often not confined to the boundaries of units such as census tracts and usually

declines continuously as distance from them increases. Similarly, when contextual
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characteristics exhibit substantial spatial variability within the boundaries of units like

census tracts, treating them as continuous, contoured surfaces stretching across the study

region may be useful (Chaix et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo,

Subramanian etal., 2005; Downey, 2006).

Loosely speaking, a resident’s neighborhood is a place that occupies some subset

of the geographical space surrounding his or her home. The relationship between

neighborhoods and space is less constrained when space is conceptualized as continuous

rather than discontinuous. Discarding the notion that neighborhood boundaries subdivide

space into mutually exclusive areas allows neighborhoods to partially overlap (Coulton,

et al., 2004), to have boundaries that are somewhat elastic or fuzzy and depend on the

purpose for drawing a boundary (Coulton et al., 2004; Montello et al., 2003; Sastry et al.,

2002), and to be defined in ways that are more consistent with findings suggesting that

residents tend to see their own homes as the center of the neighborhood (Coulton, et al.,

2001). Another advantage of adopting a continuous view of geographic space is that we

can think of residents as belonging to multiple overlapping neighborhoods, such that their

homes are simultaneously located at the center of some neighborhoods and more

peripherally located with respect to other neighborhoods. That lets us use a dramatically

different method of grouping residents for the purpose of characterizing spatial variation

in outcomes than is used in HLM studies, where each resident is a member of only a

single neighborhood.

These points deserve further attention because they relate to how well a researcher

can align the definition of neighborhoods as units of analysis with both the nature of real

world phenomena and formal statistical representations in HLM and GSM. As will be
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clarified further below, they are closely tied to why the GSM approach may sometimes

be more appropriate than HLM for testing hypotheses about neighborhood effects.

Conceptual definition ofneighborhood George Galster proposed the most

comprehensive and useful conceptual definition of neighborhood for the purposes of the

present study: “Neighbourhood is the bundle of spatially based attributes associated with

clusters of residences, sometimes in conjunction with other land uses” (Galster, 2001, p.

2112). Galster elaborates on that definition, listing many different types ofneighborhood

attributes that can be tied to geographical places. He makes it clear that this definition

encompasses any and every construct that can be measured within a spatially bounded

area, but that it does not restrict those attributes to all use the same set of boundaries and

does not require neighborhoods to occupy mutually exclusive geographic areas.

Accordingly, it may include elements of the physical environment such as the structural

characteristics of nearby buildings and roads, local levels ofpollution, noise, or traffic. It

can also include measures of the demographic composition or aggregate socioeconomic

characteristics of the resident population within that area, the kinds of public services or

programs available, the quality of schools, proximity to employment opportunities, or the

social policies that may be in place. This definition also extends to levels of citizen

participation, sense of community, collective efficacy, place attachment, the presence and

attributes of social networks, and more.

Making boundaries more meaningful. Galster’s (2001) definition is fully

consistent with multilevel conceptualizations ofneighborhoods as described above, but

more useful for GIS-based statistical models ofneighborhood effects that consider both

place and space than other available definitions because it recognizes the potential for
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ambiguity in the geographic boundaries of a neighborhood. Under this conceptualization,

the geographic area of a neighborhood would be unambiguous only if all its spatial

attributes happened to vary on the same spatial scale and also happened to follow

identical boundaries (Galster, 2001; Guo & Bhat, 2007). This definition is useful because

it accommodates the possibility that different attributes of a resident’s neighborhood may

need to be measured within different boundaries, perhaps with some measured over

larger areas than others or within areas of different shape, but all of which encompass the

resident’s home. The way neighborhoods are defined in HLM studies is simply a special

case within this broad definition in which the boundaries produce mutually exclusive,

non-overlapping geographic areas containing residents’ homes and where the same

boundaries are applied to measure multiple neighborhood attributes. Galster’s definition

encompasses that option, but also allows additional possibilities and, as a consequence,

researchers can better address the boundary problem described in the previous section.

To elaborate on that point, consider the catchment areas for local public schools:

they are relatively fixed bounded areas defined by governmental agencies, so children

fiom families living within any given catchment area would all attend the same public

school. As such, a measure of the quality of the local public school in a resident’s

neighborhood should be the same for everyone in that catchment area. In contrast, there is

no clear, inherent fixed boundary that defines the geographic area over which many other

contextual variables should be measured. So, for a contextual variable like crime, which

is known to be very unevenly distributed over space (Block, 2000; Ratcliffe &

McCullagh, 1999; Taylor, 1998) and where people may be affected by crime occurring

near their home regardless of which block group or tract it occurs in, it might make more
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sense to measure crime within a circular buffer centered on each person’s home. Galster’s

definition and GIS-based modeling techniques allow these distinct bounding strategies to

co-exist in the same study.

Using buffers as neighborhood boundaries. Using a buffer is consistent with the

research suggesting that residents tend to think of their homes as being located at the

center of the neighborhood (Coulton, et al., 2001) and thus also with the fact that

different residents tend to report different neighborhood boundaries. In addition, it allows

the researcher to flexibly increase or decrease the size of the area over which crime

would be measured, which is necessary if one wishes examine the spatial scale on which

crime matters (see Figure 2 for an illustration of this point). This would accomplish two

other things as well. First, it would allow a researcher to assign an individual resident to

different but overlapping geographical neighborhoods for purposes of measuring

different contextual variables such as crime and school quality. Second, it would also

allow researchers to assign residents in the same school catchment area to different

neighborhoods for the purpose of measuring crime, though those neighborhoods might

overlap to some degree (or not at all) depending on the distance between the residents

and the size ofthe buffer.

This notion of using circular buffers, sometimes referred to as “sliding

neighborhoods” (Guo &. Bhat, 2007) or “bespoke neighborhoods” (Galster, 2008), is

consistent with Galster’s conceptualization of neighborhood and can be implemented in a

GSM analysis but not within an HLM analysis. To continue with the crime example, a

resident living inside a school catchment area that has low crime but close to the

boundary between that catchment area and one that has high crime might end up with a
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Figure 2: Illustration of using buffers as neighborhood boundaries. Contextual

characteristics could be measured within circular buffers of different sizes (e.g.,

with radii of 100 m and 200 m) centered on points A and B, which are shown in

relation to census tract and block boundaries in Battle Creek, MI. For point A,

both buffers overlap portions of multiple tracts. For point B, only the larger buffer

overlaps portions of more than one tract. The 200 m buffers for these two points

partially overlap. Source: Map produced by the author from GIS files prepared by

the US. Census Bureau (U.S. Census Bureau, 2007a, 2007c).

buffer-based measure of crime that captures some of the crimes occurring on the other

side ofthe border that may well affect that resident. Using fixed boundaries for

neighborhoods does not permit modeling such boundary-spanning contextual effects, but

a buffer approach does. So while adopting a continuous view of space permits using
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buffer approaches to defining neighborhoods for some variables and fixed boundaries for

others, the discontinuous view of geographic space is incompatible with buffer

approaches to measuring neighborhood context because the buffers for residents might

sometimes only partially overlap.

Addressing spatialproximity. Taking a continuous view of space enables

researchers to take the spatial arrangement of both neighborhoods and residents into

account in their analyses. Because residents are viewed as members of multiple,

overlapping neighborhoods, GSM analyses do not assume that neighborhoods are

statistically independent of one another. Instead, physical proximity becomes a key

element in detecting and modeling spatial variation in outcomes. GSM analyses

effectively treat neighborhoods as places that have fuzzy boundaries for the purpose of

grouping residents; the farther a resident is from the center of a particular neighborhood,

the less similar his or her outcomes are likely to be to those of another resident located at

the center of the neighborhood. This is one of the ways that GSM improves on what

HLM analyses can do with respect to accounting for both place and space.

Addressing spatial variation in contextual conditions. Another important

advantage offered by buffer-based techniques for measuring neighborhood contextual

variables is that it enables GSM techniques to better handle spatial variation in contextual

conditions within things like census tracts. Residents on different ends of a large tract

might easily be assigned different values for contextual characteristics like crime because

the buffers centered on their homes may not even overlap, or may only overlap partially,

leading data aggregated within them to yield different values for the two residents. One

can even think of buffer-based techniques as yielding estimates of a smooth, continuous
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surface describing the spatial distribution of a contextual variable if we simply imagine

estimating the value of that variable at a grid of densely-packed points covering the entire

study region. This offers a much more informative view ofhow contextual conditions

vary over space than just measuring conditions within a single set of geographic units like

block groups or census tracts.

Addressing issues ofspatial scale. The ability to use different boundaries to

define the relevant neighborhood area for measuring different neighborhood

characteristics also helps to deal with the scale problem described earlier. Rather than

being limited to selecting a single spatial definition of a neighborhood (or a narrowly

defined hierarchical representation like block groups nested within census tracts), thereby

perhaps forcing the researcher to measure one or more contextual characteristics at a

geographic scale that is not well suited to the actual construct, Galster’s (2001)

conceptualization recognizes that different neighborhood characteristics might need to be

measured at different scales. Ifthe relevant characteristic is associated with some known

and meaningful pre-defined areal unit (like a school catchment area), that can be used as

the boundary for that construct. However, for other constructs, one can use buffers and

can even vary the size ofthe buffers used for the constructs. Researchers can also use

buffers of different sizes for the same construct and compare models to empirically

examine which size exhibits the best statistical performance. That then opens the door to

generating theories that can explain why particular constructs operate on specific

geographical scales of measurement.

Summary. Conceptualizing neighborhoods as places within continuous space is

useful because it creates new options for operationalizing neighborhoods. Those options
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are more compatible with GSM than with HLM. Adopting this more flexible

conceptualization of space and neighborhoods will allow us to adopt modeling tools that

may be better aligned with the phenomena we wish to investigate. This study proposes

applying a statistical method that does just that — and to the extent that GSM outperforms

HLM in modeling the data, it implies that treating neighborhoods as discrete, non-

overlapping entities for the constructs studied in this project may be less effective or

accurate than an approach that recognizes that neighborhoods are not so precisely

bounded. We need to align the methods with the phenomena, rather than allowing the

methods to drive the definition of the units of interest. To continue developing the

rationale for this study, the next section of the literature review describes how HLM is

applied to neighborhood research and how the discontinuous conceptualization of space

and neighborhoods affects HLM analyses.

Hierarchical Linear Modeling Methods for Testing Contextual Effects

To build the argument for why GSM may be a useful alternative to HLM, it is

essential to understand how HLM works and some of its limitations associated with the

assumptions made in order to apply it to neighborhood research. There is a large

literature on HLM, so this section focuses only on the aspects and issues most relevant to

the present study. For simplicity, the examples are drawn from the neighborhood effects

literature or framed in terms of neighborhood research, although HLM has also been

applied to many other content areas.

While the statistical methods for investigating contextual effects have evolved

considerably in recent decades, interest in multilevel research questions is hardly new.

One ofthe early statistical approaches to this was simply to merge contextual variables
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into an individual-level dataset by assigning the same value of each contextual variable to

everyone from a given setting. Then, that contextual variable was added to an ordinary

least squares (OLS) regression model as a “cross-level operator” to test the effect of

interest (James & Williams, 2000). However, the OLS regression model assumes that all

observations are independent from one another (Fox, 1997), so this initial approach was

eventually criticized for failing to take account of the fact that the observations from

people in the same setting are in fact not independent (Raudenbush & Bryk, 2002; Roosa

et al., 2003). The most serious effect of violating the independence assumption

underlying the OLS model is that it results in overly optimistic estimates of the

significance of contextual effects (Raudenbush & Bryk, 2002; Roosa, et al., 2003).

To better illustrate that point, consider a hypothetical study focusing on whether

or not neighborhood poverty affects educational achievement among youths. To do such

a multilevel study, one might choose a set of neighborhoods and then collect data about

multiple youths from each neighborhood. Simply using neighborhood poverty as a

predictor in an OLS regression model on the full sample in that study will yield

inaccurate estimates of the effect of neighborhood poverty if educational outcomes for

youths in the same neighborhood tend to be more similar to each other than they are to

outcomes among youths from other neighborhoods. This phenomenon is referred to as

autocorrelation; it indicates that the residuals are correlated rather than independent.

When the assumption of independent errors is met, each person’s data contributes

unique statistical information to the analysis, but when it is not met that is no longer true:

part of the information gained from each observation overlaps with information obtained

from other observations in the same neighborhood. The net result is that the effective
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sample size is really smaller than the number of persons in the sample. Because OLS

regression does not correct for that, the standard errors for the regression coefficients end

up being too small and Type I error rates are inflated. The Type I error rate gets worse as

the degree of autocorrelation increases.

Why HLM is useful. Part of HLM’s appeal lies in the ease with which we can

match the units and levels of analysis fi'om our theories to formal statistical

representations—there is a very clear mapping from the terminology of theory onto the

terminology used in the analysis (Luke, 2005). Indeed, HLM is a statistical method that

was tailor-made for doing multilevel research. The techniques that fall under the broad

umbrella ofHLM were developed to deal with situations where data are grouped

hierarchically, with the units of analysis at one level nested within larger, more inclusive

units that represent higher levels of analysis (Gelman & Hill, 2007; Raudenbush & Bryk,

2002). In the HLM fi'amework, the levels of analysis are usually numbered, starting with

level 1 at the lowest or most micro level of analysis then incrementing the level number

at each higher level of analysis added to the research design. For example, Browning and

Cagney (2002) used HLM to analyze data from a sample of 8,782 residents (level 1)

nested within 343 neighborhoods (level 2) in Chicago, Illinois.

There are both statistical and theoretical reasons why researchers use HLM. A key

statistical reason for its adoption is that HLM extends the OLS regression model to allow

for non-independence (i.e., autocorrelation) between the data fiom people nested within

the same higher level sampling unit (Raudenbush & Bryk, 2002). For neighborhood

research, that would mean that outcomes among people fi'om the same neighborhood can

be autocorrelated without violating the HLM assumptions, which addresses one of the
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key criticisms of simply adding a cross-level operator to an OLS regression model. While

correcting coefficient standard errors for the influence of autocorrelation is a key feature

ofHLM, there are also compelling theoretical reasons to use it in neighborhood research.

HLM provides a way to explore the multilevel structure of the data and examine a wide

variety of substantive hypotheses associated with multilevel theories.

One set of reasons that HLM may be useful is that it allows one to detect how

much variance in outcomes can be attributed to neighborhoods as opposed to individuals

and interpret the implications of that variance. First, the amount of autocorrelation

present in the data has substantive meaning: it quantifies how much variation in the

outcome can potentially be attributed to neighborhood-level as opposed to individual-

level difi’erences (Merlo, 2003; Merlo, Chaix et al., 2005a). Second, comparing results

fi'om alternative HLM models can help sort out whether neighborhood-level variation is a

result of compositional or contextual effects by showing how much neighborhood-level

variability can be explained by geographical clustering of similar people within the

neighborhoods (compositional effects) and how much variability can be explained by

neighborhood-level contextual characteristics (C. Duncan, et al., 1998; Merlo, 2003).

That helps researchers avoid attributing variability to contextual effects that can be

adequately explained by individual-level effects. Third, quantifying the relative amounts

of within- and between-neighborhood variability in an individual-level outcome makes it

easier to interpret the substantive meaning and policy implications of the regression

coefficients associated with contextual variables (Merlo, 2003).

Like other forms of regression modeling, HLM allows one to test hypotheses

about the effects of specific predictors. For example, HLM allows researchers to test
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theoretical propositions about whether contextual characteristics have direct (or indirect)

cross-level effects on outcomes for residents (Merlo, Chaix, et al., 2005b). HLM can also

be used to control for neighborhood effects in order to obtain more accurate estimates of

the effects of individual-level predictors. Consistent with the idea in HLM that variability

is ofprimary interest, HLM allows one to test whether the effect of an individual-level

predictor varies across neighborhoOds, indicating that an as-yet unidentified characteristic

of the neighborhood as a whole moderates the relationship (Merlo, Chaix, et al., 2005b;

Merlo, Yang, et al., 2005). Finally, researchers can add cross-level interactions to a

model to test whether specific contextual moderator variables explain variability in

individual-level regression coefficients (Merlo, Chaix, et al., 2005b).

The HLM statistical model. Although there are several different ways to write

out the statistical model underlying an HLM analysis (Gelman & Hill, 2007), the most

intuitive form is specified by writing multiple equations (Raudenbush & Bryk, 2002). For

example in a model where level 1 units are residents and level 2 units are neighborhoods,

there would be a level 1 sub-model showing the relationships between individual-level

predictors and the outcome, plus one or more level 2 equations describing how specific

coefficients in the level 1 sub-model (including the intercept) are themselves outcomes

predicted by level 2 variables. For example, a simple HLM with one predictor at each

level might be written as shown in Equations 1-3 below:

Level 1 sub-model: Yij = l30j + B 1jxij + rij. (1)

Level 2 sub-model for the intercept: l30j = 700 + YOIZj+ uoj. (2)
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Level 2 sub-model for the slope ofX: BU = 710 + 71 1Zj+ u1j. (3)

In Equation 1, Yij is the outcome for person i in neighborhoodj, which is shown

as the sum of a neighborhood-specific intercept (ng ), plus the neighborhood-specific

effect ([3 1j) of a level 1 predictor (Xij), plus a level 1 residual (rij) for person i in

neighborhoodj. The fact that the level 1 intercept and slope are estimated separately for

each neighborhood is important because that means one can now construct a new

outcome variable from each of them, then use the level 2 sub-model in Equations 2 and 3

to predict those coefficients with neighborhood-level predictors. Thus, Equation 2 shows

that the intercept in each neighborhood (BOj) can be modeled as the sum of a fixed

intercept that is the neighborhood-level mean (700), plus the systematic effect (701) of

some neighborhood-level contextual variable (Zj), plus a neighborhood-level residual

(uoj) that represents random error at level 2. Changing from using [3 to using 7 to

represent the regression coefficients at level 2 simply reminds readers that one has now

moved to a different level of analysis.

As illustrated by Equations 2 and 3, one can write a separate level 2 sub-model for

every parameter in the level 1 sub-model; in each of these level 2 sub-models, there is a

unique level 2 residual term. Taken together, Equations 1-3 propose a multilevel model in

which (a) the individual-level variable X has a main effect, (b) the neighborhood-level

variable Z also has a direct main effect through Equation 2, and (e) Z moderates the
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effect ofX through Equation 3. The moderator effect is easier to recognize when

Equations 2 and 3 are substituted into Equation 1 so that the entire model is represented

by a single regression model (Equation 4), then simplified and rearranged with all three

residual terms collected inside the parentheses in Equation 5:

Combined model: Yij = (700 + 701Zj+ “CD + (710 + yl 1Zj+ u1jlxij + Tij- (4)

Combined model: Yij = 700 + yloxij + yij + y] 1Zinj + (“0] + uleij + rij), (5)

The term 71 1Zinj in Equation 5 represents the cross-level interaction between the

neighborhood-level variable Z and the individual-level variable X (711 is the coefficient

for that effect). This interaction functions as a moderator term, exactly paralleling how

moderators are represented in OLS regression models (see Aiken & West, 1991).

The combined model in Equation 5 is also useful for illustrating how HLM is

simply an extension of the more familiar OLS regression framework. The major

difference is the addition of the neighborhood-level residuals for the intercept (uoj) and

slope (u 1inj), and the change in notation from B to y for the coefficients. Of course,

adding the neighborhood-level residuals and allowing them to potentially correlate with

each other makes estimating the model more complex, but iterative maximum likelihood

methods make that tractable (Raudenbush & Bryk, 2002) and modern software packages

such as SPSS, SAS, R, and WinBUGS can easily handle these models (Gelman & Hill,
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2007; Hayes, 2006; Lunn, Thomas, Best, & Spiegelhalter, 2000; Peugh & Enders, 2005;

West, Welch, Galecki, & Gillespie, 2007).

Assumptions in HLM. Three of the major methodological assumptions

underlying HLM relate directly back to the broader assumptions in multilevel research.

The first of those is that every level 1 unit is nested within a specific, known higher level

unit (Hofmann, et al., 2000); in neighborhood research that simply means we need to

know which neighborhood each resident lives in. Defining neighborhoods as places that

occupy mutually exclusive portions of space simplifies determining who belongs in each

neighborhood. The second assumption is that level 1 units are exposed to and potentially

affected by processes and conditions within the higher level units to which they are

linked (Hofmann, et al., 2000). In neighborhood research, residents are assumed to be

affected by neighborhood processes and/or neighborhood conditions. Finally, HLM

assumes that outcomes can potentially vary both within and between higher level units

(Hofmann, et al., 2000; Raudenbush & Bryk, 2002).

An important, but frequently unstated, assumption in HLM as applied to

neighborhood research is that contextual conditions are assruned to be homogenous

within each neighborhood (Roosa, et al., 2003). This shows up in the statistical model by

assigning the same value on each neighborhood-level predictor to every individual in a

given neighborhood.

Naturally, there are also formal statistical assumptions in HLM, most of which

follow from the fact that HLM simply extends OLS regression. The following discussion

draws primarily from Hofrnann et a1. (2000), though similar points are made by

Raudenbush and Bryk (2002). For every level 1 unit within each level 2 unit, the level 1
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residuals (rij) are assumed to be independent and normally distributed with a mean of

. 2 . . .

zero and a variance of o . Because there can be multrple level 2 resrduals, each assocrated

with a different level 1 parameter, each kind of level 2 residual is aSsumed to follow a

normal distribution and be independent across level 2 units. The set of level 2 residuals

are collectively assumed to follow a multivariate normal distribution, which means that

the variance components associated with those level 2 residuals can be arranged in a

variance-covariance matrix whose elements are labeled with the Greek letter tau (rqq). It

is also assumed that the level 1 residuals are independent of any and all level 2 residuals

and that neither level 1 nor level 2 residuals are correlated with any predictors at their

respective levels in the hierarchy.

Autocorrelation in HLM. Quantifying the amount of autocorrelation detected by

an HLM analysis is quite easy. One simply runs an empty or null model in which neither

the level 1 nor the level 2 sub-models contain any substantive predictors (Raudenbush &

Bryk, 2002). Instead, they contain only intercept and residual terms at each level. This

provides estimates oftwo variance components: 02, which represents within-

neighborhood or individual-level error variance, and too, which represents between-

neighborhood variance. The sum ofthese two variance components is the total variance

in the outcome measure. If there is a tendency for people in the same level 2 unit to have

similar outcomes, then there must be some variance attributable to between-

neighborhood differences (too > 0). To measure the amount of autocorrelation present,

one calculates the ICC (p), which is the ratio of the between-neighborhood variance to
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the total variance from an empty HLM model, as shown in Equation 6 (Raudenbush &

Bryk, 2002).

ICC: p = too/(r00 + oz). (6)

The simplest way to interpret the ICC is to think of it as the proportion of

variance in the outcome that is attributable to neighborhoods. Because variance

components cannot be negative numbers, the ICC ranges from zero to one (Merlo, Chaix,

et al., 2005a). Obviously, when too is equal to zero, then the ICC is also zero, indicating

that the neighborhood a resident lives in is unrelated to the outcome in any way; in those

cases, HLM produces results identical to OLS regression (Roosa, et al., 2003). The ICC

indicates the amount of autocorrelation present: larger values indicate more

autocorrelation, but even small amounts of autocorrelation can compromise the accuracy

of OLS regression. At the upper end, an ICC of one indicates that there are no individual

differences within neighborhoods and that all differences in outcomes can be explained

by the neighborhoods in which residents live.

Because HLM approaches neighborhoods as spatial units, the autocorrelation it

models can be conceptualized as a form of spatial dependence (Bass & Lambert, 2004)

that is strictly hierarchically structured. The level 2 residuals in an HLM are the

mechanism for introducing autocorrelation between residents (level 1 units) within the

same neighborhood (level 2 unit) into the model. The standard HLM statistical model

does not permit autocorrelation between residents located in different neighborhoods

unless the entire hierarchy is extended to include a third level.
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The HLM statistical model also does not permit the amount of autocorrelation that

may exist between level 1 units within the same level 2 unit to vary. So, the requirement

that the nesting of residents inside neighborhoods must be known combines with the

operational definition ofneighborhoods as units of analysis in HLM to determine whose

outcomes are allowed to be autocorrelated and whose are not.

Overall, HLM treats neighborhoods as places that are disconnected fiom and

independent of one another, unless they are connected via common membership in a still

higher level of spatial unit. Even when one adds additional levels to the hierarchy, the

boundaries of the units at the highest level will always define sharp discontinuities in

whether outcomes for people on either side ofthe border will be autocorrelated despite

being quite close together in space.

Controlling for composition. A question that frequently arises in multilevel

neighborhood research is whether evidence that outcomes differ between residents of

different neighborhoods represents a contextual effect or whether it is instead attributable

to differences in the compositions of the neighborhoods’ populations (Bingenheimer &

Raudenbush, 2004; C. Duncan, et al., 1998). Upon detecting the presence of

autocorrelation, it is tempting to conclude that a contextual property of the neighborhood

is the only possible explanation. However, an alternative explanation may be that the

neighborhood-level variability can be explained by the geographical clustering of similar

types of people into neighborhoods —that neighborhood is effectively confounded with

one or more individual-level characteristics (C. Duncan, et al., 1998; Merlo, Yang, et al.,

2005). A variety of social processes might result in that sort of clustering, some voluntary

(wealthy individuals choosing to live in certain neighborhoods) and others involuntary
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(structural racism may restrict the housing options available to minorities, leading to

residential segregation).

The ICC calculated from an empty HLM model does not by itself distinguish

contextual from compositional effects that may explain that autocorrelation. To control

for composition, it is necessary to run another HLM analysis that expands the empty

model by adding only individual-level predictors known or believed to be related to the

outcome (Merlo, Yang et al., 2005). Doing that controls for the composition of the

population in each neighborhood, at least insofar as those particular variables are

concerned and the variance components will now reflect that the effects of those

individual-level variables have been removed.

The adjusted ICC based on the revised model represents the amount of

autocorrelation remaining in the data that may reflect the influence of contextual factors

at the neighborhood level (Merlo, Yang, et al., 2005). If the adjusted ICC still indicates

the presence of autocorrelation, then controlling for composition has not eliminated the

possibility of contextual effects. However, if the ICC is effectively zero after controlling

for composition, then there is no neighborhood-level variance left to explain and adding

contextual characteristics will not be fi'uitful. Formulas for calculating the proportional

change in variance at each level of the model are available (Merlo, Yang et al., 2005),

allowing the researcher to calculate level-specific analogues to R2.

Neighborhoods as level 2 units in HLM. There are two important ways that the

conceptualization and operationalization of neighborhoods as units of analysis influences

an HLM analysis. The first is that HLM is only compatible with a definition of

neighborhoods that presumes there are sharply defined, non-overlapping boundaries that
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make it possible to unambiguously assign neighborhood membership for each resident.

Without that, HLM’s mechanism for modeling autocorrelation breaks down.

One problem with this approach is that the boundaries chosen by the researcher

(which are one option among many) may not be valid and may not group people in a

meaningful way. For example, a researcher might choose to use census tracts to group

people into neighborhoods, but this may group the wrong people together and split up

people who should be grouped with each other. Consider a hypothetical case where a

researcher assigns two people who consider themselves neighbors to different

neighborhood units: social interactions and information exchange between those people

might lead to autocorrelation in their perceptions of neighborhood sense of community,

norms, or safety, thus violating the HLM assumption that outcomes for residents in what

the researcher calls different neighborhoods are independent. Furthermore, in spatial

datasets, the degree of autocorrelation observed is often a function of the distance

between observations (Bailey & Gatrell, 1995; Haining, 2003). This form of spatial

autocorrelation is succinctly described by Tobler’s First Law of Geography, which states

“Everything is related to everything else, but near things are more related than distant

things.” (Tobler, 1970, p. 236). So, assuming that autocorrelation ishierarchically

structured may be inaccurate, depending on how well the researcher’s boundary system

captures the actual patterns in the data.

Another Side-effect of this need to unambiguously group people into

neighborhoods is that findings will be subject to the MAUP through its implications for

the measurement of neighborhood-level constructs. The discontinuous view of

geographic space implies that researchers should use the same boundaries when
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determining the geographic area within which all neighborhood-level constructs should

be measured. The frequent use of census tracts or block groups as neighborhood units

often derives from a desire to use readily available census data to measure structural

characteristics of the neighborhoods so that they can be used as contextual predictors.

However, doing that assumes that size, shape, and boundaries of the neighborhoods are

fixed and equally appropriate for all of those measures, thus opening the door to the

MAUP because of the boundary and scale problems.

Considering space in HLM. As previously noted, the standard software

packages for HLM provide very few options for trying to take account of the spatial

arrangement of neighborhoods. One option is to add an additional hierarchical level to the

model, then model regional effects with variables at the new level. However, that is not a

very flexible approach for considering spatial issues, so some neighborhood researchers

are now beginning to perform alternate kinds of analyses that attempt to take the spatial

arrangement of neighborhoods into consideration. One approach involves using results

from HLM analyses as inputs to spatial regression models that are entirely conducted at

the neighborhood level (Morenoff, 2003; Morenoff et al., 2001; Swaroop & Morenoff,

2006). In these studies, the question typically being asked is whether the mean level of

the outcome in a focal neighborhood is influenced by the contextual characteristics of

adjacent neighborhoods.

The modeling required to answer that question proceeds in two stages. In the first

stage, an HLM is run in the normal fashion to link contextual and individual-level

predictors to some level 1 outcome, yielding estimates of the neighborhood-level

residuals. Those residuals represent each neighborhood’s mean on the outcome (adjusted
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for the composition ofthe sample in each neighborhood). The neighborhood means are

expressed as deviations from the grand mean across all neighborhoods.

In the second stage of these analyses, the neighborhood-level residuals become

the dependent variables in a subsequent “spatial lag” regression model of the general

form illustrated in matrix notation by Equation 7 (Morenoff, 2003; Morenoff, et al., 2001;

Swaroop & Morenoff, 2006).

Y=pWY+X8+s. (7)

In Equation 7, the parameter p is a spatial autoregressive parameter that represents

the effect of a one unit change in the weighted average of the dependent variable in

surrounding neighborhoods. The W in this equation is a weights matrix defining how

much each other neighborhood’s value on the dependent variable contributes to the

weighted average that is denoted WY. One typically specifies weights so that only the

neighborhoods that share a common border or comer with the focal neighborhood

directly affect the spatial lag term for the focal neighborhood. Naturally, X8 represents

the effects for contextual variables associated with the focal neighborhood and a is a

typical regression residual that is assumed to be independent and normally distributed.

Because the Y values from surrounding neighborhoods used to construct the WY

term are themselves functions of the contextual conditions in their respective

neighborhoods, the spatial lag model essentially says that the outcomes in a focal

neighborhood depend not only on the contextual characteristics within its own boundaries

but also on the contextual characteristics of other neighborhoods. More distant

neighborhoods often exert increasingly weaker influence mediated through their effect on
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more proximal neighborhoods, though that depends on exactly how the Weight matrix is

constructed in this model.

While this approach does allow researchers to build on the foundation provided

by I—ILM to start considering spatial issues, it would be better to integrate these spatial

effects directly into the original level 2 portion of the HLM model. One way to do that is

to replace the WY term in Equation 7 with a single variable Y' that represents a weighted

average of the outcome in surrounding neighborhoods that has been purged of any

correlation with the error term, then treat the new variable as simply another

neighborhood-level predictor (Land & Deane, 1992; Wyant, 2008). An advantage of that

approach to enhancing HLM with additional spatial information is that it can be

implemented even with standard multilevel modeling software. The disadvantage with

this approach is that implementing it relies on an insMental variables framework that is

Somewhat difficult to understand and it still requires running additional models prior to

the main analysis in order to construct the Y' variable.

Taking a fully Bayesian approach and switching to more specialized software

packages like WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) allows one to take

a more sophisticated approach to enhancing an HLM model with spatial information. For

e)‘aurlple, some authors have proposed relaxing the assumption of independence among

the neighborhood-level intercepts by adding a conditional autoregressive (CAR) structure

into the HLM model (Beard, 2008; W. Browne & Goldstein, in press). A CAR-HLM

model is simply a slightly more general version of the HLM model where one assumes

mat that the proximity between neighborhoods is important because the average resident

o . . . . .
utcOtne from one neighborhood 1s srmrlar to the average outcomes In other nearby
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neighborhoods. That makes the CAR-HLM model conceptually similar to a spatial lag

model. Using CAR-HLM models, researchers can allow the correlation between the

intercepts of adjacent neighborhoods to depend on the distance betWeen neighborhoods

(Beard, 2008; W. Browne & Goldstein, in press). One advantage of moving to a CAR-

HLM model instead of following up on a standard HLM model with a separate spatial lag

model is that the entire CAR-HLM model is estimated at one time.

Like the spatial lag approach, adding a CAR structure to an HLM requires a

weight matrix (W) that defines which neighborhoods affect each other and how much

they do so. A CAR-HLM analysis is implemented by adding a spatially structured

residual term to the level 2 model to supplement the regular unstructured residual term.

AS Equation 8 below shows, each of these new spatial residuals (denoted Si) is assumed

to be drawn from a normal distribution with a mean equal to the weighted average of the

Spatial residuals from the surrounding neighborhoods (denoted Sj), which are defined by

the W matrix values that have non-zero values. This also adds a second level 2 variance

component to the model.

Si | S-i ~ Normal(2j Sj/ni, v/ ni), where ni = Zj Wij- (8)

Only one study has used a CAR HLM approach to study residents’ perceptions of

their neighborhoods (Fagg, Curtis, Clark, Congdon, & Stansfeld, 2008). Unfortunately,

that study did not contrast the CAR HLM results with those ofHLM models without the

'CAR structure. While it did not consider many of the other spatial issues related to the

definition ofneighborhoods discussed above, Fagg and colleagues’ study shows that it is

Dossible, though certainly very far from common, to enhance HLM to better account for

the Spatial arrangement of neighborhoods.
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However, the GSM approach also offers a simple, direct approach to modeling the

spatial patterns in outcomes and to representing the possibility that contextual conditions

in what HLM would call different neighborhoods may matter for outcomes in a focal

neighborhood. With GSM, there is no need to pull the results out ofHLM and feed them

into another statistical procedure because it has mechanisms for representing these

concepts. In addition, GSM offers greater flexibility than HLM with respect to defining

the boundaries to be used for measuring neighborhood-level variables. Thus, the review

now turns to a discussion of GSM.

Geostatistical Modeling Methods for Testing Contextual Effects

The GSM methods used in this study belong to a family of related statistical

techniques that have their origin in the earth sciences, namely geology. This study uses

the terrn geostatistical model to honor that origin and to maintain the link back to the

larger literature where the method is most often used and described, which is usually

called geostatistics (Banerjee, Carlin, & Gelfand, 2004; Chiles & Delfiner, 1999; Diggle

‘& Ribeiro, 2007; Goovaerts, 1997; Isaaks & Sfivastava, 1989). Retaining that link should

help Other researchers interested in exploring the range ofGSM methods available to

locate relevant materials. Other authors who have begun to use GSM techniques outside

of its original application areas have also retained this terminology (Bass & Lambert,

2004; Chaix, et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et

a]. - , 2005)

GSM is one ofthree major types of statistical approaches to spatial data analysis

“lat fall under the broad umbrella of GIS (Bailey & Gatrell, 1995). It is informed by an

3x131icit spatial perspective on analysis where place, space, and spatial dependence are of
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primary interest (Haining, 2003) and relies on point-referenced data—each observation is

associated with a location defined by a pair of spatial coordinates (Bailey & Gatrell,

1995; Haining, 2003). GSM focuses on modeling the spatial distribution of an attribute or

variable attached to those locations, generally conceptualizing the observations as

samples from some underlying, continuous surface (Bailey & Gatrell, 1995 ; Chilés &

Delfiner, 1999; Goovaerts, 1997; Haining, 2003; Isaaks & Srivastava, 1989).

Geostatistical techniques were developed to study the spatial distributions of

minerals and natural resources (Chilés & Delfiner, 1999; Goovaerts, 1997; Isaaks &

Srivastava, 1989). They are often used to predict the amount of a particular mineral

expected at unsampled locations on the basis of both the large-scale spatial trends and

small-scale spatial autocorrelation evident in the data fi'om sampled locations. Such

models ofien use the spatial coordinates (or polynomial functions of them) as predictors

in regression models to represent the large-scale spatial trends, but they may also use

substantive predictors like the concentration of another mineral that was also measured at

the Sarnpled locations and is believed to predict the levels of the target mineral.

In traditional applications ofGSM like those discussed above, the point is to

predict values at unsampled locations, not to interpret the substantive meaning of the

coeft‘leients. However, GSM, like HLM, is an extension ofthe OLS regression model

(B311teee et al., 2004; Diggle & Ribeiro, 2007). It can be used in an explanatory capacity

because the distinction between prediction and explanation is tied to the purpose of the

researeh, not how a regression model works (Diggle & Ribeiro, 2007; Myers, 1990). To

use GSM for explanatory purposes one must replace spatial coordinates as predictors
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with substantive predictors selected on the basis of theory because the former merely

describe spatial patterns in the dependent variable, while the latter explain them.

Why GSM is useful. This study focuses on GSM as an alternative to HLM for

studying neighborhood effects because GSM offers greater flexibility to incorporate and

model spatial aspects of those phenomena. Furthermore, GSM is compatible with a

multilevel conceptualization of neighborhoods as entities that surround each resident’s

home and have fuzzy, sometimes overlapping boundaries that may vary in size and shape

depending on the neighborhood attribute being measured (Galster, 2001).

Despite its origins in modeling physical phenomena, GSM can be applied to study

the social phenomena that are of interest in neighborhood research. GSM has recently

been applied in epidemiological studies of place effects on health and health care

utilization (Boyd, Flanders, Addiss, & Waller, 2005; Chaix, Merlo, & Chauvin, 2005;

ChaiX, Merlo, Subramanian et al., 2005). Geostatistical methods have even been applied

in a limited way to examine spatial autocorrelation in urban youths’ perceptions of

neighborhood disorder (Bass & Lambert, 2004).

As with HLM, there are both statistical and theoretical reasons why GSM is

Useful for neighborhood research. On the statistical side, GSM is designed to explicitly

model Spatial autocorrelation between observations, allowing the regression coefficients

assoCiated with predictors to be accurately estimated in situations where the OLS

regression assumption of independence would be violated (Banerjee et al., 2004; Diggle

8‘ Ribeiro, 2007).

On the theoretical side, GSM allows the researcher to test many ofthe same

multilevel hypotheses that HLM can test. For example, GSM can partition the amount of
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variance in outcomes into components attributable to neighborhood-level spatial variation

and individual-level non-spatial variation (Banerjee, et al., 2004). By adding individual-

level predictors, GSM can account for population composition effects and yield revised

neighborhood- and individual-level variance estimates in a manner parallel to that in

HLM (Chaix, Merlo, Subramanian, et al., 2005).

As an extension of the basic regression model, GSM also allows one to test

hypotheses about the effects of predictors, whether those predictors are located at the

neighborhood or individual levels of analysis. Any hypothesis about direct or indirect

cross—level effects of contextual predictors that can be represented in a regression model

or in I-ILM can be tested in similar manner in GSM, as can hypotheses about cross-level

interactions between contextual and individual-level predictors.

GSM relies on a continuous representation of space rather than on one fragmented

into Spatial units of arbitrary size, shape, and boundaries (Bass & Lambert, 2004; Chaix

et 31-, 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005).

Thusa in GSM places are naturally embedded in the larger spatial context because spatial

pt'OXil‘nity, rather than membership in the same neighborhood unit, is the basis for

modeling autocorrelation (Banerjee et al., 2004; Chaix et al., 2006; Chaix, Merlo, &

ChauVin, 2005; Chaix, Merlo, Subramanian et al., 2005; Finley, Banerjee, & Carlin,

2007). The advantages of that approach are explained further below in the section about

how autocorrelation is handled in GSM. The Continuous representation of space is also

useful because it allows a researcher to independently vary the size and shape ofthe area

QVer Which each neighborhood-level predictor is measured. The significance of that
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flexibility is discussed further below in the sections on neighborhoods as level 2 units in

GSM and on considering space in GSM.

The GSM statistical model. The statistical model underlying GSM is an

extension of the standard regression model that relaxes the independence assumption

associated with ordinary least squares models. Several other statistical models also relax

that assumption. For example, where the units of observation are geographic areas,

spatial regression models such as simultaneous autoregressive (SAR) models and

conditional autoregressive (CAR) models are frequently used to incorporate non-

independence into what is otherwise a regular regression model (Haining, 2003). With

point-referenced data, generalized least squares (GLS) models can be used to add a

covariance structure to the model’s error term, thereby modeling residual spatial

dependence (Bailey & Gatrell, 1995). In fact, GLS models are closely related to the GSM

method discussed here. The GSM model used in this study is shown in Equation 9 below.

Throughout the model, the (8) attached to various terms denotes that they are associated

With known spatial locations—it is like a subscript indexing the data by spatial location.

Y(s) = XT(s)B + W(s) + 8(8). (9)

As shown in Equation 9, the dependent variable Y at a particular location (8) is

predicted from an intercept and a set of spatially referenced predictors from the same

location, denoted in matrix notation as XT(s)B, plus a normally distributed residual term

called 8(8) that represents pure random error at that location. The only difference between

t

he GSM model and the standard OLS regression model is that GSM adds a spatial

random effect residual called W(s) that represents spatial autocorrelation (Banerjee eta1.,

2004; Finley et al., 2007). The value of W(s) for any given observation depends on the
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observation’s location and hence also on its distance from the other observations. Unlike

HLM, GSM does not use different notation for the coefficients associated with predictors

located at the neighborhood versus individual levels of analysis.

The notation used to identify the variance components in GSM is different than in

HLM because it switches the meaning of the symbols “:2 and 02. In HLM, 1:00 refers to

between-neighborhood variance and (32 refers to individual-level within-neighborhood

variance. In GSM, the situation is reversed because 12 (also called the nugget)

traditionally refers to the non-spatial, pure error variance that is basically individual-level

variance and 02 (also called the partial sill) refers to spatial variance that is analogous to

neighborhood-level variance (Banerjee, et al., 2004).

Assumptions in GSM. As with all statistical methods, GSM makes both

Inet110dological and statistical assumptions. One of the key methodological assumptions

is that the location associated with every observation is known. Galster’s (2001)

definition ofneighborhoods implies that every residential location exists inside a

neighborhood, so contextual characteristics measured at such locations provide the

neigl'lborhood-level information required to use GSM as a multilevel analysis technique.

Neitller Galster’s neighborhood definition nor GSM methods require assuming that

neigllborhoods have a constant size or shape that should be used for measuring all

neighborhood characteristics. GSM can also accommodate neighborhoods that overlap.

GSM, like HLM, assumes that residents are exposed to and potentially affected by

neighborhood processes and conditions (Chaix et al., 2006; Chaix, Merlo, & Chauvin,

2005 ; Chaix, Merlo, Subramanian et al., 2005). It also assumes that outcomes can vary
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both within and between neighborhoods, but it does not rely on neighborhood boundaries

to determine how much autocorrelation may exist between observations. Instead, GSM

assumes that autocorrelation is a spatial phenomenon operating over continuous space.

There are several formal statistical assumptions in GSM. Because many ofthe

assumptions in GSM are similar to those in OLS regression models, this discussion

focuses on the specialized assumptions that are pertinent to understanding how GSM

works- As in OLS regression, the random error term 8(8) is assumed to follow a normal

distribution with a mean of zero (Banerjee et al., 2004; Finley et al., 2007), though the

symbol for the variance component of this distribution is 12 in GSM rather than the 02

traditionally used in OLS regression and HLM. Though GSM and OLS regression use

different symbols for the error term, there is no substantive difference in what they

rePresent. As usual, the errors denoted with 8(8) are assumed to be independent of other

tenns in the model, just like the individual-level residuals from an HLM.

The spatially autocorrelated term W(s) in the GSM model is assumed to be the

result ofa stationary Gaussian spatial process (Banerjee et al., 2004; Finley et al., 2007).

That means that the GSM approach is conceptualizing these residuals as values sampled

from a joint multivariate normal (Gaussian) distribution where each observed location is

assOCiated with a separate, normally distributed variable that has a mean of zero.

S“‘t‘fitionarity refers to the assumption that the mean value of the process is zero

ever)there in the study region.

Describing the full multivariate normal distribution of the spatial process requires

a covariance matrix with rows and columns that correspond to the observed locations.

Each element in the matrix is therefore associated with two locations and represents the
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covariance between the two random variables from which the residuals associated with

those two locations are drawn. GSM assumes that the covariance matrix has been

generated by an underlying covariancefunction that specifies the shape of a smooth

theoretical curve that models the amount of covariance between observations at any two

locations as a function of the physical distance separating them. GSM authors also

sometimes refer to this as the correlation frmction because the covariance function can be

converted into a correlation metric that is more interpretable.

Typically, the correlation function associated with the W(s) term is assumed to be

stationary and isotropic (Banerjee et al., 2004), which means that strength of spatial

autocorrelation depends only on distance between observations and not on the direction

one would have to travel to move from one location to reach the other. The correlation

function is said to be anisotropic when the direction fi'om one point to another affects the

level of autocorrelation observed (Banerjee et al., 2004; Chiles & Delfiner, 1999; Diggle

& Ribeiro, 2007; Isaaks & Srivastava, I989).

Autocorrelation in GSM. In contrast to HLM, where the autocorrelation in the

data is represented by a single number, autocorrelation is not a single value in GSM.

Instead, the correlation function describes how much autocorrelation there is between

points as a function of the distance between them. It is estimated by grouping pairs of

observations separated by certain distances, then estimating the variance in each group.

Each observation contributes to multiple groups because it lies at different distances from

various other observations. Observations that are close together are usually more highly

autocorrelated than observations that are far apart.

86



Figure 3 shows examples of several alternative correlation functions that can be used in

GSM (Banerjee et al., 2004; Chilés & Delfmer, 1999; Diggle & Ribeiro, 2007; Isaaks &

Srivastava, 1989), each of which is described by a different mathematical formula that

has a few parameters, usually consisting of a partial sill parameter (oz), a range parameter

((p), and the nugget (12). In Figure 3, the dot at distance = 0 indicates that each model

assumes perfect autocorrelation between observations at the exact same location (distance

= 0), whereas the lines indicate the level of autocorrelation between observations that are

at different locations (distance > O). The vertical space between the dot and the left end of

the line in each semivariance panel illustrates the nugget parameter. The effects of the

range and partial sill parameters are easiest to see in the semivariance panel for the

spherical model: the vertical space between the left end of the line and the level at which

the line turns flat is the partial sill, whereas the distance at which that line first turns flat

is the range6. Details on alternative correlation functions are presented in geostatistics

textbooks (Banerjee et al., 2004; Chiles & Delfiner, 1999; Diggle & Ribeiro, 2007; Isaaks

& Srivastava, 1989), but a full discussion of the types of correlation functions available is

beyond the scope of this study, other than to note that it is common practice to fit

alternative GSMs with different correlation functions and assess which one produces the

best empirical results. I

To quantify the amount of autocorrelation detected by a GSM analysis, one can

use the parameters of the correlation function estimated from an empty GSM model (i.e.,

 

6

Technically, the parameter that determines the range often actually measures the rate of decay in the

spatial covariance and the range corresponds to the distance at which that covariance has become

negligible. So, the range is actually a value calculated by transforming the true parameter value.
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Figure 3: Exponential, spherical, and Gaussian variogram models displayed in three

different metrics. Each panel illustrates the autocorrelation between observations

as a function ofthe distance between them. The top two rows show these models

in correlation (top) and covariance (middle) metrics, which are measures of

similarity; the bottom row shows them in a semivariance metric, which is a

measure of dissimilarity. All three models have the same partial sill (0'2 = 1),

range («3 = 1), and nugget (r2 = 1) parameters, but differ in shape.

one with no substantive predictors, only an intercept term). Recall that the partial sill (oz)

represents the amount of neighborhood-level, spatial variance, while the nugget (12)

represents the individual-level, non-spatial variance. The range parameter in a GSM
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analysis allows the researcher to identify the actual distance beyond which data are no

longer spatially autocorrelated (or only negligibly so). Both the partial sill and the nugget

are variance components, so their sum is the total variance in the outcome. Thus, we can

use Equation 10 to construct a partial sill ratio (PSR) that is conceptually similar to the

ICC measure used in HLM.

PSR: p = 02 / (02 + 1:2). (10)

The PSR is the maximum level of autocorrelation observed in the GSM, which

occurs at very short distances between observations. Like an ICC, it varies between zero

and one, with one indicating perfect spatial autocorrelation. Thus, the PSR estimated in a

GSM is directly comparable to the ICC estimated in an HLM: The simplest way to

interpret it is to think of the PSR as the proportion ofvariance in the outcome variable

that is attributable to neighborhoods. In addition to looking at the PSR, one can plot and

examine the entire correlation function associated with the GSM (Chaix, Merlo, &

Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005).

Incorporating the spatially autocorrelated residual term W(s) in the GSM model

corrects for the autocorrelation in the data and accounts for the spatial arrangement of

both residents and neighborhoods, resulting in more accurate standard errors for the

regression coefficients. This parallels how HLM corrects for autocorrelation, but makes

different assumptions about how autocorrelation is structured because it does not use

neighborhood boundaries to inform the statistical representation of autocorrelation.

In substantive terms, the range associated with the correlation function in a GSM

analysis identifies the geographic scale on which the spatial autocorrelation in the

residuals exists. Models with large ranges indicate that residual spatial autocorrelation
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exists over long distances, while small ranges indicate spatial autocorrelation is restricted

to relatively short distances. This is critical information because it clarifies the conditions

under which HLM may be a reasonable method to deal with spatial autocorrelation,

which is probably when the range of spatial autocorrelation roughly spans the entire

length ofthe typical HLM-based neighborhood unit and the units are far enough apart

that spatial autocorrelation is not spilling over from one to another.

Consider some contrasting hypothetical situations. In one, the neighborhood units

used in an HLM are all far enough apart that any distance-based spatial autocorrelation

that could have been detected by GSM does not reach from one neighborhood to another

(e.g., neighborhoods drawn from different cities or states). In that case, HLM’s

assumption that outcomes for residents located in different neighborhoods are

independent is met and modeling the within-neighborhood autocorrelation as a single

neighborhood-level residual shared by all residents of the neighborhood may not be

sacrificing too much information if the individual-level predictors account for any

remaining patterns in the spatial distribution of the outcome within the neighborhood.

In another hypothetical situation, the neighborhood units used in the HLM are

close enough together that the range of spatial autocorrelation detectable by GSM reaches

from some neighborhoods into other neighborhoods, indicating that outcomes among

residents in different neighborhood units are still autocorrelated. That would decrease the

between-neighborhood variability detected by the HLM and underestimate neighborhood

effects. This is where GSM has the most potential to provide a better method for dealing

with that autocorrelation because it models an aspect of the data that HLM cannot.
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In the final hypothetical scenario, the range of spatial autocorrelation might be

short compared to the typical size of the HLM neighborhood units. In this situation, HLM

may not detect much autocorrelation because the neighborhoods are too large and thus

effectively pool the data for people who are far enough apart to be uncorrelated with data

for people who are close enough to be correlated. That would increase the within-

neighborhood variance detected by the HLM, thereby decreasing the ICC. In short, GSM

might outperform HLM whenever the range of the spatial autocorrelation present is not

well matched to the size of, and spacing between, the neighborhoods used in HLM.

Controlling for composition. Because variations in population composition can

explain spatial variability in outcomes that might otherwise be attributed to contextual

effects, composition effects are of concern in GSM for the same reason they are a

concern in HLM. Fortunately, the approach to controlling for composition is the

essentially the same between the two methods: one simply adds individual-level

predictors to the model then examines the adjusted PSR to see how much spatial

variability remains that might be related to contextual factors (Chaix et al., 2006; Chaix,

Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005). If there is still

autocorrelation after controlling for composition, then adding contextual predictors may

explain the remaining spatial variability. Because the PSR and the ICC are comparable

measures, the formulas used to calculate the proportional change in variance between

alternative HLM models (Merlo, Yang et al., 2005) should also be applicable in GSM

and allow calculation of level-specific analogues to the R2 statistic used in OLS

regression modeling.
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In the case of GSM, one might also look at whether the range of spatial

autocorrelation has changed after accounting for composition. Plotting the correlation

function for both the empty model and the model including individual-level effects

(Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005) may be useful.

As in HLM, each regression coefficient in a GSM model is adjusted for all other

predictors in the model. Therefore, contextual predictors should be added after relevant

individual-level predictors when there are theoretical or empirical reasons to expect that

residents’ personal characteristics are related to the outcome being studied.

Neighborhoods as level 2 units in GSM. One ofthe major ways in which GSM

differs from HLM is in how neighborhoods are represented. Above, two ways in which

the conceptualization and operationalization of neighborhoods affected HLM were

discussed. Next, we revisit those issues to describe how they affect GSM.

First, GSM does not rely on grouping residents into neighborhoods to model

autocorrelation. Each resident is associated with a location by the spatial coordinates that

identify his or her position in geographic space. Then, autocorrelation is modeled as a

function of the distance between residents’ locations, thereby treating geographic space

as a continuous phenomenon. To the extent that Tobler’s First Law of Geography

(Tobler, 1970) holds for a particular outcome measure, this may be a better way to

represent spatial autocorrelation in resident outcomes than the one used in HLM.

Some authors have argued that GSM is not subject to the MAUP because it does

not rely on grouping residents into bounded neighborhood units (Bass & Lambert, 2004;

Chaix et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al.,

2005). Unfortunately, this is not entirely true because neighborhood boundaries are also
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used for measurement purposes. Simply put, the second issue is that to measure

neighborhood characteristics, one still must select the geographic area over which they

should be measured—and that requires setting boundaries (though the boundaries used

can vary for different neighborhood characteristics in GSM).

GSM offers more flexibility than HLM for this because while it can use things

like census tract boundaries to operationalize neighborhoods for the purpose of

measuring constructs, it is not restricted to doing so. Unlike HLM, GSM permits

researchers to use buffers (sliding or bespoke neighborhoods, Galster, 2008; Guo & Bhat,

2007) to measure contextual conditions in areas centered on residents’ homes, which is

more consistent with the idiosyncratic and egocentric way residents think about their own

neighborhoods (Coulton et al., 2004; Coulton et al., 2001; Lee & Campbell, 1997;

Montello et al., 2003). Because different contextual predictors do not need to be

measured within the same size buffer, GSM provides great flexibility to customize how

neighborhoods are operationalized for the purpose of measuring each neighborhood-level

construct. That makes GSM highly compatible with the conceptual definition of

neighborhoods adopted for this study, which emphasizes that different neighborhood

charic'tcteristics may need to be measured within different boundaries (Galster, 2001).

One advantage of GSM’s ability to use buffers is that each resident can have

uniquo values on neighborhood-level measures. Only residents at the same location

would have identical buffer boundaries and therefore identical values on contextual

Variables. Aggregating data to measure a contextual variable for partially overlapping

buffets would lead to similar but not necessarily identical values for that variable (with
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greater overlap producing more similar values), while values for buffers that do not

overlap at all could be quite different indeed.

Another advantage of buffers is that they can be easily adapted to measure

conditions at different geographic scales. For example, the studies by Chaix and

colleagues varied the size of the buffer used for their neighborhood income measure to

capture the mean income ofthe nearest 100, 200, 500, 1000, and 1500 residents (Chaix,

Merlo, Subramanian et al., 2005); they also tried buffers with radii of 500 m, 750 m , and

l 000 m to measure crime (Chaix et al., 2006). Similarly, other researchers are also

exploring the use of buffer methods, coupled with varying the size ofthe buffer, to

measure contextual conditions (Guo & Bhat, 2007; Kruger, 2008; Kruger, et al., 2007;

Meersman, 2005).

Measuring conditions within buffers may be particularly useful when (a)

Contextual conditions exhibit spatial variability within the administrative units that are

typically used as proxies for neighborhoods in HLM studies, (b) there is no reason to

believe that the boundaries of units like census tracts are relevant to the contextual

characteristic being measured, or (c) none of the administrative units available for use in

HLM match the geographic scale on which a particular contextual condition matters.

Considering space in GSM. There are several important spatial issues that GSM

Caz-1 address, in neighborhood research. First, it can quantify the geographical scale on

which spatial autocorrelation exists in the data, which is reflected in the estimated range

aSSOCiated with the correlation fimction. Second, GSM takes the spatial arrangement of

tile residents and neighborhoods into account by using the location ofeach observation to

eStirnate a neighborhood-level spatially autocorrelated residual for each resident. Third,
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running GSM analyses that differ only in the size of a buffer used to measure a particular

contextual factor enables researchers to empirically determine what geographic scale of

measurement is most appropriate because statistics like the deviance information criterion

(DIC) can be used to select the model with the closest fit to the data (Chaix et al., 2006).

The ability to expand or shrink a buffer measure of contextual conditions may

provide a more elegant solution to the question of whether outcomes in a focal

neighborhood are affected by conditions in other nearby neighborhoods. Recall that HLM

cannot directly address this question, so some researchers have pursued such questions by

extracting the neighborhood-level residuals from HLM analyses and used them in

“Spatial lag” regression models conducted entirely with neighborhood-level data

(Morenoff, 2003; Morenoff, et al., 2001; Swaroop & Morenoff, 2006). That approach

may be viewed as an indirect method of asking whether the spatial scale on which the

cOntextual condition of interest operates is really larger than the size of the neighborhood

uIlits that were used in HLM. The GSM approach to answering such a question is very

Straightforward: just measure those conditions over a larger area by increasing the size of

the buffer, then compare the GSM results to those from a model with a smaller buffer.

'Thi8 would retain the multilevel nature of the data, reduce the number of different

Statistical procedures that need to be applied, and more directly answer the question about

file geographic scale on which the targeted characteristic matters most.

C‘)lnparing HLM and GSM Approaches

The sections above described HLM and GSM, highlighting major features of each

approach. As described above, the view of space underlying these two techniques sets the

Stage for a number of key differences between theses methods that affect how we can
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apply them in neighborhood research. Although some of those differences have been

discussed briefly by other authors, the prior literature has not offered a comprehensive

conceptual comparison ofHLM and GSM. Therefore, Table l synthesizes material from

previous sections of this literature review to present a concise, side-by-side comparison

of I-ILM and GSM along several conceptual dimensions that are relevant to studying

neighborhood effects.

Clearly, there are important conceptual differences, but what is known about

empirical differences in their performance and the scientific findings they yield? So far,

only three studies have directly compared HLM and GSM analyses by applying both

techniques to a single dataset (Boyd et al., 2005; Chaix, Merlo, & Chauvin, 2005; Chaix,

Merlo, Subramanian et al., 2005). All three were epidemiological studies, with one

iaéle 1: Conceptual comparison ofHLM and GSM
 

Dimension

 

 

View ofspace

HLM GSM

Discontinuous. Continuous.

1313': ofneighborhood boundaries Only fixed boundaries are Either fixed or buffer-based

possible. boundaries can be used.

OVerlapping neighborhoods

Spatial proximity

Strllcture ofautocorrelation

Igdeasure ofautocorrelation

Datial scale of autocorrelation

Options for varying spatial scale

of 1}eighborhood-level measures

elghborhood-level measures

Hierarchical overlap allowed, if

using 2 3 levels of analysis.

Proximity effects are generally

ignored in this approach. They

can be added, but doing so takes

extra effort.

Hierarchical. Observations are

grouped using neighborhood

boundaries. Each observation can

only belong to one group at any

given level of analysis.

Intraclass correlation (ICC).

Spatial scale is only indirectly

quantified (if authors describe the

size ofthe neighborhood units).

Options are limited by the size of

the available neighborhood units.

Measures usually all use a shared

boundary for each neighborhood

unit. Values can vary only

between units.
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Any form of overlap is allowed.

Proximity effects are intrinsic to

and explicitly modeled in this

approach.

Spatial. Pairs of observations are

grouped into bins as a function of

the distance between them. Each

observation contributes to many

bins through its pairing with other

observations at varying distances.

Partial sill ratio (PSR).

Spatial scale is directly quantified

by variogram parameters.

There are many options (buffers

can be defined at arbitrary sizes).

Boundaries can be customized for

each measure. Values can vary

continuously over space when

using buffers.



focusing on infectious disease among Haitian students (Boyd et al., 2005), one focusing

on healthcare utilization in France (Chaix, Merlo, & Chauvin, 2005), and the other

focusing on substance abuse diagnoses in a city in Sweden (Chaix, Merlo, Subramanian,

et al., 2005). Those studies show that GSM, like HLM, can be adapted to analyze binary

outcomes; the resulting models are related to the GSM model described above in the

same way that logistic regression is related to OLS regression.

Comparing models of infectious disease in Haiti. Boyd et a1. (2005) were

interested in spatial variations in the prevalence of a mosquito-bome parasitic infection in

a Haitian community. Their sample consisted of 5- to 11-year old students from 57

schools in a contiguous geographic area covering approximately 400 kmz. They used

School tuition (as a measure of local area’s SES), whether or not the school offered a

Illaltrition program, altitude, and topographic zone (plains, foothills or mountains) as

contextual measures. To illustrate that HLM does not fully control for spatial

athocorrelation, Boyd et al. compared results from non-spatial and spatial variations of

hierarchical logistic models. While their spatial models are not identical to the GSM

IIlode] described above, they are part of the larger category ofGSM techniques whose

key feature is the inclusion of spatially autocorrelated residuals.

The key finding in the Boyd et a1. study (2005) was that the spatial models

pl‘Oclrrced coefficients that were somewhat smaller than those from the corresponding

HLM analyses, but they did not report indices of overall model fit. The attenuated

coefficients in their spatial models may be an artifact of the way spatial autocorrelation

was handled. In particular, initial variogram modeling suggested that their outcome

Variable was spatially correlated up to about 2.15 km, but a limitation in WinBUGS (the
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software they used to estimate their spatial models) required them to adopt a'conditional

autoregressive structure in their spatial models that treated data from schools within 4.35

km of one another as spatially correlated because every school had to have at least one

“neighbor” and this longer distance was the minimum at which every school met that

criterion. This may have diluted the value of spatial modeling by treating schools that

were relatively far apart as if they were just as highly correlated as schools that were

close together. They presented a figure showing that the neighborhood-level residuals

from their HLM showed some residual spatial structure, but did not quantify how much

spatial autocorrelation remained in the HLM results.

Comparing models of health care utilization in France. The second study that

has directly compared HLM and GSM examined whether a nationwide sample of

residents from France had regular primary care physicians and whether they had used

specialist physicians at more than half of their doctor visits in the last year (Chaix, Merlo,

& Chauvin, 2005). Their sample represented over 3000 municipalities nested within 340

larger units called broad areas that were scattered throughout France. The contextual

factors of interest were a measure of local SES (percentage of residents with minimal

education), the supply ofprimary care physicians, and the supply of specialist physicians.

They measured contextual factors by aggregating data within municipalities in

one HLM, and within broad areas in another HLM. They calculated buffer-based

measures of contextual factors for their GSM analyses (Chaix, Merlo, & Chauvin, 2005).

For local SES, they used a buffer with a radius of 37.5 km; for the supply of physicians,

they used a buffer with a 50 km radius. These buffers were somewhat larger than the

broad area units. In both cases, the contextual measures were weighted such that data
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closer to the center ofthe buffer contributed more to the measure than data further out

toward the edge of the buffer. They used the scaled deviance statistic to compare model

fit among the empty versions of the HLM and GSM models, finding that while the broad

area HLMs fit better than the municipality HLMs, the GSMs uniformly fit better than

either of the corresponding HLMs (Chaix, Merlo, & Chauvin, 2005). In a series ofGSM

analyses, they also found that the contextual variables had consistently stronger effects

when measured within buffers than when measured within municipalities or broad areas.

So, their comparison between GSM models that differed only in how the neighborhoods

were defined for measurement purposes showed that using buffers produced better

statistical results than using HLM-style neighborhood units.

In addition, testing with Moran’s I indicated that the level 2 residuals in the HLM

models were spatially autocorrelated (Chaix, Merlo, & Chauvin, 2005). They argue that

HLMs systematically overestimated the significance of contextual effects because the

residual spatial autocorrelation in the HLM results leads to inappropriately small standard

errors for exactly the same reason that ignoring hierarchical autocorrelation leads to

inappropriately small standard errors in OLS regression.

Comparing models of substance abuse disorders in Sweden. Chaix, Merlo,

Subramanian et al. (2005) compared IEM and GSM techniques by studying the

relationship between neighborhood mean income and risk of substance abuse disorders in

a city in Sweden. Their sample consisted of all persons aged 40-59 living in the city they

were studying. The city was divided into 100 administratively defined neighborhoods

with a median area of 0.5 square km, which became the level 2 units in their HLM

analyses. They measured neighborhood income within those administrative units for their
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HLM and GSM analyses. For their GSM analyses, they also measured neighborhood

income within spatially adaptive buffers. The buffers were centered on residents’ homes,

but did not have a constant spatial radius. Instead, they were scaled to contain a constant

number of residents (the nearest 100, 200, 500, 1000, or 1500 residents). This meant that

the buffers were physically larger in more sparsely populated areas.

They conducted HLM and GSM analyses in three steps, starting with empty

models that contained no substantive predictors, then adding individual-level predictors,

and then adding the neighborhood income measure (Chaix, Merlo, Subramanian, et al.,

2005). The GSM models consistently fit their data better than the corresponding HLM

models, as indicated by lower DIC values (DIC is a Bayesian measure ofmodel fit, see

Spiegelhalter, Best, Carlin, & van der Linde, 2002). This was true when neighborhood

income was measured within the same administrative areas used in the HLM, but the

effect of neighborhood income was stronger when measured within buffers that were

smaller than the administrative areas. Indeed, the strength of the effect was inversely

proportional to size ofthe buffers (using the smallest buffer yielded the strongest effect).

The odds-ratios for neighborhood income were quite similar between the two techniques,

though the GSM model had slightly wider confidence intervals. Adding individual- and

neighborhood-level predictors explained substantial amounts of the neighborhood-level

variance in both the HLM and GSM models. In the HLM models, adding the substantive

predictors caused a decrease in the residual spatial autocorrelation detected in the

neighborhood-level residuals, while adding those predictors to the GSM models reduced

both the level and range of spatial autocorrelation.
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Summary. The literature comparing HLM and GSM approaches to modeling

neighborhood effects on the health and behavior of residents is quite small. The studies

reviewed above suggest that GSM can, at least with some kinds of data, produce

statistical models that fit better than HLM even when contextual variables are measured

within the same boundaries for both techniques (Chaix, Merlo, Subramanian, et al.,

2005). Furthermore, they also suggest that GSM analyses based on measuring contextual

variables within buffers of appropriate size can yield stronger effects than are observed in

HLM analyses based on measuring those same variables within discrete geographic units

(Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). Finally, they

also suggest that when the spatial scale on which a contextual measure operates is larger

than the units used in a corresponding HLM, level 2 HLM residuals still contain

unmodeled spatial autocorrelation (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005).

Previous studies have not fully discussed how comparing HLM and GSM

analyses can help us update how we conceptualize and think about neighborhoods.

Broadly speaking, the way we conceptualize neighborhoods informs two aspects of

neighborhood studies, (1) how we group residents in order to detect spatial variability and

model autocorrelation in outcomes, and (2) how we define the geographic area that

should be used when measuring neighborhood context. While these aspects are nearly

inextricably intertwined in HLM, the GSM approach offers the possibility of dissociating

and examining them separately. Both of these aspects can and should be explored when

comparing these two methods, but previous work has focused more on the latter aspect.

The next section ofthe literature review describes the nature of the substantive

phenomenon being used to compare HLM and GSM in this study. Introducing the
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substantive constructs at this point sets the stage for the following section, which

describes how the present study fills specific gaps in the literature, presents arguments for

why GSM may be a better alternative than HLM, and then links the research questions

for the study to specific hypotheses that can be tested to inform our thinking about

neighborhoods and how to test neighborhood effects.

Background on the Substantive Constructs

Because this study aimed to compare GSM and HLM, it was necessary to select

an example application in which the same data could be used with both approaches and

there were clear theoretical links between the contextual characteristics to be tested and

the outcome variable. It was also useful to choose an outcome known to be influenced by

individual-level characteristics, as this allowed a comparison ofhow the two methods

handle issues of context versus composition. The study tested whether crime and NSES

exert contextual effects on residents’ perceptions of neighborhood problems, after

controlling for a variety of individual-level characteristics.

The remainder of this section first describes how the substantive constructs were

selected and the theoretical links between the predictors and the outcome. Then it

describes the constructs in more detail. After introducing the outcome of interest, this

section reviews literature surrounding the contextual predictors, then briefly describes

individual-level variables that were incorporated into the analysis because they were

expected to be related to the outcome.

Selection of constructs. As noted above, the outcome modeled in this study was

perceived neighborhood problems; This outcome was selected because prior HLM

research found that it exhibits neighborhood-level variance that can be modeled as
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hierarchically structured autocorrelation (Coulton, et al., 2004), while prior research

using GIS methods found that it shows a substantial amount of spatial autocorrelation

that decays as a function of distance (Bass & Lambert, 2004; Pierce, 2006). Thus, it is a

candidate for use in both HLM and GSM. Although no prior literature directly addresses

which ofthese two methods is more appropriate for modeling this outcome, there are

some findings and possible theoretical mechanisms that suggest GSM may be more

appropriate than HLM.

Meanwhile, crime and NSES were selected because (a) they are frequently used

contextual characteristics in neighborhood research, (b) there are clear theoretical links

between them and the outcome variable, and (c) the GIS data available for the example

dataset permitted both to be measured.by aggregating data within any set of

neighborhood boundaries. In addition, the spatial distribution of crime was unlikely to be

captured well by census-based geographic units (McCord & Ratcliffe, 2007), which were

used to construct the neighborhood units in the example dataset7 so it was reasonable to

expect that using buffers around residents’ homes to measure crime might yield different

reSlllts than using crime aggregated within discrete neighborhood units.

While NSES may be somewhat better aligned with census geography than crime,

it too may yield different values for a contextual measure when aggregated within buffers

rather than discrete neighborhood units. Using multiple contextual characteristics also

allowed the study to explore whether there were differences in the spatial scale on which

different contextual characteristics influenced resident outcomes. Overall, these two

contemitual characteristics possessed essential qualities for pursuing whether the

7\

The data are a clustered sample originally collected for use in HLM analyses (see the Method section).
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differences in how neighborhoods were defined for the purpose of measuring

neighborhood conditions in HLM and GSM made a difference in the obtained results.

Theoretical mechanisms. This study assumed that several sources might

contribute to the observed spatial variation in perceived neighborhood problems. This

section elaborates on the theoretical mechanisms associated with each of those potential

sources of neighborhood effects on residents’ perceptions.

First, spatial variation in neighborhood crime and NSES could produce contextual

effects that explain some of that spatial variation. The theoretical link between actual

crime and perceived neighborhood problems derives from broken windows theory (J. O.

Wilson & Kelling, 1982). Nearby crime is an observable sign of social disorder in the

neighborhood (Sampson & Raudenbush, 1999) that residents interpret as a social problem

(Sampson & Raudenbush, 2004). So, exposure to higher levels of actual crime should

lead residents to perceive and report higher levels of neighborhood problems. The

meChanism linking NSES to resident’s perceptions is different. Sampson and

Ralldenbush (2004) argue that neighborhoods experiencing concentrated poverty have

his"Ol’ieally also been afflicted by extensive physical and social disorder, so now poor

neighborhoods have become stigmatized as disorderly places. Environmental cues that

PmVide information suggesting that NSES is low (such as low median housing value)

may GXert a contextual effect on resident’s perceptions of neighborhood problems

becauSe this stigma primes residents of poorer neighborhoods to perceive more problems

than they would in wealthier, but otherwise similar, neighborhoods.

Second, geographical clustering of similar individuals could explain some of the

Spatial variation in residents’ perceptions of neighborhood problems, particularly if
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individual-level resident characteristics are good predictors of those perceptions. While

this is still a kind of neighborhood effect, it is a compositional effect rather than a

contextual effect. Because this study focuses on comparing HLM and GSM for testing

the effects of neighborhood-level predictors, this theoretical mechanism is only relevant

to the extent that the two methods differ in their ability to control for neighborhood

effects resulting fiom unobserved attraction, selection, and attrition processes that might

affect perceived neighborhood problems indirectly through their influence on

neighborhood composition.

Finally, residents often exchange information about neighborhood events and

conditions with their neighbors (Unger & Wandersman, 1985), so social interactions and

social construction of reality (Shinn & Rapkin, 2000) may also shape their perceptions of

neighborhood problems. That suggests that spatial autocorrelation remaining in residents’

Perceptions after accounting for composition and contextual effects could be generated

by Contagion processes (Leventhal & Brooks-Gunn, 2000) operating through social

networks. Such contagion effects can be modeled using distance as a proxy for network

cofinections. Because members of neighborhood networks are more likely to know and

interact with others who live nearby (Greenbaum, 1982; Greenbaum & Greenbaum,

1985; Stutz, 1973; Wheeler & Stutz, 1971), spatial autocorrelation should decrease with

inclEasing distance between observations. GSM techniques would model that residual

Spatial autocorrelation explicitly, while HLM would ignore it.

Perceived neighborhood problems. Perceived neighborhood problems refers to

the dfigree to which a resident thinks undesirable physical conditions and deviant social

behaViors are present at unacceptable levels in his or her neighborhood. This construct
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appears frequently in the neighborhood research literature, though its name varies.

Comparing definitions across studies reveals that perceived disorder, perceived

incivilities, and perceived neighborhood problems refer to essentially the same

phenomenon (Bass & Lambert, 2004; Coulton, Korbin, & Su, 1996; Dupéré & Perkins,

2007; Foster-Fishman, et al., 2007; Foster-Fishman, et al., 2009; Franzini, Caughy,

Spears, & Esquer, 2005; Franzini, et al., 2008; Perkins, Meeks, & Taylor, 1992; Perkins,

Wandersman, Rich, & Taylor, 1993). For example, perceived disorder has been

conceptualized as “exposure to deviant behavior in the neighborhood” (Bass & Lambert,

2004, p. 283), “perceptions of deleterious conditions in neighborhoods” (Coulton, et al.,

1996, p. 16), and “visible cues indicating a lack of order and social control in the

community” (Ross & Mirowsky, 1999, p. 413). This latter definition is matches how

Perkins and colleagues’ (Perkins, et al., 1992; Perkins, et al., 1993) conceptualize

incivilities as symbols of physical and social disorder that signal that an area is poorly

supervised.

Regardless of the name, perceived neighborhood problems is typically measured

by aSking residents to rate the degree to which various conditions or activities are

Pmblems in their neighborhood. Such ratings are almost perfectly correlated with the

V°1ume of disorder residents report having observed (Sampson & Raudenbush, 2004).

The Specific items used often include questions about forms of social disorder such as

crime, gang activity, prostitution, or drug-dealing, or about signs of physical disorder

such as litter, graffiti, abandoned buildings, and poorly maintained homes and yards

(Bass & Lambert, 2004; Coulton, et al., 1996; Dupéré & Perkins, 2007; Foster-Fishman,
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et al., 2007; Foster-Fishman, et al., 2009; Franzini, et al., 2005; Franzini, et al., 2008;

PerkinS, et al., 1992; Perkins, et al., 1993).

Residents’ perceptions of whether or not things like crime, drugs, prostitution, and

abandoned buildings are problems in their neighborhoods are important for several

reasons. On one hand, seeing the neighborhood as beset by problems can motivate

residents to become active citizens (Chavis & Wandersman, 1990; Greenberg, 2001). For

example, Peterson and Reid (2003) found that residents who were aware of substance

abuse problems in their neighborhood were more likely to participate in substance abuse

prevention activities. Other research has also shown that residents reporting high levels of

neighborhood problems were more likely to engage in both individual and collective

forms of activism (Foster-Fishman et al., 2007). Although perceived levels of problems

may not be important in predicting citizen participation among self-identified

neighborhood leaders, they are related to participation among residents who do not see

themselves as leaders (Foster-Fishman, et al., 2009).

On the other hand, if residents perceive that neighborhood crime problems have

grown too severe, they may fear retaliation and refi'ain from intervening when local youth

are misbehaving (Korbin & Coulton, 1997), thereby weakening informal social control

Processes. Indeed, residents who perceive severe problems in their neighborhood may

Simply exit the neighborhood altogether (Orbell & Uno, 1972). Perceived neighborhood

pmblerns may also influence residents in other ways. For example, residents of

neighborhoods characterized by high average levels of perceived problems tend to report

being in poorer health than residents of neighborhoods with lower levels of problems

(Pampalon, Hamel, De Koninck, & Disant, 2007) perhaps because perceived problems
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are sources of chronic stress that increase the risk of poor health and impair physical

fimctioning (ISteptoe & Feldman, 2.001). W ' -- m

Previous HLM research has found evidence of neighborhood-level variability in

residents’ perceptions of neighborhood problems at both the block group and census tract

levels (Coulton, et al., 2004; Franzini, et al., 2008; Quillian & Pager, 2001; Sampson &

Raudenbush, 2004). Ofthese, only one study examined the data at multiple spatial scales.

Coulton et al.’s (2004) research showed that perceived neighborhood disorder and

incivilities Varies on a relatively small spatial scale, with larger ICCs observed in smaller

neighborhood units. Though it originates from an HLM study, this is potentially more

consistent with the kind of distance-based spatial autocorrelation assumed in GSM than

with the strictly hierarchical autocorrelation assumed in HLM.

More direct empirical support for spatial autocorrelation in perceived disorder

comes from Bass and Lambert (2004), who collected perception data from adolescents in

Baltimore via face-to-face interviews, then used variograms to model the spatial

autocorrelation in those data. Although they do not specifically report range parameters

for their variograms, visual inspection of their plots suggests that the range of

autocorrelation may be between 200-400 m in the raw data, and perhaps as high as 1000

“1 afiel- accounting for census-tract level crime and poverty measures. Preliminary

reSearch by the present author found that the range of spatial autocorrelation in residents’

levels ofperceived neighborhood problems was approximately 600 m (Pierce, 2006).

Together with the HLM studies mentioned above, these studies suggest that there is

1“deed spatial variation in this outcome, but none of them directly test whether

hierarchical or spatial structure better describes that spatial variation.
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Crime. Crime represents the extreme end of the continuum of social disorder

(Sampson & Raudenbush, 1999). Victims of crime often experience serious adverse

consequences such as injmy, death, financial losses, property damage, psychological

distress, and mental health problems. The salience of crime as a social problem is

underscored by the tremendous amounts oftime, money, and other resources devoted to

defining crime and the legal consequences of committing it, catching and prosecuting

persons accused of crimes, and sequestering and rehabilitating convicted offenders. It

should come as no surprise then that crime is often viewed as an important contextual

characteristic of neighborhoods that poses a serious problem for residents. This

assumption about crime is apparent in measures of residents’ perceptions of

neighborhood problems. Questions about crime in general or about specific criminal

activities such as burglary, drug-dealing, or prostitution frequently appear in measures of

those perceptions (Foster-Fishman, et al., 2007; Foster-Fishman, et al., 2009; Franzini, et

al., 2005; Franzini, et al., 2008; Meersman, 2005 ; Perkins, et al., 1992; Perkins, et al.,

1993; Quillian & Pager, 2001; Sampson & Raudenbush, 2004).

Because levels of crime represent real variations in the local environment, it is

cluite natural to expect that residents’ perceptions of neighborhood problems will be

Sensitive to this reality rather than divorced from it (Quillian & Pager, 2001). Crime is

Salient and threatening, so residents are alert for signs of its presence. If observed in

suPficient quantity or severity, then residents perceive crime as a problem in the

neighborhood (Sampson & Raudenbush, 2004). Residents may directly witness crimes,

or they may indirectly perceive crime via physical cues such as bullet holes or smashed

storefront windows left at the scene of a crime (Sampson & Raudenbush, 1999).
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Information about local crime may also be obtained indirectly from discussions with

neighbors or through local news media (Perkins & Taylor, 1996).

Official police records are the primary source of data for measuring crime in

neighborhood research (Chaix, et al., 2006; Franzini, et al., 2008; Quillian & Pager, 2001;

Sampson & Raudenbush, 2004). Many crimes, particularly less serious ones, are never

reported to the police and sometimes police do not record minor crimes that are reported

to them, so police data almost certainly underestimate actual crime (Quillian & Pager,

200 l )- Despite that limitation, they may be the best available source for many studies.

However, other measurement issues must still be addressed. Perhaps the most

important issue is which crimes should be counted. So far, all three HLM-based studies

that have used crime as a predictor of neighborhood problems have operationalized crime

in terrns of rates of violent crime (all studies include assault, homicide, rape, and robbery,

bUt one study also included burglary, theft, and arson) that were log-transformed to

reduce skew (Franzini et al., 2008; Quillian & Pager, 2001; Sampson & Raudenbush,

2004) , '

However, a community psychologist might have a theoretical interest in testing

whether two or more different kinds of crime independently affect resident perceptions.

Such interests might include testing hypotheses about whether different kinds ofcrime

Operate on different spatial scales. For instance, one might want to test whether residents’

perceptions are only sensitive to property crime occurring quite close to their homes, but

are SeIlsitive to violent crimes occurring over a larger geographic area. Three different

crime variables based on the major categories (crimes against persons, crimes against

property, and crimes against society) used by the Federal Bureau of Investigation to
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classify crimes (Uniform Crime Reporting Program, 2000) were considered for use in

this study, but multicollinearity problems ultimately prevented using more than one crime

variable at a time (see Method section).

That forced a methodological choice about which type of crime to use in the

analyses reported below. Crime against persons (i.e., violent crime) was selected for three

reasons. First, the presence of violent crime in the neighborhood is an unambiguous

threat to residents’ safety and is undoubtedly a sign of very serious social disorder. It

should therefore be more salient in shaping residents’ perceptions than property crime or

crimes against society. Second, this is consistent with how crime has been measured in

previous research as noted above. Third, crime against persons exhibited the strongest

relationships with the outcome in preliminary analyses.

Another measurement issue is whether crime should be measured by the raw

Dunlber of crimes occurring in a neighborhood, by a crime rate (number of crimes per

capita), or by crime density (number of crimes per unit area). Raw crime counts are

generally not used in neighborhood research because they do not adjust for the variation

in either the size or population of the neighborhoods. Neighborhood crime is fi'equently

0Perationalized with crime rates (Franzini et al., 2008; Quillian & Pager, 2001; Sampson

& Raudenbush, 2004), though crime density has been used occasionally (Brodsky,

O'Canlpo, & Aronson, 1999). Crime rates reflect the fact that a given number of crimes

may be felt more acutely in sparsely populated areas and are mostly intended to measure

Vietitl'lization risk (Bowes & Ihlanfeldt, 2001), but it can also be argued that people may

be more affected by the absolute number or spatial density of crimes regardless of

population density (Chaix, et al., 2006). Given this study’s focus on spatial analysis, it
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made sense to focus on crime density rather than crime rates because (a) density

measures are preferred by researchers who study the spatial distribution ofcrime

(Chainey, Tompson, & Uhlig, 2008), (b) crime density may be more closely associated

with the average resident’s knowledge of nearby crimes (Bowes & Ihlanfeldt, 2001), and

(c) crime density is a better measure of exposure to neighborhood crime for people who

wish to avoid either witnessing a crime or being victimized personally (Bowes &

Ihlanfeldt, 2001).

No GSM studies have yet linked crime to perceived problems, but one did find

that higher numbers of violent crimes in a 500 m radius around residents’ homes

increased the risk of substance abuse disorders (Chaix, et al., 2006). Three HLM-based

studies have demonstrated that there is indeed a link between actual crime and perceived

neighborhood problems (Franzini et al., 2008; Quillian & Pager, 2001; Sampson &

Raudenbush, 2004). Using census block-groups to represent neighborhoods, both

Franzini et al. and Sampson and Raudenbush found that high crime rates were associated

with higher levels of perceived problems among residents. Quillian and Pager found

similar results using census tracts as neighborhoods. Unfortunately, none of these HLM-

based studies tried varying the size of the neighborhood units within which crime was

measured, so little is known about sensitivity of the contextual effect to changes in the

spatial scale on which crime is measured.

Relying on crime data aggregated to neighborhood units such as block groups

ignores the fact that crime is very unevenly distributed over space. The literature on

detecting crime “hot spots”, which relies on using GIS tools to map and analyze spatial

Point patterns in the locations of crimes, shows that crimes cluster together in small

112



geographic areas (Block, 2000; Ratcliffe & McCullagh, 1999; Taylor, 1998) and hot

spots may span the borders between adjacent tracts or block groups (McCord & Ratcliffe,

2007). Thus, exposure to crime depends on location because crime is neither uniformly

nor randomly distributed over space (Block, 2000). This suggests that there may be

substantial spatial variability in crime within individual census tracts or block groups.

In crime mapping studies, measuring crime within administratively defined

geographic neighborhood units is considered to be particularly vulnerable to the MAUP,

so instead researchers employ buffer techniques to summarize the spatial point pattern of

crimes by calculating estimates of crime intensity at a high-resolution grid of points

across the study region (Ratcliffe & McCullagh, 1999). The intensity of a crime point

pattern is the number ofcrimes per unit area within the buffer centered on each grid point

(often after weighting individual crimes so that those far from the center ofthe window

count less than those close to the center), so it measures crime density relative to spatial

area (Ratcliffe & McCullagh, 1999), whereas per capita crime rates measure crime

density relative to population size. In these buffer approaches, the grid points are often

close enough together that windows centered on adjacent grid points overlap

substantially. That is useful because it allows the construction of relatively smooth maps

of the crime intensity surface within the study region.

With geocoded crime incident data, researchers can aggregate crime either within

the fixed, mutually exclusive neighborhood units used in HLM, or in buffers centered on

residents’ homes. With GSM, one can use either of those methods for measuring crime

and directly compare how changing the neighborhood definition used to measure crime

influences the strength of the association between crime and perceived neighborhood

113



problems. HLM-based analyses may underestimate the strength of that relationship

because the arbitrary neighborhood boundaries do not correspond well with what

residents think of as their neighborhoods and therefore the crime measure may not

include the crimes that are most salient to the resident. Perhaps using buffers to measure

‘crime, paired with GSM’s ability to vary the scale on which that contextual factor is

measured, will produce better models than HLM-based analyses by more accurately

capturing the crime occurring in the areas residents think of as their neighborhoods.

As a supplemental analysis in an HLM study that used census tracts to define

neighborhood units (without describing the physical size ofthose tracts), Quillian and

Pager (2001) investigated whether actual crime rates in adjacent tracts influenced

perceptions of crime, after controlling for crime levels in the individuals’ own tract. They

found little evidence that crime in adjacent tracts mattered, which suggests that the

geographic scale on which crime may matter is equal to or smaller than the size of census

tracts. However, their results are subject to all the limitations associated with adopting

fixed boundary systems for defining neighborhood units, so this is relatively weak

evidence about the spatial scale on which crime may impact resident perceptions.

Neighborhood SES. Many researchers have pursued questions about how the

socioeconomic context in residential neighborhoods affects residents, ofien focusing on

outcomes among children and youth (Leventhal & Brooks-Gunn, 2000; Sampson, et al.,

2002). Wilson’s (1987) observation that poverty was increasingly concentrated in inner-

.city neighborhoods over the 19703 and 19808 spurred renewed interest in poverty as a

conteXtual phenomenon rather than simply an individual-level problem, resulting in a

wave of studies focusing on the consequences of living in high-poverty neighborhoods
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(Gephart, 1997; Leventhal & Brooks-Gunn, 2000; Sampson & Morenoff, 1997). There is

now a substantial body of research showing that neighborhoods vary substantially with

respect to various indicators ofNSES and that these contextual variations are linked to

many outcomes for children and youth, including school achievement, cognitive problem

solving skills, behavior problems, delinquency, sexual activity, and teen pregnancy

(Caughy & O'Campo, 2006; Gephart, 1997; Leventhal & Brooks-Gunn, 2000; Pebley &

Sastry, 2003; Ramirez-Valles, Zimmerman, & Juarez, 2002; Sampson et al., 2002).

Census data are often used to obtain neighborhood poverty rates (Brooks-Gunn,

Duncan, Leventhal, & Aber, 1997), which represent the proportions of residents living in

households with annual incomes below the poverty threshold defined by the federal

government. Although poverty rate is a frequently used measure ofNSES, other

measures have also been used. For example, some studies looked at concentrated

affluence rate (percent of residents living in households with annual incomes exceeding a

researcher-defined threshold such as $75,000) in addition to poverty rate (Beyers et al.,

2003; Pebley & Sastry, 2003; Sampson, 2001), while others have operationalized NSES

with mean income (Rountree & Land, 1996) or median housing values, which measure

the value of residential property (Cozier et al., 2007; Gee, 2002; Laraia et al., 2006).

Although hardly surprising, it is important to note that different measures ofNSES are

often strongly correlated. For example, poverty rates are inversely correlated (r = -.62)

with median housing value at the level of census tracts (Gee, 2002). One explanation for

that lies in the fact that local land use regulations (zoning ordinances) promote spatial

segmentation of cities into neighborhoods with similar residential property values,
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leading to corresponding spatial segmentation ofthe population by income because

families tend to seek better housing. as their incomes rise (Schill & Wachter, 1995).

Measuring NSES via median housing value is attractive because property value

data are often available from local tax assessors’ offices and are usually more current

than census data (Coulton & Hollister, 1998; Kingsley, Coulton, Barndt, Sawicki, &

Tatian, 1997). In addition, such data are often available as GIS files (Kingsley, Coulton,

Barndt, Sawicki, & Tatian, 1997), making it feasible to estimate the median residential

property value within any desired geographic area (e.g., fixed neighborhood units,

buffers, or both), regardless of whether it will be used in HLM or GSM analyses.

There is extensive evidence that poverty, crime, physical and social disorder, and

other social problems tend to co-occur in the same geographic places (Sampson, 2001;

Sampson, et al., 2002). For example, recent research has shown that owner occupied

median housing value is negatively correlated (r = -.56) with observed physical

incivilities when both measures are aggregated to the block group level (Laraia, et al.,

2006). Given that objective levels of neighborhood disorder are generally good predictors

of perceived disorder (Franzini et al., 2008; Perkins et al., 1992; Sampson & Raudenbush,

2004), it may be that residents of low-SES neighborhoods perceive more problems

‘simply because there are indeed more present. This link between NSES and perceived

problems might also be mediated by other variables: in a multilevel study of contextual

effects on youth alcohol and drug problems, structural equation modeling demonstrated

that high levels ofneighborhood poverty led to decreased social cohesion, which was in

turn associated with greater perceived problems with youth alcohol and drug use (S. C.

Duncan, Duncan, & Strycker, 2002).
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However, there may be another way in which NSES influences residents’

perceptions. Sampson and Raudenbush (2004) used HLM models to show that that

neighborhood racial composition and neighborhood poverty both predicted perceived

disorder even after controlling for observed levels of physical and social disorder. They

interpret those findings as support for their contention that perceived disorder is in part

socially constructed, arguing that “Neighborhoods with high concentrations of minority

and poor residents are stigmatized by historically and structurally induced problems of

crime and disorder” (Sampson & Raudenbush, 2004, p. 337). Essentially, the stigma

associated with poverty primes residents of poor neighborhoods to perceive more

disorder than can be explained by observed disorder alone. Additional empirical support

for this link between neighborhood poverty and perceived disorder comes from work by

Franzini et. al. (2008) who used methods similar to those of Sampson and Raudenbush,

but sampled from a different city.

Two ofthe studies linking NSES to perceived problems discussed above

operationalized neighborhoods with census block groups (Franzini, et al., 2008; Sampson

& Raudenbush, 2004), while another did not describe what geographic units were used to

operationalize neighborhoods, though it does say that census data were used to measure

poverty (S. C. Duncan, et al., 2002). None of those studies specifically explored the

spatial scale on which NSES is most closely linked to perceived problems. In addition,

none ofthem applied GIS-based spatial analysis approaches: they all relied on HLM

(Franzini et al., 2008; Sampson & Raudenbush, 2004) or related methods like multilevel

structural equation models (S. C. Duncan, et al., 2002).
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Only one study has used GIS methods to explore the link between NSES and

perceived neighborhood problems. Meersman (2005) measured poverty and other

indicators ofNSES (percent college educated, percent residential stability, percent

unemployment) within a set of buffers of varying sizes (0.25 mile S radii S 1.50 miles, in

0.25 mile increments) centered on residents’ homes. At each window size, GIS tools were

used to determine which census tracts were overlapped by the window around a

resident’s home, then the poverty rate in the window area was set to the weighted average

of the poverty rates from those census tracts. The tract weights were the proportions of

the buffer’s area that belonged to each census tract. Meersman argued that this method

allows one to take into account a resident’s precise location within a census tract, plus

proximity to other census tracts, but this method still suffers from the MAUP.

Measuring poverty in a series of concentric, circular buffers allows one to

compare the effects of neighborhood poverty measured on different spatial scales

(Meersman, 2005). This technique naturally allows the buffers for different residents to

overlap to different degrees depending on how far apart they live. Using OLS regression,

Meersman found that poverty had the largest standardized coefficient as a predictor of

perceived neighborhood problems when measured over a 1.50 mile radius. Other NSES

indicators had their strongest effects at other buffer sizes (residential stability at 0.25

mile, unemployment at 0.75 mile). There are several problems with Meersman’s study.

First, using OLS regression to analyze the data ignores the likely presence of spatial

autocorrelation. Second, weighted versions of census tract poverty rates are crude

measures ofNSES in a buffer around individual homes because the aggregation that had

already occurred to create tract level measures eliminates any spatial variability within
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tracts. For a superior buffer measure ofNSES, it would be far better to start from point-

referenced data or data that represent geographic areas small enough to be treated as

point-referenced data (e.g., parcel-level property value data). Third, Meersman always

measured different indicators ofNSES at the same geographical scale: while he did note

the scale on which each measure had the strongest effects, he did not go beyond that to

combine measures associated with different size buffers in the same model.

Individual-level predictors. People who live close together may not necessarily

experience or perceive the neighborhood in the same way, so contextual conditions are

not the sole influence on people’s perceptions of neighborhood problems. Several studies

show that individual-level factors (e.g., sex, age, race, etc.) also predict those perceptions

(Franzini, et al., 2008; Meersman, 2005; Quillian & Pager, 2001; Sampson &

Raudenbush, 2004), indicating that residents’ perceptions are not pure reflections of

external conditions (Quillian & Pager, 2001).

Residents who are more physically or socially vulnerable to crime tend to report

higher levels of fear of crime (Rountree & Land, 1996), suggesting that some residents,

such as the elderly or women, may have lower thresholds for deciding that the conditions

they observe constitute a problem. While the empirical data show that women do

consistently report higher levels of perceived crime and disorder (Quillian & Pager, 2001;

Sampson & Raudenbush, 2004), the evidence for age effects is somewhat mixed. Older

residents report higher levels of perceived crime in one study (Quillian & Pager, 2001),

but lower levels of perceived disorder in others (Meersman, 2005; Sampson &

Raudenbush, 2004).
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Research appear to consistently find that Black residents report lower levels of

perceived disorder than White residents (Franzini, et al., 2008; Meersman, 2005;

Sampson & Raudenbush, 2004). In addition, the extent to which a resident’s race predicts

perceived disorder varies across neighborhoods (Sampson & Raudenbush, 2004)

indicating that it may be fruitful to explore cross-level interactions between race and

neighborhood-level factors.

Other personal characteristics also might affect residents’ perceptions of

neighborhood problems. Marital status effects on perceived neighborhood problems have

been examined in a couple studies, but the results are inconsistent. Compared to widowed

residents, Franzini et al. (2008) found that married and separated or divorced residents

perceive less disorder than widowed residents, but Sampson and Raudenbush (2004)

found that separated or divorced residents perceive more disorder than widowed

residents. Similarly, higher levels of education are sometimes associated with less

perceived disorder (Franzini, et al., 2008), but other research did not find an education

effect (Quillian & Pager, 2001). Another characteristic that might be important is the

presence of children in the home. Although none of the available studies address this

factor, residents who are raising children may be particularly concerned about the quality

of the neighborhood environment and therefore more likely to view a given situation to

be a problem than people who are not raising children.

Identifying individual-level factors that may be related to the outcome under

study is important in this study primarily because it controls for neighborhood

composition, thereby permitting a better test of the importance of contextual factors (C.
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Duncan, et al., 1998; Merlo, Yang, et al., 2005). Thus, in the present study, several

personal characteristics were incorporated into both the HLM and GSM analyses.

Linking Gaps in the Literature to Hypotheses for the Present Study

This section describes how the present study fills specific gaps in the literature on

comparing HLM and GSM. Along the way, it presents arguments for why GSM may be a

better alternative than HLM, and links the research questions for the study to specific

hypotheses that can be tested to inform our thinking about neighborhoods and how to test

neighborhood effects.

Taking full advantage of spatial information. The first gap in the literature is

that previous comparisons ofHLM and GSM have not taken full advantage of GSM’s

tools for representing spatial autocorrelation. None ofthem have used the precise

locations ofthe residents in the sample both for constructing buffer-based measures of

contextual factors and for estimating the variogram in the GSM. This is due to either a

lack ofprecise location data (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005), or to

cOrnputational difficulties associated with the size of the dataset and software limitations

(Chaix, Merlo, Subramanian, et al., 2005). However, new software makes it possible to

run GSM analyses with large datasets while taking full advantage of precise location data

(Finley et al., 2007). Location data for residents was available, so this study used that

sofiWare to better model the actual pattern of spatial autocorrelation in the data than has

been Possible in previous studies.

Detecting autocorrelation. A second gap in the literature is that previous studies

have not directly compared the amounts of neighborhood-level variance and

autocOrrelation detected by HLM and GSM. This prompted the first research question for
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this study, which simply asked: how do GSM estimates of neighborhood-level variance

and autocorrelation compare to HLM estimates? Both methods can estimate

neighborhood— and individual-level variance components that can be converted into

directly comparable measures of autocorrelation (ICC for HLM, PSR for GSM).

Recall that GSM ignores the boundaries ofthe discrete neighborhood units used

in HLM and can therefore potentially account for autocorrelation both within and

between them, while HLM will only account for within-neighborhood autocorrelation.

That suggests that GSM may be the more sensitive method for detecting neighborhood-

level variability in outcomes, particularly if some neighborhood units are close enough

together that spatial autocorrelation may spill over between them. Furthermore, Coulton

et al. (2004) found successively larger ICCs for perceived neighborhood disorder and

incivilities when they examined smaller and smaller neighborhood units, indicating that

neighborhood-level variances were getting larger as the neighborhood units got smaller.

Because the correlation functions built into GSM models assume that neighborhood-level

variances decay with increasing distance and they start at distances far smaller than any

neighborhood unit adopted for HLM analyses, Hypothesis 1 (HI) is:

H1: GSM estimates of neighborhood-level variance and the amount of

autocorrelation for perceived neighborhood problems will be higher than the

corresponding HLM estimates, both before and after controlling for neighborhood

composition.

The correlation function in a GSM model also provides a way to compare the

spatial scale of autocorrelation in perceived neighborhood problems to the size of the

neighborhood units used in the HLM models. The neighborhood units in this study are
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substantially smaller than block groups or census tracts (Van Egeren, Huber, Foster-

Fishman, Pierce, & Law, 2007), which are the units typically used in HLM studies. Some

of them are also quite close together. This is one of the situations in which spatial

autocorrelation with a long enough range might spill over between neighborhood units.

Given the evidence that spatial autocorrelation in perceived neighborhood problems may

extend several hundred meters or more (Bass & Lambert, 2004; Pierce, 2006),

Hypothesis 2 (HZ) is:

H2: The range of spatial autocorrelation in perceived neighborhood problems

detected by GSM will be long enough to reach across the borders between at least

some of the neighborhood units used in the HLM analyses.

While testing H1 and H2 provides useful information about the potential

importance of neighborhoods and spatial scale of autocorrelation, it does not directly tell

us whether the autocorrelation in the data is hierarchically or spatially structured. The

third gap in the literature is that previous comparisons ofhow HLM and GSM handle

autocorrelation have been incomplete and one-sided. Previous work is incomplete

because while it has examined the neighborhood-level residuals in HLM analyses for

evidence of residual spatial autocorrelation (Boyd, et al., 2005; Chaix, Merlo, & Chauvin,

2005; Chaix, Merlo, Subramanian, et al., 2005), it has not looked for evidence of spatial

autocorrelation in the level 1 HLM residuals. If they contain spatial autocorrelation, this

will be another indication that HLM is not fully accounting for the spatial variability in

the data. Previous studies have been one-sided because none have yet reported any

attempt to examine the residuals from GSM analyses for evidence of hierarchically

structured autocorrelation.
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Modeling autocorrelation. That prompted the second research question for the

study, which asked: which method (HLM or GSM) is more effective at modeling the

autocorrelation actually observed in data from neighborhood residents? This is ultimately

a question about which conceptualization of neighborhoods as places within geographic

space provides a heuristic for grouping residents that is more consistent with the

empirical data. Put another way, it gets at whether only place matters, or both place and

spatial proximity matter: while HLM assumes that neighborhoods are independent and

thus only a resident’s own neighborhood matters, GSM assumes that neighborhoods are

embedded in a larger spatial fabric and that residents are influenced by multiple

neighborhoods, with the amount of influence each exerts depending on spatial proximity.

Several findings from the literature suggest that GSM will be superior to HLM for

modeling spatial variability in outcomes because its assumptions are more consistent with

what we know about neighborhoods. Neighborhood research has shown that daily life

frequently takes people across the borders of traditional neighborhood units like block

groups (Sastry, et al., 2002) and fixed neighborhood boundaries are quite artificial

(Coulton, et al., 2001; Montello, et al., 2003). Residents tend to think of their own home

as the center of their neighborhoods (Coulton, et al., 2001; Lee & Campbell, 1997), are

more likely to be acquainted with other residents who live close to them than with people

who live farther away (Greenbaum & Greenbaum, 1985), and tend to visit nearby census

tracts more often than distant ones (Wheeler & Stutz, 1971) indicating that urban social

travel exhibits proximity effects. In addition, similarity in outcomes as a function of

spatial proximity is a common feature in spatial data (Bailey & Gatrell, 1995; Haining,

2003; Tobler, 1970).
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Two lines of empirical evidence suggest that spatial rather than hierarchical

structure may better describe the autocorrelation in perceived neighborhood problems.

First, one of the few HLM studies to have systematically varied the size ofthe

neighborhood units used observed larger ICCs as smaller and smaller neighborhood units

were tested with this outcome (Coulton, et al., 2004); this is precisely what one would

expect to see if there really was spatial rather than hierarchical structure in the actual

data, but one tried to model the data with HLM rather than GSM. Second, both Bass and

Lambert (2004) and Pierce (2006) found direct evidence for distance-based spatial

autocorrelation by using variogram models with survey-based measures ofperceived

neighborth problems. Therefore, Hypothesis 3 (H3) is:

H3: An empty GSM will fit the perceived neighborhood problems data better than

an empty HLM. Similarly, a GSM model of perceived neighborhood problems

containing only individual-level predictors will fit better than a corresponding

HLM model containing only individual-level predictors of perceived

neighborhood problems.

Support for H3 would indicate that the conceptualization of neighborhoods

ass0C=iated with GSM provides a better basis for grouping residents than the one

aSSOCiated with HLM. In statistical terms, it would suggest that autocorrelation is

SPatially structured, not hierarchically structured.

Testing assumptions by examining residuals. Both HLM and GSM assume that

the i1'ldividual-level residuals they produce are fully independent of one another and of

the neighborhood-level residuals. On the other hand, the neighborhood-level residuals are

ass‘llned to be independent of each other only in HLM because GSM explicitly assumes
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there will be different degrees of similarity among neighborhood-level residuals

depending on the distance between the locations associated with them. To the extent that

a statistical model makes accurate assumptions about the autocorrelation structure in the

data, the resulting residuals will meet the model assumptions. If either statistical method

is not effectively modeling the autocorrelation in the actual data, that should be evident in

its residuals. Therefore, inspecting the residuals from each method may reveal clues

about which method is performing better. For example, if the data contain spatial

autocorrelation, but they are modeled with HLM, then there will still be residual spatial

autocorrelation in the level 1 and/or level 2 HLM residuals. Given the argument that led

to H3, it follows that Hypotheses 4 and 5 (H4 and H5, respectively) are:

H4: HLM will not fully control for spatial autocorrelation in perceived

neighborhood problems, so there will be evidence of residual spatial

autocorrelation remaining in both the Level 1 and Level 2 residuals from HLM

models.

H5: GSM will fully control for within-neighborhood spatial autocorrelation in

residents’ perceptions of neighborhood problems, so there will be no evidence of

hierarchical autocorrelation remaining in the individual-level residuals from GSM

models.

HLM assumes that the amount of autocorrelation between residents of the same

neighborhood is the same no matter where they are located within the neighborhood. If

the underlying pattern of autocorrelation is a function of distance, then HLM would still

detect what appeared to be hierarchical autocorrelation in neighborhood-level residuals

from GSM. That would happen because HLM would be grouping people who are close
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together (high spatial autocorrelation) with those who are farther apart (low spatial

autocorrelation), which should essentially average out to an amount of hierarchical

autocorrelation that lies below the maximum level of spatial autocorrelation (found at

short distances), but higher than the minimum level of spatial autocorrelation. Thus,

Hypothesis 6 is:

H6: Neighborhood-level GSM residuals from a model predicting perceived

neighborhood problems will contain hierarchical autocorrelation when examined

with HLM, but the ICC will be lower than the PSR.

Testing contextual effects. A fourth gap in the literature concerns how

neighborhood-level factors have been measured when comparing HLM and GSM

approaches. The source data for measures of constructs like NSES have usually been

derived from census data that were only available at the level of areal units (Chaix,

Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). Thus, previous

studies have used crude methods to convert areal data originally associated with one set

of geographic units to estimates of the values that might be obtained within the

boundaries of the buffers used in GSM. A more refined approach would involve starting

from a spatial dataset ofmuch higher resolution (preferably point-referenced data for

households) that can be aggregated directly to match the boundaries ofthe units used for

HLM analyses or within the buffers used for GSM analyses with equal case. This study

was the first to use such data sources for measuring the contextual factors.

To address whether the buffers we can use in GSM provide a better geographic

definition ofneighborhoods for testing the effects of specific contextual conditions on

residents than the neighborhood units used in HLM, this study varied how neighborhood
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boundaries are defined in GSM (fixed neighborhoods vs. buffers centered on residents’

homes) and compared the results to corresponding HLM models. A GSM analysis that

uses fixed neighborhoods like those used in HLM differs from the HLM only in the

assumptions made about how to model autocorrelation, while a GSM analysis that uses

buffers to approximate neighborhoods also differs from the HLM in how neighborhood

boundaries were set. Comparing both kinds of GSM analyses to an HLM analysis

allowed the study to disentangle whether any improvement ofGSM over HLM was due

to how autocorrelation was modeled, how neighborhood boundaries were defined for

measuring neighborhood conditions, or the combination of these aspects of the method.

Given the research suggesting that residents tend to see their own homes as the

center of their neighborhoods (Coulton, et al., 2001; Lee & Campbell, 1997), using

buffers to represent neighborhood boundaries should produce better GSM models than

using fixed neighborhoods because buffers better approximate how residents think about

their neighborhoods. Thus, Hypothesis 7 (H7) is:

H7: GSM will yield models that fit better and have larger contextual effects of

crime and NSES on perceived neighborhood problems than corresponding HLM

models when they use contextual measures calculated within appropriately-sized

buffers. Using HLM-style contextual measures of crime and NSES calculated

within discrete neighborhood cluster boundaries in GSM analyses will yield

models ofperceived neighborhood problems that improve on HLM results, but

not as much as when buffers are used.

Support for H7 would indicate that the buffers used in the GSM are a better

approximation of the geographic areas that are actually relevant to resident’s outcomes
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than the neighborhood units used in the HLM analyses. Testing H7 depends on using

buffers that are the right size to best capture the spatial scales on which particular

neighborhood characteristics matter, which may be smaller or larger than the fixed

neighborhood. This study investigated the effects oftwo neighborhood characteristics,

namely crime and NSES, on residents’ perceptions of neighborhood problems.8

Comparing GSM models that varied only in the size of the buffers used for measuring

these contextual characteristics allowed the study to select an appr0priate buffer size for

each ofthem (Chaix, et al., 2006; Chaix, Merlo, Subramanian, et al., 2005).

Examining spatial scale. There is little research or theory available that directly

addresses how varying the spatial scale on which crime and NSES are measured might

affect their relationship with residents’ perceptions. Meersman (2005) examined the

effect of the percentage of the population living in poverty within buffers with radii

ranging from 0.40 km (0.25 mile) to 2.41 km (1.50 mile) on perceived neighborhood

problems. He found that measuring poverty in the 2.41 km radius buffer provided the

strongest effect on perceived neighborhood problems. However, the study by Kruger

(2008) offers indirect evidence the spatial scaleon which NSES matters may be much

smaller: He found that physical decay of residential buildings correlated most strongly

with residents’ fear of crime when measured in 0.40 km (0.25 mile) buffers. Assuming

that residential decay is strongly correlated with NSES and that fear of crime is strongly

correlated with residents’ perceptions ofneighborhood problems, one might expect that

NSES may be best measured in buffers of similar size in this study. Clearly, this is a large

difference in possible spatial scales, so the study examined a range of spatial scales.

 

The rationale for using these variables in the present study is explained in the next section.
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These studies provided rough bounds on the range of spatial scales at which NSES might

be expected to matter to residents. Unfortunately, there is less literature available to guide

expectations about the spatial scale on which crime might matter.

It is possible that different social processes may underlie the importance of these

two contextual factors in shaping residents’ perceptions of their neighborhoods and that

therefore those processes may operate on different geographical scales. There is no a

priori reason to believe that the buffers that produce the strongest relationships between

crime or NSES characteristics and outcomes will be the same size as the neighborhood

units adopted for conducting HLM analyses. Accordingly, Hypothesis 8 (H8) is a simple,

exploratory hypothesis:

H8: The geographical scales on which crime and NSES influence resident

perceptions of neighborhood problems will differ from one another and fi'om the

average size of the neighborhood areas used in the HLM analysis.

In summary, both HLM and GSM provide ways to examine neighborhood effects.

The two methods make different assumptions and differ with respect to how compatible

they are with certain conceptualizations of neighborhoods. So far, HLM has been used

extensively in community psychology, but GSM has rarely been applied. Very little has

been done to explicitly compare the two methods. This study tested eight hypotheses by

applying HLM and GSM to the same dataset and comparing the results. While there are

good reasons to expect that those hypotheses will be supported, they may not be.

Therefore, the next section considers some possible reasons why the data might fail to

support one or more of those hypotheses.
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Alternative possibilities. Naturally, it is worthwhile to consider reasons why the

hypotheses above might not be supported in the present study. The most obvious

possibility is that the neighborhood units used in the HLM analyses might very well

represent distinct, meaningful neighborhoods. Indeed, guided by recommendations and

common practices in the multilevel modeling literature on neighborhood effects (Roosa,

et al., 2003), the research team who collected the survey data used in this study invested

considerable effort in trying to construct ecologically meaningful neighborhood

(boundaries that would maximize neighborhood-level variance under an HLM framework

(Van Egeren, et al., 2007). If that effort was successful, then those units may be highly

salient to residents and the spatial variation in residents’ perceptions may be more

consistent with the assumptions ofHLM than ofGSM.

So, how could that come about? Unlike other recent studies (Coulton, Chan, &

Mikelbank, 2010; Coulton, et al., 2001), this one did not collect a map of each resident’s

self-reported neighborhood boundaries. The rationale presented above for expecting that

the residents might not agree on neighborhood boundaries and that therefore

conceptualizing neighborhoods as partially overlapping geographic areas (approximated

here by the buffer-based GSM models) was based on this prior work. It is possible that

this might not be true in this sample and that the neighborhood unit boundaries selected

in the original sampling design do ultimately capture some consensus definition of these

residents’ local neighborhoods. If so, one might then expect higher neighborhood-level

variances under HLM than under GSM, which would fail to support Hl. For H2, it is also

possible that that practical range of spatial autocorrelation in residents’ perceptions of
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neighborhood problems may vary considerably from city to city and that, in this sample,

it might be too short to reach across neighborhood boundaries.

Before discussing additional hypotheses about the HLM and GSM residuals that

can be tested to more fully answer the second research question, we should consider

scenarios that conflict with the prediction in H3. As with H1, this hypothesis might not be

supported if the neighborhood units used for the HLM really are as meaningful as they

were originally intended to be. Alternatively, another reason that H3 might not be

supported derives from the fact that both HLM and GSM adopt fairly simple assumptions

about how autocorrelation might be structured. It is possible that (a) neither ofthose

assumptions is accurate and the spatial variation in residents’ perceptions does not fit

either model well, or (b) that the underlying structure in the data is actually a mixture of

hierarchical and spatial structures, such that both forms of autocorrelation are present. In

either ofthose scenarios, H3 might not be supported. Because H4-H6 are corollaries of

H3, they are unlikely to be supported if H3 is unsupported. So, if a relatively pure

distance-decay pattern of spatial autocorrelation does not adequately describe the spatial

variability in the data, these three hypotheses may not be supported.

As with previous hypotheses, if the neighborhood unit boundaries selected for the

HLM analyses are in fact as meaningful for residents as they were intended to be, then

H7 and H8 will probably not be supported. This is especially true if residents’

perceptions are not affected by crime or NSES in areas outside of their own

neighborhood. One way that could happen is if they are more acutely aware of conditions

in their own neighborhoods than they are of conditions in other surrounding

neighborhoods. To borrow a term from behavioral geography, residents’ “awareness
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space” (McCord, Ratcliffe, Garcia, & Taylor, 2007) might not extend much beyond the

borders of the neighborhood units used in the sampling design. Even if they are aware of

conditions in surrounding neighborhoods, residents might think of those places as

sufficiently distinct from their own neighborhood that they ignore the crime or signs of

poverty in surrounding neighborhoods when assessing the level of problems in their own

neighborhoods.

Several of the hypotheses above depend on the assumption that circular buffers

are a good way to represent neighborhoods. However, it is certainly possible that this is

not the case and that buffer-based methods should rely instead on some other, more valid

method for defining buffer boundaries. Similarly, the current hypotheses assume that, for

any given neighborhood—level predictor, the same size buffer is appropriate for measuring

the neighborhood area relevant to all residents. This may not be the case because there is

some literature suggesting that the size of residents’ self-reported neighborhoods may be

related to individual-level characteristics such as age or gender (Lee, 2001). Exploring

that possibility was outside the scope of the current study, but it is certainly worth

pursuing in future studies.

Summary of the Study

The purpose of the study was to test whether GSM could serve as a useful

alternative to HLM in neighborhood research and to respond to the recent call to start

applying spatial analysis methods in community psychology (Luke, 2005; Mowbray et

al., 2007). To fulfill that purpose, this study used both HLM and GSM to test hypotheses

about the effects of two neighborhood-level variables (crime and NSES) on residents’

perceptions of neighborhood problems. By comparing parameter estimates and model fit
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indices from HLM and GSM analyses of the same data, the study explored whether the

fundamental differences in how neighborhoods are conceptualized and defined in these

two methods led to differences in their statistical performance.

How we conceptualize neighborhoods and geographic space informs two aspects

of neighborhood studies, (a) how we group residents in order to detect spatial variability

and model autocorrelation in outcomes, and (b) how we define the geographic area of the

neighborhood that should be used when measuring neighborhood context. This study

seeks to answer four research questions:

1. How do GSM estimates of neighborhood-level variance and autocorrelation

compare to HLM estimates?

,2. Which method (HLM or GSM) is more effective at modeling the

autocorrelation actually observed in data from neighborhood residents?

3. How do GSM estimates of contextual effects and model fit compare to HLM

estimates?

4. In a dataset originally collected with use ofHLM methods in mind, how do the

geographical scales on which different contextual factors operate (as estimated

with GSM) compare to each other and to the size of the neighborhood units

used in HLM?

The first two questions and the attendant hypotheses focus on how we group data

in order to detect and model spatial variability in outcomes, while the latter two questions

focus on how different ways of defining neighborhood boundaries affect the strength of

the relationships between specific contextual characteristics and individual-level

outcomes. By pursuing answers to these questions, this study contributes to the literature
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,on testing neighborhood effects and expands the methodological repertoire available to

community psychologists interested in this topic.

Limitations

As the literature review above illustrates, the conceptual issues surrounding the

definition and operationalization of neighborhoods and the testing of neighborhood

effects are complex and deeply interrelated. The present study addresses some key issues,

but no single study can address all ofthem completely. One of the study’s limitations is

that it focuses on only a single outcome measure. As a result, the findings will need to be

replicated with other outcomes before strong conclusions about the generalizability of the

findings to other outcomes can be drawn. This study focused on perceived neighborhood

problems specifically because of the existing evidence that suggested it might be a strong

candidate for use with GSM instead ofHLM.

The study did not use any outcome measures where one might expect HLM to be

more appropriate than GSM. This is another limitation, but one that reflects the fact that

HLM is the more well-established method in the community psychology literature.

Focusing on the situation where it is most plausible that GSM might outperform HLM is

a crucial test of whether GSM might be a viable alternative to HLM; it is less critical to

show that HLM can sometimes be more appropriate because it is already the de facto

standard approach.

Another limitation of the study is that the data come from a single sample located

in a small city. This means that the results should be replicated with additional studies

drawn from other geographical study regions in order to assess the generalizability of the

results beyond the selected study region. The size, shape, and spatial arrangement of the
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neighborhood units used for HLM are fixed in this sample, but would certainly vary in

other study regions and may play an important role in the comparison ofHLM and GSM

methods. Furthermore, while many HLM studies of neighborhood effects have been

located in large cities, the setting for the present study was a small city. There are many

differences between large and small cities, but what influence those differences might

have on the use ofHLM versus GSM is not known.

One option for comparing HLM and GSM would be to conduct simulation studies

where these factors can be directly manipulated by the researcher, as could the location of

the individual observations and the actual structure of the dataset. Designing a series of

simulations to thoroughly explore the conditions under which HLM and GSM each

perform best will be challenging because of the complex spatial issues involved. This

study is only the first step toward introducing sophisticated GIS-based spatial statistics

into community psychology and the literature on neighborhood effects. Therefore, it was

deemed appropriate to use a real dataset for the study as a proof of concept before

undertaking that more advanced kind of methodological research.
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METHOD

The data selected for this study came from work related to the evaluation of Yes

we can!, which is a community change effort funded by the W. K. Kellogg Foundation

(WKKF) in Battle Creek, Michigan. Several key features of this dataset contributed to its

selection for the study.

First, the survey sample comprising the main portion of the dataset was designed

with multilevel neighborhood research in mind. The neighborhood units were constructed

to have ecologically sensible boundaries (Van Egeren, et al., 2007) and conformed to one

of the major suggestions in the HLM literature, which is to sample from neighborhood

units that are as small as feasible in order to maximize between neighborhood variance

(Roosa, et al., 2003). Because every survey participant’s address was known and

, geocoded with high accuracy, the data were also easy to use in spatial analyses.

Second, the neighborhoods under study were all from a single city, placing them

in close proximity to each other, which is important for comparing how HLM and GSM

model autocorrelation. To fully do that comparison, the neighborhoods must be close

enough together that it is plausible that the range of spatial autocorrelation and/or the

geographical scale on which certain predictors are measured might reach across the

boundaries between neighborhoods. In this dataset, that is absolutely plausible because

there are multiple instances where neighborhood units were located very close together.

Third, additional secondary data sources with high spatial resolution were

available to measure contextual characteristics without depending on aggregated survey

data. Both crime and residential property value data were available for this study region

in point-based GIS shapefiles geocoded to specific addresses—a form ideally suited to
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enabling those data to be aggregated to construct contextual measures either within the

boundaries of the fixed neighborhood units needed for HLM, or in the buffers centered

on each resident’s home that were used in GSM. Using predictors that were not

aggregated fi'om the survey data itself prevented shared method variance fi'om biasing the

study results. Furthermore, the nature of these secondary datasets allowed flexible re-

specification of the size of the buffers used in the GSM analyses.

Study Context

The study region comprised a portion ofthe city of Battle Creek, which is a small

city in southwest Michigan with a population of approximately 53,000 residents. During

Phase I of Yes we can!, the work focused on a set of seven elementary school catchment

areas (ESCAs) that were selected on the basis of demographic, educational, and

economic data. Because Yes we can! was being expanded in Phase II to focus on a larger

geographic area, the 2005 resident survey collected by the Yes we can! evaluation team as

baseline data for Phase II sampled residents fiom the original seven ESCAs, plus

residents from several additional ESCAs. However, the ESCAs were large enough to

contain areas with considerable heterogeneity in economic conditions and demographic

composition, so the team developed a clustered sampling design based around much

smaller and more ecologically meaningful neighborhood units (Van Egeren, et al., 2007).

These neighborhood units, shown in Figure 4, were defined by identifying 52

clusters of census blocks within block groups that met at least one of three economic risk

criteria according to 2000 US. census data (median household income < $30,568, percent

of single-female-headed households living below poverty _>_ 49%, or percent of children

under age 5 living below poverty 2 39%). Neighborhood units were only created from
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Figure 4: Map of neighborhood cluster boundaries (N = 52) and ESCA boundaries. These

clusters were used as Level 2 units during the survey sampling and to represent

ecologically meaningful neighborhoods for grouping residents in the HLM

analyses. Source: Map prepared by the author. ‘

clusters of census blocks that were all from the same block group and were not internally

divided by ecological barriers such as major streets, bodies of water, or parks. The units

each contained fi'om 1 to 11 census blocks (M= 5, counting both whole blocks and

partially-included face-blocks equally) and ranged in size from 0.026 to 0.472 km2 (M =

0.083 kmz, SD = 0.069 kmz).
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The neighborhood-level sampling was stratified based on whether the

neighborhood unit was primed or unprimed to take advantage of Yes we can! This

priming status variable reflected the evaluation team’s expectation that neighborhoods

with a history of previous activity focused on creating neighborhood change might be

better positioned to. benefit from the upcoming intervention activities. The primed

neighborhoods either (a) had been identified by the city as having an active neighborhood

association or (b) contained at least one active leader according to either Yes we can!

community organizers or city lists of neighborhood association leaders and neighborhood

planning council members. The unprimed neighborhoods had neither active

neighborhood associations nor any identified leaders living on any of the included blocks.

The 52_neighborhood units ultimately identified were evenly split with respect to priming

status (26 primed, plus 26 unprimed).

For simplicity and clarity, the neighborhood units used in the survey sampling

will hereafter be called neighborhood clusters (or just clusters). These clusters are the

geographic units that were used to define the neighborhood boundaries in all the HLM

analyses and some of the GSM analyses reported below.

Data Sources

Survey sample. The initial source for the survey sample fi'ame was a GIS

shapefile containing data about parcels of land in Battle Creek obtained from the local tax

assessor’s office. GIS tools were used to merge the cluster boundaries with a map of the

parcels, delete records for parcels outside the cluster boundaries, and assign cluster

identification numbers to the remaining records in the draft sample frame database.
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Prior to drawing the survey sample, evaluation team members inventoried all the

dwelling units on each parcel within each cluster. They identified dwelling units that

were vacant, abandoned or uninhabitable, for sale, or advertised as being currently

available for rental. Those units were deemed ineligible for selection during the sampling

and deleted fi'om the database accordingly. The final survey sample fi'ame was expanded

by splitting records for parcels with multi-unit dwellings into separate records for each

distinct dwelling unit. Thus, all inhabited dwelling units located in any of the clusters

were listed as unique rows in the sample frame database.

The survey sample was clustered. The evaluation team used simple random

sampling within each neighborhood cluster, aiming to draw a minimum of 37 households

from each neighborhood. This original target sample contained 1,905 households (a few

neighborhood units contained fewer than 37 addresses, which prevented reaching the goal

of 1,924 households).

In Fall 2005, surveys were mailed to the selected households at three-week

intervals until each household either responded or three surveys had been sent without

receiving a response. In the third round of mailings, the evaluation team was concerned

that people who had already failed to respond twice would again be non-responders. To

boost the final sample size, the target sample was augmented at the third mailing by

adding one replacement household from the same neighborhood cluster for each non-

respondent from the original sample (the original non-respondents still got the third

mailing as well). The replacement households received a total ofthree opportunities to

respond to the survey, at three week intervals. In total, surveys were mailed to 2,643

residential addresses, but 184 addresses were later deemed invalid due to vacancy,
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undeliverable mail, etc., so the denominator for the response rate is 2459 valid addresses.

Comparing the early versus late responders on 13 demographic variables and 44 other

survey measures revealed almost differences between these subsets of the survey

participants (Pierce, 2008) Prior to the first and third mailings, community residents hired

by the evaluation team conducted door-to-door outreach to encourage residents to

complete the survey. Each household that returned a completed survey received a $30 gift

card to a local store. Only one survey per household was included in the final sample.

Data collection was cutoff in early 2006, 23 weeks after the first mailing. It

yielded 1,049 usable surveys (a 42% response rate), which were equally divided between

unprimed (n = 522) and primed (n = 527) neighborhoods. The number of usable surveys

per cluster ranged from 8 to 31 (M= 20.2, SD = 5.3, Mdn = 21). Demographic

characteristics of the sample are shown in Table 2.

Table 2: Demoggtphic characteristics of survey participants (N = 1049)
 

 
 

 

Pre-Irnputation Post-Imputation

~ Variable N or (w % or (SD) Valid % N or (A0 % or (SD)

Age (in years) (47.00) (16.15) (46.87) (16.25)

Non-missing 1001 95 100 1049 100

Missing data 48 5 0 0

Age category

18-35 280 27 28 328 31

36-55 439 42 44 439 42

Z 56 282 27 28 282 27

Missing data 48 5 0 0 0

_ Sex

Male 266 25 26 268 26

Female 775 74 74 781 74

Missing data 8 l 0 0 0

Primary race/ethnicity

White 640 61 65 672 64

Black or African American 293 28 30 312 30

Hispanic or Latino 42 4 4 45 4

Other 16 2 2 20 2

Missing data 58 6 0 0 0

‘ Marital status

Single 249 24 24 255 24

Married or cohabitating 479 . 46 46 483 46

Divorced or separated 217 21 21 217 21
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Table 2 cont’d

  

 

Pre-Imputation Post-Imputation

Variable N or (A0 % or (SDL Valid % N0mm % or (SD)

Widowed 93 9 9 94 9

Missing data 11 l 0 0 0

Education (highest degree obtained)

Did not graduate from high school 182 17 18 186 18

High school, GED, trade certificate 641 61 63 659 63

Undergraduate college degree 174 17 17 182 17

Graduate degree 21 2 2 22 2

Missing data 31 3 0 0 0

Employment status

Not employed 444 42 57 446 57

Employed 598 57 43 603 43

Missing data 7 1 0 0 0

Home ownership

Rent . 330 32 33 342 33

Own 685 65 68 707 67

Missing data 34 3 0 0 0

Annual income

< $15,000 365 35 37 389 37

$15,000 - $25,000 205 20 21 217 21

$25,000 - $45,000 268 26 27 288 27

> $45,000 146 14 15 155 15

Missing data 65 6 _ 0 0 0

No. of children (1.53) (1.47) (1.42) (1.38)

Non-missing 715 68 100 1049 100

Missing data 334 32 0 0 0

Presence of children

No children 218 21 31 340 32

Children ( z 1) 497 47 70 709 68

Missing data 334 32 0 0 0

Years in BCa (30.41) (19.42)

Non-missing 103 l 98 1 00

Missing data 18 2 0

Years at current addressa (1219) (14.24)

Non-missing 1005 96 100

Missing data 44 4 0
 

Note. Percentages may not total to 100 due to rounding error. BC = Battle Creek, M= mean, SD =

standard deviation.

a

Post-imputation summaries are not shown for years in BC and years at current address because these

variables were excluded from both the imputation model and the analyses reported below.

Crime data. As part of the ongoing Yes we can! evaluation,’the evaluation team

also obtained crime data from the City of Battle Creek Police Department. This

secondary dataset contains an electronic list of all the crime incidents (N = 8,263)

reported to the police in the 12 months prior to the 2005 resident survey, drawn from the
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police dispatch records management system. In addition to the address at which each

incident occurred, additional attributes of each incident are also available, including up to

four offense codes that can be used to determine the type of crime. For this study, offense

codes were used to determine whether each incident fell into one or more of the three

major categories of crime used in the National Incident-Based Reporting System

(Uniform Crime Reporting Program, 2000): crimes against persons, which are all

essentially violent crimes such as assault, murder, and rape; crimes against property such

as theft, arson, and fraud; and crimes against society such as drug/narcotic offenses,

prostitution, and gambling, which are violations of laws that “represent society’s

prohibitions on engaging in certain types of activity” (Uniform Crime Reporting

Program, 2000, p. 14).

The crime data were converted into a point-based GIS shapefile by geocoding

each incident address against a street centerline shapefile. Mapping the locations of the

crime incidents showed that 529 ofthem actually occurred slightly outside the city

boundary (mostly along a single highway). Given that most crimes occuning outside the

city limits were probably handled by police from other jurisdictions from whom no data

had been obtained, only the 7,734 incidents that fell within .the City of Battle Creek’s

official boundary were used for computing contextual measures in this study.

Property data. The Yes we can! evaluation team also obtained property data from

the City of Battle Creek’s assessor’s office. This polygon-based GIS shapefile contains

data about parcels of land within the local tax assessor’s purview (e.g., within the City of

Battle Creek’s official boundaries). The database includes the address and boundaries of

each parcel of land, along with information about property class, zoning code, and more.
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Among those variables are indicators of whether the parcel is zoned to contain a single

family dwelling, a two family dwelling, or a multifamily reSidential-dwelling. Some

residential parcels are zoned to contain medium density or high density residential

dwellings (e.g., large apartment buildings). Data about the 2005 property value associated

with each residential parcel was obtained from the assessor’s office, which maintains

historical data of these public records for tax purposes, then merged with the GIS

shapefile so that residential property values could be aggregated within different

neighborhood boundaries as required for the study. To facilitate that aggregation, the

polygon representing each parcel was converted to a point located at the parcel’s

centroid, yielding a point-based shapefile.

Procedures

Survey consent. The 2005 resident survey used a passive consent procedure. As

explained in the cover letter sent along with the survey, returning a completed survey

served as informed consent to use the survey for the original purpose of the study, which

was to evaluate the Yes we can! effort and assess conditions in Battle Creek. The

evaluation of Yes we can! and academic research based on the 2005 survey data are

ongoing and have been approved by the institutional review board at Michigan State

University. The principal investigator for that work is Dr. Pennie Foster-Fishman.

The present study entailed secondary analysis of that survey data for a new

research purpose that posed only minimal risk to the survey participants. It would have

been exceedingly difficult to contact all 1,049 of those residents to obtain consent to re-

use their data for this new purpose, so the institutional review board at Michigan State

University waived the requirement to obtain further consent from the residents.
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Geocoding. All three data sources listed above were geocoded and projected

into the Michigan State Plane (South) Coordinate System of 1983 (Lusch, 2005), with

units for the spatial coordinates set to meters. The resulting point- and polygon-based

shapefiles can be plotted on maps using GIS software and were imported into the

statistical software used for the analyses.

Surveys. Because the survey sample frame was initially constructed fi'om a GIS

shapefile based on the local tax assessor’s property database, nearly every survey

returned was geocoded (assigned spatial coordinates so that their locations can be plotted

on electronic maps) by the evaluation team by simply linking the address of the survey

participant back to the GIS files containing the parcel data. The geocoded location for

each survey participant is the centroid ofthe parcel containing the participant’s

residential address. This resulted in a very high geocoding rate (over 98%). The

remaining survey participants’ locations were manually geocoded by referring to maps

annotated by the Yes we can! evaluation team when taking the dwelling unit inventory

they used to refine the survey sample frame.

There were 39 survey participants whose spatial coordinates were identical with

those of at least one other participant because they lived on parcels containing multiple

dwelling units (e.g., apartment buildings or duplexes). Because exact overlap in the

locations of the data points causes mathematical problems in GSM, a trivial amount of

spatial error (up to 3 m in either direction along each axis) was added to the spatial

coordinates for these participants by adding independently drawn random values from a

uniform distribution to both the casting and northing coordinates for those 39 cases. This

eliminated exact overlap and allowed all cases to be retained in the GSM analyses.
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Crime data. Because the crime incident files contained addresses and other

location data, 99% ofthe crime incidents were successfully geocoded by matching the

incident addresses to a street centerline GIS file, so each crime is associated with a point

in geographic space. This hit rate far exceeds the minimum acceptable hit rate of 85% for

geocoding crime data recommended by Ratcliffe (2004). The resulting geocoded crime

data constitute a spatial point pattern that can be analyzed with a variety of spatial

analysis techniques (Bailey & Gatrell, 1995).

Property data. The property data were available as a polygon-based GIS shapefile

showing the precise area occupied by each parcel of land falling under the purview of the

local tax assessor’s office. These data were geocoded by employees of the City of Battle

Creek and are the most authoritative, accurate, and highest resolution spatial data

available for property parcels in that city. Because the shapefile contains the entire

territorial boundary for each parcel, parcel centroids were easily computed and were used

to determine whether or not particular parcels fell within particular geographic areas.

Neighborhood-Level Contextual Measures

The contextual measures for this study were computed from the crime and

property datasets. Those datasets were aggregated in several ways to construct contextual

measures suitable for the present analyses. For each construct (crime and NSES), data

were aggregated into variables representing (a) the geographic area of each neighborhood

cluster as defined by the original sampling design, (b) a series of 25 concentric, circular

buffers centered on each survey participant’s home that varied in size, with radii ranging

from 0.10 km (0.06 mile) to 2.50 km (1.55 mile) in 0.10 km increments. For comparison,
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a typical face block in Battle Creek is about 0.12 km (0.07 mile or 400 feet) in length.

These buffers, with the modifications noted below, were used in the GSM analyses.

The geographic coverage of the property and crime data was constrained: they

were only consistently available within the official City of Battle Creek boundary. The

neighborhood clusters all fell entirely within the city boundary, so that did not pose a

measurement problem for the HLM analyses. However it posed an edge-effect problem

(Bailey & Gatrell, 1995) for measuring neighborhood-level variables in the GSM

analyses because buffers for residents living near the edge of the city sometimes covered

land outside the city limits, where crime and property value data were not available. This

was addressed with an edge-correction procedure inspired by techniques used in spatial

point-pattem analyses (Bailey & Gatrell, 1995): only the portion of a circular buffer

falling within the city limits was used to measure the neighborhood-level variables. This

affected both the shape and the size of the buffers for some residents, particularly those in

the southeast comer of the study region, but ensured that only the geographic area over

which crime and residential property data were reliably available was considered.

Consistent with recommendations in the multilevel modeling literature, both

neighborhood-level measures were grand-mean centered prior to analysis (Enders &

Tofighi, 2007). This practice made the coefficients associated with these predictors more

interpretable.

Crime. Only crimes that occurred in the 12 months immediately preceding the

collection of the survey data were used to calculate crime density figures. The raw

2

neighborhood crime density (crimes/km ) was measured by aggregating the crime data to

determine the total number of crime incidents that occurred within the cluster boundaries
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(which were dilated 15 m outward to capture crimes geocoded into the middle of streets)

and within each of the buffer boundaries, then dividing by the land area enclosed by each

of those neighborhood boundaries. To avoid numerical problems in estimating the crime

coefficients and to make the units of the variable more sensible, raw crime density values

were divided by 10 prior to centering the variable for use in analyses. A one unit

. . . . . 2
difference on the final cnme variable therefore represents a difference of 10 cnmes/km .

Most neighborhood research uses crime measures based on only violent crime

(i.e., crimes against persons such as assault, homicide, and rape) (Franzini et al., 2008;

Quillian & Pager, 2001; Sampson & Raudenbush, 2004). Because it was possible that

nonviolent crimes might also influence residents’ perceptions and that different types of

crime might operate on different spatial scales, the utility of using separate measures

based on crimes against persons, property, and society was considered for this study. In

preliminary analyses, all of these measures were significant predictors of the outcome

when entered as the sole neighborhood-level predictor, as was an overall crime measure

based on all incidents regardless of type. Crime against persons was the strongest

predictor in those analyses.

Further preliminary modeling showed that while individual crime incidents very

rarely included offenses falling into more than one crime category, neighborhood-level

crime measures for the different types of crime were very strongly correlated. Including

more than one ofthem in a model inevitably caused severe multicollinearity problems,

eliminating the effects of all the included crime measures. Given that, it was not feasible

to test whether the HLM and GSM yield different patterns of scientific inferences about

the effects of different kinds of crime. Therefore, consistent with how crime is
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operationalized in other neighborhood research studies (Franzini et al., 2008; Quillian &

Pager, 2001; Sampson & Raudenbush, 2004), the crime measure in the analyses reported

below is based only on crime against persons (Uniform Crime Reporting Program, 2000).

Neighborhood SES. NSES was measured by aggregating the property data to

obtain the median value of all residential property parcels within a given set of

neighborhood boundaries (either the cluster boundaries or the various buffer boundaries).

While it might have been better to measure NSES in terms of the median value of each

dwelling unit, the number of dwelling units per parcel was only available within the

cluster boundaries. Such a measure therefore could not be calculated for the full range of

buffers used in the GSM modeling. Similarly, relying on the median value of parcels

zoned only for single-family dwellings was not feasible because some survey participants

lived in areas exclusively zoned for higher density housing arrangements (containing

many of apartment building complexes). The resulting missing data for NSES would

have reduced the sample size and the generalizability of the results.

The raw NSES values were measured in dollars. To avoid numerical problems in

estimating the NSES coefficients and to make the units of the variable more sensible, raw

NSES values were divided by 1000 prior to centering the variable for use in analyses. A

one unit difference on the final NSES variable therefore represents a $1,000 difference in

the median value of residential parcels in the neighborhood.

Individual-Level Measures

The individual-level measures for the study all came from the 2005 resident

survey collected by the Yes we can! evaluation team. Because the study focuses on

testing contextual effects, the individual-level predictors were grand-mean centered
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(Enders & Tofighi, 2007; Paccagnella 2006) to improve interpretation of the coefficients.

Although the literature on centering categorical variables in multilevel models focuses

only on dichotomous predictors (Enders & Tofighi, 2007), grand-mean centering can also

be applied to categorical predictors with more than two categories. Dummy coding them

then separately centering each resulting dummy variable yields results that are

conceptually comparable to centering dichotomous variables (C. Enders, personal

communication, August 17, 2009).

Neighborhood problems. The dependent variable was residents’ perceptions of

neighborhood problems. This four item scale (a = .88) was based on items adapted from

Coulton, Korbin, and Su’s (1996) disorder scale. Residents were asked how much they

agreed or disagreed with a set of statements about whether selected indicators of physical

and social disorder were a problem in their neighborhood (e.g., “Crime is a problem” and

“Abandoned, vacant, or neglected buildings are a problem”) using a 6-point Likert scale

(1 = strongly disagree, 6 = strongly agree).

Age. Residents self-reported their birth years in the demographic portion of the

survey. Age was calculated by subtracting each resident’s birth year from 2006. For the

analyses, age was categorized into three groups: 18-35 years (the reference group), 36-55

years, and 56 or more years.

Gender. Residents self-reported their gender in the demographic portion of the

survey. For this binary variable (0 = male, 1 = female), males were the reference group.

Race. The survey also collected self—reported racial/ethnic background. For this

study, each participant was categorized into one of the following race groups: White (the

reference grOle), Black/Afiican American, Hispanic/Latino, or other.
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Marital status. Residents were also asked about their marital status. For this

study, marital status was collapsed into the following four groups: single (the reference

group), married or cohabiting, separated or divorced, and widowed.

Education. Participants’ were asked to report the highest level of education they

had completed. For analysis purposes, education was collapsed into four categories: (a)

Did not graduate high school, (b) high school diploma, general educational development

(GED), trade or training certificates, (c) undergraduate college degree (Associate’s, .

Bachelor’s), or (d) graduate degree (Master’s or Doctoral). Residents in the second

category (i.e., high-school diplomas or similar level of education) served as the reference

group because they comprised the largest group.

Employment status. Participants were also asked about their employment status.

Unemployed participants were the reference group (0 = not employed, 1 = employed).

Income. Annual household income was collected by asking participants to report

which ofthe nine different income categories included their income. Due to the small

numbers of cases in some ofthe original categories, this variable was recoded into four

categories: (a) less than $15,000, (b) $15,000 to $25,000, (c) $25,000 to $45,000, and ((1)

$45,000 and above. The highest income category was the reference group.

Home ownership. Participants were asked whether they rented or owned their

home on the 2005 survey. Renters were the reference group (0 = rent, 1 = own).

Presence of children in the home. Residents were asked to report the number of

children (persons under age 18) living in their home. Presence of children in the home

was treated as a binary variable (0 = none, 1 = 1 or more children). Residents without

children living in their home were the reference group.
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Analysis

The analysis began with a thorough inspection ofthe data and assessment of the

amount and patterns of missing data (McKnight, McKnight, Sidani, & Figueredo, 2007).

After imputing missing data (see below), exploratory analyses (e.g., univariate and

multivariate summaries, screening for outliers, etc.) and graphical methods for

visualizing the data (Cleveland, 1993) were employed to check assumptions underlying

the statistical models and the nature of the relationships between the variables.

The analyses associated with H1- H6 compared HLM and GSM with respect to

how they group residents for detecting and modeling spatial variation in outcomes. They

sought to test whether conceptualizing neighborhoods as places in discontinuous

geographic space is a practice that should be replaced by conceptualizing neighborhoods

as places within continuous space. In contrast, the analyses associated with H7 and H8

focused on comparing HLM and GSM as methods for testing the effects of specific

neighborhood-level predictors. These latter analyses sought to inform our thinking about

defining neighborhood boundaries for measuring contextual variables.

Imputation of missing data. To maximize the usable sample size and minimize

the impact of missing data on the analyses, missing values on all individual-level

measures were imputed prior to conducting the analyses (Schafer & Graham, 2002). The

amounts of missing data were quite small for most of the variables (see Table 2) and the

missing values were scattered throughout the dataset, so single imputation (rather than

multiple imputation) was a reasonable strategy for dealing with the missing data.

Because the survey data were originally collected via a clustered sampling design,

a multilevel imputation model (Schafer, 1997b, 2001) would normally be used to impute
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missing values. However, the present study avoided biasing the results in favor of either

HLM or GSM by applying a strictly individual-level imputation model designed for

imputing missing values in datasets containing both categorical and continuous measures

(Schafer, 1997). This technique ignored both spatial autocorrelation and hierarchically

structured autocorrelation, giving neither analysis method an advantage.

The imputation model combined a log-linear model containing all possible main

effects and two-way interactions among seven categorical variables (gender, race, marital

status, education, employment status, home ownership, and income) with a regression

model containing main effects for seven continuous variables. The continuous variables

were neighborhood problems, age, and number of children in the home, plus four

measures not described above because they were only used in the imputation process:

hope (3 item scale, or = .83), perceived availability of safe, affordable housing in the

neighborhood (1 item), perceived barriers to employment (5 item scale, a = .90), and

parental support for education (2 item scale, a = .78). The latter four measures were

useful imputation covariates because they were all correlated with neighborhood

problems (rs 2.20, ps < .05).

Bayesian modeling. The software selected for estimating the GSM models relies

on a fully Bayesian approach to statistical inference called Markov chain Monte Carlo

(MCMC) estimation via Gibbs sampling (Finley, Banerjee, & Carlin, 2007). The same

approach was also used to estimate the HLM models to ensure that differences in

estimation methods could not skew the results toward either HLM or GSM.

The Bayesian approach to statistics is deeply grounded in probability theory, so

models are specified in terms ofjoint probability distributions for all observable and
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unobservable quantities in the problem at hand (Gehnan, Carlin, Stern, & Rubin, 2004).

Observable quantities are the variables contained in the data, while unobservable

quantities include the unknown values of parameters associated with specific predictors

or other aspects of the model (e.g., error variances). Instead of depending on null

hypothesis significance testing for point estimates of unknown model parameters,

Bayesian modeling emphasizes describing and drawing inferences from the conditional

probability distributions of those parameters given the observed data by examining

summary statistics such as credible intervals (Gelman, et al., 2004; Gill, 2008).

Understanding the relationship between the prior distributions for unknown model

parameters (often just called the priors) and the corresponding posterior distributions

estimated for those parameters during a specific analysis is crucial to Bayesian statistics.

The priors specified in a model reflect assumptions about the distributions of the

unknown parameters that are made before examining new data (Gelman, et al., 2004;

Gill, 2008). One key aspect of defining a prior is choosing the sampling distribution (e.g.,

normal, binomial, Poisson, etc.) that determines its overall shape and defines what

parameters must be estimated (e.g., mean and variance for a normal distribution). Priors

may be specified based on knowledge extracted from the relevant substantive literature,

previously collected data, or based on methodological considerations. Bayesian modeling

then uses the information in new data to update the prior distributions, thereby producing

posterior distributions for model parameters that are more informative than the priors and

can be used to draw scientific inferences (Gelman, et al., 2004; Gill, 2008).

This study used non-informative prior distributions to minimize the influence of

the priors on the posterior distributions (Gelman, et al., 2004; Gill, 2008), ensuring that
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the posterior distributions largely reflect information gleaned from the actual data. To

rule out the priors as a potential explanation for differences in performance, identical

priors were used for corresponding parts of the HLM and GSM models. Flat priors based

on the normal distribution (u = 0, o2 = 10,000) were used for all intercept and slope

coefficients. This effectively assumed that the distribution is centered on zero (on

average, there is no effect) and that all values for these parameters (even large positive or

negative values) were equally likely, but each had a very low probability of occurrence.

While there is an ongoing debate about the best non-informative prior distribution

to use for variance components in HLM, inverse gamma priors are widely used (W. J.

Browne & Draper, 2006a, 2006b; Gelrnan, 2006; Van Dongen, 2006) and have also been

recommended for variance components in GSM (Banerjee, et al., 2004). Accordingly,

inverse gamma priors (shape = 2, scale = 1) were used for the variance components

associated with individual- and neighborhood-level residuals in the regular HLM models.

This prior distribution is positively skewed (minimum = 0, p. = 1, and 02 = 00), so

adopting it assumed that values at or near zero were most likely to occur, but large

positive values were also possible.

For one HLM model, the assumption of independence between neighborhoods

was relaxed by supplementing the typical spatially unstructured neighborhood-level

residual with an additional, spatially structured residual. This spatial random effect was

assigned a Gaussian CAR prior distribution via the car.norrnal function in WinBUGS.

Under this prior, the expected value for a neighborhood’s spatial residual is the weighted

average of the spatial residuals from surrounding neighborhoods (defined here as those
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whose centroids were within 2.0 km of the focal neighborhood’s centroid). The weight

matrix (W) for the CAR HLM model used unstandardized inverse distances to make this

spatial effect more conceptually comparable to the GSM models. Thus, the CAR HLM

model is a hybrid approach that incorporates hierarchical autocorrelation through the

spatially unstructured neighborhood-level residuals and their corresponding variance

component and a distance-decay form of spatial autocorrelation represented by the

spatially structured, neighborhood-level CAR residuals and their variance component.

The conditional variance of the prior distribution for each CAR residual is

inversely proportional to the number of surrounding neighborhoods. Per the

recommendation in the WinBUGS documentation (Thomas, Best, Lunn, Arnold, &

Spiegelhalter, 2004), the CAR variance component was assigned an inverse gamma prior

(shape = 0.05, scale = 0.0005) to avoid inducing artificially high levels of spatial

autocorrelation. The expected value for the CAR variance under this prior is .0025 and

there is a 98% prior probability that it will fall between 0.0001 and 6.25.

It was also necessary to select a shape for the variograms incorporated into the

GSM models and set priors for the parameters that define how far spatial autocorrelation

extends. There is no corresponding range parameter in the HLM models, so this prior was

based solely on recommendations in spatial analysis literature. Isotropic exponential

variograms were selected because they were a) reasonable fits to the observed pattern of

autocorrelation in these data, b) used in other GSM studies (Chaix, et al., 2006; Chaix,

Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Finley, et al., 2007),

and c) recommended in spatial analysis texts (Banerjee, et al., 2004). An exponential

variogram has a parameter ((p) for the rate of decrease in spatial autocorrelation; its value
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determines the practical range beyond which remaining autocorrelation is negligible.

Because empirical variograms become unstable at large distances, it is wise to limit their

ranges to less than the maximum distance between observed points (Diggle & Ribeiro,

2007). A uniform prior distribution (minimum = 6.49 x 104, maximum = 1) was selected

for (0; this constrained the practical range to fall between 3 m and 4622 m because

practical range = -log(0.05)/(p, which is approximately 3/(p. That upper limit is half the

distance across the study region (i.e., half of the diagonal for a rectangle just large enough

to fully enclose all 52 clusters).

MCMC estimation of a Bayesian model consists of simulating an iterative series

of random draws from the joint posterior distribution of all the model parameters. This

produces a chain of estimates for each parameter that can be summarized with familiar

univariate statistics to describe the parameter’s posterior distribution (Gill, 2008). For

example, the results reported below usually contain the mean and standard deviation of

each parameter’s distribution, along with the central 95% credible interval (i.e, the

interval endpoints exclude the bottom and top 2.5% of the values in the distribution).

Because consecutive draws for each parameter are typically mildly autocorrelated

with previous estimates in the same chain, MCMC.simulations must be run for many

iterations to produce reasonable empirical estimates of the posterior distributions (Gill,

2008). Running multiple MCMC chains for each parameter helps the analyst assess

whether they are converging to the same distribution (Gelman, et al., 2004; Gelrnan &

Hill, 2007; Gill, 2008). Accordingly, each HLM model was run in three separate chains

with independent, random starting values. Each chain ran for 16,000 iterations, but the

first 1,000 iterations in each chain were discarded as a bum-in period to ensure that the
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results were no longer influenced by the initial values (Gill, 2008). Final results for each

parameter in those models were based on pooling the remaining 45,000 posterior

estimates from all three chains.

The main GSM models were also run in three separate chains with independent,

random starting values. Those MCMC chains ran for 32,000 iterations each, but the burn-

in period discarded the first 7,000 iterations. Final results for parameters in those models

were based on pooling the remaining 75,000 posterior estimates from all three chains.

Due to the extraordinarily high computational cost of estimating GSM models (1.17 to

2.55 days of computing time per chain), the 50 GSM models used to determine the

optimal buffer sizes for the two neighborhood-level predictors were run with only one

chain each (these also ran for 32,000 iterations and had 7,000 iteration bum-in periods).

Model building sequence. It was necessary to run a large number of models to

test the hypotheses. The analysis required estimating a series of parallel HLM and GSM

models of increasing complexity, as illustrated in Table 3. The first four steps in this

model building process were identical for both methods and used cluster-based measures

of the neighborhood-level predictors, yielding models 1-5 for each method. Empty

models without any substantive predictors were estimated first, then all the individual-

level predictors were added simultaneously in the second step. Next, crime and NSES

were added (each by itself in the third step, then both together in the fourth step). The

remaining model-building steps diverged for HLM and GSM. The fifth step in the HLM

modeling added a spatial random effect to produce the CAR HLM model (i.e., HLM

Model 6).
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Table 3: Overview of primary mode] buildingequence
 

 

 

Model No.

HLM GSM Predictors Included Chains

1 1 None (empty models) 3

2 2 Individual 3

3 3 Individual + Crimea 3

4 4 Individual + NSESa 3

5 5 Individual + Crimea + NSESa 3

6 Individual + Crimea + NSESa + CAR 3

6-30 Individual + Crimeb 1

3 1-55 Individual + NSESb 1

56 Individual + Crime6 3

57 Individual + NSESc 3

53 Individual + Crimec + NSESc 3
 

Note: Neighborhood problems was the dependent variable for all ofthese models. CAR = conditional

autoregressive (spatially-structured) random effect on neighborhood-level intercepts; Chains = number

ofMCMC chains run per model; NSES = neighborhood socioeconomic status; Individual = all

individual-level predictors (age, gender, race, marital status, education, employment status, income,

home ownership, and presence of children in the home);.

b

Predictor measured in cluster boundaries. Predictor measured in buffers varying in size (radii

ranging from 0.10 km to 2.5 km, in 0.1 km increments); these models were used to identify the optimal

C

buffer size. Predictor measured in optimal size buffer (1.1 km radius for crime, 0.2 km radius for

NSES).

Starting in the filth GSM modeling step, buffer-based measures of crime and

NSES replaced the cluster-based measures. That step also systematically varied the buffer

sizes used for measuring crime (Models 6-30) and NSES (Models 31-55) to determine

the optimal buffer size for each of those predictors, using only a single MCMC chain for

each model. The sixth GSM modeling step used the optimal buffer sizes for crime and

NSES to estimate GSM models 56-58 (once again using three MCMC chains per model),

which paralleled the models estimated in the third and fourth steps.
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This model-building sequence provided the statistical output required to test the

study hypotheses and answer the research questions. Details on how each hypothesis was

tested are presented below.

Testing Hypothesis 1. Estimated variance components and measures of

autocorrelation (i.e., ICC for HLM models and PSR for GSM models) from HLM Models

1 and 2 were compared to corresponding estimates from GSM Models 1 and 2 to test H1.

For example, HLM Model 1 and GSM Model 1 were empty models that used only

intercept and random effects terms, so their neighborhood- level variance components

{and estimates of autocorrelation were compared to test H1. Similarly, HLM Model 2 and

GSM Model 2 were compared to examine whether adding individual-level predictors

changed the results. Evidence that the neighborhood-level variance from the GSM was

larger than the corresponding estimate from the HLM was interpreted as support for H1,

as was evidence that the PSR was larger than the ICC by 5 percentage points.

In studies comparing OLS ANOVA models (which assume ICC = 0) to HLM

models, ICCs as low as 0.05 seriously inflate the Type I error rate when the sample size

per level 2 unit is around 20 as it is in this study (Barcikowski, 1981; Zucker, 1990). This

suggests that if (PSR — ICC) > 0.05, then the significance levels of the contextual effects

might differ substantially between HLM and GSM, with HLM producing artificially

inflated t-statistics and therefore possibly increasing the risk of Type I errors.

Testing Hypothesis 2. Testing H2 involved comparing the estimated practical

ranges of spatial autocorrelation from GSM models 1 and 2 to the distribution of the

distances between the neighborhood clusters. This is a purely descriptive analysis that

can be accomplished by plotting a frequency distribution of the distances between
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clusters and adding a vertical reference line to the plot at the distance that would

correspond to that range parameter. If that reference line bisects the body of the

distribution, then would suggest that spatial autocorrelation could indeed spill over from

one neighborhood cluster into another cluster.

Testing Hypothesis 3. The deviance information criterion (DIC) is a Bayesian

measure ofmodel fit (Chaix, et al., 2006; Spiegelhalter, et al., 2002) that can be used for

model selection among either nested or non-nested models fit to the same data (Gelman

& Hill, 2007; Gill, 2008; Spiegelhalter, et al., 2002). Roughly speaking, the DIC indicates

how well a model might predict responses in a new dataset (lower DICs indicate better

model fit).

Because using more parameters always improves a model’s fit to the data, it is

important to select models that minimize prediction error while remaining parsimonious

(i.e., use as few parameters as possible). As a generalization of the Akaike’s information

criterion (AIC) (Ntzoufras, 2009), the DIC is not a pure measure of model fit. Instead, it

is adjusted to penalize the fit statistic for model complexity (Spiegelhalter, et al., 2002).

Thus, the DIC attempts to make a reasonable tradeoff between model fit and model

complexity to avoid selecting models that only fit better because they use larger numbers

of parameters. In this context, complexity is measured by a statistic called pD that

represents the effective number of parameters in the model (Spiegelhalter, et al., 2002).

Complex models have large pD values while simpler, more parsimonious models have

small pD values. Given two models with equal fit (as measured by the deviance statistic),

the more parsimonious model would have a lower DIC because a smaller pD value would

lead to a smaller penalty for model complexity.
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To test H3, the DIC was used to compare HLM Model 1 to GSM Model 1, and to

compare HLM Model 2 to GSM Model 2. Differences of 3 or more points on the DICs

between two models were interpreted as evidence that the model with the lower DIC fit

the data better than the model with the higher DIC (Spiegelhalter, et al., 2002).

Additional criteria for evaluating the difference in model fit included the deviance

statistic (D); the proportional change in neighborhood-level variance (level 2 PCV),

which is a level 2-specific R2 (Raudenbush & Bryk, 2002); and the overall R2, which

measures the proportion of variance explained by estimating the correlation between

observed and predicted values (Roberts & Monaco, 2006).

Testing Hypothesis 4. To test H4, the level 1 and level 2 residuals from the HLM

models estimated to test H1 were examined for evidence of spatial autocorrelation. An

empty GSM model with the level 1 HLM residuals as the dependent variable was used to

estimate the PSR, thereby quantifying the amount of spatial autocorrelation evident in

those residuals. IfHLM fully controlled for spatial autocorrelation in the raw data, it was

expected that the 95% CI for the PSR would contain zero.

A different strategy was required to test the level 2 HLM residuals for spatial

autocorrelation because they are tied to the neighborhood clusters rather than to the

locations of the individual survey participants. They were essentially areal data rather

than point-based data. One-sided, exact Moran’s 1 tests for regression residuals were used

to test for spatial autocorrelation in level 2 HLM residuals (Bailey & Gatrell, 1995;

Chaix, Merlo, Subramanian, et al., 2005). This test depends on defining a spatial weights

matrix that specifies which observations are considered neighbors (Bivand, Pebesma, &

Gomez-Rubio, 2008). To maintain consistency with how spatial autocorrelation was
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represented in the GSM models, weight matrix entries associated with pairs of clusters

whose centroids were up to 4,622 m apart were assigned row-standardized, inverse-

distance spatial weights. Weight matrix entries for clusters separated by more than 4622

m were assigned spatial weights of zero.

Testing Hypothesis 5. To test H5, individual-level residuals from the GSM

models estimated to test H1 were examined for remaining hierarchical autocorrelation by

using them as the dependent variables in empty HLM models. The 95% CI for the

resulting ICC was then examined to see whether it contained zero. An ICC = 0, or an ICC

that is trivially small, then H5 would be supported.

Testing Hypothesis 6. Testing H6 was very similar to testing H5; the procedure

differed only in that now the neighborhood-level GSM residuals from the models

estimated to test H1 were examined. In this case, support for H6 would consist of a

significant LRT paired with an ICC estimated from the HLM run on the GSM residuals

that is smaller than the PSR associated with the original GSM estimated when testing H1.

Testing Hypothesis 7. Testing H7 involved several steps. As a preliminary first

step, two series ofGSM models were used to determine the spatial scales on which crime

and NSES operate. The buffer size for measuring crime was systematically varied in

GSM Models 6-30 while controlling for all the individual-level predictors, then those

models were compared to each other to determine the optimal buffer size. The optimal

buffer sizes were chosen by selecting the model fi'om each series that had (a) large

absolute values for the regression coefficient and the corresponding t-statistic; (b) large

values for the level 2 PCV and overall R2 statistics; and (c) low values for PSR, the
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practical range of spatial autocorrelation, and the DIC. The same process was used with

NSES buffers in GSM Models 31-55.

2 . .

There are several ways to calculate R statistics that measure the overall

proportion of variance explained by models like I-EM and GSM (Edwards, Muller,

Wolfinger, Qaqish, & Schabenberger, 2008; Gelman & Pardoe, 2006; Kramer, 2005;

Orelien & Edwards, 2008; Roberts & Monaco, 2006; Xu, 2003); some focus only on

variance explained by the fixed effects (Edwards, et al., 2008) while others use both the

fixed and random effects (Kramer, 2005), thereby enabling one to examine how much

additional variance is explained by modeling correlated error structures. These variations

on the R2 statistic are useful supplements to measures such as the DIC for assessing

model fit and comparing models (Kramer, 2005). This study used Roberts and Monaco’s

Equation 15 to calculate the overall R2, which is reproduced below as Equation 11. In

that equation, O'Ztotal is the total sum of squares based on using only the grand mean as a

. ,2 . . . .
predictor and 0 error rs a resrdual sum of squares based on predicted values that account

for the effects of all the predictors included in the model. This method should be equally

valid for HLM and GSM models because it measures the squared correlation between the

observed and predicted values.

2 ,2 ,2 11

R =1—(o error/0 total)- ‘ )

In the second step, H7 was tested by conducting three-way model comparisons

between (a) HLM models with cluster-based measures of crime and NSES, (b) GSM
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models with cluster-based measures of crime and NSES, and (c) GSM models that used

optimally-sized buffers to measure crime and NSES. Comparisons focused on models

that had parallel structure, such as HLM Model 3 and GSM Models 3 and 56, which all

contained individual-level predictors plus a neighborhood-level crime measure. Similarly,

HLM Model 4 and GSM Models 4 and 57 were compared to each other to examine the

effect ofNSES, while HLM Models 5 and GSM Models 5 and 58 were compared to

examine the combined effects of crime and NSES. These model comparisons all used

multiple criteria: regression coefficients, t-statistics, neighborhood-level variance

components, level 2 PCV values, measures of residual autocorrelation (ICC and PSR),

overall R2 values, and the DIC. It was expected that support for H7 would be evident if

the two GSM models both had larger crime and NSES effects and better fit than the HLM

model, but GSM models based on using buffers performed better and had stronger crime

and NSES than the GSM models based on using cluster boundaries.

In the third step, H7 was further tested by comparing HLM Model 6 to GSM

Models 5 and 58 to see whether enhancing HLM with a CAR structure for the level 2

residuals changed any of the conclusions from the previous tests of H7. Again, support

for H7 was expected to take the form ofHLM performing worse than the GSM models.

Testing Hypothesis 8. Testing H8 involved comparing the optimal buffer size for

measuring crime (as determined from GSM Models 6-30) to the optimal buffer size for

measuring NSES (as determined from GSM Models 31-55). If those two buffers are of

different sizes, then H8 would be supported. Similarly, if those two buffers each differ

from the average size of the neighborhood clusters, that would be additional support for

H8. This is a purely descriptive analysis that can be accomplished by examining a graph
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that compares the sizes (in kmz) of the optimal crime and NSES buffers and also shows

how they relate to the distribution of cluster sizes.

Criteria for evaluating and comparing models. Table 4 summarizes the set of

criteria that were used to evaluate model quality and to compare alternative models. Each

(entry in the table links a criterion to the hypotheses to which it is relevant and describes

what evidence would constitute support for the hypothesis.

Table 4: Criteria for evaluating and comparing models
 

 

H1 : Difference

estimated from

individual-level

HLM residuals

Criterion Comments

H1: Size ofthe Comparing the neighborhood-level variance components from HLM and GSM

neighborhood- models speaks to which method detects more neighborhood-level variability in

level variance outcomes (i.e., how much neighborhoods matter). Finding that the GSM estimate is

. components larger than the HLM estimate would support H1. The strength ofthe evidence for or

estimated by against H1 using this criterion can be quantified by the percent overlap in the

HLM and GSM
Bayesian credible intervals (BCIs) for these variance components (smaller overlap

indicates more evidence for a difference between the estimates).

The magnitude and sign ofthe difference between the ICC and the PSR indicates

between ICC and which method (HLM or GSM) detects more autocorrelation. Finding PSR > ICC by

PSR measures of 5 or more percentage points would support H1. The strength ofthe evidence for or

autocorrelation against H1 using this criterion can also be quantified by the percent overlap in the

BCIs for. the ICC and PSR the smaller the overlap, the stronger the evidence for a

~ difference.

H2: Practical Observing that the estimated practical range of spatial autocorrelation from a GSM

range ofGSM model is larger than a substantial portion ofthe pairwise distances between the

variograms neighborhood clusters would support H2.

H3 & H7: The DIC is a Bayesian measure of model fit that adjusts for model complexity

Deviance (Spiegelhalter, et al., 2002); it is used for model selection among either nested or

information non-nested models fit to the same dataset (Gelman & Hill, 2007; Gill, 2008;

criterion (DIC) Spiegelhalter, et al., 2002) and for comparing alternative GSM models (Chaix, et

al., 2006; Finley, et al., 2007). Lower DIC values indicate better fit, with a

difference of 3 or more points between two models indicating a considerable

difference in model fit (Spiegelhalter, et al., 2002).

H4: Moran’s 1 Because HLM assumes that the neighborhood-level residuals are independent,

estimated from violation of this assumption is an indication of poor model fit. Moran’s I was used

neighborhood— to test for spatial autocorrelation in these residuals (Bailey & Gatrell, 1995; Chaix,

level HLM Merlo, Subramanian, et al., 2005); a significant Moran’s I will indicate that this

residuals independence assumption has been violated and support H4.

H4: PSR Because HLM assumes that the individual-level residuals are independent, violation

ofthis assumption is an indication ofpoor model fit. The PSR was used to quantify

the spatial autocorrelation remaining in those residuals. A BCI for this PSR that

does not contain PSR = 0 will indicate that this independence assumption has been

violated and support H4.

 

Bayesian credible intervals are analogous to the confidence intervals associated with the traditional

Frequentist approach to statistics (Gill, 2008).
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Table 4 (cont’d)
 

Criterion Comments
 

H5: ICC

estimated from

individual-level

GSM residuals

H6: ICC

estimated from

neighborhood-

level GSM

residuals

H7: Amount of

residual

neighborhood-

level variance

2

H7: Overall R

2

and R at each

level of analysis

H7: Raw

coefficients for

contextual

predictors

H7: Differences

in the t-statistics

for the contextual

predictors

Because GSM assumes that the individual-level residuals are independent, violation

of this assumption is an indication of poor model fit. The ICC was used to quantify

the hierarchical autocorrelation remaining in those residuals. A BCI for this ICC

that contains ICC = 0 will indicate that this independence assumption has not been

violated and support H5.

Because the spatial autocorrelation in GSM is captured in the neighborhood-level

residuals, some of that spatial autocorrelation might be detected by fitting an HLM

using those residuals as the outcome. The ICC will be used to quantify the

hierarchical autocorrelation remaining in those residuals. A BCI for this ICC that

does not contain ICC = 0 will provide support for H6, as will finding that the upper

bound for the BCI on this ICC is lower than the PSR for the GSM fi'om which the

residuals were extracted.

The size ofthe residual neighborhood-level variance components can be used to

compare HLM and GSM models containing both individual and contextual

predictors (Chaix, Merlo, & Chauvin, 2005). Support for H7 would consist of

evidence that GSM produces models with smaller residual neighborhood-level

variance components than HLM, after all predictors have been added to the models.

This study used Roberts and Monaco’s (Roberts & Monaco, 2006) Equation 15 to

calculate overall R statistics that measure the proportion ofvariance explained by

2

the HLM and GSM models. These R statistics are useful supplements to the DIC

for assessing model fit and compsring models (Kramer, 2005). Support for H7

would consist of larger overall R values for GSM than for HLM models.

2

Separate R values can be calculated at each level of analysis in an HLM (Gelman

& Pardoe, 2006; Merlo, 2003; Merlo, Chaix, et al., 2005a); this can also be done

with GSM. The ability to explain more neighborhood-level variability may be an

important indicator ofwhich model performs better. If the quantity (GSM R —

2

HLM R )> 0.05, then it should be reasonable to conclude that GSM has noticeably

better predictive capability than HLM, providing support for H7. This cutoff was

applied to both the overall and the level-specific R measures.

Because the units ofmeasurement for crime and NSES are the same across

methods, the magnitude and sign ofthe raw crime and NSES coefficients from the

HLM and GSM models were directly compared. Observing that GSM analyses

produce larger coefficients than the HLM analyses would support H7. The strength

of the evidence for or against H7 using this criterion can also be quantified by the

percent overlap in the BCIs for the coefficients: the smaller the overlap, the stronger

the evidence for a difference.

The t-statistics for the contextual predictors can be used to quantify and compare

the statistical significance ofthe contextual predictors in both HLM and GSM

analyses. Previous research found that HLM consistently produced t-statistics 1 to 2

points larger than those associated with GSM models that used buffers to measure

the contextual predictors (Chaix, Merlo, & Chauvin, 2005). T-statistics of around

3:2 are typically significant at the conventional a = .05 level, so a 1 point difference

in a t-statistic translates into relatively large differences in the significance level. A

difference of 1 point between the HLM and GSM t-ratios was considered a

substantial difference in the present study.
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Table 4 (cont’d)
 

 

Criterion Comments -

H7: Source ofthe A three-way comparison between HLM, cluster-based GSM, and buffer-based

differences GSM models should reveal whether differences between the contextual effects are

between HLM primarily driven by differences in how autocorrelation is modeled or by that plus

and GSM changing how neighborhood boundaries are defined for measurement purposes.

estimates of Support for the latter possibility would be a more important substantive

contextual effects contribution to the literature on neighborhood effects than support for the former.

H7: Predictions To translate the statistical relationships between contextual predictors (crime and

about how much NSES) and residents’ perceptions from the HLM and GSM models into useful

change in a information, the study calculated how much change in each contextual predictor

contextual would be required to achieve a 0.5 standard deviation change in outcomes. This

predictor would clarified how much would an intervention need to reduce crime or increase NSES

be required to in order to produce a decrease of that magnitude in residents’ mean level of

improve perceived problems. The aim here was to discover whether the two models made

outcomes substantially different predictions about how much change would be required. Such

information might be useful to change agents who want to implement interventions.

H] to H8: HLM and GSM analyses may yield different patterns of scientific inferences about

Differences in the the phenomena under study. For example, the two methods might lead to different

pattern of conclusions how much neighborhoods matter in shaping residents’ perceptions of

scientific neighborhood problems or about which contextual predictors are significantly

inferences about related to those perceptions. To the extent that using GSM leads to a richer and

the phenomena more nuanced understanding ofthe relationships between crime and NSES and

under study residents’ perceptions of neighborhood problems than HLM, it may offer valuable

new substantive knowledge to neighborhood researchers.

Software. The analyses were conducted using R version 2.9.2 (Ihaka &

Gentleman, 1996; R Development Core Team, 2009) and WinBUGS version 1.4.3 (Lunn,

et al., 2000; Spiegelhalter, et al., 2007), which are both free, open-source statistical

computing software packages. The mix package for R (Schafer, 2009) was used to

impute missing data using procedures described by Schafer (1997). The spBayes package

for R (Finley, et al., 2007; Finley, Banerjee, & Carlin, 2009) was used to run the GSM

analyses, while the R2WinBUGS package for R (Sturtz, Ligges, & Gehnan, 2005) was

used to export data to WinBUGS, run the HLM analyses, and import the results back into

R. Summaries ofthe Bayesian posterior distributions for HLM and GSM model

parameters were computed with the coda package for R (Plummer, Best, Cowles, &

Vines, 2006, 2009), as were various diagnostics used to assess model convergence.
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RESULTS

This section begins with descriptive statistics and exploratory analyses that

provide insight into the distributions of the outcome and the neighborhood-level

predictors. After that, it summarizes the spatial relationships between clusters and

between survey participants’ locations before moving on to present the HLM and GSM

models. Where possible, the results are presented graphically to enhance clarity, highlight

the most important comparisons and patterns in the findings (Kastellac & Leoni, 2007),

and depict the degree of overlap (or lack thereof) between the confidence intervals

around the point estimates (Cumming, 2009; Cumming & Finch, 2005).

Exploratory and Descriptive Analyses

Participants’ imputed scores on neighborhood problems spanned the firll range of

values available on the scale, fi'om l to 6 (M= 3.77, SD = 1.48). They were not normally

distributed: instead they were mildly negatively skewed and rather platykurtic (skewness

= -0.14, kurtosis = -1.08, see Figure 5). However, what that summary conceals are the

varying shapes of the distributions within subsets of the data representing smaller

geographic areas. The boxplots in Figure 6 show that while the scores in many clusters do

still span the entire range of possible values, there are some clusters that have much

narrower ranges of values (e.g., clusters 8, 26, and 40). More importantly, examining the

central parts of the clusters’ distributions (the boxes enclose the middle 50% of the scores

for each cluster) in Figure 6 reveals that some clusters mostly contain residents who

reported low levels of neighborhood problems (clusters on the left), others mostly contain

residents who reported moderate levels of problems (clusters in the center), and yet others

contain mostly residents who reported high levels of problems (clusters on the right).
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Figure 5: Distribution of the imputed neighborhood problems scores (N = 1049). The

vertical line is located at the mean (M = 3.77, SD = 1.48); the circles at the

bottom show individual data points (vertically jittered to reduce overlap).
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Figure 6: Boxplots of neighborhood problems scores for each cluster, in ascending order

’ by cluster-level mean score. The dots show the clusters’ medians.

Of course, the sort of between-neighborhood variability in outcomes illustrated in

Figure 6 is what often motivates researchers to use HLM in neighborhood research.

Constructing an exact analogue to Figure 6 that highlights spatial rather than hierarchical

variation in the distribution of the outcome is difficult. Instead, GSM methods typically
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approach exploratory data visualization with maps like the one in Figure 7, which uses

color-coded dots to represent the survey responses. Darker dots indicate higher levels of

perceived problems, so groups of many dark dots located close together suggest areas

where perceived neighborhood problems tend to be high; groups of lighter dots indicate

areas where they tend to be low.
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Figure 7: Map ofthe imputed neighborhood problems scores (N = 1,049).

Descriptive statistics on the individual-level predictors were presented above in

Table 2, so descriptive statistics on the neighborhood-level predictors are presented next.

For brevity, statistics for buffer-based measures are shown only for the optimally sized

buffers (1.1 km radius for crime, 0.2 km radius for NSES, see below for the evidence

supporting the selection of these optimal buffer sizes).
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When measured within neighborhood cluster boundaries, crime density varied

tremendously, from 0.00 to 654.46 crimes/km2 (M = 148.85, SD = 147.51, Mdn =

113.08, N = 52). Due to the smoothing associated with aggregating crime data within

large buffers (the optimal radius was 1.1 km, see below), crime density was less variable

when measured within buffers instead of clusters: It ranged from 6.84 to 106.90 crimes/

km:z (M= 57.48, SD = 24.41, Mdn = 60.24, N = 1,049).

NSES, as measured by median housing value within cluster boundaries, ranged

from $22,380 to $106,100 (M = $50,050; SD = $18,063; Mdn = $43,240; N = 52). Unlike

crime, NSES was ultimately measured within rather small buffers (0.2 km radius, see

below) that were quite comparable in size to the clusters. As a result, buffer-based

descriptive statistics for NSES were more similar to the values observed when measuring

within clusters: Within the optimal buffers, it ranged from $22,200 to $136,000 (M=

$50,230; SD = $17,382; Mdn ='$43,860; N= 1,049).

Figure 8 shows the distributions of the pairwise distances between the centroids

of different clusters and between the locations of different survey participants. Due to the

size of the study area and the spatial arrangement of the clusters, these distances were

quite large in some cases, reaching up to 7.85 km for clusters and 8.17 km for survey

participants. The minimum distance between cluster centroids was 0.18 km, while the

minimum distance between survey participants’ locations (after eliminating exact

overlap, i.e., distance = 0) was a mere 0.55 m.
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Figure 8: Distributions of pairwise distances between cluster centroids (N = 52) and

between survey locations (N = 1,049). The vertical lines mark the medians, which

are almost identical (Mdn = 2.91 and Mdn = 2.95, respectively).

HLM and GSM Analyses

Most of the hypotheses were tested by comparing estimates of key parameters

from alternative models to one another, or by comparing the overall fit of those models.

Accordingly, parameter estimates and model fit statistics for HLM models 1-6 are shown

in Table 5; corresponding results for GSM Models 1-5 and 56-58 are shown in Table 6.

The sections below are organized to present and interpret the results pertinent to the

research questions and hypotheses that could be addressed at different stages ofthe

modeling process as the models increased in complexity fi'om empty models to full

models containing all of the predictors (refer back to Table 3). Each section extracts

relevant information from Tables 5 and 6, interprets the evidence and supplements the

tabular presentation with statistical graphics that more directly and intuitively convey the

essential patterns in the findings.

Research Question 1. The first research question was: how do GSM estimates of

neighborhood-level variance and autocorrelation compare to HLM estimates? Two
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hypotheses were relevant to this research question: H1, which predicted that

neighborhood-level variance and autocorrelation would be higher in GSM than in HLM,

both before and after controlling for individual-level predictors; and H2, which predicted

that the range of spatial autocorrelation in the GSM model would be long enough to reach

across the borders between clusters.

Hypothesis 1. Figure 9 shows the posterior means and 95% credible intervals for

the variance components and the measures of autocorrelation (ICC and PSR) fiom HLM

and GSM Models 1 and 2. In absolute terms, GSM Model 1 attributed more variance to

the neighborhood-level (o2 = 0.622) and less to the individual-level (:2 = 1.513) than

HLM Model 1 (too = 0.601, 02 = 1.567), so autocorrelation was slightly higher in the

empty GSM model than in the empty HLM model (PSR =. .288 vs. ICC = .275). The

same pattern was evident with GSM Model 2 (62 = 0.605, e2 = 1.505, PSR = .233) and

HLM Model 2 (1:00 = 0.566, 62 = 1.560, ICC = .264). However, as Figure 9 illustrates,

these were small differences in the posterior means and the GSM credible intervals

around these statistics for the neighborhood-level variances and levels of autocorrelation

fully enclosed the corresponding HLM credible intervals (i.e., there was 100% overlap)

for the empty models.

It is also clear from Figure 9 that controlling for individual-level predictors did

not substantially change the neighborhood-level variances or levels of autocorrelation.

Neither HLM nor GSM detected much change in those values when one compares the

Model 2 results for each method back to the values observed in the empty models. There

was still more than 97% overlap in the HLM and GSM credible intervals for the level of
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Table 5: Parameter estimates and model fit statistics for HLM Models 1-6.
 

 

 

 

 

 

Model 1 Model 2

Parameter P. Mean 95% Cl t P. Mean 95% Cl t

L2 fixed effects

Intercept 3.802 [3.577, 4.024] 33.26 3.804 [3.583, 4.022] 34.07

Crime (cluster)

NSES (cluster)

L1 fixed effects

Age(years)

36-55 0.131 {-0.061, 0.326] 1.33

2 56 0.117 {-0.144, 0.379] 0.88

Female 0.113 {-0.069, 0.296] 1.22

Race

Black -0.251 {-0.466, -0.033] -2.26

Hispanic -0.033 {-0.428, 0.362] -0. 16

Other -0.108 {-0.687, 0.474] -0.36

Marital status

Married 0.011 [-0.206, 0.230] 0.10

Divorced 0.024 {-0.225, 0.271] 0.19

Widowed -0. 160 {-0.497, 0.178] -0.93

Education

< High school -0.009 {-0.228, 0.211] -0.08

Undergraduate 0.107 {-0.110, 0.327] 0.96

Postgraduate 0.288 {-0.274, 0.852] 1.00

Employed -0.053 {-0.237, 0.130] -0.57

Income ($1,0005)

< 15 0.222 {-0.078, 0.529] 1.43

15-25 0.014 {-0.273, 0.304] 0.09

25-45 0.002 {-0.266, 0.271] 0.01

Home owner -0.l88 {-0.386, 0.011] -1 .86

Children present 0.162 {-0.032, 0.355] 1.64

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.601 [0.390, 0.909] .000 0.566 [0.361, 0.866] .059

L2 CAR

L1 residuals 1.567 [1.436, 1.709] .000 1.560 [1.428, 1.704] .004

[CC .275 [.197, .370] .264 [.186, .359]

Model fit index ch Deviance R2 ch Deviance R2

Statistic 3496.20 3449.52 .000 3509.20 3445.00 .029

_pD 46.70 64.20
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

CAR = conditional autoregressive spatial random effect on neighborhood-level intercept; 95% CI =

central 95% credible interval; DIC = deviance information criterion; ICC = intraclass correlation; L1 =

level 1 (individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional

change in variance fi'om Model 1 (level-specific); pD = effective number of parameters; R = overall

proportion of variance explained; Spatial lag = Effect of predicted weighted average level of

neighborhood problems in surrounding neighborhoods.



Table 5 (cont’d)
 

 

 

 

 

 

Model 3 Model 4

Parameter P. Mean 95% CI t P. Mean 95% CI t

L2 fixed effects

Intercept 3.805 [3.613, 3.998] 38.85 3.807 [3.627, 3.986] 41.97

Crime (cluster) 0.028 [0.014, 0.041] 4.1 1

NSES (cluster) -0.028 {-0.038, -0.018] -5.38

L1 fixed effects

Age(years)

36-55 0.135 {-0.059, 0.325] -1 .66 0.128 {-0.063, 0.320] 1.30

2 56 0.126 {-0.135, 0.384] -0.98 0.120 {-0.140, 0.377] 0.90

Female 0.113 {-0.072, 0.294] -1.30 0.121 {-0.062, 0.305] 1.30

Race

Black -0.239 {-0.454, -0.024] -0.24 -0.264 {-0.479, -0.050] -2.41

Hispanic -0.033 {-0.430, 0.359] -0.47 -0.060 {-0.456, 0.335] -0.30

Other -0.l33 {-0.716, 0.454] -0.42 -0.118 {-0.695, 0.461] -0.40

Marital status

Married 0.010 {-0.209, 0.228] -0.53 0.020 {-0.199, 0.237] 0.18

Divorced 0.018 {-0.231, 0.265] -0.55 0.025 [-0.219, 0.274] 0.20

Widowed -0.174 [-0.510, 0.165] -0.34 -0.156 [-0.494, 0.180] -0.91

Education

< High school -0.014 {-0.232, 0.203] -0.48 -0.027 {-0.246, 0.193] -0.24

Undergraduate 0.104 {-0.115, 0.322] -0.97 0.115 {-0.104, 0.334] 1.03

Postgraduate 0.291 {-0.270, 0.854] -1.07 0.278 {-0.289, 0.838] 0.97

Employed -0.052 {-0.234, 0.130] -0.40 -0.056 {-0.239, 0.128] -0.60

Income (31,0003)

< 15 0.216 {-0.086, 0.517] -1.79 0.176 {-0.125, 0.476] 1.15

15-25 0.008 {-0.279, 0.295] -0.52 -0.017 [-0.301, 0.271] -0.11

2545 -0.011 {-0.277, 0.254] -0.49 -0.029 {-0.295, 0.237] -0.22

Home owner -0.178 {-0.375, 0.022] -0.27 -0.176 {-0.373, 0.024] -1.74

Children present 0.153 {-0.042, 0.348] 0.154 {-0.044, 0.347] 1.55

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.414 [0.256, 0.646] .311 0.345 [0.213, 0.538] .425

L2 CAR

Ll residuals 1.560 [1.429, 1.704] .004 1.559 [1.427, 1.703] .005

ICC .208 [0.139, 0.295] 0.180 [0.119, 0.258]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 3,508.30 3,445.86 .132 3,505.70 3,444.48 .177

pD 62.50 61.20
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

CAR = conditional autoregressive spatial random effect on neighborhood-level intercept; 95% CI =

central 95% credible interval; DIC = deviance information criterion; ICC = intraclass correlation; L1 =

level 1 (individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional

change in variance from Model 1 (level-specific); pD-= effective number of parameters; R = overall

proportion of variance explained; Spatial lag= Effect of predicted weighted average level of

neighborhood problemsin surrounding neighborhoods.

177



Table 5 (cont’d)
 

 

 

 

 

 

 

Model 5 Model 6 (CAR HLM)

Parameter P. Mean 95% CI t P. Mean 95% CI t

L2 fixed effects

Intercept 3.807 [3.638, 3.975] 44.60 3.811 [3.657, 3.966] 48.81

Crime (cluster) 0.018 [0.005, 0.030] 2.80 0.014 [0.001, 0.026] 2.08

NSES (cluster) -0.022 {-0.032, -0.012] -4.34 -0.018 {-0.030, -0.007] -3. 16

L1 fixed effects

Age(years)

36-55 0.130 {-0.060, 0.322] 1.34 0.131 {-0.061, 0.322] 1.34

2 56 0.127 {-0.132, 0.387] 0.96 0.130 {-0.127, 0.390] 0.99

Female 0.120 {-0.063, 0.303] 1.28 0.118 {-0.064, 0.302] 1.26

Race

Black -0.254 {-0.467, -0.042] -2.34 -0.262 {-0.475, -0.048] -2.39

Hispanic -0.056 {-0.450, 0.338] -0.28 -0.058 {-0.454, 0.338] -0.29

Other -0.137 {-0.713, 0.444] -0.46 -0.141 [-0.721, 0.438] -0.48

Marital status

Married 0.018 {-0.201, 0.236] 0.16 0.018 {-0.199, 0.236] 0.16

Divorced 0.022 {-0.226, 0.267] 0.17 0.024 {-0.225, 0.272] 0.19

Widowed -0.167 {-0.505, 0.172] -0.97 -0. 162 {-0.500, 0.178] -0.94

Education

< High school -0.028 [-0.245, 0.192] -0.25 -0.031 {-0.247, 0.188] -0.28

Undergraduate 0.114 {-0.107, 0.331] 1.02 0.112 {-0.106, 0.331] 1.01

Postgraduate 0.285 {-0.275, 0.855] 0.99 0.288 {-0.275, 0.850] 1.00

Employed -0.054 {-0.237, 0.128] -0.58 -0.057 {-0.240, 0.124] -0.61

Income ($1 ,0005)

< 15 0.175 {-0.130, 0.475] 1.13 0.169 {-0.133, 0.470] 1.10

15-25 -0.021 {-0.310, 0.267] -0.14 -0.021 {-0.310, 0.266] -0. 14

2545 -0.036 {-0.305, 0.229] -0.27 -0.038 {-0.303, 0.223] -0.28

Home owner -0.l68 {-0.364, 0.028] -1.68 -0.171 {-0.368, 0.024] -1.70

Children present 0.149 {-0.043, 0.341] 1.52 0.141 {-0.053, 0.333] 1.43

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.293 [0.176, 0.464] .512 0.233 [0.129, 0.390] .610

L2 CAR 0.001 [0.000, 0.002] .000

L1 residuals 1.560 [1.425, 1.703] .004 1.558 [1.426, 1.702] .005

ICC 0.157 [0.100, 0.232] 0.129 [0.076, 0.202]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 3,505.20 3,445.20 .207 3503.70 3443.72 .239

pD 60.00 60.00
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

CAR = conditional autoregressive spatial random effect on neighborhood-level intercept; 95% CI =

central 95% credible interval; DIC = deviance information criterion; ICC = intraclass correlation; L1 =

level 1 (individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional

change in variance from Model 1 (level-specific); pD = effective number of parameters; R = overall

proportion of variance explained.
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Table 6: Parameter estimates and model fit statistics for GSM Models 1-5 and 56-58.
 

 

 

 

 

 

 

 

Model 1 Model 2

Parameter P. Mean 95% CI t P. Mean 95% C1 t

L2 fixed effects

Intercept 3.381 [2.765, 3.927] 11.53 3.390 [2.767, 3.949] 11.39

Crime (cluster)

NSES (cluster)

Crime (1.1 km)

NSES (0.2 km)

L1 fixed effects

Age(years)

36-55 0.148 {-0.043, 0.338] 1.53

2 56 0.163 {-0.096, 0.418] 1.24

Female 0.127 {-0.056, 0.310] 1.36

Race

Black -0.270 {-0.492, -0.047] -2.39

Hispanic -0.039 {-0.432, 0.355] -0.19

Other -0.107 {-0.683, 0.470] -0.36

Marital status

Married 0.034 {-0.184, 0.253] 0.31

Divorced 0.017 {-0.228, 0.262] 0.14

Widowed -0.161 {-0.498, 0.177] -0.94

Education

< High school -0.030 {-0.248, 0.190] -0.27

Undergraduate 0.108 [-0.110, 0.328] 0.97

Postgraduate 0.309 {-0.260, 0.874] 1.07

Employed -0.076 {-0.258, 0.104] -0.83

Income ($1,000s)

< 15 0.168 {-0.133, 0.468] 1.10

15-25 -0.002 {-0.287, 0.284] -0.01

25-45 -0.015 {-0.280, 0.248] -0.11

Home owner -0.232 {-0.428, -0.036] -2.32

Children present 0.163 [-0.030, 0.355] 1.66

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.622 [0.371, 0.998] .000 0.605 [0.358, 0.975] 0.027

Ll residuals 1.513 [1.378, 1.661] .000 1.505 [1.371, 1.649] 0.006

PSR 0.288 [0.194, 0.404] 0.283 [0.190, 0.399]

Spatial parameter P. Mean 95% CI P. Mean 95% CI

Phi ((p) x 1000 1.011 [0.675, 1.748] 0.980 [0.659, 1.740]

Range (km) 2.962 [1.714, 4.440] 3.058 [1.722, 4.544]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,560.66 1,485.19 .000 1,569.66 1,479.32 .033

pD 75.47 90.35
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1

(individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in

variance from Model 1 (level-specific); pD = effective number of parameters; Phi = rate of decrease in

autocorrelation (multiplied by 1,000); PSR = partial sill ratio; R = overall proportion of variance

explained; Range = practical range of variogram.
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Table 6 (cont’dL
 

 

 

 

 

 

 

 

Model 3 Model 4

Parameter P. Mean ' 95% CI t P. Mean 95% CI t

L2 fixed effects

Intercept 3.469 [2.918, 3.940] 13.52 3.490 [2.932, 3.956] 13.55

Crime (cluster) 0.013 [0.004, 0.023] 2.68

NSES (cluster) -0.008 [-0.019, 0.004] -1 .33

Crime (1.1 km)

NSES (0.2 km)

L1 fixed effects

Age(years)

36-55 0.152 {-0.038, 0.342] 1.57 0.145 {-0.048, 0.335] 1.48

2 56 0.175 {-0.082, 0.432] 1.34 0.160 {-0.096, 0.416] 1.23

Female 0.126 {-0.057, 0.309] 1.35 0.130 {-0.054, 0.312] 1.38

Race

Black -0.271 {-0.492, -0.049] -2.39 -0.260 {-0.483, -0.036] -2.29

Hispanic -0.051 {-0.444, 0.345] -0.25 -0.037 {-0.432, 0.358] -0.18

Other -0.135 {-0.708, 0.442] -0.46 -0.106 {-0.683, 0.472] -0.36

Marital status

Married 0.029 [-0.189, 0.245] 0.26 0.036 {-0.183, 0.253] 0.32

Divorced 0.008 {-0.238, 0.255] 0.07 0.018 {-0.229, 0.265] 0.14

Widowed -0.l81 {-0.516, 0.151] -1.06 -0.160 {-0.496, 0.176] -0.93

Education

< High school -0.028 {-0.247, 0.190] -0.25 -0.031 {-0.250, 0.186] -0.28

Undergraduate 0.106 [-0.112, 0.325] 0.95 0.114 [-0.104, 0.333] 1.02

Postgraduate 0.301 {-0.262, 0.865] 1.05 0.305 {-0.256, 0.871] 1.06

Employed -0.068 {-0.249, 0.112] -0.74 -0.078 {-0.261, 0.103] -0.85

Income ($1,000s)

< 15 0.162 [-0.139, 0.463] 1.06 0.153 {-0.145, 0.453] 1.00

15-25 -0.019 {-0.303, 0.267] -0.13 -0.011 {-0.296, 0.276] -0.07

2545 -0.031 {-0.296, 0.235] -0.23 -0.025 {-0.288, 0.241] -0.18

Home owner -0.222 {-0.418, -0.027] -2.22 -0.227 {-0.425, -0.030] -2.25

Children present 0.161 {-0.029, 0.353] 1.65 0.163 [-0.027, 0.355] 1.67

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.500 [0.288, 0.824] 0.196 0.505 [0.285, 0.846] 0.188

Ll residuals 1.507 [1.373, 1.653] 0.004 1.511 [1.373, 1.660] 0.002

PSR 0.246 [0.157, 0.357] 0.247 [0.155, 0.364]

Spatial parameter P. Mean 95% CI P. Mean 95% CI

Phi ((p) x 1000 1.132 [0.660, 2.098] 1.222 [0.663, 2.499]

Raniflcm) ‘ 2.647 [1.428, 4.537] 2.451 [1.199, 4.519]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,569.22 1,481.05 0.062 1,573.47 1,482.75 0.048

pD 88.17 90.72
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling. 95%

CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1 (individual); L2 =

level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in variance from Model 1

(level-specific); pD = effective number of parameters; Phi = rate of decrease in autocorrelation

2

(multiplied by 1,000); PSR = partial sill ratio; R = overall proportion of variance explained; Range =

practical range of variogram.
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Table 6 (cont’d)
 

 

 

 

 

 

 

 

Model 5 Model 56

Parameter P. Mean 95% C1 t P. Mean 95% CI t

L2 fixed effects

Intercept 3.554 [3.054, 3.941] 15.91 3.753 [3.513, 3.963] 32.91

Crime (cluster) 0.013 [0.003, 0.023] 2.60

NSES (cluster) -0.007 ‘ {-0.018, 0.005] -1.18

Crime (1.1 km) 0.263 [0.186, 0.338] 6.88

NSES (0.2 km)

L1 fixed effects

Age(years)

36-55 0.149 {-0.042, 0.339] 1.53 0.144 {-0.046, 0.334] 1.48

2.56 0.172 {-0.084, 0.430] 1.31 0.175 {-0.083, 0.433] 1.34

Female 0.129 {-0.054, 0.313] 1.38 0.122 {-0.062, 0.305] 1.31

Race

Black -0.261 {-0.483, -0.040] -2.31 -0.254 [-0.471, -0.037] -2.31

Hispanic -0.050 {-0.448, 0.347] -0.25 -0.041 {-0.433, 0.354] -0.20

Other -0.135 [-0.717, 0.442] -0.46 -0.078 {-0.649, 0.492] -0.26

Marital status

Married 0.033 {-0.186, 0.251] 0.29 0.033 {-0.185, 0.252] 0.30

Divorced 0.010 {-0.236, 0.257] 0.08 0.020 {-0.228, 0.268] 0.16

Widowed -0.178 [-0.515, 0.161] -1 .03 -0.162 {-0.497, 0.174] —0.95

Education

< High school -0.029 {-0.248, 0.190] -0.26 -0.014 {-0.232, 0.203] -0.13

Undergraduate 0.111 {-0.109, 0.328] 0.99 0.115 {-0.103, 0.333] 1.03

Postgraduate 0.301 {-0.268, 0.864] 1.05 0.284 {-0.279, 0.846] 0.99

Employed -0.069 {-0.251, 0.111] -0.75 -0.082 {-0.263, 0.099] -0.89

Income ($1,0005)

< 15 0.151 {-0.150, 0.452] 0.99 0.162 {-0.137, 0.457] 1.06

15-25 -0.024 {-0.313, 0.262] -0.17 -0.008 {-0.294, 0.275] -0.06

2545 -0.039 {-0.305, 0.226] -0.29 -0.009 {-0.275, 0.252] -0.07

Home owner -0.216 [-0.412, -0.019] -2.14 -0.234 {-0.429, -0.040] -2.36

Children present 0.160 {-0.033, 0.352] 1.63 0.162 [-0.030, 0.354] 1.65

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.426 [0.232, 0.752] 0.315 0.266 [0.153, 0.455] 0.573

L1 residuals 1.510 [1.370, 1.660] 0.002 1.485 [1.344, 1.637] 0.019

PSR 0.217 [0.131, 0.338] 0.151 [0.092, 0.238]

Spatial parameter P. Mean 95% CI P. Mean 95% Cl

Phi ((p) x 1000 1.525 [0.705, 3.595] 3.914 [0.829, 8.641]

Range (km) 1.964 [0.833, 4.248] 0.765 [0.347, 3.613]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,573.32 1,482.03 0.085 1,567.85 1,465.06 0.265

pD 91.29 102.78
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1 (individual);

L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in variance from

Model 1 (level-specific); pD = effective number of parameters; Phi = rate of decrease in autocorrelation

2

(multiplied by 1,000); PSR = partial sill ratio; R = overall proportion of variance explained; Range =

practical range of variogram.
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Table 6 (cont’d)
 

 

 

 

 

 

 

 

Model 57 Model 58

Parameter P. Mean 95% CI t P. Mean 95% CI t

L2 fixed effects

Intercept 3.600 [3.134, 3.968] 17.32 3.760 [3.594, 3.919] 45.81

Crime (cluster)

NSES (cluster)

Crime (1.1 km) 0.200 [0.125, 0.275] 5.26

NSES (0.2 km) -0.021 {-0.031, -0.010] -3.90 -0.014 {-0.023, -0.005] -3.11

L1 fixed effects

Age(years)

36-55 0.149 {-0.042, 0.339] 1.53 0.146 {-0.045, 0.336] 1.50

2 56 0.184 {-0.074, 0.440] 1.41 0.190 {-0.065, 0.446] 1.46

Female 0.124 {-0.059, 0.305] 1.33 0.124 {-0.057, 0.307] 1.34

Race

Black -0.261 {-0.481, -0.041] -2.33 -0.251 {-0.461, -0.041] -2.34

Hispanic -0.045 {-0.440, 0.347] -0.22 -0.055 {-0.451, 0.341] -0.27

Other -0.114 {-0.691, 0.463] -0.39 -0.084 {-0.661, 0.493] -0.29

Marital status

Married 0.057 [-0.161, 0.274] 0.51 0.055 {-0.161, 0.274] 0.50

Divorced 0.031 {-0.217, 0.276] 0.24 0.032 {-0.215, 0.280] 0.25

Widowed -0.160 {-0.495, 0.176] -0.93 -0.160 {-0.493, 0.176] -0.93

Education

< High school -0.037 {-0.254, 0.181] -0.33 -0.023 {-0.240, 0.194] -0.21

Undergraduate 0.127 {-0.093, 0.344] 1.15 0.132 {-0.089, 0.349] 1.18

Postgraduate 0.299 {-0.263, 0.864] 1.04 0.275 {-0.289, 0.836] 0.96

Employed -0.083 {-0.264, 0.098] -0.89 -0.085 {-0.266, 0.096] -0.92

Income ($1,000s)

< 15 0.128 {-0.173, 0.429] 0.84 0.126 {-0.173, 0.424] 0.83

15-25 -0.003 {-0.289, 0.282] -0.02 -0.019 {-0.304, 0.266] -0. 13

25-45 -0.033 {-0.296, 0.231] -0.24 -0.028 {-0.291, 0.236] -0.21

Home owner -0.232 {-0.427, -0.037] -2.33 -0.236 {-0.431, -0.040] -2.37

Children present 0.164 [-0.028, 0.355] 1.67 0.159 {-0.033, 0.350] 1.62

Random effects P. Mean 95% CI PCV . Mean 95% CI PCV

L2 intercept 0.399 [0.225, 0.697] 0.358 0.235 [0.138, 0.373] 0.622

L1 residuals 1.500 [1.362, 1.648] 0.009 1.467 [1.312, 1.624] 0.031

PSR 0.208 [0.128, 0.319] 0.138 [0.083, 0.212]

Spatial parameter P. Mean 95% CI . Mean 95% CI

Phi ((p) x 1000 1.628 [0.691, 3.651] 5.929 [1.809, 15.170]

Range (km) 1.840 [0.820, 4.335j 0.505 [0.197, 1.656]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,566.95 1,476.10 0.1 16 1,564.06 1,452.12 0.282

_ JD 90.85 111.94
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1 (individual);

L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in variance from

Model 1 (level-specific); pD = effective number of parameters; Phi = rate of decrease in autocorrelation

(multiplied by 1,000 for display); PSR = partial sill ratio; R = overall proportion of variance explained;

Range = practical range of variogram.
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Figure 9: Estimated variance components and levels of autocorrelation from HLM and

GSM Models 1 and 2. The plot shows the posterior means (symbols) plus the

central 95% credible intervals (whiskers) around those estimates. Model 1 for

each method was an empty model that included no predictors, while Model 2

included all individual-level predictors.

autocorrelation after adding the individual-level predictors. Thus, the evidence fails to

provide strong support H1 both before and after controlling for the set of resident

characteristics considered in this study.

Hypothesis 2. Figure 10 shows the variograms and autocorrelation functions

associated with GSM Models 1 and 2. The two sets of curves are very similar (almost

exactly overlapping), indicating that controlling for individual-level; variables did not

explain much of the neighborhood-level variance. Both models have practical ranges of

approximately 3 km, indicating the spatial autocorrelation persists over long distances in

these data. Indeed, these ranges exceed both of the median pairwise distances (between

cluster centroids and between survey locations) shown in Figure 8, which provides strong
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Figure 10: Exponential variograms and correlation functions for GSM Models 1 and 2.

The maximum value for the autocorrelation is the PSR for each model (.288 and

.283, respectively). Vertical lines mark the practical ranges of spatial

autocorrelation for the two models (2,962 m and 3,058 m, respectively), which

occur at the distances where the neighborhood-level covariances have decreased

to 5% oftheir initial sizes, leaving little residual autocorrelation.

support for H2 by indicating that spatial autocorrelation can easily reach across the

borders between clusters.

Research Question 2. The second research question asked which method is more

effective at modeling the autocorrelation actually observed in these data. Several

hypotheses were associated with that question. The prediction in H3 was that empty GSM

models would fit better than empty HLM models, and that controlling for individual-level

predictors would not change that result. Meanwhile, H4-H6 made predictions pertaining

to properties of the residuals of the empty models and the models with individual-level

predictors.

Hypothesis 3. The deviance and DIC values for GSM Model 1 (D = 1485.19, DIC

= 1,560.66, pD = 75.47) were far smaller than those associated with HLM Model 1 (D =

3449.52, DIC = 3496.20, pD = 46.70), indicating that the GSM approach provided a
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better fit to the data. The pD statistics show that the GSM model did have more effective

parameters than the HLM model, but that difference was small compared to the size of

the DIC statistics for these models. Because the empty models are the baseline to which

other models are compared to calculate level 2 PCV statistics, those statistics could not

be calculated for these models. The overall R2 values are zero for both empty models.

The results were similar after controlling for individual-level predictors in Model

2 for each method: The deviance and DIC values for the GSM model (D = 1479.32, DIC

 

= 1,569.66, pD = 90.35) remained far smaller than those of the HLM model (D =

3445.00, DIC = 3509.20, pD = 64.20). While HLM Model 2 explained slightly more of

the neighborhood-level variance (level 2 PCV = .057) and had fewer effective

parameters, it had a slightly smaller overall R2 (.029) than GSM Model 2 (level 2 PCV =

.027, R2 = .033).

Finally, while the deviances decreased for both methods as one might expect

when adding predictors, the DICs actually increased from Model 1 to Model 2. The DIC

went up by 9 points for GSM and by 13 points for HLM, both of which would indicate

that the increase in model fit doesn’t necessarily warrant the increase in model

complexity. Few of the individual-level predictors were significant and most had

coefficients that were very similar between the HLM and GSM models, so there were

few noteworthy differences in the inferences about their effects across methods. Home

ownership was the exception: It had a significant effect in GSM Model 2 (B = -0.232,

95% CI = {-0.428, -0.036]) but not in HLM Model 2 (B = -0.188, 95% CI = {-0.386,

0.011]), but even this was a matter of degree rather than a difference in sign and
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substantive meaning. Indeed, there is 89% overlap between these two credible intervals.

Controlling for neighborhood composition was more important than making the models

more parsimonious, so all individual—level predictors were retained in remaining models.

Hypothesis 4. To test whether level 1 residuals from HLM Models 1 and 2

contained residual spatial autocorrelation, they were saved to new datasets and then used

as the dependent variables in a pair of empty GSM models (see Table 7, plus Figures 11-

12). These residuals from HLM Model 1 still contain a substantial amount of spatial

autocorrelation (PSR = .441, 95% CI = [.126, .840]), as do the level 1 residuals from

HLM Model 2 (PSR = .425, 95% c1 = [.098, .833]).

Figure 11 shows that the posterior means for the practical range of spatial

autocorrelation remaining in the level 1 HLM residuals are about 4.4 m in Model 1 and

4.5 m in Model 2, though the credible intervals (95% CIs = [3.040, 14.326] and [3.016,

Table 7: Parameter estimates and model fit statistics for empty GSM models fit to

individual-level residuals from HLM Models 1 and 2.
 

HLM Model 1 L1 Residuals HLM Model 2 L1 Residuals

 

 

 

 

 

 

 

Parameter P. Mean 95% Cl t P. Mean 95% CI t

L2 fixed effects 0.000 {-0.075, 0.074] -0.01 0.000 {—0.077, 0.075] -0.01

Intercept

Random effects P. Mean 95% CI P. Mean 95% CI

L2 intercept 0.664 [0.189, 1.273] 0.625 [0.147, 1.235]

L1 residuals 0.840 [0.240, 1.338] 0.848 [0.247, 1.372]

PSR .441 [.126, .840] .425 [.098, .833]

Spatial parameter P. Mean 95% Cl P. Mean 95% Cl

Phi ((p) x 1000 681.518 [209.107, 985.566] 664.777 [154.580, 993,190]

Range (mL 4.396 [3.040, 14.326] 4.506 [3.016, 19.380]

Model fit index DIC Deviance DIC Deviance

Statistic 1 144.65 774.09 1 134.65 782.81

pD 370.56 351.84
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling (3

chains; 32,000 iterations/chain; 7,000 iteration bum-in periods). 95% C1 = central 95% credible interval;

DIC = deviance information criterion; L1 = level 1 (individual); L2 = level 2 (neighborhood); P. Mean =

posterior mean; pD = effective number of parameters; Phi = rate of decrease in autocorrelation

(multiplied by 1,000); PSR = partial sill ratio; Range = practical range of variogram.
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Figure 11: Exponential variograms and correlation functions for empty GSM models fit

to the individual-level residuals for HLM Models 1 and 2. The maximum value

for the autocorrelation is the PSR for each model (.441 and .425, respectively).

Vertical lines mark the practical ranges of spatial autocorrelation for the two

models (4.4 m and 4.5 m, respectively), which occur at the distances where the

neighborhood-level covariances have decreased to 5% oftheir initial sizes,

leaving little residual autocorrelation.

19.380], respectively) suggest that these ranges might be as high as 14.3 and 19.4 m.

This is a very small spatial scale, but that is not surprising because level 1 residuals

represent variability within clusters, which are all quite small geographic areas. Spatial

autocorrelation persisting over longer distances would be more likely to show up in the

level 2 HLM residuals.

The level 2 residuals from HLM Models 1 and 2 were also tested for residual

spatial autocorrelation, though a method better suited to testing autocorrelation in data

associated with areal units such as the clusters was required. An exact Moran’s I test for

regression residuals was applied to test this part of H4. Both Model 1 (Moran’s I = .27, z

= 5.30,p < .001) and Model 2 residuals (Moran’s 1= .26, z = 5.18,p < .001) contained

strong evidence of spatial autocorrelation that decayed as afunction of distance.
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Hypothesis 5. To test whether level 1 residuals from GSM Models 1 and 2

contained residual hierarchical autocorrelation, they were saved to new datasets and then

used as the dependent variables in a pair of empty HLM models (see Table 8, plus Figure

12). HLM was able to detect only small amounts of hierarchical autocorrelation

remaining in the residuals from both GSM Model 1 (ICC = .056, 95% CI = [.036, .084])

and GSM Model 2 (ICC = .057, 95% CI = [.036, .086]).

There was asymmetry in how much remaining autocorrelation the two methods

could each detect in the level 1 residuals produced by the other method. While GSM

detected substantial amounts of spatial autocorrelation remaining in the HLM residuals,

HLM detected far less hierarchical autocorrelation in the GSM residuals (see Figure 12).

This suggests that GSM, not HLM, is better at modeling the autocorrelation in these data.

Hypothesis 6. The last hypothesis associated with the second research question

(H6) predicted that applying an empty HLM to the neighborhood-level residuals from

GSM Models 1 and 2 would detect hierarchical autocorrelation, but that the ICC would

Table 8: Parameter estimates and model fit statistics for empty HLM models fit to

individual-level residuals from GSM Models 1 and 2.
 

 

 

 

 

 

 

GSM Model 1 L1 Residu_al_s GSM Model 2 L1 Residuals

Parameter P. Mean 95% CI t P. Mean 95% CI t

L2 fixed effects -0.003 {-0.110, 0.103] -0.06 -0.003 {-0.110, 0.103] -0.06

Intercept

Random effects P. Mean 95% CI P. Mean 95% C1

L2 intercept 0.084 [0.053, 0.129] 0.083 [0.052, 0.129]

L1 residuals 1.418 [1.302, 1.547] 1.390 [1.276, 1.515]

ICC .056 [.036, .084] .057 [.036, .086]

Model fit index DIC Deviance DIC Deviance

‘ Statistic 3374.30 3345.41 3352.40 3323.28

pD 28.90 29.10
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling (3

chains; 16,000 iterations/chain; 1,000 iteration burn-in periods). 95% C1 = central 95% credible interval;

DIC = deviance information criterion; ICC = intra-class correlation; L1 = level 1 (individual); L2 = level

2 (neighborhood); P. Mean = posterior mean; pD = effective number of parameters.

188



 

  

 

          
 

Autocorrelation Individual-Level Neighborhood-Level

(ICC or PSR) Variance Variance

14 .. GSMOHLI I‘ILM - i ..

r-I ' residuab "

U _ HLMonLl GSM
\0 1.2 . 9

33 resrduals

0‘ 4
38 1.0

§ 0.8 — " ' l' T

E I' l
.2 .

§ 0.4 d T "
m

53 .. ..

0.2 - .. L " A

i i ' 5 i.

0.0 ‘

l I I l T 1

None Individual None Individual None Individual

Predictors Included

Figure 12: Estimated variance components and levels of autocorrelation from empty

HLM and GSM models fit to the individual-level residuals from GSM and HLM

Models 1 and 2. The plot shows the posterior means (symbols) plus the central

95% credible intervals (whiskers) around those estimates. Predictors included

refers here to the predict0rs included in the model that generated the residuals

being analyzed: Model 1 for each method was an empty model that included no

predictors, while Model 2 included all individual-level predictors. ICC = intra-

class correlation; L1 = level 1 (individual); PSR = partial sill ratio.

be lower than the PSRs in those original models. Table 9 shows the results of testing H6,

which was partly supported—the ICCs were indeed significant—and partly unsupported

because the ICCs were far larger than the original PSRs. HLM detected an extremely

high level of hierarchical autocorrelation (ICC = .96, 95% CI = [.944, .974]) in the GSM

Model 1 neighborhood-level residuals. The result was nearly identical for the GSM

Model 2 neighborhood-level residuals (ICC = .96, 95% CI = [.945, .974]).
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Table 9: Parameter estimates and model fit statistics for empty HLM models fit to

neighborhood-level residuals from GSM Models 1 and 2.
 

  

 

 

 

 

 

GSM Model 1 L1 Residu_als GSM Model 2 L1 Residuals

Parameter P. Mean 95% C1 t P. Mean 95% C1 t

L2 fixed effects 0.436 [0.235, 0.635] 4.31 0.428 [0.235, 0.622] 4.35

Intercept

Random effects P. Mean 95% CI P. Mean 95% CI

L2 intercept 0.529 [0.361, 0.770] 0.503 [0.345, 0.733]

L1 residuals 0.021 [0.019, 0.023] 0.020 [0.018, 0.022]

ICC .960 [.944, .974] .960 [.945, .974]

Model fit index DIC Deviance DIC Deviance

Statistic -1115.60 -1168.55 -1172.10 -1225.09

pD 52.90 53.00
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling (3

chains; 16,000 iterations/chain; 1,000 iteration burn-in periods). 95% CI = central 95% credible interval;

DIC = deviance information criterion; ICC = intra-class correlation; L1 = level 1 (individual); L2 = level

2 (neighborhood); P. Mean = posterior mean; pD = effective number of parameters.

 

These results can be explained by the fact that the neighborhood-level GSM

residuals were almost completely purged of individual-level variance (note the extremely

small level 1 residual variances in Table 9). Thus, HLM naturally attributed nearly all the

variance in these residuals to differences between clusters. In hindsight, this should have

been the prediction in H6. The reason is simple: Ifthe data really are more consistent

with spatially rather than hierarchically structured autocorrelation, the fact that all the

observations are separated from one another by at least a few meters and observations in

different clusters are generally (though not always) separated by longer distances means

that the variograms in the original GSM models would virtually guarantee this result.

It is interesting to note that the neighborhood-level variances detected by HLM (in

Table 9) are systematically smaller than the neighborhood-level variances detected in the

GSM models that produced the residuals in the first place (in Table 6). This implies that

the core concept underlying H6 was still correct: There was still more evidence in the

data for spatially structured variance than for hierarchically structured variance.
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Research Question 3. The third research question asked how GSM estimates of

contextual effects and model fit compare to HLM estimates. The associated hypothesis

(H7) predicted that (a) GSM models would fit better and have stronger contextual effects

of crime and NSES on perceived neighborhood problems than HLM models when the

contextual measures are calculated within appropriately sized buffers, and (b) GSM

models that use cluster boundaries to measure crime and NSES in GSM models would

outperform HLM models, but not by as much as when the GSM models use the buffers

instead. The first step in testing H7 was determining the optimal spatial scales for

measuring crime and NSES. The second step was comparing HLM and GSM parameter

estimates and fit indices. The third step was comparing CAR HLM results to traditional

HLM results, and then comparing CAR HLM results to the GSM results.

Optimal buffer sizefor crime. GSM Models 6-30 varied the buffer radius used to

measure crime. Complete tabular output for these models was omitted for several

reasons: (a) only selected parameter estimates and model fit indices were relevant to

selecting the optimal buffer size, (b) the resulting table would be too large, making it hard

to find the key pieces of information, and (c) Figure 13 more concisely and effectively

communicates the overall patterns evident across the criteria of interest. However, a table

‘with complete output for the model believed to have the optimal buffer size, plus the

models with buffers one step smaller and one step larger, is provided in the Appendix.

All parameter estimates from Models 6-30 are available from the author upon request.

Figure 13 shows that using a 1.1 km radius buffer in Model 16 yielded the lowest

DIC value; it also produced a large regression coefficient and the largest values for the t

statistic, the level 2 PCV, and the overall R2 among this set of models. It also yielded low
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Figure 13: Parameter estimates and model fit criteria for GSM Models 6-30, shown as a

function of buffer radius. The dashed, vertical line marks the optimal buffer radius

(1.1 km) for measuring crime. Crime = coefficient for the buffer-based crime

measure; DIC = deviance information criterion; L2 PCV = level 2 proportional

change in variance relative to GSM Model 1 (level-specific R2 ); PSR = partial sill

ratio; R2 = overall proportion of variance explained; Range = practical range (in

km) of variogram; t = t-statistic for the crime coefficient. These models also

included all individual-level predictors.

values for the practical range of remaining spatial autocorrelation and for the PSR While

Models 17 and 18 also had DIC values lower than most ofthe other models in this series,
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they had slightly worse performance with respect to some of the other criteria shown in

Figure 13. As a result, 1.1 km was deemed the optimal buffer radius for measuring crime.

Optimal buffer sizefor NSES. GSM Models 31-55 varied the buffer radius used

to measure NSES. As with crime, the results of the analyses used to select the optimal

buffer size are summarized graphically for the whole series of models (see Figure 14) and

a table with complete details on the model believed to have the optimal buffer size, plus

the models with buffers one step smaller and one step larger, is provided in the Appendix.

Complete details on all these models are available from the author upon request.

Figure 14 shows that the lowest DIC value was associated with Model 32, which

used a 0.2 km buffer to measure NSES. This model also had a large regression coefficient

for NSES, the largest t statistic, and large values for the level 2 PCV and the overall R2

statistic paired with low values for the PSR and the practical range of remaining spatial

autocorrelation. While Model 33 had slightly better values on the level 2 PCV, R2, PSR,

and practical range than Model 32, the DIC, t, and regression coefficient values favored

Model 32 instead. Because model selection is one of the intended uses of the DIC, and

the difference on the DIC was more noteworthy than the differences on the other

measures, the 0.2 km radius buffer was deemed the optimal one for measuring NSES.

Hypothesis 7. GSM Models 3-5 measured crime and NSES within the same

cluster boundaries used in HLM Models 3-5, while GSM Models 56-58 rely on

measuring crime and NSES within optimally-sized buffers (1.1 km and 0.2 km,

respectively). Comparing these three series of models provides the critical test of H7. As

shown in Table 3, the models in these series expand Model 2 in each method to include
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Figure 14: Parameter estimates and model fit criteria for GSM Models 31-55, shown as a

function of buffer radius. The dashed, vertical line marks the optimal buffer radius

(0.2 km) for measuring NSES. NSES = coefficient for the buffer—based measure

of neighborhood socioeconomic status; DIC = deviance information criterion; L2

PCV = level 2 proportional change in variance relative to GSM Model 1 (level-

specific R2 ); PSR = partial sill ratio; R2 = overall proportion of variance

explained; Range = practical range (in km) of variogram; t = t-statistic for the

NSES coefficient. These models also included all individual-level predictors.

neighborhood-level predictors. The first model in each series added only crime, the

second model added only NSES, and the third added both crime and NSES

simultaneously. HLM Model 6 expanded on HLM Model 5 by adding the CAR structure
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as an additional spatial random effect in the level 2 model. Enhancing the model that way

was meant to test whether incorporating more spatial information into HLM would

substantially affect how it compares to the GSM Models 5 and 58.

Tables 5 and 6 contain all the parameter estimates and model fit indices for these

models. Three criteria pertinent to model fit (DIC, level 2 PCV, and R2) for these models

are displayed in Figure 15, while estimates of the variance components and levels of

residual autocorrelation (ICC and PSR) are displayed in Figure 16. The variograms and

autocorrelation functions for GSM Models 3-5 and 56-58 are shown in Figure 17. The

parameter estimates and t-statistics for the crime effect in these models are shown in

Figure 18, while Figure 19 shows them for the NSES effect. The narrative results related

to these figures are presented in separate subsections below that focus on what happened

when (a) crime was added by itself, (b) NSES was added by itself, (c) both crime and

NSES were added, and (d) the CAR structure was added in HLM Model 6.

Adding crime alone. While adding crime as a neighborhood-level predictor of

perceived neighborhood problems improved the HLM and GSM models relative to the

corresponding models containing only individual-level predictors, comparing how the

updated HLM and GSM models compare to each other was more important to H7.

Accordingly, the improvement over the simpler models estimated with the same method

is addressed here only to inform that comparison.

The lower panel of Figure 15 shows that the DIC values for the GSM models

(regardless of the boundaries used for measuring crime and NSES) were far smaller than

the DIC values for the corresponding HLM model, just as they were in the models

without any neighborhood-level predictors. Indeed, GSM Models 3 and 56 have DICs of
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1569.22 and 1567.85 respectively, while HLM Model 3 has a DIC of 3508.30. Finding

DICs that favor the two GSM models over the corresponding HLM model by more than

1900 points supports H7 and suggests that GSM outperformed HLM. At first glance, the

small difference in DICs between these two GSM models suggests that improvement in

model fit compared to HLM may primarily reflect how the autocorrelation was modeled,

rather than how neighborhoods were defined for measuring crime.
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Figure 16: Estimated variance components and levels of autocorrelation from HLM

Models 3-6, and GSM Models 3-5 and 56-58. The plot shows the posterior means

(symbols) plus the central 95% credible intervals (whiskers) around those

estimates. Both = both crime and NSES; CAR = conditional autoregressive model

at level 2 with both crime and NSES as predictors. These models also included all

However, examining other model fit criteria and parameter estimates revealed a

more complex pattern of results that cautions against over-interpreting the differences in

DIC values. For example, adding crime in HLM Model 3 decreased the residual

autocorrelation in the data by 5.4% as compared to HLM Model 2 (cf. Figures 9 and 16).

In comparison, adding the cluster-based crime measure in GSM Model 3 decreased the

PSR by only 3.7% compared to GSM Model 2, but adding the buffer-based crime

measure in GSM Model 56 decreased the PSR by 13.2% (cf. Figures 9 and 16). It should

also be noted that adding crime as a predictor reduced the spatial range over which
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Figure 17 : Exponential variograms and correlation functions for GSM Models 3-5 (top)

and GSM Models 56-58 (bottom). The maximum value for the autocorrelation is

the PSR for each model (for Models 3-5, PSR = .246, .247, and .217 respectively;

for Models 56-58, PSR = .151, .208, and .138, respectively). Vertical lines mark

the practical ranges of spatial autocorrelation for the models, which occur at the

distances where the neighborhood-level covariances have decreased to 5% oftheir

initial sizes, leaving little residual autocorrelation. For Models 3-5, range = 2,647

m, 2,451 m, and 1,964 m respectively; for Models 56-58, range = 765 m, 1840 m,

and 505 m, respectively.

autocorrelation persisted in the GSM models from 3,058 m in Model 2 to 2,647 m in

Model 3 and 765 min Model 56 (of. Figures 10 and 17).
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Figure 18: Estimated crime coefficients and t-statistics for HLM Models 3, 5, and 6 and

GSM Models 3, 5, 56, and 58. The plot shows the posterior means (symbols) plus

the central 95% credible intervals (whiskers) around the estimated coefficients.

Credible intervals intersected by the dashed reference line at zero indicate non-

significant effects. Both = both crime and NSES were included; CAR =

conditional autoregressive model at level 2 with both crime and NSES as

predictors. These models included all individual-level predictors.

The point'here is that the relative changes in residual autocorrelation (observed

within each method by comparing models with and without crime as a predictor) suggest

that HLM did slightly, but not significantly, better at reducing the residual autocorrelation

than GSM based on using the clusters, but significantly worse than GSM based on using

buffers. That conflicts with the information gleaned from the DIC values because while it

supports the first part of H7, it fails to support the latter part of that hypothesis.

Because the individual-level variance components remained quite stable across all

the models (cf. the level 1 PCV values shown in Tables 5-6, plus the variance estimates

in Figures 9 and 16), the relative decreases in residual autocorrelation are mostly
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Figure 19: Estimated NSES coefficients and t-statistics for HLM Models 4, 5, and 6 and

GSM Models 4, 5, 57, and 58. The plot shows the posterior means (symbols) plus

the central 95% credible intervals (whiskers) around the estimated coefficients.

Credible intervals intersected by the dashed reference line at zero indicate non-

significant effects. Both = both crime and NSES were included; CAR =

conditional autoregressive model at level 2 with both crime and NSES as

predictors. These models included all individual-level predictors.

attributable to changes in the neighborhood-level variance components. Another way to

examine the performance of the two methods is to compare how much variance they

explain and directly compare the actual levels of residual autocorrelation across methods

rather than relative decreases in autocorrelation observed within each method.

Figure 15 shows that HLM Model 3 (level 2 PCV = .311, R2 = .132) explained

11.5% more neighborhood-level variance and 7.0% more overall variance than GSM

Model 3 (level 2 PCV = .196, R2 = .062). This meant that HLM also lefi 3.8% less

residual autocorrelation (ICC = .208, 95% CI = [.139, .295]) than GSM Model 3 (PSR =
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.246, 95% CI = [.157, .357]), though there was 88% overlap in those credible intervals

(see Figure 16). So, findings from these criteria conflict with the information gleaned

from the DIC values and fail to support the latter part of H7, suggesting that when both

methods measured crime within the same fixed cluster boundaries, HLM performed

better than GSM.

However, using the optimal buffer for measuring crime instead of the cluster

boundaries made an immense difference: HLM Model 3 explained 26.2% less

neighborhood-level variance and 13.3% less overall variance than GSM Model 56 (level

2 PCV = .573, R2 = .265). As a result, this HLM model left 5.7% more residual

autocorrelation than GSM Model 56 (PSR = .151, 95% CI = [.092, .23 8]), though there

was still a lot of overlap (68%) in those credible intervals (see Figure 16). Unlike with the

cluster-based GSM model, all three of these criteria agree with the DIC and strongly

support the first part ofH7 by showing that a buffer-based GSM model fit the data

significantly better than the HLM model.

The regression coefficients and t-statistics associated with the crime effects in

these series of models also address H7, which predicted that larger effects would be

observed in the GSM models. As Figure 18 shows, the crime coefficient and t-statistic for

HLM Model 3 (y = 0.028, t = 4.11) were noticeably larger than those for GSM Model 3

(B = 0.013, t = 2.68), but there was substantial overlap (47%) in their respective credible

intervals (95% CIs = [0.014, 0.041] and [0.004, 0.023]). So, when crime was measured

within cluster boundaries, its effect was weaker in GSM than in HLM, which fails to

support H7. However, the story was quite different when crime was measured in the 1.1

km buffer: The crime coefficient ([1 = 0.263, 95% CI = [0.186, 0.338], t = 6.88) in GSM
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Model 56 was an order of magnitude larger than it was in HLM Model 3, plus there was

no overlap at all between those two credible intervals. That finding strongly supports H7.

Adding NSES alone. HLM Model 4 used NSES as the sole neighborhood-level

predictor instead of crime, yielding a DIC of 3,505.70. This was a definite improvement

over HLM Model 2 with respect to all the criteria of interest in this study (see Table 5).

But, as Figure 15 shows, the DIC still favors the corresponding GSM models (Model 4

DIC = 1,573.47, Model 57 DIC = 1,566.95) by over 1900 points, suggesting support for

H7. But, as with the crime models, other criteria revealed that this large discrepancy in

DIC values does not tell the whole story about which method performs better.

Adding NSES in HLM Model 4 decreased the residual autocorrelation in the data

by 8.4% as compared to HLM Model 2 (cf. Figures 9 and 16). For the GSM models,

adding the cluster-based NSES measure in Model 4 decreased the PSR by only 3.6%

compared to Model 2 and adding the buffer-based NSES measure in Model 57 decreased

the PSR by 7.5% (cf. Figures 9 and 16). This meant that HLM Model 4 (ICC = .180) had

a significantly lower level of remaining autocorrelation than GSM Model 4 (PSR = .247),

but not GSM Model 57 (PSR = .208). It should also be noted that adding NSES as a

predictor reduced the spatial range over which autocorrelation persisted in the GSM

models from 3,058 m in Model 2 to 2,451 m in Model 4 and 1,840 min Model 57 (cf.

Figures 10 and 17). So, HLM did noticeably better at reducing the level of residual

autocorrelation (as determined by comparing to a simpler model run with the same

method) than GSM based on using the clusters but only marginally better than GSM

based on using buffers. That conflicts with the conclusion that might be drawn from the

DIC values because it fails to support either part of H7.
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Once again, the relative decreases in residual autocorrelation are mostly

attributable to changes in the neighborhood-level variance components (of. the level 1

PCV values shown in Tables 5-6, plus the variance estimates in Figures 9 and 16). Figure

15 shows that HLM Model 4 (level 2 PCV = .425, R2 = .177) performed better than GSM

on both variance explained criteria when NSES was the only neighborhood-level

predictor. It explained 23.7% more neighborhood level variance and 12.9% more overall

variance than GSM Model 4 (level 2 PCV = .188, R2 = .048). It also explained 6.7%

more neighborhood-level variance and 6.1% more overall variance than GSM Model 57

level 2 PCV = .358, R2 = .116). So, for these models, the DIC and the variance explained

criteria lead to conflicting conclusions about which model fits the data better because the

former criterion suggests support for H7, while the latter criteria refute H7.

Hypothesis 7 also predicted that the NSES regression coefficients and t-statistics

in these series ofmodels would be larger for the GSM models than for the HLM models.

Figure 19 shows that the NSES coefficient and t-statistic for HLM Model 4 (y = -0.028, t

= -5.3 8) were significant and much larger than the non-significant values observed for

GSM Model 4 (B = -0.008, t = -1.33). In addition, there was only 5% overlap in their

respective credible intervals (95% CIs = {-0.03 8, -0.018] and {-0.019, 0.004]). So, GSM

found a weaker effect than HLM when NSES was measured within cluster boundaries,

which fails to support H7. The difference was less extreme but still followed the same

pattern when crime was measured in the 0.2 km buffer: GSM Model 57 produced a

significant NSES coefficient and t-statistic (B = -0.021, 95% CI = [-0.031, -0.010], t = -

3.90) that were much closer to the results from HLM Model 4, but still smaller. There
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was 65% overlap between those two credible intervals. So, with NSES as the only

neighborhood-level predictor, H7 was not supported because HLM always produced

larger NSES effects.

Adding both crime and NSES. The pattern of the DIC favoring the two GSM

models (Model 5 DIC = 1,573.32, Model 58 DIC = 1,564.06) over the HLM model

(Model 5 DIC = 3,505.20) by over 1900 points is still evident in Figure 15 when both

crime and NSES are used as neighborhood-level predictors. However the other criteria

continued to reveal that this large discrepancy in DIC values does not tell the whole story

about which method performs better.

Adding both neighborhood-level predictors in HLM Model 5 decreased the

residual autocorrelation in the data by 10.7% (to ICC = .157) as compared to HLM

Model 2 (cf. Figures 9 and 16). For the GSM models, adding the cluster-based measures

in Model 5 decreased the PSR by only 6.6% (to PSR = .217) compared to Model 2 and

adding the buffer-based measures in Model 58 decreased the PSR by 14.5% (to PSR =

.138; of. Figures 9 and 16). It should also be noted that adding crime and NSES together

reduced the spatial range over which autocorrelation persisted in the GSM models from

3,058 m in Model 2 to 1,964 m in Model 5 and 505 m in Model 58 (cf. Figures 10 and

17). Overall, these comparisons reveal that HLM did somewhat better at reducing the

residual autocorrelation (as determined by comparing to a simpler model run with the

same method) than GSM based on using the clusters and somewhat worse than GSM

based on using buffers. That conflicts with the conclusion that might be drawn from the

DIC values because it supports only the first part of H7.
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Figure 15 shows that when both crime and NSES are in the models, HLM Model

5 (level 2 PCV = .512, R2 = .207) explained 19.7% more neighborhood-level variance

and 12.2% more overall variance than GSM Model 5 (level 2 PCV = .315, R2 = .085),

but 11.0% less neighborhood-level variance and 7.5% less overall variance than GSM

Model 58 (level 2 PCV = .622, R2 = .282). Both sets of comparisons exceed the 5%

difference criterion adopted for this study as defining what constituted a significant

difference in performance. While this supports the H7 prediction that buffer-based GSM

models would outperform HLM models, it fails to support the H7 prediction that cluster-

based GSM models would also do so (but by a smaller margin).

When both neighborhood-level predictors were included in the model, the crime

coefficient for HLM Model 5 decreased (7 = 0.018, t = 2.80), becoming more similar to,

but remaining larger than, the coefficient for GSM Model 5 (B = 0.013, t = 2.60) which

was largely unchanged. This increased the overlap in their respective credible intervals to

90% (95% CIs = [0.005, 0.030] and [0.003, 0.023], see Figure 18). Once again, the

hypothesis that a GSM model relying on cluster boundaries would yield a larger crime

effect than the corresponding HLM was not supported. Hypothesis 7 was still partially

supported by the finding that the buffer-based crime effect in GSM Model 58 (B = 0.200,

95% CI = [0.125, 0.275], t = 5.26) was still an order of magnitude larger than the crime

effect in HLM Model 5, with no overlap in their credible intervals (see Figure 18).

With both crime and NSES in the model, the NSES coefficient for HLM Model 5

decreased slightly (7 = -0.022, t = -4.34), but remained larger than the coefficient for

GSM Model 5 (B = -0.007, t = -1.18), which was largely unchanged (see Figure 19). This
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increased the overlap in their respective credible intervals to 30% (95% Cls = {-0.032,

-0.012] and {-0.018, 0.005]). The NSES effect in GSM Model 58 (B = -0.014, 95% CI =

{-0.023, -0.005], t = -3.11) remained smaller than the NSES coefficient from HLM Model

5 and also decreased in size when crime was present in the model, reducing the overlap

between those two credible intervals to 61% (see Figure 19). With respect to the NSES

effect, H7 was not supported by these model comparisons.

In summary, the balance of the evidence shows that when using cluster-based

measurement of crime and NSES with both methods, HLM performed better than GSM.

However, the DIC, variance explained, crime coefficient, and crime t-statistic all indicate

that buffer-based GSM did indeed outperform HLM as expected when both crime and

NSES were in the models. That result is apparently driven by how crime was measured

because the NSES effect was actually somewhat weaker in the GSM model than in the

HLM model.

Comparing CAR HLMto standard HLM. Before comparing the CAR HLM model

to the GSM models, it is usefirl to first understand how it compared to HLMModel 5. As

Table 5 and Figures 15-16 show, even though the CAR variance component in HLM

Model 6 was itself extremely small (95% CI = [0.000, 0002]), adding this spatially

structured random effect to the model had a modest, favorable impact on the results.

Relative to HLM Model 5 (DIC = 3505.20, level 2 PCV = .512, R2 = .207, ICC = 0.157),

the DIC for HLM Model 6 improved by about 1.5 points (DIC = 3503.70) and the overall

variance explained increased by 3.2% (R2 = .239). The CAR HLM model also explained

about 10% more of the neighborhood-level variance (level 2 PCV = .610) than HLM
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Model 5. However, there was no difference in the individual-level variance component

between HLM Models 5 and 6. Thus, the amount of hierarchically structured residual

autocorrelation decreased by 2.8% (ICC = 0.129) in the CAR HLM model.

Figures 18 and 19 show how adding the CAR structure to the HLM model

affected the coefficients for crime and NSES. The CAR HLM Model 6 had a slightly

weaker crime effect (7 = 0.014, 95% CI = [0.001, 0.026], t = 2.08) than HLM Model 5

(y = 0.018, 95% CI = [0.005, 0.030], t = 2.80). Judging by the difference in t-statistics, it

also had significantly weaker NSES effect (7 = -0.018, 95% CI = {-0.030, -0.007], t =

-3.16) than HLM Model 5 (y = -0.022, 95% CI = {-0.032, -0.012], t = -4.34).

Comparing CAR HLMto cluster-based GSM Next, the CAR HLM model was

compared to the cluster-based GSM Model 5. The boundaries used for measuring crime

and NSES are identical for these two models, so the models differ only in how

autocorrelation was represented. Figures 15-16 facilitate graphical comparison of the

model fit indices and variance components for these models. Despite the fact that the DIC

for HLM Model 6 is more than 1900 points larger than the DIC for GSM Model 5

(indicating poorer fit), the CAR HLM model explains 15.4% more overall variance and

29.5% more of the neigthrhood-level variance than the GSM model. There was also

8.8% less residual autocorrelation in the CAR HLM model (ICC = .129) than in GSM

Model 5 (PSR = .217).

Figures 18-19 show the crime and NSES coefficients for both models. The crime

effect was virtually identical between the CAR HLM model (y = 0.014, 95% CI = [0.001,

0.026], t = 2.08) and GSM Model 5 (B = 0.013, 95% CI = [0.003, 0.023], t = 2.60),

though the GSM model produced a narrower credible interval that was completely
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enveloped by the corresponding CAR HLM credible interval (100% overlap). However,

there was a big difference in the size of the NSES effect, which was significant in the

CAR HLM model (7 = -0.018, 95% CI = {-0.030, -0.007], t = -3.l6), but not in the GSM

model (B = -0.007, 95% CI = {-0.018, 0.005], t = -1 .18). There was 48% overlap between

these NSES credible intervals.

Despite the DIC value favoring the GSM model, the CAR HLM model seems to

have performed better than the cluster-based GSM model according to most measures of

model fit. This indicates a lack of support for H7’s prediction that the GSM model would

yield better model fit. Furthermore, this comparison also failed to support H7 because the

cluster-based GSM model failed to produce stronger contextual effects of crime and

NSES than the CAR HLM model.

Comparing CAR HLMto bufi'er-based GSM. The final test ofH7 involved

comparing the CAR HLM model to the buffer-based GSM Model 58. These models

differ in both how boundaries used for measuring crime and NSES were defined and in

how autocorrelation was represented. Figures 15-16 provide a graphical comparison of

the model fit indices and variance components for these models. Once again, the DIC for

HLM Model 6 is more than 1900 points larger than the DIC for GSM Model 58

(indicating poorer fit). However, switching to buffer-based contextual measures for the

GSM model rather than cluster-based measures made the performance of the two models

much more comparable. The CAR HLM model explains 4.3% less overall variance and

1.2% less of the neighborhood-level variance than the GSM model. However, there was

also 0.9% less residual autocorrelation in the CAR HLM model (ICC = .129) than in

GSM Model 58 (PSR = .138).
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Figures 18-19 show the crime and NSES coefficients for both models. The crime

effect was far smaller in the CAR HLM model (7 = 0.014, 95% CI = [0.001, 0.026], t =

2.08) than in GSM Model 58 (B = 0.200, 95% CI = [0.125, 0.275], t = 5.26), with no

overlap at all in these credible intervals. However, there was little difference in the size of

the NSES effect, which was significant in both the CAR HLM model (7 = -0.018, 95% CI

= {-0.030, -0.007], t = -3.16) and in the GSM model (B = -0.0l4, 95% CI = {-0.023, -

0.005], t = -3.11). This GSM model produced a narrower NSES credible interval that was

completely enveloped by the CAR HLM credible interval for NSES (100% overlap).

 

So, here the DIC value again favored the GSM model, but the CAR HLM model

seems to have performed nearly as well the buffer-based GSM model according to most

measures of model fit. This indicates a lack of support for H7’s prediction that the GSM

model would yield better model fit. While these results did partially support H7 because

the buffer-based GSM model produced a far stronger contextual effect of crime than the

CAR HLM model, they failed to support H7 with respect to the size of the NSES effect.

Research Question 4. The final research question asked how the geographical

scales on which crime and NSES operate compare to each other and to the size of the

clusters used in the HLM models. The corresponding exploratory hypothesis, H8, stated

that these two contextual effects would operate at different geographical scales, and that

neither would operate at the scale of the average cluster used in the HLM models.

The geographical area enclosed by the 52 cluster boundaries used in the HLM

models averaged 0.08 km2 and ranged from 0.03 to 0.47 km2. Figure 20 illustrates the

range ofGSM buffer sizes tested in this study and highlights three key facts. First, H8 is

supported by the fact that there is a very marked difference in the optimal buffer sizes for
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crime (1.1 km radius, 3.80 kmz) and NSES (0.2 km radius, 0.13 kmz). There is little

doubt that these are dramatically different spatial scales for measuring contextual

conditions. Second, H8 is also supported by the fact that the buffer-based crime measure

used in GSM models 56 and 58 is clearly operating on a far larger spatial scale than the

cluster-based crime measures used in the HLM models. Finally, while the buffer-based

NSES measure is still operating on a spatial scale slightly larger than the mean cluster

size, it falls well within the range of cluster sizes. So, H8 was not fully supported because

the spatial scale of the buffer-based NSES measure is quite similar to the sizes of the

 

clusters used in the HLM models.
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Figure 20: Scatterplot showing buffer area (kmz) as a function of buffer radius (km),

with annotations showing the optimal buffer sizes for crime and NSES. The

dashed horizontal reference lines show the minimmn (0.03 kmz) and maximum

(0.47 kmz) areas among the 52 clusters. The mean cluster area was 0.08 km2.

Arrows show the optimal buffer sizes for crime (1 .1 km radius, 3.80 km2 ), and

NSES (0.2 km radius, 0.13 m2 ).
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DISCUSSION

The fundamental premises underlying research on neighborhood effects are that

neighborhoods are meaningful ecological contexts for the people who reside in them and

that variation in neighborhood characteristics can explain at least some of the variation in

resident outcomes. Studies pursuing questions about neighborhood effects are thus

inherently multilevel studies and must conceptualize and operationally define

neighborhoods as units of analysis and pay careful attention to measuring neighborhood-

level constructs (Linney, 2000). Furthermore, they should utilize methods specifically

designed for answering questions about contextual effects (Luke, 2005; Shinn & Rapkin,

2000). Suitable multilevel analysis methods must acknowledge and correct for the fact

that if neighborhoods actually do affect residents, then the resident-level observations

cannot all be independent (Raudenbush & Bryk, 2002; Roosa, et al., 2003). This

autocorrelation is a consequence of neighborhood-level variability in the outcome, which

may be caused by either compositional or contextual neighborhood effects (or both).

Broadly speaking, this study compared two methods for testing multilevel

hypotheses about how much influence contextual characteristics of neighborhoods have

on resident outcomes. The first method is well-established in the neighborhood effects

literature: HLM has been applied by community psychologists and other social scientists

to study a wide variety of phenomena (Beyers, et al., 2003; Caughy, etal., 2008; T. E.

Duncan, et al., 2003; Sampson, et al., 1997; Sunder, et al., 2007). The second method-—

GSM—has only been applied a few times outside of its original applications in the earth

sciences (e.g., geology and geography), mostly for epidemiological studies of

neighborhood effects on health and healthcare utilization (Chaix, et al., 2006; Chaix,

211

  



Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). This study sought to

discern whether GSM is a valuable alternative to HLM for studying neighborhood

effects. To do that, it examined crime and neighborhood socioeconomic status (NSES)

effects on residents’ perceived levels of neighborhood problems using both methods.

HLM and GSM are grounded in different ways of conceptualizing neighborhoods

and geographic space. These conceptualizations inform two key aspects of neighborhood

studies: (a) how we group residents in order to detect neighborhood-level variability and

model the resulting autocorrelation in outcomes, and (b) how we define the geographic

area of the neighborhood that should be used when measuring neighborhood context.

This study answered four research questions related to these issues by testing eight

specific hypotheses (see Table 10 below) to examine whether the conceptual differences

between these methods contributed to differences in scientific inferences about the

phenomena under study that warrant further usage ofGSM in community psychology.

Overall, the study found that while empty HLM and GSM models detected

similar amounts of neighborhood-level variance and autocorrelation in perceived

neighborhood problems, GSM provided a better description of the data fiom this sample

because crucial HLM assumptions about the independence of the residuals were violated.

In contrast, GSM assumptions about the residuals were not ‘violated. This study also

found that, for the present sample, circular buffers centered on residents’ homes provided

a better operational definition of the neighborhoods within which crime and NSES should

be measured than that offered by the fixed cluster boundaries required by HLM. The

specific boundaries used to measure the contextual variables had important implications

for the size and statistical significance of the crime and NSES effects in this study.
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Table 10: List of research questions and hypotheses

Research Questions Hypotheses

1. How do GSM estimates of H1: GSM estimates of neighborhood-level variance and the

 

neighborhood-level variance and

autocorrelation compare to HLM

estimates?

. Which method (HLM or GSM) is

more effective at modeling the

autocorrelation actually observed

in data fi'om neighborhood

residents?

. How do GSM estimates of

contextual effects and model fit

compare to HLM estimates?

4. In a dataset originally collected

with use ofHLM methods in

mind, how do the geographical

scales on which different

contextual factors operate (as

estimated by GSM) compare to

each other and to the size of the

rgighborhood units used in HLM?

amount of autocorrelation for perceived neighborhood

problems will be higher than the corresponding HLM

estimates, both before and after controlling for neighborhood

composition

H2: The range of spatial autocorrelation in perceived

neighborhood problems detected by GSM will be long

enough to reach across the borders between at least some of

the neighborhood units used in the HLM analyses.

H3: An empty GSM will fit the perceived neighborhood

problems data better than an empty HLM. Similarly, a GSM

model ofperceived neighborhood problems containing only

individual-level predictors will fit better than a corresponding

HLM model containing only individual-level predictors of

perceived neighborhood problems.

H4: HLM will not fully control for spatial autocorrelation in

perceived neighborhood problems, so there will be evidence

of residual spatial autocorrelation remaining in both the Level

1 and Level 2 residuals from HLM models.

H5: GSM will fully control for within-neighborhood spatial

autocorrelation in residents’ perceptions of neighborhood

problems, so there will be no evidence of hierarchical

autocorrelation remaining in the individual-level residuals

from GSM models.

H6: Neighborhood-level GSM residuals from a model

predicting perceived neighborhood problems will contain

hierarchical autocorrelation when examined with HLM, but

the ICC will be lower than the PSR

H7: GSM will yield models that fit better and have larger

contextual effects of crime and NSES on perceived

neighborhood problems than corresponding HLM models

when they use contextual measures calculated within

appropriately-sized buffers. Using HLM-style contextual

measures of crime and NSES calculated within discrete

neighborhood cluster boundaries in GSM analyses will yield

models ofperceived neighborhood problems that improve on

HLM results, but not as much as when buffers are used.

H8: The geographical scales on which crime and NSES

influence resident perceptions of neighborhood problems will

differ from one another and from the average size ofthe

neighborhood areas used in the HLM analysis.
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At least for the present dataset, HLM models overestimated the size and statistical

significance of the effect of a cluster-based measure ofNSES on residents’ perceptions of

neighborhood problems because of the violated assumptions about the independence of

the residuals. GSM corrected for that mis-specified error structure and showed that while

the cluster-based NSES measure did not affect residents’ perceptions in these data, when

NSES was instead measured in 0.2 km radius buffers around residents’ homes, it did

affect those perceptions. However, the NSES effect detected with the buffer-based GSM

analysis was not as strong as the cluster-based NSES effect in the HLM analysis.

HLM also severely underestimated the strength of crime’s effect on residents’

perceptions in this study because the clusters used in the HLM analysis were far too small

compared to the actual spatial scale on which crime mattered to the residents. Buffer-

lbased GSM models showed that crime within 1.1 km of residents’ homes had a much

stronger effect on perceived neighborhood problems than the cluster-based crime effect

observed with the HLM models.

The findings supported some, but not all of the hypotheses in this study. The

discussion below synthesizes the findings with related literature, links them to key

theoretical and conceptual issues, shows how the study contributes to neighborhood

research, and describes what the results may mean for community psychologists.

Detecting Neighborhood-Level Variability in Perceived Neighborhood Problems

Before testing whether neighborhood-level characteristics like crime and NSES

influence resident-level outcomes such as perceived neighborhood problems, one ought

to first show that those outcomes do indeed vary fi'om neighborhood to neighborhood and
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quantify that neighborhood-level variance. Otherwise, there may be nothing for those

contextual characteristics to explain.

HLM and GSM rely on distinct ways of grouping residents to detect and quantify

neighborhood-level variability, but both ultimately divide the total variability in

residents’ perceptions of neighborhood problems into individual-level and neighborhood-

level variance components. Those variance components can then be used to calculate

directly comparable measures of autocorrelation (the intra-class correlation [ICC] for

HLM and the partial sill ratio [PSR] for GSM) that represent the proportion of variability

 

in perceived problems that is attributable to differences between neighborhoods. To put

the current findings in perspective, the next section briefly describes how much

autocorrelation has been detected in perceived neighborhood problems in previous HLM

and GSM studies. The following section then interprets the current findings and discusses

their importance.

Previous research. There is little consensus in previous HLM research about how

much autocorrelation there is in perceived neighborhood problems and closely related

constructs such as perceived crime or perceived disorder. For a sample of residents drawn

fi'om neighborhoods in ten different cities, Coulton et al. (2004) reported ICCs ranging

from .04 to .10, depending on the size of the neighborhood units used in the HLM models

(ICC = .09 for census tracts, and .10 for block groups). A measure of perceived

neighborhood crime from a 1978 survey of Chicago residents had a tract-level ICC of . 10

(Quillian & Pager, 2001), but a measure of perceived disorder from a 1995 survey of

Chicago residents had a block-group level ICC of .35 (Sampson & Raudenbush, 2004).

Meanwhile, recent survey data on perceived disorder from Baltimore found a block-
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group level ICC of .40 (Franzini, et al., 2008). The latter two ICCs are likely slight

underestimates because they were calculated from models that controlled for individual-

level predictors rather than empty models. These HLM studies collectively show that the

amount of autocorrelation in perceived neighborhood problems (and closely related

constructs) varies from study to study and with the size of the neighborhood units.

There are only two previous studies that have applied variations ofGSM to study

perceived neighborhood problems or closely related constructs. Inspection of Figure, 3 in

Bass and Lambert’s (2004) GSM-based work suggests that the PSR for perceptions of

neighborhood disorder might be as high as .57 among Baltimore adolescents. This is

somewhat higher than the ICC from Franzini et al.’s (2008) HLM study (ICC = .40),

which was conducted in the same city. The only other previous study that used GSM

methods to examine neighborhood-level variability in perceived neighborhood problems

found a PSR of .32 (Pierce, 2006), but that was a preliminary analysis of the data from

the present study and it used different estimation methods than were adopted here.

None of the prior research had ever used both HLM and GSM to quantify the

level of autocorrelation in perceived problems in the same dataset. Hence, the first

research question in this study asked: how do GSM estimates of neighborhood-level

variance and autocorrelation compare to HLM estimates? Examining these estimates is

important because the level of autocorrelation observed in an empty model (i.e., one with

no substantive predictors) puts an upper bound on the amount of variance that can be

explained by differences between neighborhoods. Re-exarnining those estimates after

adjusting for individual-level predictors sheds light on whether neighborhood-level

variability is primarily a result of compositional or contextual effects. The first
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hypothesis (H1) predicted that GSM would detect larger neighborhood-level variances

and higher levels of autocorrelation for perceived neighborhood problems than HLM did,

both before and after controlling for neighborhood composition.

Current findings. Contrary to H1 , the GSM estimates of neighborhood-level

variance and autocorrelation in the present study were only trivially larger than the HLM

estimates both before and after controlling for neighborhood demographic composition.

The ICC of .28 in the present HLM analyses indicates that about 28% ofthe variability in

neighborhood problems scores from this dataset can be attributed to differences between

 

neighborhoods. A similar result was found with the GSM analyses (PSR = .29), which '2

found that 29% of the variability in those scores is attributable to neighborhoods. These

estimates are closer to the upper end ofthe range of values observed in the prior HLM

studies focused on this outcome, but lower than the prior GSM estimates.

So, the answer to the first research question is that these two methods essentially

agreed on how much neighborhood-level variance and autocorrelation existed in

residents’ perceptions of neighborhood problems in this study. Furthermore, controlling

for several individual level characteristics made little difference in the autocorrelation

estimates fi'om these methods, reducing them to 26% for HLM and 28% for GSM. As a

result, we can draw the same conclusion from using both methods. While it is possible

that individual-level characteristics omitted from this study may still be important, the

present results suggest that neighborhood composition effects arising from geographical

clustering of similar persons do not provide a compelling theoretical explanation for most

of the observed neighborhood-level variability in this sample. Other theoretical

mechanisms must be at work here; those mechanisms are probably related to contextual
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characteristics of the neighborhoods. The similarity of those revised autocorrelation

estimates means we can also conclude from both the HLM and GSM analyses that there

is substantial potential for neighborhood characteristics to exert contextual influences on

_these resident perceptions.

Although the two methods provided similar estimates in this study, researchers

cannot take it for granted that HLM and GSM will always yield similar estimates of

neighborhood-level variances and levels of autocorrelation. Whether or not they do may

depend crucially on the outcome being studied. For example, Chaix et al. (2005) found

much smaller neighborhood-level variances in their GSM models oftwo health care

utilization measures than in corresponding HLM models, even when they varied the size

of the geographic units used for grouping observations in the HLM models. The contrast

between their findings and the present findings suggests that HLM and GSM variance

estimates (and the autocorrelation estimates calculated from them) could differ from each

other more for some constructs than others. Coulton et al.’s (2004) observation that the

sensitivity of the ICC to changes in the size ofthe neighborhood units depended on the

specific construct being examined suggests that both the specific outcome and the size of

the neighborhood units in the HLM model may affect whether HLM and GSM yield

similar or different neighborhood-level variances.

Future research should consider that possibility that HLM and GSM will yield

different estimates of the variance components and levels of autocorrelation rather than

assuming they will turn out to be similar as they have in this study. If we accumulate

more empirical evidence from such comparisons, we may be able to better understand the

conditions under which such estimates are likely to converge or diverge. Next, the focus
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shifts to an issue that is frequently neglected in the HLM studies: The spatial scale on

which autocorrelation in perceived neighborhood problems was observed.

Spatial Scale of Autocorrelation for Perceived Neighborhood Problems

Understanding how far apart residents need to be before we can expect their

perceptions of neighborhood problems to be essentially independent of one another

provides researchers with a rough upper bound on the potential size of the neighborhood

areas that may influence residents. Comparing the spatial scale on which autocorrelation

was observed in perceived neighborhood problems with HLM and GSM offers another

way to answer the first research question. GSM methods routinely provide information

about the spatial scale of autocorrelation in the data (Banerjee, et al., 2004; Chaix, et al.,

2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Diggle

'& Ribeiro, 2007), but HLM studies are less likely to directly discuss this spatial aspect of

the phenomena being analyzed.

Spatial scale in HLM. Even if we accept the conceptualization of geographic

space and neighborhoods underlying HLM, we still must consider whether we are using

neighborhood units that are properly sized to capture the neighborhood-level variability

in outcomes. On one hand, a researcher who uses neighborhood units that are too large

compared to the neighborhood areas that are relevant to residents will effectively be

grouping together people who belong to different neighborhoods. On the other hand,

using neighborhood units that are too small would divide people from the same

neighborhood and place them in separate units. Either of these situations would dilute the

ability to detect neighborhood-level variance and the associated autocorrelation; they also

might make it harder to detect the effects of neighborhood-level variables. So, one

219



problem with HLM studies is that, with only a few notable exceptions (Coulton, et al.,

2004), researchers rarely report the sensitivity ofHLM results to the size of the

neighborhood units.

Given the way HLM is typically used, the only way to describe the spatial scale

on which autocorrelation exists in the outcome data being modeled is to describe the

geographic size of the neighborhood units that were used to group the residents. Because

those units are not required to be the same shape or size, they may vary in geographic

size, so one can usually get only a rough description ofhow far autocorrelation might

reach by looking at descriptive statistics about their size. That means HLM will rarely

provide precise information about issues of spatial scale even when authors are paying

close attention to that issue.

But, many HLM studies have not even directly reported the physical size of the

neighborhood units they used (Franzini, et al., 2008; Sampson & Raudenbush, 2004). The

common practice of using census tracts or block groups as neighborhood units usually

means that at least crude estimates of the size of the neighborhoods can in principle be

derived by analyzing GIS files available from the Census Bureau, but there is still a

serious problem with using census units to describe spatial scale. Their boundaries are

designed to contain approximately equal numbers of residents rather than approximately

equal land area (U.8. Census Bureau, 1994). Census tracts are intended to contain 2,500

to 8,000 residents, so they can vary dramatically in size because of varying population

densities. For example, the average of size of a census tract in Chicago is about 0.67 km2

(McMillen, 2003), but in a smaller and less densely populated city like Battle Creek, it is

7.14 kmz. So, stating there is neighborhood-level variability between neighborhoods
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defined in terms of census-based units is at best an indirect and vague statement about the

spatial scale ofthe autocorrelation in that may exist in a particular outcome measure.

The neighborhood clusters in this study were constructed by combining census

blocks in Battle Creek with either whole adjacent blocks or with the parts of adjacent

blocks facing the core block across the street serving as the boundary between them (Van

Egeren, et al., 2007). They were smaller than the block groups in Battle Creek partly

because there simply were not enough block groups in the city to achieve recommended

sample size at the neighborhood level f0r doing HLM analyses. Even though the strict

hierarchy in the physical size of census units (blocks are combined into block groups,

which are combined to form tracts; US. Census Bureau, 1994, 2002) suggests that the

clusters used in this study were far smaller than the tract-based neighborhoods used in

other studies, the size difference is not really as large as it might seem from just naming

the census units used to construct them. The clusters in this study were indeed physically

quite small, ranging from 0.026 to 0.472 km2 and averaging 0.083 kmz, but they are

much closer in physical size to the tracts found in a large city like Chicago than they are

to the size of tracts in Battle Creek. Chicago tracts are still larger then the clusters used

here, but that size difference is not as large as the one between the local block groups and

the clusters.

Spatial scale in GSM. GSM analyses provide a convenient method for learning

about the spatial scale of autocorrelation in the data. Information about this aspect of the

sample data is extracted from the same variogram model used to estimate the individual-

and neighborhood-level variance components. Depending on the shape ofthe variogram

used in the model, there is usually some type of range parameter that indicates how far
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spatial autocorrelation actually reaches (Banerjee, et al., 2004; Chaix, et al., 2006; Chaix,

Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Diggle & Ribeiro,

2007). The second hypothesis (H2) for this study predicted that the autocorrelation found

with GSM would extend far enough to reach across the borders between the clusters used

in the HLM models, which were for the most part not directly adjacent to each other.

That hypothesis was strongly supported. The GSM models for the present study

showed that the practical range of spatial autocorrelation detectable in these residents’

perceptions of neighborhood problems is about 3.0 km. This is slightly longer than the

median pairwise distance between the clusters used in the HLM analyses and it stretches

nearly one third ofthe distance across the study region. A circle with a 3.0 km radius

2 . . . . .

would enclose an area of 28.27 km . Thus, spatlal autocorrelation 1n tlus dataset persrsts

over a far larger geographic area than the typical size of the neighborhood units used in

the HLM models, which had an average area ofjust 0.08 kmz.

In terms of the spatial scale of autocorrelation in perceived neighborhood

problems, HLM and GSM provided rather different answers in this study. Using the

cluster boundaries to group residents and characterize the structure of autocorrelation in

these data without considering alternative possibilities would have ignored an important

spatial pattern in the data for this study. Relying solely on the published advice that HLM

researchers should use the smallest geographic units available to represent neighborhoods

(Roosa, et al., 2003) appears to be potentially risky: It can easily lead to a dramatic

mismatch between the spatial scalelon which autocorrelation and spatial variability exist

in the data and the size of the clusters used to represent neighborhood settings that
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supposedly account for that autocorrelation. Knowing the spatial scale on which

autocorrelation is detectable is useful because it provides an initial (though not definitive)

clue about the potential size of the neighborhood areas that may be relevant to the

outcomes among residents.

Modeling Autocorrelation: Spatial Versus Hierarchical Structure

Having established how much autocorrelation there was in residents’ perceived

problems and how far that autocorrelation reached, we still need to answer the second

research question: Which method (HLM or GSM) is more effective at modeling the

autocorrelation actually observed in data from neighborhood residents? The answer to

this is important because the simplest possible HLM and GSM models (called the empty

or null models) describe the essential structure of the data that we hope to explain by

adding predictors in subsequent models. Starting from a poor or inaccurate description of

the data does not position a researcher to draw the best possible scientific conclusions

about the phenomena of interest. Answering this question is also important because

evidence that the assumptions underlying a statistical model were violated should reduce

our confidence in the accuracy of its results, especially when a competing model does not

suffer from similar problems.

Four hypotheses were tested to answer this question (see Table 10). Overall, this

study found that some model fit criteria consistently indicated that GSM models fit better

than HLM, but others indicated very little difference. Examination of the residuals from

both methods revealed serious violations of the HLM assumptions but not of the GSM

assumptions.
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Comparing model fit. The evidence with respect to H3 was somewhat mixed.

The DIC values strongly and consistently favored the GSM models over the HLM .

models, indicating support for this hypothesis. However, there are two reasons to be

cautious about the DIC values. First, the GSM models consistently had larger numbers of

effective parameters (pD values) than the corresponding HLM models, so they were more

complex models. Perhaps the difference in fit is a result of that additional complexity,

rather than of a true difference in the structure of the underlying pattern of _l

autocorrelation. While the DIC incorporates a term to penalize complex models for using I I

additional effective parameters (Spiegelhalter, et al., 2002), the penalty term may not be a

perfect solution to the issue of deciding whether the difference in model fit is entirely an

artifact of the additional complexity. The present results are based on real data where the

true population parameters and underlying autocorrelation structure are unknown, so

while the present conclusions appear to be reasonable, controlled simulation studies will

be necessary to investigate this issue more fully.

Second, comparisons of other model fit indices after controlling for resident

characteristics indicated that the difference in fit between HLM and GSM was not so

stark. While HLM explained about 3% more neighborhood-level variance, GSM

explained about 0.4% more overall variance than HLM. These are surprisingly small

differences given the incredibly large differences in DIC values observed when testing

H3. The conflicting evidence offered by the various fit indices was unexpected, but

simulation work has shown that the DIC can successfully distinguish between alternative

covariance structures in longitudinal datasets (Barnett, Koper, Dobson, Schmiegelow, &

Manseau, 2010). It is possible that in this study, the DIC is demonstrating high sensitivity
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to the different covariance structures implied by HLM and GSM. That discrepancy

between the DIC and some of the other model fit indices may be partly explained by the

additional insights obtained from examining the HLM and GSM residuals to test

hypotheses H4-H6.

Diagnostic analyses ofHLM residuals. The diagnostic analyses of the HLM

residuals supported H4 by showing that there was still a substantial amount of spatial

autocorrelation remaining in both the individual- and neighborhood-level HLM residuals

for this sample. In fact, the PSRs for the level 1 HLM residuals were substantially higher

than the ICCs in the HLM models that produced those residuals. If a hierarchical

structure fit the data better than a spatial structure, then the level 1 HLM residuals should

represent only random error and they should not contain spatial patterns. But, adjusting

the raw data to account for which neighborhood cluster each resident lived in did not

leave behind only random error in those residuals: Residents who lived very close to each

other had more similar level 1 HLM residuals than residents who lived farther apart. At

the shortest distances, the autocorrelation in those residuals was actually higher than the

autocorrelation in the raw data!

Although that spatial autocorrelation had a rather limited range (less than 20 m),

this suggests that a hierarchical structure was not accounting for all the autocorrelation

that exists within neighborhood clusters. Given the very short range of this phenomenon,

one might suspect that using data from multiple people in the same household account for

this and that the HLM model should actually be a three-level model (residents nested

within households, which are then nested within neighborhood clusters). However, the

sampling design for this study rules out that explanation: The sample included only one
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resident per household. So why might there be such short range spatial autocorrelation in

residents’ perceptions even after adjusting for the overall effect of living in a specific

neighborhood cluster?

One possibility is that residents and their next-door neighbors influence each

other’s perceptions through social interaction more than residents who live farther apart.

Neighborly social contact provides ample opportunity for informal information sharing

about neighborhood issues that might shape people’s perceptions (Unger & Wandersman,

1985). Previous research has found that social ties in neighborhood networks decline with

 

increasing distance and that residents report that high proportions of their closest fiiends

live very close by (Greenbaum & Greenbaum, 1985). Fmthermore, Skogan and Maxfield

(1981) observed thatstrong neighborhood social ties led people to talk more to their

neighbors about local crime. They also found that those who talked to their neighbors

about crime were more likely to personally know local victims of crime and to fear crime

more, presumably as a result of what they called “vicarious victimization”. So, while the

level 2 HLM residuals in this study may be capturing information about the average level

of social connectedness and information sharing in each cluster, they may be leaving

behind some residual spatial structure in the level 1 residuals that could be driven by

residents exchanging more information with the neighbors who live closest to them than

they do with other neighbors in the cluster.

The level 2 HLM residuals in this study represent centered estimates of

neighborhood-level means for perceived neighborhood problems. Additional support for

H4 was provided by evidence that the neighborhood-level HLM residuals in this sample

also contained substantial spatial autocorrelation that decreased with increasing distance

226



between clusters. Thus, there was strong evidence that the standard HLM assumption of

independent neighborhood-level residuals had been violated in this study. This is

completely consistent with what one would expect given the long range spatial

autocorrelation detected by the initial GSM models.

The present study is the first to report such an analysis of the residuals from an

HLM model that sought to predict residents’ perceptions of neighborhood problems. That

makes it difficult to definitively determine whether this finding is generalizable or more

specific to this outcome, this sample, this study region, or some combination of these

 

factors. However, studies of other outcomes have also found evidence of spatial

autocorrelation in neighborhood-level residuals obtained from HLM analyses of Chicago

residents’ informal neighboring activities and their participation in neighborhood

organizing activities (Swaroop & Morenoff, 2006), French residents’ usage of specialist

physicians (Chaix, Merlo, & Chauvin, 2005), and substance abuse disorders among

residents of a Swedish city (Chaix, Merlo, Subramanian, et al., 2005). These other studies

suggest that the present findings may not be unique, but replication of this finding is

certainly advisable before drawing strong conclusions about generalizability.

Again, a question arises about what could cause this neighborhood-level spatial

autocorrelation in perceived neighborhood problems. Just as the distance-decay pattern in

neighborhood social network connections (Greenbaum & Greenbaum, 1985) could

combine with information sharing between neighbors (Skogan & Maxfield, 1981; Unger

& Wandersman, 1985) to explain such a pattern on a smaller scale within neighborhoods,

the same thing can happen across the boundaries between clusters. Another possibility is

that adopting researcher-defmed cluster boundaries effectively introduces measurement
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error'b’ecausethese boundaries donot coincide with how residents would define their

neighborhoods (Swaroop & Morenoff, 2006). Finally, to the extent that crime, NSES,

and other neighborhood-level characteristics do in fact predict residents’ perceptions,

then the spatial distribution ofthose contextual characteristics and the spatial

arrangement of the clusters themselves should also play a role in inducing spatial

autocorrelation in those perceptions. ‘

The key finding here is that, at least for this sample, the independence assumption

for the HLM residuals was violated at both levels of analysis. Thus, the DIC values

favoring the GSM models over the HLM models may be picking up on a mis-specified

error structure in the HLM models. That might be a finding specific to the present

dataset, but even if that is the case, it remains important to the current study because

relying on a mis-specified model is not a sound statistical practice when we have an

alternative model that may be better suited to analyzing the data at hand. The conclusion

that the DIC is discriminating between the two models on the basis of legitimate

differences in how well they match the underlying covariance structure in the data can be

bolstered by showing that the GSM model assumptions were not similarly violated, so

next the discussion turns to interpreting the diagnostic analyses of the GSM residuals.

Diagnostic analyses ofGSM residuals. The GSM models did a much better job

than HLM of producing level 1 residuals that were purged of autocorrelation, providing

partial support for H5. It is only partial support because H5 predicted that the there would

be no evidence at all of remaining autocorrelation in those residuals. Instead, there was a

significant, but small amount ofhierarchically structured autocorrelation remaining in the

individual-level GSM residuals. However, the ICC for those residuals was more than 20
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percentage points lowerthan the PSRfrom-the models that producedthem in the first

place. So, we can conclude that the variograms in the GSM models were accounting for

most of the autocorrelation and did an excellent job of separating individual-level and

neighborhood-level variance.

In H6, it was predicted that the neighborhood-level residuals from the GSM

models would appear to contain hierarchical autocorrelation, but at a lower level than the

amount of spatial autocorrelation observed in the GSM model that produced the

residuals. HLM was unable to detect much ofany individual-level, within-cluster

variance in those GSM neighborhood-level residuals (this variance component was very

close to zero). As a result, even though HLM actually detected a smaller amount of

neighborhood-level variance than was present in the original GSM model, the ICC for the

residuals was very close to 1 (indicating almost perfect hierarchical autocorrelation). This

means that a researcher relying only on HLM to analyze the present data could easily, but

mistakenly, conclude that the data conform to the hierarchical structure assumed in HLM,

when in fact a distance-decay pattern of spatial autocorrelation provides a more accurate

description of the data.

In hindsight, this should not be surprising though because the observations within

a cluster are generally closer to each other than they are to observations in most of the

other clusters. Thus having a dataset that closely matched the pattern modeled by the

variogram built into the GSM approach virtually guaranteed this result. Still, H6 was only

partly supported because the initial prediction failed to anticipate that looking for

hierarchical structure in a set ofGSM residuals already purged of individual-level

variance would increase rather than decrease the apparent levels of autocorrelation.
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Summary. Overall, the evidence from testing H3 — H6 suggest that the GSM

models do more accurately describe the data than the HLM models, both before and after

controlling for neighborhood composition. Because the GSM residuals behaved largely

as expected, but the HLM residuals did not, we can conclude that the answer to the

second research question is that GSM provided a better model for the autocorrelation in

these data than HLM. Thus, the standard HLM models are mis-specified because they

ignore the information conveyed by the spatial arrangement of the residents and

neighborhood units in this sample: They focus too much on place and neglect the role of

the space in which those people and places are embedded.

While this result may be specific to the present data, there are examples in the

literature of other studies that have also observed spatial patterns remaining after HLM

analyses (Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005;

Swaroop & Morenoff, 2006). At a minimum, researchers using HLM to examine

neighborhood effects should test for residual spatial autocorrelation. If they find it, they

should strongly consider at least modifying the default HLM assumption that

neighborhoods are independent (Beard, 2008; W. Browne & Goldstein, in press). Failure

to do so incurs a risk of inflated Type I error that parallels the risk associated with using

traditional OLS regression models instead ofHLM models when the data are

hierarchically structured.

Because adding spatial autocorrelation to an HLM model is not supported in

many HLM software packages, doing so may require switching to software that supports

a flexible, fully Bayesian approach to estimating HLM models. WinBUGS (Lunn, et al.,

2000) is one option because it supports adding a conditional autoregressive (CAR)
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structure to the neighborhood-level part of an HLM model (Fagg, et al., 2008; Thomas, et

al., 2004). However, moving from a standard HLM model to a CAR HLM model is not

the only option. Researchers observing residual spatial autocorrelation in their HLM

models should also consider analyzing their data with a model such as GSM that is

explicitly designed to handle spatial patterns of autocorrelation. This may only be

feasible if they also have (or can obtain) precise location information for the residents

(e.g., addresses that can be geocoded to point-level spatial coordinates).

The discussion so far has focused on interpreting the results of comparing HLM

and GSM with respect to modeling neighborhood-level variance and autocorrelation, but

has not yet addressed what we can learn from comparing them with respect to testing the

effects of neighborhood-level predictors on resident outcomes. Exploring the former

issue was a necessary precursor, but the latter part of this study has more interesting

implications for neighborhood research. Hence, now the discussion moves on to interpret

the findings related to testing crime and NSES effects on residents’ perceptions of

neighborhood problems.

Testing Crime and NSES Effects

One of the primary aims in this study was to assess whether GSM provides a

valuable alternative to HLM for testing hypotheses about neighborhood effects. More

specifically, this study examined whether and to what extent two specific ecological

characteristics of the neighborhood context (neighborhood crime and NSES) explain the

levels of neighborhood problems reported by the residents in the sample. Thus, the study

examines a multilevel phenomenon with two levels of analysis: residents and

neighborhoods. We must conceptualize and operationally define neighborhoods before
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we can_measurecrime and NSES for those neighborhoods 03inney, 2000). The crux of

this study is that how we do that has important consequences for what we can learn about

the phenomena we are studying.

Conceptualizing and defining neighborhoods. The introduction and literature

review above noted that HLM and GSM draw on different conceptualizations of

geographic space and neighborhoods as places within that space. HLM relies on a

discontinuous view of geographic space that treats neighborhoods as ecological settings

that occupy geographic places with fixed, non-overlapping boundaries and possess

contextual characteristics reflecting local conditions inside those boundaries. Most

neighborhood studies using HLM adopt census tracts or block groups to operationalize

neighborhoods (Leventhal & Brooks-Gunn, 2000; Roosa et al., 2003; Sampson et al.,

2002), thereby inheriting a convenient, well-known, and hierarchically organized

boundary system that is thoroughly grounded in that discontinuous view of space (US.

Census Bureau, 1994, 2002).

There are several potential problems with the discontinuous conceptualization of

space and neighborhoods. First, the specific boundaries chosen to define neighborhoods

can affect the values of contextual characteristics associated with them and the statistical

results obtained from analyses—this is the modifiable areal unit problem, or MAUP

(Bailey & Gatrell, 1995; Coulton, et al., 2004; Downey, 2006; Mowbray, et al., 2007).

Second, it fosters a modeling approach that ignores spatial proximity between residents

and proximity or contiguity between the neighborhood units (Downey, 2006; Mowbray,

et al., 2007). Third, it makes a strong assumption that the selected boundaries are

meaningful to (and agreed upon) by residents, and are equally appropriate for measuring
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all neighborhood-level characteristics. Fourth, it ignores potential spatial variation in

contextual conditions that may occur within the boundaries of the neighborhood unit

(Roosa, et al., 2003). Finally, it has little flexibility to address questions about the spatial

scale of the phenomena being studied.

GSM relies on a continuous view of geographic space that attends to spatial

proximity and spatial relationships between places (Chaix, et al., 2006; Chaix, Merlo, &

Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Downey, 2006). Adopting

Galster’s (2001) conceptualization of neighborhoods as “bundles of spatially-based

attributes associated with clusters of residences” (p. 2112) is consistent with this view of

space and emphasizes that neighborhoods are places that can be described as ecological

settings that are tied to geographic locations and possesses contextual characteristics

reflecting local conditions in the geographic areas surrounding those locations.

This conceptualization allows GSM to offer us more flexibility than HLM in how

we define neighborhoods for measuring constructs like crime and NSES because a

neighborhood no longer needs to have a single, fixed, and unambiguous geographic

boundary (Galster, 2001; Guo & Bhat, 2007). For example, we can use fixed boundaries

like those required in HLM studies, but we can also allow neighborhoods to partially

overlap, use different boundaries for measuring crime than we use to measure NSES, or

easily change the size of a neighborhood.

Allowing neighborhoods to partially overlap is consistent with research showing

that residents ofien disagree about neighborhoods boundaries (Coulton, et al., 2010;

Coulton, etal., 2004; Coulton, et al., 2001) and that the boundaries of places may really

be rather fuzzy and vague (Montello, et al., 2003). It is also consistent with the
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observation that most residents describe themselves as living in the center of their own

neighborhoods (Coulton, et al., 2001). For some ofthe GSM models in this study,

neighborhoods were defined with circular buffers centered on residents’ homes. This is a

simple method for creating “sliding neighborhoods” (Guo & Bhat, 2007) or “bespoke

neighborhoods” (Galster, 2008) that may be more closely aligned with these prior

findings fi'om the literature and address some of the problems with how neighborhoods

are defined for use in HLM (Guo & Bhat, 2007; Kruger, 2008; Meersman, 2005).

Very little previous research has explored the consequences of switching fi'om a

 

discontinuous conceptualization of geographic space and neighborhoods to a continuous

one. This study is a step toward filling that gap in the literature.

Comparing HLM and GSM. The HLM models in this study always measured

crime and NSES within fixed neighborhood cluster boundaries, but two types of

boundaries were used in the GSM models. Cluster-based GSM models measured crime

and NSES within the same boundaries used by the HLM models, while buffer-based

GSM models measured them in circular buffers. This enabled the study to pursue the

third research question for this study, which asked how GSM estimates of contextual

effects and model fit compare to HLM estimates. This is effectively also a question about

whether one conceptualization and operational definition of neighborhoods works better

than the other in practice.  
The corresponding hypothesis (H7) predicted that both model fit and the size of

the crime and NSES effects on perceived neighborhood problems would fall into a rank-

order with buffer-based GSM models performing best, followed by cluster-based GSM

models, and then HLM models. The three-way comparison used to test H7 was crucial
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for isolating whether the differences between the two methods were driven primarily by

how autocorrelation was modeled or by how neighborhoods were defined for

measurement purposes. In addition, the study also examined whether switching from a

standard HLM model to a CAR HLM model impacted the results.

The study also sought to answer a fourth research question, which asked how the

geographical scales on which different contextual factors operate (as estimated by GSM)

compare to each other and to the size of the neighborhood units used in HLM. The

prediction (H8) was that the optimal buffer sizes for measuring crime and NSES would

differ from one another and from the average size of the neighborhood areas used in the

HLM analysis.

Current findings. Even though the evidence was mixed with respect to support

for H7, this study found that the GSM models produced more credible analyses of the

present data than the HLM models because the latter depended on assumptions that were

violated while the former did not. Overall, the analyses showed that the circular buffers

used in some ofthe GSM models provided better operational neighborhood definitions

for measuring crime and NSES than the fixed cluster boundaries. In terms of predicting

residents’ perceptions ofneighborhood problems in these data, the standard HLM models

overestimated the effect ofNSES, but underestimated the effect of crime. The CAR HLM

model appeared to mostly correct the overestimation of the NSES effect, but failed to

correct for the underestimation of the crime effect.

Comparing modelfit. Once again, the DIC strongly and consistently indicated

that the GSM models fit the data better than the HLM models (including the CAR HLM

model). For most other indices of model fit, the findings were a bit more nuanced. GSM
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based on using the cluster boundaries to measure crime and NSES had either similar or

somewhat worse performance than either HLM or CAR HLM models. Correcting for the

mis-specified error structure in the HLM models by using cluster-based GSM models

instead appears to provide a more conservative assessment of model performance.

Meanwhile, buffer-based GSM generally performed better than standard HLM as

long as crime was in the model (alone or together with NSES) and it performed about the

same as CAR HLM. This suggests that crime may have been a more potent influence on

residents’ perceptions than NSES. It may also be a sign that the differences in

performance between GSM and HLM are likely to be greater when there is a large

disparity in the sizes of the neighborhood clusters used in the HLM models and the

optimal buffers used in the GSM models, as there was with crime in this study. Further

research (perhaps based on controlled simulations) could either support or refute that

possibility.

Spatial scale ofcrime andNSES. Because the results with respect to H8 are

crucial to the interpretation of the findings from testing H7, they are summarized first.

For this dataset, H8 was partially supported because GSM modeling revealed that the

optimal spatial scale for measuring crime (1.1 km radius) was far larger than the clusters

used in the HLM. However, it also revealed that the optimal spatial scale for measuring

NSES was approximately the same size as the clusters (a 0.2 km radius). A theoretical

interpretation of why these two contextual characteristics seem to be operating on such

disparate spatial scales is integrated into the next section.

Contextual efl'ect ofNSES. At least for the present dataset, HLM models

overestimated the size and statistical significance of the effect of a cluster-based measure
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ofNSES on residents’ perceptions of neighborhood problems because of the violated

assumptions about the independence of the residuals. Applying GSM instead resolved the

mis-specificed error structure and showed that while the cluster-based NSES measure did

not affect residents’ perceptions in these data, the buffer-based NSES with a 0.2 km

radius did affect those perceptions (just not as strongly as indicated in the HLM analysis).

Furthermore, switching from a standard HLM model to a CAR HLM model reduced the

discrepancy between the HLM and buffer-based GSM estimates of the NSES coefficient.

This suggests that the mis-specified neighborhood-level error structure in the standard

HLM models may have artificially inflated the NSES effect in the standard HLM

analyses.

That the two methods led to different conclusions about the effect of a cluster-

based measure ofNSES in this study has important implications for our theoretical

understanding of what shapes residents’ perceptions of their neighborhoods. They are

disagreeing about the importance of the stigma associated with poor neighborhoods as a

mechanism linking neighborhoods to resident perceptions of neighborhood problems.

With GSM, we were able to directly test whether the fixed cluster boundaries or buffers

better approximate the neighborhood settings that inform residents’ perceptions. The

answer here appears to be that the buffers work better for this purpose, but we could not

have even done such an analysis with HLM.

What could explain why these buffers appeared to be more psychologically

meaningful neighborhood areas than the clusters when it comes to measuring NSES? The

optimal buffers for NSES were similar in size to clusters (though the latter varied in size

somewhat), so it is unlikely that this is purely a matter of measuring NSES on the wrong
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spatial scale. Instead, we should consider that this study measured NSES in terms of

median residential property values. How could residents even perceive that neighborhood

characteristic and why would it influence their perceptions?

Property values are directly related to the physical quality of the housing, which

likely serves as a symbolic cue (Unger & Wandersman, 1985) to residents about the

socioeconomic status oftheir neighbors because families tend to move into better housing

when their incomes increase (Schill & Wachter, 1995). Presumably, residents are very

familiar with the quality of the housing immediately surrounding their own home because

they see it daily. They may also be more familiar with the housing occupied by the

people with whom they interact frequently than they are with the housing occupied by

people with whom they socialize less ofien.

If so, then the present results make sense in light of the fact that residents’ social

network connections and social travel appear to decline with increasing distance

(Greenbaum, 1982; Greenbaum & Greenbaum, 1985; Stutz, 1973; Wheeler & Stutz,

1971). Using the cluster boundaries implicitly assumes that only the housing within the

cluster is relevant (and that it is all equally relevant), but residents living on the edges of

the cluster may well be interacting with people just outside the border more often than

they interact with people on the far side of their cluster. There may also simply be some

important spatial variability in the local median housing values within some of the

clusters. The buffers might therefore be better capturing the group of people that a

resident interacts with and use to form their impressions about NSES, which

subsequently prime residents who live in poorer neighborhoods to perceive greater

problems because of the stigma that has accumulated as a result of the historical
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association between poverty and neighborhood problems (Franzini, et al., 2008; Sampson

& Raudenbush, 2004).

Contextual effect ofcrime. Unlike with NSES, HLM severely underestimated

the strength of crime’s effect on residents’ perceptions in this study. Indeed, the cluster-

based GSM models also severely underestimated the crime effect on perceived

neighborhood problems for the same reason. Buffer-based GSM models showed that

crime within 1.1 km of residents’ homes had a much stronger effect on perceived

neighborhood problems than the cluster-based crime effect observed with the HLM and

cluster-based GSM models. Switching to the CAR HLM model did not substantially

change the HLM estimate of the crime effect, so this difference in coefficients cannot be

explained by the difference in how autocorrelation was modeled. Consequently, we can

conclude that the clusters used in the HLM analysis were simply far too small compared

to the actual spatial scale on which crime mattered to the residents. This of course raises

the question of why the spatial scale for crime is so large, especially in comparison to the

spatial scale for NSES.

Again, we need to consider the nature of the phenomenon to better understand

this. Crime, especially the kind of violent crime represented by the measure used here, is

an extreme form of social disorder (Sampson & Raudenbush, 1999). Its presence in the

local neighborhood is highly salient to residents because it is a potential threat to their

well-being. People often fear being victimized by criminals, so they are motivated to

protect themselves by avoiding places and situations that would expose them to crime

(Gates & Rohe, 1987).
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But, to successfully avoid exposure to crime, residents need to know where it has

been occurring. Residents use multiple sources of information to learn about local crime,

including media reports, gossip from friends and neighbors, plus their own experience of

crime and direct observation of the local environment (Sampson & Raudenbush, 1999;

Skogan & Maxfield, 1981). Furthermore, the theory underlying behavioral geography

suggests that as people go about their daily life, they construct an “awareness space” that

expands outward beyond the area in which they engage in their activities (i.e., their

“activity space”) to encompass adjacent and surrounding areas as well (McCord, et al.,

2007). It makes sense that this awareness space would be quite expansive because

residents frequently travel outside their own neighborhood boundaries to shop, go to

work, visit fi'iends, and so on (Sastry, et al., 2002).

The larger spatial scale associated with the buffer-based crime effect in the GSM

models suggests that, with respect to crime, residents are attending to broader

neighborhoods than they use to inform their assessment ofNSES. This is consistent with

the idea that residents can and do think about their neighborhoods at multiple spatial

scales (Galster, 2001; Kearns & Parkinson, 2001; Suttles, 1972). Kearns and Parkinson

(2001) suggested that these different spatial scales ofneighborhood serve different

functions for residents, so it should not be surprising that different neighborhood

characteristics are more relevant at one scale than at another.

Implications for Defining Neighborhoods

O’Carnpo (2003) suggested that neighborhood researchers might need to try using

multiple operational definitions of neighborhoods within the same study. This study did

that in two different ways: it varied whether each neighborhood-level characteristic was
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measured within discrete cluster boundaries or buffer-based boundaries, and it allowed

the Mo neighborhood characteristics to be measured within different size buffers so that

multiple neighborhood definitions were in use in the context of a single model. The best

results were obtained when crime and NSES were measured in buffers that differed

dramatically in size. Although HLM can in principle handle using multiple sizes of

neighborhood units (by using more than two levels of analysis), this is rarely done in

practice. It appears to be much easier to do this with GSM.

So, what can we learn about how to think about and define neighborhoods from

this study? One implication of the findings from this study is that researchers may need to

pay greater attention to how they define neighborhood boundaries for measuring

neighborhood-level characteristics. These results suggest that there are at least some

circumstances when it is useful to discard the constraints associated with taking a

discontinuous view of geographic space and embrace instead the ideas that

neighborhoods can sometimes overlap and that the most relevant neighborhood

boundaries for measuring contextual characteristics may depend on what you want to

measure (Galster, 2001; Kruger, 2008).

Doing that enabled this study to demonstrate that the neighborhood area most

meaningful for measuring the effect ofNSES on these residents was not identical to the

area most meaningful for measuring the effect of crime. While NSES was most

influential when measured in a small area smrounding a resident’s home, crime had to be

measured over a much larger area. This supports the value of adopting a more flexible

conceptualization of neighborhoods that does not demand that the same boundaries be

used to measure all neighborhood characteristics (Galster, 2001 ).
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Future researchers may be able to use the optimal buffer sizes for crime and

NSES observed in this study to inform what range of spatial scales might be worth

examining in their studies, but they should exercise caution in doing so. It seems

reasonable to expect that—in relative terms—NSES should perhaps be measured over a

smaller spatial area than crime, but the precise buffer sizes that worked in this study may

not work as well for other study regions. Researchers may benefit more from adopting

the strategy that was used in this study to determine the buffer sizes than from directly

trying to use the optimal buffer sizes reported here.

Implications for Community Interventions

The findings in the present study are not just about comparing two statistical

methods as an abstract, academic exercise. Comparing HLM and GSM as tools for

Studying neighborhood effects is important because the differences in their performance

could have practical implications for how research findings can inform community

intervention efforts. To explore those implications for the design of a hypothetical

community intervention set in the study region, we can examine the coefficients from the

models and translate them into estimates ofhow much change in either crime or NSES

would be required to achieve some substantively important amount of change in the mean

level of perceived neighborhood problems.

The outcome in this study has a standard deviation of 1.48 points (on a scale

ranging from 1 to 6). Let us assume the intervention team had determined that reducing

the mean level of perceived problems in a particular neighborhood by half a standard

deviation (0.5 "' 1.48 = 0.74 points) would produce some desired benefit for the residents.

If we want to know how much impact this hypothetical intervention would need to have
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on a contextual factor to achieve that goal, we can examine Table 11. This table uses the

model coefficients to predict how much crime and NSES would need to change to

produce such a shift in residents’ perceptions, depending on how the neighborhoods were

defined for measurement purposes and whether one uses the results from the HLM, CAR

HLM, or GSM models from this study.

Table 11: Amount of change required on each predictor to reduce mean perceived

problems by half a standard deviation (0.74 Points).
 

 

Target Area

Neighborhood 1 2 No. Crimes

Method Model Definition COCf- Change Goal (km ) To Prevent

Crime effect

, 2

HLM 5 Clusters 0018* -411 crimes/km 0.083 34

_ 2

CAR HLM 6 Clusters 0014* -529 crimes/km 0.083 44

, 2

GSM 5 Clusters 0013* -569 Games/km 0.083 47

. 2

GSM 58 1.1 km buffer 0200* -39 comes/km 3.838 142

NSES effect

HLM 5 Clusters -0.022* 8 33,636 0.083

CAR HLM 6 Clusters -0.018"‘ 8 41,1 I 1 0.083

GSM 5 Clusters -0.007 $ 105,714 0.083

GSM 58 0.2 km buffer .0.014* 8 52,857 0.126
 

Note: The outcome variable had SD = 1.48, so 0.5*SD = 0.74 points. The change goal values

represent how much change on a given predictor would be required to observe a 0.5 SD decrease in

mean perceived neighborhood problems based on the estimated model coefficients. Coef=

Coefficient.

2

In the models, crime was measured in units of 10 crimes/km and NSES was measured in $1,000

units.

* p < .05.

Crime effect. Table 11 shows that if we used the results ofHLM Model 5 to plan

a crime prevention effort, we might set a target of reducing crime density by 411

. 2 . . . . .
crimes/km . Assumlng we are working In a nelghborhood cluster of average srze (0.083

kmz), this model would tell us that we need to prevent 34 crimes inside that cluster

boundary (over the course of a year) to achieve the intended impact on residents’
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perceptions. The cluster-based GSM model yields a different answer, suggesting instead

that we would need to reduce crime density by 569 crimes/kmz. In a neighborhood of the

same size, we would need to actually prevent 47 crimes per year. Relying on the standard

HLM model therefore would put us at risk of setting the prevention target too low, which

could then lead to an under-powered intervention that is less likely to achieve the

intended outcome.

While it is useful to see that the CAR HLM model mostly corrects the

underestimation of the crime effect observed in HLM Model 5, Table 10 shows that the

findings ofGSM Model 58 tell a vastly different story about what would need to happen

in the prevention effort to achieve the desired outcome. First, the geographic scope of the

prevention effort would need to be dramatically expanded because crimes occurring far

outside the borders of a particular cluster still influence residents’ perceptions. Although

the target decrease in crime density is much smaller (39 crimes/kmz), that decrease

would have to happen over a far larger area (3.838 kmz) because the optimal buffer size

is so much larger than the clusters. As a result, a total of 142 crimes would need to be

prevented within this larger area to achieve the intended effect.

NSES effect. NSES was measured in terms ofmedian housing value, so an

intervention would generally require engaging in home improvement efforts that would

raise property values. An intervention relying on the findings from HLM Model 5 would

see that the model predicts that increasing the median housing value within a

neighborhood cluster by $33,636 would reduce the mean ofperceived neighborhood
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problems by half a standard deviation (see Table 11). Such an intervention would clearly

be a large and expensive undertaking.

Unfortunately, the results from GSM Model 5 suggest that even if that goal were

achieved, it would not have the desired effect because the latter model found that the

cluster-based measure ofNSES did not significantly influence perceived problems.

According to this GSM Model 5, it would take an increase in value more than three times

that size ($105,714) inside the cluster to achieve the intended improvement in residents’

perceptions. However, the buffer-based GSM Model 58 suggests that the situation is not

quite so grim: Increasing the median housing value by $52,857 over an area about 1.5

times the size of the typical cluster would achieve the intended improvement in residents’

perceptions. So, compared to the buffer-based GSM model, a prevention goal set

according to the HLM model results would both aim for too small a change in NSES and

target a geographic area that would be slightly too small. While relying on the CAR HLM

model instead would lead to adopting a change target ($41,111) somewhat closer to that

of the buffer-based GSM model, it would still lead the intervention to aim for too small a

change over too small an area to really achieve the intended effect.

Summary. The way we conceptualize and operationally define neighborhood

boundaries for the purpose of measuring contextual characteristics like crime and NSES

would have important consequences if we wished to use the present research findings to

inform the planning and execution of a community intervention designed to change

residents’ perceptions of neighborhood problems. The HLM and GSM models reported

here produced rather different pictures of what it would take to shift those perceptions by

the same amount.

245

 

 



With this sample, the buffer-based GSM models provided more credible results

than the HLM models. At least for this study region, relying on the HLM results would

put us at risk of setting intervention goals that are too low to have the desired impact on

outcomes. The essential message emerging fi'om this comparison is that how we define

neighborhoods and how we test the effects of neighborhood characteristics could matter a

great deal when we go to apply those findings.

“Feasibility of Applying GSM in Community Psychology Research

Although GSM did generate interesting and important findings that differed from

the HLM findings in this study, implementing this method was a significant challenge on

several fronts. First, there was a substantial amount of sophisticated data management

work involved in linking various GIS shapefiles to prepare the dataset. Second, it was

necessary to spend time learning about the Bayesian approach to statistics and statistical

inference because the software used (Finley, et al., 2007, 2009) relied on a Bayesian

modeling fiamework. Bayesian models are rarely used in our discipline, so there were

few examples that could serve as models for some of the methodological choices

involved (e.g., choosing appropriate prior distributions).

Third, applying GSM to a dataset with large sample of residents (N = 1,049 in this

study) was especially computationally demanding. On average, running three MCMC

chains for a single GSM model consmned over 6 days’ worth of total computing time on

a server or a powerful desktop computer. That can be done in two calendar days if the

chains are run on different computers or on a server with multiple processors. The series

ofGSM models presented above cumulatively consumed over 120 days of computing

time on a fairly new and powerful network server. This may pose a particular challenge
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for most community psychologists, who may not have easy access to computers powerful

enough to make running GSM models on large datasets feasible, especially when the

MCMC chains must be run for many thousands of iterations.

Although the present study did not take advantage of one, some universities have

established high-performance computing centers. It is possible that the computer

hardware and software infrastructure offered by such a facility could have decreased the

amount of time it would take to run the analyses. The tradeoff associated with using the

parallel processing capabilities of such facilities is that doing so often involves more

complex and specialized computer programming. However, some such centers offer

technical assistance or consulting services that may make using their facilities easier.

To make applying GSM more feasible for community psychologists, the best

strategy may be to engage in interdisciplinary collaboration (Maton, et al., 2006) with

researchers who have expertise in working with GIS tools, spatial data analysis

techniques, and the Bayesian modeling framework. Such individuals will probably be

found in academic disciplines such as geography, ecology, natural resources, and

statistics.

Limitations

As the literature review illustrated, taking a close look at how geographic space

and neighborhoods are conceptualized raises a host of issues, many of which are difficult

to disentangle. This study was only able to address some ofthem, and even there it was

only investigating a single outcome measure in a single sample. This restricts the

generalizability of the results in several ways.
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This study cannot tell us whether applying both HLM and GSM to other

outcomes will generate similar results. Perceived neighborhood problems was selected as

the target outcome for this study specifically because prior research had found evidence

of spatial autocorrelation in adolescents’ perceptions of neighborhood disorder (Bass &

Lambert, 2004). It is possible that this outcome is the exception rather than the rule and

that other constructs will not demonstrate such a clear pattern of spatial autocorrelation

that decays as a function of distance. Because so few social science outcomes have yet

been examined with geostatistical methods of any kind, the literature is currently too

sparse to provide community psychologists with a reliable guide to which outcomes

might be best analyzed with HLM and which would be better analyzed with GSM.

Another limit on the generalizability of these results is that most neighborhood

research is conducted with residents of much larger cities (Franzini, et al., 2008; Sampson

& Raudenbush, 2004; Sampson, et al., 1997), but this study focused on a sample from a

single, small city. Battle Creek is not the same kind ofplace as a large city like Chicago

or Baltimore. The experience of neighborhood life in a small city may simply be quite

different than it is in larger, more densely populated urban environments. Replicating this

study with data from additional study sites (i.e., different cities) would provide insight

into the generalizability of its findings to other samples and geographic areas.

This study serves more as a proof-of-concept that GSM can outperform HLM

under certain circumstances than as a thorough assessment of whether GSM will reliably

do so for a wide range of outcomes and samples. There is still a great deal of work to do

to establish the conditions under which each of the two statistical methods works best.
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One inherent limitation ofGSM relative to HLM is that it cannot easily be used to

simultaneously analyze data from multiple cities. For example, Coulton et al. (2004)

pooled data from neighborhoods in ten different cities that are scattered across the US

and analyzed the combined data with HLM. This is not really feasible with GSM. The

vast distances between cities would dramatically skew the distribution of pairwise

distances between residents. Spatial autocorrelation is usually considered a small-scale

phenomenon relative to the size of the study region. Any spatial autocorrelation between

people living in separate cities could not reasonably be construed as reflecting

neighborhood effects (it might be more properly be considered to reflect regional effects).

Overall, future researchers should probably look at GSM as a technique better suited for

studying neighborhoods within a single city.

Another issue limitation of GSM relative to HLM is that it requires precise

location information for every resident. Where privacy issues or practical concerns make

it difficult to obtain precise location data for each observation, HLM may be the better

methodological choice because it does not matter precisely where in a neighborhood each

resident lives: The only thing that matters is that the resident lives somewhere in that

neighborhood.

Directions for Future Research

There are a couple promising directions for future research that could build upon

the present study. One option is to pursue formal simulation studies to more rigorously

compare HLM and GSM. Another option is to explore alternative methods for defining

buffers in GSM models.
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Use simulation studies to compare HLM and GSM. Well-designed simulation

studies have exceptional value for comparing different statistical methods. Creating

datasets with known parameters and then analyzing them with both HLM and GSM

would allow us to draw strong conclusions about the conditions under which each

method performs well. A variety of factors could be manipulated in such simulations,

such as: the true underlying structure in the data; the level of autocorrelation; the number,

shapes, and spatial arrangement of neighborhood clusters; the numbers and spatial

arrangements of residents within those clusters; the spatial distributions ofthe predictors

and so on. This will certainly prove a challenging task. In the meantime, applying GSM

techniques to other existing datasets may be valuable because it will help us better

understand the method’s capabilities and limitations.

Explore alternative methods for defining buffers. While the present study used

circular buffers as a simple alternative to fixed cluster boundaries, doing that was only

one ofmany possible options for defining sliding neighborhoods (Guo & Bhat, 2007).

Having demonstrated a proof-of-concept that buffers have the potential to outperform

fixed neighborhood boundaries, it is worth asking whether there are yet better ways to

represent neighborhoods. Circular buffers are a rather crude approach to defining sliding

neighborhood boundaries because they implement a very simple rule to determine where

to place the edges of the buffer: From a target location, they simply travel outward along

a straight line in every direction to enclose the area within a specific distance threshold.

More sophisticated methods for creating buffers have been explored by

researchers in other academic disciplines. For example, a “network band” approach

defines the buffer as the area within a specific travel distance along the street network
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from the resident’s home (this replaces a simple straight-line distance threshold with one

based on the configuration of the local streets) (Guo & Bhat, 2007). Network band

buffers can be asymmetrical if the layout of the street network facilitates travel in some

directions more readily than others.

Another option might be to actually collect resident-defined boundaries, which

will almost certainly vary from resident to resident (Coulton, et al., 2001), and use those

in GSM models instead of algorithmically-defined buffers. Although labor intensive, this

would take residents’ word about the neighborhood area that matters to them at face

value. It would be quite interesting to explicitly test whether this would produce better

statistical results than other possible approaches to operationalizing neighborhoods.

Finally, Lee’s observation that individual-level characteristics are related to the

size of residents’ self-reported neighborhoods (Lee, 2001) suggests that it may be

interesting to pursue testing whether the optimal buffer size for specific neighborhood-

level characteristics is moderated by individual-level characteristics. Doing that was

outside the scope of this study, but it could be a fruitful direction for future research.

Conclusion

GSM proved to be a valuable alternative to HLM in this study. This new method

allowed the study to precisely quantify the distance over which autocorrelation in

residents’ perceptions of neighborhood problems persisted (3 km). Using it was crucial in

establishing that the cluster boundaries selected for use in the original data collection

effort provided neither the best method of grouping residents to detect and model spatial

variability in perceived neighborhood problems, nor the best operational definition of

neighborhoods for the purposes of measuring crime and NSES.
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Residents appear to have been influenced by the residential property values

associated with housing located within about 0.2 km of their own homes, but it would

take fairly radical changes in median housing values to effect substantial changes in

perceived neighborhood problems. Meanwhile, residents’s perceptions were quite

sensitive to the spatial density of violent crime occurring within 1.1 km of their homes.

The amount of change in crime that would be required to decrease perceived

neighborhood problems appears to be quite feasible: Preventing 147 crimes over the

course of one year seems like an achievable goal.

Perhaps the single strongest reason to consider further use ofGSM in community

psychology is that it allows us to question the conventional assumption that census tracts

and other arbitrary neighborhood units are good proxies for meaningful neighborhoods

and test new ways of representing neighborhoods that may be more closely aligned with

what we know about how residents think about their own neighborhoods.
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Table 12: Parameter estimates and model fit statistics for GSM Models 15-17 and 31-33.

Model 15 (1.0 km crime buffer) Model 1611.1 km crime buffer)

 

 

 

 

 

 

 

 

 

Parameter P. Mean 95% CI t P. Mean 95% Cl t

L2 fixed effects

Intercept 3.745 [3.489, 3.949] 32.28 3.754 [3.517, 3.961] 32.52

Crime (buffer) 0.227 [0.148, 0.293] 6.22 0.263 [0.187, 0.337] 6.98

NSES (buffer)

L1 fixed effects

Age(years)

36-55 0.145 {-0.045, 0.337] 1.49 0.144 {-0.045, 0.336] 1.48

2 56 0.168 {-0.089, 0.425] 1.28 0.176 {-0.081, 0.433] 1.34

Female 0.120 {-0.062, 0.303] 1.29 0.123 {-0.061, 0.308] 1.30

Race

Black -0.252 {-0471, -0.039] -2.29 -0.251 {-0.470, -0.034] -2.26

Hispanic -0.030 {-0.427, 0.364] -0.15 -0.040 {-0.434, 0.353] -0.20

Other -0.078 {-0.658, 0.501] -0.26 -0.075 {-0.647, 0.493] -0.25

Marital status

Married 0.033 {-0.183, 0.249] 0.29 0.034 {-0.184, 0.255] 0.30

Divorced 0.029 [-0.217, 0.280] 0.23 0.020 {-0.228, 0.267] 0.16

Widowed -0. 169 {-0.507, 0.166] -0.98 -0.163 {-0.501, 0.173] -0.96

Education

< High school -0.017 {-0.237, 0.201] -0.15 -0.014 {-0.232, 0.202] -0. 13

Undergraduate 0.111 {-0.107, 0.332] 0.99 0.115 {-0.103, 0.335] 1.04

Postgraduate 0.270 {-0.295, 0.834] 0.94 0.285 {-0.276, 0.841] 1.00

Employed -0.081 {-0.262, 0.100] -0.88 -0.082 {-0.263, 0.098] —0.89

Income (31,0005)

< 15 0.160 {—0.139, 0.457] 1.05 0.163 {-0.135, 0.458] 1.07

15-25 0008 {-0.296, 0.274] -0.06 -0.007 {-0.292, 0.275] -0.05

25-45 -0.014 {-0.279, 0.253] -0.11 -0.008 {-0.273, 0.252] -0.06

Home owner -0.240 {-0.432, -0.046] -2.42 -0.235 {-0.428, -0.041] -2.37

Children present 0.167 {-0.024, 0.361] 1.69 0.161 {-0.030, 0.353] 1.65

Random effects P. Mean 95% C1 PCV P. Mean 95% C1 PCV

L2 intercept 0.275 [0.161, 0.472] 0.559 0.266 [0.151, 0.480] 0.573

L1 residuals 1.487 [1.342, 1.640] 0.018 1.482 [1.338, 1.632] 0.021

PSR 0.155 [0.095, 0.243] 0.151 [0.092, 0.245]

Spatial parameter P. Mean 95% CI P. Mean 95% CI

Phi ((p) x 1000 3.972 [0.901, 8.603] 4.068 [0.731, 8.357]

Range (km) 0.754 [0.348, 3.324] 0.736 [0.358, 4.096]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,571.31 1,465.90 0.248 1,567.90 1,463.73 0.266

pD 105.41 104.16
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1

(individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in

variance from Model 1 (level-specific R ); pD = effective number ofparameters; Phi = rate of

2

decrease in autocorrelation (multiplied by 1,000 for display); PSR = partial sill ratio; R = overall

proportion of variance explained; Range = practical range of variogram.

Table 10 (cont’d)
 



 

Table 12 (cont’d)
 

Model 17 (1.2 km crim_e buffer) Model 31 (0.1 km NSES buffer)

 

 

 

 

 

 

 

Parameter P. Mean 95% C1 t P. Mean 95% CI t

L2 fixed effects ~

Intercept 3.743 [3.524, 3.947] 34.86 3.563 [3.078, 3.967] 15.99

Crime (buffer) 0.273 [0.189, 0.352] 6.66

NSES (buffer) -0.015 {-0.023, -0.006] -3.50

L1 fixed effects

Age(years)

36-55 0.149 {-0.041, 0.341] 1.53 0.141 {-0.050, 0.335] 1.44

2 56 0.174 {-0.083, 0.430] 1.33 0.178 {-0.079, 0.435] 1.36

Female 0.125 [-0.059, 0.307] 1.35 0.141 [-0.041, 0.326] 1.51

Race

Black -0.253 {-0.472, -0.039] -2.29 -0.259 {-0.479, -0.040] -2.32

Hispanic -0.044 {-0.438, 0.349] -0.22 -0.042 {-0.443, 0.357] -0.20

Other -0.079 {-0.652, 0.495] -0.27 -0.102 {-0.675, 0.476] -0.35

Marital status

Married 0.028 [-0.189, 0.247] 0.25 0.055 {-0.161, 0.273] 0.50

Divorced 0.018 [-0.229, 0.270] 0.15 0.018 {-0.230, 0.265] 0.14

Widowed -0.171 {-0.509, 0.167] -1.00 -0. 163 {-0.499, 0.174] -0.96

Education

< High school -0.022 {-0.240, 0.194] -0.20 -0.041 {-0.258, 0.173] -0.37

Undergraduate 0.107 {-0.112, 0.325] 0.96 0.134 {-0.081, 0.352] 1.21

Postgraduate 0.288 {-0.277, 0.853] 1.00 0.305 {-0.253, 0.869] 1.07

Employed -0.079 {-0.260, 0.103] -0.86 -0.079 {-0.259, 0.100] -0.86

Income ($1 ,0005)

< 15 0.154 [-0.143, 0.452] 1.01 0.124 {-0.174, 0.425] 0.81

15-25 -0.014 {-0.305, 0.272] -0.10 -0.017 {-0.300, 0.273] -0.12

25-45 0021 {-0.286, 0.242] -0.15 -0.045 {-0.305, 0.216] -0.34

Home owner -0.244 {-0.438, -0.050] -2.45 -0.229 {-0.423, -0.032] -2.28

Childrenpresent 0.158 {-0.036, 0.350] 1.60 0.156 {-0.034, 0.351] 1.59

Random effects P. Mean 95% CI PCV . Mean 95% CI PCV

L2 intercept 0.269 [0.160, 0.431] 0.568 0.434 [0.254, 0.742] 0.303

L1 residuals 1.485 [1.343, 1.634] 0.019 1.504 [1.365, 1.650] 0.006

PSR 0.152 [0.095, 0.230] 0.221 [0.143, 0.333]

Spatial parameter P. Mean 95% Cl . Mean 95% CI

Phi ((p) x 1000 3.690 [1.304, 7.757] 1.381 [0.723, 2.644]

Range (km) 0.812 [0.386, 2.298] 2.169 [1.133, 4.145]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,568.41 1,465.56 0.256 1,568.29 1,478.95 0.083

pD 102.85 ‘ 89.34
 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1

(individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in

variance from Model 1 (level-specific R ); pD = effective number ofparameters; Phi = rate of

2

decrease in autocorrelation (multiplied by 1,000 for display); PSR = partial sill ratio; R = overall

proportion of variance explained; Range = practical range of variogram.
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Table 12 (cont’d)
 

Model 32 (0.2 km NSES buffer) Model 33 {0.3 km NSES buffer)

 

 

 

 

 

 

 

Parameter P. Mean 95% Cl t P. Mean 95% Cl t

L2 fixed effects

Intercept 3.606 [3.159, 3.968] 17.79 3.614 [3.203, 3.947] 19.55

Crime (buffer)

NSES (buffer) -0.021 {-0.031, -0.010] -3.92 -0.022 {-0.034, -0.010] -3.66

L1 fixed effects

Age(years)

36-55 0.149 {-0.040, 0.339] 1.53 0.146 {-0.044, 0.337] 1.50

2 56 0.185 {-0.075, 0.441] 1.41 0.163 {-0.094, 0.418] 1.25

Female 0.124 [-0.059, 0.307] 1.34 0.123 {-0.060, 0.304] 1.32

Race .

Black 0261 {-0.481, -0.040] -2.34 -0.266 {-0.485, -0.046] -2.37

Hispanic -0.044 {-0.440, 0.347] -0.22 -0.054 {-0.455, 0.340] -0.27

Other -0.111 {-0.682, 0.465] -0.38 -0.106 {-0.686, 0.478] ~0.36

Marital status

Married 0.056 {-0.161, 0.271] 0.51 0.053 {-0.162, 0.271] 0.48

Divorced 0.030 {-0.215, 0.277] 0.24 0.025 {-0.222, 0.272] 0.20

Widowed -0.l60 {-0.498, 0.176] -0.94 -0.148 {-0.482, 0.189] -0.87

Education

< High school -0.037 {-0.255, 0.182] -0.33 -0.040 {-0.258, 0.178] -0.36

Undergraduate 0.128 {-0.093, 0.345] 1.15 0.127 {-0.092, 0.345] 1.15

Postgraduate 0.299 [-0.270, 0.866] 1.04 0.317 {-0.251, 0.875] 1.11

Employed -0.083 . {-0.265, 0.097] -0.89 -0.078 {-0.257, 0.102] -0.85

Income (81,0005)

< 15 0.128 [-0.170, 0.429] 0.84 0.142 {-0.153, 0.441] 0.94

15-25 -0.003 {-0.287, 0.282] -0.02 -0.004 {-0.287, 0.284] -0.03

2545 -0.032 {-0.299, 0.232] -0.24 -0.018 {-0.279, 0.243] -0.13

Home owner -0.233 {-0.429, -0.038] -2.33 -0.235 {-0.432, -0.038] -2.35

Children present 0.163 {-0.030, 0.355] 1.66 0.160 {-0.034, 0.352] 1.63

Random effects P. Mean 95% CI PCV P. Mean 95% CI PCV

L2 intercept 0.397 [0.226, 0.676] 0.361 0.387 [0.227, 0.657] 0.378

L1 residuals 1.498 [1.361, 1.644] 0.010 1.497 [1.359, 1.646] 0.011

PSR 0.207 [0.128, 0.312] 0.203 [0.128, 0.308]

Spatial parameter P. Mean 95% CI P. Mean 95% Cl

Phi ((p) x 1000 1.659 [0.693, 3.526] 1.891 [0.773, 3.851]

Range (km) 1.805 [0.850, 4.326] 1.584 [0.778, 3.874]

Model fit index DIC Deviance R2 DIC Deviance R2

Statistic 1,566.96 1,475.20 0.1 17 1,569.42 1,473.67 0.121

pD 91.77 95.75

 

 

Note: Estimates obtained with Bayesian Markov chain Monte Carlo estimation via Gibbs sampling.

95% CI = central 95% credible interval; DIC = deviance information criterion; L1 = level 1

(individual); L2 = level 2 (neighborhood); P. Mean = posterior mean; PCV = proportional change in

variance from Model 1 (level-specific R ); pD = effective number of parameters; Phi = rate of

2

decrease in autocorrelation (multiplied by 1,000 for display); PSR = partial sill ratio; R = overall

proportion of variance explained; Range = practical range of variogram.
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