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ABSTRACT

USING GEOSTATISTICAL MODELS TO STUDY NEIGHBORHOOD

EFFECTS: AN ALTERNATIVE TO USINgyI—IIERARCHICAL LINEAR MODELS
Steven James Pierce

Neighborhoods are important ecological contexts that influence the development,
behavior, health, and welfare of their residents. Community psychologists studying
neighborhood effects usually turn to hierarchical linear modeling (HLM) to test
multilevel theories that explain neighborhood effects by examining the links between
neighborhood characteristics and resident outcomes.

Geostatistical modeling (GSM) can also test such theories, but it relies on a
different way of conceptualizing neighborhoods than used in HLM and few social
scientists have ever applied this method. This study developed an argument for why GSM
may be a valuable alternative to HLM, then applied both methods to study the effects of
neighborhood crime and neighborhood socioeconomic status (NSES) on residents’
perceptions of neighborhood problems. Applying them to the same data allowed the
study to examine the effect of varying the neighborhood boundaries used to measure
crime and NSES and to explore whether the conceptual and statistical differences
between HLM and GSM led to different scientific inferences about crime and NSES
effects on residents’ perceptions.

While HLM and GSM models detected similar amounts of neighborhood-level
variance and autocorrelation in perceived neighborhood problems, GSM provided a
better description of the data from this sample because crucial HLM assumptions about

the independence of the residuals were violated. The specific neighborhood boundaries



used to measure crime and NSES in this study had important implications for the size and
statistical significance of their effects.

For this sample, GSM showed that circular buffers centered on residents’ homes
provided better operational definitions of the neighborhoods than the fixed cluster
boundaries required by HLM. The HLM models overestimated the size and significance
of the NSES effect on perceived neighborhood problems due to inaccurate assumptions
about the residuals at both levels of analysis. The GSM models did not suffer problems
with their residuals and showed that while a cluster-based NSES measure did not affect
residents’ perceptions in these data, NSES measured in 0.2 km radius buffers around
residents’ homes did (but not as strongly as indicated by the HLM models).

The GSM models showed that residents’ perceptions of neighborhood problems
were more sensitive to crime occurring inside 1.1 km radius buffers around their homes
than they were to the level of crime occurring inside the much smaller neighborhood
cluster boundaries used in the HLM models. Thus, HLM underestimated how strongly
crime affected residents’ perceptions in this study because crime was not measured on the
- right spatial scale, despite following “best-practice” advice from the HLM literature to
choose the smallest neighborhood units that are feasible.

The study concludes by discussing the implications of the findings for
conceptualizing and operationally defining neighborhoods, measuring neighborhood-
level constructs, and applying research findings to inform community intervention
efforts. Future directions for research are suggested, as are some ways of dealing with the

practical issues of using GSM.
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USING GEOSTATISTICAL MODELS TO STUDY NEIGHBORHOOD EFFECTS: AN
ALTERNATIVE TO USING HIERARCHICAL LINEAR MODELS
INTRODUCTION

Neighborhoods are potent ecological contexts that influence the development,
behavior, health, and welfare of residents in a variety of ways (Gephart, 1997; Leventhal
& Brooks-Gunn, 2000; Sampson, Morenoff, & Gannon-Rowley, 2002; Shinn & Toohey,
2003). As a result, many social scientists have developed multilevel theories linking
neighborhood contextual conditions to outcomes for residents. Two recent papers
illustrate such theories. Roosa, Jones, Tein, and Cree (2003) proposed a theoretical model
where neighborhood characteristics influence residents’ perceptions and experiences;
those, in cascading fashion, then affect the ways that families and children react to
neighborhood conditions, which in turn mediate influence on outcomes for children.
Drawing on environmental stress and social disorganization theories, Kruger, Reischl,
and Gee (2007) found support for their hypothesis that neighborhood physical
deterioration would exert indirect effects on depression and stress through its impact on
residents’ social behaviors and their perceptions of social conditions in their
neighborhoods. Both papers describe multilevel theories because they propose that
neighborhood-level constructs represent contextual conditions that have consequences for
individual-level outcomes; they postulate the existence of cross-level effects (Shinn &
Rapkin, 2000) originating from the neighborhood level that, with appropriate research
design and analytical methods, can be empirically tested.

Arguing that multilevel theories demand analytical methods that better capture,

represent, and answer questions about context, Luke (2005) recommended that



community psychologists testing these theories increase their use of hierarchical linear
modeling (HLM) and geographic information systems (GIS). HLM is an extension of
regression that is designed to handle grouped data in which the intercept and/or slope
coefficients are allowed to vary from group to group (Gelman & Hill, 2007; Raudenbush
& Bryk, 2002; Shinn & Rapkin, 2000). Researchers can apply HLM in neighborhood
research by grouping residents according to the neighborhoods in which they live.

GIS generally refers to software used for capturing, storing, and managing
spatially-referenced data and then displaying those data with maps (Haining, 2003), but it
also includes methods for spatial statistical analysis (Bailey & Gatrell, 1995; Haining,
2003; Luke, 2005). Because neighborhoods can be viewed as geographic places (Burton,
Price-Spratlen, & Spencer, 1997; Coulton, Cook, & Irwin, 2004; Diez Roux, 2001;
Gephart, 1997; Guest & Lee, 1984; Lee, 2001; Lee & Campbell, 1997; Leventhal &
Brooks-Gunn, 2000; Sampson, et al., 2002) GIS statistical methods may also be
applicable to neighborhood research.

Both HLM and GIS methods can link contextual characteristics of neighborhoods
to outcomes among residents in ways that are consistent with multilevel theories and both

also offer potential solutions to the statistical problem posed by the lack of independence

among observations1 in the samples needed to test theories about neighborhood effects
(Haining, 2003; Raudenbush & Bryk, 2002). When the values of the same variable from
different observations in a dataset are not independent from each other, they are said to be
autocorrelated. The presence of autocorrelation simply means there is some structured

relationship between the values of that variable associated with different observations.

Violating the independence assumption in a regression model inflates the Type I error rate for statistical
inferences about the regression coefficients because the standard errors are underestimated.



From a statistical perspective, the idea that neighborhoods influence residents implies that
they somehow induce whatever autocorrelation exists in resident outcomes. Therefore, it
is necessary to find an appropriate way to describe that autocorrelation and to build
statistical models that can explain it. The two types of autocorrelation relevant to this
study—hierarchical autocorrelation (associated with HLM) and spatial autocorrelation
(associated with GIS methods)—are alternative ways of describing and modeling the
structures that could be observed in a dataset if neighborhood effects are present. So, both
of the methods advocated by Luke (2005) can be employed in neighborhood research, but
they have not been applied with equal frequency in our discipline and have rarely been
compared. HLM has been the tool of choice for quantitative studies of neighborhood
effects recently, leaving GIS methods underutilized.

This study identifies some limitations associated with using HLM to study
neighborhood effects, then develops an argument for why a specific GIS method called
geostatistical modeling (GSM) (Chaix, et al., 2006; Chaix, Merlo, & Chauvin, 2005;
Chaix, Merlo, Subramanian, Lynch, & Chauvin, 2005) may be a valuable alternative to
HLM. GSM is an extension of regression designed for analyzing relationships between
variables whén the spatial locations of the observations are known. In HLM, geographic
space is conceptualized as a discontinuous phenomenon that is divided into discrete
neighborhood units with fixed boundaries, while in GSM geographic space is
conceptualized as a continuous phenomenon in which neighborhoods are more loosely
defined as the areas immediately surrounding particular locations. This study compared
the results of applying both HLM and GSM methods to a single set of data to examine

whether the conceptual differences between HLM and GSM led to differences in their



statistical performance and in the scientific inferences they allow us to make about the
phenomena under study that warrant further use of GSM.
Using HLM to Study Neighborhood Effects

Until now, most community psychologists have relied on HLM for answering
questions about contextual effects, perhaps because its terminology maps directly onto
the levels of analysis in our theories (Luke, 2005) and it provides the flexibility to test a
wide range of multilevel hypotheses (Merlo, 2003; Merlo, et al., 2006; Merlo, Chaix,
Yang, Lynch, & Rastam, 2005a, 2005b; Merlo, Yang, Chaix, Lynch, & Rastam, 2005).
The consensus, both within community psychology and in other social sciences, is that
HLM represents a substantial improvement over using ordinary least squares (OLS)
regression models to study contextual effects (Bingenheimer & Raudenbush, 2004; C.
Duncan, Jones, & Moon, 1998; Hofmann, Griffin, & Gavin, 2000; Roosa, et al., 2003).
One of the reasons for that viewpoint is that HLM explicitly models autocorrelation in the
data rather than assuming independence among the observations, which allows HLM to
control Type I error rates better than OLS regression.

In HLM studies of neighborhood effects, one of the key premises is that the
outcomes for different residents who belong to the same neighborhood are autocorrelated
because something about living in that specific neighborhood actually induces similarity
in the residents’ outcomes. For example, living in a high-crime neighborhood might
cause higher levels of fear among residents than living in a low-crime neighborhood.
Because the residents are hierarchically nested within neighborhoods in HLM, we can be
more specific and say that this method assumes a hierarchical autocorrelation structure:

Part of each person’s score on the outcome variable is assumed to be a shared residual



- component-that reflects the influence living in that specific neighborhood-has on its
residents.

The popularity of HLM among community psychologists for quantitative studies
of neighborhood effects is quite evident in the literature. Recent papers in the American
Journal of Community Psychology have used HLM to study neighborhood effects on
children’s behavior problems and cognitive development (Beyers, Bates, Pettit, & Dodge,
2003; Caughy, Nettles, & O'Campo, 2008; Caughy & O'Campo, 2006), residents’
perceptions of collective efficacy (T. E. Duncan, Duncan, Okut, Strycker, & Hix-Small,
2003), and use of illicit drugs among low-income women (Sunder, Grady, & Wu, 2007).
These and other researchers have used HLM to pursue questions about how much and in
what ways neighborhoods matter by treating them as ecological settings that occupy
geographic places with fixed, non-overlapping boundaries and possess contextual
characteristics reflecting local conditions inside those boundaries. For example, Sampson
and Raudenbush (2004) aggregated police, census, and observational data to create
contextual measures of crime, poverty, disorder, and other neighborhood conditions for
the block groups they used as neighborhoods in their HLM analyses.

Neighborhoods as places in discontinuous space. In focusing on neighborhoods
as geographic places, HLM studies ask how much resident outcomes vary from place to
place and what neighborhood characteristics predict that spatial variation in outcomes. To
answer those questions, most HLM studies operationalize neighborhoods with
administratively defined geographic units such as census tracts or block groups
(Leventhal & Brooks-Gunn, 2000; Roosa et al., 2003; Sampson et al., 2002). The U.S.

Census Bureau divides the nation into a hierarchically organized set of small geographic



units (see Figure 1) to facilitate the collection and tabulation of census data (U.S. Census
Bureau, 1994, 2002). Blocks are the smallest units in that boundary system, while block
groups are somewhat larger because each one is composed of multiple blocks and census
tracts are still larger units (each tract often encompasses multiple block groups). Tracts
are the units most routinely used for reporting census data.

Studies that use block groups or census tracts to operationalize neighborhoods
inherit a boundary system in which space is divided into units that occupy mutually
exclusive geographic areas (U.S. Census Bureau, 1994, 2002). That makes it easy to

unambiguously group residents into neighborhoods based on the locations of their homes,

which is crucial to ensuring that each resident is associated with only one neighborhood.2
That hierarchical nesting structure allows HLM to treat outcomes among residents of the
same neighborhood as correlated with each other but uncorrelated with the outcomes of
all other residents. Thus, this application of HLM relies on a discontinuous
conceptualization of geographic space that is fragmented into discrete, place-based
geographic units that do not overlap in order to group residents. Taking that view of
space facilitates detecting spatial variation in outcomes by modeling it as autocorrelation

that is a function of whether or not residents live in the same place.

2
If there are multiple levels of geographic units (e.g., block groups at level 2 and census tracts at level 3),
then the goal is to ensure that each resident is associated with only one geographic unit at each level.
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Figure 1: Hierarchical nesting of blocks and block groups within three census tracts in
Battle Creek, Michigan. The two larger tracts are subdivided into multiple block
groups, but the smallest tract contains only one block group; all block groups are
further subdivided into blocks. Source: Map produced by the author from GIS
files prepared by the U.S. Census Bureau (2007a, 2007b, 2007c).

The conceptualization of geographic space in neighborhood research also informs
decisions about measuring neighborhood characteristics. Viewing a neighborhood as a

discrete geographic unit that cannot overlap with other neighborhood units demands that



the boundary separating it from other neighborhoods be meaningful: people, objects, and
events inside the boundary are part of that setting, but anything outside the boundary is
part of a different neighborhood setting. So, the same boundary that groups residents into
a neighborhood should also be used to define the geographic area within which all
neighborhood-level characteristics should be measured, regardless of whether one is
aggregating survey data to measure collective efficacy (Sampson, Raudenbush, & Earls,
1997), police data to estimate crime rates (Sampson & Raudenbush, 2004), census data to
measure neighborhood poverty and racial composition (Franzini, Caughy, Nettles, &
O'Campo, 2008), or measuring some other characteristic of the neighborhood setting.
Using different boundaries for measuring a neighborhood characteristic than for grouping
residents (at a particular level of analysis) would be undesirable because it would
contaminate the measurements with data from outside the neighborhood setting.

Problems with neighborhoods as places in discontinuous space. The practice
of treating neighborhoods as places within discontinuous space leads to the modifiable
areal unit problem (MAUP), which breaks down into two more specific issues: the
boundary problem, and the scale problem (Downey, 2006). The MAUP refers to the
problems caused by the fact that there are many different ways in which a region can be
subdivided into smaller areal units. The boundary problem manifests when one considers
what might happen to the study results if the researcher changes where the boundaries
between units are placed while holding the number of units constant; the scale problem
manifests when one considers the potential impact of changing the number of the units
(and hence their size or geographic scale and also their boundaries). In either

manifestation of the MAUP, choosing different geographic definitions of the



neighborhood units would reallocate portions of the population from one unit to another
(thereby changing how people are grouped) and change the geographic area over which
neighborhood constructs are measured for each area (Bailey & Gatrell, 1995; Coulton et
al., 2004). As a result, the variances of the neighborhood constructs would change, as
would their covariances and correlations with other variables (Downey, 2006).

Lack of meaningful boundaries. Despite its extensive use in neighborhood
research, HLM makes four assumptions that may be inconsistent with the underlying
phenomena in neighborhood research (Mowbray, et al., 2007), some of which are closely
related to aspects of the MAUP. First, HLM studies assume that the boundaries of a
neighborhood unit accurately group residents with the people they see as their neighbors
and adequately capture the geographic area of the neighborhood setting that reglly
matters in terms of influencing resident outcomes. There is some research evidence to
suggest that this is not always the case.

If neighborhoods are discrete, bounded entities, one would expect high agreement
on where their boundaries lie, but there tends to be low agreement on the precise
boundaries for particular places and residents’ notions of where the boundaries lie rarely
match those of census defined units (Coulton et al., 2004; Coulton, Korbin, Chan, & Su,
2001; Montello et al., 2003). Simply put, residents do not agree on where to draw
neighborhood boundaries. That challenges the validity of using census-based units to
define neighborhoods and suggests that we should pay more attention to how residents
define neighborhoods. How they define their own neighborhoods may be quite important
because it may affect whether events like crimes exert any contextual influence. For

example, crimes occurring inside what a resident considers his or her own neighborhood



may be more salient and more likely to influence the resident’s perception of
neighborhood safety than crimes occurring outside that neighborhood, regardless of
whether they occurred in the resident’s census tract. The lack of agreement among
residents about neighborhood boundaries makes it very difficult to argue that the kind of
fixed boundaries needed for use with HLM are equally suitable for capturing the
geographic areas relevant to different residents.

Furthermore, if neighborhoods are discrete, bounded entities, one would also
expect that their boundaries would be good at capturing the patterns of spatial variation in
all contextual measures. However, even if census-based neighborhood boundaries are
well suited for their intended purpose of measuring neighborhood demographic
characteristics, they are poorly suited to measuring other contextual characteristics that
were not considered when defining those boundaries, such as crime (McCord & Ratcliffe,
2007), because the spatial distributions of these other characteristics do not necessarily
match the spatial distributions of the demographic characteristics that informed the
selection of the census boundaries. This undermines the assumption that all neighborhood
characteristics should be measured in the same boundaries, further calling into question
whether the representation of neighborhoods in HLM is adequate.

| Without good reasons to believe that a particular discrete boundary system
represents a meaningful and widely agreed upon method for dividing a study region into
neighborhoods, the boundary problem associated with the MAUP takes on particular
significance. In essence, different boundaries lead to different answers about what
impacts (if any) neighborhoods actually have and there is little basis for singling out any

particular set of boundaries and declaring it the one that provides the best answers.
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Ignoring spatial proximity. Second, HLM focuses on residents’ own
neighborhoods, neglecting the fact that neighborhoods are embedded in a broader spatial
context. The spatial arrangement of residents and neighborhoods is important because
physical proximity plays a role in many aspects of daily life. For example, people living
close to each other but separated by the (typically arbitrary) boundary between two
census tracts may have more similar environments than people living on opposite ends of
a large tract (Downey, 2006) and they may even consider themselves to be part of the
same neighborhood (Coulton, Korbin, Chan, & Su, 2001). Routine activities such as
traveling to work, visiting friends and relatives, shopping, and attending religious
services can bring people into contact with other nearby block groups and residents
(Sastry, Pebley, & Zonta, 2002). So, the relevant neighborhood setting for a resident may
not really be confined to the boundaries of units like block groups or census tracts.

By ignoring spatial proximity between neighborhoods and treating them as if they
are independent of and disconnected from one another, HLM assumes that all spatial
correlation in resident outcomes is within-neighborhood correlation, but other spatial
patterns may be apparent in the actual data, such as correlation that declines as a function
of the distance between residents’ homes without regard to neighborhood boundaries
(Bass & Lambert, 2004; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et
al., 2005; Mowbray, et al., 2007). In short, most HLM analyses are purely place-based:
they attend to the importance of the (narrowly defined) places residents inhabit, but
ignore where those places are located in the wider geographical space and the potential

importance of other nearby places that may affect residents.
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Ignoring spatial variability in contextual conditions. Third, HLM assumes that
contextual conditions are identical for all residents within a neighborhood (Roosa, et al.,
2003). That amounts to asserting that residents are equally exposed to and affected by the
conditions, events, resources, and social processes in the neighborhood unit to which they
belong, regardless of where they live inside it. This may or may not be appropriate
depending on the size of the neighborhood unit and the nature of the characteristic in
question. A census tract with a high crime rate may contain a block plagued by frequent
.crimes, but otherwise consist of blocks where crime is rare. Surely the local environment
with respect to crime is different for residents of the block experiencing the crime hotspot
than for residents living elsewhere in the same tract, but a tract-level crime measure
would ignore that local spatial variability. HLM cannot represent spatial variability in
contextual conditions within neighborhood units without either entirely switching to
smaller neighborhood units (e.g., from tracts to blocks) or using multiple levels of
neighborhood units (e.g., both tracts and blocks) so that some characteristics could be
measured at one level while others could be measured at a different level. Pursuing either
of those options may increase the complexity of the research design and sampling
procedures and will increase the sample size required for the study. This limits HLM’s
utility whenever contextual conditions do indeed exhibit important spatial variability
within the selected neighborhood units.

Poor handling of spatial scale. Fourth, HLM is limited in its ability to answer
questions about the geographical or spatial scale on which neighborhood characteristics
influence outcomes. This usage of the term spatial scale refers to the size of the

geographic area over which neighborhood characteristics are measured. In HLM, the
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spatial scale for a contextual characteristic can be described by referring to the

geographic units of analysis (e.g., blocks, census tracts) for which it is measured.3
Because of the nested nature of census geography, block level measures are at a smaller
spatial scale than measures at the block group or tract levels (U.S. Census Bureau, 2002).
Finding the spatial scale at which a neighborhood characteristic operates requires
examining how the strength of its effect on outcomes changes as one varies the spatial
scale on which it is measured. The spatial scale associated with the measurement that
produces the strongest relationship with outcomes and the best model fit indices may be
considered the scale at which the neighborhood characteristic operates (Chaix, Merlo, &
Chauvin, 2005).

Without a priori theoretical reasons to expect that a particular spatial scale will be
the right one to use, it is insufficient to test for the effects of a neighborhood
characteristic at only one spatial scale because the scale chosen may be too small or too
large, leading to incorrect inferences about the magnitude and/or significance of that
predictor’s effect. The crime example above postulated a situation where there was
important spatial variability at the block level within a census tract. If residents are most
sensitive to crime occurring quite close to their homes, then measuring crime at the tract
level might obscure the relationship between crime and outcomes and it might be better
to use a smaller spatial scale (e.g., block-level) for the crime measure. If on the other
hand, residents are sensitive to crime within wider areas surrounding their homes, then a

block group or tract level measure of crime might be better than a block-level measure.

If those units vary in size, descriptive statistics for the amount of area they occupy should be reported.
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- - Unfortunately, HLM can only test the geographical scale on which contextual
conditions like crime rates matter by associating them with pre-assigned geographic units
_that differ in size, such as block groups and census tracts. That limits HLM’s flexibility
because the available geographic units may not be the right size to best capture the effect
of a specific contextual factor. In addition, few HLM studies of neighborhood effects
have assessed how sensitive their conclusions about the effects of contextual factors are
to varying the spatial scale of the neighborhood units. Instead, the (largely untested)
assumption appears to be that all contextual characteristics operate on the spatial scale
associated with the single set of neighborhood units selected by the researcher.

Summary. Neighborhood studies employing HLM methods have produced many
interesting findings, but as described above, there are a number of spatial issues that they
do not address well. One risk of using HLM is that it ignores the potential importance of
spatial proximity; as a result, we may underestimate the amount of variability attributable
to neighborhoods if the underlying pattern of autocorrelation in the data is not really
hierarchically structured. Similarly, we may fail to detect, or underestimate the strength
of, the effects of theoretically important contextual characteristics when we use HLM if
the sizes or shapes of the neighborhood units used to measure those characteristics do not
match the geographic areas really relevant to residents. Finally, HLM provides imprecise
information about the spatial scale on which outcomes are autocorrelated and on which
neighborhood characteristics operate because it does not directly quantify these concepts.
Spatial scale can only be described in HLM approaches by describing the size of the
geographic units used, but because census-based units vary in size (U.S. Census Bureau,

1994, 2002), HLM provides only a crude method of addressing questions about spatial
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scale. Community psychology may benefit from examining alternative approaches to
defining neighborhoods and studying neighborhood effects that can address some of the
problems with HLM. GIS methods like GSM provide one such alternative.

Using GIS to Study Neighborhood Effects

Papers on GIS methods are just starting to appear in the community psychology
literature (Bass & Lambert, 2004; Kruger, 2008; Kruger, Reischl, & Gee, 2007;
Mowbray, et al., 2007), so there are few examples of how to apply GIS methods in our
discipline. Nevertheless, GIS methods hold great promise as tools for our discipline
because they allow researchers to adopt a more flexible conceptualization of geographic
space and of neighborhoods as places than HLM. In GIS approaches, a place can be
considered an ecological setting that is tied to a geographic location and possesses
contextual characteristics that reflect local conditions in the geographic area surrounding
that location. However, conceptualizing geographic space as a continuous rather than
discontinuous phenomenon allows us to discard some of the constraints tied to the
conceptualization of space required by HLM. Unlike in HLM, places do not need to have
sharp, fixed boundaries (Montello, Goodchild, Gottsegen, & Fohl, 2003) and they may
partially overlap with other places (Coulton, et al., 2004).

One of the advantages of GIS is that it gives researchers a framework that focuses
on both place and space. Places certainly play an important role in GIS approaches to
studying neighborhood effects: questions about how much resident outcomes vary from
place to place and what characteristics of places predict that spatial variation are just as
prominent in studies that use GIS methods as they are in HLM studies, if not more so.

However, unlike HLM, GIS methods like GSM do not ignore the fact that neighborhoods
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exist within a larger geographic space. Researchers using GSM can ask new questions
about the roles of spatial proximity and spatial scale in neighborhood phenomena and can
customize the neighborhood boundaries used to measure different contextual
characteristics, thereby addressing some of the problems with HLM.

Accounting for spatial proximity with GIS. Researchers can go beyond purely
place-based analyses by applying GIS methods that treat physical proximity and spatial
relationships between places as important features of the data (Chaix, et al., 2006; Chaix,
Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Downey, 2006).
Rather than ignoring proximity and spatial relationships, GIS-based analyses can attend
to these issues in ways that HLM does not by incorporating distance-based spatial
autocorrelation directly into statistical models. Spatial autocorrelation refers to the
phenomenon where the values on the same variable observed at different spatial locations
(such as at the homes of different residents) are correlated, usually to different degrees
based on how much distance lies between them (Bailey & Gatrell, 1995). This is a
slightly different way of thinking about autocorrelation than the hierarchical
autocorrelation structure used in HLM because now the relative positions of residents in
space are what matters. Spatial autocorrelation in GIS approaches depends on spatial
proximity between residents, not simply whether or not they live in the same arbitrary
neighborhood boundary (such as a particular census tract).

For example, Bass and Lambert (2004) used a type of GIS-based spatial analysis

called the variogram4 to show that perceptions of neighborhood disorder were more

A variogram plots the average dissimilarity (i.e., variance) in either raw variable values or residuals from
a statistical model (on the vertical axis) between data points separated by a particular physical distance (on
the horizontal axis; Goovaerts, 1997). Empirical variograms can usually be summarized by a mathematical

16



similar among adolescents who lived close together than among those who lived far
apart, regardless of whether they lived in the same or different census tracts, even after
controlling for levels of poverty, homicide, and juvenile arrest rates in the participants’
own census tracts. Their study suggests that some processes influencing residents span
the borders between census tracts and are a function of spatial proximity; it also
illustrates how GIS methods can detect and model spatial patterns that HLM cannot
handle because they require accounting for both place (e.g., census tract characteristics)
and space (e.g., spatial proximity between observations).

GIS methods like GSM account for spatial proximity through the way they model
autocorrelation as a decreasing function of the distance between observations (Banerjee,
Carlin, & Gelfand, 2004). So while HLM treats two observations as similar if they belong
to the same neighborhood unit regardless of the distance between them, GSM assumes
that the degree of similarity between any two observations largely depends on how far
apart they are located. GSM methods focus on spatial rather than hierarchical structure,
so they ignore things like census boundaries when modeling autocorrelation and focus on
the shape of the function relating autocorrelation to distance. This means researchers can
ask several questions about the nature of that spatial autocorrelation, such as: how far
does spatial autocorrelation reach for a particular outcome (i.e., what is the spatial scale
at which it is evident)? How quickly does spatial autocorrelation decrease as distance

between observations increases? What is the shape of the curve that describes how the

model that draws a smooth curve based on a few parameters. Spatial autocorrelation frequently manifests
as a curve showing low dissimilarity at short distances and rising toward a plateau or limit that indicates
that data are no longer autocorrelated after exceeding a certain distance between observations. Variograms
can be converted into either covariance or correlation metrics (i.e., from a dissimilarity measure into a
similarity measure), which will typically start with high values and then decrease with distance.
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level of spatial autocorrelation changes with increasing distance between observations?
None of these questions can be answered with HLM.

The models of autocorrelation implemented by HLM and GSM both serve to
group data so that researchers can detect spatial variability in outcomes. By estimating
neighborhood- and individual-level variance components, they provide the means for
quantifying autocorrelation. Despite the fact that GSM and HLM make different
assumptions about how to detect and model autocorrelation, both do so for the same
reason: accounting for autocorrelation allows them to correct for violations of the
independence assumption that otherwise cause regression models to perform poorly.

Measuring neighborhood characteristics with GIS. Although GSM does not
rely on neighborhood boundaries for grouping residents the way HLM does, one still
needs to draw neighborhood boundaries for the purpose of measuring neighborhood
characteristics when using GSM to study neighborhood effects. As noted above, any
given neighborhood boundary may serve quite well for capturing some contextual
characteristics, but poorly for capturing others. O’Campo (2003) suggested solving this
problem by using multiple operational definitions of neighborhood within the same study.
Other authors agree that the geographic area over which neighborhood characteristics are
most relevant to outcomes may depend on the specific characteristic in question and have
also suggested that different characteristics may need to be measured within different
boundaries surrounding a resident’s home (Galster, 2001; Kruger, 2008).

GIS provides this flexibility. For example, Kruger (2008) measured deterioration
of both residential and commercial buildings in circular buffers centered on each

resident’s home, but used buffers of different sizes for the two measures. He found that
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deteriq@ﬁgg 1_n commercwl buildi_ngs correlated most strongly with fear of crime when
measured in a 1.00 mile radius, but deterioration in residential buildings correlated most
strongly with fear of crime when measured in a 0.25 mile radius. Thus, different
geographical boundaries mattered for these two contextual variables when they are used
to predict fear of crime.

Kruger’s (2008) study also illustrates how neighborhoods can be allowed to
partially overlap in GIS analyses. Because the buffers were centered on residents’ homes,
each resident effectively had a unique neighborhood boundary for each contextual
measure. However, the neighborhood buffers for two residents living less than 0.25 miles
apart would substantially overlap; they would only be identical if the two residents lived
at the same location. Buffers surrounding participants’ homes have also been used to
operationalize neighborhood boundaries for measuring contextual conditions in
epidemiological studies that relied on GSM (Chaix, et al., 2006; Chaix, Merlo,
Subramanian, et al., 2005).

Using buffers to represent neighborhood boundaries that are positioned relative to
residents’ homes also allows GSM models to accommodate the fact that residents often
think of their homes as the center of their neighborhood (Coulton, et al., 2001). It may be
particularly useful when the contextual characteristic shows spatial variability within the
boundaries of the kinds of neighborhood units used in HLM. Allowing buffers to overlap
preserves the intuitive notion that people living close together are exposed to similar
environments, but permits people who are farther apart to have more distinct

neighborhood environments.
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Another advantage of GIS methods is that they enable researchers to construct
new kinds of contextual measures that take location and spatial relationships into
consideration and to easily vary the spatial scale on which those measures are calculated
(Haining, 2003; Luke, 2005). As an example of measuring contextual variables from a
spatial perspective, GIS could measure access to health care by calculating whether the
distance between a person’s home and the nearest health care provider is less than some
criterion, such as 2 km. Varying the spatial scale of that access measure is a simple matter
of changing the distance criterion (e.g., from 2 km to 4 km). This flexibility in varying
the spatial scale over which contextual factors are measured enables researchers to learn
more about the geographic scale on which contextual factors matter for residents by
comparing alternative models that differ only in the size of the area over which a measure
is calculated (Chaix, et al., 2006; Chaix, Merlo, Subramanian, et al., 2005).

HLM can examine the spatial scale on which neighborhood characteristics matter
by comparing models that differ in terms of the size of the neighborhood units, but only
when the data can be matched to another available type of geographic unit. In contrast,
GSM can directly examine the scale on which neighborhood characteristics matter even
when it is larger or smaller than available units by using buffers to represent
neighborhood boundaries (Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian
et al., 2005). This is useful because it allows researchers to (a) independently vary the
spatial scale on which different neighborhood characteristics are measured, (b) ask
questions about the spatial scale on which a particular neighborhood characteristic exerts
the strongest influence on outcomes (c), precisely quantify that scale, and (d) compare the

spatial scales on which different neighborhood characteristics operate.
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In an HLM framework, which requires a place-only conceptualization of
neighborhoods, the access to care measure described above might be reduced to
recording whether or not there was a health care provider in the resident’s neighborhood.
In other words, the measurement of the contextual variable is confined within the
perimeter of a neighborhood area that encloses a fixed, absolute portion of geographic
space. This approach has limitations, especially for people living near the edges of
neighborhoods, because it might treat people whose own neighborhood had no providers
but who could cross the street into another neighborhood to see a nearby provider as if
they had no access to care. GSM can solve that problem by using buffers that define the
neighborhood boundaries for the access to care measure so that they enclose the portion
of space immediately surrounding the resident’s home (out to some specified distance),
allowing the buffer to cross the boundaries of traditional neighborhood units like block
groups or census tracts.

Summary. GIS methods like GSM can address some of the limitations inherent
in the way neighborhoods must be defined in order to use HLM to study neighborhood
effects. The fact that community psychologists have rarely applied methods that can
address these spatial issues represents a missed opportunity. The relative neglect of GIS
methods means we are unnecessarily restricting the range of questions we can answer,
excluding important spatial issues from our theories, and failing to model spatial patterns
that may exist in our data. If we wish to understand neighborhood phenomena but do not
attend to the spatial aspects of those phenomena, we may be missing incredibly important
parts of the story and we risk arriving at inaccurate conclusions with respect to the role of

some contextual factors. Neighborhood research in community psychology will benefit
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from taking a closer look at the spatial issues surrounding how neighborhoods are defined
and testing alternative ways to represent them in our statistical models.
The Current Study: Comparing GSM and HLM

There has been little discussion in the community psychology literature about
whether there is a better way to represent neighborhoods and geographic space in
multilevel neighborhood research than that offered by HLM. Consistent with the call to
utilize GIS techniques and adopt statistical methods that reveal and explain a wider array
of patterns in our data (Luke, 2005; Mowbray et al., 2007), this study examined whether
GSM provides a valuable alternative to HLM for rigorously studying neighborhood
effects on residents—one that considers both place and space and that offers a wider
array of options for defining neighborhood boundaries.

So far, very few studies have directly compared HLM and GSM approaches to
studying neighborhood effects (Boyd, Flanders, Addiss, & Waller, 2005; Chaix, Merlo,
& Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). There are several differences
between these methods that may affect which one is better suited to the task of studying
neighborhood effects on residents. For example, the present study contributes to the
literature by investigating the relative value of two different conceptualizations of
geographic space and neighborhoods. The discontinuous view of space underlying how
neighborhoods are defined in HLM studies constrains how they are represented in
statistical analyses and is poorly aligned with some empirical findings about the nature of
neighborhoods. In contrast, the continuous view of space underlying GIS methods like

GSM may permit models to more closely match the nature of neighborhood phenomena.
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Focal constructs. This study used both HLM and GSM to quantify the amount of
autocorrelation in residents’ perceptions of neighborhood problems and to examine
whether neighborhood crime and neighborhood socioeconomic status (NSES) exert
contextual influences on those perceptions. It compared the HLM and GSM results in
order to answer the research questions laid out below. The study focused on perceived
neighborhood problems (Foster-Fishman, Cantillon, Pierce, & Van Egeren, 2007; Foster-
Fishman, Pierce, & Van Egeren, 2009) because both HLM methods (Coulton, et al.,
2004) and GIS methods (Bass & Lambert, 2004; Pierce, 2006) have previously found
evidence of neighborhood-level variability in this outcome, but no prior study has
examined it with both methods.

Crime and NSES (Leventhal & Brooks-Gunn, 2000; Sampson, et al., 2002) are
contextual predictors that appear frequently in the neighborhood effects literature, have
clear theoretical links with perceived problems, and can be measured within any set of
neighborhood boundaries by aggregating point-based crime incident and parcel-based
housing value data. In addition, crime and NSES are examples of neighborhood
characteristics that may not be adequately captured by the boundaries of census-based
units typically used in HLM studies (McCord & Ratcliffe, 2007).

Both neighborhood crime and NSES are salient to residents. Residents regard the
presence of crime as a problem (Sampson' & Raudenbush, 2004), while neighborhood
poverty is often associated with observable signs of social and physical disorder
(Sampson, 2001; Sampson, et al., 2002), hence both crime and NSES may predict
kperceivcd neighborhood problems simply because they are observable indicators of the

kinds of problems assessed in those perceptions. However, the stigma associated with
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poverty may also prime residents of poor neighborhoods to perceive more problems than
can be accounted for by observable disorder alone (Sampson & Raudenbush, 2004).

This study also controlled for several individual-level predictors of perceived
neighborhood problems. Factors such as age, sex, and race are known to be associated
with this outcome (Franzini, et al., 2008; Meersman, 2005; Quillian & Pager, 2001;
Sampson & Raudenbush, 2004) and may also be related to where people live through
social processes that produce various forms of residential segregation. That made it
important to control for the composition of the neighborhood population by adding
individual-level predictors to the models to obtain better estimates of the effects of
neighborhood-level predictors (C. Duncan, et al., 1998; Merlo, Yang, et al., 2005).

Research questions. If GSM yields better statistical models than HLM, it would
suggest that we may need to replace the simple conceptualization of neighborhoods
associated with HLM with one that is more sophisticated and more compatible with what
we know about the nature of neighborhoods. In HLM, neighborhoods are places with
sharp, fixed boundaries that never overlap, while in GSM they are places with fuzzy,
overlapping boundaries. Whether the differences in how GSM and HLM represent
neighborhoods matter in practical terms depends partly on whether the two methods yield
different answers about how much variance in outcomes is attributable to neighborhoods.
So, the first research question for the present study is: how do GSM estimates of
neighborhood-level variance and autocorrelation compare to HLM estimates?

Partitioning the variance in resident outcomes into neighborhood- and individual-
level variability is vital to multilevel neighborhood research because testing whether

particular neighborhood characteristics influence outcomes is only worthwhile when
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there is neighborhood-level variability to be explained. The practice of defining
neighborhoods in geographic terms means that neighborhood-level variability is spatial
variability, so multilevel analysis methods must be able to detect spatial variability in
outcomes and assess the degree to which adding predictors to a statistical model explains
that variability. Spatial variability implies that neighboring residents’ outcomes are more
similar than they would be if people were randomly distributed across geographic space,
so it shows up as lack of independence between observations. Thus, autocorrelation is
simply another name for a structured form of spatial variability.

Part of the statistical rationale for using either HLM or GSM instead of OLS
regression is that failure to account for autocorrelation leads to artificially small standard
errors for the regression coefficients and increased Type I error rates. HLM and GSM
methods differ in how they handle autocorrelation. While HLM assumes that the
autocorrelation is hierarchically structured and derives from shared membership in
discrete neighborhoods units, GSM assumes it is spatially structured and a function of
distance between observations. The ability of HLM and GSM to detect spatial variability
and control for autocorrelation depends on how well their assumptions about
autocorrelation match up with the actual structure in the data. Thus, whether HLM or
GSM is more appropriate may ultimately depend on the kind of data being analyzed, but
the existing empirical literature provides very limited information that might guide
decisions about which method to use.

In one of the few HLM studies that has varied the size of the neighborhood units,
Coulton et al. (2004) examined how the intraclass correlations (ICCs) for residents’

perceptions of neighborhood safety, social cohesion, informal social control, police
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relations, and disorder and incivilities varied when aggregated under different
neighborhood definitions. They used five different types of geographic units. The first
four types of units correspond to units of steadily decreasing size: sites selected by the
Making Connections initiative, project-designated sub-areas within those sites, census
tracts, and block groups. The last unit, named neighborhoods, vary in size and may be
larger or smaller than most of the other units, but are always smaller than the Making
Connections sites.

Coulton et al. (2004) found that the ICCs were higher for smaller spatial
definitions of neighborhoods and that both statistics were more sensitive to changes in
neighborhood size for some constructs (perceived safety and disorder/incivilities) than for
the other constructs. Still, four of the five outcomes examined (including the measure of
disorder and incivilities), showed higher levels of autocorrelation when the neighborhood
units were smaller. This suggests that the geographic scale of spatial variation for
different constructs may differ. They speculated that perceived safety and
disorder/incivilities varied more on a block to block scale than the other constructs
because the questions asked about more concrete, observable phenomena, so that the
geographical area over which residents might agree in their assessments would be
smaller. Overall, their results suggest that the underlying structure of the data may be
better modeled as spatial rather than hierarchical autocorrelation because if
autocorrelation decays with increasing distance between observations, grouping
observations within larger geographic units should reduce the average level of

autocorrelation observed as compared to grouping them within small geographic units.
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Unfortunately, Coulton and colleagues (2004) did not try analyzing their data with
spatial models like GSM, which might have provided direct evidence about whether their
data showed spatial autocorrelation. Other authors have argued that HLM does not fully
account for autocorrelation because spatial autocorrelation can still be discerned in HLM
residuals (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005), but no studies have yet
reported whether hierarchical autocorrelation can still be discerned in GSM residuals.
Thus, we do not yet know which technique more fully accounts for autocorrelation
because previous comparisons between HLM and GSM models are incomplete.
Accordingly, the second research question for the present study is: which method (HLM
or GSM) is more effective at modeling the autocorrelation actually observed in data from
_neighborhood residents? Autocorrelation is a prerequisite for finding neighborhood
effects because neither occurs unless at least some variance is attributable to
neighborhoods. Detecting autocorrelation and testing neighborhood effects should work
best when we fit statistical models consistent with the underlying structure in the data.

The difference between HLM and GSM goes beyond how they each group
observations to model autocorrelation. The two different approaches to defining
neighborhoods have important implications for the measurement of neighborhood
characteristics. GSM provides more flexibility to customize the boundaries used for each
contextual variable than HLM and can use boundaries that are set relative to the
resident’s location. While that flexibility is conceptually appealing, the most important
test of whether GSM offers a superior method for representing neighborhoods depends on
whether the two methods yield different answers about how strong the effects of

neighborhood-level predictors are and how well the resulting statistical models fit the
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observed data. Therefore, the third research question is: how do GSM estimates of
conteﬁtual effects and model fit compare to HLM estimates?

Finally, HLM and GSM also differ in how they handle questions about the spatial
scale on which neighborhood characteristics influence outcomes. Attending to issues of
spatial scale will highlight new aspects of neighborhood effects that need to be explained,
thereby opening up new avenues for theory development. HLM studies frequently use
only a single type of geographic unit to represent neighborhoods and thus do not attempt
to study whether different contextual predictors operate at different spatial scales. They
simply assume that studying all aspects of the neighborhood phenomena at a single
spatial scale is appropriate. There are presumably reasons why researchers using GIS
methods have found that the strength of the relationship between neighborhood-levél
predictors and a given outcome depends on the size of the area over which the predictor
is measured and on the specific predictor being studied (Kruger, 2008; Meersman, 2005),
but there is currently little theory to explain those findings. With appropriate theory, we
could predict and explain which outcomes might vary on small versus large geographic
scales and what geographic scale to use when measuring specific neighborhood
characteristics (Messer, 2007).

Unfortunately, studies have rarely tried varying the definition of neighborhoods,
so we have few empirical findings to guide hypotheses about the geographic scale at
which we should expect to see the effect of a particular neighborhood characteristic on a
given outcome (Diez Roux, Mujahid, Morenoff, & Raghunathan, 2007). Applying GSM
in the present study has the potential to add to the emerging body of empirical evidence

about the spatial scale of neighborhood effects that will then permit us to develop theories
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that explain when and why a predictor should be operating on a particular scale. So, the
fourth research question for the present study is: in a dataset originally collected with use
of HLM methods in mind, how do the geographical scales on which different contextual
factors operate (as estimated with GSM) compare to each other and to the size of the
neighborhood units used in HLM?

Organization of the text. To lay the conceptual foundations for this study, the
first section of the literature review focuses on neighborhoods and multilevel research,
highlighting why neighborhoods are important contexts and discussing key multilevel
assumptions about residents and neighborhoods as units of analysis. The second section
focuses on the conceptualization of neighborhoods as places within geographic space.
The third section focuses on the HLM approach to testing contextual effects, explaining
its strengths and limitations for studies of neighborhood effects. It describes why HLM
has become a popular tool in neighborhood research and the assumptions, advantages,
and disadvantages associated with it. The fourth section focuses on the origin and
conceptual underpinnings of the GSM approach to testing contextual effects, explaining
how it relates to the conceptualization of neighborhoods and measurement of
neighborhood context, how it addresses some of the limitations in HLM, the kinds of
questions it can answer, and its recent applications in the social sciences. The fifth section
reviews the handful of previous studies that have compared HLM and GSM approaches.
The sixth section provides background material relevant to the specific substantive
example that was used to compare HLM and GSM, which involved using contextual
measures of crime and NSES to predict residents’ perceptions of neighborhood problems.

The seventh section then identifies gaps in that literature, and presents the hypotheses for
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the study. Finally, the literature review closes with a brief summary of the goals and
objectives of the study and a short discussion of its limitations. Following that, the
methods employed in this study are described, and then the results are presented. The
document concludes with a discussion of the findings and their implications for

neighborhood research.
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LITERATURE REVIEW
Neighborhoods and Multilevel Research

Studying the connections between human behavior and the ecological contexts
within which it unfolds has always been a prominent theme in community psychology
(Anderson, et al., 1966; Livert & Hughes, 2002; M#ton, Perkins, & Saegert, 2006). This
ecological perspective contributes to community psychologists’ enduring interest in
research that spans multiple levels of analysis (Dalton, Elias, & Wandersman, 2001)
because it positions contexts as phenomena to be studied right along with human
behavior. Researching contextual phenomena requires careful attention to identifying and
conceptualizing the units of analysis that constitute the context of interest, how to
measure the theoretical constructs at each level of analysis (Linney, 2000), and the
application of methods suited to answering questions about contextual effects (Luke,
2005; Shinn & Rapkin, 2000).

Neighborhoods as meaningful contexts for residents. A multilevel, ecological
perspective lies at the heart of the most basic premise in neighborhood research, which is
that neighborhoods are meaningful contexts for their residents. So, why do
neighborhoods merit study—what makes them meaningful contexts? People, especially
children, spend substantial amounts of time in neighborhood settings, allowing ample
opportunity for environmental conditions, events, and social processes in these ;settings to
influence individuals. Because the world is not uniform and has different characteristics
from place to place, neighborhoods offer varying levels of access to material,
institutional, and social resources (e.g., housing, public services, schools, social

interaction, etc.) that may affect residents’ welfare and prospects in life (Galster, 2001).
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Neighborhoods often take on symbolic identities and importance, as evidenced by the
way people attach names to their neighborhoods (Lee & Campbell, 1997). Residents can
form deep emotional attachments to these places and to their neighbors (Manzo &
Perkins, 2006; Unger & Wandersman, 1985); they also sometimes form voluntary
associations to express their identification as members of a shared neighborhood or to
advocate for their collective interests (Unger & Wandersman, 1983).

Yet another reason to study neighborhoods is that government agencies,
philanthropic foundations, and other organizations set policies, develop programs, offer
services, and engage in other forms of intervention with respect to neighborhoods,
treating them as identifiable units for planning and action related to social change
(Chaskin, 1998). Finally, empirical research has provided extensive evidence that
neighborhood conditions influence outcomes such as school readiness and achievement
among children, teen pregnancy, physical and mental health, perceptions of crime and
disorder in the neighborhood environment, and rates of violent crime (Franzini, Caughy,
Spears, & Esquer, 2005; Gephart, 1997; Kruger et al., 2007; Leventhal & Brooks-Gunn,
2000; Quillian & Pager, 2001; Sampson et al., 2002; Sampson, Raudenbush, & Earls,
1997; Shinn & Toohey, 2003; Wyant, 2008). For all of these reasons, neighborhoods are
contextual settings that merit our attention. |

Theoretical mechanisms underlying neighborhood effects. Neighborhood
researchers have described numerous theoretical mechanisms through which
neighborhoods may influence residents’ welfare, behavior, and development including
collective socialization, institutional resources, contagion, competition, and relative

deprivation theories, among others (Leventhal & Brooks-Gunn, 2000; Sampson, et al.,

32



2002). Authors categorize and label these mechanisms differently and some write about
mechanisms not discussed by others. A comprehensive review of these theoretical
mechanisms is beyond the scope of this study, so what follows is only a brief discussion
of some key mechanisms that have been widely discussed. For example, collective
socialization has been described as a mechanism through which social groups exert
influence on residents’ attitudes, values, and behavior by providing a structured social
environment with role models, parental supervision and monitoring, routines, and
deviation-countering social interactions, all of which tend to produce conformity with
group norms (Galster, 2001; Leventhal & Brooks-Gunn, 2000; Shinn & Rapkin, 2000).
Institutional resources provide another mechanism through which neighborhoods
can influence residents (Sampson, et al., 2002). Because neighborhoods vary in the
availability, accessibility, and quality of resources such as libraries, community centers,
public services, and recreational programs that promote learning and development,
institutional resources provide a mechanism for explaining some neighborhood effects
(Leventhal & Brooks-Gunn, 2000). For example, adolescent girls living in neighborhoods
with more parks engage in more physical activity, suggesting that parks (particularly
those that have more amenities conducive to walking and physical activities) are
institutional resources that promote exercise among residents (Cohen, et al., 2006).
Contagion models posit that the behavior of a resident might directly influence the
same behavior in his or her neighbors, leading to (typically negative) behaviors that
spread like epidemics within neighborhoods (Leventhal & Brooks-Gunn, 2000). With

respect to outcomes such as attitudes or perceptions, neighbors engaging in the social
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construction of reality might share information and mutually influence each other’s
perceptions (Shinn & Rapkin, 2000), leading to a contagion effect.

Competition for access to and control over scarce resources, in which one
person’s gain necessarily comes as a loss to others, provides another mechanism through
which neighborhoods may influence residents (Dietz, 2002; Galster, 2008; Leventhal &
Brooks-Gunn, 2000). When neighborhoods influence resident outcomes through
residents’ comparison of their own situation to that of their neighbors, the concept of
relative deprivation may explain neighborhood effects (Dietz, 2002; Galster, 2008;
Leventhal & Brooks-Gunn, 2000). For example, relative deprivation might explain why
the presence of homeowners in a neighborhood could have a detrimental effect on nearby
renters (Haurin, Dietz, & Weinberg, 2003).

Finally, attraction, selection, and attrition processes (Shinn & Rapkin, 2000)
account for the fact that the composition of neighborhoods is rarely a random sample of
the larger population. Processes that affect who is attracted to a particular neighborhood,
opts to live there, or decides to leave may contribute to the geographical clustering of
similar people within neighborhoods. If the individual-level characteristics on which
residents are similar are also related to the outcome of interest, neighborhood effects may
be present because of varying composition rather than varying contextual conditions.
Therefore, controlling for the composition of neighborhoods when testing for contextual
effects (Bingenheimer & Raudenbush, 2004; C. Duncan, et al., 1998; Merlo, Yang, et al.,
2005) is important to avoid confounds.

Given the variety of theoretical mechanisms for neighborhood effects already

identified, it is clear that the specific mechanisms that could explain an effect will depend
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on the specific constructs involved in a given study. For example, institutional resource
theory may be particularly well-suited to explaining why the presence of youth- service
organizations in a neighborhood can contribute to the social development of the youth
who live there (Quane & Rankin, 2006). However, authors such as Papachristos and Kirk
.(2006) have argued that theoretical mechanisms such as collective efficacy and informal
social control play a strong role in controlling how much gang violence occurs in a
neighborhood. It is also important to recognize that multiple theoretical mechanisms may
be working in concert to produce neighborhood effects. Thus, a researcher might
incorporate several predictors into a statistical model, each of which may represent the
influence of a distinct theoretical mechanism.

In the present study, contextual effects of crime and NSES represent two different
theoretical mechanisms through which neighborhoods might affect residents’ perceptions
of neighborhood problems. According to broken windows theory (J. Q. Wilson &
Kelling, 1982), visible signs of physical and social disorder in a neighborhood exert a
direct contextual influence on residents’ perceptions of neighborhood problems (Quillian
& Pager, 2001; Sampson & Raudenbush, 2004). Exposure to higher levels of actual
crime, which is an extreme form of social disorder (Sampson & Raudenbush, 1999),
should lead to higher levels of perceived problems. In contrast, NSES may exert a
contextual influence on residents’ perceptions because poor neighborhoods have become
stigmatized as disorderly places where problems are rampant (Sampson & Raudenbush,
2004). Thus, residents living in places with low NSES may perceive more problems than

they would in a wealthier, but otherwise similar, neighborhood.
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Because the present study focused on comparing HLM and GSM with respect to
testing the effects of contextual characteristics of neighborhoods, it was important to
control for neighborhood effects that could be explained by individual-level factors
associated with residents’ perceptions working in concert with theoretical mechanisms
that might lead to geographical clustering of similar individuals. To do that, several
individual-level predictors were used in to control for the effects of unobserved
attraction, selection, and attrition processes that might generate neighborhood effects on
perceived neighborhood problems through their influences on neighborhood composition.

Finally, contagion processes resulting from social interaction and information
sharing among residents (Shinn & Rapkin, 2000) could easily lead to mutual influence on
residents’ perceptions of the neighborhood. Such a mechanism might account for residual
autocorrelation remaining in residents’ perceptions after accounting for neighborhood
composition, crime, and NSES effects. Thus, the statistical models in the present study
incorporate variables representing several different theoretical mechanisms that can
explain neighborhood effects.

Multilevel assumptions in neighborhood research. Inherent in the premise that
neighborhoods are meaningful contexts that exert influence on resident outcomes are
some key multilevel assumptions. Those include: (a) neighborhoods and individuals are
separate kinds of observable units, with the former at a higher level of analysis than the
latter because individuals live within neighborhoods, (b) neighborhoods differ from each
other in important ways such that their characteristics define, at least in part, the nature of
the environmental context affecting their residents, and (c) neighborhood characteristics

can directly or indirectly influence resident-level processes and outcomes. Subjecting that
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last assumption to inquiry is the point of studying neighborhood effects, which also
requires grappling with the second assumption because identifying dimensions on which
neighborhoods vary from one another is a prerequisite to explaining contextual effects.
But before we can measure neighborhood characteristics we need a conceptual definition
of neighborhoods as units of analysis and a way to operationally define them that is
aligned with that conceptual definition.
Defining Neighborhoods

Before delving into the conceptual definitions of neighborhoods adopted by
researchers, it is useful to explore residents’ colloquial definitions of neighborhoods.
When Guest and Lee (1984) asked residents of Seattle, Washington to define the word
neighborhood and the boundaries of their neighborhoods, over 76% of the residents they
interviewed defined neighborhoods in terms of a geographic area or territory, although
only 30% relied on solely physical definitions. Almost 60% of the residents defined
neighborhood in terms of nearby people; 39% endorsed social definitions based on sense
of community and social cohesion. Finally, about 10% defined neighborhood in terms of
local institutions (e.g., schools, shopping centers, parks, and so on). Guest and Lee
concluded that one major dimension in their data was a contrast between geographic and
social definitions of neighborhood. They also found that residents who provided
institutional definitions reported having larger neighborhoods than people who provided
other kinds of neighborhood definitions.

More recent work by Lee and Campbell (1997) in Nashville, Tennessee, further
clarifies how residents think about the nature of neighborhoods. Nearly 87% of their

sample endorsed a territorial definition, showing that the notion of neighborhoods as
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geographic places is widespread. The social dimension, tapping both definitions based on
nearby people and definitions based on sense of community, was endorsed by a little over
40% of the residents. Most of the residents (59%) gave egocentric definitions wherein
their own home served as a spatial referent. The final dimension in this study was a
structural one that defined neighborhood in terms of physical structures, similar to Guest
and Lee’s (1984) institutional definition. Lee and Campbell also found that the perceived
size of a neighborhood varied considerably even among people who agreed on the name.

Another interesting set of findings about how people think about places comes
from work by Montello, Goodchild, Gottsegen, and Fohl (2003), who were investigating
how people spatially define named places. Comparing maps drawn by different
participants, they found strong evidence that people varied in where they drew the
boundaries of downtown Santa Barbara, California despite the fact that this place has a
strong symbolic identity. While there was a core area where most, if not all, of the maps
overlapped, they concluded that it may be better to think of places as having fuzzy or
probabilistic boundaries, rather than sharply defined edges because fewer maps
overlapped locations farther out from the core area.

The findings discussed above provide insight into what typical residents mean
when they talk about neighborhoods, which very often includes an element of place, but
frequently has social elements too. Both HLM and GSM approaches ultimately define
neighborhoods in geographic terms, but they differ in how they do that because they
make different assumptions. In HLM, geographic space is treated as a discontinuous
phenomenon, so neighborhoods are places with fixed, non-overlapping boundaries that

apply equally to all neighborhood characteristics. In GSM, geographic space is treated at
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a continuous phenomenon, so neighborhoods are places defined relative to where
residents live and may have different boundaries depending on what neighborhood
characteristic is being measured. As a result, neighborhoods in GSM may overlap and do
not have fixed boundaries.

The findings above suggest that the HLM assumption that neighborhoods are
clearly bounded places may oversimplify the phenomenon. Residents appear to have very
idiosyncratic and egocentric notions about what constitutes their neighborhoods. That
suggests that neighborhood-level constructs for residents living at the center of discrete
geographic units like census tracts or block groups may contain less measurement error
than they do for residents living on the edges of those units. The residents along the edges
may be more likely to consider areas outside that unit as being part of their neighborhood,
but the HLM approach would exclude those additional areas from the measurement of
neighborhood characteristics, thereby introducing additional error into the measurement.
Fortunately, GSM is compatible with a wider range of ways to define neighborhoods than
HLM, including egocentric definitions that treat the space within a certain distance of
one’s home as the neighborhood. In other words, GSM methods may fit resident
conceptions of neighborhoods better than HLM. This serves as a useful point of reference
as the review now moves on to discuss the conceptual definition of neighborhoods.

Defining neighborhoods: Social versus geographical units. Scholars from a
wide array of scientific disciplines have written about how to conceptualize
neighborhoods (cf., Chaskin, 1997; Galster, 2001; Nicotera, 2007). Comparing the many
definitions reveals a consensus that neighborhoods are complex, multidimensional

entities comprised of a combination of objective physical and environmental

39



characteristics tied to geographic places and subjective, socially constructed
characteristics that emerge from social interactions and lived experience. However,
different authors emphasize different aspects of neighborhoods. One strand in the
literature primarily views neighborhoods as communities (social units) that have
developed naturally through the processes involved in the growth of cities (Chaskin,
1997; Suttles, 1972), while another strand emphasizes viewing them as geographic places
or territories (geographic units). As will be shown below, these are not mutually
exclusive perspectives (Chaskin, 1997).

Neighborhoods as social units. Viewing neighborhoods as natural communities
focuses attention on things like the presence of social networks, a sense of community,
shared culture and values, place attachment and identity, social cohesion, and other social
processes such as economic exchange relationships (Chaskin, 1997; Forrest & Kearns,
2001). While neighborhoods conceptualized as local communities may not be strictly
confined within small geographic areas, they are often spatially concentrated in ways that
anchor them to particular places (Chaskin, 1997). According to a recent community
psychology textbook, ‘“Neighborhoods might be defined as local communities that are
bounded together spatially where residents feel a sense of social cohesion and interaction,
homogeneity, as well as place identity” (Duffy & Wong, 2002, p. 18). Specifying that
neighborhoods are spatially bounded acknowledges that even definitions emphasizing the
social aspect of neighborhoods (as Duffy and Wong’s does) must also recognize that
local communities occupy identifiable geographic places.

Neighborhoods as geographic units Meanwhile, viewing neighborhoods

primarily as geographic units focuses attention more on identifying the boundaries that
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demarcate the geographical areas they occupy. Boundaries can be delineated by asking
residents to identify them (Coulton et al., 2004; Coulton et al., 2001; Guest & Lee, 1984;
Lee & Campbell, 1997), looking at physical features of the environment like the layout of
the street network (Grannis, 1998; Guo & Bhat, 2007), or by relying on boundaries set by
government agencies and other external organizations to facilitate their own activities
(Chaskin, 1997). Of course, local stakeholders often use their knowledge about the social
aspects of neighborhoods to inform the selection of those geographical boundaries
(Chaskin, 1997; U.S. Census Bureau, 1994, 2002).

Consistent with the approach taken in most studies of neighborhood effects
(Burton, Price-Spratlen, & Spencer, 1997; Coulton et al., 2004; Diez Roux, 2001;
Gephart, 1997; Lee, 2001; Leventhal & Brooks-Gunn, 2000; Sampson et al., 2002), this
study defines neighborhoods geographically (i.e., as places that occupy areas within
geographic space). This was crucial to operationalizing neighborhoods for the purpose of
measuring contextual characteristics that are known to vary across geographic space (e.g.,
crime and NSES). But, defining neighborhoods requires considering an aspect of their
geographical representation that is rarely discussed in the community psychology
literature on neighborhood effects: the relationship between place and space.

Relating places to geographic space. Geographical space stretches across the
entire surface of the earth: it is the physical environment within which nearly all human
activity is embedded. Maps show where various features of the world can be found
within geographic space. Locations within geographical space can be precisely identified
by spatial coordinates (e.g., latitude and longitude), but places tend to be larger than

simple point-referenced locations. Instead, places are subsets of geographic space (i.e.,
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contiguous collections of locations). Perhaps more importantly, places are portions of
space that have been imbued with identity, meaning, or purpose through human activities,
experiences, cognitions, and intentions (Relph, 1976). For example, political maps
illustrate how geographic space is divided into various countries, which are large places
controlled by sovereign national governments.

Residential neighborhoods are important places because they are settings in which
people engage in routine activities of life. There are two major options for linking places
to space, each of which has implications for how we study neighborhoods. Geographic
space can be conceptualized as discontinuous and fragmented into mutually exclusive
places that have fixed boundaries, or as a continuous field in which places may overlap
and may have variable or indeterminate boundaries. The next two sections deal with these
contrasting conceptualizations of the relationship between place and space in
neighborhood research, describing the implications of each, particularly with respect to
how neighborhood characteristics are measured.

Neighborhoods as places in discontinuous geographic space. The vast majority
of multilevel neighborhood effects studies use administrative areas such as census tracts
or block groups as the geographical boundaries of neighborhoods (Burton et al., 1997,
Coulton et al., 2004; Diez Roux, 2001; Gephart, 1997; Lee, 2001; Leventhal & Brooks-
Gunn, 2000; Sampson et al., 2002), although some studies have used larger geographical
units comprised of multiple census tracts grouped together (Browning & Cagney, 2002;
Browning, Feinberg, & Dietz, 2004; Sampson et al., 1997). Using these administratively
defined areas as neighborhoods makes it easy and cost effective to measure some

neighborhood characteristics with census data, which may contribute to the prevalence of
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this practice (Lebel, Pampalon, & Villeneuve, 2007). However, few of those studies
discuss the conceptual definition of neighborhoods or the conceptualization of geographic
space underlying their neighborhood definitions. So, a closer look at how census
geographic units are constructed and what using them implies about the relationship
between geographic space and place is warranted.

Census geography.The Census Bureau works extensively with local governments
and other stakeholders to develop a hierarchical system of boundaries that divides the
nation into many small geographic units for use in collecting and tabulating decennial
census data (U.S. Census Bureau, 1994, 2002). The foundation of that system is a
discontinuous conceptualization of geographic space in which boundaries divide space
into distinct geographic units that occupy mutually exclusive areas: census units at the
.same level of the hierarchy never overlap. As shown in Figure 1 above, the three lowest
levels in the hierarchy of geographic units used by the Census Bureau (in order of
increasing size) are blocks, block groups, and census tracts. Census data are most
routinely tabulated at the tract level.

Units like block groups and tracts are useful to neighborhood researchers who
want to use HLM. Using them to represent neighborhoods allows researchers to adopt a
well-known boundary system that is grounded in a discontinuous conceptualization of
space. Studies employing HLM for neighborhood research rely on that conceptualization
because they must be able to identify which residents to group together. At any given
level of analysis (e.g., block groups), the key issue is that each neighborhood must be a
place with an unambiguous boundary demarcating the division between the portion of

space that belongs to it and the portion that belongs to other neighborhoods to ensure
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unambiguous sorting of residents into neighborhoods. Census geographic units clearly
fulfill that requirement and ensure that each resident will belong to one and only one
neighborhood at any given level of analysis.

Both in the census boundary system and in custom boundary systems developed
by researchers, visible geographic features (e.g., major streets, waterways, railroads,
parks, etc.) often define most of the boundaries between neighborhoods, but some
boundaries are selected to ensure that the resulting neighborhoods are internally
homogenous and externally heterogeneous with respect to important demographic and
socioeconomic characteristics (Sampson et al., 1997; U.S. Census Bureau, 2002; Weiss,
Ompad, Galea, & Vlahov, 2007). For neighborhood researchers, the overarching goal is
to obtain neighborhood units that are ecologically meaningful units. Because all space
outside a neighborhood’s boundary belongs to some other neighborhood, the
discontinuous view of space implies that measuring a neighborhood characteristic over
any area stretching beyond that boundary would contaminate the measurement with data
from a different neighborhood and lead to measurement error. Thus, the discontinuous
view of space fosters defining neighborhoods as discrete entities with fixed boundaries
that apply to all neighborhood attributes measured at a given level of analysis.

The MAUP. Unfortunately, there are many alternative ways to subdivide any
geographic region, each of which might group residents differently and each of which can
result in different values for the neighborhood attributes that might be associated with a
resident. This is what causes the MAUP. Because of the MAUP, the specific set of
boundaries chosen by a researcher to divide space into neighborhood units influences the

results of analyses (Bailey & Gatrell, 1995; Downey, 2006). So if two researchers set out



to test the same theoretical model using data from the same study region, their studies can
yield different statistical results if they use different sets of neighborhoods boundaries.

The sensitivity of statistical inferences about contextual effects to the specific
boundary system used to define neighborhoods may lead researchers to draw inaccurate
conclusions or make poor policy recommendations (Bailey & Gatrell, 1995; Guo & Bhat,
2007). For example, Kruger (2008) found that the correlation between residents’
satisfaction with their neighborhoo& and the number of deteriorated residential buildings
in the neighborhoods varied depending on whether deterioration was measured at the ZIP
code level (r = .034) or the census tract level (» = .137). Because ZIP codes are larger
than census tracts, they are more likely to be internally heterogeneous with respect to the
levels of deterioration. Because tracts are closer in size to what residents think of as their
neighborhoods than ZIP codes (Coulton, et al., 2001), that heterogeneity may increase
measurement error for the neighborhood-level construct, thereby weakening its
correlation with residents’ satisfaction.

Lack of meaningful boundaries.Defining neighborhoods as geographic units
within discontinuous space assumes neighborhoods have sharply defined, fixed
boundaries that are meaningful and recognizable. If that were true, the boundary problem
(an aspect of the MAUP) would not be as pressing because there would be a good
foundation for identifying which of the many possible boundary systems yielded the
neighborhood units most relevant to residents. But if neighborhoods are indeed such
discrete entities, people should agree on where the boundaries between them actually lie.

As stated previously, even residents who live close together often disagree about

the size and boundaries of their neighborhood and resident defined boundaries rarely
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match census boundaries (Coulton et al., 2004; Coulton et al., 2001). For example,
Coulton et al. (2001) found that neighborhood maps drawn by residents were roughly
similar in size to census tracts, but typically contained parts of two census tracts and three
block groups. They also found that different residents drew maps with unique boundaries,
in part because most residents thought of their home as the center of their neighborhood.

Coulton et al.’s (2004; 2001) findings are the not the only ones that conflict with
the HLM assumption that census-derived boundaries correspond to meaningful
boundaries for geographic neighborhoods. A neighborhood’s perceived size can vary
considerably even among people who agree on its name, indicating that the presence of a
shared symbolic identity does not induce agreement on boundaries (Lee & Campbell,
1997). The results of cognitive mapping research show that geographic places do not
have the kind of sharp, fixed boundaries assumed to exist under a discontinuous view of
space (Montello, et al., 2003). So part of the boundary problem is that we need to group
residents and measure neighborhood characteristics within boundaries that are
psychologically meaningful to residents, but administratively defined units like census
tracts and block groups impose artificial boundaries that may not be relevant.

These problems with the validity of census-based neighborhood boundaries have
serious implications for neighborhood research because of the boundary problem.
Without a meaningful natural boundary system, researchers have little basis for deciding
which of the many alternative ways to divide a study region into neighborhoods generates
the most appropriate set of neighborhood units and every option can conceivably lead to

different answers about what effects (if any) neighborhoods have on residents.
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Part of the problem is that the boundaries are used to group residents, presumably
with each group representing a set of people who all consider each other neighbors and
who all consider people outside the group non-neighbors. Using boundaries that are
misaligned with residents’ notions of the geographic area of their neighborhoods may
group together residents that do not consider themselves neighbors and separate residents
who do think of each other as neighbors. Similarly, it may increase measurement error in
neighborhood characteristics because measures would be based on only part of the
geographic area relevant to a resident while other relevant parts might be excluded. That
is particularly likely to occur with people living on the edges of the neighborhood units.
These are serious conceptual problems with defining neighborhoods as fixed geographic
areas. In contrast, defining neighborhoods as buffers surrounding each resident’s
location, as may be done in GSM, never leaves anyone living at the edge of his or her
own neighborhood because the neighborhood is defined relative to the individual’s
location, rather than via an absolute position in space.

The lack of support for neighborhoods being discrete entities calls into question
the assumption that all neighborhood characteristics should be measured within the same
boundary. While some contextual constructs probably do naturally have fixed, known
boundaries, such as social policies that apply within the jurisdiction of a governmental
agency (assuming that the jurisdiction boundaries match those of the neighborhood
units), there is little reason to expect that the most relevant boundaries for all contextual
conditions will match those of the researcher’s chosen set of neighborhood units or of any
other available fixed boundary system (Guo & Bhat, 2007; O'Campo, 2003). For

example, block groups are poorly suited to capturing the spatial patterns of crime because
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census boundaries often run along the centerlines of streets that are the loci for crime
hotspots, which means that hotspots can get bisected such that crimes on one side of the
street get assigned to one block group and those on the other side to a different block
group despite the fact that they are part of coherent spatial grouping of crimes (McCord
& Ratcliffe, 2007). Yet, a person living on or near that street might legitimately be
affected by or concerned about all of the crimes in a hotspot.

Similarly, the impact of pollution generated by a factory is unlikely to be confined
to the census tract where the factory is located and unlikely to affect everyone in either
the host tract or other nearby tracts equally due to the location of factories along major
transportation routes that serve as tract boundaries and because prevailing wind patterns
affect the dispersal of pollutants (Downey, 2006). Thus, tracts would be a poor
approximation of local neighborhoods for the purpose of measuring pollution levels, even
'if they are excellent for measuring other contextual characteristics.

Ignoring spatial proximity. Another major problem with defining neighborhoods
as places in discontinuous space is that this ignores the broader spatial context within
which residents live. One of the implicit assumptions in many neighborhood studies is
that neighborhoods are self-contained, independent settings representing “intact social
systems, functioning as islands unto themselves” (Sampson, 2004, p. 164). This meshes
neatly with the HLM assumption that the units at the highest level of analysis are
statistically independent of each other (Hofmann et al., 2000; Raudenbush & Bryk,
2002), but it means that most HLM analyses ignore the spatial arrangement of
neighborhoods with respect to each other. In effect, it asserts that only the context in

one’s own neighborhood unit influences outcomes.
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However, there are important social, economic, and institutional ties that link
residents from different neighborhood units and can create forms of spatial dependence
that argue against this idea that neighborhoods are independent (Sampson, 2004). For
example, the fact that some neighborhoods are close together while others are far apart
matters because physical proximity is an important factor in predicting the number of
social trips between different census tracts: people make more frequent trips to tracts that
are close to their own tract than to more distant tracts (Wheeler & Stutz, 1971).
Furthermore, assuming that only the conditions within a resident’s own census tract or
block group matter ignores the fact that people frequently cross the boundaries between
such units when commuting to work, shopping, or attending religious services (Sastry, et
al., 2002). That challenges the idea that discrete neighborhood units represent the best
approximation of the relevant neighborhood setting for any given resident because
residents may be exposed to conditions, events, and social processes from other nearby
neighborhood units in addition to the those from their own unit.

There are statistical methods that permit modeling spatial influences between
neighborhoods (Bailey & ’Gatrell, 1995; Haining, 2003), but they are designed for studies
where all the data come from the neighborhood level of analysis, not for multilevel
studies. The few HLM-based neighborhood effects studies that have considered whether
outcomes in one neighborhood are influenced by conditions in adjacent neighborhoods
have found that surrounding neighborhoods do indeed matter (Caughy, Hayslett-McCall,
& O'Campo, 2007; Morenoff, 2003; Morenoff, Sampson, & Raudenbush, 2001; Swaroop
& Morenoff, 2006). But, researchers have mostly had to apply GIS methods to the

neighborhood-level residuals from HLM analyses to test those hypotheses because HLM
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lacks a method for incorporating spatial autocorrelation between neighborhoods at the
highest level of analysis (O'Campo, 2003). The scarcity of HLM studies that have looked
for such spatial effects suggests that the discontinuous view of geographic space required
by HLM leads researchers to treat neighborhoods as independent places, which de-
emphasizes thinking about spatial relationships between them.

Ignoring spatial variability in contextual conditions.When a contextual
characteristic is measured at the neighborhood level and used in HLM analyses, it implies
that contextual conditions are identical for all residents of that unit. But the spatial
distribution of contextual characteristics within a neighborhood is often not that uniform
(Roosa, et al., 2003). As an example, consider racial composition, which is often
measured by the percentage of residents who belong to a particular minority group, such
as African Americans (Quillian & Pager, 2001; Sampson & Raudenbush, 2004). If 20%
of the population in a particular census tract are African Americans, that does not mean
that this is true on every individual face block in that tract: residential segregation occurs
even on a relatively small spatial scale (Grannis, 1998), so there is likely to be within-
tract variation in racial composition that would be ignored in studies using tracts as
neighborhood units. Such within-neighborhood spatial variability in contextual
characteristics may be important when the spatial scale on which residents are sensitive
to that characteristic is smaller than the neighborhood units selected by the researcher.
Thus, this problem is tied to other issues related to spatial scale, to which we now turn.

Poor handling of spatial scale issues. There is a conceptual aspect to the scale
problem associated with the MAUP. Recall that the scale problem is that as the size of

the neighborhood units used to subdivide a region changes, the variances of the
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contextual characteristics change, as do their correlations with other variables. The net
result is that the statistical conclusions about neighborhood effects may depend on the
size of the neighborhood units chosen. Using a single, fixed definition of neighborhood
boundaries suffers from a scale problem because it assumes that all contextual conditions
vary on the same geographical scale and that the neighborhood units are in fact the right
size to best capture each and every contextual effect (Guo & Bhat, 2007).

If the chosen neighborhood units are too small or too large relative to the actual
geographical scale on which a particular construct actually matters, the spatial patterns
may be obscured and estimates of the relationships between contextual conditions and
outcomes may be biased, possibly leading to erroneous statistical inferences (Lery, 2008).
Using the example of crime hotspots and pollution, it is reasonable to expect that a
smaller geographical scale would be more appropriate for considering effects of crime
hotspots on nearby residents whereas a larger scale may be more appropriate for the
effects of pollution given the spread via prevailing winds.

Clearly, using a single set of neighborhood units (e.g., block groups) does not
permit researchers to measure different contextual conditions at different spatial scales.
The obvious solution to that dilemma would be to use multiple levels of neighborhood
units with different contextual characteristics measured at each level. Several researchers
have argued that neighborhood is a multilevel concept and that residents can and do
distinguish between multiple spatial scales at which their neighborhoods could be
described (Galster, 2001; Kearns & Parkinson, 2001; Suttles, 1972). For example, Suttles
(1972) proposed a multilevel conceptualization of neighborhood that integrates social and

spatial aspects to define neighborhoods at four distinct spatial scales. Starting with the
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face-blocks on which one lives then moving up to successively larger spatial scales he
called the defended neighborhood, the community of limited liability, and the expanded
community of limited liability. Kearns and Parkinson (2001), simplified Suttles’
conceptualization by trimming it down to three scales (home area, locality, and urban
district or region) and argued that each is loosely coupled with a predominant function for
residents. So, there is conceptual support for the idea that neighborhoods exist at multiple
spatial scales and that each spatial scale may be important to residents, but for different
reasons. However, some of the spatial scales in these two conceptualizations are vaguely
defined and little research has been done that would allow researchers to argue that
specific census-based geographic units correspond to the different spatial scales described
by these authors.

Despite this conceptual support for a multilevel representation of neighborhoods,
most neighborhood studies still use only a single level of geographic units to represent
neighborhoods (Beyers et al., 2003; Caughy et al., 2008; Caughy & O'Campo, 2006; T.
E. Duncan et al., 2003; Franzini et al., 2005; Rankin & Quane, 2000; Sampson et al.,
1997; Sunder et al., 2007). So, while HLM could easily represent neighborhoods with
multiple levels of geographic units (e.g., block groups nested within census tracts) so that
different characteristics could be measured at each level, this is simply not common
practice. Instead, all of a given neighborhood’s characteristics are usually measured
within the same geographic boundary. Few authors discuss why they choose not to use
multiple levels of geographic units, but feasibility issues probably influence that decision.

One such issue is that using multiple levels of geographic units would increase sample

A face-block is comprised of both sides of a street bounded on either end by cross-streets.
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size requirements, making it more costly to collect data. Finally, even if the use of
multiple levels of geographic neighborhood units increased, HLM-based studies would
still be limited in their ability to examine the spatial scale on which neighborhood effects
operate because they would still rely on the dubious assumption that at least one of the
available levels of units is the right size to capture the effect of interest.

Ideally, theory and findings reported in the literature should guide researchers in
selecting the spatial scales on which specific neighborhood-level factors should be
measured (Messer, 2007), but there is a dearth of research that directly addresses this
issue. Careful consideration of the pathways through which neighborhood conditions are
believed to influence resident outcomes might allow researchers to extract clues about the
relevant spatial scale from studies of the spatial aspects of related phenomena such as
social networks and urban social travel (Greenbaum, 1982; Greenbaum & Greenbaum,
1985; Stutz, 1973; Wellman, 1996; Wheeler & Stutz, 1971) or travel to activities such as
grocery shopping and commuting to work (Sastry, et al., 2002). However, research that
directly investigates the spatial scale on which contextual factors operate by comparing
the results of statistical models which differ only in the way neighborhoods are
operationalized for measurement purposes would be far more valuable (Chaix, et al.,
2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005; Kruger,
2008; Meersman, 2005).

Summary. The problems noted above (the MAUP, the boundary problem, and the
scale problem) are interrelated. They derive from the fact that a narrow conceptualization
of neighborhoods that presumes they are adequately represented by a single set of spatial

boundaries leads to operational definitions that are sometimes poorly aligned with the
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actual nature of the phenomena under study. However, to use HLM, researchers must
adopt a discontinuous conceptualization of space that treats neighborhoods as discrete
entities and constrains how neighborhoods are operationalized for the purpose of
measuring neighborhood characteristics.

The discontinuous view of space also encourages researchers to view
neighborhoods as independent of one another by focusing narrowly on neighborhoods as
places and de-emphasizing the fact that they are embedded in a larger spatial context.
But, if the phenomena we are modeling are not so neat and tidy, we need to adopt
modeling tools that fit better with empirical reality and accommodate a more flexible
conceptualization of neighborhoods. Conceptualizing neighborhoods as places within
continuous space offers researchers a way to begin addressing these problems by opening
up new ways to operationalize neighborhoods when measuring contextual characteristics.
As shall become clear below, GSM methods are compatible with this more flexible
conceptualization of neighborhoods, but HLM is not.

Neighborhoods as places in continuous geographic space. Adopting a
conceptualization of geographic space that emphasizes its continuous, connected nature
makes distance between locations (and sometimes direction) relevant and decreases the
importance of potentially arbitrary boundaries between discrete units like census tracts.
Downey (2006) argued that while a discrete view of space is sometimes practical, a more
sophisticated perspective recognizes that continuous representations of space are also
useful because the social impact or sphere of influence for various goods, objects, or
events is often not confined to the boundaries of units such as census tracts and usually

declines continuously as distance from them increases. Similarly, when contextual
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characteristics exhibit substantial spatial variability within fhe boundaries of units like
census tracts, treating them as continuous, contoured surfaces stretching across the study
region may be useful (Chaix et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo,
Subramanian et al., 2005; Downey, 2006).

Loosely speaking, a resident’s neighborhood is a place that occupies some subset
of the geographical space surrounding his or her home. The relationship between
neighborhoods and space is less constrained when space is conceptualized as continuous
rather than discontinuous. Discarding the notion that neighborhood boundaries subdivide
space into mutually exclusive areas allows neighborhoods to partially overlap (Coulton,
et al., 2004), to have boundaries that are somewhat elastic or fuzzy and depend on the
purpose for drawing a boundary (Coulton et al., 2004; Montello et al., 2003; Sastry et al.,
2002), and to be defined in ways that are more consistent with findings suggesting that
residents tend to see their own homes as the center of the neighborhood (Coulton, et al.,
2001). Another advantage of adopting a continuous view of geographic space is that we
can think of residents as belonging to multiple overlapping neighborhoods, such that their
homes are simultaneously located at the center of some neighborhoods and more
peripherally located with respect to other neighborhoods. That lets us use a dramatically
different method of grouping residents for the purpose of characterizing spatial variation
in outcomes than is used in HLM studies, where each resident is a member of only a
single neighborhood.

These points deserve further attention because they relate to how well a researcher
can align the definition of neighborhoods as units of analysis with both the nature of real

world phenomena and formal statistical representations in HLM and GSM. As will be
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clarified further below, they are closely tied to why the GSM approach may sometimes
be more appropriate than HLM for testing hypotheses about neighborhood effects.

Conceptual definition of neighborhood. George Galster proposed the most
comprehensive and useful conceptual definition of neighborhood for the purposes of the
present study: “Neighbourhood is the bundle of spatially based attributes associated with
clusters of residences, sometimes in conjunction with other land uses” (Galster, 2001, p.
2112). Galster elaborates on that definition, listing many different types of neighborhood
attributes that can be tied to geographical places. He makes it clear that this definition
encompasses any and every construct that can be measured within a spatially bounded
area, but that it does not restrict those attributes to all use the same set of boundaries and
does not require neighborhoods to occupy mutually exclusive geographic areas.
Accordingly, it may include elements of the physical environment such as the structural
characteristics of nearby buildings and roads, local levels of pollution, noise, or trafﬁc. It
can also include measures of the demographic composition or aggregate socioeconomic
characteristics of the resident population within that area, the kinds of public services or
programs available, the quality of schools, proximity to employment opportunities, or the
social policies that may be in place. This definition also extends to levels of citizen
participation, sense of community, collective efficacy, place attachment, the bresence and
attributes of social networks, and more.

Making boundaries more meaningful. Galster’s (2001) definition is fully
consistent with multilevel conceptualizations of neighborhoods as described above, but
more useful for GIS-based statistical models of neighborhood effects that consider both

place and space than other available definitions because it recognizes the potential for
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ambiguity in the geographic boundaries of a neighborhood. Under this conceptualization,
the geographic area of a neighborhood would be unambiguous only if all its spatial
attributes happened to vary on the same spatial scale and also happened to follow
identical boundaries (Galster, 2001; Guo & Bhat, 2007). This definition is useful because
it accommodates the possibility that different attributes of a resident’s neighborhood may
need to be measured within different boundaries, perhaps with some measured over
larger areas than others or within areas of different shape, but all of which encompass the
resident’s home. The way neighborhoods are defined in HLM studies is simply a special
case within this broad definition in which the boundaries produce mutually exclusive,
non-overlapping geographic areas containing residents’ homes and where the same
boundaries are applied to measure multiple neighborhood attributes. Galster’s definition
encompasses that option, but also allows additional possibilities and, as a consequence,
researchers can better address the boundary problem described in the previous section.
To elaborate on that point, consider the catchment areas for local public schools:
they are relatively fixed bounded areas defined by governmental agencies, so children
from families living within any given catchment area would all attend the same public
school. As such, a measure of the quality of the local public school in a resident’s
neighborhood should be the same for everyone in that catchment area. In contrast, Athere is
no clear, inherent fixed boundary that defines the geographic area over which many other
contextual variables should be measured. So, for a contextual variable like crime, which
is known to be very unevenly distributed over space (Block, 2000; Ratcliffe &
McCullagh, 1999; Taylor; 1998) and where people may be affected by crime occurring

near their home regardless of which block group or tract it occurs in, it might make more
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sense to measure crime within a circular buffer centered on each person’s home. Galster’s
definition and GIS-based modeling techniques allow these distinct bounding strategies to
co-exist in the same study.

Using buffers as neighborhood boundaries. Using a buffer is consistent with the
research suggesting that residents tend to think of their homes as being located at the
center of the neighboi‘hood (Coulton, et al., 2001) and thus also with the fact that
different residents tend to report different neighborhood boundaries. In addition, it allows
the researcher to flexibly increase or decrease the size of the area over which crime
would be measured, which is necessary if one wishes examine the spatial scale on which
crime matters (see Figure 2 for an illustration of this poinf). This would accomplish two
other things as well. First, it would allow a researcher to assign an individual resident to
different but overlapping geographical neighborhoods for purposes of measuring
different contextual variables such as crime and school quality. Second, it would also
allow researchers to assign residents in the same school catchment area to different
neighborhoods for the purpose of measuring crime, though those neighborhoods might
overlap to some degree (or not at all) depending on the distance between the residents
and the size of the buffer.

This notion of using circular buffers, sometimes referred to as “sliding
neighborhoods” (Guo & Bhat, 2007) or “bespoke neighborhoods” (Galster, 2008), is
consistent with Galster’s conceptualization of neighborhood and can be implemented in a
GSM analysis but not within an HLM analysis. To continue with the crime example, a
resident living inside a school catchment area that has low crime but close to the

boundary between that catchment area and one that has high crime might end up with a
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Figure 2: Illustration of using buffers as neighborhood boundaries. Contextual
characteristics could be measured within circular buffers of different sizes (e.g.,
with radii of 100 m and 200 m) centered on points A and B, which are shown in
relation to census tract and block boundaries in Battle Creek, MI. For point A,
both buffers overlap portions of multiple tracts. For point B, only the larger buffer
overlaps portions of more than one tract. The 200 m buffers for these two points
partially overlap. Source: Map produced by the author from GIS files prepared by
the U.S. Census Bureau (U.S. Census Bureau, 2007a, 2007c).

buffer-based measure of crime that captures some of the crimes occurring on the other
side of the border that may well affect that resident. Using fixed boundaries for
neighborhoods does not permit modeling such boundary-spanning contextual effects, but

a buf¥er approach does. So while adopting a continuous view of space permits using
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buffer approaches to defining neighborhoods for some variables and fixed boundaries for
others, the discontinuous view of geographic space is incompatible with buffer
approaches to measuring neighborhood context because the buffers for residents might
sometimes only partially overlap.

Addressing spatial proximity. Taking a continuous view of space enables
researchers to take the spatial arrangement of both neighborhoods and residents into
account in their analyses. Because residents are viewed as members of multiple,
overlapping neighborhoods, GSM analyses do not assume that neighborhoods are
statistically independent of one another. Instead, physical proximity becomes a key
element in detecting and modeling spatial variation in outcomes. GSM analyses
effectively treat neighborhoods as places that have fuzzy boundaries for the purpose of
grouping residents; the farther a resident is from the center of a particular neighborhood,
the less similar his or her outcomes are likely to be to those of another resident located at
the center of the neighborhood. This is one of the ways that GSM improves on what
HLM analyses can do with respect to accounting for both place and space.

Addressing spatial variation in contextual conditions. Another important
advantage offered by buffer-based techniques for measuring neighborhood contextual
variables is that it enables GSM techniques to better handle spatial variation in contextual
conditions within things like census tracts. Residents on different ends of a large tract
might easily be assigned different values for contextual characteristics like crime because
the buffers centered on their homes may not even overlap, or may only overlap partially,
leading data aggregated within them to yield different values for the two residents. One

can even think of buffer-based techniques as yielding estimates of a smooth, continuous
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surface describing the spatial distribution of a contextual variable if we simply imagine
estimating the value of that variable at a grid of densely-packed points covering the entire
study region. This offers a much more informative view of how contextual conditions
vary over space than just measuring conditions within a single set of geographic units like
block groups or census tracts.

Addressing issues of spatial scale. The ability to use different boundaries to
define the relevant neighborhood area for measuring different neighborhood
characteristics also helps to deal with the scale problem described earlier. Rather than
being limited to selecting a single spatial definition of a neighborhood (or a narrowly
defined hierarchical representation like block groups nested within census tracts), thereby
perhaps forcing the researcher to measure one or more contextual characteristics at a
geographic scale that is not well suited to the actual construct, Galster’s (2001)
conceptualization recognizes that different neighborhood characteristics might need to be
measured at different scales. If the relevant characteristic is associated with some known
and meaningful pre-defined areal unit (like a school catchment area), that can be used as
the boundary for that construct. However, for other constructs, one can use buffers and
can even vary the size of the buffers used for the constructs. Researchers can also use
buffers of different sizes for the same construct and compare models to empirically
examine which size exhibits the best statistical performance. That then opens the door to
generating theories that can explain why particular constructs operate on specific
geographical scales of measurement.

Summary. Conceptualizing neighborhoods as places within continuous space is

useful because it creates new options for operationalizing neighborhoods. Those options
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are more compatible with GSM than with HLM. Adopting this more flexible
conceptualization of space and neighborhoods will allow us to adopt modeling tools that
may be better aligned with the phenomena we wish to investigate. This study proposes
applying a statistical method that does just that — and to the extent that GSM outperforms
HLM in modeling the data, it implies that treating neighborhoods as discrete, non-
overlapping entities for the constructs studied in this project may be less effective or
accurate than an approach that recognizes that neighborhoods are not so precisely
bounded. We need to align the methods with the phenomena, rather than allowing the
methods to drive the definition of the units of interest. To continue developing the
rationale for this study, the next section of the literature review describes how HLM is
applied to neighborhood research and how the discontinuous conceptualization of space
and neighborhoods affects HLM analyses.
Hierarchical Linear Modeling Methods for Testing Contextual Effects

To build the argument for why GSM may be a useful alternative to HLM, it is
essential to understand how HLM works and some of its limitations associated with the
assumptions made in order to apply it to neighborhood research. There is a large
literature on HLM, so this section focuses only on the aspects and issues most relevant to
the present study. For simplicity, the examples are drawn from the neighborhood effects
literature or framed in terms of neighborhood research, although HLM has also been
applied to many other content areas.

While the statistical methods for investigating contextual effects have evolved
considerably in recent decades, interest in multilevel research questions is hardly new.

One of the early statistical approaches to this was simply to merge contextual variables
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into an individual-level dataset by assigning the same value of each contextual variable to
everyone from a given setting. Then, that contextual variable was added to an ordinary
least squares (OLS) regression model as a “cross-level operator” to test the effect of
interest (James & Williams, 2000). However, the OLS regression model assumes that all
observations are independent from one another (Fox, 1997), so this initial approach was
eventually criticized for failing to take account of the fact that the observations from
people in the same setting are in fact not independent (Raudenbush & Bryk, 2002; Roosa
et al., 2003). The most serious effect of violating the independence assumption
underlying the OLS model is that it results in overly optimistic estimates of the
significance of contextual effects (Raudenbush & Bryk, 2002; Roosa, et al., 2003).

To better illustrate that point, consider a hypothetical study focusing on whether
or not neighborhood poverty affects educational achievement among youths. To do such
a multilevel study, one might choose a set of neighborhoods and then collect data about
multiple youths from each neighborhood. Simply using neighborhood poverty as a
predictor in an OLS regression model on the full sample in that study will yield
inaccurate estimates of the effect of neighborhood poverty if educational outcomes for
youths in the same neighborhood tend to be more similar to each other than they are to
outcomes among youths from other neighborhoods. This phenomenon is referred to as
autocorrelation,; it indicates that the residuals are correlated rather than independent.

When the assumption of independent errors is met, each person’s data contributes
unique statistical information to the analysis, but when it is not met that is no longer true:
part of the information gained from each observation overlaps with information obtained

from other observations in the same neighborhood. The net result is that the effective
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sample size is really smaller than the number of persons in the sample. Because OLS
regression does not correct for that, the standard errors for the regression coefficients end
up being too small and Type I error rates are inflated. The Type I error rate gets worse as
the degree of autocorrelation increases.

Why HLM is useful. Part of HLM’s appeal lies in the ease with which we can
match the units and levels of analysis from our theories to formal statistical
representations—there is a very clear mapping from the terminology of theory onto the
terminology used in the analysis (Luke, 2005). Indeed, HLM is a statistical method that
was tailor-made for doing multilevel research. The techniques that fall under the broad
umbrella of HLM were developed to deal with situations where data are grouped
hierarchically, with the units of analysis at one level nested within larger, more inclusive
units that represent higher levels of analysis (Gelman & Hill, 2007; Raudenbush & Bryk,
2002). In the HLM framework, the levels of analysis are usually numbered, starting with
level 1 at the lowest or most micro level of analysis then increihenting the level number
at each higher level of analysis added to the research design. For example, Browning and
Cagney (2002) used HLM to analyze data from a sample of 8,782 residents (level 1)
nested within 343 neighborhoods (level 2) in Chicago, Illinois.

There are both statistical and theoretical reasons why researchers use HLM. A key
statistical reason for its adoption is that HLM extends the OLS regression model to allow
for non-independence (i.e., autocorrelation) between the data from people nested within
the same higher level sampling unit (Raudehbush & Bryk, 2002). For neighborhood
research, that would mean that outcomes among people from the same neighborhood can

be autocorrelated without violating the HLM assumptions, which addresses one of the



key criticisms of simply adding a cross-level operator to an OLS regression model. While
correcting coefficient standard errors for the influence of autocorrelation is a key feature
of HLM, there are also compelling theoretical reasons to use it in neighborhood research.
HLM provides a way to explore the multilevel structure of the data and examine a wide
variety of substantive hypotheses associated with multilevel theories.

One set of reasons that HLM may be useful is that it allows one to detect how
much variance in outcomes can be attributed to neighborhoods as opposed to individuals
and interpret the implications of that variance. First, the amount of autocorrelation
present in the data has substantive meaning: it quantifies how much variation in the
outcome can potentially be attributed to neighborhood-level as opposed to individual-
level differences (Merlo, 2003; Merlo, Chaix et al., 2005a). Second, comparing results
from alternative HLM models can help sort out whether neighborhood-level variation is a
result of compositional or contextual effects by showing how much neighborhood-level
variability can be explained by geographical clustering of similar people within the
neighborhoods (compositional effects) and how much variability can be explained by
neighborhood-level contextual characteristics (C. Duncan, et al., 1998; Merlo, 2003).
That helps researchers avoid attributing variability to contextual effects that can be
adequately explained by individual-level effects. Third, quantifying the relative amounts
of within- and between-neighborhood variability in an individual-level outcome makes it
easier to interpret the substantive meaning and policy implications of the regression
coefficients associated with contextual variables (Merlo, 2003).

Like other forms of regression modeling, HLM allows one to test hypotheses

about the effects of specific predictors. For example, HLM allows researchers to test
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theoretical propositions about whether contextual characteristics have direct (or indirect)
cross-level effects on outcomes for residents (Merlo, Chaix, et al., 2005b). HLM can also
be used to control for neighborhood effects in order to obtain more accurate estimates of
the effects of individual-level predictors. Consistent with the idea in HLM that variability
is of primary interest, HLM allows one to test whether the effect of an individual-level
predictor varies across neighborhoéds, indicating that an as-yet unidentified characteristic
of the neighborhood as a whole moderates the relationship (Merlo, Chaix, et al., 2005b;
Merlo, Yang, et al., 2005). Finally, researchers can add cross-level interactions to a
model to test whether specific contextual moderator variables explain variability in
individual-level regression coefficients (Merlo, Chaix, et al., 2005b).

The HLM statistical model. Although there are several different ways to write
out the statistical model underlying an HLM analysis (Gelman & Hill, 2007), the most
intuitive form is specified by writing multiple equations (Raudenbush & Bryk, 2002). For
example in a model where level 1 units are residents and level 2 units are neighborhoods,
there would be a level 1 sub-model showing the relationships between individual-level
predictors and the outcome, plus one or more level 2 equations describing how specific
coefficients in the level 1 sub-model (including the intercept) are themselves outcomes
predicted by level 2 variables. For example, a simple HLM with one predictor at each

level might be written as shown in Equations 1-3 below:

Level 1 sub-model: Yj; = Bo;j + B 1jXjj + rij- 1)

Level 2 sub-model for the intercept: Boj =00 + Y01Zj* uoj. @
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Level 2 sub-model for the slope of X: B1j=1v10 + Y11Zj* uyj. )
In Equation 1, Yjj is the outcome for person i in neighborhood j, which is shown
as the sum of a neighborhood-specific intercept (Bo; ), plus the neighborhood-specific

effect (Byj) of a level 1 predictor (Xjj), plus a level 1 residual (rj;) for person i in

neighborhood j. The fact that the level 1 intercept and slope are estimated separately for
each neighborhood is important because that means one can now construct a new
outcome variable from each of them, then use the level 2 sub-model in Equations 2 and 3

to predict those coefficients with neighborhood-level predictors. Thus, Equation 2 shows

that the intercept in each neighborhood (Bj) can be modeled as the sum of a fixed
intercept that is the neighborhood-level mean (yg(), plus the systematic effect (yg1) of
some neighborhood-level contextual variable (Z;), plus a neighborhood-level residual

(ugj) that represents random error at level 2. Changing from using P to using y to

represent the regression coefficients at level 2 simply reminds readers that one has now
moved to a different level of analysis.

As illustrated by Equations 2 and 3, one can write a separate level 2 sub-model for
every parameter in the level 1 sub-model; in each of these level 2 sub-models, there is a
unique level 2 residual term. Taken together, Equations 1-3 propose a multilevel model in
which (a) the individual-level variable X has a main effect, (b) the neighborhood-level

variable Z also has a direct main effect through Equation 2, and (c) Z moderates the
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effect of X through Equation 3. The moderator effect is easier to recognize when
Equations 2 and 3 are substituted into Equation 1 so that the entire model is represented
by a single regression model (Equation 4), then simplified and rearranged with all three

residual terms collected inside the parentheses in Equation 5:

Combined model: Yjj = (Y00 + Y01Zj+ ugj) + (Y10 + Y11Zj+ u1pXij + rij. “)

Combined model: Yj; = v00 + v10Xij + v01Zj + Y11ZjXij + (ugj + u1jXij + rij). )
The term y11Z;Xjj in Equation 5 represents the cross-level interaction between the

neighborhood-level variable Z and the individual-level variable X (y11 is the coefficient

for that effect). This interaction functions as a moderator term, exactly paralleling how
moderators are represented in OLS regression models (see Aiken & West, 1991).
The combined model in Equation 5 is also useful for illustrating how HLM is

simply an extension of the more familiar OLS regression framework. The major

difference is the addition of the neighborhood-level residuals for the intercept (ug;) and

slope (u}jXjj), and the change in notation from p to y for the coefficients. Of course,

adding the neighborhood-level residuals and allowing them to potentially correlate with
each other makes estimating the model more complex, but iterative maximum likelihood
methods make that tractable (Raudenbush & Bryk, 2002) and modern software packages

such as SPSS, SAS, R, and WinBUGS can easily handle these models (Gelman & Hill,
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2007; Hayes, 2006; Lunn, Thomas, Best, & Spiegelhalter, 2000; Peugh & Enders, 2005;
West, Welch, Gatecki, & Gillespie, 2007).

Assumptions in HLM. Three of the major methodological assumptions
underlying HLM relate directly back to the broader assumptions in multilevel research.
The first of those is that every level 1 unit is nested within a specific, known higher level
unit (Hofmann, et al., 2000); in neighborhood research that simply means we need to
know which neighborhood each resident lives in. Defining neighborhoods as places that
occupy mutually exclusive portions of space simplifies determining who belongs in each
neighborhood. The second assumption is that level 1 units are exposed to and potentially
affected by processes and conditions within the higher level units to which they are
linked (Hofmann, et al., 2000). In neighborhood research, residents are assumed to be
affected by neighborhood processes and/or neighborhood conditions. Finally, HLM
assumes that outcomes can potentially vary both within and between higher level units
(Hofmann, et al., 2000; Raudenbush & Bryk, 2002).

An important, but frequently unstated, assumption in HLM as applied to
neighborhood research is that contextual conditions are assumed to be homogenous
within each neighborhood (Roosa, et al., 2003). This shows up in the statistical model by
assigning the same value on each neighborhood-level predictor to every individual in a
given neighborhood.

Naturally, there are also formal statistical assumptions in HLM, most of which
follow from the fact that HLM simply extends OLS regression. The following discussion
draws primarily from Hofmann et al. (2000), though similar points are made by

Raudenbush and Bryk (2002). For every level 1 unit within each level 2 unit, the level 1
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residuals (rjj) are assumed to be independent and normally distributed with a mean of

zero and a variance of 02. Because there can be multiple level 2 residuals, each associated

with a different level 1 parameter, each kind of level 2 residual is assumed to follow a
normal distribution and be independent across level 2 units. The set of level 2 residuals
are collectively assumed to follow a multivariate normal distribution, which means that

the variance components associated with those level 2 residuals can be arranged in a

variance-covariance matrix whose elements are labeled with the Greek letter tau (tqq). It

is also assumed that the level 1 residuals are independent of any and all level 2 residuals
and that neither level 1 nor level 2 residuals are correlated with any predictors at their
respectivé levels in the hierarchy.

Autocorrelation in HLM. Quantifying the amount of autocorrelation detected by
an HLM analysis is quite easy. One simply runs an empty or null model in which neither
the level 1 nor the level 2 sub-models contain any substantive predictors (Raudenbush &

Bryk, 2002). Instead, they contain only intercept and residual terms at each level. This
provides estimates of two variance components: 02, which represents within-
neighborhood or individual-level error variance, and 1((, which represents between-

neighborhood variance. The sum of these two variance components is the total variance
in the outcome measure. If there is a tendency for people in the same level 2 unit to have

similar outcomes, then there must be some variance attributable to between-

neighborhood differences (tgg > 0). To measure the amount of autocorrelation present,

one calculates the ICC (p), which is the ratio of the between-neighborhood variance to
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the total variance from an empty HLM model, as shown in Equation 6 (Raudenbush &

Bryk, 2002).
ICC: p = 190/(%00 + 6°). 6)

The simplest way to interpret the ICC is to think of it as the proportion of
variance in the outcome that is attributable to neighborhoods. Because variance

components cannot be negative numbers, the ICC ranges from zero to one (Merlo, Chaix,

et al., 2005a). Obviously, when 1 is equal to zero, then the ICC is also zero, indicating

that the neighborhood a resident lives in is unrelated to the outcome in any way; in those
cases, HLM produces results identical to OLS regression (Roosa, et al., 2003). The ICC
indicates the amount of autocorrelation present: larger values indicate more
autocorrelation, but even small amounts of autocorrelation can compromise the accuracy
of OLS regression. At the upper end, an ICC of one indicates that there are no individual
differences within neighborhoods and that all differences in outcomes can be explained
by the neighborhoods in which residents live.

Because HLM approaches neighborhoods as spatial units, the autocorrelation it
models can be conceptualized as a form of spatial dependence (Bass & Lambert, 2004)
that is strictly hierarchically structured. The level 2 residuals in an HLM are the
mechanism for introducing autocorrelation between residents (level 1 units) within the
same neighborhood (level 2 unit) into the model. The standard HLM statistical model
does not permit autocorrelation between residents located in different neighborhoods

unless the entire hierarchy is extended to include a third level.
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The HLM statistical model also does not permit the amount of autocorrelation that
may exist between level 1 units within the same level 2 unit to vary. So, the requirement
that the nesting of residents inside neighborhoods must be known combines with the
operational definition of neighborhoods as units of analysis in HLM to determine whose
outcomes are allowed to be autocorrelated and whose are not.

Overall, HLM treats neighborhoods as places that are disconnected from and
independent of one another, unless they are connected via common membership in a still
higher level of spatial unit. Even when one adds additional levels to the hierarchy, the
boundaries of the units at the highest level will always define sharp discontinuities in
whether outcomes for people on either side of the border will be autocorrelated despite
being quite close together in space.

Controlling for composition. A question that frequently arises in multilevel
neighborhood research is whether evidence that outcomes differ between residents of
different neighborhoods represents a contextual effect or whether it is instead attributable
to differences in the compositions of the neighborhoods’ populations (Bingenheimer &
Raudenbush, 2004; C. Duncan, et al., 1998). Upon detecting the presence of
autocorrelation, it is tempting to conclude that a contextual property of the neighborhood
is the only possible explanation. However, an alternative explanation may be that the
neighborhood-level variability can be explained by the geographical clustering of similar
types of people into neighborhoods —that neighborhood is effectively confounded with
one or more individual-level characteristics (C. Duncan, et al., 1998; Merlo, Yang, et al.,
2005). A variety of social processes might result in that sort of clustering, some voluntary

(wealthy individuals choosing to live in certain neighborhoods) and others involuntary
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(structural racism may restrict the housing options available to minorities, leading to
residential segregation).

The ICC calculated from an empty HLM model does not by itself distinguish
contextual from compositional effects that may explain that autocorrelation. To control
for composition, it is necessary to run another HLM analysis that expands the empty
model by adding only individual-level predictors known or believed to be related to the
outcome (Merlo, Yang et al., 2005). Doing that controls for the composition of the
population in each neighborhood, at least insofar as those particular variables are
concerned and the variance components will now reflect that the effects of those
individual-level variables have been removed.

The adjusted ICC based on the revised model represents the amount of
autocorrelation remaining in the data that may reflect the influence of contextual factors
at the neighborhood level (Merlo, Yang, et al., 2005). If the adjusted ICC still indicates
the presence of autocorrelation, then controlling for composition has not eliminated the
possibility of contextual effects. However, if the ICC is effectively zero after controlling
for composition, then there is no neighborhood-level variance left to explain and adding
contextual characteristics will not be fruitful. Formulas for calculating the proportional

change in variance at each level of the model are available (Merlo, Yang et al., 2005),

allowing the researcher to calculate level-specific analogues to Rz.

Neighborhoods as level 2 units in HLM. There are two important ways that the
conceptualization and operationalization of neighborhoods as units of analysis influences
an HLM analysis. The first is that HLM is only compatible with a definition of

neighborhoods that presumes there are sharply defined, non-overlapping boundaries that
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make it possible to unambiguously assign neighborhood membership for each resident.
Without that, HLM’s mechanism for modeling autocorrelation breaks down.
One problem with this approach is that the boundaries chosen by the researcher
(which are one option among many) may not be valid and may not group people in a
meaningful way. For example, a researcher might choose to use census tracts to group
people into neighborhoods, but this may group the wrong people together and split up
people who should be grouped with each other. Consider a hypothetical case where a
researcher assigns two people who consider themselves neighbors to different
neighborhood units: social interactions and information exchange between those people
might lead to autocorrelation in their perceptions of neighborhood sense of community,
norms, or safety, thus violating the HLM assumption that outcomes for residents in what
the researcher calls different neighborhoods are independent. Furthermore, in spatial
datasets, the degree of autocorrelation observed is often a function of the distance
between observations (Bailey & Gatrell, 1995; Haining, 2003). This form of spatial
autocorrelation is succinctly described by Tobler’s First Law of Geography, which states
“Everything is related to everything else, but near things are more related than distant
things.” (Tobler, 1970, p. 236). So, assuming that autocorrelation is hierarchically
structured may be inaccurate, depending on how well the researcher’s boundary system
captures the actual patterns in the data.
Another side-effect of this need to unambiguously group people into

neighborhoods is that findings will be subject to the MAUP through its implications for
the measurement of neighborhood-level constructs. The discontinuous view of

geographic space implies that researchers should use the same boundaries when
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determining the geographic area within which all neighborhood-level constructs should
be measured. The frequent use of census tracts or block groups as neighborhood units
often derives from a desire to use readily available census data to measure structural
characteristics of the neighborhoods so that they can be used as contextual predictors.
However, doing that assumes that size, shape, and boundaries of the neighborhoods are
fixed and equally appropriate for all of those measures, thus opening the door to the
MAUP because of the boundary and scale problems.

Considering space in HLM. As previously noted, the standard software
packages for HLM provide very few options for trying to take account of the spatial
arrangement of neighborhoods. One option is to add an additional hierarchical level to the
model, then model regional effects with variables at the new level. However, that is not a
very flexible approach for considering spatial issues, so some neighborhood researchers
are now beginning to perform alternate kinds of analyses that attempt to take the spatial
arrangement of neighborhoods into consideration. One approach involves using results
from HLM analyses as inputs to spatial regression models that are entirely conducted at
the neighborhood level (Morenoff, 2003; Morenoff et al., 2001; Swaroop & Morenoff,
2006). In these studies, the question typically being asked is whether the mean level of
the outcome in a focal neighborhood is influenced by the contextual characteristics of
adjacent neighborhoods.

The modeling required to answer that question proceeds in two stages. In the first
stage, an HLM is run in the normal fashion to link contextual and individual-level
predictors to some level 1 outcome, yielding estimates of the neighborhood-level

residuals. Those residuals represent each neighborhood’s mean on the outcome (adjusted
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for the composition of the sample in each neighborhood). The neighborhood means are
expressed as deviations from the grand mean across all neighborhoods.

In the second stage of these analyses, the neighborhood-level residuals become
the dependent variables in a subsequent “spatial lag” regression model of the general
form illustrated in matrix notation by Equation 7 (Morenoff, 2003; Morenoff, et al., 2001;
Swaroop & Morenoff, 2006).

Y=pWY +XB +¢. @)

In Equation 7, the parameter p is a spatial autoregressive parameter that represents
the effect of a one unit change in the weighted average of the dependent variable in
surrounding neighborhoods. The W in this equation is a weights matrix defining how
much each other neighborhood’s value on the dependent variable contributes to the
weighted average that is denoted WY. One typically specifies weights so that only the
neighborhoods that share a common border or corner with the focal neighborhood
directly affect the spatial lag term for the focal neighborhood. Naturally, Xp represents
the effects for contextual variables associated with the focal neighborhood and ¢ is a
typical regression residual that is assumed to be independent and normally distributed.

Because the Y values from surrounding neighborhoods used to construct the WY
term are themselves functions of the contextual conditions in their respective
neighborhoods, the spatial lag model essentially says that the outcomes in a focal
neighborhood depend not only on the contextual characteristics within its own boundaries
but also on the contextual characteristics of other neighborhoods. More distant

neighborhoods often exert increasingly weaker influence mediated through their effect on
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more proximal neighborhoods, though that depends on exactly how the weight matrix is

constructed in this model.
While this approach does allow researchers to build on the foundation provided

by HILM to start considering spatial issues, it would be better to integrate these spatial
effects directly into the original level 2 portion of the HLM model. One way to do that is
to reprlace the WY term in Equation 7 with a single variable Y’ that represents a weighted
avera ge of the outcome in surrounding neighborhoods that has been purged of any
correlation with the error term, then treat the new variable as simply another
neighborhood-level predictor (Land & Deane, 1992; Wyant, 2008). An advantage of that
approach to enhancing HLM with additional spatial information is that it can be
implemented even with standard multilevel modeling software. The disadvantage with
this approach is that implementing it relies on an instrumental variables framework that is
Somewhat difficult to understand and it still requires running additional models prior to
the main analysis in order to construct the Y’ variable.

Taking a fully Bayesian approach and switching to more specialized software
Packages like WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) allows one to take
a more sophisticated approach to enhancing an HLM model with spatial information. For
example, some authors have proposed relaxing the assumption of independence among
the Neighborhood-level intercepts by adding a conditional autoregressive (CAR) structure
INto the HLM model (Beard, 2008; W. Browne & Goldstein, in press). A CAR-HLM
Model is simply a slightly more general version of the HLM model where one assumes

Mat that the proximity between neighborhoods is important because the average resident

o . . .
YtCOme from one neighborhood is similar to the average outcomes in other nearby
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neighborhoods. That makes the CAR-HLM model conceptually similar to a spatial lag
model. Using CAR-HLM models, researchers can allow the correlation between the
intercepts of adjacent neighborhoods to depend on the distance between neighborhoods
(Beard, 2008; W. Browne & Goldstein, in press). One advantage of moving to a CAR-
HI_ M model instead of following up on a standard HLM model with a separate spatial lag
model is that the entire CAR-HLM model is estimated at one time.

Like the spatial lag approach, adding a CAR structure to an HLM requires a
weiglht matrix (W) that defines which neighborhoods affect each other and how much
they do so. A CAR-HLM analysis is implemented by adding a spatially structured
residual term to the level 2 model to supplement the regular unstructured residual term.
As Equation 8 below shows, each of these new spatial residuals (denoted S;) is assumed
to be drawn from a normal distribution with a mean equal to the weighted average of the

spatial residuals from the surrounding neighborhoods (denoted S, which are defined by

the W matrix values that have non-zero values. This also adds a second level 2 variance

COmponent to the model.
S; | S.j ~Normal(Z; Sj/nj, v/ ny), where n; = Z; Wj;. 8)
Only one study has used a CAR HLM approach to study residents’ perceptions of
their neighborhoods (Fagg, Curtis, Clark, Congdon, & Stansfeld, 2008). Unfortunately,
that Study did not contrast the CAR HLM results with those of HLM models without the
CAR structure. While it did not consider many of the other spatial issues related to the
de Binition of neighborhoods discussed above, Fagg and colleagues’ study shows that it is

Dossible, though certainly very far from common, to enhance HLM to better account for

the Spatial arrangement of neighborhoods.
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However, the GSM approach also offers a simple, direct approach to modeling the

spatial patterns in outcomes and to representing the possibility that contextual conditions

in what HLM would call different neighborhoods may matter for outcomes in a focal
neighborhood. With GSM, there is no need to pull the results out of HLM and feed them
into another statistical procedure because it has mechanisms for representing these
concepts. In addition, GSM offers greater flexibility than HLM with respect to defining
the boundaries to be used for measuring neighborhood-level variables. Thus, the review
now tuarns to a discussion of GSM.

Geostatistical Modeling Methods for Testing Contextual Effects
The GSM methods used in this study belong to a family of related statistical

techniques that have their origin in the earth sciences, namely geology. This study uées

the term geostatistical model to honor that origin and to maintain the link back to the
larger 1literature where the method is most often used and described, which is usually
called geostatistics (Banerjee, Carlin, & Gelfand, 2004; Chilés & Delfiner, 1999; Diggle
& Ribeiro, 2007; Goovaerts, 1997; Isaaks & Sﬁvastava, 1989). Retaining that link should
help Other researchers interested in exploring the range of GSM methods available to
locate relevant materials. Other authors who have begun to use GSM techniques outside
of its Original application areas have also retained this terminology (Bass & Lambert,
2004; Chaix, et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et

al. - 20 0 5)
GSM is one of three major types of statistical approaches to spatial data analysis

Mat fall under the broad umbrella of GIS (Bailey & Gatrell, 1995). It is informed by an

SXplicit spatial perspective on analysis where place, space, and spatial dependence are of
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primary interest (Haining, 2003) and relies on point-referenced data—each observation is
associated with a location defined by a pair of spatial coordinates (Bailey & Gatrell,

1995 ; Haining, 2003). GSM focuses on modeling the spatial distribution of an attribute or
variable attached to those locations, generally conceptualizing the observations as
samprles from some underlying, continuous surface (Bailey & Gatrell, 1995; Chilés &
Delfiner, 1999; Goovaerts, 1997; Haining, 2003; Isaaks & Srivastava, 1989).

Geostatistical techniques were developed to study the spatial distributions of
minerxrals and natural resources (Chilés & Delfiner, 1999; Goovaerts, 1997; Isaaks &
Srivastava, 1989). They are often used to predict the amount of a particular mineral
expected at unsampled locations on the basis of both the large-scale spatial trends and
small-scale spatial autocorrelation evident in the data from sampled locations. Such
models often use the spatial coordinates (or polynomial functions of them) as predictors
in regression models to represent the large-scale spatial trends, but they may also use
substantive predictors like the concentration of another mineral that was also measured at
the Sammpled locations and is believed to predict the levels of the target mineral.

In traditional applications of GSM like those discussed above, the point is to
Predict values at unsampled locations, not to interpret the substantive meaning of the
coefﬁc.ients. However, GSM, like HLM, is an extension of the OLS regression model
(Ballerjee et al., 2004; Diggle & Ribeiro, 2007). It can be used in an explanatory capacity
becauSe the distinction between prediction and explanation is tied to the purpose of the
1.eseal‘ch, not how a regression model works (Diggle & Ribeiro, 2007; Myers, 1990). To

>< G SM for explanatory purposes one must replace spatial coordinates as predictors
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with substantive predictors selected on the basis of theory because the former merely

describe spatial patterns in the dependent variable, while the latter explain them.

Why GSM is useful. This study focuses on GSM as an alternative to HLM for
studying neighborhood effects because GSM offers éeater flexibility to incorporate and
model spatial aspects of those phenomena. Furthermore, GSM is compatible with a
multilevel conceptualization of neighborhoods as entities that surround each resident’s
home and have fuzzy, sometimes overlapping boundaries that may vary in size and shape

depennding on the neighborhood attribute being measured (Galster, 2001).
Despite its origins in modeling physical phenomena, GSM can be applied to study

the social phenomena that are of interest in neighborhood research. GSM has recently
been applied in epidemiological studies of place effects on health and health care
utilization (Boyd, Flanders, Addiss, & Waller, 2005; Chaix, Merlo, & Chauvin, 2005;
Chaix, Merlo, Subramanian et al., 2005). Geostatistical methods have even been applied

in a limited way to examine spatial autocorrelation in urban youths’ perceptions of

neighborhood disorder (Bass & Lambert, 2004).
As with HLM, there are both statistical and theoretical reasons why GSM is

Useful for neighborhood research. On the statistical side, GSM is designed to explicitly
mode] spatial autocorrelation between observations, allowing the regression coefficients

ASSociated with predictors to be accurately estimated in situations where the OLS

rS&ression assumption of independence would be violated (Banerjee et al., 2004; Diggle

% Ribeiro, 2007).

On the theoretical side, GSM allows the researcher to test many of the same

rn"‘ltilevel hypotheses that HLM can test. For example, GSM can partition the amount of
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variance in outcomes into components attributable to neighborhood-level spatial variation
and individual-level non-spatial variation (Banerjee, et al., 2004). By adding individual-
level predictors, GSM can account for population composition effects and yield revised

neighborhood- and individual-level variance estimates in a manner parallel to that in

HIL_ M (Chaix, Merlo, Subramanian, et al., 2005).

As an extension of the basic regression model, GSM also allows one to test
hypotheses about the effects of predictors, whether those predictors are located at the
neiglhhborhood or individual levels of analysis. Any hypothesis about direct or indirect
cross-1evel effects of contextual predictors that can be represented in a regression model

or in HI_M can be tested in similar manner in GSM, as can hypotheses about cross-level

interactions between contextual and individual-level predictors.

GSM relies on a continuous representation of space rather than on one fragmented
into Spatial units of arbitrary size, shape, and boundaries (Bass & Lambert, 2004; Chaix
et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005).
Thus, in GSM places are naturally embedded in the larger spatial context because spatial
Proximity, rather than membership in the same neighborhood unit, is the basis for
modeling autocorrelation (Banerjee et al., 2004; Chaix et al., 2006, Chaik, Merlo, &
ChauVin, 2005; Chaix, Merlo, Subramanian et al., 2005; Finley, Banerjee, & Carlin,
2007) - The advantages of that approach are explained further below in the section about
how, awutocorrelation is handled in GSM. The continuous representation of space is also
useful because it allows a researcher to independently vary the size and shape of the area

Sver Which each neighborhood-level predictor is measured. The significance of that
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flexibility is discussed further below in the sections on neighborhoods as level 2 units in
GSM and on considering space in GSM.

The GSM statistical model. The statistical model underlying GSM is an
extemnsion of the standard regression model that relaxes the independence assumption
associated with ordinary least squares models. Several other statistical models also relax
that assumption. For example, where the units of observation are geographic areas,
spatial regression models such as simultaneous autoregressive (SAR) models and
cond itional autoregressive (CAR) models are frequently used to incorporate non-
independence into what is otherwise a regular regression model (Haining, 2003). With
point-referenced data, generalized least squares (GLS) models can be used to add a
covariance structure to the model’s error term, thereby modeling residual spatial
dependence (Bailey & Gatrell, 1995). In fact, GLS models are closely related to the GSM
method discussed here. The GSM model used in this study is shown in Equation 9 below.
Thl'Olalghout the model, the (8) attached to various terms denotes that they are associated

with known spatial locations—it is like a subscript indexing the data by spatial location.
Y(s) = X (s)B + W(s) + £(s). )

As shown in Equation 9, the dependent variable Y at a particular location (s) is
Predicted from an intercept and a set of spatially referenced predictors from the same
location, denoted in matrix notation as XT(s)B, plus a normally distributed residual term
Calleq g(s) that represents pure random error at that location. The only difference between
the <G SM model and the standard OLS regression model is that GSM adds a spatial

fAndop effect residual called W(s) that represents spatial autocorrelation (Banerjee et al.,

2004; Finley et al., 2007). The value of W(s) for any given observation depends on the
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observation’s location and hence also on its distance from the other observations. Unlike
HLM, GSM does not use different notation for the coefficients associated with predictors
located at the neighborhood versus individual levels of analysis.

The notation used to identify the variance components in GSM is different than in

HI_I because it switches the meaning of the symbols ‘tz and 02. In HLM, t( refers to
between-neighborhood variance and 02 refers to individual-level within-neighborhood

variance. In GSM, the situation is reversed because 1:2 (also called the nugger)
tradi tionally refers to the non-spatial, pure error variance that is basically individual-level

variance and 02 (also called the partial sill) refers to spatial variance that is analogous to

neighborhood-level variance (Banerjee, et al., 2004).
Assumptions in GSM. As with all statistical methods, GSM makes both

methodological and statistical assumptions. One of the key methodological assumptions

1s that the location associated with every observation is known. Galéter’s (2001)

definition of neighborhoods implies that every residential location exists inside a

Neighborhood, so contextual characteristics measured at such locations provide the

Neighborhood-level information required to use GSM as a multilevel analysis technique

Neither Galster’s neighborhood definition nor GSM methods require assuming that

A eighborhoods have a constant size or shape that should be used for measuring all

ll'Ebighborhood characteristics. GSM can also accommodate neighborhoods that overlap.

GSM, like HLM, assumes that residents are exposed to and potentially affected by

neigl‘lborhood processes and conditions (Chaix et al., 2006; Chaix, Merlo, & Chauvin,

_2005 s Chaix, Merlo, Subramanian et al., 2005). It also assumes that outcomes can vary
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both within and between neighborhoods, but it does not rely on neighborhood boundaries
to determine how much autocorrelation may exist between observations. Instead, GSM
assuumes that autocorrelation is a spatial phenomenon operating over continuous space.
There are several formal statistical assumptions in GSM. Because many of the
assuanptions in GSM are similar to those in OLS regression models, this discussion
focuses on the specialized assumptions that are pertinent to understanding how GSM
Works- As in OLS regression, the random error term &(s) is assumed to follow a normal

distri bution with a mean of zero (Banerjee et al., 2004; Finley et al., 2007), though the
symbol for the variance component of this distribution is 12 in GSM rather than the 02

traditiomnally used in OLS regression and HLM. Though GSM and OLS regression use
different symbols for the error term, there is no substantive difference in what they
represent. As usual, the errors denoted with g(s) are assumed to be independent of other
terms in the model, just like the individual-level residuals from an HLM.

The spatially autocorrelated term W(s) in the GSM model is assumed to be the
result of a stationary Gaussian spatial process (Banerjee et al., 2004; Finley et al., 2007).
That Imneans that the GSM approach is conceptualizing these residuals as values sampled
from a joint multivariate normal (Gaussian) distribution where each observed location is
ASsSociated with a separate, normally distributed variable that has a mean of zero.

StatiOnarity refers to the assumption that the mean value of the process is zero

SV ery where in the study region.

Describing the full multivariate normal distribution of the spatial process requires
2 COvariance matrix with rows and columns that correspond to the observed locations.

Each element in the matrix is therefore associated with two locations and represents the
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covariance between the two random variables from which the residuals associated with
those two locations are drawn. GSM assumes that the covariance matrix has been
generated by an underlying covariance function that specifies the shape of a smooth
theoretical curve that models the amount of covariance between observations at any two
locations as a function of the physical distance separating them. GSM authors also
sometimes refer to this as the correlation function because the covariance function can be
converted into a correlation metric that is more interpretable.

Typically, the correlation function associated with the W(s) term is assumed to be
stationary and isotropic (Banerjee et al., 2004), which means that strength of spatial
autocorrelation depends only on distance between observations and not on the direction
one would have to travel to move from one location to reach the other. The correlation
function is said to be anisotropic when the direction from one point to another affects the
level of autocorrelation observed (Banerjee et al., 2004; Chilés & Delfiner, 1999; Diggle
& Ribeiro, 2007; Isaaks & Srivastava, 1989).

Autocorrelation in GSM. In contrast to HLM, where the autocorrelation in the
data is represented by a single number, autocorrelation is not a single value in GSM.
Instead, the correlation function describes how much autocorrelation there is between
points as a function of the distance between them. It is estimated by grouping pairs of
observations separated by certain distances, then estimating the variance in each group.
Each observation contributes to multiple groups because it lies at different distances from
various other observations. Observations that are close together are usually more highly

autocorrelated than observations that are far apart.
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Figure 3 shows examples of several alternative correlation functions that can be used in
GSM (Banerjee et al., 2004; Chilés & Delfiner, 1999; Diggle & Ribeiro, 2007; Isaaks &

Srivastava, 1989), each of which is described by a different mathematical formula that

has a few parameters, usually consisting of a partial sill parameter (02), a range parameter

(), and the nugget (12). In Figure 3, the dot at distance = 0 indicates that each model

assumes perfect autocorrelation between observations at the exact same location (distance
= (), whereas the lines indicate the level of autocorrelation between observations that are
at different locations (distance > 0). The vertical space between the dot and the left end of
the line in each semivariance panel illustrates the nugget parameter. The effects of the
range and partial sill parameters are easiest to see in the semivariance panel for the
spherical model: the vertical space between the left end of the line and the level at which

the line turns flat is the partial sill, whereas the distance at which that line first turns flat

is the range6. Details on alternative correlation functions are presented in geostatistics
textbooks (Banerjee et al., 2004; Chiles & Delfiner, 1999; Diggle & Ribeiro, 2007; Isaaks
& Srivastava, 1989), but a full discussion of the types of correlation functions available is
beyond the scope of this study, other than to note that it is common practice to fit
alternative GSMs with different correlation functions and assess which one produces the
best empirical results.

To quantify the amount of autocorrelation detected by a GSM analysis, one can

use the parameters of the correlation function estimated from an empty GSM model (i.e.,

6
Technically, the parameter that determines the range often actually measures the rate of decay in the

spatial covariance and the range corresponds to the distance at which that covariance has become
negligible. So, the range is actually a value calculated by transforming the true parameter value.
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Figure 3: Exponential, spherical, and Gaussian variogram models displayed in three
different metrics. Each panel illustrates the autocorrelation between observations
as a function of the distance between them. The top two rows show these models
in correlation (top) and covariance (middle) metrics, which are measures of
similarity; the bottom row shows them in a semivariance metric, which is a

measure of dissimilarity. All three models have the same partial sill (02 =1),
range (¢ = 1), and nugget (12 = 1) parameters, but differ in shape.

one with no substantive predictors, only an intercept term). Recall that the partial sill (cz)

represents the amount of neighborhood-level, spatial variance, while the nugget (‘Cz)

represents the individual-level, non-spatial variance. The range parameter in a GSM
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analysis allows the researcher to identify the actual distance beyond which data are no
longer spatially autocorrelated (or only negligibly so). Both the partial sill and the nugget
are variance components, so their sum is the total variance in the outcome. Thus, we can
use Equation 10 to construct a partial sill ratio (PSR) that is conceptually similar to the

ICC measure used in HLM.
PSR: p=0°/ (o> + ). (10)

The PSR is the maximum level of autocorrelation observed in the GSM, which
occurs at very short distances between observations. Like an ICC, it varies between zero
and one, with one indicating perfect spatial autocorrelation. Thus, the PSR estimated in a
GSM is directly comparable to the ICC estimated in an HLM: The simplest way to
interpret it is to think of the PSR as the proportion of variance in the outcome variable
that is attributable to neighborhoods. In addition to looking at the PSR, one can plot and
examine the entire correlation function associated with the GSM (Chaix, Merlo, &
Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005).

Incorporating the spatially autocorrelated residual term W(s) in the GSM model
corrects for the autocorrelation in the data and accounts for the spatial arrangement of
both residents and neighborhoods, resulting in more accurate standard errors for the
regression coefficients. This parallels how HLM corrects for autocorrelation, but makes
different assumptions about how autocorrelation is structured because it does not use
neighborhood boundaries to inform the statistical representation of autocorrelation.

In substantive terms, the range associated with the correlation function in a GSM
analysis identifies the geographic scale on which the spatial autocorrelation in the

residuals exists. Models with large ranges indicate that residual spatial autocorrelation
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exists over long distances, while small ranges indicate spatial autocorrelation is restricted
to relatively short distances. This is critical information because it clarifies the conditions
under which HLM may be a reasonable method to deal with spatial autocorrelation,
which is probably when the range of spatial autocorrelation roughly spans the entire
length of the typical HLM-based neighborhood unit and the units are far enough apart
that spatial autocorrelation is not spilling over from one to another.

Consider some contrasting hypothetical situations. In one, the neighborhood units
used in an HLM are all far enough apart that any distance-based spatial autocorrelation
that could have been detected by GSM does not reach from one neighborhood to another
(e.g., neighborhoods drawn from different cities or states). In that case, HLM’s
assumption that outcomes for residents located in different neighborhoods are
independent is met and modeling the within-neighborhood autocorrelation as a single
neighborhood-level residual shared by all residents of the neighborhood may not be
sacrificing too much information if the individual-level predictors account for any
remaining patterns in the spatial distribution of the outcome within the neighborhood.

In another hypothetical situation, the neighborhood units used in the HLM are
close enough together that the range of spatial autocorrelation detectable by GSM reaches
from some neighborhoods into other neighborhoods, indicating that outcomes among
residents in different neighborhood units are still autocorrelated. That would decrease the
between-neighborhood variability detected by the HLM and underestimate neighborhood
effects. This is where GSM has the most potential to provide a better method for dealing

with that autocorrelation because it models an aspect of the data that HLM cannot.
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In the final hypothetical scenario, the range of spatial autocorrelation might be
short compared to the typical size of the HLM neighborhood units. In this situation, HLM
may not detect much autocorrelation because the neighborhoods are too large and thus
effectively pool the data for people who are far enough apart to be uncorrelated with data
for people who are close enough to be correlated. That would increase the within-
neighborhood variance detected by the HLM, thereby decreasing the ICC. In short, GSM
might outperform HLM whenever the range of the spatial autocorrelation present is not
well matched to the size of, and spacing between, the neighborhoods used in HLM.

Controlling for composition. Because variations in population composition can
explain spatial variability in outcomes that might otherwise be attributed to contextual
effects, composition effects are of concern in GSM for the same reason they are a
concern in HLM. Fortunately, the approach to controlling for composition is the
essentially the same between the two methods: one simply adds individual-level
predictors to the model then examines the adjusted PSR to see how much spatial
variability remains that might be related to contextual factors (Chaix et al., 2006; Chaix,
Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005). If there is still
autocorrelation after controlling for composition, then adding contextual predictors may
explain the remaining spatial variability. Because the PSR and the ICC are comparable
measures, the formulas used to calculate the proportional change in variance between
alternative HLM models (Merlo, Yang et al., 2005) should also be applicable in GSM
and allow calculation of level-specific analogues to the R statistic used in OLS

regression modeling.
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In the case of GSM, one might also look at whether the range of spatial
autocorrelation has changed after accounting for composition. Plotting the correlation
function for both the empty model and the model including individual-level effects
(Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al., 2005) may be useful.

As in HLM, each regression coefficient in a GSM model is adjusted for all other
predictors in the model. Therefore, contextual predictors should be added after relevant
individual-level predictors when there are theoretical or empirical reasons to expect that
residents’ personal characteristics are related to the outcome being studied.

Neighborhoods as level 2 units in GSM. One of the major ways in which GSM
differs from HLM is in how neighborhoods are represented. Above, two ways in which
the conceptualization and operationalization of neighborhoods affected HLM were
discussed. Next, we revisit those issues to describe how they affect GSM.

First, GSM does not rely on grouping residents into neighborhoods to model
autocorrelation. Each resident is associated with a location by the spatial coordinates that
identify his or her position in geographic space. Then, autocorrelation is modeled as a
function of the distance between residents’ locations, thereby treating geographic space
as a continuous phenomenon. To the extent that Tobler’s First Law of Geography
(Tobler, 1970) holds for a particular outcome measure, this may be a better way to
represent spatial autocorrelation in resident outcomes than the one used in HLM.

Some authors have argued that GSM is not subject to the MAUP because it does
not rely on grouping residents into bounded neighborhood units (Bass & Lambert, 2004;
Chaix et al., 2006; Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian et al.,

2005). Unfortunately, this is not entirely true because neighborhood boundaries are also
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used for measurement purposes. Simply put, the second issue is that to measure
neighborhood characteristics, one still must select the geographic area over which they
should be measured—and that requires setting boundaries (though the boundaries used
can wvary for different neighborhood characteristics in GSM).

GSM offers more flexibility than HLM for this because while it can use things
like census tract boundaries to operationalize neighborhoods for the purpose of
measuring constructs, it is not restricted to doing so. Unlike HLM, GSM permits
researchers to use buffers (sliding or bespoke neighborhoods, Galster, 2008; Guo & Bhat,
2007) to measure contextual conditions in areas centered on residents’ homes, which is
more consistent with the idiosyncratic and egocentric way residents think about their own
neighborhoods (Coulton et al., 2004; Coulton et al., 2001; Lee & Campbell, 1997;
Montello et al., 2003). Because different contextual predictors do not need to be
measured within the same size buffer, GSM provides great flexibility to customize how
‘neighborhoods are operationalized for the purpose of measuring each neighborhood-level
construct. That makes GSM highly compatible with the conceptual definition of
neighborhoods adopted for this study, which emphasizes that different neighborhood

Ccharacteristics may need to be measured within different boundaries (Galster, 2001).

One advantage of GSM’s ability to use buffers is that each resident can have

Unique values on neighborhood-level measures. Only residents at the same location
Would have identical buffer boundaries and therefore identical values on contextual
Variables. Aggregating data to measure a contextual variable for partially overlapping

buffers would lead to similar but not necessarily identical values for that variable (with
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greater overlap producing more similar values), while values for buffers that do not
overlap at all could be quite different indeed.

Another advantage of buffers is that they can be easily adapted to measure
conditions at different geographic scales. For example, the studies by Chaix and
col1leagues varied the size of the buffer used for their neighborhood income measure to
»capture the mean income of the nearest 100, 200, 500, 1000, and 1500 residents (Chaix,
Merlo, Subramanian et al., 2005); they also tried buffers with radii of 500 m, 750 m, and
1 OO0 m to measure crime (Chaix et al., 2006). Similarly, other researchers are also
exploring the use of buffer methods, coupled with varying the size of the buffer, to
measure contextual conditions (Guo & Bhat, 2007; Kruger, 2008; Kruger, et al., 2007;

Meersman, 2005).

Measuring conditions within buffers may be particularly useful when (a)
Contextual conditions exhibit spatial variability within the administrative units that are
typically used as proxies for neighborhoods in HLM studies, (b) there is no reason to
believe that the boundaries of units like census tracts are relevant to the contextual
Chaxacteristic being measured, or (c) none of the administrative units available for use in
FIX N\ match the geographic scale on which a particular contextual condition matters.

Considering space in GSM. There are several important spatial issues that GSM
Caxa address in neighborhood research. First, it can quantify the geographical scale on
Which spatial autocorrelation exists in the data, which is reflected in the estimated range

ASsociated with the correlation function. Second, GSM takes the spatial arrangement of
the residents and neighborhoods into account by using the location of each observation to

©Stimate a neighborhood-level spatially autocorrelated residual for each resident. Third,
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running GSM analyses that differ only in the size of a buffer used to measure a particular
contextual factor enables researchers to empirically determine what geographic scale of
measurement is most appropriate because statistics like the deviance information criterion
(IDIC) can be used to select the model with the closest fit to the data (Chaix et al., 2006).
The ability to expand or shrink a buffer measure of contextual conditions may
provide a more elegant solution to the question of whether outcomes in a focal
neighborhood are affected by conditions in other nearby neighborhoods. Recall that HLM
camnmnot directly address this question, so some researchers have pursued such questions by
extracting the neighborhood-level residuals from HLM analyses and used them in
‘““spatial lag” regression models conducted entirely with neighborhood-level data
(MOILenoff, 2003; Morenoff, et al., 2001; Swaroop & Morenoff, 2006). That approach
may be viewed as an indirect method of asking whether the spatial scale on which the
CoOmntextual condition of interest operates is really larger than the size of the neighborhood
units that were used in HLM. The GSM approach to answering such a question is very
Strai ghtforward: just measure those conditions over a larger area by increasing the size of
the buffer, then compare the GSM results to those from a model with a smaller buffer.
This would retain the multilevel nature of the data, reduce the number of different
Statistical procedures that need to be applied, and more directly answer the question about

the geographic scale on which the targeted characteristic matters most.

TCo mmnparing HLM and GSM Approaches
The sections above described HLM and GSM, highlighting major features of each

APProach. As described above, the view of space underlying these two techniques sets the

Stage for a number of key differences between theses methods that affect how we can
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apply them in neighborhood research. Although some of those differences have been

discussed briefly by other authors, the prior literature has not offered a comprehensive

conceptual comparison of HLM and GSM. Therefore, Table 1 synthesizes material from

pre vious sections of this literature review to present a concise, side-by-side comparison

of HLM and GSM along several conceptual dimensions that are relevant to studying

neighborhood effects.

Clearly, there are important conceptual differences, but what is known about

empirical differences in their performance and the scientific findings they yield? So far,

only three studies have directly compared HLM and GSM analyses by applying both

techmniques to a single dataset (Boyd et al., 2005; Chaix, Merlo, & Chauvin, 2005; Chaix,

Merlo, Subramanian et al., 2005). All three were epidemiological studies, with one

Table 1: Conceptual comparison of HLM and GSM

Dimension HLM GSM

View of space Discontinuous. Continuous.

Type of neighborhood boundaries  Only fixed boundaries are Either fixed or buffer-based
possible. boundaries can be used.

OVerlapping neighborhoods Hierarchical overlap allowed, if Any form of overlap is allowed.
using > 3 levels of analysis.

Spatial proximity Proximity effects are generally Proximity effects are intrinsic to

Stxwacture of autocorrelation

ls" Teasure of autocorrelation
Patial scale of autocorrelation

Options for varying spatial scale
or Neighborhood-level measures
€ighborhood-level measures

ignored in this approach. They
can be added, but doing so takes
extra effort.

Hierarchical. Observations are
grouped using neighborhood
boundaries. Each observation can
only belong to one group at any
given level of analysis.

Intraclass correlation (ICC).
Spatial scale is only indirectly
quantified (if authors describe the
size of the neighborhood units).
Options are limited by the size of
the available neighborhood units.
Measures usually all use a shared
boundary for each neighborhood
unit. Values can vary only
between units.

and explicitly modeled in this
approach.

Spatial. Pairs of observations are
grouped into bins as a function of
the distance between them. Each
observation contributes to many
bins through its pairing with other
observations at varying distances.
Partial sill ratio (PSR).

Spatial scale is directly quantified
by variogram parameters.

There are many options (buffers
can be defined at arbitrary sizes).
Boundaries can be customized for
each measure. Values can vary
continuously over space when
using buffers.
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focusing on infectious disease among Haitian students (Boyd et al., 2005), one focusing

bn healthcare utilization in France (Chaix, Merlo, & Chauvin, 2005), and the other
focusing on substance abuse diagnoses in a city in Sweden (Chaix, Merlo, Subramanian,
et al, 2005). Those studies show that GSM, like HLM, can be adapted to analyze binary
outcomes; the resulting models are related to the GSM model described above in the
sarxmne way that logistic regression is related to OLS regression.

Comparing models of infectious disease in Haiti. Boyd et al. (2005) were
interested 1n spatial variations in the prevalence of a mosquito-borne parasitic infection in
a Haitian community. Their sample consisted of 5- to 11-year old students from 57
schoaols in a contiguous geographic area covering approximately 400 km?®. They used
school tuition (as a measure of local area’s SES), whether or not the school offered a
nutrition program, altitude, and topographic zone (plains, foothills or mountains) as
Contextual measures. To illustrate that HLM does not fully control for spatial
autocorrelation, Boyd et al. compared results from non-spatial and spatial variations of
hierarchical logistic models. While their spatial models are not identical to the GSM
Mo del described above, they are part of the larger category of GSM techniques whose
ke  feature is the inclusion of spatially autocorrelated residuals.

The key finding in the Boyd et al. study (2005) was that the spatial models
PToduced coefficients that were somewhat smaller than those from the corresponding
HY analyses, but they did not report indices of overall model fit. The attenuated
COefYicients in their spatial models may be an artifact of the way spatial autocorrelation
‘Was handled. In particular, initial variogram modeling suggested that their outcome

“Variable was spatially correlated up to about 2.15 km, but a limitation in WinBUGS (the
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software they used to estimate their spatial models) required them to adopt a conditional
autoregressive structure in their spatial models that treated data from schools within 4.35
km of one another as spatially correlated because every school had to have at least one
“neighbor’ and this longer distance was the minimum at which every school met that
criterion. This may have diluted the value of spatial modeling by treating schools that
were relatively far apart as if they were just as highly correlated as schools that were
close together. They presented a figure showing that the neighborhood-level residuals
from their HLM showed some residual spatial structure, but did not quantify how much
spatial autocorrelation remained in the HLM results.

Comparing models of health care utilization in France. The second study that
has directly compared HLM and GSM examined whether a nationwide sample of
residents from France had regular primary care physicians and whether they had used
specialist physicians at more than half of their doctor visits in the last year (Chaix, Merlo,
& Chauvin, 2005). Their sample represented over 3000 municipalities nested within 340
larger units called broad areas that were scattered throughout France. The contextual
factors of interest were a measure of local SES (percentage of residents with minimal
education), the supply of primary care physicians, and the supply of specialist physicians.

They measured contextual factors by aggregating data within municipalities in
one HLM, and within broad areas in another HLM. They calculated buffer-based
measures of contextual factors for their GSM analyses (Chaix, Merlo, & Chauvin, 2005).
For local SES, they used a buffer with a radius of 37.5 km; for the supply of physicians,
they used a buffer with a 50 km radius. These buffers were somewhat larger than the

broad area units. In both cases, the contextual measures were weighted such that data
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closer to the center of the buffer contributed more to the measure than data further out
toward the edge of the buffer. They used the scaled deviance statistic to compare model
fit among the empty versions of the HLM and GSM models, finding that while the broad
area HLMs fit better than the municipality HLMs, the GSMs uniformly fit better than
either of the corresponding HLMs (Chaix, Merlo, & Chauvin, 2005). In a series of GSM
analyses, they also found that the contextual variables had consistently stronger effects
when measured within buffers than when measured within municipalities or broad areas.
So, their comparison between GSM models that differed only in how the neighborhoods
were defined for measurement purposes showed that using buffers produced better
statistical results than using HLM-style neighborhood units.

In addition, testing with Moran’s I indicated that the level 2 residuals in the HLM
models were spatially autocorrelated (Chaix, Merlo, & Chauvin, 2005). They argue that
HLMs systematically overestimated the significance of contextual effects because the
residual spatial autocorrelation in the HLM results leads to inappropriately small standard
errors for exactly the same reason that ignoring hierarchical autocorrelation leads to
inappropriately small standard errors in OLS regression.

Comparing models of substance abuse disorders in Sweden. Chaix, Merlo,
Subramanian et al. (2005) compared HLM and GSM techniques by studying the
relationship between neighborhood mean income and risk of substance abuse disorders in
a city in Sweden. Their sample consisted of all persons aged 40-59 living in the city they
were studying. The city was divided into 100 administratively defined neighborhoods
with a median area of 0.5 square km, which became the level 2 units in their HLM

analyses. They measured neighborhood income within those administrative units for their
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HLM and GSM analyses. For their GSM analyses, they also measured neighborhood
income within spatially adaptive buffers. The buffers were centered on residents’ homes,
but did not have a constant spatial radius. Instead, they were scaled to contain a constant
number of residents (the nearest 100, 200, 500, 1000, or 1500 residents). This meant that
the buffers were physically larger in more sparsely populated areas.

They conducted HLM and GSM analyses in three steps, starting with empty
_models that contained no substantive predictors, then adding individual-level predictors,
and then adding the neighborhood income measure (Chaix, Merlo, Subramanian, et al.,
2005). The GSM models consistently fit their data better than the corresponding HLM
models, as indicated by lower DIC values (DIC is a Bayesian measure of model fit, see
Spiegelhalter, Best, Carlin, & van der Linde, 2002). This was true when neighborhood
income was measured within the same administrative areas used in the HLM, but the
effect of neighborhood income was stronger when measured within buffers that were
smaller than the administrative areas. Indeed, the strength of the effect was inversely
proportional to size of the buffers (using the smallest buffer yielded the strongest effect).
The odds-ratios for neighborhood income were quite similar between the two techniques,
though the GSM model had slightly wider confidence intervals. Adding individual- and
neighborhood-level predictors explained substantial amounts of the neighborhood-level
variance in both the HLM and GSM models. In the HLM models, adding the substantive
predictors caused a decrease in the residual spatial autocorrelation detected in the

neighborhood-level residuals, while adding those predictors to the GSM models reduced

both the level and range of spatial autocorrelation.
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Summary. The literature comparing HLM and GSM approaches to modeling
neighborhood effects on the health and behavior of residents is quite small. The studies
reviewed above suggest that GSM can, at least with some kinds of data, produce
statistical models that fit better than HLM even when contextual variables are measured
within the same boundaries for both techniques (Chaix, Merlo, Subramanian, et al.,
2005). Furthermore, they also suggest that GSM analyses based on measuring contextual
variables within buffers of appropriate size can yield stronger effects than are observed in
HLM analyses based on measuring those same variables within discrete geographic units
(Chaix, Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). Finally, they
also suggest that when the spatial scale on which a contextual measure operates is larger
than the units used in a corresponding HLM, level 2 HLM residuals still contain
unmodeled spatial autocorrelation (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005).

Previous studies have not fully discussed how comparing HLM and GSM
analyses can help us update how we conceptualize and think about neighborhoods.
Broadly speaking, the way we conceptualize neighborhoods informs two aspects of
neighborhood studies, (1) how we group residents in order to detect spatial variability and
model autocorrelation in outcomes, and (2) how we define the geographic area that
should be used when measuring neighborhood context. While these aspects are nearly
inextricably intertwined in HLM, the GSM approach offers the possibility of dissociating
and examining them separately. Both of these aspects can and should be explored when
comparing these two methods, but previous work has focused more on the latter aspect.

The next section of the literature review describes the nature of the substantive

phenomenon being used to compare HLM and GSM in this study. Introducing the
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substantive constructs at this point sets the stage for the following section, which
describes how the present study fills specific gaps in the literature, presents arguments for
why GSM may be a better alternative than HLM, and then links the research questions
for the study to specific hypotheses that can be tested to inform our thinking about
neighborhoods and how to test neighborhood effects.

Background on the Substantive Constructs

Because this study aimed to compare GSM and HLM, it was necessary to select
an example application in which the same data could be used with both approaches and
there were clear theoretical links between the contextual characteristics to be tested and
the outcome variable. It was also useful to choose an outcome known to be influenced by
individual-level characteristics, as this allowed a comparison of how the two methods
handle issues of context versus composition. The study tested whether crime and NSES
exert contextual effects on residents’ perceptions of neighborhood problems, after
controlling for a variety of individual-level characteristics.

The remainder of this section first describes how the substantive constructs were
selected and the theoretical links between the predictors and the outcome. Then it
describes the constructs in more detail. After introducing the outcome of interest, this
section reviews literature surrounding the contextual predictors, then briefly describes
individual-level variables that were incorporated into the analysis because they were
expected to be related to the outcome.

Selection of constructs. As noted above, the outcome modeled in this study was
perceived neighborhood problems. This outcome was selected because prior HLM

research found that it exhibits neighborhood-level variance that can be modeled as
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hierarchically structured autocorrelation (Coulton, et al., 2004), while prior research
using GIS methods found that it shows a substantial amount of spatial autocorrelation
that decays as a function of distance (Bass & Lambert, 2004; Pierce, 2006). Thus, it is a
candidate for use in both HLM and GSM. Although no prior literature directly addresses
which of these two methods is more appropriate for modeling this outcome, there are
some findings and possible theoretical mechanisms that suggest GSM may be more
appropriate than HLM.

Meanwhile, crime and NSES were selected because (a) they are frequently used
contextual characteristics in neighborhood research, (b) there are clear theoretical links
between them and the outcome variable, and (c) the GIS data available for the example
dataset permitted both to be measured by aggregating data within any set of
neighborhood boundaries. In addition, the spatial distribution of crime was unlikely to be

captured well by census-based geographic units (McCord & Ratcliffe, 2007), which were

used to construct the neighborhood units in the example dataset7 so it was reasonable to
€xpect that using buffers around residents’ homes to measure crime might yield different
results than using crime aggregated within discrete neighborhood units.

‘While NSES may be somewhat better aligned with census geography than crime,
ittoo may yield different values for a contextual measure when aggregated within buffers
rather than discrete neighborhood units. Using multiple contextual characteristics also
allowed the study to explore whether there were differences in the spatial scale on which
diffel‘ent contextual characteristics influenced resident outcomes. Overall, these two
contextual characteristics possessed essential qualities for pursuing whether the

7\

The data are a clustered sample originally collected for use in HLM analyses (see the Method section).
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differences in how neighborhoods were defined for the purpose of measuring
neighborhood conditions in HLM ahd GSM made a difference in the obtained results.

Theoretical mechanisms. This study assumed that several sources might
contribute to the observed spatial variation in perceived neighborhood problems. This
section elaborates on the theoretical mechanisms associated with each of those potential
sources of neighborhood effects on residents’ perceptions.

First, spatial variation in neighborhood crime and NSES could produce contextual
effects that explain some of that spatial variation. The theoretical link between actual
crime and perceived neighborhood problems derives from broken windows theory (J. Q.
Wilson & Kelling, 1982). Nearby crime is an observable sign of social disorder in the
neighborhood (Sampson & Raudenbush, 1999) that residents interpret as a social problem

(Sampson & Raudenbush, 2004). So, exposure to higher levels of actual crime should
lead residents to perceive and report higher levels of neighborhood problems. The
mechanism linking NSES to resident’s perceptions is different. Sampson and
Raudenbush (2004) argue that neighborhoods experiencing concentrated poverty have
historically also been afflicted by exteﬁsive physical and social disorder, so now poor
neighborhoods have become stigmatized as disorderly places. Environmental cues that
Provide information suggesting that NSES is low (such as low median housing value)
Mmay exert a contextual effect on resident’s perceptions of neighborhood problems
because this stigma primes residents of poorer neighborhoods to perceive more problems
than they would in wealthier, but otherwise similar, neighborhoods.

Second, geographical clustering of similar individuals could explain some of the

SPatial variation in residents’ perceptions of neighborhood problems, particularly if
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individual-level resident characteristics are good predictors of those perceptions. While
this is still a kind of neighborhood effect, it is a compositional effect rather than a
contextual effect. Because this study focuses on comparing HLM and GSM for testing
the effects of neighborhood-level predictors, this theoretical mechanism is only relevant
to the extent that the two methods differ in their ability to control for neighborhood
effects resulting from unobserved attraction, selection, and attrition processes that might
affect perceived neighborhood problems indirectly through their influence on
neighborhood composition.

Finally, residents often exchange information about neighborhood events and
conditions with their neighbors (Unger & Wandersman, 1985), so social interactions and
social construction of reality (Shinn & Rapkin, 2000) may also shape their perceptions of
neighborhood problems. That suggests that spatial autocorrelation remaining in residents’
perceptions after accounting for composition and contextual effects could be generated
by contagion processes (Leventhal & Brooks-Gunn, 2000) operating through social
networks. Such contagion effects can be modeled using distance as a proxy for network
connections. Because members of neighborhood networks are more likely to know and

interact with others who live nearby (Greenbaum, 1982; Greenbaum & Greenbaum,
1985; Stutz, 1973; Wheeler & Stutz, 1971), spatial autocorrelation should decrease with
increasing distance between observations. GSM techniques would model that residual
Spatial autocorrelation explicitly, while HLM would ignore it.

Perceived neighborhood problems. Perceived neighborhood problems refers to
the degree to which a resident thinks undesirable physical conditions and deviant social

behaviors are present at unacceptable levels in his or her neighborhood. This construct
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appears frequently in the neighborhood research literature, though its name varies.
Comparing definitions across studies reveals that perceived disorder, perceived
incivilities, and perceived neighborhood problems refer to essentially the same
phenomenon (Bass & Lambert, 2004; Coulton, Korbin, & Su, 1996; Dupéré & Perkins,
2007; Foster-Fishman, et al., 2007; Foster-Fishman, et al., 2009; Franzini, Caughy,
Spears, & Esquer, 2005; Franzini, et al., 2008; Perkins, Meeks, & Taylor, 1992; Perkins,
Wandersman, Rich, & Taylor, 1993). For example, perceived disorder has been
conceptualized as “exposure to deviant behavior in the neighborhood” (Bass & Lambert,
2004, p. 283), “perceptions of deleterious conditions in neighborhoods” (Coulton, et al.,
1996, p. 16), and “visible cues indicating a lack of order and social control in the
community” (Ross & Mirowsky, 1999, p. 413). This latter definition is matches how
Perkins and colleagues’ (Perkins, et al., 1992; Perkins, et al., 1993) conceptualize
incivilities as symbols of physical and social disorder that signal that an area is poorly
supervised.

Regardless of the name, perceived neighborhood problems is typically measured
by asking residents to rate the degree to which various conditions or activities are
Problems in their neighborhood. Such ratings are almost perfectly correlated with the
volume of disorder residents report having observed (Sampson & Raudenbush, 2004).
The specific items used often include questions about forms of social disorder such as
Crime, gang activity, prostitution, or drug-dealing, or about signs of physical disorder
such as itter, graffiti, abandoned buildings, and poorly maintained homes and yards

(Bass & Lambert, 2004; Coulton, et al., 1996; Dupéré & Perkins, 2007; Foster-Fishman,
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et al., 2007; Foster-Fishman, et al., 2009; Franzini, et al., 2005; Franzini, et al., 2008;
Perkins, et al., 1992; Perkins, et al., 1993).

Residents’ perceptions of whether or not things like crime, drugs, prostitution, and
abandoned buildings are problems in their neighborhoods are important for several
reasons. On one hand, seeing the neighborhood as beset by problems can motivate
residents to become active citizens (Chavis & Wandersman, 1990; Greenberg, 2001). For
example, Peterson and Reid (2003) found that residents who were aware of substance
abuse problems in their neighborhood were more likely to participate in substance abuse
prevention activities. Other research has also shown that residents reporting high levels of
neighborhood problems were more likely to engage in both individual and collective
forms of aci_;ivism (Foster-Fishman et al., 2007). Although perceived levels of problems
may not be important in predicting citizen participation among self-identified
neighborhood leaders, they are related to participation among residents who do not see
themselves as leaders (Foster-Fishman, et al., 2009).

On the other hand, if residents perceive that neighborhood crime problems have
grown too severe, they may fear retaliation and refrain from intervening when local youth
are misbehaving (Korbin & Coulton, 1997), thereby weakening informal social control
Processes. Indeed, residents who perceive severe problems in their neighborhood may
Simply exit the neighborhood altogether (Orbell & Uno, 1972). Perceived neighborhood
Problems may also influence residents in other ways. For example, residents of
neighborhoods characterized by high average levels of perceived problems tend to report
being in poorer health than residents of neighborhoods with lower levels of problems

(Pampalon, Hamel, De Koninck, & Disant, 2007) perhaps because perceived problems
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are sources of chronic stress that increase the risk of poor health and impair physical
functioning (Stepfoe & Feldman, 2061). N -

Previous HLM research has found evidence of neighborhood-level variability in
residents’ perceptions of neighborhood problems at both the block group and census tract
levels (Coulton, et al., 2004; Franzini, et al., 2008; Quillian & Pager, 2001; Sampson &
Raudenbush, 2004). Of these, only one study examined the data at multiple spatial scales.
Coulton et al.’s (2004) research showed that perceived neighborhood disorder and
incivilities varies on a relatively small spatial scale, with larger ICCs observed in smaller
neighborhood units. Though it originates from an HLM study, this is potentially more
consistent with the kind of distance-based spatial autocorrelation assumed in GSM than
with the strictly hierarchical autocorrelation assumed in HLM.

More direct empirical support for spatial autocorrelation in perceived disorder
comes from Bass and Lambert (2004), who collected perception data from adolescents in
Baltimore via face-to-face interviews, then used variograms to model the spatial
autocorrelation in those data. Although they do not specifically report range parameters
for their variograms, visual inspection of their plots suggests that thé range of
autocorrelation may be between 200-400 m in the raw data, and perhaps as high as 1000
m after accounting for census-tract level crime and poverty measures. Preliminary
Ireésearch by the present author found that the range of spatial autocorrelation in residents’

levels of perceived neighborhood problems was approximately 600 m (Pierce, 2006).
Together with the HLM studies mentioned above, these studies suggest that there is
indeeq spatial variation in this outcome, but none of them directly test whether

hierarchical or spatial structure better describes that spatial variation.
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Crime. Crime represents the extreme end of the continuum of social disorder
(Sampson & Raudenbush, 1999). Victims of crime often experience seribus adverse
consequences such as injury, death, financial losses, property damage, psychological
distress, and mental health problems. The salience of crime as a social problem is
underscored by the tremendous amounts of time, money, and other resources devoted to
defining crime and the legal consequences of committing it, catching and prosecuting

persons accused of crimes, and sequestering and rehabilitating convicted offenders. It
should come as no surprise then that crime is often viewed as an important contextual
characteristic of neighborhoods that poses a serious problem for residents. This
assumption about crime is apparent in measures of residents’ perceptions of
neighborhood problems. Questions about crime in general or about specific criminal
activities such as burglary, drug-dealing, or prostitution frequently appear in measures of
those perceptions (Foster-Fishman, et al., 2007; Foster-Fishman, et al., 2009; Franzini, et
al., 2005; Franzini, et al., 2008; Meersman, 2005; Perkins, et al., 1992; Perkins, et al.,
1993; Quillian & Pager, 2001; Sampson & Raudenbush, 2004).

Because levels of crime represent real variations in the local environment, it is
quite natural to expect that residents’ perceptions of neighborhood problems will be
sensitive to this reality rather than divorced from it (Quillian & Pagerf 2001). Crime is
salient and threatening, so residents are alert for signs of its presence. If observed in
sufficient quantity or severity, then residents perceive crime as a problem in the
neighborhood (Sampson & Raudenbush, 2004). Residents may directly witness crimes,
or they may indirectly perceive crime via physical cues such as bullet holes or smashed

storefront windows left at the scene of a crime (Sampson & Raudenbush, 1999).
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Information about local crime may also be obtained indirectly from discussions with
nei ghbors o; through loc;al news media (Perkins & Taylor, 1996). |

Official police records are the primary source of data for measuring crime in
neighborhood research (Chaix, et al., 2006; Franzini, et al., 2008; Quillian & Pager, 2001;
Samypson & Raudenbush, 2004). Many crimes, particularly less serious ones, are never
reported to the police and sometimes police do not record minor crimes that are reported
to them, so police data almost certainly underestimate actual crime (Quillian & Pager,
2001 ). Despite that limitation, they may be the best available source for many studies.

However, other measurement issues must still be addressed. Perhaps the most
important issue is which crimes should be counted. So far, all three HLM-based studies
that have used crime as a predictor of neighborhood problems have operationalized crime
in terms of rates of violent crime (all studies include assault, homicide, rape, and robbery,
but one study also included burglary, theft, and arson) that were log-transformed to
reduce skew (Franzini et al., 2008; Quillian & Pager, 2001; Sampson & Raudenbush,
2004 |

However, a community psychologist might have a theoretical interest in testing
whether two or more different kinds of crime independently affect resident perceptions.
Such interests might include testing hypotheses about whether different kinds of crime
OPerate on different spatial scales. For instance, one might want to test whether residents’
Perceptions are only sensitive to property crime occurring quite close to their homes, but
are sensitive to violent crimes occurring over a larger geographic area. Three different
rime variables based on the major categories (crimes against persons, crimes against

l)mperty, and crimes against society) used by the Federal Bureau of Investigation to
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classify crimes (Uniform Crime Reporting Program, 2000) were considered for use in
this study, but multicollinearity problems ultimately prevented using more than one crime
variable at a time (see Method section).

That forced a methodological choice about which type of crime to use in the
analyses reported below. Crime against persons (i.e., violent crime) was selected for three
reasons. First, the presence of violent crime in the neighborhood is an unambiguous
threat to residents’ safety and is undoubtedly a sign of very serious social disorder. It
should therefore be more salient in shaping residents’ perceptions than property crime or
critme s against society. Second, this is consistent with how crime has been measured in
previous research as noted above. Third, crime against persons exhibited the strongest
relationships with the outcome in preliminary analyses.

Another measurement issue is whether crime should be measured by the raw
number of crimes occurring in a neighborhood, by a crime rate (number of crimes per
capita), or by crime density (number of crimes per unit area). Raw crime counts are
generally not used in neighborhood research because they do not adjust for the variation
in either the size or population of the neighborhoods. Neighborhood crime is frequently
OPerationalized with crime rates (Franzini et al., 2008; Quillian & Pager, 2001; Sampson
& Raudenbush, 2004), though crime density has been used occasionally (Brodsky,
O'Ca‘nflpo, & Aronson, 1999). Crime rates reflect the fact that a given number of crimes
May be felt more acutely in sparsely populated areas and are mostly intended to measure
Vim"i“?lization risk (Bowes & Ihlanfeldt, 2001), but it can also be argued that people may
be MoOre affected by the absolute number or spatial density of crimes regardless of

POpulation density (Chaix, et al., 2006). Given this study’s focus on spatial analysis, it
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made sense to focus on crime density rather than crime rates because (a) density
measures are preferred by researchers who study the spatial distribution of crime
(Chainey, Tompson, & Uhlig, 2008), (b) crime density may be more closely associated
with the average resident’s knowledge of nearby crimes (Bowes & Ihlanfeldt, 2001), and
(c) crime density is a better measure of exposure to neighborhood crime for people who
wish to avoid either witnessing a crime or being victimized personally (Bowes &
Ihlanfeldt, 2001).

No GSM studies have yet linked crime to perceived problems, but one did find
that higher numbers of violent crimes in a 500 m radius around residents’ homes
increased the risk of substance abuse disorders (Chaix, et al., 2006). Three HLM-based
studies have demonstrated that there is indeed a link between actual crime and perceived
neighborhood problems (Franzini et al., 2008; Quillian & Pager, 2001; Sampson &
Raudenbush, 2004). Using census block-groups to represent neighborhoods, both
Franzini et al. and Sampson and Raudenbush found that high crime rates were associated
with higher levels of perceived problems among residents. Quillian and Pager found
similar results using census tracts as neighborhoods. Unfortunately, none of these HLM-
based studies tried varying the size of the neighborhood units within which crime was
measured, so little is known about sensitivity of the contextual effect to changes in the
Spatial scale on which crime is measured.

Relying on crime data aggregated to neighborhood units such as block groups
ignores the fact that crime is very unevenly distributed over space. The literature on
detecting crime “hot spots”, which relies on using GIS tools to map and analyze spatial

Point patterns in the locations of crimes, shows that crimes cluster together in small
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geographic areas (Block, 2000; Ratcliffe & McCullagh, 1999; Taylor, 1998) and hot
spots may span the borders between adjacent tracts or block groups (McCord & Ratcliffe,
2007). Thus, exposure to crime depends on location because crime is neither uniformly
nor randomly distributed over space (Block, 2000). This suggests that there may be
substantial spatial variability in crime within individual census tracts or block groups.

In crime mapping studies, measuring crime within administratively defined
geographic neighborhood units is considered to be particularly vulnerable to the MAUP,
so instead researchers employ buffer techniques to summarize the spatial point pattern of
crimes by calculating estimates of crime intensity at a high-resolution grid of points
across the study region (Ratcliffe & McCullagh, 1999). The intensity of a crime point
pattern is the number of crimes per unit area within the buffer centered on each grid point
(often after weighting individual crimes so that those far from the center of the window
count less than those close to the center), so it measures crime density relative to spatial
area (Ratcliffe & McCullagh, 1999), whereas per capita crime rates measure crime
density relative to population size. In these buffer approaches, the grid points are often
close enough together that windows centered on adjacent grid points overlap
substantially. That is useful because it allows the construction of relatively smooth maps
of the crime intensity surface within the study region.

With geocoded crime incident data, researchers can aggregate crime either within
the fixed, mutually exclusive neighborhood units used in HLM, or in buffers centered on
residents’ homes. With GSM, one can use either of those methods for measuring crime
and directly compare how changing the neighborhood definition used to measure crime

influences the strength of the association between crime and perceived neighborhood
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problems. HLM-based analyses may underestimate the strength of that relationship
because the arbitrary neighborhood boundaries do not correspond well with what
residents think of as their neighborhoods and therefore the crime measure may not
include the crimes that are most salient to the resident. Perhaps using buffers to measure
crime, paired with GSM’s ability to vary the scale on which that contextual factor is
measured, will produce better models than HLM-based analyses by more accurately
capturing the crime occurring in the areas residents think of as their neighborhoods.

As a supplemental analysis in an HLM study that used census tracts to define
neighborhood units (without describing the physical size of those tracts), Quillian and
Pager (2001) investigated whether actual crime rates in adjacent tracts influenced
perceptions of crime, after controlling for crime levels in the individuals’ own tract. They
found little evidence that crime in adjacent tracts mattered, which suggests that the
geographic scale on which crime may matter is equal to or smaller than the size of census
tracts. However, their results are subject to all the limitations associated with adopting
fixed boundary systems for defining neighborhood units, so this is relatively weak
evidence about the spatial scéle on which crime may impact resident perceptions.

Neighborhood SES. Many researchers have pursued questions about how the
socioeconomic context in residential neighborhoods affects residents, often focusing on
outcomes among children and youth (Leventhal & Brooks-Gunn, 2000; Sampson, et al.,
2002). Wilson’s (1987) observation that poverty was increasingly concentrated in inner-
city neighborhoods over the 1970s and 1980s Spuncd renewed interest in poverty as a
contextual phenomenon rather than simply an individual-level problem, resulting in a

wave of studies focusing on the consequences of living in high-poverty neighborhoods
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(Gephart, 1997; Leventhal & Brooks-Gunn, 2000; Sampson & Morenoff, 1997). There is
now a substantial body of research showing that neighborhoods vary substantially with
respect to various indicators of NSES and that these contextual variations are linked to
many outcomes for children and youth, including school achievement, cognitive problem
solving skills, behavior problems, delinquency, sexual activity, and teen pregnancy
(Caughy & O'Campo, 2006; Gephart, 1997; Leventhal & Brooks-Gunn, 2000; Pebley &
Sastry, 2003; Ramirez-Valles, Zimmerman, & Juarez, 2002; Sampson et al., 2002).
Census data are often used to obtain neighborhood poverty rates (Brooks-Gunn,
Duncan, Leventhal, & Aber, 1997), which represent the proportions of residents living in
households with annual incomes below the poverty threshold defined by the federal
government. Although poverty rate is a frequently used measure of NSES, other
measures have also been used. For example, some studies looked at concentrated
affluence rate (percent of residents living in households with annual incomes exceeding a
researcher-defined threshold such as $75,000) in addition to poverty rate (Beyers et al.,
2003; Pebley & Sastry, 2003; Sampson, 2001), while others have operationalized NSES
with mean income (Rountree & Land, 1996) or median housing values, which measure
the value of residential property (Cozier et al., 2007; Gee, 2002; Laraia et al., 2006).
Although hardly surprising, it is important to note that different measures of NSES are
often strongly correlated. For example, poverty rates are inversely correlated (r = -.62)
with median housing value at the level of census tracts (Gee, 2002). One explanation for
that lies in the fact that local land use regulations (zoning ordinances) promote spatial

segmentation of cities into neighborhoods with similar residential property values,
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leading to corresponding spatial segmentation of the population by income because
families tend to seek better housing as their incomes rise (Schill & Wachter, 1995).

Measuring NSES via median housing value is attractive because property value
data are often available from local tax assessors’ offices and are usually more current
than census data (Coulton & Hollister, 1998; Kingsley, Coulton, Barndt, Sawicki, &
Tatian, 1997). In addition, such data are often available as GIS files (Kingsley, Coulton,
Barndt, Sawicki, & Tatian, 1997), making it feasible to estimate the median residential
property value within any desired geographic area (e.g., fixed neighborhood units,
buffers, or both), regardless of whether it will be used in HLM or GSM analyses.

There is extensive evidence that poverty, crime, physical and social disorder, and
other social problems tend to co-occur in the same geographic places (Sampson, 2001;
Sampson, et al., 2002). For example, recent research has shown that owner occupied
median housing value is negatively correlated (» = -.56) with observed physical
incivilities when both measures are aggregated to the block group level (Laraia, et al.,
2006). Given that objective levels of neighborhood disorder are generally good predictors
of perceived disorder (Franzini et al., 2008; Perkins et al., 1992; Sampson & Raudenbush,
2004), it may be that residents of low-SES neighborhoods perceive more problems
simply because there are indeed more present. This link between NSES and perceived
problems might also be mediated by other variables: in a multilevel study of contextual
effects on youth alcohol and drug problems, structural equation modeling demonstrated
that high levels of neighborhood poverty led to decreased social cohesion, which was in
turn associated with greater perceived problems with youth alcohol and drug use (S. C.

Duncan, Duncan, & Strycker, 2002).
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However, there may be another way in which NSES influences residents’
perceptions. Sampson and Raudenbush (2004) used HLM models to shéw that that
neighborhood racial composition and neighborhood poverty both predicted perceived
disorder even after controlling for observed levels of physical and social disorder. They
interpret those findings as support for their contention that perceived disorder is in part
socially constructed, arguing that “Neighborhoods with high concentrations of minority
and poor residents are stigmatized by historically and structurally induced problems of
crime and disorder” (Sampson & Raudenbush, 2004, p. 337). Essentially, the stigma
associated with poverty primes residents of poor neighborhoods to perceive more
disorder than can be explained By observed disorder alone. Additional empirical support
for this link between neighborhood poverty and perceived disorder comes from work by
Franzini et. al. (2008) who used methods similar to those of Sampson and Raudenbush,
but sampled from a different city.

Two of the studies linking NSES to perceived problems discussed above
operationalized neighborhoods with census block groups (Franzini, et al., 2008; Sampson
& Raudenbush, 2004), while another did not describe what geographic units were used to
operationalize neighborhoods, though it does say that census data were used to measure
poverty (S. C. Duncan, et Aal., 2002). None of those studies specifically explored the
spatial scale on which NSES is most closely linked to perceived problems. In addition,
none of them applied GIS-based spatial analysis approaches: they all relied on HLM
(Franzini et al., 2008; Sampson & Raudenbush, 2004) or related methods like multilevel

structural equation models (S. C. Duncan, et al., 2002).
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Only one study has used GIS methods to explore the link between NSES and
perceived neighborhood problems. Meersman (2005) measured poverty and other
indicators of NSES (percent college educated, percent residential stability, percent
unemployment) within a set of buffers of varying sizes (0.25 mile < radii < 1.50 miles, in
0.25 mile increments) centered on residents’ homes. At each window size, GIS tools were
used to determine which census tracts were overlapped by the window around a
resident’s home, then the poverty rate in the window area was set to the weighted average
of the poverty rates from those census tracts. The tract weights were the proportions of
the buffer’s area that belonged to each census tract. Meersman argued that this method
allows one to take into account a resident’s precise location within a census tract, plus
proximity to other census tracts, but this method still suffers from the MAUP.

Measuring poverty in a series of concentric, circular buffers allows one to
compare the effects of neighborhood poverty measured on different spatial scales
(Meersman, 2005). This technique naturally allows the buffers for different residents to
overlap to different degrees depending on how far apart they live. Using OLS regression,
Meersman found that poverty had the largest standardized coefficient as a predictor of
perceived neighborhood problems when measured over a 1.50 mile radius. Other NSES
indicators had their strongest effects at other buffer sizes (residential stability at 0.25
hﬁle, unemployment at 0.75 mile). There are several problems with Meersman’s study.
First, using OLS regression to analyze the data ignores the likely presence of spatial
autocorrelation. Second, weighted versions of census tract poverty rates are crude
measures of NSES in a buffer around individual homes because the aggregation that had

already occurred to create tract level measures eliminates any spatial variability within
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tracts. For a superior buffer measure of NSES, it would be far better to start from point-
referenced data or data that represent geographic areas small enough to be treated as
point-referenced data (e.g., parcel-level property value data). Third, Meersman always
measured different indicators of NSES at the same geographical scale: while he did note
the scale on which each measure had the strongest effects, he did not go beyond that to
combine measures associated with different size buffers in the same model.

Individual-level predictors. People who live close together may not necessarily
experience or perceive the neighborhood in the same way, so contextual conditions are
not the sole influence on people’s perceptions of neighborhood problems. Several studies
show that individual-level factors (e.g., sex, age, race, etc.) also predict those perceptions
(Franzini, et al., 2008; Meersman, 2005; Quillian & Pager, 2001; Sampson &
Raudenbush, 2004), indicating that residents’ perceptions are not pure reflections of
external conditions (Quillian & Pager, 2001).

Residents who are more physically or socially vulnerable to crime tend to report
higher levels of fear of crime (Rountree & Land, 1996), suggesting that some residents,
such as the elderly or women, may have lower thresholds for deciding that the conditions
they observe constitute a problem. While the empirical data show that women do
consistently report higher levels of perceived crime and disorder (Quillian & Pager, 2001;
Sampson & Raudenbush, 2004), the evidence for age effects is somewhat mixed. Older
residents report higher levels of perceived crime in one study (Quillian & Pager, 2001),
but lower levels of perceived disorder in others (Meersman, 2005; Sampson &

Raudenbush, 2004).
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Research appear to consistently find that Black residents report lower levels of
perceived disorder than White residents (Franzini, et al., 2008; Meersman, 2005;
Sampson & Raudenbush, 2004). In addition, the extent to which a resident’s race predicts
perceived disorder varies across neighborhoods (Sampson & Raudenbush, 2004)
indicating that it may be fruitful to explore cross-level interactions between race and
neighborhood-level factors.

Other personal characteristics also might affect residents’ perceptions of
neighborhood problems. Marital status effects on perceived neighborhood problems have
been examined in a couple studies, but the results are inconsistent. Compared to widowed
residents, Franzini et al. (2008) found that married and separated or divorced residents
perceive less disorder than widowed residents, but Sampson and Raudenbush (2004)
found that separated or divorced residents perceive more disorder than widowed
residents. Similarly, higher levels of education are sometimes associated with less
perceived disorder (Franzini, et al., 2008), but other research did not find an education
effect (Quillian & Pager, 2001). Another characteristic that might be important is the
presence of children in the home. Although none of the available studies address this
factor, residents who are raising children may be particularly concerned about the quality
of the neighborhood environment and therefore more likely to view a given situation to
be a problem than people who are not raising children.

Identifying individual-level factors that may be related to the outcome under
study is important in this study primarily because it controls for neighborhood

composition, thereby permitting a better test of the importance of contextual factors (C.
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Duncan, et al., 1998; Merlo, Yang, et al., 2005). Thus, in the present study, several
personal characteristics were incorporated into both the HLM and GSM analyses.
Linking Gaps in the Literature to Hypotheses for the Present Study

This section describes how the present study fills specific gaps in the literature on

comparing HLM and GSM. Along the way, it presents arguments for why GSM may be a
better alternative than HLM, and links the research questions for the study to specific
hypotheses that can be tested to inform our thinking about neighborhoods and how to test
neighborhood effects.

Taking full advantage of spatial information. The first gap in the literature is
that previous comparisons of HLM and GSM have not taken full advantage of GSM’s
tools for representing spatial autocorrelation. None of them have used the precise
locations of the residents in the sample both for constructing buffer-based measures of
contextual factors and for estimating the variogram in the GSM. This is due to either a
lack of precise location data (Boyd, et al., 2005; Chaix, Merlo, & Chauvin, 2005), or to
computational difficulties associated with the size of the dataset and software limitations
(Chaix, Merlo, Subramanian, et al., 2005). However, new software makes it possible to
run GSM analyses with large datasets while taking full advantage of precise location data
(Finley et al., 2007). Location data for residents was available, so this study used that
software to better model the actual pattern of spatial autocorrelation in the data than has
been possible in previous studies.

Detecting autocorrelation. A second gap in the literature is that previous studies
have not directly compared the amounts of neighborhood-level variance and

autocorrelation detected by HLM and GSM. This prompted the first research question for

121



this study, which simply asked: how do GSM estimates of neighborhood-level variance
and autocorrelation compare to HLM estimates? Both methods can estimate
neighborhood- and individual-level variance components that can be converted into
directly comparable measures of autocorrelation (ICC for HLM, PSR for GSM).

Recall that GSM ignores the boundaries of the discrete neighborhood units used
in HLM and can therefore potentially account for autocorrelation both within and
between them, while HLM will only account for within-neighborhood autocorrelation.
That suggests that GSM may be the more sensitive method for detecting neighborhood-
level variability in outcomes, particularly if some neighborhood units are close enough
together that spatial autocorrelation may spill over between them. Furthermore, Coulton
et al. (2004) found successively larger ICCs for perceived neighborhood disorder and
incivilities when they examined smaller and smaller neighborhood units, indicating that
neighborhood-level variances were getting larger as the neighborhood units got smaller.
Because the correlation functions built into GSM models assume that neighborhood-level
variances decay with increasing distance and they start at distances far smaller than any
neighborhood unit adopted for HLM analyses, Hypothesis 1 (H1) is:

H1: GSM estimates of neighborhood-level variance and the amount of

autocorrelation for perceived neighborhood problems will be higher than the

corresponding HLM estimates, both before and after controlling for neighborhood
composition.

The correlation function in a GSM model also provides a way to compare the
spatial scale of autocorrelation in perceived neighborhood problems to the size of the

neighborhood units used in the HLM models. The neighborhood units in this study are
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substantially smaller than block groups or census tracts (Van Egeren, Huber, Foster-
Fishman, Pierce, & Law, 2007), which are the units typically used in HLM studies. Some
of them are also quite close together. This is one of the situations in which spatial
autocorrelation with a long enough range might spill over between neighborhood units.
Given the evidence that spatial autocorrelation in perceived neighborhood problems may
extend several hundred meters or more (Bass & Lambert, 2004; Pierce, 2006),
Hypothesis 2 (H2) is:

H2: The range of spatial autocorrelation in perceived neighborhood problems

detected by GSM will be long enough to reach across the borders between at least

some of the neighborhood units used in the HLM analyses.

While testing H1 and H2 provides useful information about the potential
importance of neighborhoods and spatial scale of autocorrelation, it does not directly tell
us whether the autocorrelation in the data is hierarchically or spatially structured. The
third gap in the literature is that previous comparisons of how HLM and GSM handle
autocorrelation have been incomplete and one-sided. Previous work is incomplete
because while it has examined the neighborhood-level residuals in HLM analyses for
evidence of residual spatial autocorrelation (Boyd, et al., 2005; Chaix, Merlo, & Chauvin,
2005; Chaix, Merlo, Subramanian, et al., 2005), it has not looked for evidence of spatial
autocorrelation in the level 1 HLM residuals. If they contain spatial autocorrelation, this
will be another indication that HLM is not fully accounting for the spatial variability in
the data. Previous studies have been one-sided because none have yet reported any
attempt to examine the residuals from GSM analyses for evidence of hierarchically

structured autocorrelation.
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Modeling autocorrelation. That prompted the second research question for the
study, which asked: which method (HLM or GSM) is more effective at modeling the
autocorrelation actually observed in data from neighborhood residents? This is ultimately
a question about which conceptualization of neighborhoods as places within geographic
space provides a heuristic for grouping residents that is more consistent with the
empirical data. Put another way, it gets at whether only place matters, or both place and
spatial proximity matter: while HLM assumes that neighborhoods are independent and
thus only a resident’s own neighborhood matters, GSM assumes that neighborhoods are
embedded in a larger spatial fabric and that residents are influenced by multiple
neighborhoods, with the amount of influence each exerts depending on spatial proximity.

Several findings from the literature suggest that GSM will be superior to HLM for
modeling spatial variability in outcomes because its assumptions are more consistent with
what we know about neighborhoods. Neighborhood research has shown that daily life
frequently takes people across the borders of traditional neighborhood units like block
groups (Sastry, et al., 2002) and fixed neighborhood boundaries are quite artificial
(Coulton, et al., 2001; Montello, et al., 2003). Residents tend to think of their own home
as the center of their neighborhoods (Coulton, et al., 2001; Lee & Campbell, 1997), are
more likely to be acquainted with other residents who live close to them than with people
who live farther away (Greenbaum & Greenbaum, 1985), and tend to visit nearby census
tracts more often than distant ones (Wheeler & Stutz, 1971) indicating that urban social
travel exhibits proximity effects. In addition, similarity in outcomes as a function of
spatial proximity is a common feature in spatial data (Bailey & Gatrell, 1995; Haining,

2003; Tobler, 1970).
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Two lines of empirical evidence suggest that spatial rather than hierarchical
structure may better describe the autocorrelation in perceived neighborhood problems.
First, one of the few HLM studies to have systematically varied the size of the
neighborhood units used observed larger ICCs as smaller and smaller neighborhood units
were tested with this outcome (Coulton, et al., 2004); this is precisely what one would
expect to see if there really was spatial rather than hierarchical structure in the actual
data, but one tried to model the data with HLM rather than GSM. Second, both Bass and
Lambert (2004) and Pierce (2006) found direct evidence for distance-based spatial
autocorrelation by using variogram models with survey-based measures of perceived
neighborhood problems. Therefore, Hypothesis 3 (H3) is:

H3: An empty GSM will fit the perceived neighborhood problems data better than

an empty HLM. Similarly, a GSM model of perceived neighborhood problems

containing only individual-level predictors will fit better than a corresponding

HLM model containing only individual-level predictors of perceived

neighborhood problems.

Support for H3 would indicate that the conceptualization of neighborhoods
associated with GSM provides a better basis for grouping residents than the one
associated with HLM. In statistical terms, it would suggest that autocorrelation is
Spatially structured, not hierarchically structured.

Testing assumptions by examining residuals. Both HLM and GSM assume that
the individual-level residuals they produce are fully independent of one another and of
the Neighborhood-level residuals. On the other hand, the neighborhood-level residuals are

aSSumed to be independent of each other only in HLM because GSM explicitly assumes
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there will be different degrees of similarity among neighborhood-level residuals
depending on the distance between the locations associated with them. To the extent that
5 statistical model makes accurate assumptions about the autocorrelation structure in the
data, the resulting residuals will meet the model assumptions. If either statistical method
is not effectively modeling the autocorrelation in the actual data, that should be evident in
its residuals. Therefore, inspecting the residuals from each method may reveal clues
about which method is performing better. For example, if the data contain spatial
autocorrelation, but they are modeled with HLM, then there will still be residual spatial
autocorrelation in the level 1 and/or level 2 HLM residuals. Given the argument that led
to H 3, it follows that Hypotheses 4 and 5 (H4 and HS, respectively) are:

H4: HLM will not fully control for spatial autocorrelation in perceived

neighborhood problems, so there will be evidence of residual spatial

autocorrelation remaining in both the Level 1 and Level 2 residuals from HLM
models.

HS: GSM will fully control for within-neighborhood spatial autocorrelation in

residents’ perceptions of neighborhood problems, so there will be no evidence of

hierarchical autocorrelation remaining in the individual-level residuals from GSM
models.

HLM assumes that the amount of autocorrelation between residents of the same
neighborhood is the same no matter where they are located within the neighborhood. If
the underlying pattern of autocorrelation is a function of distance, then HLM would still
detect what appeared to be hierarchical autocorrelation in neighborhood-level residuals

from GSM. That would happen because HLM would be grouping people who are close
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together (high spatial autocorrelation) with those who are farther apart (low spatial
autocorrelation), which should essentially average out to an amount of hierarchical
autocorrelation that lies below the maximum level of spatial autocorrelation (found at
short distances), but higher than the minimum level of spatial autocorrelation. Thus,
Hypothesis 6 is:

H6: Neighborhood-level GSM residuals from a model predicting perceived

neighborhood problems will contain hierarchical autocorrelation when examined

with HLM, but the ICC will be lower than the PSR.

Testing contextual effects. A fourth gap m the literature concerns how
neighborhood-level factors have been measured when comparing HLM and GSM
approaches. The source data for measures of constructs like NSES have usually been
derived from census data that were only available at the level of areal units (Chaix,
Merlo, & Chauvin, 2005; Chaix, Merlo, Subramanian, et al., 2005). Thus, previous
studies have used crude methods to convert areal data originally associated with one set
of geographic units to estimates of the values that might be obtained within the
boundaries of the buffers used in GSM. A more refined approach would involve starting
from a spatial dataset of much higher resolution (preferably point-referenced data for
households) that can be aggregated directly to match the boundaries of the units used for
HLM analyses or within the buffers used for GSM analyses with equal ease. This study
was the first to use such data sources for measuring the contextual factors.

To address whether the buffers we can use in GSM provide a better geographic
definition of neighborhoods for testing the effects of specific contextual conditions on

residents than the neighborhood units used in HLM, this study varied how neighborhood
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boundaries are defined in GSM (fixed neighborhoods vs. buffers centered on residents’
homes) and compared the results to corresponding HLM models. A GSM analysis that
uses fixed neighborhoods like those used in HLM differs from the HLM only in the
assumptions made about how to model autocorrelation, while a GSM analysis that uses
buffers to approximate neighborhoods also differs from the HLM in how neighborhood
boundaries were set. Comparing both kinds of GSM analyses to an HLM analysis
allowed the study to disentangle whether any improvement of GSM over HLM was due
to how autocorrelation was modeled, how neighborhood boundaries were defined for
measuring neighborhood conditions, or the combination of these aspects of the method.
Given the research suggesting that residents tend to see their own homes as the
center of their neighborhoods (Coulton, et al., 2001; Lee & Campbell, 1997), using
buffers to represent neighborhood boundaries should produce better GSM models than
using fixed neighborhoods because buffers better approximate how residents think about
their neighborhoods. Thus, Hypothesis 7 (H7) is:
H7: GSM will yield models that fit better and have larger contextual effects of
crime and NSES on perceived neighborhood problems than corresponding HLM
models when they use contextual measures calculated within appropriately-sized
buffers. Using HLM-style contextual measures of crime and NSES calculated
within discrete neighborhood cluster boundaries in GSM analyses will yield
models of perceived neighborhood problems that improve on HLM results, but
not as much as when buffers are used.
Support for H7 would indicate that the buffers used in the GSM are a better

approximation of the geographic areas that are actually relevant to resident’s outcomes
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than the neighborhood units used in the HLM analyses. Testing H7 depends on using
buffers that are the right size to best capture the spatial scales on which particular
neighborhood characteristics matter, which may be smaller or larger than the fixed

-neighborhood. This study investigated the effects of two neighborhood characteristics,

namely crime and NSES, on residents’ perceptions of neighborhood problems.8
Comparing GSM models that varied only in the size of the buffers used for measuring
these contextual characteristics allowed the study to select an appropriate buffer size for
each of them (Chaix, et al., 2006; Chaix, Merlo, Subramanian, et al., 2005).
Examining spatial scale. There is little research or theory available that directly
addresses how varying the spatial scale on which crime and NSES are measured might
affect their relationship with residents’ perceptions. Meersman (2005) examined the
effect of the percentage of the population living in poverty within buffers with radii
ranging from 0.40 km (0.25 mile) to 2.41 km (1.50 mile) on perceived neighborhood
problems. He found that measuring poverty in the 2.41 km radius buffer provided the
strongest effect on perceived neighborhood problems. However, the study by Kruger
(2008) offers indirect evidence the spatial scale.on which NSES matters may be much
smaller: He found that physical decay of residential buildings correlated most strongly
with residents’ fear of crime when measured in 0.40 km (0.25 mile) buffers. Assuming
that residential decay is strongly correlated with NSES and that fear of crime is strongly
correlated with residents’ perceptions of neighborhood problems, one might expect that
NSES may be best measured in buffers of similar size in this study. Clearly, this is a large

difference in possible spatial scales, so the study examined a range of spatial scales.

8
The rationale for using these variables in the present study is explained in the next section.
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These studies providéd rough bounds on the range of spatial scales at which NSES might
be expected to matter to residents. Unfortunately, there is less literature available to guide
expectations about the spatial scale on which crime might matter.

It is possible that different social processes may underlie the importance of these
two contextual factors in shaping residents’ perceptions of their neighborhoods and that
therefore those processes may operate on different geographical scales. There is no a
priori reason to believe that the buffers that produce the strongest relationships between
crime or NSES characteristics and outcomes will be the same size as the neighborhood
units adopted for coﬁducting HLM analyses. Accordingly, Hypothesis 8 (H8) is a simple,
expldratory hypothesis:

HS8: The geographical scales on which crime and NSES influence resident

perceptions of neighborhood pfoblems will differ from one another and from the

average size of the neighborhood areas used in the HLM analysis.

In summary, both HLM and GSM provide ways to examine neighborhood effects.
The two methods make different assumptions and differ with respect to how compatible
they are with certain conceptualizations of neighborhoods. So far, HLM has been used
extensively in community psychology, but GSM has rarely been applied. Very little has
been done to explicitly compare the two methods. This study tested eight hypotheses by
applying HLM and GSM to the same dataset and comparing the results. While there are
good reasons to expect that those hypotheses will be supported, they may not be.
Therefore, the next section considers some possible reasons why the data might fail to

support one or more of those hypotheses.
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Alternative possibilities. Naturally, it is worthwhile to consider reasons why the
hypotheses above might not be supported in the present study. The most obvious
possibility is that the neighborhood units used in the HLM analyses might very well
represent distinct, meaningful neighborhoods. Indeed, guided by recommendations and
common practices in the multilevel modeling literature on neighborhood effects (Roosa,
et al., 2003), the research team who collected the survey data used in this study invested
considerable effort in trying to construct ecologically meaningful neighborhood
boundaries that would maximize neighborhood-level variance under an HLM framework
(Van Egeren, et al., 2007). If that effort was successful, then those units may be highly
salient to residents and the spatial variation in residents’ perceptions may be more
consistent with the assumptions of HLM than of GSM.

So, how could that come about? Unlike other recent studies (Coulton, Chan, &
Mikelbank, 2010; Coulton, et al., 2001), this one did not collect a map of each resident’s
self-reported neighborhood boundaries. The rationale presented above for expecting that
the residents might not agree on neighborhood boundaries and that therefore
conceptualizing neighborhoods as partially overlapping geographic areas (approximated
here by the buffer-based GSM models) was based on this prior work. It is possible that
this might not be true in this sample and that the neighborhood unit boundaries selected
in the original sampling design do ultimately capture some consensus definition of these
residents’ local neighborhoods. If so, one might then expect higher neighborhood-level
variances under HLM than under GSM, which would fail to support H1. For H2, it is also

possible that that practical range of spatial autocorrelation in residents’ perceptions of
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neighborhood problems may vary considerably from city to city and that, in this sample,
it might be too short to reach across neighborhood boundaries.

Before discussing additional hypotheses about the HLM and GSM residuals that
can be tested to more fully answer the second research question, we should consider
scenarios that conflict with the prediction in H3. As with H1, this hypothesis might not be
supported if the neighborhood units used for the HLM really are as meaningful as they
were originally intended to be. Alternatively, another reason that H3 might not be
supported derives from the fact that both HLM and GSM adopt fairly simple assumptions
about how autocorrelation might be structured. It is possible that (a) neither of those
assumptions is accurate and the spatial variation in residents’ perceptions does not fit
either model well, or (b) that the underlying structure in the data is actually a mixture of
hierarchical and spatial structures, such that both forms of autocorrelation are present. In
either of those scenarios, H3 might not be supported. Because H4-H6 are corollaries of
H3, they are unlikely to be supported if H3 is unsupported. So, if a relatively pure
distance-decay pattern of spatial autocorrelation does not adequately describe the spatial
variability in the data, these three hypotheses may not be supported.

As with previous hypotheses, if the neighborhood unit boundaries selected for the
HLM analyses are in fact as meaningful for residents as they were intended to be, then
H7 and H8 will probably not be supported. This is especially true if residents’
perceptions are not affected by crime or NSES in areas outside of their own
neighborhood. One way that could happen is if they are more acutely aware of conditions
in their own neighborhoods than they are of conditions in other surrounding

neighborhoods. To borrow a term from behavioral geography, residents’ “awareness
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space” (McCord, Ratcliffe, Garcia, & Taylor, 2007) might not extend much beyond the
borders of the neighborhood units used in the sampling design. Even if they are aware of
conditions in surrounding neighborhoods, residents might think of those places as
sufficiently distinct from their own neighborhood that they ignore the crime or signs of
poverty in surrounding neighborhoods when assessing the level of problems in their own
neighborhoods.

Several of the hypotheses above depend on the assumption that circular buffers
are a good way to represent neighborhoods. However, it is certainly possible that this is
not the case and that buffer-based methods should rely instead on some other, more valid
method for defining buffer boundaries. Similarly, the current hypotheses assume that, for
any given neighborhood—level predictor, the same size buffer is appropriate for measuring
the neighborhood area relevant to all residents. This may not be the case because there is
’some literature suggesting that the size of residents’ self-reported neighborhoods may be
related to individual-level characteristics such as age or gender (Lee, 2001). Exploring
that possibility was outside the scope of the current study, but it is certainly worth
pursuing in future studies.

Summary of the Study

The purpose of the study was to test whether GSM could serve as a useful
alternative to HLM in neighborhood research and to respond to the recent call to start
applying spatial analysis methods in community psychology (Luke, 2005; Mowbray et
al., 2007). To fulfill that purpose, this study used both HLM and GSM to test hypotheses
about the effects of two neighborhood-level variables (crime and NSES) on residents’

perceptions of neighborhood problems. By comparing parameter estimates and model fit
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indices from HLM and GSM analyses of the same data, the study explored whether the
fundamental differences in how neighborhoods are conceptualized and defined in these
two methods led to differences in their statistical performance.

How we conceptualize neighborhoods and geographic space informs two aspects
of neighborhood studies, (a) how we group residents in order to detect spatial variability
and model autocorrelation in outcomes, and (b) how we define the geographic area of the
neighborhood that should be used when measuring neighborhood context. This study
seeks to answer four research questions:

1. How do GSM estimates of neighborhood-level variance and autocorrelation

compare to HLM estimates?

2. Which method (HLM or GSM) is more effective at modeling the
autocorrelation actually observed in data from neighborhood residents?

3. How do GSM estimates of contextual effects and model fit compare to HLM
estimates?

4. In a dataset originally collected with use of HLM methods in mind, how do the
geographical scales on which different contextual factors operate (as estimated
with GSM) compare to each other and to the size of the neighborhood units
used in HLM?

The first two questions and the attendant hypotheses focus on how we group data
in order to detect and model spatial variability in outcomes, while the latter two questions
focus on how different ways of defining neighborhood boundaries affect the strength of
the relationships between specific contextual characteristics and individual-level

outcomes. By pursuing answers to these questions, this study contributes to the literature
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on testing neighborhood effects and expands the methodological repertoire available to
community psychologists interested in this topic.
Limitations

As the literature review above illustrates, the conceptual issues surrounding the
definition and operationalization of neighborhoods and the testing of neighborhood
effects are complex and deeply interrelated. The present study addresses some key issues,
but no single study can address all of them completely. One of the study’s limitations is
that it focuses on only a single outcome measure. As a result, the findings will need to be
replicated with other outcomes before strong conclusions about the generalizability of the
findings to other outcomes can be drawn. This study focused on perceived neighborhood
problems specifically because of the existing evidence that suggested it might be a strong
candidate for use with GSM instead of HLM.

The study did not use any outcome measures where one might expect HLM to be
more appropriate than GSM. This is another limitation, but one that reflects the fact that
HLM is the more well-established method in the community psychology literature.
Focusing on the situation where it is most plausible that GSM might outperform HLM is
a crucial test of whether GSM might be a viable alternative to HLM,; it is less critical to
show that HLM can sometimes be more appropriate because it is already the de facto
standard approach.

Another limitation of the study is that the data come from a single sample located
in a small city. This means that the results should be replicated with additional studies
drawn from other geographical study regions in order to assess the generalizability of the

results beyond the selected study region. The size, shape, and spatial arrangement of the
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neighborhood units used for HLM are fixed in this sample, but would certainly vary in
other study regions and may play an important role in the comparison of HLM and GSM
methods. Furthermore, while many HLM studies of neighborhood effects have been
located in large cities, the setting for the present study was a small city. There are many
differences between large and small cities, but what influence those differences might
have on the use of HLM versus GSM is not known.

One option for comparing HLM and GSM would be to conduct simulation studies
where these factors can be directly manipulated by the researcher, as could the location of
the individual observations and the actual structure of the dataset. Designing a series of
simulations to thoroughly explore the conditions under which HLM and GSM each
perform best will be challenging because of the complex spatial issues involved. This
study is only the first step toward introdu;:ing sophisticated GIS-based spatial statistics
into community psychology and the literature on neighborhood effects. Therefore, it was
deemed appropriate to use a real dataset for the study as a proof of concept before

undertaking that more advanced kind of methodological research.
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METHOD

The data selected for this study came from work related to the evaluation of Yes
we can!, which is a community change effort funded by the W. K. Kellogg Foundation
(WKKF) in Battle Creek, Michigan. Several key features of this dataset contributed to its
selection for the study.

First, the survey sample comprising the main portion of the dataset was designed
with multilevel neighborhood research in mind. The neighborhood units were constructed
to have ecologically sensible boundaries (Van Egeren, et al., 2007) and conformed to one
of the major suggestions in the HLM literature, which is to sample from neighborhood
units that are as small as feasible in order to maximize between neighborhood variance
(Roosa, et al., 2003). Because every survey participant’s address was known and
geocoded with high accuracy, the data were also easy to use in spatial analyses.

Second, the neighborhoods under study were all from a single city, placing them
in close proximity to each other, which is important for comparing how HLM and GSM
model autocorrelation. To fully do that comparison, the neighborhoods must be close
enough together that it is plausible that the range of spatial autocorrelation and/or the
geographical scale on which certain predictors are measured might reach across the
boundaries between neighborhoods. In this dataset, that is absolutely plausible because
there are multiple instances where neighborhood units were located very close together.

Third, additional secondary data sources with high spatial resolution were
available to measure contextual characteristics without depending on aggregated survey
data. Both crime and residential property value data were available for this study region

in point-based GIS shapefiles geocoded to specific addresses—a form ideally suited to
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enabling those data to be aggregated to construct contextual measures either within the
boundaries of the fixed neighborhood units needed for HLM, or in the buffers centered
on each resident’s home that were used in GSM. Using predictors that were not
aggregated from the survey data itself prevented shared method variance from biasing the
study results. Furthermore, the nature of these secondary datasets allowed flexible re-
specification of the size of the buffers used in the GSM analyses.
Study Context

The study region comprised a portion of the city of Battle Creek, which is a small
city in southwest Michigan with a population of approximately 53,000 residents. During
Phase I of Yes we can!, the work focused on a set of seven elementary school catchment
areas (ESCAs) that were selected on the basis of demographic, educational, and
economic data. Because Yes we can! was being expanded in Phase II to focus on a larger
geographic area, the 2005 resident survey collected by the Yes we can! evaluation team as
baseline data for Phase II sampled residents from the original seven ESCAs, plus
residents from several additional ESCAs. However, the ESCAs were large enough to
contain areas with considerable heterogeneity in economic conditions and demographic
composition, so the team developed a clustered sampling design based around much
smaller and more ecologically meaningful neighborhood units (Van Egeren, et al., 2007).

These neighborhood units, shown in Figure 4, were defined by identifying 52
clusters of census blocks within block groups that met at least one of three economic risk
criteria according to 2000 U.S. census data (median household income < $30,568, percent
of single-female-headed households living below poverty > 49%, or percent of children

under age 5 living below poverty > 39%). Neighborhood units were only created from
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Figure 4: Map of neighborhood cluster boundaries (N = 52) and ESCA boundaries. These
clusters were used as Level 2 units during the survey sampling and to represent

ecologically meaningful neighborhoods for grouping residents in the HLM
analyses. Source: Map prepared by the author.

clusters of census blocks that were all from the same block group and were not internally
divided by ecological barriers such as major streets, bodies of water, or parks. The units

each contained from 1 to 11 census blocks (M = 5, counting both whole blocks and

partially-included face-blocks equally) and ranged in size from 0.026 to 0.472 km2 M=

0.083 km2, SD = 0.069 km2).
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The neighborhood-level sampling was stratified based on whether the
neighborhood unit was primed or unprimed to take advantage of Yes we can/ This
priming status variable reflected the evaluation team’s expectation that neighborhoods
with a history of previous activity focused on creating neighborhood change might be
better positioned to benefit from the upcoming intervention activities. The primed
neighborhoods either (a) had been identified by the city as having an active neighborhood
association or (b) contained at least one active leader according to either Yes we can!/
community organizers or city lists of neighborhood association leaders and neighborhood
planning council members. The unprimed neighborhoods had neither active
neighborhood associations nor any identified leaders living on any of the included blocks.
The 52 neighborhood units ultimately identified were evenly split with respect to priming
status (26 primed, plus 26 unprimed).

For simplicity and clarity, the neighborhood units used in the survey sampling
will hereafter be called neighborhood clusters (or just clusters). These clusters are the
geographic units that were used to define the neighborhood boundaries in all the HLM
analyses and some of the GSM analyses reported below.

Data Sources

Survey sample. The initial source for the survey sample frame was a GIS
shapefile containing data about parcels of land in Battle Creek obtained from the local tax
assessor’s office. GIS tools were used to merge the cluster boundaries with a map of the
parcels, delete records for parcels outside the cluster boundaries, and assign cluster

identification numbers to the remaining records in the draft sample frame database.
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Prior to drawing the survey sample, evaluation team members inventoried all the
dwelling units on each parcel within each cluster. They identified dwelling units that
were vacant, abandoned or uninhabitable, for sale, or advertised as being currently
available for rental. Those units were deemed ineligible for selection during the sampling
and deleted from the database accordingly. The final survey sample frame was expanded
by splitting records for parcels with multi-unit dwellings into separate records for each
distinct dwelling unit. Thus, all inhabited dwelling units located in any of the clusters
were listed as unique rows in the sample frame database.

The survey sample was clustered. The evaluation team used simple random
sampling within each neighborhood cluster, aiming to draw a minimum of 37 households
from each neighborhood. This original target sample contained 1,905 households (a few
neighborhood units contained fewer than 37 addresses, which prevented reaching the goal
of 1,924 households).

In Fall 2005, surveys were mailed to the selected households at three-week
intervals until each household either responded or three surveys had been sent without
receiving a response. In the third round of mailings, the evaluation team was concerned
that people who had already failed to respond twice would again be non-responders. To
boost the final sample size, the target sample was augmented at the third mailing by
adding one replacement household from the same neighborhood cluster for each non-
respondent from the original sample (the original non-respondents still got the third
mailing as well). The replacement households received a total of three opportunities to
respond to the survey, at three week intervals. In total, surveys were mailed to 2,643

residential addresses, but 184 addresses were later deemed invalid due to vacancy,
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undeliverable mail, etc., so the denominator for the response rate is 2459 valid addresses.
Comparing the early versus late responders on 13 demographic variables and 44 other
survey measures revealed almost differences between these subsets of the survey
participants (Pierce, 2008) Prior to the first and third mailings, community residents hired
by the evaluation team conducted door-to-door outreach to encourage residents to
complete the survey. Each household that returned a completed survey received a $30 gift
card to a local store. Only one survey per household was included in the final sample.

Data collection was cut off in early 2006, 23 weeks after the first mailing. It
yielded 1,049 usable surveys (a 42% response rate), which were equally divided between
unprimed (n = 522) and primed (n = 527) neighborhoods. The number of usable surveys
per cluster ranged from 8 to 31 (A =20.2, SD = 5.3, Mdn = 21). Demographic

characteristics of the sample are shown in Table 2.

Table 2: Demographic characteristics of survey participants (N = 1049)

Pre-Imputation Post-Imputation
Variable Nor(M) %or(SD) Valid% Nor(M) % or(SD)
Age (in years) (47.00) (16.15) (46.87)  (16.25)
Non-missing 1001 95 100 1049 100
Missing data 48 5 0 0
Age category
18-35 280 27 28 328 31
36-55 439 42 44 439 42
>56 282 27 28 282 27
Missing data 48 5 0 0 0
- Sex
Male 266 25 26 268 26
Female 775 74 74 781 74
Missing data 8 1 0 0 0
Primary race/ethnicity
White 640 61 65 672 64
Black or African American 293 28 30 312 30
Hispanic or Latino 42 4 4 45 4
Other 16 2 2 20 2
Missing data 58 6 0 0 0
- Marital status
Single 249 24 24 255 24
Married or cohabitating 479 46 46 483 46
Divorced or separated 217 21 21 217 21
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Table 2 cont’d

Pre-Imputation Post-Imputation

Variable Nor(M) %or(SD) Valid% Nor(M) %or(SD)

Widowed 93 9 9 94 9

Missing data 11 1 0 0 0
Education (highest degree obtained)

Did not graduate from high school 182 17 18 186 18

High school, GED, trade certificate 641 61 63 659 63

Undergraduate college degree 174 17 17 182 17

Graduate degree 21 2 2 22 2

Missing data 31 3 0 0 0
Employment status

Not employed 444 42 57 446 57

Employed 598 57 43 603 43

Missing data 7 1 0 0 0
Home ownership

Rent 330 32 33 342 33

Own 685 65 68 707 67

Missing data 34 3 0 0 0
Annual income

<$15,000 365 35 37 389 37

$15,000 — $25,000 205 20 21 217 21

$25,000 — $45,000 268 26 27 288 27

> $45,000 146 14 15 155 15

Missing data 65 6 0 0 0
No. of children (1.53) (1.47) (1.42) (1.38)

Non-missing 715 68 100 1049 100

Missing data 334 32 0 0 0
Presence of children

No children 218 21 31 340 32

Children (> 1) 497 47 70 709 68

Missing data 334 32 0 0 0
Years in BCa (3041) (19.42)

Non-missing 1031 98 100

Missing data 18 2 0
Years at current addre:ssa (12.19) (1424

Non-missing 1005 96 100

Missing data 44 4 0

Note. Percentages may not total to 100 due to rounding error. BC = Battle Creek, M = mean, SD =
standard deviation.

a
Post-imputation summaries are not shown for years in BC and years at current address because these
variables were excluded from both the imputation model and the analyses reported below.

Crime data. As part of the ongoing Yes we can! evaluation, the evaluation team
also obtained crime data from the City of Battle Creek Police Department. This
secondary dataset contains an electronic list of all the crime incidents (N = 8,263)

reported to the police in the 12 months prior to the 2005 resident survey, drawn from the
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police dispatch records management system. In addition to the address at which each
incident occurred, additional attributes of each incident are also available, including up to
four offense codes that can be used to determine the type of crime. For this study, offense
codes were used to determine whether each incident fell into one or more of the three
major categories of crime used in the National Incident-Based Reporting System
(Uniform Crime Reporting Program, 2000): crimes against persons, which are all
essentially violent crimes such as assault, murder, and rape; crimes against property such
as theft, arson, and fraud; and crimes against society such as drug/narcotic offenses,
prostitution, and gambling, which are violations of laws that “represent society’s
prohibitions on engaging in certain types of activity” (Uniform Crime Reporting
Program, 2000, p. 14).

The crime data were converted into a point-based GIS shapefile by geocoding
each incident address against a street centerline shapefile. Mapping the locations of the
crime incidents showed that 529 of them actually occurred slightly outside the city
boundary (mostly along a single highway). Given that most crimes occurring outside the
city limits were probably handled by police from other jurisdictions from whom no data
had been obtained, only the 7,734 incidents that fell within the City of Battle Creek’s
official boundary were used for computing contextual measures in this study.

Property data. The Yes we can! evaluation team also obtained property data from
the City of Battle Creek’s assessor’s office. This polygon-based GIS shapefile contains
data about parcels of land within the local tax assessor’s purview (e.g., within the City of
Battle Creek’s official boundaries). The database includes the address and boundaries of

each parcel of land, along with information about property class, zoning code, and more.
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Among those variables are indicators of whether the parcel is zoned to contain a single
family dwelling, a two family dwelling, or a multifamily residential dwelling. Some
residential parcels are zoned to contain medium density or high density residential
dwellings (e.g., large apartment buildings). Data about the 2005 property value associated
with each residential parcel was obtained from the assessor’s office, which maintains
historical data of these public records for tax purposes, then merged with the GIS
shapefile so that residential property values could be aggregated within different
neighborhood boundaries as required for the study. To facilitate that aggregation, the
polygon representing each parcel was converted to a point located at the parcel’s
centroid, yielding a point-based shapefile.

Procedures

Survey consent. The 2005 resident sui'vey used a passive consent procedure. As
explained in the cover letter sent along with the survey, returning a completed survey
served as informed consent to use the survey for the original purpose of the study, which
was to evaluate the Yes we can! effort and assess conditions in Battle Creek. The
evaluation of Yes we can! and academic research based on the 2005 survey data are
ongoing and have been approved by the institutional review board at Michigan State
University. The principal investigator for that work is Dr. Pennie Foster-Fishman.

The present study entailed secondary analysis of that survey data for a new
research purpose that posed only minimal risk to the survey participants. It would have
been exceedingly difficult to contact all 1,049 of those residents to obtain consent to re-
use their data for this new purpose, so the institutional review board at Michigan State

University waived the requirement to obtain further consent from the residents.
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Geocoding. All three data sources listed above were geocoded and projected
into the Michigan State Plane (South) Coordinate System of 1983 (Lusch, 2005), with
units for the spatial coordinates set to meters. The resulting point- and polygon-based
shapefiles can be plotted on maps using GIS software and were imported into the
statistical software used for the analyses.

Surveys. Because the survey sample frame was initially constructed from a GIS
shapefile based on the locﬂ tax assessor’s property database, nearly every survey
returned was geocoded (assigned spatial coordinates so that their locations can be plotted
on electronic maps) by the evaluation team by simply linking the address of the survey
participant back to the GIS files containing the parcel data. The geocoded location for
each survey participant is the centroid of the parcel containing the participant’s
residential address. This resulted in a very high geocoding rate (over 98%). The
remaining survey participants’ locations were manually geocoded by referring to maps
annotated by the Yes we can!/ evaluation team when taking the dwelling unit inventory
they used to refine the survey sample frame.

There were 39 survey participants whose spatial coordinates were identical with
those of at least one other participant because they lived on parcels containing multiple
dwelling units (e.g., apartment buildings or duplexes). Because exact overlap in the
locations of the data points causes mathematical problems in GSM, a trivial amount of
spatial error (up to 3 m in either direction along each axis) was added to the spatial
coordinates for these participants by adding independently drawn random values from a
uniform distribution to both the easting and northing coordinates fc;r those 39 cases. This

eliminated exact overlap and allowed all cases to be retained in the GSM analyses.
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Crime data. Because the crime incident files contained addresses and other
location data, 99% of the crime incidents were successfully geocoded by matching the
incident addresses to a street centerline GIS file, so each crime is associated with a point
in geographic space. This hit rate far exceeds the minimum acceptable hit rate of 85% for
geocoding crime data recommended by Ratcliffe (2004). The resulting geocoded crime
data constitute a spatial point pattern that can be analyzed with a variety of spatial
analysis techniques (Bailey & Gatrell, 1995).

Property data. The property data were available as a polygon-based GIS shapefile
showing the precise area occupied by each parcel of land falling under the purview of the
local tax assessor’s office. These data were geocoded by employees of the City of Battle
Creek and are the most authoritative, accurate, and highest resolution spatial data
available for property parcels in that city. Because the shapefile contains the entire
territorial boundary for each parcel, parcel centroids were easily computed and were used
to determine whether or not particular parcels fell within particular geographic areas.
Neighborhood-Level Contextual Measures

The contextual measures for this study were computed from the crime and
property datasets. Those datasets were aggregated in several ways to construct contextual
measures suitable for the present analyses. For each construct (crime and NSES), data
were aggregated into variables representing (a) the geographic area of each neighborhood
cluster as defined by the original sampling design, (b) a series of 25 concentric, circular
buffers centered on each survey participant’s home that varied in size, with radii ranging

from 0.10 km (0.06 mile) to 2.50 km (1.55 mile) in 0.10 km increments. For comparison,
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a typical face block in Battle Creek is about 0.12 km (0.07 mile or 400 feet) in length.
These buffers, with the modifications noted below, were used in the GSM analyses.

The geographic coverage of the property and crime data was constrained: they
were only consistently available within the official City of Battle Creek boundary. The
-neighborhood clusters all fell entirely within the city boundary, so that did not pose a
measurement problem for the HLM analyses. However it posed an edge-effect problem
(Bailey & Gatrell, 1995) for measuring neighborhood-level variables in the GSM
analyses because buffers for residents living near the edge of the city sometimes covered
land outside the city limits, where crime and property value data were not available. This
was addressed with an edge-correction procedure inspired by techniques used in spatial
point-pattern analyses (Bailey & Gatrell, 1995): only the portion of a circular buffer
falling within the city limits was used to measure the neighborhood-level variables. This
.affected both the shape and the size of the buffers for some residents, particularly those in
the southeast corner of the study region, but ensured that only the geographic area over
which crime and residential property data were reliably available was considered.

Consistent with recommendations in the multilevel modeling literature, both
»neighborhood-level measures were grand-mean centered prior to analysis (Enders &
Tofighi, 2007). This practice made the coefficients associated with these predictors more
interpretable.

Crime. Only crimes that occurred in the 12 months immediately preceding the

collection of the survey data were used to calculate crime density figures. The raw

neighborhood crime density (crimes/kmz) was measured by aggregating the crime data to

determine the total number of crime incidents that occurred within the cluster boundaries
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(which were dilated 15 m outward to capture crimes geocoded into the middle of streets)
and within each of the buffer boundaries, then dividing by the land area enclosed by each
of those neighborhood boundaries. To avoid numerical problems in estimating the crime
coefficients and to make the units of the variable more sensible, raw crime density values

were divided by 10 prior to centering the variable for use in analyses. A one unit

difference on the final crime variable therefore represents a difference of 10 crimes/kmz.

Most neighborhood research uses crime measures based on only violent crime
(i.e., crimes against persons such as assault, homicide, and rape) (Franzini et al., 2008,
Quillian & Pager, 2001; Sampson & Raudenbush, 2004). Because it was possible that
nonviolent crimes might also influence residents’ perceptions and that different types of
crime might operate on different spatial scales, the utility of using separate measures
based on crimes against persons, property, and society was considered for this study. In
preliminary analyses, all of these measures were significant predictors of the outcome
when entered as the sole neighborhood-level predictor, as was an overall crime measure
based on all incidents regardless of type. Crime against persons was the strongest
predictor in those analyses.

Further preliminary modeling showed that while individual crime incidents very
rarely included offenses falling into more than one crime category, neighborhood-level
crime measures for the different types of crime were very strongly correlated. Including
more than one of them in a model inevitably caused severe multicollinearity problems,
eliminating the effects of all the included crime measures. Given that, it was not feasible
to test whether the HLM and GSM yield different patterns of scientific inferences about

the effects of different kinds of crime. Therefore, consistent with how crime is

149



operationalized in other neighborhood research studies (Franzini et al., 2008; Quillian &
Pager, 2001; Sampson & Raudenbush, 2004), the crime measure in the analyses reported
below is based only on crime against persons (Uniform Crime Reporting Program, 2000).

Neighborhood SES. NSES was measured by aggregating the property data to
obtain the median value of all residential property parcels within a given set of
neighborhood boundaries (either the cluster boundaries or the various buffer boundaries).
While it might have been better to measure NSES in terms of the median value of each
dwelling unit, the number of dwelling units per parcel was only available within the
cluster boundaries. Such a measure therefore could not be calculated for the full range of
buffers used in the GSM modeling. Similarly, relying on the median value of parcels
zoned only for single-family dwellings was not feasible because some survey participants
lived in areas exclusively zoned for higher density housing arrangements (containing
many of apartment building complexes). The resulting missing data for NSES would
have reduced the sample size and the generalizability of the results.

The raw NSES values were measured in dollars. To avoid numerical problems in
estimating the NSES coefficients and to make the units of the variable more sensible, raw
NSES values were divided by 1000 prior to centering the variable for use in analyses. A
one unit difference on the final NSES variable therefore represents a $1,000 difference in
the median value of residential parcels in the neighborhood.

Individual-Level Measures

The individual-level measures for the study all came from the 2005 resident

survey collected by the Yes we can! evaluation team. Because the study focuses on

testing contextual effects, the individual-level predictors were grand-mean centered

150



(Enders & Tofighi, 2007; Paccagnella 2006) to improve interpretation of the coefficients.
Although the literature on centering categorical variables in multilevel models focuses
only on dichotomous predictors (Enders & Tofighi, 2007), grand-mean centering can also
be applied to categorical predictors with more than two categories. Dummy coding them
then separately centering each resulting dummy variable yields results that are
conceptually comparable to centering dichotomous variables (C. Enders, personal
communication, August 17, 2009).

Neighborhood problems. The dependent variable was residents’ perceptions of
neighborhood problems. This four item scale (o = .88) was based on items adapted from
Coulton, Korbin, and Su’s (1996) disorder scale. Residents were asked how much they
agreed or disagreed with a set of statements about whether selected indicators of physical
and social disorder were a problem in their neighborhood (e.g., “Crime is a problem” and
“Abandoned, vacant, or neglected Buildings are a problem”) using a 6-point Likert scale
(1 = strongly disagree, 6 = strongly agree).

Age. Residents self-reported their birth years in the demographic portion of the
survey. Age was calculated by subtracting each resident’s birth year from 2006. For the
analyses, age was categorized into three groups: 18-35 years (the reference group), 36-55
years, and 56 or more years.

Gender. Residents self-reported their gender in the demographic portion of the
survey. For this binary variable (0 = male, 1 = female), males were the reference group.

Race. The survey also collected self-reported racial/ethnic background. For this
study, each participant was categorized into one of the foilowing race groups: White (the

reference group), Black/African American, Hispanic/Latino, or other.

151



Marital status. Residents were also asked about their marital status. For this
study, marital status was collapsed into the following four groups: single (the reference
group), married or cohabiting, separated or divorced, and widowed.

Education. Participants’ were asked to report the highest level of education they
had completed. For analysis purposes, education was collapsed into four categories: (a)
Did not graduate high school, (b) high school diploma, general educational development
(GED), trade or training certificates, (c) undergraduate college degree (Associate’s,
Bachelor’s), or (d) graduate degree (Master’s or Doctoral). Residents in the second
category (i.e., high-school diplomas or similar level of education) served as the reference
group because they comprised the largest group.

Employment status. Participants were also asked about their employment status.
Unemployed participants were the reference group (0 = not employed, 1 = employed).

Income. Annual household income was collected by asking participants to report
which of the nine different income categories included their income. Due to the small
numbers of cases in some of the original categories, this variable was recoded into four
categories: (a) less than $15,000, (b) $15,000 to $25,000, (c) $25,000 to $45,000, and (d)
$45,000 and above. The highest income category was the reference group.

Home ownership. Participants were asked whether they rented or owned their
home on the 2005 survey. Renters were the reference group (0 = rent, 1 = own).

Presence of children in the home. Residents were asked to report the number of
children (persons under age 18) living in their home. Presence of children in the home
»was treated as a binary variable (0 = none, 1 = 1 or more children). Residents without

children living in their home were the reference group.
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Analysis

The analysis began with a thorough inspection of the data and assessment of the
amount and patterns of missing data (McKnight, McKnight, Sidani, & Figueredo, 2007).
After imputing missing data (see below), exploratory analyses (e.g., univariate and
multivariate summaries, screening for outliers, etc.) and graphical methods for
visualizing the data (Cleveland, 1993) were employed to check assumptions underlying
the statistical models and the nature of the relationships between the variables.

The analyses associated with H1- H6 compared HLM and GSM with respect to
how they group residents for detecting and modeling spatial variation in outcomes. They
sought to test whether conceptualizing neighborhoods as places in discontinuous
geographic space is a practice that should be replaced by conceptualizing neighborhoods
as places within continuous space. In contrast, the analyses associated with H7 and H8
focused on comparing HLM and GSM as methods for testing the effects of specific
neighborhood-level prediétors. These latter analyses sought to inform our thinking about
defining neighborhood boundaries for measuring contextual variables.

Imputation of missing data. To maximize the usable sample size and minimize
the impact of missing data on the analyses, missing values on all individual-level
measures were imputed prior to conducting the analyses (Schafer & Graham, 2002). The
amounts of missing data were quite small for most of the variables (see Table 2) and the
missing values were scattered throughout the dataset, so single imputation (rather than
multiple imputation) was a reasonable strategy for dealing with the missing data.

Because the survey data were originally collected via a clustered sampling design,

a multilevel imputation model (Schafer, 1997b, 2001) would normally be used to impute
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missing values. However, the present study avoided biasing the results in favor of either
HLM or GSM by applying a strictly individual-level imputation model designed for
imputing missing values in datasets containing both categorical and continuous measures
(Schafer, 1997). This technique ignored both spatial autocorrelation and hierarchically
structured autocorrelation, giving neither analysis method an advantage.

The imputation model combined a log-linear model containing all possible main
effects and two-way interactions among seven categorical variables (gender, race, marital
status, education, employment status, home ownership, and income) with a regression
model containing main effects for seven continuous variables. The continuous variables
were neighborhood problems, age, and number of children in the home, plus four
measures not described above because they were only used in the imputation process:
hope (3 item scale, a = .83), perceived availability of safe, affordable housing in the
neighborhood (1 item), perceived barriers to employment (5 item scale, a = .90), and
parental support for education (2 item scale, a =.78). The latter four measures were
useful imputation covariates because they were all correlated with neighborhood
problems (rs >.20, ps < .05).

Bayesian modeling. The software selected for estimating the GSM models relies
on a fully Bayesian approach to statistical inference called Markov chain Monte Carlo
(MCMC) estimation via Gibbs sampling (Finley, Banerjee, & Carlin, 2007). The same
approach was also used to estimate the HLM models to ensure that differences in
estimation methods could not skew the results toward either HLM or GSM.

The Bayesian approach to statistics is deeply grounded in probability theory, so

models are specified in terms of joint probability distributions for all observable and
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unobservable quantities in the problem at hand (Gelman, Carlin, Stern, & Rubin, 2004).
Observable quantities are the variables contained in the data, while unobservable
quantities include the unknown values of parameters associated with specific predictors
or other aspects of the model (e.g., error variances). Instead of depending on null
hypothesis significance testing for point estimates of unknown model parameters,
Bayesian modeling emphasizes describing and drawing inferences from the conditional
probability distributions of those parameters given the observed data by examining
summary statistics such as credible intervals (Gelman, et al., 2004; Gill, 2008).

Understanding the relationship between the prior distributions for unknown model
parameters (often just called the priors) and the corresponding posterior distributions
estimated for those parametérs during a specific analysis is crucial to Bayesian statistics.
The priors specified in a model reflect assumptions about the distributions of the
unknown parameters that are made before examining new data (Gelman, et al., 2004,
Gill, 2008). One key aspect of defining a prior is choosing the sampling distribution (e.g.,
normal, binomial, Poisson, etc.) that determines its overall shape and defines what
parameters must be estimated (e.g., mean and variance for a normal distribution). Priors
may be specified based on knowledge extracted from the relevant substantive literature,
previously collected data, or based on methodological considerations. Bayesian modeling
then uses the information in new data to update the prior distributions, thereby producing
posterior distributions for model parameters that are more informative than the priors and
can be used to draw scientific inferences (Gelman, et al., 2004; Gill, 2008).

This study used non-informative prior distributions to minimize the influence of

the priors on the posterior distributions (Gelman, et al., 2004; Gill, 2008), ensuring that
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the posterior distributions largely reflect information gleaned from the actual data. To
rule out the priors as a potential explanation for differences in performance, identical

priors were used for corresponding parts of the HLM and GSM models. Flat priors based

on the normal distribution (p =0, 02 = 10,000) were used for all intercept and slope

coefficients. This effectively assumed that the distribution is centered on zero (on
average, there is no effect) and that all values for these parameters (even large positive or
negative values) were equally likely, but each h