

«
‘
3

9
.
0
:
.
0

I
»

A
3
“
»

.
.
2
.
t
?

K
i
.

A
I
n
;

t
a
r
-
.
0
3
1
1
-

fi
h
i
z
.

1
2
:
5
.

A
t
:

‘
:
1
.
.
.
.
J
§
.
.
.
u

«
t
a
u
.
.
.

{
.
J
fi
n
r

a
s

‘
.

‘
\
‘
C
o
|

I
\

h
n
.

3
2
.
1
:

#5

| .
v

gr ‘4':
§

a
s

a.
..
«
M
M
?

‘

“
N
a
m
?
”

$
3

h
'
l

.
3
:

t .
z
k
fl
u
O
I
A
z
t

1
.
2

2
v

.
I
t
.

..
_

E
v
a
n
-
«
m
t
;

,
i

s
o

A
:
m
u
3
1
w

.
.
‘
\
v

‘

..
.
o
f
“
.
.
.

..
$
3
.
3

.
3
:

r
A

.
A

A

v
.

.
«
m
y
:$
3
.
.

A

$
1
.

1.
A

A
-

.
.

A
_

.
A

.3
:

A
_

2
1
.
.
.
.

..
.

n
2

A.
.

.
A

_.
H
u
m
a
n
”
,

A
v

H
:
”
h
a
g

A
.

.

A
E
C
?
!

A
a
»
:

.
.
3
3
.
.

I
n
.
.
.

t

.

A

I
.

.
t

n
i
b
»
.
.
-

.
_
.

«
v
i
:

5
.
.

..
..
.u
..
.~
r.
.m
..
..
L
a
n
i
:

..
"
m
a
r

5L

3’ if" 0 LIBRARY

Michigan State

Ul liversity

This is to certify that the

thesis entitled

QUANTIFYING AND PREDICTING ERROR IN DEM-

DERIVED FLOW-DIRECTION

presented by

GLENN ALEXANDER O'NEIL

has been accepted towards fulfillment

of the requirements for the

MS. degree in Geggraphy

 A)f M .

Major Professor’s Signfifire

4'17 , 20/ 0

Date

MSU is an Affirmative Action/Equal Opportunity Employer

—
-
.
-
-
.
-
-
.
-
-
.
—
-
—
n
-
a
-
.
-
-
.
-

O
I
-
t
-
o
-
o
-
n
-
I
-
o
-
o
-
o
-
u
-
o
-
I
-
u
I

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

FEB 2 6 2012

0830 11

5/08 KzlProjIAccaPrelelRCIDateDue.indd

QUANTIFYWG AND PREDICTING ERROR IN

DEM-DERIVED FLOW-DIRECTION

By

Glenn Alexander O’Neil

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Geography

2010

ABSTRACT

QUANTIFYING AND PREDICTING ERROR IN

DEM-DERIVED FLOW-DIRECTION

By

Glenn Alexander O’Neil

In this thesis, I present a new method for quantifying errors in flow-direction

rasters derived from USGS 10-meter digital elevation models (DEMs). The method

utilizes flow-direction rasters derived from finer resolution 2.5-foot LiDAR DEMs as a

reference dataset, and performs cell-by-cell comparisons between the two datasets to

quantify error in the USGS product. I applied this method to a sample of 80 75-minute

USGS quadrangles, stratified by land cover and topography, across Ohio. I employed

quadrangle-level measures of agricultural concentration, total relief, and contour

topology error as independent variables in a multiple linear regression model to predict

mean flow-direction error.

Copyright by

GLENN ALEXANDER O’NEIL

2010

DEDICATION

I dedicate this thesis to my wife Jamie and son Rowan. Though this work cannot

measure my appreciation for their love and support, I would be remiss not to

acknowledge my greatest sources for inspiration.

iv

ACKNOWLEDGMENTS

I would not have been able to complete this thesis without the steadfast support and

advice offered by my advisor, Ashton Shortridge. His insightful feedback helped me

resolve the theoretical and technical hurdles this research presented.

I would also not have been able to complete this thesis without the support of Jon

Bartholic of the Institute of Water Research. His flexibility as a director provided me

with the time and resources needed to generate and analyze the detailed and extensive

datasets of this research.

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

KEY TO SYMBOLS AND ABBREVIATIONS .. xiv

CHAPTER 1

INTRODUCTION ... l

1.1 Statement of Problem ... 1

1.2 Digital Elevation Models and Flow-direction ..3

1.3 Flow-direction Error ...4

CHAPTER 2

BACKGROUND AND HYPOTHESES ...6

2.1 Background ..6

2.2 Hypotheses ... 10

CHAPTER 3

METHODS — THE SAMPLE AND INDEPENDENT VARIABLES 13

3.1 The Sample — Stratified by Agricultural Concentration and Relief......................... 14

3.2 Contour Topology Error ... 19

CHAPTER 4

METHODS - CALCULATING THE DEPENDENT VARIABLE: FLOW-DIRECTION

ERROR ..26

4.1 Software and Hardware ..26

4.2 Data Acquisition ...28

4.3 IO-meter DEM Processing ...29

4.4 LiDAR DEM Processing ..31

4.4.1 LiDAR Stream Identification..34

4.4.2 Carving Through Artificial Barriers ...45

4.4.3 Implementing Stream Identification and Carving in LiDAR Processing48

4.4.4 Stream-burning and Sink-filling LiDAR DEMs...50

4.5 Flow-direction Error ...52

CHAPTER 5

RESULTS AND ANALYSIS ..65

vi

5.1 Independent t-tests ..66

5.2 Correlations ..69

5.3 Spatial Regression ..71

CHAPTER 6

CONCLUSION ..80

6.1 Summary ..80

6.2 Significance ..81

6.3 Future Research ..84

APPENDICES

Appendix A - Model Diagrams ... 88

A.l Diagram Legend ..88

A2 Pre-processing ...89

A3 Post-processing ...90

Appendix B — Python Code ..91

B.1 raster_analysis.py ..91

B.2 analysispreppy ..95

B.3 stream_dlg_conversion.py ... 112

B4 strearn_id_nhood.py .. 114

B5 stream_id_transect.py .. 129

3.6 carve.py ... 136

B7 flow_error.py ... 148

3.8 contour_dlg_conversion.py ... 162

B9 contour_topology_analysis.py... 164

8.10 analysis_results.py... 170

REFERENCES .. 172

vii

TABLE 3-1:

TABLE 4-1:

TABLE 5-1:

TABLE 5-2:

TABLE 5-3:

TABLE 5-4:

LIST OF TABLES

Breakdown of quadrangles sampled by relief and % agriculture 17

Quadrangles where LiDAR stream identification methods were tested......39

Flow-direction error results for various sampling criteria combinations67

Independent t-tests between sampling criteria...69

Correlations between flow-direction error and other variables70

Alternative linear regression models, and measures of performance 79

viii

LIST OF FIGURES

Images in this thesis are presented in color

FIGURE 3-1: Ohio 7.5 minutes quadrangles by agricultural concentration. 16

FIGURE 3-2: Ohio 7.5 minute quadrangles by total relief.. 17

FIGURE 3-3: Sample 7.5 minute quadrangles. ... 18

FIGURE 3-4: Sample contours from a 7.5 Minute quadrangle. Note the topological

errors - dangles at l and intersections at 2-5 ... 20

FIGURE 3-5: Corrected contours. Though it is difficult to tell, the intersecting contours

have been manually separated through digitizing... 20

FIGURE 3-6: DEM derived from topologically incorrect contours. 21

FIGURE 3—7: DEM derived from corrected contours. .. 21

FIGURE 3-8: Surface flow concentrations (flow-accumulation) derived from

topologically incorrect contours. .. 22

FIGURE 3-9: Surface flow concentrations derived fiom corrected contours. 22

FIGURE 3-10: Flow-direction error calculated for the topologically incorrect DEM, with

the corrected DEM as the reference. Error was greatest around the intersection points. 23

FIGURE 3-11: Contours 50, 51, and 52 all have Node 100 as their ToNode, indicating

an intersection at that node. .. 24

FIGURE 4-1: Burning streams into a DEM. ... 30

FIGURE 4-2: Deriving flow-direction with D8 (graphic source: ESRI ArcGIS 9.3 Help

files) .. 30

FIGURE 4-3: LiDAR tiles selected within a 7.5 minute quadrangle for pre-processing. 32

ix

FIGURE 4-4: Left - aerial photograph. Right — LiDAR DEM and DLG stream feature

in blue. DLG stream vector fails to align with LiDAR's drainage ditch due to differences

in positional accuracy. .. 33

FIGURE 4-5: Cell positions evaluated by the Neighborhood Method. C = center, M =

max, 0 = opposite max, R1 = perpendicular 1, R2 = perpendicular 2. 37

FIGURE 4-6: Transect analysis cells (in black); S = starter_cell, O = south_cell, M =

min_cell, X = max_cell_south_of_min. ... 39

FIGURE 4-7: Quadrangles where the LiDAR stream identification methods were tested.

Numbers refer to Site # in Table 4-1. ... 40

FIGURE 4-8: Site 1. Left — aerial; Left Center — LiDAR DEM; Right Center — streams

identified by the Neighborhood Method; Right — by the Transect Method...................... 40

FIGURE 4-9: Site 2, same descriptions as FIGURE 4-8. .. 40

FIGURE 4-10: Site 3, same descriptions as FIGURE 4-8. .. 41

FIGURE 4-11: Site 4, same descriptions as FIGURE4-8................... 41

FIGURE 4-12: Site 5, same descriptions as FIGURE 4-8. .. 41

FIGURE 4-13: Site 6, same descriptions as FIGURE 4-8. .. 41

FIGURE 4-14: Site 7, same descriptions as FIGURE 4-8. .. 42

FIGURE 4-15: Site 8, same descriptions as FIGURE 4-8. .. 42

FIGURE 4-16: Site 9, same descriptions as FIGURE 4-8. .. 42

FIGURE 4-17: Site 10, same descriptions as FIGURE 4-8. .. 42

FIGURE 4-18: Left - rough edges of Neighborhood Method stream cells. Right —

smoother edges of Transect Method. .. 45

FIGURE 4-19: Lefi - the barrier in the DEM. Center — sinks in stream identified (in

black), lower elevation found (in yellow), path charted (in blue). Right — carved DEM

with elevation values incrementally lowered along path. ... 46

x

FIGURE 4-20: Carving freed up flow within stream features. Left - drainage ditch in

pre-carved DEM. Right - carved drainage ditch. ... 47

FIGURE 4-21: Carving resolved some barriers (created north-south connection) but also

introduced potential errors (NW—SE connection, N-S connection at right). 47

FIGURE 4-22: The Neighborhood Method with a minimum elevation difference of 3

feet performed well at identifying stream cells in the LiDAR DEM for areas of high relief

and little to no agriculture. .. 49

FIGURE 4-23: A combination of the Neighborhood and Transect methods performed

best in flatter areas dominated by agriculture. .. 49

FIGURE 4-24: Left - the fill process created flat features in the LiDAR DEM. Right -

Flow accumulation derived from the filled LiDAR DEM's flow-direction indicate that the

flat features did not dramatically alter the flow-direction. ... 51

FIGURE 4-25: 3x3 neighborhood of lO-meter flow-direction cells. Cell to be analyzed

for error at center. ... 53

FIGURE 4-26: LiDAR flow-direction cells intersecting the selected lO-meter cell. 54

FIGURE 4-27: 0% of center LiDAR cells drain through the northwest edges of the

neighborhood. ... 56

FIGURE 4-28: 0% of center LiDAR cells drain through the north edges of the

neighborhood. ... 56

FIGURE 4-29: 89% of center LiDAR cells drain through the northeast edges of the

neighborhood. ... 57

FIGURE 4-30: 0% of center LiDAR cells drain through the east edges of the

neighborhood. ... 57

FIGURE 4-31: 0% of center LiDAR cells drain through the southeast edges of the

neighborhood. ... 57

FIGURE 4-32: 0% of center LiDAR cells drain through the south edges of the

neighborhood. ... 58

xi

FIGURE 4-33: 0% of center LiDAR cells drain through the southwest edges of the

neighborhood. ... 58

FIGURE 4-34: 11% percent of center LiDAR cells drain through the west edges of the

neighborhood. ... 58

FIGURE 4-35: Potential flow error scores for assessment of lO-meter cell that flows

southwest... 60

FIGURE 4-36: Flow-direction error map for a single 7.5 minute quadrangle. Blue grid

lines are the result of avoiding edge issues in each LiDAR tile. 62

FIGURE 4-37: For the selected lO-meter cell, estimated flow-direction is to the south. 63

FIGURE 4-38: For the selected lO-meter cell, estimated LiDAR flow-direction trends

mainly east and northeast. ... 63

FIGURE 4-39: The flow-direction error is considered high, with a value of 2.98. 63

FIGURE 4-40: Flow-direction error map with flat cells discarded. 64

FIGURE 5-1: Spatial distribution of flow-direction error amongst the sampled

quadrangles. .. 66

FIGURE 5-2: Model 1 - initial linear regression model of flow-direction error. 71

FIGURE 5-3: Histograms of regression variables from Model 1. 72

FIGURE 5-4: Model 1 diagnostics. ... 73

FIGURE 5-5: Mapped residuals of Model 1 .. 74

FIGURE 5-6: Residuals of Model 1, greater residual error of higher fitted values

indicates potential heteroscedasticity. ... 74

FIGURE 5-7: Residuals of Model 1, corrected for spatial autocorrelation, no apparent

heteroscedasticity. ... 76

FIGURE 5-8: Mapped residuals, corrected for spatial autocorrelation. 76

xii

FIGURE 5-9: Model 1 diagnostics, corrected for residual spatial autocorrelation. 77

FIGURE A-l: Processing Diagrams - Diagram Legend.. 88

FIGURE A-2: Processing Diagrams - Pre-processing Steps. .. 89

FIGURE A-3: Processing Diagrams - Post-processing Steps.. 9O

xiii

KEY TO SYMBOLS AND ABBREVIATIONS

ASCII — American Standard Code for Information Interchange

ATtILA — Analytical Tools Interface for Landscape Assessments

D8 — single direction flow-direction algorithm

DEM — digital elevation model

DLG - digital line graph

EPA — Environmental Protection Agency

ESRI — Environmental Systems Research Institute

FDE -— Flow-direction error

GDAL — Geospatial Data Abstraction Library

GIS — geographical information systems/science

HRHA — high relief high agricultural concentration

HRLA — high relief low agricultural concentration

LiDAR -— Light Detection and Ranging

LRHA — low relief high agricultural concentration

LRLA — low relief low agricultural concentration

NED — National Elevation Dataset

NHD — National Hydrography Dataset

NLCD — National Land Cover Dataset

OGRIP — Ohio Geographically Referenced lnforrnation Program

OSIP — Ohio State-wide Imagery Program

RMSE — root mean square error

xiv

SAR — simultaneous auto-regression

USGS — United States Geological Survey

UTM — Universal Transverse Mercator

XV

Chapter 1 Introduction

1.1 Statement of Problem

In the field of hydrology, digital elevation models (DEMs) are frequently used to

predict surface water flow direction and derive digital stream networks. The accuracy of

these predictions and networks relies on the fidelity of the source DEMs. In flatter areas

inaccuracies in a DEM can be more pronounced, particularly if the interpolation of

contours with whole number values (e. g. 315 versus 315.7 feet) was employed to build

the DEM, which is the standard of most DEMs produced by the United States Geological

Survey (USGS) (Carter 1988, Carter 1992, Wilson and Gallant 2000). Agricultural areas

are also prone to DEM inaccuracy. The errors in both flat and agricultural areas are

typically due to issues with the source contours that yield a DEM. In flat areas, sparse

contours provide too little information to the interpolating algorithm that produces the

DEM. In agricultural areas, the source contours can contain topological errors, such as

intersections, around drainage ditches that confuse the interpolation algorithm. The

results are digital surfaces that do not truly reflect the Earth’s surface and therefore

inaccurately predict surface water flow. These errors can pose a significant problem for

researchers and conservationists who rely on models of surface water flow-direCtion,

such as soil conservationists concerned with water-borne soil erosion and nutrient runoff

from agricultural lands into streams and lakes. If they cannot reference accurate

predictions of how water flows over the surface, then efforts to identify and remediate

sedimentation-prone areas will be misguided and waste valuable time and resources.

There is a rich literature documenting absolute elevation error in DEMs, but

research assessing error in DEM-derived flow-direction is lacking. In this thesis I will

help fill this gap by exploring the following questions:

1. How can finer-resolution DEMs be employed to evaluate flow-direction error

in coarser DEMs?

2. What are the primary challenges in such an evaluation?

3. What landscape characteristics best predict flow-direction error?

To address these questions, I developed a method for calculating flow-direction

error, and implemented it across a large sample ofUSGS 7.5-minute quadrangles in

Ohio. I then conducted a multivariate analysis to predict flow-direction error in terms of

landscape characteristics, accounting for residual spatial autocorrelation.

This research contributes to the understanding of uncertainty in digital elevation

products, particularly how error propagates into flow-direction. The methods I developed

also aid in the analysis of high-resolution DEMs, specifically in the extraction of

hydrologic features from such data. At a more practical level, these results inform

hydrological analyses in engineering, agriculture, and any other disciplines that rely on

simulations of surface water flow. For example, with a better understanding of erosion

model uncertainty, soil conservationists can more effectively target efforts to reduce

sediment loading to streams and lakes.

The remainder of this introduction will preview the datasets and methods

employed in this research and layout the organization of the thesis.

1.2 Digital Elevation Models and Flow-direction

A DEM is a raster (grid) dataset of elevation values sampled at regularly spaced

intervals (resolution). They can be produced in a number of ways, but most published

products have been generated through interpolation from topographic sheet contours,

remote sensing from airplanes or satellites, or stereoscopic interpretation of aerial

photographs. For this thesis, I evaluated lO-meter resolution USGS DEMs, produced

through contour interpolation, with 25-foot resolution LiDAR (Light Detection and

Ranging) DEMs, produced through remote sensing. The USGS DEMs were interpolated

from contours ofUSGS topographic maps at a scale of 1:24,000. The LiDAR DEMs

were interpolated from points captured by an airplane-mounted sensor at an altitude of

7,300 feet above ground level.

The USGS is the leading source for DEMs in the US. The freely accessible

National Elevation Dataset (NED) includes 30-meter resolution DEMs for the contiguous

US, lO-meter DEMs for the majority of the nation, and finer resolutions in select

locations. Not all of the DEMs in the NED were produced by the USGS. The NED is

described as “the best available raster elevation data for the coterrninous United States,”

(USGS 2006). IfDEMs meeting National Map Accuracy Standards and of resolutions

finer than those produced by the USGS exist, they may be included in the NED. This

situation applied to the study site of this thesis. Ohio’s 2.5-foot resolution LiDAR DEMs

are accessible through the NED, even though they were generated for the state by a

private contractor.

The organization ofDEMs as neighborhoods of elevation values allows for the

calculation of numerous derivative datasets, including slope, aspect, line of sight, and

surface water flow-direction. This last derivative is the horizontal direction of surface

water flow out of a particular area. In the case of flow-direction derived from a DEM, it

is calculated for each grid cell in the original DEM, and can be determined through

multiple methods. Some approaches represent flow-direction as an angle and disperse it

in multiple directions (Quinn et a1. 1991, Freeman 1991, Tarboton 1997). Other

approaches are more restrictive and represent it as a single value assigned to one of eight

compass directions (O’Callaghan and. Mark 1984, Greenlee 1987, Jenson and Domingue

1988). Nearly all the methods are driven by calculating slope angles between a particular

cell and its surrounding neighbors. For this research, I employed a single-direction

method limited by the eight compass directions. I will discuss this selection in greater

detail in Chapter 5.

1.3 Flow-direction Error

I developed a novel method to calculate the difference in flow-direction between

lO-meter USGS DBMS and 25-foot LiDAR DEMs. This method compared a flow-

direction value of a USGS DEM cell to an aggregated value from LiDAR DEM cells

contained within the coarser USGS cell. I coded the comparison into a weighted error

score based on the extent of agreement (or disagreement) between the two values. I then

determined an error score for the majority of USGS DEM cells in eighty 7.5-minute

quadrangles in Ohio (roughly 1 million cells per quadrangle).

I then calculated the mean flow-direction error for each quadrangle, and used this

statistic as the dependent variable in a multiple linear regression model. I sought to

explain how flow-direction error varied in relation to changes in total relief, agricultural

concentration, and contour topology error.

The next chapter will discuss previous efforts to evaluate DBMS and their

derivatives, and establish this thesis as a new and unique contribution to that effort.

Chapter 3 will describe how I gathered and processed the independent variables of the

proposed multiple linear regression model. Chapter 4 will describe the pre-processing

steps ofthe USGS lO-meter and LiDAR DEMs, including a new approach for stream

extraction from high-resolution digital elevation data, and the calculation of flow-

direction error. Chapter 5 will describe statistical measures ofhow flow-direction error

varied across different landscapes, provide an evaluation of the proposed and alternative

regression models, and present an analysis of the results. Chapter 6 will summarize the

findings, discuss their significance, and describe additional research needed to extend this

effort.

Chapter 2 Background and Hypotheses

2.1 Background

Due to the numerous applications that DEMs support, their ubiquity, and the fact

that they are freely accessible, DEM error has been a well studied topic within

geographic information science. Wilson and Gallant (2000) and Fisher and Tate (2006)

provide thorough overviews of existing research on this topic. The USGS classifies error

in its DEMs as either blunders (major elevation discrepancies), systematic (errors that

follow a fixed pattern and are predictable), and random (beyond the control of the

observer). It acknowledges that the errors cannot be completely resolved (USGS 1998).

In addition to these errors, numerous studies have shown error in DBMS and their

derivatives to be spatially autocorrelated (Goodchild et a1. 1992, Fisher 1993, Heuvelink

1998, Oksanen and Sarjakoski 2005). To inform users of the uncertainty in the data, the

USGS publishes each DEM with estimates of its root—mean-square error (RMSE), a

measure of vertical accuracy. RMSE is calculated by comparing a minimum of 28

ground-truth elevations to those of the DEM. USGS standards for most DEMs hold

RMSE to no more than one-half of a contour interval (USGS 1998). Most of the contour

datasets used to produce USGS DEMs have intervals of 5 or 10 feet, implying maximum

RMSE values of 2.5 or five feet. Fisher (1998) argued that in addition to RMSE, DEMs

should be published with measures of spatial autocorrelation to allow users to

appropriately visualize and simulate the error and its propagation into derivative

products.

Knowing the RMSE for a DEM is useful to researchers concerned with absolute

elevation accuracy, such as Carson et a1. (1997) and Shortridge (2006), to name a few.

However, absolute elevation accuracy is not necessarily informative to users studying

DEM derivative products such as slope, curvature, catchment basins, aspect, and flow-

direction. Even DEMs with low RMSEs can yield significantly variable derivatives

(Garbrecht and Starks 1995, Wise 1998, Holmes et a1. 2000, Endreny and Wood 2001 ,

Barber and Shortridge 2005). Elevations for DEMs of particularly flat regions of Ohio

can have value ranges less than 50 feet over areas as large as 64 square miles. These

estimated elevations may be well within the RMSE standards; but derivative products

dependent upon an elevation’s relationship to neighboring values, such as slope, can be

greatly affected by even subtle changes in elevation.

Martinoni and Bernhard (1998) argued that the accuracy ofDEM derivatives

warrant greater attention. Ziadat (2007) studied the impact of cell-size and contour

interval on DEM-derived slope, in addition to absolute elevation values. Venteris and

Slater (2005) evaluated multiple DEM derivatives in terms of their ability to predict soil

carbon. Wu et al. (2005, 2007) evaluated the effects ofDEM resolution on the estimation

of soil erosion. Riggs and Dean (2007) explored errors in DEM-derived view-sheds.

Desmet (1997) evaluated differences in slope and aspect across different interpolation

methods, through mean and standard deviation comparisons, on small, arable fields in

Belgium. Chang and Tsai (1991) studied slope and aspect differences between different

DEM resolutions in a more spatially explicit manner, on a 1 square kilometer region of

Taiwan’s eastern coast.

Other studies have looked at DEM predictions of hydrology. Endreny and Wood

(2001) studied differences between flow-direction methods in terms ofpredicted flow-

paths on three 64 hectare study sites in western Oklahoma. They compared simulated

flow-path networks to control networks and recorded the percent of overlap. Walker and

Willgoose (1999) demonstrated the inaccuracies in derivatives of published DEMs

through quantitative comparisons of up-stream flow-accumulation networks, slope-area

relationship, and normalized width function within a 1.4 square kilometer surveyed

reference dataset in southwest Australia. Wise (2000) similarly evaluated DEMs through

catchment basins and up-stream flow accumulation, though he focused on a small

catchment in southwest England. Kienzle (2004) explored actual directional changes in

flow measured in degrees on four study sites (roughly 6 square miles each) in Canada.

Wise (2007), Wilson et a1. (2007), Barber and Shortridge (2005), and Thompson et al.

(2001) studied DEM-derived surface flow through comparisons to derived catchment

boundaries. Clarke and Lee (2007) evaluated DEM estimates of surface flow through a

comparison to known stream features in the National Hydrography Dataset (NHD).

While these analyses have demonstrated the propagation ofDEM error into

hydrological derivatives, gaps remain in fully documenting this issue. The previous

research has either focused on relatively small and, in some cases, homogenous study

sites, or employed coarse metrics. To better describe error in these derivatives and

identify landscape characteristics that potentially cause it, an analysis on a large and

diverse study area is needed. Such an effort would generate findings that could be better

generalized to other locations than the findings of previous research. Furthermore, while

evaluating simulated catchment boundaries is an accepted method ofmeasuring error in

DEM, it does not capture field-level variation in DEM-derived surface water flow-

direction. To understand how errors in DEM hydrological derivatives differ at the finest

scales, evaluations must be made on a cell-by-cell basis. Though Clark and Lee (2007)

approach this specificity in their comparison of DEM-derived flow to NHD features, their

approach would not allow for a direct comparison where stream features do not exist,

such as the middle of a farm field.

For this thesis, I sought to quantify and predict error in flow-direction rasters

derived from USGS lO-meter DEMs (RMSE 12.45 feet —— Ohio Office of Information

Technology 2005) by comparing them to flow-direction rasters derived from finer, more

vertically and horizontally accurate LiDAR rasters (RMSE 0.5 feet -Woolpert Inc. 2008).

The approach of evaluating less precise spatial data with more precise data has been

utilized before (Chang and Tsai, 1991; Fisher, 1998; Kyriakidis et al., 1999; Walker and

Willgoose, 1999; Holmes et al., 2000; Kienzle, 2004) and is endorsed by the USGS

(Digital Cartographic Data Standards Task Force, 1988). Numerous studies have

explored performance differences between DEMs of different resolutions and found finer

resolutions superior, depending on the application (Chang and Tsai, 1991; Wolock and

McCabe, 2000; Wu et al., 2005; Mouton, 2005; Wu et al., 2007; Deng et al., 2007; Aziz

and Steward, 2007; Riggs and Dean, 2007). My study site comprised 80 USGS 7.5-

minute quadrangles (over 5,000 square miles) of varying topography and land cover in

Ohio. By focusing at such a fine scale over such a large and diverse study area, I sought

to evaluate DEM error in a novel and insightful manner.

2.2 Hypotheses

I expected areas with low relief, high concentrations of agriculture, and

represented by DEMs produced from contours that contained large numbers of

topological errors (intersections) to produce higher values of flow-direction error. More

formally:

Equation: FDE = a + BpAPA + BTRTR + BCICI

Where:

FDE = flow-direction error

PA = % agriculture

TR = total relief

CI = contour intersections

Hypotheses:

H0: BPA = 0 Ha: BPA > 0

H0: BTR = 0 Ha: BTR < 0

H0: BCI = 0 Ha: BCI > 0
Figure 2-1: Proposed multiple linear regression model of flow-direction error.

As established earlier, derivatives from relatively flat DEMs are highly sensitive

to propagated error. Digital contour datasets are a common source for creating DEMs

(Florinsky, 1998), including all of the Ohio lO-meter DEMs employed in this research

(Ohio Office of Information Technology 2005). Flat areas tend to have fewer and sparser

contours as input to the interpolation algorithms that produce DEMs. The wider the

geographic space between contours, the greater the uncertainty in the characterization of

10

surface water flow over that space. The interpolation process is known to introduce

errors into the resulting DEMs, sometimes significantly (Faintich 1996, Carson and

Reutebuch, 1997, Carrara et a1. 1997, Meyer 2004).

The presence of agricultural drainage ditches can add to this error. These features

tend to concentrate a flat area’s relatively few contours around them and create

topological errors (intersections, specifically) in the contours, confusing the DEM

interpolation algorithm. These errors are propagated into the DBMS and their derivative

products. Theoretically, contours should never cross; but when digital contours are

derived from scanning paper or mylar maps, such as USGS 7.5-minute digital line graph

(DLG) hypsography, artifacts in the source map or scanning resolution can cause dense

contours to merge together and create a topological violation (Greenlee, 1987).

Additionally, cartographers may force contours to merge to indicate steep features such

as cliffs, identified as carrying contours in the DLG attributes. The USGS standards for

DLGs require that intersecting contours be identified through node topology (described in

greater detail in Chapter 3) (USGS, 1999). When these topologically errant contours are

interpolated to yield a DEM, the elevation values around an area of intersection can be

inaccurately estimated. For example, if a 700 and 710 foot contour intersect, the DEM

interpolation algorithm would have difficulty accurately resolving the true surface at that

location. The 700 foot contour would, in essence, be exposed to the area that

cartographically represents the 710 to 720 foot elevation range, and would subsequently

draw down surrounding values in the resulting DEM. In most cases, the resulting error in

terms of absolute elevation values in this area would be small, as the error would be

11

mitigated by the neighboring cells that factored into the interpolation. Nevertheless, some

DEM derivative products, such as surface water flow-direction, are more sensitive to this

error, as discussed earlier.

Given the effect that low relief, agricultural ditches, and contour intersections can

have on error in interpolated DEMs, I expected that their impacts would be more

substantial on the particularly error-sensitive flow-direction derivative. This expectation

drove the design my hypothesis.

The next chapter provides a detailed description ofhow the 80 quadrangles were

sampled and processed to extract the dependent variables for the proposed regression

model in Figure 2-1.

12

Chapter 3 Methods -— The Sample and Independent Variables

The general steps I took to analyze flow-direction error in this research were as

follows:

1. Select a sample of USGS 7.5-minute quadrangles, stratified by total relief and

agricultural concentration.

Gather USGS 10-meter DEMs, 2.5-foot LiDAR DEMs, DLG hypsography,

and DLG hydrography for each quadrangle.

Process the lO-meter and LiDAR DEMs by enforcing hydrography presence,

filling spurious sinks, and calculating flow-direction rasters for each

quadrangle.

Calculate the extent of contour intersection for DLG hypsography in each

quadrangle.

Quantify mean flow-direction error for each quadrangle through cell-by-cell

comparison of lO-meter and LiDAR flow-direction rasters.

Generate a multiple linear regression model predicting flow-direction error in

terms of total relief, agricultural concentration, and contour intersection.

I calculated flow-direction error as a single mean value for each quadrangle in a

sample of 80 USGS 7.5-minute (1 :24,000) quadrangles. I will detail this calculation in

the next chapter, but for now I establish it as a single numeric value that will serve as the

dependent variable in a multiple linear regression model. This chapter focuses on the

sampling and pre-processing of the proposed regression model’s independent variables:

percentage agriculture, relief, and contour intersections (steps 1, 2, and 4, of the process

described above).

13

3.1 The Sample - Stratified by Agricultural Concentration and Relief

This research focused exclusively on the state of Ohio. The state was an ideal

study location because it contained the variability in land cover and topography through

which I attempted to explain flow-direction error. Additionally, the Ohio Geographically

Referenced Information Program (OGRIP - http://ogrip.oit.ohio.gov/Home.aspx)

provided nearly all of the data needed to conduct the analysis for free. The OGRIP

website offered USGS lO-meter DEMs, LiDAR point elevations, interpolated LiDAR

DEMs, USGS 7.5-minute DLG hypsography (contours) and DLG hydrography (streams).

The USGS 7.5-minute quadrangle served as the study’s sample unit, as this is the

spatial scale and extent at which USGS DEMs are typically generated, including all of

the Ohio IO-meter DEMs provided through the NED. Ohio is covered by 793

quadrangles. Due to the intensive pre-processing needed to calculate flow-direction error

(detailed in Chapter 4), I selected a sub-sample of 80 quadrangles. To avoid

oversampling the proposed regression model’s independent variables, I stratified the

samples by their respective total relief and percentages of row-crop agriculture. I

calculated these attributes for each quadrangle with the Analytical Tools Interface for

Landscape Assessment (ATtILA) tool from EPA (US EPA, 2007), an extension for

ESRI’s ArcView 3.3.

I provided ATtILA with the quadrangle boundaries for Ohio, a lO-meter DEM for

the entire state (described in greater detail in Chapter 4), and a state-wide land cover

14

raster. I downloaded the 2001 National Land Cover Database (NLCD) from the website

of the Multi-Resolution Land Characteristics Consortium

Orttp://www.mrlc.gov/nlcd.php). The NLCD was derived from 30-meter resolution

Landsat data and reported an overall accuracy of 84% (Homer et al., 2007). I obtained a

copy of the dataset that covered the entire Midwest region and clipped it by Ohio’s state

boundary. With these state-wide inputs of elevation and land cover, ATtILA was able to

output the elevation range and the percentage of various land cover classes in each

quadrangle, including row-crop agriculture (2001 NLCD class 82) (Figures 3-1 and 3-2).

I then utilized these quadrangle attributes as independent variables in the proposed

regression model (Figure 2-1).

Next, in order to avoid potential issues in deriving accurate hydrology from

sampled DEMs, I removed quadrangles that contained large amounts of open water (e.g.,

quadrangles on the Lake Erie border), quadrangles where more than 10% of the area was

classified as urban (because it is difficult to predict surface water flow in downtown

Cleveland), quadrangles that straddled the state border (because the LiDAR tiles would

not cover the entire areas of these quadrangles), and quadrangles that straddled the

boundary of the Ohio State Plane Northern and Southern coordinate systems. OGRIP

distributes the LiDAR DEMs in appropriate State Plane projections. It proved to be

programmatically difficult to analyze a quadrangle that contained LiDAR data in two

different projections. Since LiDAR rasters served as the more accurate reference dataset,

it was important to not introduce additional error into them; therefore, I avoided re-

projecting between State Plane zones. This filtering process reduced the quadrangle

15

population from 793 to 538. I then divided the 538 quadrangles into the following four

bins: high percentage agriculture and high relief (HAHR), high percentage agriculture

and low relief (HALR), low percentage agriculture and high relief (LAHR), low

percentage agriculture and low relief (LALR). The breakpoints for these bins

corresponded to the median values for each class, classifying half of the quadrangles as

high agricultural concentration and half as low; they were similarly classified by relief. I

then randomly selected 20 quadrangles from each of these bins in order to yield the final

sample of 80 quadrangles (Table 3-1 and Figure 3-3).

Percentage Row-crop

Agriculture (quartiles)

CT 0 - 7.5

Er] 7.5 - 30.0

- 30.0 - 71.5

- 71.5 - 93.0

Figure 3-1: Ohio 7.5-minute quadrangles by agricultural concentration.

Elevation Range

(feet - quartiles)

[:f} 9- 169

[j 170 - 338

- 339 - 463

- 464 - 886

Figure 3—2: Ohio 7.5-minute quadrangles by total relief.

. Relief

Quadrangle Sampling Totals

High (> 327feet) Low (< 327feel)

High (> 67.8%) 20 out of 37 20 out of 232 40 out of 269

% Agriculture

Law (< 67.8%) 20 out of 232 20 out of 37 40 out of 269

Totals 40 out of 269 40 out of 269 80 out of 538
 Table 3-12 Breakdown of quadrangles sampled by relief and % agriculture.

17

Sample

Quadrangle

Cl

Figure 3-3: Sample 7.5-minute quadrangles.

As shown in Figure 3-3, the sampled quadrangles tended to cluster along Ohio’s

SW-NE axis. This trend was a byproduct of the sample stratification. Northwest Ohio is

dominated by agriculture and low relief, so the 20 quadrangles that constituted this sub-

sarnple had a large geographic area from which they could have been selected. The

situation was similar for the high relief and low percentage agriculture sub-sample of

southeast Ohio. These two situations naturally clustered the remaining half of the sample

along the southwest-northeast axis.

3.2 Contour Topology Error

As established in Chapter 2, contour intersections are suspected of contributing to

flow-direction error. Figures 3-4 through 3-10 illustrate the impact that these errors of

topology can have on flow-direction. Figure 3-4 identifies topological errors in a small

section of a USGS hypsography DLG (Alma, MI). Those errors were corrected in Figure

3-5. Figure 3-6 shows a DEM interpolated from the errant contours of Figure 3-4; note

the large depression created at location 4 of Figure 3-4 and its impact on flow

concentration in Figure 3-8. Figure 3-7 shows a DEM interpolated from the corrected

contours; note the difference in flow concentration in Figure 3-9. Figure 3—10 maps the

difference in flow-directions between the two DEMs (see section 4.5 for details). The

blue areas indicate agreement, while the red areas indicate dramatic disagreement (180

degrees) and are found in the areas where contour intersections were identified in Figure

3-4.

19

Figure 3-4: Sample contours from a 7.5-minute quadrangle. Note the topological errors - dangles at

l and intersections at 2-5.

W/

U

 f\

Figure 3-5: Corrected contours. Though it is difficult to tell, the intersecting contours have been

manually separated through digitizing.

20

Figure 3-6: DEM derived from topologically incorrect contours.

Figure 3-7: DEM derived from corrected contours.

21

Figure 3-8: Surface flow concentrations (flow-accumulation) derived from topologically incorrect

contours.

Figure 3-9: Surface flow concentrations derived from corrected contours.

22

Flow-direction Ermr

a Severe (4)

a High (3)

:1 Moderate (2)

a how (I)

- None (0)

Figure 3-10: Flow-direction error calculated for the topologically incorrect DEM, with the corrected

DEM as the reference. Error was greatest around the intersection points. (See Figure 4-35 for

legend reference)

I developed a Python script to determine the number of contour intersections in

DLG hypsography (the source for the lO-meter DEMs) in each sample quadrangle. The

script converted hypsography DLGs to ArcInfo coverages. This conversion allowed for

the building of line and node topology for each new coverage. The topology included

FromNode and ToNode attributes for each contour feature, which constituted a logic

within the contours by which intersections could be identified. If multiple features shared

the same FromNode or ToNode, this indicated the presence of an intersection (Figure 3-

11). The Python script employed this logic, iterating through the contours within each

sample quadrangle, identifying the intersections, and recording an intersection count for

each quadrangle. A quadrangle with high relief, and therefore many contours, could

23

potentially have more intersections than a flat quadrangle with comparatively fewer

contours. However, the impact of the intersections on flow-directions would likely be

more dramatic in the flatter quadrangle since there are fewer “correct” contours to

mitigate the error (location 4 in Figure 3-4). In the high relief quadrangle, the

intersections would likely occur in an area dense with “correct” contours that would

confine any of the errors introduced into flow-direction to a small area. To properly

associate contour intersections with potential flow-direction error, the script calculated

the number of intersections per contour in each quadrangle.

\K/,// \ \

\.—-’

f-J Contom' 1D: 53 ////

l FElevation: 750

y/”\ romNode = 100 i/

’ ‘ FToNode= 101/i//

\ /V/
\ \ /

lContour ID= 50| \\\f

\iI Elevation= 750 /

f

I ,
‘iFromNodc= 99 // \ ode ID—__ 101

ToNode— 100

Node ID—— 100

\\.

L_
_

C 51 l ContourlD—52

l

ontour ID 5

Elevation: 755 } Elevation = 760

FromNode= 98 l FromNode = 97

{/4 ToNodc = 100 1 ToNode = 100

l" ,3- I/

/ /

/

Figure 3-11: Contours 50, 51, and 52 all have Node 100 as their ToNode, indicating an intersection at

that node.

24

In the next chapter, I will describe the steps I took to process the USGS and

LiDAR DBMS, and detail how I calculated flow-direction error.

25

Chapter 4 Methods — Calculating the Dependent Variable:

Flow-direction error

The previous chapter covered how I selected the study’s 80 sample quadrangles,

and calculated the dependent variables of the proposed regression model. In this chapter

I discuss how I calculated flow-direction error. I first describe the software and hardware

used in that calculation. I then describe the data sources of the calculation’s inputs, the

pre-processing of those inputs, and the specific steps for calculating flow-direction error.

The process I implemented for this thesis, outside of its design and programming,

required a substantial quantity of person-hours and computer-hours. It took one month to

complete the analysis for the selected sample (80 7.5-minute quadrangles), with six

machines processing data the entire time. The basic steps were as follows: 1, pre-

process the 10-meter DEMs; 2, pre-process the LiDAR DEMs; 3, calculate the flow-

direction error in the 10-meter DEMs; 4, conduct the statistical analysis.

4.1 Software and Hardware

I performed the data processing almost entirely within ArcGIS 9.3 and the Python

programming language. ArcGIS handled all ofthe data pre-processing including

clipping, re-projecting, and map algebra functions. It also performed much ofthe

hydrologic processing ofDEMs, including the filling of spurious sinks and calculating

surface water flow-directions. Python is a flexible and open-source scripting language

that interfaces with ArcGIS’s geo-processor. This integration allowed me to automate

26

much of the ArcGIS pre-processing functions through Python scripts. I employed Python

outside of ArcGIS to perform some of the pre-processing and all ofthe data post-

processing. Its list data structure is well-suited for analyzing raster datasets, such as

LIDAR DEMs, as ASCII text files. It is also easy to create text files with Python in order

to export analysis results and convert them back to rasters for further analysis in ArcGIS.

Python’s flexibility enables it to easily incorporate 3rd party tools, such as the Geospatial

Data Abstraction Library (GDAL - http://www.gdal.org/), an open source project for

raster analysis. Utilizing the list data structure and GDAL raster analysis tools, I

developed custom Python scripts to identify stream locations, carve through artificial

barriers in LiDAR DBMS, and calculate flow-direction error. I have included all of the

Python scripts used in this research in Appendix B.

The automated data pre-processing and post-processing was conducted on

multiple machines. Four desktop PCs of varying capabilities (from Pentium 4 with 1GB

ofRAM to Dual Core with 3GB) running Windows XP handled the pre—processing. On

average, each of the 80 sample quadrangles took about 12 hours to pre-process. This

entailed re-projecting inputs and clipping the state-wide lO-meter DEM by quadrangle

boundaries. It also entailed burning stream locations into, filling, and calculating flow-

direction for the 10-meter DEMs. The LiDAR pre-processing took up the significant

majority of the processing time. The stream identification and carving of LiDAR DEMs

took probably 95 — 99% of the total pre-processing time for each quadrangle. Three

additional machines handled the post-processing (calculation of flow-direction error).

Since I scripted the post-processing step entirely in Python (outside of ArcGIS) it could

be performed on Linux machines. Two older PCs (a Pentium III and a Celeron, each

27

with 512 MB ofRAM) installed with Linux (Ubuntu Jaunty 9.03) calculated flow-

direction error at an average rate of four hours per quadrangle. A Lenovo Thinkpad

(Dual-core with 3GB of RAM) also aided in the post-processing, at a rate of 1 hour per

quadrangle.

4.2 Data Acquisition

I generated lO-meter DEMs for each sample quadrangle by clipping a mosaicked

state-wide DEM by the respective quadrangle boundaries. The state-wide DEM was

obtained from OGRIP, and is the same data accessible through the NED. The statewide

DEM was created by OGRIP in piecemeal by merging 20-30 1224,000 7.5-minute DLG

hypsography ESRI shapefiles into a larger contour GIS layer, using a finite difference

interpolation technique through ESRI ArcInfo’s TopoToRaster command to convert the

contours to a DEM, and finally mosaicking the new DEMs into a state-wide dataset

(Ohio Office of Information Technology 2005).

I downloaded LiDAR 2.5-foot DEMs from OGRIP’s OSIP (Ohio Statewide

Imagery Program) site in zipped county-wide files (over 400GB). Each zipped file

contained multiple 5,000 x 5,000 foot DEM tiles covering the particular county’s extent.

The naming scheme for the tiles was based on a tile’s lower-left X and Y coordinate in

the Ohio State Plane coordinate system. For example, the DEM for tile 722180445 had its

lower left coordinate at 218000, 445000 (X,Y) of the Ohio State Plane North coordinate

system. I utilized this naming scheme to identify the LiDAR tiles that intersected each

sample quadrangle. These DEMs were derived from LiDAR point data (in LAS format —

28

a standard format for LiDAR storage) gathered mainly during leaf-off conditions in

spring 2006 by Woolpert Inc. for the State of Ohio (Woolpert, 2007).

I downloaded stream data, quadrangle boundaries, and hypsography from OGRIP

in the form of 1:24,000 DLGs for each sample quadrangle. I then wrote custom Python

scripts to convert these DLGs to ESRI shapefiles for use in the analysis.

4.3 10-meter DEM Pre—processing

Pre-processing took place one sample quadrangle at a time. To generate a flow-

direction raster from a lO-meter DEM for a selected quadrangle I followed steps typically

taken in hydrological GIS analyses to ensure proper surface water drainage. Once the

state-wide lO-meter DEM had been clipped by the boundary of a sampled quadrangle, I

set the analysis mask for the subsequent lO-meter processing to the clipped DEM; this

ensured that all IO-meter outputs aligned spatially. Next, I re-projected the DLG stream

vector dataset from a UTM projection to the appropriate Ohio State Plane Projection

(either Ohio North - International Feet, or Ohio South — International Feet, depending on

the sampled quadrangle) and converted it to a binary raster (stream cell = 1, all others =

O). I then burned the resulting stream raster into the DEM by raising all non-stream cell

elevations in the DEM by 10 feet (Figure 4-1). Stream-burning can improve a DEM’s

ability to characterize the flow-direction of surface water by emphasizing the locations of

streams (Hutchinson, 1989; Saunders, 1999). Next, the ArcGIS Fill command removed

potential spurious sinks in the DEM. Sinks can appear in DEM data as artifacts of the

production method and confound algorithms designed to route surface-water flow over

29

the landscape (Hutchison, 1989; Tarboton et al., 1991). Finally, the ArcGIS Flow-

direction command created a flow-direction raster for the lO-meter DEM. The Flow-

direction tool determines the direction of surface-water flow for each cell by identifying

the cell in a 3x3 neighborhood with the steepest descent from the center cell. The result

is a numeric value for the center cell corresponding to the direction of this steepest

neighbor (Figure 4-2). This method is a single-flow algorithm, it cannot partition flow

among multiple directions. It is commonly referred to as D8 (8 possible directions)

(O’Callaghan and Mark, 1984; Greenlee, 1987; Jenson and Domingue, 1988).

Figure 4—1: Burning streams into a DEM.

streams

Elevation

' Higher

Elevations

78 72 69 71 58 49

74 67 56 49 46 50

69 53 44 37 38 48

64 58 55 22 31 24

68 61 47 21 16 19

74 53 34 12 11 12

Figure 4-2: Deriving flow-direction with D8 (graphic source: ESRI ArcGIS 9.3 Help files)

While D8 has been shown to perform adequately in some studies (Skidmore 1989,

Mouton 2007), it has been frequently maligned in literature as being too rigid and prone

to introducing artifacts into the data, including long runs of parallel water flows (Wilson

30

et al. 2007, Raaflaub and Collins 2006, Venteris and Slater 2005, Schmidt and Persson

2003, Burrough et al. 2000, Jones 1998, Mitasova et al. 1995). However, for this analysis

it was the logical choice for several reasons. First, the calculation of upstream flow

accumulations (i.e., the number of cells flowing into a particular cell) in the LiDAR

DEMs was essential for the comparison to the lO-meter DEM, and required a single-

value flow-direction raster as input. Second, and most importantly, the D8 algorithm is

the only available flow-direction tool in the ArcGIS Toolbox. Since ESRI is the world-

leader in GIS market share (Daratech Inc., 2009), D8 is, by default, the most common

flow-direction algorithm implemented in desktop GIS installations today, including the

one used for this research. This popularity of D8, though arguably undeserved, makes

the results of this research more applicable and relevant to the majority of current GIS

USCI'S.

4.4 LiDAR DEM Processing

The pre-processing of LiDAR DEMs was the most time-consurning, in terms of

person-hours and machine-hours, and complex piece of the research. The two primary

challenges were developing a means to burn streams into the LiDAR DBMS and carving

through artificial barriers that impede surface-water flow. Only after these issues were

resolved could an adequate LiDAR flow-direction raster be generated and used to

evaluate a lO-meter flow-direction raster.

The first step in pre-processing LiDAR DEMs for a sampled quadrangle was to

identify which LiDAR tiles intersected the quadrangle. Within Python, I was able to use

31

the bounding Ohio State Plane coordinates of each 7.5-minute quadrangle and the

coordinate-based nomenclature of the LiDAR tiles to determine which ones were

contained within the quadrangle’s extent. To avoid edge issues, I excluded tiles that

overlapped the quadrangle boundaries. This choice sometimes led to a selection of 40

LiDAR tiles, but the majority of the time it selected 48 tiles (Figure 4-3).

l D 7.5 Minute Quad

E Selected LiDAR Tiles

LiDAR Tiles

Figure 4-3: LiDAR tiles selected within a 7.5 minute quadrangle for pre-processing.

Once the LiDAR tiles had been identified, Python scripts began the process of

deriving flow-direction rasters for each tile. Generally, the procedure to accomplish this

was the same as that for the 10-meter DEMs. The code burned streams into a DEM to

enforce appropriate surface-water drainage, filled spurious sinks, and calculated flow-

direction with the D8 algorithm. However, LiDAR’s positional accuracy and means of

acquisition made stream burning difficult. The LiDAR DEM’s map scales ranged from

1:100 to 1:1,000, far superior to the 124,000 map scales for the DLG hydrography.

Though both datasets were developed to adhere to National Map Accuracy Standards, the

difference in dataset map scales meant that the positions of the LiDAR elevation values

32

were more accurate than the positions of the DLG stream features. The LiDAR

positional accuracy varied little about the 7-foot postings of the source LAS points

(Woolpert Inc., 2007), whereas the DLG hydrography’s position could be in error by as

much as 40 feet or more (USGS, 1999), making stream burning by incorporating vector

features impractical. It would be possible, if not probable, that a burned stream feature

could run through a farm field, and not in the drainage ditch represented in the DEM

(Figure 4-4).

streams

Elevation

- .. ~ Higher

'i if

,_" ‘_; Lower

Figure 4-4: Left — aerial photograph. Right — LiDAR DEM and DLG stream feature in blue. DLG

stream vector fails to align with LiDAR's drainage ditch due to differences in positional accuracy.

Figure 4-4 also illustrates how LiDAR DEMs can contain artificial barriers within

streams. Notice how the drainage ditch is bisected in the middle of the figure. In this

instance this feature indicates the presence of a culvert running under a driveway. This

barrier is a byproduct of how LiDAR data is acquired. While the 10-meter DEMs were

interpolated from contours, the LiDAR DEMs were interpolated from numerous tightly

spaced points recorded by an airplane-mounted sensor. Each point represented a location

where the sensor’s beam struck the surface (or an object) and returned, allowing for a

determination of elevation at that point. There is no way for the points and elevations

33

under the driveway bridge to be evaluated, creating a virtual barrier within the stream.

Any effort to define surface-water flow for Figure 4-4 would err and assume that flow

halted at this barrier; or worse, the entire ditch might be identified as a sink and filled by

the ArcGIS filling algorithm. To resolve these two issues, I developed a method for

identifying stream cells using only the LiDAR elevation values. I also implemented a

method for carving through artificial barriers, like the bridge over the ditch.

4. 4.1 LiDAR Stream Identification

The extraction of surface features from DEMs has been studied extensively. In

terms of using LiDAR to identify stream features, five previous efforts stand out.

MacMillan et al. (2003) described the capabilities and problems that can arise when

trying to identify stream networks from high-resolution digital elevation data in Alberta,

Canada. The authors used an approach similar to the one I implemented here; however,

their design was more complex, appeared to have failed to resolve the in-stream barriers

posed by bridges and overpasses, and focused on a single location. Leckie et a1. (2005)

used spectral reflectance, not elevation, of water and substrate material to identify stream

features in Vancouver, British Columbia. Though they were able to achieve high

accuracy rates in certain environments, spectral reflectance LiDAR data is less accessible

than elevation data, making their method harder to implement elsewhere. Mason et a1.

(2006) developed an identification method based on edge-detection, similar to my

approach. However, they focused on delta regions in Italy and Germany, whereas I

implemented stream identification on areas of varying topography and land cover. Vogt

34

et a1. (2003) attempted to identify ideal upslope accumulation thresholds for stream

identification in different landscapes, but concluded that flat areas still required manual

stream digitizing. The automated approach I developed performed best in flat areas.

James et a1. (2007) looked at contour crenulations as a means for locating streams and

areas of concentrated surface flow. Despite their success, their method required that

contour lines be adequately crenulated (i.e., the study-area was not flat), which would

pose problems for flat agricultural areas dominated by ditch drainage, which

characterizes most of northwest Ohio. Contours for this area are sparse and relatively un-

crenulated. The stream identification method that I developed is tailored for such an

environment.

A popular approach for deriving stream networks from DEMs is to identify a

threshold for upland contributing cells, and code any cell that exceeds that threshold as a

stream cell. Due to the presence of artificial barriers (discussed in 4.4.2) in LiDAR

DEMs, this approach would not have worked well for much this study’s area. Surface

water flow would be halted as these barrier locations, limiting appropriate flow-

accumulation tabulations.

I developed two methods for identifying stream features. One method relied on

analyzing cell-neighborhoods around a center cell, and the other focused on transects of

cells. In designing the two methods, I considered what distinguished stream locations in

terms oftopography. As discussed previously, I could not use vector features for

streams; all I had were elevation values in the LiDAR DEMs. The basic assumption with

both methods was that stream cells should be opposed by higher elevations in one

direction (e.g., north to south), and similar elevations in the perpendicular direction (e. g.,

35

east to west). The higher elevations should represent the stream banks, while the similar

elevations should represent the stream itself. I developed each method as a Python script.

The first method, called the Neighborhood Method, performed a neighborhood

analysis on each cell in the DEM. The script iterated through each cell and analyzed a

square 121-cell neighborhood (11 by 11) around the selected cell (call it center). It

identified the maximum elevation value (call the cell with that value max) within that

neighborhood and calculated the difference between that value and the elevation value of

the selected cell (call that difference max_minus_center). If max_minus_center was

greater than a user-specified minimum difference in elevation from a stream bank to the

stream (call this value min__elev_diff, I typically employed values of 1 and 3 feet) the

script then checked the value of the opposing cell (call it opposite_max) to see if the

difference between its value and center '3 also exceeded min_elev_difiT If both of these

conditions were met, then the script deemed it possible that the center cell was a stream

cell opposed by two stream banks. It then looked at opposing cells (call them

perpendicular_1 and perpendicular__2) in the direction perpendicular to the direction of

max and opposite_max to see if their elevations were below min_elev_difif If they were,

then the script deemed center and its entire neighborhood as stream cells. See Figure 4-5

for a conceptual visual. Essentially, if a cell had two relatively tall points opposing it,

these may have been stream banks. If the same cell had relatively flat slopes in the

direction perpendicular to the tall points, then these may have been stream cells. This

approach captured the basic topographic relationship I considered in defining stream

locations. More formally:

36

IF (max — center) > min_elev_difir

AND (opposite_max — center) > min_elev_difi"

AND (perpendicular_1 — center) < min_elev_difi’

AND (perpendicular_2 — center) < min_elev_difl

THEN neighborhood = stream cell

Elevation

' ' Higher

' V . Lower
Figure 4-5: Cell positions evaluated by the Neighborhood Method. C = center, M = max, 0 =

opposite max, R1 = perpendicular 1, R2 = perpendicular 2.

The second method for stream identification was called the Transect Method.

Like the Neighborhood Method, it also performed a neighborhood analysis on each cell;

but it was a much simpler technique, based on transects. The script began by moving

through the DEM in a north-south direction looking for decreases in elevation. At each

cell (call it starter_cell) the script checked starter_cell ’s southern neighbor (call it

south_cell) to see if its elevation value (call it south_elev) was less than that of

starter_cell’s (call it start_elev). If it was, the script then evaluated a lO-cell transect

37

south of starter_cell. The script then identified the minimum elevation value (call it

min_elev) and its cell location (call it min_cell) in the transect. If the difference between

start_elev and min_elev was greater than a user-specified elevation difference (same as

min_elev_diffin the Neighborhood Method, typically 1-3 feet) the script deemed the

transect as potential stream cells. The script then continued to analyze the transect by

looking for the maximum elevation value south of min_cell (call the value

max_elev_south_of_min and the cell max_cell_south_of_min). If the difference between

max_elev_south__of_min and min_elev was also greater than min_elev_difi§ then the cells

from starter_cell to max_cell_south_of_min were classified as stream cells. Figure 4-6

provides a visual conceptualization of the Transect Method. Similar to the Neighborhood

Method, if a cell was opposed by two higher cells, then it was possible that these cells

were part of the stream network. More formally:

IF start__elev > south_e1ev THEN

IF (start_elev — min_elev) > min_elev_diff

AND (max_elev_south_of_min — min_elev) > min_elev_diff

THEN

start_cell TO max_cell_south_of_min = stream cell

38

Elevation

Higher
. Lower

Figure 4-6: Transect analysis cells (in black); S = starter_cell, O = south_cell, M = min_cell, X =

max_cel|_south_of_min.

The Transect Method repeated this approach in three other directions: east to

west (west_cell instead ofsouth_cell), northwest to southeast, and southwest to northeast.

I evaluated the Neighborhood and Transect methods on ten LiDAR tiles of

varying relief, drainage, and land-cover (Table 4-1 and Figure 4-7).

I I ’

Is“. # vsgfag-fargipgte I 15.533533.) I using. I 1...... Coy... I

I l lWarsaw 1 310 Natural lForest .

i 2 IClevelandSmiflii 7 {#777132 militia," urban IUrban I

L 3 IColumbus SE, NE 1 #7 7 56 INatural, urbanrwI Hrban ‘1’ , _I

L: Arlington i 30 Natural . Agriculture i

5 McClure I 15 . Ditch I Agriculture J

L 6 Knoxville I 485 I Natural IForest, residential I

L 7 1 Huntsville I 57 IDitch iAgriculture. forest I

I 8 IGenoa ‘ 24 Ditch, natural 1Agriculture

F 7 I l

I 9 ILatty, Oakwood i‘ 30 Natural, ditch 7 IAgriculture, forest I

I 10 IStonecreek I 320 :Natural TForest. agriculture 4

Table 4-1: Quadrangles where the LiDAR stream identification methods were tested.

39

Evaluated

E] Quads

Figure 4-7: Quadrangles where the LiDAR stream identification methods were tested. Numbers

refer to Site # in Table 4-1.

Figure 4-8: Site 1. Left — aerial; Left Center -— LiDAR DEM; Right Center - streams identified by

the Neighborhood Method; Right — by the Transect Method.

Figure 4~9: Site 2, same descriptions as Figure 4-8.

40

 J

/"

R

‘3
Figure 4-11: Site 4, same descriptions as Figure 4—8.

J“

. ~\\

\ ‘I,
1-

v

. 7‘

7 \ ‘

,' \ 1 \

Figure 4-13: Site 6, same descriptions as Figure 4-8.

41

Figure 4-15: Site 8, same descriptions as Figure 4-8.

Figure 4-17: Site 10, same descriptions as Figure 4-8.

42

The evaluation of the ten sites indicated that the Neighborhood and Transect

stream identification methods’ performance varied over different landscapes. The

Neighborhood Method performed adequately in the flatter, ditch-dominated study sites

like 4, 5, 8, and 9. The Transect Method’s best performance was in sites 5, 8, and 10.

Neither method performed very well at sites 2, 3, 6, or 7. The main problem for the

methods at sites 2 and 3 was the topographic complexity of an urban landscape. Site 2

was in the heart of Cleveland, and its streets and buildings posed too complex a surface

for the Neighborhood and Transect methods to resolve. Site 3 captured the campus of

Ohio State University, which also was too complex a surface for the methods to

adequately identify stream locations. This difficulty in urban environments is the reason

that study’s sample of 80 quadrangles were filtered to avoid quadrangles that had even

marginal percentages of urban land cover (> 10%). Neither method could process the

width of the main rivers, such as the Olentangy in site 3 and the Ohio in site 6. Both

methods expected the stream network not to exceed 10 cells (25 feet), which grossly

underestimated the widths of the Olentangy and Ohio rivers, 261 and 1,100 feet

respectively. The problem for the methods at site 7 was that they picked up too many

non-stream cells. These errors were due to the forested landscape, which has been shown

to pose problems in the analysis of LiDAR and other remotely sensed elevation products

(Barber and Shortridge, 2005; Shortridge, 2006). Despite the fact that the LiDAR data

was pre-processed by OGRIP to generate a bare-earth condition, artifact tree canopies

remained in many LiDAR tiles and distorted the stream-to-bank relationship or hid a

stream altogether. The adjacency of an errant elevation value of a tree canopy next to a

43

bare earth value created the illusion of a steep feature and, in the eyes of the two

methods, a potential stream bank.

In comparison to each other, the Neighborhood Method performed better in areas

where the drainage network was more sinuous (Figures 4-11 and 4-16), while the

Transect Method better handled straight agricultural drainage ditches (Figures 4-12 and

4-15). The Transect Method’s poorer performance on sinuous streams was due to its

focus on the basic cardinal (N-S-E-W) and intermediate (NW-SW-SE-NE) directions.

The directions of transects along a sinuous stream would include much more than the

eight considered by the Transect Method; therefore it missed many transects along such

streams and failed to identify them as part of the stream network. This limitation could

potentially be resolved by incorporating all possible transect directions into the method,

but this might render it computationally inefficient. However, the Transect Method’s

focus on those eight basic directions made it well-suited for identifying straight

agricultural ditches. While the Neighborhood Method also did well in identifying these

locations, the Transect Method outputs were cleaner and generated more quickly. The

Neighborhood Method output tended to yield diamond-shaped stream neighborhoods,

which in some instances gave the stream network messy and irregular boundaries. The

boundaries of ditches identified by the Transect Method tended to be smooth and

consistent, since its East-West analysis of a North-South trending ditch would essentially

yield horizontal transects stacked neatly on top of each other (Figure 4-18). The

processing of the Transect Method was also faster (1 min. 29 sec.) than the Neighborhood

Method for site 5 (5 min. 42 sec.).

44

streams

Elevation

I I Higher

I led

Figure 4-18: Left - rough edges of Neighborhood Method stream cells. Right — smoother edges of

Transect Method.

4. 4.2 Carving Through Artificial Barriers

A useful method to resolve artificial barriers in DEMs is to carve through them

(Soille et al. 2003, Soille 2004a, Soille, 2004b). In this process, the elevations of the

barrier cells are essentially reclassified in order to route the flow through them.

However, in order to ensure that this step is only applied within stream cells, the stream

network must first be identified. Soille’s method looked at all sinks in a DEM; I was

only interested in removing barriers within streams. I developed a process, which I refer

to as the Carving Method, that searched within the stream cells identified by one of the

previous methods (Neighborhood or Transect), and looked for sinks (cells in which each

of the 8 adjacent neighbors have higher elevations — as would be the case at the base of

the artificial barrier in Figure 4-4). The method then searched an expanding square

neighborhood, within a user-specified maximum neighborhood size (100 cells as a

default) for an elevation value smaller than that of the sink cell in question. If it found

such a cell (presumably on the other side of the barrier), a path was charted from the sink

to the lower cell along which the elevation of each cell was incrementally lowered to

create a slope for water to flow along, essentially removing the barrier (Figure 4-19).

45

di

SI;

CII

ba

Ila

Hill

311C

The method could be iterated over a user-specified number, as each carving could yield

new sinks.

Figure 4-19: Left - the barrier in the DEM. Center —- sinks in stream identified (in black), lower

elevation found (in yellow), path charted (in blue). Right — carved DEM with elevation values

incrementally lowered along path.

The implementation of the Carving Method yielded desired results in some

locations, but introduced errors in others. The method was implemented in all ten of the

stream identification study locations, but was most applicable in the agricultural drainage

ditch-dominated sites (5, 7, and 8). The method required a prior identification of the

stream network, rendering it essentially useless for the urban sites. The sites with natural

drainage did not have many, if any, in-stream barriers. The method worked as designed

for the site 5 location shown in Figure 4-19. Figure 4-20 illustrates how the method

created clear and uninhibited paths within drainage ditches by removing even small

barriers. The left side of Figure 4-21 shows how the Carving Method successfully routed

water flow under a road (N-S direction); but it also shows how the method introduced

undesired carvings. It is not likely that a NW-SE ditch flows under the road intersection,

and aerial photography did not indicate the presence of a culvert running N-S along the

right-edge of Figure 4-21 (in green).

46

, i

1

ml

7!

r m
i
l
»

1

Figure 4-20: Carving freed up flow within stream features. Left - drainage ditch in pre—carved

DEM. Right - carved drainage ditch.

Figure 4-21: Carving resolved some barriers (created north-south connection) but also introduced

potential errors (NW-SE connection, N-S connection at right).

The Carving Method was sensitive to even slight differences in elevation. When

it encountered an artificial barrier in the stream, its primary goal was to find a neighbor

with an elevation lower than that sink. As its search neighborhood expanded, it may have

encountered cells with lower elevations that were not connected to the original sink, as

illustrated by the right-side of Figure 4-21. A future, more “intelligent” Carving Method

may be able to resolve this issue by considering the general direction of the stream in its

neighborhood analysis. In the case of Figure 4-21, instead of searching in a

neighborhood that incrementally expands in all directions, the expansion could occur in

only the N-S direction, removing the possibility of the NW-SE carving that resulted in

this analysis.

47

4. 4.3 Implementing Stream Identification and Carving in LiDAR Processing

For each of the 80 sample quadrangles, I had to determine which stream

identification method (Neighborhood or Transect) should be employed and what values

should be chosen for identification parameters (minimum elevation difference and

neighborhood size). As the results of the previous analysis indicate, the choices

regarding the stream identification method and its parameters should be based upon the

land-cover, relief, and the shape of the drainage features of a particular quadrangle. Even

though these attributes may substantially vary across the sample of LiDAR tiles within a

quadrangle (40 or 48), since the quadrangle pre-processing scripts operated on one

quadrangle at a time the choices made for the stream identification parameters applied to

all of a quadrangle’s tiles. For example, the choice of minimum elevation difference in

the stream identification method applied to all tiles, even if the method would have

performed better with a different value in some of the tiles.

For the majority of quadrangles, I chose to use the Neighborhood Method with a

minimum elevation difference of 3 feet, and a neighborhood size of 10 cells (25 feet by

25 feet). These choices held up well during post-processing inspection, particularly in

quadrangles with high relief and little to no agriculture (Figure 4-22). For quadrangles

dominated by agriculture, I still utilized the Neighborhood Method with a neighborhood

size of 10 cells, but chose a more aggressive minimum elevation difference of 1 foot. In

some instances these choices worked well, but in the flattest areas it still failed to

adequately identify the stream network. I re-processed these quadrangles with the

Transect Method, but results were still unsatisfactory. I then adjusted the pre-processing

48

SCI
q!

u.

Flam

Well ;

scripts so that both stream identification methods were integrated and employed on these

quadrangles, which yielded more appropriate results (Figure 4-23).

—DLG Streai

Identified Stream

LiDAR DEM

Elevation

Higher

Lower

Figure 4-22: The Neighborhood Method with a minimum elevation difference of 3 feet performed

well at identifying stream cells in the LiDAR DEM for areas of high relief and little to no agriculture.

—DLG Streams

Identified Stream

LiDAR DEM

Elevation

Higher

’ . Lower

Figure 4—23: A combination of the Neighborhood and Transect methods performed best in flatter

areas dominated by agriculture.

49

The LiDAR pre-processing was not a simple batch script that ran on its own for

weeks. Many quadrangles were evaluated through the trial-and-error method described

in the preceding paragraph. With a few quadrangles, I ran the stream identification

algorithm three times until an adequate stream network was identified. For example, the

first run might have been with the Neighborhood Method and a minimum elevation

difference of 3 feet, a second run with a Neighborhood-Transect combination and an

elevation difference of 1 foot, and a final run with a Neighborhood-Transect combination

and an elevation difference of 2 feet. In these and all other similar instances, I inspected

the results visually to determine which run performed best and should be utilized in the

analysis.

Once the stream locations had been identified, the Carving Method removed

artificial barriers within those streams. For all 80 ofthe sample quadrangles, I used a

maximum neighborhood size of 100 cells and 3 iterations of carving, since the method’s

performance did not significantly vary across the lO-site evaluation.

4. 4. 4 Stream-burning and Sink-filling LiDAR DEMS

The last steps of the LiDAR pre-processing were to burn the identified stream

locations into the carved DEM in the same manner used with the lO-meter DEMs: fill all

sinks and calculate flow-direction through D8. It should be noted that the LiDAR pre-

processing steps described above introduced artifacts into the final LiDAR DEM.

Specifically, the stream identification and carving methods typically did not yield a

perfectly contiguous stream network. Some of the identified cells were fragmented, as

50

seen in Figures 4-22 and 4-23. After the stream burning process these cells essentially

became sinks that were subsequently filled in by the filling algorithm. The end results

were flat table-like features in the final LiDAR DEM. In terms of the accuracy of

elevation, this outcome was a clear error; however, it did not necessarily alter the general

flow-direction of surface water over these cells, which was what I tried to measure in this

research. The elevation values of the neighboring cells around those filled sinks usually

remained unchanged after the fill process, meaning that a concentration of surface-water

flow coming from the east still continued west along the flat cells towards the lower

elevations west of those cells (Figure 4-24).

Elevation Upstream Contributing Cells

- Higher _ Higher

_ Lower Lower
Figure 4-24: Left - the fill process created fiat features in the LiDAR DEM. Right - Flow

accumulation derived from the filled LiDAR DEM's flow-direction indicate that the flat features did

not dramatically alter the flow-direction.

Once the LiDAR pre-processing steps described above had been completed for all

of the LiDAR tiles for a sample quadrangle, the quadrangle was considered pre-processed

and ready for the assessment of flow-direction error. See Appendix A for a model

diagram of the quadrangle and LiDAR pre-processing.

51

4.5 Flow-direction Error

I calculated flow-direction error for each quadrangle by performing a cell-by-cell

comparison of the lO-meter flow-direction raster to the LiDAR flow-direction rasters,

assuming the LiDAR rasters as the reference condition. As with the pre-processing steps,

I programmed the flow-direction error calculation as a Python script. The code iterated

through each cell in the lO-meter flow-direction raster (around 1 million cells). The

general approach was to compare the flow-direction value for each lO-meter cell to an

aggregated flow-direction value for the neighborhood of LiDAR cells1 that intersected

the particular lO-meter cell (Figures 4-25 and 4-26). But how should the LiDAR flow be

aggregated?

One method of aggregation would be to take an averaged direction from the

LiDAR neighborhood cells, or calculate a single vector representing direction. But this

would be misleading in instances where half of the cells drained in one direction and the

other half drained in the opposite direction. If half of the cells drained north and the other

half drained south, would an east or west vector of flow-direction be an accurate

representation of surface-flow amongst the LiDAR cells?

Another method of aggregation would be to determine which flow-direction was

most frequent amongst the intersecting LiDAR cells in Figure 4-26. However, this

approach would not necessarily characterize where the majority of surface water flow

1 The size of the intersecting LiDAR neighborhood was typically a 10x10 grid, though sometimes it was

9x9. The LiDAR cells did not perfectly align with lO-meter cells. This was due to the fact that the 10-

meter width and height of the NED cell was not evenly divisible by the LiDAR resolution of 2.5 feet.

Figures 4-26 through 4-34 illustrate the overlaying of LiDAR cells on a lO-meter cell and show them to be

in perfect alignment for conceptual purposes only.

52

traveled amongst those LiDAR cells. It would be possible, for example, for 80% of the

intersecting LiDAR cells to drain towards the northern edge of the 10-meter cell, only to

be routed due east along that northern edge. In this instance, the predominant flow-

direction value for the LiDAR cells would be north, even though the majority ofthe flow

left the lO-meter cell area along the eastern edge.

,----10m----,

I I

Flow-direction (08)

- East

-Southeast

- South

Southwest

a West

a Northwest

E North

- Northeast

Figure 4-25: 3x3 neighborhood of 10-meter flow-direction cells. Cell to be analyzed for error at

center.

53

Flow-direction (08)

- East

a Southeast

-South

E Southwest

- West

E Northwest

E North

- Northeast

Figure 4-26: LiDAR flow-direction cells intersecting the selected 10-meter cell.

Another option would be to examine the edges of the selected lO-meter cell, and

determine what percentage of LiDAR cells drained through each edge. This approach

would avoid the misrepresentation of a frequency value, as described above; however, it

would weight the cardinal directions too strongly. The North, East, South, and West

edges all would have ten cells that could potentially route flow through an edge; whereas

the diagonal directions would each only have a single comer cell through which flow

could be routed. Furthermore, similar to the problem with looking solely at the mode of

flow-direction values, if all of the LiDAR neighborhood cells flowed through the

northern edge of the lO-meter cell is that a fair comparison to the lO-meter flow-direction

value? It would still be possible for all of the LiDAR cells to drain through the northern

edge, and then quickly divert due east as soon as they crossed the edge to ultimately drain

out somewhere in the Northeast lO-meter cell.

54

The lO-meter flow-direction value was determined by calculating Slopes between

the center point of a cell and center points of that cell’s eight immediate neighbors, and

noting the cell with maximum Slope (Equation 4-1). Distance was equal to the cell-

resolution (IO-meters) for cardinal neighbors, and cell-resolution multiplied by 1.414 for

the diagonal neighbors. Therefore, the 10-meter calculation of flow-direction was a

prediction from the center of the center cell to the centers of the neighboring cells. A

comparative analysis with the LiDAR cells should attempt to cover the same geography.

For {e1, 62, , 93}

Flow-direction = i, for II/IAXKIecemer cell - eil) ‘3‘ distance x 100]

Where ei = elevation of the i-th neighbor

Equation 44: Formula for calculating flow-directions

The method I developed utilized an expanded neighborhood of LiDAR cells to

determine the degree to which the 10-meter and LiDAR predictions for surface water

flow agreed. This neighborhood extended to the center of each of the neighboring 10-

meter cells, ensuring that the 10-meter flow direction value and aggregated LiDAR flow-

direction value corresponded to the same geographic Space. This expansion of the

LiDAR neighborhood also gave each neighboring lO-meter cell an equal opportunity for

flow to drain through its edges. AS illustrated in Figure 4-27, each lO-meter neighboring

cell had 10 LiDAR cells through which the LiDAR flow could have exited. For each of

these neighboring cells, the method recorded the percentage of cells from the original 10

by 10 LiDAR neighborhood that drained through its edges (Figures 4-27 — 4-34). Since

my goal was to evaluate the flow-direction value of the center lO-meter cell, I only

55

calculated the drainage percentage of LiDAR cells that intersected that center cell (Figure

4-26). The LiDAR cells in the expanded neighborhood (outside of the original LiDAR

cells) were needed to trace the flow of the intersecting LiDAR cells out of the

neighborhood, but these additional cells were not counted in the determination of

aggregated LiDAR flow-direction value.

Flow-direction (D8)

- East

- Southeast

-South

Southwest

a West

a Northwest

[:1 North

-Northeast

Figure 4-27: 0% of center LiDAR cells drain through the northwest edges of the neighborhood.

Figure 4-28: 0% of center LiDAR cells drain through the north edges of the neighborhood.

Figure 4-29: 89% of center LiDAR cells drain through the northeast edges of the neighborhood.

Figure 4-30: 0% of center LiDAR cells drain through the east edges of the neighborhood.

Figure 4-31: 0% of center LiDAR cells drain through the southeast edges of the neighborhood.

Figure 4-32: 0% of center LiDAR cells drain through the south edges of the neighborhood.

Figure 4-33: 0% of center LiDAR cells drain through the southwest edges of the neighborhood.

Figure 4—34: 11% percent of center LiDAR cells drain through the west edges of the neighborhood.

Next, the script used the flow percentages calculated for each lO-meter neighbor

to weight an error score (Equation 4-2). Recall that in Figure 4-25 the 10—meter cell in

question reported a flow-direction value of southwest. If all of the LiDAR cells that

58

intersected this lO-meter cell drained out of the southwest edges of the expanded LiDAR

neighborhood, then the script would consider the lO-meter cell and LiDAR cells to be in

perfect agreement. This would result in an error value of 0. If the result was the opposite

condition, with the LiDAR cells draining out of the northeast edges of the neighborhood,

this would be perfect disagreement and result in an error score of 4. Other scores would

range between 1 and 3 increasing from agreement to error (Figure 4-35). In the case of

the example that began with Figure 4-25, 89% of the center LiDAR cells drained through

the northeast edges of the expanded neighborhood (a severe error: 4), while the remaining

11% drained through the western edges (a small error: 1). These error values were

weighted by their respective flow percentages ((4 x 0.89) + (1 x 0.11)) to yield an

aggregated flow error of 3.67, an indication of very high error in the 10-meter flow-

direction estimation. Note that this error value does not indicate a specific direction of

error. The number itself does not indicate whether the LiDAR flow would be closer to

the North neighbor or the East neighbor in Figure 4-35, only that the error was high.

8

FDE =21». 1:-
i=1

Where FDE = flow-direction error for the 10-meter cell

pi = percentage of center LiDAR cells exiting out of the i-th neighbor lO-meter cell

fi = error score (1-4) of the i-th neighbor as compared to the flow-direction ofthe 10-meter cell

Equation 4-2: Flow-direction error weighting.

59

Flow-direction Error

fl Severe (4)

make)

I: Moderate (2)

El Low(1)

- Nonew)

Figure 4-35: Potential 110w error scores for assessment of 10-meter cell that flows southwest.

The script carried out the process described above for every lO-meter cell

contained within a quadrangle’s sampled LiDAR tiles. The process yielded maps

illustrating the spatial distribution of flow-direction error for a particular quadrangle

(Figure 4-36 — 4-39). Initial tests of this method revealed a spatial trend of high error in

and along stream features (Figure 4-36). This trend was the result ofthe filling operation

removing sinks in sections of stream within the LiDAR cells and modifying elevations

across large sections to single elevation values, and subsequently single flow-direction

values. In the flatter, agricultural areas entire fields were filled and reported the same

flow-direction value for all their corresponding cells. These were clear distortions of

reality and diminished the LiDAR DEM’s utility as a reference dataset at these locations,

despite its superior vertical and horizontal positional accuracy as compared to the 10-

meter DEMS. To avoid the potential error that these flat cells could have introduced into

60

the analysis, I re-structured the Python script so that any lO-meter cell that touched a flat

LiDAR cell directly (as an intersection of cells) or contained one in its expanded LiDAR

neighborhood was discarded from the analysis (Figure 4—40). Esrskine et al. (2007)

similarly removed flat cells from an analysis ofDEM derivatives. This decision resulted

in, on average, the discarding of 33% of lO-meter cells per 7.5 minute quadrangle. In

some of the quadrangles with the lowest overall relief and high concentrations of

agriculture, discard rates were as high as 83%. However, despite the high discard rates in

these quadrangles, the statistical analysis was still able to Show significant results for

flow-direction error prediction in these quadrangles (see Chapter 5).

61

Flow-direction Error

-Severe (4)

High (3)

CI Moderate (2)

m LOWU)

- None (0)

Figure 4-36: Flow-direction error map for a single 7.5-minute quadrangle. Blue grid lines are the

result of avoiding edge issues in each LiDAR tile.

62

Flow-direction (D8)

- East

-Southeast

-South

E Southwest

- West

Northwest

E North

- Northeast

Figure 4-37: For the selected 10-meter cell, estimated flow-direction is to the south.

Flow-direction (D8)

- East

-Southeast

-South

fl Southwest

— West

Northwest

E North

- Northeast

Figure 4-38: For the selected lO-meter cell, estimated LiDAR flow-direction trends mainly east and

northeast.

Flow-direction Error

- Severe (4)

3 High (3)

D Moderate (2)

Low (1)

- None (0)

fi’lfil

Figure 4-39: The flow-direction error is considered high, with a value of 2.98.

63

Flow-direction Error

- Severe (4)

B High (3)

:1 Moderate (2)

E3 Low (1)

- None (0)

Figure 4-40: Flow-direction error map with flat cells discarded.

Chapter 5 Results and Analysis

The previous two chapters detailed this study’s methodology for identifying the

mean flow-direction error and its standard deviation. Using these data recorded for each

of the 80 sample quadrangles, I conducted independent t-tests to assess whether the mean

flow-direction error varied significantly across the agricultural and relief

characterizations listed in Table 3-1. I also explored correlations between the mean flow-

direction error and various quadrangle attributes, and evaluated linear regression models

adjusted for residual spatial autocorrelation.

Overall flow-direction error among the 80 quadrangles was M= 1.04 (SD = 0.85).

Figure 5-1 shows the spatial distribution of flow-direction error amongst the sample.

There is a clear trend of increasing flow-direction error in the SE-NW direction amongst

the quadrangles, mimicking the gradients for agriculture concentration and relief

illustrated in Figures 3-1 and 3-2. These maps and the quantitative analysis I present here

indicate that relief and agricultural concentration can be used to predict flow-direction

error.

65

Mean Flow-direction

Error (quartiles)

C: 0.56 - 0.84

D 0.84 - 1.06

- 1.06 - 1.16

- 1.16 - 1.81

Figure 5-1: Spatial distribution of flow-direction error amongst the sampled quadrangles.

5.1 Independent T-tests

I expected that flow-direction error would be higher in areas of high agricultural

concentration and low relief. More formally:

Hypotheses:

Ho: FDE High % Ag. < FDE Low % Ag.

Ha: FDE High % Ag. 2 FDE Low % Ag.

Ho: FDE High Relief < FDE Low Relief

Ha: FDE High Relief 2 FDE Low Relief

Where:

FDE = flow-direction error

Table 5-1 shows the overall mean flow-direction error for the sampled quadrangles and

for the bins generated during the sampling process (see Table 3-1). Table 5-2 Shows the

66

results of the independent t-tests calculated between these bins. AS expected, mean flow-

direction error differed significantly between quadrangles characterized as having a high

percentage of agriculture (M= 1.16, SD = 0.91) and those with a relatively low

percentage (M= 0.93, SD = 0.79), t(78) = 4.33, p = < 0.001. Similarly, quadrangles

characterized as having high total relief (M = 0.89, SD = 0.78) versus those characterized

as low in relief differed Significantly (M = 1.19, SD = 0.93), t(78) = 6.06, p = < 0.001.

On the basis of these results, both null hypotheses listed above were rejected.

Mean Flow-direction Error

Relief

High (> 327feet) Low (< 327feet) mm"

. W134, 50:035. M=l .23, SD=0.97, M=1 . 16, SD=0.91,

”’g” (> 673%) N=20 N=20 N=4O, .

/" Agr'cmtm M=0.75, SD=0.70, M=1.1 1, SD=O.88, M=0.93, SD==0.79,
Low (< 67.8%) N=20 N=20 N=40

Oman 1:20.39, SD=O.78, M=l.l9, 50:0.93, M=l.04, SD=0.85,

N=40 N=40 N=80

Table 5—1: Flow-direction error results for the various sampling criteria combinations.

1 also tested my expectations for the specific sampling bins, which I refer to as

follows:

High relief, high % agriculture: HRHA

High relief, low % agriculture: HRLA

Low relief, high % agriculture: LRHA

Low relief, low % agriculture: LRLA

I expected that quadrangles with little relief and a high percentage of agriculture would

contain the highest flow-direction error values, and vice versa. More formally:

H0: FDE LRHA < FDE HRLA

Ha: FDE LRHA Z FDE HRLA

67

I also expected that when either relief or agricultural concentration was held constant the

variation in the other would prove significant when compared to flow-direction error.

Ho: FDE LRHA < FDE LRLA

Ha: FDE LRHA Z FDE LRLA

Ho: FDE HRHA < FDE HRLA

Ha: FDE HRHA Z FDE HRLA

Ho: FDE LRHA < FDE HRHA

Ha: FDE LRHA Z FDE HRHA

Ho: FDE LRLA < FDE HRLA

Ha: FDE LRLA 2 FDE HRLA

LRHA quadrangles reported the highest mean flow-direction error, M = 1.28, whereas the

HRLA quadrangles reported the lowest value, M= 0.75. As shown in Table 5-2 these

two means differed significantly, ((38) = 7.16, p = < 0.001 (a higher t score than any

other pairing of mean flow-direction errors). These results show that when either relief

or agricultural concentration was held constant, the change in the other corresponded

significantly with changes in flow-direction error. There were not significant differences

between HRHA and LRLA.

It appears that relief had a stronger impact on flow-direction error than the

concentration of agriculture. The difference in overall mean-error between low relief

quadrangles and high relief quadrangles was greater (1.19 — 0.89 = 0.3) than the

difference between quadrangles with high concentrations of agriculture and those with

low concentrations (1.16 - 0.93 = 0.23).

68

T-test results HRHA HRLA LRHA LRLA

HRHA

1.... «3:23.35:

LRHA “is: 3339’ «:8: 3.17111116’

LRLA «335011.38, t(;8<) 6.36614, «33):12635,

Table 5-2: Independent t-test results between sampling criteria.

5.2 Correlations

Flow-direction error was highly correlated with agricultural concentration, relief,

contour topology error, and the extent to which filling sinks in the LiDAR DEMs

produced flat areas (Table 5-3). This last correlation was the strongest (r = 0.85). An

initial reaction to such a strong correlation may be that these flat LiDAR cells distorted

the true ground condition so dramatically that they yielded high values for flow-direction

error. However, I discarded any lO-meter cell whose analysis neighborhood (Figure 4-

27) contained even a single flat LiDAR cell. Therefore the error means used in

calculating the correlation did not reflect these cells. The more likely explanation for the

. strong positive relationship is that the areas that contained a high number of flat cells in a

depression-less DEM embodied the surface characteristics that confound flow-direction

estimates. Flat cells in a filled DEM were more likely to occur in areas of high

agricultural concentration and low relief, r = 0.58 and r = -0.73 respectively. These areas

were dominated by agricultural ditches because the low relief provided little natural

69

drainage to route water away from fields and allow for crop production. Consequently,

due to the presence of artificial barriers along them, these ditches had a greater chance of

being identified as sinks than as natural drainage features and filled flat by the filling

algorithm. A high percentage of flat cells for a quadrangle indicated low relief and a high

concentration of agricultural ditches in that area. These areas essentially captured the

“worst” of both worlds when trying to predict flow-directions; the low relief raised the

uncertainty in flow-direction estimates, while the concentration of agricultural ditches

increased the likelihood that drainage pathways were filled flat.

It is worth noting that all of the variables in Table 5-3 were significantly

correlated. This fact raised issues of multicollinearity in the attempt to develop a linear

regression model for flow-direction error.

Fl -dir t' o/
l t ti % of flat 10-

Correlations ow ec Ion o row-crop Relief n ersec ons meter cells

error agriculture per contour discarded

Flow-direction

error

0 -
/o rpw crop r = 0.77

agnculture

Relief r = -0.76 r = -0.68

Intersections per r 2 0.70 ,. = 0.51 ,- = -0,6()

contour

% of 10-meter

cells discarded r = 0.85 r = 0.53 r = _0_73 r = ()_70
due to flat

LiDAR

Table 5-3: Correlations between flow-direction error and other variables. N=80, all correlations

were significantly different from zero (p < 0.001).

70

5.3 Spatial Regression

I attempted to identify the variables that best explained variability in flow-

direction error through linear regression modeling using the R statistical package (ver.

2.7.1). Since flow-direction error was a spatial phenomenon, I adjusted the models to

account for spatial autocorrelation in the model residuals.

Restating my general hypothesis, I expected that areas that were relatively flat,

had high concentrations of agriculture, and whose DEMs were produced from contours

that contained large numbers of topological errors (intersections) would have produced

higher values of flow-direction error. More formally:

Equation: FDE = a + BpAPA + BTRTR + BCICI

Where:

FDE = flow-direction error

PA = % agriculture

TR = total relief

CI = contour intersections

Hypotheses:

Ho: BpA = 0 Ha: BpA > 0

H0: BTR = 0 Ha: BTR < 0

Ho: BC] = 0 Ha: BC] > 0
Figure 5-2: Model 1 - initial linear regression model of flow-direction error.

I tested Model 1 (Figure 5-2) first, attempting to explain flow-direction error

through relief, agriculture concentration, and contour intersections. Histograms of the

model’s variables indicated that a transformation was warranted for the contour

71

intersections variable; a logarithmic transformation produced the most normal

distribution (Figure 5-3).

The results in Figure 5-4 confirmed the hypotheses of Model 1, with a solid

overall model performance (R2 = 0.73). However, the Moran’s I value (1 = 0.3611, p = <

0.001) for the model residuals indicated that they contained significant spatial

autocorrelation (mapped in Figure 5-5 — note the clustering of shades), which was

potentially inflating the R2 and causing the horizontal cone shape (heteroscedasticity) of

the residuals graphed in Figure 5-6.

Mean Flow Error % Row-crop Agriculture

g: :2 § o
O

O .—

g‘ c
5" on

2 " ”—1 2
Lu LL.

c l— 1 4‘fi c I ’ l 1 I I 1

0.5 1.0 1.5 2.0 0 20 40 60 80 100

Flow Error %

Total Relief Contour Intersections

>. O >.

N 3

‘3 l W— :2
u. u.

G I 1 O I l 41'?-

0 200 400 600 800 0.0 0.2 0.4 0.6 0.8

Feet Intersections per Contour

Log Transform ofCntr. Int.

3; 8

=

3 c:
a u—

55 —l—l—1
C l r l I I

-5 -4 -3 -2 -l 0

Log(lntersections per Contour)

Figure 5-3: Histograms of regression variables from Model 1.

72

Significance of Terms:

Coefficients Estimate Std. Err. I score p-value

Intercept 1.1994774 0.0864874 13.869 < 2e-l6

o -

/° 5‘” "0" 0.0043492 0.0008723 4.986 3.786-06
_agnculture

Total relief (fi.) -0.0005739 0.0001572 -3.652 0.000476

5%?“ per 0.0621131 0.0194624 3.191 0.002059

Hypotheses:

BpA: Reject Ho

BTR: Reject Ho

BC]: Reject Ho

Residuals:

Min. 25th pctl. Median 75th pctl. Max.

-0.309 -0.1 13 0.008 0.085 0.333

Residual standard error: 0.1426 on 76 degrees of freedom

Moran ’s l:

Observed Expectation Variance

0.361 1 -0.0280 0.0080

p-value = 6.058e-06 (sampling test)

Model Performance:

R2: 0.73

F—statistic: 71.01 on 3 and 76 DF, p-value: < 2.2e-l6

Fitted values vs. Actual values correlation: 0.86 Aikaike Information Criterion (AIC): -78.743

Figure 5-4: Model 1 diagnostics.

73

r.“___ -A ,2, ,2

1 MI

I I

1 " - . I
l a I D-

I B PA .
I ReSIduals

- QB 501 a --0.31——0.14

‘ IN I Elam-0.02

1 I “a BID D L Diem-0.03

D I i I '- -o.03-0.10

D l -D - E] l -0.10 0.33

B3 i

a Ii i wv

KY /\

Figure 5-5: Mapped residuals of Model 1.

Residuals vs. Fitted

M. _ o 0 °
C

0

O O

‘ o

O 0 0 O

.12 c. ° :0 9 «5% o
g o W 0° ° 3 o

a: o 0 °
0

S 1 o o 0 o o 3) o

0 ° 0 0° 0 o

9! ° °
C? — o

0 8° 0

«'1
O. ‘ o

I If I I I

0.6 0.8 1 0 1 2 1 4

FittedValum

Figure 5-6: Residuals of Model 1, greater residual error of higher fitted values indicates potential

heteroscedasticity.

74

I mitigated the spatial autocorrelation in Model 1 by implementing the SAR

(simultaneous auto-regression) function of R’s SPDEP (Spatial Dependence) module

using each quadrangle’s three nearest neighbors, inversely weighted by their distance.

SAR corrected the estimates of the model coefficients, but was not designed to produce a

new R2. SAR corrected the residual heteroscedasticity illustrated in Figure 5-6 (Figure 5—

7).

Afier correcting for residual spatial autocorrelation, the regression model’s terms

were still significant, confirming my hypotheses (Figure 5-9). The adjusted model’s

residual values were smaller in absolute terms and more concentrated than those for the

original model; the range of residual values was smaller than in the original model (0.018

versus 0.024), as was the standard error (0.007 versus 0.143). Moran’s I for the adjusted

model’s residuals was no longer statistically significant (p = 0.28). Additionally, the

Lambda significance (p < 0.001), the slightly improved correlation of fitted values versus

actual values (0.91 for SAR adjusted model versus 0.86 for original model), and the

lower AIC value (-98.05 versus -78.4) all indicated that the coefficients of the new model

successfully accounted for the presence of spatial autocorrelation in the residuals.

Though not as clear as these numeric metrics of model improvement, the map of

residuals fiom the adjusted model (Figure 5-8) shows a slight improvement as several of

the darker clusters in the original residual map (Figure 5-5) were broken up.

75

S
A
R

R
e
s
i
d
u
a
l
s

SAR Residuals vs. SAR Fitted

o

o

_ o o

o

o

830 o
_ o o

o o °O o o

o o a: 00 o

o 0

:9 n 0 nun

o
0

° 0

o

o
o o o

1 ° ° . °
o o o

o

o o

_ o 0

0°

0

I I I I I

0.6 1.0 1.2 1.4 1.6

SAR Fitted Values

Figure 5-7: Residuals of Model 1, corrected for spatial autocorrelation, no apparent

heteroscedasticity.

PA ,

SAR Resnduals

- -0.27 - -0.09

-0.09 - -0.03

I: -0.03 - 0.03

l 0.03- 0.10

-0.10-0.26

 f
Figure 5—8: Mapped residuals, corrected for spatial autocorrelation.

76

Significance of Terms:

Coefficients Estimate Std. Err. I score p-value

Intercept 1.1 1910155 0.0832270 13.446 < 26-16

0 -

/° If” "01’ 0.00391785 0.0008740 4.482 7.384e-06
_agr1culture

Total relief(fi.) -0.00051557 0.0001362 -3.783 0.0001545

Egg“ per 0.03246648 0.0151490 2.143 0.0321021

Hypotheses:

BpA: Reject Ho

BTR: Reject Ho

BCI: Reject Ho

Residuals:

Min. 25th pctl. Median 75th pctl. Max.

0274 -0.078 0.003 0.069 0.256

Residual standard error: 0.0072944

Moran ’s I:

Observed Expectation Variance

0.041 1 -0.0127 0.0081

p-value = 0.2755 (sampling test)

Model Improvement:

Lambda: 0.59923 LR test value: 21.305 p-value: 3.9180e-06

Fitted values vs. Actual values correlation: 0.91

Aikaike Information Criterion (AIC): -98.048

Figure 5-9: Model 1 diagnostics, corrected for residual spatial autocorrelation.

By most measures, Model 1 performed very well. However, multicollinearity in

the independent variables may have inflated the model’s performance. As indicated in

77

Table 5-3, there was a strong, negative correlation between agricultural concentration and

relief (r = -0.68). Relief and the number of intersections per contour was also strongly

negatively correlated (r = -0.60). Agricultural concentration and contour intersections

were moderately positively correlated (r = 0.51). Therefore, I explored other regression

models to see if flow-direction error could be described through other terms and

combinations.

All of the independent variables in Table 5-3 were significantly correlated, so any

regression model employing them would have had multicollinearity issues. To consider

the power of each variable individually on flow-direction error, as well as to assess some

additional variables, I developed six alternative regression models (Table 5-4). Models 2

through 4 each employed one of the terms in the original model (Model 1 — Figure 5-2):

percentage row-cop agriculture, total relief, or intersections per contour. While all of

these models explained significant variability in flow-direction error, the results

confirmed that percentage row-crop agriculture and total relief explained more of the

variance than intersections per contour. Model 5 employed the percentage of a

quadrangle’s IO-meter cells discarded from the analysis due to the presence of flat

LiDAR cells (flat cell percentage). This model was the best single predictor of flow-

direction error (R2 = 0.72). This independent variable was most closely associated with

elements that confound DEM prediction of flow-direction: drainage ditches (potential

sinks) that are likely to be filled in and flat terrain. Model 6 was a modification of the

original regression model (Model 1) and replaced total relief with flat cell percentage,

since total relief was the independent variable most highly correlated with flat cell

78

percentage. While multicollinearity was still an issue, Model 6 performed much better

than the original model on all measures. Model 7 employed a relatively simple

combination of terms and performed nearly as well as the original model.

That all of these regression models yielded significant results begs the question of

which model should those interested in predicting flow-direction error elsewhere employ.

Solely by the numbers, Model 6 should be the predictor of choice. However, the terms of

that model are relatively expensive to acquire. Specifically, the percentage of discarded

flat cells requires access to LiDAR data, which is limited around the globe, and requires a

significant amount of pre-processing and hard drive space. The most economical choice

is Model 7, since land cover and elevation datasets are freely available for the entire US.

and most of the world. Any of the models presented here are statistically significant

predictors of flow-direction error. However, the results show that any implementation of

these models requires a correction for spatial autocorrelation.

Corr. of
Model Residual 2 . . . SAR Sig.

Model terms Heteroscedasticity R F Statistic SAR Fitted AIC Terms

vs. Actual

114.0
0 -

2 /o ag. no 0.59 (p < 0.001) 0.90 83.0 all

. 109.6
3 total relief yes 0.58 (p «1001) 0.89 -77.9 all

. 70.9
4 log(mt. p. out.) no 0.47 (p (0.001) 0.88 -65.6 all

208.4
5 flat cell pct. yes 0.72 (p (0.001) 0.89 -88.9 all

% ag' 142 3
6 flat cell pct. no 0.84 (p < 0 001) 0.93 -124.1 all

log(int. p. cnt.) '

%ag 109.6
7 total relief yes 0.69 (p (0.001) 0.91 -95.7 all

Table 5-4: Alternative linear regression models, and measures of performance.

79

Chapter 6 Conclusion

6.1 Summary

For this research, I sought to quantify error in estimates of surface water flow-

direction derived from USGS lO-meter DBMS and explain how that error varied across

different geographic landscapes. I developed a method by which finer resolution DEMs

(LiDAR - 2.5-foot) can be utilized to evaluate estimates of flow-direction derived from

coarser DEMs (USGS - lO-meter) on a cell-by-cell basis. I implemented this approach

on 80 7.5-minute USGS quadrangles in Ohio, stratified by relief and agricultural

concentration. As I expected, statistical analyses revealed that flow-direction error was

strongly, negatively correlated with total relief, and strongly, positively correlated with

agricultural concentration. The niunber of intersections per feature in the source contours

that produced the USGS DBMS, and the percentage of sinks filled flat by the ArcGIS

filling algorithm were also strongly, positively correlated with flow-direction error. A

regression model employing agricultural concentration, contour intersections, and sink

filling as independent variables explained 84% of the variance in flow-direction error. A

simpler model employing only agricultural concentration and total relief still explained

69% of flow-direction error variance. Both of these regression models had to be adjusted

to correct for residual spatial auto-correlation, and both contained some degree of

multicollinearity.

8O

The pre-processing of the LiDAR data was costly and time-consuming, requiring

nearly one terabyte of hard drive space and four microcomputers running constantly for

over a month. The most challenging and time-consuming part of pre-processing was

identifying stream locations within the LiDAR DEMS in order to “burn” a hydrological

network into the surfaces and enforce a proper drainage network. This step required the

development of custom Python scripts that read LiDAR elevation data into Python lists,

utilized neighborhood analyses to locate stream cells, and carved through artificial

barriers within the identified stream networks. Qualitative tests indicated that these

custom methods performed best in flat agricultural areas, where the enforcement of

proper drainage networks was most needed.

6.2 Significance

While the relationship between DEM error, relief, and agriculture has been

studied before, the specific attention to flow-direction at field scales and over such a large

geographic sample make this research unique. Previous efforts studied the effect of

resolution or interpolation methods on DEM derivatives such as slope, aspect, and soil

moisture. Other research has evaluated surface flow from DEMs by comparing

catchment boundaries derived from upland flow accumulations in relatively small study

sites. In this thesis, however, I have presented a new method for evaluating flow-

direction, conducted this evaluation at the DEM cell level, and described its variation

across the Ohio landscape, which exhibits a diversity of topography and land cover.

81

This thesis makes several contributions to the field of geographic information

science. The quantification of flow-direction error adds a new measure by which DEMs

can be evaluated. The cell-by-cell evaluation of coarser data with finer data could be

applied to any number of raster datasets. The new method for evaluating surface water

flow-direction could be extendedto other directional datasets, such as aspect, wind-

direction, or groundwater flow-direction. Furthermore, the methods I developed and

tested to locate stream features in LiDAR data, and my implementation of a sink carving

method could be utilized in other hydrological studies of DEMs. This contribution in

particular may prove to be the most significant as LiDAR DEMs replace contour-

interpolated DEMs as the standard in spatial analysis.

At a more practical level, the cell-level specificity of this thesis informs field-

level analyses that would be impractical through previously described methods.

Additionally, its broad scope informs analysis across varying topographic and land cover

environments, making it applicable to a large audience of users. One group ofDEM

users that will benefit from this research are soil conservationists. Predictions of surface

water flow-direction are critical to identifying specific field-level locations experiencing

soil erosion. Inaccurate estimates will focus conservation efforts on the wrong locations.

A conservationist may look for an erosive gully on the eastern edge of a field, when in

actuality it may be on the western edge. Having a quantified value of flow-direction

uncertainty for a particular location will aid soil conservationists in efficiently marshaling

their time and resources. They will be able to gauge how much field verification is

needed prior to targeting soil conservation practices. For example, if staff for the Lucas

82

County Soil and Water Conservation District utilized a USGS lO-meter DEM in an

erosion model, as can be done with the Revised Universal Soil Loss Equation (Wu et al.

2005, Ouyang et al. 2005), to identify at-risk locations in a hilly area with little

agricultural presence, they could be sufficiently confident in assuming that surface water

flow was appropriately simulated by the model. If, on the other hand, district staff

utilized the same approach to identify an at-risk location in a flat agricultural area (typical

for that region of Ohio) they should exercise caution in assuming that the location was

significantly eroding, and conduct a thorough field evaluation prior to the installation of

remediation measures.

Soil conservationists are just one specific group that could benefit from this

research. Environmental engineers deriving stream networks, stream biologists exploring

non-point source pollution loading from small local catchments, civil engineers re-

evaluating floodplain maps, or any user employing DEMs for field-level hydrological

analyses will benefit from knowing the uncertainty in simulated flow-direction at a

particular location.

Martinoni and Bernhard (1998) argued that greater documentation of error in

DBMS, including assessment of derivative error, is needed to ensure their proper use and

analysis. The quantification of flow-direction error could be a new metadata standard for

DBMS, and support Martinoni’s and Bernhard’s goal.

83

6.3 Future Research

While I was able to successfully quantify and explain flow-direction error in

terms oftopographic and land cover characteristics, the process generated additional

topics that warrant further research. Stream locations could potentially be better

identified and processed; smoothed LiDAR DEMs may prove to be better reference

datasets; additional flow-direction algorithms should be utilized in the assessment of

flow-direction error; and the scale at which flow-direction between 10-meter and LiDAR

DEMs changes from error to agreement should be evaluated.

The methods I developed to identify and burn stream locations in the LiDAR

DEMs has several limitations. First, they cannot identify wide cross-sections of rivers.

The analysis neighborhood is restricted to a lO-cell (25-foot by 25-foot) neighborhood

and cannot locate the necessary stream bank elevations for large rivers in such a small

window (Figures 4—10 and 4-13). Second, they require the user to specify single

thresholds for stream bank elevation and neighborhood size that in actuality should vary

depending on the relief and land cover of a particular area. In this research, I had to

process several quadrangles three times with different threshold inputs until an acceptable

output was realized. Third, the carving process to remove artificial barriers in the streams

sometimes carved in inappropriate directions. For example, instead of carving through an

east-westrunning bridge to connect a north-south drainage ditch, it sometimes carved in a

northwest-southeast direction to connect the north-south ditch to a section of an east-west

ditch on the opposite side of the road (Figure 4-21). Revised methods could

accommodate wider rivers, automate input selections by analyzing total relief and land

84

cover

discer

metho

repres

numb

an are

data. 1

081112

DEM:

direu

lmpac

presei

DEM

Press]

1.11301

3121111.

33011

Well (

311an

cover percentages for given locations, and carve in a more intelligent manner by

discerning the direction ofthe stream features that need to be connected. These revised

methods would likely improve the precision of flow-direction error estimates.

LiDAR DBMS can contain significant noise that distorts the surface

representation. These distortions can be limited by “smoothing” the DEM through any

number of filtering methods. A common approach is to change each cell’s elevation to

an average of its nearest neighbors. This method reduces any large discrepancies in the

data, but can also diminish valid features on the surface. I was particularly interested in

evaluating flow-direction in flat areas; therefore, I was worried that smoothing LiDAR

DBMS in these areas may distort the subtle surface features critical to calculating flow-

direction. As mentioned in Chapter 3, subtle changes in elevation can have a significant

impact on flow-direction if that area is flat. I chose to honor the original DEM and

preserve these features, at the risk of noise affecting the model outputs. The LiDAR

DBMS utilized in this thesis were unaltered from their downloaded format. Despite the

presence of noise in some of the LiDAR DBMS, I was still able to confirm my

hypotheses. However, since smoothing is a common procedure, it would be worth

evaluating how the results of this study may change with smoothed LiDAR DBMS

serving as the reference dataset.

While the D8 flow-direction algorithm allowed me to confirm my hypotheses, its

well documented limitations warrant an evaluation of flow-direction error utilizing

alternative and more accepted methods. Multi-direction methods such as MF by Quinn et

85

al. (1991) or multi/single direction hybrids like Tarboton’s D-Infinity (1997) should be

utilized in a cell-by-cell fashion as used here.

I calculated flow-direction error on a cell-by-cell basis, but at what extent, if ever,

does that error change to agreement? The 10-meter cell and its corresponding LiDAR

cells may be in disagreement at the immediate neighborhood level illustrated in 4-35, but

perhaps the predicted flows converge at the next larger neighborhood. It is possible that

flow-direction error is generally confined to a small local neighborhood of cells. It is also

possible that simulated flows travel in different direction over large areas (Figures 3-8

through 3-10). This relationship should be explored to better describe the impact flow-

direction error may have on hydrological analyses.

The availability of high-resolution LiDAR DBMS will continue to grow as GIS

users demand finer data and as digital storage space becomes cheaper. LiDAR DEMs

will likely replace the coarser, contour-interpolated and stereoscopic DBMS produced by

the USGS as the standard digital elevation products for spatial analysis. As that

transition takes place, research Should document how existing DEM-based analyses may

change with the incorporation ofthe finer resolution data. This research is a contribution

to that effort.

86

APPENDICES

87

88

D
i
a
g
r
a
m
L
e
g
e
n
d

A
P
P
E
N
D
I
X
A
:

P
r
o
c
e
s
s
i
n
g
D
i
a
g
r
a
m
s

0
%

’
A
c
t
i
o
n

3
A

I
.

S
c
r
i
p
t

P
y
t
h
o
n

S
c
r
i
p
t
w

O
u
t
p
u
t

O
b
j
e
c
t

89

Q
u
a
d
D
L
G

H
y
d
r
o
g
r
a
p
h
y

O
h
i
o

1
O
-
m
e
t
e
r

D
E
M

7
.
5
-
m
i
n
u
t
e

Q
u
a
d

S
t
r
e
a
m
s
.

R
a
s
t
e
r

l
O
-
m
e
t
e
r

D
E
M

P
r
e
-
p
r
o
c
e
s
s
i
n
g
S
t
e
p
s

L
i
D
A
R
D
B
M
S

W
i
t
h
i
n
Q
u
a
d

B
o
u
n
d
a
r
y

L
i
D
A
R

F
l
o
w
-
d
i
r
e
c
t
i
o
n

R
a
s
t
e
r

L
i
D
A
R

D
E
M

F
l
o
w
-
d
i
r
e
c
t
i
o
n

A
P
P
E
N
D
I
X
A
:

P
r
o
c
e
s
s
i
n
g
D
i
a
g
r
a
m
s

.
l
0
-
m
e
t
e
r

)

B
u
r
n

1
n

S
u
e
a
m
-
b
u
m
e
d

F
i
l
l

S
t
r
e
a
m
s

D
E
M

1
'

F
l
o
w
-
d
i
r
e
c
t
i
o
n

l
0
-
m
e
t
e
r

F
l
o
w
-
d
i
r
e
c
t
i
o
n

R
a
s
t
e
r

D
e
p
r
e
s
s
i
o
n
l
e
s
s

l
O
-
m
e
t
e
r
D
E
M

i

8

S
t
r
e
a
m
I
D

L
i
D
A
R
\

(
N
e
i
g
h
b
o
r
h
o
o
d

S
t
r
e
a
m

a
n
d
/
o
r
T
r
a
n
s
e
c
t

R
a
s
t
e
r

M
e
t
h
o
d
s
)

C
a
r
v
e
d

D
e
p
r
e
s
s
i
o
n
l
e
s
s

L
i
D
A
R
D
E
M

C
a
r
v
e

L
I
D
A
R

D
E
M

 I

)
.

Fi
ll
L
i
D
A
R

S
n
e
l
a
‘
fi
fi
u
’
fi
n
e
d

l
B
u
m
L
i
D
A
R

D
E
M

D
E
M

S
t
r
e
a
m
s

90

P
o
s
t
-
p
r
o
c
e
s
s
i
n
g
S
t
e
p
s

A
P
P
E
N
D
I
X
A
:

P
r
o
c
e
s
s
i
n
g
D
i
a
g
r
a
m
s

L
i
D
A
R

F
l
o
w
-
d
i
r
e
c
t
i
o
n

R
a
s
t
e
r
s

I
l
n
t
e
r
s
e
c
t
i
n
g

N
e
i
g
h
b
o
r
h
o
o
d

C
e
l
l
s

)

I
t
e
r
a
t
o
r

(
e
v
e
r
y

c
e
l
l
)
’

1
O
-
m
e
t
e
r

F
l
o
w
-
d
i
r
e
c
t
i
o
n

R
a
s
t
e
r

l
O
-
m
e
t
e
r

F
l
o
w
-
d
i
r
e
c
t
i
o
n

C
e
l
l

E
r
r
o
r
f
o
r

F
l
o
w
-
d
i
r
e
c
t
i
o
n

l
O
-
m
e
t
e
r
C
e
l
l

A
g
g
r
e
g
a
t
e
d

L
i
D
A
R

F
l
o
w
-
d
i
r
e
c
t
i
o
n

V
a
l
u
e

F
l
o
w
-
d
i
r
e
c
t
i
o
n

E
r
r
o
r

C
a
l
c
u
l
a
t
i
o
n

L
i
D
A
R

N
e
i
g
h
b
o
r
h
o
o
d

C
e
l
l
s

I
L
i
D
A
R

N
e
i
g
h
b
o
r
h
o
o
d

A
n
a
l
y
s
i
s

\
O
m
Q
O
‘
M
A
U
-
D
N
—

Q
W
N
U
—
O
Q
W
Q
O
‘
M
k
U
J
N
—
o

N
N

G
M

27

28

29

30

31

32

33

34

35

36

37

APPENDIX B — Python Code

raster_analysis.py

all = ['rasterZarray', 'rastertext21ist', 'extract_header']

#raster_analysis.py

#Author: Glenn O'Neil

#Date: September 2009

#This Python module provides tools for converting ArcGIS rasters

#between multiple formats, including NumPy arrays for analysis with GDAL

#and Python lists. It also includes a function for extracting a neighborhood

#fi'om a larger list or array of values.

def raster2array (raster):

"""Takes a raster path and converts it to a NumPy array using GDAL"""

#check to see if gdal and gdalconst modules have been imported

if 'gdal' not in globals():

from osgeo import gdal

if 'gdalconst' not in globals():

from osgeo import gdalconst

raster_ds = gdal.Open(raster, gdalconst.GA_ReadOnly)

raster_band = raster_ds.GetRasterBand(1)

raster_array = raster_band.ReadAsArray()

del raster_ds, raster_band

return raster_array

def array2raster (raster_array, raster_ds_template, raster_ds_out_path, raster_ds_out_forrnat,

scratch_folder):

Takes a NumPy array and converts it to an ArclNFO raster using GDAL

raster_array = the NumPy array to be converted

raster_ds_template = the raster dataset that will serve as a template for the output raster

dataset

raster_ds_out_path = the full path ofthe output raster dataset

raster_ds_out_format = string of the the pixel type of the output raster dataset:

- 1_BIT: A I-bit unsigned interger. Values can be 0 or 1.

- 2_BIT: A 2-bit unsigned integer. The values supported can be from 0 to 3.

- 4_BIT: A 4-bit nsigned integer. The values supported can be from 0 to 15.

- 8_BIT_UNSIGNED: An unsigned 8-bit data type. The values supported can be

from 0 to 255.

- 8_BIT_SIGNED: An signed 8-bit data type. The values supported can be from -

128 to 127.

91

,3

15

16

17

18

I9

50

5]

<7

54

SS

56

17

58

so

60

61

63

63

7
1

7
1

g
r

~
.
I
.

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

- l6_BIT_UNSIGNED: An unsigned l6-bit data type. The values supported can

be from 0 to 65,535.

- l6_BIT_SIGNED: An signed l6-bit data type. The values supported can be

from -32,768 to 32,767.

- 32_BIT_UNSIGNED: An unsigned 32-bit data type. The values supported can

be from 0 to 4,294,967,295.

- 32_BIT_SIGNED: An signed 32-bit data type. The values supported can be

from -2,147,483,648 to 2,147,483,647.

- 32_BIT_FLOAT: A 32-bit data type supporting decimals.

- 64_BIT: A 64-bit data type supporting decimals.

scratch_folder = the folder where the temporary datasets will be stored

#check to see if the necessary modules have been imported

if 'gdal' not in globals():

from osgeo import gdal

if 'gdalconst' not in globals():

from osgeo import gdalconst

if 'arcgisscripting' not in globals():

import arcgisscripting

if 'gp' not in globals():

gp = arcgisscripting.create(9.3)

elif str(type(gp)) != "<type 'geoprocessing object'>":

del gp

gp = arcgisscripting.create(9.3)

#must first convert the template dataset to a GeoTIFF b/c GDAL can't writ to ESRI Grid

format

template_copy = scratch_folder + "\\temp.tif"

gp.CopyRaster_management(raster_ds_template, template_copy, "#", "#", "#", "NONE",

"NONE", raster_ds_out_format)

#read the copied TIFF file into a GDAL dataset and write the raster_array contents into it

raster_ds = gdal.Open(template_copy, gdalconst.GA_Update)

raster_band = raster_ds.GetRasterBand(I)

raster_band.WriteArray(raster_array)

raster_band.FlushCache()

raster_ds.FlushCache()

del raster_ds, raster_band

#copy the modified template_copy back to an ESRI Grid

gp.CopyRaster_management(template_copy, raster_ds_out_path)

gp.delete_management(template_copy)

del template_copy

92

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

defrastertethIist (raster_ascii_path, output_datatype='int'):

"""Takes a raster as a text file and converts it to a list

raster_ascii_path = full path of an ASCII text file converted from a raster

output_datatype = the datatype of the values in the output list.

Integer is the default, user can specify 'float' or 'string'

#read in the elevation ascii file

raster_ascii = open(raster_ascii_path, 'r')

#initiate the list that will store all of the text values

raster_list = []

raster_ascii.seek(0,0)

for eachLine in raster_ascii:

raster_list.append(eachLine.split(" "))

raster_ascii.close()

#get rid of the descriptive info (the first six rows)

for i in range(6):

raster_list.remove(raster_list[0])

#get rid of the newline character at the end of each row

for row in raster_list:

row.remove(row[len(row) - 1])

#convert the textfile values (string) to whatever numeric type (integer or floating type) was

specified

if output_datatype == 'float' or output_datatype == 'Float':

for row in raster_list:

for i in range(len(row)):

row[i] = float(row[i])

elif output_datatype = 'string' or output_datatype == 'String':

pass

else: #the default will be integer

for row in raster_list:

for i in range(len(row)):

row[i] = int(row[i])

raster_ascii.close()

del raster_ascii

93

113 (1a:

125

116 r

117 11

128 1}

131 n

133 c

133 1

134

135

136 dc

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

I48

149

150

151

152

153

154

155

156

157

158

159

160

return raster_list

def extract_header (raster_ascii_path):

""" Extracts the header information from a raster converted to a text file

and returns it as a list """

raster_ascii = open(raster_ascii_path, ‘r')

header__list = []

for i in range(6):

header_list.append(raster_ascii.readline())

raster_ascii.close()

del raster_ascii

return header_list

def nhood(input_list, row_index, col_index, nsize):

"""Takes a list, row index, and column index and extracts a neighborhood

of nsize around those indexes.

nhood_list = []

#get the boundary indexes

upper_lefl_row = row_index - nsize

if upper_lefi_row < 0: upper_lefi_row = 0

upper_left_col = col_index - nsize

if upper_left_col < 0: upper_lefi_col = 0

lower_right_row = row_index + nsize

if lower_right_row > (len(input_list) - 1): lower_right_row = len(input_list) - 1

lower_right_col = col_index + nsize

if lower_right_col > (len(input_list[0]) - 1): lower_right_col = len(input_list[0]) - 1

#loop through the input_list for the specified boundaries and record the values

row_counter = 0

for i in range(upper_left_row, lower_right_row + 1, 1):

nhood_list.append([])

for j in range(upper_lefi_col, lower_right_col + 1, 1):

nhood_list[row_counter].append(input_list[i][j])

row_counter += 1

return nhood_list

94

l
-
J

‘
4
.
)

tank

*Cmr

5Aum.

8
8

8 z

9 3

w 3

11':

D t

13:

N :

H z

16:

17.5,

H :

W a

30;

31:

2 g

33:

24k:

3 :

36:

37:,-

3 ~

\
O
O
O
Q
G
M
R
W
N
—

W
U
N
N
N
N
N
N
N
N
N
N
N
—
~
—
—
~
—
—
O
—
e
—
—

N
—
O
O
O
O
Q
O
N
M
A
W
N
—
O
V
O
O
O
Q
O
N
M
-
h
W
N
—
O

M
b
)

A
m

35

36

37

38

APPENDIX B -— Python Code

analysis_prep.py

#

analysis_prep.py

Created September 2009

Author: Glenn O'Neil

#

Description: This script generates the datasets and folders necessary for an

analysis ofNED (Naitonal Elevation Dataset) DEM flow-direction

error by comparison to tiles of finer resolution LiDAR DBMS.

The preparation includes a stream-burning process to force surface-

water flow to streams. The NED DEMS are burned with USGS Hydrography

1:24K DLG vector features. LiDAR tile datasets are identified based

on the coordinates of the selected USGS 7.5 minute quadrangle.

This results in a sub-folder of around 40-48 LiDAR DBMS, each to be

prepped separately. The LiDAR DBMS‘ horizontal positional

accuracy are too precise to burn with 1:24K stream features.

Therefore, this script calls one of two custom scripts (specified

by the user) that identify stream locations in LiDAR datasets by

analyzing only elevation values. Once stream identification has been

completed for the LiDAR DBMS, another custom script is called to

attempt to carve through artificial baniers in the LiDAR DEMs,

such as foot-bridges and tile culverts. This script identifies

sinks and carves to the closest low-point within a user-specified

maximum neighborhood size. It continues to identify Sinks and carve

for a user-specified number of iterations. Once the final carve

is complete, the LiDAR DEM is stream-burned, sinks filled, and

flow-direction calculated with the D8 method.

Inputs: 1. quads - an ESRI shapefile of 7.5 Minute USGS Quadrangles

2. quad_id_field - unique quad ID field of the 'quads' shapefile

3. quad_id - the unique ID of the selected quad

4. state_plane_field - field in the 'quads' shapefile that denotes

whether the quad lies in the North or Southern

%
m
a
t
fi
i
t
t
t
k
z
t
t
fi
n
t
k
k
a
t
fi
t
n
t
a
t
n
t
fi
k
k
fl
t
3
t
¢
t
=
l
t
=
fl
=
=
¥
t
¢
t
=
1
1
:

state planes.

5. state_plane_n_sr_file - path to the Ohio State Plane North NAD 83 Ham projection

1e

6. state_plane_s_sr_fi1e - path to the Ohio State Plane South NAD 83 Ham projection

file

7. workspace - the workspace where the quad folder containing all output files and

folders

will be created.

8. streams_wspace - workspace containing a shapefile of stream features for each Ohio

95

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

7 l

72

73

74

75

quad

#

from

#

10.

study.

11.

#

#

#

#

12.

differencein

#

13.

inccells

#

14.

differencein

#

15.

which

#

16.

to

#

l7.

and carve.

18.

#

#

21.

reducing the

#

22.

#

Outputs:

#

#

#

#

#

#

#

#

#

#

9. ned_dem - a single DEM raster for all of Ohio, generated by contour interpolation

DLG hypsography and submitted to NED.

lidar_master__wspace - workspace containing all of the LiDAR rasters used in this

stream_id_method - the method of stream identification for the LiDAR datsaets;

'neighborhood': see script strearn_id_nhood.py

'neighborhood transect combo': a combination ofthe neighborhood and

trasect methods. See scripts strearn_id_nhood.py

and stream_id_transect.py

elev_diff - parameter of the neighborhood stream ID method. The minimum

elevation from a stream bank to the stream center.

neigh_maxsize - parameter of neighborhood stream ID method. The maximum size

to search around a given cell for cells that exceed elev_diff.

elev_diff_trans - parameter of the transect stream ID method. The minimum

elevation from a stream bank to the stream center.

trans_length - parameter of the transect stream ID method. The transect length over

the code will search for elevation changes that exceed elev_diff_trans

max_cavre_length - parameter of the carving script. The maximum distance in cells

search about a sink for a lower point.

iterations - parameter ofthe carving script. The number of times to identify sinks

strearn_id_nhood_script - the path to the neighborhood stream identification script.

19. stream_id_transect_script - the path to the transect stream identification script.

20. carve_script - the path to the carving script.

P
W
H
P
‘
M
P
P
N
T
‘

lidar_sample - boolean value whether to sample a lattice from the LiDAR tiles,

total number of rasters that must be processed.

del_int_data - boolean value whether to delete intermediate datasets

Folder containing output datasets

ned - lO-meter DEM clipped by quadrangle boundary

ned_b = clipped IO-meter DEM stream-bumed with stream_g

ned_bf - filled (depressionless) version ofned_b

ned_fd - flow-direction of lO-meter DEM, derived from ned_bf

ned_fid - raster of unique [D values for each lO-meter cell

quad_se1.shp - shapefile of selected quadrangle boundary

streams.shp - shapefile of quadrangle streams (from DLG hydrography)

streams_g binary raster of stream locations, from streams.shp

10. lidar- directory containing all of the quad's LiDAR data, organized by tile

96

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

10-1. carved_dem - LiDAR DEM with artificial barriers in streams carved through

10-2. flat_areas - raster of locations with a slope of zero, later ignored in error

calculation

10-3. lidar_bum - LiDAR raster with lidar_stream locations burned in.

10-5. lidar_ned_fid -LiDAR-resolution raster of ned_fid, used in locating LiDAR

cell neighborhoods for each NED cell.

10-6. lidar_stream - binary raster of LiDAR stream locations.

11. template_raster - TIFF copy of the ned_fd raster, used to write in flow_error results.

#

#import the necessary modules

import sys, 05, time, arcgisscripting, math, random

from subprocess import call

gp = arcgisscripting.create(9.3)

gp.CheckOutExtension("Spatial")

IS = os.linesep

#function to convert seconds to hours and minutes (borrowed from:

#httpzl/mail.python.org/pipennaillpython-list/2003-January.181366.html

def sec_to_h_min(s):

temp = float()

temp = float(s) / (60*60*24)

d = int(temp)

temp = (temp - d) * 24

h = int(temp)

temp = (temp - h) * 60

m = int(temp)

temp = (temp - m) * 60

sec = int(temp)

return h,m,sec

#inputs

quads = sys.argv[l]

quad_id_field = sys.argv[2]

quad_id = sys.argv[3]

state_plane_field = sys.argv[4]

state_plane_n_sr_file = sys.argv[S]

state_plane_n_sr = gp.CreateObject("SpatialReference")

state_plane_n_sr.CreateFromFile(state_plane_n_sr_file)

state_plane_s_sr_file = sys.argv[6]

state_plane_s_sr = gp.CreateObject("SpatialReference")

state_plane_s_sr.CreateFromFile(state_p1ane_s_sr_fi|e)

97

118 workspace = sys.argv[7]

119 streams_wspace = sys.argv[8] + "\\"

120 ned_dem = sys.argv[9]

121 lidar_master_wspace = sys.argv[10]

122 stream_id_method = sys.argv[] 1]

123 elev_diff = sys.argv[12]

124 neigh_maxsize = sys.argv[13]

125 elev_diff_trans = sys.argv[l4]

126 trans_length = sys.argv[15]

127 max_carve_length = sys.argv[16]

128 iterations = sys.argv[17]

129 stream_id_nhood_script = sys.argv[18]

130 stream_id_transect_script = sys.argv[19]

131 carve_script = sys.argv[20]

132 lidar_sample = sys.argv[21]

133 del_int_data = sys.argv[22]

134

135

136 #get the path to the Python executable, for running certain parts of the script as more memory-

efficient sub-processes.

137 pythonexe = os.environ.get("PYTHONEXE") #will be used to generate sub-processes to prevent

memory leaks

138 pythonexe += "\\python.exe"

139

140 #check to see if a new workspace must be created

141 if not os.path.exists(workspace + "\\" + quad_id):

142 os.mkdir(workspace + "\\" + quad_id)

143

144 workspace += "\\" + quad_id + "\\"

145

146 #create the log textfile

147 Iog_file_path = workspace + "\\log.txt"

148 if not os.path.exists(log_fi1e_path):

149 log_file = open(log_file_path, 'w')

150 log_file.write("QUAD__lD: " + quad_id + ls + Is)

151 log_file.write("Parameters:" + ls)

152 log_file.write(" - quads: " + quads + Is)

153 log_file.write(" - quad_id_field: " + quad_id_field + Is)

154 log_file.write(" - quad_id: " + quad_id + Is)

155 log_file.write(" - state_plane_field: " + state_plane_field + Is)

156 log_file.write(" - state_plane_n_sr_file: " + state_plane_n_sr__file + Is)

157 log_file.write(" - state_plane_s_sr_file: " + state_plane_s_sr_file + Is)

158 log_file.write(" - workspace: " + workspace + Is)

159 log_file.write(" - streams_wspace: " + streams_wspace + Is)

98

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

log_file.write(" - ned_dem: " + ned_dem + ls)

log_file.write(" - lidar_master_wspace: " + lidar_master_wspace + ls)

log_file.write(" - stream_id_method: " + stream_id_method + ls)

log_file.write(" - elev_diff: " + elev_diff+ ls)

log_file.write(" - neigh_maxsize: " + neigh_maxsize + ls)

log_file.write(" - upslope_stream_threshhold: " + upslope_stream_threshhold + ls)

log_file.write(" - max_carve_length: " + max_carve_length + ls)

log_file.write(" - iterations: " + iterations + ls)

log_file.write(" - stream_id_nhood_script: " + stream_id_nhood_script + 15)

log_file.write(" - stream_id_transect_script: " + stream_id_transect_script + ls)

log_file.write(" - stream_id_flowacc_script: " + stream_id_flowacc_script + 15)

log_file.write(" - carve_script: " + carve_script + ls)

log_file.write(" - lidar_sample: " + lidar_sample + ls)

log_file.w1ite(" - delete intermediate data: " + del_int_data + Is + ls)

else:

log_file = open(log_file_path, 'w')

####################################NED analysis prep###########################

#determine whether to skip the NED section because it had already been processed

ned_fid = workspace + "ned_fid"

ned_fd = workspace + "ned_f "

quad_sel = workspace + "quad_sel.shp"

#Determine the state plane of the selected quad.

cursor = gp.searchcursor(quads, ' "'+ quad_id_field +'" = \" + quad_id + '\' ')

row = cursor.next()

state_plane = row.getvalue(state_plane_field)

if not gp.exists(ned_fid):

log_file.write(time.ctime() + " Prepping the NED DEM:" + ls)

#Get the quad

gp.AddMessage(" - Selecting Quad " + quad_id)

log_file.write(time.ctime() + " - Selecting Quad " + quad_id + ls)

gp.select_analysis(quads, quad_sel, ' "'+ quad_id_field +'" = \" + quad_id + '\' ')

#reproject the quad_boundary if necessary

quad_sel_desc = gp.describe(quad_sel)

if quad_sel_desc.SpatialReference.Name == "Unknown":

gp.AddError('The selected quad does not have a defined projection.')

log_file.write(time.ctime() + " - ERROR: Selecting Quad The selected quad does not

99

have a defined projection")

203 log_file.close()

204 del log_file

205 sys.exit()

206

207 quad_pcs = quad_sel_desc.SpatialReference.PCSCode

208 if state_plane = "N":

209 if quad_pcs != state_plane_n_sr.PCSCode: #Must re-project to State Plane North

210 gp.AddMessage(" - Projecting quad boundary from " + quad_sel_desc.Name + " to " +

state_plane_n_sr.Name)

211 log_file.write(time.ctime() + " - Projecting quad boundary from " +

quad_sel_desc.Name + “ to " + state_plane_n_sr.Name + Is)

212 quad_proj = workspace + "quad_proj.shp"

213 gp.project_management(quad_sel, quad_proj, state_plane_n_sr)

2 l4 gp.delete_management(quad_sel)

215 gp.rename__management(quad_proj, quad_sel)

216 elif state_plane == "S":

217 if quad_pcs l= state_plane_s_sr.PCSCode: #Must re-project to State Plane South

218 gp.AddMessage(" - Projecting quad boundary from " + quad_sel_desc.Name + " to " +

state_plane_s_sr.Name)

219 log_file.write(time.ctime() + " - Projecting quad boundary from " +

quad_sel_desc.Name + " to " + state_plane_s_sr.Name + Is)

220 quad_proj = workspace + "quad_proj.shp"

221 gp.project_management(quad_sel, quad_proj, state_plane_s_sr)

222 gp.delete_management(quad_seI)

223 gp.rename_management(quad_proj, quad_sel)

224

225 #Clip the NED DEM by the quad boundary

226 ned_fd = workspace + "ned_fd"

227 if not gp.exists(ned_fd):

228 gp.AddMessage(" - Clipping the NED DEM by the quad boundary")

229 log_file.write(time.ctime() + " - Clipping the NED DEM by the quad boundary" + Is)

230 ned = workspace + "ned"

231 gp.ExtractByMask_sa(ned_dem, quad_sel, ned)

232

233

234 #Get the streams

235 streams_input = streams_wspace + quad_id + "ohyshp"

236 streams = workspace + "streams.shp"

23 7 #Check to see if the stream dataset must be re-projected

23 8 streams_desc = gp.describe(streams_input)

23 9 if streams_desc.SpatialReference.Name = "Unknown":

240 gp.AddError('The selected stream dataset does not have a defined projection.')

24 l log_file.write(time.ctime() + " - ERROR: The selected stream dataset does not have a

defined projection." + Is)

100

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

2 72

273

274

275

276

277

278

log_file.close()

del log_file

sys.exit()

streams_pcs = streams_desc.SpatialReference.PCSCode

if state_plane == "N":

if streams_pcs != state_plane_n_sr.PCSCode: #Must re-project to State Plane North

gp.AddMessage(" - Projecting streams from " + streams_desc.SpatialReference.Name + " to

" + state_plane_n_sr.Name)

log_file.write(time.ctime() + " - Projecting streams from " +

streams_desc.SpatialReference.Name + " to " + state_plane_n_sr.Name + ls)

#select the appropriate transformation

if '16N' in streams_desc.SpatialReference.Name:

transformation =

"Thesis_NAD 1 927_UTM l 6N_to_NAD 1 983_HARN__Ohio_State_Plane_North_fe"

elif '17N' in streams_desc.SpatialReference.Name:

transformation =

"Thesis_NAD 1927_UTM 1 7N_to_NAD l 983_HARN_Ohio_State_Plane_North_fe"

gp.project_management(streams_input, streams, state_plane_n_sr, transformation)

else: #The streams projection is already in the appropriate projection

gp.AddMessage(" - Stream re-projection not needed. Copying streams over to workspace")

log_file.write(time.ctime() + " - Stream re-projection not needed. Copying streams

over to workspace." + ls) -

gp.copy_management(streams_input, streams)

elif state_plane = "S":

if streams_pcs != state_plane_s_sr.PCSCode: #Must re-project to State Plane South

gp.AddMessage(" - Projecting streams from " + streams_desc.SpatialReference.Name + " to

" + state_plane_s_sr.Name)

log_file.write(time.ctime0 + " - Projecting streams from " +

streams_desc.SpatialReference.Name + " to " + state_plane_s_sr.Name + 15)

#select the appropriate transformation

if '16N' in streams_desc.SpatialReference.Name:

transformation =

"Thesis_NAD l 927_UTM 1 6N_to_NAD1 983_HARN_Ohio__State__Plane_South__fe"

e1if‘17N' in streams_desc.SpatialReference.Name:

transformation =

"Thesis_NAD 1 927_UTM l 7N__to_NAD1 983_HARN_Ohio_State_Plane_South_fe"

gp.project_management(streams_input, streams, state_plane_s_sr, transformation)

else: #The streams projection is already in the appropriate projection

gp.AddMessage(" - Stream re-projection not needed. Copying streams over to workspace")

log_file.write(time.ctime() + " - Stream re-projection not needed. Copying streams

over to workspace." + ls)

gp.copy_management(streams_input, streams)

#Convert the streams to a raster for DEM burning

gp.AddMessage(" - Converting streams to raster")

101

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

log_file.write(time.ctime() + " - Converting streams to raster." + ls)

gp.ResetEnvironments()

gp.Extent = ned

. gp.SnapRaster = ned

gp.Mask = ned

gp.CellSize = ned

streams_g_temp = workspace + "streams_g_tmp"

gp.PoIylineToRaster_conversion(streams, "Stream", streams_g_temp)

streams_g = workspace + "streams_g"

gp.SingleOutputMapAlgebra_sa("con(lsNul1(" + streams_g_temp +"), 0, I)", streams_g)

gp.delete_management(streams_g__temp)

#Burn the streams into the NED DEM

gp.AddMessage(" - Burning streams into NED DEM")

log_file.write(time.ctime() + " - Burning streams into NED DEM." + ls)

ned_b = workspace + "ned_b"

gp.SingleOutputMapAlgebra_sa("con(" + streams_g + " == 1, " + ned + ", " + ned + " + 10)",

ned_b)

#Fill the NED DEMs

gp.AddMessage(" - Filling NED DEM")

log_file.write(time.ctime() + " - Filling NED DEM." + ls)

ned_bf= workspace + "ned_bf"

gp.fill_sa(ned_b, ned_bf)

#Calculate NED Flowdirection

print "Calculating NED flowdirection"

gp.AddMessage(" - Calculating NED flow-direction")

log_file.write(time.ctime() + " - Calculating NED flow-direction." + ls)

ned_fd = workspace + "ned_fd"

gp.flowdirection_sa(ned_bf, ned_fd)

#determine if ned_fd needs to be re-projected

gp.ResetEnvironments()

ned_fd_desc = gp.describe(ned_fd)

ned_fd_pcs = ned_fd_desc.SpatialReference.PCSCode

if state_plane = "N":

ifned_fd_pcs != state_plane_n_sr.PCSCode: #Must re-project to State Plane North

gp.AddMessage(" - Projecting ned_fd boundary fiom " +

ned_fd_desc.SpatialReference.Name + " to " + state_plane_n_sr.Name)

log_file.write(time.ctime() + " - Projecting ned_fd boundary from " +

ned_fd_desc.SpatialReference.Name + " to " + state_plane_n_sr.Name + ls)

ned_fd_proj= workspace + "_nedfd_proj"

gp.ProjectRaster_management(ned__fd, ned_fd_proj,state_planen_sr, "NEAREST", "#",

"NAD__1983T_o__HARN_Ohio")

102

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

gp.delete_management(ned_fd)

gp.rename_management(ned_fd_proj, ned_fd)

elif state_plane = "S":

if ned_fd_pcs != state_plane_s_sr.PCSCode: #Must re-project to State Plane South

gp.AddMessage(" - Projecting ned_fd boundary from " + ned_fd_desc.Name + " to " +

state_plane_s_sr.Name)

log_file.write(time.ctime() + " - Projecting ned_fd boundary from " +

ned_fd_desc.SpatialReference.Name + " to " + state_plane_s_sr.Name + ls)

ned_fd_proj = workspace + "ned_fd_proj"

gp.ProjectRaster_management(ned_fd, ned_fd_proj, state_plane_s_sr, "NEAREST", "#",

"NAD_1983_To_I-IARN_Ohio")

gp.delete_management(ned_fd)

gp.rename_management(ned_fd_proj, ned_fd)

#Copy the NED flowdirection raster to a TIFF format for use as a template dataset for writing

error output raster with GDAL later

gp.AddMessage(" - Creating template raster for flow error output")

log_file.write(time.ctime() + " - Creating template raster for flow error output." + ls)

ned_fd_float = workspace + "\\ned_fd_float"

gp.Float_sa(ned_fd, ned_fd_float)

template_raster = workspace + "\\template_raster.tif'

gp.CopyRaster_management(ned_fd_float, template_raster, "#", "#", "#", "NONE", "NONE",

"32_BIT_FLOAT")

gp.delete_management(ned_fd_float)

#convert the ned_fd raster to a point feature dataset

gp.AddMessage(" - Converting NED flow-direction to a point feature dataset")

log_file.write(time.ctime() + " - Converting NED flow-direction to a point feature dataset.

+ ls)

ned_fd_pt = workspace + "ned_fd_pt.shp"

gp.RasterToPoint_conversion(ned_fd, ned_fd_pt, "VALUE")

#convert back to a raster, but with the FID values as the raster values

gp.AddMessage(" - Converting NED flow-direction point feature dataset back to a raster with

the FID Values as raster values")

log_file.write(time.ctime() + " - Converting NED flow—direction point feature dataset back

to a raster with the FID Values as raster values." + ls)

gp.ResetEnvironments()

gp.Extent = ned_fd

gp.CellSize = ned_fd

gp.Mask = ned_fd

gp.SnapRaster = ned_fd

gp.PointToRaster_conversion(ned_fd_pt, "F1D", ned_fid, "MOST_FREQUENT", "NONB")

gp.delete_management(ned_fd_pt)

#re-generate the raster using Map Algebra, this prevents the addition ofNoDATA cells around

the permiter

103

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

#ofned_fid, which PointToRaster can do.

gp.ResetEnvironments()

gp.Extent = ned_fd

gp.CellSize = ned_fd

gp.Mask = ned_fd

gp.SnapRaster = ned_fd

ned_fid2 = ned_fid + "2"

gp.SingleOutputMapAlgebra_sa(ned_fid, ned_fid2)

gp.delete_management(ned_fid)

gp.rename_management(ned_fid2, ned_fid)

#clean up

if del_int_data = "True":

gp.delete_management(streams)

gp.delete_management(streams_g)

gp.delete_management(ned_b)

gp.delete_management(ned_bf)

#get the width of the NED flowdirection raster, for storing in the parameters text file

gp.AddMessage(" - Reading in NED raster cell size")

Iog_file.write(time.ctime() + " - Reading in NED raster cell size." + ls)

ned_descr = gp.describe(ned_fd)

ned_height = ned_descr.meancellheight

ned_width = ned_descr.meancellheight

##

########################LiDDAR analysis prep####################################

if not os.path.isdir(workspace + "lidar"):

os.mkdir(workspace + "lidar")

#determine the LiDAR datasets that intersect the selected quad

log_file.write(ls + "LiDAR DBM prep:" + ls)

gp.AddMessage(" - Identifying LiDAR Rasters that intersect Quad " + quad_id)

log_file.write(time.ctime() + " - Identifying LiDAR Rasters that intersect Quad " + quad_id

+ ls)

quad_sel_desc = gp.describe(quad_sel)

quad_sel_ll_x = quad_sel_desc.extent.xmin

quad_sel_ll_y = quad_sel_desc.extent.ymin

104

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

42 l

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

quad_sel_height = quad_sel_desc.extent.Height

quad_sel_width = quad_sel_desc.extent.Width

#determine the name of the LiDAR dataset that contains the lower_1eft comer of the quad

#first get the rasters

lidar_rasters = []

lidar_master_wspace_contents = os.listdir(lidar_master_wspace)

for i in 1idar_master_wspace_contents:

if os.path.isdir(lidar_master_wspace + "\\" + i):

lidar_rasters.append(i)

del lidar_master_wspace_contents

#determine the size of a LiDAR raster

lidar_descr = gp.describe(lidar__master_wspace + "\\" + lidar_rasters[O] + "\\" + lidar_rasters[0])

lidar_height = lidar_descr.extent.ymax - lidar_descr.extent.ymin

lidar_width = lidar_descr.extent.xmax - lidar_descr.extent.xmin

lidar_rasters_per_quad_height = int(math.ceil(quad_sel_height / lidar_height))

lidar_rasters_per_quad_width = int(math.ceil(quad_sel_width / lidar_width))

for i in range(len(lidar_rasters)):

#get the lidar lower left coordinates from the LiDAR name (first is state plane system, 2-5 are x

and last 3 are y)

lidar_ll_x = int(lidar_rasters[i][l :5] + "000")

lidar_ll_y = int(lidar_rasters[i][Sz] + "000")

ll_x_diff = quad_sel_ll_x - lidar_ll_x

ll_y_diff = quad_sel_ll_y - lidar_ll_y

if ll_x_diff < lidar_width and ll_x_diif >=0 and ll_y_diff < lidar_height and ll_y_diff >=0:

#we've found the lower left LiDAR Dataset

ll_lidar_raster = lidar_rasters[i]

#get the other defining rasters

u1_lidar_raster = lidar_rasters[i][:S] + str(lidar_ll_y + ((lidar_rasters_per_quad_height - l) *

lidar_height))[z3] '

ur_1idar_raster = lidar_rasters[i][: l] + str(lidar_ll_x + ((lidar_rasters_per_quad_width - 1) *

lidar_width))[z4] + str(lidar_ll_y + ((lidar_rasters_per_quad_height - 1) * lidar_height))[z3]

lr_lidar_raster = lidar_rasters[i][:l] + str(lidar_ll_x + ((lidar_rasters_per_quad_width - l) *

lidar_width))[:4] + lidar_rasters[i][5:]

break

#use the corner rasters to define a list of rasters for the entire quad

lidar_raster_list = [U] * lidar_rasters_per_quad_height

for i in range(lidar_rasters_per_quad_height):

105

453

453

454

455

456

457

459

460

461

461

440

44 1

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

lidar_raster_list[i] = [U] * lidar_rasters_per_quad_width

x_location = int(ll_lidar_raster[l:5] + "000")

y_location = int(ll_lidar_raster[5:] + "000")

prefix = state_plane.lower()

for i in range(lidar_rasters_per_quad_height):

for j in range(lidar_rasters_per_quad_width):

lidar_raster_list[i][j] = prefix + str(x_location)[:4] + str(y_location)[:3]

x_location += lidar_width

y_location += lidar_height

#reset the x_location

x_location = int(ul_lidar_raster[1:5] + "000")

#Trim the boundaries off of lidar_raster_list to avoid edge issues during the analysis.

#There will be some areas where the NED dem does not cover the entire LiDAR dem.

lidar_raster_list2 = []

for i in range(l , len(lidar_raster_list) - 1):

lidar_raster_list2.append(lidar__raster_list[i][1 :len(lidar_raster_list[i]) - 1])

del lidar_raster_list

if lidar_sample = "True":

#remove half of the rasters in the form of staggered lattice

lidar_raster_list3 = []

for i in range(len(lidar_raster_list2)):

lidar_raster_list3 .append([])

#determine whether i is odd or even

if i % 2 = 0: # it's even, start at the first index of the row

for j in range(O, len(lidar_raster_list2[i]), 2):

lidar_raster_list3[i].append(lidar_raster_list2[i][j])

else: # its odd, start at the second index of the row

for j in range(l, len(lidar_raster_list2[i]), 2):

lidar_raster_list3[i].append(lidar_raster_list2[i][j])

else: ‘

lidar_raster_list3 = lidar_raster_list2

#move the list into a simpler to handle single dimension

lidar_raster_list = [] I

for i in range(len(lidar_raster_list3)):

for j in range(len(lidar_raster_list3[i])):

lidar_raster_list.append(lidar_raster_list3 [i] U])

106

483

484

485

486

487

488

489

490

49 l

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

del lidar_raster_list2, lidar_raster_list3

#call code to prep the LiDAR tiles

for i in range(len(lidar_raster_list)):

if not os.path.exists(workspace + "lidar\\" + lidar_raster_list[i]):

os.mkdir(workspace + "lidar\\" + lidar_raster_list[i])

gp.AddMessage(" - Prepping LiDAR tile " + str(lidar_raster_list[i]) + " (" + str(i) + " of " +

str(len(lidar_raster_list)) + ")")

log_file.write(time.ctime() + " - Prepping LiDAR tile " + str(lidar_raster_list[i]) + " (" +

str(i) + " of " + str(len(lidar_raster_list)) + ")" + ls)

lidar_prep_time_start = time.clock()

#get the lidar raster

lidar_dem = lidar_master_wspace + "\\" + lidar_raster_list[i] + "\\" + lidar_raster_list[i]

lidar_wspace = workspace + "lidar\\" + lidar_raster_list[i]

#identify the stream network

lidar_fd = lidar_wspace + "\\lidar_fd"

if not os.path.exists(lidar_fd): #then the code did not complete for this raster

lidar_stream = lidar_wspace + "\\lidar_stream"

if not os.path.exists(lidar_stream):

stream_id_time_start = time.clock()

gp.AddMessage(" - Identifying stream cells with the " + stream_id_method + "

method")

log_fi1e.write(time.ctime() + " - Identifying stream cells with the " +

stream_id_method + " method" + ls)

if stream_id_method == "neighborhood":

call([pythonexe, stream_id_nhood_script, lidar_dem, elev_diff, neigh_maxsize,

lidar_stream, lidar_wspace])

elif stream_id_method = "transect":

call([pythonexe, stream_id_transect_script, lidar_dem, neigh_maxsize, elev_diff,

trans_stream, lidar_wspace])

elif stream_id_method == "neighborhood transect combo":

#run the neighborhood method

gp.AddMessage(" - First identifying stream cells with the neighborhood

method")

log_file.write(time.ctime() + " - First identifying stream cells with the

neighborhood method" + ls)

nhood_stream = lidar_wspace + "\\nhood_stream"

107

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

54 l

542

543

544

545

546

547

548

549

550

SS 1

552

553

554

555

556

557

558

call([pythonexe, stream_id_nhood_script, lidar_dem, elev_diff, neigh_maxsize,

nhood_stream, lidar_wspace])

#run the transect method

gp.AddMessage
("

10g_file.write(time.
ctime() +

..

- Next identifying stream cells with the transect method")

- Next identifying stream cells with the

transect method" + ls)

trans_stream = lidar_wspace + "\\trans__stream"

call([pythonexe, stream_id_transect_script, lidar_dem, neigh_maxsize, elev_diff,

trans_stream, lidar_wspace])

#combine the two results

gp.AddMessage("

log_file.write(timeet
imeo + ..

- Combining the neighborhood and transect outputs")

- Combining the neighborhood and transect

outputs" + ls)

gp.ResetEnvironments()

gp.Extent = lidar_dem

gp.Mask = lidar_dem

gp.SnapRaster = lidar_dem

gp.SingleOutputMapAlgebra_sa("con(" + nhood_stream + " == 1 1 " + trans_stream + "

== 1, 1, 0)", lidar_stream)

else:

gp.AddError("UNRECOGNIZED STREAM IDENTIFICATION METHOD")

Iog_file.write(time.ctime() + " - ERROR: UNRECOGNIZED STREAM

IDENTIFICATION METHOD")

log_file.close()

del log_file

sys.exitO

stream_id_time_stop = time.clock()

h,m,s = sec_to_h_min(stream_id_time_stop - stream_id_time_start)

gp.AddMessage(" - ID took " + str(m) + " minutes " + str(s) + " seconds")

log_file.write(time.ctime() + " - ID took " + str(m) + " minutes " + str(s) + "

seconds" + ls)

+ ls)

#use the identified stream cells to burn through artificial barriers in the LiDAR DEM

carved_dem = lidar_wspace + "\\carved_dem"

if not os.path.exists(carved_dem):

stream_carve_time_start = time.clock()

gp.AddMessage(" - Carving stream cells through artificial barriers")

log_file.write(time.ctime() + " - Carving stream cells through artificial barriers"

call([pythonexe, carve_script, lidar_dem, lidar_stream, max_carve_length, iterations,

carve_iteration_script, "true", carved_dem, lidar_wspace])

stream_carve_time_stop = time.clock()

108

559 h,m,s = sec_to_h_min(stream_carve_time_stop - stream_carve_time_start)

550 gp.AddMessage(" - Carve took " + str(m) + " minutes " + str(s) + " seconds")

561 log_file.write(time.ctime() + " - Carve took " + str(m) + " minutes " + str(s) + "

seconds" + Is)

562

563 #burn in the identified streams into the LiDAR DEM

564 gp.ResetEnvironments()

565 lidar_bum = lidar_wspace + "\\lidar_bum"

566 if not os.path.exists(lidar_burn):

567 gp.AddMessage(" - Burning streams into LiDAR DEM")

568 log_fi1e.write(time.ctime() + " - Burning streams into LiDAR DEM" + Is)

569 gp.SingleOutputMapAlgebra_sa("con(" + lidar_stream + " == 1, " + carved_dem + ", " +

caned_dem + " + 10)", lidar_bum)

570

571 #fill the carved and stream_burned LiDAR DEM

572 lidar_fill = lidar_wspace + "\\lidar_fill"

573 if not os.path.exists(lidar_fill):

574 gp.AddMessage(" - Filling the LiDAR DEM")

575 log_file.write(time.ctime() + " - Filling the LiDAR DEM" + Is)

576 gp.fill_sa(lidar_bum, lidar_fill)

577

573 #calculate flow-direction on the filled LiDAR DEM

579 gp.AddMessage(" - Calculating LiDAR DEM flow-direction")

580 log_file.write(time.ctime() + " - Calculating LiDAR DEM flow-direction" + Is)

531 gp.flowdirection_sa(lidar_fill, lidar_fd)

582

583 #create a version ofthe LiDAR dataset with the NED FID values

584 lidar_ned_fid = lidar_wspace + "\\lidar_ned_fid"

535 if not os.path.exists(lidar_ned_fid):

586 gp.AddMessage(" - Creating LiDAR scale raster ofNBD FID values")

587 log_file.write(time.ctime() + " - Creating LiDAR scale raster ofNBD FID values"

+ Is)

588 gp.ResetEnvironments()

589 gp.Extent = lidar_fd

59° gp.CellSize = lidar_fd

591 gp.Mask = lidar_fd

592 gp.SnapRaster = lidar_fd

:2: gp.SingleOutputMapAlgebra_sa(ned_fid, lidar_ned_fid)

595

596 #Getting the LiDAR cell size for the parameters text file that will inform the

597 #selection of LiDAR tiles based on the NED DEM coordinate

533 gp.AddMessage(" . - Recording LiDAR cellsize info for parameters text file")

log_file.write(time.ctime() + " - Recording LiDAR cellsrze info for parameters text

file" + Is)

109

600

601

602

603

604

605

606

607

608

609

610

61 1

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

63 l

632

633

634

63 5

636

637

638

639

640

642

lidar_descr = gp.describe(lidar_fd)

lidar_height = Iidar_descr.meance|lheight

lidar_width = lidar_descr.meancellheight

lidar_cells_per_ned_cell = «ned_height / lidar_height) + (ned_width / lidar_width)) "' 0.5

buffer_size = int(lidar_cells_per_ned_ce|l "' 0.5)

#write cell size information to a parameters textfile for processing

parameters_file_path = lidar_wspace + "\\flow_analysis_parameters.txt"

parameters_file = open(parameters_fi1e_path, 'w')

parameters_file.write("ned_height;" + str(ned_height) + ls)

parameters_file.write("ned__width;" + str(ned_width) + ls)

parameters_file.write("lidar_height;" + str(lidar_height) + ls)

parameters_file.write("lidar_width;" + str(lidar_width) + ls)

parameters_file.write("lidar_cells_per_ned_cell;" + sn'(lidar_cells_per_ned__cell) + ls)

parameters_file.write("bufi‘er_size;" + str(buffer_size) + ls)

parameters_file.close()

del parameters_file

#create a binary raster of flat areas, so these areas may be discarded

#in the calculation of flow-direction error

gp.AddMessage(" - Creating a mask of flat areas")

log_file.write(time.ctime() + " - Creating a mask of flat areas" + ls)

gp.ResetEnvironmentsO

gp.Extent = lidar_fill

gp.SnapRaster = lidar_fill

gp.Mask = lidar_fill

gp.CellSize = lidar_fill

#calculate slope

slope_temp = lidar_wspace + "\\slope_temp"

if not gp.Exists(slope_temp):

gp.Slope_sa(lidar_fill, slope_temp, "PERCENT_RISE")

#convert slope = 0% to binary grid

flat__areas = lidar_wspace + "\\flat_areas"

if not gp.Exists(flat_areas):

gp.SingleOutputMapAlgebra_sa("con(" + slope_temp + " == 0, 1, 0)", flat_areas)

gp.delete_management(slope_temp)

#clean up

if del_int_data == "True":

gp.AddMessage(" - Deleting intermediate data")

log_file.write(time.ctime() + " - Deleting intermediate data" + ls)

if os.path.exists(carved_dem):

110

gp.delete_management(carved_dem)
643

644 if os.path.exists(lidar_stream):

645 gp.delete_management(lidar_stream)

646 if os.path.exists(lidar_burn):

647 gp.delete_management(lidar_bum)

643 1r os.path.exists(lidar_fill):

649 gp.delete_management(lidar_fill)

650

65 1

652 gp.ResetEnvironments()

6S3

654 seconds = time.clock() - lidar_prep_time_start

653 h,m,s = sec_to_h_min(seconds)

656

6S 7 gp.AddMessage(" - Tile " + str(lidar_raster_list[i]) + " took " + str(m) + " minutes " +

6 str(s) + " seconds")

58 Iog_file.write(time.ctime() + " - Tile " + str(lidar_raster_list[i]) + " took " + str(m) + "

minutes " + str(s) + " seconds" + Is)

6S9

660 log_file.close()

66 1 del log_file

111

s
o
o
o
q
o
‘
q
u
N
-
i

w
w
w
w
w
m
w
w
w
w
N
N
N
N
N
N
N
N
N
N
-
-
-
~
.
—
1
.
.
.
.
.
.

c
m
q
a
m
a
w
n
—
o
x
o
o
o
q
m
u
h
u
m
—
o
o
m
q
a
u
a
w
~
_
c

APPENDIX B -— Python Code

stream_dlg_conversion.py

#

stream_dlg_conversion.py

Created September 2009

Author: Glenn O'Neil

#

Description: Takes a directory of DLG hydrography files and converts each

files relevant features to ESRI shapefiles. Crashes due to an

ESRI bug if it tries to process more than 70 files.

#

Inputs: 1. d1g_wspace - directory containing DLG hypsography files.

2. scratch_wspace — directory for temporary files.

3. out_wspace - directory where the output shapefiles are written.

#

Outputs: 1. <quad_name>__ohy.shp — shapefile of quadrangle contours.

#

import os, arcgisscripting, sys

gp = arcgisscripting.create(9.3)

d1g_wspace = sys.argv[1]

scratch_wspace = sys.argv[2] + "\\"

out_wspace = sys.argv[3] + "\\"

#get the dlg files

d1g_wspace_list = os.listdir(dlg_wspace)

d1g_1ist = []

#filter the list so it only contains .dlg files

for i in range(len(dlg_wspace_list)):

if '.dlg' in (d1g_wspace_list[i]):

dlg_list.append(dlg_wspace_list[1])

del d1g_wspace_list

d1g_list_length = len(dlg__list)

for i in range(dlg_list_length):

gp.AddMessage("Processing " + str(i + 1) + " of " + str(dlg_list_length) + ":")

#convert the dlg to a coverage

gp.AddMessage(" - converting DLG to coverage")

d1g_cov = scratch_wspace + "dlg_cov"

gp.dlgarc(dlg_wspace + "\\" + dlg_list[i], dlg_cov)

112

4o

4 1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

#convert the coverage to a shapefile

gp.AddMessage(" - converting coverage to shapefile")

d1g_shp = dlg_cov + "_arc.shp"

gp.FeatureClassToShapefile(dlg_cov + "\\arc", scratch_wspace)

#join the .acode file to the shapefile table on the ID field

gp.AddMessage(" - joining acode table to shapefile")

acode = dlg_cov + ".acode"

gp.joinfield (dlg_shp, "ID", acode, "DLG_COV-ID")

#extract the appropriate stream features

gp.AddMessage(" - extracting stream features")

#get the appropriate fields from d1g_shp

code_fields = gp.]istfields(dlg_shp, 'MINOR*')

select_query = "'MAIORI " = 50 AND ('

for j in range(len(code_fields)):

ifj != (len(code_fields) - l):

select_query += "" + code_fieldsU].Name + '" IN (400,401 ,412,413,4l4,605,606) OR

else: #treat the last record differently

select_query += "" + code_fieldsfi].Name + "' IN (400,401,412,413,4l4,605,606))'

dlg_out = out_wspace + dlg_list[i][:8] + ‘.shp'

gp.select_analysis(d1g_shp, dlg_out, select_query)

gp.AddMessage(" - deleting intermediate data")

gp.delete_management(d1g_cov)

gp.delete_management(dlg_shp)

70 del dlg_list, select_query

113

1
3
1
1
1
1
W
W
-
~

19

APPENDIX B — Python Code

stream_id_nhood.py

#

strearn_id_nhood.py

Created September 2009

#1 Author: Glenn O'Neil

#

Description: Takes an elevation raster and identifies potential stream cells

based on their relationship to cell neighborhood of user-specified

size. The basic premise is that stream cells will be opposed

by higher elevation in one direction (stream banks) and Similar

elevations in the direction perpendicular to the bank cells.

#

Inputs: 1. elev_raster - the elevation raster.

2. elev_diff - the difference in elevation between a cell and a

neighbor that, when exceeded, could potentially represent

a stream bank.

3. neigh_maxsize - the maximum neighborhood size (in cells) to

search for the stream cell relationship defined above.

4. stream_raster - the output binary stream raster.

5. workspace - the directory where temporary files will be written.

#

Outputs: 1. stream_raster - the output binary stream raster.

#

from decimal import *

fi‘om math import floor

import os, sys, time, arcgisscripting

import raster_analysis as raster

IS = os.linesep

gp = arcgisscripting.create(9.3)

arcgis_home = os.environ.get("ARCGISHOME")

gP-AddTOOIbOX(angis_home + "ArcToolbox\\Toolboxes\\Conversion Tools.tbx")

#function to convert seconds to hours and minutes (borrowed from:

#httpz/lmail.python.org/pipennail/python-list/2003-January. l 81366.html

def sec_to_h_min(s):

temp = float()

temp = float(s) / (60*60*24)

d = int(temp)

temp = (temp - d) * 24

114

h = int(temp)

temp = (temp - h) * 60

m = int(temp)

temp = (temp - m) "‘ 60

sec = int(temp)

return h,m,sec

#get the necessary files from the user

elev_raster = sys.argv[l]

#get the elevation difference that will identify streambed cells\

elev_diff = sys.argv[2]

elev_diff = float(e1ev_difi)

#get the max neighborhood size\

neigh_maxsize = sys.argv[3]

#get the file name and path for the output stream raster

stream_raster = sys.argv[4]

#get the scratch workspace

workspace = sys.argv[S] + "\\"

#start the timer

start_time = time.clock()

#convert the raster to a text file

elev_ascii_path = workspace + "elev_ascii.txt"

gp.AddMessage("- Converting raster to ASCII")

gp.RasterToASCII_conversion(elev_raster, elev_ascii_path)

#record the header information for writing in the output stream file

header_list = raster.extract_header(elev_ascii_path)

#read the elevation text raster into a list

elev_list = raster.rastertext21ist(elev__ascii_path, 'float')

os.remove(elev_ascii_path)

#intiate a list to represent the resulting stream ascii, set initial values to 0.

stream_list = [U] "' len(elev_list)

for i in range(len(stream_list)):

stream_list[i] = [0] "' Ien(elev_list[0])

#Move through elev_list and look at the surrounding neighbors for

#values that exceed the user-specified elevation difference. If one is found,

#check the opposite cell. For example, if a southeast cell is above the

115

83 #threshold, check the corresponding northwest cell. If both are above the

84 #threshold, then the center cell may be the stream. To check, check the opposite

85 #set of cells (in the example above this would be the southwest and northwest

86 #cells. If they are below the threshold, then that direction may be the stream.

87 #Code those cells to l in the stream list.

#counters for output

streambed_cells = 0

#a function for analyzing neighborhoods

defnhood (thelist, row_index, col_index, nsize):

#thelist is the list to operate on

#row_index is the row index number of the center cell

#col_index is the column index number ofthe center cell

#nsize is the size of the neighborhood buffer (nsize of l = 3x3 neighborhood)

ubound_index = row_index - nsize #the upper index

bbound_index = row_index + nsize #the bottom index

lbound_index = col_index - nsize #the left index

rbound_index = col_index + nsize #the right index

global streambed_cells

#check to see if we're near the boundary of the dataset, and adjust accordingly

if ubound_index < 0: ubound_index = 0

if bbound_index > (len(thelist) - l): bbound_index = (len(thelist) - I)

if lbound_index < 0: lbound_index = 0

if rbound_index > (len(thelist[0]) - 1): rbound_index = (len(thelist[0]) - l)

#fmd the cell in the neighborhood with the maximum steepness

center_value = thelist[row_index][col_index]

max_value = center_value

max_location = [row_index,col_index]

for k in range(ubound_index, bbound_index):

for l in range(lbound_index, rbound_index):

if thelist[k][1] > max_value:

max_value = thelist[k][l]

max_row_index = k

max_col_index = I

if (max_value - center_value) > elev_diff: #There was a cell in the neighborhod

#higher than the center cell and above the elevation difference threshold.

116

126

127

I28

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

I47

I48

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

I66

167

#Now look for another steep cell on the opposite side of the center cell

#first, find the distance between the max location and center cell

row_distance = row_index - max_row_index

col_distance = col_index - max_col_index

abs_row_distance = abs(row_distance) if abs(row_distance) > 0 else 1

abs_col_distance = abs(col_distance) if abs(col_distance) > 0 else I

opposite_row_index = row_index + row_distance

opposite_col_index = col_index + col_distance

#check for the boundaries

if opposite_row_index < 0: opposite_row_index = 0

elif opposite_row_index > bbound_index: opposite_row_index = bbound_index

if opposite_col_index < 0: opposite_col_index = 0

elif opposite_col_index > rbound_index: opposite_col_index = rbound_index

if (thelist[opposite_row_index][opposite_col_index] - center_value) > elev_diff:

#Then the opposite side is also above the threshold. The center of

#the neighborhood may be a the stream.

#Get the indexes of the recipricol diagonal (e.g. the peaks were northeast and southwest of

#the center cell. Now check northwest and southwest to see if it's less than the threshold.

recip_row_index1 = row_index - col_distance

recip_col_indexl = col_index + row_distance

recip_row_index2 = row_index + col_distance

recip_col_index2 = col_index - row_distance

if recip_row_index1 < 0: recip_row_index1 = 0

elif recip_row_index1 > bbound_index: recip_row_index1 = bbound_index

if recip_row_index2 < 0: recip_row_index2 = 0

elif recip_row_index2 > bbound_index: recip_row_index2 = bbound_index

if recip_col_indexl < 0: recip_col_indexl = 0

elif recip_col_indexl > rbound_index: recip_col_indexl = rbound_index

if recip_col_index2 < 0: recip_col_index2 = 0

elif recip_col_index2 > rbound_index: recip_col_index2 = rbound_index

if (thelist[recip_row_indexl][recip_col_indexl] - center_value) < elev_diff and

(thelist[recip_row_index2][recip_col_index2] - center_value) < elev_diff:

117

168

169

I70

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

I88

189

190

191

192

I93

194

195

196

I97

198

199

200

201

202

203

204

205

206

207

208

209

streambed_cells += 1

#it might be the stream.

#We now begin to define the stream basin.

#In this instance, we will define a rectangular region, with the max value location,

#it's opposite index, and the two reciprocal indidecs as the comers.

#The area of the rectangle will be coded l, defining it as part ofthe streambed.

#To do this we must determine the slope of the rectangles edges. This will

#enable us to define the area within the edges. Though, we must determine the

#path from one corner to the other. Here is an example.

#If the slope was 15/7, it would make a big L shaped edge.

#We need to find the relatively straight path from each comer to the next.

#We do this by reducing the smaller number of the

#slope to 1. For example, a slope of 15/7 would reduce to a horizontal (H)

#movment of 1 for every 2.5 vertical movements (V). Of course we can't move

#25 cells. So we will construct a list of vertical movements for the path fi'om

the max cell to the first reciprocal cell (one edge of the rectangle). In our

#example above, half of the vertical movements in that list will be a value of 3,

#and half will be 2. Because, along the path, for every horizontal movement of l,

#50% ofthe time the subsequent vertical movement will be 2, and 50% of the time 3.

#We had previously determined the absolute row and col distance [tom the max cell

#to the center cell. The slope of the edge from themax cell to the first reciprocal

#cell (one edge of the rectangle) is as follows:

#Calculate new row and col distances. This time from the max index to the first

#Watch out for the edges. They could throw off these calculations

#using absolute values can help avoid the problem. Just swap the values

orig_max_row_index = max_row_index

orig_max_col_index = max_col_index

orig_recip_row_index1 = recip_row_index1

orig_recip_col_indexl = recip_col_indexl

if (abs(row_index - max_row_index) < abs(row_index - opposite_row_index» or

(abs(col_index - max_col_index) < abs(col_index - opposite_col_index»:

#you need to switch the max and opposite indexes

max_row_index = opposite_row_index

max_col_index = opposite_col_index

opposite_row_index = orig_max_row_index

opposite_col_index = orig_max_col_index

118

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

24 l

242

243

244

245

246

247

248

249

250

25 1

if (abs(row_index - recip_row_index1) < abs(row_index - recip_row_index2)) or

(abs(col_index - recip_col_indexl) < abs(col_index - recip_col_index2)):

#you need to switch the reciprocal indexes

recip_row_index1 = recip_row_index2

recip_col_indexl = recip_col_index2

recip_col_index2 = orig_recip_col_indexl

recip_row_index2 = orig_recip_row_indexl

row_distance2 = max_row_index - recip_row_index1

col_distance2 = max_col_index - recip_col_indexl

abs_row_distance2 = float(abs(row_distance2))

abs_col_distance2 = float(abs(col_distance2))

#Initiate lists that will store the h_move and v_move lists.

#The first list will contain the h_move and v_move values for the path

#from the max index to the first reciprocal index.

#The second list will contain the h_move and v_move values for the path

#from the max index to the second reciprocal index.

#The stream basin will be defined by looping throught the first list

#within the second list.

#The list sizes will be the same as the minimum value between abs_row_distance2

#and abs_col_distance2.

list_size = min(abs_row_distance2, abs_col_distance2)

if list_size = 0: list_size = 1

abs_difference = abs(abs_row_distance2 - abs_col_distance2)

move_quotient = 0

#Detennine the h_move and v_move

if abs_row_distance2 < abs_col_distance2 and abs_row_distance2 != 0: #we're stepping

horizontally

primary_move = "horizontal"

#recod the maximum H distance for a V distance of 1

if col_distance2 > 0: #we're stepping left

if abs_row_distance2 > 0:

move_quotient = (abs_col_distance2/abs_row_distance2) * -l

min_h_move = int(floor(move_quotient)) + I

if abs(abs_col_distance2 % abs_row_distance2) > 0:

max_h_move = min_h_move - 1

else:

max_h_move = min_h_move

119

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

else: #it's a straight line down to the destination index

min_h_move = col_distance2

max_h_move = min_h_move

elif col_distance2 < 0: #we're stepping right

if abs_row_distance2 > 0:

move_quotient = abs_col_distance2/abs_row_distance2

min_h_move = int(floor(move_quotient))

if abs(abs_col_distance2 % abs_row_distance2) > 0:

max_h_move = min_h_move + 1

else:

max_h_move = min_h_move

else: #it's a straight line down to the destination index

min_h_move = col_distance2 "‘ -l

max_h_move = min_h_move

if row_distance2 < 0: v_move = I

elif row_distance2 > 0: v_move = -1

else: v_move = 0

if min_h_move == max_h_move:

h_move_list1 = [min_h_move] * int(list_size)

else:

h_move_listl = move_list(list_size, min_h_move, max_h_move, move_quotient,

row_index, col_index)

v_move_listl = [v_move] * int(list_size)

elif abs_col_distance2 < abs_row_distance2 and abs_col_distance2 != 0: #we're

stepping vertically

primary__move = "vertical"

#recod the maximum V distance for an H distance of 1 .

if row_distance2 > O: #we're stepping up (visually, not in terms of row index

numbers)

if abs_col_distance2 > 0:

move_quotient = (abs_row_distance2/abs__col_distance2)
* -1

min_v_move = int(floor(move_quotient)) + I

if abs(abs_row_distance2 % abs_col_distance2) > 0:

max_v_move = min_v_move - 1

else:

max_v_move = min_v_move

else: #it's a straight line down to the destination index

min_v_move = row_distance2

max_v_move = min_v_move

120

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

elif row_distance2 < 0: #we're stepping down (visually, not in terms of row index

numbers)

if abs_col_distance2 > 0:

move_quotient = abs_row_distance2/abs_col_distanceZ

min_v_move = int(floor(move_quotient))

if abs(abs_row_distance2 % abs_col_distance2) > 0:

max_v_move = min_v_move + 1

else:

max_v_move = min_v_move

else:

min_v_move = row_distance2 * -1

max_v_move = min_v_move

if col_distance2 < 0: h_move = 1

elif col_distance2 > 0: h_move = -1

else: h_move = 0

if min_v_move == max_v_move:

v_move_list1 = [min_v_move] "‘ int(list_size)

else:

v_move_list1 = move_list(list_size, min_v_move, max_v_move, move_quotient,

row_index, col_index)

h_move_list1 = [h_move] * int(list_size)

else: #the're equal, it's a square

primary_move = "either"

if row_distance2 < 0: v_move = l

elif row_distance2 > 0: v_move = -1

else: v_move = 0

if col_distance2 < 0: h_move = l

elif col_distance2 > 0: h_move = -1

else: h_move = 0

v_move_list1 = [v_move] * int(list_size)

h_move_1ist1 = [h_move] * int(list_size)

#check to see if it's a perfect square

if v_move == :

h_move_list1 = [h_move] * int(abs_col_distance2)

v_move_listl = [0] "‘ int(abs_col_distance2)

if h_move == :

h_move_listl = [0] * int(abs_row_distance2)

121

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

numbers)

cell,

v_move_listl = [v_move] * int(abs_row_distance2)

#figure out the distances from the max index to recipricol index2.

row_distance3 = max_row_index - recip_row_index2

col_distance3 = max_col_index - recip_col_index2

h_move_list2 = []

v_move_list2 = []

if col_distance3 < 0: #we're stepping to the right

for k in range(len(v_move_listl)):

h_move_list2.append(abs(v_move_list1 [k]))

elif col_distance3 > 0: #we‘re stepping to the left

for k in range(len(v_move_listl)): .

h_move_list2.append(abs(v_move_listl [k])* - l)

else:

h_move_list2 = [0] * len(v_move_listl)

if row_distance3 < 0: #we're stepping down (visually, not in terms of row index

for k in range(len(h_move_listl)):

v_move_list2.append(abs(h_move_list1 [k]))

elif row_distance3 > 0: #we're stepping up

for k in range(len(h_move_listl)):

v_move_list2.append(abs(h_move_listl [k])* -1)

else:

v_move_list2 = [0] "‘ 1en(h_move_listl)

#Call a function that takes the four comers of the stream basin (the max, its opposite

#and the two recipracols) and constructs a square using those points as the comers.

#Then set all of the values in that area to 1 for the stream_list. . .

river_bed(max_row_index, max_col_index, v_move_listl , h_move_listl , v_move_list2,

h_move_list2, primary_move, ubound_index, bbound_index, lbound_index, rbound_index)

def move_list(list_length, min_move, max_move, quotient, row, col):

#This function constructs the move lists from one cell to another.

the_list = [min_move] * int(list_length)

max_index_list = []

122

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

41 l

412

413

414

415

416

move_difference = quotient - min_move #gives us the percentage of the time that max_move

will be used.

max_index_places = abs(list_length * move_difference)

max_index_step = list_length / max_index_places

if int(abs(move_difference) * 10) >= 5: # then the max move will dominate the list or split it

evenly, and should be first

max_index_holder = 0

else: #it should start later in the list

max_index_holder = int(round(max_index_step)) - 1 #minus I to put it in proper zero-based

index mode

max_index_step_counter = 0

while max_index_holder < len(the_list):

max_index_list.append(max_index_holder)

max_index_step_counter += max_index_step

max_index_holder = int(round(max_index_step_counter))

for i in range(len(the_list)):

if i in max_index_list:

’the_1ist[i] = max_move

return the_list

def river_bed(max_row_index, max_col_index, v_move_listl, h_move_listl , v_move_list2,

h_move_list2, primary_move, ubound_index, bbound_index, lbound_index, rbound_index):

#this function will loop through the v_move_listl and h_move_listl, while looping though a

#reciprocal version of each list, v_move_list2 and h_move_list2.

current_row_indexl, current_row_index2 = max_row_index, max_row_index

current_col_indexl, current_col_index2 = max_col_index, max_col_index

stream_list[current_row_index1][current_col_index]] = 1

#need to make an initial run through v_move_listl and h_move_listl

if primary_move == "vertical":

for p in range(len(v_move_listl)):

for q in range(abs(v_move_listl [p])):

if v_move_listl [p] > 0 : current_row_indexl += 1

elif v_move_list1[p] < 0: current_row_indexl -= 1

if current_row_index1 > bbound_index: current_row_indexl = bbound_index

123

417

418

419

420

421

422

423

424

425

426

427

428

429

430

43 l

432

433

434

435

436

437

438

439

440

441

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

elif current_row_index1 < 0: current_rowwindexl = 0

stream_list[current_row_index l][current_col_index l] = 1

if h_move_listl [p] > 0 : current_col_indexl += 1

elif h_move_listl [p] < 0: current_col_indexl -= 1

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elifcurrent_col_index1 < 0: current_col_indexl = 0

stream_list[current_row__index l][current_col_index 1] = 1

elif primary_move == "horizontal":

for p in range(len(v_move_listl)):

for q in range(abs(h_move_list1[p])):

if h_move_listl[p] > 0 : current_col_indexl += 1

elif h_move_listl [p] < 0: current_col_indexl -= 1

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elifcurrent_col_index1 < 0: current_col_indexl = 0

stream_list[current_row_index l][current_col_index I] = 1

if v_move_list1[p] > 0 : current_row_indexl += 1

elif v_move_listl [p] < 0: current_row_indexl -= I

if current_row_indexl > bbound_index: current_row_indexl = bbound_index

elif current_row_index1 < 0: current_row_index1 = 0

stream_list[current_row_index l][current_col_index l] = l

for p in range(len(v_move_listl)):

if h_move_listl [0] > 0 : current_col_indexl += 1

elif h_move_listl [0] < 0: current_col_indexl -= I

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elif current_col_indexl < 0: current_col_indexl = 0

if v_move_listl [0] > 0 : current_row_index1 += 1

elifv_move_list1[0] < 0: current_row_indexl -= 1

if current_row_indexl > bbound_index: current_row_indexl = bbound_index

e1ifcurrent_row_indexl < 0: current_row_indexl = 0

124

#
#
A

460

461

462

463

464

465

466

467

468

469

470

47 1

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

50 l

502

stream_list[current_row_index l][current_col_index l] = 1

if h_move_list2[0] > 0: current_col_index2 += 1

elif h_move_list2[0] < 0: current_col_index2 -= 1

if current_col_index2 > rbound_index: current_col_index2 = rbound_index

elif current_col_index2 < 0: current_col_index2 = 0

if v_move_list2[0] > 0: current_row_index2 += 1

elif v_move_list2[0] < 0: current_row_index2 -= 1

if current_row_index2 > bbound_index: current_row_index2 = bbound_index

elif current_row_index2 < 0: current_row_index2 = 0

current_row_indexl, current_col_indexl = current_row_index2, current_col_index2

#now loop through both sets of lists

for m in range(len(v_move_list2)):

#need to caputre loop of v_move_list2

if primary_move == "vertical":

for n in range(abs(h_move_list2[m])):

stream_list[current_row_index2][current_col_indexZ] = l

for p in range(len(v_move_listl)):

for q in range(abs(v_move_list1[p])):

if v_move_listl[p] > 0 : current_row_indexl += 1

elif v_move_listl [p] < 0: current_row_indexl -= 1

if current_row_indexl > bbound_index: current_row_indexl = bbound_index

elif current_row_indexl < 0: current_row_indexl = 0

stream_list[current_row_index l][current_col_index I] = I

if h_move_listl[p] > 0 : current_col_indexl += 1

elifh_move_list1[p] < 0: current_col_indexl -= 1

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elifcurrent_col_index1 < 0: current_col_indexl = 0

strearn_list[current_row_index l][current_col_index I] = 1

if h_move_list2[0] > 0: current_col_index2 += 1

elif h_move_list2[0] < 0: current_col_index2 -= 1

125

503

504

505

506

507

508

509

510

51 l

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

if current_col_index2 > rbound_index: current_col_index2 = rbound_index

elif current_col_index2 < 0: current_col_index2 = 0

stream_list[current_row_index2][current_col_index2] = l

current_col_indexl = current_col_index2

current_row_indexl = current_row_index2

if v_move_list2[0] > 0: current_row_index2 += 1

elif v_move_list2[0] < 0: current_row_index2 -=

if current_row_index2 > bbound_index: current_row_index2 = bbound_index

elif current_row_index2 < 0: current_row_index2 = 0

current_row_indexl = current_row_index2

e1ifprimary_move == "horizontal":

for n in range(abs(v_move_list2[m])):

stream_list[current_row_index2][current_col_index2] = I

for p in range(len(v_move_listl)):

for q in range(abs(h_move_listl [p])):

if h_move_listl [p] > 0 : current_col_indexl += 1

e11fh__move__1istl[p] < 0: current_col_indexl -= I

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elif current_col_indexl < 0: current_col_indexl = 0

stream_list[current_row_indexl][current_col_index1] = 1

if v_move_listl[p] > 0 : current_row_indexl += 1

elifv_move_list1 [p] < 0: current_row_indexl -= I

if current_row_indexl > bbound_index: current_row_indexl = bbound_index

elif current_row_indexl < 0: current_row_indexl = 0

stream_list[current_row_index l][current_col_index 1] = 1

if v_move_list2[0] > 0: current_row_index2 += 1

elif v_move_list2[0] < 0: current_row_index2 -= l

126

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

if current_row_index2 > bbound_index: current_row_index2 = bbound_index

elif current_row_index2 < 0: current_row_index2 = 0

stream_list[current_row_index2][current_col_index2] = l

current_row_indexl = current_row_index2

current_col_indexl = current_col_index2

if h_move_list2[0] > O: current_col_index2 += 1

elif h_move_list2[0] < 0: current_col_index2 -=

if current_col_index2 > rbound_index: current_col_index2 = rbound_index

elif current_col_index2 < 0: current_col_index2 = 0

current_col_indexl = current_col_index2

else:

stream_list[current_row_index2][current_col_index2] = l

for p in range(len(v_move_listl)):

if h_move_listl [0] > 0 : current_col_indexl += 1

e1ifh_move_listl [0] < 0: current_col_indexl -= 1

if current_col_indexl > rbound_index: current_col_indexl = rbound_index

elif current_col_indexl < 0: current_col_indexl = 0

stream_list[current_row_index1][current_col_index I] = 1

if v_move_listl[O] > 0 : current_row_indexl += 1

elifv_move_list1[0] < 0: current_row_indexl -= I

if current_row_indexl > bbound_index: current_row_indexl = bbound_index

elifcurrent_row_index1 < 0: current_row_indexl = 0

stream_list[current_row_index1][current_col_indexl] = 1

if h_move_list2[0] > 0: current_col_index2 += 1

elif h_move_list2[0] < 0: current_col_index2 -= 1

if current_col_index2 > rbound_index: current_col_index2 = rbound_index

elif current_col_index2 < 0: current_col_index2 = 0

127

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

61 1

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

63 1

if v_move_list2[0] > 0: current_row_index2 += 1

elif v_move_list2[0] < 0: current_row_index2 -= 1

if current_row_index2 > bbound_index: current_row_index2 = bbound_index

elif current_row_index2 < 0: current_row_index2 = 0

current_row_indexl, current_col_indexl = current_row_index2, current_col_index2

percent_done = 0

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

nhood(elev_list, i, j, int(neigh_maxsize))

percent = int((float(i) / (len(stream_list) - l) * 100))

if percent > percent_done:

gp.AddMessage(' - Analyzing: '+ str(percent) + '% completed')

percent_done = percent

#write the output stream file

stream_file_text_name = stream_raster + ".txt"

stream_file = open(stream_file_text_name, 'w')

for i in range(len(header_list)):

stream_file.write(header_list[i])

percent_done = 0

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

stream_file.write('%s ' % (stream_list[i][i]))

stream_file.write(ls)

percent = int((float(i) / (len(stream_list) - l) * 100))

if percent > percent_done:

percent_done = percent

stream_file.close()

gp.ASCIIToRaster_conversion(stream_file_text_name, stream_raster, "INTEGER")

os.remove(stream_file_text_name)

gp.AddMessage(" - There were " + str(streambed_cells) + " recip_small_slopes")

stop_time = time.clock() - start_time

seconds = stop_time - start_time

h,m,s = sec_to_h_min(seconds)

gp.AddMessage(' - Took ' + str(h) + ' hours ' + str(m) + ' minutes ' + str(s) + ' seconds')

128

\
O
N
Q
O
N
M
A
W
N
—

w
w
u
w
w
w
w
w
w
w
w
N
N
N
N
N
N
N
N
N
-
d
a
—
I
s
—
t
u
—
I
a
—
e
—
u
—
n
u
—
t
—
e
—
n

\
O
“
\
I
a
L
h
-
h
‘
J
Q
N
—
‘
o
o
m
q
a
'
t
u
#
W
N
—
O
O
W
Q
Q
M
A
W
N
H
O

APPENDIX B — Python Code

stream_id_transect.py

#

stream_id_transect.py

Created September 2009

Author: Glenn O'Neil

#

Description: Takes an elevation raster and identifies potential stream cells

based on their relationship within directional transects.

The basic premise is that stream cells in the middle of a

transect will be opposed by higher elevations towards the ends

of the transect.

Inputs: 1. elev_raster_path - the elevation raster.

2. stream_width - the maximum width of the stream, and therefore

the maximum width ofthe transect.

3. bank_depth - the theshold elevation difference defining a

stream cell from a stream bank cell.

4. stream_output_raster - the output binary stream raster.

Outputs: 1. stream_output_raster - the output binary stream raster.

3
t
¥
=
=
t
t
¥
t
=
t
t
1
t
¢
t
¢
t
=
l
t
=
t
t
3
t
4
t
¢
t

from decimal import "‘

from math import floor

import time, 05, sys, arcgisscripting

import raster_analysis as raster

IS = os.linesep

gp = arcgisscripting.create(9.3)

#function to convert seconds to hours and minutes (borrowed from:

#httpzl/mail.python.org/pipermaillpython-list/2003-January. 1 81366.html

def sec_to_h_min(s):

temp = floatO

temp = float(s) / (60*60*24)

d = int(temp)

temp = (temp - d) * 24

h = int(temp)

temp = (temp - h) * 60

m = int(temp)

129

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

temp = (temp - m) "' 60

sec = int(temp)

return h,m,sec

#Get the necessary files from the user

elev_raster_path = sys.argv[l]

#Get the maximum width of the stream

stream_width = sys.argv[2]

stream_width = float(stream__width)

#Get the minimum depth of the stream bed to the stream bank

bank_depth = sys.argv[3]

bank_depth = float(bank_depth)

#Output raster

stream_output_raster = sys.argv[4]

workspace = stream_output_raster[:stream_output_raster.rfind('\\')] + '\\'

#Get the file name and path for the output stream file

stream_file_name = workspace + 'strtiant' + str(int(stream_width)) + 'e' + str(int(bank_depth))

+ '.txt'

#Start the timer

start_time = time.clock()

#Convert the raster to a text file

elev_ascii_path = workspace + "elev_ascii.txt"

gp.AddMessage("- Converting raster to ASCII")

gp.RasterToASClI_conversion(elev_raster_path, elev_ascii_path)

#record the header information for writing in the output stream file

header_list = raster.extract_header(elev_ascii_path)

#read the elevation text raster into a list

elev_list = raster.rastertext2list(elev_ascii_path, 'float')

os.remove(elev_ascii_path)

#Intiate a list to represent the resulting stream ascii, set initial .values to 0.

stream_list = [fl] "‘ len(elev_list)

for i in range(len(stream_list)):

130

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

stream_list[i] = [0] * Ien(elev_list[0])

#Move through the list along transects to identify stream cells. Start by moving

#vertically from the top cells to the bottom cells, beginning with the upper-left

#cell. Move south, and note any locations where elevation decreases, and then increases

#within the user-specified maximum stream width. You may have to set a minimum

#stream width threshold if this approach picks up too many non-stream features.

#Counters for output

streambed_cells = 0

#A function to analyze a transect of cells. The number of cells is equal to the

#user specified maximum stream width

def transect(thelist):

#thelist is the list to operate on

global bank_similarity, bank_depth

#Identify the minimum elevation along the transect

min_elev = min(thelist)

#Note its index in the list

for m in range(len(thelist)):

if thelist[m] == min_elev:

min_index = m

break

#Check the cells after the minimum_index to see if elevation increases significantly

max_elev = max(the1ist[min_index:len(thelist)])

if (thelist[O] - min_elev) > bank_depth and (max_elev - min_elev) > bank_depth:

transect_is_stream = True

else:

transect_is_stream = False

return transect_is_stream

#initiate a transect list to send to the transect function

transect_list = [0] * int(stream_width)

transect_called = 0

131

125

126

127

128

129

130

I31

I32

133

I34

135

I36

137

138

139

140

141

142

143

144

I45

146

I47

148

149

150

151

152

153

154

155

156

157

158

159

160

I61

162

163

164

I65

166

#Move through the list vertically, from northernmost cells to sourthemmost,

#looking for decreases in elevation

percent_done = 0

for i in range(len(elev_list[OD):

for j in range(len(elev_list)):

elev = elev_list[i][i]

#Check the next elevation, watch out for the boundary

if (i + 1) < len(elev_list):

elev_next = elev_list[j + 1][i]

else:

break

if elev > elev_next: #We might have the beginning of a stream, send the next K cells to

the transect function

for k in range(int(stream_width)):

#Make sure you're not at the dataset boundary

if (j + k) < len(elev_list) and i < Ien(elev_list[jD:

transect_list[k] = elev_list[j + k][i]

is_stream = transect(transect_list)

transect_called += 1

if is_stream:

for k in range(int(stream_width)):

if (j + k) < len(elev_list) and i < Ien(elev_list[iD:

stream_list[j + k][i] = 1

percent = int((float(i) / (Ien(elev_list[0]) - l) * 100))

if percent > percent_done:

gp.AddMessage(’ - Analyzing vertical transects: '+ str(percent) + '% completed')

percent_done = percent

#Move through the list horizontally, from westernmost cells to easternmost,

#looking for decreases in elevation

percent_done = 0

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

elev = elev_list[i][j]

#Check the next elevation, watch out for the boundary

if (j + 1) < Ien(elev_list[0]):

elev_next = elev_list[i][j + 1]

else:

break

132

167

168

I69

170

171

172

173

174

I75

176

177

178

I79

180

181

182

183

184

185

186

187

188

I89

190

191

192

I93

194

195

196

197

198

199

200

201

202'

203

204

205

206

207

if elev > elev_next: #We might have the beginning of a stream, send the next K cells to

the transect function

for k in range(int(stream_width)):

#Make sure you're not at the dataset boundary

if (j + k) < Ien(elev_list[jD and i < len(elev_list):

transect_list[k] = elev_list[i][j + k]

is_stream = transect(transect_list)

transect_called += 1

if is_stream:

for k in range(int(stream_width)):

if (j + k) < Ien(elev_list[jD and i < len(elev_list):

stream_list[i][j + k] = 1

percent = int((float(i) / (Ien(elev_list[0]) - l) * 100))

if percent > percent_done:

gp.AddMessage(' - Analyzing horizontal transects: ' + str(percent) + '% completed')

percent_done = percent

#Move through the list diagnollay, from northwest cells to southeast, looking for decreases in

elevation

percent_done = 0

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

elev = elev_list[i][j]

#Check the next elevation, watch out for the boundary

if (i + l) < Ien(elev_list[0]) and (i + 1) < len(elev_list):

elev_next = elev_list[i + l][i + 1]

else:

break

if elev > elev_next: #We might have the beginning of a stream, send the next K cells to

the transect function

for k in range(int(stream_width)):

#Make sure you're not at the dataset boundary

if (j + k) < 1en(elev_list[j]) and (i + k) < len(elev_list):

transect_list[k] = elev_list[i + k][i + k]

is_stream = transect(transect_list)

transect_called += 1

if is_stream:

for k in range(int(stream_width)):

133

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

 if (j + k) < Ien(elev_list[jD and (i + k) < len(elev_list):

stream_list[i + k][i + k] = 1

percent = int((float(i) / (Ien(elev_list[0]) - l) * 100))

if percent > percent__done:

gp.AddMessage('- Analyzing diagonal (NWSE)transects: '+ str(percent) + '%

completed')

percent_done = percent

#Move through the list diagnollay, from southwest cells to northeast,

#looking for decreases in elevation

percent_done = 0

for i in range(len(elev_list) - 1, -1, -1):

for j in range(len(elev_list[i])):

elev = elev_list[i][j]

#Check the next elevation, watch out for the boundary

if (j + l) < Ien(elev_list[0]) and (i - 1) >= 0:

elev_next = elev_list[i - l][j + 1]

else:

break

if elev > elev_next: #We might have the beginning of a stream, send the next K cells to

the transect function

for k in range(int(stream_width)):

#Make sure you're not at the dataset boundary

if (j + k) < Ien(elev_list[jD and (i - k) >= 0:

transect_list[k] = elev_list[i - k][i + k]

is_stream = transect(transect_list)

transect_called += 1

if is_stream:

for k in range(int(stream_width)):

if (j + k) < Ien(elev_list[jD and i >= 0:

stream_list[i - k][i + k] =

percent = int(float((len(elev_list[0]) - i + l) / float(len(elev_list[0]) - 1)) * 100)

if percent > percent_done:

gp.AddMessage(' - Analyzing diagonal (SW-NB) transects: '+ str(percent) + '%

completed')

percent_done = percent

#Write the output stream file

stream_file = open(stream_file_name, 'w')

134

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

for i in range(len(header_list)):

stream_file.write(header_list[i])

percent_done = O

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

stream_file.write('%s ' % (stream_list[i][j]))

stream_file.write(ls)

stream_file.close()

gp.AddMessage(' - Converting stream output to raster.')

gp.ASCIIToRaster_conversion(stream_file_name, stream_output_raster, "INTEGER")

os.remove(stream_file_name)

os.remove(elev_ascii_path)

print "%i transects were analyzed " % (transect_called)

seconds = time.clock() - start_time

h,m,s = sec_to_h_min(seconds)

print 'Took ' + str(h) + ' hours ' + str(m) + ' minutes ' + str(s) + ' seconds'

135

©
0
0
\
)
O
\
M
J
>
W
N
~

APPENDIX B - Python Code

carve.py

#

carve.py

Created September 2009

Author: Glenn O'Neil

#

Description: Takes a DEM and binary raster of stream locations, identifies

sinks in the DEM, and carves paths through artificial barriers

within the stream locations of the DEM. Based on work by

Soille.

#

Inputs: 1. elev_raster - full path to the DEM.

. stream_raster - binary raster of stream locations, must be3
1
:

N

the same row and column size as the DEM.

3. max_carve_length - the maximum distance (in cells)

that a carving can cover.

4. iterations - the number of times the script should iterate

through the DEM to carve through barriers. Each loop may

yield new sinks that need to be carved.

5. delete_intermediate - boolean value indicating whether to

to delete the temporary folders for each iteration.

6. output_raster - the final carved DEM.

7. workspace - folder where intermediate data is stored.

Outputs: 1. output_raster - the final carved DEM.

%
I
t
i
t
t
l
t
t
i
t
t
k
i
t
l
t
t
h
J
t
B
t
l
t
t
l
l
t
n
t

from decimal import *

from math import floor

import os, sys, copy, arcgisscripting, shutil

IS = os.linesep

import raster_analysis as raster

gp = arcgisscripting.create(9.3)

Load required toolboxes...

arcgis_home = os.environ.get("ARCGISHOME")

gp.AddToolbox(arcgis_home + "ArcToolbox\\Toolboxes\\Data Management Tools.tbx")

136

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

gp.AddToolbox(arcgis_home + "ArcToolbox\\Toolboxes\\Conversion Tools.tbx")

gp.CheckOutExtension("Spatial")

#get the necessary files from the user

elev_raster = sys.argv[l]

stream_raster = sys.argv[2]

max_carve_length = sys.argv[3]

max_carve_length = int(max_carve_length)

#number oftimes to iterate

iterations = sys.argv[4]

iterations = int(iterations)

delete_intermediate = sys.argv[S]

output_raster = sys.argv[6]

workspace = sys.argv[7] + "\\"

#Move through elev_list and look for cells that are sinks AND stream cells.

#If that condition is met, begin a radial search looking for an elevation lower

#than the selected cell. If/once that lower cell is found, carve a path to the

#cell by manually lowering elevation values along the path incrementally,

#yielding a slope through the potential barrier that created the sink.

def move_list(list_length, min_move, max_move, quotient):

#This function constructs the move lists from one cell to another.

the_list = [min_move] * int(list_length)

max_index_list = []

move_difference = quotient - min_move #gives us the percentage of the time that max_move

will be used.

max_index_places = abs(list_length * move_difference)

max_index_step = list_length / max_index_places

if int(abs(move_difference) * 10) >= 5: # then the max move will dominate the list or split it

evenly, and should be first

max_index_holder = 0

else: #it should start later in the list

max_index_holder = int(round(max_index_step)) - 1 #minus 1 to put it in proper zero-

based index mode

max_index_step_counter = O

137

81 while max_index_holder < len(the_list):

82 max_index_list.append(max_index_holder)

83 max_index_step_counter += max_indexnstep

84 max_index_holder = int(round(max_index_step_counter))

85

86 for i in range(len(the_list)):

87 if i in max_index_list:

88 the_list[i] = max_move

89

90 return the_list

91

92

93 def carve(row_index, col_index):

94 global elev_list, elev_out_list, max_carve_length, rbound_index, bbound_index,

lbound_index, ubound_index

95

96 sink_elev = elev_list[row_index][col_index]

97 carve_to_elev = sink_elev

98

99 #initiate the initial neighborhood size to search. You don't start with l

100 #because the adjacent neighbors were searched in the sink identification.

101 nhood_size = 2

102 while not carve_to_elev < sink_elev and nhood_size <= max_carve_length:

103

104 #get the cell's neighbors

105 nhood_list = raster.nhood(elev_list, row_index, col_index, nhood_size)

106

107 #get the minimum elevation value from the returned nhood_list

108 #only check the outer edges since the others had already been checked

109 row_length = len(nhood__list)

110 col_length = len(nhood_list[0])

l 1 1 #check the first row

112 min_elev_top = min(nhood_list[0])

113 min_elev_top_index = nhood_list[0].index(min_elev_top)

114

1 15 #check the bottom row

116 min_elev_bottom = min(nhood_list[row_length - 1])

117 min_elevgbottom_index = nhood_list[row_length - l].index(min_elev_bottom)

118

l 19 #check the left column

120 min_elev_lefi = nhood_list[0][0]

121 min_elev_left_index = 0

122 for i in range(row_length):

138

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

I43

144

I45

I46

I47

I48

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

I65

 if nhood_list[i][O] < min_elev_left: k

min_elev_left = nhood_list[i][O]

min_elev_lefi_index = i

#check the right column

min_elev_right = nhood_list[0][col_length - l]

min_elev_right_index = 0

for i in range(row_length):

if nhood_list[i][col_length - 1] < min_elev_right:

min_elev_right = nhood_list[i][col_length - 1]

min_elev_right_index = 1

#determine which elevation and index has the lowest elevation

min_elev = min(min_elev_top, min_elev_bottom, min_elev_lefi, min_elev_right)

#check to see if we've found an elevation less than the sink's

if min_elev < sink_elev:

#note the indexes ofthe lower sink

if min_elev == min_elev_top:

lower_sink_row = row_index - (int(row_length / 2)) #easy since its the top row

lower_sink_col = (col_index - (int(col_length / 2))) + min_elev_top_index

elif min_elev == min_elev_bottom:

lower_sink_row = row_index + (int(row_length / 2)) #easy since its the bottom row

lower_sink_col = (col_index - (int(col_length / 2))) + min_elev_bottom_index

elif min_elev == min_elev_left:

lower_sink_row = (row_index - (int(row_length / 2))) + min_elev_left_index

lower_sink_col = col_index - (int(row_length / 2)) #easy since its the left column

elif min_elev == min_elev_right:

lower_sink_row = (row_index - (int(row_length / 2))) + min_elev_right_index

lower_sink_col = col_index + (int(row_length / 2)) #easy since its the left column

nhood_size += 1

carve_to_elev = min_elev

#check to see if the search was successful

if nhood_size > max_carve_length:

#couldn't find a lower elevation within the max neighborhood size

no_lower_sink__found.append(‘row: ' + str(row_index) +' col: '+ str(col_index))

return

139

I66

167

168

169

170

171

172

173

174

I75

176

177

178

179

I80

181

182

183

184

185

I86

187

I88

I89

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

#carve from row_index and col_index to lower_sink_row and lower_sink_col

row_dist = row_index - lower_sink_row

col_dist = col_index - lower_sink_col

abs_row_dist = float(abs(row_dist))

abs_col_dist = float(abs(col_dist))

#Initiate lists that will store the h_move and v_move lists.

#The first list will contain the h_move and v_move values for the path

#from the row_index and col_index to the lower_sink_row and lower_sink_col.

#The list sizes will be the same as the minimum value between abs_row_dist

#and abs_col_dist.

list_size = min(abs_row_dist, abs_col_dist)

if list_size == 0: list_size = l

move_quotient = 0

#Determine the h_move and v_move

if abs_row_dist < abs_col_dist and abs_row_dist != 0: #we're stepping horizontally

primary_move = "horizontal"

#recod the maximum H distance for a V distance of I

if col_dist > 0: #we're stepping left

if abs_row_dist > 0:

move_quotient = (abs_col_dist/abs_row_dist) * -l

min_h_move = int(floor(move_quotient)) + 1

if abs(abs_col_dist % abs_row_dist) > 0:

max_h_move = min_h_move - 1

else:

max_h_move = min_h_move

else: #it's a straight line down to the destination index

min_h_move = col_dist

max_h_move = min_h_move

elif col_dist < 0: #we're stepping right

if abs_row_dist > 0:

move_quotient = abs_col_dist/abs_row_dist

min_h_move = int(floor(move_quotient))

if abs(abs_col_dist % abs_row_dist) > 0:

max_h_move = min_h_move + 1

else:

max_h_move = min_h_move

else: #it's a straight line down to the destination index

min_h_move = col_dist * -1

max_h_move = min_h_move

140

209

210

21 I

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

if row_dist < 0: v_move = l

elif row_dist > 0: v_move = -1

else: v_move = 0

if min_h_move == max_h_move:

h_move_list = [min_h_move] "' int(list_size)

else:

h_move_list = move_list(list_size, min_h_move, max_h_move, move_quotient)

v_move_list = [v_move] * int(list_size)

elif abs_col_dist < abs_row_dist and abs_col_dist != 0: #we're stepping vertically

primary_move = "vertical"

#recod the maximum V distance for an H distance of 1

if row_dist > 0: #we're stepping up (visually, not in terms of row index numbers)

if abs_col_dist > 0:

move_quotient = (abs_row_dist/abs_col_dist) * -l

min_v_move = int(floor(move_quotient)) + 1

if abs(abs_row_dist % abs_col_dist) > 0:

max_v_move = min_v_move - 1

else:

max_v_move = min_v_move

else: #it's a straight line down to the destination index

min_v_move = row_dist

max_v_move = min_v_move

elif row_dist < 0: #we're stepping down (visually, not in terms of row index numbers)

if abs_col_dist > 0:

move_quotient = abs_row_dist/abs_col_dist

min_v_move = int(floor(move_quotient))

if abs(abs_row_dist % abs_col_dist) > 0:

max_v_move = min_v_move + 1

else:

max_v_move = min_v_move

else:

min_v_move = row_dist "‘ -l

max_v_move = min_v_move

if col_dist < 0: h_move = 1

elif col_dist > 0: h_move = -1

else: h_move = 0

if min_v_move == max_v_move:

141

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

v_move_list = [min_v_move] * int(list_size)

else:

v_move_list = move_list(list_size, min_v_move, max_v_move, move_quotient)

h_move_list = [h_move] * int(list_size)

else: #the're equal, it's a square

primary_move = "either"

if row_dist < 0: v_move = l

elif row_dist > 0: v_move = -1

else: v_move = 0

if col_dist < 0: h_move = 1

elif col_dist > 0: h_move = -1

else: h_move = 0

v_move_list = [v_move] * int(list_size)

h_move_list = [h_move] * int(list_size)

#check to see if it's a perfect square

if v_move == 0:

h_move_list = [h_move] * int(abs_col_dist)

v_move_list = [0] * int(abs_col_dist)

if h_move == :

h_move_list = [0] * int(abs_row_dist)

v_move_list = [v_move] * int(abs_row_dist)

#we now need to determine the length of the path, and how much the incremental elevation

decline will be

if primary_move == 'either':

path_length = len(h_move_list)

else:

path_length = abs(sum(h_move_list)) + abs(sum(v_move__list))

elev_diff = sink_elev - min_elev

elev_decline_increment = elev_diff / float(path_length)

current_elev = sink_elev

#variables to keep track of the indexes the path moves through

current_row = row_index

current_col = col_index

142

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

if primary_move == 'horizontal':

#iterate through the h_move_list

for m in range(len(h_move_list)):

h_move = h_move_list[m]

for n in range(abs(h_move)):

if h_move_list[m] > 0: current_col += 1

elif h_move_list[m] < 0: current_col -= 1

current_elev -= elev_decline_increment

elev_out_list[current_row][current_col] = current_elev

if v_move_list[m] > 0: current_row += 1

elif v_move_list[m] < 0: current_row -= 1

#watch for the dataset boundaries

if current_row < 0 or current_row > bbound_index or current_col > rbound_index or

current_col < lbound_index:

carve_to_elev = sink_elev

break

current_elev -= elev_decline_increment

elev_out_list[current_row][current_col] = current_elev

elif primary_move == 'vertical':

#iterate through the v_move_list

for m in range(len(v_move_list)):

v_move = v_move_list[m]

for n in range(abs(v_move)):

if v_move_list[m] > 0: current_row += 1

elif v_move_list[m] < 0: current_row -= 1

current_elev -= elev_decline_increment

elev_out_list[current_row][current_col] = current_elev

if h_move_list[m] > 0: current_col += 1

elif h_move_list[m] < 0: current_col -= 1

#watch for the dataset boundaries

if current_row < 0 or current_row > bbound_index or current_col > rbound_index or

current_col < lbound_index:

carve_to_elev = sink_elev

143

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

break

current_elev -= elev_decline_increment

elev_out_list[current_row][current_col] = current_elev

else: #its a straight diagonal path

for p in range(len(v_move_list)):

if h_move_list[O] > 0 : current_col += 1

elif h_move_list[O] < 0: current_col -= 1

if v_move_list[O] > 0 : current_row += 1

elif v_move_list[O] < 0: current_row -= 1

#watch for the dataset boundaries

if current_row < 0 or current_row > bbound_index or current_col > rbound_index or

current_col < lbound_index:

carve_to_elev = sink_elev

break

current_elev -= elev_decline_increment

elev_out_list[current_row][current_col] = current_elev

for h in range(iterations):

gp.AddMessage("Beginning Iteration " + str(h + 1) + ":")

#create a workspace for the current iteration

sub_workspace = workspace + 'iteration' + str(h + 1)

os.mkdir(sub__workspace)

#Calculating flow direction

gp.AddMessage(" - Calculating flow direction of elevation raster")

flowdir_raster = sub_workspace + "\\fd_temp"

if h > 0:

#get the previous iteration's output

elev_raster = workspace + 'iteration' + str(h) + "\\elev_out" + str(h)

gp.FlowDirection_sa(elev_raster, flowdir_raster)

#Calculate sinks

gp.AddMessage(" - Calculating sinks")

sinks_raster = sub_workspace + "\\sinks" + str(h + l)

gp.Sink_sa(flowdir_raster, sinks_raster)

144

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

#convert the rasters to text files

if h = :

gp.AddMessage(" - Converting elevation raster to a text file")

elev_ascii_path = sub_workspace + "\\elev_temp.txt"

gp.RasterToASCll_conversion(e1ev_raster, elev_ascii_path)

else: #get the previous iteration's elevation text file

elev_ascii_path = workspace + 'iteration' + str(h) + '\\elev_out' + str(h) + '.txt'

stream_ascii_path = workspace + "stream_temp.txt"

if h = 0:

gp.AddMessage(" - Converting stream raster to a text file")

gp.RasterToASCll_conversion(stream_raster, stream_ascii_path)

gp.AddMessage(" - Converting sinks raster to a text file")

sink_ascii_path = sub_workspace + "\\sinks" + str(h + l) + ".txt"

gp.RasterToASCIl_conversion(sinks__raster, sink_ascii_path)

#convert the raster text files to arrays

gp.AddMessage(" - Reading elevation text file into a list")

elev_list = raster.rastertext21ist(elev_ascii_path, 'float')

if h == :

gp.AddMessage(" - Reading stream text file into an array")

stream_ary = raster.raster2array(stream_raster)

gp.AddMessage(" - Reading sinks text file into an array")

sink_ary = raster.raster2array(sinks_raster)

#record the header information for writing in the output stream file

raster_header = raster.extract_header(elev_ascii_path)

#note the indexes ofthe dataset boundaries

rbound_index = Ien(elev_list[0]) - l

lbound_index = 0

bbound_index = len(elev_list) - 1

ubound_index = 0

#intiate a list to represent the resulting elevation ascii, set initial values to elev_list's.

elev_out_list = copy.deepcopy(elev_list)

#initiate a list to keep track of carving attempts that could not find a lower cell (i.e., the

maximum

#carve length was exceeded before a lower elevation was found

no_lower_sink_found = []

145

(
T
‘
r
.

.

i I

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

#counters for output

sinks_carved = 0

percent_done = 0

stream_ary_length = len(stream__ary)

gp.AddMessage(' - Analyzing')

for i in range(len(elev_list)):

for j in range(len(elev_list[i])):

if stream_ary[i,j] = l and sink_ary[i,j] > 0: #we may have a barrier to carve through

carve(i, j)

sinks_carved += 1

percent = int((float(i) / (stream__ary__length - I) * 100))

if percent > percent_done:

gp.AddMessage(' - Analyzing: ' + str(percent) + '% completed‘)

percent_done = percent

del elev_list, sink_ary

#write the output stream file

elev_out_file_name = sub_workspace + "\\elev_out" + str(h + l) + ".txt"

elev_out_file = open(elev_out_file_name, 'w')

for i in range(len(raster_header)):

elev_out_file.write(raster_header[i])

percent_done = 0

gp.AddMessage(' - Writing outputs')

for i in range(len(elev_out_list)):

for j in range(len(elev_out_list[i])):

elev_out_file.write('%s ' % (elev_out_list[i][j]))

elev_out_file.write(ls)

percent = int((float(i) / (len(elev_out_list) - 1) * 100))

if percent > percent_done:

gp.AddMessage(' - Writing: '+ str(percent) + '% completed')

percent_done = percent

elev_out_file.close()

del elev_out_file

gp.AddMessage(' - There were ' + str(sinks_carved) + ' sinks carved.')

gp.AddMessage(' - There were ' + str(len(no_lower_sink_found)) + ' sinks left unresolved')

del no_lower_sink_found

146

t
a
n
"
.

1
-

"
.

463 #convert the elev_out_file to a raster

464 gp.AddMessage(' - Converting the output elevation file to a raster')

465 elev_out_raster = sub_workspace + "\\elev_out" + str(h + 1)

466 gp.ASCIIToRaster_conversion(elev_out_file_name, elev_out_raster, "FLOAT")

467

468

469

470 #clean up

471 del elev_out_list

472 gp.AddMessage(' - Cleaning up')

473 gp.Delete_management(flowdir_raster)

474 os.remove(sink_ascii_path)

475

476 if h == 0: os.remove(elev_ascii_path)

477

478

479 if delete_intermediate == 'True':

480 #clean up some more

481 gp.AddMessage('Deleting intermediate data')

482

483 for i in range(iterations):

484 sub_workspace = workspace + 'iteration' + str(i + l)

485 if i < (iterations - I):

486 shutil.rmtree(sub_workspace)

487 else:

488 gp.CopyRaster_management(sub_workspace + "\\elev_out" + str(i + 1), output_raster)

489 shutil.rmtree(sub_workspace)

490 os.remove(stream_ascii_path)

491 #del stream_list

492 del stream_ary

493 else:

494 os.remove(stream_ascii_path)

147

\
O
O
O
Q
O
N
M
A
U
J
N
—

10

ll

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

APPENDIX B — Python Code

flow_error.py

#

flow_error.py

Created September 2009

Author: Glenn O'Neil

#

Description: Uses the lO-meter flow-direction raster (ned_fd) and the LiDAR

tile flow-direction rasters (lidar_fd) in the lidar directory

to calculate flow-direction error for each lO-meter cell.

#

Inputs: 1. quad_id - quadrangle ID (e.g. CW210).

2. workspace - directory for quadrangle containing all of the

datasets (ned_fd and lidar_fd).

#

Outputs: 1. flow_error.tif - TIFF raster of flow-direction raster at the

extent and cell-size of the ned_fd(10-meter) with a value

of 0-4 calculated for each cell.

#

from osgeo import gdal, gdalconst

import time, os, sys, numpy, copy

import raster_analysis as raster

IS = os.linesep

#get the quad name

quad_id = sys.argv[I]

workspace = sys.argv[2]

#function to convert seconds to hours and minutes (borrowed from:

#http://mail.python.org/pipermail/python-list/2003-January. 18l366.html

def sec_to_h_min(s):

temp = floatO

temp = float(s) / (60*60*24)

d = int(temp)

temp = (temp - d) "‘ 24

h = int(temp)

temp = (temp - h) * 60

m = int(temp)

temp = (temp - m) * 60

sec = int(temp)

return h,m,sec

148

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

7 l

72

73

74

75

76

77

78

79

80

8 I

#start the timer

script_start__time = time.clock()

#create the log textfile

flow_results_file_path = workspace + "\\log.txt"

flow_results_file = open(flow_results_file_path, 'w')

flow_results_file.write("QUAD_ID;" + quad_id + ls)

flow_results_file.close()

del flow_results_file

#read the lidar_fd into a list, by way of a less efficient array

ned_fd = workspace + "\\ned_fd"

ned_fd_ary = raster.raster2array(ned_fd)

ned_fd_list = ned_fd_ary.tolist()

del ned_fd_ary

#read the ned_fid raster into an array

ned_fid = workspace + "\\ned_fid"

ned_fid_ary = raster.raster2array(ned_fid)

ned_fid_list = ned_fid_ary.tolist()

del ned_fid_ary

#initiate an array to represent the resulting flow direction evaluation, with initial values of 0.

#make it the same size as the fd_list

fd_eval_ary = numpy.zeros([len(ned_fd_list),len(ned_fd_list[0])])

#initiate an array to keep track of cells that have been processed (to facilitate assignment of

NoData values later)

cells_processed_ary = numpy.zeros([len(ned_fd_list),len(ned_fd_list[0])])

#iterate through the folders of the workspace, and conduct the flow analysis

lidar_wspace_contents = os.listdir(workspace + "\\lidar")

raster_list = []

for i in lidar_wspace_contents:

if os.path.isdir(workspace + "\\lidar\\" + i) and i != 'info':

raster_list.append(i)

raster_list_length = len(raster_list)

for z in range(len(raster_list)):

raster_folder_start_time = time.clock()

149

F
r
i
-
€
1
.
7
1

 82 check_timer_start = time.clock()

83 4.‘

84 raster_folder = workspace + "\\lidar\\" + raster_list[z]

85 print ' - Processing raster’ + raster_folder + '(' + str(z + l) + ' of ' + str(raster_list_length) + ')'

86 #get the LiDAR dataset

87 lidar_fd = raster_folder + "\\lidar_fd"

88

89

90 #get the cell size parameters from the flow_analysis_parameters.txt file and store them in a

dictionary

91 parameters_list = []

92 parameters_dict = {}

93 parameters_file_path = raster_folder + "\\flow_analysis_parameters.txt"

94 parameters_file = open(parameters_file_path, 'r')

95 for eachLine in parameters_file:

96 parameters_list.append(eachLine.split(";"))

97 parameters_file.close()

98

99 #get rid ofthe newline character at the end of each row, and add it to the dictionary

100 for i in range(len(parameters_list)):

101 parameters_list[i][l] = parameters_list[i][l][:len(parameters_list[i][1]) - 2]

102 parameters_dict[parameters_list[i][0]] = parameters_list[i][1]

103

104 #indices for performing neighborhood analyses

105 buffer_size = int(parameters_dict['buffer_size'])

106 start_center_row = buffer_size

107 start_center_col = buffer_size

108 end_center_row = 0

109 end_center_col = 0

1 10

1 1 1 #read the lidar_fd into a list by way ofan array

1 12 Iidar_fd_ary = raster.raster2array(lidar_fd)

113 lidar_fd_list = lidar_fd_ary.tolist()

1 14 del Iidar_fd_ary

115

116 #read the LiDAR dataset with the NED FID values into a list by way of an array

117 lidar_ned_fid = raster_folder + "\\lidar_ned_fid"

l 18 lidar_ned_fid_ary = raster.raster2array(lidar_ned_fid)

119 lidar_ned_fid_list = lidar_ned_fid_ary.tolist()

120 del lidar_ned_fid__ary

121

122 #read the binary mask for flat areas (derived from LiDAR-scale dataset 'carved_dem')

123 flat_areas = raster_folder + "\\flat_areas"

150

124

125

126

127

128

129

130

131

132

133

I34

135

136

137

138

139

140

I41

142

143

I44

I45

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

 flat__areas_ary = raster.raster2array(flat_areas) \

flat_areas_list = flat_areas_ary.tolist() -

del flat_areas_ary

#Index counters for keeping track of lidar_ned_id indices as the code loops through the

ned_fid

#e.g. We will extract the lidar cells that correspond to the selected NED ID. To do that

#we must loop through the array to find the appropriate cells, and we don't want to start the

search

#at the beginning each time. Since we're skipping the edge cells of the NED, we'll set the

starting

#values to two less than the number of lidar cells per NED cell.

lidar_cells_per_ned_cell = int(float(parameters_dict["lidar_cells_per_ned_cell"]))

lidar_ned_fid_row_start = int(lidar_cells_per_ned_cell) - 2

lidar_ned_fid__row_end = lidar_ned_fid_row_start + 1

lidar_ned_fid_col_start = int(lidar_cells_per_ned_cell) - 2

lidar_ned_fid_col_end = lidar_ned_fid_row_end

script_start__time = time.clock()

#identify the NED FID of the first and last LiDAR cells

lidar_ned_fid_start = lidar_ned_fid_list[0][0]

lidar_ned_fid_end = lidar_ned_fid_list[len(lidar_ned_fid_1ist)- l][len(lidar_ned_fid_list[0]) -

#In a few tiles, NoData values crept into the dataset at the comers, so we must check for those

#and grab the first positive ned_fid value, by moving diagonally from the comers

row = 0

col = 0

while lidar_ned_fid_start < 0:

lidar_ned_fid_stait = lidar_ned_fid_list[row] [col]

row += 1

col += 1

row = len(lidar_ned_fid_list) - 1

col = len(lidar_ned_fid_list[row]) - 1

while lidar_ned_fid_end < 0:

lidar_ned_fid_end = lidar_ned_fid_list[row][col]

row -= 1

col -= 1

#determine the index in ned_fid_list where the lidar_ned_fid_start and lidar_ned_fid_end

values are located

ned_fid_list_start_row = 0

ned_fid_list_start_col = 0

ned_fid_list_end_row = 0

151

164

165

166

167

168

169

170

171

I72

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

I92

I93

194

I95

196

I97

I98

199

200

201

202

203

204

ned_fid_list_end_col = 0

for i in range(len(ned_fid_list)):

try:

ned_fid_list_start_col = ned_fid_list[i].index(|idar_ned_fid_start)

ned_fid_list_start_row = 1

break

except ValueError:

pass

for i in range(ned_fid_list_start_row, len(ned_fid_list)):

try:

ned_fid_list_end_col = ned_fid_list[i].index(lidar_ned_fid_end)

ned_fid_list_end_row = i

break

except ValueError:

pass

#move through ned_fid_list performing a neighborhood assessment of flow-direction

percent_done = 0

#variable for determining if a flat_cell was encountered, breaking the loop

flat_area__found = False

for i in range(ned_fid__list_start_row + 2, ned_fid_list_end_row - 2): #+2 and -2 to avoid the

top and bottom edges

#reset the lidar_ned_fid_col_start =

lidar_ned_fid_col_start = int(lidar_cells_per_ned__cell) - 2

for j in range(ned_fid_list_start_col + 2, ned_fid_list_end_col - 2): #+2 and -2 to avoid the

left and right edges

ned_fid_value = ned_fid_list[i][j]

#extract the LiDAR cells of the selected NED cell and the neighborhood around the

selected NED cell

#first, identify where the LiDAR cells are

end_search = False

#skip no data cells, e.g. ned_fid_value < 0 for a 32-bit unsigned integer, and cells that

have already been processed

ifned_fid_value < 0 or cells_processed_ary[i,i] == :

break

152

205 "
206 for k in range(lidar_ned_fid_row_start, len(lidar_ned_fid_list)): \

207 for m in range(lidar_ned_fid_col_start, len(lidar__ned_fid_list[k])):

208 if lidar_ned_fid_list[k][m] = ned_fid_value: #we've found the start of the NED

area within the LiDAR cells

209 lidar_ned_fid_row_start = k

210 lidar_ned_fid_col_start = m

21 1 #find the col_end

212 for n in range(lidar_ned_fid_col_start, len(lidar_ned_fid_list[k])):

213 if lidar_ned_fid__list[k][n] != ned_fid_value: #we've found the end of the NED

area (the previous column)

214 lidar_ned_fid_col_end = n - 1

215 break

216 #fmd the row_end

217 for n in range(lidar_ned_fid_row_start, len(lidar_ned_fid_list)):

218 if lidar_ned_fid_list[n][lidar_ned_fid_col_start] 1= ned_fid_value: #we've

found the end of the NED area (the previous row)

219 lidar_ned_fid_row_end = n - 1

220 end_search = True

221 break

222 break

223 if end_search:

224 break

225

226 #determine the boundaries for extracting the LiDAR flow-direction values for the

defined area and a buffer-area equal to half a NED cell.

227 lidar_nhood_row_start = lidar_ned_fid_row_start - buffer_size

228 lidar_nhood_row_end = lidar_ned_fid_row_end + buffer_size

229 lidar_nhood_col_start = lidar_ned_fid_col_start - buffer_size

230 lidar_nhood_col_end = lidar_ned_fid_col_end + buffer_size

231

232 #create lists to store the values of neighborhood cells

233 lidar_nhood_fd_list = []

234 flat_areas_nhood_list = []

235 for k in range(lidar_nhood_row_start, lidar_nhood_row_end + I):

236 lidar_nhood_fd_list.append(lidar_fd_list[k][lidar_nhood_col_startlidar_nhood_col_end + 1])

237 flat_areas_nhood_list.append(flat_areas_list[k][lidar_nhood_col_startlidar_nhood_col_end +

11)

238

239 nhood_rows = len(lidar_nhood_fd_list)

240 nhood_cols = len(lidar_nhood_fd_list[0])

241

242 end_center_row = nhood_rows - buffer_size

243 end_center_col = nhood_cols - buffer_size

244

153

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

#create a list that will mark the selected NED area LiDAR cells (center cells) as l and the

buffer cells as 0

lidar_nhood_ary = numpy.zeros_like(lidar_nhood_fd_list)

lidar_nhood_list = lidar_nhood_ary.tolist()

del lidar_nhood_ary

#lidar_nhood_list[start_center_row:end_center_row] [start_center_col:end_center_col] =

for k in range(start_center_row, end_center_row + 1):

for n in range(start_center_col, end_center_col + l):

lidar_nhood_list[k][n] = 1

#create a list that will store flow-accumulation of center cells within the neighborhood

lidar_nhood_fa_ary = numpy.zeros_like(lidar_nhood_fd_1ist)

lidar_nhood_fa_list = lidar_nhood_fa_ary.tolist()

del lidar_nhood_fa_ary

#Calculate flow_accumulation in the LiDAR neighborhood.

#Visit each center cell (i.e. lidar_nhood_list == 1), trace its flow path using

lidar_nhood_fd_list until it exits the neighborhood

counter = 0

for k in range(start_center__row, end_center_row):

for m in range(start_center_col, end_center_col):

current_row = k

current_col = in

#while current_row < nhood_rows - l and current_row >= 0 and current_col <

nhood_cols - 1 and current_col >= 0:

while current_row < nhood_rows and current_row >= 0 and current_col <

nhood_cols and current_col >= 0:

#check for flat_area

if flat_areas__nhood_list[current_row][current_col] == :

flat_area_found = True

break

#determine what direction flow exits the current cell

lidar_fd_value = lidar_nhood_fd_list[current__row][current_col]

if lidar_fd_value == 1: #flow east

current_col += 1

elif lidar_fd_value == 2: #flow southeast

current_col += 1

current_row += 1

eliflidar__fd_va1u == : #flow south

current_row += 1

elif lidar_fd_value == : #flow southwest

154

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

31 l

312

313

314

315

316

317

318

319

320

321

322

323

324

325

current_col -= l

current_row += 1

elif lidar_fd_value == 16: #flow west

current_col -= l

elif lidar_fd_value == 32: #flow northwest

current_col -= l

current_row -= 1

elif lidar_fd_value == 64: #flow north

current_row -= I

elif lidar_fd_value == 128: #flow northeast

current_col += 1

current_row -= 1

#update the flowaccumulation list

if current_row < nhood_rows and current_row >= 0 and current_col <

nhood_cols and current_col >= 0:

lidar_nhood_fa_list[current_row][current_col] += 1

if flat_area__found:

break

if flat_area_found:

break

if fiat_area_found:

fd_eval_ary[i,j] = -9999

flat_area_found = False

else:

#re-adjust end_center_row and end_center_col to zero-based indexes, they currently

just

#hold the difference in size between the neighborhood size and buffer size

end_center_row -= l

end_center_col -= 1

#create a dictionary that will store the proportion of edge cells in each neighborhood

quad

nhood_proportions_dict = {}

nhood_proportions_dict["NW"] = start_center_row + start_center_col

nhood_proportions_dict["N"] = end_center_col - start_center_col + l

nhood_proportions_dict["NE"] = nhood_proportions_dict["NW"]

nhood_proportions_dict["E"] = nhood_proportions_dict["N"]

nhood_proportions_dict["SE"] = nhood_proportions_dict["NW"]

155

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

nhood_proportions_dict["8"] = nhood_proportions_dict["N"]

nhood_proportions_dict["SW"] = nhood_proportions_dict["NW"]

nhood_proportions_dict["W"] = nhood_proportions_dict["N"]

num_edge_cells = float(sum(nhood_pr0portions_dict.values()))

for key in nhood_proportions_dict:

nhood_proportions_dict[key] = nhood_proportions_dict[key] / num_edge_cells

#create a dictionary that will store the total exiting flow for each neighborhood quad

flow_dict = {}

flow_dict["NW"] = 0

flow_dict["N"] = 0

flow_dict["NE"] = 0

flow_dict["E"] = 0

flow_dict["SE"] = 0

flow__dict["S"] = 0

flow__dict["SW"] = 0

flow_dict["W"] = 0

#trace the outer edge of the boundary cells, and count the flowaccumulation cells that

exit the study area

or NE

or NE

or NB

#aggregate the results by direction (E,SE,S,SW,W,NW,N,NE)

#trace the northern edge

for k in range(nhood_cols):

if k < start_center_col: #we're in the northewest quad

if lidar_nhood_fd_list[0][k] in [32,64,128]: #then the flow exits the quad NW, N,

flow_dict["NW"] += lidar_nhood_fa_list[0][k]

elif k >= start_center_col and k <= end_center_col: #we're in the northern quad

if lidar_nhood_fd_list[O] [k] in [32,64,128]: #then the flow exits the quad NW, N,

flow_dict["N"] += lidar_nhood_fa_list[0][k]

else: #we're in the northeast quad

if lidar_nhood_fd_list[0][k] in [32,64,128]: #then the flow exits the quad NW, N,

flow_dict["NE"] += lidar_nhood_fa_list[0][k]

#trace the southern edge

last_row_index = nhood_rows - l

for k in range(len(lidar_nhood_fd_list[last_row_index])):

if k < start_center_col: #we're in the southwest quad

if lidar_nhood_fd_list[last_row_index] [k] in [2,4,8]: #then the flow exits the quad

SE, S, or SW

156

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

flow_dict["SW"] += lidar_nhood_fa_list[last_row_index][k]

elif k >= start_center_col and k <= end_center_col: #we're in the south quad

if lidar_nhood_fd_list[last_row_index][k] in [2,4,8]: #then the flow exits the quad

SE, S, or SW

flow_dict["S"] += lidar_nhood_fa_list[last_row_index] [k]

else: #we're in the southeast quad

if lidar_nhood_fd_list[last_row_index][k] in [2,4,8]: #then the flow exits the quad

SE, S, or SW

flow_dict["SE"] += lidar_nhood_fa_list[last_row_index][k]

#trace the western edge

for k in range(nhood_rows):

if k < start_center_row: #we're in the northewest quad

if lidar_nhood_fd_list[k][O] in [8,16,32]: #then the flow exits the quad SW, W, or

NW

#don't double count the northwestemmost cell, it may have been counted in the

trace of the northern edge

if k == 0 and lidar_nhood_fd_list[0][0] == 32:

pass

else:

flow_dict["NW"] += lidar_nhood_fa_list[k][O]

elif k >= start_center_row and k <= end_center_row: #we're in the west quad

if lidar_nhood_fd_list[k][O] in [8,16,32]: #then the flow exits the quad SW, W, or

NW

flow_dict["W"] += lidar_nhood_fa_list[k][O]

else: #we're in the southwest quad

if lidar_nhood_fd_list[k][O] in [8,16,32]: #then the flow exits the quad SW, W, or

NW

flow_dict["SW"] += lidar_nhood_fa_list[k][O]

#trace the eastern edge

last_col_index = nhood_cols - l

for k in range(nhood_rows):

if k < start_center_row: #we're in the northeast quad

if lidar_nhood_fd_list[k][last_col_index] in [128,l,2]: #then the flow exits the

quad NE, E, or SE

#don't double count the northeastemmost cell, it may have been counted in the

trace of the northern edge

if k = 0 and lidar_nhood_fd_list[O][last_col_index] == 128:

pass

else:

flow_dict["NE"] += lidar_nhood_fa_list[k][last_col_index]

elif k >= start_center_row and k <= end_center_row: #we're in the east quad

if lidar_nhood_fd_list[k][last_col_index] in [128,l,2]: #then the flow exits the

quad NE, E, or SE

flow_dict["E"] += lidar_nhood_fa_list[k][last_col_index]

else: #we're in the southeast quad

157

404

405

406

407

408

409

410

41 1

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

quad NB,

if lidar_nhood_fd_list[k][last_col_index] in [128, l ,2]: #then the flow exits the

E, or SE

#don't double count the southeastemmost cell, it may have been counted in the

trace of the southern edge

if k = last_row_index and

lidar_nhood_fd_list[last_row_index][last_col_index] == :

pass

else:

flow_dict["SE"] += lidar_nhood_fa_list[k][last_col_index]

#create a dictionary that will store the percentage of total exiting flow for each

neighborhood quad

direction

sum_flow__exit_cells = float(sum(flow_dict.values()))

if sum_flow_exit_cells == :

print '0 value at ' + str(i) + ' , ' + str(i) + '; ned_id = ' + str(ned_fid_value)

flow_pct_dict = {}

flow_pct_dict["NW"] = flow_dict["NW"] / sum_flow_exit_cells

flow_pct_dict["N"] = flow_dict["N"] / sum_flow__exit_cells

flow_pct_dict["NB"] = flow_dict["NE"] / sum_flow_exit_cells

flow_pct_dict["E"] = flow_dict["B"] / sum_flow_exit_cells

flow_pct_dict["SE"] = flow_dict["SE"] / sum_flow_exit__cells

flow_pct_dict["S"] = flow_dict["S"] / sum_flow_exit_cells

flow_pct_dict["SW"] = flow_dict["SW"] / sum_flow_exit_cells

flow_pct_dict["W"] = flow_dict["W"] / sum_flow_exit_cells

#evaluate the difference in flow-direction fi'om the center cells to the NBD flow-

ned_fd_value = ned_fd_list[i][j]

flow_error_dict = {}

if ned_fd_value == 1: #east

flow_error_dict["NW"] = 3

flow_error_dict["N"] = 2

flow_error_dict["NE"] = I

flow_error_dict["E"] = 0

flow_error_dict["SE"] = 1

flow_error_dict["S"] = 2

flow_error_dict["SW"] = 3

flow_error_dict["W"] = 4

elif ned_fd_value == 2: #southeast

flow_error_dict["NW"] = 4

flow_error_dict["N"] = 3

flow_error_dict["NE"] = 2

158

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

flow_error__dict["E"] = 1

flow_error_dict["SB"] = 0

flow_error_dict["S"] = l

flow_error_dict["SW"] = 2

flow_error_dict["W"] = 3

elif ned_fd_value == 4: #south

flow_error_dict["NW"] = 3

flow_error_dict["N"] = 4

flow_error_dict["NE"] = 3

flow_error_dict["E"] = 2

flow_error_dict["SE"] = l

flow_error_dict["S"] = 0

flow_error_dict["SW"] = I

flow_error_dict["W"] = 2

elifned_fd_value == 8: #southwest

flow_error_dict["NW"] = 2

flow_error__dict["N"] = 3

flow_error_dict["NE"] = 4

flow_error_dict["E"] = 3

flow_error_dict["SB"] = 2

flow_error_dict["S"] = l

flow_error_dict["SW"] = 0

flow_error_dict["W"] = l

elif ned_fd_value == 16: #west

flow_error_dict["NW"] = l

flow_error_dict["N"] = 2

flow_error_dict["NE"] = 3

flow_error_dict["E"] = 4

flow_error_dict["SB"] = 3

flow_error_dict["S"] = 2

flow_error_dict["SW"] = 1

flow__error_dict["W"] = 0

elif ned_fd_value == 32: #northwest

flow__error_dict["NW"] = 0

flow_error_dict["N"] = l

flow_error_dict["NB"] = 2

flow_error_dict["E"] = 3

flow_error_dict["SE"] = 4

flow_error__dict["S"] = 3

flow_error_dict["SW"] = 2

flow_error_dict["W"] = l

elif ned_fd_value == 64: #north

flow_error_dict["NW"] = 1

159

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

flow_error_dict["N"] = 0

flow_error_dict["NE"] = 1

flow_error_dict["E"] = 2

flow_error_dict["SB"] = 3

flow_error_dict["S"] = 4

flow_error_dict["SW"] = 3

flow_error_dict["W"] = 2

elif ned_fd_value == 128: #northeast

flow_error_dict["NW"] = 2

flow_error_dict["N"] = l

flow_error_dict["NE"] = 0

flow_error_dict["E"] = 1

flow_error_dict["SE"] = 2

flow_error_dict["S"] = 3

flow_error_dict["SW"] = 4

flow__error_dict["W"] = 3

weighted_flow_error = 0

for direction in flow_pct_dict:

weighted_flow_error += flow_pct_dict[direction] * flow_error_dict[direction]

#record the weighted flow error in the NED sized raster list

fd_eval_ary[i,j] = weighted_flow_error

del nhood_proportions_dict, flow_dict, flow_pct_dict, flow_error_dict

cells_processed_ary[i,j] = I

#delete used lists and dictionaries

del lidar_nhood_list, lidar_nhood_fd_list, flat_areas_nhood_list, lidar_nhood_fa_list

percent = int(float(i - ned_fid_list_start_row) / (ned_fid_list_end_row -

ned_fid_list_start_row) * 100)

if percent > percent_done:

print ' - ' + str(percent) + "% done (ned_fid : " + str(ned_fid_value) + ")"

percent_done = percent

del lidar_fd_list, lidar_ned_fid_list

160

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

 raster_folder_seconds = time.clock() - raster_folder_start_time

h,m,s = sec_to_h_min(raster_folder_seconds) _

print ' - raster ' + raster_folder + ' took ' + str(h) + ' hours ' + str(m) + ' minutes ' + str(s) + '

seconds'

#loop through the cells_processed_ary and set any cells with a value of 0 to NoData (-9999)

for i in range(len(cells_processed_ary)):

for j in range(len(cells_processed_ary[i])):

if cells_processed_ary[i,j] == :

fd_eval_ary[i,j] = -9999

#write the cumulative error array to a raster

#use the TIFF file as a template, since GDAL cannot write ArcINFO binary rasters

template_raster = workspace + "\\template_raster.tif'

template_raster_ds = gdal.Open(template_raster, gdalconst.GA_Update)

template_raster_band = template_raster_ds.GetRasterBand(1)

template_raster_band.WriteArray(fd_eval_ary)

template_raster_band.FlushCache()

template_raster_ds.FlushCacheO

del template_raster_ds, template_raster_band, fd_eval_ary, ned_fd_list, ned_fid_list,

lidar_wspace_contents, raster_list, cells_processed_ary

os.rename(template_raster, template_raster.replace('template_raster’, 'flow_error'))

seconds = time.clock() - script_start_time

h,m,s = sec_to_h_min(seconds)

print 'Whole thing Took ' + str(h) + ' hours ' + str(m) + ' minutes ' + str(s) + ' seconds'

161

\
O
O
O
Q
O
N
M
A
U
J
N
—

W
W
W
W
W
M
W
W
W
M
N
N
N
N
N
N
N
N
N
N
—
e
—
n
—
I
u
—
o
u
—
t
u
—
n
—
u
—
e
—
n
—

\
O
W
V
O
‘
M
A
U
’
N
—
‘
O
Q
W
Q
O
‘
M
-
5
Q
3
N
—
O
O
W
N
O
N
M
#
W
N
—
O

APPENDIX B — Python Code

contour_dlg_conversion.py

 #

contour_dlg_conversion.py

Created September 2009

Author: Glenn O'Neil

#

Description: Takes a directory ofDLG hypsography files and converts each

files relevant features to ESRI shapefiles. Crashes due to an

ESRI bug if it tries to process more than 70 files.

#

Inputs: 1. d1g_wspace - directory containing DLG hypsography files.

2. scratch_wspace - directory for temporary files.

3. out_wspace - directory where the output shapefiles are written.

#

Outputs: 1. <quad_name>_ohp.shp - shapefile of quadrangle contours.

import os, arcgisscripting, sys

gp = arcgisscripting.create(9.3)

d1g_wspace = sys.argv[l]

scratch_wspace = sys.argv[2] + "\\"

out_wspace = sys.argv[3] + "\\"

#get the dlg files

d1g_wspace_list = os.listdir(dlg_wspace)

dlg_list = []

#filter the list so it only contains .dlg files

for i in range(len(dlg_wspace__list)):

if '.dlg' in (d1g_wspace_list[i]):

dlg_list.append(dlg_wspace_list[i])

del d1g_wspace_list

d1g_list_length = len(dlg_list)

for i in range(dlg_list_length):

gp.AddMessage("Processing " + str(i + l) + " of " + str(dlg_list_length) + ":")

#convert the dlg to a coverage

gp.AddMessage(" - converting DLG to coverage")

dlg_cov = scratch_wspace + "dlg_cov"

162

40 gp.dlgarc(dlg_wspace + "\\" + dlg_list[i], dlg_cov)

4] #convert the coverage to a shapefile

42 gp.AddMessage(" - converting coverage to shapefile")

43 d1g_shp = dlg_cov + "_arc.shp"

44 gp.FeatureClassToShapefile(dlg_cov + "\\arc", scratch_wspace)

45 #join the .acode file to the shapefile table on the ID field

46 gp.AddMessage(" - joining acode table to shapefile")

47 acode = dlg_cov + ".acode"

48 gp.joinfield (dlg_shp, "ID", acode, "DLG_COV-ID")

49 #extract the appropriate stream features

50 gp.AddMessage(" - extracting features")

51 #get the appropriate fields from d1g_shp

52 code_fields = gp.|istfields(dlg_shp, 'MINOR”)

53 select_query = "'MAJORI " = 20 AND ('

54 for j in range(len(code_fields)):

55 ifj != (len(code_fields) - 1):

56 select_query += "" + code_fieldsij].Name + "' NOT IN

(202,205,206,207,208,209,210,299) OR '

57 else: #treat the last record differently

select_query += "" + code_fieldsfi].Name + '" NOT IN

58 (202,205,206,207,208,209,210,299))'

59

60 dlg_out = out_wspace + dlg_list[i][:8] + '.shp'

61 gp.select_analysis(dlg_shp, dlg_out, select_query)

62

63 gp.AddMessage(" - deleting intermediate data")

64 gp.delete_management(dlg_cov)

65 gp.delete_management(dlg_shp)

66

67 del dlg_list, select_query

163

\
O
O
O
N
O
‘
I
J
I
A
D
J
N
H

APPENDIX B — Python Code

contour_toppology_analysis.py

#

contour_topology_analysis.py

Created September 2009

Author: Glenn O'Neil

#

Description: This script identifies topological error in contour datasets.

It analyzes node ID information to determine how many contour

intersections exists in a dataset. It uses quad boundary and

featre vertices to determine how many contour dangles exist.

#

Inputs: 1. quad_ds - an ESRI shapefile of 7.5 Minute USGS Quadrangles

2. quad_id_field - unique ID field ofthe 'quads' shapefile

3. contour_wspace - workspace where the contour datasets are stored

4. workspace - a folder where temporary datasets will be written

#

Outputs: 1. Inter - a field in quad_ds that represents the number of

intersections in that quad.

2. Dangle - a field in quad_ds that represents contour dangle

3. Contours - a field in quad_ds that represents the number of contours

4. Int_p_cnt — a field in quad_ds that represents the number of

intersections per contour.

5. Dan_p__cnt - a field in quad_ds that represents the number of

dangles per contour.

#import the necessary modules

import sys, 05, time, arcgisscripting

gp = arcgisscripting.create(9.3)

#inputs

quad_ds = sys.argv[l]

quad_id_field = sys.argv[2]

contour_wspace = sys.argv[3]

workspace = sys.argv[4]

gp.OverWriteOutput = 1

#insert a field into the quad dataset that will store the number of intersections

quad_ds_fields = gp.listfields(quad_ds)

164

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

field_present = False

for i in range(len(quad__ds_fie1ds)):

if quad_ds_fields[i].name == "Inter":

field_present = True

if not field_present:

gp.addfield(quad_ds, "Inter", "short", "8")

gp.addfield(quad_ds, "Dangle", "short", "8")

gp.addfield(quad_ds, "Contours", "short", "8")

gp.addfield(quad__ds, "Int_p_cnt", "FLOAT")

gp.addfield(quad_ds, "Dan_p_cnt", "FLOAT")

#determine the number of quads to process

rows = gp.searchcursor(quad_ds)

quad_count = 0

row = rows.next()

while row:

quad_count += 1

row = rows.next()

del row, rows

#loop through the quad_ids

quad_rows = gp.updatecursor(quad_ds)

quad_row = quad_rows.next()

counter = 0

while quad_row:

quad_id = quad_row.getvalue(quad__id_field)

quad_contour_ds = contour_wspace + "\\" + quad_id + "ohp.shp"

gp.AddMessage("- Processing quad " + quad_id + "(" + str(counter + I) + " of " +

str(quad_count) + ")")

counter += 1

if not gp.exists(quad_contour_ds):

gp.AddMessage(" - could not find contours for quad " + quad_id)

quad_row = quad_rows.next()

else:

#check to see if intersections have already been identified

if quad_row.getvalue("Inter") > 0: #the quad has PROBABLY already been processed,

possible that there were 0 intersections anyway

quad_row = quad_rows.next()

165

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

continue

#create a table of unique node [BS in the contours

#read the fiiode field and store unique results in an array, repeat for tnode fields, then create a

table

cursor = gp.searchcursor(quad_contour_ds)

node_ids = []

row = cursor.next()

while row:

fnode_id = row.getvalue("FROMNODE")

tnode_id = row.getvalue("TONODE")

if not fnode__id in node_ids:

node_ids.append(fiiode_id)

if not tnode_id in node_ids:

node_ids.append(tnode_id)

row = cursor.next()

node_ids.sort()

node_id_table = workspace + "\\node_id.dbf'

gp.CreateTable(workspace, "node_iddbf')

gp.AddField(node_id_table, "ID", "SHORT")

rows = gp.InsertCursor(node_id_table)

for i in range(len(node_ids)):

row = rows.NewRow()

row.ID = node_ids[i]

rows.InsertRow(row)

del row, rows

#select only non-border contours (i.e. MAJOR] > 0)

#make a feature layer first

quad_contour_fl = quad_id + "_contour_ds_fl"

gp.MakeFeatureLayer(quad_contour_ds, quad_contour_fl)

gp.Se1ectLayerByAttribute(quad_contour_fl, "NEW_SELECTION", "\"MAJOR1\" > 0")

#Calculate FNode and TNOde Frequency Tables

fiiode_fieq = workspace + "\\" + quad_id + "_fnode__freq.dbf'

tnode_freq = workspace + "\\" + quad_id + "_tnode_freq.dbf'

gp.Frequency(quad_contour_fl, tnode_freq, "FROMNODE")

gp.Frequency(quad_contour_fl, tnode_freq, "TONODE")

166

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

I39

140

I41

I42

143

I44

I45

146

147

I48

149

150

151

152

153

154

155

156

157

158

159

160

161

162

#Convert FNode and TNode Freq. to Table Views

fnode_freq_tv = quad_id + "_fnode_freq_tv"

tnode_fi'ethv = quad_id + "_tnode_freq_tv"

gp.maketableview(fiiode_freq, fnode_freq_tv)

gp.maketableview(tnode_fi'eq, tnode_freq_tv)

#select intersections in the frequency tables

gp.SelectLayerByAttribute(fnode_freq_tv, "NEW_SELECTION", "\"FREQUENCY\" > 1")

gp.SelectLayerByAttribute(tnode_freq_tv, "NEW_SELECTION", "\"FREQUENCY\" > I")

#join the selected frequency tables

gp.AddIoin_management(quad_contour_fl, "FROMNODE", fnode_fieq_tv, "FROMNODE",

"KEEP_ALL")

gp.AddJoin_management(quad_contour_fl, quad_id + "ohp.TONODE", tnode_freq_tv,

"TONODB", "KEEP_ALL")

#select the contours that have intersections (fromnode and tnode frequencies > 1)

gp.SelectLayerByAttribute(quad_contour_fl, "NEW_SELECTION", "\"" + quad_id +

"_fnode_freq.FREQUENCY\" > 1 OR \"" + quad_id + "_tnode_freq.FREQUENCY\" > 1")

#gp.SelectLayerByAttribute("quad_contour_ds_fl", "NEW_SELECTION",

"'fnode_frethv:FREQUENCY" > 1')

#Subratct mid-contour nodes

gp.SelectLayerByAttribute(quad_contour_fl, "REMOVE_FROM_SELECTION", “(\"" +

quad_id + "_fnode_freq.FREQUENCY\" = 2 AND \"" + quad_id + "_tnode_freq.FREQUENCY\"

IS NULL) OR (\"" + quad_id + "_tnode_freq.FREQUENCY\" = 2 AND \"" + quad_id +

"_fnode_fi'eq.FREQUENCY\" IS NULL)")

intersection_count = gp.GetCount_management(quad_contour_fl)

quad_row.lnter = intersection_count.getOutput(0)

#the dangle process:

#use feature vertices to points with the "BOTH_ENDS"

contour_vertices = workspace + "\\" + quad_id + "_vertices.shp"

gp.FeatureVerticesToPoints(quad_contour_ds, contour_vertices, "BOTH_ENDS")

#use addXY on the new points layer

gp.AddXY__management(contour_vertices)

#create a new string field 30 characters long for X Y concatenation

gp.AddField(contour_vertices, "XY", "TEXT")

#concatenate the X field and the Y field with a ";"

gp.CalculateField(contour_vertices, "XY", "[POINT_X] & \";\" & [POINT_Y]")

167

163

164

I65

166

167

168

169

I70

171

172

173

I74

I75

176

177

178

179

180

181

182

183

184

I85

186

187

188

1 89

I90

191

192

193

194

195

196

197

198

199

200

201

202

203

204

#calculate a frequency table on the concatenated XY values

contour_vertices_fl = quad_id + "_contour_vertices_fl"

gp.MakeFeatureLayer(contour_vertices, contour_vertices_fl)

xy_freq = workspace + "\\" + quad_id + "_xy_fi'eq.dbf"

gp.Frequency(contour_vertices_fl, xy_freq, "XY")

xy_freq_tv = quad_id + "_xy_fi'eq_tv"

gp.maketableview(xy_freq, xy_freq_tv)

#join the fi'equency table to the contour_vertices

gp.Adeoin_management(contour_vertices_fl, "XY", xy_freq_tv, "XY", "KEEP_ALL")

#select the selected quad from the quad shapefile and create a 500 foot inside buffer

#This allows us to avoid selecting the dangling nodes on the quad boundary

quad_select = workspace + "\\" + quad_id + "_sel.shp"

gp.select_analysis(quad_ds, quad_select, "\"" + quad_id_field + "\" = "' + quad_id + ""')

quad_inside_buff = workspace + "\\" + quad_id + "_inside_buff.shp"

gp.buffer_analysis(quad_select, quad_inside_buff, "-200") #probably in meters, depends on

quad_select units

quad_inside_buff_fl = quad_id + "_inside_buff_fl"

gp.MakeFeatureLayer(quad_inside_buff, quad_inside_buff_fl)

#select the vertices that intersect the new inside buffer

gp.SelectLayerByLocation(contour_vertices_fl, "intersect", quad_inside_buff)

#create a sub-selection the vertices that have a frequency = 1

gp.SelectLayerByAttribute(contour_vertices_fl, "SUBSET_SELECTION", "\"" + quad_id +

"_xy_freq.FREQUENCY\" = 1")

#get the recourd count on the vertices

dangle_count = gp.GetCount_management(contour_vertices_fl)

quad_rowDangle = dangle_count.getOutput(0)

#calculate the number of contours, to determine intersection and dangle ratios

#Calculate a contour frequency table

gp.RemoveJoin(quad__contour_fl, quad_id + "_fiiode_freq", quad_id + "_tnode_freq")

gp.SelectLayerByAttribute(quad_contour_fl) #clears its current selection

contour_fi'eq = workspace + "\\" + quad_id + "_contour_freq.dbf'

gp.Frequency(quad_contour_fl, contour_freq, "ID")

contour_count = gp.GetCount_management(quad_contour_fl)

quad_row.Contours = contour_count.get0utput(0)

168

205

206 intersections_per_contour = float(intersection_count.getOutput(0))/

float(contour_count.getOutput(0))

207 dangles_per_contour = float(dangle_count.getOutput(0)) / float(contour_count.getOutput(0))

208

209 quad_row.lnt_p_cnt = str(intersections_per_contour)

210 quad_row.Dan_p_cnt = str(dangles_per_contour)

211

2 l 2 quad_rows.updaterow(quad_row)

213

2 l 4 gp.delete_management(quad_contour_fl)

21 5 gp.delete_management(fnode_freq)

2 l 6 gp.delete_management(tnode_freq)

2 I 7 gp.delete_management(node_id_table)

2 1 8 gp.delete_management(contour_vertices)

2 I 9 gp.delete_management(contour_vertices_fl)

220 gp.delete__management(xy_freq)

22 1 gp.delete_management(quad_select)

222 gp.delete_management(quad_inside_buff)

223 gp.delete_management(quad_inside_buff_fl)

224 gp.delete_management(contour_freq)

225

226 quad_row = quad_rows.Next()

227

228 del quad_row, quad_rows

169

\
O
O
O
Q
O
‘
t
h
b
b
J
N
—

O
W
Q
¢
M
A
W
N
H
O
O
W
Q
a
M
A
W
N
~
O
O
W
\
l
Q
M
b
W
N
—
o

APPENDIX B — Python Code

analysis_results.py

#

analysis_results.py

Created September 2009

Author: Glenn O'Neil

#

Description: Takes a directory of flow error rasters, reads it into a NumPy

Array through GDAL and records each raster's mean, standard

deviation and median flow error value into a text file.

#

Inputs: 1. workspace - directory

2. output_text_file - text file containing the mean, median,

and standard deviation flow error values for each raster.

#

Outputs: 1. output text file -

#

import sys, os, raster_analysis, numpy

from osgeo import gdal, gdalconst

#get the inputs

workspace = sys.argv[l]

output_text_file_path = sys.argv[2]

IS = os.linesep

output_text_file = open(output_text_file_path, 'w')

#get the folders of the workspace

quads_list = []

quads_wspace_contents = os.listdir(workspace)

for i in quads_wspace_contents:

if os.path.isdir(workspace + "\\" + i):

quads_list.append(i)

del quads_wspace_contents

quads_list.sort()

I70

I
.

40

41 quads_list_length = len(quads_list)

42 for i in range(quads__list_length):

43 #for i in range(l):

44

45 #get the flow_error raster

46 flow_error_raster = workspace + "\\" + quads_list[i] + "\\" + quads_list[i] +

"_flow_error.tif"

47

48 if os.path.exists(flow_error_raster):

49

50 #read the raster into an array

51 flow_error_ary = raster_analysis.raster2array(flow_error_raster)

52

53 #append non NoData (i.e. -9999) results to a list

54 error_values_list = []

55 for j in range(len(flow_error_ary)):

56 for k in range(len(flow_error_ary[j])):

57 if flow__error_ary[j,k] != -9999.0:

58 error_values_list.append(flow_error_ary[j,k])

59

60 del flow_error_ary

61

62 #convert the list back to an array for stat analysis

63 error_values_ary = numpy.array(error_values__list)

64 error_values_list.sort()

65 median = error_values_list[int(numpy.round(len(error_values_list) / 2)) - l]

66

67 #capture the mean and standard deviation of the ary

68 mean = error_values_ary.mean()

69 stdev = error_values_ary.std()

70 del error_values_ary, error_values_list

71

72 #record the stats to the text file

73 output_text_file.write(quads_list[i] + "l" + str(mean) + "l" + str(stdev) + "I" +

str(median) + Is)

74

75 print 'Processed ' + quads_list[i] + "(" + str(i + 1) + " of " + str(quads_list_length) + ")"

76

77

78 output_text_file.close()

79 del output_text_file, quads_list

171

REFERENCES

172

REFERENCES

Aziz, S. A.; Steward, Brian L. (2007). Development of Agricultural Field

DEM Using Repeated GPS Measurements from Field Operations: Effects of

Sampling Intensity and Pattern. ASABE paper No. 071089. St. Joseph, Mich.:

ASABE.

Barber, C. P.; Shortridge, A. (2005). Lidar Elevation Data for Surface

Hydrologic Modeling: Resolution and Representation Issues. Cartography and

Geographic Information Science 32.4, pp. 401-410.

Burrough, P.; vanGans, P.F.M; MacMillan, RA. (2000). High resolution landform

classification using fuzzy k-means. Journal ofFuzzy Sets and Systems 113, pp. 37-

52.

Carrara, A.; Bitelli, G.; Carla, R. (1997). Comparison of techniques for generating

digital terrain models from contour lines. International Journal ofGeographic

Information Science I I , pp. 451-473.

Carson, W.; Reutebuch, S. (1997). A Rigorous Test of the Accuracy ofUSGS

Digital Elevation Models in Forested Areas of Oregon and Washington.

ACSM/ASPRSAnnual Convention & Exposition Technical Papers. April 7-10,

1997.

Carter, J. R. (1988). Digital representations oftopographic surfaces. Photogrammetric

Engineering and Remote Sensing 54, pp. 1577-1580.

Carter, J. R. (1992). The effect of data precision on the calculation of slope and aspect

using gridded DEMS. Cartographica 29.1, pp. 22-34.

Chang, K.; Tsai, B. (1991). The Effect ofDEM Resolution on Slope and

Aspect Mapping. Cartography and Geographic Information Systems 18.], pp.

69-77.

Clarke, K.C., Lee, SJ. (2007). Spatial Resolution and Algorithm Choice as

Modifiers of Downslope Flow Computed from Digital Elevation Models.

Cartography and Geographic Information Science 34. 3, pp. 215-230.

Daratech Inc. (2009, August 20). Press Release — ‘GIS/Geospatial Industry Worldwide

Grth Slows to 1% in 2009.” Directions Magazine. Retrieved February 16, 2010,

from Directions Magazine:

http://www.directionsmag.com/press.releases/?duty=Show&id=363 1 8.

173

Deng, Y.; Wilson, J.; Bauer, B. (2007). DEM resolution dependencies of terrain

attributes across a landscape. International Journal ofGeographical Information

Science 21.2, pp. 187-213.

Desmet, P. (1997). Effects of Interpolation Errors on the Analysis of DBMS. Earth

Surface Processes and Landforms 22, pp. 563-580.

Digital Cartographic Data Standards Task Force. (1998). A proposed standard for digital

cartographic data. The American Cartographer 15.1, pp. 129 — 136.

Endreny, T.A.; Wood, BR (2001). Representing elevation uncertainty in runoff

modeling and flowpath mapping. Hydrological Processes 15, pp. 2223-2236.

Erskine, R.H.; Green, T.R.; Ramiriez, J.A.; MacDonald, L.H. (2007). Digital

Elevation Accuracy and Grid Cell Size: Effects on Estimated Terrain Attributes.

Soil Science Society ofAmerica Journal 71. 4, pp. 1371-1380.

Faintich, M. (1996). Digital Elevation Models. Cellular Business September, pp. 46-58.

Fisher, P. (1993). Algorithm and implementation uncertainty in viewshed analysis.

International Journal ofGeographical Information Science 7. 4, pp. 331-347.

Fisher, P. (1998). Improved Modeling of Elevation Error with Geostatistics.

Geolnformatica 2.3, pp. 215-233.

Fisher, P.; Tate, N. (2006). Causes and consequences of error in digital

elevation models. Progress in Physical Geography 30. 4, pp. 467-489.

Florinsky, I. (1998). Accuracy of local topographic variables derived from digital

elevation models. International Journal ofGeographical Information Science 12.],

pp. 47-61.

Freeman, T. (1991). Calculating Catchment Area With Divergent Flow Based on a

Regular Grid. Computers & Geosciences 1 7.3, pp. 413-422.

Garbrecht, J., Starks, P. (1995). Note on the Use ofUSGS Level 1 7.5-Minute DEM

Coverages for Landscape Drainage Analyses. Photogrammetric Engineering & Remote

Sensing 61.5, pp. 519-522. '

Goodchild, M.; Guoqing, S.; Shiren, Y. (1992). Development and test of an error

model for categorical data. International Journal ofGeographic Information

Science 6.2, pp. 87-104.

Greenlee, D. (1987). Raster and Vector Processing for Scanned Linework.

Photogrammetric Engineering and Remote Sensing 53.10, pp. 1383-1387.

174

Heuvelink, G. (1998). Error Propagation in Environmental Modelling. Bristol, PA:

Taylor and Francis, Inc.

Holmes, K.W.; Chadwick, O.A.; Kyriakidis, RC. (2000). Error in a USGS 30-meter

digital elevation model and its impact on terrain modeling. Journal ofHydrology

233, pp. 154-173.

Homer, C.; Dewitz, J.; Fry, 1.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow,

A.; Van Driel, J.; Wickham, J. (2007). Completion of the 2001 National Land

Cover Database for the Coterrninous United States. Photogrammetric Engineering

and Remote Sensing April, pp. 829-840.

Hutchinson, M. (1989). A New Procedure for Gridding Elevation and Stream Line Data

with Automatic Removal of Spurious Pits. Journal ofHydrology 106, pp. 211-232.

James, L.; Watson, D.; Hansen, W. (2007). Using LiDAR data to map gullies and

headwater streams under forest canopy. CATENA 71.1, pp. 132-144.

Jenson, S.; Domingue, J. (1988). Extracting Topographic Structure from Digital

Elevation Data for Geographic Information System Analysis. Photogrammetric

Engineering and Remote Sensing 54.11, pp. 1593-1600.

Jones, K.H. (1998). A Comparison of Algorithms used to Compute Hill Slope as a

Property of the DEM. Computers & Geosciences 24.4, pp. 315-323.

Kienzle, S. (2004). The Effect ofDEM Raster Resolution on First Order, Second Order

and Compound Terrain Derivatives. Transactions in GIS 8.], pp. 83-111.

Kyriakidis, P.C.; Shortridge, A.M.; Goodchild, M.F. (1999). Geostatistics for

conflation and accuracy assessment of digital elevation models. International

Journal ofGeographical Information Science 13.7, pp. 677-707.

Leckie, D.; Cloney, B.; Jay, C. (2005). Automated mapping of stream features with high-

resolution multispectral imagery: An example of the capabilities. Photogrammetric

Engineering and Remote Sensing 71.2, pp. 145-1 55.

MacMillan, R.; Martin, T.; Earle, T.; McNabb, D. (2003). Automated analysis and

classification of landforms using high-resolution digital elevation data: applications

and issues. Canadian Journal ofRemote Sensing 29.5, pp. 592-606.

Martinoni, D., Bernhard, L. (1998). A conceptual framework for reliable digital terrain

modelling. In: Proceedings ofthe Eighth Symposium on Spatial Data Handling,

Vancouver, Canada, pp. 737-750.

175

Mason, D.; Scott, T.; Wang, H. (2006). Extraction of tidal channel networks from

airborne scanning laser altimetry. ISPRS Journal ofPhotogrammetry and Remote

Sensing 61.2, pp. 67-83.

Meyer, TH. (2004). The Discontinuous Nature of Kriging Interpolation for Digital

Terrain Modeling. Cartography and Geographic Information Science 31. 4, pp.

209-216.

Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L. (1995). Modeling Topographic

Potential for Erosion and Deposition Using GIS. International Journal ofGIS

January, pp. 1-19.

Mouton, A. (2005). Generating Stream Maps Using LiDAR Derived Digital Elevation

Models and 10-m USGS DEM. Thesis. Washington State University.

O’Callaghan, J.F., Mark, D.M. (1984). The Extraction of Drainage Networks From

Digital Elevation Data. Computer Vision, Graphics and Image Processing 28, pp.

328-344.

Ohio Office of Information Technology, GIS Support Center. (2005). Ohio 10-meter

Digital Elevation Model (FGDC) / oh_dem10b (1S0). Retrieved July 17, 2008,

from

http://metadataexplorer.gis.state.oh.us/metadataexplorer/fiil1_metadata.jsp?docld=

{D0820264-6E96-4E1A-860F-F89F42C39F64}&loggedln=false.

Oksanen, J.; Tapani, S. (2005). Error propagation of DEM-based surface

derivatives. Computers and Geosciences 31, pp. 1015-1027.

Ouyang, D.; Bartholic, J.; Selegean, J. (2005). Assessing Sediment Loading from

Agricultural Croplands in the Great Lakes Basin. Journal ofAmerican Science 1.2,

pp. 14-21.

Quinn, P.; Beven, K.; Chevallier, P.; Planchon, O. (1991). The Prediction of HillSlope

Flowpaths for Distributed Hydrological Modelling Using Digital Terrain Models.

Hydrological Processes 5, pp. 59-80.

Raaflaub, L.D.; Collins, M.J. (2006). The effect of error in gridded digital elevation

models on the estimation of topographic parameters. Environmental Modelling

and Software 21, pp. 710-732.

Riggs, P.D.; Dean, DJ. (2007). An Investigation into the Causes of Errors and

Inconsistencies in Predicted Viewsheds. Transactions in GIS 11.2, pp. 175-

196.

176

Saunders, W. (1999). Preparations of DEMS for use in Environmental Modeling

Analysis. 1999 ESRI User Conference. San Diego, CA, July 24—30, 1999.

http:l/proceedings.esri.com/library/userconf/proc99/proceed/papers/pap802/p802.

Htrn.

Schmidt, F.; Persson, A. (2003). Comparison ofDEM Data Capture and Topographic

Wetness Indices. Precision Agriculture 4, p. 179-192.

Shortridge, A. (2006). Shuttle Radar Topography Mission Elevation Data Error and Its

Relationship to Land Cover. Cartography and Geographic Information Science

33.1, pp. 65-75.

Skidmore, AK. (1989). A comparison of techniques for calculating gradient and aspect

from a gridded digital elevation model. International Journal ofGeographical

Information Systems 2.4, pp. 323-334.

Soille, P.; Vogt, J.; Colombo, R. (2003). Carving and adaptive drainage enforcement of

grid digital elevation models.” Water Resources Research 39.12, pp. 10-1 to 10-3.

Soille, P. (2004a). Morphological carving. Pattern Recognition Letters 25, pp. 543-

550.

Soille, P. (2004b). Optimal removal of spurious pits in grid digital elevation models.

Water Resources Research 40.12.

Tarboton, D.G. (1991). On the Extraction of Channel Networks from Digital Elevation

Data. Hydrological Processes 5, pp. 81-100.

Tarboton, D.G. (1997). A New Method for the Determination of Flow Directions and

Upslope Areas in Grid Digital Elevation Models. Water Resources Research 33.2,

pp. 309-3 19.

Thompson, J.A.; Bell, J.C.; Butler, CA. (2001). Digital elevation model resolution:

effects on terrain attribute calculation and quantitative soil-landscape modeling.

Geoderma I, pp. 67-89.

US EPA. (2007, July 17). Analytical Tools Interface for Landscape Assessments

(ATtILA). Environmental Protection Agency Website. Retrieved August 2009,

from http://www.epa.gov/esd/land—sci/attila/index.htm.

USGS. (2006, August). National Elevation Dataset. United States Geological Survey.

Retrieved March 2009, fi'om http://ned.usgs.gov.

USGS. (1998, January). Standards for Digital Elevation Models. Rocky Mountain

Mapping Center. Retrieved March, 2009, from

http://rockyweb.cr.usgs.gov/nmpstds/demstds.htrnl.

177

USGS. (1999, September). Standards for Digital Line Graphs. Rocky Mountain

Mapping Center. Retrieved March 2009, from

http://rmmcweb.cr.usgs.gov/nmpstds/acrodocs/dlg-3/2dlg0999.pdf.

Venteris, E.R.; Slater, B.K. (2005). A Comparison Between Contour Elevation Data

Sources for DEM Creation and Soil Carbon Prediction, Coshocton, Ohio.

Transactions in GIS 9.2, pp. 179-198.

Vogt, J.; Colombo, R.; Bertolo, F. (2003). Deriving drainage networks and catchment

boundaries: a new methodology combining digital elevation data and environmental

characteristics. Geomorphology 53, pp. 281-298.

Walker, J.P., Willgoose, GR. (1999). On the effect of digital elevation model accuracy

on hydrology and geomorphology. Water Resources Research 53.7, pp. 2259-2268.

Wilson, J.P.; Gallant, J.C. (2000). Terrain Analysis. New York: John Wiley and Sons,

Inc.

Wilson, J.P.; Lam, C.S.; Deng, Y. (2007) Comparison of the performance of flow-

routing algorithms used in GIS-based hydrologic analysis. Hydrological Processes

February, pp. 1026-1044.

Wise, S. (1998). The Effect of GIS Interpolation Errors on the Use of Digital

Elevation Models in Geomorphology, In: Landform Monitoring. Modellingand

Analysis, Edited by S. N. Lane, K. S. Richards and J. H. Chandler, John Wiley and

Sons, 300 pp.

Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation

models derived from contours. Hydrological Processes 14, pp. 1909-1929.

Wise, S. (2007). Effect of differing DEM creation methods on the results from a

hydrological model. Computers & Geosciences 33, pp. 1351-1365.

Wolock, D.M.; McCabe, G.J. Differences in topographic characteristics computed from

100- and 1000-m resolution digital elevation model data. Hydrological Processes

14, pp. 987-1002.

Woolpert Inc. (2007, October 11). OSIP DEM Tiles by County — GRID Format (FGDC)

/N1440375 (ISO). OGRIP Website. Retrieved July 17, 2008, from

http://metadataexplorer.gis.state.oh.us/metadataexplorer/full_metadata.jsp?docId=

{6FABOC57- 1A57-4 1 42-BCF7-A38F4D1 1 FCA3 }&logged1n=false.

Wu, S.; Li, J.; Huang, G. (2005). An evaluation of grid size uncertainty in empirical soil

loss modeling with digital elevation models. Environmental Modelling and

Assessment 10, pp. 33-42.

178

Wu, 8.; Li, J., Huang, G. (2007). Modeling the effects of elevation data resolution on the

performance oftopography-based watershed runoff simulation. Environmental

Modelling & Software 22, pp. 1250-1260.

Ziadat, RM. (2007). Effect of Contour Intervals and Grid Cell Size on the Accuracy

ofDBMS and Slope Derivatives. Transactions in GIS. 11.], pp. 67-81.

179

UNIVERSITY

030 63 61

 ”1111111111111 1111111115:
3 12 9 3 6 Jr

