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ABSTRACT

HIERARCHICAL BAYESIAN MODELING OF HETEROGENEITY

IN THE ASSOCIATION BETWEEN MILK PRODUCTION AND

REPRODUCTIVE PERFORMANCE OF DAIRY COWS

By

Nora Maria Bello

The main objectives of this dissertation research were 1) to investigate the nature of

the association between milk production and reproductive performance of dairy cows

taking into consideration the within-herd (cow-level) and between-herd (herd-level)

components of this association, and 2) to evaluate management factors and herd attributes

as potential sources of heterogeneity in the association. A formal assessment of these

objectives required the development of novel statistical methods, thereby setting an

interdisciplinary foundation to this dissertation research.

First, this dissertation develops and validates hierarchical Bayesian extensions to

classical bivariate linear mixed modeling of residual (cow-level) and random (herd-level)

(co)variances for the joint analysis of two Gaussian outcomes. This approach involves

modeling heterogeneous associations between outcomes using dispersion parameters

generated from a square-root-free Cholesky reparameterization of (co)variances. These

reparameterizations are unconstrained and hence can themselves be readily modeled as

functions of fixed and random effects. This approach is extended further to bivariate

generalized linear models, whereby modeling of heterogeneous associations between

Gaussian and non-Gaussian outcomes, such as health and reproductive fitness, is

facilitated using data augmentation techniques. The proposed hierarchical Bayesian



models constitute an important advancement in statistical methodology as they introduce

a new dimension of heterogeneity in the study of complex biological systems, namely

that of heterogeneous covariances (or correlations) between outcomes of interest.

The nature of the cow-level and herd-level associations between milk production and

reproduction in dairy cows was explored by applying the aforementioned hierarchical

Bayesian models to large datasets from commercial dairy farms in Michigan. Means,

variances, and covariances between indicators of milk production and reproductive

performance were jointly modeled as separate functions of management practices and

herd attributes, with statistically important factors selected based on the Deviance

Information Criterion. Evidence for heterogeneity in the association between milk

production and reproduction was overwhelming. Most notably, inferred relationships

were generally quite different and, in some cases, opposite in sign between the cow-level

and the herd-level components. Secondly, management practices and herd attributes were

identified as contributors to heterogeneity in the nature, as well as the magnitude, of the

link between milk yield and reproductive performance. In particular, intensive

management conditions appeared to contribute to a more favorable association in some

cases (e.g., estimated herd calving interval decreased by 1.4i0.1 d per 100 kg increase in

cumulative milk yield for herds using bovine somatotropin treatment) or to a partial

alleviation of an overall antagonism in others Ge. 21% greater pregnancy rates among

herds implementing more frequent milking schemes). Understanding the

multidimensional levels of heterogeneity in the associations between milk production and

reproductive performance should have direct implications for tailoring dairy management

programs that optimize overall dairy cow performance in current production systems.
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INTRODUCTION

“ ...explain the complex visible by some simple invisible "

Jean Perrin (1870-1942), Nobel laureate, Physics

Milk yield and reproductive fertility stand as an essential dual axis for

sustainability of any dairy cow operation. Indeed, milk production depends on the ability

of a cow to become pregnant and give birth, thereby initiating and renewing the lactation

cycle. Nevertheless, efforts to improve dairy fertility have been strongly overshadowed

by focused attention on maximizing milk yield. Historical trends indicate a growing

antagonistic relationship between production and fertility measures in dairy cows (Lucy,

2001 ). Over the past 85 years, average milk production per cow in the US increased over

4 fold, from ~1,900 kg/cow*year in 1924 to ~9,300 kg/cow*year in 2009

(http://www.nass.usda.gov/QuickStats). Meanwhile, dairy cow fertility declined to an

all-time low, whereby currently approximately 1/3 of cows become pregnant to a given

insemination (Norman et al., 2009). This further holds in Michigan as the state recently

recorded a rolling herd average of 11,200 kg/cow and conception rates for lactating cows

of approximately 35% (Dairy Herd Improvement Association, May 2010 Herd Summary

DHI-202 State Reports).

Meanwhile, in recent years, the perception of a production-reproduction

antagonism has been repeatedly challenged, thus triggering a passionate debate on the

true nature of this association. Indeed, a growing list of studies now provides evidence for

high milk yield being positively associated with fertility, whereby higher producing cows

are also the ones most likely to become pregnant (Leblanc, 2010, Lopez-Gatius et al.,



2006, Peters and Pursley, 2002). Similarly, higher producing herds are commonly

reported to have better reproductive performance (Laben et al., 1982, Leblanc, 2010,

Nebel and McGilliard, 1993).

Concomitant with historical trends and the growing debate on the nature of the

production-reproduction association, is a realization of dramatic changes in dairy herd

management during the past few decades (Capper et al., 2009). Just as striking are the

broad diversity and flexible dynamics of management practices currently implemented

across dairy herds (Caraviello et al., 2006, Fulwider et al., 2008, Schefers et al., 2010).

This implies considerable variability in the environment in which dairy cows perform,

which in turn questions whether herd management may play a role as a source of

heterogeneity on the association between milk production and reproductive performance

of dairy cows.

Overall, the perceived controversy on the nature of the production-reproduction

relationship in dairy cows and the potential role of management as a source of

heterogeneity are dilemmas in urgent need for more comprehensive study. The

complexity of the problem is substantial and includes multiple layers of intricacy in an

inherently multivariate environment. Traditional statistical modeling strategies are not

adequate to simultaneously address such multidimensional complexity. Hierarchical

Bayesian models constitute a general framework and a viable alternative to approach this

problem (O'Hagan, 2004). This introduction will briefly describe the key features of the

Bayesian paradigm that make it uniquely suitable for our investigation and recent

statistical advances that lay at the foundation of the methodology proposed to tackle the

production-reproduction controversy.



1. On the relationship between milk production and dairy fertility:

1.1. The current dogma:

Greater milk production has long been associated with deteriorating reproductive

performance in dairy cows. Indeed, one of the first recorded quotations on the subject

dates back to a 1929 Minnesota Agricultural Experiment Station Bulletin, as cited by

Hansen (2000). Later, a survey of dairy records from 1950 to 1985 in the state of New

York showed that whereas milk production steadily increased from 4500 to 7500

kg/cow*year, conception rates of dairy cows decreased from 66% to 40% during the

same period (Butler and Smith, 1989). More recent studies in the US raised even greater

concerns as rrrilk yields continued to increase while conception rates decreased to all-time

lows (Butler, 1998, Lucy, 2001, Norman et al., 2009, Washbum et al., 2002). Similar

reports from other countries (i.e. Ireland: Roche et a1. (2000); United Kingdom: Royal et

a1. (2000); Australia: Macmillan et a1. (1996); Spain: Lopez-Gatius (2003)) point towards

a world-wide problem of considerable magnitude. Locally, the state of Michigan is

certainly not immune to this antagonistic trend. Unless addressed, this problem seems

likely to tarry indefinitely given the continued momentum of increasing milk yields and

decreasing fertility levels.

Antagonistic historical trends were initially rationalized by claims that intensive

selection for high milk production had led to unintended selection for low fertility.

Indeed, animal breeders strongly argue for a genetic basis to the antagonism between

milk production and reproduction (Castillo-Juarez et al., 2000, Hansen et al., 1983, Pryce

et al., 2004, Seykora and Mcdaniel, 1983). For example, genetic correlations between



days open and 305-d milk yield ranged between 0.2 and 0.3 (Hansen et al., 1983)

whereas genetic correlations between first service conception rate and mature equivalent

milk yield ranged from -0.3 to -O.4 (Castillo-Juarez et al., 2000). Based on these reports,

intensive selection for increasing milk productivity would result in an unintended

decrease in reproductive performance. These genetic relationships certainly offer a

plausible explanation for the historical trends observed. It should be noted, however, that

the genetic information passed on from one generation to the other is only a fraction of

the phenotype, namely heritability (Falconer, 1981). Heritability for fertility traits is

consistently low across studies, with estimates commonly below 5% (Calus et al., 2005,

Castillo-Juarez et al., 2000, Hansen et al., 1983, Seykora and Mcdaniel, 1983, Windig et

al., 2006). In contrast, heritability for production traits varies in the range of 20 to 40%

(Castillo-Juarez et al., 2000, Hansen et al., 1983, Seykora and Mcdaniel, 1983, Windig et

al., 2006). Therefore, despite an antagonistic production-reproduction genetic correlation,

the low heritabilities for reproductive traits raise questions about the relative importance

of genetics on the chance that a cow will conceive to a given insemination. Instead, the

production environment appears likely to exert a dominant role given the magnitude of

the environmental component in the phenotype, as defined by one minus heritability.

Adding further to the controversy, the genetic correlation between test-day milk yield and

fertility traits fluctuates during lactation (Berry et al., 2003a, b), just as managerial

practices do.

From a physiological perspective, energy balance has been proposed as a

mechanistic link between high milk yield and poor reproductive performance (Butler,

2003). Most dairy cows in early lactation experience negative energy balance with



mobilization of adipose tissue because feed intake does not meet nutrient requirements

for lactation (Bauman and Currie, 1980). The subsequent loss of body fat then signals

physiological mechanisms in the reproductive endocrine cascade and can lead to

disturbed reproduction (Lucy, 2003). However, studies have shown that highest

producing cows are not necessarily the ones with the most extreme negative energy

balance or the lowest body condition score. Rather, the ability of certain high producing

cows to promptly maximize dry matter intake after parturition appears to minimize

negative energy balance even with energy demands for high milk production (Lucy et al.,

1992). As a result, the risk for anestrous and infertility seems associated with a finely-

tuned balance between level of milk production and dry matter intake (Lucy etal., 1992),

which in turn contributes to the volume of hepatic blood flow and steroid metabolism in

the liver (Wiltbank et al., 2006).

1.2. Challenging the dogma:

A currently growing number of studies challenges the perception of a universal

antagonistic relationship between milk production and reproduction. In fact, high milk

production has been demonstrated to be positively associated with dairy cow fertility

(Leblanc, 2010, Lof et al., 2007, Lopez-Gatius et al., 2006, Peters and Pursley, 2002). For

instance, in cows yielding >50 kg of milk per day by 50 days in milk, the odds of

pregnancy increased by a factor of 6.8 compared to cows producing below that level. As

a result, an increase of 1 kg in milk yield at peak lactation was associated with an

estimated decrease of 1.8 d in the interval from calving to conception (Lopez-Gatius et

al., 2006). Similarly, cows with milk production above herd average had greater

conception rates (45.8 vs. 33.8%) compared with their lower producing herdmates (Peters



and Pursley, 2002) and days open were reduced among cows fi'om high compared to low

producing herds (Emanuelson and Oltenacu, 1998). Favorable associations between milk

production and reproduction were also apparent when the herd, rather than the cow, was

evaluated as the unit of performance. For example, days open for the highest producing

herds averaged one estrous cycle (i.e. ~21 days) shorter than for low producing herds

(Laben et al., 1982). Similarly, high yielding herds averaged a lO-day shorter calving

interval and had reduced odds of reproductive culling than low yielding herds, based on a

sample of 2,700 dairy operations (Lof et al., 2007).

Further fueling this controversy, extraneous factors have been proposed to

confound the nature of the relationship between milk production and reproduction.

Lopez-Gatius et al. (2005a) argued that, after various management and cow factors were

taken into account, no association between milk production and cow pregnancy was

identified. These factors included herd, season, lactation number, insemination number,

service sire and insemination technique. Two follow-up studies performed by the same

research group reconfirmed these findings (Garcia-Ispierto et al., 2007, Lopez-Gatius et

al., 2005b). Loss of body condition score has also been proposed to confound the

association between production and reproduction; whereby after accounting for changes

in cow body condition, embryonic and fetal losses were not significantly associated with

milk energy output (Silke et al., 2002). Also, looking at herd as unit of performance,

Windig et a1. (2005) identified a subset of herds in which fertility was not associated with

production level.

In summary, despite the apparently wide scope of evidence for an antagonistic

association between milk yield and fertility, an increasing body of evidence is



challenging this perception in favor of a potentially favorable or neutral production-

reproduction relationship. These seemingly opposite positions clearly define a polarized

controversy for which there is need of further insight. My interest is to define conditions

that jointly facilitate high milk yield and efficient reproduction and that will guide

management actions and decisions at the farm level .

1.3. Potential role of management and herd factors:

Along with the changes in milk productivity and reproductive efficiency observed

during the past century, dairy herd practices have also been modified substantially.

Developments in management have affected growth, health, and lactation (Caraviello et

al., 2006, Fulwider et al., 2008), thereby supporting a diverse, dynamic and vibrant dairy

industry. Based on the predominant role of environment over genetics on dairy cow

fertility, it may be possible that the exposure of cows to diverse management conditions

affects the disparity of evidence or perceived conflict on the nature of the relationship

between milk production and reproductive performance. In the following subsections, I

will review management practices and herd attributes as potential candidates for sources

of heterogeneity in the production-reproduction relationship in dairy cows.

1.3.1. Herd size as a historical indicator of changes in dairy management:

Herd size is perhaps one of the most conspicuous indicators of changes in herd

management in the US. From 1965 to 2009, the number of dairy cows in the US

decreased approximately 40%, from ~l 5 to ~9 million

(http://www.nass.usda.gov/QuickStats). During the same period, the number of US. dairy

operations decreased by roughly 94%, from ~l.1 million to ~65 thousand. Despite

decreases in total cows and herds, the number of dairy herds with 500+ head has



increased by 43% since 1997 and a recent survey indicates that a 5-yr herd size goal for a

representative subset of large commercial dairy farms is above 900 cows per operation

(Caraviello et al., 2006). Clearly, the current trend in US. dairying is to consolidate into

fewer and larger operations.

This shift toward larger farms is forcing a reevaluation of the traditional dairy

management configuration (Lucy, 2001). For example, simply due to more cows, larger

herds will require more time for completion of virtually every task in the farm including

milking and movement of cows to and from their pens, mixing and delivery of feed,

parturition assistance and management of transition cows, estrus detection and

implementation of synchronization strategies, sorting and insemination of cows,

pregnancy diagnoses and record keeping, just to name a few. The increase in time

commitment and responsibilities can easily become overwhelming for former “jack-of-

all-trades” small producers targeting herd expansion. As a result, responsibilities may

need to be redistributed over a larger work force, whereby employees are required to

become specialists on specific tasks (Bewley et al., 2001b). Under these circumstances,

finding, training and retaining quality labor becomes a major issue to a successful dairy

operation (Bewley et al., 2001b, Caraviello et al., 2006).

The implications of increasing herd size and subsequent changes on farm management on

the association between milk production and reproductive performance of dairy cows

remain unclear. Herd size has been reported as an important source of variability in milk

productivity and reproductive performance of dairy cows (Cabrera et al., 2010, Fahey et

al., 2002, Lof et al., 2007, Windig et al., 2006, Windig et al., 2005); however, the

direction of the reported associations is not consistent.



1.3.2. Dynamic management strategies over time:

Aside from herd size, other trends in the dynamics of herd characteristics over the

past few decades have been poorly recorded. A few surveys to commercial dairy farms in

the Midwest (Bewley et al., 2001a, b, Fulwider et al., 2008) or across the US. (Caraviello

et al., 2006, Jordan and Fourdraine, 1993) assess farm management practices at a point in

time. If presented in a timeline, these surveys can provide some idea of progression of

management practices over time, and thus serve to postulate candidate sources of

heterogeneity in the association between milk production and reproduction

Adoption of synchronized breeding strategies is probably one of the hallmark

tendencies in dairy management during the past 15 years. The proportion of herds

incorporating this technology increased steadily from 1.9% in 1996 to approximately

20% in 2005 (Miller et al., 2007). In a survey of large commercial U.S. dairy farms, 90%

indicated routine implementation of synchronization of estrus or ovulation for first and

subsequent services (Caraviello etal., 2006). As a consequence, the use of natural service

either as a main strategy or just for clean-up has steadily decreased. Indeed, 100% of the

herds included in an early 1990’s survey reported moving cows to the clean-up bull pen

after 3.7 failed inseminations (Jordan and Fourdraine, 1993); conversely, only 44% of

herds considered in an early 2000’s survey kept a clean-up bull at all, in which case cows

were moved only afier 6.6 failed inseminations (Caraviello et al., 2006). Further,

evidence indicates that bull service applied to 100% cows in 1944 but only to 30% of

cows in 2005 (Capper et al., 2009).

Recombinant bovine somatotropin (bST) constitutes yet another manifestation of

the rich dynamics of the dairy industry over the past couple decades. Introduced in the



US market in the early 1990’s, bST technology enhanced productivity and productive

efficiency while maintaining health and wellbeing of dairy cows (Bauman, 1999). Before

consumer groups pushed bST out of the market in 2007, a survey had indicated that 71%

of large US. commercial dairy herds supplemented cows with bST as part of their

management practices (Caraviello et al., 2006).

Overall, the subsections above outline a cherry-pick of the management changes

undergone by the dairy industry during the past few decades, which warrant their

investigation as potential sources of heterogeneity in the association between milk

production and reproduction of dairy cows. Additional components of dynamic

management changes and herd attributes for further consideration include, but are not

limited to, changes in herd prevalence of infectious agents that affect fertility and/or milk

production, milking frequency and management of milking feeding groups.

2. Reevaluating the relationship between milk production and reproduction in

dairy cows: Limitations of previous approaches

The previous section described the on-going controversy and discussed different

aspects of the association between milk production and reproductive performance in

dairy cows. A common, yet sometimes inadvertent, thread across such studies is an under

appreciation of the dual components of the production-reproduction relationship, namely

the within-herd (i.e. cow-level) versus between-herd (i.e. herd-level) components. Herds

and cows constitute distinct units of performance and separate constituents of

(co)variability that intertwine with each other due to the clustered nature of the data

structure, to yield an overall phenotype. Whatever associations may be apparent at the
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herd level (i.e., between herds) may not necessarily be apparent at the individual animal

level (i.e., within herds), and vice-versa (Calus et al., 2005, Windig et al., 2005). If these

distinctions are not made, any reported associations can be dangerously over-generalized

or even biased! The importance of recognizing this issue was illustrated by Windig et a1

(2005), who showed that if herd-level information was disregarded, high milk yield was

associated with poorer fertility. but within herds, this relationship was quite diverse

and fluctuated widely from strongly positive to strongly negative correlationé! Such wide

variation between cow and herd components may be the key to explain the conflicting

evidence and current controversy on the relationship between milk production and

reproductive efficiency of dairy cows. To our knowledge, the relationship between

productive and reproductive traits taking into separate consideration the dual cow

and herd components has not been modeled. Thus, it is unclear what factors, if any,

and at what level, might be associated with the production-reproduction relationship in

dairy cows.

Scope of inference constitutes another issue commonly overlooked in evaluating

the production-reproduction controversy. Indeed, in many cases, data are collected at one

or, at most, a few farms (i.e. narrow sc0pe) but conclusions are formulated to apply

across the industry (i.e. broad scope). Even among studies in which multiple herds are

involved, their modeling as systematic blocking factors restricts the scope of inference

(Tempelman, 2010). Narrowly scoped data, such as that obtained in one or a few herds,

will likely be relevant for local decisions; however, conclusions may also be highly

misleading if overly generalized to the overall dairy population across its heterogeneous

managerial environments. This is specially the case if the data pertain to a research farm
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that may not necessarily represent commercial herds, to which the final management

conclusions are intended to apply. Under these circumstances, conflicting results between

studies and contradictions between experimental data and field observations should not

be surprising.

Statistical methodology that is based on univariate (i.e., single trait response)

analysis represents an additional highly prevalent limitation in many production-

reproduction association studies. In single-trait analyses, reproductive traits are modeled

as a function of milk yield (Laben et al., 1982, Lopez-Gatius et al., 2006, Spalding et al.,

1974), or, conversely, milk yield is compared between reproductively successful and

unsuccessful females (Lopez-Gatius et al., 2006, Windig et al., 2005). In so doing, the

prevailing assumption is that whichever trait is alternatively chosen to be the explanatory

variable is measured without error and not influenced by other covariates in the model.

Moreover, the univariate approach bluntly ignores the correlation between traits as a

potentially important source of information, which in turn has a detrimental effect on

precision of the inference (Riley et al., 2007, Sorensen et al., 2003). These limitations of

univariate models are broadly recognized by animal breeders and geneticists, who in turn

are more likely to implement standard multivariate analysis to appropriately estimate the

genetic correlation between fertility traits and test-day milk yields (Berry eta1., 2003a, b,

Castillo-Juarez et al., 2000, Hansen et al., 1983, Tsuruta et al., 2009, Windig et al., 2006).

Interestingly, several of these authors noted ad-hoc evidence for heterogeneity between

environments in the magnitude of the genetic correlation between milk yield and fertility,

when environments were described by stage of lactation (Berry et al., 2003a), herd size

(Tsuruta et al., 2009) or a combination of management characteristics (Windig et al.,

12



2006). However, a general framework to explicitly model hierarchical heterogeneity of

variance-covariance matrices in multivariate settings is lacking. Due to technical

difficulties associated with positive-definiteness, the underlying premise of multivariate

models is a fixed variance-covariance structure that is assumed to behave unifome and

remain constant across scenarios of risk factor combinations (Mardia et al., 1979).

In summary, there are multiple limitations in previous studies to assess the nature

of the production-reproduction relationship. If these limitations are appropriately

accounted for, the contradictory evidence and conflicts may be explained. The question is

certainly a complex one due to the underlying hierarchy of the data structure (i.e. cow

versus herd) and the need to assess management practices as potential sources of

heterogeneity in the correlation between traits, as well as the technical limitations of the

statistical methodology available for analysis.

3. Statistical approach:

3.1. Why Bayesian?

Analysis of hierarchical data with multiple layers of heterogeneity is generally

computationally intractable if approached from classical statistical theory based on

likelihood inference (Sorensen and Gianola, 2002). Alternatively, the Bayesian statistical

framework is particularly suitable to these complexities due to the embedded hierarchical

rationality of the Bayes paradigm and its direct inferential approach (Shoemaker et al.,

1999, Sorensen and Gianola, 2002). In recent years, many areas of science and

humanities have recognized the unique advantages of Bayesian statistics. Especially since

the 1990’s, when the development ofpowerful computational tools such as the simulation
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intensive algorithm Markov Chain Monte Carlo (MCMC) (Gilks et al., 1996) facilitated

the implementation of Bayesian methods. The modular format of MCMC provides

immense flexibility to model highly hierarchical structures, such as needed to address the

question on the relationship between production and reproduction in dairy cows.

3.2. Multivariate models and heterogeneous variance-covariance parameters

Joint modeling of two (or more) traits using multivariate techniques has the

advantage of potentially sharper inference on both traits. The off-diagonal elements of a

variance-covariance matrix represent the covariance between a pair of outcomes, which

defines the nature of their relationship. Conceptually, the modeling of covariances would

provide a formal methodological venue to capture heterogeneity in the association

between outcomes. However, positive-definiteness constraint among variance-covariance

elements imposes a very tangible technical limitation that renders a rigid structure to the

multivariate variance-covariance matrix (Riley et al., 2007, Sorensen et al., 2003).

Recent developments in the medical statistical literature spawned computationally

feasible and easily interpretable alternatives for flexible modeling of (co)variance

elements (Pourahmadi, 1999, 2007). The key idea is a reparameterization of the

variance-covariance matrix using a Cholesky-type decomposition, whereby the original

matrix is decomposed into two unique matrices: a diagonal matrix and a lower triangular

one. Jointly, the two new matrices retain all the information on the variation of and

correlation between traits, with the clear advantage of a simpler structure that overrides

positive definiteness technicalities. In fact, the reparameterized variances and

covariances are unconstrained and mutually orthogonal such that each can be easily

specified as a function of explanatory variables of interest (Pourahmadi, 2007). In this
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dissertation, we extend this methodological approach to accommodate multiple

hierarchical levels (i.e. cow- and herd-level) and layered sources of heterogeneity, as is of

interest to investigate the link between milk yield and dairy cow fertility.

4. General hypothesis:

The between- and within-herd associations between milk production and reproductive

performance of dairy cows are heterogeneous and depend upon management practices

and herd attributes.

5. Specific Aims:

To approach the general hypothesis stated above, the core of this dissertation research

is innately interdisciplinary and closely integrates concepts of animal physiology, and

animal production systems with advanced elements of applied statistics.

The Specific Aims ofthis dissertation research are:

1) To develop and validate a hierarchical Bayesian extension to classical bivariate mixed

effects methods to model heterogeneity in residual and random covariance matrices

for the joint analysis oftwo Gaussian phenotypes;

2) To use the methodology developed in Specific Aim 1) to investigate the within-herd

(cow-level) and between-herd (herd-level) associations between indicators of

comprehensive (i.e. entire lactation) milk production and reproductive performance of

Michigan dairy cows, including the evaluation of various herd management factors

potentially afiecting these associations;
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3)

4)

To develop and validate a hierarchical Bayesian implementation of a bivariate

generalized linear mixed-effect model for heterogeneous variance-covariance

matrices in the context of a joint analysis of Gaussian and non-Gaussian traits;

To implement the methodology developed in Specific Aim 3) to investigate the

associations between milk yield at and pregnancy outcome to first postpartum service

of Michigan dairy cows, accounting for cow and herd as hierarchical units of

performance and evaluating the role of management practices and herd attributes as

potential sources of heterogeneity.
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CHAPTER 1

Hierarchical Bayesian Modeling of Random and Residual

Variance-Covariance Matrices in Bivariate Mixed Effects Models

This is the pre-peer reviewed version ofthefollowing article: Bella N. M., J. P.

Steibel and R. J. Tempelman. “Hierarchical Bayesian modeling ofrandom and

residual variance-covariance matrices in bivariate mixed effects models

Biometrical Journal 2010 June; 52(3):297-313.

ABSTRACT

Bivariate mixed effects models are often used to jointly infer upon covariance

matrices for both random effects (u) and residuals (e) between two different

phenotypes in order to investigate the architecture of their relationship. However,

these (co)variances themselves may additionally depend upon covariates as well as

additional sets of exchangeable random effects that facilitate borrowing of strength

across a large number of clusters. We propose a hierarchical Bayesian extension of

the classical bivariate mixed effects model by embedding additional levels of mixed

effects modeling of repararneterizations of u-level and e-level (co)variances between

two traits. These parameters are based upon a recently popularized square-root free

Cholesky decomposition and are readily interpretable, each conveniently facilitating

a generalized linear model characterization. Using MCMC methods, we validate our

model based on a simulation study and apply it to a joint analysis of milk yield and

calving interval phenotypes in Michigan dairy cows. This analysis indicates that the
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e-level relationship between the two traits is highly heterogeneous across herds and

depends upon systematic herd management factors.

1. Introduction

Multivariate mixed effects models have been routinely used to investigate the

architecture of relationships between two or more traits at several different levels,

specifically (co)variance matrices for different sets of random (u) effects and

residual (e) effects. In animal breeding, for example, co(variance) matrices for

random genetic effects are specified in addition to that for residual effects to

investigate how the phenotypic relationships between corresponding traits can be

partitioned into random family or cluster effects (u) and residual effects (e)

(Thompson and Meyer, 1986).

We are specifically interested in the joint analysis of milk production and

reproductive efficiency of dairy cows. These two classes of phenotypes help define

the necessary foundation for a successful dairy farm. Although antagonistic

correlations (e.g., higher milk production leading to poorer fertility) have been

generally reported, there are enough discrepancies across studies to suggest the need

for modeling (co)variances as functions of covariates that characterize dairy

management effects or herd environments (Laben et al., 1982; Lopez-Gatius et al.,

2006; Lucy, 2001; Washbum et al., 2002). If these associations are significant, it

may be possible to identify and recommend management strategies that mitigate the

antagonistic relationship between the two traits. We consider the relationship

between two representative traits using u-level (co)variances between clusters, e.g.,
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herds, and e-level (co)variances between measurement units, e.g., cows within herds,

hypothesizing that u-level and e-level (co)variance matrices are heterogeneous and

may depend upon different systematic factors.

Modeling of both fixed and random effects influencing heterogeneity on

residual variances has been previously developed in univariate models (Kizilkaya

and Tempelman, 2005; Mulder, Bijma and Hill, 2007; Ros et al., 2004). However,

work on explicit structural modeling of covariance matrices as functions of

covariates has been limited because of necessary positive semi-defmite constraints.

To facilitate this issue at the e-level, Pourahmadi (1999) proposed a square root free

Cholesky transformation of the (co)variance matrix for time ordered responses (i.e.,

longitudinal data) such that (co)variances are reparameterized as generalized

autoregressive parameters (GARP) and innovation variances. We observe that the

same transformation could also be applied to u-level (co)variances and that the

resulting parameters can be readily specified as linked functions of linear models.

Hence, multifactorial sources of heterogeneity on co(variances) can be modeled at

both the u-level and e-level, recognizing that (co)variance matrices between

observed phenotypes (i.e., at the y-level) on two or more traits could be separately

affected by each of the two components. We also propose that the e-level GARP and

innovation variances be modeled not only as functions of systematic (i.e., fixed)

effects, but also of exchangeable cluster-specific random effects that can be

characterized by a distribution, similar to those specified for fixed and random

effects in classical mixed effects models. In a Bayesian model, all unknown

parameters are considered to be random effects. Nevertheless, from a Bayesian
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perspective, a fixed effects factor might be defined as one where each of its effects is

specified with independent non-informative or vaguely informative prior

distributions (Robinson, 1991; Sorensen and Gianola, 2002). A mixed effects model

representation at deeper levels of a hierarchical Bayesian model is even more critical

as it should facilitate efficient shrinkage estimation for cluster effects, each cluster,

e.g. herd, characterized by many levels, each with a relatively limited number of

measurement units or subjects, e.g., cows.

We believe our proposed model could be considered for a number of other

applications in which the joint evaluation of multiple outcomes of interest is

currently restricted by the assumption of constant correlations between traits across

environments. For example, multivariate biomedical meta-analyses as well as multi-

center medical studies typically involve the joint analysis of two or more types of

outcomes, with medical centers then defining the clusters and patients defining the

subjects (Riley et al., 2007); heterogeneous co(variances) across centers could then

lead to suboptimal inferences on treatment effects under the assumption of constant

co(variance) matrices. In the context of plant breeding and variety testing, flexible

modeling of heterogeneous variance-covariance structures of yield responses in

multi-environment trials of genetically related strains could be used to elucidate

factors involved in genotype-by-environment interactions (Crossa et al., 2006;

Piepho et al., 2008). In fact, a more general multivariate approach to genetic

mapping of quantitative trait loci is likely to advance our understanding of complex

phenotypic traits in plants, animals and humans (Mauricio, 2001; Sorensen et al.,

2003). Studies where randomization occurs at the level of the cluster (Eldridge et al.,
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2004), e.g., geographical areas, communities, schools, or worksites, rather than at the

level of the individual within cluster, may also benefit from multifactorial modeling

of (co)variances. For pedagogical purposes and for the intent of our dairy application

of interest, our presentation is based on the modeling of two different responses or

traits; however, our work could certainly be generalized to multivariate time-ordered

data of any dimension as originally considered in Pourahmadi and Daniels (2002).

The objectives of our study are l) to develop a hierarchical Bayesian

extension to classical bivariate mixed effects modeling of residual (e) and random

(u) covariance matrices for the joint analysis of two phenotypes, 2) to further

validate the properties of our method implemented using Markov Chain Monte Carlo

(MCMC) based on a simulation study, and 3) to apply our method to a joint analysis

of milk production and reproduction of first-lactation dairy cows in Michigan.

Whenever possible, we strive to choose prior density specifications that are

conditionally conjugate (Gelman, 2006) in order to expedite Gibbs sampling steps in

our MCMC algorithm (Gelfand and Smith, 1990).

2. Methods

2.1. Hierarchical Bayesian model construction

We start with the conventional bivariate linear mixed model

1

yy=xgij'fli+2j'ui+eij (I)

where yij is the observation for trait i (i=1, 2) on subjectj 0'=1, ...,n), Bi is a pm x 1
1

vector of unknown fixed location parameters for factors (e.g., parity, year, calving

26



season, etc.) unique to trait i; “i is a q x 1 vector of unknown classical random

effects (e.g., herd or contemporary group, etc.) unique to trait i and eij is the

1

corresponding residual. Also, xgj) and zj'are known incidence row vectors for

subjectj. For pedagogical reasons, we assume the same single random effects factor

of clusters, e.g. herds, is common to both traits and for all subsequent random effects

modeling presented thereafter (i.e. zj 'is the same for both traits and all levels of the

hierarchical data structure modeled). Independent bivariate normal densities are

assumed for each subject-specific pair of residuals e.j = [ehj 92,j]' on the two

traits with E(e.j)=0 and var(ej)=ijhere

2 .

0e] aj 0'31 2 ’J

j = 2 . (2)

aelzaj 062,].

R

From a Bayesian perspective, the elements of 13,- are typically considered to

be classical fixed effects (Sorensen and Gianola, 2002); that is, parameters whose

elements would not be considered to be exchangeable random variables. Typically,

we might specify subjective prior densities on fixed effects such as, for example,

Pi I 13?,Vim) ~ N[B?,Vi(B)} with hyperpararneters B? and Vl-(p) being specified

as known for i=1,2. Bounded uniform priors are also commonly considered

(Sorensen and Gianola, 2002) as, typically, enough data is available to infer upon
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elements of Pi with any reasonable noninforrnative prior distribution in large field

studies (Gelman, 2006).

Denote “.k = [uhk u2,k]' where ui,k denotes element k of u,- and is the

random effect of cluster k (ISkSq) for trait i. We specify independent structural

bivariate normal prior densities on each u.k with E(n.1,) = 0 and var(u_k) =Gk

such that:

2

0u1,k (Tank

2

0‘24ch 0u2,k

Gk = (3)

We reparameterize the variance-covariance matrices by implementing a

square-root-free Cholesky decomposition to each RJ- and Gk (co)variance matrix.

Hence, we rewrite Rj in Equation (2) as:

  

r 2 (e) 2 7

R 0.819.]. (0.]. 0.619.].

j = (e) 22 2 (e) 2

‘PJ “ew‘ 0e2,1,j+[¢j l 061,1

(4)

Here $5.8) represents the subject-specific e-level regression coefficient of 82,1' on

.. - _ (e) . 2 . . .
81’], that rs, e2,j —(0j 81.} +e2“,j where 82“,] ~N 0,062 rs conditionally

IL}

independent of el,j- Similarly, we rewrite Gk in Equation (3) as:
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2 (u) 2 1

althk fit aubk

2

(u) 2 2 (u) 2
wk aubk UltquC + $15 Gulak

b _  

(5)

where ¢£u)represents the cluster-specific u-level regression coefficient of u2,k on

“l,k§ that is, u2 k = ¢](¢u)u1 k +112“ k where u2|l k ~ N(0,032“ k] is conditionally

independent of u] k'

Using the conventions established by Pourahmadi (1999) and Daniels and

Pourahmadi (2002), 0'32“,k and 03241,], might be referred to as the random effect and

residual innovation variances on trait i = 2 specific to cluster k and subject j,

respectively. Alternatively, we prefer the term conditional variances due to the

between-trait conditional independence of residuals and random effects that is

implied by the Cholesky decomposition in Equations (4) and (5). With these

reparameterizations, Equation (1) does not change for trait i = 1 since it is specified

as the first trait, and hence its random or residual effects are not conditioned upon

those of any other trait. However, for trait i = 2, Equation (1) would be rewritten as:

l r r u e
ij =x(23]. [12 +Zj (“A )u1+u2|1)+¢£.)el,j +82|1,j'

where [12“ ={u2119k}:=1is a q x 1 vector of random effects on trait 2 conditional on

trait 1 and ‘1,(u) is a diagonal matrix with diagonal elements
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¢(u) =[¢1(u) goéu) (05114)}. It should then be apparent that

(u) _ 2 (e) _ . 2 . (u)
(pk -0u12:k/0u1,k and (0!. — aeIZaJ/Uel,j' That rs, (0k can be

interpreted as the conditional change in uz,k(j) , and hence in yz,j , for every unit

change in ul k(J) where k0) defines the cluster k associated with subjectj. Similarly,

(e) . .. . .
(0J can be interpreted as the condrtronal change in 62,1- , and hence in y2,j’ for

u e

every unit change in el j' Hence, we refer to parameters (a;c ) and (05- )as the u-

level and e-level regression coefficients, respectively, for our two trait application,

rather than as GARP by Pourahmadi (1999). Note that Rj and Gk are guaranteed

8 u

to be positive definite for any respective values of (as. ) and ¢lc ) (Pourahmadi,

1999), thereby facilitating their specification as a linear function of covariates and/or

random effects.

We subsequently describe the generalized linear modeling of heterogeneous

variances and covariances. We first specify a linear mixed effects model on each

subject-specific (0(-e) :

J

2

¢§e)=x(1.)'ye+zj'm, (6)

Here, Ye represents a p( ) x 1 vector of unknown fixed effects whereas m

represents a q x 1 vector of unknown cluster-specific random effects as before but
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2

such that m ~ N(0,103,). Furthermore, XS. )' is a known row incidence vector.

Note that the effects considered in 'Ye do not necessarily need to mirror those

. . . . . 1
consrdered for location parameters 0;; that rs, 1t rs not necessary that x(- )'=x(~)'

J l]

for either i =1 or i = 2.

We srmrlarly specrfy a lrnear model on each cluster-specrfic (0 :

u 3 ,

(”IE ) = x2) Yu (7)

where Yu represents a p(3)x 1 vector of unknown fixed effects with x9) ' being

the associated known row incidence vector.

We also model the conditional residual variances 0'2 .and 0'2 as

31.1 82“,]

multiplicative functions of fixed and random effects (Cardoso, Rosa and

Tempelman, 2005; Kizilkaya and Tempelman, 2005), expressing the log-linked

relationships as follows:

4

104031, ) = XS]. )'log(rei )+zj 'log(vei ); i = 1, 2|1. (8)

n

Here 0'31, = {031, 1'} represents the n x 1 vector of subject-specific conditional

, j:1

residual variances with i = 2|1 referring to the corresponding parameter for trait 2

4

conditioned upon that for trait 1. Also, 131' represents a pg ) x 1 vector of
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q

unknown fixed effects whereas Veg = {Vebk }k 1 represents a q x 1 vector of

unknown cluster-specific random effects. Furthermore, XE]. )' is a known incidence

row vector. To obtain conditional conjugacy (Gelman, 2006), we adopt independent

inverted gamma (1G) prior densities for each trait—specific set of random effects on

the conditional residual variances:

Vei’k [7781- ~IG(77eI-,nei _1), i=1, 2'1,

—-1

such that E(Ve,-,k [nei)=land var(ve,-,k lllei)=(7lei —2) for k = 1,...,q

(Cardoso et al., 2005; Kizilkaya and Tempelman, 2005). Note that the structural

prior on each of v9] and Vez , as well as that previously specified on m, allows for

borrowing of information across levels or clusters for each random effects factor in a

manner similar to what the Gaussian prior density does for the vectors of classical

random effects “1 and u2 (Robinson, 1991).

We also introduce heterogeneity in the u-level variances by modeling the

conditional variances of the random effects as multiplicative functions of fixed

effects, such that the logarithmic expression of this relationship is also linear:

5 , ,

1046126): xlk) log(‘rui); t: 1, 2|]. (9)
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‘1

Here, “[21 = {0'2 } represents the vector of cluster-specific conditional

t
' "'3" k=1

- (5)
random effects variances whereas Tut represents a pi x 1 vector of unknown

fixed effects. Furthermore, xikJ' is a known incidence row vector.

For all remaining prior density specifications, we treat all hyperparameters as

known, again striving to choose priors that are conditionally conjugate to facilitate

Gibbs sampling steps. First we adopt subjectively-specified Gaussian prior densities

on the fixed effects influencing heterogeneity of the e-level and u-level regression

coefficients, i.e., ye ~ N(ughvgg , yu ~ N(”aw”) , although again

bounded uniform priors might be specified as well. We further specify an

IC(am,,Bm) prior on 03%,. Independent inverted-gamma priors are also placed on

pf) pp)
' and 1' .= {‘1' . } I specifically

u, “11 l 9 9elements of 131' = {tea ll 1 -1

re” ~IG[al(e),51(0), 1=1,2,..., 101(4), and Tuil ~IG[all“),[31M],

5

l=l,2,..., pi J, for i = 1, 2|], as these priors are conditionally conjugate when the

elements of the corresponding row incidence vectors pertain to the intercept or are

dummy variables for classification factors (Kizilkaya and Tempelman, 2005).

Again, we characterize elements of ye, ya, 191 , 1'32“ , Tu] and 11‘2" as being
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fixed effects since we don’t consider elements within those vectors as being

exchangeable (Sorensen and Gianola, 2002).

We assign a vaguely informative, though proper, prior density (Cardoso et al., 2005;

Kizilkaya and Tempelman, 2005) to the hyperparameters characterizing the

distribution of the random effects for the e-level heteroskedasticity, as follows:

776’. ~P(7le,-)°C(1+77ei)—2§ for 7731. >0 and i=1,2l1.

(10)

As shown previously by Albert (1988), this prior defines a uniform prior

—1

density U(0,1) on the transformed variable 9‘ = 8(77ei)=(1+ 779i) . Then, by

 change of variables, file,- = fg-(g_l (7761.)) g.1 (7791') = (1 +773]. )_2 where f

a ”e,-  

denotes the probability density function.

2.2. Inference

Our inference for the proposed hierarchical Bayesian model is based on MCMC.

The joint posterior distribution of all unknowns as well as the full conditional

densities (FCD) for these unknowns, as necessary for implementing MCMC, are

presented in the Appendix. Regular identifiability constraints are required on all

fixed effects parameters, namely [11, [32, ye, yu, Te] , 1'82“ , Tu] and Tu2|1 in

order to remove hypersensitivity to their respective prior specifications (Gelfand and

Sahu, 1999) for example, only M indicator or dummy variables is required for a

classification factor with t levels (Kutner et al., 2005). We thereby adapt the corner
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parameterization (Clayton, 1996; Kizilkaya and Tempelman, 2005), also known as

the set-to-zero restriction (Milliken and Johnson, 2009), whereby an overall intercept

is always specified and the effect corresponding to one arbitrarily chosen level of

each fixed effects factor is “zeroed out” or removed. This parameterization is also

popularized in SAS linear models software (Littell, Freund and Spector, 1991).

Certainly, an alternative full rank parameterization, such as the sum-to-zero

restriction (e.g., Kaufinan and Sain, 2010), could have been considered. Although

Bayesian inference for these two alternative parameterizations would not be strictly

invariant to the same non-informative prior distributions, the information provided

by the data to the posterior densities of same estimable linear combinations of the

fixed effects under either parameterization (and many possible others) would be

identical (Gelfand and Sahu, 1999).

3. Simulation Study

We validate our proposed model using a simulation study for which our focus was

on inference on 'Ye , yu and 03,. Two correlated response variables were

simulated to mimic milk yield and calving interval for approximately 50,000 subjects

(e.g., cows) distributed across 200 clusters (e.g., herds)‘

within each replicated dataset. The number of subjects (or cows) per cluster (or

herd) was drawn from a discretized gamma distribution based on the mean and

variance of cluster sizes obtained from an actual dataset to be described later. We

considered three different broad scenarios or correlation architectures between traits

that might be plausible for a number of disparate applications. These 3 scenarios
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differed in terms of general sign of the e-level and u-level regression coefficients,

namely: A) same sign: positive u-level and e-level coefficients; B) opposite sign:

negative u-level and positive e-level coefficients; C) zero correlation: zero u-level

and e—level coefficients. We also considered 4 different values for the variance

component 03,:1) 0,3,: 0; 11) 0,3,: 0.1;111) 0,3, = 1; and IV) 02: 10. Ten

replicate datasets were simulated for each of the 12 possible populations as defined

by the factorial of 3 different correlation architectures with 4 different values of 0'2 .

The same two levels of a single fixed effects factor were considered, where

applicable, for all location parameters, conditional residual and random effects

variance components, and e-level and u-level regression coefficients. In other

words, the corresponding incidence row vectors for all fixed effects terms were

identical such that all covariates were cluster-specific (e.g., herd-specific); i.e.

_ ( _ (5) ._ 5) . -
2]. -xJ —xk(j)— If 2]. kaU) —x2,k(j) ,wrththefirst

element set equal to l to specify an intercept and the second element being a

Bernoulli (0,1) random draw with probability of 0.25 to partially mimic an

unbalanced design structure as based on the comer parameterization. We used

arbitrary 2 x 1 specifications for Ye =[7el 7e2 ]' and 'yu =[7u1 71,2] from

Equations (6) and (7) to create the intended correlation architectures such that

Ye = y“ = 0 in scenario C; these specifications are provided in Table 1. We also

set 161 {1,1,1 791,2}:[176 220] and
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132|1=I:Tezu,l T€2|192]'=[9’100 13,000]' per Equation (8)

andtul=l:2'u1,l Tu1,2:l'=[150 100] and

11,2“ =[Tu211’1 Tu2|1,2]'=[900 6001' per Equation (9) for all simulated

datasets. Similarly, the same hyperparameter values, 7791 = 8 and new = 4 , were

used for all datasets to specify the degree of heterogeneity in conditional residual

variances across clusters for traits l and 2, respectively. In all cases, flat unbounded

priors were specified on ye , 'yu and 03%,, as well as for 11,-, i = 1, 2 and for Tut

and 131 , i = 1, 2|]. However, additional caution should be used for smaller datasets

such that informative priors might be needed to ensure propriety of the joint posterior

density.

For the analysis of each of the 120 simulated datasets, the length of the

MCMC chain was 100,000 cycles after a burn-in period of 1,000 cycles.

Convergence diagnostics for all relevant parameters (i.e. parameters with non-

exchangeable priors) was monitored graphically, and also following Raftery and

Lewis (1992). For all elements of 7e and ya , and for 0%, , we assessed frequentist

properties based on the 95% highest posterior density interval (HPD).

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) is

commonly used to infer upon evidence for fixed and random sources of

heterogeneity on residual variances by comparing quality of fit between competing

hierarchical models (Ibanez-Escriche et al., 2008; Ros etal., 2004). In this study, we
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validated the DIC as a means to test for the importance of 0%, on the e—level

regression coefficient in the bivariate context. Two competing models were

evaluated: a full model (M1) that included cluster-specific e-level regressions (i.e.,

0%, > 0) and a null model (M0) that did not (i.e., 0%, = 0). The difference between

the two corresponding DIC values, respectively DIC] and DICO, were used to draw

2
conclusions on the importance of 0m. Smaller values of DIC are indicative of

improved model fit, such that positive values of (DICo - DICt) would suggest M] to

be the better fitting model and thus indicate evidence of non-zero 03%,. Generally,

DIC differences exceeding 7 are believed to indicate a decisive difference in model

fit (Spiegelhalter et al., 2002).

For all 90 replicated datasets in which 0'3, > 0, values of (DICO - DICI)

were all greater than +7, thereby always correctly selecting the full model. Moreover,

as expected, the value of (DICO - DIC1) increased with greater values of 0'3, but

showed no pattern between the different correlation architectures. Ranges of (DICo -

DICl) values were [11, 98] for 0'3,= 0.1; [522, 1378] for 0'3,= 1.0; and [4658,

14175], for 0%, =10. For 29 of the 30 replicated datasets where 0%,: o, the

absolute values of (DICO - DICI) were less than 7, with the range being [-3.9, 5.1].

The remaining dataset had a DIC difference of 9, thereby incorrectly choosing the

full model, at least based on the rule of thumb provided by Spiegelhalter et a1.
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(2002). We then believe these results validate DIC and Spiegelhalter’s rule as a

2
reliable model choice criterion for a decision rule on 0' .

3.1.Posterior inference on random regression parameters:

Table 1 presents the minimum and maximum values for each of the upper

and lower boundaries of the 95% HPD of the posterior distribution for 7e] , 7e2 ,

7“, , 7,,2 and 0%, across the 10 replicates for each of the 12 simulation

populations considered. Coverage probabilities for the e- and u-regression

parameters across the entire simulation study was near frequentist expectation as the

replicate-specific 95% HPD included the true parameter value in 537 out of 570

cases (based on 120 replicated datasets times 4 fixed effects parameters, namely

73,, 732 , 7,,1 and 7,,2 ; plus 90 cases on 0'3, for datasets involving non-zero

0'3, ). This result also partly validates that for reasonably sized datasets, such as

those simulated in our study, unbounded flat priors on these same parameters may be

relatively innocuous; however, proper priors should generally be considered to

ensure propriety of the posterior density.

For each simulated population, posterior means (not shown) of 731,

762 , 0%,, 7“] and 7,12 , were evaluated for bias with respect to their true values

using a one-sample non-parametric Wilcoxon Rank Sum Test and a one-sample t-test

assuming normality. Based on a Type I error rate of 5% for each parameter, these

tests did not support biased estimation of posterior means for any regression
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parameters for any of the simulated populations (not shown). As expected, posterior

means of yul and yuz , were more variable and their 95% HPD were wider than

for 731 and 732 , as there is typically greater uncertainty for inferences on

dispersion parameters characterizing random effects as Opposed to those for

residuals. Furthermore, Table 1 illustrates that increasing values of 0%, had a

detrimental effect on the precision of inference on 731 and 732 . Nevertheless, the

correlation architecture, as manifested by the three different combinations of values

for 731, 732 , Yul and 7,,2 did not seem to influence the width of the 95% HPD

for any of those parameters. Overall, we noticed no difference in inferential

performance between scenarios A, B and C.

4. Application to Dairy Data

4.1. Data description

The two traits of interest were milk yield (kg. x 100) adjusted to 305 day

lactation lengths and calving interval (days) defined as the interval from the first

calving to second calving in primiparous dairy cows. Data on 49,789 first-lactation

cow records from 578 Michigan dairy herds from 2005 to 2007 were provided by the

National Dairy Herd Improvement Association (DHIA, Raleigh, NC). Random

clusters were characterized by 1,408 herd-years or contemporary groups, being

defined as the cluster of animals managed within the same herd and year. All

subsequent random effects modeling for this example is based on this cluster

definition. Complete data was not available for all herd-year clusters and, when
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available, it was scrutinized to ensure a minimum cluster size of 25 lactation records

per herd-year.

Some classical fixed effects (i.e.,Bhflz) factors were considered for both

traits, including the effects of 4 calving seasons (Winter: December to February;

Spring: March to May; Summer: June to August; and Fall: September to November)

and 3 years (2005, 2006, 2007). Additionally for [31 (i.e., milk production), we

considered the fixed effects of 3 levels of bovine somatotropin (bST)

supplementation: non-users (0% of the herd enrolled), intermediate users (>0-50%

of the herd enrolled), and committed users (250% of the herd enrolled), as well as

the fixed effects of 2 different levels of milking frequency (2 times per day or 2X,

versus 3 or more times per day or 3+X). Both of these factors are only recorded at

the herd level and reflect potentially different herd management strategies.

We used an ad-hoc approach (Bello, Erskine and Tempelman, 2009) to select

candidate sources of systematic heterogeneity to model on the e-level and u-level

relationships (i.e., Ye , Yu ) between milk production and reproductive performance

although we emphasize that the chosen factors are not intended to represent a

comprehensive list. We modeled $5.8) as a function of the fixed effects (78) of

milking frequency in the herd whereas (a?) was modeled as a function of the fixed

effects ('Yu ) of bST supplementation. To be consistent with these specifications, the

fixed effects specifications for the corresponding e-level and u-level conditional

variances were mirrored accordingly. That is, Tel and 1'32“ were specified by the
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herd milking frequency factor such that 419': XS)“; x(24}l'=[1 1] or [1 0]

depending on whether cowj was milked twice or more than twice daily, respectively.

Similarly, Tu, and rum were specified by the level of bST supplementation such

xllc)'=x(25k)'=[l l 0], [l 0 I], or [1 0 0] for non-users,
(3).

that xk

intermediate users and committed users, respectively. Furthermore, random cluster

effects were also modeled for e-level conditional variances, Vel and v32“ as per

Equation (8) with independent inverted-gamma priors having hyperparameters fie,

and 77e2|1 , respectively, and their own prior specifications as in Equation (10). Prior

densities for all remaining parameters were specified as indicated previously for the

simulation study. Also, as with the simulation study, two competing models were

fitted to the data: a full model fitting herd-year as a random cluster-specific source of

e-level heterogeneity (m) on mg?) with m ~ MO, 10%,) and a reduced model

ignoring this source of heterogeneity (i.e., 0%, =0). For each of the two competing

models, we ran one long MCMC chain (100,000 saved cycles after 1,000 cycles of

bum-in), using the same convergence diagnostics on all parameters with non-

exchangeable priors, as described in the simulation study. For each parameter of

interest, we summarize the posterior density using posterior means, posterior

standard deviations, and 95% HPD. In addition, we report the effective sample size

(ESS) as a measure of the number of effectively independent samples amongst the

100,000 dependent MCMC samples (Sorensen et al., 1995).
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4.2. Results

As previously mentioned, model choice and thus evaluation of hierarchical

heterogeneity of the e-level relationship was based on DIC. The DIC for the full

model was 36.2 units less than that for the reduced model, implying that 0%, or

variation in cluster or herd-year effects on the e-level relationship between 305-d

milk yield and calving interval among first parity cows is significant. Hence, we

base all of our subsequent inference on a full model that includes a mixed model

. . . . . (e)
specrficatron for each subject-specrfic (or cow-specrfic) (aj .

Based on this full model, posterior means, posterior standard deviations, 95%

HPD and E88 for MCMC inference on e-level (ye and 0%,) and u-level (yu)

hyperparameters are summarized in Table 2. The ESS indicated sufficient number of

MCMC iterations, although mixing for 0%, appeared to be substantially hampered

relative to the other parameters. Such slower mixing was also observed in the

simulation study and was not surprising given that 0%, specifies the deepest, and

thus least informative, level in the hierarchical model. It appears that, in general, the

e-level relationship between 305-d milk yield and projected calving interval differed

substantially in magnitude from the u-level relationship. The overall eolevel

1 n (2)
relationship, based on the posterior mean of 71- 2 j '73 , was of 0.55 d longer

1'=1

projected calving interval per 100 kg increase in 305—d milk yield and appeared to be
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significantly different from zero (95% HPD = [0.49, 0.62]). In contrast, the posterior

‘1 3

density of $— 2 X(k )"Yu indicated the overall u-level relationship did not depart

k=1

significantly from zero (95% HPD = [-0.11, 046]). Hence cows with higher milk

yields tended to have poorer reproductive efficiency than cows with lower milk

yields, but there was no strong evidence that higher producing herds had better or

worse reproductive performance than lower producing herds.

At the e-level, the respective posterior means :1: posterior standard deviation

for 7e,3+X = [1 0]ye between the two traits for cows in 3+X milking herds was

0.45ao.05 d/lOOkg compared to 0.66:!:0.04 d/lOO kg for 78,2X=[1 1]'Ye

pertaining to cows in 2X milking herds. A 95% HPD on their difference

(7e,2 X - ye,3+X) was [0.08, 0.34], thereby indicating a more favorable

relationship between 305-d milk yield and calving interval for cows with more

frequent milking. However, at the u-level, the data did not support any evidence of

bST usage influencing the relationship between the two traits, as the 95% HPD of all

pairwise differences between the three levels overlapped with zero (results not

shown). As also seen in the simulation study, uncertainty in inference was greater

for parameters determining the between-trait correlation for random (u) effects than

that for residual (e) effects, as illustrated by the differences in widths of the

corresponding 95% HPD (Table 2).

44



The posterior inference summary on 0%, is also reported in Table 2. Based

2
on DIC results presented above, we concluded strong evidence for am > 0. Hence,

the e-level relationship between milk yield and reproduction is heterogeneous across

2
clusters or herd-years. Assuming that m is multivariate normal and that 0'”, is

equal to its posterior mean of 0.09, one might anticipate a range of :1: 2m= 1.2 (1

per 100 kg between the most extreme herd-year effects, using the Empirical Rule

(Ott and Longnecker, 2001). Therefore, centered on an overall posterior mean of

0.55 d/100 kg as described earlier, we expect different clusters to range from -0.05 to

1.15 d of calving interval for every 100 kg increase of 305-d milk yield. Hence, it is

possible for some herds to have no overall e-level relationship between the two traits,

whereas other herds may have highly unfavorable relationships.

The evidence for heterogeneity of conditional variances was considerable.

Posterior means, posterior standard deviations, 95% HPD and E88 for e-level and u-

level conditional variances for the two traits are presented in Table 3. The e-level

heteroskedasticity was prominent for both traits. For example, there was strong

evidence for greater e-level or between-cow variability on both milk yield and

reproductive performance on 3+X milking herds compared to 2X milking herds.

Defining 0'3, ,2X = exp([l 1] log(re,)) and 0'2 3 X = exp([l 0]log(rei))
+

ei ,

for i = 1, 2|l, the 95% HPD for the variance ratio 0'2. 2X / 0'2 + between the

8,, 8,333 X
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two levels did not include 1, being [0.62, 0.69] for milk yield (i=1) and [0.79, 0.94]

for calving interval conditional on milk yield (i=2l l).

The magnitude of heterogeneity of the e-level or between-cow variance

across clusters for each trait was also considerable, as indicated by the concentration

of the 95% HPD on relatively large values of 0,531. = ——l—2 (Table 3), which

ei

incidentally also defines the e-level coefficient of variation (CV) for conditional

variances between clusters (Kizilkaya and Tempelman, 2005). That is, the posterior

means for One, and 03,32“ (Table 3) indicate that the CV of cluster-specific

residual variances is roughly 32% and 77%, respectively. Indeed, the largest and

smallest herd-year specific posterior means for elements of vel were 2.72 and 0.44,

respectively, for 305-d milk yield, meaning that there is an estimated 6-fold change

between the most extreme herds for between-cow variability. Residual

heteroskedasticity across clusters was even more noticeable for calving interval

(again conditional on milk yield) as the largest and smallest posterior means of

elements of v32“ were estimated to be 6.05 and 0.21, respectively, leading to an

estimated fold change of 28.

At the u-level, our analysis (Table 3) indicated that milk yield was

significantly more variable between herds with an indecisive strategy on bST

supplementation (>0-50% of the herd enrolled) compared with herds that were either

committed to bST supplementation (250% of the herd enrolled) or that were not bST

users at all (0% of the herd enrolled). In contrast, between-herd variation on calving

interval conditional on milk yield was significantly greater among herds that used
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bST supplementation at either level, compared to those that did not supplement at all

with bST (0% ofthe herd enrolled).

5. Discussion:

In this study, we present a hierarchical Bayesian extension to classical

bivariate mixed effects modeling that provides a general framework for investigating

sources of heterogeneity for residual or subject level (e) and random or cluster level

(n) (co)variances between two traits of interest. Using simulation, we validated the

proposed hierarchical Bayesian model which is based on a recently developed

(co)variance matrix reparameterization (Pourahmadi et al., 1999). We also validated

the use of the DIC to choose between models that differ by the specification of

cluster-specific random effects on the residual relationships between two traits. We

then applied the model to investigate a currently critical dairy cattle management

issue as it pertains to the covariance matrix architecture between milk production and

reproductive fitness, specifically how herd management and environmental

covariates may influence the random (i.e., herd) and residual (i.e., cow) level

(co)variances.

The Cholesky-based reparameterization proposed by Pourahmadi (1999)

alleviates the concern for checking positive definiteness constraints and, based on

desirable orthogonality properties of the transformation (Pourahmadi, 2007),

facilitates independent hierarchical modeling for each of the resulting parameters.

From a multivariate applications standpoint, factors influencing 03.8) and (pl?) may

be of greatest interest because they determine the subject and cluster specific
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relationships, respectively, between traits in an unconstrained and easily interpretable

manner. As previously noted by Pourahmadi (1999), these two sets of parameters

imply a temporal order among response variables, such that inference on the

constituent fixed effects (73 and Yu) and random effects (m) is also inherently

order-dependent. In some subject-matter contexts, this order dependency embedded

in the model may be a limitation for application to some inferential problems. In our

case, however, the temporal argument is naturally based on the sequence of

physiological events in a dairy cow. In a dairy production system, cows are already

milking at the time reproductive management is implemented (Ensminger, 1993),

thus implying milk production to be a factor that potentially influences reproductive

performance. Conceptually, our model can be extended to t > 2 traits for more

standard longitudinal data analysis applications as in Pourahmadi (1999); however,

the number of different linear model components will increase to 3t + t(t-1) from the

8 different generalized linear models (i.e., on ylj’ yzj, 0'821 ., 0822“ . , 0'31 k ,

9.] 9,] 2

2 (e) (u) ., . . .
. d thr th .0u2|1,k , j and (pk consr ere WI 11 rs paper

The results from our dairy cattle application were very intuitive. However,

up until this point, we knew of no other formal method to infer upon factors that

systematically affect the relationships between two traits, and, more specifically,

how this relationship is differentially driven by cluster-specific random versus

residual effects and their component covariate effects. Our application suggests that

the antagonistic relationship (high milk production associated with poorer

reproductive performance) is primarily driven at the residual or cow level, but that
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the degree of this relationship depended upon a common management practice,

namely daily milking frequency. The additional mixed model extension on modeling

variability (0%,) in this relationship implied further that the residual relationship

between the two traits is significantly heterogeneous across herds such that some

herds may not even have an antagonistic relationship between the two traits. These

results warrant further investigation of other management practices and herd-related

factors to help unveil other potential sources of heterogeneity in the production-

reproduction relationship across herds. That is, herds with inferences unusually

distal to zero for their respective elements in m might be investigated retrospectively

to explore any potentially new important management and environmental factors that

e . . . .

affect (as. ). As our analysrs did not consrder a comprehensrve set of factors, our

estimates of 0%, are likely to be somewhat inflated because of other potentially

important covariates that were not modeled. A more comprehensive analysis based

on a larger dataset and simultaneous fitting of several fixed effects is forthcoming in

future animal science publications.

We believe that some future work on hierarchical modeling of heterogeneous

covariances is merited. Firstly, an alternative (co)variance parameterization to

Pourahmadi (1999) was proposed by Chen and Dunson (2003) and may be worth

exploring further as an alternative framework for mixed effects modeling of

(co)variances. One potentially attractive idea from Chen and Dunson (2003) and

Kinney and Dunson (2007) is the use of Bayesian model averaging across a large

number of candidate models as opposed to the use of DIC to choose between models.
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Second, we were surprised to note a large estimated rank correlation of 0.68

between the posterior means of elements of uz and the corresponding elements of

v2“, indicating that herd-years with longer calving intervals were also herd-years

with more variable calving intervals among cows. A lognormal specification on v2“

would facilitate a formal multivariate Gaussian prior between uz and log(v2|1) and

might better capture this relationship (Ibanez-Escriche et al., 2008; Ros et al., 2004;

Sorensen and Waagepetersen, 2003).

Third, we find that the conditional framework of the Bayesian paradigm is

particularly appealing to the proposed bivariate linear mixed model due to its

naturally embedded hierarchical rationality. We recognize that an analytical

likelihood-based implementation might circumvent the computational expense of

MCMC and any potential concerns about specification of prior distributions on

parameters of interest. Along these lines, the h-likelihood approach proposed within

the framework of double hierarchical generalized linear models (DHGLM) appears

to be an attractive starting point (Lee and Nelder, 2001, 2006). Development of

methodological extensions within the DHGLM framework may allow for joint

modeling and likelihood-based inference on means, variances and covariances in a

multivariate context, as well as introduction of random effects on their linear

predictors.

Fourth, the reader might note that random effects specifications were not

specified for the linear model on 0'2 0'2 (Equation 9) or (alga) (Equation 7).

uhk’ u2|1,k

Since herd would then represent the experimental unit rather than cluster in both
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cases, specifying additional random herd effects on the right side of both Equations

(7) and (9) would model overdispersion due to unknown random effects.

Conceptually, an additional “residual” term might be also considered for 0'2 .,
8],}

0'82 . (Equation 8) or (pg-e) (Equation 6), in order to account for overdispersion at

a]

the subject (i.e. cow) level (Cardoso et al., 2005; Foulley et al., 2004). In essence,

these specifications would determine the marginal prior densities of u and e to be

heterogeneous Student t rather than Gaussian distributions, thereby conferring some

outlier-robustness properties (Cardoso, Rosa and Tempelman, 2007). Nevertheless,

these extensions would create considerable increases in computational time using

MCMC.

Finally, a note regarding the particularly large dataset size used in this study

is in order: The size of the dataset was intended to allow for powerful inference

across the deepest levels of the proposed hierarchical model while mimicking the

data structure of the dairy cow application. However, the authors acknowledge that

the performance of this complex of a hierarchical model in more modest-sized

datasets should be investigated further.

To facilitate computational efficiency, we used the open-source free software R (R

Development Core Team, 2008) incorporating the sparse linear algebra package

SparseM (Koenker and Ng, 2009). Investigation of some of the methodological

extensions suggested above may require coding the MCMC algorithm in a lower
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level programming language (such as FORTRAN or C++) in order to make

computing tractable and more efficient.

Computer code in R is readily available as supporting information from the Joumal’s

website: http://www.biometrical-ioumal.com

6. Summary

Linear mixed effects modeling of (co)variances, and thus of relationships

between traits of interest are possible for both random and residual effects based on a

recently popularized covariance matrix decomposition. Hence, researchers should be

able to further fine-tune inference on the architecture of correlations between traits

by modeling (co)variances as functions of additional fixed and random effects.

Using MCMC techniques, we validate the proposed methodology with a simulation

study and demonstrate its applicability by addressing the question of heterogeneous

relationships between milk production and reproductive performance of dairy cows.

Acknowledgements: We thank Dr. John Clay and his staff at the Dairy Records

Management Systems, Raleigh, NC for providing the DHIA dataset used in this

study. This study was partially funded by the Elwood Kirkpatrick Dairy Research

Endowment, the Michigan Milk Producers Association, the College of Agriculture

and Natural Resources and the Department of Animal Science at Michigan State

University.

Conflict of Interests Statement: The authors have declared no conflict of interest.

52



Appendix: Full conditional densities (FCD)

Write the data for the two traits on subject j as y =[y1j yzj]' such that

the entire data vector is y =[y1' y2' y3' yn 'J'. Furthermore, write fixed

and random design matrices for the two traits specific to animal j, respectively as

 

”(ll 0‘
(1) x1j If 0 .

X--= and Zj= ';_] = 1,2,...n. Hence, the

J 0 (l)' 0 Zj

. ‘21;  

corresponding overall design matrices can be written as

X(l)=[X$l)' X(21)' X9} and Z=[Z1' Z2' Zn']' linking y to

[l=[fl'1 0'2} and u=[u1 u2]', respectively. We also specify

n

var(e)=2e = $1Rj where e=[e1' e2' e3' en '1' and 69 denotes the

J:

direct sum operator (Searle, 1982) such that it should be readily noted that

n

2;] = 09 R71. We similarly define 2g =var(u)noting that I}? can be

i=1 1

q

readily determined by rearranging elements of [€631 Gil by animals within traits

rather than by traits within animals. It can then be noted using mixed model theory

(Sorensen and Gianola, 2002) that the joint FCD of 0 = [0' u. ]' is multivariate

Gaussian:
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..1 —1

0~N[(w'zglw-t29'1) (w'zgly+29-190),(w'2;IW+29-1) ]

[A1]

for W=[x(1) z], 29=diag(V,(B) v93) 2g), and

00 =diag(fll' flg' 02qxl')" There are a number of different alternative

strategies for sampling from elements of 0 , including single site or univariate Gibbs

updates (Wang, Rutledge and Gianola, 1994) and block sampling strategies

(GarciaCortes and Sorensen, 1996) that exploit the sparsity (i.e., high frequency of

—1

zero elements) in (W'EEIW + 29—1) . Note then that draws of “2,, can then

simply be determined as u2 -‘I’(u)u, whereas draws of 62“ can be determined as a

vector with elements {32,1' _. $5,631 j}'

Similar developments can be used to demonstrate that the FCD of

V

' m'] , is multivariate Gaussian except that one makes the following
[7e

substitutions in [Al]: [[x?) x22) 43)} [z] 22 zn]'] for W,

. . e , , ,
d1ag[0'822“,j/e12,j] for Be, d1ag[V$ [10%,] for 29, (it?) qu1 j for

l

00, and a n x 1 vector with elements {yzj —x(2,)j'[32 —zj '[T(u)u1+u2|1]} for

y. Similarly, the FCD for 7,, is also multivariate Gaussian making the following
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substitution for terms in [A1]: [143) x?) 43)} for W,

2

diag[0'822|l,j/(z'j Ill) ] for 2e , V91) for 29 , and

(1) (._ . _ . _ e) . f
)2] XL]: P2 1]. “2'1 (01-81] ory.

The FCD for 0'3, can be readily demonstrated to be inverse gamma with

parameters (q/2)+am and ((1/2)m'm)+,8m. Similarly, the FCD of

(4)
1

elements Tel. 1 Of Tei = {181,1 }l_l
(i =1, 2|l) that correspond to the intercept and

effects of levels of different classification factors that are not zeroed out can be

demonstrated to be inverse gamma (Kizilkaya and Tempelman, 2005) with

parameters [n2] /2]+azle) and

n P z. e

(1/2)Zl[xlg3)=l] 63,. 1‘] (al.,) at :1thJ.) ,1. +40. n...

    

4 4

x(. ) denotes element 1 of x(-) and z . denotes element k of z -. Furthermore,

111 I! 1k 1

n

"£21 = Z; {XE}? = I] with I[x,(].4) =1] being an indicator variable taking value 1

. 4 . . .
1f x511) =1 and 0 otherwrse. For elements that represent continuous covariates, rather
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than dummy variables for classification factors or the intercept, a Metropolis-

Hastings update is required (Cardoso et al., 2005). The FCD for elements of

  

vet. = {Veg ,k }:=1 can similarly be seen to be inverse gamma with parameters

( p(4) \

(v) ” x‘l(nei,k/2]+ne, and (l/2)le(zjk =1)ei2,J[1L] (Ta-,1 )x’1 +77%. —1

1:1]:

K 1

n

where tier/(=12: Iz(jk =1) for I(zjk =1) being an indicator variable that takes

value 1 if 21k =1 and 0 otherwise.

The FCD for the hyperparameter 7731. for i (i=1, 2|l) does not have a

recognizable form:

p(ne,. IELSEs) oc

(no, —1)"eiq[r(ne, )qJ—l expL-(ne, - 1);:=1 vi; 1121 (via, )-(rze,- +1)]P(’le,-)

k=l

Hence, sampling for rye, requires a Metropolis-Hastings step. In this case, we

sampled from the FCD of (e,- = log(77e,) using a Metropolis algorithm (Chib and

Greenberg, 1995) with a normal approximation to the FCD as the proposal density.

That is, the proposal density is Gaussian with mean equal to the mode of the FCD

fimction and a variance equal to the negative of the inverse Hessian of the FCD

function evaluated at the previously sampled value for {9i . For this purpose, we
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use a Newton-type algorithm based on a line search (Schnabel, Koontz and Weiss,

1985)

(5)

Finally, the FCD for elements Tu, l of Tu,- = [Tub] Kl] (i=1, 2|1) can be

shown to follow an inverse gamma density with parameters [mg-)1 /2] + all”) and

l,

t (5)
1% ,l5)

%§I[x§£l) =1) ”2k 1‘] (ruby) ”‘1' +fll.(u). Here x521) denotes

= t l'=l,l'¢l

 

element 1 of x(.5) and rig

q

2),I[xl(,f,) =1] withl[xx931) =1] being an indicator

k=l

variable with value of 1 if x521) =1 and 0 otherwise.
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Table 1.2. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% highest posterior

density (HPD) intervals and effective sample size (ESS) on residual (e) level (namely, 7e and 0%,)

and random (11) level (namely, Yul regression parameters between milk yield at 305 days-in-

lactation and calving interval in Michigan first lactation dairy cows.

 

 

Regression parameters 1' PMEAN PSD 95% HPD ESS

Yu,0%bST . d/100 kg 0.16 " 0.17 {-0.17, 0.49] 28 549

7u,>0—50%bST - d/100 kg 0.17 " 0.20 {-0.22, 0.56] 28 959

l’u,>50%bST , d/100 kg 0.15 " 0.19 {-0.22, 0.51] 28 409

7e,2X, d/100 kg 0.66 a 0.04 {0.57, 0.74] 79 573

7,,3+Xt (”100 kg 0.45 b 0.05 {0.36, 0.54] 61 687

6,2,,(d/100 kg)2 0.09 0.03 {0.03, 0.16] 612

 

(x) and (a’b) Letters indicate significant differences (two-tailed Bayesian P-value < 0.05) between

management practices within the u-level and e-level regression parameters, respectively,

tru,0%bsr=[1 1 017w 7u,>0—50%bST=[1 0 1]Yu and

7u,>50%bST = [l 0 Olyu are the random (11) level regression parameters between milk yield

at 305 days-in-lactation and calving interval for herds that had 0%, >0 to 50% and >50% oftheir cows

enrolled for supplementation with bovine somatotropin (bST), respectively.

79,2X =[l ll'ye and 7e 3+X =[1 O]7e are the residual (e) level regression parameters

between milk yield at 305 days-in-lactation and calving interval for cows in herds with twice a day

and three times a day (or greater) milking frequency, respectively.

2
0'", is the parameter defining random between-herd heterogeneity among the e-level regression

parameters.
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Table 1.3. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% highest posterior

density (HPD) intervals, and effective sample size (ESS) for residual (e) level and random (u) level

conditional variances for milk yield at 305 days-in-milk and calving interval in Michigan first

lactation dairy cows.

 

 

 

 

 

Variance Components ] PMEAN PSD 95% HPD ESS

Milk yield at 305 days in milk

2 2 x

0,19%”? (100 kg) 109 15 [81,140] 3 863

2 2 y
au1,<50%bST . (100 kg) 164 8 [148, 181] 52 986

2 2

0,1350%”. (100 kg) 119" 14 {92, 148] 63 551

2 2 a

0,1,”.(100 kg) 181 3 [175,186] 19318

2 2 b
6813,” (100 kg) 276 67 {263, 289] 3 591

one, 0.32 0.02 {0.29, 0.35] 5 910

Calving interval

2 2 x

au2]1,0%bST , days 297 63 [181, 422] 1 689

032“,>0-50%bST , days2 759 y 59 {646, 877] 18 159

2 2
0142]],250%0ST’ days 695 y 113 {490, 928] 26 160

2 2 a
new”, days 9 126 235 {8 669, 9 584] 5 878

2 2 o
0e2|1,3+X , days 10 593 429 {9 769, 11 454] 1 250

one,“ 0.77 0.05 [0.68, 0.87] 5 294

 

(X’y) and (a’b) Letters indicate significant differences (two-tailed Bayesian P-value < 0.05) between

management practices within the u-level and e-level factors, respectively, for each trait.

2 _ 2 _

lau,,0%bsr " “pal 1 0] l°g("ui )) au,,>0—50%bST ‘ “pal 0 1] logl'ui ))

and (Iii?50%bST = exp([l 0 O] log(‘rui )) are the random (11) level conditional variances

for milk yield at 305 days-in—lactation (i = 1) and calving interval (1' = 2|l) for herds that had 0%, >0

to 50% and >50% of the herd enrolled for supplementation with bovine somatotropin (bST),

respectively.

2 _ 2 _ .
0%,-,2X - exp([l 1] log(re,)) and ae,,3+X —exp([l 0] log(re,)) are the reSldual (e)

level conditional variances for milk yield at 305 days-in-milk (i = 1) and calving interval (1' = 2|1) for

herds with twice a day and three times a day (or greater) milking fi'equency, respectively.

03,81. is the e-level coefficient of variation for conditional variances between clusters.
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CHAPTER 2

Management-Based Heterogeneity in the Association between and the Variability of

Milk Production and Calving Interval of Dairy Cows

ABSTRACT

Inferences on the nature of the association between milk production and reproductive

performance of dairy cows have been conflicting. This problem may relate to an

underappreciation of the differences between the within-herd (i.e. cow level) versus

across-herd (i.e. herd level) components of this relationship. Furthermore, these

associations may depend upon various management factors. We recently developed a

bivariate hierarchical Bayesian approach to model heterogeneity in variances and

covariances for both cow- and herd level components between two traits as a function of

various explanatory factors. The objectives of this study were to apply this model 1) to

investigate the nature of the relationship between 305d milk yield (MY) and calving

interval (CI) of Michigan dairy cows, and 2) to evaluate various herd management factors

as potential sources of heterogeneity in this relationship. Data consisted of 124,079

lactation records from 541 Michigan dairy farms. Means, variances and covariances

between MY and CI were jointly modeled as separate functions of various management

practices and herd attributes, with the final model chosen using the Deviance Information

Criterion. Herds heavily involved with bST (>50% of their cows) had a favorable

association between the two traits with an estimated change in herd CI of -1.37d:0.13 d

per lOOkg increase in herd MY. Within herds, higher producing cows had overall poorer

reproductive performance than lower producing cows, with Cl increasing by 0.51:1:0.01 d
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per lOOkg increase in MY. This antagonism was particularly more pronounced if cows

were milked twice-a-day (0.57i0.01d/100kg) as compared to thrice-a-day (or greater)

(0.45i0.01d/1001(8); furthermore, significant differences in the MY-CI association were

also evident between years and seasons. The cow level association between MY and CI

was significantly variable across herds (between-herd standard deviation =

0.17:h0.01d/100kg), thus supporting future retrospective investigation of other

management sources of heterogeneity on within-herd association between MY and CI.

Understanding the factors that influence the between-herd and within-herd associations

between MY and dairy fertility is critical to tailoring dairy management programs that-

optimize overall dairy performance.

Keywords: dairy cow, herds, milk production, reproduction, management.

INTRODUCTION

Milk yield and reproduction are among the most important broad categories of

phenotypes for successful dairy production. Historical trends indicate declining

reproductive performance with increasing milk yield (Butler and Smith, 1989; Chapter 1;

Hare et al., 2006; Lucy, 2001; Norman et al., 2009). The implications of these trends

have raised major concern regarding the long-term sustainability of the dairy industry.

Recent studies have challenged this general assertion of antagonism between milk yield

and reproductive performance. Specifically some data support favorable associations

between milk production and reproduction, whereby higher producing cows were more

likely to become pregnant (Emanuelson and Oltenacu, 1998; Lopez-Gatius et al., 2006)

and higher producing herds had the lower average number of days open and the shortest
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average intervals between calvings (Laben et al., 1982; Lof et al., 2007). Overall, these

conflictive results indicate the need for a more comprehensive strategy to investigate

management practices and herd attributes that might influence the association between

milk yield and reproduction.

A common problem with previous studies is an under appreciation that

associations within herd (cow level) may be inherently different from associations

between herds (i.e. herd level) (Calus et al., 2005; Windig et al., 2005). Herds and cows

constitute different units of performance; the relationship between two or more outcomes

at both levels intertwines with each other to yield an overall phenotype. If these

distinctions between cows and herds are not made, any reported associations may be

overly generalized or even biased (Windig et al., 2005)!

Some association studies were based on univariate (i.e., single trait response)

analyses, whereby reproductive traits are modeled as a function of milk yield (Laben et

al., 1982; Lopez-Gatius et al., 2006; Spalding et al., 1974), or, conversely, milk yield is

compared between reproductively successful and unsuccessful females (Lopez-Gatius et

al., 2006; Windig et al., 2005). In such single-trait models, however, the prevailing

assumptions are that the trait chosen to be the explanatory variable is measured without

error and it is not influenced by other independent variables in the model. Clearly, these

assumptions are tenuous and likely to lead to potentially biased or misleading inferences.

Hierarchical multivariate models provide a general framework to explicitly study

associations between outcomes in the form of covariances and partition the components

of these associations (Sorensen and Gianola, 2002); e.g., herd and cow; an obvious third

component not addressed in this paper is genetic. We recently developed a hierarchical
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bivariate Bayesian model that further specifies the different components of association

between two traits as functions of fixed and random effects (Bello et al., 2010; Chapter

1). In this study, we apply our recently developed methodology to investigate the cow

level and herd level associations between 305-day cumulative milk yield (MY) and

calving interval (CI) of Michigan dairy cows, including the evaluation of various

management factors and herd attributes that may be involved in these associations.

MATERIALS AND METHODS

Data Description

Data files for test-day records for Michigan dairy farms enrolled in the Dairy

Herd Improvement program were obtained from Dairy Records Management Systems

(DHIA; Raleigh, NC). Lactation records from first, second and third parity Holstein

cows that calved between January 2005 and December 2006 were specifically extracted.

Herds were required to have at least 25 cows per year. Lactation records were required to

be based on at least 5 test-dates per lactation, and herds were required to have yearly

average test-day intervals not greater than 45 days. All records were required to be

complete for cow and herd identification as well as for the response variables of interest

and potentially important explanatory variables, as described later. After editing, the total

number of lactation records available for analysis was 124,079, corresponding to 98,950

cows from 541 dairy herds, commensurate with 987 herd-year clusters or contemporary

groups.

The dependent variables considered in this study were y1 = MY, expressed in kg;

and y; = CI, expressed in days. These variables were specifically selected to be long-
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term cumulative summaries of performance for milk production and reproduction

throughout lactation. Here, CI was defined as the number of days between 2 consecutive

calvings. For lactation records for which a subsequent calving date was not available (i.e.

cows that did not become pregnant; namely, 24% of lactation records), CI was calculated

based on the last recorded breeding date plus 280 days of average gestation and

considered to be right-censored. Four calving seasons were defined based on the month

of calving when lactation was initiated: Fall, from September through November; Winter,

from December through February; Spring, from March through May; and Summer, from

June through August. Information on selected management practices and herd-year

descriptors was also gathered from the DHIA dataset as potential explanatory variables.

These included herd milking frequency (i.e., 2 times per day , or 2X, versus 3 or more

times per day, or 3+X), herd usage of bovine somatotropin (bST) i.e. non-users, with 0%

of the herd enrolled; intermediate users, with >0-50% of the herd enrolled; and

committed users, with _>_50% of the herd enrolled), individual cow supplementation with

bST during a lactation (i.e. yes or no), herd size (expressed on the log base 10 scale and

as a deviation from its mean) and herd expansion (expressed as the percentage change in

herd size from the preceding year). In addition, the use of synchronized breeding (yes or

no) was considered, as defined on a herd-year basis and using the adjusted Chi-square

categorization method proposed by Miller et al. (2007), whereby herds were classified as

either having synchronized breeding or not. Deciding which of these factors were to be

incorporated as explanatory variables, and at what level of the hierarchical model, was

based on a sequential model selection approach described below.
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Animal Care and Use Committee approval was not obtained for this study

because the data were obtained from an existing performance records database.

Model specification andposterior inference

We implement our recently developed Bayesian approach to model heterogeneity

of cow level and herd level variance-covariance matrices under a bivariate linear mixed

model using Markov chain Monte Carlo (MCMC) methods; more details on our

procedure can be found in Bello et al. (2010; Chapter 1). We assume that pairs of records

It

on MY and C1 are available on each of n cows such that the data vector y1 = {yl 1.} l

9 i:

for MY and the data vector y; for CI are both n x 1. We formally accommodate the

right-censored nature of Cl using data augmentation, as presented by Sorensen et al.

(1998). Briefly, the n x 1 data vector for CI, y2 = [y'21 y'zz] is composed of y2] as

a n1 x 1 vector of uncensored observations (i.e., a subsequent calving was indeed

n

.21 as a n2 x 1 vector of right-censored values as described

I:

recorded) and y22 = {y22,i}

earlier. In other words, the elements of y22 are known to be less than or equal to the

corresponding actual but unknown CI, say ygz. Following Sorensen et al. (1998), we

“augment” the data with MCMC samples from y], with

”2 * . . .. .
. 1, y22,,' Z y22,,- to account for the uncertainty in y22. That rs, at

1:

it *

J'22 = {J’ZZJ }

each MCMC cycle, we replace y22 with samples of ygz and write the new augmented
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n

data vector as y3'=[y2 1| ygz']={Y2,i}. 1 , which we then use in our bivariate

1:

linear mixed model (Bello et al., 2010; Chapter 1):

1 1

hi xliPl ”1'01 +91;

* = y , ' [1]

y2,i XZiBZ + 2,112 + 82,,-

Here, 0] and [32 are, respectively, p] x l and p2 x 1 vectors of selected classical fixed

effects whereas 11] and uz are each q x l vectors of classical random effects of herd-year

with subscripts denoting trait (l for MY, 2 for CI). Similarly, e],- and e2, are residual

effects on the corresponding response variables as specific to the ith record. Thejth herd-

year specific random (co)variance matrix and the ith cow-specific residual (co)variance

matrix are defined, respectively, as

I— .1 -- fi

    

2 2
a O- '

0" o- .

u], ' u] ' “122] ' ° 812,1

Gj = var[u 1.] = ’J 2 and R,- = var[:l’l.] = e1, 2 . [2]

29] 0u12,j 0112,]. 291 UeIZ’i 062,1.

Here 0'51 . and 0'32 . are the random effects (i.e., herd-year level) variances in MY

9.] 9]

and CI, respectively, and 03,12,j is the corresponding random effects covariance

between the two traits, specific to the fh herd. Similarly, 0'2 and 0'2 re resent the

el,i €2,i p

residual (i.e., cow level) variances for MY and CI, respectively, with 0812 .being the

,r
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. . . . .th .

corresponding resrdual covariance between the traits for the r cow. Thrs defines then a

multivariate heteroskedastic model.

Following Bello et al. (2010; Chapter 1), we specify the pair of residuals on the 1m

cow record as follows

- e1,i -

e- = el’l = = 0 (0(8) + e1,l . [3]

l e o (8) el ' I e a

2’1 e1,i¢i + 62“,,- 91 2|1,l

e . . . .

Here or; ) represents the cow specrfic (resrdual) assocratron of 82,,- on 6”, such that

82“,,- is the conditional residual for CI given MY, being independent of 81,,- with

2 - e 2
e2[1,i~N(0,082”). Hence, we rewrite 0312’, =¢§ )Uq,i and

.2 -.2 . (92,2
€2,i _ ezuj (01° e1,i '

Similarly, we specify the following relationship for the pair of random effects on

thefh herd:

. u] ' .
ul’ 9] O u u],

u,j=[u 1.]: (u) =[u log. )+[u J]. [4]

2,] ul’jtpj +u2|1,j 1,] 2Il,j

u

Here (03 )represents the herd-year specific (random effects) association of uz’j on

“I,j , such that u2|1,j is the conditional random effect on C1 given MY corresponding to
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herd-yearj, being independent of “Lj with u2l1,j ~ N[0 J. Hence, we rewrite0'

’ “211.1

2

_ (u) 2 2 _ 2 (u) 2

Outer"? 01.1,,- “ Guarantfi “’1' “up!"

0‘) 01412-1 . . . ,
Note that (aj = —2— can be interpreted as the condrtronal change in

a O

u] ,]

u2,j(i)’ and hence in y;,,-, for every unit change in ul,j(i) , where j(i) defines the f"

a -

herd-year associated with cow i. Similarly, 01(8) = i221 can be interpreted as the

o- .

e],z

*

conditional change in €2,,°, and hence in y2,,-, for every unit change in 61,1“ These

association coefficients hence describe the relationship between milk production and

reproductive performance at two different levels.

In modeling sources of heterogeneity on cow level associations, we specify the

following linear mixed effects model:

(6) 1 1

T; = X3i'Ye + zime- 15]

Here, 7e represents a p3 x 1 vector of unknown fixed effects, with 11.3,- being the known

row incidence vector, and me represents a q x 1 vector of unknown random herd-specific

effects on the residual association such that me ~N(0,10'32e). As with classical

specifications in typical mixed effects models (e.g., Equation [1]), the term “fixed
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effects” here pertains to the effects of systematic management factors that can be

subsequently inferred upon in other studies whereas “random effects” pertains to the

effects of potentially exchangeable factors that can be characterized by a distribution

(Robinson, 1991). We similarly specify a linear mixed model on each herd-specific

association:

u 1 1

¢§)=x4j7u+wjmu l6]

1

where 7,, represents a p4 x 1 vector of unknown fixed effects with X4j being a known

row incidence vector. Furthermore, mu represents a r x 1 vector of unknown random

county-specific effects such that mu ~ N(1),10'2mu) and with w', being the

corresponding known row incidence vector for herd j. Typically, mu would represent

random effects on broader classifications than that for me since the experimental unit

(i.e., herd-year) in Equation [6] is larger than that (i.e., cow) in Equation [5];

subsequently r < q.

We also model the conditional cow level or residual variances 0'3] i and 0'32“ i

multiplicative functions of fixed and random effects (Foulley et al., 1990), expressing the

logarithm of this relationship as follows:

2 1 1

log(0'e] ,1.) = 115,-log(r'e1 )+z,-log(vel )

. t 17]

1°g(0e22“,i]= X6i1°g(1'e2“ )+z,- log(ve2|1 )
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Here “re, and 1'32“ represent p5 x1 and p6 xl vectors of fixed effects, respectively,

1 1 q

with x5,- and 116,- being known incidence vectors. Furthermore, v3] = {v31 j} and

a j=1

q

v32|l = {V320 j} each represent qxl vectors of unknown random herd-specific

3 j=1

effects, specified with independent gamma priors Ve1,i erI ~ 10(77e1a77e1 —1) and

ve ,il’le ~IG rye ,tye —l , as in Bello et al. (2010; Chapter 1). That is,
2|1 2|1 2|1 2|1

. 1

Emma)=E(Va.i.zlnea)=1 w... what-1407;: and

1

var V ' =——
( 82'1’l 17762“ ) 77 2

such that 77c] and ”€211 more or less function as

82]] ‘ ’

unknown “variance components” to be estimated from the data.

Similarly, we model the conditional herd-specific random effects variances

0'2 and 0'2. . as multi licative functions of fxed and random effects, ex ressin

“1,1 u2|1aJ p l p g

the logarithm of this relationship as:

log(0';31 ,1.) = 117j log(1',,1 )+w,- log(v,,l )

[3]

log[0'32|19j] = x8jlog(1'u2l1 )+wj° log(v,,2|1 J
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Here Tu, and rum represent p7 x1 and p8 x1 vectors of fixed effects, respectively,

1 r r

with x7j and x8j being known incidence vectors. Furthermore, vul = {VuLk }k=l and

,.

vu2|l = {vu2ll k } represent r x 1 vectors of unknown random county-specific effects,

’ k=1

each which are specified with different independent inverted-gamma priors:

vu1,k I nu] ~ 10(77u1977u1 — 1) and Vu2|1,k blitz“ N 10(77112" snuzu — I) , as in B6110 et

al. (2010; Chapter 1). As with 779] and 7782,, , 77a] and "“211 are unknown and need to

be estimated from the data.

Note then that there are a total of 8 different “mixed model” specifications or

submodels embedded in our hierarchical model; these submodels include the two

classical specifications (one per trait) for location parameters in Equation [1], another in

each of Equations [5] and [6], and two in each of Equation [7] and Equation [8]. We

consider Equations [5] and [7] as representing the cow level modeling of residual

associations and variances, whereas Equations [6] and [8] represent the herd-year level

modeling ofrandom effects associations and variances in our hierarchical model.

Prior specifications for all parameters were identical to those specified in the

simulation study of Bello et al (2010; Chapter 1); i.e., flat unbounded priors were

specified on 01.132. 7e, 7e, 0,3,,- 0,3,,- ‘re, , 162“ , Tu] , and “rum , whereas

-2 . .

77~p(77)oc(1+77) priors were specrfied on each of 7791, ”92!! , flu, and ”“2|1

Furthermore, standard linear model restrictions are imposed on elements of the “fixed”
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effects (Bl, [32, 78 , 7,, , Te, , 1'82“ , Tu] , and rum ) to ensure identifiability of the

parameters following Bello et al. (2010; Chapter 1). The length of the MCMC chain for

each model under investigation was 200,000 cycles after a bum-in period of 5,000 cycles.

The only difference from the implementation presented in Bello et al. (2010; Chapter 1)

is that the unobserved values for ygz are generated for each MCMC cycle using data

augmentation (Tanner, 1993) because of right-censoring, such that MCMC samples for

all other parameters are based on the augmented data y; =[y21' y32']'.

Convergence of the MCMC chain and sampling diagnostics were monitored graphically

and following Raftery and Lewis (1992), as also in Bello et al. (2010; Chapter 1). We

summarize posterior densities for each parameter of interest using posterior means,

posterior standard deviations, and the 95% highest posterior density intervals (HPD). In

addition, we report the effective sample size (ESS) as a measure of the number of

effectively independent samples or Monte Carlo error amongst the 200,000 dependent

MCMC samples (Sorensen et al., 1995).

Model selection

As in Bello et al. (2010; Chapter 1), we used the Deviance Information Criteria

(DIC) (Spiegelhalter et al., 2002) as a measure of model fit to compare competing

models. Smaller values of DIC indicate better fit, and, generally, DIC differences

exceeding 7 are believed to indicate a decisive difference in model fit (Spiegelhalter et

al., 2002). Table 1 lists the systematic fixed effects factors and covariates (i.e.,

management practices and herd attributes) that were considered for inclusion into the cow

level and herd-year level of the hierarchical model. As indicated earlier, we also included
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the random effects of herd-years for cow level modeling, as per Equations [5] and [7],

and for the classical random effects 11] and u2 in Equation [1]. Similarly, the random

effects of counties were specified for herd-year level modeling, as per Equations [6] and

[8]-

The classical fixed factors for modeling location parameters [31 and [52 always

included the effects of parity, calving season, year and individual bST treatment. As we

were not specifically interested in B] and [32 per se, all the aforementioned factors fitted

on B] and 02 were specified in all models to ensure inferences on other parameters were

robust to model misspecification. That is, our primary objective was to identify sources

of heterogeneity on the relationship between MY and Cl (per Equations [5] and [6]) as

well as on the variability (per Equations [7] and [8]) of the two traits in dairy cows.

Model selection was conducted in a forward stepwise manner, such that each

factor and covariate was evaluated one at a time for model inclusion based on their

contribution to model fit using DIC; this stepwise DIC strategy is similar to that

implemented by Daniels and Zhao (2003). We started by selecting the best-fitting

univariate models, one for each of MY and CI, as per Kizilkaya and Tempelman (2005),

before investigating factors that influenced herd-year level or cow level associations

between traits. For each trait, selection for factors and covariates influencing the cow

level variances in Equation [7] and the herd-year level variances in Equation [8]

consisted of four steps. The first step involved including the factor or covariate for cow

level variance in the model that led to the largest decrease in DIC and restarting the

process with respect to remaining factors or covariates until none led to a DIC decrease
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of 7 or greater. The second step involved whether to include or not include random herd-

year effects for cow level variance depending on a DIC decrease of less than or greater

than 7 respectively. Steps 3 and 4 mirrored Steps 1 and 2 except they pertained to

- selecting the best fitting model for the herd-year level variance with the random efiects

being defined by county in that case. The procedural details for these steps and the

resulting chosen factors are outlined in Tables 2 and 3 for MY and CI, respectively. It

should also be noted that model selection for MY and CI were both based on the use of

the first equation in each of Equations [7] and [8]; that is, there is obviously no

conditioning on another trait in a series of univariate analyses.

The selected univariate models, as based on the aforementioned procedure, were

then connected as a null bivariate model (i.e., based on only overall herd-year level and

cow-level association specifications) to firrther investigate factors influencing cow level

and herd-year level associations between MY and CI per Equations [5] and [6]. Table 4

outlines forward selection details and final outcomes using DIC (>7) on the selection of

fixed and random effects on the cow level and herd-year level associations between MY

and CI. We believe our model selection strategy on these associations is robust as

inferences upon them are already conditioned upon important sources of heterogeneity on

cow level and herd level variances, as per Tables 2 and 3.

In the final selected model, inferences were directed upon the marginal means

for levels of each fixed effects factor expressed at the average covariate value for any

significant covariate and averaging across levels of other fixed effects factors chosen for

a particular submodel; i.e., in Equations [5],[6], [7], and [8]. In addition, these marginal

means were exponentiated to represent variances on the observed scale per Equations [7]
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and [8] as also in Bello et al. (2010; Chapter 1). These marginal means are analogous to

the least squares means popularized, for example, in SAS linear models software

(Milliken and Johnson, 2009 p. 226). We subsequently refer to the corresponding

posterior means and posterior standard deviations as estimated means and their standard

errors, respectively. Throughout the paper, statistical significance for fixed effects

parameters was established based on whether or not the HPD of a difference between two

parameters included 0 (in the case of parameters defining Equations [5] and [6]) or the

ratio between two parameters included 1 (in the case of parameters defining Equations

[7] and [8]). For any comparison of interest between two parameters, say generically 01

and 62, we also report the Bayesian P-value defined as: P-value

=2xmin(Pr(t91 —6’2 2 0|y),Pr(61 —62 < 0|y)).

RESULTS AND DISCUSSION

Cow level and herd level associations between 305-d cumulative milk yield and calving

interval: Inference on sources ofheterogeneity.

Model selection based on stepwise DIC indicated strong evidence for milking

frequency, year, calving season, and herd expansion being linked to the cow level

association between 305-d cumulative MY and CI. Additionally, variability between

herd-year clusters in the cow level associations was also evident (Table 4). Only bST

supplementation was identified as a source of heterogeneous association at the herd-year

level (Table 4). A summary of the marginal posterior inference for statistically
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significant key parameters describing the association between 305-d cumulative MY and

CI is shown in Table 5 and further described subsequently.

The nature of the herd-year level association between MY and CI differed with

the bST supplementation strategy implemented in the herd (P<0.0001). In herds where

most cows (>50% of the herd) were subjected to bST supplementation, CI decreased by

an estimated 1.37i0.13 d for every 100 kg increase in MY, thereby yielding a strongly

favorable association (Table 5). In contrast, the association between MY and Cl was

essentially null in herds that used bST in less than 50% of their cows or that did not use

bST at all, as the corresponding HPD were highly concentrated around zero (Table 5).

This observed difference between levels of bST usage may not necessarily reflect a direct

role of the technology; rather, bST usage may be considered a proxy for general level of

herd management. Indeed, successful adoption of bST technology necessitates a higher

level of herd management (Bauman, 1992). Inclusion of bST into management may also

entail, for example, targeted nutritional programs, proactive transition-cow management,

standardized milking practices and frequent herd health evaluations. Furthermore, cows

need to be injected with bST on a regular schedule, thus creating opportunities for

additional surveillance of individual cows, early diagnosis of potential problems, and

prompt attention when needed.

At the cow level, an overall antagonism was observed between MY and CI.

Specifically, every 100 kg increase in MY translated into 0.51i0.01 d longer CI (95%

HPD = [0.49, 0.53]), as indicated by posterior inference on £ixgz)'7e. This

i=1

antagonistic association between MY and CI was alleviated by approximately 20%
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among cows in 3+X milking herds compared to cows in more traditional 2X schemes

(P<0.0001; Table 5). The estimated association for cows in 3+X milking herds was

0.45i0.02 d/100 kg compared to an estimate of 0.5742001 d/100 kg for cows in

traditional 2X milking schemes. Adoption of management practices to enhance milk

yield , such as thrice-a-day milking, is an ongoing trend in the US dairy industry (Ruegg,

2001). Therefore, as with bST supplementation, the improved MY-Cl relationship

observed among cows in 3+X milking herds may not necessarily be attributed to a direct

physiological effect of milking fiequency. Instead, milking frequency may be yet another

general indicator of a more specialized and intensive level of overall cow management. In

support of this interpretation, our data support congruity in the adoption of specialized

management practices, whereby herds involved with bST supplementation were up to 3

times more likely to implement 3+X milking compared to non-bST herds (Chi-square

test; P<0.0001).

During the year 2006, the estimated antagonism of the cow level association

between MY and CI worsened by ~24% compared to the year 2005 (P<0.0001; Table 5).

Investigation of the reasons for such marked differences between 2005 and 2006 should

consider, among other factors, weather (e.g. ambient temperatures, rainfall), forage

quality and conditions of the milk markefi, especially regarding cull cow prices and milk

prices.

For cows calving during the summer, the estimated antagonism between MY and

CI was alleviated by approximately 8 to 16% compared to cows calved during any other

season (P<0.05; Table 5). These results may seem counterintuitive due to the well-
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documented negative effects of heat stress on milk yield and fertility of dairy cows

(Rensis and Scaramuzzi, 2003; West, 2003). We emphasize that the association

parameter that quantifies the relationship between MY and CI does so in relative terms

(i.e. change in days of CI per unit change in MY). Therefore, our finding of alleviated

antagonism among Stunmer-calved cows may be indicative of disproportionately more

pronounced and longer-lasting effects of heat stress on MY as compared to CI. Indeed, in

Summer-calved cows, the classical least squares mean estimate of MY was lower by

approximately 600 to 800 kg compared to cows calved during any other season

(P<0.0001). In contrast, CI for Summer-calved cows was actually shortened (i.e.,

improved) by 12 to 19 days compared to other seasons (P<0.0001). Heat stress disturbs

milk yield during the early rise and peak of lactation. Thus, the overall scale of the

lactation curve is likely to be compromised, resulting in a smaller cumulative lactation

yield. In contrast, most Summer-calved cows would most likely not be eligible for

breeding until either late Summer or Fall, when ambient temperature and humidity are

more moderate and would likely exert less of an effect on reproductive performance.

During the process of bivariate model selection (Table 4), herd expansion was

selected by stepwise DIC as an important explanatory covariate on the cow level

association between MY and CI. However, in the final model (after random herd-year

effects were included), the 95% HPD of the corresponding parameter included zero,

thereby indicating no evidence for a link between herd expansion and the MY-CI

association (P=0.22).

Beyond the aforementioned statistically significant fixed effects, there was also

evidence for the cow level association between MY and CI differing from herd-year to
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herd-year groups. This inference was facilitated by our treating herd-year groups as

random blocking effects rather than as fixed effects, as is typically the case in genetic

studies. In doing so, we allowed for borrowing of information across herd-years

(Tempelman, 2004), resulting in better precision estimates for herd-year effects

(Tempelman, 2010). The magnitude of the variability between herd-years is quantified by

0'2 and was estimated as 0.030i0.005 (d per 100 kg)2 (Table 5). This indicates that

me

unidentified effects of management or environment still influence additional differences

between herds in the cow level association between MY and CI. In order to provide a

meaningful interpretation of 0'31 , we consider the empirical rule (Ott and Longnecker,

e

(2001). For normally distributed herd-specific effects (me), one might anticipate the cow

level association to have a range of d: 2 J0”; = i035 or a span of 0.70 d/100 kg

between the most extreme herds. Assuming then an average cow level association of

~0.5 d/100 kg across herds, as consistent with our study, herds might be expected to have

within-herd associations ranging from 0.15 to 0.85 d of CI per 100 kg increase in MY.

That is, in some herds, cows would be expected to display only a mildly unfavorable

MY-CI association (0.15 d/100kg), whereas the situation could be considerably more

adverse (0.85 d/100kg) in other herds; of course these ranges would shift further

depending upon baseline fixed effects (e.g. 2X versus 3+X milking frequency). Previous

evidence supports this interpretation, whereby the association between milk production

and reproductive performance was shown to vary from herd to herd (Windig et al., 2006;

Windig et al., 2005) and the magnitude of this association depended upon the specific
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herd environment (Castillo-Juarez et al., 2000). Thus, further investigation of additional

management practices is warranted, as these may help further explain the significant

variability (0'31 ) for cow level production-reproduction association across herds. Other

e

potential sources of differences between herds on the magnitude of the cow level

association may include herd-specific disease prevalence (Emanuelson and Oltenacu,

1998), herd-specific differences in cow response to treatments (LeBlanc, 2008), criteria

for allocating cows into management groups throughout lactation (Berry et al., 2003a;

Tsuruta et al., 2009) and herd-specific success of synchronization programs (Stevenson et

al., 2008), among others.

Overall, these results indicate that under intensive management conditions, the

association between milk production and reproductive performance is favorable at the

herd level and also, partially alleviated of its overall antagonism at the cow level. This

apparent dichotomy between the cow- and herd-year levels of the production-

reproduction association may be indicative of different mechanisms underlying the

association within-herds and between-herds. That is, specialized intensive management

practices that encourage higher herd productivity may also facilitate better than average

herd reproductive performance simply by channeling opportunities for attentive and

responsive observation of cows. Within those herds, however, cows with the highest milk

yields still appear to be at greater physiological risk for reproductive failure. In particular,

elevated steroid metabolism in the liver of high-producing cows has been proposed as a

critical physiological mechanism underlying the antagonism between lactational and

reproductive physiology of individual cows (Wiltbank et al., 2006). So, even though

intensively-managed high producing herds may better manage reproduction and partially
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alleviate the physiological conflict, an antagonistic association between milk yield and

reproduction is still the net outcome among cows within a herd.

Variability in Milk Production and Reproductive Performance.

Tables 6 and 7 summarize the posterior inference for cow level and herd level

variance components on MY and Cl (conditional on MY), respectively. For both ,

outcomes, the evidence for heterogeneity of variance components, namely

heteroskedasticity, was substantial as both fixed effects and random effects affected the

cow level variance components (as per Equation [7]) and the herd-year level variance

components (as per Equation [8]), as noted previously in Tables 2 and 3.

Overall, MY was about 65% more variable among multiparous compared to

primiparous cows (P<0.0001). Also, cow-to-cow variability in milk production differed

between calving seasons (P<0.01); cows that calved in the fall had the most variable MY,

whereas cows that calved in the spring had the most uniform MY. In addition, larger

herd sizes were associated with increased cow-to-cow variability for milk yield, whereby

the variance on MY increased by 69% as the number of cows per herd grew by a factor of

10 (P<0.0001; Table 6 and Figure 1). This is consistent with results from Tsuruta (2009),

who reported that large herds were characterized by increased variability as well as

greater means in level of milk productivity, thus reflecting a common scaling

phenomenon. From a technical efficiency perspective, number of cows in the herd

constitutes the number one determinant of mean productivity level (Cabrera et al., 2010),

such that greater variability in large herds may be innately unavoidable. Evaluation of

this scaling phenomenon was not an objective of this study and thus, was not examined
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with our statistical model (i.e. herd size was not fitted within the classical fixed effects in

131 , thus we cannot formally assess changes in mean MY as a function of herd size).

Evidence for heteroskedasticity in CI, conditional on MY, was substantial both at

the cow and at the herd levels. Identifiable factors associated with Cl heteroskedasticity

included bST usage, year, calving season and geographic locations. Inference on

heterogeneity of CI variance unconditional on MY, as derived from Equations (3) and

(4), was of the same nature to the conditional case (not shown). Thus, for the purpose of

consistency between parameters modeled and reported, conclusions regarding

heteroskedasticity of C1 are presented conditional on MY.

We determined that usage of bST was a two-pronged source of heteroskedasticity

in the reproductive performance of dairy cows. First, bST treatment of individual cows

was associated with twice as large variability in CI as compared to no bST treatment

(P<0.0001). Second, herd level of bST supplementation was also identified as a source of

conditional heteroskedasticity on C1, whereby cow-to-cow variability was decreased by

half in herds with most cows (>50% of the herd) subjected to bST supplementation as

compared to herds that either did not use bST or herds that did so only partially (i.e.<50%

of the herd) (P<0.0001). We reconcile this inference (regarding level of herd bST usage)

with the aforementioned result (on bST treatment of individual cows) as follows. Use of

bST allows farmers to prolong the lactation of milking cows in a herd despite a non-

pregnant reproductive status (Bauman, 1992). Individual cows under bST treatment then

have additional opportunities to become pregnant over a longer period of time, thereby

leading to greater variability in CI. In contrast, if not treated with bST, cows undergo a

less persistent physiological decrease in milk production that naturally constrains
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breeding to a considerably narrower window of time (i.e. less variable CI). Alternatively,

on a herd level basis, consistent performance of cows subjected to high management

standards, as implied by bST adoption, is a reasonable expectation.

The conditional variance in CI between herds (herd level) and within herds (cow

level) was ~100% (P=0.03) and ~30% (P<0.0001) greater, respectively, in 2006

compared to 2005. Reproductive efficiency in a dairy farm is a long-term outcome that

can be easily influenced by daily management decisions. The greater variation observed

in reproductive performance for cows calving in 2006 may be partially explained by

differential commercial priorities and breadth of strategies implemented by dairy farmers

to deal with the challenging market conditions of the time (Thomas, 2006).

Variability in within-herd CI, conditional on MY, was significantly dependent

upon calving season (Table 7). Cows that calved in Spring or Summer were more

consistent in their subsequent CI compared to cows that calved during Fall and Winter

(P<0.0001). Most Spring-calved cows will become eligible for breeding during Summer,

at a time when fertility is impaired. Furthermore, Stunmer service rates are decreased due

to typically low estrous detection rates (Rensis and Scaramuzzi, 2003) or perhaps, a

conscious decision of the farm manager to withhold services during periods of intense

heat stress. As a result, Spring-calved cows will naturally cluster for breeding with

Summer-calved cows during early Fall, when heat stress is receding and longer intervals

of postpartum clean-up (DIM) are more conducive to establishing a pregnancy. It is

important to note, nevertheless, that these inferences on differences on variability are

conditional on MY; given that season was also an important source of residual
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heteroskedasticity for MY, this implies even greater marginal or unconditional

differences in variability for CI between seasons when not adjusting for MY.

For both MY and CI (conditional on MY), differences between herds in the

magnitude of the variation among their cows were considerable. This heterogeneity was

modeled for each MY and C1 by specifying the corresponding random herd-year specific

effects with coefficient of variation (CV) one, = ———1—2— (Kizilkaya and Tempelman,

e,‘

2005). The 95% HPD and posterior means for one, and 0V992|1 indicated that the CV

of within-herd variances was significant and roughly 31% and 102% for MY and CI,

respectively (Tables 6 and 7). Indeed, the cow level variances in MY for the most

extremely variable herd was estimated to be 6.8 times greater than for the least variable

herd, as per the ratio of the corresponding posterior mean variances, namely 3.39 and

0.50 respectively (expressed relative to a typically variable herd; = 1). For CI, again

conditional on MY, the largest and smallest herd-specific relative variances, as per their

posterior means, were 8.6 and 0.18, respectively, i.e., a ratio of 47. This is consistent with

previous evidence on substantial variation between herds in their reproductive

performance (Morton, 2010). This suggests that if the determining factors were identified

and modified, it would be possible to attain important improvements in the consistency of

dairy reproduction.

Herd level CI showed geographic patterns of conditional heteroskedasticity across

Michigan counties. Figure 2 maps county-specific relative variances for herd CI in the 65

counties that were represented in the DHIA dataset out of a possible total of 83 Michigan

counties. Generally, counties across the state had fairly consistent CI across herds (i.e.
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average or below-average relative variation). However, there appeared to be pockets of

substantially large between-herd reproductive performance along the Eastern and

Southern Upper Peninsula and a few scattered counties in the Lower Peninsula of

Michigan, where the relative variance between herds for those counties was up to 6 times

greater than among herds in a typically variable county (reference = 1). Consistent herd

reproductive management relies upon frequent and periodic pregnancy checks that allow

for timely intervention in non-pregnant cows. These checks are usually conducted by

food animal veterinarians. Shortage of food supply veterinary medicine professionals is a

national problem recognized by the American Veterinary Science Association (Prince et

al., 2006) and applies to private veterinary practice as well as the public, industrial and

academic sectors. Insufficient availability of food veterinary professionals in locations

distant from large population centers (e.g. Michigan Upper Peninsula) or alternatively, a

temporary shortage in pocket areas throughout Michigan, may play a role in the observed

geographic pattern of inconsistencies in herd reproductive performance. Further

evaluation will be needed.

In summary, the evidence for heterogeneity of variances in dairy cow data is

overwhelmingly strong and spans multiple management factors as well as dual

hierarchical levels (i.e. cow and herd). We believe that heteroskedasticity of such

magnitude calls for serious consideration of explicit modeling of variances as a standard

procedure in dairy research. Disregarding such heteroskedasticity is likely to

oversirnplify inference and result in misleading implications in delineating guidelines for

dairy herd management. A similar recommendation could be made in the context of

meta-analysis studies, which appear to be increasingly popular in the current dairy
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science literature. This is particularly so if studies used in a meta-analysis are inherently

rather different from each other.

CONCLUSIONS

In this study, we consider the conflicting association between milk production and

reproduction in Michigan dairy cows using recently developed hierarchical Bayesian

technology (Bello et al., 2010; Chapter 1). We revealed that the nature of the production-

reproduction association needs to be partitioned into components, whereby a favorable

link among intensively-managed herds coexists with an overall antagonism among cows

within herds. Moreover, management practices and unidentified herd-specific factors

appear to be potential sources of heterogeneity in this association.

This study provides novel formal evidence that the concept of “one-size-fits-all”

does not apply to the relationship between milk production and reproductive performance

of dairy cows. Instead, it is apparent that milk yield and reproduction relate to each other

in a complex multidimensional (i.e. cow- and herd-levels) and multifactorial manner that

intertwines physiological mechanisms at the cow level with managerial decisions at the

herd level. Given the statistical significance of management practices and random herd-

specific effects, it would appear that the link between production and reproduction is, at

least partially, manageable and can thus be altered or optimized. Indeed, the association

between milk production and reproductive performance was enhanced, or at least

alleviated of an overall antagonism under conditions of intensive management, as

characterized by implementation of bST technology and increased milking frequency.

More research will be needed to ascertain management scenarios under which milk
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production and reproductive performance of dairy cows can be jointly optimized. For

instance, it would be desirable to investigate interactions between fixed effects (i.e.

management practices) as potential sources of heterogeneity in the association between

MY and CI. As an example, one might be interested in assessing whether the effect of

milking frequency differs between primiparous and multiparous cows in order to tailor

management strategies to each group accordingly. An additive genetic component may

also be of interest to evaluate a potentially inheritable constituent of the production-

reproduction association (Berry et al., 2003b; Tsuruta et al., 2009). Additional extensions

in the statistical methodology would be required to accommodate these questions.

Further investigation is needed to better understand the interplay of management

and enviromnental factors that lead to consistency of dairy cow performance. An

appreciation of the sources of heteroskedasticity for milk yield can provide insight in

deriving strategies for consistent cash flow to the farmer and uniform input volume into

the dairy processing industry. In turn, consistent reproductive performance is of main

interest for long-term planning and investment of dairy enterprises, as it pertains for

example to herd expansion.

IMPLICATIONS

This work supports adoption of specialized management practices (such as bST

technology and milking frequency) towards more intensive production systems as a

potential venue to jointly optimize milk production and reproductive performance of

dairy cows. These same management strategies are also the foundation for sustainability

in modern dairy farming. Indeed, technological management tools have been shown to
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enhance efficiency of dairy production (Cabrera et al., 2010) in an environmentally

fiiendly manner (Capper et al., 2008). Moreover, technology-driven production

efficiency combined with controlled environmental impact will be critical to mitigating

the food economic challenges of this century (Simmons, 2009) and thus should be given

careful consideration.

Finally, our results suggest considerable complexity of dairy production systems,

probably due to delicate interactions between the unique physiology of dairy cows and

the variety of production management systems within which such physiology is managed.

As we shift the paradigm in agriculture from single issues to a comprehensive systems

approach, it becomes imperative to understand the individual and combined contributions

of each management piece to the multifactorial nature of integrated performance of dairy

cattle. The developing field of livestock production epidemiology provides a unique

opportunity to so channel dynamic interactions between veterinary medicine, animal

science and applied statistics towards this end. The potential outcomes of synergizing a

thorough appreciation for physiological mechanisms in individual animals with an in-

depth understanding of the structure and dynamics of livestock production systems from

a strong quantitative foundation are compelling for a comprehensive understanding of

complex biological systems such as the integral performance of dairy cows.
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Table 2.1. List of fixed effects (classification factors and linear regression on covariates)

tested as explanatory variables for heterogeneity of cow and herd level (co)variances on

milk yield and calving interval.

 

Cow level (c9)variability

0 Parity (Primi- vs. Multiparous)

0 Calving season (Winter, Spring, Summer, Fall)

0 Year (2005, 2006)

o Milking frequency (2 vs 3+ times per day)

0 Individual cow treatment with bovine somatotropin during lactation (Yes/No)

0 Level of herd supplementation with bovine somatotropin (0%, >0 to 50% and

>50% of the herd)

0 Reproductive management practices: Use of synchronization strategies (Yes/No)

o Herd size (number ofhead as covariate)

- Herd expansion (% change in herd size frompreceding year as covariate)

 

 

Herd-year level (co)variability

0 Calving season (Winter, Spring, Summer, Fall)

0 Year (2005, 2006)

o Milking frequency (2 vs 3+ times per day)

0 Level of herd supplementation with bovine somatotropin (0%, >0 to 50% and

>50% of the herd)

0 Reproductive management practices: Use of synchronization strategies (Yes/No)

0 Herd size (number of head as covariate)

o Herd expansion (% change in herd size fromJreceding year as covariate)

 

 

97



Table 2.2. Sequential details of the forward model selection procedure implemented on

variance components for a univariate model on cumulative milk production at 305-days-

in-nrilk of Michigan dairy cows. Selection of fixed and random effects into the model

was based on model fit as determined by Deviance Information Criteria (DIC).

 

 

 

DIC difference

Relative Relative to

Model in
to Null .
Model Preceding

Factors and covariates entering the model: Step

Null Model, consisting of:

o Fixed effects on the mean (parity, calving season,

year and individual cow treatment with bovine

somatotropin during lactation, as per Table l); 0

and

. Random clustering effect of herd-year on the mean.

 

Step 1: Evaluation of fixed effects on the cow-to-cow (cow-level) variance

1.1) Parity (Primi- vs. Multiparous) -3474 -3474

1.2) Calving season (Winter, Spring, Summer, Fall) -3601 -127

1.3) Herd size (number of heads) -3685 -84

No additional effects entered the model .

Step 2: Evaluation ofrandom effects on the cow-to-cow (cow-level) variance

 

 

2.1) Clustering effect of herd-year -8581 -4896

Step 3: Evaluation of fixed effects on the variance between herd-year clusters

(Herd level)

No effect entered the model

Step 4: Evaluation ofrandom effects on the variance between herd-year clusters

(Herd level)

No effect entered the model
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Table 2.3. Sequential details of the forward model selection procedure implemented on

variance components for a univariate model on calving interval of Michigan dairy cows.

Selection of fixed and random effects into the model was based on model fit as

determined by Deviance Information Criteria (DIC).

 

 

 

 

DIC difference

. Relative to

Relative Model in
to Null .

Model Preceding

Factors and covariates enteringthe model: Step

Null Model, consisting of:

o Fixed effects on the mean (parity, calving season,

year and individual cow treatment with bovine

somatotropin (bST) during lactation, as per 0

Table l); and

. Random clustering effect of herd-year on the

mean.

Step 1: Evaluation of fixed effects on the cow-to-cow (cow-level) variance

1.1) Individual cow treatment with bST (Yes/No) -683 -683

1.2) Calving season (Winter, Spring, Summer, Fall) -1112 -429

1.3) Level of herd supplementation with bovine _1142 _30

somatotropin

1.4) Year (2005, 2006) -1151 -9

No additional effects entered the model .

Step 2: Evaluation of random effects on the cow-to--cow (cow-level) variance

 

2.1) Clustering effect of herd-year -11434 -10283

Step 3: Evaluation of fixed effects on the variance between herd-year clusters

(Herd-level)

3.a) Year (2005, 2006) -11448 -14

No additional effects entered the model

Step 4: Evaluation ofrandom effects on the variance between herd-year clusters

(Herd-level)

4.a) County within Michigan -11500 -52

No additional effects entered the model
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Table 2.4. Sequential details of the forward model selection procedure implemented on

the Cholesky-reparameterized covariances (expressed as regression coefficients) between

cumulative 305-d milk yield and calving interval of Michigan dairy cows. Selection of

fixed and random effects into the model was based on model fit as determined by

Deviance Information Criteria (DIC).

 

 

 

DIC difference

. Relative to
Relatrve Model in

to Null .
Model Preceding

Factors and covariates entering the model: Step

Null Model, consisting of:

. Univariate model on cumulative milk yield at 305-

days-in-milk, as selected in Table 2.

. Univariate model on calving interval, as selected in 0

Table 3.

. Covariances between traits are modeled as

homogeneous and estimated accordingly.

 

Step 1: Evaluation of fixed effects on the cow-level regression coefficient

1.1) Milking frequency (2 vs 3+ times per day) -67 -67

1.2) Year (2005, 2006) -106 -39

1.3) Calving season (Winter, Spring, Summer, Fall) -135 -29

1.4) Herd expansion (% change in herd size from

preceding year)

No additional effect entered the model ._._

Step 2: Evaluation of random effects on the cow-level regression coefficient

2.1) Clustering effect of herd-year -397 - 243

No additional effects entered the model .

Step 3: Evaluation of fixed effects on the herd-level regression coefficient

3.1) Level ofherd supplementation with bovine
. —409 -12

somatotroprn

No effects entered the model

Step 4: Evaluation ofrandom effects on the herd-level regression coefficient

No effects entered the model

-154 -19
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Table 2.5. Marginal mean estimates (PMEAN), standard errors (PSD), and 95% highest

posterior density intervals (HPD) and effective sample sizes (ESS) for statistically

significant cow-level and herd-level associations between cumulative milk yield at 305

days in milk (MY) and calving interval (CI) in Michigan dairy cows.

 

Association

 

 

 

 

  

 

 

  

between MY and CI PMEAN PSD 95%HPD ESS

Herd Level Associations

Level ofherd bST usage

bsrgem == 0%, d/lOO kg 0.01 x 0.06 {-0.11, 0.12] 3,569

bSTHerd = >0-50%, d/lOO kg 0.07 " 0.12 {-0.17, 0.31] 1,484

bSTHerd = >50%, d/100 kg -1.37 V 0.13. [-1.63, -1.11] 1,892

Cow Level Associations

Milkingfrequency

2x, d/lOO kg . 0.57 a 0.01 {0.55, 0.60] 132,743

3*x, d/lOO kg 0.45 b 0.02 {0.41, 0.49] 173,621

Year .

2005, d/lOO kg 0.46 a 0.02 {0.42, 0.49] 174,312

2006, d/lOO kg 0.57 b 0.02 {0.53, 0.60] 134,345

Season

Winter, d/lOO kg 0.54 “t“ 0.02 {0.50, 0.58] 152,327

Spring, d/lOO kg 0.50 ° 0.02 {0.47, 0.54] 159,199

Summer, d/100 kg 0.46 d 0.02 [042,049] 158,110

Fall, d/lOO kg 0.55 e 0.02 {0.51, 0.58] 151,897

Herd Expansion

10% Changeglggrigize’ W:(.)'0082 0.0067 {0.0213, 0.0049] 174,056

Variability between Herds

03,8 ,(d/IOO kg)2 0.030 0.005 {0.021, 0.039] 8,739

 

(x3) Letters indicate significant differences (P < 0.0001) between levels of the

management factor on the herd-level regression parameter.

(a’b) and (c’d’e) Letters indicate significant differences (P < 0.0001 and P < 0.05,

respectively) between levels of each management factor on the cow-level regression

parameter.

02

m defines random herd-specific heterogeneity on the cow-level regression

e

coefficients.
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Table 2.6. Posterior means (PMEAN), posterior standard deviations (PSD), 95% highest

posterior density intervals (HPD) and effective sample size (ESS) for cow-to-cow (i.e.

residual level) and between-herd (i.e. random level) variances for cumulative milk yield

at 305 days-in-milk in Michigan dairy cows.

 

Variance Components

 

 

 

 

 

 

 

(100 kg)2 ’r PMEAN PSD 95%HPD ESS

Herd-Level Variances

Between-herd variance, (100 kg)2 1,208 57 [1102, 1323] 172,743

Cow-Level (Cow-to-Cow) Variances

Parity

Primiparous, (100 kg)2 1,333 a 23 [1288, 1377] 3,486

Multiparous, (100 kg)2 2,199 b 37 [2125, 2271] 3,359

Season

Winter, (100 kg)2 1,678 ° 30 [1619, 1737] 3,998

Spring, (100 kg)2 1,598 d 28 [1543, 1656] 4,071

Summer, (100 kg)2 1,763 ° 32 [1701, 1825] 3,780

Fall, (100 kg)2 1,817 f 36 [1754, 1881] 3,341

Herd Size 0

10X change in herd size, (100 kg)2 1.69 0.05 [1.59,] .80] 2,478

Between Herds

Coefficient of Variation 0‘v,e1 0.31 0.01 [0.29, 0.34] 21,662
 

(8’ b) and (c’ d’ c’ f) Letters indicate significant differences (P<0.0001 and P<0.01) in cow-

to-cow variation between levels of each management factor.

One] is the cow-level coefficient of variation for the conditional variance between herd-

year clusters.
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Table 2.7. Posterior means (PMEAN), posterior standard deviations (PSD), 95% highest

posterior density intervals (HPD) and effective sample size (ESS) for cow-level (i.e.

residual) and herd-level (i.e. random) conditional variances for calving interval in

Michigan dairy cows.
 

 

 

 
 

Variance Components? PMEAN PSD _95%HPD ESS

Herd-Level (Between-Herd)

Variances

Year

2005,days2 3,864" 807 [2618,5349] 6,213

2006,r1ays2 _fl 8,189y 4,661 [3911,14216] 16,208

Between Counties ' ‘

Coefficient of variation 012,112“ 3.67 4.59 [078,923] 7,229
 

Cow-Level (Cow-to-Cow) Variances

Cow Treatment with bST

 

 

 

 

 

No,day52 11,560a 445 [10704,12454] 1,233

Yes, daysz 28,390b 1257 [26019, 30955] 1,428

Season

Winter, days2 20,060a 774 [18568,21591] 1,366

Spring, days2 16,450b 634 [15241,17717] 1,333

Summer, daysz 16,350b 630 [15165,17617 1,329

Fall,daysz 19,940a 774 [18476,21488] 1,219

Level ofHerd bST usage

bsrgm =0%,days2 22,720a 868 [21059, 24448] 2,002

bSTHerd=>0-50%,daysz 24,2108 1,510 [21353, 27254] 1,730

bsrgm =>50%,c1ays2 10,830b 697 [9468,12181] 447

Year .

2005,day52 16,000a 687 [14672,17351] 1,976

2006,r1ays.2 20,510b 875 [18805, 22222] 957

Between Herds

Coefficient of variation anew 1.03 0.09 [087,120] 2,935
 

(x’ y) Letters indicate significant differences (P=0.03) in the between-herd variance

between levels of the management factor. ’

(a b’ c’ d) Letters indicate significant differences (P<0.0001) in the cow-to-cow variance

between levels of each management factor.

av,u2|l is the herd-level coefficient of variation for the conditional variances between

counties.

03,32“ is the cow-level coefficient of variation for the conditional variances between

herd-year clusters.
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Figure 2.1: Cow-to-cow variance estimates (black line) for cumulative milk yield at

305-days-in-milk in Michigan dairy cows expressed as a function of herd size (in the log

base 10 scale along the x-axis) and prediction for herd-specific cow-to-cow variances

(grey dots)-
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Figure 2.2: County map of Michigan representing county-specific between-herd

variances in calving interval, relative to a typical county variance (reference = 1).
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CHAPTER 3

Hierarchical Bayesian Modeling of Heterogeneous Cluster and Subject Level

Associations between Continuous and Binary Outcomes

SUMMARY. The augmentation of categorical outcomes with underlying Gaussian

variables in bivariate generalized mixed effects models has facilitated the joint modeling

of continuous and binary response variables. These models typically assume that random

effects and residual effects (co)variances are homogeneous across all clusters and

subjects, respectively. However, it seems likely in certain situations that these dispersion

parameters may themselves be affected by systematic effects. We propose a hierarchical

Bayesian extension of bivariate generalized linear models whereby (co)variances are

specified as linear combinations of fixed and random effects following a square-root free

Cholesky reparameterization that relaxes traditional positive semi-definite constraints on

the reparameterized (co)variances. Using MCMC-based inference, we test the proposed

model by simulation and apply it to a dairy cattle dataset in which the random and

residual effects (co)variances between milk production and fertility of dairy cows are

modeled as functions of fixed effects, as defined by management factors, as well as

random cluster effects.

KEY WORDS: Bayesian; Bivariate Model; Cholesky decomposition; Generalized linear

mixed model; Heterogeneous covariance.
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1. Introduction

Joint generalized linear modeling of mixed outcomes has been of sustained interest in

agricultural and biomedical research, with the bivariate model for a continuous and a

binary response being of particular interest (Liu, Daniels and Marcus, 2009; O'Malley,

Normand and Kuntz, 2003; Tsuruta et al., 2009; Wu, Gianola and Weigel, 2009). Due to

non-zero covariances between outcomes, joint modeling of this nature permits

information to be shared between Gaussian and non-Gaussian responses, thereby

providing greater inferential efficiency for location parameters (i.e., treatment effects)

than separate analyses for each outcome (Riley et al., 2007; Teixeira-Pinto and Normand,

2009). This is particularly true for treatment or risk factors specified for binary outcomes

(Gueorguieva and Agresti, 2001; McCulloch, 2008). However, a prevailing, and

potentially limiting, assumption of these models is that the variance-covariance structure

is homogeneous across treatments or risk factors.

In some disciplines, parameters that specify the covariance or association between

continuous and binary outcomes may be of equal or even greater interest than

conventional treatment effects or risk factor effects on each outcome. This is particularly

true in quantitative genetics whereby bivariate generalized linear mixed models (GLMM)

are used to investigate associations at two or more levels; that is, between random genetic

or cluster effects and between residual effects for the two outcomes or traits (Janss and

Foulley, 1993; Tsuruta et al., 2009). An overriding motivation for these investigations

into between-trait associations is based on agricultural sustainability; e.g., what

implications do increasing meat and milk production, generally continuous outcomes,

have for fitness and reproductive performance, generally binary outcomes? Along this
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line of thought, our work is motivated by concerns that increasing levels of milk

production per cow may have unfavorable implications for fertility of dairy cattle over

time (Hare, Norman and Wright, 2006; Lucy, 2001). However, the associations between

milk production and reproduction in dairy cattle have not always been antagonistic;

sometimes neutral (i.e., zero covariances) or even favorable associations have been

reported (Emanuelson and Oltenacu, 1998; Lof, Gustafsson and Emanuelson, 2007;

Lopez-Gatius et al., 2006). Given such conflictive results between studies, we investigate

whether the between-trait associations may depend upon various systematic effects by

hierarchically extending the model for additional generalized linear model specifications.

Based on the underlying data hierarchy, we specify the between-trait associations on

random cluster effects (e.g., herds) and the between-trait associations on residual subject

effects (e.g., cows) separately, recognizing that these relationships may be quite different

and even opposite in sign (Bello, Steibel and Tempelman, 2010).

We recently developed a Bayesian procedure for modeling random cluster and

residual subject effect associations between two continuous traits based on a multivariate

Gaussian likelihood specification (Bello et al., 2010), whereby a linear model was

implemented on parameters derived from a square-root free Cholesky decomposition of

(co)variances for random cluster-specific effects and for residual subject-specific effects.

In this paper, we further extend this methodology for the joint analysis of a continuous

and a binary outcome, recognizing that GLMM extensions for the Bayesian analysis of

binary responses may require additional care and study, particularly as it pertains to

identifiability of parameters (Teixeira-Pinto, A., and Normand, 2009) and the potential

impact of vaguely specified prior densities (Natarajan and Kass, 2000).
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The objectives of this article are to present, validate, and demonstrate a hierarchical

Bayesian extension of a bivariate GLMM in which random cluster and residual subject

variance-covariance matrices are, in turn, modeled as functions of fixed and random

effects. Although Bayesian inference implies a probability distribution on all unknown

parameters, such that they are all genuinely random effects, a Bayesian interpretation of a

fixed effects factor might be one where each of its effects is specified with independent

non-informative or vaguely informative prior distributions with known hyperparameters

(Bello et al., 2010; Sorensen and Gianola, 2002). Conversely, we characterize those

factors whose levels could be considered to be exchangeable as random effects, which are

specified by a structural prior whose hyperparameters are estimated fi'om the data.

The article is organized as follows. We review the bivariate linear/probit mixed

effects model in Section 2, reparameterize the random (cluster) and residual (subject)

effects variance-covariance matrices into readily interpretable conditional variance and

unconstrained association parameters in Section 3, and describe the MCMC-based

hierarchical Bayesian implementation of the proposed bivariate GLMM in Section 4.

Section 5 presents alternative interpretations of the association parameters in the

observed scale. We validate our proposed method using an extensive simulation study in

Section 6 and illustrate its application on a dairy cattle dataset in Section 7. Section 8

presents further discussion, followed by brief conclusions in Section 9.

2. The Bivariate Generalized Linear Mixed Model

Let y]j _ be the observed continuous response and y2j be the observed binary

categorical outcome on subject j; j=l,...,n. As elucidated in Albert and Chib (1993) and
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Gueorguieva and Agresti (2001) amongst others, y2j is assumed to be determined by an

underlying normally distributed variable y;j such that yzj = I (y;j > O) for I(.)

representing the indicator function. This is equivalent to specifying a probit link in a

GLMM for y2j . The underlying bivariate GLMM is then written as follows:

le' __ #1j+elj ”11' _ X1j131+Zjl|1
alt — . , - (1)

)2j ”21+er ”21' X2j132+1juz
£
-
2 (
D I

Here, [31 and [32 are vectors of classical fixed effects whereas “1 = {midi-1 and

u2 = {qu }Z=l are vectors of classical random effects for the two outcomes,

I I I

respectively, for each of q clusters. Also, X]1" x2j and zj are known incidence

vectors specific to subject j whereas 81j and 62j are random residual effects unique to

h . . . . .

the f subject. To Simplify presentatron, we assume that the same srngle random

clustering factor is common to both traits and is the basis for all random effects modeling

I

in this paper; i.e., zj is the same for both responses in Equation (1) and for all

subsequent random effects specifications. Furthermore, we assume that complete pairs of

outcomes are available on all n subjects. However, neither assumption is a restriction

with the use of our method.

Independent prior bivariate Gaussian densities, f(ch IGk) and f(e.j | Rj) , both

with null means, are respectively specified on each cluster-specific pair of random effects
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uk:—[u1k u2k]' and on each subject-specific pair of resrduals ej"=[e1j 821']. for

the two outcomes, with (co)variances defined by

r 2 "r r 2 -

k u k J
Gk = u] :2 and Rj = e” :2 . (2)

funk aezk . _UeIZj 062J    

Note that random effects variances and covariances are unique to each cluster k as are

residual variances and covariances to each subjectj.

n

For a bivariate GLMM, the joint density f[y1,y3|31,u1,fl2,u2,{Rj} , I] for
J:

n n

the complete data, including yl ={y1j} . l and the augmented data y; = {ygj} 1

J:
j:

can be written as thefactorization or product of the marginal density for yl :

n

f[YI|151,“1,{GEN-L;1]=I’Z[1N(#1j,0§1j] (3)
J:

with the density function of 3’2 conditioned on yl :

f YEIYIaBI,“1,32,“2{(/’(‘en)}=fiN[/12|1ja0'322“j=—1] (4)

j=1j=1

e

(Catalano and Ryan, 1992; Janss and Foulley, 1993). Here, ”2111' = ,uzj +¢§ )6]j

2

with 0822|1j=9221—[¢§e)]0e21 being constrained to 022“j =1 V] to ensure

identifiability of the remaining parameters, as necessary for a probit model specification
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on yzj. Furthermore, (pg-e) = 0312j/0e21j represents the residual subject level

association coefficient for 82j on elj- In other words, the probability for a success

outcome on the binary trait conditional on the continuous trait can be written as

at It ,

Pr()’2j =1|y2j,y1j)= Pr()’2j > 0|nj,B1,B2,u1,u2,Rj)=¢(#2|1j) With

(D(.) defining the standard normal cdf. Then, the distribution of the observed outcome

yz conditioned on Y1 is specified as:

f Y2|y19131,“1,132-“2,{¢j-e)}: 1 =fil(¢(#2|1j))y2j (1—¢(#2|1j))(1—y2j)= J:

(5)

3. Reparameterization of Variances and Covariances

The factorization presented in Equations (3) and (4) is equivalent to a square-root-free

Cholesky decomposition for Rj and which we also use for Gk (Bello et al., 2010); i.e.,

  

2 (e) 2

R 0611' $1 0911

j: () 2 (e) 2

(’1 “en“ ”("0 ] “e11
_ - ..l -. (6)

2 (u) 2

‘7qu fk ‘7qu

and Gk:
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(u) _ 2 . .
Note that gok — O'u12k/(J'ulk represents the random cluster level assocratron of u2k

on ulk’ such that u2k=(p](:l)u1k+u2|1k where u2l1k~N[0,0’52“k] is

conditionally independent of ulk- Similarly, 62j = $5661]: +82|1j where

e2“j ~ N(0,1) is conditionally independent of elj- We thereby rewrite the linear

'1' . .

model for y2j in Equation (1) as:

a: ' ' e

)2j = 1“21132 +1j [‘1'(u)“1+“2|1]+¢§- )81j +e2|1j (7)

where u2|1={u2|1k}:=1 and ‘1,(u) is a q x q diagonal matrix with elements

{601?};

Note that (05.8) and (p19), as well as the logarithms of 0811-,
2 0.2 2

ulk,and 0' can

uzuk

be completely unconstrained, yet Rj and Gk will still guarantee to be positive semi-

definite. Hence, this decomposition facilitates modeling each of these 5 components as

linear functions of covariates (Pourahmadi, 1999). Consider, in particular, three special

. (e) (u) 2 (u) _ (1‘)
cases. 1) go}. —>0, 2) (pk -+ O, and 3) O'uZIIk—eOand (0k —(0 V k. ForCase

. = 0 such that residual effects for the two outcomes within subjectj1), this defines 0812J

are independent. Similarly for Case 2), this defines Jul2k = 0 such that random effects
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for the two outcomes on cluster k are independent. For Case 3), this equates to specifying

that both outcomes share a common random effect or latent variable for each cluster with

only a difference in scale: u2k = (0(u)u1k; this is a popular specification in bivariate

mixed outcome models (Catalano and Ryan, 1992; Teixeira-Pinto and Normand, 2009).

By further specifying heterogeneity of these parameters, each with their own mixed

effects submodels (see next section), our proposed methodology has the potential to

enhance modeling flexibility beyond many existing parametric bivariate continuous-

binary approaches.

4. Heterogeneous (Co)Variance Modeling

We specify linear (mixed) models on (use) and (”I(Cu) as follows:

raj-e) =X3jre+zj'm, (8)

cpl") =X4kru- (9)

Here 7e and ya represent vectors of unknown fixed effects with subjectively specified

priors f(Ye) and f(yu). Conversely, m = {mk }Z-l represents a vector of unknown

cluster-specific random effects with a structural Gaussian prior

f (111 I0',%,) = N(0,10%) such that, in turn, an inverted gamma (1G) prior distribution

f(0',%) =IG(am,flm), with known am and ,Bm, is specified on 0'3, (Bello et al.,
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2010); i.e. E(0’,%,)= ,Bm / (am —1). Finally, X3j and 34k are known row incidence

. 1h . th .

vectors specrfic to the1 subject and the k cluster, respectively.

We also model the logarithm of variance components 0'311" 2

separate linear combinations of fixed and/or random effects (Foulley et al., 1990) as

follows:

1040811.] = X'5j10g(1'el )+ z'jlog(ve1), (10)

10403” ) = x'6k log(1'ul ), and (11)

log[032“k ] = x17k log(1'u2|l ). (12)

Here, 731 , Tul and 11,2“ represent vectors of fixed effects with subjective priors

q

f(re]), f(Tul), and f[1'u2|1), respectively. Conversely, v31 ={velk}k=l

represents a vector of cluster-specific random effects on the subject-specific residual

variance, such that Velk ~ IID f(velk|ne])=IG(nel,nel-l) . In turn,

—2 r r

We] ~f(77e1)°C(1+7781) , for 77g] >0 (Bello et al., 2010). Also, x5j, x6k9 and

1

X7k are corresponding known incidence row vectors.

For subsequent brevity, we refer to Equation (3) as f(y1) and Equation (4) as

*

f[y2ly1). The joint posterior density of all unknown parameters, namely [31, B2 , “1 ,

119

 



2 .
uz, ye, m, cm, yu, re] , Tu] , 11,2“, V61 and rye] , glven y] and y2, can then be

written as the product of all density specifications presented thus far; i.e., f(y1) ,

f(Y2|Y1} f(l31), f(132)a szlflurle), f(7e), f(m|0;7;z), 4032),

f(7u)’ f(7ul)a f(Tu2|1), f(Tel)’ Hz=If(Velkl77el), and f(7791). The

Markov chain Monte Carlo (MCMC) strategy for generating samples from this joint

posterior density is identical to what is presented in Bello et al. (2010) with just two

exceptions. First, as previously noted, we constraint 0'2 - =1 Vj to ensure parameter

82"}

identifiability (alternatively, we could have set 0'2 . =1 Vj and conducted inference

92]

on 0'2 If ). Secondly, the augmented data ygj needs to be sampled from truncated
82'

normal distributions at each MCMC iteration depending upon the value of yzj; i.e.,

* *

yzj |y2j =1-B,“~N(fl2llj’l)I(J’2j >0) or

ij IJ’2j =0,B,u~ N(p2l1j,l)l(y3j < 0) (Albert and Chib, 1993). It would be

also important to note that standard identifiability constraints on “fixed” effects

parameters such as [31, [32, Ye, 714- Tel , Tu] and 11,2“ are also necessary (Gelfand

and Sahu, 1999), as previously described in more detail (Bello et al., 2010).

5. Interpretation ofAssociations on the Observed Scale

120



As previously demonstrated by Bello et al. (2010), the interpretation of (age) and wk“)

on the underlying continuous variable scale is rather straightforward. Recall that

[12'11- = [121- +¢§e)elj. That is, (03-8) can be simply interpreted as the conditional

change in y;j , for each unit increase in e]j' Similarly, $1?) represents the conditional

change in y2j for each unit increase in ulk(j) where k(j) denotes the cluster associated

with subject j. However, for the bivariate continuous-binary model, the probit link forces

a more complex interpretation of cluster and subject level associations on the observed

outcome scale as they depend upon baseline values of other parameters (McCulloch,

2008). For example, suppose that #2 is specified such that (1)012) represents a

baseline incidence rate for the binary outcome. For a particular residual increase of e]

units on the continuous outcome, the conditional expected incidence rate for a particular

value of (age) becomes (D[[12 + (pg-del J; i.e., the expected differential in incidence

rates is A8 = (13([12 +¢3e)el ]—CD([12).

The elegance of MCMC lies in its ability to provide the posterior density of any

function of the model parameters. Given Equation (8) and recognizing that

E(mk I 0'31) = 0 , we substitute estimable linear functions E[ $58)] = keYe of interest

for $5.8) in the specified differential above. For example, we could set R; = x3j for
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any j or, more generally, any linear combination thereof k'e=2’j=l c113j for known

scalar cj. Conditional on a baseline probit mean of #2 on the binary outcome and a

residual increment of 81 on the continuous outcome, we might investigate the posterior

density of Ae as a measure of the residual subject-level association on the observed

scale as it depends upon keYe as being:

I

Ae = <D[#2 +(ke7ejelJ-(DLH2) (13)

Similarly, given Equation (9), we could specify a random cluster-level association

0

between the two outcomes as an estimable linear function, kuyu , of 7,, relative to a

baseline probit mean of #2 on the binary outcome and a random effects increment of u]

on the continuous outcome:

Au = (D(,u2 +(ku7u)u1]‘¢(fl2) (14)

An appropriate value for #2 in both equations (13) and (14) above might be

I

#2 = l/nz;=1x21|32 . Similarly, “typical” residual subject-level and random cluster-

level standard deviations could be substituted for 61 and ul , respectively. That is, using

 

Equations (10) and (11), one might use 5'3 = Jexp(l/n23:1 X'sJ log(‘l'e1 )) for 61
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in Equation (13), recognizing that E(Vel ) = l , and

 

5’“ = Jexp(l/qzz=1x'6klog(1ul )) for u] in Equation (14).

6. Simulation Study

6. I Design

Using simulation, we investigated the inferential properties on key parameters defining

between-trait associations, namely, 7e , yu and 03%, , in our proposed bivariate GLMM.

We considered 3 different types of correlation architectures with respect to average

cluster-level (5(a) = l/q 2:31 $191) and subject-level (5(8) = U}! 22:1(05?)

associations: A) same sign: sgn[g5(u)]= —1, sgn[¢(e)]=—l; B) opposite sign:

sgn[¢(u)] = —l , sgn[(5(e)] = +1 ; and C) no association: (5(a) = 0, (5(8) = 0. We

also considered 5 different values of 0%,: 1) 0'3, = 0; 11) 0'3, 2 0.01; 111) 0%, = 0.1; IV)

0'3, =1; and V) 0'3, =10. Each of the 15 scenarios (3 correlation architectures x 5

values of 03,) was represented by 10 replicated datasets. Within each dataset, correlated

Gaussian and binary outcomes were simulated for each of n ~40,000 subjects unevenly

distributed among q = 200 clusters, similar to that described in Bello et al. (2010). The

same two-level fixed effect factor was specified at the subject level for each of Bl , [32 ,
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ye and Tel ; i.e. x1j = x2j = X3j = x5j. Similarly, the same two-level fixed effects

factor was specified for each of the cluster-level terms yu , Tu] and 1,12“; i.e.,

X4k = x6k = x7k. Assignment of subjects and clusters to the two levels of the fixed

effect factor was based on a Bernoulli distribution with probability 0.25 to partly mimic

an unbalanced design structure. We specified ye = [781 7e2 ]' and

’Yu = [yul 7u2 ]' using the values indicated for each of scenarios A, B and C in Table

1. Furthermore, we defined 1'91 =[TeI’1 781,2]'=[0°75 1]',

cu] =[z'ub1 1,1,2] =[o.2 0.4] , 1,2“ =[Tu2llal 7142113] =[o.5 0.4] and

7781 = 5 for all simulation scenarios. We also specified flat unbounded priors on B1, B2 ,

7e , 0%, , yu , Tel , Tu] and 11,2“ . We certainly recognize it as best practice to specify

proper priors on all parameters in order to ensure a proper joint posterior density.

However, we were particularly interested in how resilient inference might be using the

proposed model with noninforrnative priors, realizing that the interpretation of the results

from our simulation study could otherwise be tainted by subjective specifications.

6.2 Convergence Diagnostics

A single MCMC chain was run for each model (see later) fitted to each of the 150

simulated datasets (15 scenarios x 10 replicates each). In all cases, we saved 50,000

iterations after a burn-in period of 8,000 iterations. Convergence diagnostics for all

parameters with subjective or non-exchangeable priors were based on trace plots and on
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Raftery and Lewis (1992). Of particular concern and interest were the mixing properties

of the parameters specified with noninfonnative priors and at the deepest level of the

model hierarchy, namely ye] , 792 , 71,1, 7,12 and 0,3,. We also monitored data

augmentation samples for three randomly selected elements of y; in all MCMC runs.

Web Figures 1-4 show representative trace plots for elements of 7e , 'yu , Tel , Tu] and

* . . . .

yz from one Simulated dataset, as well as representative trace plots for 0'3, consrderrng

each true value of 03,. Chain convergence did not appear to be an issue in any situation.

6.3 Model Choice

For each of the 150 simulated datasets, we fitted a null model (M0) that constrained

0'3, = 0 and a competing full model (M1) that specified cluster-specific subject-level

associations; i.e. 0'3, > 0. As criteria for model choice, we applied the Deviance

Information Criterion (DIC) (Spiegelhalter et al., 2002) and the pseudo-Bayes Factor

(pBF) (Gelfand and Dey, 1994). Note that both DIC and pBF require specification of the

joint bivariate data likelihood f(y1,y2)= f(y1)f(y2|y1), similar to Janss and

Foulley (1993), with f(y1) and f(yzly1) provided in Equations (3) and (5),

respectively.

To draw conclusions upon the statistical significance of 0'3, , we use 1) the difference

between the corresponding model DIC values, namely DICA = DICM0 - DICM1 , and

2) the ratio of the corresponding pBF of M1 relative to M0 expressed on the loglo
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scale, which we refer to as loglOpBF. Values of DICA and loglo pBF greater than

zero would support the choice of M1 over M0 , and thus, indicate evidence for non-zero

0%,; conversely, negative values would support M0. We use a IDICAI of 7 or greater

(Spiegelhalter et al., 2002) and a loglo pBF of 2 or greater (Kass and Rafiery, 1995) to

conclude upon a decisive difference in fit between the two models.

For all 30 datasets where 077;, =0, DICA fell within a range of [-4.2, 1.6] and

loglo pBF fell within a range of [-1.1, 0.3] such that neither M1 or M0 were

decisively chosen. Both selection criteria impressively favored the correct model (M1)

for all 120 datasets where 0%, > 0. As expected, the magnitude of DICA and loglo

pBF increased with greater values of 0'3, , indicating greater statistical power to detect

non-zero 0%,. More specifically, the range of DICA values was [32, 247] for

031:0.01; [663, 2220] for 0%,:01; [6291, 12437] for 0,3,:1; and [19984,

33833] for 0'31 = 10. Similarly, the range of loglo pBF was [6, 53] for 0%, =0.01;

[144, 481] for 0%, =0.1; [1364, 2698] for 03-, =1; and [4336, 7338] for 0%, =10.

The three different correlation architectures did not appear to influence decisions on

model choice. We believe that these results validate the use of DIC and pBF as model

selection criteria for the proposed bivariate GLMM.

We also considered the relative contributions of the marginal f(y1) and conditional

f(y2|y1) components of the joint likelihood f(y1,y2) on the model choice criteria.
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When 0%, > O , we noticed that large DICA and loglo pBF for detecting 0%, were

overwhelmingly driven by the f(YZIY1) component (results not shown). This was to be

8

expected as 0%, specifies the degree of heterogeneity on ¢(- ) which, in turn, links the

J

model fit of the binary outcome to that of the more informative continuous outcome. As

0'3} increased, the f(y1) component of f(y1,y2) also did contribute to overall

model fit such that when 0%, =10, f(y1) contributed to DICA by between 10 to 22

points, and to loglo pBF by approximately 2 to 5 orders of magnitude in favor of M1

over M0. Nevertheless, the impact of f(y1)on the two model choice criteria was

dwarfed (<0.l%) relative to that of f(y2|y1). Thus, a bivariate Gaussian-binary

analysis that considers heterogeneous associations does sharpen inference for the binary

response, though there is a small improvement in fit for the Gaussian outcome as well.

6.4 Inference on Heterogeneous Associations

Table 1 provides details on the minimum and maximum of the upper and lower

boundaries of the 95% highest posterior density (HPD) interval of the posterior

distributions of 781 , 732 , yul , 71,2 and 0'31 across the 10 replicates for each of the

15 scenarios considered. For these five parameters, the coverage probability of the 95%

HPD ranged from 95.3 to 96.7% across 150 replicates (or 120 for 0',2, where 03%, > 0 ).

These coverage probabilities were consistent with probabilistic expectation as they were

not determined to be significantly different from the nominal value, neither did they
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2
differ with correlation architecture or magnitude of 0'm. For completeness, we also

report coverage probabilities for parameters defining heterogeneity of (conditional)

cluster-level and subject-level variances, namely elements of Tu] , Tuzll , 1.91 and 77c] .

For each of these seven parameters, HPD coverage satisfactorily matched nominal

coverage as the 95% HPD coverage probability ranged from 92.0 to 99.3% across 150

replicates.

We evaluated potential bias of the posterior mean for each of ye] , 732 , 7u1 , 7112

2
and 0'," under each of the 15 scenarios with a one-sample t-test and a one-sample non-

parametric Wilcoxon Rank Sum Test, using the true parameter values as the null values

for those tests. Based on a Bonferroni-corrected (as per the 15 different scenarios) Type I

error rate of 5%, we found no evidence of bias of posterior means for any of these

parameters (results not shown). Similar results were encountered when the posterior

mean of each element of 1’ , 1' , 1' and was evaluated for bias (results not
ul U2“ e1 77e1

shown).

Precision of inference was greater for 731 and 732 compared to yu] and 7112 , as

illustrated by the narrower 95% HPD of the former in Table 1. Indeed, less inferential

precision is to be expected at the random cluster-level compared to the residual subject-

level since Yul and 7142 are further removed from the data (y1 and y2) compared to

ye] and 732 in the model hierarchy. Note that the precision of estimation on 731 and

732 (but not on 7”] and 71,2 ) worsened as 0'3, increased, as indicated by their wider

95% HPD.
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Overall, we believe this simulation study validates the proposed bivariate GLMM as a

tool to infer upon heterogeneous residual subject-level and random cluster-level

associations between Gaussian and binary outcomes. The use of model selection criteria,

namely DIC and pBF, worked as intended. These results did not appear to depend upon

the nature of the subject-level and cluster-level correlation architectures (i.e. A, B, C) that

were considered. Furthermore, 95% HPD were close to nominal coverage and posterior

means were seemingly unbiased.

7. Application

We revisit the motivating example regarding the association between milk production and

reproductive performance of dairy cows. We received data on milk yield and pregnancy

status following first postpartum insemination for n = 39,917 cows from q = 319 dairy

herds in Michigan recorded during 2006 from the National Dairy Herd Improvement

Association (Raleigh, NC). Here, cow defines the residual subject level whereas herd

represents the clustering factor that identifies the random level of the hierarchical model.

To illustrate the use of our proposed method, we selected cow parity, categorized as either

primiparous or multiparous, as the basis for subject-level fixed effects on ye and

J J

13] (i.e. X3j = x5j) and herd milking frequency, recorded as 2 vs. 3 or more times per

day (i.e. 2X vs. 3+X), as the basis for cluster-level fixed effects on 7,, , Tu] and 11,2“

J J J

(i.e. X4k =x6k =x7k ). Both of these factors are common determinants of

management and performance in conventional dairy farms. For all sets of random effects

(i.e. ul, uz, m and v9] ), we specified herd as the common clustering factor. In
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addition, location parameters (i.e. [31, [12) for both traits included the fixed effects of

parity and calving season (Winter: December to February; Spring: March to May;

Summer: June to August; and Fall: September to November), as well as polynomial

functions of the covariate “days in milk” (i.e. 5th order Legendre polynomials for [31, as

reviewed by Schaeffer (2004), and linear and quadratic terms for [32 ). Specifications of

prior densities, convergence diagnostics and model choice criteria were as indicated for

the simulation study.

In comparing the two models with 0'3, = 0 (M0) versus 03%, > 0 (M1 ), neither

DIC (DICA = 1.7) nor pBF (loglo pBF = 0.35) provided sufficient evidence to reject

MO- Thus, we base our subsequent inference on the null model (M0 ), adopting

, .

(01.8): X3179 and assuming no significant variation between herds in the residual

subject-level association between traits.

Our inferential interest is focused on 78 = [ye,primiparous 7e,multiparous] and

'Yu = [7n 2X yu 3+ X] , where the element subscripts denote the levels of the

corresponding fixed effects factors. Table 2 summarizes posterior inference on 7e and

yu using posterior means, posterior standard deviations, 95% HPD and effective sample

size, the latter denoting the effective number of independent samples afier accounting for

autocorrelation in the MCMC samples (Sorensen et al., 1995).

At the subject-level, we determined no evidence for a difference in the between-trait

association among cows of first (primiparous) versus subsequent (multiparous) lactations
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as the 95% HPD on (7e,primiparous _7e,multiparous) included 0° Thus, we infer

upon the overall subject-level association between milk yield and pregnancy outcome to

. . . . _(e) n ' . _(e)
first postpartum 1nsemrnatron usrng (0 = 1/nZj=lX3j'Ye . The posterror mean ¢

was found to be 0.0021 with a 95% HPD of [0.0006, 0.0036] such that there is some

evidence of an overall positive residual association between the two traits. At the cluster-

level, the between-trait association differed with milking frequency practices, such that

the sterior mean for + was significantly more negative than that for
p0 7153 X yu,2X

(Table 2) as the 95% HPD on their mean difference (7“ 2X — yu 3+X) did not

include 0 (i.e., 95% HPD=[0.0038, 0.0302]). Therefore, it appeared that the cluster-level

+

association between the two outcomes was antagonistic for 3 X milking herds whereas

there was no significant between-trait association for 2X milking herds.

Figure 1 illustrates the posterior densities of Ae (Equation 13) or the residual

. . . . n '

subject-level assoc1atrons on the observed scale usmg p2 = l/nZj=1x21132 and

e] = 6e for each of the two parities (i.e., ke' = [1 0] for Ae,primipar0us and ke' = [0

1] for Ae,multiparous ), and the posterior densities for Au (Equation 14) or the cluster-

J

level associations on the observed scale using [12 = 1/n2’];le1152 and u] = 0",, for

each of the two milking frequencies (i.e., ku' = [l 0] for Au,2X and ku' = [0 l] for

A1634. X ). Recall then that Ae indicates the change in cow pregnancy rate per 0‘9 kg
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(posterior mean=7.6) of increased cow milk production whereas Au indicates the change

in herd pregnancy rate per 0",, kg (posterior mean=4.7) of increased herd milk

consistent with previously reported inference on (7e,primiparous — 7e,multiparous)

o __ .
whereas the 95/o HPD on (Au’z X Au,3+X] was [0.0086, 0.0526], agarn

consistent with the 95% HPD on [yu 2X — 7“ 3+XJ not including 0. Note, for

example, from Figure 1 that the density for Au,3+ X is strongly concentrated on -0.04.

This implies that as a herd’s milk production increases by one average cluster-level

standard deviation, namely 0",, = 4.7 kg, relative to an overall mean production

(posterior mean of ,ul = 40.8 kg), herd pregnancy rates drop by 4 percentual points

relative to a baseline herd fertility, namely (D(,u2)=34% pregnancy rate to first

postpartum insemination.

Overall, it appeared that within herds (residual subject-level), higher producing cows

were also more likely to become pregnant at first insemination regardless of parity. In

contrast, herds (random cluster-level) with greater milk yields had generally lower

+

pregnancy rates, but only if under a 3 X milking scheme. This antagonism was not

apparent amongst 2X milking herds, whereby the cluster-level association was estimated

as null based on the zero-overlapping 95% HPD for 7u 2X (Table 2). Thus, a

favorable subject (cow) level association was counteracted by a factor-level-specific
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random between-cluster antagonism, thus suggesting differing underlying mechanisms in

the between-trait association among herds and among cows.

For completeness, Web Table 1 summarizes posterior inference on (conditional)

variances.

8. Discussion

Motivated by a practice problem in animal agriculture, we propose a hierarchical

Bayesian extension that allows for mixed effects modeling of heterogeneous random

(cluster-level) and residual (subject-level) (co)variance matrices in the joint analysis of a

continuous and a binary distributed trait within a bivariate GLMM. Inferences based on

this model help understand the underlying mechaniSms that alter associations between

mixed outcomes on different levels (e.g. cluster, subject), especially where evidence

regarding the nature of these associations is contradictory. The proposed model is

implemented to investigate the nature of the production-reproduction association in dairy

cattle. Results indicate that the nature of the between-herd (cluster-level) association

differs across management practices (i.e. milking frequency) and across strata level (i.e.

cow versus herd). Disregarding this multifactorial-multidimensional heterogeneity could

lead to overly-generalized, even biased, conclusions on the association between

outcomes, which in turn, would be likely to have negative implications for optimizing

overall performance ofthe dairy business.

Our data application was not intended to be comprehensive; there are many other

potentially important covariates that may affect the production-reproduction association

in dairy cows, the investigation of which is forthcoming in future publications. For this
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purpose, a Bayesian model averaging approach to selecting important factors and

covariates (e.g. Chen and Dunson, 2003) would be a useful extension to our model. It

would also be of interest to incorporate random effects other than herd clusters into the

proposed model. A relevant candidate might be genetic effects since it appears that the

genetic correlation or association between traits may inherently depend upon other

factors (Tsuruta et al., 2009).

It has been realized that multivariate GLMM permit the sharing of information

between outcomes, thus sharpening inference on outcome-specific location parameters

when compared to univariate GLMM analysis (Riley et al., 2007). However, the

possibility that, for example, residual associations may be heterogeneous across clusters

(i.e. 0'3, > O) or depend upon treatment effects may require a modeling approach similar

to that proposed in this paper to ensure that the sharing of information between outcomes

is not distorted by the assumption of homogeneous associations. This consideration is

particularly relevant for meta-analyses, whereby the underlying assumption of

homogeneous (co)variances within studies (subject-level) and between studies (cluster-

level) is likely to be too restrictive.

A multivariate extension of the proposed GLMM would be very appealing to

simultaneously accommodate more than 2 mixed outcomes, with the necessary

identifiability restrictions for additional binary outcomes. Of particular interest might be

the application to joint analysis of continuous and binary longitudinal data. Additional

parsimonious constraints on the variance-covariance matrix may be required, particularly

with increasing dimensionality. Covariance structures such as those proposed in
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antedependence models may constitute a viable modeling option (Jaffrezic, Thompson

and Hill, 2003).

Our proposed model is based on a convenient and widely used data augmentation

technique for probit models (Albert and Chib, 1993) whereby the binary outcomes yz

are believed to be determined by corresponding underlying normally distributed variables

y; . Since yl and y; are then multivariate normal, this facilitates a Cholesky-type

reparameterization of the random cluster-level and residual subject-level (co)variance

matrices and the modeling approach that we previously developed for a bivariate

continuous model (Bello et al., 2010). Similarly, data augmentation equips our

methodology with the necessary flexibility to be easily extended to other mixed outcome

models, whereby observed non-Gaussian outcomes are also determined by (functions of)

underlying normally distributed random variables (McCulloch, 2008). In Web Appendix

A, we describe adjustments to the proposed methodology that enables ordered

categorical, count and censored responses to be modeled for heterogeneous covariances,

conditional upon a Gaussian outcome. Furthermore, our implementation of data

augmentation is readily extendable to recover information lost with missing observations

for yz, if needed (Najita, Li and Catalano, 2009; Tanner, 1993). Conversely, if the

prevalence of missing data were extensive, parameter identifiability may become a

greater issue with a model that has an extensive hierarchical specification such as that

proposed in this paper.

As discussed by Bello et al. (2010), our bivariate specification is not invariant to

order. For example, we could have alternatively developed a model where the continuous

outcome (now yz) was specified to be conditioned upon the binary outcome (now yl)
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similar to O’Malley et al. (2003). The approach would be then to augment the likelihood

with an underlying normally distributed variable y? that predetermines yl;

furthermore, we would restrict 0'2 - =1 Vj rather than 0'

31]

2 Of 0'2. .. For our

92H] 32]

particular application, the bivariate continuous-binary model was the logical choice as the

continuous production outcome precedes, and hence is believed to be somewhat causal

to, the binary pregnancy event.

Finally, the parameters 'Ye , 7,, , and 0'3, arguably constitute the deepest levels of the

model hierarchy, such that the data is least informative (i.e. little inferential power) on

these parameters, particularly if the analysis comprises binary data. Undoubtedly,

relatively large size datasets will be required for inference on heterogeneous covariances

between mixed outcomes based on the proposed bivariate GLMM. While we did not

intend to make recommendations on sample size and statistical power, the large size (i.e.,

thousands of observations) of the simulated datasets was intended to be representative of

datasets commonly encountered in large field studies using extensively parameterized

hierarchical models (Bello et al., 2010; O'Malley et al., 2003; Tsuruta et al., 2009). We

did intend, however, to use non-informative priors on all “fixed effects” parameters in

this study to investigate robustness to prior specifications for large datasets and found

that coverage probabilities of 95% HPD closely followed nominal coverage across

plausible simulation scenarios. Nevertheless, we would routinely recommend the use of

informative or reference priors (Natarajan and Kass, 2000) in most applications.

9. Conclusions
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We present a Bayesian approach to modeling heterogeneous residual subject-level and

random cluster-level (co)variances between a continuous and a binary outcome in the

context of a bivariate GLMM. This methodology can be readily applied to the study of

complex biological phenomena in many subject-matter applications for which there may

be two or more mixed outcomes and one might suspect heterogeneity in the association

between the outcomes as a function of covariates and/or random cluster effects. The

proposed model constitutes an enhancement in current statistical methodology in that it

introduces a new dimension of heterogeneity, namely that of covariances among

multivariate mixed outcomes.
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Table 3.2. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% highest

posterior density (HPD) intervals and effective sample size (ESS) of MCMC samples on

residual subject level and random cluster level association parameters (namely, 79 and

7,, expressed in the underlying liability scale, respectively) between milk yield and

st . . . . . . .

pregnancy outcome at l postpartum 1nsem1nat1on 1n Mrchrgan darry cows.

 

 

 

Regression parameters '1 PMEAN PSD 95% HPD ESS

724,2 x . liability scale/kg 0.0068 0.0043 [0.0152, 0.0017] 4000

714,341 X . liability scale/k8 0.0239 0.0048 [0.0332, 0.0141] 1939

7e,primiparous’ liability scale/k8 0.0028 0.0014 [0.0002, 0.0055] 20172

7e,multipamus. liability scale/kg 0.0015 0.0009 [0.0003, 0.0033] 18151

 

'17u,2X and 7a 3+ X are the random cluster level association parameters between milk

yield and pregnancy outcome at first postpartum insemination for herds with twice a day
+

(2X) and three times a day (or greater; 3 X) milking frequency, respectively.

'1' 7e,primipar0us and 7e,multiparous are the residual subject level association

parameters between milk yield and pregnancy outcome at first postpartum insemination

for cows in their first (primiparous) or subsequent (multiparous) lactation, respectively.
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Figure 3.1: Posterior density of the differential on the conditional probability of

pregnancy success to first postpartum insemination. The left panel illustrates the posterior

density for the residual subject level differential, namely

Ae =(I)(p2 +(ke'7e)el)-(D(,u2), for cows in their first (primiparous) or

subsequent (multiparous) lactation. The right panel depicts the posterior density for the

random cluster level differential, namely Au =(D(,uz +(k,,'7,,)u1)—<D(y2), for

herds with twice a day (2X) and three times a day (or greater; 3+X) milking frequency.

Baseline values of #2 , e] and ul used in the figures were obtained as described in

Section 5 ofthe text.
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Web Figure 3.1. Trace plots for residual subject-level and random cluster-level

association parameters, namely 7e =[7el 732]and 7,, =[yul 7,,2] respectively,

evaluated at each of the two levels of the simulated fixed effect factor. These trace plots

correspond to one selected simulated dataset and are provided to illustrate mixing of the

Markov Chain Monte Carlo while sampling from the posterior density of the

corresponding parameter. Chain convergence did not appear to be an issue for any of

these parameters.
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Web Figure 3.2. Trace plots for residual subject-level and random cluster-level

(conditional) variances evaluated at each of the two levels of the simulated fixed effect

factor, namely Te] =[2'eb1 7e1,2]’ 1“,,1 =[1'ub1 ru1,2]and

1,,2“ =[71‘2l1’1 23,2“,2]. These trace plots correspond to one selected simulated

dataset and are provided to illustrate mixing of the Markov Chain Monte Carlo while

sampling from the posterior density of the corresponding parameter. Chain convergence

did not appear to be an issue for any of these parameters.
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Web Figure 3.3. Trace plots for the underlying normally distributed variables ygj

corresponding to the binary response yzj for subjects j=1 andj=200. These trace plots

correspond to one selected simulated dataset and are provided to illustrate mixing of the

Markov Chain Monte Carlo while sampling from the posterior density of the

corresponding underlying normally distributed variables. Chain convergence did not

appear to be an issue for either scenario.
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Web Figure 3.4. Trace plots for the parameter defining cluster variability for the residual

subject-level association between traits, namely 0'3, , corresponding to one simulated

dataset in each of the scenarios considered for 03, > O , namely 0%, = 0.01, 0%, = 0.1,

0%, =1 and 0%, =10. Plots are provided to illustrate Markov Chain Monte Carlo

mixing and sampling from the posterior density of 0%,. The plots do not provide

indication of convergence problems for any of the scenarios considered.
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Web Table 3.1. Posterior mean (PMEAN), posterior standard deviation (PSD), 95%

highest posterior density (HPD) intervals and effective sample size (ESS) of MCMC

samples for residual subject-level and random cluster-level conditional variances for milk

yield and pregnancy outcome at 1St postpartum insemination in Michigan dairy cows. As

noted in the table, the residual (cow) level variability in milk yield was greater for

multiparous compared to primiparous cows, whereas the random (herd) level variability

for milk yield and for pregnancy outcome did not differ between herds with a 3 X versus

a 2X milking frequency.

 

 

 

 

 

 

Variance Components 1' PMEAN PSD 95% HPD ESS

Milk yield Orgz)

031,2), 19.8 " 2.1 [16.1, 24.1] 22780

0:34.), ~ ._ 27.2 " 5.0 [18.2, 37.1] 5229

31,primiparous 40.1 a 1.0 [38.2, 42.1] 2956

0821,multi1)arous 76.1 b 1.8 [72.5, 79.6] 2281

0m, 0.39 0.03 [0.34, 0.44] 5429

Pregnancy outcome (underlying normal scale)

032“,” 0.048 " 0.008 [0.034, 0.063] 8 305

0:2”,34. x 0.029 " 0.007 [0.016, 0.042] 2 926

 

C”) and (a’b) Letters indicate significant differences (two-tailed Bayesian P-

value<0.0001) between management practices within the random (herd) level and

residual (cow) level factors, respectively, for each trait.

2
10;,2X=exp([1 0]log(r,,,)) and aui,3+X=exp([0 1]log(r,,i)) are the random

(herd) level conditional variances for milk yield (i = l) and pregnancy outcome (i = 2|1)
+

for herds with twice a day (2X) and three times a day (or greater; 3 X) milking

frequency, respectively.

0e21,primiparous = exp([1 0]log(1rel )) and a; ,mumpamus = exp([0 1]log(rel )) are the

residual (cow) level variances for milk yield for cows in their first (primiparous) or

subsequent (multiparous) lactation, respectively.

1 C I O O O I .

one] = -———2— 1s the e-level coefficrent of var1atron for condrtronal variances between

7761 _—

clusters.
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Web Appendix A:

In this appendix, we present extensions of the proposed bivariate GLMM to model

heterogeneous covariances between a Gaussian outcome and a non-Gaussian response

other than binary, namely ordered categorical, right censored and count Poisson data.

An ordered categorical response y2j can be easily implemented in the proposed

bivariate GLMM through data augmentation in a similar way to that described for a

binary response, whereby the outcome is determined by discretizing an underlying

Gaussian variable y;j , as proposed by Harville and Mee (1984) . That is, for an ordinal

trait with I=l,..., L 23 categories, y2j=l if 2'1_1< y;j 52'] where

—00 = 1'0 S 71 S .<_ TL—l S TL = 00 are threshold parameters that define boundaries

between categories. A priori, threshold parameters can be considered to be jointly

distributed as order statistics from a uniform distribution in the interval [10,11]]. The

posterior FCD of the threshold parameters can be shown to have independent uniform

. at at: —1

distributions of the form (m1n(y2 |y2 =l+1)—max(y2 |y2 =1» . As with the

binary case, issues of parameter identifiability require constraints on one threshold

parameter and on 0'2 , usually 2'1: 0 and 0'2 :1. Alternatively, 0'32“ can be

€le 92]]

explicitly modeled (rather than constrained) provided that an additional threshold, say

2'2 > 2'1, is fixed (Sorensen et al., 1995). In such case, it would also be possible to infer

heterogeneous 0822" with two or more categories (Kizilkaya and Tempelman, 2005). A

posteriori, the liabilities follow independent normal distributions truncated at the bin
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thresholds, as previously described for the binary case in Section 6. The remaining

parameters of the model have FCD identical to those described in the bivariate Gaussian

linear model (Bello et al., 2010).

Based on extensions from previous work by Sorensen et al. (1998), data augmentation

can also readily accommodate censored responses in the proposed bivariate GLMM. Let

the data on the 11” subject be (yz1352j), where 52j is a censoring indicator and y2j

represents the observed value of Y2j =min(Y;J-,C2j) such that Y;j is normally

distributed and C2j is the point of censoring. For observations for which ng > C2j ,

the response is considered censored ((32j = l) and an augmented variables y;j is

generated from a normal distribution with mean [x(l)J [32 +zj'u2 +¢§e)elj]and

2

variance 0'32“ = 0822 -[ 5.8) J 092] truncated on the left at the censoring pOint C2j-

The augmented variables y;j are then fed into the bivariate GLMM, as presented in

Equation (1). The remaining model parameters have identical FCD to the bivariate

Gaussian linear model (Bello et al., 2010).

For an outcome 3’2} assumed to follow a Poisson distribution with parameter

121' >0, we implement the lognorrnal link function as per Foulley et a1. (1987),

whereby we define the auxiliary variable 7721- = ln(/12j). For the proposed bivariate
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GLMM, we consider that a priori 7721' ~ N{11(2)}. '02 + zj [“2 + $599,j’ 0%" J. The

FCD for the auxiliary variable 7721- on the Poisson outcome y2j , conditional on the data

and all other model parameters (labeled ELSE in the equation below), has the form:

 f(7;2,- ] ELSE) or:

 

321' K ("21' _ x(2)J’ 1’2 _ zj 'u2 _ (03.6%].Wexp(-exp(772j ))(exp(7721)) exp "
03',

K

J
  

(A1)

This density is not immediately recognizable; thus, generation of 7721- would require

a Metropolis-Hastings (MH) step. An independence chains MH implementation would

appear appropriate since the left part of Equation (A1) resembles the kernel of a normal

distribution. As an alternative, a random walk MH would also be feasible. Thus

generated, the auxiliary variables 7721- can then be used in place of y;j in the bivariate

GLMM presented in Equation (1). The remaining model parameters can be shown to

have identical FCD to those in the bivariate Gaussian linear model (Bello et al., 2010), so

that the remaining MCMC implementation is straightforward.
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CHAPTER 4

Cows and Herds Constitute Distinct Hierarchical Levels of the Association

between Milk Yield and Pregnancy Outcome in Dairy Cows

ABSTRACT

In this study, we investigate heterogeneity in the association between milk yield

(MY) and pregnancy outcome (P0) in dairy cows, formally accounting for the within-

herd (i.e. cow-level) and between-herd (i.e. herd-level) hierarchical components of the

association. Our ultimate purpose is to provide a general fiamework for insight on the

ongoing controversy on the production-reproduction relationship. We implement our

recently developed bivariate hierarchical generalized linear mixed model (Chapter 3) to

infer upon heterogeneity in the covariances between MY and PO focusing on these

performance outcomes at first postpartum insemination. We also evaluate management

practices and herd attributes that may contribute to explain such association

heterogeneity. Data consisted of 89,105 DHIA cow records from 379 dairy herds in

Michigan. Our hierarchical model naturally accounts for cows and herds as separate

levels of the association between MY and P0. The model also considers means,

variances and covariances between MY and PO as separate functions of various

management practices and herd attributes. Final inferences were based on a best-fitting

model selected using Deviance Information Criterion. Within herds, MY and PO were

apparently not linked to each other, as the association parameter did not significantly

depart from zero across cows in a herd. Among herds, the relationship between MY and

PO was antagonistic and dependent on management practices that determine a baseline
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level of fertility for the herd. Hence, herds with greater milk yields at the time of first

insemination had impaired pregnancy rates, but within such herds, cows with higher daily

yields were not any more or less likely to become pregnant than lower yielding

herdmates. Michigan counties differed in the magnitude of the herd-level association,

thus indicating that regional environmental conditions or management practices may

partially alleviate the herd-level antagonism between MY and P0. In summary, the

nature of the association between MY and P0 in dairy cows is highly heterogeneous due

to the hierarchical duality of cow and herd components and to management factors

potentially involved in such heterogeneity. Hence, we conclude that the production-

reproduction link is not a one-size-fits-all concept. Further research will be required to

delineate scenarios conducive to jointly optimize MY and PO performance of dairy cows

in commercial farms during first postpartum insemination.

Keyword: dairy cow, herd, milk yield, pregnancy outcome, management.

INTRODUCTION

The nature of the association between milk yield and fertility in dairy cows

remains one of the most controversial issues in dairy production systems. The practical

implications of this controversy are critical to the efficiency of dairy cow performance

and ultimately to sustainability of the dairy business. Indeed, the initiation and renewal of

a lactation cycle is determined by the ability of a cow to become pregnant and calve

repeatedly during her lifetime, thereby defining a closely intertwined and dynamic

relationship between milk production and reproduction. Many reports indicate a

progressing antagonism between milk yield and reproductive traits, attributed in part to a
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prolonged unilateral focus on maximizing milk yield while failing to give proper

attention to fertility (Butler and Smith, 1989, Hare et al., 2006, Lucy, 2001). However,

evidence is currently mounting that disputes the perception of a general antagonistic link

and rather supports either no relationship or favorable associations between milk

production and dairy reproduction (Emanuelson and Oltenacu, 1998, Leblanc, 2010,

Lopez-Gatius et al., 2006). A comprehensive assessment is urgently required to clarify

the production-reproduction controversy and help delineate management strategies that

optimize both aspects of dairy cow performance.

Understanding the shortcoming of the methodologies used this far to assess the

production-reproduction association may help explain the current controversy. First, a

general under-appreciation of cows and herds as separate units of performance is a

common deficiency in many studies that hinders appropriate recognition of sources of

variation (i.e. cow-level and herd-level, respectively). Furthermore, herds have been

historically incorporated into statistical models as fixed effects as opposed to random

blocking factors. Failure to model herds as random blocks narrows the scope of inference

by limiting the breadth of inquiry (Tempelman, 2010). Indeed, ignoring the presence of

hierarchical sources of random variation has been recognized as “one of the most

common and serious mistakes in statistical analysis of data” (Littell et al., 2002) and can

lead to severely biased parameter estimates that fail to detect significant sources of

variation (St-Pierre, 2001). Herds, along with the cows managed within those herds,

represent hierarchical components of the production-reproduction association, each

contributing to overall variation in distinctive manners not necessarily alike (Chapter 2).
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An additional source of confusion in the production-reproduction controversy is

the choice of statistical analysis. Single-trait analyses, despite their high prevalence, are

inappropriate to investigate associations between two or more performance outcomes that

are ofjoint interest, as is the case with milk yield and reproduction. The reason for this is

the underlying assumption that whichever outcome is used as an explanatory variable is

not influenced by other covariates in the model. This is certainly a highly questionable

assumption given the outcome nature of the responses of interest. Instead, the

infrequently-implemented multiple-trait analysis is appropriate in jointly evaluating

multiple outcomes, whereby the magnitude of relationship between these outcomes can

be explicitly captured through covariance parameters.

In this manuscript, we formally address the aforementioned limitations by means

of a recently developed bivariate generalized hierarchical modeling framework that

enables inference on heterogeneous covariances (Chapter 3). Development of this

statistical methodology makes the study herein particularly timely to evaluate

heterogeneous associations in the production-reproduction controversy. In this study, we

investigate the cow-level (i.e. within-herd) and herd-level (i.e. between-herd) associations

between daily milk yield (MY) and pregnancy outcome (P0) in Michigan dairy cows.

We also assessed management practices and herd attributes as potential sources of

heterogeneity on these associations. Our focus was on performance at first postpartum

insemination, as this point in lactation is a unique opportunity to evaluate the production-

reproduction association when daily yield is at or near maximum and fertility is first

tested.
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MATERIALS AND METHODS

Data Description

Data files for test-day records for Michigan dairy farms enrolled in the Dairy

Herd Improvement program were obtained from Dairy Records Management Systems

(DHIA; Raleigh, NC). Lactation records from first, second and third parity Holstein

cows that calved between January 2005 and December 2006 were extracted. Herds were

required to have at least 25 total cows per year and at least one breeding reported for a

minimum of 50% of the herd each year. Only first postpartum inseminations occurring

between 30 and 200 days after calving were considered for analysis. To ensure quality of

milk yield data, yield records were required for the test-dates immediately prior and

immediately after the recorded date of first insemination. The interval between these test-

dates was required to be no greater than 35 days. All lactation records used in this study

were required to have complete records on cow and herd identification as well as for the

response variables of interest and potentially important explanatory variables, as

described later. After editing, the total number of lactation records available for analysis

was 89,105 corresponding to 74,745 cows from 379 dairy herds.

Dependent variables considered in this study were y1 = daily MY at first

postpartum insemination, expressed in kg; and y; = P0 to first postpartum insemination,

expressed in a binary scale (i.e. pregnant/not pregnant). Here, MY at first insemination

was computed as a linear interpolation between yield records on the test-date

immediately before and the test-date immediately after first postpartum insemination for

a given lactation. A cow was considered pregnant to first postpartum insemination if no

subsequent inseminations were recorded on that lactation and first insemination was
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followed by calving after a gestation length within the range of 280 d i 3 SD. The

estimated standard deviation for gestation length, SD = «592 = 6.3 d, was computed as

the square root of the corresponding estimated phenotypic variance (Jamrozik et al.,

2005). Records for second or later postpartum inseminations or a gestation length greater

than specified above, were considered an indication of failure to establish a pregnancy to

first postpartum insemination. If gestation length was shorter than the lower threshold

specified above, the record was considered technically flawed (i.e., date recording error)

and excluded from analysis. For cows recorded to have only one postpartum

insemination, and that were removed from the herd for non-reproductive reasons before

their expected calving date, information on transrectal pregnancy diagnosis (whenever

available) was used to assess pregnancy outcome to first insemination. First postpartum

insemination is the earliest opportunity to establish a pregnancy after the voluntary

waiting period. Therefore, success to first insemination could be considered a suitable

indicator of fertility. Alternatively, with increased number of postpartum inseminations,

the subset of cows that remain eligible for breeding may have a higher prevalence of

reproductive, health or nutritional problems, which may in turn confound the evaluation

of fertility and its association with milk yield. Furthermore, in standard management

conditions, first postpartum insemination is expected to occur in close proximity to the

highest daily MY records of a lactation. These circumstances render first postpartum

insemination as a particularly relevant point in time to examine the nature of the

association between milk production and fertility in dairy cows. Similarly, we perceive

considerable potential for impact of management practices and herd issues around this

time postpartum.
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Four calving seasons were defined based on the month of calving when lactation

was initiated: Fall, from September through November; Winter, from December through

February; Spring, from March through May; and Summer, from June through August.

Information on selected management practices and herd descriptors was also gathered

from the DHIA dataset as potential explanatory variables. These included herd milking

fi'equency (i.e. 2 times per day versus 3 or more times per day), herd involvement with

bovine somatotropin (bST) (i.e. non-users, having 0% of the herd enrolled; intermediate

users, with >0-50% of the herd enrolled; and committed users, with 250% of the herd

enrolled), individual cow supplementation with bST during a lactation (i.e. yes or no),

herd size (expressed on the log base 10 scale and as a deviation from its mean) and herd

size expansion (expressed as the percentage change in herd size from the preceding year).

In addition, the use of synchronized breeding was considered, being defined on a herd-

year basis using the adjusted Chi-square categorization method proposed by Miller et a1.

(2007), whereby herds were classified as either having synchronized breeding or not.

Deciding which of these factors were to be incorporated as explanatory variables,

and at what level of the hierarchical model, was based on a sequential model selection

approach described below.

Animal Care and Use Committee approval was not obtained for this study

because the data were obtained from an existing performance records database.

Model specification andposterior inference

We specify the statistical model for analysis using the bivariate generalized

hierarchical Bayesian approach recently developed by our research group (Chapter 3 in

this dissertation). For this study, cow-specific records capture the residual subject level of
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the hierarchy, while herd-year clusters or contemporary groups represent the random

cluster level. Take ylj to be the observed MY and yzj to be the observed PO on subject

j; j=l,...,n. As previously proposed (Albert and Chib, 1993, Sorensen and Gianola,

2002), we assume yzj to be determined by an underlying normally distributed latent

variable y3, such that yzj = I (y;j > 0) for I(.) representing the indicator function. This

is equivalent to specifying a probit link in a generalized linear mixed model (GLMM) for

yzj. The underlying bivariate GLMM, as per Chapter 3 of this dissertation, is then

[J41] [mj+e,j] [#11] xj(1)Bl+zjul

, = where = , , .

yzJ :qu + e2j #2} X1(2)02 + Zjllz

(1)

Here, [31 and [32 are p] x 1 and p2 x 1, respectively, vectors of selected classical fixed

effects whereas u] and uz are each q x 1 vectors of classical random effects of herd-year

with subscripts denoting the outcome (1 for MY, 2 for P0). The known incidence

J J J

vectors xJ-(l) , 111(2) and 2, connect these effects to their respective responses and are

specific to cow j. Similarly, e],- and e2, are residual effects on the corresponding

response variables specific to thef” subject (cow). Each pair ofrandom effects specific to

the kth herd-year cluster, namely uJ, =[u1k u2k]' , and each pair of residual effects

specific to the fh cow subject, namely ej =[e1j ezj]' , are mutually independent with

null means and (co)variances defined by:
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0' 0' . 0' . 0' -

u u k 1412" 91, e121

Gk =var[ul’k]= ' 2 and RJ- =varl: 1]: e” 2 (2)

2,k e ' .

Here 031k and 032k are the random effects (i.e. herd-level) variances in MY and PO,

respectively, and a“,2k is the corresponding random effects covariance between the two

traits, specific to the km herd. Similarly, 0'2 . and 0'e” 2 . represent the residual (i.e. cow-

92]

level) variances for MY and PO, respectively, with 0'91 21' being the corresponding

residual covariance between the outcomes for thef" cow.

Following the methodological developments proposed in Chapter 3 of this

dissertation, the bivariate posterior joint density of the complete data (as implied by the

GLMM presented in Equation (1)) is factorized into a marginal component and a

conditional component; this is equivalently to specifying a square-root free Cholesky

decomposition on RJ- and Gk (Bello et al., 2010; Chapter 1) that results in the following

 

   

    

reparameterization:

_ 2 (e) 2 - _ 2 (u) 2 _

”e.j (”1' 0e]j 0qu f’k 0:4,}:

R ' = and G =
J (8) 2 k 2

2 2 (e) 2 (u) 2 2 (u) 2
¢j 08'} ezuj +(¢J ) aelj (0k 0'qu duzuk +(¢k Guilt-J

(3)

0' .

Here, gag-e) = —e‘2—21— represents a residual cow-specific regression coefficient for

0'.

9U

92.} on e,,,- such that e2j = (PS-6&1}. +9211 ,- where e2“,- ~ N(0,a§2“j) is conditionally
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independent of e1, Then, U§2|1j=0e2j_(¢(?))2020qj represents the cow-level variance

of ygj conditional on y” and is constrained to be equal to 1 for all cows j=l,...n, to

ensure identifiability of the remaining GLMM parameters, as described in Chapter 3.

Similarly,¢r(uu) =——krepresents a random herd-specific regression coefficient of u2k

0'2
ulk

on “1k , such that u2k =0?)qu +u211k where "lek ~ N[0,0'32l1k) is conditionally

_02
independent of u”[ and0' “2k

2

“2“k _[¢£u)) 031k is the herd-level variance of ”2k

conditional on ulk- Note that the regression coefficients 05-6) and 0““) describe the

cow- and herd-level components of the association between MY and PO to first

postpartum insemination. These parameters, along with the logarithms of 062,”. , 0'31, and

0'2 k , are completely unconstrained without compromising positive semi-definiteness of

"211

Rj and Gk . Therefore, we model heterogeneity of associations between MY and PO by

specifying a liner mixed model on 05.8) and (0,?) , as follows:

(0(-ee)-= x + z, 'm (4)
j(3)7e e

tel") = Xk(4)'tu + kau (5)

Here, 78 and 7,, represent p3x 1 and p4x 1, respectively, vectors of unknown fixed

effects with corresponding known incidence row vectors x'J-(3) and x'k(4); m, represents
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a q x 1 vector of unknown random herd-year specific effects on the cow-level association

such that me ~ N (0,I0',ie) with associated known incidence row vector z}. In turn, m,,

represents a r x 1 vector of unknown random county-specific effects such that

m,, ~ N[0,1033% ) , with w}, being the corresponding known row incidence vector for

herd k. We borrow the terms “fixed effects” and “random effects” from the classical

linear mixed effects model fi'amework, whereby “fixed effects” refer to the effects of

systematic management factors that can be subsequently inferred upon in other studies

and “random effects” pertains to factors of potentially exchangeable effects that can be

characterized by a distribution (Robinson, 1991).

We also model heterogeneity of variances (i.e. 02 o'2 k and 0'2 k) as separate

611' ’ ”1 "211

functions of fixed and random effects (Foulley et al., 1990) using the logarithmic link

function:

1640311.) = {1(5) log(1'el )+z'j log(ve] ), (6)

1646,31,) = ‘lt(6) 10g(1.',,l )+ w',,1og(v,,l ), and (7)

log[0'32"k) = x',(,) log(r,,2" )+ w}, log(v,,2l1 ). (8)

Here Te, , 1.3,] and rum represent p5x 1, p6x 1 and p7x 1 vectors of unknown fixed

effects with 11:,(5), x'k(6) and x'k(7) being the corresponding known incidence vector.

Furthermore, Ve represents a q x 1 vector of unknown random herd-year-specific
1

effects, each specified by independent inverted gamma priors
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V311 I rye] ~ IG(ne] ,nel — l) as in Chapter 3, with 2', being the corresponding known

incidence vector. In turn, Va, and v represent r x 1 vectors of unknown random
”2“

county-specific effects on the herd-level variances, each specified with independent

inverted-gamma priors as vu1k m,,] ~ IG(77,,1,77,,1 -1) and

v"2|1k Inuzu ~ [C(nuzu ’77“2|l — I) , with known incidence vector w'k. As anticipated,

the constraint 0'2 . = 1 V j needs to be imposed to ensure parameter identifiability.

92]”

At this point, our proposed bivariate GLMM accommodates 7 submodels} that

specify heterogeneity at different hierarchical levels; namely Equation (1) defines 2 linear

models on location parameters, one per outcome of interest; Equations (4) and (5) each

specify a linear model on the cow-level and herd-level associations, respectively,

between MY and PO; and Equations (6), (7) and (8) define a total of 3 linear mixed

model specifications on conditional variances, one at the cow-level and 2 at the herd-

level.

Prior specifications were the same as those used for the simulation study

described in Chapter 3 of this dissertation. Briefly, flat unbounded priors were specified

on 73, 0'28, 7“, 0'2 , as well as for [1,, [52 and rm mu Tu, and 13,2“ . For each herd-
el 9

specific pair of elements from (u], uz), we specified an independent normal prior density

with null mean and variance-covariance matrix C]. Also, we adopted me ~ N(0.10”; )
e

Vu, and vu2|1 , we specified inverse gamma priors withand m,, ~ N(0,I0';u). For ve] ,
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shape and scale parameters (77,31 ,7761 —l), (”“1’77141 —1) and (77,,2“ ,nuzu —1), respectively.

In turn, each n, is characterized by a vague, though proper, prior density given by

77, oc(1+771 )—2; for 77, >0 and l=e,,u,,u2ll (Kizilkaya and Tempelman, 2005).

Furthermore, we imposed standard linear model restrictions on elements of the “fixed”

effects (3;, [32, 7e , 7,, , Te, , Tu, and rum ) to ensure identifiability of the parameters,

as per Bello et al. (2010; Chapter 1)

For the final selected model (see later), we ran the MCMC chain for 5,000 bum-in

cycles followed by 280,000 iterations that were saved for inference. MCMC convergence

and sampling diagnostics were monitored graphically using trace plots and

autocorrelation plots, and also following Raftery and Lewis (1992). In addition, we

report the effective sample size (ESS) as a measure of the number of effectively

independent samples or Monte Carlo error amongst the 280,000 dependent MCMC

samples (Sorensen et al., 1995).

We summarize posterior densities for each parameter of interest using posterior

means, posterior standard deviations and the 95% highest posterior density intervals

(HPD). For any comparison of interest between two parameters, say generically I91 and

92, we also report the Bayesian P-value defined as: P-value

=2min(Pr(01 -62 2 0 | y),Pr(01 —62 < 0 | y)). For parameters 7e and 7,, , the null

hypothesis evaluates the difference between factor levels against a contrast null value that

is equal to zero. In turn, for 1'61 , 1,,1 and rum , the null hypothesis evaluates the ratio

between factor levels against a contrast null value equal to one.
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Model selection

Competing models were compared using the Deviance Information Criteria (DIC)

(Spiegelhalter et al., 2002) as an indicator of model fit. Smaller values of DIC are

indicative of improved fit, and generally, DIC differences of 7 or greater are believed to

indicate a decisive difference in model fit (Spiegelhalter et al., 2002). Table 1 lists the

systematic fixed effects factors and covariates (i.e., management practices and herd

attributes) that were considered for inclusion into the cow-level and herd-level of the

hierarchical linear model. As indicated in Equations (4) and (6), the random effect of

herd-year cluster was evaluated as a source of variability in cow-level (co)variances;

similarly, random county-specific effects were considered in the modeling of herd-level

(co)variances, as per Equations (5), (7) and (8).

The classical fixed effect factors for modeling location parameters [3] and [32

always included the effects of parity, calving season and year; in addition, [31 included

Legendre polynomials of order 5 on days in milk and [32 included linear and quadratic

polynomial function of days in milk. These effects were not ofprimary inferential interest

in themselves, thus were not subjected to model selection. That is, we preferred an

overspecified model for Equation (1) to provide robust inference for fixed and random

effects in the 5 other “mixed effects” submodels. That is, our primary objective was to

characterize sources of heterogeneity on the associations between MY and PO (as per

Equations (4) and (5)) as well as on their variability (as per Equations (6), (7) and (8)).

We implemented DIC-based model selection in a forward stepwise manner, such

that each factor and covariate was evaluated one at a time for model inclusion based on
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their contribution to model fit, as described in Chapter 2 of this dissertation. We first

selected univariate best-fitting models, one for each of MY and PO. For MY, selection

for fixed effects factors influencing the cow-level variance in Equation (6) and the herd-

level variance in Equation (7) consisted of four steps, as depicted in Table 2. For PO,

selection of fixed and random effects was restricted to the herd-level variance due to

identifiability constraints on the cow-level variance, as previously explained (i.e.

0'2 . =1 for all 1). On the herd-level variance, none of the factors and covariates in

$qu

Table l were identified to improve DIC-based model fit, thereby rendering a final

univariate model for P0 with homogeneous between-herd variance for all k herds (i.e.

2 2
0 = 0 .

1420* “211 )

The univariate models thus selected were then connected as a null bivariate model

to further investigate the cow-level and herd-level associations between MY and PO as

per Equations (4) and (5). Table 3 provides step-by-step details and final outcomes on the

selection of fixed effects and random explanatory factors on the cow-level and herd-level

regression coefficients. Our inference on heterogeneity of reparameterized covariances

should be strengthened by our sequential approach to model selection since these

inferences are already based on important sources of heterogeneity of variances in

Equations (6), (7) and (8).

RESULTS AND DISCUSSION

Associations between Milk Yield and Pregnancy Outcome at First Postpartum

Insemination.
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Steps of model selection on cow-level and herd-level regression coefficients

describing the association between MY and P0 are shown in Table 3. None of the fixed

effects listed in Table 1 were recognized by DIC-based model selection as sources of

heterogeneity on the cow-level or on the herd-level association. Therefore, posterior

inference is based on overall means for each regression coefficients, namely 05-8) = 0(e)

for allj, and or?) = 0(a) for all k.

Posterior inference on the cow-level and herd-level associations between MY and

PO, expressed in the underlying liability scale, is shown in Table 4. Within herds, cows

showed no significant association between MY and PO at first postpartum insemination,

as indicated by a 95% HPD on (0(e) that overlapped with zero. Thus, there was no

evidence that cows with higher daily yields were more or less likely to become pregnant

to first insemination than lower yielding herdmates. Conversely, the herd-level regression

coefficient indicated evidence for an overall antagonism between herd milk yield and

herd fertility, based on negative values of the lower and upper boundaries of the 95%

HPD on (”(u) (i.e. [-0.017, -0.005]). This suggests that, on average, herds with greater

daily milk yields had impaired pregnancy rates to first postpartum insemination. The

cow-herd duality of the association between MY and fertility may be indicative of

different underlying mechanisms at each dimension of performance, as supported by

previous work from our group (Chapter 2 of this dissertation). Indeed, physiological

mechanisms in the cow may not necessarily align with the workings of the managerial

business unit (i.e. herd) within which cows are handled.
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In the previous paragraph, we summarized a conceptual interpretation of (0(8)

and (00‘) in their respective liability scales. In turn, interpreting these parameters in a

probability-of-pregnancy scale is likely to be more meaningful from an application

perspective. However, the probit link function implemented in Equation (1) hinders a

straightforward interpretation of the regression coefficients in the observed probability

scale. As proposed in Chapter 3, we translate the herd-level association parameter (i.e.

(0(u)) into an expected herd-level differential in pregnancy rates, namely

A, = (1)012 + (000111) —- 001,), whereby A, is dependent upon a baseline herd fertility,

expressed as (D012). Figure 1A illustrates the herd-level differential pregnancy rate Au

at the posterior mean for 00‘) (as per Table 4) and evaluated over a grid of plausible

values of baseline herd fertility <D(,uz) and plausible relative herd milk yields u]. Note

that these dependencies introduce heterogeneity on the probability-scaled Au despite

homogeneous 0(a) on the liability scale. Also apparent from Figure 1A is the non-

proportional nature of the probit link function, which yields a symmetric curvature of the

regression surface along the axis of baseline fertility. As a consequence, Au is maximum

(minimum) at a herd baseline fertility of 50% pregnancy rate to first postpartum

insemination for any herd with above (below) average daily milk yield and Au decreases

(increases) symmetrically as the herd baseline fertility departs from 50% pregnancy rate.

Figure 1B illustrates the two-dimensional association between Au and relative herd milk

Yields for arbitrarily selected values of herd baseline fertility, namely 10, 30 and 50%
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pregnancy rate to first postpartum insemination. Note that the association depicted in

Figure 1B is also non-linear, though the probit-induced curvature is much alleviated in

these circumstances. An examination of Figure 18 reveals that, overall, the herd-level

differential pregnancy rate Au decreased with increasing relative herd milk yield, thus

supporting an antagonism between MY and PO. However, this antagonism was most

pronounced (i.e. steeper rate of change) for herds with a baseline fertility of 50%

pregnancy rate and was partially curbed (i.e. relatively more moderate rate of change) as

baseline herd fertility departed from 50%. Days in milk at breeding are known to play a

role in determining baseline fertility, whereby conception rates rise as the first half of

lactation proceeds (Huang et al., 2009, Tsuruta et al., 2009). As a consequence,

management strategies that define timing of first postpartum insemination may be

partially responsible for the observed differences in intensity of the antagonism between

milk yield and fertility at first insemination. Furthermore, the correlation between test-

day milk yield and fertility traits is known to fluctuate during lactation (Berry et al., 2003,

Tsuruta et al., 2009). Hence, a decision on duration of the voluntary waiting period,

combined with synchronization strategies for high insemination rate soon thereafter, are

likely to determine herd baseline fertility and milk yield at first postpartum insemination.

As a result, the timing of these decisions may help explain heterogeneity in the

production-reproduction association as per the observed differences in rates of change in

herd pregnancy rate per kg of milk yield at first postpartum insemination.

Interestingly, the sign of the cow-level and herd-level association parameters

between milk yield and pregnancy outcome at first insemination indicate a type of

relationship that is contrary to that previously estimated between milk production and
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reproductive performance on a whole-lactation basis (Chapter 2). In that study, the

association between 305-d cumulative milk yield and calving interval was estimated to be

favorable at the herd-level but antagonistic at the cow-level. However, the discrepancy of

results should not be entirely surprising given that first insemination pregnancy rate and

milk yield indicate performance at a discrete and singular point in time, whereas 305-d

milk yield and calving interval represent cumulative appraisals over a much longer period

of time. Again, the mechanisms underlying the short term relationships between milk

yield and pregnancy outcome may not necessarily be the same as those involved in the

long term (i.e. entire lactation) association. If anything, these results indicate that the

relationship between milk production and reproductive performance of dairy cows is

even more complex than anticipated previously. Multiple and varied components appear

to contribute to the observed heterogeneity, including the dual cow-herd dimensions and

highly diverse and dynamic herd management scenarios evaluated over short or long-

tenn periods of time.

Regional Patterns in the Association between MYandP0.

Differences between Michigan counties were apparent in the magnitude of the

herd-level regression coefficient that describes the association between MY and fertility

of dairy cows among herds, as indicated in Table 3. The magnitude of this heterogeneity

2
between Michigan counties is quantified by the variance component 0m” , for which we

report a posterior inference summary (Table 4). Based on the Empirical Rule (Ott and

Longnecker, 2001) and using the posterior mean 1.3"‘10'4 (reproductive liability points
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per kg)2 as a point estimate for 0'31“ , one might anticipate a range of

i2-y/1.3't10'4 =0.0456 (reproductive liability points per kg milk yield) between the

most extreme county-specific effects. If we assume known 0'2 and multivariate normal

m,,

county-specific herd-level associations centered at its posterior mean of 0011, then

counties would be expected to have relationship parameters ranging from -0.034 to 0.012

reproductive liability points per kg increase in milk yield at first postpartum

insemination. The upper limit of this range being positive indicates that for a subset of

Michigan counties, herds with higher daily milk yields are also expected to have greater

pregnancy rates to first insemination, thus effectively counteracting the overall

relationship antagonism reported among herds. Specific sources of heterogeneity among

counties in the nature of the herd-level relationship between MY and P0 are unclear and

will require further investigation. In addition to typical environmental factors, such as

weather and soil conditions, it may be of interest to evaluate differences between counties

in the cultural legacy and profit priority of dairy farming in a given area.

Variability in Milk Yield at First Postpartum Insemination.

Table 5 summarizes the posterior inference on variance components for MY. At

the herd-level, the MY variance was 22.6i1.3 kgz, as estimated by the posterior mean

and posterior standard deviation. Within herds, multiple explanatory factors and

covariates were identified as potential sources of cow-level heteroskedasticity for MY. In

particular, MY at first insemination was ~89% more dispersed in multiparous compared

to primiparous herdmates (P—value<0.0001). Cow-level heteroskedasticity was also
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associated with calving season (P-value=0.005), whereby cows calved in the Summer

had the most homogeneous MY in contrast to cows calved in either Winter or Spring,

which had the most unstable yield responses. Fall calving was characterized by

intermediate variability in MY, relative to the aforementioned seasons. Furthermore, the

consistency between cows in milk yield performance was linked to herd size (P-

value<0.0001; Figure 2). As herd size increased by a factor of 10 (i.e. from 25 to 250,

from 250 to 2500), the variability in MY between cows increased by ~82%. Finally, the

consistency of cow MY at first postpartum insemination differed substantially among

herds. This herd-specific heterogeneity was quantified by the coefficient of variation

(CV) 0'v,e1 = , the posterior means of which indicated a CV of cow-level
1

777-772

variances for MY of approximately 29% (95% HPD = [0.27, 032]). Indeed, the posterior

means for cow-level variances in MY at first insemination for the most and least variable

herds, relative to a typically variable herd (=1), were 2.06 and 0.48, respectively. Hence,

the estimated ratio between extreme herds with the largest and the smallest herd-specific

relative variances was 4.3. The reasons for such differences between herds in the

consistency of their cow performance are not readily apparent and will require

investigation of additional features of management and herds that were beyond the scope

of the current study. However, the high magnitude of heterogeneity of variances suggests

the need to explicitly model heteroskedasticity in the analysis of dairy data, even if not of

direct interest to the research, in order to attain relevant inference.

Variability in Pregnancy Outcome to First Postpartum Insemination.
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Modeling of the conditional variability in P0 was limited to the herd-level

dimension due to identifiability constraints on the corresponding cow-level variance (i.e.

0'2 . =1 for all j), as required by the probit link implementation in Equation (1). The

8201

herd-level conditional variance on pregnancy outcome, expressed as a posterior mean in

the liability scale, was 0.047 (liability points)2 with 95% HPD = [0.039, 0.055]. The DIC

did not support any of the herd-level explanatory variables in Table l as potential sources

of herd-level heteroskedasticity.

CONCLUSIONS

This study provides evidence for strong heterogeneity in the nature and magnitude

of the association between milk yield and pregnancy outcome at first postpartum

insemination. A dual cow-herd dimension and various management factors are clearly

involved in such heterogeneity, thus substantiating the idea that the production-

reproduction link is not a one-size-fits-all concept. Indeed, herds do not necessarily

mimic the performance capacity ofthe dairy cow when looking jointly at milk production

and reproduction. As a result, it is essential that, in analyzing dairy data, cows and herds

are explicitly recognized as separate, though nested, sources of variation. Explicit

acknowledgement of the cow-herd duality is a key feature of hierarchical modeling,

which we thus recommend. Furthermore, our results indicate that management practices

may partially describe heterogeneity in the performance link between first insemination

milk yield and pregnancy outcome, such that it may be possible to elicit management

scenarios conducive to jointly optimizing milk production and reproductive performance

of dairy cows. Ultimately, the goal of this line of research is to elicit guidelines that dairy
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managers can implement to jointly optimize milk yield and reproductive efficiency of

dairy cows in commercial operations. Further research will be needed to provide further

insight on other practices of interest that were not considered in this study.
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Table 4.1. List of fixed effects (classification factors and linear regression on covariates)

evaluated as explanatory variables for heterogeneity of cow-level and herd-level (co)

variances on milk yield and pregnancy outcome to first postpartum insemination in

Michigan dairy cows.

Cow-level (co)variability

0 Days in milk at first postpartum insemination (days)

0 Parity (Primi- vs. Multiparous)

0 Calving season (Winter, Spring, Summer, Fall)

0 Year (2005, 2006)

o Milking frequency (2 vs 3+ times per day)

0 Individual cow treatment with bovine somatotropin during lactation (Yes/No)

0 Level of herd supplementation with bovine somatotropin (0%, >0 to 50% and

>50% of the herd)

0 Reproductive management practices: Use of synchronization strategies

(Yes/No)

0 Herd size (number of heads)

0 Herd expansion (% change in herd size from precedingyear)

 

 

Herd-level (co)variability

0 Calving season (Winter, Spring, Summer, Fall)

0 Year (2005, 2006)

o Milking frequency (2 vs 3+ times per day)

0 Level of herd supplementation with bovine somatotropin (0%, >0 to 50% and

>50% ofthe herd)

0 Reproductive management practices: Use of synchronization strategies

(Yes/No)

0 Herd size (number of heads)

0 Herd expansion (% change in herd size fi'om preceding year)
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Table 4.2. Sequential details of the forward model selection procedure implemented on

variance components for a univariate model on test-day milk yield at first postpartum

insemination of Michigan dairy cows. Selection of fixed and random effects into the

model was based on model fit as determined by Deviance Information Criteria (DIC).

 

 

 

 

DIC difference

. Relative to

Relative Model in
to Null .

Model Preceding

Factors and covariates entering the model: Step

Null Model, consisting of:

. Fixed effects on the mean, including parity, calving

season, year and Legendre polynomials of order 0

5 on days in milk, as per Table 1; and

. Random clustering effect of herd on the mean.

Step 1: Evaluation of fixed effects on the cow-level variance

1.1) Parity (Primi- vs. Multiparous) -3530 -3530

éflgfalvrng season (Winter, Spring, Summer, -3622 _92

1.3) Herd size (number of heads) -3678 -56

No additional effects entered the model

Step 2: Evaluation of random effects on the cow-level variance

2.1) Clustering effect of herd -6804 -3126

Step 3: Evaluation of fixed effects on the herd-level variance

No effects entered the model

Step 4: Evaluation of random effects on the herd-level variance

No effects entered the model
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Table 4.3. Sequential details of the forward model selection procedure implemented on

the Cholesky-reparameterized covariances (expressed as regression coefficients) between

milk yield and pregnancy outcome to first postpartum insemination in Michigan dairy

cows. Selection of fixed and random effects into the model was based on model fit as

determined by Deviance Information Criteria (DIC).

 

 

DIC difference

Relative Relative. to

Model in
to Null . .
Model Preceding

Factors and covariates entering the model: Step
 

Null Model, consisting of:

. Univariate model on milk yield at first postpartum

insemination, as per Table 2.

. Univariate model on pregnancy outcome to first

postpartum insemination, including systematic

effects on the mean (parity, calving season, year

and linear and quadratic polynomials on days in

milk), a random clustering effect of herd on the 0

mean, a homogeneous herd-level variance (as

per DIC-based model selection), and a cow-level

variance fixed at 1 for reasons of parameter

identifiability.

. Covariances between traits are modeled as

homogeneous and estimated accordingly.

 

Step 1: Evaluation of fixed effects on the cow-level regression coefficient

No effects entered the model
 

Step 2: Evaluation ofrandom effects on the cow-level regression coefficient

No effects entered the model

Step 3: Evaluation of fixed effects on the herd-level regression coefficient

 

 

No effects entered the model .

Step 4: Evaluation ofrandom effects on the herd-level regression coefficient

4.1) Clustering effect of county -7 -7
 

178



Table 4.4. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% highest

posterior density interval (HPD) and effective sample size (ESS) on cow-level and herd-

level reparameterized covariances (expressed as regression coefficients, namely,

07(6) , 0(a) and 0'3,“ , respectively) between milk yield and pregnancy outcome at first

postpartum insemination in Michigan dairy cows.

 

 

 

 

 

Regression coefficients PMEAN PSD HPD ESS

¢(e),1iability/ kg 0.5804 53410-4 [-2.1*10'4,1.9*10‘3] 104,360

,(u),1iabili,y/kg 0.011 0.003 [0.017, 0.005] 26,710

. . . 2 - -

03%,(llabllltykg) 1.3t104 9_4.,05 [1.0*108,3.1*104] 5,627

2
0m“ defines random county-specific heterogeneity on the herd-level regression

coefficients.
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Table 4.5. Posterior means (PMEAN), posterior standard deviations (PSD), 95% highest

posterior density intervals (HPD) and effective sample size (ESS) for cow-level and herd-

level variances for milk yield at first postpartum insemination in Michigan dairy cows.

 

 

 

Variance Components PMEAN PSD HPD ESS

Herd-Level Variance

Between Herds,kg2 22.6 1.3 [20.1,25.1] 241,167

 

Cow-level variance

 

 

 
 

 

 

Parity

Prinriparous, kg2 44.8 a 0.8 [43.2, 46.4] 6,290

Multiparous,kg2 34.3" 1.5 181.9. 87.71 5.398

Season

Winter, kg2 64.5 a 1.2 [62.1, 66.9] 6,940

Spring, kg2 64.7 a 1.2 [62.4, 67.1] 6,809

Summer, kg2 57.3 b 1.1 [55.2, 59.5] 7,386

Fall, kg2 60.3 c 1.2 [58.0, 62.5] 5,864

Herd Size MW 11111

10x change in herd size, (100 kg)2 1.82 0.06 [1.69, 1.94] 4,135

Between Herds

Coefficient of Variation 0.29 0.01 [0.27, 0.32] 35,216

(a, b’ 0) Letters indicate significant differences (Bayesian p-value < 0.001) in cow-to-cow

variation between levels of management factor.
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Figure 4.1. (A) Three-dimensional surface regression plot illustrating the herd-level

differential on the conditional probability of pregnancy to first insemination (i.e. Au) as a

function of plausible values of herd baseline fertility, expressed as (1)012) , and herd milk

yield relative to a typical herd (i.e. u1), as per Au = (1)6112 + (0(u)u] J — (1)012). (B) Two-

dimensional regression plot illustrating the herd-level differential conditional probability

of pregnancy (i.e. Au) as a function of herd milk yield relative to a typical herd average

(i.e. u1), at arbitrarily selected values of herd baseline fertility (i.e. (1)012) ), namely 10%

( ------- ), 30% (- - -) and 50% (—) herd pregnancy rate to first insemination.
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Figure 4.2. Cow-level variance estimate (black line) describing the cow-to-cow (i.e. cow-

level) variation in milk yield at first postpartum insemination in Michigan dairy cows,

expressed as a function of herd size (in log base 10 scale). Dots represent herd-specific

posterior means for the cow-level variance.
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CONCLUSIONS

1. This dissertation in the context of statistical inference on dairy production

systems

Milk yield and reproductive performance of dairy cows constitute the foundation of a

successful dairy business. Simultaneous optimization of both outcomes is of primordial

interest to the profitability and sustainability of the dairy industry. However, despite

abundant literature on the subject, the nature of the association between milk yield and

fertility remains a largely controversial topic (Butler and Smith, 1989, Laben et al., 1982,

Leblanc, 2010, Lopez-Gatius et al., 2006, Lucy, 2001, Norman et al., 2009, among

others). We argue that this controversy is partially due to the multiple shortcomings of the

statistical methodologies commonly implemented in dairy management studies. The most

frequent limitations of previous studies include single-trait analyses that limit

specification of explanatory covariates to either milk yield or reproduction (but not both),

and an ubiquitous under-appreciation of cows and herds as separate, yet interconnected,

units of performance.

Multivariate hierarchical Bayesian models present a general statistical framework to

address these methodological shortcomings. The multivariate setting allows for

simultaneous investigation of two or more outcomes, whereas the hierarchical realm

naturally accounts for cows and herds as different components of the question (Sorensen

and Gianola, 2002). In Chapters 1 and 3 of this dissertation, I present and validate

methodological extensions to bivariate hierarchical Bayesian models that naturally

overcome the aforementioned limitations. These extensions represent an important

advance over the current statistical literature due to an explicit linear model specification
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on covariance parameters, thereby introducing the opportunity to investigate sources of

heterogeneity in the association (i.e. correlation) between multiple outcomes of interest.

The novelty of these methodological developments relies on their introducing a whole

new dimension to study heterogeneity in complex multivariate biological systems.

Explicit design and modeling of heterogeneity has been recently advocated as a robust

venue to guarantee reproducibility and external validation of scientific results and to

decrease uncertainty due to spurious findings in certain areas of the biological sciences

(Richter et al., 2010, Richter et al., 2009). In particular, the proposed methodological

developments directly address the motivating question for this dissertation, thereby

allowing for explicit modeling of heterogeneity in the association between milk yield and

dairy reproductive performance. In Chapters 2 and 4 of this dissertation, I applied this

novel methodology to large datasets from commercial dairy farms in Michigan to

investigate the nature of the association between milk production and reproductive

performance of dairy cows and of commercial dairy herds. In addition, I evaluated

management factors and herd attributes as potential determinants of heterogeneity in

these associations.

2. Address of Specific Aims

1) To develop and validate a hierarchical Bayesian extension to classical bivariate mixed

effects methods to model heterogeneity in residual and random (co)variance matrices

for the joint analysis oftwo Gaussian phenotypes.
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The statistical developments presented in Chapter 1 of this dissertation fully address

this aim and constitute a methodological advancement in the investigation of a new

dimension of heterogeneity in complex systems. Specifically these developments allow

for evaluation of heterogeneous covariances (or correlations) between two outcomes of

interest. In Chapter 1, the proposed methodology is restricted to outcomes of continuous

nature which can be approximated with a normal distribution; this constraint is

circumvented in Chapter 3, as described later. It should be noted that the methodological

developments associated with Specific Aim 1 are relevant to the scientific literature on

multivariate statistics and on hierarchical linear models independently of specific subject-

matter applications.

2) To use the methodology developed in Specific Aim 1) to investigate the within-herd

(cow-level) and between-herd (herd-level) associations between indicators of

comprehensive (i.e. entire lactation) milk production and reproductive performance of

Michigan dairy cows, including the evaluation of various management factors and

herd attributes potentially affecting these associations.

This Specific Aim was accomplished through a small data application in Chapter 1,

followed by a more comprehensive investigation in Chapter 2. In both chapters, we

focused on cumulative milk yield at 305-d in lactation and calving interval as lactation-

encompassing indicators of performance. In Chapter 1, the investigation of cow-level and

herd-level associations is intended only for the purpose of demonstrating the application

of the corresponding methodology and is thus limited to a subset of the population of
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interest and to an arbitrarily selected subset of management factors. The investigation of

cow-level and herd-level associations between milk production and reproductive

performance becomes more comprehensive in Chapter 2. This chapter provides a more

extensive coverage of the dairy population in Michigan, coupled with a sequential

approach to selecting among the many management factors and herd attributes that

potentially contribute to heterogeneity.

3) To develop and validate a hierarchical Bayesian implementation of a bivariate

generalized linear mixed-effect model for heterogeneous variance-covariance

matrices in the context of a joint analysis of Gaussian and non-Gaussian traits.

Chapter 3 of this dissertation directly addresses Specific Aim 3 by describing and

validating generalized linear modeling extensions to the bivariate hierarchical Bayesian

method presented in Chapter 1. These developments extend the methodology presented in

Chapter 1 by: accommodating non-Gaussian responses, including binary, ordered

categorical, count and censored traits, to the modeling of heterogeneous covariances. The

need to incorporate non-Gaussian traits is driven by the non-continuous nature of

performance outcomes related to fertility and fitness. In particular, the motivating

question of this dissertation calls for consideration of pregnancy outcome, 8 binary

response that is critical to the investigation of dairy reproductive performance in a way

that is meaningful to daily farm management.
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4) To implement the methodology developed in Specific Aim 3) to investigate the

associations between milk yield at and pregnancy outcome to first postpartum

insemination of Michigan dairy cows, accounting for cow and herd as hierarchical

units of performance and evaluating the role of management practices and herd

attributes as potential sources of heterogeneity.

This Specific Aim was addressed in depth in Chapter 4, where I investigated

management factors and herd attributes that are potentially linked to the association

between daily milk yield and pregnancy outcome at first postpartum insemination. This

investigation was based on a large dataset from commercial dairy herds in Michigan and

model selection techniques. In addition, Chapter 3 presents a small data application of the

methodology described for Specific Aim 3.

3. Implications for optimization of dairy cow performance

Results from Chapters 1 through 4 in this dissertation provide overwhelming

evidence that forsakes the concept of “one-size-fits-all” as an overly simplistic attempt to

describe the nature of the association between milk production and reproductive

performance of dairy cows. Results from this dissertation indicate that the nature of this

association is highly heterogeneous and consists of multiple dimensions, rending the

issue substantially more complex than ever anticipated. The statistical methodology

specifically developed herein to tailor the intricacies of the production-reproduction

relationship provides a formal substantiation of this conclusion. Previous investigations

have clearly over-simplified this association. Instead, the evidence presented in this
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dissertation urge us to consider a more sophisticated, yet realistic, scenario by which this

association is recognized as heterogeneous at multiple levels. The following paragraphs

describe the multidimensional/multifactorial components of this heterogeneity.

First, results clearly indicate a strong hierarchical duality of the production-

reproduction association comprised by at least two separate, yet interconnected

components. Specifically, these components comprise herds as business production units,

and cows as physiological units of performance managed within those herds. The

outcomes of the delicate intricacies of a cow’s physiology do not necessarily mirror those

of management mechanisms and the business decisions of the production system (i.e.

herd) in which the cow is immersed. I personally believe that failure to recognize the

cow-herd duality while investigating the association between milk production and

reproduction is probably the main reason for the abundant contradictory evidence on the

subject. If studies do not appropriately account for cows and herds as a hierarchical

duality, it is likely that the resulting characterization of the production-reproduction

association becomes an indiscriminate merging of sources of variation into one large

mélange. I speculate that the form of this mélange may be directly determined by the

relative proportion of information contributed by cows and by herds. The relative

proportions of the cow-level and herd-level components is highly specific to each

individual dataset and thus, innately, not reproducible. This concept can be easily

demonstrated using data simulation techniques whereby the cow-level and herd-level

hierarchical components can be alternatively accounted for or disregarded in the

evaluation of the association between milk production and reproduction. Interestingly,

conclusions on the association between outcomes turn out to be mutually contradicting if
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cow- and herd- hierarchical levels are or are not explicitly modeled, thereby supporting

the argument that blunt disregard of a hierarchical data structure can easily lead to

dangerously biased results.

Second, the nature and magnitude of the association between milk yield and

reproductive performance differed across management scenarios, indicating that

management practices and herd attributes may be potential contributors to the

multilayered heterogeneity in this association. In particular, benefits on the production-

reproduction association were evident under highly specialized management practices

that typically characterize intensive production systems. Nonetheless, I personally find

intriguing, to say the least, that intensive production management practices appear as a

converging point for the successful future of animal agriculture from perspectives as

diverse as business profitability and technical efliciency (Cabrera et al., 2010),

environmental sustainability (Capper et al., 2009, Capper et al., 2008) and food supply

challenges of the century (Simmons, 2009).

At this point, the following note of caution could not be emphasized enough: the

observational nature of the data used in this dissertation precludes any type of cause-and-

effect conclusion as inappropriate and over-generalized. That being said, the link

identified between intensive management and benefits on the association between milk

production and reproduction certainly warrants further investigation. For example, results

from this dissertation could be used to identify herds with extreme rankings for their

estimates of relative production-reproduction association (i.e. herds with inferences

unusually distal from zero, both favorable and unfavorable, say the upper and lower 5th

percentiles). These individualized herd entities could then be studied retrospectively to
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explore any potentially new important management and environmental factor that may be

linked to the production-reproduction association. Such retrospective evaluation could

also be used to characterize management scenarios conducive to favorable associations,

or just as important, scenarios of antagonistic association that would be recommended

against. Again, this evaluation would still not render cause-and-effect conclusions but it

will likely identify desirable and undesirable management conditions, fi'om which it

might be possible, in some cases, to proceed with randomized experimentation. It should

be pointed out that the management practices and herd attributes considered in this

dissertation are limited to those available through the information processing facilities

that centralize dairy herd management data. At least two key components of dairy cow

management were not available in the data and are likely to be relevant in firture

investigations, namely herd health management and body condition score records. Many

herds do indeed keep individual cow records of vaccination schemes, clinical

presentations of disease and treatment, as well as accounts of regular evaluations of body

condition score throughout the lactation of a cow. Farms normally find this information

useful to guide decision making on individual cows or groups within the farm. However,

health and body condition information is not routinely recovered by data processing

centers, thus creating a breach between data available at the farm and processed data

from regional centers. This disconnect may be partially reinforced by the lack of rigorous

uniform standards for collecting health data across farms. Therefore, while health data

may likely be meaningful within a farm, the lack of standardized practices for record

keeping on health events renders health data useless to make comparisons between farms.
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A third dimension of heterogeneity in the production-reproduction association

pertains to the long- versus short-terrn coverage of the outcomes used to characterize

milk production and reproduction. Results in this dissertation suggest that the

mechanisms that underlie performance measures spanning a whole lactation (i.e.

cumulative milk yield at 305-d and calving interval) may differ from the mechanisms at

work for “snap-shot” performance indicators corresponding to a discrete and singular

point in time (i.e. daily milk yield at and pregnancy outcome to first postpartum

insemination). Indeed, cows with greater lactation yields had longer calving intervals, but

herd calving intervals were either shorter or unaffected among herds with highest

cumulative 305-d yields. Conversely, herds with greater milk yields at the time of first

insemination had impaired pregnancy rates, but within such herds, cows with higher daily

yields were not any more or less likely to become pregnant to first postpartum

insemination than lower yielding herdmates. Clearly, the dual cow-herd components of

the association between milk production and reproduction behave differently on a whole-

lactation basis as compared to a point in time. It can certainly be speculated that a

“snapshot” indicator may be more volatile and sensitive to rapid circumstantial changes

in management, whereas the summative nature of whole-lactation indicators of

performance is likely to make them more stable and reflective of long-term practices.

Adjusting management recommendations to each short- and long-term scenario

undoubtedly adds an extra layer of complexity to the challenge ofjointly optimizing milk

yield and reproductive performance of dairy cows.

The question of management-driven heterogeneity in the cow-level and herd-level

associations between milk production and reproduction in lactating cows is undoubtedly
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a major issue to the dairy industry. Overall, this dissertation supports that a

comprehensive assessment of this question implies considerably more than just a

simplistic pendulum between “favorable” or “antagonistic” conclusions. It is only

through a comprehensive appreciation of the multidimensional sources of heterogeneity

in the production-reproduction association that it will be possible to elicit management

scenarios conducive to joint optimization of milk yield and reproductive efficiency. By

means of this dissertation, it is my humble intention to provide a broader fi'amework for

and a novel perspective on the controversy of the association between milk yield and

fertility of dairy cows in a way that recognizes many of the complexities of the problem.

In so doing, this approach attempts to provide realistic insight from which to design

management recommendations targeted to optimize overall performance of dairy cows

and commercial dairy herds. Nevertheless, I recognize that, by its own nature, the

multidimensional sources of heterogeneity unveiled for the production-reproduction

association impair the formulation of comprehensive blanket management

recommendations. It certainly appears that there are no recommendations that are suitable

for all cows and all herds. Further research will undoubtedly be required to clarify what

these recommendations may be in specific circumstances.

4. Opportunities for future studies

The work presented in this dissertation provides a foundation for future studies both

in the arena of statistical methodology as well as that of dairy management and

production. The opportunity is particularly exciting in that statistical methods and dairy

applications can be induced to create a chain reaction of mutual developments in a truly
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interdisciplinary approach. Moreover, many of these methodological developments could

also be implemented to other subject-matter applications across a wide range of

biological sciences.

In the pursuit of understanding the multiple interconnections within a complex

biological system, the methodological developments proposed in this dissertation

unveiled a whole new dimension of heterogeneity; that of covariances or correlations

between outcomes of interest. Possibilities for extending this work in ways that are

relevant to dairy management are numerous. The hierarchical Bayesian models presented

in Chapters 1 and 3 provide a general framework that can be easily built upon to

accommodate, for instance, more than two outcomes of interest in a truly multivariate

modeling approach. Such extension would allow incorporation of additional fitness

outcomes to the joint analysis of quantitative performance responses and reproductive

outcomes. Particularly interesting candidate outcomes are those related to health status

(Wu et al., 2007, Wu et al., 2008) and assessments of energy balance (Roche et al., 2009),

provided that issues of data collection standards (as discussed in the previous section) can

be appropriately addressed. Furthermore, a longitudinal component to multiple outcomes

(i.e. repeated measures over time) could be easily accommodated in our model, thereby

allowing for evaluation of pregnancy outcomes to consecutive inseminations throughout

a lactation cycle. Also, inclusion of interaction terms between the fixed effects modeled

on variances and covariances would be desirable to fine tune delicate interdependencies

between management factors and their contributions to heterogeneous associations. One

might ask, for example, if the observed differences in the production-reproduction

association between intensive and traditional management practices depends upon
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lactation. In other words, are the management scenarios linked with more favorable

associations shared by both primiparous and multiparous cows?

Modeling of additional random components, such as additive genetic effects, is a

natural extension to our model that is likely to be of special interest to animal breeders

and geneticists in their quest to assess the heritable component of the correlation between

performance outcomes, as well as potential sources of heterogeneity (Berry et al., 2003,

Tsuruta et al., 2009). The integration of genetics and management (i.e. environment) into

a comprehensive plan for simultaneously improving milk yield and dairy fertility looks

certainly very promising, especially as the era of genomic selection unveils.

As a more elegant alternative to the discrete model selection approach implemented

in Chapters 2 and 4, it will be of interest to investigate Bayesian Model Averaging

(BMA) techniques to further enhance model fit to the data by considering a large number

of candidate models. Potential ways to incorporate BMA to our proposed multivariate

hierarchical model include building upon an attractive proposal by Chen and Dunson

(2003), and Kinney and Dunson (2007).

Finally, the statistical methodology developed in this dissertation is general enough

that it could be easily implemented in other subject-matter applications in which the joint

evaluation of multiple outcomes with potentially heterogeneous correlations may be of

interest. Examples include, but are not limited to, other livestock production systems,

meta-analyses of multiple related research studies, multicenter studies and longitudinal

data pertaining to the biomedical and agricultural sciences, and animal/plant breeding,

genetics and genomics.
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