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Abstract

DEVELOPMENT OF A CELLULOSIC ETHANOL PRODUCTION PROCESS
INTEGRATING ANAEROBIC DIGESTION WITH BIOREFINING

By
Charles David Teater

Anaerobic digestion (AD) of animal manure is traditionally classified as a
treatment to reduce the environmental impacts of odor, pathogens, and excess nutrients
associated with animal manure. This report shows that AD also changed the composition
of manure fiber and made it suitable as a cellulosic feedstock for ethanol production by
increasing the cellulose content, reducing the particle size, and enhancing the
digestibility. The solid digestate from an anaerobic digester (AD fiber) was assessed for
ethanol production in this paper. AD fiber from two types of digesters was used in this
study, a plug-flow reactor (PFR) and a completely stirred tank reactor (CSTR).
Switchgrass and com stover were used as controls for comparison to a more researched
energy crop and agricultural residue. Dilute alkali and dilute acid pretreatment methods
were compared for effectiveness of ethanol production. Using the most effective dilute
alkali pretreatment conditions (2% sodium hydroxide, 130°C, and 2 h), enzymatic
hydrolysis of 10% (dry basis) pretreated AD fiber from a plug flow reactor (PFR)
produced 51 g/L glucose at a conversion rate of 90%. The ethanol fermentation on the
hydrolysate had a 72% ethanol yield. The results indicated that 120 million dry tons of
cattle manure available annually in the U.S. can generate 63 million dry tons of AD fiber
that can produce more than 1.67 billion gallons of ethanol. Integrating AD with

biorefining will make significant a contribution to cellulosic ethanol production.
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INTRODUCTION

Petroleum provides more energy in the United States than any other resource,
about 37% of all the energy consumed or about 19.5 million barrels per day. Domestic
petroleum reserves and production are limited at 8.5 million barrels per day; therefore
almost 11 million barrels per day, or 56% of the petroleum consumed, are imported into
the United States (United States Energy Information Administration, 2008). Long term
economic, environmental and national security concerns over petroleum have motivated
research into renewable domestic sources over the last three decades. Ethanol is the most
important renewable fuel in terms of volume and market value. A record 10.75 billion
gallons of corn-based ethanol was produced in the U.S. in 2009 (RFA 2009). Corn-based
ethanol is the only commercial production system operating in the United States.
Currently practiced technologies in the fuel ethanol industry utilize the fermentation of
sugars from starch and sugar crops are relatively mature with little opportunity for
process enhancements. While reducing the need for foreign oil, com-based ethanol also
diverts com away from food markets, inevitably resulting in food-fuel competition (Koh
and Ghazoul, 2008). Therefore altemative sources of feedstock are necessary to produce
ethanol commercially without competing for food.

Lignocellulosic biomass, including agricultural residue, forest residue, dedicated
energy crops, municipal solid waste, animal waste, etc., is a renewable resource
considered to be a solution to the feedstock for ethanol problem. It has great potential for
affordable ethanol production because it is less expensive than starch and sucrose crops,
corn and sugarcane, and is available in large quantities. The USDA Billion Ton study

indicated that with enhanced technology, 1.2 billion dry tons of lignocellulosic feedstock



can be used to produce 60 billion gallons of ethanol at 2030. However, the current
available biomass for bio-fuel production is only 194 million dry tons per year. Animal
manure, especially cattle manure, is included in the USDA billion ton study, but only 35
million dry tons is included as potential biomass to ethanol production. It has been
estimated that a total of about 120 million dry tons of cattle manure are produced
annually in the United States (USDA Economic Research Service, 1997). This represents
a considerable amount of untapped biomass for bio-based energy production. In order to
achieve sustainable development of animal production and bio-fuel industries, an
integrated solution is necessary for animal manure management and cellulosic feedstock
production.

Anaerobic digestion (AD) is a natural biological process that has been proven
effective at converting wet organic biomass into energy in the form of biogas. The biogas
produced consists mainly of methane and carbon dioxide, which can be combusted to
produce relatively clean electricity. Anaerobic digestion also provide a wide array of
benefits including, significant reduction of odors and flies associated with manure,
greenhouse gas emissions are reduced, production of a relatively clean liquid effluent for
fertilizer and irrigation, pathogens are reduced in the liquid and solid products, and
nonpoint source pollution is substantially reduced (Burke, 2001). Even with all these
benefits, AD is an underutilized resource mainly due to the economics. For most confined
cattle operations, the high capital cost and the relatively low revenue from biogas
methane production, make the currently available AD technology difficult to be adopted.
The payback period on capital investment needs to be reduced for further adoption of the

AD process worldwide. Utilization of the solid digestate from anaerobic digestion (AD






fiber) for lignocellulosic ethanol produc;'tion has potential to greatly increase the
economic feasibility of waste-to-energy production.

The goal of the current research is to develop a better understanding of the
integrated process of anaerobic digestion and biorefining. The hypothesis is that
anaerobically treated manure fiber (AD fiber) is capable of producing ethanol in a
similar effectiveness to that of more researched agricultural residues and dedicated
energy crops, corn stover and switchgrass. The composition of AD fiber and the
effectiveness of various pretreatments on enhancing enzymatic digestibility and yeast
fermentability of AD fiber must be assessed to determine if the carbohydrate content and
conversion yields are large enough to generate a significant amount of ethanol
effectively.

The composition of a material is of great importance in determining if the
biomass is suitable for use as a fermentation feedstock. Most biomass is not fermentable
without pretreatment to allow access to the sugars, because the potential fermentable
sugars are in a polymeric form (polysaccharides). The polysaccharides are further bound
in the plant cell walls by interactions between the polysaccharides as well as with various
other non-carbohydrate constituents, mainly lignin. Ultimately, pretreatment is required
to breakdown the polysaccharides into individual sugar units (monosaccharides), a form
which the fermentative organisms will be able to utilize. The most commonly used
femenﬁtive organisms are yeast, or more specifically Saccharomyces cerevisiae, due to
its robust nature and ability to ferment C-6 sugars (glucose mannose, and galactose). The
main problem associated with Saccharomyces cerevisiae is that it cannot ferment C-5

sugars (xylose and arabinose). However, with the combination of anaerobic digestion and



biorefining, the C-5 sugars can be utilized in the anaerobic digester to by microorganisms
to produce biogas. Therefore a genetically engineered microorganism is not required for
effective fermentation.

To date, the process of obtaining monosaccharides from biomass has been a two-
stage process whereby the first stage breaks down the biomass cell wall structure, and the
second step depolymerizes the polysaccharides. Several forms of pretreatment have been
investigated utilizing different types of biomass. Two predominant processes are dilute
acid and dilute alkali pretreatment; each followed by enzymatic hydrolysis. The
effectiveness of pretreating each raw material feedstocks varies depending on the
pretreatment process and conditions. Therefore, each pretreatment method must be
assessed for the effectiveness on enhancing the digestibility of AD fiber. The best
pretreatment method and conditions can then be determined for the most effective
utilization of AD fiber for ethanol production.

The following sections describe in detail the factors that must be addressed in the
integration of anaerobic digestion and biorefining. These factors include; biomass
composition, limitations of enzymatic digestibility, pretreatment processes including,
anaerobic digestion, dilute acid, and dilute alkali, enzymatic hydrolysis, and
fermentation. Assessing all these topics will provide a better understanding of using AD

fiber as a feedstock for ethanol production.



LITERATURE REVIEW

1.1. Lignocellulose Fiber Characteristics

Lignocellulosic biomass is primarily composed of three types of polymers,
cellulose, hemicellulose, and lignin, in addition to smaller amounts of pectin, protein,
extractives and ash. Carbohydrates are the largest fraction (50-80% dry basis) of
lignocellulosic biomass, which includes cellulose and hemicellulose (Zheng et al., 2009).
Cellulose is a linear polysaccharide of D-glucose units connected by B-1,4-glycosidic
bonds with a degree of polymenzation of up to 10,000 or higher (McMillan, 1994;
Jorgensen et al., 2007). Cellulose consists in a hierarchal structure of smaller at
mechanistically stronger units (Subramanian et al., 2008). Hydrogen bonds pack the
cellulose chains together into elementary fibrils, the basic unit of cellulose fiber, which
are approximately 3nm in diameter (Ha et al.,, 1998). Elementary fibrils consist of 36
linear cellulose chains aggregated by both intra- and intermolecular hydrogen bonds
(Jorgensen et. al., 2007). Microfibrils are composed of the elementary fibrils packed
together with hydrogen bonds. These microfibrils are attached to each other by
hemicelluloses, pectin, and lignin, and are associated in the form of bundles or
macrofibrils (Taherzadeh and Karimi, 2008). This complex and highly crystalline
structure makes cellulose resistant to biological and chemical treatments. Regions of a
less organized, amorphous structure exist within the crystalline structure of native
cellulose (Hendriks and Zeeman, 2008). These amorphous areas are most susceptible to
enzymatic attack.

Hemicelluloses are shorter chain, amorphous polysaccharides of hexosans

(mannan, galactan, and glucan), pentosans (xylan and arabinan), as well as uronic acids,



methoxyl, acetyl, and free carboxylic groups (McMillan, 1994). The dominant sugars in
hemicellulose are xylan in hardwoods and agricultural residues, and glucomannan for
softwood. Unlike cellulose, hemicelluloses have random, amorphous, and branched
structures that offer little resistance to hydrolysis (Taherzadeh and Karimi, 2008).
Removal of hemicellulose increases the porosity of biomass and therefore increases the
accessibility of cellulose for enzymatic hydrolysis (Chandra et al., 2007). The degree of
acetylation in hemicellulose is another important factor in enzymatic digestibility because
lignin and acetyl groups are attached to hemicellulose and may hinder the reduction of
carbohydrates (Chang and Holtzapple, 2000). It has been found that samples with the
same amount of deacetylation produce the same sugar yields upon enzymatic hydrolysis.
An increase in the degree of deacetylation increases the yield of sugars obtained from
enzymatic hydrolysis with all other compositional factors held constant. For aspen wood,
both acetyl group and lignin content were important barriers to effective enzymatic
hydrolysis; however the xylan backbone was not (Kong et al.,1992).

Lignin, the most abundant non-polysaccharide fraction of lignocellulosic biomass,
is an aromatic polymer constructed of three different phenylpropane units, p-coumaryl,
coniferyl, and sinapyl alcohol (Hendriks and Zeeman, 2008). A protective covering is
formed around cellulose by lignin and hemicellulose, which enhances structural strength
to the biomass matrix. Lignin is the main component in the outer portion of the middle
lamellae, effectively creating a seal at the outer edge of lignocellulosic fibers (McMillan,
1994). Structural support, resistance against microbial and oxidation stress, and
impermeability are the main features of lignin. These functions, in addition to being non-

water soluble and optically inactive, make lignin very difficult to degrade (Hendriks and



Zeeman, 2008). The ease of digestibility of lignocellulosic biomass is highly dependent
on the lignin content, the most recalcitrant component of plant cell walls, which varies
depending on biomass type. Generally, herbaceous plants and agricultural residues have
the lowest lignin content (10-20%), whereas softwoods have the greatest lignin content
(25-35%), with hardwoods (18-25%) in between (McMillan, 1994; Jorgensen et al,
2007). Lignin reduces the effectiveness of enzymatic hydrolysis of cellulose by acting as
a physical barrier and also non-productively binding cellulase enzymes (Alvira et al.,
2009). Various strategies have been studied to reduce the non-productive adsorption of
lignin including alkali extraction and addition of protein, such as bovine serum albumin
(BSA) (Yang and Wyman, 2006; Pan et al., 2005). In order to justify the additional cost
of the additives, significant improvements in the enzymatic hydrolysis must be achieved
(Alvira et al., 2009).

1.2, Substrate Factors Limiting Enzymatic Digestibility

Resistance to enzymatic attack is an intrinsic property of lignocellulosic materials.
The goal of pretreatment is to alter these properties in order to enhance the enzymatic
digestibility. Due to the variability in composition of lignocellulosic biomass, the best
pretreatment method and condition for one feedstock can be completely ineffective for
another (Taherzadeh and Karimi, 2008). The major substrate related factors limiting
enzymatic hydrolysis include physical and chemical features. The physical features
include cellulose crystallinity, surface area, porosity, particle size, and the degree of
polymerization. As discussed in the previous section, the main chemical, structural
features affecting enzymatic digestibility of cellulose are lignin content, hemicellulose

content, and the degree of acetylation of hemicellulose (Zhu et al., 2008). The complexity



of the biomass matrix is reflected in the relationship between the structural and chemical
features. Each factor’s relative contribution to the native recalcitrance of biomass is still
disputed (Zheng et al., 2009). The variability of these characteristics in different biomass
indicates that the enzymatic digestibility is substrate and pretreatment specific (Mosier et
al., 2005).

Cellulose crystallinity is the relative amount of the crystalline and amorphous
regions within the microfibrils, with most of natural cellulose in the crystalline form
(Taherzadeh and Karimi, 2008). The rate of digestibility of the amorphous regions by
cellulase enzymes is greater compared to the less accessible crystalline regions. However,
crystallinity alone will not prevent hydrolysis if sufficient enzyme is used (Mosier et al.,
2005). The combination of lignin content and cellulose crystallinity had the greatest
affects on digestibility. However, reduction of lignin was the most important parameter
for effective digestion. At short hydrolysis periods (1 - 6 hours) low crystallinity was also
required to increase the digestion rate, but at long periods (72 hours) crystallinity was not
important when lignin content was low (Zhu et al., 2008). In some cases, pretreatment
improved digestibility while it simultaneously increased the crystallinity of the cellulose
region due to the reduction of the easily available amorphous region (Alvira et al., 2009).

Research has shown a good correlation between accessible surface area or pore
volume, and enzymatic digestibility. Contact between the substrate and enzyme is
necessary for biodegradation of the cellulose, therefore accessibility of the substrate is a
major factor influencing the hydrolysis process (Alvira et al., 2009; Taherzadeh and
Karimi, 2008). Lignocellulosic biomass has two types of surface area, internal and

external. External surface area is associated with the size and shape of the particles,



which is also referred to as particle size. The capillary structure or porosity of cellulosic
fibers makes up the internal surface area. The increase in accessible surface area during
pretreatment is related to the removal of hemicellulose (Grous et al., 1986). Removal of
lignin and increase in moisture content also increase the accessible surface area (Hendriks
and Zeeman, 2009; Taherzadeh and Karimi, 2008).

The degree of polymerization, or the number of glycosyl residues per cellulose
chain, has effects on digestibility, however the role is not definitely know. Reduction is
cellulose chain length, increase in crystallinity, and hemicellulose and lignin removal are
all interrelated for thermochemical pretreatments (Kumar et al., 2009). Determining the
effects of a single structural feature is not yet possible due to cross effects of various
features during pretreatment (Chang and Holtzapple, 2000).

1.3. Anaerobic Digestion

Anaerobic digestion (AD) of organic matter into biogas is a compléx biological
process regarded as taking place in two distinct phases — an acid-production phase and an
acid-consumption phase (Munch et al., 1999). The conversion process consists or several
independent, parallel, and consecutive reactions, in which microorganisms work
synergistically to degrade organic matter into a mixture of methane and carbon dioxide
gases (Noykova et al., 2002). These processes consist of six main stages: (1) hydrolysis
of carbohydrates proteins and lipids into sugars, amino acids, and long-chain fatty acids;
(2) fermentation of amino acids and sugars into volatile fatty acids; (3) acetogenesis of
long-chained fatty acids into acetate and hydrogen; (4) anaerobic oxidation of
intermediate products such as volatile fatty acids into acetate and hydrogen; (5)

aceticlastic methanogenesis of acetate into methane by acid-utilizing methanogens; and



(6) hydrogenotrophic methanogenesis of hydrogen into methane by hydrogen-utilizing
methanogens (Jeyaseelan, 1997; Myint et al., 2006; Noykova et al., 2002). A four-step
biological process has also been described for the anaerobic degradation of organic
matter w1th steps including; hydrolysis, acidogenesis, acetogenesis, and methanogenesis
(Chynoweth and Isaacson, 1987).

A wide variety of anaerobic digesters have been developed and implemented over
the past fifty years. For cattle waste, the most important factor in determining the digester
type to use is whether it can handle the solids loading of manure, while still meeting the
goals of anaerobic digestion. The goals include; reduction in solids mass, reduction in
odors, production of clean liquid effluent for recycle or land application, concentration of
nutrients in solid digestate for storage or export, generate energy, and reduce pathogens
(Burke, 2001).

The completely stirred tank reactor (CSTR) is the most commonly implemented
type of anaerobic digester. Most CSTR digesters are heated with spiral flow heat
exchangers, which apply hot water to one side of the spiral and anaerobic slurry to the
other. Mesophilic operation is most common, with the thermophilic range employed
where sufficient energy is available to heat the reactor. The advantage of a CSTR digester
is that it is a proven technology that achieves reasonable conversion of solids to gas using
cattle manure. The disadvantages are in the high cost of installation and the energy cost to
mix the reactor. At the other end of the spectrum is the plug flow reactor (PFR), the least
expensive of the digesters, which is also commonly used. Api)lications are limited to
concentrated manure with minor amounts of sand and silt. Significant operational costs

will be incurred if stratification occurs due to dilute waste or excess sand (Burke, 2001).
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As compared to other waste treatment technologies, there are many advantages of
treating biomass waste with anaerobic digestion, including; reduced biomass sludge
compared with aerobic treatment; more effective removal of pathogens, especially in
multi-stage digesters; minimal odor emissions; compliance with national waste policies;
carbon neutral energy is produced as biogas, and solid digestate is produced with
increased carbohydrate content (Ward et al., 2008).

There is currently a great potential pollution risk to the environment from the
large amounts of animal manure and slurries produced by the animal production sector
world-wide, if it is not managed optimally (Holm-Nielsen et al., 2009). An estimated
18% of all anthropogenic greenhouse gas emissions, measured in CO, equivalent, from
the five major sectors for greenhouse gas reporting: energy industry, waste, land use, land

use change and forestry, and agriculture, are produced from livestock activities. This

encompasses 9% of anthropogenic CO;, 35-40% of anthropogenic methane, 65% of

anthropogenic nitrous oxide, and 64% of anthropogenic ammonia, from the world-wide
animal production sector (Steinfeld et al., 2006). Anaerobic digestion offers a unique
solution to prevent emissions of greenhouse gases and leaching of organic matter and
nutrients, mainly nitrogen and phosphorous, to the natural environment (Holm-Nielsen et
al., 2009). |
It has been estimated that 120 million dry tons of cattle manure are produced
annually in the United States on 67,000 dairy and 956,500 beef cattle farms. (USDA
Economic Research Service, 1997; USDA National Agricultural Statistics Service, 2009).
This is a large potential source of carbohydrates for ethanol production. By composition,

cattle manure contains 22% (w/w dry basis) cellulose and 17% hemicellulose. This
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immense amount of cellulosic residue has the capability of providing an economic
stimulus to dairy and beef cattle farms while reducing the associated environmental
liabilities (Liao et al., 2004). Through anaerobic digestion and other pretreatment
processes, the cellulosic content of the fiber will increase considerably, making the
resulting fiber an attractive feedstock for ethanol production. Currently, anaerobically
digested fiber (AD fiber) is an underutilized resource, being used for animal bedding, soil
amendment or fertilizer (Johnson et al., 2006; Gomez and Gonzalez, 1977), and possibly
particle board (Spelter et al., 2008). Traditionally it has been regarded as too recalcitrant
to be used for ethanol production (Tambone et al., 2009). However as with all
lignocellulosic materials, the correct pretreatment of AD fiber will increase the cellulose
content and the digestibility of the cellulose during enzymatic hydrolysis.

1.4. Dilute Acid Pretreatment

Dilute acid pretreatment was derived from concentrated acid hydrolysis, which
had been a major technology for hydrolyzing lignocellulosic biomass for ethanol
production. The concentrated acid hydrolysis was temporarily commercialized during
World War II (Zheng et al., 2009). Due to its extremely toxic, hazardous, and corrosive
nature, along with the need to recover and recycle the concentrated acid, the concentrated
acid process has gradually been phased out of use. However, dilute acid pretreatment has
received numerous research interests and is probably the most commonly applied
chemical pretreatment method (McMillan, 1994). Recent processes use less severe
conditions and achieve high xylan to xylose conversion yields. High xylose conversion is
necessary for favorable process economics because xylan accounts for up to a third of the

total carbohydrates in many lignocellulosic materials (Hinman et al., 1989).
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Dilute acid pretreatment can be conducted with either short retention time (e.g. 5
min) and high temperature (e.g. 180°C) or longer retention time (e.g. 30-90 min) at lower
temperatures (e.g. 120 — 140°C) (Taherzadeh and Karimi, 2008; Alvira et al., 2009). The
effects of several different acids, including dilute sulfuric acid, dilute nitric acid, dilute
hydrochloric acid, dilute phosphoric acid, and peracetic acid have been reported with
dilute sulfuric acid being the most extensively studied because it is inexpensive and
effective (Zheng et al., 2009).

Various lignocellulosic biomasses have been pretreated with dilute sulfuric acid to
assess the effectiveness of the pretreatment, including: agricultural residues such as corn
stover, corn fiber, corn cobs, sugar cane bagasse, cattle manure, and olive tree biomass,
rice hulls, rye straw, peanut shells, cassava stalks, and potato peels (Torget et al., 1991;
Esteghlalian et al., 1997; Wu and Lee, 1997; Varga et al., 2002; Lloyd and Wyman,
2005; Chen et al., 2009; Zhu et al., 2009; Grohmann and Bothast, 1997;; Silverstein el al.,
2007; Martin et al., 2007; Liao et al., 2004; Liao et al., 2007; Cara et al., 2007; Sun and
Cheng, 2005; Lenihan et al., 2009), short rotation herbaceous crops such as switchgrass,
Bermuda grass, weeping lovegrass, Jose tall wheatgrass, and creeping wild rye (Torget et
al.,, 1990; Esteghlalian et al., 1997; Chung et al., 2005; Jensen et al., 2009; Sun and
Cheng, 2005; Zheng et al., 2007), short rotation woody crops such as poplar, sweetgum,
silver maple, sycamore, black locust, aspen, balsam, athel, and eucaplytus wood (Torget
et al.,, 1990; Esteghlalian et al., 1997; Chung et al., 2005; Torget et al., 1991; Jensen et
al,, 2009; Zheng et al., 2007), and autoclaved municipal organic solid wastes (Zheng et

al,, 2007).
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The National Renewable Energy Laboratory (NREL) favors dilute sulfuric acid
hydrolysis mainly due to the fact that 80 — 90% of the hemicellulose sugars are
recoverable (Torget et al. 1991; Grohmann and Bothast, 1996), which can enhance the
economics greatly with efficient pentose fermentation (Aden et al., 2002). Enhanced
reactivity of cellulose to enzymes correlates with the removal of hemicellulose during
dilute acid pretreatment of biomass with low lignin content (Torget et al., 1990). The
percentage of xylose recovery has been used in several studies to optimize the
pretreatment. Under optimized xylose recovery pretreatment conditions of 1.2% (w/w)
sulfuric acid at 180°C, 90% cellulose to glucose conversion was achieved with pretreated
switchgrass (Chung et al. 2005).

However, the most effective pretreatment conditions for enzymatic hydrolysis are
not necessarily the conditions with the highest hemicellulosic sugars recovery. Dilute
acid pretreated olive tree biomass had three separate optimal conditions; (170°C and 1%
H,S0,) for maximum hemicellulose recovery (83%), (210°C and 1.4% H,S04) for
maximum enzymatic hydrolysis yield(76.5%), and (180°C and 1% H;S04) for maximum
total sugar recovery (75%) (Cara et al., 2007). This indicates that dilute acid pretreatment
can be optimized under different conditions for hemicellulose sugar recovery, glucose
recovery, or total sugar recovery. Dilute sulfuric acid pretreated cotton stalks resulted in
almost complete xylan reduction (95.23%), but very low cellulose to glucose conversion
during enzymatic hydrolysis (23.85%). Sodium hydroxide pretreatment of the same
cotton stalks resulted in significantly increased cellulose conversion (60.8%), mainly due
to the delignification (65.63%) (Silverstein et al., 2006). Dilute sulfuric acid treatment on

comn stover removed 76.6% of hemicellulose but yielded only a 39.4% cellulose
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conversion yield during enzymatic hydrolysis. This is in contrast to dilute sodium
hydroxide pretreatment, which removed 73.9% of lignin and yielded an 81.2% cellulose
conversion rate during enzymatic hydrolysis (Chen et al., 2009). This is because dilute
acid pretreatment does not significantly impact lignin removal. High lignin content leads
to increased enzyme consumption due to irreversible adsorption of cellulase enzymes to
lignin, decreasing the cellulose conversion effectiveness of enzymatic hydrolysis (Wu
and Lee, 1997, Yang and Wyman, 2008). This indicates that optimization of
hemicellulose sugar recovery does not always result in optimal enzymatic hydrolysis
effectiveness, and is more significant in substances with low lignin content. Biomass with
high lignin content requires an additional or different pretreatment method to remove or
disrupt the lignin prior to hydrolysis to achieve effective cellulose-to-glucose conversion.

1.5. Dilute Alkali Pretreatment

Dilute alkali pretreatment is an altermative to the more common dilute acid
pretreatment. Soaking in alkali solutions, most notably sodium hydroxide (NaOH) has
been used to pretreat lignocellulosic materials. Lignin content is a major factor in the
efficacy of dilute alkali pretreatment. Hardwoods pretreated with dilute sodium
hydroxide showed increasing efficacy with as lignin content decreased from 24 to 18%.
However, no effect was observed for softwoods with lignin content of 26-35%. Increased
efficacy was shown for agricultural residues as compared to hardwoods, in part, due to
the lower lignin content of the residues (McMillan, 1994). Feedstocks with low lignin
content such as agricultural residues, herbaceous crops, and hardwoods are most suitable

for dilute alkali pretreatment.
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Swelling occurs in lignocellulosic biomass pretreated with dilute sodium
hydroxide causing a separation in the structural linkages between lignin and
carbohydrates, a decrease in crystallinity, a decrease in the degree of polymerization, an
increase in internal surface area, and disruption of the lignin structure (Fan et al., 1987).
Saponification of the ester bonds crosslinking xylan hemicellulose and lignin is believed
to be the mechanism of alkali pretreatment (Tarkow and Feist, 1969). Compared with
acid and oxidative reagents, alkali pretreatment is the most effective at breaking the ester
bonds and avoiding reduction of the hemicellulose polymers (Taherzadeh and Karimi,
2008). An increase in fiber saturation point is the most noticeable physical effect. The
swelling capacity of cell walls in hardwoods treated with 1% NaOH, followed by
washing, was doubled. This increase in fiber saturation point provides for improved
enzyme-substrate interactions (Tarkow and Feist, 1969).

Alkali pretreatments have been effective both at ambient conditions for long
reaction times and more severe conditions for shorter times. Dilute sodium hydroxide
pretreatment was effective in improving the enzymatic digestibility of switchgrass over a
range of temperatures (21, 50, 121°C) (Xu et al., 2010). The best reaction conditions for
each temperature studied were (1.0% NaOH, 0.5 h at 121°C; 1.0% NaOH, 12 h at 50°C;
2.0% NaOH, 6 h at 21°C), the total reducing sugar yields were respectively, 425.4, 453 .4,
and 406.2 mg/g raw switchgrass.

Enzymatic digestibility has been enhanced for com stover (Chen et al., 2009;
Varga et al., 2002; MacDonald et al. 1983), wheat straw (Sun et al., 1995; Farid et al.,
1983), sugar-cane bagasse (Fox et al., 1989; Fanid et al., 1983), sunflower stalks and hulls

(Sharma et al., 2002; Soto et al., 1994; Farid et al., 1983), switchgrass (Xu et al., 2010),
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coastal Bermuda grass (Wang et al., 2009), cotton stalks (Silverstein et al., 2007), and
hardwoods (Millet et al., 1976) using dilute sodium hydroxide pretreatment.

Dilute NaOH pretreatment was more effective on com stover as compared to
dilute acid, lime, and aqueous ammonia pretreatments. Pretreated corn stover with
conditions of 120°C, 30 minutes, and 2% NaOH produced 36.1 g/L glucose and 81.2%
conversion rate after enzymatic hydrolysis of 8% substrate concentration and enzyme
loading of 20 FPU/g substrate(Chen et al. 2009).

1.6. Enzymatic Hydrolysis

The process of enzymatic hydrolysis of cellulose contains three main components,
the cellulase adsorption onto the surface of the cellulose, the biodegradation of the
cellulose to fermentable sugars, and desorption of the cellulase. Highly specific cellulase
and hemicellulase enzymes (glycosylhydrolases) carry out the enzymatic hydrolysis of
cellulose and hemicellulose. Of the more than 80 known glycosyl hydrolase familes, the
catalytic domains of cellulase and hemicellulase are currently grouped into at least 15,
and the substrate binding domains fall into 13 families (Rabinovich et al., 2002).

At least three major classes of enzymes are involved in the synergistic action of
the enzymatic degradation of cellulose to glucose: exo-1,4-B-D-glucanases, endo-1,4-8-
D-glucanases, and 1,4-B-D-glucosidases. Together these enzymes are usually called
cellulase or cellulolytic enzymes (Wyman, 1996). Endo-1,4-B-D-glucanases hydrolyze
internal B-1,4-glucosidic bonds in areas of low crystallinity in the cellulose chain creating
free chain-ends. Exo-1,4-B-D-glucanases or cellobiohyrolases (CBH) move processively
along the cellulose chain and cleave off cellobiose units (dimers of glucose) from the free

chain-ends. The 1,4-B-D-glucosidases hydrolyze cellobiose to glucose and also cleave of
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glucose units from cellooligosaccharides. By creating new accessible sites for each other,
removing obstacles, and relieving product inhibition, these enzymes work synergistically
together to hydrolyze cellulose (Jorgensen et al., 2007; Taherzadeh and Karimi, 2007).
Certain species of bacteria and fungi produce cellulases for the hydrolysis of
lignocellulosic material. Several bacteria species such as Clostridium, Cellumonas,
Thermomonospora, Ruminococcus, Erwinia, Acetovibrio, Microbispora, Bacillus,‘
Bacteriodes, and Strepomyces are able to produce cellulases (Sun and Cheng, 2002;
Taherzadeh and Karimi, 2007). Cellulolytic anaerobes such as Clostridium thermocellum
and Bacteroides cellulosolvens produce cellulases with high specific activity; however
they do not produce high enzyme concentrations. Since the anaerobes have very low
growth rate and require anaerobic conditions, most commercial research has focused on
fungi (Duff and Murray, 1996). Species of certain fungi such as Tricoderma, Penicillium,
Fusarium, Phanerochaete, Humicola, Aspergillus, Schizophyllum, Sclerotium rolfsii, and
P. chrysosporium are able to produce cellulases and hemicellulases (Fan et al., 1987;
Duff and Murray, 1996; Rabinovich et al., 2002; Sun and Cheng, 2002; Taherzadeh and
Karimi, 2007). Of all the cellulases produced by different microorganisms, cellulases
produced by Trichoderma ressei and T. viride have been researched most extensively and
are best characterized. Trichoderma viride is a valid species aggregate that is used for all
unknown Trichoderma species, while T. ressei are developed from a single isolate
(QM6a) (Zhang and Lynd, 2004). The Trichoderma reesei cellulase mixture consists of
many glycosyl hydrolases, of which five -1,4-endoglucanases, two p-1,4-exoglucanases,
two xylanases, a B-D-glucosidase, an a-L arbinofluranosidase, an acetyl xylan esterase, a

B-mannanase, and an a-glucuronidase have been sequenced (Vinzant et al., 2001).
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The advantages of cellulase produced by Trichoderma include resistance of the
enzyme to chemical inhibitors, a full complement production of cellulase, and stability
under enzymatic hydrolysis conditions. However, suboptimal levels and low activity of
B-glucosidases inhibit the effectiveness of Trichoderma cellulase. Conversely, Aspergilli
are very efficient B-glucosidase producers. Increased efficiency was found in
Trichoderma cellulose supplemented with extra B-glucosidases (Taherzadeh and Karimi,
2007). Trichoderma spp. are used for most commercially produced cellulases, with a few
produced from Aspergillus niger (Zhang and Lynd, 2004).

1.7. Fermentation

Numerous microorganisms have been used for ethanol production, with
Saccharomyces cerevisiae remaining as the primary species (Bai et al., 2008). High
ethanol yields and productivities in addition to a remarkable ethanol tolerance make this
species the most widely used process organism. These unusual properties are the result of
adaptation to efficient ethanol production from glucose over thousands of years (Olsson
and Hahn-Hagerdal, 1996). Zymomonas mobilis has also been researched extensively,
with repeated claims by some researchers to possess superior characteristics compared to
Saccharomyces cerevisiae, mainly higher conversion rate of glucose to ethanol (Bai et
al., 2008). However, Z. mobilis has many drawbacks, mainly that pure glucose is needed
for effective fermentation, which is impossible in the commercial ethanol industry, and
the biomass generated cannot be used as animal feed, unlike S. cerevisiae (Bai et al.,
2008). Both microorganisms are capable of efficiently fermenting glucose into ethanol;

however neither is able to ferment pentoses such as xylose (Keshwani and Cheng, 2009).
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Despite having a full xylose metabolic pathway, S. cerevisiae is unable to utilize xylose
as a sole carbon source (Batt et al., 1986).

Other yeasts such as Pichia stipitis, Candida shehate, and Pachysolen tannophilus
are known to ferment xylose into ethanol. Ethanol yields are significantly lower than
glucose fermentation by S. cerevisiae though, which necessitates considerable
improvement in xylose fermenting technology (Chu and Lee, 2007). Other problems
associated with the commercial use of these native yeast strains include low ethanol
tolerance, difficult optimization of fermentation parameters, and slow rate of
fermentation (Dupreez, 1994).

Even though Saccharomyces cerevisiae is unable to utilize xylose for
fermentation, the isomer of xylose, xylulose, can be fermented. Xylose can be converted
to xylulose using xylose isomerase. However, the fermentation rate of xylulose is ten
times less than that of glucose (Olsson and Hahn-Hagerdal, 1996). This approach is not
cost effective, therefore over the past two decades; much research had focused on
developing genetically engineered xylose-fermenting microorganisms, mainly S.

cerevisiae (Saha, 2003). Recombinant S. cerevisiae strains are able to convert xylose to

ethanol at near theoretical yields of 0.51 g g.l but with low maximal productivities (Chu

and Lee, 2007).

Due to the difficulties in fermenting pentose sugars into ethanol, another option of
generating energy from hemicellulose is through the anaerobic digestion process. The
efficient conversion of the sugars into methane makes it a very effective process. The
conversion rate of hemicellulose reducing sugars, mainly xylose, is much greater than

that of cellulose reducing sugars, mainly glucose. The integration of anaerobic digestion
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and biorefining that incorporates yeast fermentation with Saccharomyces cerevisiae
offers a very attractive option for total energy production. The majority of pentose sugars
are utilized by microorganisms in the digester to generate methane, while most of the
hexoses remain for yeast fermentation to ethanol. The higher heating value of methane is
55 MJ/Kg, which makes it an extremely attractive energy source. Methane from
hemicellulose generates more energy (electricity energy) than ethanol from hemicellulose
due to the relatively low conversion rate (80%) of pentoses to ethanol (Aden et al., 2002).

1.8. Issues in the development of fuel ethanol production from AD Fiber

The general issues that need to be addressed in the production of ethanol from AD
fiber include; 1) whether the composition of the AD Fiber is sufficiently high in
fermentable sugars, 2) determining an optimal pretreatment method for maximizing the
digestibility of the sugars for enzymatic hydrolysis, 3) comparing the digestibility of AD
fiber to other potential cellulosic ethanol feedstocks, agricultural residues (i.e., corn
stover) and dedicated energy crops (i.e., switchgrass), and 4) assessing the ethanol yield
from fermentation of the AD fiber hydrolysate.

1.9. Research Overview and Objectives

Anaerobic digestion is a proven process for converting manure and agricultural
residues into methane for heat and power production. The liquid effluent has been land
applied as fertilizer; however the AD fiber is currently limited to uses of low economical
value, animal bedding and soil amendment. In light of the issues discussed in the
previous sections, the general objective of this research is to investigate, at the laboratory
scale, the use of AD fiber for the production of fuel ethanol. A flow diagram of the

integrated anaerobic digestion and biorefining process is provided in Figure 1.1 below.
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The processes inside the dashed line were the focus of the current research. The solid AD
fiber is the starting point of the current research. The processes included in the study are
acid and alkali pretreatment, enzymatic hydrolysis, and yeast fermentation. Distillation
and dehydration of the green beer into pure ethanol was not included in this research.
Combustion of the solid residues after enzymatic hydrolysis, containing mostly lignin,
was also not addressed in this study. AD fiber composition, pretreatment, hydrolysis and
fermentation are addressed with an emphasis on the effects of pretreatment on glucose

yield and ethanol production.

The specific objectives for the project are:

e To characterize the chemical composition of raw AD fiber and pretreated AD
fiber.

e To assess the effects of dilute acid and dilute alkali pretreatments on glucose
concentrations and cellulose to glucose conversion yields of AD fiber after
enzymatic hydrolysis, and ethanol concentration and conversion yields after
fermentation.

e To hydrolyze the pretreated AD fiber using commercial cellulase enzymes to
soluble monosaccharide components for use as fermentation feedstock.

e To ferment the released sugars to ethanol using Saccharomyces cerevisiae DSA.

e To compare the glucose and ethanol concentration and conversion yields of AD
Fiber with switchgrass and corn stover using the same processes.

o Energy production and environmental impacts of AD fiber biorefining.
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CHAPTER 2

2.1. Abstract

Ethanol production using solid digestate (AD fiber) from a Complete Stirred Tank
Reactor (CSTR) anaerobic digester was assessed comparing to an energy crop of
switchgrass, and an agriculture residue of corn stover. A complete random design was
fulfilled to optimize the reaction conditions of dilute alkali pretreatment. Three reaction
times (1, 2, 3 h), two temperatures (120, 130 °C), and four sodium hydroxide
concentrations (0.5, 1, 2, 3 % w/w) were tested. The most effective dilute alkali
pretreatment conditions for raw CSTR AD Fiber were 2% sodium hydroxide, 130 °C, and
3 hours. Under these pretreatment conditions the cellulose concentration of the AD Fiber
was increased from 34 to 48%. Enzymatic hydrolysis of 10% (dry basis) pretreated AD
fiber produced 49.8 g/L glucose, while utilizing 62.6% of the raw cellulose in the AD

fiber. The ethanol fermentation on the hydrolysate had an 80.3% ethanol yield.
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2.2. Introduction

A record 10.75 billion gallons of corn-based ethanol was produced in the U.S. in
2009 (RFA 2009).While reducing the need for foreign oil, corn-based ethanol also diverts
comn away from food markets, inevitably resulting in food-fuel competition (Koh and
Ghazoul, 2008). Lignocellulosic biomass from abundant and diverse non-food raw
materials such as agricultural waste offers a better alternative for ethanol production.
Cattle manure is a readily available lignocellulosic biomass capable of being converted
into glucose and other fermentable mono-sugars. It has been estimated that a total of
about 120 million dry tons of cattle manure are produced annually in the United States,
which are from 67,000 dairy farms and 956,500 beef cattle producers that have
approximately 95 million head of cattle evenly distributed across the country (USDA
Economic Research Service, 1997; USDA National Agricultural Statistics Service, 2009).
Currently, AD fiber is an underutilized resource, being used for animal bedding, soil
amendment / fertilizer (Johnson, 2006; Gomez, 1977), and possibly particle board
(Spelter, 2008). Traditionally it has been regarded as too recalcitrant to be utilized for
ethanol production (Tambone, 2009). However as with all lignocellulosic materials,
pretreatment of AD fiber increased the digestibility of the cellulose for enzymatic
hydrolysis. The experimental data demonstrated that the solid effluent of anaerobic
digestion (AD Fiber) is more suitable as a feedstock for ethanol production than raw
manure. Also, dilute alkali pretreatment was determined to be a more effective process
than dilute acid pretreatment due to the high alkalinity of AD Fiber.

Dilute sodium hydroxide at elevated temperature causes the swelling of

lignocellulosic biomass, which leads to a separation in the structural linkages between
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lignin and carbohydrates, a decrease in crystallinity, a decrease in the degree of
polymerization, an increase in internal surface area, and disruption of the lignin structure
(Fan et al. 1987). Saponification of the ester bonds crosslinking xylan hemicellulose and
lignin is believed to be the mechanism of alkali pretreatment (Tarkow and Feist, 1969).
Feedstocks with low lignin content such as agricultural residues, herbaceous crops, and
hardwoods are most suitable for alkali pretreatment. Enzymatic digestibility has been
enhanced for corn stover, wheat straw, sugar-cane bagasse, sunflower stalks, switchgrass,
coastal Bermuda grass, cotton stalks, and hardwoods using sodium hydroxide
pretreatment (Chen et al., 2009; Varga et al., 2002; MacDonald et al. 1983; Sun et al.,
1995; Farid et al., 1983; Fox et al., 1989; Sharma et al., 2002; Soto et al., 1994;; Xu et al.,
2010; Wang et al., 2009; Silverstein et al., 2007; Millet et al., 1976). Dilute sodium
hydroxide pretreatment was more effective on corn stover as compared to dilute acid,
lime, and aqueous ammonia pretreatments. Pretreated com stover with conditions of
120°C, 30 minutes, and 2% sodium hydroxide produced 36.1 g/L glucose and 81.2%
conversion rate after enzymatic hydrolysis of 8% substrate concentration and enzyme
loading of 20 FPU/g substrate(Chen et al. 2009). Switchgrass pretreated with sodium
hydroxide effectively improved the enzymatic digestibility at a variety of temperatures
(Xu et al,, 2010).

This study focused on an alkali pretreatment of AD fiber in order to conclude the
most favorable pretreatment conditions to convert AD fiber into ethanol. The specific
objectives of this study were to: (1) compare the suitability of AD Fiber from a
completely stirred tank reactor (CSTR) for ethanol production with more commonly

researched feedstocks; switchgrass and comn stover, and (2) statistically determine the
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best dilute alkali pretreatment conditions; reaction time, reaction temperature, and sodium
hydroxide concentration. The cellulose utilization efficiency and glucose concentration
after enzymatic hydrolysis were used to determine the best pretreatment conditions. The

equation for the cellulose utilization eﬁ'lciency [%] 1s:

Cellulose Utilization Efficiency [%] =

Substrate DM after pretreatment [g]
Substrate DM before pretreament [g]

Glucose Concentration after Enzymatic Hydrolysis [%]
Hydrolysis Substrate DM [g]

x*

Volume of hydrolyzate[L]

* — * 100
Initial raw feedstock Cellulose Content * 1.11

2.3. Materials and Methods
2.3.1. Fiber Samples

AD fiber samples were collected from a private dairy farm with 3,000 cattle. The
CSTR anaerobic digester was operated at 40°C with a hydraulic retention time of 20
days. Switchgrass and Com Stover were received from the Michigan State University
Crop and Soil Science Teaching and Research Field Facility, and samples were air dried
and grinded on-site using a grinder (Willey Mill, Standard Model No.3, Arthur H.

Thomas, Philadelphia, PA) with 4mm size opening.
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2.3.2. Alkali Pretreatment

The CSTR AD Fiber was pretreated using an autoclave (Brinkmann 2540M,
Tuttnauer USA CO. Ltd, Hauppauge, NY) at three sodium hydroxide concentrations (1%,
2%, 3wt %), two retention times including warm-up time (2, 3 h), and two temperatures
(120, 130 °C) using a CRD. Experimental results determined concentrations below one
percent and retention times less than two hours to be ineffective for AD fiber (Results not
shown). Switchgrass and corn stover were pretreated in the same autoclave at three
sodium hydroxide concentrations (0.5%, 1%, 2%), two retention times (1, 2 h), and two
temperatures (120, 130 °C) using a CRD. Additional pretreatments on switchgrass and
corn stover were conducted with 3% sodium hydroxide under reaction conditions that
showed increased glucose production with increased sodium hydroxide concentration.
This excluded the more severe conditions that decreased glucose production with
increased sodium hydroxide concentrations. Fiber concentration was fixed at 6% based
on dry matter for all pretreatments. Pretreated mixture solutions were neutralized to pH
values of 4.0-5.0 using a 20% sulfuric acid solution, then centrifuged and rinsed using de-
ionized water. Wet solid samples were stored in a freezer at -20 °C. Solid residue was
taken for analysis of dry matter and fiber content.

2.3.3. Enzymatic Hydrolysis

Wet solid samples (2 g dry matter) and de-ionized water were mixed with a total
mass of 20 g into 125 mL shake flasks and autoclaved. Cellulase (ACCELLERASE™
1500, Genencor, Rochester, NY, USA) at a loading of 26 FPU/g dry matter and
autoclaved 0.05 M citrate buffer (pH = 4.8) were added to maintain identical initial dry

matter concentration (5%) except for fiber type. Each flask was placed on a shaker at 140
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rpm inside an incubator set at 50 °C. After 72 hours the aliquots were boiled for 5
minutes and filtered with Whatman (#1) filter paper. The filtrates were filtered into
HPLC vials with Millex-GS 0.22 um membrane for analysis of glucose and other
monomeric sugars such as xylose, arabinose, and galactose. Enzymatic hydrolysis at 10%
dry matter concentration was then performed on the most effectively pretreated samples.
Wet solid samples (2 g dry matter), de-ionized water, and cellulase were mixed with a
total mass of 20 g into 125 mL shake flasks. The solids and de-ionized water mixture was
autoclaved prior to addition of cellulase. Cellulase was added at a loading of 52 FPU/g
dry matter. The remaining procedure for the 10% solids was identical to that of the 5%
solids enzymatic hydrolysis.

2.3.4. Ethanol Fermentation

Saccharomyces cerevisiae DSA obtained from American Type Culture Collection
(ATCC, Manassas, VA) was used in the yeast fermentation. Inoculum was cultured fof
15 h at 30°C in a 250mL flask on ATCC Medium No. 1245 (10 g/L yeast extract, 20 g/L
Bacto peptone, and 20 g/L glucose). The culture broth for inoculum was centrifuged to
collect yeast biomass as inoculum. The inoculum was mixed with an autoclaved nutrition
solution (10 g/L of peptone, 5 g/L of yeast extract, and glucose in the hydrolysates). The
inoculum-to-solution ratio of 1:10 was used to conduct the fermentation. Samples were
taken at the beginning and end of a 24-h fermentation process for glucose and ethanol
analysis.

2.3.5. Analytical Methods
Samples were diluted to 1% dry matter for alkalinity analysis using HACH

method (Loveland, CO). Neutral detergent fiber (NDF), acid detergent fiber (ADF), acid
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detergent lignin (ADL), cellulose, hemicellulose and lignin of the raw samples were
analyzed using Van Soest fiber analysis system (Goering and Van Soest, 1970). Fiber
analysis of the pretreated samples was conducted using the National Renewable Energy
Laboratory’s, Laboratory Analytical Procedure, Determination of Structural
Carbohydrates and Lignin in Biomass (Sluiter et al. 2008). Mono-sugar concentrations
including cellobiose, glucose, xylose, galactose, arabinose and mannose were determined
using a Shimadzu Prominence 2010 with a Bio-rad Aminex HPX-87P analytical column
(300x7.8mm, catalog number 125-0098) and a refractive index detector. The mobile
phase was Millipore water with a flow rate of 0.6 mL /min and column temperature of
60°C. Ethanol concentrations were determined using an Agilent 1100 HPLC system
equipped with a Bio-rad Aminex HPX-87H analytical column (300x7.8mm, catalog
number 125-0140) and a refractive index detector. The mobile phase used was 0.005M
sulfuric acid with a flow rate of 0.6 mL /min and column temperature of 55°C.
2.3.6. Statistical Analysis

A pair-wise comparison using the Statistical Analysis System program 8.0 (SAS
Institute, Inc., Cary, NC) was conducted to evaluate the effects of reaction conditions and
different feedstocks (CSTR AD fiber, switchgrass, and com stover) on glucose

concentration and cellulose utilization efficiency.
2.4. Results
2.4.1. Biomass Characterization

Compared to switchgrass and corn stover, AD fiber has half of the hemicellulose
content (15.9% dry basis) while having only slightly reduced cellulose content (33.9%

dry basis). Lower hemicellulose content reduces the problem of pentose fermentation that
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biorefineries encounter. Considering the integrated process of anaerobic digestion and
bioethanol production, the bacterial consortia within the anaerobic digester consume the
majority of the C-5 sugars producing methane and carbon dioxide. The particle size of
manure fibers is significantly reduced during the AD process as well. Ninety-two percent
of the CSTR AD fiber has a particle size smaller than 1 mm, compared to only seventy-
five percent in washed raw manure (Fig. 2.1.). Corn stover and switchgrass necessitate

energy intensive grinding to reach this particle size.

2.4.2. Effect of Alkali Pretreatment

2.4.2.1. Fiber Components

Dilute alkali pretreatment caused substantially increased cellulose content, while
it caused only a slight change in hemicellulose and lignin contents. In most cases, as the
concentration of sodium hydroxide increased, the lignin content decreased. For the CSTR
AD fiber, the greatest cellulose content (53.6%, dry basis) was attained with the
pretreatment conditions of 130°C, 3 hours, and 3% NaOH. The lowest lignin content
(18.3%, dry basis) was achieved with the pretreatment conditions of 130°C, 3 hours, and
3% NaOH (Table 2.2.).

Switchgrass achieved the greatest cellulose content (62.3%, dry basis) with the
pretreatment conditions of 120°C, 2 hours, and 3% NaOH. The lowest lignin content
(9.1%, dry basis) was reached with the conditions of 130°C, 2 hours, and 2% NaOH
(Table 2.3.). The greatest cellulose content for corn stover (55.1%, dry basis) was
achieved with the pretreatment conditions of 120°C, 1 hour, and 3% NaOH. The lowest
lignin content (5.5%, dry basis) was attained with the conditions of 130°C, 2 hours, and

2% NaOH (Table 2.4.).
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2.4.2.2. Cellulose Utilization Efficiency

The cellulose utilization efficiency (the ratio of cellulose used to produce glucose
with the total cellulose in the original sample) was used to investigate the most effective
conditions for the sodium hydroxide pretreatment of the CSTR AD fiber, comn stover, and
switchgrass. The pretreatment conditions of 120°C and 3% NaOH for 3 hours produced
the highest utilization efficiency (71.4%) of AD fiber (Fig. 2.2.A.). A least square means
for effect was conducted to assess the interaction between time and temperature (Fig.
B.6.); it showed no significant (p>0.05) difference between temperatures of 120 and
130°C for a reaction time of 2 hours but there was significant (p<0.05) difference
between temperatures of 120 and 130° for a reaction time of 3 hours. However, there was
a significant (p<0.05) difference for all cases between reaction times of 2 and 3 hours.
Least square means comparisons of reaction time and alkali concentration (Fig. B.5.)
showed significant (p<0.05) difference between reaction times of 2 and 3 hours on
cellulose utilization efficiency. However, for alkali concentration, the only significant
(p<0.05) difference was that 3% NaOH concentrations were significantly (p<0.05)
greater than 1% NaOH concentrations. Least square means for effect of alkali
concentration and temperature (Fig. B.4.) showed no significant (p>0.05) difference
between conditions except that the condition of 1% NaOH and 130°C was significantly
(p<0.05) less than all other conditions. This leads to the conclusion that for CSTR AD
fiber, reaction time has the greatest effect on cellulose utilization efficiency.

Com stover reached the greatest cellulose utilization efficiency of 70.6% under
the reaction conditions of 120°C, 1% NaOH and 2 hours (Fig. 2.2B). A least square

means comparison of reaction time and alkali concentration (Fig. C.5.) revealed that 2
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hour reaction times produced significantly (p<0.05) greater cellulose utilization than 1
hour reaction times. In addition, the conditions of 1% NaOH and 2 hours produced the
best cellulose utilization and were significantly (p<0.05) greater than all other conditions
except for 2% NaOH and 2 hours. Least square means comparison of reaction time and
temperature (Fig. C.6.) also showed that reaction times of 2 hours produced significantly
(p<0.05) greater cellulose utilization than 1 hour reaction times. There was no significant
(p>0.05) difference between reaction temperatures of 120 and 130°.Reaction conditions
of 120°C and 2 hours produced the best cellulose utilization and was significantly
(p<0.05) greater than all other conditions except for 130°C and 2 hours. Reaction time
had the greatest effect of cellulose utilization efficiency for comn stover.

For switchgrass, the greatest cellulose utilization efficiency of 66.6% was
obtained at 130°C, 1% NaOH and 2 hours, and was significantly (p<0.05) greater than all
other conditions (Fig. 2.2.C.). There was much less dependence on reaction time for the
utilization of cellulose in switchgrass. A least square means comparison of alkali
concentration and reaction time (Fig. D.5.) revealed that for 0.5% NaOH, the cellulose
utilization was significantly (p<0.05) greater for a 1 hour reaction time than for 2 hours.
For 1% NaOH the cellulose utilization was significantly (p<0.05) greater for a 2 hour
reaction time than for 1 hour. With a 2% NaOH concentration, there was no significant
(p>0.05) difference between 1 and 2 hour reaction times. In a least square means
comparison between reaction time and temperature (Fig. D.6.) there was no significant

(p>0.05) difference between any times or temperatures.
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2.4.2.3. Glucose Concentration

Glucose concentrations from enzymatic hydrolysis of pretreated samples were
presented in Fig. 2.2. Reaction time was again the most important factor for the AD fiber.
The highest glucose yield was 29.8 g/L for the reaction conditions of 130°C and 3%
NaOH for 3 hours (Fig. 2.3.A.). This was significantly (p<0.05) greater than all other
reaction conditions except for 130°C and 2% NaOH for 3 hours (Fig. B.4.), which had a
glucose yield of 29.7 g/L. In addition, reaction times of 3 hours produced significantly
(p<0.05) greater glucose concentrations than reaction times of 2 hours in all cases.
Sodium hydroxide concentration was also an important factor of glucose concentration.
In a least square means comparison of alkali concentration and reaction time (Fig. B.2.),
increased alkali concentration resulted in significantly (p<0.05) greater glucose
concentrations in all cases except for at 2 hours and 2 or 3% NaOH. Temperature was
found to be of much lesser importance. In a least square means comparison for the effect
of reaction time and temperature (Fig. B.3.), there was no significant (p>0.05) difference
between temperatures of 120 and 130°C.

Com stover had the largest glucose concentration of 30.5 g/L with the
pretreatment reaction conditions of 120°C, 1 hour, and 2% NaOH (Fig. 2.3.B.). Alkali
concentration of 1% NaOH produced significantly (p<0.05) increased glucose
concentration as compared to 0.5% NaOH, however there was no significant (p>0.05)
difference between 1 and 2% NaOH concentration, as revealed by least square means
comparisons of the effect of alkali concentration and reaction time (Fig. C.2.), and alkali
concentration and reaction temperature (Fig. C.1.). The additional reaction condition of

120°C, 1 hour, and 3% NaOH, produced an increased glucose concentration of 32.2 g/L.
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Least square means comparison of the effect of reaction time and temperature (Fig. C.3.)
revealed no significant (p>0.05) difference in times or temperatures except that the
condition of 130°C and 1 hour produced significantly (p<0.05) lower glucose
concentrations than all other reaction condition combinations.

The largest glucose concentration for switchgrass, 25.1 g/L, was produced from
the pretreatment reaction conditions of 130°C, 2 hours, and 1% NaOH (Fig. 2.3.C)).
However, after additional pretreatments were conducted with 3% NaOH, the largest
glucose concentration was increased to 28.5 g/L, with reaction conditions of 120°C, 2
hours, and 3% NaOH. Sodium hydroxide concentration caused the greatest effects on
glucose concentration. In a least square means comparison of the effect of alkali
concentration and reaction temperature (Fig. D.1.), increased concentration resulted in
significantly (p<0.05) greater glucose concentrations in all but one case, 130°C between 1
and 2% NaOH. Similarly, a least square means comparison of alkali concenﬁation and
reaction time (Fig. D.2.) revealed that increased concentration produced significantly
(p<0.05) greater glucose concentrations in all but one scenario, 2 hours between 1 and
2% NaOH. Reaction time and temperature had much less effect on glucose concentration.
A least square means comparison of reaction time and temperature (Fig. D.3.) revealed
no significant (p>0.05) difference for times or temperatures.

2.4.3. Most Effective Pretreatment Conditions

The reaction conditions that had highest cellulose utilization efficiency and
glucose concentration were chosen as the most effective dilute alkali pretreatment
conditions. For the CSTR AD fiber, the best reaction conditions were 130°C and 2%

NaOH for 3 hours, and 130°C, 3% NaOH, and 3 h. These conditions produced glucose

45



concentrations of 29.7 g/L and 29.8 g/L, with efficiencies of cellulose utilization of 68.2
% and 68.1%, respectively. Due to the fact that low concentration of sodium hydroxide
reduced the chemical loading of the pretreatment, the conditions of 130°C and 2% NaOH
for 3 hours was selected as the best conditions to treat AD fiber.

The most effective reaction conditions for switchgrass and corn stover were both
determined to be 130°C, 1% NaOH, and 2 hours. For switchgrass, this condition
produced a utilization efficiency and glucose concentration of 66.6% and 25.1 g/L
respectively. Efficiency and glucose production for corn stover were 67.6% and 28.9 g/L
respectively. Even though conditions with 3% NaOH produced the greatest glucose
concentrations, the conditions were not chosen because of reduced cellulose utilization
efficiencies and to reduce the chemical loading of pretreatment.

High solids enzymatic hydrolysis (10% dry basis) was then conducted on the
pretreated samples that performed most effectively. Glucose concentrations of 49.8, 53.6,
and 55.4 g/L were produced for the CSTR AD fiber, switchgrass, and corn stover, with
cellulose utilization efficiencies of 62.6, 61.1, and 60.3 % respectively (Fig. 2.4.).

2.4.4. Ethanol Production

Ethanol fermentation was conducted on the hydrolysates from the high solids
enzymatic hydrolysis of the most effectively pretreated feedstocks. An 80.3% ethanol
yield (ethanol yield [%] = ethanol produced [g/L] / (0.51* glucose consumed [g/L])*100)
was obtained from CSTR AD fiber, which was consistent with switchgrass (78.0%) and
corn stover (83.0%) hydrolysates, and significantly (p<0.05) greater than pure glucose

(59.5%). Ethanol concentrations of 14.7, 16.6, 18.1, and 18.9 g/L were produced from
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CSTR AD fiber, comn stover, switchgrass, and pure glucose, with initial fermentation

glucose concentrations of 36.6, 38.8, 45.8, and 59.4 g/L respectively (Fig. 2.5.).
2.5. Discussion

Due to the abundant quantity and year round availability of cattle manure, it
serves as a large potential feedstock for ethanol production without the logistical storage
problems associated with annual crops. The integrated process of anaerobic digestion and
bioethanol production is able to utilize the main components of the biomass in a robust
manner. The hemicellulose is consumed at a higher rate than cellulose in the AD process,
producing methane that is combusted to generate heat and electricity. Therefore the
problems associated with pentose fermentation are avoided and the glucose is utilized in
the biorefinery for ethanol production with a robust commercial yeast strain,
Saccharomyces cerevisiae. The remaining lignin from the biorefinery can be combusted
to producé electricity due to its higher heating value of 21.2 MJ/Kg, dry basis (Domalski,
1987).

Reduced particle size is another benefit of manure fibers after the AD process.
Ninety-two percent of the CSTR AD fiber has a particle size smaller than 1 mm,
compared to seventy-five percent in washed raw cattle manure. Corn stover and
switchgrass necessitate energy intensive grinding to reach this particle size. Removing
the size reduction unit from the bioethanol process will remove 22% of the capital
investment on feedstock storage and handling within the production facility, greatly
improving the efficiency of cellulosic ethanol production (Aden et al., 2002).

To determine if CSTR AD fiber was a suitable feedstock for lignocellulosic

ethanol production, dilute alkali pretreatment was used in a comparison experiment with
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switchgrass and corn stover. Glucose concentration after enzymatic hydrolysis, cellulose
utilization efficiency, and the changes in fiber composition were all used to compare the
three feedstocks.

The statistical analysis on cellulose utilization efficiency elucidated that the most
important reaction condition for CSTR AD fiber and com stover was reaction time. The
effects of temperature and sodium hydroxide concentration were less noticeable.
However, switchgrass was not as dependent on reaction time and showed much less
variability overall, except for the condition of 130°C, 2 hours, and 1% NaOH, which was
significantly (p<0.05) greater than all other conditions. Similarly, the statistical analysis
on glucose concentration revealed that the most significant reaction condition for CSTR
AD fiber and com stover was reaction time. However for switchgrass, the most
significant reaction condition was alkali concentration.

The most effective conditions for CSTR AD fiber were determined to be 130°C, 3
hours, and 2% NaOH, while for corn stover and switchgrass the most effective conditions
were 130°C, 2 hours, and 1% NaOH. The increased severity required for CSTR AD fiber
to be as effectively pretreated as corn stover and switchgrass 1s likely caused by greater
lignin content. The increased lignin content of the AD fiber gives extra structural support
to the fiber, causing resistance to degradation. The results shown indicate that this
recalcitrance is able to be overcome through increased severity. This research was limited
to a maximum temperature of 130°C, but further increasing the temperature will likely
reduce the requirements on reaction time and alkali concentration. Future research
utilizing steam explosion pretreatment, with reaction temperatures as large as 230°C, will

further assess the digestibility of AD fiber (results not included). Increased severity, with
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decreased chemical loadings will allow for further comparisons of AD fiber to
switchgrass and com stover.

In the current research, the conversion efficiencies of CSTR AD fiber for glucose
and ethanol (62.6 and 80.3%) are consistent with those of switchgrass (61.1 and 78.0%)
and corn stover (60.3 and 83.0%) from enzymatic hydrolysis (10% solids) and
fermentation respectively. Glucose concentrations of 49.8, 53.6, and 55.4 g/L were
produced for the CSTR AD fiber, switchgrass, and corn stover respectively. The lower
glucose concentration from the CSTR AD fiber is due to the lower initial cellulose
concentration of CSTR AD fiber as compared to switchgrass and corn stover. The
cellulose utilization efficiencies determined that the cellulose in CSTR AD fiber was able

to be converted better than in switchgrass and com stover.
2.6. Conclusions

This study showed that sodium hydroxide pretreatment was effective in
improving the digestibility of anaerobically digested fiber to enhance the glucose and
ethanol yields from enzymatic hydrolysis and fermentation. Removal of lignin from the
AD fiber assisted the digestibility of the cellulose. The glucose concentration and
cellulose conversion efficiency of CSTR AD fiber was consistent to that of switchgrass
and corn stover. The lower monomeric glucose concentration from the CSTR AD fiber
after enzymatic hydrolysis was due to lower initial cellulose concentration and not the
conversion efficiency. The CSTR AD fiber had the best cellulose conversion efficiency.
However, the study of other pretreatment methods, enzyme loading tests, scale-up,
economic analysis, and life-cycle analysis of the overall conversion processes are needed

for further conclusions.
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Tables

Table 2.1. Fiber characteristics of raw feedstocks.

CSTR AD . Com
fiber Switchgrass Stover
Total Solids (TS) (%) 28.1+0.0 92.0+0.1 95.5+0.1
Cellulose (%TS) 33.9+0.5 37.1+0.5 39.7+1.0
Hemicellulose (%TS) 15.9+1.9 29.9+1.6 299434
Lignin (%TS) 21.1+£1.0 17.6+0.5 8.9+1.2
Alkalinity (mg CaCO3/L) 740+40 90+0 30+10

Table 2.2. Fiber characteristics of pretreated CSTR AD fiber.

Temperature Time Alkali Cellulose Hemicellulose Lignin

) (hr) (%) (%) (%) (%)
120 2 10 434+13 19.8+0.1 233+3.0
120 2 20 458+03 18.7+0.6 220+33
120 2 30 503+21 19.4+0.7 20.8+0.5
130 2 1.0 416106 208+1.5 21.8+0.1
130 2 20 459+038 182+04 189106
130 2 30 453+24 176+1.3 20.5+0.7
120 3 10 428+1.1 206+ 04 235+13
120 3 20 480+25 21425 230+1.5
120 3 30 486+1.1 182+0.6 22.1+0.7
130 3 10 472+£0.0 22.0+0.2 197+ 14
130 3 20 482+22 189+0.0 18.3+0.1
130 3 30 536+0.7 16.2+0.0 21.8+1.7
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Table 2.3. Fiber characteristics of pretreated switchgrass.

Temperature Time Alkali Cellulose Hemicellulose Lignin
(€) (hr) (%) (%) (%) (%)
120 1 05 473+0.7 28.1+02 164+1.8
120 1 1.0 453+0.1 269+0.1 16.7+13
120 1 20 534108 256+03 11.2+0.1
120 1 30 558+00 20.7+0.1 95+4.1
130 1 05 477+0.2 272+0.1 13.1+£03
130 1 1.0 495+1.0 275104 139+0.6
120 1 20 541+02 249+06 11.8+0.8
130 1 30 589+0.1 22.7+0.5 98+0.8
120 2 05 46514 279+0.1 169+25
120 2 1.0 474+1.1 272+04 15.1+14
120 2 20 557+02 258+04 11.5+1.1
120 2 30 623%1.5 21.6+0.1 92+13
130 2 05 465+08 26.8+0.0 15.1+£1.7
130 2 10 527+1.7 27.6+0.1 114+03
130 2 20 562+0.7 257+03 91+0.5

Table 2.4. Fiber characteristics of pretreated corn stover.

Temperature Time Alkali Cellulose Hemicellulose Lignin

(C) () () (%) (%) (%)
120 1 05 46+13 280+13 14.1+0.2
120 1 1.0 506+03 28.7+0.6 10.6 £ 0.1
120 1 20 470+22 26.5+0.3 13.8+3.0
120 1 30 551+04 23.8+0.2 10.0+0.1
130 1 05 435+52 290+1.2 15.2+40
130 1 1.0 508+0.2 293+0.2 10.4+0.2
120 1 20 476+04 265+04 104+1.0
120 2 05 482+1.2 293+1.5 155+0.6
120 2 1.0 498+1.6 298+1.3 104+0.1
120 2 20 502+18 27.0+05 8.7+0.7
130 2 05 458+47 27.7+0.6 149+3.1
130 2 10 483+12 282+0.1 11.3+£0.5
130 2 20 536+0.1 257+ 0.6 55+05
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Figure 2.2. Cellulose utilization efficiency. A: CSTR AD Fiber. B: Corn
Stover. C: Switchgrass.

53



W2 hr @ 120°C
m2hr @ 130°C
m3hr@120°C

3hr @ 130°C

(g/L)

Glucose Concentration

1.0 2.0 3.0
Alkali Concentration (% )

35.0
30.0
25.0
20.0
15.0
10.0

H1hr@ 120°C
m1hr @ 130°C
W2 hr @ 120°C

2hr @ 130°C

0.0

Glucose Concentration
(/L)

0.5 1.0 2.0 3.0

Alkali Concentration (% )

35.0

m1hr @ 120°C
H1hr @ 130°C
m2hr @ 120°C

2hr @ 130°C

Glucose Concentration
(g/L)

0.5 1.0 2.0 3.0

Alkali Concentration (% )

C

Figure 2.3. Glucose Concentration. A: CSTR AD Fiber. B: Corn Stover. C:
Switchgrass.
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CHAPTER 3

3.1. Abstract

Anaerobic digestion (AD) of animal manure is traditionally cléssiﬁed as a
treatment to reduce the environmental impacts of odor, pathogens, and excess nutrients
associated with animal manure. This report shows that AD also changes the composition
of manure fiber and makes it suitable as a cellulosic feedstock for ethanol production.
Anaerobically digested manure fiber (AD fiber) contains less hemicellulose (11%) and
more cellulose (32%) than raw manure, and has better enzymatic digestibility than
switchgrass. Using the most effective dilute alkali pretreatment (2% sodium hydroxide,
130°C, and 2 h), enzymatic hydrolysis of 10% (dry basis) pretreated AD fiber produces
51 g/L glucose at a conversion rate of 90%. The ethanol fermentation on the hydrolysate
has a 72% ethanol yield. The results indicate that 120 million dry tons of cattle manure
available annually in the U.S. can generate 63 million dry tons of AD fiber that can
produce more than 1.67 billion gallons of ethanol. Integrating AD with biorefining will

make significant contribution to the cellulosic ethanol production.
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3.2. Introduction

Anaerobic digestion (AD) is a biological conversion process that has been widely
used to convert organic residues into renewable energy, while alleviating environmental
concerns associated with the waste, such as odor, greenhouse gas (GHG) emissions, and
subsurface contamination (Speece, 1996). A number of microorganisms, including
Clostridia spp. and Archaeobacteria spp., are involved in the AD process. The
microorganisms work synergistically through four biological steps (hydrolysis,
acidogenesis, acetogenesis, and methanogenesis) to degrade the organic matter in
residues (Chynoweth and Isaacson, 1987). There are three output streams of AD: biogas,
liquid effluent, and solid digestate (AD fiber). Methane is the major component in the
biogas; when combusted it produces heat and electricity. Liquid effluent contains
nitrogen and phosphorous; it can be used as a nutrient source to culture algae and can
provide non-food feedstock for bioreﬁneﬁes (Wilkie and Mulbry, 2002). As for the AD
fiber, cellulose and lignin are the major components, which undergo relatively little
changes during conventional AD processes (Table 3.1.). It has been widely accepted by
the scientific community that AD fiber is not suitable to be further converted to other
useful energy/chemical products due to its ‘ ‘recalcitrant’’ structure and low nutrient value
(Tambone et al., 2009). Thus, it is currently used by the agricultural industry as soil
amendment or animal bedding (Johnson et al., 2006). However, there is a lack of research
on AD fiber to answer how ‘‘recalcitrant’” it is, or in another words, is it really
“‘recalcitrant’’ compared to other cellulosic residues? This study conducted on one of the

major lignocellulosic residues, cattle manure, presents interesting findings of
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implementing AD to treat cattle manure and generate large quantities of cellulosic
feedstock. This will make significant contribution to the cellulosic ethanol production.
Cattle manure rich in carbohydrates and protein is a potential source of feedstock
for production of renewable bio-based energy. It has been estimated that 120 million dry
tons of cattle manure are produced annually in the United States on 67,000 dairy and
956,500 beef cattle farms (USDA Economic Research Service, 1997, USDA National
Agricultural Statistics Service, 2009). It can generate 63 million dry tons of AD fiber that
can produce more than 1.67 billion gallons of ethanol. This will make a significant
contribution to the goal of generating 16 billion gallons of cellulosic fuel in the U.S. by
2022. Most cattle farms have large storage space, and operate year round, while the
cellulosic bioethanol industry is concerned about an insufficient supply of feedstock for
producing bioethanol as a fossil fuel substitute (Perlack et al., 2005). If the majority of
cattle farms in the U.S. apply AD technology, the combination of animal operation and
AD will not only generate a cellulosic feedstock with improved quality, but also provide
an excellent supply system for biomass distribution; this will significantly alleviate the
barrier of feedstock logistics. Besides cellulosic feedstock production, extensive
application of AD technology on 120 million dry tons of cattle manure will capture 14
million tons of methane (equivalent to the Global Warming Potential (GWP) of 302
million tons of CO2) that is capable of generating 756 PJ of heat. An integrated solution
of cattle manure treatment and bioethanol production will turn an environmental (soil,

water, and air pollution) and economic liability into a public and private asset.
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3.3. Materials and Methods

3.3.1. Fiber Samples

Raw manure and AD fiber samples were collected from a private dairy farm with
3,000 cows. Washed raw manure and AD fiber samples were obtained by washing 1 kg
of raw sample six separate times with 6 kg of de-ionized water each and then separating
out the solid using 20 and 60 mesh screens respectively. Switchgrass was collected from
the Michigan State University Crop and Soil Science Teaching and Research Field
Facility, and samples were dried and grinded on-site using a grinder (Willey Mill,
Standard Model No.3, Arthur H. Thomas, Philadelphia, PA) with 4mm size opening.
3.3.2. Dilute Sulfuric Acid Treatment

Different fibers were treated in flasks using autoclave (Brinkmann 2540M,
Tuttnauer USA Co. Ltd, Hauppauge, NY) at various acid concentration (1%, 2%, 3 wt%),
retention time (0.5, 1, 2 h) and temperature (110, 120, 130°C) using a complete random
design (CRD). Fiber concentration was fixed at 6% based on dry matter. Treated mixture
solutions were neutralized to pH values of 4.0-5.0 using a 20% sodium hydroxide
solution. After filtering with Whatman (#1) filter paper and washing the contents using
300mL de-ionized water, wet solid samples were stored in a freezer at -20°C. Solid
residue and filtrate were taken for the analysis of mono-sugars, dry matter, and fiber
content.
3.3.3. Alkali Treatment

The alkali treatments were also carried out by a CRD with two replications of 54
treatment combinations. Three sodium hydroxide concentrations (0.5%, 1%, 2 wt%) with

three reaction durations (0.5, 1, 2 h) were investigated at three different temperatures
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(110, 120, 130°C). Fiber concentration was fixed at 6% dry matter. The treatment was
fulfilled in the same autoclave described above. Treated mixture solutions were
neutralized to pH values of 4.0-5.0 using 20% sulfuric acid solution. Treated samples
were centrifuged and rinsed using de-ionized water. Wet solid samples were stored in a
freezer at -20°C. Solid residue and filtrate were taken for the analysis of mono-sugars, dry
matter, and fiber content.
3.3.4. Enzymatic Hydrolysis Process

Wet solid samples (1 and 2 g dry matter) and de-ionized water were mixed with a
total mass of 20 g into a 125mL shake flask, which makes the solid concentrations of 5%
and 10% (w/w). All mixed samples were autoclaved before adding enzymes. Cellulase
(ACCELLERASETM 1000, Genencor, Rochester, NY) at loading of 26 FPU/g dry
substrate at 5% solid concentration and 52 FPU/g dry substrate at 10% solid
concentration were used to fulfill the enzymatic hydrolysis. The flasks were shook at 140
rpm, and the reaction temperature was 50°C. After 72 h, aliquots were boiled for 5 min
and filtered with Whatman (#1) filter paper. The filtrates were filtered into HPLC vials
with Millex-GS 0.22 mm membrane for analysis of glucose and other monomernic sugars
such as xylose, arabinose, and galactose.
3.3.5. Ethanol Fermentation

Saccharomyces cerevisiae DSA obtained from American Type Culture Collection
(ATCC, Manassas, VA) was used in the yeast fermentation. Inoculum was cultured for

15 h at 30°C in a 250mL flask on ATCC Medium No. 1245 (10 g/L yeast extract, 20 g/L
Bacto peptone, and 20 g/L glucose). The culture broth for inoculum was centrifuged to

collect yeast biomass as inoculum. The inoculum was mixed with an autoclaved nutrition
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solution (10 g/L of peptone, 5 g/L of yeast extract, and glucose in the hydrolysates). The
inoculum-to-solution ratio of 1:10 was used to conduct the fermentation. Samples were
taken at the beginning and end of a 24-h fermentation process for glucose and ethanol
analysis.

3.3.6. Analytical Methods

Samples were diluted to 5% dry matter for ammonium and total Kjedahl nitrogen
(TKN), and to 1% dry matter for alkalinity analysis using HACH method (Loveland,
CO). Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin
(ADL) of samples were analyzed using Van Soest Fiber Analysis System (Goering and
Van Soest, 1970). NDF, ADF, and ADL were used to calculate cellulose, hemicellulose,
and lignin contents. Cellulose and hemicellulose can be determined by the differences of
%ADF-%ADL and %NDF-%ADF, respectively. Lignin content was expressed by ADL.
Glucose, ethanol and other mono-sugars were determined using an Agilent 1100 HPLC
system equipped with a Bio-rad Aminex HPX-87H analytical column and a refractive
index detector. The mobile phase was 0.005M sulfuric acid with a flow rate of 0.6
mL/min. Column temperatures were 65 and 55°C for sugar and ethanol, respectively
(Ruiz and Ehrman, 1996). High purity standards including glucose (Catalog Number:
49158), xylose (Catalog Number: 95729), galactose (Catalog Number: 48259), arabinose
(Catalog Number: 10840), and ethanol (Catalog Number: 459828) were purchased from
Sigma-Aldrich, St. Louis, MO.

3.3.7. Statistical Analysis
Pair-wise comparison using the Statistical Analysis System program 8.0 (SAS

Institute, Inc., Cary, NC) was conducted to evaluate the effects of reaction conditions and
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different feedstocks (raw manure, AD fiber, and switchgrass) on glucose conversion and
ethanol production.

3.4 Results

3.4.1. Fiber Quality

To better quantify the effects of AD, the composition changes of manure fibers
during the course of AD were investigated. The hemicellulose and protein contents in
manure are significantly reduced, while the cellulose and lignin contents are greatly
increased (Table 3.1.). Compared to switchgrass, AD fiber contains lower hemicellulose
content (11.6%, dry basis) and similar cellulose content (32.3%, dry basis). Lower
hemicellulose content eliminates the problem of pentose utilization that cellulosic
biorefineries encounter. Considering the integrated process (AD and bioethanol
production), the majority of C-5 sugars was utilized by AD to generate methane. The
higher heating value of methane is larger than ethanol (approximately 52.5 MJ/kg).
Methane from hemicellulose generates more energy (electricity energy) than ethanol
from hemicellulose due to the relatively low conversion rate (80%) of C-5 sugars to
ethanol (Aden et al., 2002). Meanwhile, a non-recombinant, industrially robust
fermenting strain, S. Cerevisiae, can be used to efficiently perform the hexose (C-6 sugar)
fermentation on AD fiber for ethanol production. Thus, in terms of system efficiency, the
integrated process is better than ethanol production on both C-5 and C-6 sugars from raw
manure. Additionally, the particle size is reduced during AD. Eighty-eight percent (dry
basis) of plug-flow AD fiber has a particle size smaller than 1 mm, while the original
manure fiber has 75% (dry basis) (Fig. 2.1.). Since 22% of capital investment on

feedstock storage and handling of a cellulosic ethanol production process is for size
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reduction unit (Aden et al., 2002), removing the size reduction unit from the bioethanol
process, along with using AD fiber with lower hemicellulose content, will significantly
reduce the production cost, and therefore greatly improve the efficiency of cellulosic
ethanol production. Accordingly, AD fiber has more favorable chemical and physical
properties than other cellulosic feedstocks such as switchgrass (Table 3.1). However, the
degree to which AD fiber is “‘recalcitrant’’ still has not been answered.

3.4.2. Hydrolysis and Fermentation

In order to explore how *‘recalcitrant’ it is, the AD fiber was used as a feedstock,
along with raw manure, washed AD fiber (removing the alkalinity), and switchgrass, to
compare enzymatic digestibility. Two pretreatment methods of dilute acid and dilute
alkali treatments, followed by enzymatic hydrolysis, were selected to investigate the
digestibility. The acid treatment experiments concluded that the most effective conditions
were 1% of acid concentration,A 130°C of reaction temperature, and 2 h of reaction time.
Enzymatic hydrolysis of the acid treated AD fiber has a glucose conversion rate of 22%,
which is higher than that of acid treated raw manure (12%) and lower than acid treated
washed AD fiber (41%) (Fig. 3.1.A, Table 3.2.). Under the same reaction conditions
(130°C of reaction temperature and 2 h of reaction time) with 1% of sodium hydroxide
concentration the alkali-treated AD fiber has a 73% glucose conversion rate (glucose
conversion rate [%] = glucose content [g]/ (1.1*cellulose in sample [g])*100), which is
significantly (P<0.05) higher than that of raw manure (19%) and washed AD fiber (67%)
(Fig. 3.1.B, Table 3.2.). The difference in glucose conversion rates between AD fiber and
washed AD fiber are mainly caused by the alkalinity and ammonia content in the samples

(Table 3.1.). During the acid treatments, the higher alkalinity in AD fiber consumed a
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certain amount of acid and decreased the efficiency of the acid treatment; while in the
alkali treatments the performance was enhanced due to the alkalinity and ammonia in AD
fiber. Based on glucose conversion rates from two different treatments, the dilute alkali
method is more effective than the dilute acid method to treat AD fiber. Furthermore, the
optimization of dilute alkali treatment of AD fiber concluded that, under the most
effective dilute alkali treatment (2% of alkali concentration, 130°C of reaction
temperature, and 2 h of reaction time), the treated AD fiber generates 51 g/L glucose at a
90% glucose conversion rate (Table 3.2., Fig. 3.2.).

A comparison experiment was conducted with switchgrass using optimized dilute
alkali treatment (Fig. 3.1.C., Table 3.2.). The alkali treated AD fiber has a glucose
conversion rate of 90%, significantly (P<0.05) higher than switchgrass (62%). The data
demonstrate that the alkali treated AD fiber has better enzymatic digestibility than alkali-
treated switchgrass. In order to further evaluate the ethanol production yield from AD
fiber, an enzymatic hydrolysis of dilute alkali-treated fiber at high solid contents (10%
dry basis) followed by ethanol fermentation was conducted (Fig. 3.1.D.). Alkali treated
AD fiber and switchgrass were compared using a C-6 fermentation strain S. cerevisiae
DSA. A 72% ethanol yield (ethanol yield [%] = ethanol produced [g]/(0.51*
1.11*cellulose in sample [g]*100)) was obtained from AD fiber, which has no significant
(P>0.05) difference between pure glucose and switchgrass hydrolysate. These results,
combined with low hemicellulose content and reduced size, confirm that AD can act as
an environmentally friendly biological pretréatment method to develop a desirable

feedstock (AD fiber) for biorefineries.
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3.5. Discussion

3.5.1. Mass Balance

Based on the experimental results, a mass balance analysis was conducted on a
cow to discover the impacts of AD fiber on ethanol production. Approximately 55 kg
manure per day at 84.5% moisture content was excreted from one cow. After mixing with
recycled AD liquid effluent, one kilogram of AD influent contains 0.12 kg of total solid,
0.132 kg of COD, 0.026 kg of cellulose, 0.020 kg of hemicellulose, 0.017 kg of lignin,
and 0.025 kg of crude protein. The detailed mass balance is presented in Figure 3.3. After
20 days of AD, 40% of chemical oxygen demand (COD) was converted into biogas, 77%
of protein and 56% of hemicellulose was consumed, while both cellulose and lignin were
only slightly changed (7% and10% reductions for cellulose and lignin, respectively).
After liquid/solid separation of AD effluent, 4.5 kg/day of AD fiber with 32.3% cellulose,
11.6% hefm'cellulose, and 25.1% lignin was produced. The data from the experiments of
enzymatic hydrolysis and fermentation were applied in the calculation of the mass
balance. The 8.5 kg of dry manure per day from a cow can produce 0.347 kg ethanol/day.
Since approximately 120 million dry tons of cattle manure is available in the U.S. (USDA
Economic Research Service, 1997), it can produce 63 million tons of AD fiber as
cellulosic feedstock via AD technology. A potential ethanol production of 1.67 billion
gallons per year can be produced from this amount of biomass, which accounts for
approximately 10% of the 16 billion gallons of cellulosic biofuel by 2022 (The Energy
Independence Act, 2007). In addition, the optimal carbon/nitrogen (C/N) ratio of AD is
25-32:1 and cattle manure has a C/N ratio of 15:1 (Table I), which means that there is a

potential of mixing other high C/N ratio agricultural residues such as com stover and
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switchgrass with cattle manure to improve the performance of the digestion. This will
greatly increase the amount of AD fiber, and lead to production of more ethanol from
integrated animal operations and ethanol production.

3.5.2. Water Balance

Integrating AD and ethanol fermentation addresses the concern of water demand
by cellulosic ethanol production. Two to six gallons of water are needed to produce a
gallon of ethanol from cellulosic feedstocks such as switchgrass and corn stover (Aden,
2007). Reducing the total amount of water use for cellulosic ethanol production is one of
the keys towards a sustainable bioenergy solution. A mass balance on water shows a
positive water demand for AD fiber ethanol production (Fig. 3.4.). The moisture in the
manure provides enough water for the process. The AD and ethanol production in the
integrated system generate 35 kg/cow/ day of liquid effluent with less nutrients and 8
kg/cow/day of distilled water, respectively. The water can be recycled for dilution and
other uses during the AD and ethanol production. Thus, additional fresh water is not
necessary for the process.

3.5.3. Environmental Impacts

Implementation of AD to confine the methane production will alleviate the GHG
emissions associated with the animal industry. Current disposal practices for manure
cause methane to be released through natural processes. Up to 7% of total GHG
emissions are from methane generated directly by animal-related agricultural operations
(Steinfeld et al., 2006). If the 120 million dry tons of cattle manure available annually in
the U.S. is treated by AD, 14.4 million tons of methane (based on 1.02 kg of methane per

8.5 kg dry cattle manure in Fig. 3.3)) is captured each year (equivalent to the GWP of
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302.4 million tons of CO2); burning the methane will generate 756 PJ of heat (the heating
value of methane is 52.5 MJ/kg). Considering both methane and ethanol from the
integrated AD/ethanol system on cattle manure, 13.4 million tons of carbon (10.8 million
tons from 14.4 million tons of methane, and 2.6 million tons from 1.67 billion gallons of
ethanol) will be sequestrated annually in the United States.

3.5.4. New Model of Ethanol Production

The new model of ethanol production can be established based upon these results
(Fig. 3.5.). A regional bioethanol production plant could be centralized within cattle/dairy
farmland. A 20 million gallon (60 million kg) ethanol production needs 688 tons of dry
manure cellulose per day (1 ton of dry manure cellulose produces 240 kg of ethanol
based on the experimental result presented in Fig. 3.3.) as feedstock; medium size
cattle/dairy farms with 1,000 cows generate 8.5 ton dry manure per day. Using AD to
treat this manure, each farm can produce 1.45 tons of dry AD cellulose per day. Four
hundred seventy-five medium size cattle/dairy farms can produce 400 tons of dry AD
cellulose per day for 20 million gallons of ethanol production. Implementation of AD on
a national scale with 1 million cattle farms will yield approximately 63 million dry tons
of AD fiber annually for ethanol production. Eighty-two 20 million gallon cellulosic
ethanol plants can be established using the AD fiber as feedstock (Table 3.3.). The year-
round operation, compared with seasonal grain-based feedstocks, plus large available
space on cattle and dairy farms, provide a local supply system for biomass distribution,
significantly reducing the transportation and storage cost for the bioethanol production.
The waste streams from ethanol production such as stillage can be transported back to the

farm as animal feed or AD influent. In addition, the sustainability of cattle production

71



systems will be improved by reducing the GHG emissions, potential surface and ground
water pollution, and noxious odor, while at the same time generating electricity and AD
fiber that will greatly enhance farm income. The integration of AD and cellulosic ethanol
production will create a win-win-win solution for fuel ethanol production, cattle

operations, and the environment.
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Figure 3.3. Mass balance of integrated anaerobic digestion and ethanol production system per dairy cow. a: All data used in the
mass balance calculation (except CO2 from CHP system) were obtained from lab experiments and digester operation.

b: Carbon dioxide generated from CHP was calculated based on the stoichiometric relationship of methane and carbon dioxide.

One kilogram of methane is theoretically capable of generating 2.75 kg of CO2.
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Amount: 68.4 kg/day

Anaerobic Digester

Liquid/Solid

E-100 Ethanol production

Water in solid residue
Amount: 3.2 kg/day

)

Water in AD Fiber

Water in stillage

Separation

Water in AD Liquid
effluent
Amount: 56.9 kg/day

v
To algal culture or / Waste water
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Distilled water
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Ethanol production

Distilled water used for

ethanol production
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A/

Extra distilled water
Amount: 8 kg/day

Figure 3.4. Water balance of integrated anaerobic digestion and ethanol production.
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—— Cattle Farms in the U.S. (USDA 2002)

1 Blue dot = 10 Farms

A regional ethanol
biorefinery surrounded
by cattle farms with AD
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bio,

Anaerobic
digester

Anaerobic

AD fiber digester

Animal
manure
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manure

Regional
Ethanol Biorefinery

Animal
manure

Animal
manure

Anaerobic
Cellulosic digester

Anaerobic
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AD fiber
Cellulosic
biomass

biomas Lignin
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Figure 3.5. Operational model of anaerobic digestion systems and regional ethanol production.
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Conclusions

Due to the abundant quantity and year round availability of cattle manure, it
serves as a large potential feedstock for ethanol production without the logistical storage
problems associated with annual crops. Each cattle produces 8.5 kg of dry manure per
day, which can be converted to 0.347 kg ethanol/day. Since approximately 120 million
dry tons of cattle manure is available in the United States, it can produce 63 million tons
of AD fiber as cellulosic feedstock via AD technology. A potential ethanol production of
1.67 billion gallons per year can be produced from this amount of biomass, which
accounts for approximately 10% of the 16 billion gallons of cellulosic biofuel by 2022.
The integrated process of anaerobic digestion and bioethanol production is able to utilize
the main components of the biomass in a robust manner. The hemicellulose reducing
sugars are consumed at higher rates than cellulose in the AD process, producing methane
and carbon dioxide, which are combusted to generate heat and electricity. Therefore the
problems associated with pentose fermentation are avoided and the cellulose is utilized in
the biorefinery for ethanol production with a robust hexose fermenting commercial yeast
strain, Saccharomyces cerevisiae.

In addition, the optimal carbon/nitrogen (C/N) ratio of AD is 25-32:1 and cattle
manure has a C/N ratio of 15:1 (Table 3.1.), which means that there is a potential of
mixing other high C/N ratio agricultural residues such as com stover and switchgrass
with cattle manure to improve the performance of the digestion. This will greatly increase
the amount of AD fiber, and lead to production of more ethanol from integrated animal

operations and ethanol production.
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The main reason AD fiber is a suitable feedstock for lignocellulosic ethanol
production is based on the results from enzymatic hydrolysis and fermentation. The
conversion efficiencies for raw cellulose to gluc‘;se and glucose to ethanol for CSTR AD
fiber (62.6 and 80.3%) were consistent with that of switchgrass (61.1 and 78.0%) and
corn stover (60.3 and 83.0%). The glucose and ethanol concentrations after enzymatic
hydrolysis and fermentation for CSTR AD fiber (49.84 and 14.69 g/L) were also
consistent with switchgrass (53.63 and 18.10 g/L) and corn stover (55.42 and 16.61 g/L).
The CSTR AD fiber had lower glucose and ethanol concentrations due to the lower initial
cellulose concentration and not the conversion efficiency.

Reduced particle size is another benefit of manure fibers after the AD process.
Ninety-two percent of the CSTR AD fiber and ninety-six percent of the PFR AD fiber
have a particle size smaller than 1 mm, compared to only seventy-five percent for washed
raw manure. Corn stover and switchgrass necessitate energy intensive grinding to reach
this particle size. Removing the size reduction unit from the bioethanol process will
remove 22% of the capital investment on feedstock storage and handling within the
production facility, greatly improving the efficiency of cellulosic ethanol production
(Aden et al., 2002).

Reducing the total amount of water use for cellulosic ethanol production is also
one of the keys towards a sustainable bioenergy solution. Two to six gallons of water are
needed to produce a gallon of ethanol from cellulosic feedstocks such as switchgrass and
corn stover (Aden, 2007). The mass balance on water showed a positive water demand
for AD fiber ethanol production, which meant that the moisture in the manure provided

enough water for the process.
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The new model of ethanol production can be established based upon these results.
A regional bioethanol production plant could be centralized within cattle/dairy farmland.
In order to produce 20 million gallons of ethanol, 688 dry tons of manure cellulose is
required per day as feedstock. Medium sized cattle or dairy farms with 1,000 cows
generate 8.5 dry tons of manure per day. Using AD to treat this manure, each farm can
produce 1.45 tons of dry AD cellulose per day. Four hundred seventy-five medium size
cattle/dairy farms can produce 688 dry tons of AD cellulose per day for 20 million
gallons of ethanol production.

Nationwide, eighty-two 20 million gallon cellulosic ethanol plants can be
established using the AD fiber as feedstock. The year-round operation, compared with
seasonal grain-based feedstocks, plus large available space on cattle and dairy farms,
provide a local supply system for biomass distribution, significantly reducing the
transportation and storage cost for the bioethanol production. The waste streams from
ethanol production such as stillage can be transported back to the farm as animal feed or
AD influent. In addition, the sustainability of cattle production systems will be improved
by reducing the GHG emissions, potential surface and ground water pollution, and
noxious odor, while at the same time generating electricity and AD fiber that will greatly
enhance farm income. The integration of AD and cellulosic ethanol production will
create a win-win-win solution for fuel ethanol production, cattle operations, and the
environment.

Recommendations for further analysis include; addition of com stover and
switchgrass to the AD, the study of other pretreatment methods including steam

explosion, enzyme loading tests, fermentation optimization, scale-up, economic analysis,
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and life-cycle analysis of the overall conversion processes. All these areas must be
addressed to reach further conclusions about the integrated process of anaerobic digestion

and biorefining.
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Appendices

Appendix A

Dilute Sodium Hydroxide Pretreatment Conditions and Hydrolysis Results

Table A.1. CSTR AD Fiber Pretreatment Conditions and Hydrolysis Results

. . Glucose Cellulose Utilization
Temperature Time Alkali Concentration Efficiency
(C) (hr) (%) (g/L) (%)
120 2 1 15.95 46.45
120 2 1 15.55 44 .49
120 2 2 16.57 45.31
120 2 2 16.76 47.18
120 2 3 17.85 48.27
120 2 3 18.63 51.11
130 2 1 15.04 43.76
130 2 1 16.44 45.20
130 2 2 18.05 48.99
130 2 2 17.45 4481
130 2 3 18.03 49.18
130 2 3 17.73 51.96
120 3 1 24.07 71.93
120 3 1 22.10 68.51
120 3 2 25.11 70.14
120 3 2 24.79 68.94
120 3 3 2691 68.92
120 3 3 29.04 73.83
130 3 1 22.99 59.16
130 3 1 23.78 61.73
130 3 2 30.56 71.84
130 3 2 28.76 64.50
130 3 3 30.02 70.14
130 3 3 29.67 66.06
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Table A.2. Switchgrass Pretreatment Conditions and Hydrolysis Results

Temperature Time Alkali Glucose. Celiulose }Jtilization
Concentration Efficiency

(€) (hr) (%) (g/L) (%)

120 1 0.5 18.15 48.67
120 1 0.5 18.25 50.69
120 1 1.0 22.01 52.51
120 1 1.0 21.43 51.27
120 1 2.0 23.55 54.22
120 1 2.0 25.85 45.81
130 1 0.5 18.06 48.08
130 1 0.5 18.86 46.89
130 1 10 22.19 55.00
130 1 1.0 21.68 54.66
130 1 2.0 23.45 56.45
130 1 2.0 24.52 56.18
120 2 0.5 17.52 48.77
120 2 0.5 17.19 51.24
120 2 1.0 21.43 53.30
120 2 1.0 21.71 53.68
120 2 2.0 25.78 58.59
120 2 2.0 24.07 58.54
130 2 0.5 12.79 35.69
130 2 0.5 11.24 27.67
130 2 1.0 25.04 66.01
130 2 1.0 25.10 67.26
130 2 2.0 24 .87 55.54
130 2 2.0 24.08 52.73
120 1 3.0 25.86 58.12
120 1 3.0 28.10 58.16
130 1 3.0 26.12 57.40
130 1 3.0 26.54 58.47
120 2 3.0 30.15 60.27
120 2 3.0 26.85 58.81
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Table A.3. Comn Stover Pretreatment Conditions and Hydrolysis Results

: Glucose Cellulose Utilization
Temperature Time NaOH Concentration Efficiency

(€) (hr) (%) (/L) (%)

120 1 0.5 24.95 59.31
120 1 0.5 19.74 46.67
120 1 1.0 26.23 53.60
120 1 1.0 28.99 52.60
120 1 20 32.93 57.22
120 1 2.0 28.10 52.39
120 1 3.0 31.88 63.02
120 1 3.0 32.55 63.00
130 1 0.5 17.70 44 .59
130 1 0.5 21.92 53.07
130 1 1.0 20.66 43.90
130 1 1.0 23.41 51.08
130 1 2.0 24 40 50.78
130 1 20 18.36 37.73
120 2 0.5 22.35 60.55
120 2 0.5 21.84 58.32
120 2 1.0 28.12 66.42
120 2 1.0 30.55 74.71
120 2 2.0 27.07 66.10
120 2 2.0 28.03 64.04
130 2 0.5 20.29 49.50
130 2 0.5 19.51 50.04
130 2 1.0 25.46 57.64
130 2 1.0 32.39 77.51
130 2 2.0 28.99 62.44
130 2 2.0 27.26 59.50
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