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ABSTRACT 

 

GIS BASED STOCHASTIC MODELING OF GROUNDWATER SYSTEMS UISNG 

MONTE CARLO SIMULATION 

 

By 

 

Dipa Dey 

 

Stochastic modeling of subsurface flow and transport has become a subject of wide 

interest and intensive research for last few decades and results evolution of many stochastic 

theories. These theories, however, have had relatively little impact on practical groundwater 

modeling. In a recent forum on stochastic subsurface hydrology: from theory to application, a 

number of leading experts in stochastic modeling stress that data limitation, the assumptions of 

linearization, stationarity, Gaussianity, and excessive computations required are the bottlenecks 

in practical stochastic modeling. These bottlenecks must be removed or substantially relaxed 

before stochastic modeling methods can be routinely applied in practice. Motivated by these 

critical assessments, this research addresses the issue of Gaussianity and issues of data 

limitations in stochastic modeling. The issue of Gaussianity is addressed by Monte Carlo 

Simulation (MCS). Data limitations issues are addressed using new source of Geographic 

Information Systems (GIS) database. 

My first application considers a comprehensive study of synthetic scenarios to investigate the 

probabilistic structure of basic hydrogeological variables such as hydraulic head, groundwater 

velocity, concentration, seepage flux and solute flux. Results indicate that the statistical structure 

of groundwater systems in general non-Gaussian, nonstationary and anisotropic. Some critical 

state variables are extremely complex, with the probability distribution varying rapidly with 

locations and directions even for very weak heterogeneity. This study concludes that we can not  

always use variance as a good measure of uncertainty. Actual probability distribution from more



accurate and generalized method such as MCS is a better way to characterize the structure of 

hydrogeological variables. This research represents the first systematic analysis of the 

probabilistic structure of basic hydrogeological variables and findings from this work have 

significant implications on theoretical and practical stochastic subsurface hydrology. 

 My second application involves probabilistic delineation of well capture zones. In this 

paper, we explore the use of a recently-developed statewide GIS database in Michigan. We are 

particularly interested in exploring if the relatively crude, but detailed datasets can be used to 

characterize aquifer heterogeneity with sufficient details to enable practical stochastic modeling. 

We consider three approaches such as deterministic, stochastic macrodispersion, stochastic 

Monte Carlo, to delineate well capture zones, each representing a different way to conceptualize 

aquifer heterogeneity. Results show deterministic approach that accounts only for the effect of 

large-scale trend leads to capture zones that are significantly smaller than its stochastic 

counterpart. Stochastic Monte Carlo approach that models large-scale trends deterministically 

and small-scale heterogeneity as random field provides a probability map of well capture zone 

which is useful for risk-based decision making processes. Stochastic macrodispersion approach 

that models large-scale trends deterministically and small-scale heterogeneity as effective 

macrodispersion, provides a computationally efficient alternative to delineate well capture zones. 

A probability map of well capture zone has important implications for environmental policy on 

source water protection, risk management and sampling design.  
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PAPER 1 

 PROBABILISTIC STRUCTURE OF HYDROGEOLOGIC VARIABLES 

Dipa Dey and Huasheng Liao
 

Department of Civil and Environmental Engineering 

Michigan State University, East Lansing, Michigan 48824 

 

1.1 ABSTRACT 

Most stochastic groundwater analyses rely on the critical assumption of Gaussianity for 

hydrogeological variables involved, although little is known systematically on their probabilistic 

structure. The conventional wisdom is – as long as the input source variability is not too strong 

and Gaussian, most dependent hydrogeological variables will be approximately normally 

distributed and a first-order method can be used to compute the first two statistical moments 

which can then be used to characterize the probabilistic distributions. This assumption is 

essentially the foundation of stochastic perturbation theory and the recent stochastic revolution 

that produced a huge body of literature on perturbation methods in the past three decades. Many 

researchers, however, question the validity of this assumption, stressing that the reliance on 

Gaussianity is one of the reasons stochastic methods are so difficult to apply in practice.  

In this study, we investigate systematically the probabilistic structure of basic hydrogeological 

variables by performing an integrated analysis of groundwater flow and solute transport in 

heterogeneous media. In particular, we investigate the probabilistic distribution of hydraulic 

head, velocity, solute concentration, seepage flux, and solute flux, assuming hydraulic 

conductivity to be the source of uncertainty. We also investigate the effect of spatial integration 

on the probabilistic structure of seepage and solute fluxes. We consider both statistically uniform 
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and nonuniform flows for a range of situations, including weakly and strongly heterogeneous 

media, stationary and nonstationary media, and with and without aquifer stresses. We use the 

Monte Carlo approach to solve the stochastic groundwater flow and transport equations and 

make use of a recently-developed stochastic modeling software system. This software system is 

based on a new computing paradigm that enables real-time, parallel visual analysis and modeling 

of large numbers of realizations without storing them in memory or on disk, eliminating an 

implementation bottleneck in stochastic modeling. We observe and analyze the simulated 

probability distributions of interested variables throughout the computational domain at 

representative locations and of spatially integrated fluxes across transects of different lengths. 

We assess the Gaussianity of these probability distributions both visually and using the Q-Q plot 

technique. We also assess the feasibility to fit the simulated probabilities with empirical 

distribution under general conditions. 

The following key findings emerge from this research:  

• The statistical structure of a groundwater system under general, nonstationary condition 

is complex and cannot be characterized by a few simple statistical moments. Even when 

lnK is assumed to be Gaussian, the dependent hydrogeological variables can be strongly 

non-Gaussian, nonstationary, and for those that are directional, anisotropic.  

• The closest to Gaussian, among all variables simulated, is the probability distribution of 

hydraulic head, when the scale of heterogeneity is much smaller than the domain size 

(e.g., 1/33 of the problem scale).  

• The probability distribution of hydraulic head in response to larger scale heterogeneity 

(e.g., greater 1/10 of the problem scale) is often non-Gaussian and nonstationary and 

cannot be accurately fitted with a single functional distribution. 
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• The probability distribution of groundwater velocity is direction-dependent. The 

probabilistic structure of longitudinal velocity is strongly skewed. 

• The probability distribution of transverse velocity is approximately Gaussian or 

symmetrically distributed, even in the presence of strong heterogeneity.  

• Seepage flux across a transect – representing integration of strongly skewed velocity, is 

approximately Gaussian, even in the presence of strong heterogeneity.  

• Probability distribution of solute concentration is far from Gaussian and strongly 

nonstationary when the source size is relatively small (e.g., less than 10 lnK correlation 

scales), even for aquifers with very weak heterogeneity. The complex concentration 

probability distribution cannot be fitted with a single functional distribution.  

• Solute flux across a transect, unlike its seepage flux counterpart, is strongly non-Gaussian 

and location-dependent.  

This research represents the first comprehensive analysis of the probabilistic structure of basic 

hydrogeological variables and findings from this work have significant implications on 

theoretical and practical stochastic subsurface hydrology.  

 

1.2 INTRODUCTION 

Most stochastic groundwater analyses rely on the critical assumption of Gaussianity. The 

conventional wisdom is – as long as the source variability is not too strong and is Gaussian, most 

dependent hydrogeological variables would be approximately normally distributed. This is 

essentially the foundation of stochastic perturbation theory and the huge body of literature on 
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stochastic perturbation methods for flow and transport developed in the past three decades 

[Dagan, 1989; Gelhar, 1993; Cushman, 1997; Neuman, 1997; Zhang, 2001; Rubin, 2003]. Many 

researchers, however, question the validity of this assumption, stressing that the reliance on 

Gaussianity is one of the major reasons why stochastic methods are so difficult to apply in 

practice [Bellin et al., 1992a; Zhang and Neuman, 1995a-d; Hamed et al., 1996; Saladin and 

Fiorotto, 1998; Guadagnini and Neuman, 1999a,b; Zhang, 2001; Lu et al., 2002; Dagan, 2002; Li 

et al., 2003; Winter et al., 2003; Zhang and Zhang, 2004; Ginn, 2004; Neuman, 2004].    

 

In a recent forum on stochastic subsurface hydrology: from theory to application, a number of 

leading experts in stochastic modeling stress that data limitation, the assumptions of 

linearization, stationarity, Gaussianity, and excessive computations required are the bottlenecks 

in practical stochastic modeling [Zhang and Zhang, 2004; Molz, 2004; Molz et al., 2004; Ginn, 

2004; Winter, 2004; Neuman, 2004; Rubin, 2004; Dagan, 2004] 

 

Experience from our own applications also shows that the observed variances of hydraulic head 

from linearized stochastic theories often cannot explain much of the observed variability in 

practical modeling. In fact, the observed variance in response to random, small-scale 

heterogeneity is almost negligible as compared to the uncertainty caused by errors in the 

representation of large scale variability, model conceptualization, and boundary conditions.  

 

Gelhar [1993] stressed that the most significant effect of small-scale heterogeneity is on 

groundwater velocity and solute transport [Gelhar et al., 1979; Kapoor and Kitanidis, 1997; 

Salandin and Fiorotto, 2000; Darvini and Salandin, 2006; Morales-Casique et al., 2006a, 2006b]. 
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In particular, Gelhar stressed that the observed variances from stochastic theories in groundwater 

velocity and solute concentration are much larger than that in hydraulic head. This strong 

sensitivity of solute transport to very small scale heterogeneity is in fact what attracted the recent 

explosion of research in stochastic subsurface hydrology. The significantly increased variance, 

however, is also what makes the application of stochastic perturbation theories problematic 

 

Nowak et al. [2008] shows hydraulic heads in the presence of large scale heterogeneity can be 

non-Gaussian and approximated as beta distribution for statistically uniform flow between two 

constant head boundaries. Engler et al. [2006] shows that velocity in randomly heterogeneous 

media is approximately lognormal, with the skewness increasing with the variance of log 

hydraulic conductivity. Fiorotto and Caroni [2002], Caroni and Fiorotto [2005], Bellin and 

Tonina [2007] and Schwede et al. [2008] have studied the statistical distribution of concentration 

in a random heterogeneous medium and concluded that the probability density function of 

concentration follows approximately a beta distribution.  

 

1.3 OBJECTIVE 

In this study, we systematically investigate the probabilistic structure of basic hydrogeological 

variables. In particular, we investigate the probabilistic distributions of a complete set of basic 

dependent state variables - hydraulic head, velocity, solute concentration, and seepage flux and 

solute flux at a point and across a polyline. We assume log hydraulic conductivity is the only 

source of uncertainty and is normally distributed. The paper focuses on understanding how the 

nonlinear flow and transport equations transform the probability distributions of hydrogeological 

variables. This paper builds on several recent research that highlights the need to systematically 
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understand the probabilistic structure of hydrological variables [Engler et al., 2006; Fiorotto and 

Caroni, 2002; Caroni and Fiorotto, 2005; Bellin and Tonina, 2007; Nowak et al., 2008; Schwede 

et al., 2008].  

 

Engler et al. [2006] stressed that with increasing variance of log hydraulic conductivity, the 

skewness and kurtosis of velocity components increases. This implies ignoring the actual shapes 

of the distributions may have severe consequences on the stochastic flow and transport theory.  

 

The paper investigates the following important questions: 

1. What is the probabilistic structure of commonly encountered hydrogeological variables in 

realistically complex groundwater systems? 

2. Can the predicted variances of hydrogeological variables be used as an effective measure 

of uncertainty in groundwater modeling?  

3. How does the scale of heterogeneity impact the probability distribution? How do the 

scale of variability and complex sources and sinks interact to control the probability 

distribution? 

4. Is the head probability distribution approximately Gaussian? Under what conditions it 

can be assumed to be Gaussian?  

5. What is the probability distribution of groundwater velocity and solute concentration? 

How do their probability distributions vary in space in a nonstationary flow system?  

6. Does the probability distribution of groundwater velocity vary with direction? 
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7. Is aggregated probability distribution of seepage flux across a polyline more Gaussian? 

How does the scale of integration affect the probability distributions of seepage flux? 

8. What is the probability distribution of solute fluxes?  

 

1.4 APPROACH 

To address these questions systematically, we perform a comprehensive Monte Carlo simulation 

exercise involving integrated flow and transport modeling. This simulation exercise is 

conceptually straightforward, but the results, as we will show further on, have significant 

implications and provide very useful insights for practical stochastic groundwater modeling. 

We consider a range of modeling scenarios in this exercise, including  

• weakly and strongly heterogeneous media;  

• stationary and nonstationary media; 

• with and without external stresses.  

 

We make use of a recently-developed modeling software system, Interactive Groundwater 

(IGW) [Li and Liu, 2003, 2006; Li et al., 2006] to solve the stochastic groundwater flow and 

transport equations. This software system differs from a traditional one in that it allows real-time, 

parallel analysis and visualization of model statistics and probabilities, enabling simulating large 

numbers of realizations for a range of modeling scenarios. The software also allows stochastic 

simulations without simultaneously storing them in memory or on disk, eliminating an 

implementation bottleneck in stochastic modeling.  
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We monitor, analyze, and compare the probability distributions of interested key state variables 

at representative locations throughout the simulation domain. We assess the Gaussianity of these 

probability distributions both visually and using the Q-Q plot technique [Chambers et al., 1983] 

We also assess the feasibility to fit the simulated probabilities with a general empirical 

distribution. 

 

In a Q-Q (Quantile-Quantile) plot, the quantiles of dependent variable from the Monte Carlo 

simulation are plotted against the quantiles of a standard normal distribution. A straight line 

implies that the distribution is a normal distribution. Any deviation from the straight line is the 

indication of deviation from the normality.  

 

1.5 PROBLEM DESIGN 

We consider two dimensional steady state flows in confined aquifer. Figure 1.1 shows the model 

domain, boundary conditions, aquifer stresses, and monitoring network. We develop numerical 

models with no flow boundary conditions along north and south boundaries and constant heads 

along east and west boundaries. 

 A constant head of 2 m is assigned to west boundary and 0 (zero) m to east boundary. The 

domain size is 1000 m x 750 m. A source of constant recharge of 0.001 m/day, two pumping 

wells, and statistically nonstationary conductivity zones are also introduced in some modeling 

scenarios. A contaminant plume is injected from the west side of the model. The plume source is 

continuous with concentration of 100 ppm (mg/L) spanning across twice the length of correlation 

scale of log hydraulic conductivity.  
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Figure1.1: Model domain showing locations of monitoring wells, polylines (each polyline is a set 

of two polylines as shown in extreme right of the figure) , pumping wells, plume source and 

different conductivity zones, Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK 

variance =3.0, λ= 20m, K= 200m/day) and  Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day).  

Zone 1 and Zone 2 are shown in shaded areas.  For interpretation of the references to color in this 

and all other figures, the reader is referred to the electronic version of this thesis (or dissertation). 
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To investigate the probabilistic structure of hydrogeological variables, we consider four different 

simulation scenarios, as shown in Table 1.1.  

 

        Table 1.1:  Parameter Definitions for four cases 

                                                             Case 1, 

Stationary 

flow, low lnK 

variance           

Case 2, 

Stationary 

flow, high lnK   

variance         

Case 3, 

nonstationary 

flow, 

nonstationary 

lnK variances 

Case 4, 

nonstationary 

flow, with 

pumping 

Domain length (m)   1000 x 750 1000 x 750 1000 x 750 1000 x 750 

West boundary 

condition  

Constant 

Head 

Constant 

Head 

Constant 

Head 

Constant 

Head 

East boundary 

condition 

Constant 

Head 

Constant 

Head 

Constant 

Head 

Constant 

Head 

North boundary 

condition 

No Flow No Flow No Flow No Flow 

South boundary 

condition 

No Flow No Flow No Flow No Flow 

Global 

Recharge(m/day) 

0.001 0.001 0.001 0.001 

Number of wells 0 0 0 2 

Geometric mean 

conductivity (KG) 

(m/day)  

100 100 2,20,200 2,20,200 

LnK correlation 

scales (λ)(m)  

30 30 2, 10, 20 2, 10, 20 

Ln K Variance 

(
2
Y

σ ) 

0.1 2 0.5, 1.5, 3 0.5, 1.5, 3 
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The first two cases consider a stationary system with a variance of 0.1 (weakly heterogeneous) 

and 2.0 (strongly heterogeneous) for log hydraulic conductivity, respectively. The third and 

fourth cases involve nonstationary systems with three different hydraulic conductivity zones and 

pumping wells, respectively. 

 

The lnK variances used reflect the range of variability observed in real-world sites. The well 

known Cape Cod site in Massachusetts is relatively homogeneous and has lnK variance of 0.24. 

The popular Columbus research site in Mississippi is strongly heterogeneous and has lnK 

variance of 4.5 [Gelhar, 1993]  

 

Monitoring wells are distributed in a grid format of 5 rows and 6 columns (total of 30) to observe 

the probability distributions of hydraulic head, longitudinal velocity, transverse velocity and 

concentration (Figure 1.1). Groups of polylines at seven different locations perpendicular to the 

flow direction are used to observe the probability distributions of integrated seepage and solute 

fluxes. Within each group, polylines of two different lengths [see Figure 1.1, extreme right 

numbered as 1 and 2] are used to investigate the effect of scale of integration on the shape of 

probability distributions of seepage and solute fluxes. 

 

Monte Carlo Simulation: The MC simulation is carried out in three steps:  

Random Field Generation: This step creates realizations of random hydraulic conductivity. The 

random field of hydraulic conductivity is generated using a Fast Fourier Transform-based 

spectral algorithm. The exponential covariance model [Gelhar and Axness, 1983; Gelhar, 1986; 
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Dagan, 1994; Ni and Li, 2005, 2006] is used to describe the spatial structure of hydraulic 

conductivity.  

 

Numerical Solution: For a given realization, the governing equations become deterministic and 

are solved by central finite difference methods for groundwater flow and the modified methods 

of characteristics for solute transport. Discretization cell sizes are designed such that the scale of 

heterogeneity can be resolved [Li et al. 2003, 2004].  

 

Statistical Postprocessing: Once the realizations are solved, the solution of flow and transport 

quantities such as hydraulic head, velocity, concentration and fluxes are processed to compute 

statistical moments and probability distributions. The statistical moments and probability 

distribution of hydraulic head at points of interest are computed by  

                   ∑

=

=
N

1n

(x)nh
N
1

s
h(x)                                                            (1.1) 

                          [ ] ∑

=

−=
N

1n

2]
s

h(x)(x)nh
N
1

sh(x)Var [                           (1.2)                                  

Here N is the total number of realizations and hn (x) is the head at x from nth realization. The 

covariance of head at the points x and x1 is computed by  
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[ ] ∑

=

−=
N

1n
s

)1h(x
s

h(x))1(xn(x)hnh
N
1

s)1h(x),h(xCov    (1.3) 

 

The probability distribution is computed by:  

 

 M..., 1,2,j   /N,n)p(h jj ==                                   (1.4) 

where nj is the total number times the simulated head values fall into the interval 

]h,[h 1jj + , M is the number of interval the entire range of simulated heads are divided 

into, and 

Nn
M

1j
j =∑

=
 

hj=hmin+ j (hmax-hmin)/M, 

The symbols hmin   and   hmax   are respectively the minimum and maximum head values at the 

monitoring point.  

 

The accuracy of Monte Carlo simulation depends on the number of realizations. The number of 

realizations is selected to ensure that the observed probability distributions stabilize. The number 

of realizations used in this simulation exercise is generally in the range of 5000- 6000. 
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1.6 RESULTS AND DISCUSSION 

Modeling results are summarized in Figures 1.2 through 1.13. Selected Q-Q plots are shown in 

Figures 1.14 through 1.19. Additional information on the distribution statistics (skewness and 

kurtosis) are presented in Table 1.2 -1.7 in the Appendix. 

 

The results from Monte Carlo simulation clearly show that probability distribution of 

hydrogeological variables is, in general, non-Gaussian, nonstationary, and cannot be described 

by the first two statistical moments or a predefined distribution function based on these statistical 

moments. The probability distribution can vary structurally from variable to variable and 

location to location. The probability distributions of solute concentration and concentration 

fluxes are particularly complex, departing sharply from Gaussian distribution and varying 

strongly and rapidly with locations even for weakly heterogeneous conductivity fields. 

 

The following is a variable by variable discussion of the probability structure for all scenarios 

considered. 

 

Hydraulic Head 

Figures 1.2-1.4 show the observed probability distribution of hydraulic head for different cases. 

The results show that the probability distribution of hydraulic head, among all dependent 

variables, is the closest to Gaussian. The exceptions are in areas close to pumping well and 

boundary conditions.  

 

Figures 1.2 to Figure 1.4a show that probability distributions of hydraulic head when the scale of 

lnK heterogeneity is 1/33 of the simulation domain. The simulated probability distributions at 
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most locations are approximately Gaussian. The Q-Q plot in Figure 1.14 shows a straight line, 

indicating normality.  

The gaussianity of the head can be attributed to the fact that head at steady state depends on log 

conductivity, not conductivity itself, and the transformation between lnK fluctuation and head 

fluctuation is almost linear in areas where mean hydraulic gradient is small, especially when the 

scale of heterogeneity is also relatively small. 

 

For the high variance case, the probability distributions of hydraulic head at locations near the 

constant head boundaries (e.g., MW3, MW28) are slightly skewed towards the constant head 

values specified on the boundaries. The Q-Q plot of hydraulic head (see Appendix, Figure 1.14) 

at these locations shows a departure from the straight line, indicating local non-Gaussianity.  

 

Figure 1.3 shows the presence of the three conductivity zones alters the hydraulic gradient, head 

variance, and probability distribution, but not much in the shape of the probability distributions. 

The Q-Q plots for these probability distributions still show a straight line, indicating normality.  

Figures 1.4ab shows pumping can impact significantly the shape of the probability distribution of 

hydraulic head, especially in the proximity of the pumping well. The probability distributions of 

head become skewed in the area where there is significant drawdown.  

 

Figure 1.4b shows that the probability distributions for hydraulic head close to the pumping well 

are also strongly nonstationary in space.  

 

Figure 1.4c shows the probability distribution of hydraulic head when the scale of heterogeneity 

is increased to 1/10 of the simulation domain. Large-scale heterogeneity results clearly more 
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non-Gaussian behavior, which in turn may result a non-Gaussian distribution on other dependent 

variables. The shape of probability distributions becomes more complex and is influenced more 

by boundary conditions, nonstationary conductivity distribution, and the presence of sources and 

sinks.  

 

 

 

Figure 1.2: Probability distributions of hydraulic head for stationary cases (Top: lnK variance 

=0.1, Bottom: lnK variance =2.0). Black circles are monitoring wells and thin solid lines are 

head contours in the model domain. 
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Figure 1.3: Probability distributions of hydraulic head for Nonstationary case without pumping 

wells (Zone 1(lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 

200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).  Black circles are monitoring 

wells and thin solid lines are head contours in the model domain.  
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Figure 1.4a: Probability distributions of hydraulic head for Nonstationary case with pumping 

wells (Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 

200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)). Black circles are monitoring 

wells and thin solid lines are head contours in the model domain.  

 

0        100        200  
 m 

Z
o

n
e 

1
 

Z
o

n
e 

2
 

S
o

u
rc

e 

Z
o

n
e 

3
 

  
  

C
o

n
st

an
t 

H
ea

d
 =

2
m

 

C
o

n
st

an
t 

H
ea

d
 =

0
m

 

 
      6 

      4 

      2    

      0 

   

  M W13 

 - 0.20    0. 00     0.20  

           H e ad (m ) 

 
  D

en
s

it
y

  
   

         

2.0 

1.5      

1.0           

0.5 

0.0  

      -2.00    -1.00   0.00       

               Head (m) 

  
 D

en
si

ty
  

 MW18 

         

2.0 

1.5      

1.0           

0.5 

0.0  

       -1.00     0.00   1.00       

               Head (m) 

  
 D

en
si

ty
   

MW13 

    3.0 

    2.0 

    1.0    

    0.0 

 MW28 

  -2.00     -1.00      0.00         

               Head (m) 

  
 D

en
si

ty
 

  0.60        1.20        1.80 

               Head (m) 

 MW3 

  
 D

en
si

ty
 

         

2.0 

1.5      

1.0           

0.5 

0.0  

  -2.00    -1.00      0.00         

               Head (m) 

 MW23 
    3.0 

    2.0 

    1.0    

    0.0 

  
 D

en
si

ty
 

Z
o

n
e 

3
 



 19 

 

 

 

 
 

 

 

Figure 1.4b: Probability distributions of hydraulic head observed close to the pumping well. 

Black circles are monitoring wells and thin solid lines are the head contours in the model 

domain.  
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Figure 1.4c: Probability distributions of hydraulic head for Nonstationary case with pumping 

wells having large correlation scale (Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 

(lnK variance =3.0, λ= 20m, K= 200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 

20m/day)). Black circles are monitoring wells and thin solid lines are head contours in the model 

domain.  
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Velocity 

Figures 1.5-1.7 show the observed probability distribution of groundwater velocity for different 

cases. It is interesting to note that probability distributions of longitudinal velocity and transverse 

velocity are structurally different.  

 

Figure 1.5a shows that the probability distribution of longitudinal velocity at low lnK variance is 

slightly asymmetric, but becomes strongly skewed at the higher lnK variance of 2.0. The Q-Q 

plot of longitudinal velocity (see Appendix, Figure 1.15) indicates that even at low variance the 

quantiles of longitudinal velocity deviates from the straight line and, as the lnK variance 

increases, the deviation becomes more prominent.  

 

The skewness in the velocity probability distribution can be directly attributed to the fact that 

velocity is proportional to hydraulic conductivity and its variability is dominated by the 

variability in hydraulic conductivity. Since hydraulic conductivity is assumed to be lognormal, 

the longitudinal velocity is expected to be strongly skewed.  

 

Figure 1.5b shows that the probability distribution of transverse velocity is interestingly always 

symmetrically distributed, even in the presence of strong heterogeneity. At a low lnK variance, 

the corresponding Q-Q plot (see Appendix, Figure 1.16) closely matches with the theoretical 

straight line, indicating normality.  
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For strongly heterogeneous media at high lnK variance of 2.0, the Q-Q plot shows deviation 

from the theoretical straight line, implying that the distribution, though symmetrical, is non-

Gaussian (see Appendix, Figure 1.16).  

 

Figures 1.6ab and 1.7ab show that the probability distributions of velocity in a particular 

direction in a nonstationary flow system are strongly nonstationary. As the direction of flow 

changes the shapes of the probability distributions in X-velocity and Y-velocity change 

significantly.   

 

However, if we focus our attention on the longitudinal and transverse velocities, their probability 

distributions change little with location and are not particularly sensitive to boundary conditions, 

aquifer stresses and other sources and sinks.  
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Figure 1.5a: Probability distributions of X-velocity for stationary cases (Top: lnK variance =0.1, 

Bottom: lnK variance =2.0).  Black circles are monitoring wells and thin solid lines are head 

contours in the model domain. 
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Figure 1.5b: Probability distributions of Y-velocity for stationary cases (Top: lnK variance =0.1. 

Bottom: lnK variance =2.0). Black circles are monitoring wells and thin solid lines are head 

contours in the model domain.  
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Figure 1.6a: Probability distributions of X-Velocity for Nonstationary case without 

pumping wells (Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance 

=3.0, λ= 20m, K= 200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).  

Black circles are monitoring wells and thin solid lines are head contours in the model 

domain.  
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Figure 1.6b: Probability distributions of Y-Velocity for Nonstationary case without pumping 

wells (Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 

200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).  Black circles are monitoring 

wells and thin solid lines are head contours in the model domain.  
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Figure 1.7a: Probability distributions of X-Velocity for Nonstationary case with pumping wells 

(Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 

200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).   Black circles are monitoring 

wells and thin solid lines are head contours in the model domain.  
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Figure 1.7b: Probability distributions of Y-Velocity for Nonstationary case with pumping wells 

(Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 

200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).  Black circles are monitoring 

wells and thin solid lines are head contours in the model domain. 
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Concentration 

Figures 1.8-1.9 show the observed probability distribution of solute concentration for both 

stationary and nonstationary flow cases. The results show that concentration probability 

distributions are the most complex, strongly non-Gaussian and nonstationary in both space and 

time even for lnK variance of 0.1. The Q-Q plot of concentration (see Appendix, Figure 1.17) 

show that simulated concentration probability distribution deviates substantially from the 

theoretical normal distribution.  

 

The results also show that the complex concentration probability structure can be best 

characterized based on its relative location to the mean plume. In particular, both for uniform and 

non-uniform flow situations, the results show that the concentration probability distributions at 

locations close to the source concentration (the specified source concentration is 100 ppm) are 

strongly skewed right. The probability distribution on the edge of the mean plume is strongly 

skewed toward the left or zero. The distributions at locations within the mean plume represent a 

transition between the two extreme distributions.  

 

Because of the extremely skewed nature in concentration probability, variance provides little 

information on concentration uncertainty and it is impractical fit accurately the highly 

nonstationary probability distribution using a predefined function. 
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Figure 1.8: Probability distributions of concentration for Stationary case. Black circles are 

monitoring wells and the color contours are the concentration.  
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Figure 1.9: Probability distributions of concentration for Nonstationary case (Zone 1 (lnK 

variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, λ= 20m, K= 200m/day) and 

Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)).  Black circles are monitoring wells and the 

color contours are the concentration.  
 

 

0        100        200  
 m 

C
o

n
st

an
t 

H
ea

d
 =

2
m

 

  
  

C
o

n
st

an
t 

H
ea

d
 =

0
m

 

  
  

Z
o

n
e 

2
 

  
  

Z
o

n
e 

3
  

 

 

  
  

Z
o

n
e 

1
 

  
  

S
o

u
rc

e 

     0.03 

     0.02 

     0.01     

     0.00 

MW3 

  
 D

en
si

ty
 

       10      20      30 

Concentration (ppm) 

     40 

     30 

     20    

     10 

      0  

           1           2 

 Concentration (ppm) 

MW8 

  
 D

en
si

ty
 

     2.0 

     1.5 

     1.0     

     0.5 

     0.0  

      10      20        30 

 Concentration (ppm) 

MW13 

  
 D

en
si

ty
 

         6         12 

 Concentration (ppm) 

     6 

     4 

     2     

     0 

  
 D

en
si

ty
 MW5 

     0.15 

     0.10 

     0.05    

     0.00 

    20      40        60 

 Concentration (ppm) 

  
 D

en
si

ty
 MW9       0.020 

      0.015 

      0.010  

      0.005 

      0.000 

    30        60          90 

   Concentration (ppm) 

  
 D

en
si

ty
 

MW4 



 32 

Seepage flux across a polyline 

Figures 1.10-1.11 present the observed probability distribution of seepage flux for different 

cases. The results show that the probability distributions of seepage flux is approximately 

Gaussian at low variance when it is integrated along a polyline. As the variance of lnK increases, 

the probability distributions of seepage flux become more non-Gaussian, but its skewness is less 

extreme than that in the original velocity.  

 

Spatial integration has the effect of reducing variability, rendering the transformation from lnK 

fluctuation to flux fluctuation more linear.  

 

Figure 1.18 shows that the seepage flux quantiles deviate from the theoretical straight line at high 

variance, indicating non-Gaussianity. 

 

Overall, the shapes of the seepage flux distributions depend on the scale of integration along the 

polyline and on degree of heterogeneity. The probability distribution of the seepage flux 

becomes more Gaussian as the scale of integration increases or as lnK variance decreases.  
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Figure 1.10: Probability distributions of seepage flux for stationary cases at each polylines. Thick 

solid lines represent the length of the polylines and thin solid lines are the head contours in the 

model domain. Top: lnK variance =0.1, Bottom: lnK variance =2.0. 
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Figure 1.11: Probability distributions of seepage flux at each polylines for nonstationary case 

with pumping wells (Zone 1 (lnK variance =0.5, λ= 2m, K= 2m/day), Zone 2 (lnK variance =3.0, 

λ= 20m, K= 200m/day) and Zone3 (lnK variance =1.5, λ= 10m, K= 20m/day)). Thick solid lines 

represent the length of the polylines and thin solid lines are the head contours in the model 

domain.  
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Solute Flux across a Polyline 

Figures 1.12-1.13 present the observed probability distribution of solute flux for different cases. 

The results show that the probability distribution of integrated solute flux is non-Gaussian except 

when lnK variance is very small.  

 

At a low lnK variance of 0.1, solute flux is slightly skewed, and the Q-Q plot in Figure 1.19 

shows a slight departure from the theoretical straight line of normality.  

 

However, as lnK variance increases, the probability distributions in solute flux become strongly 

skewed, though less extreme than the original concentration probability distribution because of 

spatial integration.  

In general, the skewness of the distribution for solute flux across a polyline increases as the 

length of the polyline decreases and the degree of heterogeneity increases (see Appendix, Figure 

1.19).   

Because of the strongly skewed nature of solute flux, variance in its distribution provides little 

information on uncertainty and it is impractical fit accurately the highly nonstationary probability 

distribution using a predefined function. 
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Figure 1.12: Probability distributions of solute flux at each polylines for Stationary case. Thick 

solid lines represent the length of the polylines and the color contours are the concentration. 
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Figure 1.13: Probability distributions of solute flux at each polylines for Stationary case.  Thick 

solid lines represent the length of the polylines and the color contours are the concentration. 
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1.7 CONCLUSIONS 

The following key findings emerge from this research:  

• The statistical structure of a groundwater system under general, nonstationary condition 

is complex and cannot be characterized by a few simple statistical moments. Even when 

lnK is assumed to be Gaussian, the dependent hydrogeological variables can be strongly 

nongaussian, nonstationary, and for those that are directional, anisotropic.  

• The closest to Gaussian, among all variables simulated, is the probability distribution of 

hydraulic head, when the scale of heterogeneity is much smaller than the domain size 

(e.g., 1/33of the problem scale).  

• The probability distribution of hydraulic head in response to larger scale heterogeneity 

(e.g., greater 1/10 of the problem scale) is often non-Gaussian and nonstationary and 

cannot be accurately fitted with a single functional distribution. 

• The probability distribution of groundwater velocity is direction-dependent. The 

probabilistic structure of longitudinal velocity is strongly skewed. 

• The probability distribution of transverse velocity is approximately Gaussian or 

symmetrically distributed, even in the presence of strong heterogeneity.  

• Seepage flux across a transect – representing integration of strongly skewed velocity, is 

approximately Gaussian, even in the presence of strong heterogeneity.  

• Probability distribution of solute concentration is far from Gaussian and strongly 

nonstationary when the source size is relatively small (e.g., less than 10 lnK correlation 
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scales), even for aquifers with very weak heterogeneity. The complex concentration 

probability distribution cannot be fitted with a single functional distribution.  

• Solute flux across a transect, unlike its seepage flux counterpart, is strongly non-Gaussian 

and location-dependent.  

 

This research represents the first comprehensive analysis of the probabilistic structure of basic 

hydrogeological variables and findings from this work have significant implications on 

theoretical and practical stochastic subsurface hydrology.  
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APPENDIX 

 

 

STATISTICAL PARAMETERS OF GROUNDWATER VARIABLES 

 

 

 

 

Table 1.2:  Statistical parameters (Skewness and Kurtosis)of Head, X-Velocity and Y-

velocity for low and high lnK Variances 

 

Head 

 

 MW3 MW13 MW28 

 Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

lnK variance=0.1 -0.04 -0.05 -0.04 -0.01 0.04 0.05 

lnK variance=2.0 -0.54 0.45 -0.06 -0.17 0.54 0.45 

Nonstationary  

without pumping 

well 

-0.16 -0.09 0.11 0.11 0.12 0.02 

X-Velocity 

 

lnK variance=0.1 0.51 0.49 0.46 0.29 0.51 0.49 

lnK variance=2.0 2.32 9.76 2.38 10.10 2.32 9.76 

Nonstationary  

without pumping 

well 

0.64 0.67 1.78 5.08 2.09 6.31 

Y-Velocity 

 

lnK variance=0.1 0.04 0.29 -0.00 0.42 -0.04 0.29 

lnK variance=2.0 -0.25 10.77 0.17 6.66 0.25 10.77 

Nonstationary  

without pumping 

well 

-0.50 0.60 1.25 4.23 0.07 9.59 
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Table 1.4: Statistical parameters 

(Skewness and Kurtosis)of Head, for 

Nonstationary with pumping wells 

having large scale heterogeneity 

 

Head 

 Skewness  Kurtosis 

MW3 -0.67 0.40 

MW13 -0.12 0.88 

MW18 -0.50 2.59 

MW23 -0.77 3.37 

MW28 -1.11 4.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.3 : Statistical parameters (Skewness and Kurtosis)of Head, X-Velocity and Y-

Velocity  for Nonstationary with pumping wells 

 

 Head X-Velocity 

 

Y-Velocity 

 Skewness Kurtosis Skewness Kurtosis Skewness Kurtos

is 

MW3 -0.18 -0.07 0.70 0.95 -0.51 0.64 

MW13 0.19 0.13 1.65 4.34 1.60 6.26 

MW18 -0.01 0.22 2.09 6.50 1.86 10.48 

MW23 -0.67 1.59 -1.96 5.47 1.78 7.74 

MW28 -0.23 0.07 -2.31 8.10 1.23 10.17 

Table 1.5: Statistical parameters of Head in the sub model 

domain for nonstationary case with pumping well 

 

 MW2 MW7 MW9 MW20 MW23 

Skewness -5.76 -1.45 -1.39 -0.64 -1.23 

Kurtosis 49.12 4.45 5.40 0.39 4.09 
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Table 1.6 : Statistical parameters (Skewness and Kurtosis) of Concentration 

For low variance of lnK and for nonstationary case with pumping wells 

 

lnK variance=0.1 Non stationary with pumping well 

 

 Skewness Kurtosis  Skewness Kurtosis 

MW5 -6.20 57.17 MW3 2.02 6.03 

MW12 1.57 2.28 MW4 -0.07 -1.04 

MW14 3.63 19.27 MW5 9.92 147.59 

MW18 -0.84 -0.04 MW8 13.32 276.68 

MW19 2.18 5.95 MW9 1.11 0.69 

MW23 2.18 4.95 MW13 5.08 33.63 

Table 1.7:  Statistical parameters (Skewness and Kurtosis)of seepage and solute fluxes 

For low and high lnK variances 

 

 Seepage Flux Solute Flux 

 

 PL1 PL2 PL1 PL2 PL5 PL6 

Skewness ( lnK variance=0.1) 0.06 0.40 0.26 0.40 0.23 0.04 

Kurtosis ( lnK variance=0.1) -0.12 0.31 0.08 0.29 0.19 0.21 

Skewness ( lnK variance=2.0) 0.36 1.86 1.18 1.92 1.01 2.22 

Kurtosis ( lnK variance=2.0)  0.16 5.68 2.30 6.20 1.46 8.15 
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QUANTILES-QUANTILES PLOTS 

 

Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Q-Q plot of Hydraulic head data versus normal distribution for low variance and 

high variance cases. MW3: located near the west boundary, MW28: Located near the east 

boundary, MW13: located approximately middle of the model domain. 
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Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 (cont’d). 
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Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 (cont’d). 
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Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 (cont’d). 
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Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 (cont’d). 
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Q-Q Plot of Hydraulic Head versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 (cont’d). 
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Q-Q Plot of X-Velocity versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: Q-Q plot of X-Velocity data versus normal distribution for low and high lnK 

variance 
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Q-Q Plot of X-Velocity versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 (cont’d). 
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Q-Q Plot of Y-Velocity versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16: Q-Q plot of Y-Velocity data versus normal distribution for low and high lnK 

variance 
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Q-Q Plot of Y-Velocity versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 (cont’d). 
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Q-Q Plot of Concentration versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17: Q-Q plot of concentration data versus normal distribution 
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Q-Q Plot of Concentration versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17 (cont’d). 
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Q-Q Plot of Seepage Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18: Q-Q plot of seepage flux data versus normal distribution for low and high lnK 

variance 
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Q-Q Plot of Seepage Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 (cont’d). 
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Q-Q Plot of Seepage Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 (cont’d) 
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Q-Q Plot of Seepage Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 (cont’d). 
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Q-Q Plot of Solute Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19: Q-Q plot of solute flux data versus normal distribution for low and high lnK 

variance 
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Q-Q Plot of Solute Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 (cont’d). 
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Q-Q Plot of Solute Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 (cont’d). 
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Q-Q Plot of Solute Flux versus Standard Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 (cont’d). 
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2.1 ABSTRACT 

 

It is widely known that data limitation is a major practical bottleneck in stochastic groundwater 

modeling. An expert panel at a recent forum on the state of practice in stochastic subsurface 

modeling and hydrology suggested that new measurement technologies or data sources of much 

better resolution are needed if we are to enable routine application of stochastic methods in real 

world investigations.  

In this paper, we explore the use of a recently-developed statewide database in Michigan for 

stochastic groundwater modeling and apply it to probabilistic capture zone delineation. We are 

particularly interested in testing if the relatively crude, but detailed datasets can be used to 

characterize aquifer heterogeneity with sufficient details to enable practical stochastic modeling 

in the context of source water protection. This research represents an extension of our earlier 

work that uses this data source for basic deterministic modeling and cost effective source water 

management in Michigan. Our earlier research clearly shows that this new data source, despite 

its significant uncertainty, is effective in modeling regional mean flow patterns, directions and 

particularly source water protection areas. Our earlier research also shows that capture zone 

delineation based on regional patterns without taking into account smaller scale heterogeneity 
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can significantly underestimate the size of capture zone. As a pragmatic way to improve the 

delineation, managers and practitioners often manually draw a “grey area” around “skinny” 

capture zones to account for the effect of un-modeled heterogeneity.  

We attempt in this research to quantify these grey areas probabilistically in a systematic manner. 

In particular, we consider the following four approaches to delineate well capture zones, each 

representing a different way to conceptualize aquifer heterogeneity. 

• Deterministic approach: modeling large scale heterogeneity as a deterministic trend, 

ignoring the uncertainty in large-scale heterogeneity and the effect of small scale 

heterogeneity; 

• Stochastic unconditional method: modeling heterogeneity as a random field using Monte 

Carlo simulation; 

• Stochastic semiconditional method: modeling large scale heterogeneity as a deterministic 

trend and smaller scale heterogeneity as a random field using unconditional Monte Carlo 

simulation; 

• Stochastic macrodispersion method: modeling large-scale heterogeneity as a deterministic 

trend and small scale heterogeneity deterministically using effective macrodispersion. 

These approaches were applied to several selected sites with distinct characteristics to delineate 

well capture zones. The results are systematically analyzed and compared. The following 

findings emerge from this research: 

• A significant portion of the variability in the statewide conductivity dataset is uncorrelated 

noise and this data noise can be quantified through variogram modeling.  

• Despite the data noise, two scales of natural variability in conductivity can be identified;  
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• Kriging based on the large-scale variograms, with small scale variability and data noises 

represented as nuggets, can be used to delineate large scale trends. 

• Variogram modeling of detrended conductivity data can be used to identify smaller scale 

heterogeneity. The residual variograms are significantly noisier, but statistically meaningful 

structures can be detected;  

• Deterministic delineation that accounts only for the effect of large scale trend leads to 

capture zones that are significantly smaller than its stochastic counterpart, especially in 

areas where regional gradient is relatively strong; 

• Stochastic Monte Carlo simulation provides a map of well capture probability. Combined 

with the statewide database, MC provides a useful, systematic tool for risk-based decision 

making;  

• Stochastic macrodispersion method provides a computationally efficient alternative to 

delineate wellhead protection area in a way that accounts for the effect of both small and 

large scale heterogeneity.  

Future research should focus on 3D stochastic modeling using 3D lithology and calibrating the 

conductivity to statewide static water level dataset. 

 

2.2 MOTIVATION AND OBJECTIVE 

It is widely known that data limitation is a major practical bottleneck in stochastic groundwater 

modeling. An expert panel at a recent forum on the state of practice in stochastic subsurface 

modeling and hydrology suggested that new measurement technologies or data sources of much 

better resolution are needed if we are to enable routine application of stochastic methods in real 
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world investigations [Dagan, 2002; Harrar et al., 2003; Zheng and Gorelick, 2003; Molz et al., 

2003; Zhang and Zhang 2004; Winter, 2004; Dagan 2004; Neuman, 2004; Molz, 2004]. 

 

In this paper, we explore the use of a recently-developed statewide database system in Michigan 

[GWIM, 2006; Wellogic, 2006; Map Image viewer, RS&GIS-MSU] for stochastic groundwater 

modeling and apply it to probabilistic well capture zone delineation. We are particularly 

interested in exploring if the relatively crude, but detailed water well records can be used to 

characterize aquifer heterogeneity with sufficient details to enable practical stochastic modeling 

in the context of source water protection. This research represents an extension of earlier work 

that used this database for basic deterministic modeling and improved source water management 

[Simard, 2007; Li et al., 2009; Oztan, 2010]. This earlier research clearly showed that this new 

data source, despite its significant uncertainty, is effective in modeling regional mean flow 

patterns, flow directions and particularly source water protection areas. This earlier research also 

showed that capture zone delineation based on regional patterns without taking into account 

smaller scale heterogeneity can significantly underestimate the size of well capture zone. 

The significant effect of heterogeneity on groundwater flow and transport has been widely 

recognized and an area of intense research in past decades [Dagan, 1989; Gelhar 1993; Rubin, 

2003]. Variability in aquifer properties translates into uncertainty in groundwater seepage 

velocity, which in turn causes uncertainty in contaminant transport. A number of researchers 

recently stressed that spatial variability of aquifer properties (e.g., hydraulic conductivity) is one 

of the main sources of uncertainty in capture zone delineation [e.g., Varljen and Shafer, 1991; 

Wheater et al., 1998; van Leeuwen et al., 1998; Feyen et al., 2001; Stauffer et al., 2002; Feyen et 

al., 2003; Hendricks Franssen et al., 2004b; Stauffer et al., 2005]  and have used stochastic 
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approaches to model well capture zone areas [Varljen and Shafer, 1991; Bair et al., 1991; 

Vassolo et al., 1998; van Leeuwen et al., 2000; Feyen et al., 2001]. A stochastic approach 

simulates uncertain, heterogeneous input parameter fields as random fields and allows modeling 

not only the area of well capture but also the probability of capture, providing a systematic, risk-

based framework for decision making [e.g., Franzetti and Guadagnini, 1996; Guadagnini and 

Franzetti, 1999; Riva et al., 1999; Delhomme, 1978, 1979; Varljen and Shafer, 1991; van 

Leeuwen et al., 1998, 1999; Starn et al., 2000; Van Leeuwen et al., 2000; Riva et al., 2006].  

 

The Achilles’ heel of stochastic approaches, however, is their intensive data requirements 

[Dagan, 2002; Harrar et al., 2003; Zhang and Zhang 2004, Winter, 2004; Dagan 2004; Neuman, 

2004; Molz, 2004]. Unlike deterministic modeling, stochastic approaches require not only 

characterizing the means of input fields but also modeling their variogram structures to estimate 

the geostatistical parameters. Datasets allowing such estimation are often very difficult to obtain 

in practice.  

 

A literature review on stochastic groundwater modeling over the years shows that stochastic 

approaches are rarely used outside of research applications [Harrar et al., 2003]. In particular, the 

review shows current efforts in stochastic capture zone modeling suffer from the following 

limitations: 

1. The vast majority of the stochastic modeling studies focus on hypothetical sites; 

assuming known statistical structure of small-scale heterogeneity [e.g., Varljen and 

Shafer 1991; Cole 1995; Franzetti and Guadagnini, 1996; Kinzelbach et al., 1996; Cole 

and Silliman, 1996; van Leeuwen et al.,1998; Hendricks Franssen et al., 2004b]. 
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2. Among the relatively few site-specific, real-world applications, the datasets used are 

often highly limited - too sparse to reliably characterize real world heterogeneity [e.g., 

Johanson, 1992; Vassolo et al., 1998;  Riva et al., 2006; Theodossiou et al., 2005]. 

Because of this, as Gelhar [1993], stressed there is often significant uncertainty about 

predicted uncertainty in stochastic modeling. 

3. While the original motivation of stochastic modeling was to enable better coping with 

complex realities, most of the newly developed stochastic methods (e.g., perturbation 

methods) apply only for simple, statistically uniform processes, free of complex sources 

and sinks, boundary conditions, and nonstationarities [Li and McLaughlin, 1993, 1995; 

Li, Liao and Ni, 2004].  

4. Some of the stochastic methods developed only allow representing uncertain aquifer 

properties or stresses as random constants [e.g., Evers and Lerner, 1998, Kinzelbach et 

al., 1996]. 

 

Future direction of stochastic subsurface hydrology research should clearly focus on the 

development of approaches, data sources, or measurement technologies that allow modeling 

problems of realistic sizes and complexities [Zhang and Zhang, 2004; Ginn, 2004; Neuman, 

2004]. Stochastic methods need data of good resolution and must allow modeling both large-

scale (systematic) and small-scale (random) heterogeneity and stresses before they can become 

routine tools for practical applications. 

 

 

 



 76 

2.3 DATA INTENSIVE STATEWIDE MODELING SYSTEM 

Over the past decade, the Michigan Department of Natural Resources and Environment (DNRE) has 

engaged  in a major statewide data integration effort, capitalizing on the recent dramatic 

developments in remote sensing, Global Position System (GPS), and Geographic Information 

System (GIS) technologies. In this process, the DNRE has created a statewide GIS-based 

groundwater database system [Wellogic, 2006; GWIM, 2006; Map Image viewer, RS&GIS-MSU] 

that can be used to model regional scale processes and potentially local flow systems. The network 

of databases contains virtually “all” data needed for typical groundwater flow simulations [Li et al., 

2009]. In particular, the databases contain data for defining model areas (e.g., watershed 

delineations, the Great Lakes, streams, and inland lakes), aquifer elevations (e.g., digital elevation 

model - DEM, lithologies), aquifer properties (e.g., lithologies, specific capacities), aquifer 

heterogeneity (lithologies, glacial land systems), aquifer stresses (e.g., estimated recharge, streams, 

lakes, wetlands, drains, and wells), surface water levels (e.g., DEM), contamination sources (e.g., 

industrial sites, landfills, leaky underground storage tanks), as well as, data for model calibration 

(e.g., static water levels, estimated baseflows, aquifer test hydrographs, and hydrographs from long 

term USGS monitoring wells). 

To enable systematic use of this vast “new” data source, Li et al. [2009] have recently developed an 

intelligent link between the databases and a real-time hierarchical groundwater modeling system [Li 

and Liu, 2006, 2008; Li et al., 2009]. The result is a data-intensive, statewide platform that can be 

used to model groundwater flow virtually anywhere (the areas covered by the database) in 

Michigan’s aquifers. The modeling system is “live-linked” in a hierarchical fashion to Michigan’s 

streams, lakes, geology, and water wells.  
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The hierarchical modeling system simulates state’s two uppermost aquifer layers – the glacial drift 

aquifer and/or the bedrock aquifer. Aquifer elevations are defined based on approximately half a 

million of well logs, including logs from water wells, as well as, oil and gas wells. Hydraulic 

properties are estimated using more than 300,000 water well records, including test pumping 

information and lithologic descriptions. Natural recharge to the glacial aquifer is estimated using 

data on land use, soil conditions, watershed characteristics, and observed stream flow hydrographs at 

more than 400 gaging stations statewide [GWIM,2006]. The Great Lakes are represented in the 

glacial aquifer as prescribed heads equal to the long term average of observed lake levels. Large 

inland lakes and rivers are represented as head-dependent fluxes. Wetlands, ponds, small lakes, and 

small streams are treated by default as drains. A default leakance value is assigned to all surface 

water bodies based on their size class or stream order. A steady state water level elevation is 

assigned to all lakes, wetlands, and stream arcs based on the 10 to 30 m statewide DEM. All default 

representations and parameter values in the modeling system can be interactively modified. 

 

 

 

The estimation of hydraulic conductivity in the database is briefly presented below.  

Hydraulic Conductivity: 

The horizontal hydraulic conductivity in the database was calculated from water well records 

using the following equation [Freeze and Cherry, 1979]:  

                                                  
B

n

1i
iBiK

hK

∑

==                                             (2.1) 
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where, Kh is the equivalent horizontal hydraulic conductivity averaged over saturated aquifer 

thickness, n is the total number of layers in the unit, Ki is the hydraulic conductivity of lithologic 

layer i, Bi is the thickness of the layer i, B is the total thickness of the saturated unit. Since 

hydraulic conductivity depends on not only local lithologies but also the regional geological 

processes that produce them (e.g., sand in a lacustrine deposition environment may be less 

permeable than that in a glacial outwash environment), a range of three typical hydraulic 

conductivity values (minimum, mean, maximum) were defined for each lithological layer. One 

of the three values was assigned for the corresponding lithology, depending on the glacial land 

system that the water wells were drilled in [GWIM, 2006; State of Michigan, 2006].   

 

2.4 RESEARCH APPROACHES 

In this paper, we investigate how effectively the Michigan statewide groundwater database can 

be used to probabilistically model Michigan’s groundwater systems. We consider three different 

approaches to model local groundwater flow and to delineate well capture zones, each 

representing a different way of conceptualizing aquifer heterogeneity.  

These approaches are briefly described below: 

1. Deterministic Approach: This is our baseline approach. We model large-scale heterogeneity as 

deterministic trends and the effects of small-scale heterogeneity are ignored. The approach 

involves solving the groundwater flow equation and performing reverse particle tracking to 

delineate well capture zone. 
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2. Stochastic Monte Carlo Approach: This approach builds on the deterministic approach and we 

model both large-scale heterogeneity as deterministic trend and small-scale heterogeneity as a 

random field using Monte Carlo simulation (MC).  

 

We choose to use MC over the newer stochastic perturbation methods because of its conceptual 

simplicity, general applicability, and ability to fully quantify uncertainty in model output. MC 

involves directly generating many likely realizations of aquifer flow and particle tracking models 

in such a manner that they reflect the observed parameter uncertainty. The results are 

subsequently analyzed in a statistical manner to quantify the uncertainty inherent in the expected 

result. Combining with Michigan’s statewide databases, MC represents a general and potentially 

very powerful tool for risk-based groundwater investigations. 

 

3. Stochastic Macrodispersion Approach: This approach aims at significantly reducing the 

computational cost in practical implementation of stochastic capture zone models. The approach 

involves modeling groundwater flow and performing random-walk based reverse particle 

tracking to delineate well capture zones. Random-walk based particle tracking allows 

incorporating the effect of macrodispersion.  

The longitudinal macrodispersivity is estimated from the following equation [Gelhar and Axness, 

1983; Gelhar et al., 1992]: 

                       λ
2
lnK
σLA =                                          (2.2) 

where λ is the scale of small-scale variability and obtained from the variaogram of fluctuation of 

log hydraulic conductivity, 
2
lnK
σ  represents the variance of small-scale heterogeneity in log 
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hydraulic conductivity. Transverse dispersivity is assumed to be one third of the longitudinal 

dispersivity [EPA, 1986].  

 

The macrodispersion approach was originally developed for the forward solution of solute 

transport equation in the presence of random, small-scale heterogeneity. We extend the approach 

to model capture zone “macrodispersion” due to random, small-scale heterogeneity in hydraulic 

conductivity. We are interested in testing if macrodispersion approach can approximately 

reproduce the ensemble of likely capture zone realizations from Monte Carlo simulation.  

For all three modeling approaches, we begin with regional scale flow modeling. A regional scale 

model simulates large-scale processes controlled by major streams, lakes, complex topographies 

and stratigraphies and provides boundary conditions for local scale models.  

These three approaches discussed above are summarized graphically in Figure 2.1 
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Figure 2.1: Approaches used to delineate well capture zones 
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2.5 APPLICATION EXAMPLES 

In this section, we test the utility of the statewide database and modeling system to determine 

probabilistic well capture zone through a systematic case study of three real sites. Our sites are 

selected based on data availability, data resolution, and complexity.  

 

Figure 2.2 presents a map showing the sites, key hydrological features, pumping wells to be 

delineated, data distributions from water well records.   

We investigate the following questions in this evaluation: 

1. How useful is the statewide database for practical stochastic groundwater modeling?  

2. Can the relatively crude statewide conductivity dataset be used to characterize aquifer 

heterogeneity with sufficient details to enable probabilistic wellhead delineation?  

3. Can we quantify the data uncertainty? How can we separate natural variability from data 

noise?  

4.  How can the different database components [e.g., DEM, National Hydrological Datasets 

(NHDs), glacial and bedrock geology, and water well records) be combined to enable 

modeling stochastically complex groundwater systems?  

Our systematic evaluation proceeds through the following 4 steps:  

1. Characterization of heterogeneity at regional and local scales, 

2. Regional scale and local scale deterministic flow modeling, 

3. Capture zone modeling at local scale using reverse particle tracking, and  

4. Systematic comparative analysis. 
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Figure 2.2: Sites located in Michigan showing  GIS features such as wells, streams, lakes, city, 

Type 1 wells and underground storage tanks(UST) (Site1-County:VanBuren, City: Mattawan; 

Site2- County-Van Buren,   City: Lawton; Site3- County: Washtenaw,   City: Saline)  
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2.6 RESULTS AND DISCUSSION 

This section begins with the discussion of geostatistical site characterization using variogram 

modeling, at regional and local scales, followed by discussion of deterministic flow modeling at 

regional and local scale. Finally capture zone modeling at local scale using deterministic 

approach, stochastic Monte Carlo approach and stochastic macrodispersion approach are 

discussed and compared.  

Characterization of Heterogeneity 

 Figure 2.3 presents variogram modeling at regional scale for log hydraulic conductivity. Figure 

2.4 shows variogram modeling for the detrended log hydraulic conductivity. Table 2.1 presents a 

summary of the parameters of regional and local variogram models.  

 

Table 2.1: Geostatistical Parameters for three sites 

 Site 1 Site 2 Site3 

Variogram Information For  Log Hydraulic Conductivity  (Large-scale) 

Theoretical Model Gaussian Exponential Exponential 

Nugget 0.26 0.3 0.8 

Range (m) 3581 6185 5796 

Resolved variability 0.14 0.14 1.2 

Variogram Information For Log Hydraulic Conductivity Fluctuation (Small-scale) 

Theoretical Model Exponential Exponential Exponential 

Nugget 0.11 0.17 0.43 

Range (m) 120 120 229 

Resolved variability 0.17 0.16 0.56 
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Figure 2.3: Variogram modeling at regional scale for log hydraulic conductivity for three sites 
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Figure 2.4: Variogram modeling for detrended log hydraulic conductivity for three sites 

 

0.4 

0.3 

0.2 

0.1 

0.0 
 0          100       200         300       400        500        600 

(a) Site 1: Detrended Log K Variogram 

Sample Variogram 

Theoretical Model 

V
ar

io
g

ra
m

 

Lag Distance (m) 

0.6 

0.4 

0.2 

0.0 
 0            100           200           300          400           500 

(b) Site 2: Detrended Log K Variogram 

Sample Variogram 

Theoretical Model 

V
ar

io
g

ra
m

 

Lag Distance (m) 

1.5 

1.0 

0.5 

0.0 
  0          100        200        300        400        500       600 

(c) Site 3: Detrended Log K Variogram 

Sample Variogram 

Theoretical Model 

V
ar

io
g

ra
m

 

Lag Distance (m) 



 87 

The results and our experience gained through the modeling process show: 

 

• Variogram modeling process for hydraulic conductivity using data from the statewide 

database is much more robust (statistically more meaningful) than that based on limited 

measured data from a site-specific hydrogeological study. 

• Despite data uncertainty, the variogram modeled show a clear “spatial structure”. 

• Variogram modeling allows identifying three-disparate scales of variability: uncorrelated 

data errors/noise, small-scale variability, and large scale variability. 

• Variogram modeling at regional scale allow separating large scale variability from small 

scale variability and uncorrelated data errors.  

• Kriging based on the large-scale variogram, with small scale variability and data noises 

represented as nuggets, can be used to delineate large scale trends. The large scale 

variability for the three sites has a characteristic length scale on the order of 3000m, 

reflecting variability associated with different glacial land systems. 

• The large-scale variation from regional Kriging can be used to detrend hydraulic 

conductivity data.  

• The residual variograms are significantly noisier than the regional variogram, but 

statistically meaningful structures can be detected.  

• Variogram modeling of detrended log conductivity data allow identifying/ quantifying 

smaller spatial variability, and uncorrelated data noise.  

• Variances identified for natural variability in the local models are between 0.17 and 0.52. 

This is relatively low because hydraulic conductivity analyzed is depth averaged. Much of 

the vertical variability is already averaged out. 
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• The small scale heterogeneities identified for the three sites have a scale on the order of 

100 to 200m. 

• Data noise or nugget at local scale is high, accounting for up to 40-50% of the total data 

variability.  

• The high nugget represents data noise caused by location uncertainty associated with 

approximate address matching, lithologic description uncertainty, well depth variability, 

and reporting errors. 

• Uncertainty in the assumed typical values is another important source of uncertainty and is 

not modeled in this study;  

• DNRE’s new, web-based water well data collection system with GPS-based input, realtime 

quality control and validation check, should significantly improve our practical ability to 

characterize aquifer heterogeneity in the future. 

 

Figure 2.5 shows the kriging of conductivity distribution at regional scale and Figure 2.6 shows a 

realization of large-scale and detrended log conductivity at local scale. 
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Figure 2.5: Kriged hydraulic conductivity at regional scale. The outer boundary is the extent of 

regional model and inner boundary is the location of local model.  
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Figure 2.5 (cont’d). 
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Figure 2.6: A realization of residual hydraulic conductivity (Bottom) and large-scale hydraulic 

conductivity (Top) for the local scale model area 
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                                                       Figure 2.6 (cont’d). 
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                                                                Figure 2.6 (cont’d). 
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A few comments are in order: 

 

• Mean conductivity at regional scale shows a spatial pattern that is much more complex than 

what most site-specific hydrogeological study can provide. 

• For a particular site, the simulated complex pattern is a function of (or is controlled by) 

only a few assigned typical conductivity values (e.g., for sand, silt, clay, gravel)  

• Interpolated or simulated conductivity distribution does not go through data values because 

of the significant data uncertainty or high nugget.  

• Large scale heterogeneity in conductivity is represented as trends deterministically in the 

model. 

• The fluctuations around the trends are represented probabilistically in the local models.  

 

Regional and Local Deterministic Flow Modeling 

Figures 2.7 -2.9 show the simulated head distribution from the regional and local flow models 

for different sites. Figures 2.10 show a comparison of simulated head and static water levels 

from water wells in the regional model. 

Table 2.1 shows key inputs and numerical parameters used in local and regional scale models. 

The regional scale models are simulated deterministically using no flow boundary conditions. 

The grid sizes and other input parameters are listed in Table 2.2.  
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Table 2.2: Parameters definitions for three sites 

 Site1 Site2 Site3 

Boundary Condition of Regional Model No flow No flow No flow 

Grid Design  of Regional Model (Nx, Ny) 359,287 350,254 328,330 

Boundary Condition of Local model 

Prescribed 

Head 

Prescribed 

Head 

Prescribed 

Head 

Grid  Design of Local Model (Nx, Ny) 233,181 343,253 262,256 

Effective Porosity 0.15 0.15 0.15 

Leakance (1/day) for  first, second, third, 

fourth order streams 

1,2,5,10 1,2,5,10 1,2,5,10 

No. of  Pumping  Wells 2 2 2 

Pumping Capacity (GPM) 700,400 950, 750 700,525 

No. of particles released in each well 2000 2000 2000 

 

 

 

The results and our experience gained in the modeling process shows:  

• Hierarchical modeling provides a systematic framework to incorporate large scale 

processes in local scale modeling and to allow making maximum use of data available at 

different spatial scales.  

• Data intensive modeling allows capturing dominant large scale groundwater processes 

largely controlled by surface water systems, topographies, and natural recharge. The high 

resolution DEM and NHDs and other derived GIS layers (e.g., estimated recharge) 

significantly improve our practical ability to model complex groundwater systems.  
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• Even without calibration, simulated heads from data intensive modeling often compares 

very well with observed static water levels from water well records, especially in areas 

glacial layer is not too thick. 

• The significant spread in the model-data comparison does not mean that the simulated 

heads are not accurate but that data being compared to is noisy. The spread is the result of 

significant data uncertainty reflecting temporal variability, vertical variability, location 

errors, and “driller variability”. Comparison between the model and static water levels from 

water well records must be interpreted with care.  
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Figure 2.7: Site1: Head field for regional model (bottom) and local model (top) 
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                     Figure 2.8: Site2: Head field for regional model (bottom) and local model (top) 

 

 

 0         1,500    3,000 

m 

0            8,000       16,000 
m 

 Head (m) <VALUE>

233 - 236

237 - 239

240 - 241

242 - 244

245 - 247

248 - 249

250 - 252

253 - 255

256 - 257

258 - 260

Head (m) 

202 - 209

210 - 215

216 - 222

223 - 227

228 - 233

234 - 241

242 - 249

250 - 255

256 - 260

261 - 265

Type 1 Wells 

Wells 

  UST 

Streams 

Lakes 

City 

Legend 

Local Model 

Regional Model 



 99 

 

 

 

Figure 2.9: Site3: Head field for regional model (bottom) and local model (top) 
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Figure 2.10: Comparison of predicted head and observed head (Static water level) for three sites 

from water wells in the regional model. Dots: Static water level from well data, Triangles: Mean 

static water level from well data  
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Figure 2.10 (cont’d). 
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Figure 2.10 (cont’d). 
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Capture Zone Modeling: 

Finally, Figures 2.11- 2.13 show well capture zone delineation by 3 different methods – the 

deterministic, stochastic Monte Carlo and stochastic macrodisperion.  

 

Deterministic method results a single envelope for the extent of capture zones. The capture zone 

boundary is aligned with mean flow. For the sites simulated, the predicted capture zone is 

relatively narrow because of low pumping and strong regional flow. Unmodeled small scale 

processes can potentially causes significant errors in the capture zone distribution.  

 

The stochastic macrodispersion approach is similar to the deterministic, resulting in a single 

envelope for the simulated capture zone. But the approach allows modeling the dispersive effects 

of small-scale heterogeneity. 

 

It is interesting to notice that capture zone from stochastic macrodispersion modeling is 

noticeably larger than zone of uncertainty from deterministic modeling. The extent of the capture 

zone is lengthier, wider, and more conservative. The difference between the deterministic and 

macrodispersion-based delineation is the direct result of unmodeled small-scale processes and is 

controlled by the spatial correlation structure (scale, variance, and nugget) of the detrended 

hydraulic conductivity.  
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Figure 2.11:  Site 1: 10 years capture zone from three approaches. 
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Figure 2.12:  Site 2: 10 years capture zone from three approaches. 
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Figure 2.13:  Site 3: 10 years capture zone from three approaches. 
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Although macrodispersion concept is widely applied in the forward modeling of contaminant 

transport in heterogeneous media, we are not aware of any application in the context of 

probabilistic wellhead protection area modeling.  

 

Stochastic Monte Carlo gives an ensemble of capture zones. Simulation of a large number of 

likely capture zone realizations allows computing the likelihood of being captured for a water 

particle in a discrete modeling cell. The occurrence of a certain location to fall in the capture 

zone is presented by probability map. In Figure 2.11-2.13, dark grey color represents the area 

that will “certainly” be captured in 10 years, despite data uncertainty. The light grey color 

represents the area that is unlikely to be captured with a probability of less than 20%. The other 

colors represent areas that may be captured, with different levels of probability. We can clearly 

see how uncertainty in hydraulic conductivity results in uncertainty in the boundaries of the 

capture zone.  

 

Stochastic modeling with its view of complex natural processes as spatial random variables is an 

ideal basis to build a risk assessment approach. Such an approach enables the concept of risk to 

be based on the principles of uncertainty that relate to the variability of the media. Thus 

uncertainty as to whether a point lies within the true capture zone can be estimated. Planning and 

protection considerations can be implemented according to the level of probability that a 

particular location lies within a capture zone in combination with the associated risk of the site 

polluting the aquifer. Stochastic modeling therefore represents a more reasonable solution for 

protecting groundwater supplies and ensuring sustainable future resources.  
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Limitations and Future Work 

This case study has also identified a number of limitations in the database and modeling system. 

The most significant relevant to stochastic modeling are:  

� The stochastic models presented are two dimensional. Aquifer heterogeneity delineated is 

depth averaged. Future research should focus on delineation of 3D heterogeneity and 3D 

stochastic modeling, taking advantage of the highly valuable, high resolution 3D 

lithologies available in the rapidly expanding water well database. 

� The statewide conductivity dataset was derived based on assumed typical values for each 

lithologic facies. These typical values can be uncertain. Future research should consider 

calibrating these typical values to observed static water levels.  

 

2.7 SUMMARY AND CONCLUSIONS 

The incomplete knowledge of essential parameters and limited data availability results 

uncertainty in the prediction of well capture zones. In particular, the location of data points is 

often restricted to specific regions within the aquifer due to economic and logistic reasons. 

Furthermore, experimental data are always corrupted to some degree by measurement and by 

interpretive errors. Consequently, the location of the protection zones can only be defined in 

statistical manner and should therefore be represented using a probabilistic capture zone map.  

 

In this study, we have demonstrated the usefulness of the Michigan statewide groundwater 

database in stochastic simulation of well capture zones. We have compared results of capture 

zone delineation using the traditional deterministic method, macrodispersion method, Monte 

Carlo simulation method.  
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The following findings emerge from this research: 

• A significant portion of the variability in the statewide conductivity dataset is uncorrelated 

noise and this data noise can be quantified through variogram modeling.  

• Despite the data noise, two scales of natural variability in conductivity can be identified;  

• Kriging based on the large-scale variograms, with small scale variability and data noises 

represented as nuggets, can be used to delineate large scale trends. 

• Variogram modeling of detrended conductivity data can be used to identify smaller scale 

heterogeneity. The residual variograms are significantly noisier, but statistically meaningful 

structures can be detected;  

• Deterministic delineation that accounts only for the effect of large scale trend leads to 

capture zones that are significantly smaller than its stochastic counterpart, especially in 

areas where regional gradient is relatively strong; 

• Stochastic Monte Carlo simulation provides a map of well capture probability. Combined 

with the statewide database, MC provides a useful, systematic tool for risk-based decision 

making;  

• Stochastic macrodispersion method provides a computationally efficient alternative to 

delineate wellhead protection area in a way that accounts for the effect of both small and 

large scale heterogeneity.  

Future research should focus on 3D stochastic modeling using 3D lithology and calibrating the 

conductivity to statewide static water level dataset. 
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