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ABI‘RACT

TEACHER TURNOVER AND UNDERSUPPLY: A SCHOOL ORGANIZATIONAL

ANALYSIS

By

Venessa Ann Keesler

This dissertation investigates the three components of teacher labor supply in the

state of Michigan: teacher demand, teacher supply and retention, and teacher

undersupply. These factors of teacher labor supply are considered as organizational

characteristics of schools. In the first study, school-and subject-specific teacher demand

to meet a specified set of graduation requirements was estimated using a formula I

developed. This formula is tested under varying assumptions, and a revised formula is

produced. The key finding from this study is the importance of using a projected

enrollment estimate when calculating demand.

The second and most critical study focuses on school-level teacher retention.

Using multilevel modeling and propensity score matching, the relationship between

school-level teacher retention and student achievement and mobility is studied. This

analysis finds that although high school-level teacher retention has a positive relationship

with student achievement, this can be explained when including other covariates.

However, high school-level teacher retention impacts student mobility, where students in

schools with high school-level teacher retention are less likely to change schools. As

student mobility is an important predictor for student achievement, school-level teacher

retention impacts student achievement indirectly through the mechanism of student

mobility. This finding was supported by the results of the propensity score match, which



demonstrates that, when comparing schools with a similar propensity to have high

teacher retention, those schools that actually experienced high teacher retention had a

decrease in student mobility. In other words, the “treatment” of high teacher retention is

effective for decreasing a school’s rate of student mobility. These findings were both

tested using sensitivity analyses and found to be reasonably robust to the potential impact

of unmeasured confounds.

The final analysis investigates the predictors of teacher undersupply and the

impacts of teacher undersupply. This study finds that higher levels ofteacher

undersupply are related to lower student achievement in mathematics, English language

arts, and science. Although the state of Michigan does not have a net undersupply of

teachers, this analysis provides evidence that the localized cases of undersupplied schools

may struggle to produce student achievement gains due to their undersupplied status.



Dedicated to my beautifid children, Rose and Jefii'ey Jr., and to my husband, Jefii'ey Sr.
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CHAPTER I: TEACHER SUPPLY, DEMAND AND UNDERSUPPLY:

BACKGROUND TO THE PROBLEM

Ensuring an adequate supply of qualified teachers to meet instructional demands

is an area of critical importance in education policy research. Teacher supply became a

matter of research focus in the early 19803, with two key demographic trends—

increasing student enrollments and increasing teacher retirements—as the cause of a

predicted teacher Shortage (Darling-Hammond, 1984; Ingersoll, 2001). Some of the early

research on the topic reflected a growing concern regarding increasing enrollments and

Simultaneous teacher retirements, and sought to establish methods and procedures for

estimating the supply and demand accurately (Boe & Gilford, 1992; Arnold, Choy, &

Bobbitt, 1993). The decades since have been devoted to attempting to quantify the size of

this teacher supply (Ingersoll & Perda, 2009), to produce more rigorous methods for

estimating supply (Santiago, 2002), and dealing with issues inherent in supply, such as

teacher attrition and retention (Borman & Dowling, 2008;Dolton & van der Klaauw,

1999; Harris & Adams, 2007; Imazeki, 2005; Shen, 1997; Stinebrickner, 1998; 2002) and

teacher labor market matching (Boyd, Lankford, Loeb, & Wyckoff, 2006; Stinebrickner,

2001)

Teacher demand has been influenced in part by the advent of merit curriculums.

In order to meet the increased rigor necessitated by the No Child Left Behind legislation

(2001), states have focused resources on ensuring that teachers are teaching in-field, and

have also raised standards, both in terms ofteacher quality and curricular requirements.

An example of such curricular changes is expanded graduation requirements, such as

increasing the number ofmath courses required to graduate, which helps equip students



for the transition to postsecondary education and the labor market. This focus is ongoing

in other nationwide efforts, such as the Common Core Standards and the America

Diploma Project, both of which seek to increase standards and expectations so that

students finish high school with rigorous preparation necessary for success in

postsecondary education and in the workforce. All of these changes in curricular

requirements have an impact on the demand for teachers, both in terms of sheer quantity

of teachers as well as teachers trained with specific Skill sets.

Finally, the current economic climate and the dramatic “shocks” to the system

make predicting teacher supply and demand even more problematic. The teaching force

in America is not necessarily structured to be quickly responsive to sudden systemic

Shocks. Given recent economic developments, there are significant changes related to

student population and enrollment, with some states losing students at a rapid rate due to

out-migration. There are also new issues on the demand side, as schools may need more

teachers but may be severely restricted by funding challenges.

In understanding teacher labor supply, there are three major components:

demand, supply and retention, and the impact of undersupply. This dissertation addresses

the overall question of teacher labor supply and its impact on student achievement and

mobility by focusing on these three areas. To estimate teacher demand, a previously

developed and utilized demand is tested and refined, and then used in undersupply

analyses. While teacher supply in the original formula accounted for the number of FTES

of each subject area in each school, it did not take into account issues of teacher “churn

rates.” For a school with undersupply, or even with an adequate supply, what are the

teacher churn rates, and is there a revolving door of teacher entry and departure that



affects student achievement and mobility directly, and that interfaces with teacher

undersupply? Finally, using the revised demand formula and considering teacher

retention as a component of teacher supply, what is the impact of school-level teacher

undersupply on student achievement outcomes?

This study conceptualizes teacher demand, supply, and undersupply from an

organizational perspective, considering teacher labor supply at the school level as an

organizational characteristic of each high school, and investigates the impact of this

organizational characteristic on the effectiveness of the organization itself, as measured

by student achievement. Much of the work on teacher demand, supply, and undersupply

has been conducted at the state or national level, using nationally representative data sets.

In fact, much of the seminal work on issues related to teacher supply utilized surveys

such as Schools and Staffing, and suggested an upcoming national teacher shortage (Boe

& Gilford, 1992; Darling-Hammond, 2000; Ingersoll, 2001, 2003). While it is important

to understand overall teacher labor supply and demand at the national and state level, this

approach can mask important differences that occur on a school-by-school basis. By

contrast, the studies presented here all begin by conceiving of teacher supply, demand,

and undersupply as school organizational characteristics, and utilize state administrative

data from Michigan to take into account distinct organizational factors related to each

factor of teacher labor supply (demand, supply, and undersupply) and student

achievement.

As an organizational characteristic of the school, teacher supply and demand can

contribute to the ability of a school to build trust among members, and to develop a sense

of community. This draws on the sociology of education, which has shown that the



presence of a sense of community and cohesion among families, teachers, and students is

important for the success of schools (e.g., Bryk & Schneider, 2002; Durkheim, 1961;

Grant, 1988; Parsons, 1959; Rosenholtz, 1989, Waller, 1932). A body of evidence

suggests that the community of the school has important implications for school

performance and effectiveness (Bryk, Lee, & Smith, 1990; Coleman & Hoffer, 1987;

Rosenholtz, 1989). Specifically, the communal nature of certain types of schools, such as

private schools, can create an environment that reinforces shared values and that leads to

higher levels of social capital (Coleman & Hoffer, 1987). This sense of community is

created by shared values, trust, and reciprocity between individuals in the school (Bryk &

Schneider, 2002). Schools in which there is a stronger sense of community and

cooperation between students and teachers have been shown to have higher achievement

levels, as well as a more equitable distribution of achievement (Lee, Bryk, & Smith,

1993; Lee & Smith, 1997).

How does teacher labor supply relate to the organizational culture of the school?

More specifically, how can teacher labor supply be expected to impact student

achievement as an organizational characteristic of a school? Prior research has shown that

much of the variation in student achievement is due to within-school, rather than

between-school, factors. Therefore, in order to estimate supply and demand and the

impact those factors have on student achievement, the most appropriate level of analysis

is at the school level. Teacher demand, particularly teacher demand as understood in the

context of statewide graduation requirements, will vary by each school and subject, as

will teacher supply. An important corollary to teacher supply is teacher turnover, as the

relationship between student achievement and teacher supply is likely affected by teacher



turnover. Schools with high rates of turnover may be more disorganized as a culture,

which in turn may lead to both decreased student achievement, as well as increased

student mobility, as students respond to the disorganized nature of the school and leave in

greater numbers. There may also be an indirect effect of teacher turnover on student

achievement via student mobility, as teacher turnover may lead to increased student

turnover, which is known to be linked to decrease achievement outcomes. The third

component of teacher labor supply is undersupply. School-level undersupply in each

subject is hypothesized to have a negative impact on student achievement outcomes.

Addressing teacher supply and demand using state administrative data

Since 2005, the Institute for Education Sciences (IES) has been awarding

statewide longitudinal data systems (SLDS) grants to states under the Educational

Technical Assistance Act of 2002. The purpose of these grants is to help states to

manage, analyze and utilize education data. Fourteen states were awarded grants in 2005;

12 additional states and the District of Columbia received grants in 2007; and under the

American Reinvestment and Recovery Act of 2009, 27 states were awarded an additional

$265 million in funding to further the work of the longitudinal data systems in the states.

The result of this substantial effort on behalf of the federal government is that many

states have rigorous, extensive, longitudinal data on students and teachers (Institute for

Education Sciences, n.d.). Moreover, the SLDS grants, NCLB, and the new requirements

under the American Reinvestment and Recovery Act and the Race to the Top competition

all require that states, districts, and schools make use of the data they are collecting in

order to influence policy and to support decision making.



One potentially fruitful use of this state administrative data is the study of teacher

labor supply. These teacher data are comprehensive; it is possible to know who applies,

who is granted a license, and what those licenses are in, along with certain demographic

information on those individuals. This helps to address a repeated concern in teacher

supply research, which is that the use of data from SASS or other nationally

representative data sets do not allow for the direct estimation of the absolute Size of a

teacher shortage (Murphy, DeArmound, & Guin, 2003). Ingersoll and Perda (2009) point

out that one of the problems with estimating supply for teachers is a lack of

comprehensive data on “entry, licensing, and preemployment preparation”(p. 3).

The state of Michigan, via the Center for Educational Performance and Instruction

(CEPI), collects and reports information related to the entire teaching workforce, and

collects this information in the Registry of Educational Personnel. This database includes

employment records for any individual hired by any educational entity in the state of

Michigan. The data are longitudinal; they have been collected in the REF since 2002, but

have become more rigorous and reliable within the last four years. This data source iS

discussed in greater detail in Chapter 2: Data and Methods.

Michigan also has a wealth of student data available to the research community.

Student demographic data and achievement data are available from the 2003-2004 school

year to the present, linked by a unique identifier code.1 The achievement data include

student test scores and performance levels of the state-administered MEAP (for grades 3-

8) and MME (for high school). These data are discussed in greater detail in the data and

methods chapter.

 

1 Student demographic and achievement data are available prior to 2003-2004, but they are not linked by a

unique identifier code, as this was not in place prior to 2003-2004.



These data are well-suited for use in analyzing this question for several reasons.

First, they are universe data, and include all students, teachers, and schools in the state of

Michigan. This removes a great deal of uncertainty regarding the generalizability of

results from a sample to a larger population.2 Secondly, as they include all teachers and

any observed attrition indicates a teacher leaving the Michigan teaching workforce, rather

than leaving the study sample, it is possible to obtain more accurate information about the

movement of teachers between schools and districts within the state, although

information on teachers moving out of state is still be difficult to track. Finally,

Michigan, like many states, has invested Significant resources in the construction,

maintenance, and improvement of its longitudinal data systems, and is vitally interested

in using these data more frequently to assess questions related to student achievement and

statewide policy. Michigan’s recent Race to the Top Round 2 application focused heavily

not only on making data available for use by researchers, but on making data available

for use to truly drive instruction, target professional development, and inform policy

(Michigan’s Race to the Top application, 2010). For this reason, these data represent a

timely and critical resource to be utilized for academic research, in order to inform the

state while also supporting their efforts in this area. Given the national interest in using

state administrative data to address questions in educational policy, this study is also an

important contributor to the national discussion of these issues.

Foundationsfor the Dissertation: Is there an adequate supply ofteachers to meet the

Michigan Merit Curriculum?

 

2 Although the data are universe data in one sense, they still represent a sample, albeit a very well-defined

one. These data can be considered one of the possible populations ofteachers, students, and schools that

could represent Michigan. One would expect the sampling error to be very small to negligible, but from a

theoretical point of view, it is generally understood that one never has a true population, even when in

possession ofvery complete data.



In 2006, Michigan instituted the Michigan Merit Curriculum, which required four

years of math and English, three years of science and social studies, and two years of

world language for high school graduation (Michigan Department of Education, 2006).

The state needed a feasible, easily utilized formula that enabled them to estimate where

the demand might be located, in order to inform both policy and to target resources. This

method, designed to help the state make an administrative decision regarding whether or

not it has enough teachers to accommodate the increase in graduation requirements,

needed to meet three requirements; it needed to be I) easily manipulated, 2) able to be

completed in a short period of time, and 3) able to utilize existing data. The following

method fits these three characteristics.

To estimate the number of teachers needed to fill the FTES prescribed by the

demands of the Michigan Merit Curriculum, 1 developed the following formula3:

(')

(I)

z

where

D = number of teachers needed to meet graduation requirements in a subject

area

a = proportion of the student body that needs to be enrolled in each subject

each year in order to meet graduation requirements

xi = total student enrollment in each school (including Special education

students)

y = class size (assumed to be 25)

= number Of periods taught per FTE per day (assumed to be 5)4

 

 

3 See Keesler, Wyse & Jones (2008b) on the [ES website

(11115”ies.ed.gov/ncee/edlaps/regions/midwest/mlf/techbrief/tr 00508.ndf). This formula has been vetted

by IE5 and is considered as a promising tool for use by other states. While the report was a collaborative

effOrt, the development of the formula was an individual contribution on my part. This was also part of a

icchnical report under the REL-Midwest Collaboration (Keesler, Wyse, & Jones, 2008a).

I)The formula and related assumptions will be discussed in greater detail in Chapter 4, Estimating Teacher

emand.



A key benefit of this demand formula is that it can be adjusted by the practitioner

to meet specific conditions of a state, district or school. Class size and number of FTEs

per teacher can be increased or decreased, enrollment can be adjusted, and specific

curricular requirements of the school (outside of what is required by the state) can be

factored in. One of the main objectives of the dissertation to produce a formula that is

rigorous but that is easily used by practitioners, allowing them to be more strategic and

cost-efficient with resources, and to use available data in a real-time, meaningful manner.

Calculating Supply

To calculate supply, it is necessary to have access to data regarding teacher and

building assignment; these are compliance data, i.e., information that each state is

required to collect in order to receive federal funding. Supply is calculated by summing

FTES in each subject assignment within each school. Subject assignments are recorded by

FTES, or the proportion of each full-time employee (FTE) assigned to a particular task.

For example, a teacher may teach math for half of the day and physics for the other half.

In that case, her FTE would be reported as 0.5 math, 0.5 science. Similarly, a teacher may

have both a teaching and administrative assignment. Therefore, it is important to

calculate supply not by the number of “teachers” but by the total FTE within each subject

area within each school.

Calculating Undersupply

Once demand is estimated for each school and supply is calculated, then one can

SUbtract supply from demand. Positive numbers indicate an undersupply of FTE in a

given subject area. The researcher should then designate a cut point at which undersupply

is determined to be Significant—where this “lack” is likely affecting practice, and not



able to be easily covered by adjusting teaching assignments or reconfiguring classes or

other administrative tactics. Here, a cut point of greater than one FTB of undersupply is

designated as significant undersupply. In the Michigan study, undersupply was calculated

on a subject-specific basis, in order to take into account variation on availability of

qualified teachers in different subjects. This method of estimating supply and demand is

known as a behavioral model which can be used to answers questions related to the

effects of policy changes by linking demand and supply estimates to relevant conditions

and policies (Boe & Gilford, 1992).

In Michigan in 2007, there were 223 high schools undersupplied in math, 64 in

English Language Arts, 41 in science, 39 in social studies, 52 in both mathematics and

English Language Arts, and 9 undersupplied in all four core areas (Keesler, Wyse, &

Jones, 2008a, 2008b). Undersupply seems to be more prevalent in mathematics and ELA.

This undersupply is most likely a consequence of MMC’S new requirements that students

take four years of mathematics and ELA.5 There appears to be an association between

schools that are undersupplied and failing AYP. While many schools that are

undersupplied are able to meet their AYP requirements, there appears to be a relationship

between school undersupply and failing AYP. Failing to meet AYP targets could be more

a function of the demographic profile of the schools than whether a school is

undersupplied or not. We cannot determine from the analyses presented here whether

meeting AYP is a function of the demographics of the school, issues of undersupply, or

both.

Finally, although the number of schools that are undersupplied is relatively small,

 

5 One ofthe reasons we suspect that many ofthe schools have an undersupply in mathematics and ELA is

that, according to multiple school websites, graduation requirements prior to the MMC often required

students to take 2-3 years ofmathematics and 2-3 years in ELA.
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the number of students affected by undersupply is not insignificant. For example, 72,798

students attend the 61 schools that were undersupplied in mathematics and ELA in 2007.

Investigating Teacher Demand, Supply and Turnover, and Undersupply Using State

Administrative Data: Dissertation Outline

The method outlined above for calculating teacher demand, supply, and

undersupply forms the foundation for this dissertation. This method is unique in several

ways. First, it utilizes state administrative data which, as described above, offers unique

advantages over nationally representative data sets, including the full Specification of an

entire teaching population. Secondly, supply and demand calculations are performed on a

school-by-school basis. Given the local nature ofboth demand and teacher supply,

calculating these factors at the school level gives increased precision and allows for a

fine-grained analysis of the issue. Again, much of the work on teacher supply and

demand produces estimates at the state or national level, which is far too aggregated to

show the intricacies of supply and demand on the local level (for example, the most

recent NCES publication using the SASS Teacher Follow Up Survey, Marvel, Lyter,

Peltola, Strizek, Morton, & Rowland, 2007). Following Ingersoll, I view issues of supply,

demand, undersupply and turnover as organizational characteristics of schools, which

suggests that there are school-level differences and interactions between the organization

itself and these factors which are critically important to understanding their import.

Finally, this method is administratively useful as well as policy-relevant in that the

assumptions can be changed by a state or district to more accurately reflect local

condition, and this analysis can be run by non-technical staff who are interested in

generating supply and demand calculations for their district or school.
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This dissertation generally follows a three-essay model, although focusing more

on developing a coherent overall empirical narrative as opposed to three standalone

essays. As each analysis is necessary for consequent analyses, they are three critical

components of the overall story of school-level teacher labor supply and its relationship

to student achievement in the state of Michigan.

The next chapter presents, in greater detail, the data and analytic methods utilized

in the dissertation. Chapter 3 provides descriptive analyses of the teaching workforce in

Michigan at the individual level; the relationship between school-level teacher retention

rates and school characteristics; and finally, the relationship between school-level

undersupply and school characteristics. Chapter 4 introduces the demand formula and

presents a series of modifications, and then tests the original formula against the modified

formula. Chapter 5 undertakes a multilevel analysis of the impact of school-level teacher

retention on student achievement and student mobility, and Chapter 6 extends this

analysis into a quasi-experimental framework to estimate the effect of school-level

teacher retention as a treatment. Utilizing the findings from the demand formula re-

estimation (Chapter 4) and integrating the school-level teacher retention rate (Chapter 5),

Chapter 7 estimates the impact of school-level teacher undersupply on student

achievement and student mobility. The dissertation concludes with discussion and

conclusions, as well as suggested policy impacts and outlined next steps (Chapter 8).

12



CHAPTER 2: DATA, METHODS, AND MEASURES

This chapter presents an overview of the data and sample, methods, and variables

used throughout this dissertation. The majority of the detail regarding these elements will

be presented here and referenced in their appropriate chapters.

Data

This dissertation utilizes data from several Michigan administrative data sources:

(1) The Michigan Registry of Educational Personnel (REP), (2) the Michigan Single

Record Student Database (SRSD), (3) Michigan assessment data, and (4) Michigan

teacher data. Each of these sources is discussed below.1

These data represent an important, relatively new source of data for education

research. Federal and state governments have spent vast sums of money developing and

implementing these systems, and ensuring that they contain quality data. It is incumbent

upon the research community begin to make use of these data, both in partnership with

the states themselves, as well as in individual research work. These data are markedly

different from other large-scale data sets. AS they contain information on every student,

teacher and school in the state, they are universe data.2 While they contain an immense

number of observations, they can be sparse in terms of number and types variables. A

researcher can be creative, as was done here, and create variables as well as link with

other data sets, but unlike studies such as those produced by NCES, these data do not

contain multiple measures of things like social issues, expectations and plans, or family

 

1 All data were obtained from Michigan’s Center for Educational Performance and Information, and from

the OffIce of Educational Assessment and Accountability in the Michigan Department of Education. These

data are available to researchers who submit appropriate applications, research plans, and undergo human

subjects review by a state review board.

Although the data are universe data in one sense, they still represent a sample, albeit a very well-defined

one. See footnote #2 in Chapter 1 for a discussion of this issue.
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background measures. Missing data is a different issue as well. In a nationally

representative survey, missing data can be very critical in terms ofwho is missing and to

what extent that biases the findings. In these data sets, there is very little to no missing

data, as many of these fields are required collections and missing data is not allowed.

When data is identified as “missing,” it is necessary to revisit that variable and

understand whether a missing value truly means “no response” or whether it is a variable

that would not be expected to have a value for that given student, teacher or school.

Finally, it is important to note that, although this work specifically uses Michigan

administrative data, both the findings and the lessons learned from working with these

types of state data are expected to be applicable in other state contexts.

The Registry ofEducational Personnel (REP)

The Registry of Educational Personnel is Michigan’s longitudinal administrative

database that contains information on every educational personnel member in the state of

Michigan. This dataset includes demographic, teaching assignment, and licensure and

endorsement information for all teachers. For this study, teacher data from 2005-2008 is

utilized. It is possible to use these data to define the population of teachers in a given

year, and understand their demographic and school characteristics; study the relationship

between licenses, endorsements, and subjects taught, in order to test for out-of-field

teaching; and to look at the distribution of types of licenses across types ofteachers and

also types of schools.3

The demographic information on teachers includes the following variables: age,

gender, race, highest education degree, major and minor, higher education institution

 

3 The REP is stored in a relational file database, and thus creating research files for analysis requires

“unstacking” the files to the appropriate level. The technical reports produced by the REL-Midwest provide

further detail on the mechanics ofthis process.
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attended and whether or not a teacher is “highly qualified.”4’5 Teaching assignment data

provides information on each assignment held by a given teacher, including the subject,

number ofFTES taught for that assignment, and number of classes taught by each

teacher. Finally, the license and endorsement portion of the database provides

information on the type of license a teacher holds (provisional, professional, vocational,

administrative, etc.), the date that license was issued, and information on which specific

endorsements the teacher holds.6 There are over 2,000 types of endorsements, covering

every subject area, and teachers can hold up to seven endorsements, although most hold

between one and three (Lynn & Keesler, 2008). This database includes a field for teacher

preparation institution, but it is missing a relatively large amount of data (approximately

40%) because older teachers did not submit the information when they entered the system

and the field only reports the most recent degree. There is also a highly qualified field,

although 98% of teachers are considered and reported as highly qualified, so this is not

necessarily a highly informative field. There is extensive information related to

assignments—subject taught, number of FTES in various subject.

The Single Record Student Database (SRSD) 7

The SRSD is Michigan’s student database, which contains information on student

demographics, such as gender, date of birth, racial/ethnic identification, and personally

 

4 Not all of the fields are “compliance fields,” which means that districts are not required to submit

information for them. Age, race, gender, and highest education are all compliance fields, and are missing

less than 2% ofthe information, but noncompliance codes like major/minor have approximately 40%

missing. These variables should be used with caution, understanding their limitations.

5 “Highly qualified indicates that a teacher has at least a bachelor’s degree and has passed the Michigan

teacher certification exams in both basic skills and in their subject area taught, or has demonstrated subject-

area specific knowledge and training, such as graduate coursework in that subject or National Board

glertification (Watkins, 2003).

This is known as the License 2000, or L2K, database, which is now fully contained in the REP.

7 Beginning in 2010, the SRSD will be replaced with the Michigan Student Data System (MSDS), with

appropriate crosswalks between the two systems.

15



identifying information. Michigan is able to link all student demographic and assessment

data using a unique identifier code (UIC), which enables longitudinal analyses of the

data. The SRSD is collected annually by all intermediate school districts and submitted to

the state of Michigan in order to comply with federal reporting requirements.

Student Assessment Data

Michigan, like most states, has a statewide assessment system, known as the

MEAS (Michigan Educational Assessment System). This includes yearly testing in

reading and mathematics in grades 3-8, and one grade in high school, grade 11, as well as

alternative assessments for students with moderate to severe cognitive impairments,

second-language learners, and different assessments for elementary and middle schools,

and high schools.8 The high school test is the Michigan Merit Examination, a three-day

test administered to all juniors that includes mathematics, English language arts, science,

social studies and reading, and also includes the intact ACT and WorkKeys tests.

When measuring the relationship between the main predictors of interest in this

study (school-level teacher retention and undersupply), and student achievement and

mobility outcomes, it is desirable to have a pretest measure of student achievement, as

this is an important covariate in regression analyses. In fact, Cook, Shadish and Wong

(2008) find that “we can trust estimates from observational studies that match intact

treatment and comparison groups on at least pretest measures of outcome.” For an

observational study such as this one, including a pretest measure of student ability is

critical to minimize the chance that the inferences are due to bias.

 

8 In compliance with NCLB, Michigan assesses mathematics and reading yearly grades 3-8 and grade 11.

Other subjects must be assessed once per level (elementary, middle, and high school). Writing is assessed

in grades 4 and 7. Science is assessed in 5th, 8th, and 11th grade. Social studies is assessed in grades 5, 6,

and 9.
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However, in Michigan, the state’s assessments are not vertically scaled. As a

consequence, the score that a student receives on their 8th grade achievement test is not

on the same scale as the 11th grade achievement test, and therefore, methods such as gain

scores or regression-based grth models are not well-supported by the data. When

using a pro-test score as a predictor, however, it is possible to use the assessment data in

this format, because although the scores are not linked to the same scale, they can serve

as a reasonable prior measure of ability as an independent variable in regression-based

analytic techniques. Therefore, for this analysis, student test scores on one administration

ofthe Michigan Merit Examination are used—the Spring 2009 administration, and a pre-

test score from their last assessment data—8th grade MEAP—is also used.9

School Level Data

While the teacher data file does not include school information, it is possible to

link rich school-level data in using the Michigan school code. This school code has a

corresponding NCES identification number, which allows for the linking of data from the

Common Core of Data and other NCES sources. For this study, the school data file is

constructed using the state of Michigan’s Educational Entity Master, the overall master

file that defines every educational entity in the state of Michigan and its current status

(i.e. open, closed). State-released files on free and reduced lunch, pupil headcount, AYP

 

9 A better outcome measure for tracking student achievement growth is a specially developed measure by

the state ofMichigan which assigns each student one of five performance level change indicators with

respect to their achievement scores from year to year—maintaining, increasing, significantly increasing,

decreasing, or significantly decreasing. However, these data are not available for high school students,

because of concerns with constructing this measure using the high school test (the MME) and the last test

prior to high school (8th grade MEAP). These tests are administered three years apart from each other, and

the scales and constructs are extremely different. Middle and elementary school content is determined by

Grade Level Content Expectations (GLCEs), while high school content is determined via the Michigan

Merit Curriculum. Therefore, calculating the performance level change categories seems inadvisable.

l7



and school accreditation grade are linked in, as is information from the Common Core of

Data. Only high schools are included in the school file.

Sample

Although data are available on all teachers, students, and schools, the sample for

this dissertation is restricted to high schools only. The Michigan Merit Curriculum is a set

ofhigh school graduation requirements, and therefore, analyzing teacher supply, demand

and undersupply in relation to these requirements requires analyzing high schools only.

Only high schools that are local education agency (LEA) schools or public school

academy (PSA) schools are analyzed—on other words, standard public high schools and

charter high schools. Ofthose schools, I only analyze those defined as “regular” schools,

as opposed to alternative or other types of schools, like Special education centers. This is

due to concerns about generalizability, in that alternative schools consist of unique

configurations of students and teachers, and are fundamentally different than “regular”

schools.10 If schools have a retention rate of zero, they are retained in the analysis only if

they are not closed schools, with the exception of a handful of schools that were truly

closed for restructuring one year and reopened the following year. Schools with less than

three teachers are excluded from the analysis as well, as calculating a retention rate with

less than three teachers leads to skewed results. This yields a sample of 580 high schools

. 11
used In these analyses.

 

10 In a separate analysis of teacher retention in alternative high schools only, I find that higher levels of

teacher retention rates are actually associated with lower student achievement, although this effect is not

statistically significant than zero.

The sample for both the school-level teacher retention and the school-level undersupply analyses is

defined by the decisions made related to retention rates described above. It was necessary to analyze the

same population of schools for both the retention and undersupply analyses, as the relationship between

retention and undersupply was investigated. Additionally, the restrictions placed on the sample from the

retention analyses served primarily to restrict the high schools to traditional high schools for whom this
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Teachers were included in the population of instructional staff for a given year

based on whether or not they had an “instructional” subject assignment, as defined by the

state of Michigan. All instructional assignment records were tagged, and these were then

flattened into a person-level file for each year. The population of teachers was 111,974

in 2005; 111,055 in 2006; 109,915 in 2007, and 107,793 in 2008.

For the student population, only students with both a valid, non-zero MME and

MEAP assessment score were retained, and those who either did not have a matching

pre-test score, had a score of zero, or took Ml-Access (Michigan’s alternative assessment

for students with moderate to severe cognitive difficulties), were eliminated from the

analysis. This yields a sample of 96,556 students.

Methods: Multilevel Modeling and Propensity Score Matching

This dissertation focuses on two important relationships: (1) estimating the

relationship between school-level teacher retention and student achievement and mobility

outcomes, and (2) estimating the relationship between school-level teacher undersupply

to meet the Michigan Merit Curriculum and student achievement, taking into account the

school-level “churn” rate. In order to investigate these relationships, two types of

methodological strategies are utilized: multilevel models and propensity score matching.

Multilevel modeling, particularly with longitudinal data, allows for the estimation of the

impact of school- and student-level characteristics on given outcomes. Multilevel models

are used in tandem with propensity score matching techniques in order to provide

additional evidence regarding the relationship observed, and to test for a relationship in a

quasi-experimental framework.

 

demand formula is most neatly applied. However, it is possible to re-define the sample and conduct

undersupply analyses on a different sub-population of high schools.
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Below, I present an overview of each strategy, including a brief discussion of why

that strategy was selected. The methods are then referenced in their appropriate chapters.

The analysis of teacher retention uses multilevel modeling with sensitivity analyses, and

propensity score matching with sensitivity analyses, to examine the relationship between

school-level teacher retention, student mobility and student achievement, while the

analysis of school-level undersupply uses multilevel modeling with sensitivity analyses to

investigate the relationship between school-level subject-Specific undersupply and

student achievement.

The Multilevel Models to Be Estimated

To test the effects of the two main predictors of interest, school-level teacher

retention and undersupply, on key outcomes, multilevel models (i.e., models with random

effects) with high school students nested within schools are estimated. Unlike fixed-

effects models, multilevel models do not Simply control for effects of organizational

contexts (e.g., schools), because they include the capacity to simultaneously test effects at

multiple levels (e.g., the effects of student prior ability at the individual level and of

teacher retention rate at the school level), as well as cross-level interactions to find, for

example, an interaction between a student’s race or gender and the teacher retention rate

of the school (see Raudenbush & Bryk 2002).

Two types of multilevel models are estimated. The first are hierarchical linear

models (HLMS), which test the relationship between the key predictors (teacher retention

and teacher undersupply) and the continuous student achievement outcomes, and the

second are hierarchical generalized linear models (HGLMs), used only in the teacher

retention analysis in order to predict student mobility, which is a dichotomous outcome,
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as a function of teacher retention. The general structure of both types of models

(specified below) is a means-aS-outcomes model, where the grand mean for each school

is predicted by both student- and school-level characteristics. The theoretical framework

of this study suggests that although the main predictors of interest, teacher retention and

teacher undersupply, are school-level variables, these predictors do not act separately

from student-level characteristics and that student performance is a function of both

student- and school-level characteristics. It is well known that much of the impact on

student achievement is related to individual student background characteristics, but a

growing body of literature suggests that school characteristics have an impact on student

performance as well (Rumberger & Thomas, 2000).

In the teacher retention multilevel models, teacher retention predicts student

achievement both directly and as a crosslevel interaction with student mobility. The

purpose of these models is to test whether or not teacher retention has a direct effect on

student achievement, as well as to test whether student mobility interacts with teacher

retention in this relationship.

The general model specification for the HLM models is as follows:

Level 1 model: (1)

Yij = I30j + B1j(student mobility) + Bj Z’ + rij

Level 2 model:

BOj = 700 + 701(teacher retention) + yj Q’ + uoj

where

Yij = outcome (mathematics scale score) for each student i in school j

BOj = each school mean, represented as a function of the grand mean, student

mobility, the matrix of student-level predictors, the school teacher retention rate,

and the matrix of school level predictors

B1j = coefficient for student mobility
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l3j = vector of coeffs for school j

Z’ = vector of student covariates for school j

700: grand mean (intercept)

701 = effect of teacher retention on BOj (each school mean)

yj = vector of school-level predictors)

Q’ = vector of school covariates

uoj = the residual error of Boj, distributed iid N(O, too)

rij = level 1 variance (student error term), rij distributed iid N(0, 0'2)

In the final teacher retention model, a crosslevel interaction term is added. The

Specification for this model is the same as above, with the student mobility slope

predicted by teacher retention rate. The slope is not allowed to vary (i.e. is fixed).

Level 1 model: ' (2)

Yij = BOj + B1j(student mobility) + Bj Z’ + rij

Level 2 model:

Boj = 700 + 701(teacher retention) + 'yj Q’ + uoj

[311- = 710 + y] 1 (teacher retention)

This model is modified slightly in the teacher undersupply analyses, as outlined below:

Level 1 model:

(3)

Yij = Boj + fi1j(student mobility) + pj z: + ,1].

Level 2 model:

BOj = 700 + Yo1(underSUPply) + 'Yj Q’ + qu

where

Yij = outcome (mathematics, ELA or science scale score) for each student i in

school j

BOj = each school mean, represented as a function of the grand mean, student

mobility, the matrix of student-level predictors, the school teacher undersupply

rate, and the matrix of school level predictors

[31j = coefficient for student mobility

Bj = vector of coeffs for school j

Z’ = vector of student covariates for schoolj
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700: grand mean (intercept)

701 = effect of subject-specific undersupply on BOj (each school mean)

yj = vector of school-level predictors

’ = vector of school covariates

uoj = the residual error of BOJ', distributed iid N(0, too)

rij = level 1 variance (student error term), rij distributed iid N(0, 0'2)

For the HGLMS in the teacher retention analysis, student mobility is a binary

outcome variable; therefore the use of a standard level 1 multilevel model is

inappropriate (Raudenbush & Bryk, 2002). Student mobility is indicated by whether or

not a student remained in the same school from the fall of 2006, which was their

freshmen year, until the spring of 2009, when they took the high school achievement test

(1=changed schools).

The general structure of the HGLM models follows below.

Level 1 structural model:12 (4)

“ii = BOj + Bj 2’

Level 2 model

BOj = 700 + 701(teacher retention) + 702(student mobility 2007 cohort) + yj Q’ + uoj

Bpj = ypo for p>0

‘lij = the log odds of remaining in the same school for each student i in school j

BOj = each school mean, represented as a function of the grand mean, the matrix

of student-level predictors, the school teacher retention rate, and the matrix of

school level predictors

l3j = vector of coeffs for school j

 

12 The level 1 model in HGLM consists of three parts: a sampling model, a link firnction, and a structural

2

model. The sampling model assumes that Yij, given the predicted value uij, is distributed NID (uij, o ).

The level-1 predicted value, uij, can be transformed so that the predictions remain within the given

interval, which produces the transformed predicted value nij. This transformed predicted value is now

related to the predictors ofthe model through the linear structure model. Combining the sampling model,

link function, and level 1 structural model reproduces the familiar level-l HLM model (Raudenbush &

Bryk, 2002). The level 1 variance is now heteroskedastic
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Z’ = vector of student covariates for school j

700: grand mean (intercept)

701 = effect of teacher retention on BOJ' (each school mean)

702 = effect of 2007 cohort student mobility on BOj (each school mean)

yj = vector of school-level predictors)

Q’ = vector of school covariates

uoj = the residual error of Boj, distributed iid N(0, too)

Analytic Strategyfor Multilevel Models

A baseline for all multilevel models is established by estimating an unconditional

random effects ANOVA. This allows for the calculation of the intraclass correlation, or

the proportion of variance that is between schools. Following the estimation of this

baseline model, a series of multilevel models are estimated. For the teacher retention

analysis, four different multilevel models are estimated (see Table 5.2). The first, a

bivariate model, estimates the bivariate relationship between school-level teacher

retention and student achievement in mathematics. The second (Model 2) includes a

second school-level predictor shown in the preliminary analyses to be highly correlated

with the student achievement, percent free lunch, in order to control for other key school-

level factors. This model also introduces a pretest measure of mathematics achievement

at the student level, in order to account for student prior ability. The final two models are

fully Specified models with all predictors at level 1 and level 2, with the final model

containing a crosslevel interaction between teacher retention and students who remain in

the same school, to test the hypothesis that there is a multiplicative effect of teacher

retention and student retention on student achievement.13

 

‘3 All Level 1 predictors, with the exception of pretest score and same school, are grand mean centered, in

order to control for their effect, rather than partial out the impact attributable to student and school. A

model with all Level 1 predictors group mean centered was run (output not reported); the effects for gender
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A similar modeling scheme is utilized in the models predicting student mobility,

beginning with a bivariate model with teacher retention predicting student mobility (see

Table 5.3). The second model includes only the school-level measure of prior student

mobility for the 2007 cohort. The final model is a full model, including all level 1

predictors (gender, race and program eligibility) as well as level-2 predictors.

In the teacher undersupply analysis, a very similar set of models were estimated

as described above. Following the estimation of a baseline model, a series of multilevel

models were estimated, for mathematics, English language arts, and science. Four

different multilevel models are presented in Table 7.7 (mathematics), Table 7.8 (English

language arts), and Table 7.9 (science). The first, a bivariate model, estimates the

bivariate relationship between subject-specific school-level teacher undersupply and

student achievement in that subject. The second (Model 2) includes a second predictor

shown in the preliminary analyses to be highly correlated with the student achievement,

free lunch eligibility, as well as a pretest measure of mathematics achievement and the

student mobility indicator at the student level, in order to account for student prior ability.

The third model adds in the school-level teacher retention rate. The final model includes

all predictors at level 1 and level 2.

Sensitivity Analyses

When approaching applied analytic work using observational data, there is a

concern regarding the impact of an unobservable characteristic on the outcome, one that

might invalidate the inferences drawn from the study. When using state administrative

data, this is a concern as well, as state data is rich in observations but does not include a

 

and race are largely at the student level, not at the school-mean level. Therefore, the decision was made to

grand mean center race and gender in the reported models.
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large number of variables. Sensitivity analyses are conducted to test the robustness of the

inferences to the influence of other unobserved characteristics. Observational studies all

vary in the degree to which they are sensitive to hidden bias, where some are very

sensitive and others are relatively insensitive, even to substantial bias (Rosenbaum,

2005)

The presence of unobserved confounding variables cannot be “solved” but the

sensitivity of the findings to this potential bias can be quantified, as a way to understand

and contextualize the rigor of the results. Therefore I will characterize the robustness of

these inferences to the potential impact of confounding variables (Frank, 2000).

Following Frank (2000) and Frank & Sykes, et al. (2008), the sensitivity analyses

techniques used in this paper consider how unknown quantities could affect estimates.

However, as opposed to reporting how violations of assumptions produce a range of

estimates, the focus remains on the extent to which an assumption must be violated to

invalidate an inference. As a result, the indices reported here seek to quantify the

robustness of the original inference (Frank & Sykes et al, 2008; Frank & Min, 2007;

Frank, 2000).14

Propensity Scores: Briefdiscussion ofpropensity scores as an analytic technique

Propensity scores matching is one of a set of relatively new analytic techniques that

have arisen out of the need to estimate treatment effects from observational data. Built

upon the work of statisticians, such as Rosenbaum and Rubin (1983), and

econometricians, such as Heckman, propensity score analysis allows for the estimation of

 

‘4 For more information regarding the development ofthese indices and their application to this study, see

the Technical Appendix D. For more information on the these indices and their development and

application across a variety of contexts, see Frank (2000), Frank & Min (2007), and Frank & Sykes, et al

(2008).
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causal effects from non-experimental data. Because of their utility in isolating effects

when randomized studies are not possible (as is often the case), these methods are

becoming part of the analytic methods of a number of disciplines, including education

(Guo & Fraser, 2010).

To provide a brief overview of propensity score matching as a method, the goal is to

approximate the counterfactual: how might the outcome have varied if a school had or

had not received the treatment? Since the counterfactual can never be observed in one

individual unit, propensity score matching finds Similar units with different treatment

assignments conditions, and compares their outcomes. One way to do this is to match the

observations on a set of variables. However, this quickly becomes difficult due to the

high dimensionality (Guo & Fraser, 2010; Rosenbaum, 2002; Rosenbaum & Rubin,

1983). Instead, a propensity score can be used as a balancing measure that summarizes

the information in the covariates, and represents the estimated probability of receiving the

treatment as a function of variables that predict treatment assignment (Morgan &

Harding, 2006; Rosenbaum, 2002; Rosenbaum & Rubin, 1983). In this case, the

treatment is considered high school-level teacher retention. Propensity scores are one of

the main methods in matching strategies for estimating the counterfactual. The inherent

difficulty with the counterfactual is that it can never be observed on one person or unit—

a person/unit cannot receive both the treatment and the control under the same conditions.

Therefore, the counterfactual is usually estimated in the aggregate.

Propensity scores are often presented as an improvement over ordinary multiple

regression, as a technique that is quasi-experimental in nature and that can account for

possible selection effects. Where OLS regression makes no claims to approximating an
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experiment, propensity scores do, and are often described as a way to do an experiment

when true random assignment is impossible, as is so often the case in social science and

education research (i.e. when it is unethical, impractical, and/or impossible to randomize

people into treatment and control conditions).

While propensity score matching is presented in an entirely different framework and

so conceptually is more aligned with the idea of experimental design, in reality, it is not

different in a statistical sense than regular OLS with predictors. One reason for this is

that the same data is being used to estimate both types of analyses. The prediction

equation in propensity score matching is using the same information from covariates that

could be included in a regular multiple regression framework. That information is

encoded in the propensity score, but still yields the same kind of estimates for individuals

in the data set. In other words, Individual A’s values on key covariates like SES, race,

gender and family composition are the same in the prediction equation for the probability

to receive treatment as they are in a multiple regression framework predicting the

outcome.

What propensity score matching adds in applied contexts is an intuitive framework

for isolating potential effects, as well as an efficient method for comparing treatment

effects on groups that are matched on all available and observed covariates. While

including all predictors in a multiple regression framework can yield similar estimates

(for example, Frank, 2008), it does not allow the researcher to explain impacts in a clear

treatment/control context. Presentation of findings in treatment/control contexts can be

more intuitive to audiences, particularly when those audiences are policy makers or

practitioners. A regression equation with a large number covariates can be confusing and
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overwhelming; a comparison of means between treatment and control (where assignment

is predicted by those covariates) can be more digestible. This class of methods focus on

controlling for selection bias by using the observed covariates in ways to minimize this

bias, and thus the offer advantages over OLS regression (Guo & Fraser, 2010). More

importantly, when targeting analyses toward a policymaking audience, it can help isolate

the potential effect of implementing a new policy—as is the goal here.

However, it is important not to overstate the “power” of propensity scores. They do

not remove the issue of unobserved confounding variables (which is a key criticism of

regular regression) because those unobserved confounding variables are still unobserved,

and assignment into treatment and control conditions based on covariates is only as good

as the covariates. While they can control for overt selection bias, they are not able to

control for hidden selection bias (Guo & Fraser, 2010). For this reason, propensity score

matching is used in this analysis in conjunction with sensitivity analyses that help

quantify how robust the treatment effect is to hidden bias, as suggested by Rosenbaum

(2002, 2005) and Rosenbaum and Rubin (1983).

Propensity Scores: Weighting Method

Propensity scores allow for the comparison of those in a “treatment” group

(schools with high teacher retention) and those in a control group (schools with low

teacher retention) who have similar propensities to receive the treatment. The treatment,

high teacher retention, is defined as a school with over 85% of the teachers retained from

year to year.15 The propensity score is the probability of a school receiving the treatment

 

15 Tests were done to estimate the best threshold for the defining the high teacher retention treatment level.

Several thresholds were included in a series of logistic regressions to see which were significant.

Additionally, propensity scores were estimated for several thresholds and the distribution of treatment and
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(high teacher retention), given a set of covariates. For this analysis, a weighting approach

to propensity scores is used, in order to allow all information to be retained in the

analysis and not lost as can be the case when doing a case by case matching approach to

propensity scores (Hirano & Imbens, 2001; Morgan & Harding, 2006; Robins, Heman, &

Brumback, 2000; Robins & Rotnitzky, 1995; Robins, Rotnitzky & Scharfstein, 2000).

The propensity score is calculated by estimating a logistic regression predicting

treatment (i.e. high teacher retention).l6 This yields a propensity score, which is the

propensity of receiving treatment given the set of covariates, and is defined as follow (see

Rosenbaum & Rubin, 1983):

e(x)E Pr{t = l | x} (5)

where t= whether or not the school received the treatment of high teacher

retention, and Pr{t=l Ix} is the probability of receiving the treatment given that set of

covariates.

After estimating the propensity score, several weights are calculated. The first is

the weight for the treatment effect for those schools on the margin of indifference, or the

effect of treatment at the margin of indifference (EOTM) (Heckman, 2005). In other

words, this weight focuses on those schools that might be considered most likely to

respond to a change in policy on teacher retention rates. Schools that had low teacher

retention but had a high propensity for having high teacher retention might be responsive

to shifts in statewide policy regarding professional development or incentives for teachers

to remain in schools. This weight is calculated as follows:

 

control cases in each ofthe blocks was examined. An 85% threshold yielded the most reasonable results,

and therefore is used here as the treatment.

6 Propensity scores are estimated using the pscore program in the Stata statistical analysis software,

created by Sascha Becker and Andrea Ichino (2002).
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t 1 - t
+

e(x) l — e(x)

 
(6)a)(t,x) =

This weight is then included in the multilevel models specified previously,

weighting the level-2 observations by their propensity to receive the treatment.17 This

means that schools that have high retention are weighted by 7L)- and schools that have

e x

 low retention are weighted by . Therefore, schools with high retention are

— e x

weighted more when they have a lower propensity of having high retention, and low

retention schools are weighted more when they have a high propensity of having high

retention. This focuses attention on those schools that either received the treatment and

had low propensity to do so; or those who did not receive the treatment despite having a

high propensity to do so.

Weights were also constructed that allow attention to be focused on the treatment

effect for the treated and the treatment effect for the control. Looking at the treatment

effect for the treated asks, “How well did the treatment work for those who received it?”

while looking at the treatment effect for the control asks, “How well might this treatment

have worked for those in the control group?” These weights are constructed as follows:

Treatment effect for the treated:

—t

l—e(x)

 a)(t, x) = t + (7)

Treatment effect for the control:

 

l 7 . . . .

In order to preclude extreme observations from exerting undue Influence on the models, werghts were

trimmed at 18.
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w(t,x)=—e(t—x)+l-t (8)

Propensity Scores: Stratification Method

I also investigate this relationship by looking at the average treatment effect

within four strata.18 This estimates the average treatment effect on the treated (ATT)

using stratification matching. The strata were defined during the estimation of the

propensity score. By construction, the covariates in each block are balanced and the

assignment to treatment can be considered random. The ATT is computed only on the

region of common support, and is computed using a weighted (by the number of treated)

average of the block-specific treatment effects. In turn these are computed as the

difference in average outcomes of treated and controls within the same block for which

the all control variables are balanced (Becker & Ichino, 2002).19

Measures

Keypredictors ofinterest: School-level teacher turnover and undersupply”

These analyses use two important predictors constructed from the data: school-

level teacher “churn rates,” and school-level teacher undersupply. As this is an

organizational analysis of teacher supply and demand, characteristics that may be studied

at the individual level (i.e. teacher retention) are considered as an organizational

characteristic of the schools.

School-level teacher churn rates are calculated by identifying the number of

teachers who remain in the workforce and in the same school from one year to the next.

 

18 This is computed using Stata’s atts command within the pscore program. See Becker & Ichino (2002).

19 For comparison, I estimate these effects with nearest neighbor, kernel, and radius matching as well. This

is described further in Chapter 6 and in the Appendix C.

20 A complete list of all variables used throughout the dissertation is included in Appendix A.
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This is estimated over four years, which is three retention time points. This is then

aggregated to a churn rate; the proportion of the teaching force in a given school that

remains the same from one year to the next. This rate is averaged over the three time

points, and a “difference” indicator is included in analyses to control for the direction of

change in average retention rates.

School-level teacher undersupply is calculated using the method outlined above,

with modifications. Demand is estimated using a modified demand formula (Chapter 4),

then supply is calculated by summing the FTEs in each subject for each school, and

undersupply is calculated by subtracting supply from demand. This variable is then used

as a predictor in multilevel analyses predicting student achievement. It is also used in

conjunction with the school-level teacher retention rates calculated above, in order to take

into account the impact of a “revolving door” of teachers on the relationship between

undersupply and outcomes.

School-level Covariates

The school-level predictors include those variables shown by research to be

related to both teacher retention and student outcomes: the percent minority students in

the school, percent free/reduced lunch students, locale (a dummy variable comparing city,

town and rural schools to suburban schools), school size (a dummy variable comparing

small schools of under 300 students and large schools of over 1000 students to medium

schools), indicator variables for charter and magnet status.
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Additionally, I use a set of workforce composition variables, including the

proportion of teachers with professional licenses (by FTES), proportion minority teachers

(by FTES), and proportion of highly qualified teachers (by FTES).21

For the student mobility analysis, a school-level covariate for the 2007 cohort

mobility is used. This variable indicates the proportion of students in each school who

took the MME in the spring of 2007 and who were in the same school in the fall of

2005.22 It is used as a prior measure of school-level student mobility, in order to help

establish a stronger causal ordering. This measure is prior to the final year of the teacher

retention measure (2008), as well as prior to the student achievement outcome measures

from 2009.

Student-Level Covariates

The following student predictors are utilized: mathematics or English language

arts pretest score from the 2005-2006 8th grade achievement test, the MEAP test,23

gender, race, free and reduced lunch eligibility, special program eligibility and an

indicator variable for whether or not students have been in the same high school since 9th

grade. These student level predictors are all well-known to have important relationships

with student achievement outcomes, and are a standard set of student background

covariates to include in such an analysis. Gender is a dichotomous variable (1=female).

Race is categorized into American Indian/Pacific Islander, Asian, Hispanic, Black and

 

21 School means of all student predictors are also included on the intercept when those student level

redictors are included in the model and are group-mean centered.

This variable indicates the proportion of 2007 juniors who were in the same school in the fall of 2005,

i.e. as sophomores. Data was not available for the fall of 2004, when those students were freshmen.

By legislative mandate, Michigan only administers a high school achievement test at one time point in

high school—in 11th grade. Therefore, the only available pre-test measure of prior achievement is the 8th

grade MEAP score. Only students with valid MEAP and MME scores of a non-zero value were retained in

the analysis (n=96,556).
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multi-ethnic, with white as the reference category. Free and reduced lunch eligibility is a

dichotomous variable (1=free/reduced lunch eligible). The same school variable used as

an outcome in the second set of models is used as a predictor in the student achievement

models. Program eligibility indicates whether or not a student is eligible for Title 1,

special education, Section 504 plan, Limited English Proficient, advanced/accelerated, or

migrant services. This is recoded into a dichotomous variable that indicates whether or

not a student is eligible for any special programs.24

 

24 The number of students in this file who are eligible for these programs is very small (n=l300). This is

partly due to the fact that students who took MI-Access, Michigan’s alternative assessment for students

with moderate to severe cognitive difficulties, are not included in this analysis, and thus much ofthe special

education and Section 504 population is not included.
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CHAPTER 3: DESCRIPTIVE ANALYSES OF MICHIGAN’S TEACHER SUPPLY, TURNOVER,

AND UNDERSUPPLY

Teacher supply, retention and undersupply are interrelated aspects of the teacher

labor supply in the state of Michigan. The analyses in this chapter present descriptive

evidence to highlight these relationships, and to provide an overall empirical picture of

teacher supply, school-level teacher retention, and school-level undersupply. The

descriptive analyses presented here allow for the investigation of three questions: 1) What

is the composition of Michigan’s teaching force (i.e. its supply) in terms of

demographics, licenses, and distribution? 2) What is the distribution of school-level

teacher retention rates over various types of schools? 3) What is the distribution of

school-level undersupply over various types of schools? This chapter begins with

findings regarding the characteristics and composition of the teaching workforce in

Michigan, focusing in particular on the distribution of teachers across various types of

schools, license types, and subjects. The analysis then turns to Michigan’s overall labor

supply, looking at the number of teacher entering, leaving, and staying in the profession,

and then for those who stayed, the proportion who changed schools and those who did

not. The final portion ofthe chapter focuses on the two key school-level characteristics

that are of interest throughout this analysis—school-level teacher retention and school-

Ievel undersupply, in order to understand how these characteristics vary across types of

schools.

While descriptive analyses cannot provide evidence regarding causal

relationships, they provide critically important information regarding the population of

teachers and schools under analysis. With these universe data, they are even more
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informative than data from representative samples, as they represent the complete

population of teachers and schools, and therefore observed differences reflect real

differences in the education practice in Michigan.

Investigating Michigan’s Teacher Labor Supply: Previous Analyses

In order to understand teacher demand, supply and turnover, and undersupply, it

is necessary to first understand the state of Michigan’s teaching force—its demographic

composition, the distribution of licenses across schools, and issues related to out-of-field

teaching and a “reserve” supply of teachers. This provides background information that is

necessary to correctly situate the findings in the remainder of the dissertation in the

appropriate context. To provide this information, I will rely on findings from the REL-

Midwest collaboration between the Michigan Department of Education, the Center for

Educational Performance and Information, and Michigan State University.1’2

What are the demographic characteristics ofMichigan ’s teachingforce.73

The REL-Midwest research team investigated the characteristics of Michigan’s

teaching force, with particular attention paid to distributional issues as well as the

relationship between teacher characteristics and placements and AYP (see Table 3.1).

Overall, the state’s teaching workforce is primarily white (89%) and aging. The minority

representation among the teaching force appears to increase with age, as younger teachers

appear to be predominately white.

 

l The REL-Midwest collaboration has produced three technical reports. I served as a graduate research

associate on this project from it’s inception and have co-authored (either a first or second author) all three

reports. The work ofthis project, and the findings in these reports, form the foundation for my dissertation.

2

Data fiom all ofthe reports mentioned here are from the 2007 REP, although analyses from the 2008 REP

the most recent teacher data available) do not show any substantial differences in distribution or findings.

Findings fi'om Lynn & Keesler et. al (2007): Technical Report 1: Beyond Compliance: Descriptive

Characteristics of Public School Teachers in Michigan.
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The data Show that the majority of minority teachers in Michigan are in urban

schools, and that urban fringe, town, and rural schools employ teachers who are almost

exclusively white.

Figure 3.1 below compares Michigan’s teaching force to the racial composition of

Michigan and of the United States. White teachers are overrepresented in the Michigan

teaching force relative to the overall Michigan population (89% in the teaching force,

compared with 78% in the population, while black and Hispanic teachers are

underrepresented.

 

Figure 3.1: Comparision of Racial Composition of

Michigan's Teaching Force to Michigan and the USA

Source: REP and Census 2008

 

I Michigan Teachers
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One important federal reporting requirement under No Child Left Behind, as well as a

focus of the current administration’s Race to the Top competition, is the equitable

distribution of teachers across types of schools. Table 3.2 shows the distribution of full-

and part-time teachers by teacher characteristics and across school types; Table 3.3 shows
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the distribution of minority and non-minority teachers by teacher characteristics and

across school types; and Table 3.4 Shows the distribution of teachers by highest education

by teacher characteristics and across school types. Equitable distribution questions often

related to the distribution of teachers in terms of quality and effectiveness. With the

current data, Michigan does not calculate teacher effectiveness based on student test

scores and results from annual educator evaluations, although this activity will begin in

the 2010-2011 school years. Until this new system is available, equitable distribution

calculations focus on issues like race and education, not student achievement growth.

The distribution of teachers by school types indicates that there does not appear to

be a pattern of part-time teaching in high poverty or high minority schools (see Table

3.2). In fact, there appear to be more part-time teachers in urban fringe schools, and

schools with low populations of minorities and low-income students.

In Table 3.3, we see that minority teachers tend to work in minority and poor

schools, as well as city schools. Seventy-seven percent of minority teachers are in schools

with over 50% minority enrollment; 67% are in schools where more than half of the

students are free-lunch eligible; and 72% are in city schools. Minority teachers are more

likely to work in larger schools than non-minority teachers.

The distribution of highest degree attainment shows that teachers with doctoral

and specialist degrees tend to be concentrated at the high school level and in schools in

the urban fringe (see Table 3.4). Teachers with master’s and bachelor’s degrees are

employed primarily in elementary and middle school. There do not appear to be

noteworthy inequities in the distribution of teachers over schools by highest education

degree.
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Finally, the distribution of teachers over locale types suggests that teachers who

work in cities are more likely to teach in schools where over half of the students receive

free and reduced lunch (61%), and in schools with enrollments over 1000, than teachers

in rural, urban fringe, or town schools (see Table 3.5). Teachers in rural schools are also

more likely to teach in schools with higher numbers of low-income students (30% are in

schools with over half of students eligible for free and reduced lunch); however they are

also more likely to teach in small schools (under 300 students). Teachers in rural schools

also look different with respect to their educational degree attainment; they are less likely

to have an advanced degree and are more likely to have a bachelor’s degree (60%).

Licensure and Endorsement

Michigan’s teaching force is defined not only by their demographic characteristics

and placements, but most importantly, by their training and skill, as represented here by

their license levels.4 The most commonly held licenses are provisional, professional, and

18/30 Hour Continuing licenses. The provisional certificate, Michigan’s initial teaching

certificate, is issued following successful completion of an approved elementary or

secondary teacher preparation program, including student teaching, and after a candidate

has passed all components of the Michigan Test for Teacher Certification (MTTC). The

certificate is valid for up to six years. During this time, the teacher is expected to

complete a minimum ofthree years of successful teaching experience, and to finish at

least eighteen semester hours in a planned course of study as a prerequisite for the next

 

4 As ofthis writing, Michigan does not collect information regarding teacher quality and effectiveness.

License and endorsement status serve as proxies for these qualities, along with the “highly qualified”

indicator. Michigan will begin annual educator evaluations in 2011 and the results of these evaluations will

become part ofthe REP. They will also begin to calculate growth for all teachers when the data are

available and applicable, and make these measures available as well.
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level of certification.5 The professional education certificate is Michigan’s advanced

teaching certificate, and requires completion of 18 semester hours in a planned course of

study afier the issuance of an approved initial teaching certificate (or an approved

master’s degree earned at any time), and three years of successful teaching experience.

This certificate is valid for up to five years; it must be renewed every five years by

completing six semester hours at an approved teacher preparation institution or a state

board-approved institution.

The 30 or 18 hour continuing licenses are no longer issued, although teachers with

these certificates continue to provide instructional services. They remains valid as long as

the holder continues to serve in an educational capacity for 100 days in any given five-

year period.6

Table 3.6 presents the distribution of licenses by teacher demographics in the state

of Michigan. Age has a predictable relationship with license status, with the two age

groups most likely to have provisional licenses being those under 25 and those between

the ages of 25 and 29. The majority of teachers (76%) who are between the ages of 30

and 39 have professional licenses. Among those teachers who are 40-54 years of age,

47% hold professional and 40% hold 18/30 hour continuing licenses. In the oldest group

(those aged 55 and above), the majority (62%) hold 18/30 hour continuing licenses.

 

5 (The provisional certificate can be renewed if all ofthe requirements for the Professional Education

certificate have not been met.) '

6 Michigan also issues substitute licenses to those who stand-in for other teachers. The must have

completed 90 semester hours of satisfactory (minimum 2.0 grade point average) credit consolidated at one

four-year regionally accredited college and university. The substitute permit is valid for teaching a

maximum of 150 days during the school year in day-to-day substitute teaching assignments. This permit is

not valid for any regular or extended assignment. However, substitute teachers are not part of the

instructional universe for this analysis, and therefore are not described in any detail here.
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There appear to be no significant differences by gender with respect to the types of

licenses held by males and females.

Ofthe 19,718 teachers with provisional licenses, 16,180 (82%) hold a bachelor’s

degree. Teachers with bachelor’s degrees are most likely to have professional (41%) or

provisional (37%) licenses. Teachers with master’s degrees are more likely to have

professional (58%) or 18/30 hour continuing (35%) licenses. Teachers holding doctoral

or specialist degrees are nearly evenly split between those with 18/30 continuing (49%)

and professional (43%) licenses.

The distribution of licenses by minority teacher status suggests that non-minority

teachers are more likely to hold professional (51%) than 18/30 hour continuing (28%) or

provisional (19%) licenses. Minority teachers, like non-minority teachers, are more likely

to hold professional licenses (38%). However, more minority teachers hold provisional

licenses (26%), compared with 19% of non-minority teachers. There does not appear to

be a relationship between full-time status and license type.

Teacher licensure and endorsement: Are teachers teaching out offield? Is there a

reserve supply ofteachers to meet the demands ofthe MMC?7

One of the critical questions with respect to teacher licensure was out of field

teaching. Teachers are generally not teaching out of field in the state of Michigan. Only

2% ofthe total high school teaching population is teaching out-of-field. This includes 123

in mathematics, 164 in English, 96 in science, 122 in social studies, and 64 world

language teachers. The match between subject assignment and endorsement seems to be

closest when teachers have only one subject assignment, but even with multiple

 

7 . . .

Findlngs from Lynn & Keesler (2008), Technical Report 3.1: Beyond Compliance: Teacher Licensure

and Endorsement in the State ofMichigan.
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assignments, there are a very small number of mismatches at the high school level. It is

often the case that out-of-field teachers have several assignments, one of which is out-of-

field. It is relatively rare to find a teacher who is teaching full-time in a subject without a

valid endorsement. Table 3.7 presents those teachers who are assigned to a core subject

but do not hold at least one endorsement in that subject area.

Endorsements and Subject Assignments—Potential Reserve

A second question is the extent to which teachers who hold multiple

endorsements could be moved from one assignment (such as social studies) to another in

which there was greater need in order to meet the increased demands of the MMC.

However, there does not appear to be a reserve of teachers with “unused” endorsements

who could be reassigned within a school to meet subject area shortages. (See Table 3.8)

In general, teachers with a math endorsement are the most likely to actually teach math

(83%). Of the remaining 17%, half of those are teaching science. Math appears to be a

“dominant” endorsement. Those who hold a math and another endorsement are more

likely to actually teach math. There is a relationship between math and science

endorsements. For those with science as one of their endorsements, 55% teach in science,

and another 30% teach in math. These findings suggest that schools are not likely to have

a large “reserve” ofpeople who could teach math or world language. Schools may have a

reserve of science teachers, although if reassigned they are likely to be pulled from math

courses.

Michigan’s Overall Teacher Labor Supply

Many analyses of teacher labor supply focus at the state or national level on the

number of teachers entering, leaving and remaining in the profession. While this analysis
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moves to the school-level and studies labor supply at that level, it is nonetheless

important to understand Michigan’s overall teacher labor supply. Table 3.9 below

presents the proportion of Michigan’s teaching force that is retained in the profession,

enters the profession, and leaves the profession each year. Additionally, for those who are

retained, Table 3.9 shows the proportion of those teachers who moved to different

schools (“movers”) and those who stayed in their previous schools (“stayers”).

In the overall teaching workforce, Michigan retains between 92% and 94% of its

teachers. Note that the absolute size of the instructional workforce is declining over time,

and in 2008, was three percent smaller than in 2006. Each year, a slightly smaller

percentage of the overall population leaves the profession, while the size of the entering

cohorts of teachers has steadily declined, down 7% in 2008 from the 2006 rate of entry.

Within those teachers who are retained in the profession, Michigan has a steady

11% inter-school mobility rate, which is the overall teacher “churn” rate for the state of

Michigan at an aggregate level. As will be seen later in this dissertation, this churn rate is

not equally distributed among schools.

School-Level Teacher Retention by School Characteristics

This dissertation conceptualizes teacher retention as a school-level characteristic.

Retention rates may be distributed unevenly among schools. As described in Chapter 2,

average school-level teacher retention rates were calculated for each high school in the

state of Michigan. Table 3.10 presents mean school-level teacher retention rate by school

characteristics, in order to understand the distribution of teacher retention rates across
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schools.8 Does teacher retention rate vary by key school characteristics, such as locale or

student poverty? Recall that teacher retention rate is an average over the period 2005-

2008, so the mean teacher retention rate presented here is the mean of that average by

school characteristics. The mean school-level teacher average retention rate for all high

schools in the state of Michigan is 86.20%, which indicates that for all high schools in the

state of Michigan, the average four year retention rate was 86.20%. Examining the

distribution of mean school-level teacher retention rates over a variety of school

characteristics, school teacher retention rates differ significantly by locale, with teacher

retention rates in city schools at 79.73%, which is significantly lower than the rates in

suburban, town and rural areas. Suburban, rural and town schools did not have

significantly different teacher retention rates.

Average teacher retention rates also differ significantly by the composition of the

student body, both in terms ofpercent minority students and percent of students who are

eligible for free and reduced lunch. High minority schools have a teacher retention rate of

74.98%, which is significantly lower than other categories. Schools with over 50% of

students eligible for free and reduced lunch have significantly lower teacher retention

rates (80.27% for schools with 50-69% of students eligible for free and reduced lunch,

and 76.09% for schools with over 70% of students eligible).

In terms of school size, there is again significant variation across Sizes, with small

schools having lower average teacher retention rates (81.81%) than medium (86.40%)

and large schools (87.84%). Charter schools have significantly lower retention rates than

non-charter schools, with charter schools having retention rates of 71.91%, compared

 

8 This table presents the mean undersupply in each subject by school characteristics using a series of

oneway ANOVAS. The reported F-test indicates significant between-group variation on each characteristic.

45



with 87.06% for non charter schools. However, there are only a small number of these

schools available to make this comparison. Magnet schools do not have significantly

different teacher retention rates than non-magnet schools.

Schools that have a lower percentage of teachers with professional licenses also

have significantly lower teacher retention rates. Schools with less than 80% of teachers

with professional licenses have an average retention rate of 79.15%, compared with

87.69% for schools with 80-90% of teachers with professional licenses, and 89.55% for

schools with greater than 90% of teachers with professional licenses. The percentage of

minority teachers is also related to teacher retention rates. For schools with the highest

percentages of minority teachers, the teacher retention rate was 76.51%, which was

significantly lower than the teacher retention rates for schools with fewer minority

teachers.9 Teacher retention rates are not significantly different across schools with

different percentages of highly qualified teachers. To summarize, the types of schools

that have lower mean teacher retention rates are city schools, schools with high

proportions of minority and low-income students, small schools and charter schools.

Schools with a lower percentage of teachers with professional licenses, and schools with

a higher percentage of minority teachers also appear to have lower mean teacher retention

rates.

School-Level Undersupply by School Characteristics

Tables 3.11, 3.12, and 3.13 present mean mathematics, English language arts, and

science undersupply, respectively, by school characteristics, to develop a profile ofthe

g

This variable is highly skewed, as many schools have zero or less than one percent of their population

With minority teachers. Michigan’s instructional workforce is only 11% minority teachers. Therefore, this

Variable is categorized into less than 1%, 1-10% and greater than 10%.
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type of schools that are undersupplied in each subject.10 The undersupply calculations

range from approximately -5 to 5 (see Appendix A for descriptions of all variables used

in the study), with positive numbers indicating undersupply.

Mathematics Undersupply

The mean school-level teacher undersupply is .48, which suggests that, on

average, schools are not significantly undersupplied, although there is considerable

variation in those rates (standard deviation=l .20). This adds further evidence to suggest

the importance of a school-level organizational analysis, in order to capture those school-

level differences and their relationship with student achievement outcomes.

Suburban schools had higher mean rates of mathematics teacher undersupply,

with an average of .83, and a standard deviation of 1.37, while city schools had an

average of .64 with a standard deviation of 1.68. This suggests that there were city and

suburban schools with both much higher rates of undersupply, as well as much lower.

Rural schools had the lowest average rate of mathematics undersupply, with the smallest

standard deviation (.18 and .84, respectively). The differences among average

mathematics undersupply between locales are statistically significant at the .001 level.

Schools with the lowest populations of minority students have the lowest average

rate of mathematics teacher undersupply (.31). Interestingly, the distribution of average

mathematics teacher undersupply rates among the school categories of free and reduced

lunch is mixed; those schools with the lowest rates of free and reduced lunch have, by far,

the lowest average rates of mathematics teacher undersupply (.04), but schools with 10-

29% oftheir students free/reduced lunch eligible have average mathematics undersupply

¥

0

This table presents the mean undersupply in each subject by school characteristics using a series of

oneway ANOVAS. The reported F-test indicates significant between-group variation on each characteristic.
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rates of .67, which is the highest of the five categories, followed by schools with 50-69%

oftheir students free/reduced lunch eligible, at .62. However, schools with greater that

70% oftheir students eligible for free and reduced lunch have average rates of

mathematics teacher undersupply of .29, which is the second lowest rate. This suggests

that the relationship between mathematics teacher undersupply and school socioeconomic

status is mixed, and may not be strongly and linearly related as one would expect.

Mathematics teacher undersupply varies widely among school sizes, with this

between-group variation exceeding the threshold for statistical significance. Small

schools (those with less than 300 students) have the lowest average rates of mathematics

teacher undersupply, with an average of -0. 1 5, which means that small schools, on

average, are slightly oversupplied. Large schools (those with more than 1000 students)

have an average mathematics teacher undersupply of 1.06, which suggests that on

average, large schools are significantly undersupplied. Charter and magnet schools are

both less likely to exhibit mathematics teacher undersupply than non-charter and non-

magnet schools, which may be due in part to their smaller size, although these

relationships are not statistically significant.

Finally, when looking at school compositional characteristics, there is not a clear

relationship between the percent of the teachers in a school with professional licenses and

mathematics teacher undersupply. There is a significant relationship between the

proportion of minority teachers in a school and average mathematics teacher

undersupply, with schools with higher rates of minority teachers having higher rates of

average mathematics undersupply. Schools with less than 75% of teachers highly

qualified also have higher average rates of mathematics teacher undersupply.

48



English Language Arts and Science Undersupply

Table 3.12 presents average English language arts teacher undersupply rates by

school characteristics and Table 3.13 presents average science teacher undersupply rates

by school characteristics. These tables are included, but are not discussed in detail for two

reasons. The first is that there is not an average English language arts or science teacher

undersupply; the average English language arts teacher undersupply is -.78 and the

average science teacher undersupply is -.77, which suggests that schools, on average,

have an adequate supply ofELA and science teachers. The caveat again is that there are

important variations across schools, with some schools experiencing significant

undersupply in these areas, but on the average, these are not undersupplied areas. This

underscores the importance of investigating this not at the state level, but at a school-by-

school level. The second reason these tables are not presented in detail is that the

relationships mimic those outlined in the mathematics teacher undersupply. I will

highlight key differences here.

Suburban schools have the highest average rates of English language arts teacher

oversupply, with the average rate of teacher supply at -l.10. Using a full FTE of over- or

under-supply as a significant threshold as described in Chapter 4, this represents a

potential significant oversupply.ll Recall that suburban schools also had the highest

average rates of mathematics teacher undersupply. This suggests that suburban schools

find it easier to adequately staff their English language arts classes than mathematics

classes. Like in mathematics, rural schools have the lowest rates of ELA and science

 

11 Note that “oversupply” is used somewhat loosely; in this formula, a rate of 0 would indicate a school

that was perfectly balanced in terms of supply and demand. Positive numbers indicate an undersupply;

negative numbers indicate an “oversupply,” or a supply that is greater than estimated demand. This does

not suggest that these schools Should reduce their teaching force, but rather that, given the assumptions of

the formula, they are not in danger of being undersupplied at this particular time.
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oversupply, which suggest that rural schools most accurately match their teacher supply

to their demand needs. These relationships are similar in science.

Unlike in mathematics, in both English language arts and science, the relationship

between percent free and reduced lunch and undersupply is linear and positive. As the

percent of students who are free and reduced lunch eligible increases, the average

oversupply of English language arts and science teachers decreases. However, even in the

schools with the highest rates of free and reduced lunch, the average undersupply is

negative (i.e. is not undersupplied).

Average undersupply rates in English language arts and science are related to

school size in a similar manner as in mathematics. Small schools have the smallest rates

of oversupply, while large schools have the largest rates. This is the converse ofthe

mathematics relationship, where small schools had the lowest undersupply and large

schools had the highest average undersupply. Again, like with rural schools, this suggests

that small schools are most able to match their supply and demand needs accurately,

while large schools are more likely to be Significantly over- or undersupplied.

The relationship between the school compositional variables (percent teachers

with professional licenses, percent of teachers who are minority teachers, and percent of

teachers who are highly qualified) follow the same pattern as mathematics, with schools

with lower proportions of professional teachers, higher proportions of minority teachers,

and lower proportions of highly qualified teachers have lower rates of oversupply

(whereas in mathematics, these types of schools had higher rates of undersupply).

Schools with these compositional characteristics are more likely to trend toward being

undersupplied, even if the absolute rate is not undersupplied.
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Table 3.1: Characteristics of Michigan public school teachers by full-time equivalency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

status

a Total

Full-time Part-time

N % N % N %

Gender

Male 24,037 26 1,210 18 25,247 26

Female 67,813 74 5,574 82 73,387 74

Missing 35 <1 13 <1 48 <1

Legs

<25 1,425 2 197 3 1,622 2

25-29 11,881 13 821 12 12,702 13

30—39 26,893 29 2,448 36 29,341 30

40-54 32,659 36 2,137 31 34,796 35

>=55 18,992 21 1,181 17 20,173 20

Missigg 35 <1 13 <1 48 <1

Race/ethnicity

White 82,105 89 6,390 94 88,495 90

Black or African American 8,160 9 289 4 8,449 9

Hispanic or Latino 821 1 49 1 870 1

Asian American 472 1 31 < I 503 <1

American Indian or Alaska Native 213 <1 15 <1 228 <1

Native Hawaiian or Other Pacific 55 <1 4 <1 59 <1

Islander

Multiple 24 <1 6 < 1 30 < 1

Missig 35 <1 13 < I 48 <1

_I_I_ighest educational level

, _ c 256 1 44 1 300 I

Doctoral or Specralrst’s degree

Master’s degree 48,333 53 3,471 51 51,804 53

Bachelor’s degree 40,422 44 2,966 43 43,388 44

High school 1,496 2 180 2 1,676 2

Other 761 1 98 1 859 1

Function Assignment

Elementary school 34,279 38 2,348 34 36,627 38

Middle/Juniorflgh school 15,094 16 777 12 15,871 I6

High school 20,316 22 1,518 25 21,834 22

Special education 13,076 14 905 13 13,981 14

Career/technical education institutions 1,753 2 126 2 1,879 2

(1 3,827 4 847 12 4,674 5

Other

Multiple 3,540 4 276 4 3,816 4 
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Table 3.1 (cont’d)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Full-time a Part-time Tm"

N % N % N %

Subject assignment

English Langtgge Arts 6,736 7 628 9 7,364 8

Social Sciences 4,004 4 264 4 4,268 4

Sciences 4,455 5 265 4 4,720 5

Mathematics 5,530 6 316 5 5,846 6

‘ World Language 1,807 2 306 4 2,1 14 2

Bilingual Education 259 <1 8 <1 267 <1

Business 841 l 64 1 905 1

Technology 1 ,332 1 136 I 1,468 1

The Arts 4,852 5 603 9 5,455 6

Career and Technical 1,530 2 178 3 1,708 2

Wellness 3,356 4 313 5 3,669 4

Elementary Education 31,539 35 1,666 24 33,205 34

Special Education 12,585 14 887 13 13,472 14

Early Childhood 974 1 216 3 1,190 1

Alternative 222 <1 32 <1 254 <1

e 1,155 1 391 6 1,546 2

Other

Multiple 10,708 11 527 8 1 1,235 11

Total Teachers 91,885 93% 6,797 7% 98,682 100%
 

a

b

Full-time teachers are those whose FTF>=.99.

Part-time teachers are those whose FTE<1.

c Includes doctoral, education Specialist, law, and medical degrees.

d . . . .

Includes adult/contInuIng educatron, compensatory education, preschool, and summer

school.

e . . . .

Includes agncultural scrence and natural resources, family and consumer educatron,

driver and safety education, and Jr. ROTC.
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Table 3.2: Characteristics of Michigan schools by teacher full-time equivalency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

  
 

  

       

status

Full-time Part-time Total

equivalency

N % N % N %

ALL PUBLIC SCHOOLS

Instructional level

Primary 40,724 44 2,945 43 43,669 44

Middle/erior High School 18,123 20 971 14 19,094 19

High School 24,674 27 1,700 25 226,374 27

Other 6,465 7 648 10 7,113 7

Missing 2,432 2 533 8 2,432 2

Enrollment size

Less than 300 14,105 15 1,311 19 15,416 16

300-999 59,059 64 3,869 57 62,928 64

1,000 or more 16,208 1 7 1,029 15 17,234 1 7

Missing 2,513 3 591 9 3,104 3

Locale

City 23,869 26 1,338 19 25,207 26

Urban frige 37,815 41 3,022 45 40,837 41

Town 18,425 20 1,268 19 19,693 20

Rural 9,877 11 636 9 10,513 11

Missig 1,899 2 501 7 2,432 2

Percent minority enrollment in

school

Less than 5 percent 19,785 22 1,439 21 21,224 22

5 to 19% 34,935 38 2,843 42 37,778 39

20 to 49% 15,634 I 7 1,094 16 16,728 I 7

50% or more 18,341 20 711 10 19,052 19

Missing 3.190 3 710 10 3,900 4

Percent of students in school

eligible for free or reduced-price

school lunch

Less than 10% 16,267 18 1,548 23 17,815 18

10 to 29% 27.045 30 2,252 33 27,045 30

30 to 49% 20,044 22 1,199 18 21,243 22

50 to 69% 11,887 13 618 9 12,505 13

70% or more 13,4392 I5 470 7 13,909 14

Missing 3,203 3 710 10 3,913 4

Total Teachers 89,994 93% 6,929 7% 96,923 100%
 

The school characteristic categories employed in this table are those used in Table 2.1 ofthe National

Center for Education Statistics (NCES) Statistical Analysis Report Teachers’ Toolsfor the 21st Century: A

Report on Teachers’ Use ofTechnology, NCES 2000-102. US. Department of Education, Office of

Educational Research and Improvement.
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Table 3.3: Characteristics of Teachers by Minority and Non-Minority Status
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Minority Teacher Non-Minority Teacher
eachErdwl-"uriflm ,. n . %- n1 ..%.

Gender

Male 2,222 22 23,025 26

Female 7,917 78 65,470 74

Age

Less than 25 94 I 1,528 2

25-29 874 9 1 1,828 13

30-39 2,874 28 26,467 30

40-54 3,647 36 31,149 35

Over 55 2,650 26 17,523 20

Highest education

Doctoral or Specialist 111 1 844 1

Master's 5,523 54 46,281 52

Bachelor's 4,018 40 39,370 44

High School 366 3 1,310 1

Other 121 I 690 1

Multiple Subjects 332 3 10,901 12

Multiple Schools 173 2 3,642 4

Special Education 1,836 18 1 1,608 13

"chool Characteristic: ' j 7 I ‘ 7 ' :1

Instructional Level

Primary 4,813 47 38,847 44

Middle/Junior high school 1,441 15 17,644 20

High School 2,659 26 23,705 27

Other 745 7 6,354 7

Percent minority enrollment

Less than 5% 182 2 21,035 24

5-19% 606 6 37,155 42

20-49% 912 9 15,802 18

50% ogreater 7,839 77 11,209 13

Percent free/reduced lunch

Eligible

Less than 10% 750 7 17,047 19

10-29% 878 9 28,414 32

30-49% 1,139 1 1 20,098 23

50-69% 1,904 19 10,591 12

70% or greater 4,864 48 9,042 10

Locale

City 7,295 72 17,902 20

Urban Fringe 1,893 19 38,917 44

Town 375 4 19,313 22

Rural 95 1 10,418 12

Enrollment Size

Less than 300 students 1,429 14 13,974 16

300-999 students 6,033 60 56,876 64

Greater than 1000 students 2,148 21 15,076 17

f otallNquber ofTeachers A J 10,139 10 88,495 901
  Missingdata: race/eth (48) instruct level & locale (2423) min enroll(3900),freelunch(3913) size(3104)   
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Table 3.4: Characteristics of Teachers by Education Degree Attainment
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Doctoral

Specialist Master's Bachelor's High School Other

11 i% n 1% n j % n T % n I %

cachet ,, ‘_ acteristr’cs

Gender

Male 329 34 12,536 24 11,572 27 563 34 247 29

Female 626 66 39,268 76 31,816 33 1,113 67 564 66

_A_ge

Less than 25 1 <1 22 <1 1,509 3 67 4 23 3

25-29 18 2 2,304 4 10,064 23 228 14 88 10

30-39 143 15 15,684 30 12,818 30 503 30 193 22

40-54 346 36 20,855 40 12,635 29 612 37 348 41

Over 55 447 47 12,939 25 6,362 15 266 16 159 19

Race/Ethnicity

White 844 88 46,281 89 39,370 91 1,310 78 690 80

Black/African American 84 9 4,693 9 3,256 8 321 19 95 11

Hispanic or Latino 11 1 412 1 404 1 30 1 13 1

Asian American 13 1 262 I 208 <1 11 I 9 1

American Indian/Alaskan

native 3 <1 116 <1 102 <1 4 <1 3 <1

Native Hawaiian or Other - <1 30 <1 28 <1 - <1 1 <1

Multiple - <1 10 <1 20 <1 - <1 - <1

Multiple Subjects 109 11 5,723 11 5,217 12 140 9 46 6

Multiple Buildings 29 3 1,635 3 2,096 5 37 2 19 2

Special Education 147 16 7,353 14 5,556 13 237 16 179 25

Chool Characteristics"?1 L ' l V W 7‘

Instructional Level

Primary 290 30 23,319 45 19,217 44 574 34 269 31

Middle/Junior high school 210 22 10,661 21 7,845 18 271 16 107 12

High School 364 38 13,974 27 11,292 26 540 32 204 24

Other 62 6 2,811 5 3,872 9 179 II 189 22

Percent minority enrollment

Less than 5% 133 14 10,299 20 10,378 24 312 19 102 12

5-19% 380 40 21,027 41 15,944 37 255 15 172 20

20—49% 216 23 9,072 18 6,900 16 282 17 258 30

50% or greater 183 19 9,686 19 8,374 19 648 39 161 19

Percent free/reduced lunch

_e_li_gible

Lessthan10% 214 22 10,204 20 7,051 16 215 13 131 15

10-29% 322 34 16,455 32 12,128 28 283 17 109 13

30—49% 167 17 10,651 21 9,981 23 337 20 107 12

50-69% 92 10 5,787 11 6,037 14 386 23 203 24

70% or greater 116 12 6,979 13 6,395 15 276 16 143 17  



 

Table 3.4 (cont'd)
 

 

 

 

 

 

 

 

 

 

 

         
 
 

Doctoral Master's Bachelor's High School Other

11 % n % n % n % n %

Locale

City 244 26 13,966 27 10,046 23 643 38 308 36

UrbanFringe 568 59 23,181 45 16,333 38 516 31 239 28

Town 88 9 9,674 19 9,574 22 167 10 190 22

Rural 26 3 3,944 8 6,273 14 238 14 32 4

Enrollment Size

Less than 300 students 101 11 6,887 13 8,043 19 229 14 156 18

300-999 students 524 55 33,400 64 27,606 64 989 59 409 48

Greater than 1000 students 296 31 10,197 20 6,310 15 291 I7 140 16

l' i i

,otal Number ofTeachers 955 1 51,804 52 43,388 44 1,676 2 859 I
  Note: MissinLdata = 48 on race/ethnicity, 2,423 on instructional level and locale, 3, 900 on minority  
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Table 3.5: Characteristics of Teachers by Locale
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

City Urban Fringe Town Rural

n 1% n l % n 1% n l%

‘ eacher Claracterifics

Gender

Male 5,978 24 10,157 25 5,414 27 3,127 30

Female 19,219 76 30,653 75 14,274 73 7,386 70

Age

Less than 25 363 I 747 2 305 2 161 2

25-29 2,863 11 5,789 14 2,522 13 1,228 12

30-39 6,943 28 12,985 32 5,843 30 3,013 29

40-54 8,954 36 13,582 33 7,297 37 4,075 39

Over 55 6,074 24 7,707 19 3,721 19 2,036 19

Race/Ethnicity

White 17,902 71 38,917 95 19,313 98 10,418 99

Black/African American 6,494 26 1,372 3 160 1 ll <1

Hispanic or Latino 450 2 247 1 105 I 26 <1

Asian American 234 1 196 <1 48 <1 11 <1

American Indian/Alaskan native 92 <1 46 <1 39 <1 40 <1

Native Hawaiian or Other 19 <1 21 <1 17 <1 1 <1

Multiple 6 <1 11 <1 6 <1 6 <1

Highest education

Doctoral or Specialist 244 1 568 1 88 <1 26 <1

Master's 13,966 55 23,181 57 9,674 49 3,944 38

Bachelor's 10,046 40 16,333 40 9,574 49 6,273 60

High School 643 3 516 I 167 1 238 2

Other 308 1 239 <1 190 I 32 <1

Multiple Subjects 1,534 6 4,614 11 2,949 15 2,023 19

Multiple Schools 527 2 1,130 2 1,081 5 1,033 10

SpecialEducation 3,817 15 5,368 13 2,558 13 1,178 11

chool’CharactJelriitics" A g l U A l I 7

Instructional Level

Primary 12,874 51 18,601 46 8,074 41 4,120 39

Middle/Junior high school 4,105 16 8,790 22 4,249 22 1,950 19

High School 6,399 25 11,124 30 5,843 30 3,008 29

Other 1,829 7 2,322 6 1,527 8 1,435 14

Percent minority enrollment

Lessthan 5% 684 3 6,818 17 7,635 39 6,087 58

5-19% 4,347 17 21,188 52 8,951 45 3,292 31

20-49% 5,106 20 8,540 21 2,224 11 858 8

50% or greater 14,715 58 3,884 10 306 2 147 1
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Table 3.5 (cont'd) l l
 

 

 

 

 

 

 

 

 

 

 

 

         

City Urban Fringe Town Rural

n % n %( n % n %

Percent free/reduced lunch

eligible

Less than 10% 2,764 11 10,611 26 3,274 17 1,166 11

10-29% 3,839 15 16,495 40 7,150 36 1,813 17

30-49% 3,045 12 7,828 19 6,163 31 4,208 40

50-69% 4,934 20 3,291 8 1,916 10 2,364 22

70% or greater 10,270 41 2,198 5 610 3 831 8

Enrollment Size

Less than 300 students 3,955 16 4,414 11 3,623 18 3,424 33

300-999 students 15,763 63 26,889 66 13,462 68 6,814 65

Greater than 1000 students 5,337 21 9,417 23 2,276 12 204 2

. (ital Number of Teachers g -- “25,207 7 26 40,831 42 _ 19,693 20 10,513 11
  Note: There are 2, 432 teachers with missing data on locale.
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Table 3.6: License Demographics for Michigan's Instructional Workforce

 

 

 

 

 

 

 

 

 

  

 

  

License Type" (N)

Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown Total

Ass
<25 945 5 0 3 14 62 1,029

25-29 8,533 3,217 0 40 75 128 11,993

30-39 6,485 22,452 8 158 215 367 29,685

40-54 3,236 16,521 13,908 429 226 647 34,967

>=55 519 7,260 13,445 178 122 245 21,769

[Unknown] 0 0 0 0 0 49 49

Gender

Male 5,347 12,357 6,666 488 189 316 25,363

Female 14,371 37,098 20,695 320 463 1,133 74,080

flJnknown] 0 0 0 0 0 49 49

Highest Educational Level

Doctoral/Specialist 44 414 473 8 8 1 1 958

Master's Degree 2,836 30,267 18,304 155 56 251 51,869

Bachelors Degree 16,180 18,051 8,069 358 475 490 43,623

High School 499 512 310 144 72 492 2,029

Other 159 211 205 143 40 251 1,009

[Unknown 0 0 0 0 1 3 4

Minority Status Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown Total

Ion-Minority Teacher 16,983 45,477 24,782 685 210 971 89,108

Minority Teacher 2,735 3,978 2,579 123 442 478 10,335

[I_J_nknown] 0 0 0 0 0 49 49

Full/Part-Tirne '

Status Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown Total

Part-Time 1,595 3,300 1,579 90 127 450 7,141

Full-Time 18,123 46,155 25,782 718 525 1,048 924351

Total 19,718 49,455 27,361 808 652 1,498 99,492
 

* For those with multiple licenses, license type refers to the teacher’s "highest" license, where

Professional>18/30 Hour Continuing>Provisional> Vocational>0ther>Missing.

Non-Instructional includes Administrative, Support Stafi,‘ and Substitute licenses.
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Table 3.6 (cont'd)

 

 

 

 

 

 

 

 

 

 

 

   

License Type (%)

Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown

Age

92% 0% 0% 0% 1% 6%

71% 27% 0% 0% 1% 1%

22% 76% 0% 1% 1% 1%

9% 47% 40% 1% 1% 2%

2% 33% 62% 1% 1% 1%

0% 0% 0% 0% 0% 100%

Gender

21% 49% 26% 2% 1% 1%

19% 50% 28% 0% 1% 2%

0% 0% 0% 0% 0% 100%

Highest Educational Level

5% 43% 49% 1% 1% 1%

5% 58% 35% 0% 0% 0%

37% 41% 18% 1% 1% 1%

25% 25% 15% 7% 4% 24%

16% 21% 20% 14% 4% 25%

0% 0% 0% 0% 25% 75%

Minority Status Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown

19% 51% 28% 1% 0% 1%

26% 38% 25% 1% 4% 5%

0% 0% 0% 0% 0% 100%

Full/Part-Time Status Provisional Professional 18/30 Cont Vocational Non-Instr. Unknown

22% 46% 22% 1% 2% 6%

20% 50% 28% 1% 1% 1%

Total 20% 50% 28% 1% 1% 2%
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Table 3.7: Out of Field in Core Subjects

*Includes teachers with at least one high school assignment.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

    

Endorsed in Subject?

Math ALsignment No Yes Total

Yes 3% 97% 100%

123 3,959 4,082

No 95% 5% 100%

19,396 1,016 20,412

Total 80% 20% I00%

19,519 4,975 24,494

Endorsed in Subject?

ELA Assignment No Yes Total

Yes 3% 97% 100%

164 5,017 5,181

No 87% 13% 100%

16,865 2,448 19,313

Total 70% 30% I00%

1 7, 029 7, 465 24,494

Endorsed in Subject?

Science Assignment No Yes Total

Yes 2% 98% 100%

96 3,875 3,971

No 89% 1 1% 100%

18,321 2,202 20,523

Total 75% 25% 100%

18,417 6,077 24,494

Endorsed in Subject?

Social Studies Assignment! No Yes Total

Yes 3% 97% 100%

122 4,163 4,285

No 75% 25% I00%

15,208 5,001 20,209

Total 63% 37% I00%

15,330 9,164 24,494

Endorsed in Subject?

World LanMe Assign No Yes Total

Yes 3% 97% 100%

64 1,804 1,868

No 97% 3% 100%

21,999 627 22,626

Total 90% 10% 100%

22,063 2, 431 24, 494 "'
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Table 3.8: Teachinfissijnment [Ly Endorsement Pattern (Potential "Reserve" of Teachers)

Cells contain row percentages and n's

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject Assignment

Biling Career

Alt Arts Ed Business Tech Elem ELA Math

Math-X 16 17 0 8 2 3 39 2228

1% 1% 0% 0% 0% 0% 1% 83%

Lang.Arts-X 37 94 1 10 6 2 2292 207

1% 3% 0% 0% 0% 0% 68% 6%

Science-X 24 25 0 4 2 6 95 821

1% 1% 0% 0% 0% 0% 3% 30%

SocialSci-X 37 124 2 1 8 2 6 1 164 540

1% 3% 0% 0% 0% 0% 29% 14%

World Lang-X 2 22 3 1 0 1 142 66

0% 2% 0% 0% 0% 0% 13% 6%

Subject Assignment

Social Spec World

Science Sciences Ed Tech Wellness Lang Misc NA Total

Math-X 222 1 7 3 34 25 40 15 2 2671

8% 1% 0% 1% 1% 1% 1% 0% 100%

Lang.Arts-X 52 257 1 1 15 76 272 54 4 3390

2% 8% 0% 0% 2% 8% 2% 0% l00%

Science-X 1521 75 3 18 104 29 29 1 2757

55% 3% 0% 1% 4% 1% 1% 0% 100%

SocialSci-X 138 1352 14 35 231 239 66 6 3974

3% 34% 0% 1% 6% 6% 2% 0% I00%

World Lang-X 10 35 0 2 7 767 9 1 1068

1% 3% 0% 0% 1% 72% 1% 0% I00%



 

Table 3.9: Teacher Labor SupplLin Michigan, 2006-2008
 

 

 

 

 

 

 

 

 

 

 

        

2006 % 2007 % 2008 %

Overall TeachingWorkforce

Retained in the profession 102,365 92% 102,439 93% 101,379 94%

Left the profession (attrition rate) 9,609 8% 8,616 7% 8,536 6%

Entered the profession 8,690 7,476 6,414

Total number of teachers in summer

count 1 1 1,055 109,915 107,793

Within-School Mobility Rate

Stayers (same school) 91,234 89% 91,471 89% 90,247 89%

Movers (different school) 11,131 11% 10,968 11% 11,132 11%

Total retained teachers 102,365 100% 102,439 101,379
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Table 3.10: Mean Teacher Retention Rate by High School Characteristics
 

 

 

Mean SD N F~test

Locale

City 79.73 14.91 96 .000

Suburb 87.10 6.57 161

Town 88.60 4.65 78

Rural 87.37 5.70 245

Percent minority

Less than 5% 87.93 5.14 174 .000

5-10% 88.73 4.96 141

10-15% 89.33 3.98 56

15-65% 86.42 5.80 132

Greater than 65% 74.98 15.21 77

Percent free/reduced lunch

Less than 10% 88.30 6.35 43 .000

10-29% 89.14 4.27 202

30-49% 87.36 5.31 204

50-69% 80.27 1 1.87 96

70% or greater 76.09 16.19 35

School size

Less than 300 students 81.81 13.23 85 .000

300-999 students 86.40 8.34 307

Greater than 1000 students 87.84 4.86 188

Charter Schools

Charter 71.91 17.06 33 .000

Non-charter 87.06 6.9 1 547

Magnet Schools

Magnet 87.26 6.86 65 .139

Non-magnet 86.06 8.76 5 15

Percent teachers with prof licenses

Less than 80% 79.15 13.33 134 .000

80-90% 87.69 4.66 297

Greater than 90% 89.55 4.85 149

Percent minority teachers

Less than 1% 88.15 5.45 275 .000

1-10% 87.81 4.91 214

Greater than 10% 76.51 14.58 91

Percent highly qualified teachers

Less than 75% 85.97 7.48 197

75-85% 86.45 7.33 144

Greater than 85% 86.22 10.01 239

Total 86.20 8. 5 7 580
 

Teacher retention rate is the average teacher retention rate for each school from 2005-2008



 

Table 3.11: Mean Mathematics Teacher Undersupply by High School Characteristics
 

 

 

Mean SD N

Locale

City .64 1.68 94 .000

Suburb .83 1.37 161

Town .51 .90 78

Rural .18 .84 245

Percent minority

Less than 5% .31 .81 174 .000

5-10% .46 1.12 141

10-15% .64 1.13 56

15-65% .58 1.42 132

Greater than 65% .63 1.65 75

Percent free/reduced lunch

Less than 10% .04 1.60 43 .000

10-29% .67 1 .13 202

30-49% .37 1.02 204

50-69% .62 1.44 94

70% or greater .29 1.18 35

School size

Less than 300 students 015 .73 83 .000

300-999 students .30 .91 307

Greater than 1000 students 1.06 1.52 188

Charter Schools

Charter .06 1.08 33 .425

Non-charter .5 1 1 .21 545

Magnet Schools

Magnet .22 1.38 65 .080

Non-magnet .52 1.12 513

Percent teachers with prof licenses

Less than 80% .35 1.16 132 .366

80-90% .52 1.31 297

Greater than 90% .42 1.00 149

Percent minority teachers

Less than 1% .28 .98 275 .000

1-10% .72 1.22 214

Greater than 10% .54 1.63 89

Percent highly qualified teachers

Less than 75% .74 1.34 196 .000

75-85% .46 1.23 144

Greater than 85% .28 1.02 238

Total .48 1.20 5 78
 

Math undersupply is calculated for SY 2009 based on 2008 REP, student enrollment from 2006-2008
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Table 3.12: Mean English Language Arts Teacher Undersupply by High School

Characteristics
 

 

 

Mean SD N F-test

Locale

City -.81 2.56 94 .003

Suburb -1.10 1.81 161

Town -.89 1.06 78

Rural -.52 .88 245

Percent minority

Less than 5% -.61 1.01 174 .062

5-10% -.69 1.15 141

10-15% -1.17 1.79 56

15-65% -1.00 1.67 132

Greater than 65% -.67 2.64 75

Percent free/reduced lunch

Less than 10% -1.43 1.93 43 .037

10-29% -.78 1.38 202

30-49% -.79 1.31 204

50-69% -.58 2.10 94

70% or greater —.46 1.87 35

School size

Less than 300 students -.43 .70 83 .006

300-999 students -.71 1.36 307

Greater than 1000 students -1.05 2.09 188

Charter Schools

Charter -.86 2.81 33 .752

Non—charter -.77 1.48 545

Magnet Schools

Magnet -.86 2.27 65 .659

Non-magnet -.77 1.48 513

Percent teachers with prof

licenses

Less than 80% -.58 1.91 132 .130

80-90% -.90 1 .59 297

Greater than 90% -.72 1.18 149

Percent minority teachers

Less than 1% -.58 1.04 275 .008

1-10% -1.03 1.57 214

Greater than 10% -.79 2.62 89

Percent highly qualified teachers

Less than 75% -.59 1.59 196 .086

75-85% -.79 1.41 144

Greater than 85% -.93 1.67 238

Total -. 78 1.58 5 78
 

ELA undersupply is calculated for SY 2009 based on 2008 REP & student enrollment from 2006-2008
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Table 3.13: Mean Science Teacher Undersupply by High School Characteristics
 

 

 

Mean SD N F-test

Locale

City -1.04 1.82 94 .000

Suburb -1.07 1.36 161

Town -.68 .89 78

Rural -.50 .71 245

Percent minority

Less than 5% -.47 .75 174 .000

5-10% -.73 .93 141

10-15% -.99 1.02 56

15-65% -1.21 1.59 132

Greater than 65% -.58 1.54 75

Percent free/reduced lunch

Less than 10% -1.96 1.91 43 .000

10-29% -.90 1 .1 1 202

30-49% -.56 .89 204

50-69% -.53 1.23 94

70% or greater -.39 1.16 35

School size

Less than 300 students -.46 .64 83 .000

300-999 students -.50 .88 307

Greater than 1000 students -1.34 1.58 188

Charter Schools

Charter -.25 1 .09 33 .464

Non-charter -.80 1 .20 545

Magnet Schools

Magnet -.74 1.13 65 .501

Non-magnet -.77 1.21 513

Percent teachers with prof

licenses

Less than 80% -.50 1.13 132 .028

80—90% -.88 1.28 297

Greater than 90% -.77 1.06 149

Percent minority teachers

Less than 1% -.54 .80 275 .000

1-10% -1.06 1.40 214

Greater than 10% -.77 1.53 89

Percent highly qualified teachers

Less than 75% -.80 1.34 196 .000

75-85% -.80 1.31 144

Greater than 85% -.72 .99 238

Total -. 77 1.19 578
 

Science undersupply is calculated for SY 2009 based on 2008 REP & student enroll from 2006-2008
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CHAPTER 4: ESTIMATING TEACHER DEMAND USING STATE ADMINISTRATIVE DATA:

CHALLENGES AND RESOLUTIONS

The demand formula presented briefly in Chapter 1 provides a powerful tool for

use by practitioners and by researchers in order to estimate teacher demand in the context

of specific curricular requirements. While easily accessible to practitioners and

researchers alike, the formula makes several assumptions that bear further investigation.

The purpose of this essay is to revisit the demand formula and its underlying

assumptions, test the assumptions where appropriate, and make an informed decision

regarding possible modifications to the formula for future use. The revised formula is

then used in Chapter 7, Teacher Undersupply.

Background to the Problem: Estimating Teacher Demand

In order to provide students with increased rigor in their high school coursework

and prepare students more fully for the demands of a global technological economy,

many states have increased graduation requirements. Since 2004, 18 states plus the

District of Columbia report having raised graduation requirements to meet the American

Diploma Project’s college- and work- career-ready curriculum, which includes 4 years of

challenging math and English, and an additional 12 states plan to do so in the next few

years (Achieve, Inc., 2008). Forty-two states have at least some statewide requirements

for high school graduation (American Association of State Colleges and Universities,

2006), and 25 states now offer an optional college-preparatory diploma (Dounay, 2006).

Michigan is among the set of states leading the way in these reforms, adopting

one of the most comprehensive sets of high school graduation requirements in the

country, known as the Michigan Merit Curriculum in 2006. The Merit Curriculum is
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meant to improve high school content and better align the Michigan diploma with

business and postsecondary requirements through more rigorous curriculum, standards,

and assessment (Cherry Commission, 2004). By establishing a statewide set of required

courses, the Merit Curriculum creates a minimum floor that might raise expectations and

achievement for students. This reform draws on a small but growing body of research,

suggesting that certain core courses, especially those in math and science, can have

significant effects on students’ long-term labor outcomes (Goodman, 2010; Levine &

Zimmerman, 1995; Rose & Betts, 2004). The intervention might also positively influence

students’ educational aspirations by standardizing high school course-taking around

requirements for a postsecondary education (Bryk, Lee, & Holland, 1993; Lee, 2002).

While other states are increasing graduating requirements, Michigan stands out

for the rigor and specificity of courses required under the new policy, including Algebra

1, geometry, Algebra 2, Biology 1, chemistry or physics, and at least two years of foreign

language. While these courses are likely to prove beneficial for student achievement

outcomes,1 the question remains: will Michigan, and other states implementing similar

reforms, have an adequate supply of teachers to meet the increased instructional demands

from a curriculum such as this one?

 

1 It is important to note that, while increased graduation requirements are generally thought to improve

student achievement and graduation rates (Achieve, 2009; Balfanz & West, 2009), there is some evidence

that increased graduation requirements are associated with lower high school completion rates (Lillard &

DeCicca, 2001), and that mandatory high school graduation exams, a closely related policy reform,

increase dropout rates, particularly among low-income students (Dee & Jacob 2007; Jacob 2001; Warren,

Jenkins, & Kulick, 2006) and little evidence that they improve student achievement (Grodsky, Warren, &

Kalogrides, 2009; Dec & Jacob 2007). Given this mixed literature and the importance of evaluating this

statewide reform, the Michigan Merit Curriculum is the topic of an ongoing, [ES-funded study, conducted

by the Michigan Consortium for Educational Research, to establish the effectiveness ofthe MMC in

increasing student achievement and postsecondary transitions (Michigan Consortium for Educational

Research, 2010).
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Estimating demand to respond to changes in curricular requirements

Traditional economic-based demand formulas center on the concept of estimating

demand as a function of price or cost, and in general assume that demand decreases as

price increases (Ehrenberg & Smith, 1997). Economists are also interested at the point at

which the supply and demand curves meet, or are in equilibrium (i.e. there is enough

supply to meet the demand with no excess). When looking at the predicted demand of

teachers required to meet instructional needs arising from a set of specified curricular

requirements, a different type of formula is required. The goal is not to predict the

number of teachers needed based on general cost or population changes. Instead, the goal

is to take a point-in-time change (increase in curricular requirements) and estimate the

corresponding increase in teacher time necessary to meet those requirements.

Much current work calculates teacher demand based on how many positions are

open at a given level of compensation (Arnold, Choy & Bobbitt, 1993; Boe & Gilford,

1992; Ingersoll, 2001; Ingersoll & Perda, 2009; Guarino, Santibanez, & Daley, 2006).

This focuses on funded positions, rather than on the number of sections of a course that

will need to be offered to meet curricular requirements. Looking only at job openings

does not take into account schools who may need teachers but who are not able to post

forjobs because of budgetary constraints, increased class size, or other organizational

issues. Demand can also be expressed as the changes due to growth or decline in

enrollment, the student/teacher ratio, or staff requirements and the loss of teachers due to

attrition (Arnold, Choy, & Bobbitt, 1993).

There are two types of demand: constrained demand (the number of teachers

employed) and unrestricted demand (the number of teachers who might be hired without
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constraints; Carroll, Reichardt, & Guarino, 2000). The method for estimating demand

presented here is a version of unrestricted demand, although it does represent a necessary

amount of unrestricted demand, in that the course offerings must be made available to

students in order to meet the needs ofthe merit curriculum.

There are several methods available for calculating teacher demand. One demand

calculation is provided by OECD (Santiago, 2002). In this calculation, the number of

teachers needed is determined as follows: (student population/average class size) x

(average number of required learning hours for students/teachers’ teaching load).

However, the drawback of this formula is that it ignores the level of detail associated with

subject area, something that is remedied in the formula presented below. Another

common formula for demand, usually estimated at the state or national level, is

demand=enrollment x pupil/teacher ratio (Boe & Gilford, 1992). Both of the above

analyses were conducted at either the national or state level, highlighting one of the

challenges identified with many of the demand models available (i.e. the one used by

NCES, the OECD model, etc.). These methods produce national level projections that are

not able to provide adequate and accurate information for policymakers at the school and

district level (Carroll, Reichardt, & Guarino, 2000).

While the demand formula presented above is similar in nature to other formulas,

this work makes two unique contributions. The first is that this method provides estimates

at the school level, and also utilizes local estimates for elements such as enrollment and

class size. The second is that this paper tests the validity and accuracy of this method.

While there are several widely used ways to estimate teacher demand, far more attention

has been paid to teacher supply estimation methods. This paper provides an opportunity
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to gather and present evidence regarding the extent to which these methods produce

reasonable estimates.

Demand Formula, Assumptions, and Alterations

The developed demand formula is as follows:

(')

Z

(1)

D; = number of teachers needed to meet graduation requirements in a subject

area

a = proportion of student body that needs to be enrolled in each subject each

year in order to meet graduation requirements

xi = total student enrollment in each school

y = class size

2 = number of periods taught per FTE per day2

Assumptions

Enrollment weight (a): The proportion of the student body expected to take a

given subject in each year, in order to meet the graduation requirements. For math and

English language arts, since four years of each are required, it is assumed that 100% of

the student body takes a math and an English course each year, and thus the value of a is

1.0 for mathematics and English language arts. For science and social studies, a=.75

because students are required to take three years of each.

These weights represent a lower-bound estimate of the number of students in a

school who are taking a particular subject. They do not take into account factors such as

students who take more courses in a given subject than required or students who have to

 

2

See Keesler, Wyse & Jones (2008) on the IES website

(mezfiies.ed.gov/ncee/edlabs/regions/midwest/pdf/techbriefltri00508.pdt). This formula has been vetted

by IE8 and is considered as a promising tool for use by other states. While the report was a collaborative

effort, the development ofthe formula was an individual contribution on my part.
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re-take courses. The actual number of students taking courses may be higher than would

be estimated by this.

Student enrollment (xi): Student enrollment is calculated by taking the average

enrollment over the previous three years. There is no differentiation by grade level; the

enrollment is for the entire student body. The implied assumption here is that any factors

contributing to the enrollments of the three previous years—i.e. rates of drop outs, cohort

sizes, student attrition—will remain constant in the future.

Class size (y): Class size is assumed to be 25, reflecting common practices in

many high schools. However, this assumption can be changed to reflect more local

conditions or other assumptions (i.e. if a policymaker wanted to test the potential effect of

decreasing class size on the necessary teaching workforce, the assumptions could be

altered to a smaller class). This number also reflects an “ideal” class size in that it is an

agreed-upon size that is not too large but also not unreasonably small given the practices

and realities of most schools.

Number of periods per FTE (2): Number of periods taught per FTE per day (2) is

assumed to be five.

It is important to note that this formula produces conservative estimates of

demand, by estimating the minimum demand, given a certain set of curricular

requirements. Therefore, schools that have inadequate supply to meet the demand can be

considered rather significantly undersupplied; there may be more schools identified if the

demand calculation were more liberal. The assumptions reflect common practices in

many high schools. However, these assumptions are not reflective of all schools, and
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particularly are not valid for schools with non-traditional organizational patterns; this

should be taken into account when calculating demand for individual schools.3

Testing Each Assumption

The core purpose of this paper is to revisit the assumptions of the current demand

formula, evaluating the formula for rigor and for its ability to produce reliable demand

estimates. The next section details the steps taken to test each assumption.

Enrollment estimates. In the original formula, enrollment is estimated by

averaging three years of enrollment data for each high school in the state. However,

Michigan is a state with declining population, and net out-migration. Additionally, it is

not clear from looking at the past enrollments how “shocks” to the system, such as

significant economic decline, major layoffs and factory closings, and home foreclosures

and bankruptcies (all of which have been experienced heavily in Michigan) affect school

enrollments. Finally, as mentioned previously, simply taking an average of the previous

three years of enrollment data assumes that any trends in enrollment represented by those

data (i.e. drop out rate, incoming class size) will remain relatively static. In order to

address this, enrollment projections are calculated using single exponential smoothing

with a 0.4 smoothing constant to determine state level public school enrollments, as well

as with a 0.7 smoothing constant for comparison, following the methods used by NCES

(Hussar & Bailey, 2008). Exponential smoothing places more weight on recent

observations than on earlier ones (Hussar & Bailey, 2008). By using three years of data,

 

3 The 580 high schools included in this study are schools that have more “traditional” configurations, as

alternative schools and schools that were not coded as “regular” for any reason were not included.

Therefore, this formula applies reasonably well to the sample analyzed in this dissertation. See Chapter 2:

Data and Methods, for more information on sample selection.
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and these smoothing constants, the enrollment rates reflect the realities of enrollment in

Michigan more precisely than a simple average.

Districts and states can use a variety of different methods to predict overall cohort

enrollment, such as the cohort survival model (California Department of Finance, 2006),

the ratio model (Campbell, 1997), the extended demographic model, which uses

enrollment data, birth records, student dropouts, and migration and grade retention

records (Campbell, 1997), and a multiregional cohort enrollment model that allows for

intradistrict mobility and school choice, and requires a shorter time scale (Sweeney &

Middleton, 2005). These strategies were all researched and considered for use in this

analysis. However, they are all most appropriate for predicting enrollment for larger units

of analysis, such as districts, and required data inputs that are not readily available at the

school level, such as birth records. The weighted average with a smoothing constant

allowed for the calculation of individual school enrollment projections using available

data.

Class size and FTEs taughtperperson. In the original application of the formula

with Michigan data, class size was assumed to be 25, and the state was provided with

alternate estimates under assumptions of 15, 20, and 30 students per class. The number of

FTES taught per teacher per day was assumed to be five. However, a small value in the

denominator can change the estimates of demand considerably, and since both of these

numbers are found in the denominator, it is particularly important to produce very

accurate estimates.

Class size is a critical and well-researched issue in education, although there is

lack of a consensus on the effect of class size. When there are studies of actual class size
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(not student teacher ratio), the findings are still mixed. Some meta-analyses show that

reduced class sizes do not systematically lead to improved student achievement

(Hanushek, 1997), while others (Hedges, Laine, & Greenwald, 1994; Kruger, 2000) the

effect may be more positive. Results from the Tennessee STAR experiment, one of the

largest randomized field experiments of reduced class sizes, show that reduced class size

has a significantly positive effect on test scores, particularly for children from

disadvantaged situations (Finn & Achilles, 1990; Kruger, 1999). However, these effects

are questioned by others (Hanushek, 1999) who are concerned that bias, implementation

issues and design issues may reduce the magnitude of any treatment effect, and that the

expensive nature of reduced class sizes is not necessarily merited by the findings.

Twenty-five students was assumed to be a reasonable class size—one that was small

enough that it did not place unreasonable instructional burdens on the teacher, but large

enough that it did not reflect the more costly “class size reduction” reforms.

One important caveat, however, is that using an assumed class size allows a

principal, district superintendent, or state policymaker to estimate demand based on an

ideal class size or based on potential class sizes due to a proposed change in class size as

part of an educational intervention. There may be situations in which it is not desirable to

know the exact class size because the demand projection may need to reflect desired

conditions, not current conditions. For example, if a school is already undersupplied and

using large classes in math in order to meet the demand, then calculating the student-

teacher ratio in math and using that to estimate demand is not helpful because it will

make it appear as though the school is adequately staffed, when in fact they are

undersupplied because of large class sizes. For this reason, the class size will stay at an
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estimated level (25) for this analysis at this time.4 Given the budgetary restrictions and

severe economic climate facing schools today, reflecting actual class sizes is not optimal,

as many school districts are dealing with teacher and funding shortages by demanding

more oftheir current instructional staff. This is a situation in which reflecting the reality

is not desirable; reflecting a reasonable class size goal will produce more realistic

estimates of which schools are likely struggling to meet their instructional needs given

their current staff.

FTES per person are assumed to be five, based on common practice and

suggestion by the state. This again will be left as an assumption, as it may be another area

that is affected negatively by budgetary shortfalls. However, in order to test the possible

implications for varying FTES, an assumed distribution is generated and used for

comparative purposes (see below).

Weighting the enrollment. Currently, the (a) value is defined as 1.0 for

mathematics and English language arts and .75 for science and social studies. This is

based on the assumption that, if students need to take four years of mathematics and

English language arts, they will take mathematics and English language arts each year

they are in school, and thus all students in a given school will be taking a mathematics

and English language arts class each year—which means that 100% of the total

enrollment will need to have courses available to them. In reality, this is likely to be a

 

4 In many traditional demand calculations, class size is approximated by student-teacher ratio (Santiago,

2002). This precludes a subject-specific student/teacher ratio. It was possible to calculate student/teacher

ratio for each subject for this analysis, but this strategy was rejected as it has the same limitations as

identifying the actual class size; it may reflect reality and therefore not allow areas of undersupply to be

addressed. Additionally, that does not address the fact that certain classes may be small while others large

within the same subject.
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lower bound estimate, as students may either elect to take more than the minimum

number of courses or may need to retake courses in order to obtain credit.5

Michigan does not currently have student transcript data available, making it

virtually impossible to construct individual course taking histories from the data system

in order to understand the number of courses taken in each subject by each student in a

given year. However, beginning in the winter of 2011, Michigan will begin collecting bi-

annual student transcript data from every high school in the entire state, via the Michigan

eTranscript initiative. At this time, the data will be available to understand coursetaking

patterns for Michigan students. Using these data when they become available, this weight

on the enrollment will be adjusted. However, given the lack of reasonable options for

these data at the time of this writing, the previously defined weights will continue to be

used. As stated above, they produce conservative estimates of demand, as it is unlikely

that students would take any fewer courses per year than the weights reflect, and may in

fact take more, which would increase demand.

Challenges with ratios. The demand formula outlined above is a ratio of

enrollment to class size and FTEs per teacher. Ratios can be very sensitive to small

changes in the denominator (Rice, 2007). There are statistical methods for constructing

confidence intervals around ratio estimates (the Delta method or the Fieller Method);

however, these methods require that variances of both the numerator and the denominator

can be produced. In the current equation, variance estimates could be constructed around

 

5 Interestingly, in May 2010, the Michigan legislature passed a bill repealing the requirement that students

pass Algebra H. This requirement was likely to have caused more students to have to retake mathematics

courses (Detroit Free Press, May 7, 2010). Anecdotal evidence also suggests that students who failed

Algebra II in school are obtaining that credit via credit recovery through programs like Michigan Virtual

University (MCER internal meeting, May 7, 2010). These trends suggest that a weight of 1.0 may not be a

lower bound, if students are only taking Algebra H once in high school, or not required to take it at all.
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enrollment, but not around class size or FTEs because those are constants. I can assume a

sampling distribution around both class size and FTE and use that assumed distribution to

test the sensitivity of the ratio to changes in class size or FTE. For example, I can assume

that class size has a standard deviation of 0.5, which would mean that 64% of all class

sizes fall within one student (from 24.5 to 25.5). I can then calculate the variance of the

ratio and see how variable the demand calculation is under that assumed standard

deviation, then repeat the procedure with other standard deviations (Rice, 2007).

Testing and Validating the Formula

In the next section, differences in the distribution of demand and undersupply

estimates under the original formula and the distribution of demand and undersupply

estimates under the tested formula are examined. The complicating aspect here is that one

method is not, by definition, “better” than the other one, so the comparison is difficult. It

can be assumed that the second method is more rigorous because of the increased

computational rigor introduced, but this may be a tenuous assumption. The computational

rigor of the second method may produce estimates that are more realistic to actual

conditions, but that are less valuable in terms of highlighting schools that could use

additional staffmg resources.

Therefore, the key questions addressed when testing the formula are: Do these

two formulas produce similar estimates? If not, how are they different? What is the

range of demand under the original formula, versus under the new formula? Do the two

formulas produce distributions with different qualities? More importantly, for which

schools are the differences in estimates most pronounced? In other words, do the two
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methods work equally well for traditional schools but one has an advantage in less

traditional schools?

Rather than having an absolute test or standard by which these methods are

compared, the distributional aspects produced under each method will be examined for

patterns and evidence, and the strengths and weaknesses of each method will be

discussed, with evidence arrayed for the use of one over the other based on a variety of

criteria. The end goal is to make a recommendation regarding which formula should be

utilized by policymakers. Is there evidence to suggest that the more computationally

rigorous formula produces “better” estimates? Is there evidence that one of the formulas

works more efficiently than the other for a certain type of school? These conclusions are

necessary addendums to the method, in order to provide better guidance to end users

regarding how to use the formula and how to understand it’s limitations.

Analytic Strategy

To implement and test the modifications described above, this chapter first tests

various enrollment specifications and identifies one that seems optimal by comparing the

distributions of demand and undersupply under each specification. Next, distributional

assumptions are added to class size and classes taught per FTE, and these are used in

conjunction with the enrollment estimate identified by the first step. Distributions of

demand and undersupply are again produced and compared. The final stage investigates

the differential functioning of various demand scenarios by looking at changes in the

distribution of undersupply by school characteristics, and classifications of significant

undersupply under different demand specifications. The chapter concludes by identifying

80



the most optimal demand formula, based on all accumulated evidence, and this formula is

then used to conduct the undersupply analyses in Chapter 7.

As stated above, there is no one test that conclusively proves which demand

formula is the “best.” The approach taken, therefore, is one of accumulating evidence to

support or reject modifications to assumptions, and seeking to iteratively implement a

modification, assess the distributional changes, and make an appropriate decision based

on evidence.

Results

Part 1: Choosing an optimal enrollment estimate

Enrollment rates were calculated using three methods: a simple three-year

average, a projected enrollment using three years of data and a 0.7 smoothing constant;

and a projected enrollment using three years of data and a 0.4 smoothing constant. The

formula for projected enrollment with a smoothing constant is:

P: aXt +a(1—a)Xt—1+a(1—a)2Xt—2

where

P = projected value

a = smoothing constant (either 0.4 or 0.7)

Xt = observation for time t

Below, Figure 4.1 presents the histograms for mathematics demand calculations

under the three enrollment estimates, followed by the undersupply calculations. For the

sake ofparsimony, only mathematics is presented here, although similar calculations and

comparisons were conducted for English language arts and science. These histograms are

included in the Technical Appendix B.
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Figure 4.1: Comparison of Mathematics Demand With Varying Enrollment

Estimates
 

D
e
n
s
i
t
y

    
 

Figure 4.1.1 : Original formula
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Figure 4.1 (cont’d)
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Figure 4.1.2: Smoothing constant 0.4

83

 



Figure 4.1 (cont’d)
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Figure 4.1.3: Smoothing constant 0.7

Viewing the histograms, they are shaped similarly, which suggests that there are

not dramatically different distributions of demand regardless of enrollment estimation

methods. The distribution is slightly more spread out in the original and in the 0.7

smoothing constant demand estimations, while the 0.4 smoothing constant produces a

slightly more truncated distribution.

Turning to the undersupply calculations, the three distributions are presented

below:
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Figure 4.2: Comparison of Mathematics Undersupply with Different Enrollment

Estimates
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 Figure 4.2.1: Original formula
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Figure 4.2 (cont’d)
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Figure 4.2.2: Smoothing constant 0.4
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Figure 4.2 (cont’d)
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Figure 4.2.3: Smoothing constant 0.7

Here, there are clear differences in the distributions of undersupply. The original

formula produces an undersupply distribution that is weighted toward positive numbers,

where positive numbers indicate greater amounts of undersupply. The 0.7 smoothing

constant enrollment estimates produce a distribution shaped like that of the original

enrolhnent estimates, but one that is less spread out and more peaked. Finally, the 0.4

smoothing constant produces a markedly different distribution, one that is more truncated

and with more of the distribution in the negative numbers, which suggests adequate

supply. This reflects the implications of the demand estimates—when the demand

estimates have longer tails, there are more schools identified as undersupplied.

Which enrollment estimate is the most appropriate to use for this analysis? Using

a smoothing constant to generate a projected enrollment is conceptually an important
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modification, given Michigan’s shifting enrollments and declining population. Which

smoothing constant is most appropriate? Based on the need to appropriately identify

undersupply while taking changes in enrollments into account, the 0.7 smoothing

constant will be used for enrollment projections, as the use of this constant causes the

weight of earlier observations to decrease rapidly (Hussar & Bailey, 2008). This is more

appropriate for the situation in Michigan, where enrollments can decline quickly in a

given school. Additionally, NCES suggests utilizing a higher smoothing constant when

the data are pepulation estimates as opposed to sample estimates. The distributions for

ELA and science demand and undersupply are included in Technical Appendix B.

Part II: Distributional assumptionsfor class size and courses per FTE: Addressing the

issues with ratios

The demand formula is a ratio—the ratio of enrollment to class size, and then that

entire quantity as a ratio to periods taught per FTE. However, the denominators—class

size and courses taught per FTE—are assumed values, and therefore little is known about

their possible range of values.

In a ratio Z=Y/X, Y and X are measured with some error (indicated by their

standard deviations). The ratio (Z) will have a standard deviation, and the size of that

standard deviation (and thus, the precision with which that ratio is measured) will depend

on several factors, including; 1) the precision with which X and Y are measured, and 2)

the correlation between X and Y. IfX and Y are measured with great precision, then the

difference between the E(Z), or the expectation of Z, and actual Z is small. However, ifX

and Y are not measured with precision, the difference between the ratio and the expected
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value is large. Furthermore, ratios are more variable when the denominator is small, and

correlation between X and Y decreases the variance of the ratio (Rice, 2007).

In this case, the numerator (Y) is the enrollment. The denominator, X, is class

size, and the number of courses taught per FTE. Both class size and courses per FTE are

assumed, with class size assumed at 25 and courses per FTE at 5. As assumptions, they

have no standard deviation. In practice, however, there is a distribution around class size

and number of courses taught. The wider this distribution (i.e the less precisely they are

measured), the more variable the demand calculation will be.

Given that they are assumptions, and that they are designed to be adjusted by the

end user to reflect changing conditions or to test the demand under planned

circumstances, assuming a distribution is somewhat of an academic exercise. However,

when estimating this for every school in the whole state, it is important to quantify how

variable the estimates of undersupply could be with a range of values for the assumed

values. This is akin to a sensitivity analysis—quantifying how sensitive the demand

formula is to changes in the assumptions, and how sensitive this estimate would have to

be in order to invalidate inferences around undersupply. This is evaluated empirically, as

described below.

In order to quantify the sensitivity of the ratio to changes in the denominator, I

generated two new variables for class size; one with a mean of 25 and a standard

deviation of l [~N(25, 1)], and one with a mean of 25 and a standard deviation of .5

[~N(5, .5)]. I also generated a variable for courses taught per FTE, with a mean of 5 and a

standard deviation of .25 [~N(5, .25)]. This was because the range of the number of

courses taught is bounded by realities of a teaching day—no teacher is teaching 8 courses
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in a day, or as few as two. A standard deviation of .25 produces a lower bound of 4.28

courses and an upper bound of 5.9 courses.

For mathematics only (again, for parsimony, with ELA and science included in

the Technical Appendix C), Figure 4.3 presents the distributions of demand compared

under four situations: (1) Original demand formula, (2) enrollment with .7 smoothing

constant (selected as the optimal enrollment estimate from above analyses), (3)

enrollment with .7 smoothing, class size~N(25, 1) and courses~N(5, .25), and (4)

enrollment with .7 smoothing, class size~N(25, .5) and courses~N(5, .25)
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Figure 4.3: Comparison of Demand Estimates Under Four Estimation Scenarios

 

     
Figure 4.3.1: Scenario 1: Original formula
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Figure 4.3. (cont’d)
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Figure 4.3.2: Scenario 2: Enrollment 0.7 smoothing constant
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Figure 4.3 (cont’d)
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Figure 4.3.3: Scenario 3: 0.7 smooth, class size~N(25, l), courses~N(5, .25)
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Figure 4.3 (con’td)
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Figure 4.3.4: Scenario 4: 0.7 smooth, class size~N(25, .5) courses~N(5, .25)

Observing the distributions, while changing enrollment estimates from the former

(simple average) to a weighted average using a smoothing constant does not appear to

change the distributions of demand greatly, there do appear to be changes in the

distribution in situation (3) and (4). The tail of the distribution is more elongated and

more positively skewed, which suggests a greater amount of observed demand when

including distributional assumptions around the class size and number of courses taught

per FTE.

94



Figure 4.4:
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Figure 4.4.2: Scenario 2: Enrollment 0.7 smoothing constant
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Figure 4.4 (cont’d)
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Figure 4.4.4: Scenario 4: 0.7 smooth, class size~N(25, .5) courses~N(5, .25)
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Figure 4.4 shows the distribution of undersupply under the four scenarios. As

mentioned above, the undersupply distributions are more conservative than those in the

original demand formula when using the 0.7 smoothing constant, which is why this

enrollment estimate was selected for use in the final analyses. When using distributional

assumptions around class size and FTB, in situation (3) and (4), the distributions become

more peaked, but there are also more outliers. This reflects the fact that these small

changes in the denominator can yield estimates that are more varied than those generated

when using only assumed values.

Do dtflerent demandformula assumptions produce estimates that vary by school

characteristics?

The analyses above demonstrate the shape and characteristics of the distributions

of demand and undersupply under differing sets of assumptions. The second important

question is: do the demand estimates lead to an identification of undersupplied schools

that varies with school characteristics? In other words, is there differential formula

functioning by school characteristics? To investigate this, the mean mathematics,

English language arts, and science undersupply was calculated by a set of school

characteristics. This table is introduced in Chapter 3, to demonstrate the descriptive

relationship between undersupply and school characteristics.

Tables 4.1, 4.2, and 4.3 present the distribution of mean mathematics, English

language arts, and science undersupply by school characteristics under three different

demand formula assumptions: 1) the original demand formula, 2) using a 0.7 smoothing

constant on the enrollment, and 3) a 0.7 smoothing constant on the enrollment and

distributional assumptions on class size [(~N(25, .5)] and courses per FTE [(~N(5, .25)].
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If the distribution of mean levels of undersupply by school characteristics varies when

using different demand specifications, this is evidence that certain formulas function

differentially.

The comparative analyses presented in Tables 4.1, 4.2 and 4.3 demonstrate that,

in each of the demand formula specifications, the relationships between undersupply and

different school characteristics do not differ. The magnitude of the relationships is

different, reflecting the fact that the original demand formula produced more generous

estimates of undersupply, but the order of relationships is the same. For example, in

Table 4.1, the distribution of mean mathematics undersupply over the four locale types

using a demand formula with a smoothing constant on enrollment is .64 for city schools,

.81 for suburban schools, .51 for town schools and .18 for rural schools. Using the

original formula, the distribution is .98 for city schools, 1.07 for suburban schools, .74 for

town schools, and .32 for rural schools—the same ordering as under the first formula.

Finally, in the most complex formula, the one with a smoothing constant on the

enrollment and distributional assumptions on class size and FTE, the distribution of math

undersupply by locales is .69 for city schools, .90 for suburban schools, .52 for town

schools, and .19 for rural schools. In all three situations, rural schools have the lowest

mean mathematics undersupply, while suburban schools have the highest mean

mathematics undersupply. This is true for each subject and for each set of characteristics,

and this provides strong evidence to conclude that, regardless of demand formula

specification, the formulas will work similarly for all school types.

How does the categorization ofundersupply difi'er in each ofthefour situations?

98



A second critical question, and possibly one that is more policy-relevant, is the

extent to which determinations of significant undersupply (i.e. more than one FTE

needed) change based on estimations. Although the continuous undersupply calculations

are helpful in understanding changes in teacher supply more broadly, schools, districts,

and states will likely want to know, “Do I have a large enough undersupply that I am

going to potentially have a staffing problem?” Therefore, comparing how schools are

classified as undersupplied or not undersupplied under each formula is important. In

Table 4.4, the categorization of undersupply are compared in each of the situations.

The classification results show that all modifications to the original formula lead

to fewer schools being classified as significantly undersupplied. This suggests that it is

important to use these types of modifications because this helps keep this demand

formula conservative in terms of the estimates it produces. One reason for the importance

of using these types of modification is the fact that many schools have declining

enrollments. With a three year average, unweighted, each year contributes the same to the

final enrollment estimate. Using a smoothing constant, older observations count for less

than newer observations. Therefore, predicted enrollments under the smoothing constant

are lower than average three year enrollments; which in turn produces lower demand

estimates. Estimates under the two distributions assumptions of the standard deviation of

class size are very similar. For this reason, Situation (2), which is the enrollment

projection method only, seems to be an optimal method.

Table 4.5 presents the cross-classifications of undersupply between Scenario 2

and the other scenarios, in order to understand variations in how schools are classified.

There were 34 schools classified as undersupplied in the original formula who were not
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when using the estimated enrollments in Situation 2 (see A in Table 4.2). Are those

schools likely to experience an undersupply, or were they falsely tagged by the original

estimate that did not take into account potential declining enrollments? Similarly, there

were 34 schools were not undersupplied under situation (2) but were undersupplied under

situation (3) and 16 schools were undersupplied in (2) but not in (3) (see B in Table 4.2).

This means that assuming a distribution around class size ofN(25, 1) leads to 50 schools

being classified differently. For situations 3 and 4, the number is of schools classified

differently is 47, and they are arrayed similarly to the situations in 2 and 3 (see C in Table

4.3). This suggests that if a distribution is going to be assumed around class size and

FTES, it is better to use the more conservative estimate of class size~N(25, .5)

Finally, for A and C, I identified the schools who were “misclassified” (i.e. those

who were classified as undersupplied on one analysis and not the other, and vice versa)

and did simple cross tabulations with chi-square tests for significant differences by four

key structural categories of schools: locale, percent minority, percent free and reduced

lunch, and school size. The purpose of this is to ascertain whether or not the

misclassifications are more or less likely to happen to certain types of schools. Table 4.6

shows the crosstabulations for A (Situation 1 and Situation 2) and Table 4.7 shows them

for C (Situation 4 and Situation 2).

The difference between these two demand estimates was the inclusion of the 0.7

smoothing constant on the enrollment projections. This led to more conservative

estimates of demand, and fewer schools being identified as significantly undersupplied.

There are no statistically significant differences between those categorized differently by
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g the two formulas and those categorized the same on locale, school minority composition,

or free and reduced lunch

Small schools were significantly less likely to be classified differently under the

two demand formulas than large schools. This suggests that larger schools are more

susceptible to differences in how the demand formula is specified. When the enrollment

was projected using the 0.7 smoothing constant (i.e. in Situation 2) rather than averaged

over three years in the original formula (Situation 1), these schools had lower enrollments

and thus less undersupply. This is likely a positive modification, as the previous

enrollment estimates were over-estimating the number of students in the school, and thus

overestirnating demand.

Table 4.7 presents the crosstabulations for C (from Table 4.5), looking at

misclassifications under Situation 2 (0.7 smoothing constant on enrollment) and Situation

4 (smoothing constant and distributional assumptions on class size and FTE). The

assumed distribution around class size and course per FTE is the more conservative

estimate than that presented in Situation 3. Again, as seen in Table 4.6, there is no

statistically significant differences between schools classified the same way under each

formula and those classified differently on locale, percent minority, and percent free or

reduced lunch. Fewer small schools were misclassified than expected, and more large

schools were misclassified.

To summarize, there is not evidence to suggest that any of these specifications of

demand function differently based on school locale, percent minority students, or percent

free and reduced lunch students. As seen in the comparison of mean undersupply by

school characteristics, the distributions are the same, although the absolute quantity in
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each category differs. Even when using the “significant” threshold, this formula is not

functioning differentially.

The original formula, without the enrollment projection methodology, was

overestimating undersupply for large schools. This provides firm evidence to suggest that

using a better enrollment measure was a positive improvement for the formula.

Conclusions

For the enrollment estimates, using a weighted average seems to be critical in

order to keep the analysis on the conservative side and avoid Type 1 errors. If this

formula is being utilized by a district or school individually, they can decide whether to

use an average, a weighted average, or their own prediction of what they think their

enrollment is going to be, based on their own experiences.

The distribution of undersupply over types of schools does not differ regardless of

the demand formula specification. Changes in classification of significant undersupply

are largely due to the shape of the distributions, and the fact that imposing a 1.0 FTE cut

point as the threshold for “significant” undersupply places that cut point at different

locations on the varying distributions. In the original formula, more schools fell above

that cut point, because the formula was more generous, and also, because enrollment was

likely overestimated by using a simple average, particularly in large schools. Therefore

schools were classified as undersupplied who may not actually have experienced

undersupply.6

 

6 It is possible to verify the accuracy of this formula by using the next year’s data (in this case, REP 2009)

and assessing the extent to which the schools predicted to be undersupplied are actually undersupplied.

This was not done for this analysis as the focus was on improving the demand formula as an estimation

strategy, but will be done in the future as a final verification step, when 2009 data is made available by

MDE.
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Assuming a distribution around class size and courses is problematic. It is

instructive to know the degree to which these assumptions can change classification

errors. However, for use in the formula and analyses, using the assumed distributions

does not make sense, as the point of the formula is to estimate which schools MAY be

undersupplied under certain conditions. The goal of the formula is important here. It is

true that changes in these distributional assumptions could change inferences, as schools

are categorize differently under different situations. However, since they are not

empirically based, I hesitate to continue to use them in analysis.

Given this evidence, in future analyses, the smoothing constant of 0.7 will be used

with no distributional assumptions on class size and courses per FTE as the main

analysis. For comparison, the final undersupply models will be run using the smoothing

constant and distributional analyses on class size~N(25, .5) and courses per FTE~N(5,

.25). This will show how the results may change in a situation where the assumptions are

not fixed, but with conservative estimates of distribution.

A final question related to this formula is the extent to which it is valid.

Measurement literature outlines various dimensions of validity (content, criterion,

construct) but the core concern in a formula of this nature is construct validity—the

extent to which this formula is measuring what it is intended to measure (teacher

demand)—and face validity, the “believability” of this formula. Validity, even in the pure

measurement sense, does not have one “test” that establishes the validity of an instrument

or a construct. Rather, validity is demonstrated via the accumulation of evidence.

Evidence for the validity of this formula and method includes the computations

and comparisons undertaken in this analysis above, particularly the comparisons of the
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distribution of estimates obtained under each method. Face validity is also established by

the extent to which this formula is seen as viable and believable to a policymaker

audience. As the original formula has already been vetted by the state of Michigan, the

Institute for Education Sciences, the Regional Educational Laboratory-Midwest,

representatives of other regional educational laboratories, and by a number of academic

audiences, there is substantial evidence that this formula passes the face validity test. The

rigor to which the formula is submitted here suggests that it has construct validity as well.

The purpose of this formula is to provide a useful tool to practitioners and

researchers alike to allow for demand calculations that are sensitive to school-specific

variations in demand and supply; that takes into account the context of cun'icular

requirements; and that can be used as a planning tool by practitioners in which they can

adjust the assumptions to reflect the current or future conditions in their school in order to

inform decision making.
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Table 4.1: Mean Mathematics Teacher Undersupply by School Characteristics Under

Different Demand Formula Assumptions
  

 

 

 

 

 

 

 

 

 

 

 

 

     

Enrollment

Enrollment with Original Demand w/Smooth &

Smoothing" Formula Dist'n on Class

Mean SD F-test Mean SD F-test Mean SD F-test N

Locale

City .64 1.68.000 0.98 1.87 .000 .69 1.80 .000 94

Suburb .83 1.37 1.07 1.38 .90 1.46 161

Town .51 .90 0.74 0.99 .52 1.01 78

Rural .18 .84 0.32 0.85 .19 .81 245

Percent minority

Lessthan 5% .31 .81 .168 0.46 0.87 .038 .29 .86 .039 174

5-10% .46 1.12 0.69 1.17 .48 1.10 141

10-15% .64 1.13 0.82 1.2 .71 1.20 56

15-65% .58 1.42 0.82 1.49 .66 1.50 132

Greater than 65% .63 1.65 0.92 1.8 .70 1.84 75

Percent free/reduced lunch

Less than 10% .04 1.60.006 0.24 1.61 .008 -.003 1.51 .003 43

10-29% .67 1.13 0.88 1.2 .73 1.16 202

30-49% .37 1.02 0.56 1.08 .40 1.09 204

50-69% .62 1.44 0.83 1.62 .63 1.64 94

70%orfeater .29 1.18 0.5 1.19 .30 1.25 35

School size

Less than 300 students -0.15 .73 .000 -0.08 0.7 .000 -.13 .75 .000 83

300-999 students .30 .91 0.45 0.92 .30 .95 307

Greaterthan1000 students 1.06 1.52 1.42 1.6 1.15 1.62 188

Charter Schools

Charter .06 1.08.039 0.73 1.28 .003 .54 1.28 .054 33

Non-charter .51 1.21 0.05 1.06 .10 1.13 545

Magnet Schools

Magnet .22 1.38.061 0.72 1.27 .122 .57 1.26 .004 65

Non-mgmt .52 1.12 0.46 1.45 .09 1.28 513    
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Table 4.1 (cont'd)
 

 

 

 

 

 

  
 

    

Enrollment

w/Smooth &

Enrollment with Original Demand -Dist'n on Class

Smoothing“ Formula Size and FTE

Mean SD F-test Mean SD F-test Mean SD F-test N

Percent teachers with prof licenses

Less than 80% .35 1.16 .367 0.5 1.26 .135 .39 1.29 .468 132

80-90% .52 1.31 0.76 1.38 .55 1.35 297

Greater than 90% .42 1.00 0.74 1.07 .55 1.08 149

Percent minority teachers

Less than 1% .28 .98 .000 0.44 1.01 .000 .28 .98 .001 275

l-10% .72 1.22 0.96 1.29 .77 1.29 214

Greater than 10% .54 1.63 0.83 1.79 .61 1.81 89

Percent yghly qualified teachers

Less than 75% .74 1.34 .000 1 1.45 .000 .75 1.44 .003 196

75-85% .46 1.23 0.68 1.26 .49 1.22 144

Greater than 85% .28 1.02 0.44 1.08 .33 1.13 238

Total .48 1.20 0.69 1.28 578 .51 1.27 578  
Math undersupply is calculatedfor the SY 2009 based on 2008 REP and student enrollment

“This calculation is identified as the optimal calculation and is used primarly in the Chapter 7

undersupply analyses
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Tile 4.2: Mean Englishianguage Arts Teacher Undersupply by School Characteristics

Under Different Demand Formula Assumptions
 

Enrollment with

Smoothing"
 

Original Formula

Enrollment w/Smooth

& Dist'n on Class

Size/ FTE
 

 

 

 

 

 

 

 

 

 

 

 

     

Mean SD F-test Mean SD F-test Mean SD F-test N

Locale

City -.81 2.56 .003 -0.48 2.69 0.028 -0.76 2.64 0.012 94

Suburb -1.10 1.81 -0.86 1.83 -1.03 1.85 161

Town -.89 1.06 -0.68 1.05 -0.9 1.04 78

Rural -.52 .88 -0.38 0.89 -0.51 0.91 245

Percent minority

Less than 5% -.61 1.01 .062 -0.46 1.01 0.083 -0.63 1.07 0.181 174

5-10% -.69 1.15 -0.46 1.12 -0.67 1.12 141

10-15% -1.17 1.79 -0.99 1.86 -1.1 1.79 56

15-65% -1.00 1.67 -0.77 1.66 -0.93 1.71 132

Greaterthan 65% -.67 2.64 -0.38 2.81 -0.6 2.74 75

Percent free/reduced lunch

Less than 10% -1.43 1.93 .037 -1.23 1.91 0.036 -1.47 1.96 0.024 43

10-29% -.78 1.38 -0.56 1.38 -0.72 1.36 202

30-49% -.79 1.31 -0.59 1.29 -0.76 1.33 204

50-69% -.58 2.10 -0.36 2.29 -0.56 2.21 94

70% orgreater -.46 1.87 -0.24 1.89 -0.45 1.92 35

School size

Less than 300 students -.43 .70 .006 -0.37 0.69 0.301 -0.41 0.7 0.027 83

300-999 students -.71 1.36 -O.55 1.38 -0.7 1.38 307

Greaterthan 1000 students -1.05 2.09 -0.69 2.17 -0.97 2.15 188

Charter Schools

Charter -.86 2.81 .752 -0.55 1.52 0.268 -0.74 1.52 0.768 545

Non-charter -.77 1.48 -0.87 2.81 -0.83 2.83 33

Wet Schools

Magnet -.86 2.27 .658 -0.56 1.5 0.795 -0.72 1.52 0.198 513

Non-magnet -.77 1.48 -0.62 2.33 -0.99 2.24 65
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Table 4.2 (cont'd)
 

Enrollment w7Smooflf

 

  
 

 

 

 

 

     

Enrollment with & Dist'n on Class

Smoothing" Original Formula Size/ FTE

Mean SD F-test Mean SD F-test Mean SD F-test N

Percent teachers with prof licenses

Lessthan 80% -.58 1.91 .130 -0.43 2 0.312 -0.53 1.95 0.109 132

80-90% -.90 1.59 -0.67 1.62 -0.88 1.63 297

Greaterthan 90% -.72 1.18 -0.5 1.17 -0.68 1.18 149

Percent minority teachers

Lessthan 1% -.58 1.04 .008 -0.42 1.03 0.042 -0.58 1.02 0.026 275

1-10% -1.03 1.57 -0.79 1.57 -0.98 1.6 214

Greaterthan10% -.79 2.62 -0.5 2.77 -0.72 2.74 89

Percent highly qualified teachers

Less than 75% -.59 1.59 .086 -0.33 1.68 0.02 -0.58 1.62 0.164 196

75-85% -.79 1.41 -0.57 1.38 -0.75 1.38 144

Greater than 85% -.93 1.67 -0.77 1.68 -0.88 1.73 238

Total -.78 1.58 -0.6 1.62 -0.75 1.62 578
 

ELA undersupply is calculatedfor the 2009 schoolyear based on 2008 REP and student

"This calculation is identified as the optimal calculation and is used primarly in the Chapter 7

undersupply analyses
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Table 4.3: Mean Science Teacher Undersupply by School Characteristics Under Different

Demand Formula Assumptions
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enrollment w/Smooffl_—l ‘

Enrollment with Original Demand & Dist'n on Class

Smoothing“ "' Formula Size/ FTE

Mean SD F~test Mean SD F-test Mean SD F-test N

Locale

City -1.04 1.82 .000 -.79 1.86 .000 -1.00 1.86 .000 94

Suburb -1.07 1.36 -.88 1.33 -1.01 1.41 161

Town -.68 .89 -.52 .90 -.69 .93 78

Rural -.50 .71 -.39 .72 -.49 .73 245

Percent minority

Less than 5% -.47 .75 .000 -.37 .76 .000 -.49 .76 .000 174

5-10% -.73 .93 -.56 .91 -.71 .98 141

10-15% -.99 1.02 -.85 1.05 -.94 1.20 56

15-65% -1.21 1.59 -1.03 1.56 -1.15 1.59 132

Greaterthan 65% -.58 1.54 -.37 1.56 -.53 1.59 75

Percent free/reduced lunch

Less than10% -1.96 1.91 .000 -1.81 1.87 .000 -1.99 1.95 .000 43

10-29% -.90 1.11 -.74 1.09 -.86 1.13 202

30-49% -.56 .89 -.41 .86 -.54 .90 204

50-69% -.53 1.23 -.37 1.27 -.51 1.30 94

70%orgreater -.39 1.16 -.23 1.19 -.38 1.14 35

School size

Less than 300 students -.46 .64 .000 -.41 .62 .000 -.45 .63 .000 83

300-999 students -.50 .88 -.39 .88 -.50 .92 307

Greaterthan 1000 students -1.34 1.58 -1.06 1.63 -1.27 1.64 188

Charter Schools

Charter -.25 1.09 .010 -.62 1.20 .077 -.78 1.23 .012 33

Non-charter -.80 1.20 -.25 1.07 -.22 1.09 545

_M_1gnet Schools

Magnet -.74 1.13 .819 -.62 1.20 .645 -.73 1.23 .536 65

Non-magnet -.77 1.21 -.55 1.12 -.83 1.18 513 
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Table 4.3 (cont'd)
 

 

 

 

 

  
 

 

Enrollment w/Smoo

Enrollment with Original Demand & Dist'n on Class

Smoothing" Formula Size/ FTE

Mean SD F-test Mean SD F-test Mean SD F-test N

Less than 80% -.50 1.13 .009 -.39 1.12 .038 -.47 1.13 .008 132

80-90% -.88 1.28 -.71 .127 -.87 1.32 297

Greater than 90% -.77 1.06 -.60 1.06 -.74 1.07 149

Percent minority teachers

Less than 1% -.54 .80 .000 -.42 .81 .000 -.54 .81 .001 275

1-10% -1.06 1.40 -.88 1.38 -1.02 1.44 214

Greater than 10% -.77 1.53 -.56 1.56 -.72 1.58 89

Percent h_r_g’hly qualified teachers

Less than 75% -.80 1.34 .756 -.61 1.35 .971 -.79 1.39 .631 196

75-85% -.80 1.31 -.63 1.27 -.77 1.30 144

Greater than 85% -.72 .99 -.60 .99 -.69 1.02 238

Total -. 77 1.19 -.61 1.19 -.74 1.23 578     
Science undersupply is calculatedfor SY2009 based on 2008 REP and student enrollmentfrom

”This calculation is identified as the optimal calculation and is used primarly in the Chapter 7

undersupply analyses
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Table 4.4: Categorization of Undersupply Under Four Sets of Assumptions

 

Situation 1 Situation 2 Situation 3 Situation 4
 

 

Not Undersupplied 393 426 408 409

Underwplied 185 152 170 169
 

Situation 1: Original demand formula

Situation 2: 0.7 Smoothing constant only

Situation 3: 0.7 smoothing constant, class size~N(25, 1) and courses~N(5, .25)

Situation 4: 0.7 smoothing, class size~N(25, .5) and courses~N(5, .25)
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Table 4.5: Comparison of Cross-Categorizations of Undersupply Under Four

 

 

 

 

 

 

 

Sets of Assumptions

Situation 2 US Situation 2 Not US Total

Situation 1 .' Undersupplied 15 l 34 185

A Situation 1: Not US 1 392 393

Total 152 426 578

Situation 2 US Situation 2 Not US Total

Situation 3: Undersupplied 136 34 170

B Situation 3: Not US 16 392 408

Total 152 426 578

Situation 2 US Situation 2 Not US Total

Situation 4: Undersupplied 137 32 169

Situation 4: Not US 15 394 409

Total 152 426 578 
 

Situation 1: Original demand formula

Situation 2: 0.7 Smoothing constant only

Situation 3: 0.7 smoothing constant, class size~N(25, 1) and courses~N(5, .25)

Situation 4: 0.7 smoothing, class size~N(25, .5) and courses~N(5, .25)
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Table 4.6: "Misclassification" Between Situation 1 and Situation 2

 

 

    

("A" from Table 4.4)

Same Diflerent Expected

Classification Classification Dist'n Chi-Square

Locale

City 17% 14% 17% 0.439

Suburb 27% 37% 28%

Town 13% 17% 13%

Rural 43% 31% 42%

Percent minority

Less than 5% 30% 29% 30% .415

5-10% 24% 29% 24%

10-15% 10% 3% 10%

15-65% 22% 31% 23%

Greater than 65% 14% 9% 13%

Percent free/reduced lunch

Less than 10% 8% 3% 7% .281

10-29% 35% 37% 35%

30-49% 34% 49% 35%

50-69% 17% 9% 17%

70% or greater 6% 3% 6%

School size

Less than 300 students 15% 3% 15% .008

300-999 students 54% 43% 53%

Greater than 1000 students 31% 54% 32%

Situation 1: Original demand formula

Situation 2: 0.7 Smoothing constant only
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Table 4.7: "Mrs'classification" Between Situation 2 and Situation 4

("C" from Table 4.4)
 

 

Same Different Expected Chi-

Classification Classification Dist'n Square

Locale

City 17% 9% 17% 0.173

Suburb 27% 36% 28%

Town 13% 19% 13%

Rural 43% 36% 42%

Percent minority

Less than 5% 30% 28% 30% .161

5-10% 24% 30% 24%

10-15% 9% 13% 10%

15-65% 22% 28% 23%

Greater than 65% 14% 2% 13%

Percent free/reduced lunch

Less than 10% 7% 15% 7% .149

10-29% 35% 32% 35%

30-49% 35% 40% 35%

50-69% 17% 1 1% 17%

70% or greater 6% 2% 6%

School size

Less than 300 students 16% 0% 15% .005

300-999 students 53% 53% 53%

Greater than 1000 students 31% 47% 32%    
 

Situation 2: 0.7 Smoothing constant only

Situation 4: 0.7 smoothingZ class size~N(25, .5) and courses~N(5, .25)
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CHAPTER 5: TEACHER CHURN RATE: THE RELATIONSHIP BETWEEN TEACHER

RETENTION AND STUDENT ACHIEVEMENT

Introduction

High schools face the challenge of recruiting and retaining an adequate number of

qualified and effective instructional staff. An elevated rate of teacher turnover within

high schools may contribute to a disorganized school culture that is lacking in a sense of

community, which in turn may have negative implications for student achievement and

school effectiveness. Prior research has provided insights regarding the types of schools

that are likely to have higher rates of teacher tumover, but there is little research

regarding the impact of high levels of teacher turnover on student achievement outcomes

(Carroll, Reichardt, & Guarino, 2000; Guarino et al., 2006; Hanushek, Kain, & Rivkin,

2004; Ingersoll, 2001; Lankford, Loeb, & Wyckoff, 2002; Shen, 1997; Smith & Ingersoll,

2004; Stockard & Lehman, 2004; Whitener et al., 1998). The purpose of this study is to

investigate the relationship between high school teacher “churn rates,” as measured by

teacher retention, or the average proportion of teachers who remain the same in a given

school over a four year time period, and student achievement outcomes, as measured by

mathematics achievement test scores on the state assessments.1 This study also tests the

relationship between teacher retention and student mobility, with student mobility as both

a covariate with teacher retention, and as an intermediate outcome through which teacher

retention affects student achievement.

 

1 This study is limited to high schools because it is part of a larger project that focuses on the impact of

high school curricular changes and teacher supply and demand on high school student achievement.

However, preliminary analyses of elementary and middle school teacher retention rates were conducted,

and there did not appear to be a significant relationship between teacher retention and achievement in the

elementary and middle school levels. Therefore, this study focuses on high schools for both substantive and

methodological reasons.
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In this study, teacher turnover refers to teacher movement into and out of schools

(which may or may not be movement into or out of the profession). In other literature,

teacher attrition refers to teachers leaving the profession entirely. For the school as an

organization, however, attrition and turnover have similar effects on the schools in that

both represent a decrease of staff that must be replaced (Ingersoll & Perda, 2009). This

study takes an organizational perspective, considering teacher retention at the school

level as an organizational characteristic of each high school, and investigates the impact

of this organizational characteristic on the effectiveness of the organization itself (i.e.

student achievement). The phenomenon of teacher turnover has been studied primarily at

the state or national level (Ingersoll, 2001; Ingersoll & Perda, 2009; Loeb, Darling—

Hammond, & Luczak, 2005). This approach, while powerful, can mask important

differences that occur on a school-by-school basis. By contrast, this is a school-level

analysis that utilizes state administrative data from Michigan to take into account distinct

organizational factors related to teacher retention and student achievement.

Additionally, this analysis investigates introduces student mobility into the

relationship between school-level teacher retention and student achievement outcomes.

Student mobility, like teacher retention, can be considered an organizational

characteristic of schools and a potential indicator of school climate. However, the

interaction between teacher retention and student mobility is not clear. This study

estimates the relationship between teacher retention and student mobility, both as a

covariate with teacher retention in predicting student achievement outcomes, as well as

an intermediate outcome predicted by teacher retention.

Background to the Problem
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Teacher Turnover as an Organizational Characteristic ofSchools

Ingersoll (2001) has argued that teacher turnover is an organizational feature of a

school, and as thus, contributes to the community and culture of the school. Teacher

turnover, as a characteristic of the school, can contribute to the ability of a school to build

trust among members, and to develop a sense of community. This draws on the sociology

of education, which has shown that the presence of a sense of community and cohesion

among families, teachers, and students is important for the success of schools (e.g., Bryk

& Schneider, 2002; Durkheim, 1961; Grant, 1988; Parsons, 1959; Rosenholtz, 1989,

Waller, 1932). A body of evidence suggests that the community of the school has

important implications for school performance and effectiveness (Coleman & Hoffer,

1987; Rosenholtz, 1989; Bryk, Lee, & Smith, 1990). Specifically, the communal nature

of certain schools, such as private schools, creates an environment that reinforces shared

values and that leads to higher levels of social capital (Coleman & Hoffer, 1987). This

sense of community is created by shared values, trust, and reciprocity between

individuals in the school (Bryk & Schneider, 2002). Schools in which there is a stronger

sense of community and cooperation between students and teachers have been shown to

have higher achievement levels, as well as a more equitable distribution of achievement

(Lee, Bryk, & Smith, 1993; Lee & Smith, 1997)

Prior research on teacher turnover has demonstrated that teacher turnover is not

evenly distributed among schools. Schools with higher proportions of minority students,

low-income students, and low-performing students have higher attrition rates, and urban

school districts are likely to have higher attrition rates (Guarino et al., 2006). Specifically,

the type of schools that tend to have high turnover are: those with high rates of student
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poverty (Hanushek et al., 2004; Shen, 1997; Smith & Ingersoll, 2004); small schools

(Ingersoll, 2001; Stockard & Lehman, 2004); schools with high numbers of minority

students (Carroll et al., 2000; Hanushek et al., 2004); charter schools (Smith & Ingersoll,

2004); those with a high proportion of inexperienced teachers (Shen, 1997); private

schools (Smith & Ingersoll, 2004; Ingersoll, 2001; Whitener et al., 1997; Arnold, Choy &

Bobbitt, 1993) and urban schools (Lankford et al., 2002). Several analyses found that

working conditions, particularly large class size, facilities problems, multi-track schools,

and a lack of textbooks, are key factors in predicting teacher attrition (Loeb, Darling-

Hammond, & Luczak, 2005; Futemick, 2007; Hanushek et al., 2004; Guarino et al.,

2006).2

High rates of teacher turnover may be disruptive to the quality of the school and

school performance and effectiveness (Ingersoll, 2001; Ingersoll & Perda, 2009), but the

mechanism by which teacher turnover impacts achievement or other outcomes is unclear.

Some evidence suggests that when qualified teachers leave, they are replaced by less

qualified teachers (Reichardt, 2008), which in turn is inferred to have a negative impact

on school quality due to younger, more inexperienced teaching staff rotating in to fill

these positions (National Commission on Teaching and America’s Future, 2002). This

 

2 The focus of this paper is on school-level teacher retention, and does not address the predictors

of and reasons for individual-level mobility decisions. However, other research addresses these individual

reasons for leaving teaching, which include childbearing (Stinebrickner, 1998; 2002); financial

considerations (Dolton & van der Klaauw, 1999; Shen, 1997; Loeb, Darling-Hammond, & Luczak, 2005).

For a more thorough review, see Guarino et al. (2006). There is debate about whether salary or

organizational factors are more important: Stinebrickner (1998) finds that salary considerations are more

important than organizational characteristics, while Hanushek, Kain, and Rivkin (2004) find that teacher

attrition is related more to being in schools with lower-achieving and minority students than to salary

considerations. One ofthe most important reasons for teacher turnover was job dissatisfaction (Ingersoll,

2001). This suggests that if teachers do not like their jobs, they are more likely to leave, but that this

decision is not based solely on monetary considerations. Rather, teachers choose to leave due to issues that

relate to the climate of the school—lack of support from the school administration, or student discipline

problems (Ingersoll, 2001).
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does not necessarily address the possibility that turnover, as a “school climate” variable,

could have an impact on student outcomes. The majority of the current research on

teacher turnover makes this theoretical leap—teacher turnover means “new” teachers in

the classroom, which means they are less likely to be experienced and effective. Given

that evidence from other research shows that teacher experience and effectiveness matter

for student outcomes, teacher turnover is presumed to affect student outcomes via this

introduction of “new” teachers into the classroom.3 This hypothesis, however, is largely

untested.

While there is substantial evidence regarding the characteristics of schools that

are related to high teacher turnover, there is a lack of research that investigates teacher

turnover as factor in student achievement outcomes. There is an underlying assumption

that high levels of organizational turnover are related to decreased performance

(Ingersoll, 2001). This is due to the fact that organizational research has shown that

organizations with unclear or nonroutine processes or systems that require higher levels

of interaction among members of the organization are more likely to experience higher

turnover and thus decreased performance (Burns & Stalker, 1961; Ingersoll, 2001;

Kanter, 1977; Likert, 1967; Porter, Lawler, & Hackrnan, 1975; Turner & Lawrence,

1964; Walton, 1980). Schools are seen as these types of organizations (Bidwell, 1965,

Ingersoll, 2003, 2001; Lortie, 1975).4 However, at this juncture, this is primarily a

hypothesized link that has not been tested extensively.

 

While thrs paper focuses on the organrzatronal and communal Implications of teacher turnover, turnover

is also costly in terms ofmonetary outlays for schools, with $10,000 being the estimated cost of hiring a

new teacher (Barnes, Crowe, & Schaefer, 2007; Milanowski & Odden, 2007; Reichardt, 2006).

Some teacher supply research suggests that the teaching profession is plagued by abnormally high rates of

turnover within schools, as well as high rates of attrition fiom the profession entirely (Ingersoll, 2001).
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Student Retention: The Other Level ofRetention

Student retention and mobility is another critical component of the organizational

culture of a school. Mobility in high school has been shown to be related to diminished

odds of high school graduation and decreased academic achievement, even after

controlling for prior achievement, student and family background, and residential

mobility (Haveman & Wolfe, 1995, Rumberger & Larson, 1998; Temple & Reynolds,

1997). Other studies have linked higher rates of student mobility in grades one through

eight to an increased risk of dropping out at the high school level (Rumberger & Larson,

1998; Swanson & Schneider, 1999; Teachman, Paasch, & Carver, 1996). Student

mobility rates were higher than dropout rates among high schools, and averaged 19% for

the typical high school (Rumberger & Thomas, 2000).

Student mobility disrupts the formation ofpositive relationships between students

and teachers, which are important for success in school (Newman, Lohman, Newman,

Myers, & Smith, 2000; Stanton-Salazar & Dombusch, 1995). Studies have shown that

middle school teacher bonding is positively related to academic achievement (Johnson,

Crosnoe, & Elder, 2001; Muller, 2001). When students move between schools, these are

the critical social ties that are broken (Midgley, Feldlaufer, & Eccles, 1989; Roeser,

Eccles, & Sameroff, 1998). These student/teacher relationships are important because

teachers can help develop a significant attachment to learning through their

 

However, others have found that when comparing teachers to comparable fields, such as nurses, social

workers and accountants, teacher turnover is not significantly higher (Harris & Adams, 2007).

Stinebrickner (2002) found that exit rates are not lower in other professions, and that non-teachers change

professions more but non-teachers also return to the workforce more quickly after an exit than teachers do.

The crux ofthis argument appears to revolve primarily around pre-retirement attrition. Harris & Adams

(2007) suggest that teacher attrition is lower, but that there are larger numbers of early retirements than in

other professions. There is also some evidence to suggest that the distribution of teacher attrition is U-

shaped, with high attrition among older and very young teachers (Grissmer & Kirby, 1997; Harris &

Adams, 2007)
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encouragement (Croninger & Lee, 2001; Rosenfeld, Richman, & Bowen, 2000). These

types of bonds provide students with access to an informal network of knowledge in their

schools (Stanton-Salazar & Dombusch, 1995).

lmportantly, however, student mobility is not merely an important factor in

predicting achievement or in the formation and cessation of individual social ties. While

experienced by individuals, student mobility can also be considered a factor in the school

organizational culture much like teacher mobility. Student mobility affects not only the

individual, but also the organization itself. If both students and teachers leave a school in

response to a disorganized school culture and climate, these two factors are likely

interrelated, but the relationship between these two levels of “chum”——teacher and

student—as not been studied. More importantly, the relationship between teacher

retention, student mobility, and student achievement outcomes is unclear. While the

evidence shows that student mobility has a negative effect on achievement outcomes, it

stands to reason that teacher retention either predicts or interacts with student mobility.

As another indicator of school organizational culture, student mobility and teacher

retention may exist in a feedback loop, whereby increased levels of one predict increased

levels of another, and where this disorganization affects student achievement.5

Teacher Turnover in High Schools and Its Relationship to Student Achievement

It has been nearly a decade since the initial passage of the No Child Left Behind

Act of 2001. In that time, increasing and measuring student achievement has become an

established element in every state’s educational system. In Michigan, one of the key

responses to No Child Left Behind, as well as to demands for increased rigor at the high

 

5 Michigan is also a school choice state, which means that parents and students can choose to attend

districts and schools other than their home district, provided the school has sufficient room.
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school level and stronger college and career preparedness for Michigan students was the

enactment ofthe Michigan Merit Curriculum. Established in 2006, the Michigan Merit

Curriculum increased high school graduation requirements to four years of mathematics,

four years of English Language Arts, three years of science, three years of social studies,

and two years of a world language.6 This reform put Michigan in a class of 18 states who

have increased their graduation requirements to include four years of challenging

mathematics (Achieve, Inc., 2008).

This study focuses on mathematics achievement scores as the main outcome of

student achievement. This outcome was chosen for several reasons. Mathematics consists

of a set of sequential courses, in that certain skills are required before new skills can be

learned. Mathematics is hierarchically structured, with specific courses required as

prerequisites to other courses. Hierarchically or concurrently structured courses are likely

to be implemented more successful in schools with a more stable instructional workforce,

as teachers can work together to ensure that all of the required skills are taught in the

classes that students are likely to take, and that there are no “gaps” in instruction at a

given school. This sort of curriculum monitoring and alignment may be more difficult to

attain in schools with higher rates of teacher turnover.

Mathematics is a gatekeeping course for successful high school completion and

college entry. Successful completion of math courses has been associated with more

short-term positive academic and social outcomes (Frank et al., 2008), and increasing the

likelihood of attending college (Adelman, 1999; Sadler & Tai, 2007; Sells, 1973;

 

6 The Michigan Merit Curriculum also specifies specific courses in mathematics, science and social

studies, as well as credits in the arts, physical education and an online learning experience. For more

information, see

http://wwwmichiggngov/documents/mde/New MMC_one pager 11.15.06 183755_7.pdf.
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Simpkins, Davis-Kean, & Eccles, 2006), particularly at four-year institutions (Schneider,

Swanson, & Riegle-Crumb 1998; Riegle-Crumb, 2006). Additionally, math has been

considered to be the primary key to the social organization of the school, due to its utility

in defining academic tracks (Gamoran & Hannigan 2000; Lucas & Good 2001 ;

Stevenson, Schiller, & Schneider, 1994). I

This study also tests the relationship between teacher retention and student

achievement in the context of student mobility. Therefore, student mobility is treated both

as an outcome, as well as a covariate. Figure 5.1 below demonstrates the hypothesized

relationships between teacher retention, student mobility and student achievement

outcomes. The solid arrows indicate relationships that have been established or

investigated by previous research, such as predictors of teacher retention and student

mobility. However, how these factors relate to student achievement is unclear. The first

hypothesized mechanism, illustrated by the red arrows, suggests that teacher retention

affects student achievement through an intermediate outcome, student mobility. The

second suggested mechanism is that teacher retention affects student achievement

directly, and that student mobility interacts with teacher retention in predicting this

relationship.
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Figure 5.1: Conceptual Modelfor the Relationship Between Teacher Retention, Student

Mobility and Student Achievement Outcomes
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The Relationship Between School Characteristics, Teacher Turnover, and Student

Outcomes: Hypotheses and Research Questions

School characteristics and the organizational nature and community of a school

have been shown to be related to outcomes such as social capital. Additionally,

organizational theory has suggested that the strength of an organization is related to its

performance. Teacher retention is a phenomenon experienced at the school level. Schools
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with higher rates of teacher retention may be able to increase organizational performance

by increasing coordination between subjects and grades over time, aligning expectations

across subjects and grades, and reinforcing instructional messages. However, these types

of functions are likely to occur more frequently in schools where instructional staff have

taught together over a period of time and develop a stable school culture that defines and

reinforces these messages (Nonaka, 1994). Therefore, higher rates of teacher retention

can be hypothesized to create a more positive and stable culture in high schools, which in

turn can translate into increased student achievement in mathematics.

A related component ofthe school culture is student mobility. Increased student

mobility has been shown to be detrimental, both to the individual student and to schools

with high rates of mobility. One of the reasons for this is that mobility at the student level

can lead to a more disjointed, disorganized school culture, which in turn has negative

impacts on achievement. Increased teacher retention may be able to mediate that impact

by providing a stable teacher workforce, even if the student workforce is more mobile.

There are two levels of retention—teacher and student—and it is hypothesized that these

interact, with higher levels of teacher retention mediating the negative effect of low

student retention and amplifying the effect of high student retention.

Alternatively, teacher retention may impact student achievement outcomes via the

mechanism of student mobility. Low levels of teacher retention, by creating the type of

disorganized school culture described above, may cause students to move between

schools at higher-than-average rates, as students respond to the lack ofcommunity and

continuity at the school. Parents may also choose to remove students from schools where

the culture is less organized and supportive. Students who are more likely to change
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schools or drop out due to a lack of attachment to school may not receive the same kind

of structured encouragement from teachers and from their school culture to stay in school

when teacher retention rates are low and the culture is disjointed. It is hypothesized that

teacher retention may act indirectly on student achievement by causing higher rates of

student mobility. This question can be tested by utilizing the longitudinal nature of the

data, with predictors that are causally prior to the outcomes.

ANALYTIC METHODS

This study utilizes a multilevel modeling approach to estimate the contextual

effects ofthe key predictors of interest, school-specific rates teacher retention and student

mobility. Although fixed effects models can be used to control for school factors without

making parametric assumptions, 1 choose to express these models in a multilevel

modeling framework, with students at level-1 and schools at level-2, in order to estimate

effects simultaneously at both levels as well as estimate a crosslevel interaction. To

estimate the relationship between school-level teacher retention, student mobility, and

other school contextual factors and student achievement outcomes, I controlled for

student level factors such as prior ability, gender, race, and free or reduced lunch

eligibility. The models are random intercept models, which model each school mean as a

function of the key predictor of interest, school-level teacher retention, and other school

covariates. There are no random slopes estimated; however, crosslevel interaction terms

are used to explore the relationship between school-level teacher retention and specific

student characteristics. It is important to remember that these models consist of students

nested within schools; although teacher data is available and used to calculate school-

level teacher retention and other instructional workforce characteristic variables, teachers

126



are not currently linked to students in the Michigan data, and thus, estimating the impact

of a given teacher’s retention or mobility on a given student’s achievement outcomes is

not possible. Moreover, this study takes an organizational approach, in which it is

hypothesized that it is the composition of the instructional workforce and the

organizational culture of a school that impact student achievement outcomes, and

therefore modeling individual outcomes as a function of school-level predictors is

appropriate.

DATA AND MEASURES

Data Source

The data source utilized for this paper is one of its strengths. As Ingersoll (2001)

points out, one of the main challenges to obtaining more precise estimates of both the

causes and effects ofteacher turnover has been a lack of data, with many studies

conducted as single-city studies or with nationally representative data sets that are subject

to issues of selection bias and generalizability. This study utilizes a set of rich

longitudinal administrative data from the state of Michigan, including data on all

teachers, students and schools in the entire state, collected longitudinally over a period of

four years.7’8 This allows for the study of teacher retention for all teachers in all schools.

One common issue with teacher retention studies is that when teachers change schools,

 

7 Although this can be considered universe data, with all observations accounted for, it still represents a

sample of a larger theoretical population, albeit a highly reliable one. We would expect the error estimates

to be smaller, given the fact that this is essentially a well-specified, very large sample, but it is still treated

like a sample and inferential statistics are employed for analytic purposes.

8 Michigan has collected administrative data for more years than four years. The current system began to

be implemented in 2002. However, the older data is less reliable and less complete. Michigan has

undertaken significant efforts with regards to data quality, data integrity, and data coordination across the

many agencies that collect, report, and utilize administrative data, and have made great improvements in

their data. For this reason, the last four years are utilized, as these are all highly reliable and complete years

of data.
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they may leave the sampling frame of the study. In these data, while it is not possible to

account for teachers who leave the sampling frame by leaving the state, it is possible to

account for all within—state migration, for all teachers. The data sets are described in full

in Chapter 2: Data and Methods, and will not be repeated here.

Measures

Main independent variable: The key predictor of interest is school-level teacher

churn rate. Teacher churn rate is calculated by the teacher retention rate, the number of

teachers in a given school who remain the same from one year to the next.9 Teacher

retention rate is calculated over four years, three retention time points: school years

2004-2005, 2005-2006, 2006-2007 and 2007-2008. These rates are averaged to generate

an average retention rate for each high school in the sample. Retention is based on a

teacher remaining in the same school from one year to the next. If a teacher is in multiple

schools, they are counted as either a stayer or mover from all schools in which they teach.

This calculation is at the person-level.10 Figure 5.2 shows the distribution of retention

rates over the three retention time points. This variable is dichotomized into two

categories for analysis: schools with teacher retention rates of 85% and lower, and

schools with retention rates of greater than 85%.“

 

9 This method is used rather than calculating the number of “new” teachers in a school in a given year

because ofthe difficulty of defining the denominator for that calculation.

10 Like Ingersoll (2001), I analyze all turnovers or departures, and do not distinguish between teacher

attrition (from the profession) and teacher mobility (between schools). If a teacher is in the same school

from one year to the next, they are retained; if they are not, they have “turned over.” This focuses on the

organizational aspect ofteacher retention, as the consequences to the organization are the same regardless

of whether a teacher leaves the field entirely, or simply moves to another school (Ingersoll, 2001).

ll . . . .

The models were also run wrth teacher retentron rate as a continuous variable. However, the 85% cut

represents an important threshold and it is more useful for policy implications to consider schools in two

categories, rather than on an incremental continuum.
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It is important to note that declining teacher retention rates could be a function of

economic factors, such as layoffs or early retirement initiatives. However, by considering

teacher churn rate as an organizational characteristic, the question ofwhy chum rates are

increasing is less relevant. The goal ofthe study is to interrogate the relationship between

school-level teacher churn rates, regardless oftheir reason, and student achievement

outcomes.

Figure 5.2: Distribution of School-Level Teacher Retention Rates
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Figure 5.2 (cont’d)
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Using the longitudinal nature of the data, the retention variable is calculated over

the years 2005-2008; the outcome measures are from the 2009 achievement tests.

Therefore, the teacher retention occurs prior to the outcome. While this does not establish

causality, it helps suggest the causal ordering of events.

Dependent variables: The outcome variable for the student achievement models

is the scale score on mathematics achievement tests from the 2009 Michigan Merit

Examination. For the student mobility models, the variable “different school” is used.

This variable is constructed for all students who took the MME in the spring of 2009 and

indicates whether or not they were in the same school in the fall of 2006 (when they were

entering freshmen) as they were when they took the MME in spring 2009.12

School-level covariates and student covariates were described in Chapter 2: Data

and Methods, and will not be repeated in detail here. For reference, Table 5 .1 describes

the variables used only for this analysis and presents their summary statistics.

ANALYTIC APPROACH

This study posits school-level teacher retention as a critical factor in explaining

variations in student achievement in mathematics, either directly or via student mobility.

Therefore, the first step in the analysis is to calculate average teacher retention rates

across four years, three retention time points. This was achieved by identifying the

proportion of the instructional staff of a given school that remained the same from one

year to the next, and then averaging those rates over the three time points. Simple

descriptive statistics were then calculated for schools by average retention rate, and for all

 

12 Drop out rates present a potential concern. However, this file includes all students who took the MME in

2009 and who had a valid MEAP pretest from 2005. Therefore, these are not drop outs. Students who

moved between schools did not drop out, but moved to another school. Drop outs are not included in this

analysis.
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student- and school-level variables that are used in the multilevel models. Table 3.9

presents the mean school-level teacher retention rates (averaged over four years) by

school characteristics (in Chapter 3, referenced here).

The Multilevel Models to Be Estimated

To test the effects of teacher retention on both student mobility and student

achievement outcomes, multilevel models (i.e., models with random effects) of student

mobility and student achievement in mathematics with high school students nested within

schools are estimated. Two sets of models are estimated. These models are discussed in

greater detail in Chapter 2: Data and Methods, and only key elements are repeated here.

The first set of models are hierarchical linear models (HLMs) to test the effects of teacher

retention on student achievement outcomes , and the second are hierarchical generalized

linear models (HGLMS) to predict student mobility as a function of teacher retention. The

specifications are included below for reference.

In the first set of models, teacher retention predicts student achievement both

directly and as a crosslevel interaction with student mobility. The purpose of these

models is to test whether or not teacher retention has a direct effect on student

achievement, as well as to test whether student mobility interacts with teacher retention in

this relationship.

The general model specification for the HLM models is as follows:

Level 1 model:

(1)

Yij = 1301' + [31j(student mobility) + Bj z, + rij

Level 2 model:

BOj = 1'00 + 701(teacher' retention) + yj Q’ + “Oj

where
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Y3 = outcome (mathematics scale score) for each student i in school j

1301 = each school mean, represented as a function of the grand mean, student

mobility, the matrix of student-level predictors, the school teacher retention rate,

and the matrix of school level predictors

B]j = coefficient for student mobility

Bj = vector of coeffs for school j

Z’ = vector of student covariates for school j

700: grand mean (intercept)

yo] = effect of teacher retention on B0]: (each school mean)

yj = vector of school-level predictors)

Q’ = vector of school covariates

uoj = the residual error of Bo], distributed iid N(0, too)

rij = level 1 variance (student error term), rij distributed iid N(0, 0'2)

In the final HLM model, a crosslevel interaction term is added. The specification

for this model is the same as above, with the “same school” slope predicted by teacher

retention rate. The slope is not allowed to vary (i.e. is fixed).

Level 1 model:

(2)

Yij = Boj + Blj(student mobility) + Bj Z. + ,ij

Level 2 model:

BOj = Yoo + 701(teacher retention) + Yj Q’ + “Oj

131j = 710 + Y1 1 (teacher retention)

Student mobility is a binary outcome variable; therefore the use of a standard

level 1 multilevel model is inappropriate (Raudenbush & Bryk, 2002). Student mobility is

indicated by whether or not a student remained in the same school from the fall of 2006,

which was their freshmen year, until the spring of 2009, when they took the high school

achievement test. To attempt to establish a causal ordering, the longitudinal nature of the

data is utilized. Figure 5.3 shows the timing of the data.
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'One challenge to this analysis might be that the causal path could be in the

opposite direction—that student mobility predicts teacher retention, or that student

achievement predicts both student mobility and teacher retention. In order to attempt to

address that criticism, the longitudinal nature of the data is utilized. Prior individual

student academic achievement from their 8th grade pretest, as well as a prior cohort-level

mean mathematics achievement from 8th grade are included, to control for both prior

individual and group achievement. Teacher retention is calculated over the years 2005-

2008, which ends one year prior to the student mobility outcome measure. A prior

measure of school-level student mobility—the mobility rate of the 2007 cohort of

students for each school—is also included.

The general structure of the HGLM models follows below.

Level 1 structural model:13 (3)

fig = BOj + Bj Z’

Level 2 model

BOj = 700 + y01(teacher retention) + y02(student mobility 2007 cohort) + yj Q’ + uoj

Bpj = ypo for p>0

‘1ij = the log odds of remaining in the same school for each student i in school j

 

13 The level 1 model in HGLM consists of three parts: a sampling model, a link function, and a structural

model. The sampling model assumes that Yijt given the predicted value uij, is distributed NID (uij, 62).

The level-1 predicted value, uij, can be transformed so that the predictions remain within the given interval,

which produces the transformed predicted value llij- This transformed predicted value is now related to the

predictors of the model through the linear structure model. Combining the sampling model, link function,

and level 1 structural model reproduces the familiar level-1 HLM model (Raudenbush & Bryk, 2002). The

level 1 variance is now heteroskedastic
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l30j = each school mean, represented as a function of the grand mean, the matrix

of student-level predictors, the school teacher retention rate, and the matrix of

school level predictors

Bj = vector of coeffs for school j

Z’ = vector of student covariates for school j

700: grand mean (intercept)

YO] = effect of teacher retention on Boj (each school mean)

702 = effect of2007 cohort student mobility on Boj (each school mean)

yj = vector of school-level predictors)

Q’ = vector of school covariates

uoj = the residual error of [30,, distributed iid N(0, too)

A baseline for the HLM models with mathematics as the outcome is established

by estimating an unconditional random effects ANOVA (output not reported). This

allows for the calculation of the intraclass correlation, or the proportion of variance that is

between schools. Following the estimation of this baseline model, a series of multilevel

models were estimated. Four different multilevel models are presented in Table 3

(mathematics). The first, a bivariate model, estimates the bivariate relationship between

school-level teacher retention and student achievement in mathematics. The second

(Model 2) includes a second school-level predictor shown in the preliminary analyses to

be highly correlated with the student achievement, percent free lunch, in order to control

for other key school-level factors. This model also introduces a pretest measure of

mathematics achievement at the student level, in order to account for student prior ability.

The final two models are fully specified models with all predictors at level 1 and level 2,

with the final model containing a crosslevel interaction between teacher retention and
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students who remain in the same school, to test the hypothesis that there is a

multiplicative effect of teacher retention and student retention on student achievement. ‘4

A similar modeling scheme is utilized in the models predicting student mobility,

beginning with a bivariate model with teacher retention predicting student mobility. The

second model includes only the school-level measure of prior student mobility for the

2007 cohort. The final model is a full model, including all level 1 predictors (gender, race

and program eligibility) as well as level-2 predictors.

Sensitivity Analyses

When utilizing data from observational studies, there is a concern regarding the

impact of an unobservable characteristic on the outcome, one that might invalidate the

inferences drawn from the study. When using state administrative data, this is a concern

as well, as state data is rich in observations but does not include a large number of

variables. Sensitivity analyses are conducted to test the robustness of the inferences to the

influence of other unobserved characteristics. Therefore I will characterize the robustness

of these inferences to the potential impact of confounding variables (Frank, 2000).

Chapter 2: Data and Methods provides further detail regarding these analyses.

RESULTS

Descriptive Statistics ofKey School Variables by Teacher Retention Rate

Table 3.9 (included in Chapter 3) presents mean school-level teacher retention

rate by school characteristics, in order to develop a profile of the type of schools that

have low teacher retention rates. This table was described in detail in Chapter 3, and

 

14 All Level 1 predictors, with the exception of pretest score and same school, are grand mean centered, in

order to control for their effect, rather than partial out the impact attributable to student and school. A

model with all Level 1 predictors group mean centered was run (output not reported); the effects for gender

and race are largely at the student level, not at the school-mean level. Therefore, the decision was made to

grand mean center race and gender in the reported models.
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therefore only key details are repeated here. In general, the types of schools that have

lower mean teacher retention rates are city schools, schools with high proportions of

minority and low-income students, small schools and charter schools. Schools with a

lower percentage of teachers with professional licenses, and schools with a higher

percentage of minority teachers also appear to have lower mean teacher retention rates.

MULTILEVEL MODEL RESULTS

Mathematics Achievement Outcomes/5

To assess the relationship between student mathematics achievement and school-

level teacher retention, a series of multilevel models are estimated. Using the series of

multilevel models outlined previously, I find that school-level teacher retention is

positively and significantly associated with school mean mathematics achievement scores

(see Table 5.2). In the bivariate regression (Model 1), schools with high teacher retention

rates have mean mathematics achievement scores that are 13.28 scale score points higher

than students in schools with lower teacher retention rates (pg .000). The proportion of

variance explained between the unconditional model and the bivariate model is 21%.

This effect for teacher retention remains in Model 2, with the addition of the measure of

student prior ability, the math pretest score, as well as another important school-level

covariate, percent free and reduced lunch. Schools with high retention rates have mean

mathematics achievement scores that are 2.46 scale score points higher than schools with

low retention rates (pg .000). Importantly, this model now explains 88% of the variance

at level 2, and 52% of the variance at Level 1, which suggests that these two school

measures, teacher retention and percent free and reduced lunch, account for much Of the

 

15 . . . . .

Results from the baseline model, a oneway ANOVA wrth random effects, yreld an rntraclass correlation

of 18% for the mathematics achievement outcome.
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variation in school mean mathematics achievement. It could be the case that these

measures both serve as proxies—teacher retention for a “school climate” set of

predictors, and percent free and reduced lunch for a set of structural characteristics.

Model 3 and Model 4 introduce both school-level and individual predictors in

addition to the measures included in Model 2. We see that in Model 3, the relationship

between high school-level teacher retention and mathematics achievement is no longer

statistically significant (y01=0.27, pg .543). However, other workforce composition

variables are significant. Schools with a higher percentage of teachers with professional

licenses experience an increase in mean mathematics scale score of .08 for each one

percent increase in the percentage of teachers with professional licenses in that school

(y02=0.08, p5 .010). Schools with a higher percentage of minority teachers have

significantly lower mean mathematics achievement, with each one percent increase in the

percentage of minority teachers in a school associated with a corresponding -0.07 point

decrease in mean mathematics scale score (Y03=-.07, pg .001). The percentage of highly

qualified teachers is also related to mathematics achievement, with schools with a greater

percentage of highly qualified teachers demonstrated higher mean mathematics

achievement (Yo4=.04, pg .008). As all of these variables relate to the organizational

characteristics of the instructional workforce Of a school, the evidence suggests that this

composition does matter with regards to student achievement. From a school structural

perspective, the percentage of students eligible for free and reduced lunch was again

related to lower mean mathematics achievement, with each one percent increase in the

percent of students eligible for free or reduced lunch associated with a .05 decrease in

mean mathematics achievement for that school (yO6=-.05, p5 .004).
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With regards to the student-level predictors included in Model 3, the key predictor

of interest for students is student mobility. In Model 3, students who are not in the same

school in 11th grade as they were in ninth grade have significantly lower mathematics

achievement than those students who are in the same school (1’10: -3.07, pg .000). The

group mean for the same school variable, entered at Level 2, is not significant; this

suggests that the relationship between student mobility and teacher retention exists

primarily at the individual level; the negative effect of changing schools is experienced

by the student. This effect is apparent even after controlling for student race and gender,

as well as student prior ability.

Student mobility and teacher retention are both variables that are school

organizational characteristics, and therefore, both are of interest in this analysis. To

estimate a potential interaction between these two important predictors, a final model

(Model 4) was estimated, and included a cross level interaction between teacher retention

and the same school indicator variable. Again, students who change schools have lower

mathematics achievement scores (y11= -3.14, pg .000). Most importantly, however, the

crosslevel interaction term is significant (y12= -2.14, pg .019), which indicates that

students who change schools when that school has a high teacher retention rate have

mathematics scale scores that are, on average, 2.14 points lower than students who

change schools when those schools have lower rates of teacher retention. In other words,

there is a magnifying effect of teacher retention for students who remain in the same

school. This suggests that students who do not stay in the same school and who are in

schools with low teacher retention are at a serious disadvantage in terms of their

mathematics achievement outcomes.
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The final model explains 92% of the variance at the school level and 53% of the

variance at the student level, indicating that this school-level model is able to capture

much of the variability in mean mathematics achievement over schools. However, given

the restricted range of student predictors, there is still somewhat substantial variation to

be explained in student performance.16

The student achievement outcomes models presented provide two important

pieces of evidence with regards to how teacher retention interacts with student

achievement and student mobility. First, in the final model, the teacher retention rate is

not a significant when predicting mathematics outcomes. However, student mobility is

highly significant, with students who remain in the same school performing much better

on mathematics achievement tests. This suggests that student mobility is a stronger

predictor of student achievement than teacher retention. However, the second hypothesis

still needs to be investigated: does teacher retention predict student mobility and thus

relate to student achievement via the mechanism of student mobility? The models below

investigate that relationship.

Student Mobility As an Outcome

In the bivariate model, school level teacher retention is strongly related to student

mobility. Students in schools with high levels ofteacher retention (defined as above 85%

of teachers retained) are 0.35 times as likely to change schools as students in schools with

low levels of teacher retention. Model 2 adds a prior measure of school student mobility,

the aggregate mobility for the 2007 cohort. Students in schools with high teacher

retention rates are 0.55 times as likely to change schools as students in schools with low

 

16 . . . .

These models were estrmated wrth ELA scale scores as an outcome In order to test these findings. The

results were nearly identical, and are not presented here.
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teacher retention rates (pg .000). Prior school-level student mobility is also significantly

associated with students changing schools. Students in schools with higher prior student

mobility are 1.06 times more likely to change schools than students in schools with lower

levels of prior student mobility (pg .000).

In the full model (Model 3), the relationship between school-level teacher

retention and student mobility remains. Students in schools with high levels of teacher

retention are 0.62 times as likely as students in schools with low levels of teacher

retention to change schools (pg .014), controlling for prior school-level cohort mobility,

and school- and student-level covariates. Given the fact that the previous models

demonstrated the strong relationship between student mobility and achievement

outcomes, this suggests that low levels of teacher retention are related to high levels of

student mobility, which in turn can lead to decreased student achievement outcomes.

Students in schools with higher levels of 2007 cohort student mobility are 1.04

times more likely to change schools (pg .008). This again suggests that these “churn”

rates are on a feedback loop. Students in schools with high levels of prior student

mobility are more likely to leave those schools; students in schools with high rates of

teacher retention are less likely to leave those schools; and when students remain in those

schools, this create a more stable school culture that leads both to more stability in

population as well as increased achievement.

Turning to the other school-level covariates, the average mathematics pre-test

score for the school was negatively and significantly related to student mobility, with

students in schools with higher levels of prior student mathematics ability 0.97 times as

likely to change schools (pg .009). At the student level, a student’s prior mathematics
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achievement was negatively related to his likeliness to change schools (odds ratio=0.99;

(pS .000). Students who are eligible for free and reduced lunch are 1.66 times more likely

to change schools than their non-free/reduced lunch eligible counterparts (pS.000). Black

students and multiethnic students were all significantly more likely to change schools

than their white counterparts (Odds ratios 3.30 and 3.41, respectively), as were Hispanic

students (odds ratio 1.26). Interestingly, female students were 1.09 times more likely to

change schools as males (pg .004). Students in special programs were 2.02 times more

likely to change schools as students not in these programs.

Sensitivity Analyses

The models presented above are only able to account for measurable confounding

variables. One of the well-known issues in using state administrative data is that these

data are rich in observations, but often “poor” in variables (Figlio, 2010). Therefore,

robustness indices are used here as a complement to address problems related to

unmeasured confounds.17 While the Impact Threshold for Confounding Variables

(ITCV) does not control for the impact ofthese confounds, it does quantify how powerful

they need to be in order to negate the inferences drawn (Crosnoe, 2009; Frank, 2000).18

The ITCV is the minimum product of the correlation between the predictor and

confound and the correlation between the outcome and confound necessary to reduce an

estimate below threshold for statistical significance of the key association of interest; in

this case, the association between teacher retention and student mobility. If the actual,

 

‘7 As developed by Frank et a1 (2010), there are three major “threats” to inference in observational studies:

a biased sample, a small sample, and unobserved covariates. Given the fact that this sample nearly

approximates the population, as it is the entire state of Michigan, and given it’s sheer size, I consider here

the greatest threat to inference to be unmeasured confounds. This is likely true of most studies utilizing

state administrative data.

18 . . . . .

Further details regardrng sensrtrvrty analyses are provided in Technical Appendix C.
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albeit unknown, product Of these two correlations is greater than this threshold, than the

inclusion of that unobserved covariate would invalidate the inference. Therefore, I

calculate the ITCV for the teacher retention predictor.

The impact of an unmeasured confound (recall impact =r wyxr v.x, see Frank,

2000) would have to have magnitude greater than .04 to invalidate the inference. Thus to

invalidate the inference that low levels ofteacher retention predict student mobility, a

confounding variable would have to be correlated with teacher retention at 0.19 and with

student mobility at 0.19, accounting for covariates, 2 (Frank, 2000). These are moderate

correlations.19 It is important to note that this assumes that the unmeasured confound is

uncorrelated with the measured covariates (Frank, 2000). However, the relevant partial

correlations that would create the impact of an unobserved confound would be smaller

than these zero-order correlations because they would correlate with existing covariates

(Frank, 2000; Frank & Sykes et al, 2008).

It is also useful to compare the threshold for an unmeasured variable to the

impacts for measured covariates. At level 1, the strongest impact of the measured

covariates, aside from the pretest of student ability, is for free and reduced lunch.20 The

impact of free and reduced lunch eligibility on the coefficient for school-level teacher

 

l9 . . . .

These calculations are obtarned by regressrng all of the predictors on fire treatment (school-level teacher

retention) and Obtaining the R2 value, and then regressing all predictors on the outcome without the

treatment and obtaining the R2 value. As the outcome was a student-level dichotomous outcome, which

2

produces pseudo- R s, the variables were aggregated to average school mobility and the continuous teacher

retention predictor was used. Seltzer, Kim & Frank (2006) suggest that when performing a cluster-level

regression with unbalanced data, precision weights should be used. These weights are calculated by 1/r+Vj,

2 2

where Vj=c lnj and O’ =np(1-p). See Technical Appendix D for more detail.

The impact ofthe pretest measures of student ability and school-level student mobility are not compared

to the impact of an unobserved covariate because they are obviously clear predictors of the outcomes. The

impact Of the pretest is well-known to be the most significant predictor and thus not a relevant comparison.
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retention on student mobility is .011, which is the product of the correlation with teacher

retention -(.15) and the correlation with student mobility (-.07). At level 2, the strongest

impact ofthe measured level 2 covariates, aside from the pre-measure of school-level

student mobility, is school average math achievement. The impact of school math

achievement on student mobility is .06, which is the product of the correlation with

teacher retention (.30) and the correlation with school mean mobility (.20). Thus, the

impact of an unmeasured covariate necessary to invalidate the inference of .04 would

have to be greater than the impact of the strongest level 1 covariate, although less than

the impact of the strongest level 2 covariate. This suggests that the size of the impact of

an unmeasured covariate would have to be similar in size to the other measured

covariates.

Limitations

The most significant limitation of this study is that, like many studies conducted

with state administrative data, there are a limited number of covariates available to use in

the models, which raises the question of unobserved covariates that might invalidate the

inferences made here. While I have attempted to identify and utilize all available data, to

use effective modeling strategies, and to quantify the robustness of the inference to the

influence of unobserved covariates, this does not solve the fundamental problem. It is

possible that teacher mobility is caused by factors such as school leadership or

neighborhood characteristics, and these are not available for the models. In the future,

this relationship between teacher retention, student mobility, and student outcomes can be

further investigated using fixed effects models to attempt to address these unobserved

characteristics and their potential impact on the relationships studied here. Additionally,
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at this point in time, assessment data that matches with a pre-test are only available for

one cohort, although more data will become available each year. Finally, Michigan’s

assessment system only allows for one measurement of achievement at the high school

level, which is not optimal from a measurement perspective.

Conclusions

Although teacher retention appears to have a direct effect on student achievement

outcomes via an interaction with student mobility, this relationship can be explained with

other covariates. The results from the first analysis demonstrate that remaining in the

same school has a positive impact on student achievement outcomes. The second analysis

in turn demonstrates that students in schools with higher levels of teacher retention are

more likely to stay in the same school, which in turn has a positive impact on

achievement. Therefore, teacher retention appears to affect student achievement via the

mechanism of student mobility.

This suggests the importance of organizational culture on student achievement

outcomes. Although I do not directly measure or test “school culture,” the most positive

impacts for student achievement are evident when there is a stable teaching workforce

and a stable student body. This stability allows for the organization to function effectively

as a unit, and also allows for cohesion, community, trust, and reciprocity to develop and

exist between teachers and students, and within the teachers themselves.

It is important to consider what factors might be lead to increased teacher

mobility, given the importance of schools maintaining a stable, qualified instructional

workforce. These factors may include school leadership, alterations in state policies,

economic changes in the state as a whole, or inhospitable work conditions. It is critical to
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identify which factors may be increasing teacher mobility, as this analysis shows that

when teacher mobility increases, there can be negative consequences for student

achievement.
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Table 5.1: Variable Description and Summary Statistics
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  education, Section 504, Limited English

Proficient, or mirgrant programs     

Variable Description Mean SD Min Max

Student Level

(n=96, 556)

Math achievement score Math scale score on 2009 Michigan 1096.7 31.1 950 1250

Merit Examination, Michigan's high

school assessment

Math pretest achievement Math scale score on 2006 MEAP test, 813.59 24.1 470 952

score last test administered prior to high

Student mobility Dummy, 1=different school in 9th grade 0.14 0.35 0 1

(different schoolL than 11th grade.

Gender Dummy, 1 = female 0.51 0.5 0 1

Racial/ethnic code

American Dummy, 1 = yes. Combined American 0.01 0.1 0 1

Indian/Pacific Islander Indian and Pacific Islander due to small

sample sizes

Asian Dummy, 1 = yes 0.02 0.15 0 1

Black Dummy, 1 = yes 0.15 0.35 0 1

White Reference 0.79 0.41 0 1

Hispanic Dummy, 1 = yes 0.03 0.17 0 1

Multiple race/ethnicity Dummy, 1 = yes 0.01 0.08 0 1

Free/reduced lunch Dummy, 1=yes. Indicates whether a 0.27 0.44 0 1

eligible student is eligible for free or reduced

lunch.

Special programs Dummy, 1 = eligible for Title 1, special 0.01 0.11 0 1
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Table 5.1 (cont'd)
 

School Level (n=580

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mobility (2007 cohort)  2007 cohort ofMME testers who

changed schools since the fall of 2005     

high schools)

Variable Description Mean SD Min Max

Average teacher retention Percentage of teachers who were 86.2 8.57 0 100

rate retained in a school from one year to the

next. Averaged over four years (2005-

2008), three retention time points

Percent of teachers Percentage of teachers who have 83.29 12.1 25.2 100

w/professional licenses professional licenses in a school.

Averaged over four years (2005-2008)

Percent minority teachers Percentage of teachers in a school who 7.97 17.5 0 100

are minority teachers. Averaged over

four years

Percent highly qualified Percentage of teachers in a school who 80.61 12.5 0 100

teachers are highly qualified. Averaged over four

years (2005-2008)

Percent free/reduced Percentage of student body eligible for 35.88 19.9 0 99.63

lunch free/reduced lunch

Percent minority Percentage of the student body that is 23.27 30 0 100

minority students

Locale

City Dummy, 1=yes 0.17 0.37 0 1

Suburb Reference 0.28 0.45 0 1

Town Dummy, 1=yes 0.13 0.34 0 1

Rural Dummy, 1=yes 0.42 0.49 0 1

Charter Dummy, 1 = school is a charter school 0.06 0.23 0 1

Magnet Dummy, 1 = school is a magnet school 0.11 0.32 0 1

School size

Small school School has less than 300 students 0.15 0.35 0 1

Medium school School has 300-999 students 0.53 0.5 0 1

Large school School has over 1000 students 0.32 0.47 0 1

School-level student School-aggregate of the proprtion of the 13.02 15.9 0 100
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Table 5.2: Hierarchical Linear Model Predicting Student Mathematics Achievement as a

Function of School-level Teacher Retention

Bivariate Model 2 Model 3 Model 4

 

Coefl p—val Coefir p-val Coefl' p-val Coefl p-val

(se) (se) (3e) (se)

Intercept 700 1093.46 .000 1093.39 .000 1093.47 .000 1093.47 .000

(.51) (.22) (.19) (.19)

Level 2 Variables

High teacher retention rate 13.28 .000 2.46 .000 0.27 .544 0.27 .543

(greater than 85%) ym (1.31) (.53) (.45) (.45)

(Less than 85% retention

rate=reference)

Instructional Workforce Characteristics

Proportion teachers 0.08 .010 0.08 .010

w/prof licenses yo; (.03) (.03)

Proportion minority teacherSYo3 -0.07 .001 -0.07 .001

(.02) (.02)

Proportion HQ teachers 704 0.04 .008 0.04 .008

(.02) (.02)

School Structrual Characteristics

Percent minority students 705 0.03 .074 0.03 .077

(.02) (.02)

Percent free/reduced lunch -0.05 .004 -0.05 .004

students 706 (.02) (.02)

City 1’07 0.13 .841 0.13 .840

(.65) (.65)

Town yog 0.79 .202 0.79 .201

(.62) (.62)

Rural yog 1.48 .007 1.48 .007

(.54) (.54)

(suburb=reference)

Small school Yoro -0.86 .247 -0.86 .248

(.74) (.74)

Large school You 0.36 .426 0.36 .426

(.45) (.45)

(medium school=reference)

Charter 7012 1.18 .500 1.18 .501

(1.75) (1.75)

Magnet 7013 0.17 .787 0.17 .787

(.63) (.63)

Retention diffemce 5.35 .003 5.35 .003

(Y3ret-eret) 7014 (.1.73) (1.73)
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Table 5.2 (cont'd)

Group Meansfor Level 1 Variables

 

 

Mean math pretest 7015 1.20 .000 0.97 .000 0.97 .000

(.03) (.03) (.03)

Mean student mobility Vow -.01 .318 -.01 .318

(.007) (.007)

Student Characteristics

Student mobility 710 -3.07 .000 -3.14 .000

(.41) (.41)

Math pretest 720 0.91 .000 0.90 .000 0.90 .000

(.008) (.008) (.01)

Free/reduced lunch eligible y30 -3.81 .000 -3. 16 .000 -3.15 .000

(non-eligible =reference) (.20) (. l 9) (.1 9)

Student race

(white=reference)

American Indian, 1'40 218 .004 -2.17 .004

(.74) (.74)

Asian, 150 1.52 .004 1.54 .003

(.51) (.51)

Black, 760 -7.11 .000 -7.07 .000

(.39) (.39)

Hispanic, 770 -2.10 .000 -2.08 .000

(.51) (.51)

Multiethnic, yso -2.84 .003 -2.83 .004

(.96) (.96)

Female 790 -.21 .135 -0.21 .139

(.14) (. 14)

Program eligible 7100 -5.43 .000 -5.42 .000

(.72) (.72)

Crosslevel Interactions

Diff school * teacher retention

Intercept (diff school)y”0 -3.14 .000

(.41)

High school-level teacher -2.14 .019

retention rate, 7120 (.92)

Random Eflects df df df df

Level 2 variance component, 1:00 138.54 578 21.47 577 13.74 563 13.74 563

Level 1 variance component 02 805.56 381.94 378.04 377.99

Proportion variance explained, n/a 52% 53% 53%

Level 1

Proportion variance explained, 21 % 88% 92% 92%

Level 2

* *Pretest & student mobility group mean centered, group means at level 2; other L1 predictors grand

mean centered. All level 2 variables grand mean centered.
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Table 5.3: Hierarchical Generalized Linear Model Predicting Student Mobility

(1=different school from freshmen-junior year)

 

 

 

Odds Ratios Reported

Bivariate Model 2 Model 3

0. R. p-val 0.R. p-val 0.R.. p-val

(58) ($8) (88)

Intercept yoo 0.10 .000 0.10 .000 0.10 .000

(.08) (.07) (.07)

Level 2 Variables

High teacher retention rate yo, 0.35 .000 0.55 .001 0.62 .014

(Greater than than 85%) (-17) (~17) (.20)

Low teacher retention rate=reference

Prior school-level student 1.06 .000 1.04 .000

mobility (2007 cohort) yo; (.01) (.008)

Instructional Workforce Characteristics

Proportion teachers 1.02 .041

w/prof licenses yo3 (.01)

Proportion minority teachers yo, 1.00 .407

(.01)

Proportion HQ teachers yos 0.99 .034

(.01)

School Structrual Characteristics

Percent minority students 706 1.00 .415

(.01)

Percent free/reduced lunch 0.99 .039

students yo, (.01)

Cit}I Yos 0.53 .013

(.25)

Town yoo 0.65 .1 10

(.27)

Rural ‘Yoro 0.61 .012

(.20)

(suburb=reference)

Small school You 1 .69 .010

(.20)

Large school You 1.22 .345

(.21)

(medium school=reference)

Charter You 1.91 .182

(.48)

Magnet 7014 1.16 .483

(.22)
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Table 5.3 (cont'd)

Group Meansfor Level 1 Variables

 

 

Mean math pretest Yors 0.97 .009

(.01)

Student Characteristics

Math pretest ylo 0.99 .000

@001)

Free/reduced lunch eligible (1=yes) 1’20 1.66 .000

(.04)

American Indian, y3o 1.34 .064

(.14)

Asian, y4o 1.00 .987

(.14)

Black, y5o 3.30 .000

(.07)

Hispanic, yoo 1.26 .052

(.12)

Multiethnic, y7o 3.41 .000

(.19)

Female yoo 1.09 .004

(.03)

Program eligible yoo 2.02 .000

(.17)

Random Eflects df df df

Level 2 variance component, too 3.02 578 2.58 577 2.57 563

Proportion variance explained, Level 2

* All level 2 variables are grand mean centered.

"Pretest and same school are group mean centered, with group means included at level 2.

All other level 1 predictors are grand mean centered.
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Figure 5.3: Timing of the Longitudinal Data for Establishing a Causal Path
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CHAPTER 6: PROPENSITY ANALYSES OF THE EFFECTS OF TEACHER TURNOVER

The evidence provided in Chapter 5 strongly suggests the importance of high

school-level teacher retention in decreasing student mobility and increasing student

mathematics achievement. However, the multilevel methods and sensitivity analyses

presented in Chapter 4, while rigorous, do not offer a clear framework for understanding

the potential effects of increasing school-level teacher retention on student mobility.

Therefore, this next section of the teacher retention analysis shifts focus to the eflects of a

school having high teacher retention. Using a quasi-experimental design, propensity

Score matching, the impact of high teacher retention on student mobility will be estimated

by comparing similar schools that have either high or low rates of teacher retention. Both

the treatment (teacher retention) and the outcome (student mobility) will be analyzed as

school-level variables—the proportion of teachers retained, and the proportion of

students who leave a school. The analysis presented in the prior chapter uses longitudinal

data and multilevel modeling to attempt to establish the relationship between school-level

teacher retention, student achievement and student mobility. However, the question

remains: for schools that are similar on all characteristics with the only difference being

their teacher retention rate, what is the effect of school-level teacher retention on school-

level student mobility? In other words, if a'school has low teacher retention, what is the

potential effect on student mobility of increasing the teacher retention rate so that the

school has a high teacher retention rate?

Estimating the Effect of High School-Level Teacher Retention1

 

1

Chapter 2: Data and Methods provides a detailed description of propensity score matching as an analytic

technique, as well as develops the methods utilized here. Technical Appendix D also provides additional

information regarding model specification and other details.
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In order to estimate the effect of school level teacher retention on school-level

student mobility, high school-level teacher retention is considered as a “treatment”

experienced by some schools. This analysis uses a set Of propensity-score weighting

schemes to investigate the impact of high school-level teacher retention on student

mobility for those schools in the margin Of indifference (i.e. those most likely to respond

to a treatment offer); those in the control (i.e. those with low teacher retention) and those

in the treatment (i.e. those with high teacher retention). As a fourth strategy, this

analyses estimates the average treatment on the treated using a series of matching

methods, including stratification, nearest neighbor, kernel matching, and radius matching.

The purpose is to test whether or not increasing school-level teacher retention may be a

useful “treatment” to help to stabilize the student population and decrease student

mobility.

In order to investigate this question, a school-level propensity score is estimated,

and then a series of propensity score analyses are conducted to compare the average

student mobility rates of schools based on their probability of having high school-level

teacher retention.2

Propensity Scores: Weighting Method

Propensity scores allow for the comparison of those in a “treatment” group

(schools with high teacher retention) and those in a control group (schools with low

teacher retention) who have similar propensities to receive the treatment. The treatment,

 

2 Originally, this analysis was conceived as a multilevel analysis that used propensity scores at level 2 with

the outcome at level 1. However, due to the fact that this is not the general framework by which multilevel

propensity score models are estimated, there are methodological and analytic implications that are beyond

the bounds of this analysis. Technical Appendix C outlines general questions and issues, and presents

evidence for results. This will be an area for further study, with the goal of developing a clear method by

which level-2 propensity scores can be used to estimate level 1 effects.
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high teacher retention, is defined as a school with over 85% of the teachers retained from

year to year.3 The propensity score is the probability of a school receiving the treatment

(high teacher retention), given a set Of covariates. The weighting approach allows all

information to be retained in the analysis and not lost as can be the case when doing a

case by case matching approach to propensity scores (Hirano & Imbens, 2001; Morgan &

Harding, 2006; Robins, Heman, & Brumback, 2000; Robins & Rotnitzky, 1995; Robins,

Rotnitzky, & Scharfstein, 2000) Complete details of the weighting method are provided

in the data and methods chapter.4 After propensity weights are constructed, each school

is weighted by its propensity to receive treatment in school-level regressions.

There are some critiques of this method. When the weighting procedure is used to

estimate the average treatment effect, Freedman and Berk (2008) found that the

weighting method was optimal if 1) study participants were independent and identically

distributed (here, schools); 2) selection was exogenous, and 3) the selection equation was

properly specified with correct predictor variables and functional forms. When these are

not met, the weighting method may increase random error, and may bias the standard

errors downward. Kang and Schafer (2007) demonstrated that using inverse probabilities

as weights is sensitive to misspecification of the propensity model. For these reasons, the

weighting method is used as one method, but is verified with other methods.

Checking the Weights/Trimming the Weights

 

3 Tests were done to estimate the best threshold for defining the high teacher retention treatment level.

Several thresholds were included in a series of logistic regressions to see which were significant.

Additionally, propensity scores were estimated for several thresholds and the distribution oftreatment and

control cases in each ofthe blocks was examined. An 85% threshold yielded the most reasonable results,

and therefore is used here as the treatment.

These weights constitute sampling weights, and are applied in this analysis using the pweight command

in Stata.
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One concern with utilizing the weighting strategy is that extreme values may exert

undue influence on the outcome (i.e. one school counting for too many schools).

However, this can be addressed by examining a box plot (see Figure 6.1) and trimming

the weights. In this analysis, rather than dropping out the observations with extreme

weights, observations with weights greater than 18 are assigned a value of 18.

Figure 6.1: Box and Whisker Plot to Demonstrate Distribution of Weights
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Checkingfor Balance

After the propensity score is estimated, checks are performed to ensure that the

balancing property is satisfied. If balance is achieved, the treatment assignment and the

Observed conditions are conditionally independent, given the propensity score. This

satisfies the strongly ignorable treatment assignment assumption (Guo & Fraser, 2010).

This is done by a series of two-sample t-tests between the treatment and control group,

divided into “blocks” by propensity score. Results from these checks for balance are
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shown in Table 6.1. There are no significant differences in the means between treatment

and control on any of the covariates.5

Propensity Scores: Stratification Method

I also investigate this relationship by looking at the average treatment effect

within four strata.6 This estimates the average treatment effect on the treated (ATT) using

stratification matching. The ATT is computed only on the region of common support, and

is computed using a weighted (by the number of treated) average of the block-specific

treatment effects. In turn these are computed as the difference in average outcomes of

treated and controls within the same block for which the all control variables are balanced

(Becker & Ichino, 2002).

Propensity Scores: Nearest Neighbor, Kernel Matching and Radius Matching

As a final check on my results, I conduct propensity matching using three

additional methods: nearest neighbor matching, kernel matching, and radius matching.

In radius matching, the ATT is computed by averaging over the unit-level treatment

effects of the treated where the control(s) matched to a treated observation is/are those

observations in the control group that lie within a radius of .25; if there are multiple best

controls, the average outcome of those controls is used. Kernel matching calculates the

ATT by averaging over the unit-level treatment effects of the treated where the control

unit outcome matched to a treated observation is obtained as kemel-weighted average of

control unit outcomes. Finally, nearest neighbor matching computes the ATT by

averaging over the unit-level treatment effects of the treated where the control(s) matched

 

T1115 15 a function of the pscore estunatron method In Stata. The propensity score cannot be estrmated If

ghe balancing property is not satisfied.

This is computed using State’s atts command within the pscore program. See Becker & Ichino, 2002.

158



to a treated Observation are those observations in the control group that have the closest

propensity score; if there are multiple nearest neighbors, such as here, where three

. . . 7 8 9
nerghbors were specrfied, the average outcome of those controls rs used. ’ ’

The outcome variable is a count variable of the number of students in a given

school who changed schools between their ninth grade and eleventh grade year. This

variable is positively skewed, suggesting the use of a Poisson or negative binomial

regression model, but these models do not fit the data well. Therefore, this school-level

student mobility variable is dichotomized into high student mobility (greater than 10%)

and non-high student mobility, and analyzed using a logistic model for the bivariate and

multivariate regressions, and for the weighted regressions. However, logistic models are

not a specific option for specification in the other propensity score models; the authors of

the program suggest simply using the dichotomous outcome variable as if it were

continuous (Becker, 2010; Angrist, 2001). Given that there are known weaknesses in

both the weighting method and in these matching methods, I present the coefficients and

standard errors from all models, to provide as much evidence as possible regarding the

potential effect of high school-level teacher retention on student mobility.

Results

 

7

For a more extensive development ofeach of these three methods and their strengths and weaknesses,

lease see Technical Appendix C.

Nearest neighbor, radius and kernel matching were implemented using Stata’s psmatch2 program. We

would expect all estimators to be very similar, as with growing sample size, they come closer to comparing

only exact matches (Smith, 2000). In this analysis, however, there are 580 schools; while this is a

reasonable sample size, it is by no means very large, and in smaller sample sizes, the choice ofmatching

estimator is important (Heckman, Ichimura, & Todd, 1997).

To avoid bad matches, I imposed a caliper, which is a tolerance level on the maximum propensity score

distance. I chose .25. It is important to note that these findings are very sensitive to the caliper size set.

This is a limitation in the caliper method (Smith & Todd, 2005). Also, various calipers were tested, as

suggested by Guo & Fraser (2010).
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The first step in a propensity score matching analysis is to estimate the propensity

score. Only variables that simultaneously influence the participation decision and the

outcome and only variables that are unaffected by participation in treatment should be

included in the propensity score matching equation (Caliendo & Kopeinig, 2005).

Therefore, only variables that are either fixed over time or measured before participation

in treatment (i.e high school-level teacher retention) are included. The teacher retention

rate is a three year average from 2006-2008, which precludes the use of some variables,

like the average percent of professional teachers in each building, from being included in

the propensity score estimation. The percent minority students, percent free and reduced

lunch students, locale, percent of female students, and charter and magnet status are

considered to be time-invariant characteristics. School size category is taken from the

2007 Common Core of Data. To account for student prior performance, the average

student pretest scores in math and English language arts are included.lo The results of the

logistic regression to estimate the school-level propensity to have high teacher retention

are presented in Table 6.2.11

Schools with a greater proportion of minority students were less likely to have

high teacher retention. Large schools (those over 1000 students) were more likely to

have high teacher retention. All of the other predictor variables do not meet the threshold

for statistical significance.

Table 6.3 presents the results of the propensity score matching analyses under

nine different conditions: bivariate, regression with all covariates, weighted by propensity

(EOTM, treatment on the treated, treatment on the control), stratification, nearest

 

1

0 These are from the 2005 MEAP, which is prior to the assignment to treatment.

1 1

All propensity scores are calculated using the pscore program in Stata.
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neighbor, kernel matching and radius matching.12 All of these methods are used to

predict the effect of high teacher retention on school-level student mobility by comparing

the student mobility in schools with similar propensities to have the “treatment” (high

teacher retention) where some schools actually have high teacher retention and other

schools do not.

When weighted by propensity to have high teacher retention using the EOTM,

schools with high teacher retention are .46 times as likely to have high student mobility,

and this effect meets the threshold for statistical significance. Similarly, the treatment

effect for the treated shows that schools who got the treatment were 0.49 times as likely

to have high student mobility as those of similar propensity who did not get the treatment.

Finally, the strongest effect is where we might have expected it—treatment on the

control, which suggests how strong the effect of this treatment might have been for those

who did not receive it. The treatment effect for the control is 0.42, which implies that

schools in the control condition might see a reduction in their likelihood to have high

student mobility if they were to have high teacher retention instead Of lower teacher

retention. For comparison, the unweighted regression with covariates and the

unweighted bivariate regression are included. The four additional matching methods all

demonstrate the same relationship.

Sensitivity Analyses

If there are unobserved variables that affect assignment to treatment and the

outcome variable, there might be ‘hidden bias’ that will not be accounted for by these

methods. Given the relatively limited data that we have available, this may be the case

 

12 . . . . . .

The stratification, nearest nerghbor, radius, and kernel matching methods all Include bootstrapped

standard errors on the average treatment effect.
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here. Will the inferences be altered by unobserved factors? The question of interest in

sensitivity analyses for propensity scores is slightly different than that asked by

sensitivity analyses like those reported in Chapter 5. The researcher wants to investigate

how sensitive the assignment to treatment is to hidden bias. Is there an unobserved

covariate that is correlated with the likelihood of receiving treatment and with the

likelihood of having an increased outcome?

There are two types of bias: overt bias, one that can be seen in the data at hand,

and hidden bias, one that cannot be seen because the required information is not available

(Rosenbaum, 2002). Hidden bias is unobserved selection. The fact that this bias is

unmeasured is crucial, because if it were measured, it could be accounted for and avoided

(Kennedy, 2003). Overt and hidden biases that affect causal inference can hypothetically

be controlled for in well-implemented randomized experiments, through the mechanism

Of randomization (Guo & Fraser, 2010). Although researchers control for selection bias

through matching, they can adjust only on the Observed or measured covariates; thus,

selection bias due to unmeasured covariates remains a problem. Therefore, in most

Observational studies, what remains unknown is the extent to which matching or other

adjustments adequately control for bias and yield estimates of treatment effects that are

trustworthy. To deal with this problem, Rosenbaum developed sensitivity analysis

methods designed to gauge the level of sensitivity of study findings to hidden bias (Guo

and Fraser, 2010). Rosenbaum & Rubin (1983) and Rosenbaum (2002, 2005) recommend

that researchers regularly conduct sensitivity analyses with observational studies.

The fundamental idea in sensitivity analyses in the propensity score matching

context is to manipulate the estimated odds of receiving the treatment to investigate the
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extent to which the estimated treatment effects may vary. What the researcher hopes to

find is that the estimated treatment effects are robust to a plausible range of selection

biases. This idea is developed below.13

The participation probability is given by Pi = P (xi, ui) = P(Di=1|xi, ux) = F(Bxi +

yui), where x; are the observed characteristics, u; is the unobserved variable, and y is the

effect of the unobserved variable on participation decision. If the study is free of hidden

bias, y will be zero and the participation probability will be determined solely by the

observed covariates.

If there is hidden bias, two schools with the same observed covariates will have

different chances of receiving the treatment. If both units have identical observed

covariates, which is what is implied by the matching procedure, then the units only differ

in their odds of receiving treatment by a factor that includes the parameter y and the

difference in their unobserved covariates u. If there are no differences in the unobserved

variables between the units, or if the unobserved variables have no relationship with the

participation in treatment decision, than the odds ratio will be one, which suggests that

there is no hidden or unobserved bias.

These sensitivity analyses attempt to evaluate how inferences about the effect of

treatment (i.e. high school-level teacher retention) is altered by changing the values of y

(the effect of the unobserved variables on treatment decision) and by differences in the

values ofthe unobserved variables. This is tested using the mhbounds program, available

in Stata (Becker & Caliendo, 2007). The mhbounds program computes Mantel-Haenszel

 

13

Through this section, I rely on the work ofGuo & Fraser (2010), as well as that of Becker & Caliendo

(2007), and Caliendo and Kopeinig (2005). An application of this type of sensitivity analysis is found in

Haviland, Nagin, & Rosenbaum (2007), and is used as a model for this analysis.
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bounds to check sensitivity of the estimated average treatment effects on the treated. The

Mantel-Haenszel test statistic is used to compare the successful number of schools in the

treatment group against the same expected number given the treatment effect is zero. To

use this statistic, it is necessary to make individuals in the treatment and control groups as

similar as possible, which is accomplished with the matching.

To review: I calculated the propensity score as described above, and then used

that propensity score both as a weight and as a method by which to match observations

within strata and with each other for the propensity score analysis, as demonstrated in

Table 6.3. I then turned to a sensitivity analysis. The mhbounds method is appropriate for

checking the sensitivity Of nearest neighbor matches and the stratification methods. There

is not an appropriate sensitivity analysis available for every method of matching.14

This test provides two test statistics—QMH+, which is the Mantel-Haenszel

statistic with the assumption of an overestimation of the treatment effect. This would

occur ifwe have positive unobserved selection—those schools most likely to have high

teacher retention are also most likely to have high student mobility. The QM“- statistic

adjusts the Mantel-Haenszel statistic downward for negative (unobserved) selection,

which is where schools with high teacher retention are less likely to have high student

mobility. Please note that the second, negative unobserved selection, is the direction we

would expect unobserved selection to act in—i.e. those schools likely to have high

 

4 Propensity scores are estimated by the pscore command in Stata. Stata offers several matching

programs, including the suite in psmatch2, as well as a series of average treatment on the treated estimators.

In Table 6.3, the estimates are drawn from the average treatment on the treated estimators. However, those

do not have sensitivity analysis programs associated with them, whereas psmatch2 does. I used the

psmatch2 matching to implement 1:1 matching, using the propensity score from pscore, and also used the

strata from the pscore program with psmatch2 to generate average treatment effects and then to assess them

using the sensitivity analyses described here.
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teacher retention are also likely to have low student mobility. For this reason, this statistic

is the one of key interest in the sensitivity analyses.

When checking the sensitivity of the estimated average treatment on the treated

under the nearest neighbor matching strategy, there is a significant negative treatment

effect on the treated, which indicates that schools that receive the treatment (i.e. have

high teacher retention) are significantly less likely to have high student mobility. Under

the assumption of no hidden bias (which is at gamma = l), the Mantel-Haenszel test

statistic suggests that this study is insensitive to hidden bias, as this result is repeated.

However, looking at the bounds under the assumption that we have negative

(unobserved) selection (i.e. QM“), we see that the result becomes insignificant at 1.4,

which means that the confidence interval for the effect would include zero if an

unobserved variable caused an Odds ratio of treatment assignment to differ between the

treatment and comparison groups by 1.4. This shows that the results are somewhat

sensitive to deviations in the unconfoundedness assumption. The results of the positive

(unobserved) selection show that the effect is significant at gamma=1, which is the

assumption of no hidden bias, and become more significant for increasing values of

gamma (see Table 6.4).

When evaluating the sensitivity ofthe average treatment On the treated estimate

yielded by the stratification method, there is a similar result. There is a significant

negative treatment effect on the treated (see Table 6.5). The bounds under the assumption

ofnegative (unobserved) selection show that the result becomes insignificant at a gamma

level of 1.2, which implies that the effect would likely disappear if an unobserved

variable caused an odds ratio of treatment assignment to differ between the treatment and
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comparison groups by 1.2. This implies that these results should be interpreted with

caution, as this effect is sensitive to deviations in the unconfoundedness assumption.

It is important to note, however, that this does not conclusively prove that hidden

bias exists, but rather that the results appear to be moderately sensitive to possible

deviations from the identifying unconfoundedness assumption. This provides evidence

regarding the robustness of all the matching methods used here, as each method yields

very similar results (as demonstrated in Table 6.3), and specifically in defense of the

nearest neighbor and kernel matching. However, this does not address the weighted

methods.

To quantify the sensitivity of the inference in the weighted regressions, I return to

the Frank (2000) method. This asks the question: how large would the impact of an

unmeasured confound need to be to invalidate the inference regarding high school-level

teacher retention and school-level student mobility, when schools are weighted by their

propensity to receive treatment? Rather than testing the sensitivity of the assignment to

treatment, we return to focusing on the sensitivity of the effect and seek to quantify the

robustness of that inference to the impact of an unmeasured confound.

Using the school-level outcome and aggregated predictors used in the analysis, I

regressed the treatment on the predictors, high school-level teacher retention, to obtain

2 . . . .

the R fi'om that relationship, and then regressed the outcome on the predictors, wrthout

the treatment. These R2 values were then used to calculate the ITCV for each of the three

weighting schemes—the estimated treatment on the margin of indifference (EOTM), the

treatment on the treated (TOT) and the treatment on the control (TOC). As noted

previously in Chapter 5, when conducting a cluster-level regression for sensitivity
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analyses, clusters should be weighted by precision, where precision is calculated as

below:

0,2

where V1 : -n— and where 0'2 = "190- P)

J

 

. 1

Precision = Weight =

r +V

For comparison, I calculated the ITCV using the product of the propensity weight

and the precision weight. However, the ITCV estimates were the same and therefore only

one set of estimates are produced here.

The ITCV for the EOTM is .05. This implies that the correlations between the

unmeasured confound and high teacher retention would have to be.23 or larger, and the

correlation between the unmeasured confound and school-level student mobility would

have to be .20 or larger to invalidate the inference under the EOTM weighting strategy.

In the TOT regression, the ITCV was .04, and the correlation between the unmeasured

confound and the treatment would have to be .20, and between the unmeasured confound

and the outcome would have to be .21 to invalidate the inference under the TOT strategy.

Finally, in the TOC regression, the ITCV again was .04, and the correlations would have

to be .22 and .19, respectively. This is a moderate correlation size, especially when

comparing it to the size of other measured confounds (see Chapter 5).

Conclusionsfiom Propensity Score Sensitivity Analyses

Sensitivity analyses can be complicated, particularly when applied over a variety

of analytic situations, such as here. However, sensitivity analyses should be viewed less

as absolute estimates and more as accumulations of evidence. This is the approach taken

here—to estimate the treatment effects using a variety of matching algorithms and
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methods, and then tO assess those methods for sensitivity to unmeasured confounds using

all available methods to do so.

The evidence suggests that the observed average treatment effects are somewhat

robust to unobserved covariates, but not overly so. Again, this does not mean that there

unobserved covariates do or do not exist, but simply that the results here appear to be

somewhat robust to deviations from the identifying unconfoundedness assumption.

More importantly, from a substantive perspective, there is reasonable evidence

that increasing school-level teacher retention rates can lead to decreases in student

mobility. As shown in Chapter 5, increased student mobility has positive implications on

achievement. Therefore, it may be a valid policy initiative to look for programs that help

to stabilize a teaching force within a given school, or to incentivize teachers to remain

within that school.

Limitations ofthis Analysis

The key limitation in the utilization of a propensity score method is the same

problem that analysts face in observational studies: the issue of “hidden bias” from

potential unobserved variables. A fundamental assumption ofpropensity score matching

is the assumption of unconfoundedness (Rosenbaum & Rubin, 1983) (otherwise known

as the ignorable treatment assumption). This assumption states that, conditional on the

set of covariates, the assignment to treatment and control conditions is independent of the

outcome of treatment. Using the propensity score allows for the control of all observed

characteristics, in order to assure that the unconfoundedness assumption is met.

However, the question is—could the confound, the variable that affects both assignment

to treatment (in this case, high school-level teacher retention) and the outcome (high
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school-level student mobility), be an unobserved characteristic? If any of the relevant

covariates are unobserved, the propensity score matching will produce biased results

(Arpino & Mealli, 2008).

I do attempt to address this criticism through the use of sensitivity analyses. These

are able to quantify the impact necessary of that unobserved covariate to invalidate the

assumptions. The substantive question remains, are these data rich enough to merit this

type of analysis? These are relatively limited data—rich in sample size, but limited in the

number and type of variables. Important factors, such as school leadership and school

culture type of indicators, are not measured. In this way, although propensity scores

represent an improvement in the framework to evaluate effects, they are still limited by

the covariates available to estimate the propensity score equation, and therefore are still

limited by the question of observable factors. If the unobserved characteristic that could

invalidate inferences in a multilevel modeling framework is also one that could affect

both the assignment to treatment and the outcome, then it still cannot be measured and

accounted for in the propensity match itself and therefore still cannot be taken into

account. The results will still be biased, because that unobserved characteristic is

unobserved, and therefore, unmeasurable and uncontrollable.

This can be a rather bleak conclusion. However, even if this is the case, Guo &

Fraser (2010) suggest that the matching-based models offer improvements over OLS

based methods. Furthermore, the use of multiple methods in tandem with sensitivity

analyses produce the best estimates possible from a set Of observational data. Finally, it is

incumbent upon the education research community to use available skills, methods and
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knowledge to investigate a problem, and not to allow the limitations of data to preclude

us from providing the evidence we can make available to the research community.

Case Study Schools: An Exploratory Analysis

To further interrogate the differences in outcomes for Similar schools using a

more descriptive approach, I identified the schools with a very low propensity to have

high levels ofteacher retention, and then identified those schools that had high retention,

despite their low propensity, in order to conduct a descriptive analysis. There were 106

schools with propensity scores lower than .50—in other words, a propensity of less than

.50 to have high retention. Of those, 20 had high teacher retention while the other 86 did

not. While the overall analysis provides useful information on the entire sample of

schools, I wanted to focus in specifically on those schools that were highly unlikely to

have high teacher retention who did in fact have it, to see if there were any interesting or

informative differences.

In a basic descriptive analysis, I analyzed all of the schools with a less than .50

propensity to have high teacher retention as “case study schools.” For this analysis, I

refer to “high retention case study schools” and “low retention case study schools” in

reference to only those 106 schools identified as having a propensity of high teacher

retention that is less than .50. See Table 6.6.

The high retention case study schools are more likely to be town or rural schools.

High retention case study schools had, on average, 55% of their student body as minority

students, compared with 69% in the low retention (control) case study schools. However,

when comparing case study schools overall with non-case study schools, case study

schools (regardless of high or low teacher retention) were much more likely to have
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higher minority student populations. Non case-study high schools had an average of 14%

of their student body as minority students. Therefore, high retention case study schools

had higher rates of minority students than the general population Of schools, but lower

rates than low retention case study schools.

High retention case study schools had the same average proportion of students

with free and reduced lunch as low retention case study schools. Again, case study

schools overall had much higher average rates of free and reduced lunch (60% in case

study schools, 31% in non-case study schools).

High retention case study schools had higher mean proportion of teachers with

professional licenses than low retention case study schools (72% versus 65%), and a

lower mean proportion of minority teachers (28% versus 34%). They also had a higher

mean of high qualified teachers. None of these differences meet the threshold for

statistical significance.15

Turning to the individual characteristics of students in these schools, there were

higher than expected proportions ofAmerican Indian and Hispanic students in the high

retention case study schools. Between high retention case study schools and low

retention case study schools, the proportion of black students in each group was close to

the expected value. However, when comparing all case study schools to non-case study

schools, the proportion of black students was much higher than expected in case study

schools. In other words, case study schools (those with a low propensity to have high

15 . . . . . .

Although they did not meet the statrstrcal significance threshold, the “unrverse” nature of these data

makes simple percentage comparisons informative, as differences are “real” differences and not simply due

to sampling bias.

171



teacher retention, regardless of actual teacher retention level) are disproportionately

attended by black students.

The math scale scores were, on average, higher in these high retention case study

schools than low retention case study schools, and this effect is statistically significant.

High retention case study schools also had higher mean ELA scale scores. Students in

high retention case study schools also change schools at a lower rate than those in low

retention case study schools.

The multilevel models outlined previously were re-run using only these 106

schools, but there was not a detectable effect of high school-level teacher retention on

student mobility under any of the three weighting strategies.

For comparative purposes, I also include in Table 6.6 the characteristics of non-

case study schools, for comparison with case study schools. Case study schools were

much more likely to be city schools than expected (55% Of city schools were case study

schools, compared with an expected value of 18%). Case study schools were also more

likely to be small schools. The mean percentage of minority students was 66% in case

study schools, compared with 14% in non-case study schools, and the mean percentage of

students eligible for free/reduced lunch was 60% in case study schools, compared with

31% in non-case study schools. Case study schools has a statistically significantly smaller

percentage ofteachers with professional licenses (66% in case study schools compared

with 87% in non-case study schools), and also had significantly higher mean percentages

of minority teachers and new teachers. They were more likely to be charter schools, and

had significantly higher mean rates of student mobility.
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From the perspective of student characteristics, the students in case study schools

were overwhelmingly black students—48% of students in case study schools were black,

compared with an expected value of 10%. Case study schools had significantly lower

mean mathematics and ELA achievement, and significantly lower mean prior math and

ELA achievement.

With the case study schools, then, we see an interesting phenomenon. Within the

106 case study schools, the schools are rather similar in terms of structural

characteristics. They differ significantly, on achievement and on student mobility.

However, the case study schools, taken as a whole, are much different than the non-case

study schools. Treatment case study schools look more like non-case study schools than

control case study schools, but are still distinctly different in terms Of student

composition and achievement.

The fact that all of the case study schools, regardless of treatment or control, are

more alike than case study to non-case study schools suggests that there is something

unique about the school culture of these schools that influences their ability to retain

teachers and to perform more highly on achievement tests than anticipated. While this

analysis cannot go deeper in terms of measuring and investigating elements such as

school culture, professionalism, and charismatic leadership, this is further evidence to

suggest the importance of those factors.
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Table 6.1: Testin for Balance in Propensity Score Estimation
 

N

Avg prop score

Locale

City

Town

Rural

Suburb=reference

Percent minority

Percent free

reduced lunch

School size

Less than 300

students

Greater than

1000

students

300-

999=reference

Average math

pretest

Average ELA

pretest

Charter

Magnet

Proportion female

students in school

Proportion

Amerind/PI

Proportion Asian

Proportion black

Proportion Hispanic

Proportion

multiethnic

Proportion students

in special programs

Block 1 Block 2 Block 3
 

Control Treatment Control Treatment Control Treatment
 

 

   

49 7 27 18 60 115

0.14 0.13 0.36 0.4 0.64 0.68

0.73 0.43 0.44 0.44 0.1 0.19

0.02 0 0 0.11 0.05 0.1

0.06 0.29 0.22 0.17 0.71 0.62

90.8 82.97 61.69 54.41 20.17 21.79

66.26 74.33 57.29 52.72 51.93 50.17

0.29 0.43 0.15 0.28 0.24 0.52

0.26 O 0.3 0.33 0.14 0.19

794.79 793.79 799.76 800.46 804.77 808.02

800.17 797.04 802.82 804.3 804.35 809.29

0.41 0.29 0.15 0.17 O 0

0.06 0.14 0.19 0.11 0.05 0.05

56.1 54.41 56.17 50.58 51.12 53.14

0.18 0 0.71 0.87 1.87 0.62

0.59 3.54 1.25 1.66 0.88 0.99

81.42 74.28 51.52 38.31 10.02 15.86

7.41 5.04 7.9 10.93 5.12 2.59

0.28 0.18 0.98 0.37 0.55 0.13

5.75 15.18 0.37 5.92 1.16 0.21

 

No statistically significant difierence in means detected using two-sample t-tests

Testsfor balance performed as part Stata's pscore analytic package
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Table 6.1 (cont'd)
 

N

Avg prop score

Locale

City

Town

Rural

Suburb=reference

Percent minority

Percent free

reduced lunch

School size

Less than 300

students

Greater than

1000

students

300-

999=reference

Average math

pretest

Average ELA

pretest

Charter

Magnet

Proportion female

students in school

Proportion

Amerlnd/PI

Proportion Asian

Proportion black

Proportion Hispanic

Proportion

multiethnic

Proportion students

in special programs

 

 

 

Block 4 Block 5

Control Treatment Control Treatment

21 21 39 94

0.56 0.58 0.83 0.86

0.03 0.05 0.07 0.08

0.05 0.07 0.27 0.2

0.87 0.72 0.32 0.34

8.77 12.34 10.78 11.04

38.08 38.17 26.21 23.67

0.31 0.13 0.1 0.05

0.03 0.12 0.34 0.49

808.26 809.91 816.97 816.34

809.45 810.19 816.79 816.5

0 0 0.02 0.01

0.03 0.03 0.12 0.16

47.96 49.86 49.66 49.87

2.29 1.17 0.48 1.93

0.55 0.7 2.35 1.9

2.05 6.82 4.55 3.99

2.49 2.76 2.72 2.45

0.21 0.3 0.6 0.78

3.26 1.28 3.96 1.24 
 

No statistically significant dtjference in means detected using two-sample t-tests

Testsfor balance performed as part Stata's pscore analytic package
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Table 6.2: Logistic Regression for Estimating the Treatment Propensity Score

(Treatment = School-Level Teacher Retention > 85%)

 

Independent Variable Estimate Std. Error P value
 

Percent minority students

Percent free/reduced lunch students

Locale

City

Town

Rural

Suburb=reference

School Size

Less than 300 students

Greater than 1000 students

300-999 students=reference

Charter

Magnet

Proportion female students

Proportion asian students

Proportion black students

Proportion Hispanic students

Proportion multiethnic students

Proportion special program students

Average math pretest score

Average ELA pretest score
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-0.06

-0.01

-0.33

-0.12

-0.43

-0.28

0.72

-0.69

0.56

0.01

0.09

0.03

0.04

0.06

0.001

0.001

0.05

0.03

0.01

0.41

0.42

0.34

0.32

0.31

0.61

0.37

0.01

0.03

0.03

0.03

0.04

0.01

0.03

0.03

0.03

0.179

0.417

0.769

0.212

0.389

0.021

0.258

0.128

0.994

0.093

0.186

0.094

0.12

0.927

0.986

0.093



 

Table 6.3: Estimated Effect of High School-Level Teacher Retention on Average

School-Level Student Mobility
 

 

Odds Std

Model Coefficient Ratio error t-ratio pvalue

Weighted by propensity

(EOTM) -.78 0.46 .14 -2.48 .013

Weighted by propensity

(treatment effect for the treated) -.72 0.49 .16 -2.18 .029

Weighted by propensity

(treatment effect for the control) -.86 .42 .14 -2.60 .009

Unweighted, with covariates -.57 .57 .16 -2.02 .044

Unweighted, bivariate -1.62 .19 .04 -8.10 .000

Stratification method (ATT for

each strata)“ -0.083 .048 -l.732 .042

Nearest neighbor“ -.091 .046 -l .98 .048

Kernel Matching“ -0.079 .048 -1.63 .103

Radius Matching“ -.09 .042 -2.22 .026

*Estimated with psmatch2

”Estimated with the atts program for stratification matching
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Table 6.4: Sensitivity Analyses using Mantel-Haenszel Bounds for Effect on

Student Mobility: Nearest Neighbor Matching
 

 

    

Gamma Q_mh+ Q_mh- p_mh+ _mh-

1 2.63323 2.63323 0.004229 0.004229

1.05 2.83957 2.43571 0.002259 0.007431

1.1 3.03302 2.244 0.001211 0.012416

1.15 3.21848 2.06125 0.000644 0.019639

1 .2 3.39666 1.88665 0.000341 0.029604

1.25 3.56817 1.71947 0.00018 0.042764

1.3 3.73352 1.5591 1 0.000094 0.059485

1 .35 3.89321 1.40501 0.000049 0.080009

1 .4 4.04765 1 .25669 0.000026 0.104433

1.45 4.19722 1.11372 0.000014 0.1327

1.5 4.34225 0.975715 7.10E—06 0.164603

1.55 4.48304 0.842333 3.70E—06 0.199801

1.6 4.61988 0.713265 1.90E—06 0.237841

1.65 4.75301 0.58823 1.00E—06 0.278189

1 .7 4.88264 0.466975 5.20E—07 0.320259

1.75 5.009 0.349271 2.70E-07 0.363443

1 .8 5.13226 0.234909 1 .40E-07 0.40714

1.85 5.25261 0.123695 7.50E—08 0.450778

1.9 5.37018 0.015456 3.90E—08 0.493834

1.95 5.48515 -0.089971 2.10E-08 0.535845

2 5.59762 -0.053909 1.10E-08 0.521496
 

Gamma : Odds of differential assignment due to unobserved factors

Q_mh+ : Mantel-Haenszel statistic (assumption: overestimation of treatment effect:

(Lmh- : Mantel-Haenszel statistic (assumption: underestimation of treatment effect

p_mh+ : significance level (assumption: overestimation of treatment effect)

9 mh- : significance level (assumption: underestimation oftreatment effect)
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Table 6.5: Sensitivity Analyses using Mantel-Haenszel Bounds for Effect on

Student Mobility: Stratification Method
 

 

    

Gamma Q_mh+ (Lmh- p_mh+ p_mh-

1 1.87972 1.87972 0.030073 0.030073

1. .05 2.07905 1.70328 0.018807 0.044258

1.1 2.25903 1.52486 0.01 1941 0.063647

1.15 2.43158 1.35476 0.007517 0.087748

1.2 2.59735 1.1922 0.004697 0.116592

1.25 2.75692 1.03651 0.002917 0.149981

1.3 2.91079 0.887135 0.001803 0.187503

1.35 3.05939 0.743547 0.001 109 0.228575

1 .4 3 .203 13 0.605299 0.00068 0.27249

1.45 3.34234 0.471993 0.000415 0.318466

1.5 3.47736 0.343272 0.000253 0.365697

1.55 3.60845 0.218815 0.000154 0.413397

1.6 3.73587 0.098336 0.000094 0.460833

1.65 3.85986 -0.018424 0.000057 0.50735

1.7 3.98062 -0.131037 0.000034 0.552127

1.75 4.09833 -0.020381 0.000021 0.50813

1.8 4.21319 0.087155 0.000013 0.465274

1.85 4.32534 0.191752 7.60E—06 0.423968

1.9 4.43494 0.293575 4.60E-06 0.384541

1.95 4.5421 0.392775 2.80E-06 0.347243

2 4.64698 0.489493 1 .70E-06 0.3 12246
 

Gamma : odds of differential assignment due to unobserved factors

Q_mh+ : Mantel-Haenszel statistic (assumption: overestimation of treatment effect)

Q_mh- : Mantel-Haenszel statistic (assumption: underestimation of treatment effect)

P__mh+ : significance level (assumption: overestimation oftreatment effect)

P_mh- : sigm'ficance level (assumption: underestimation of treatment effect)
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Table 6.6: Comparison of School and Student Characteristics Between ITigh- and

Low-Retention Case Study Schools, and Between Case Study and Non-Case Study

Schools

Case . y 100 :

Characteristics of

Treatment and Control

 

Schools

Treatment Control

N=20 N=86

(19%) (81%) N

Locale

City 15% 85% 53

Suburb 10% 90% 20

Town 33% 67% 3

Rural 30% 70% 30

School Size

Less than 300 students 24% 76% 34

300—999 students 16% 84% 50

Greater than 1000 students 18% 82% 22

AYP Status

Fail 18% 82% 61

Pass 20% 80% 45

Percent minority 55% 69%

Percent free/reduced lunch 60% 60%

Percent teachers with

professional licences 72% 65%

Percent new teachers 19% 23%

Percent minority teachers 28% 34%

Perct highly qualified teachers 81% 75%

Charter 18% 82% 27

Magnet 30% 70% 10

Student mobility 36% 35%

PriOr student mobility 30% 29%  
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Table 6.6 (cont'd): Case Study Schools:

Characteristics of

Treatment and Control

Schools

Student Level Characteristics N=1,856 N=7653

(19%) (81%)

 

 
Gender

Male 20% 80%

Female 19% 81%

Race“

American Indian 42% 58% 57

Asian 19% 81% 79

Black 18% 82% 6,755

Pacific Islander 18% 82% 11

White 19% 81% 2,050

Hispanic 35% 65% 513

Multi-ethnic 2% 98% 44

Pre-test math scale score 810.24 798.07

Pre-test ELA scale score 814.01 803.01

11th grade math scale score 1087.89 1071.58

11th grade ELA scale score 1095.18 1080.72

Free/Reduced Lunch Eligible 16% 84% 5,230

Student mobility 15% 85% 2,924 
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CHAPTER 7: THE CORRELATES AND IMPACTS OF SCHOOL-LEVEL TEACHER

UNDERSUPPLY

The third paper utilizes the demand formula specification and resulting

calculations obtained from Chapter 4, as well as the school-specific teacher retention

rates obtained from Chapter 5 to address the third core question of the dissertation: what

are the predictors of within-school undersupply and how does undersupply affect

achievement? This chapter estimates the predictors of undersupply using school

characteristics, and also estimates the impact of subject-specific undersupply on student

achievement test scores in mathematics, English language arts, and science. lmportantly,

this analysis will also introduce the school-specific teacher retention rate as a key

predictor. The modeling strategy employed in this chapter mimics the one used to

estimate the effect of school-level teacher retention on student achievement and student

mobility. For the sake of parsimony in the proposal, I will not fully restate the relevant

literature that is outlined in the other two papers.

Background to the Problem: Undersupply as an Organizational Characteristic of

Schools

The advent of more rigorous graduation requirements, increased instructional

demands ofNCLB and the upcoming demands related to Race to the Top funding, and

labor market pressures away from teaching have led to a situation of potential

undersupply of qualified teachers. Many researchers have advanced a teacher shortage

thesis that identifies student enrollment increases and teacher retirement increases as a

driving factor in teacher shortages. However, following Ingersoll (2001 , 2003) and

Ingersoll & Perda (2009), I examine teacher shortages from an organizational
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perspective. Undersupply can be considered an organizational feature of schools, one that

can interact with school structural and compositional factors. While teacher shortages

may or may not happen at an aggregate state or national level, individual schools may

struggle to adequately staff their schools, particularly in the face of rigorous instructional

demands. This undersupply can be exacerbated by teacher turnover. Both of these school-

specific aspects of supply, undersupply and teacher turnover, and be considered alongside

other factors that shape the culture of the school and, more importantly, how students in

that school may perform. Schools that are high in undersupply may have low levels of

relational trust (Bryk & Schneider, 2002), or may have high numbers of low-income or

minority students.

In a school’s supply of teachers, turnover and undersupply are two related but

very distinct features. Turnover relates to the frequency with which teachers enter and

exit the school. Organizational sociology and the sociology ofwork have extensively

studied the impact turnover has on organizational culture, and in particular, the

effectiveness of the organization in achieving its goals (Horn & Grif’feth, 1995; Kalleberg

& Mastekaasa, 1998; Mueller & Price, 1990) Undersupply is related to tumover—a high

rate of turnover can relate to being undersupplied—but distinct in that a school could

have a high rate of turnover, but not be undersupplied. An undersupply of teachers relates

to the school’s ability to staff all its positions adequately, and therefore can be considered

a resource question. How does the lack of resources as quantified by qualified personnel

relate to a school’s culture, its hospitableness as a work environment, and its ability to

teach and train children? While teacher turnover and other features of teacher supply and

demand have been heavily studied (see Darling-Hammond, 2000; Ingersoll, 1995, 2000,
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2001), the relationship of a school-specific undersupply of teachers, coupled with teacher

turnover in that school, to student achievement and mobility has not been studied. This

analysis also moves teacher undersupply away from a general overall estimate of teacher

supply into a school-specific characteristic and quality of individual schools, focusing on

undersupply as an organizational characteristic rather than a more meta-level economic

condition.

There are two relevant questions that arise when considering school-level teacher

undersupply. The first is, are undersupply rates distributed unevenly over school

characteristics? Are there certain types of schools that are more likely to be

undersupplied than other types of schools? Particularly in a situation where a state may

appear to have an adequate number of teachers to meet instructional demands, are there

schools that are still struggling to recruit and retain staff so that they can provide

appropriate instructional to all students? This has implications for the equitable

distribution of teachers, as well as for closing achievement gaps, both key aspects of both

NCLB and the new Race to the Top funding.

The second important question is, once each school’s level of undersupply is

ascertained, what is the relationship between that undersupply as a school characteristic

and student achievement outcomes? Do students in undersupplied schools perform more

poorly than students in adequately supplied schools? One would assume this to be the

case; it is difficult to imagine that the learning experience and achievement of students

would be better in a school where there are not enough mathematics teachers and class

sizes are extremely high or students are forced to take study halls or independent studies

in order to obtain instruction. However, this needs to be investigated empirically. If there
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is evidence to suggest that undersupply negatively relates to student achievement, then it

becomes incumbent upon districts and the state itself to ensure that each school has, at

minimum, an adequate number of teachers to meet instructional demands.

Analytic Methods

Part 1: Modelpredicting undersupply

Utilizing both the tested demand formula, and the refined supply calculations

from the second paper, potential undersupply will be estimated for each school in the

state of Michigan. The first stage in the analysis examines the predictors of undersupply

using a school-level ordinary least squares regression analysis and a logistic regression

analysis. Tables 7.1, 7.3 and 7.5 present the results of OLS regressions predicting

undersupply in mathematics, English language arts, and science, respectively, with

undersupply as a continuous outcome; Tables 7.2, 7.4, and 7.6 present the same analysis,

but with the outcome as dichotomous, where only those schools with greater than one

FTE of undersupply are identified as “undersupplied.” 1 Since undersupply is a

continuous measure centered around zero, with positive numbers indicating increasing

amounts of undersupply, using it as a continuous outcome represents the relationship

between a decreasing supply of teachers (relative to demand) and the various predictors.

A school may have an undersupply of -2, which means they are actually oversupplied,

given the assumptions of the formula. This analysis estimates the impact of other school-

level characteristics on that undersupply number, so even if a school is not

“undersupplied” in terms of the cut point of one FTE or greater, they still may have lower

supply.

 

Social studies 18 not represented here, as Michigan 3 socral studies achievement test is one of it’s least

robust, and as social studies is not a matter of key focus in many federal and state initiatives.
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The adequate supply of teachers across schools is strongly related to the equitable

distribution of teachers. Are schools that serve low-income or minority students more

likely to be undersupplied? Are schools in certain locales more likely to struggle to

adequately staff their courses to meet the Michigan Merit Curriculum? While this

analysis cannot estimate teacher quality, an important predecessor to quality is ensuring

that schools have an adequate quantity of certified teachers to provide instruction in the

MMC areas, without excessively large class sizes.

Findings: Predictors ofSubject-Specific Undersupply

The goal is to investigate the type of school-level characteristics that are

associated with a subject-specific undersupply—in this case, mathematics. Table 7.1

presents the results of the OLS regression predicting mathematics teacher undersupply.

Small schools have significantly lower levels of mathematics teacher undersupply and

large schools have significantly higher levels of mathematics teacher undersupply than

schools with 300-999 students. Rural schools have lower rates of undersupply than their

suburban counterparts. Schools with a higher average proportion of minority teachers

have higher rates of mathematics teacher undersupply, with each one unit increase in the

proportion of minority teachers associated with a corresponding .02 unit increase in

mathematics teacher undersupply. Interestingly, schools with higher proportions of

female students appear to have higher rates of mathematics undersupply, with each one

unit increase in the proportion of students in a school who are female associated with a

.02 increase in math teacher undersupply (significant at the .001 level). Also

interestingly, schools with higher proportions of Asian, black, and Hispanic students
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appear to have lower rates of mathematics teacher undersupply, relative to the proportion

of white students in a school.

Using the dichotomous outcome variable allows for the estimation of the

likelihood of being “significantly” undersupplied in mathematics, where significant is

defined by an undersupply of greater than one FTE (see Table 7.2). Small schools are

much less likely to be significantly undersupplied in mathematics, with an odds ratio of

.10, which means that small schools are .10 times as likely as schools with 300-999

students to be significantly undersupplied in mathematics Large schools are four times

more likely to be significantly undersupplied in mathematics than schools with 300-999

students. This suggests that adequately staffing a school with mathematics teachers is

highly dependent on school size. Schools with higher proportions of student mobility are

also more likely to be significantly undersupplied, and again, schools with higher

proportions of female students are more likely to be significantly undersupplied in

mathematics.

In English language arts, the school size relationship observed in the mathematics

undersupply predictions appears to be less salient, and the key predictors are school

instructional staff compositional characteristics (see Table 7.3 for the results of the OLS

regression). Schools with a higher proportion of minority teachers experience higher rates

of undersupply in English language arts, while schools with higher proportions of highly

qualified teachers have lower rates of undersupply in ELA. Higher school-level prior

ELA achievement is related to lower levels ofELA undersupply, with each one unit

increase in school-level prior ELA achievement related to a .03 unit decrease in ELA

teacher undersupply. The relationships between the racial composition of the student
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body and undersupply observed in the mathematics analyses appears to have disappeared,

with the exception of schools with higher proportions of black students, which have

lower levels of ELA teacher undersupply.

Table 7.4 presents the results of the logistic regression predicting significant ELA

teacher undersupply. Again, this model is used to look only at the likelihood of being

significantly undersupplied (greater than one FTE of undersupply). Schools with a higher

proportion of minority teachers are 1.04 times more likely to be undersupplied than those

with lower proportions of minority teachers. Schools with high levels of student prior

achievement in ELA are .91 times as likely to be significantly undersupplied, while

schools with higher levels of female students, Asian students, and American Indian

students are all more likely to be significantly undersupplied.

Turning to science teacher undersupply, schools with higher proportions of

students who are free and reduced lunch eligible have higher levels of science teacher

undersupply (see Table 7.5 for the OLS regression). Large schools have lower rates of

science teacher undersupply. Schools with higher student mobility have higher science

teacher undersupply, and schools with higher Asian student populations and higher black

student populations have lower levels of science teacher undersupply.

When looking exclusively at significant science teacher undersupply (see Table

7.6), schools with higher proportions of free and reduced lunch eligible students are 1.05

times more likely to be significantly undersupplied in science, and schools with higher

proportions of student mobility are 1.02 times more likely to be undersupplied in science.

This analysis identifies several common themes regarding the predictors of

teacher undersupply. The first is that schools with higher proportions of minority
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students, particularly those with higher proportions of black students, are less likely to be

undersupplied in all three subject areas. This is a counterintuitive finding, but suggests

that Michigan does not have an inequitable distribution of the supply of teachers to

schools that serve minority students. The second is the strong relationship between

school-level student mobility and teacher undersupply. In all three subjects, higher

student mobility was linked to greater levels of teacher undersupply. Third, it is important

to note that school-level teacher retention was not a significant predictor of subject-

specific undersupply.

The Relationship Between Teacher Undersupply and Student Achievement

This study utilizes a multilevel modeling approach to estimate the contextual

effects of the key predictor of interest, school-specific teacher undersupply in

mathematics, English language arts and science. Although fixed effects models can be

used to control for school factors without making parametric assumptions, I choose to

express these models in a multilevel modeling framework in order to estimate effects

simultaneously at both levels. To estimate the relationship between school-level teacher

undersupply, school-level teacher retention rate (from Chapter 5), and other school

contextual factors and student achievement outcomes, I controlled for student level

factors such as prior ability, gender, race, and free or reduced lunch eligibility. The

models are random intercept models, which model each school mean as a function ofthe

key predictor of interest, school-level teacher undersupply, and other school covariates.

There are no random slopes estimated. It is important to remember that these models

consist of students nested within schools; although teacher data is available and used to

calculate school-level teacher undersupply and retention, as well as other instructional
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workforce characteristic variables, teachers are not currently linked to students in the

Michigan data, and thus, estimating the impact of a given teacher’s retention or mobility

on a given student’s achievement outcomes is not possible. Moreover, this study takes an

organizational approach, in which it is hypothesized that it is the composition ofthe

instructional workforce and the organizational culture of a school that impact student

achievement outcomes, and therefore modeling individual outcomes as a function of

school-level predictors is appropriate.

Data Source

The data source utilized for this paper is the same as that used in throughout the

dissertation (see Chapter 2: Data and Methods for more information if necessary). This

study utilizes a set of rich longitudinal administrative data from the state of Michigan,

including data on all teachers, students and schools in the entire state, collected

longitudinally over a period of four years. The sample of high schools is the same as

defined in Chapter 5.

Measures

Main independent variable: The key predictor of interest is school-level teacher

undersupply rate in mathematics, English language arts, and science. Teacher

undersupply in each subject is calculated by estimating demand using the refined demand

formula outlined in Chapter 4, calculating supply from the 2008 Registry of Educational

Personnel, and subtracting supply from demand (Chapter 1 and Chapter 4 provide greater
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detail on this method). This yields a continuous measure of supply, with positive numbers

indicating potential undersupply.2

This analysis utilizes as a key predictor the main independent variable from

Chapter 5, school-level teacher retention rate. Teacher churn rate is calculated by the

teacher retention rate, the number of teachers in a given school who remain the same

from one year to the next.3 Teacher retention rate calculated over four years, three

retention time points: school years 2004-2005, 2005-2006, 2006-2007 and 2007-2008.

These rates are averaged to generate an average retention rate for each high school in the

sample. Retention is based on a teacher remaining in the same school from one year to

the next. If a teacher is in multiple schools, they are counted as either a stayer or mover

from all schools in which they teach. This calculation is at the person-level.4

Dependent variables: The outcome variable for the student achievement models

is the scale score on mathematics, English language arts, and science achievement tests

from the 2009 Michigan Merit Examination.

School- and student-level covariates: The multilevel models are estimated with

the same set of covariates described in Chapter 2 and in Chapter 5. They are briefly listed

here, and discussed in greater detail above. School-level covariates include: the

proportion of teachers with professional licenses, the proportion of minority teachers, the

 

2 For the analyses predicting undersupply, this variable was used both as continuous and dichotomous. In

the multilevel models, it is used in its continuous format only.

3 This method is used rather than calculating the number of “new” teachers in a school in a given year

because ofthe difficulty of defining the denominator for that calculation.

4 Like Ingersoll (2001), I analyze all turnovers or departures, and do not distinguish between teacher

attrition (from the profession) and teacher mobility (between schools). If a teacher is in the same school

from one year to the next, they are retained; if they are not, they have “turned over.” This focuses on the

organizational aspect of teacher retention, as the consequences to the organization are the same regardless

of whether a teacher leaves the field entirely, or simply moves to another school (Ingersoll, 2001).
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proportion of highly qualified teachers, the percent minority students, the percent of

students eligible for free and reduced lunch, locale, school size, the mean achievement

pretest in each subject, and the student mobility rate. Student-level covariates include

student mobility, achievement pre-test in a given subject, free/reduced lunch eligibility,

racial/ethnic identification, gender, and special program eligibility.

ANALYTIC APPROACH

This study posits school-level teacher undersupply as a critical factor in

explaining variations in student achievement in mathematics, English language arts, and

science. Therefore, the first step in the analysis is to calculate subject-specific teacher

undersupply for each school. Simple descriptive statistics were then calculated for

schools by subject-specific undersupply, and for all student- and school-level variables

that are used in the multilevel models. Tables 3.10, 3.11, and 3.12 (in the descriptive

analysis chapter) present the mean undersupply rates by school characteristics in each

subject (details not repeated here).

The Multilevel Models to Be Estimated

To test the effects of teacher undersupply on student achievement outcomes,

multilevel models (i.e., models with random effects) of student achievement in

mathematics, English language arts, and science with high school students nested within

schools are estimated. These models are the same as those used in Chapter 5, and will not

be repeated here in any length.

The general model specification for the HLM models is as follows:

Level 1 model:

Yij = BOj + [31j(student mobility) + Bj Z’ + rij

Level 2 model:
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BOj = 700 + 701(undersupply) + 702(teacher retention) + )3 Q’ + uoj

where

Yij = outcome (mathematics, ELA or science scale score) for each student i in

school j

BOj = each school mean, represented as a function of the grand mean, student

mobility, the matrix of student-level predictors, the school teacher undersupply

rate, and the matrix of school level predictors  
[31j = coefficient for student mobility

l3j = vector of coeffs for school j

Z’ = vector of student covariates for school j

700: grand mean (intercept)

701 = effect of subject-specific undersupply on 801' (each school mean)

702 = effect of school-level teacher retention rate (from Chapter 5) on Boj (each

school mean)

yj = vector of school-level predictors)
I

Q’ = vector of school covariates

uoj = the residual error of Boj, distributed iid N(0, 1:00)

rij = level 1 variance (student error term), rij distributed iid N(0, oz)

One key challenge to this analysis might be that the causal path could be in the

opposite direction—that student achievement predicts teacher undersupply. In order to

attempt to address that criticism, the longitudinal nature ofthe data is utilized. Prior

individual student academic achievement from their 8th grade pretest, as well as a prior

cohort-level mean mathematics achievement from 8th grade are included, to control for

both prior individual and group achievement. Teacher undersupply is calculated based on

2008 data, while the student outcome is from the 2009 testing year. Therefore, the

school-level undersupply predictor is causally prior to the student outcome.

A baseline for the HLM models is established by estimating an unconditional

random effects ANOVA (output not reported). This allows for the calculation of the

intraclass correlation, or the proportion of variance that is between schools. Following the
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estimation of this baseline model, a series of multilevel models were estimated, for

mathematics, English language arts, and science. Four different multilevel models are

presented in Table 7.7 (mathematics), Table 7.8 (English language arts), and Table 7.9

(science). The first, a bivariate model, estimates the bivariate relationship between

subject-specific school-level teacher undersupply and student achievement in that subject.

The second (Model 2) includes a second predictor shown in the preliminary analyses to

be highly correlated with the student achievement, fi'ee lunch eligibility, as well as a

pretest measure of achievement in the appropriate subject and the student mobility

indicator at the student level, in order to account for student prior ability. The third model

adds in the school-level teacher retention rate. The final model includes all predictors at

level 1 and level 2.

Sensitivity Analyses

When conducting research using observational data, there is cause for concern

regarding the impact of an unobservable characteristic on the outcome, one that might

invalidate the inferences drawn from the study. State administrative data, such as those

used in this study, are rich in observations but often does not include a large number of

variables. Sensitivity analyses are conducted to test the robustness of the inferences to the

influence of other unobserved characteristics, characterizing the robustness of these

inferences to the potential impact of confounding variables (Frank, 2000). l utilized this

sensitivity analysis strategy in Chapter 5 as well.

5
RESULTS

Mathematics Achievement 0utcomes6

 

5 The descriptive statistics are described in Chapter 3 and are not repeated here. Note, however, that when

this is submitted as an individual journal article, the descriptive information would be included here.
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To assess the relationship between student mathematics achievement and school-

level mathematics teacher undersupply, a series of multilevel models are estimated (see

Table 7.7). Using the series of multilevel models outlined previously, I find that school-

level mathematics teacher undersupply is negatively and significantly associated with

school mean mathematics achievement scores. In the bivariate regression (Model 1),

schools with higher rates of mathematics teacher undersupply have mean mathematics

achievement scores that are 1.09 scale score points lower than students in schools with

lower rates of mathematics teacher undersupply (pf .05). The proportion of variance

explained between the unconditional model and the bivariate model is 18%. This effect

for teacher undersupply remains in Model 2, with the addition of the measure of student

prior ability, the math pretest score, as well as student free and reduced lunch eligibility

and student mobility. For each one unit increase in mathematics teacher undersupply,

there is a corresponding decrease of 0.46 scale score points in student mathematics

achievement (pS.022). Prior student mathematics achievement, aggregated to the school

level, is also an important predictor, with each one unit increase in average school-level

student mathematics achievement associated with a 1.23 point increase in mean scale

scores. At the student level, mathematics pretest and flee/reduced lunch eligibility are

both important predictors, with mathematics prior ability associated with higher

mathematics achievement outcomes, and free/reduced lunch eligibility associated with

significantly lower mathematics achievement outcomes. This model now explains 87% of

the variance at level 2, and 53% of the variance at Level 1, which suggests that teacher

undersupply and prior school-level mathematics achievement account for much of the

 

6 Results from the baseline model, a oneway ANOVA with random effects, yield an intraclass correlation

of 18% for the mathematics achievement outcome.

195



variation in school mean mathematics achievement. In Model 3, the other key predictor

of interest, school-level teacher retention rate, is introduced. This is positively and

significantly related to mathematics achievement, with each one unit increase in school-

level teacher retention rate associated with a .21 unit increase in mean mathematics scale

scores (pS.000).

In the full model, mathematics teacher undersupply continues to be associated

with decreased student mathematics achievement outcome, with a one unit increase in

mathematics teacher undersupply leading to a corresponding .35 point decrease in

mathematics scale scores. The relationship between school-level teacher retention rate

and mathematics achievement has been reduced to statistical nonsignificance, however,

although it remains in the same direction. This suggests that, controlling for all other

school structural and compositional characteristics, mathematics teacher undersupply is

an important predictor of student mathematics achievement, even when controlling for

school-level teacher retention rate.

The percent of students in a school who are free and reduced lunch eligible is also

linked to decreased mathematics achievement scores. Prior school-level mathematics

achievement continues to be an important predictor of current student mathematics

achievement. Turning to school structural characteristics, rural schools have higher mean

mathematics achievement, with mean scale scores that are 1.43 scale score points higher

(pS.OO9). In terms of school compositional characteristics, schools with higher rates of

teachers with professional licenses have higher mean mathematics achievement, with

each one unit increase in the proportion of teachers with professional licenses associated

with a corresponding .09 increase in mean mathematics scale scores (pg .002). Schools
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with higher rates of minority teachers have lower mean mathematics achievement, where

each one unit increase in the proportion of minority teachers is associated with a .07

decrease in mean mathematics scale scores @3001). At the student level, higher levels of

prior mathematics achievement are associated with higher levels of current mathematics

achievement (720:.90, pS.000). American Indian (Y4o=-2.17), black (750=-7.11), Hispanic

(Y7o=-2.1l) and multiracial (Y80=-2-85) students all had significantly lower mathematics

achievement scores than their white counterparts, while Asian students had significantly

higher scores (750:1.52). Finally, students who changed schools between their freshmen

year and the time of the test had significantly lower mathematics achievement (VHF-3.08,

pS .000).

English Language Arts Achievement Outcomes

The modeling strategy for the relationship between English language arts teacher

undersupply and English language arts achievement is the same as that used to assess the

mathematics relationship (see Table 7.8).7 In the bivariate model, higher rates of English

language arts teacher undersupply is associated with lower ELA scores, with each one

unit increase in undersupply associated with a corresponding 1.31 unit increase in mean

ELA score (pS.003). This relationship remains in Model 2, which includes English

language arts pretest and free/reduced lunch as key predictors. In Model 2, increased

undersupply is associated with decreased ELA score (Y01= -O.34) while higher levels of

prior student level ELA achievement is associated with higher ELA scores (701:1.02,

p5..000). Free and reduced lunch eligibility is associated with significantly lower rates of

mean ELA achievement, with students who are free and reduced lunch eligible

 

7 From the unconditional ANOVA model (output not reported), the intraclass correlation is 20%.
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demonstrating ELA scale scores that are, on average, 4.41 scale score points lower than

their non-free/reduced lunch counterparts @3000). When adding school-level teacher

retention as a predictor in Model 3, we see that each one unit increase in school-level

teacher retention rate is associated with a 0.14 unit increase in mean ELA scale scores

(pS.OOO). Finally, in the full model (Model 4), ELA teacher undersupply is still

negatively and significantly associated with ELA achievement scores, with each one unit

increase in ELA teacher undersupply associated with a 0.37 unit decrease in mean ELA

achievement score (133.000). However, the relationship between school-level teacher

retention and ELA achievement has been reduced to non-significance, likely due to the

inclusion of other workforce composition variables.

Looking at school workforce characteristics, schools with higher proportions of

teachers with professional licenses have higher mean ELA achievement scores, while

those with higher proportions of minority teachers have lower mean ELA achievement

scores. For school structural characteristics, an increased proportion of minority students

is associated with higher ELA scores (Y06=-06, p=.005) while the proportion of free and

reduced lunch students is associated with lower ELA scores (Yo7= -0.14, p=.000). The

average school-level ELA pretest score is also associated with higher mean ELA

achievement (70150.94, p=.000). Finally, student characteristics are important in

understanding ELA achievement. Student mobility is negatively associated with mean

ELA achievement, with students who change schools exhibiting ELA scores that are 2.74

scale score points lower than those that stay in the same school. Free and reduced lunch

eligibility is also associated with lower mean ELA achievement scores (y30= -3.94,

p=.000). American Indian, black, Hispanic and multiethnic students all have significantly
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lower ELA achievement scores than their white counterparts, while Asian students had

significantly higher ELA achievement scores. Female students also had significantly

higher achievement scores than male students (Y90=2.02, p=.000).

Science Achievement Outcomes

All of the science teacher undersupply relationships with student science

achievement are in the same direction and the same magnitude as the ELA relationships

described above, and for the sake of parsimony, are not repeated here. See Table 7.9.

Comparison ofMain Effects under Diflerent Demand Estimations

In Chapter 4, the demand formula specification was justified and a formula was

selected, which has been utilized here. For comparative purposes, and to see if inferences

are altered regarding the impact of school-level teacher undersupply on student

achievement, these models were ran under three different demand assumptions: 1)using

a 0.7 smoothing constant for enrollment (the optimal formula identified by Chapter 4, and

the one used‘as the basis for all previous analyses in this chapter), 2) the original formula,

and 3) a 0.7 smoothing constant on enrollment and distributional assumptions on class

size (~N(25, .5) and courses taught per FTE (~N(5, 1). Table 7.10 compares the main

effects from each of these methods for mathematics, Table 7.11 for English language arts,

and Table 7.12 for science.

In Table 7.10, we see that the coefficients for the relationship between

mathematics undersupply and student mathematics achievement is in the same direction,

with similar standard errors, and similar significance levels. The formula with

distributional assumptions actually detects a stronger relationship between mathematics

undersupply and student mathematics outcomes, which indicates that the primary formula
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utilized in this chapter may be a more conservative formula, which helps avoid Type I

errors. For English language arts (Table 7.11) and science (Table 7.12), the estimates and

standard errors are nearly identical.

Sensitivity Analyses

As discussed in Chapter 5, the question of sensitivity analyses in this contect is: to

what extent could an unobserved confounding variable alter the inferences regarding the

relationship between school-level teacher undersupply in mathematics, English language

arts, and science and related student achievement outcomes. To do this, I make use of the

Impact Threshold for Confounding Variables (ITCV), to quantity how powerful the

impact of an unmeasured confound would have to be in order to negate these inferences

(Crosnoe, 2009; Frank, 2000). This method is more fully developed in Chapter 5, and in

Technical Appendix D. Sensitivity analyses are presented below for each of the three

outcomes (mathematics, English language arts, and science).8

The impact of an unmeasured confound (recall impact =r v.y><r WC, see Frank,

2000) would have to have magnitude greater than .02 to invalidate the inference

regarding mathematics teacher undersupply and its relationship to student mathematics

achievement outcomes. Thus to invalidate the inference that high levels of teacher

undersupply have a negative impact on student achievement outcomes, a confounding

 

8 These calculations are obtained by conducting school-level regressions with aggregate student variables,

and regressing all ofthe predictors on the treatment (school-level teacher undersupply in each subject) and

obtaining the R value, and then regressing all predictors on the outcome without the treatment and

obtaining the R2 value. As the outcome was a student-level outcome, the variables were aggregated to

average achievement scores and the continuous teacher undersupply predictor was used. Seltzer, Kim &

Frank (2006) suggest that when performing a cluster-level regression with unbalanced data, precision

2

weights should be used. These weights are calculated by 1/r+Vj, where VJ=o Inj. See Technical Appendix

D for more detail.
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variable would have to be correlated with teacher undersupply at 0.23 and with school-

level mathematics achievement at .09. These are small-to-moderate correlations. It is

important to note that this assumes that the unmeasured confound is uncorrelated with the

measured covariates (Frank, 2000).

Turning to English language arts, the findings are very similar. For English

language arts, the impact would have to be greater than .03 to invalidate the inference

between school-level ELA teacher undersupply and student ELA achievement. The

confounding variable would have to be correlated with ELA teacher undersupply at .25

and with student ELA achievement at .25.

In science, the impact would have to be greater than is .02. An unobserved

confound would have to be correlated with science teacher undersupply at .22 and with

student science achievement at .09.

To put these numbers in context, it is helpful to compare the threshold for an

unmeasured confounding variable with the impacts for measured covariates. One of the

strongest predictors is the school—level aggregate of student mobility. The impact of

school-level student mobility on the coefficient for school-level teacher mathematics

undersupply on student achievement is .07, which is the product of the correlation with

mathematics teacher undersupply (.09) and the correlation with school-level mathematics

achievement (-.17). Therefore, we see that the impact of an unmeasured covariate that

would invalidate the inference between school-level undersupply and student

achievement is smaller than the impact of the key predictors, but not by a large degree.

This suggests that, although an unmeasured confound would have to be correlated with
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the outcome and the treatment at moderate levels, these levels are in the same range as

the strongest measured covariate.

Conclusions and Limitations

The evidence presented here suggests that school-level teacher undersupply is an

important factor in student achievement outcomes. This is not necessarily a surprising

relationship. It does, however, provide empirical evidence to support initiatives that focus

on adequately staffing individual schools, rather than overall teacher supply at the state or

national level. Michigan has proposed several of these policies in their recent Race to the

Top application, including the Woodrow Wilson Teaching Fellows program (aimed at

matching high-quality mathematics and science teachers with areas of high need) and a

specific focus on recruiting and retaining high-quality teachersfor schools in which there

is an identified need. It is this matching of qualified teachers to undersupplied schools

that is critical, not merely widescale teacher recruitment efforts. This may require

incentives or specific supports, such as assistance with getting through human resource

“hoops.”

This analysis also suggests that having an adequate supply ofteachers is  
important, regardless of teacher quality. This is not to say that teacher quality is

unimportant, but simply that, regardless of quality, providing an adequate quantity of

instructional staff to meet instructional needs has a positive impact on student

achievement. For many struggling schools, the addition of more people could have

beneficial consequences, while the longer-term work of improving quality can continue.

It is important to note, however, that this analysis only considers licensed instructional

staff; this is not to imply that simply putting a body in the classroom will yield results,
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but rather that providing a licensed and endorsed teacher of any career stage or ability

level is an important first step in raising achievement. This is a problem that has a

solution—find areas of shortage and staff them adequately, and in today’s educational

climate, may be an important step to take.
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Table 7.1: OLS Regression Predicting Mathematics Teacher Undersupply
 

 

 

Coefir Std.Er P-value

Percent free and reduced lunch 0.004 0.004 0.363

Racial composition of the school

Percent American Indian/PI 0.005 0.009 0.565

Percent Asian -0.015 0.017 0.375

Percent black -0.01 0.004 0.003

Percent Hispanic -0.01 0.007 0.051

Percent multiethnic 0.001 0.01 0.933

reference=percent white

Locale

City -0.33 0.18 0.064

Town -0.2 0.17 0.231

Rural -0.3 0.14 0.037

reference=suburban

School Size

Less than 300 students -0.52 0.15 0.001

Greater than 1000 students 0.76 0.12 .000

reference=300-999 students

Average teacher retention rate -0.01 0.008 0.190

Proportion teachers with prof licenses 0.01 0.006 0.370

Proportion minority teachers 0.02 0.006 0.029

Proportions highly qualified teachers -0.01 0.004 0.083

Charter -0.059 0.319 0.853

Magnet -0.29 0.146 0.045

Average mathematics pretest -0.02 0.008 0.056

Percent female students 0.02 0.006 0.002

Percent of student mobility 0.004 0.002 .093

Adj R-squared 0.1 775

N 578  
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Table 7.2: Logistic Regression Predicting Significant Mathematics Teacher

Undersupply
 

Odds Ratio Std.Er P-value
 

Percent free and reduced lunch 1.01 0.01 0.921

Racial composition of the school

Percent American Indian/Pl 1.02 0.03 0.55

Percent Asian 0.99 0.04 0.813

Percent black 0.98 0.01 0.075

Percent Hispanic 0.99 0.02 0.509

Percent multiethnic 0.98 0.05 0.734

reference =percent white

Locale

City 1.18 0.45 0.66

Town 0.66 0.24 0.265

Rural 0.61 0.2 0.132

reference =suburban

School Size

 

  

Less than 300 students 0.1 0.08 .002

Greater than 1000 students 4.25 1.15 .000

reference=300—999 students

Average teacher retention rate 0.99 0.02 0.915

Proportion teachers with prof licenses 0.98 0.02 0.386

Proportion minority teachers 1.02 0.01 0.112

Proportions highly qualified teachers 0.98 0.01 0.125

Charter 0.49 0.48 0.464

Magnet 0.91 0.31 0.774

Average mathematics pretest l 0.02 0.954

Percent female students 1.04 0.02 0.022

Percent of student mobility 1.01 0.01 0.012

Pseudo R2 0.2076

N 578
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Table 7.3: OLS Regression Predicting—ELA Teacher Undersupply
 

 

 

Coefl Std.Er P-value

Percent free and reduced lunch -0.003 0.01 0.56

Racial composition ofthe school

Percent American Indian/PI -0.002 0.01 0.888

Percent Asian -0.04 0.02 0.133

Percent black -0.01 0.01 0.017

Percent Hispanic -0.002 0.01 0.859

Percent multiethnic 0.0001 0.02 0.998

reference=percent white

Locale

City 0.04 0.25 0.873

Town -0.05 0.23 0.814

Rural 0.25 0.2 0.207

reference =suburban

School Size

Less than 300 students 0.22 0.21 .295

Greater than 1000 students -0.21 0.17 .236

reference=300-999 students

Average teacher retention rate -0.01 0.01 0.277

Proportion teachers with prof licenses 0.02 0.01 0.066

Proportion minority teachers 0.02 0.01 0.018

Proportions highly qualified teachers -0.02 0.01 0.002

Charter -0.05 0.45 0.902

Magnet -0.13 0.2 0.528

Average ELA pretest -0.03 0.01 0.007

Percent female students 0.02 0.01 0.1

Percent of student mobility 0.001 0.003 0.706

Adj R-squared 0.0706

N 578 
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Table 7.4: Logistic Regression Predicting Significant ELA Teacher Undersupply
   

 

  

Odds Ratio Std.Er P-value

Percent free and reduced lunch 0.99 0.02 0.414

Racial composition of the school

Percent American Indian/PI 1.06 0.03 0.035

Percent Asian 1.12 0.05 0.012

Percent black 0.98 0.02 0.173

Percent Hispanic 1.02 0.02 0.476

Percent multiethnic 1.02 0.03 0.626

reference =percent white

Locale

City 0.73 0.43 0.593

Town 0.14 0.15 0.075

Rural 0.71 0.41 0.551

reference=suburban

School Size

Less than 300 students 0.3 0.28 .191

Greater than 1000 students 2.91 1.44 .031

reference=300-999 students

Average teacher retention rate 1.01 0.04 0.704

Proportion teachers with prof licenses 1.03 0.03 0.336

Proportion minority teachers 1.04 0.02 0.057

Proportions highly qualified teachers 0.98 0.02 0.336

Charter 3.47 5.18 0.404

Magnet 2.37 1.15 0.076

Average ELA pretest 0.91 0.04 0.014

Percent female students 1.05 0.02 0.037

Percent of student mobility l 0.01 0.918

Pseudo R2 0. 21 73

N 578
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Table 7.5: OLS Regression Predictingcience Teacher Undersupply
 

 

  

C0317r StdEr P-value

Percent free and reduced lunch 0.01 0.004 0.001

Racial composition of the school

Percent American Indian/PI -0.004 0.009 0.676

Percent Asian -0.102 0.02 0.000

Percent black -0.01 0.004 0.033

Percent Hispanic -0.01 0.01 0.106

Percent multiethnic 0.001 0.01 0.962

reference=percent white

Locale

City -0.11 0.17 0.516

Town 0.03 0.16 0.835

Rural 0.09 0.14 0.501

reference =suburban

School Size

Less than 300 students -0.21 0.15 .160

Greater than 1000 students -0.44 0.12 .000

reference=300~999 students

Average teacher retention rate -0.01 0.01 0.505

Proportion teachers with prof licenses -0.005 0.006 0.424

Proportion minority teachers 0.003 0.006 0.615

Proportions highly qualified teachers -0.002 0.004 0.579

Charter -0. 131 0.306 0.667

Magnet -0.056 0.139 0.689

Average science pretest -0.012 0.008 0.111

Percent female students -0.002 0.005 0.693

Percent of student mobility 0.01 0.002 0.01

Adj R-squared 0.2387

N 578
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Table 7.6: Logistic Regression Predicting Significant Science Teacher
   

 

 

Odds Ratio Std.Er P-value

Percent free and reduced lunch 1.05 0.02 0.026

Racial composition of the school

Percent American Indian/PI 0.82 0.22 0.456

Percent Asian 0.89 0.13 0.429

Percent black 0.98 0.02 0.229

Percent Hispanic 0.99 0.03 0.577

Percent multiethnic 0.41 0.24 0.122

reference =percent white

Locale

City 0.89 0.69 0.879

Town 0.56 0.45 0.466

Rural 0.2 0.17 0.064

reference=suburban

School Size

Less than 300 students 0.06 0.08 .040

Greater than 1000 students 1.7 1.06 .394

reference=300-999 students

Average teacher retention rate 0.98 0.03 0.539

Proportion teachers with prof licenses 0.98 0.03 0.57

Proportion minority teachers 1.01 0.02 0.765

Proportions highly qualified teachers 0.99 0.02 0.815

Charter 1.2 1.87 0.909

Magnet 0.73 0.59 0.696

Average science pretest 1.04 0.04 0.347

Percent female students 1.04 0.03 0.125

Percent of student mobility 1.02 0.01 0.002

Pseudo R2 0.2389

N 578  
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Table 7.7: Hierarchical Linear Model Predicting Student Mathematics Achievement as a

Function of Mathematics Teacher Undersupply  
 

Bivariate Model 2 Model 3 Model 4
 

Coefir p-val Coefl p-val

(Se) (Se)

Coejf p-val Coefi' p-val

(58) (se)
 

.022

Intercept goo 1093.63 .000 1093.52 .000

(.56) (.22)

Level 2 Variables

Mathematics teacher -l.09 .058 -0.46

undersupply 701 (.57) (.20)

Instructional Workforce Characteristics

School-level teacher

retention rate 702

Proportion teachers

w/prof licenses 703

Proportion minority

teachers 70.,

Proportion HQ teachers 705

School Structrual Characteristics

Percent minority students 706

Percent free/reduced

lunch students ‘10-,

City Yos

Town 709

Rural 7010

(suburb=reference)

Small school you

Large school 7012

Medium school=reference

Charter 7013

Magnet 7014

Group Meansfor Level 1 Variables

Mean mathematics pretest 7015 1.23

(.03)

Mean different school you,
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.000

1093.41 .000 1093.55 .000

(.21)

-044

(.19)

0.21

.04)

1.14

(.03)

.003

(.01)

.021

.000

.000

.004

(.18)

-035

(.16)

0.04

(.03)

0.09

(.03)

-007

(0.02)

0.04

(.02)

0.03

(.01)

-0.05

(.02)

-0.06

(.65)

0.71

(.60)

1.43

(.54)

-1.14

(.74)

0.63

(.46)

2.03

(.169)

0.04

(.62)

0.96

(.03)

.001

(.01)

.028

.239

.002

.001

.020

.069

.006

.93 l

.239

.009

.124

.167

.232

.953

.000

.476



 

 

 

Table 7.7 (cont'd)

Bivariate Model 2 Model 3 Model 4

Coefir p—val Coefl p-val Coejf p-val Coefir p—val

(sel lsg (38) 6e)

Student Characteristics * *

Student mobility 710 -3.81 .000 -3.08 .000

(.42) (.42)

Math pretest 720 0.91 .000 0.91 .000 0.90 .000

(.01) (.01) (.01)

Free/reduced lunch eligible 730 -3.82 .000 -3.66 .000 -3.16 .000

(.20) (.20) (.19)

American Indian, M) -2.17 .004

(.74)

Asian, yso 1.52 .004

(.51)

Black, 760 -7.11 .000

(.39)

Hispanic, 770 -2.11 .000

(.51)

Multiethnic, 780 -2.85 .003

(.96)

Female 790 -0.21 .145

(.14)

Program eligible 710 -5.42 .000

(.73)

 

Random Effects
 

Levellvariance component 02 805.75 576 381.99 575 381.16 573 378.09 560

Level 2 variance component, 100 172.69 22.18 19.82 13.52

Proportion variance explained, n/a 53% 53% 53%

Level 1

Proportion variance explained, 18% 87% 89% 92%

Level 2

* All level 2 variables are grand mean centered.

"Pretest and same school are group mean centered, with group means included at level 2. All

other leVel 1 predictors are grand mean centered.
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Table 7.8: Hierarchical Linear Model Predicting Student English Language Arts

Achievement as a Function of English Language Arts Teacher Undersupply
 

 

 

Bivariate Model 2 Model 3 Model 4

Coefl p—val Coefir p—val Coeff p-val Coefl p-val

(58) (88) (88) (se)

Intercept goo 1097.75 .000 1097.62 .000 1097.5 .000 1097.66 .000

(.49) (.22) 4 (.20)

Level 2 Variables

ELA teacher -l.31 .003 -0.34 .034 -0.35 .017 -0.37 .000

undersupply 1m (.44) (.16) (.14) (.10)

Instructional Workforce Characteristics

School-level teacher 0.14 .000 -.01 .821

retention rate 702 (-04) (-O3)

Proportion teachers 0.09 .005

w/prof licenses yo3 (.03)

Proportion minority -0.07 .005

teachers 704 (0.02)

Proportion HQ teachers 705 0.03 .077

(.02)

School Structrual Characteristics

Percent minority students 706 0.06 .005

(.02)

Percent free/reduced -0.14 .000

lunch students 707 (.02)

City 703 1.29 .054

(.67)

Town 709 0.30 .636

(.63)

Rural 7010 0.61 .310

(suburb=reference) (~60)

Small school 701 i 0.15 .863

(.88)

Large school 7012 -.24 .627

(medium school=reference) (49)

Charter 7013 0.87 .616

(1 .73)

Magnet 7014 -0.07 .920

(.65)

Group Meansfor Level 1 Variables

Mean ELA pretest 7015 1.28 .000 1.21 .000 0.94 .000

(.03) (.04) (.04)

Mean different school 7016 -0.03 .019 -0.02 .093

(.01) (.01)
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Table 7.8 (cont'd)

Bivariate Model 2 Model 3 Model 4

Coejf p—val Coefl p-val Coefl' p-val Coejf p-val

(5e) ($6) (89) (SB)

Student Characteristics * *

Student mobility 710 -3.29 .000 -2.74 .000

(.37) (.35)

ELA pretest 720 1.02 .000 1.02 .000 1.00 .000

(.01) (.01) (.01)

Free/reduced lunch eligible be -4.55 .000 -4.41 .000 -3.94 .000

(.20) (.19) (.18)

American Indian, y40 -2.7 l .001

(.83)

Asian, 750 2.06 .004

(.71)

Black, 760 -6.23 .000

(.39)

Hispanic, 770 -3.45 .000

(.45)

Multiethnic, 730 -2.77 .004

(.96)

Female 790 2.02 .000

(.15)

Program eligible 7100 -5.59 .000

(.98)

Random Eflects

Level 1 variance component 62 817.17 575 385.47 575 384.84 573 381.36 560

Level 2 variance component, too 130.79 22.92 21.82 15.51

Proportion variance explained, n/a 53% 53% 53%

Level 1

Proportion variance explained, 3% 83% 84% 89%

Level 2

* All level 2 variables are grand mean centered.

”Pretest and same school are group mean centered, with group means included at level 2. All

other level I predictors are grand mean centered.
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Table 7.9: Hierarchical Linear Model Predicting Student Science Achievement as a

Function of Science Teacher Undersupply
 

 

 

Bivariate Model 2 Model 3 Model 4

Coefl p—val Coefl p-val Coefl p-val Coefir p-val

(se) (se) (se) . (se)

Intercept goo 1098.34 .000 1098.23 .000 1098.17 .000 1098.31 .000

(.59) (.21) (.22) (.20)

Level 2 Variables

Science teacher -3.43 .000 -0.87 .000 -0.86 .000 -0.77 .000

undersupply 101 (.58) (.18) (.18) (.17)

Instructional Workforce Characteristics

School-level teacher 0.09 .026 -.02 .661

retention rate 702 (.04) (.04)

Proportion teachers 0.08 .0 10

w/prof licenses 703 (.03)

Proportion minority -0.07 .003

teachers yo, (0.02)

Proportion HQ teachers yo, 0.05 .001

(.02)

School Structrual Characteristics

Percent minority students 706 0.04 .040

(.02)

Percent free/reduced -0.10 .000

lunch students 707 (.02)

City 708 0.10 .890

(.71)

Town 709 0.02 .971

(.62)

Rural 7010 0.13 .822

(suburb=reference) (~60)

Small school 7011 -0.90 .3 18

(.90)

Large school 7012 0.31 .500

(medium school=reference) (~46)

Charter 7013 2.71 .105

(1.67)

Magnet 7014 0.85 .146

(.58)

Group Meansfor Level 1 Variables

Mean science pretest 7015 1.34 .000 1.29 .000 1.01 .000

(.03) (.03) (.05)

Mean different school 7016 -0.02 .067 -0.01 .240

(.01) (.01)
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Table 7.9 (cont'd)
 

 

 

 

 

Bivariate Model 2 Model 3 Model 4

Coefir p-val Coefir p—val Coefl p-val Coefl p-val

(se) (se) (se) (se)

Student Characteristics "' *

Student mobility (1=different school) 710 -4.48 .000 -3.77 .000

(.50) (.51)

Science pretest 720 0.98 .000 0.98 .000 0.97 .000

(.01) (.01) (.01)

Frec/reduced lunch eligible 730 -4.03 .000 -3.85 .000 -3.43 .000

(.26) (.25) (.25)

American Indian, y40 -1.21 .168

(.88)

Asian, 750 8.58 .000

(.74)

Black, 1'60 -6.41 .000

(.49)

Hispanic, 770 -0.51 .414

(.63)

Multiethnic, 730 -3 .45 .044

(1.71)

Female 790 0.32 .081

(.18)

Program eligible 7100 -5.62 .000

(1.04)

Random Eflects

Level 1 variance component 62 1099.2 576 637.02 575 635.89 573 631.68 560

Level 2 variance component, Too 184.86 19.08 18.77 13.91

Proportion variance explained, n/a 42% 42% 43%

Level 1

Proportion variance explained, 8% 90% 91% 93%

Level 2

* All level 2 variables are grand mean centered.

”Pretest and same school are group mean centered, with group means included at level 2. All

other level 1 predictors are grand mean centered.
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Table 7.10: Comparison of Main Effects for Math Undersupply on Student

Mathematics Achievement Using Different Demand Formula Assumptions

Std Level 1 Level 2

Coefl Error P-value variance variance
 

Enrollment with smoothing

constant“ -0.35 0.16 0.028 378.09 13.52

Enrollment with smoothing constant

and assumptions on class size and -0.42 0.15 0.006 378.09 13.69

Original demand formula -0.35 0.15 0.023 378.09 13.8

I"A ll models are thefull models, with all school- and student-level covariates specified as in Chapter 7

I""‘Estimate utilized in all undersupply analyses in Chapter 7

 

Table 7.11: Comparison of Main Effects for English Language Arts Undersupply

on Student ELA Achievement Using Different Demand Formula Assumptions

- Std Level 1 Level 2

Coefir Error P-value variance variance
 

Enrollment with smoothing

constant" -0.37 .10 .000 381.36 15.51

Enrollment with smoothing constant

and assumptions on class size and

FTE -0.38 0.10 .000 381.36 15.67

Original demand formula -0.39 0.10 .000 381.36 15.64

‘All models are thefull models, with all school- and student-level covariates specified, as in Chapter 7

"Estimate utilized in all undersupply analyses in Chapter 7

 

Table 7.12: Comparison of Main Effects for Science Undersupply on Student

Science Acheivement Using Different Demand Formula Assumptions

Std Level 1 Level 2

Coefir Error P-value variance variance
 

Enrollment with smoothing

constant” -0.77 .17 .000 631.68 13.91

Enrollment with smoothing constant

and assumptions on class size and

FTE -0.74 .16 .000 631.69 13.98

Original demand formula -0.79 .16 .000 631.69 13.9

*All models are thefidl models, with all school- and student-level covariates specified, as in Chapter 7

"Estimate utilized in all undersupply analyses in Chapter 7
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CHAPTER 8: MOVING BEYOND TEACHER DEMAND, SUPPLY, AND UNDERSUPPLY:

CONCLUSIONS AND DISCUSSION

This dissertation investigates each of the three aspects of teacher supply in the

state of Michigan: estimating demand, understanding supply and how turnover relates to

supply, and teacher undersupply. More importantly, it marshals evidence regarding the

relationship between teacher retention and teacher undersupply, and student achievement

and mobility. Using multiple rigorous methods, including multilevel modeling with

longitudinal data, and propensity score matching, and quantifying the robustness ofthe

inferences to unobserved covariates using sensitivity analyses, this dissertation seeks to

provide a wealth of evidence, grounded in rigorous methods, to provide policy-relevant

information on teacher labor supply in Michigan. Below, I outline the major lessons

learned from each of the sections, and then move to a discussion of the policy

implications.

Estimating Teacher Demand

Through an iterative series of analyses that tested various specifications of the

demand formula, the importance of using a more sophisticated calculation for student

enrolhnent was identified. For this study, student enrollment is now calculated using

three years of enrollment data and a 0.7 smoothing constant in order to more accurately

predict enrollment for use in the demand formula. Overestimating enrollment leads to an

overestimate of demand, which in turns indicates a greater amount of undersupply than

may in fact be occurring.

The second important lesson from testing the demand formula was that overall,

there is not differential formula functioning by school types. The distribution of
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undersupply over types of schools does not differ regardless of the demand formula

specification. Changes in classification of significant undersupply are largely due to the

shape of the distributions, and the fact that imposing a 1.0 FTE cut point as the threshold

for “significant” undersupply places that cut point at different locations on the varying

distributions. In the original formula, more schools fell above that cut point, because the

formula was more generous, and also, because enrollment was likely overestimated by

using a simple average, particularly in large schools. Therefore schools were classified as

undersupplied who may not actually have experienced undersupply. This problem has

been corrected with the revised formula by estimating enrollment using a projection with

a smoothing constant, rather than a three year average.

The purpose of this formula is to provide a useful tool to practitioners and

researchers alike to allow for demand calculations that are sensitive to school-specific

variations in demand and supply; that takes into account the context of curricular

requirements; and that can be used as a planning tool by practitioners in which they can

adjust the assumptions to reflect the current or future conditions in their school in order to

inform decision making.

Teacher Retention

School-level teacher retention is clearly an essential characteristic of schools, and

is important to consider from an organizational standpoint. This analysis identified a

mechanism, student mobility, through which school-level teacher retention appears to

affect student achievement. Although teacher retention appears to have a direct effect on

student achievement outcomes via an interaction with student mobility, this relationship

can be explained with other covariates. The results from the first analysis demonstrate
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that remaining in the same school has a positive impact on student achievement

outcomes. The second analysis in turn demonstrates that students in schools with higher

levels of teacher retention are more likely to stay in the same school, which in turn has a

positive impact on achievement. Therefore, teacher retention appears to affect student

achievement via the mechanism of student mobility. This suggests that there is an

interrelated nature of the two “levels” of chum—teacher and student—and that

stabilizing the teacher population can help to stabilize the student population, which in

turn can positively impact achievement.

Although not directly measured by this study due to the lack of available

variables, the evidence strongly suggests that it is the culture ofthe school, which student

and teacher mobility serve as a proxy for in this analysis, which is an important

characteristic in student achievement. As much prior research has shown, schools that

have higher levels of trust, stronger reciprocal relationships, and positive student-teacher

relationships are more successful and are able to support higher levels of student

achievement. This analysis suggests that teacher and student mobility are a critical aspect

of this school-level culture.

These findings were tested and validated through the use of propensity score

analyses, which test whether or not high school-level teacher retention has an effect on

student mobility, when controlling for selection bias by matching on observed

characteristics. The results from the propensity scores demonstrate that increasing school-

level teacher retention rates can lead to decreases in student mobility. As shown in

Chapter 5, increased student mobility has positive implications on achievement.

Therefore, a valid policy initiative is to identify ways to increase school-level teacher
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retention, such as establishing programs that help to stabilize a teaching force within a

given school, or to incentivize teachers to remain within that school.

Teacher Undersupply

In mathematics, English language arts, and science, teacher undersupply was

related to decreased student achievement. This supports initiatives that focus on

adequately staffing individual schools, such as Michigan’s new Woodrow Wilson

Teaching Fellows program (aimed at matching high-quality mathematics and science

teachers with areas of high need) and a specific focus on recruiting and retaining high-

quality teachersfor schools in which there is an identified need. It is this matching of

qualified teachers to undersupplied schools that is critical, not merely widescale teacher

recruitment efforts.

While the quality of teachers is very important, this analysis shows that,

particularly in the context of increased graduation requirements, it is imperative to ensure

that all schools are adequately staffed as a minimum requirement for supporting schools

for success. This is not to say that teacher quality is unimportant, but simply that,

regardless of quality, providing an adequate quantity of instructional staff to meet

instructional needs has a positive impact on student achievement. For many struggling

schools, the addition of more people could have beneficial consequences, while the

longer-term work of improving quality can continue. IThis is a problem that has a

solution—find areas of shortage and staff them adequately, and in today’s educational

climate, may be an important step to take.
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Policy Implications

As Michigan and other states continue to modify graduation requirements and

curricular standards to comply with ever-changing federal mandates, as well as face an

economic situation that requires difficult decisions regarding staffing, class size, and

school configurations, this analysis provides important information for policymakers. The

revised demand formula can be used by the state, districts, or even individual schools to

help them assess areas of possible undersupply. It can also be used to test the undersupply

implications under various proposed changes. For example, if a school is facing a

potential undersupply, they can adjust the class size, or courses taught per FTE, to see the

impact on their undersupply. With the modifications outlined here, the formula is a

rigorous and effective, yet computationally straightforward, tool for policymakers.

Michigan is also implementing alternative routes to teacher certification, and

beginning to focus some efforts on not only recruitment, but on the targeting of teachers

to schools. The distribution of both retention rates and undersupply over schools suggests

that this is a wise strategy. While Michigan does not face an aggregate undersupply of

teachers, or a statewide high teacher mobility rate, there are certain schools that are

differentially impacted by these challenges. Particularly as Michigan moves forward with

turning around low-performing schools and continuing to focus attention on closing

achievement gaps, targeting teaching resources to areas of highest need, and being able to

accurately diagnose those areas of need, is vitally important.

Finally, the implications from the teacher retention analyses suggest that

Michigan needs to continue and enhance efforts that retain qualified teachers not only in

the profession, but specifically in a given school. Finding ways to incentivize teachers to
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remain in their schools, especially when those schools-are struggling schools, may have

strong impacts on improving student achievement.

Looking Ahead

Michigan’s changing data landscape will provide a number of exciting analytic

opportunities that can be brought to bear on this problem. The first is the newly

implemented teacher-student link, and related measures of teacher effectiveness and

student growth. As these data become available, teacher effectiveness will be an

important predictor and covariate alongside school-level teacher retention and

undersupply rates. Additionally, this teacher-student link will allow for the estimation of

multilevel models with students nested within teachers, so that an individual teacher’s

mobility can be evaluated for its impact on their student’s achievement. The teacher-

student like will also allow for the estimation of school fixed effects models, which are

useful in accounting for school-level time-invariant unobserved characteristics. Three-

level multilevel models, with students nested within teachers within schools, can also be

estimated, which allows for the further partitioning of effects into the appropriate levels.

Another development is Michigan’s new electronic transcript information. As of

winter 2011, Michigan will begin collecting and making available individual student

level data regarding coursetaking and grades. This provides a whole new avenue of

research. For example—how do coursetaking patterns differ among students in schools

with high rates of teacher mobility?

Finally, through the transcript system and a concerted data effort, Michigan is

making major inroads on its P-20 data system, with the inclusion ofnew postsecondary

data. Understanding how teacher retention, student mobility, and teacher undersupply
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relate to student preparation for and transition to college is a critical outcome. Are

students who have a large number of inexperienced or transitory teachers less likely to

transition to college? Do schools with a great deal of instability in teaching force struggle

to prepare students for college, and to create a culture that supports college going?

Outside of the bounds of a specific teacher labor supply analysis, the continued

use of administrative data to evaluate timely and relevant questions of interest to the state

and to the education policy discourse at large is the fourth critical outgrowth of this study,

and other work that preceded it. A popular idea is creating a “culture of quality data use,”

which will remain just that—an idea—without researchers with appropriate training and a

strong interest in education policy taking an active role in pioneering data use, sharing

information with the state, and producing rigorous results for dissemination in the

academic community.

223

 



APPENDIX A

Complete List of Variable Descriptions and Summary Statistics
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Table A1: Complete List of Variable Descriptions and Summary Statistics
 

Variable Description Mean SD Min
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Average teacher

retention rate

 

Percentage of teachers who were

 

retained1n a school from one year to

the next. Averaged over four years

(2005-2008), three retention time

points

 

 

 

 

(new demand formula)

  
calculated using the new demand

formula. Positive numbers indicate

undersupply
 

     

    

Mathematics Undersupply in mathematics as 0.48 1.2 -5.7 4.5 4.7

undersupply (new calculated using the new demand

demand formula) formula. Positive numbers indicate

undersupply

English language arts Undersupplyin English language -0.78 1.58 -15 5.17 4,7

undersupply (new arts as calculated using the new

formula) demand formula. Positive numbers

indicate undersupply

Science undersupply Undersupply in science as -0.77 1.2 -9.1 3.56 4, 7

 

  

 

 

 

 

“if ' ‘11 it"xifft..~g:1;; .._.1‘_ rail

Math achievementscore Mathscalescore on 2009Michigan

Merit Examination, Michigan's high

school assessment. Dependent

variable in multilevel models

English language arts English language arts scale score on 1101 30.8 950 1250 5,7

achievement score 2009 Michigan Merit Examination.

Dependent variable in multilevel

models

Science achievement Science scale score on 2009 1101.6 35.8 950 1250 5,7

score Michigan Merit Examination.

Dependent variable in multilevel

models

Student mobiliy Dummy, 1 = different school in 9th 0.14 0.35 0 l 5

(Different school) grade than 11th grade. Dependent

variable in teacher retention

multilevel models

Math pretest Math scale score on 2006 MEAP 813.59 24.1 470 952 5,6,7

achievement score test, last test administered prior to

high school         
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Table A1 (cont'd)

English language arts ELA scale score on 2006 MEAP test 814.3 21.3 458 908 5,6,7

pretest achievement

score

Science pretest Science scale score on 2006 MEAP 823.76 23.3 485 959 5,6,7

achievement score test

Gender Dummy, l = female 0.51 0.5 0 1 5,7

Racial/ethnic code 5,7

American Dummy, 1 = yes. Combined 0.01 0.1 0 1 5,7

Indian/Pacific Islander American Indian and Pacific

Islander due to small sample sizes

Asian Dummy, 1 = yes 0.02 0.15 0 1 5,7

Black Dummy, l = yes 0.14 0.35 0 1 5,7

White Reference 0.79 0.41 0 1 5,7

Hispanic Dummy, l = yes 0.03 0.17 0 1 5,7

Multiple race/ethnicity Dummy, 1 = yes 0.01 0.08 0 1 5,7

Free/reduced lunch Dummy, 1=yes. Indicates whether a 0.27 0.44 0 1 5,7

eligible student is eligible for free or

reduced lunch.

Special programs Dummy, l = eligible for Title I, 0.01 0.11 0 1 5,7

special education, Section 504,

Limited English Proficient, or

mirgrant programs

hool Level Variables (n=580 high schools) .

School-Level Student Aggregate Variables

Aggregate student School-aggregate of student 14.70 24.5 0 100 5,6

mobility mobility; the proportion of students

in a given school who changed

schools between the fall of their

freshmen year (2006) and their

junior year at the MME test (2009

Aggregate mathematics School-aggregate mathematics 1092.9 14.5 1034 1141 7

score (2009) score. Aggregated for each student

in a given school who took the test.

Used in sensitivity analyses.

Aggregate English School-aggregate ELA score. 1096.9 14 997 1147 7

language arts score

(2009)

Aggregated for each student in a

given school who took the test.

Used in sensitivity analyses.
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Table A1 (cont'd)
 

 

 

 

 

 

 

 

 

  

Aggregate science score School-aggregate science score. 1097.4 16.9 950 1142 7

(2009) Aggregated for each student in a

given school who took the test. Used

in sensitivity analyses.

Aggregate mathematics School-aggregate mathematics 810.7 9.82 784 853 5,6,7

pretest score (2006) pretest score. Aggregated the 2005 ,

MEAP pretest scores for each

student in the school in this analysis

(current school, not the school

where the test was taken)

Aggregate English School-aggregate ELA pretest score. 81 1.66 8.13 784 838 5,6,7

language arts pretest Aggregated the 2005 MEAP pretest

score (2006) scores for each student in the school

in this analysis (current school, not

the school where the test was taken)

Aggregate science School-aggregate science pretest 821.45 10.4 771 863 5,6,7

pretest score (2006) score. Aggregated the 2005 MEAP

pretest scores for each student in the

school in this analysis (current

school, not the school where the test

was taken)

School-level student School-aggregate of the proprotion 13.02 15.9 0 100 5,6

mobiliy (2007 cohort) of the 2007 cohort ofMME testers

who changed schools since the fall

of 2005.

Proportion female School-level aggregate of the 50.90 8.78 0 100 5, 6, 7

proportion of students who are

female

Proportion American School-level aggregate ofthe 1.42 5.03 0 64.7 5, 6, 7

Indian/Pacific proportion of students who are

Islander American Indian/Pacific Islander

Proportion School-level aggregate ofthe 15.55 28.8 0 100 5, 6, 7

black/African American proportion of students who are black

or African American

Proportion Hispanic School-level aggregate of the 3.60 8.34 0 100 5, 6, 7

proportion of students who are

Hispanic

Proportion multiracial School-level aggregate of the 0.56 3.93 0 90.3 5, 6, 7 proportion of students who are

multiracial       
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Table A1 (cont'd)

Proportion Asian School-level aggregate of the 1.45 3.13 0 38.5 5, 6, 7

proportion of students who are

Asian

Proportion white School-level aggregate of the 77.42 30.3 0 100 5, 6, 7

(reference) proportion of students who are white

School Workforce Composition Variables

Percent of teachers with Percentage of teachers who have 83.29 12.1 25.2 100 3,5,6,7

professional licenses professional licenses in a school.

Averaged over four years (2005-

2008)

Percent minority Percentage of teachers in a school 7.97 17.5 0 100 3,5,6,7

teachers who are minority teachers.

Averaged over four years

Percent highly qualified Percentage of teachers in a school 80.61 12.5 0 100 3,5,6,7

teachers who are highly qualified. Averaged

over four years (2005-2008)

Percent free/reduced Percentage of the student body 35.88 19.9 0 99.6 3,5,6,7

lunch eligible for free/reduced lunch

Percent minority Percentage of the student body that 23.27 30 0 100 3,5,6,7

is minority students

Locale 3,4,5,6,7

City Dummy, 1=yes 0.17 0.37 0 1

Suburb Reference 0.28 0.45 0 1

Town Dummy, 1=yes 0.13 0.34 0 1

Rural Dummy, 1=yes 0.42 0.49 0 1

Charter Dummy, 1 = school is a charter 0.06 0.23 0 1 4,5,6,7

school

Magnet Dummy, l = school is a magnet 0.11 0.32 0 l 4,5,6,7

school

School size 3,4,5,6,7

Small school School has less than 300 students 0.15 0.35 0 1

Medium school School has 300-999 students 0.53 0.5 0 1

Large school School has over 1000 students 0.32 0.47 0 1

Retention difference Difference in retention rates from 0 0.11 -0.4 0.69 2,5

2008 to 2006. Used as an indicator

is included in analyses to control for

the direction of change in average

retention rates.        
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Table A1 (cont'd) l
 

Supply, Demand and Undersupply Variables
 

 

 

 

 

 

 

 

 

Mathematics demand Original formula; used an average 6.7 4.54 0.17 22.7 4,7

(original formula) three year enrollment and assumed

class size and courses per FTE

Mathematics demand Modified formula identified for use, 6.49 4.43 0.15 22.1 4,7

(new formula) based on analyses in Chapter 4.

Includes smoothing constant on

three year enrollment estimate;

assumes class size and courses per

FTE to be 25 and 5.

Mathematics demand Formula tested for possible use; 6.52 4.49 0.15 23.2 4,7

(comparative formula) includes assumed distribution on

class size and courses per FTE. Not

selected as optimal; used for

comparative purposes, to test

possible changes in estimates

English lanuage arts Original formula; used an average 6.7 4.54 0.17 22.7 4,7

demand (original three year enrollment and assumed

formula) class size and courses per FTE

English language arts Modified formula identified for use, 6.49 4.43 0.15 22.] 4,7

demand (new formula) based on analyses in Chapter 4.

Includes smoothing constant on

three year enrollment estimate;

assumes class size and courses per

FTE to be 25 and 5.

English language arts Formula tested for possible use; 6.52 4.49 0.15 23.2 4,7

demand (comparative includes assumed distribution on

formula) class size and courses per FTE. Not

selected as optimal; used for

comparative purposes, to test

possible changes in estimates

Science demand Original formula; used an average 5.03 3.41 0.13 17.l 4,7

(original formula) three year enrollment and assmned

class size and courses per FTE

Science demand (new Modified formula identified for use, 4.87 3.32 0.11 16.5 4,7

formula)  based on analyses in Chapter 4.

Includes smoothing constant on

three year enrollment estimate;

assumes class size and courses per

FTE to be 25 and 5.       
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Science demand Formula tested for possible use; 4.89 3.37 0.11 17.4 4,7

(comparative formula) includes assumed distribution on

class size and courses per FTE. Not

selected as optimal; used for

comparative purposes, to test

possible changes in estimates

Mathematics supply Sum of FTES in mathematics for 6.03 4.13 0 24.7 4, 7

each school

English language arts Sum of FTES in English language 7.29 4.94 0 23.6 4, 7

supply arts for each school

Science supply Sum of FTES in science for each 5.65 3.93 0 21.2 4, 7

school

Mathematics Undersupply in mathematics as 0.69 1.28 -5.3 5.2 4, 7

undersupply (original calculated using the original demand

demand formula) formula. Positive numbers indicate

undersupply

Mathematics Undersupply in mathematics as 0.51 1.27 -4.7 5.2 4,7

undersupply calculated using the comparative

(comparative demand demand formula. Positive numbers

formula) indicate undersupply

English language arts Undersupply in English language -0.57 1.62 -15 5.62 4, 7

undersupply (original arts as calculated using the original

demand formula) demand formula. Positive numbers

indicate undersupply

English language arts Undersupply in English language -0.75 1.62 -15 4.99 4, 7

undersupply arts as calculated using the

(comparative demand comparative demand formula.

formula) Positive numbers indicate

undersupply

Science undersupply Undersupply in science as -0.61 1.19 -8.8 3.74 4, 7

(original demand calculated using the original demand

formula) formula Positive numbers indicate

undersupply

Science undersupply Undersupply in science as -0.74 1.23 -9.5 3.66 4, 7

(comparative demand

formula)  calculated using the comparative

demand formula. Positive numbers

indicate undersupply       
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Misclassification Identifies those schools that are

Situation 1 &2 classified as undersupplied by one

demand formula and not by another.

Dummy variable, 1=misclassified.

Situation 1 (original formula) and

Situation 2 (new formula; smoothing

constant on enrollment estimate)

Misclassified 0.06

Not misclassified 0.94

Misclassification Identifies those schools that are

Situation 2 & 4 classified as undersupplied by one

demand formula and not by another.

Dummy variable, 1=misclassified.

Situation 2 (new formula; smoothing

constant on enrolhnent estimate) and

Situation 4 (comparative formula;

smoothing constant on enrollment

and distributional assumptions on

class size and courses per FTE)

Misclassified 0.08

Not misclassified 0.92

Weights

Propensity score School-level propensity of having 0.69 0.46 0 1

high teacher retention

Propensity weight: Propensity weight for the treatment 2.04 2.26 1.02 18

EOTM (estimate on the effect for those schools on the

margin of indifference) margin of indifference. Calculated

by 00(t,x)= t/e(x) + (H )/1-e(x)

Propensity weight: Propensity weight for the treatment 1.71 2.06 l 18

TOTW (treatment on the effect on the treated. Calculated by

treated) 0)(t,x) = t + 1-t/1-e(x)

Propensity weight: Propensity weight for the treatment 1.33 1.15 1 l8

TOCW (treatment on the effect on the control. Calculated by

control) c0(t ,x) = t/e(x) + H      
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Precision weight: Weight used in the sensitivity 0.005 0 0 0.01

mathemathics analysis for mathematics

undersupply sensitivity undersupply (Seltzer, Kim, & Frank,

analysis 2007). Equals l/T +Vj, where

Vj=02lnj.

Precision weight: Weight used in the sensitivity 0.007 0 0 0.01

English language arts analysis for ELA undersupply

undersupply sensitivity (Seltzer, Kim, & Frank, 2007).

analysis Equals 1/1: +Vj, where Vj=62/nj.

Precision weight: Weight used in the sensitivity 0.004 0 0 0.01

Science undersupply analysis for science undersupply

sensitivity analysis (Seltzer, Kim, & Frank, 2007).

Equals 1/t +Vj, where Vj=0'2/nj.

Precision weight: Weight used in the sensitivity .30 0.01 0.28 0.3

teacher retention

sensitivity analysis

 

analysis for teacher retention

analysis (Seltzer, Kim, & Frank,

2007). Equals 1/r +Vj, where

Vj=02lnj. Since the outcome is

dichotomous, there is no 02

produced; this is approximated by

np(l-p), where p=proportion of

students in a given school who

changed schools.      
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TECHNICAL APPENDIX B:

ADDmONAL HISTOGRAMS FROM CHAPTER 4: ESTIMATING TEACHER DEMAND USING

STATE ADMINISTRATIVE DATA: CHALLENGES AND RESOLUTIONS

Demand Histogms under Va_rying Enrollment Calculations

English Language Arts

 

 
  
 

 

  
demela7   
 

Figure C2: ELA demand distribution: New formula (0.7 smoothing constant on

enrollment)
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demela4   
 

Figure C3: ELA demand distribution: 0.4 smoothing constant on enrollment

 

  0

demela71   
 

Figure C4: ELA demand distribution: 0.7 smoothing constant on enrollment; class size

~N(25, 1) and courses per FTE ~N(5, .5).
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 demela75  
 Figure C5: ELA demand distribution: 0.7 smoothing constant on enrollment; class size

~N(25, .5) and courses per FTE ~N(5, .5).
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Science

 

  

   
 

      
Figure C7: Science demand distribution: 0.4 smoothing constant on enrollment
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Figure C9: Science demand distribution: 0.7 smoothing constant on enrollment; class

size ~N(25, 1) and courses per FTE ~N(5, .5).
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Figure C10: Science demand distribution: 0.7 smoothing constant on enrollment; class

size ~N(25, .5) and courses per FTE ~N(5, .5).
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Undersupply Histograms under Vming Enrollment Estimates

 

  

English Language Arts
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Figure C11: ELA Undersupply distribution: original formula (average enrolhnent)
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Figure C12: ELA undersupply distribution: 0.7 smoothing constant on enrollment
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Figure C13: ELA undersupply distribution: 0.7 smoothing constant on enrolhnent; class

size ~N(25, l) and courses per FTE ~N(5, .5).
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Figure C14: ELA undersupply distribution: 0.7 smoothing constant on enrollment; class

size ~N(25, .5) and courses per FTE ~N(5, .5)
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Figure C16: Science undersupply distribution: 0.7 smoothing constant on enrollment
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Figure C17: Science undersupply distribution: 0.7 smoothing constant on enrollment;

class size ~N(25, l) and courses per FTE ~N(5, .5)
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 Figure C18: Science undersupply distribution: 0.7 smoothing constant on enrollment;

class size ~N(25, .5) and courses per FTE ~N(5, .5
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TECHNICAL APPENDIX C:

ADDITIONAL INFORMA TION 0NPROPENS/TYSCOREMETHODS

DISCUSSION OF VARIOUS PROPENSITYSCORE METHODS UTIL/ZED

All propensity score matching strategies used in this dissertation involve the

estimation Of a propensity score as a first step, to identify the propensity to receive the

treatment, and then matching based on that propensity score. There are a class Of

matching estimators that do not require the estimation Of a propensity score at the outset

(see Guo & Fraser, 2010, Chapter 6).

Estimating the Propensity Score

The propensity score is a balancing score, which estimates the probability of

treatment given a set of Observed covariates. Rosenbaum and Rubin (1983) were the first

to suggest this term, as a solution to the problem Of conditioning on all relevant

covariates when there is a high dimensional vector of covariates. The propensity is

usually estimated using a logit or probit model, although the linear probability model can

be used and criticisms of using this model likely do not apply when the model is used for

classification, rather than estimation Of structural coefficients (Smith, 1997). In these

analyses, the propensity score is estimated using a logit model.

Variable choice is critically important in the estimation of the propensity score.

Omitting important variables in the matching can increase bias in the resulting estimates

(Heckman, Ichimura, & Todd, 1997). It is necessary to specify a model that leads to

estimated propensity scores that best represent the true propensity scores, and that

balance the groups of observed covariates (Guo & Fraser, 2010). Variables included in

the prediction equation must be unaffected by participation, and therefore should be

either fixed over time or measured before participation (Caliendo & Kopeinig, 2005).
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The literature suggests the use Of stepwise logistic regression to select variables

(Rosenbaum & Rubin, 1984; Hirano & Imbens, 2001). However, in the context Of this

study, the range of available variables was relatively limited. Therefore, in order to Obtain

balance between treatment and control groups on all available Observed covariates, any

variables that were deemed to be a) causally prior to treatment and b) relevant to the

analysis were included in the prediction equation.

Kernel Matching

Kemel-based matching constructs matches using all individuals (or in this

analysis, schools) in the potential control sample in such a way that it takes more

information from those who are closer matches and downweights more distal

Observations. In this way, it uses comparatively more information than other matching

algorithms (Guo & Fraser, 2010).

Kernel matching uses non-parametric regression. It is a method for estimating

average treatment on the treated, using one-tO-many matching. Instead of assuming

strongly ignorable treatment assignment, kernel matching assumes only the outcome

under the control condition is required to be independent ofthe treatment assignment

(Guo & Fraser, 2010; Heckrnan Ichimura, & Todd, 1997 ; 1998).. This approach

calculates the weighted average of the outcome variable for all nontreated cases and then

compares that weighted average with the outcome of the treated case, where the

difference between the two terms provides an estimate of the treatment effect for the

treated (Guo & Fraser, 2010). A major advantage of this method is that the variance is

lower, because more information is used. A drawback is that the Observations used may

be bad matches (Caliendo & Kopeinig, 2005). Kernel matching can be seen as a
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weighted regression Of the counterfactual outcome on an intercept with weights given by

the kernel weights (Smith & Todd, 2005). These weights are based on the distance

between each individual from the control group and the participant Observation for which

the counterfactual is estimated. As with the selection Of the caliper in nearest neighbor

matching, the selection Of the bandwidth parameter represents an important trade-Off

between small variance and unbiased estimate (Pagan & Ullah, 1999).

Nearest Neighbor Matching: Nearest neighbor matching is the most

straightforward of the matching estimators, where an individual from a comparison group

is matched with a treated individual that is closest in terms ofthe propensity score

(Caliendo & Kopenig, 2005). It is part Of a class Of matching methods known as greedy

matching (D’Agostino, 1998; Guo & Fraser, 2010; Smith & Todd, 2005). Nearest

neighbor matching can either be conducted with replacement, where each match is used

more than once if necessary, or without replacement. There is a trade-Off involved

between the quality of the matches and the variance of the estimator. When replacement

is allowed, the number of distinct non-participants tO construct the counterfactual is

reduced, and this increases the variance (Smith & Todd, 2005). It is also possible to use

more than one neighbor in the matches, as was done in the analysis in Chapter 6. This

also has the trade-Off Of reduced variance but potentially increased bias from poorer

matches (Smith, 1997).

Nearest neighbor matching can also impose a caliper, or a restriction on the

distance between the propensity scores for each Observation. It is suggested that this

caliper be a quarter Of a standard deviation of the sample estimated propensity scores

(Rosenbaum & Rubin, 1985).
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The inherent dilemma in nearest neighbor matching, and more broadly, all of the

greedy matching algorithms, is the tension between incomplete matching and inaccurate

matching. Finding the best neighbor can be challenging; while trying to Obtain a

maximum number of exact matches, cases can be excluded, but when trying to maximize

the number of cases, the matching is Often more inexact (Parsons, 2001). It is Often

necessary to run different caliper sizes, checking the sensitivity of results to different

calipers, and choosing the best method based on that (Guo & Fraser, 2010).

Another criticism Of this method is that it requires a substantial common support

region to function efficiently. Greedy matching can exclude cases on the upper end and

lower end of the common support region, because they have no matches. Despite its

limitations, greedy matching is that it allows for many types Of multivariate analyses to

evaluate causal effects, and is a flexible matching strategy (Guo & Fraser, 2010).

Stratification

The stratification method is another commonly used method of propensity score

matching (Guo & Fraser, 2010). The main concept Of stratification matching is tO

partition the common support region Ofthe propensity score into a set Of strata, and then

calculate the impact ofthe treatment within each interval by taking the mean difference in

outcomes between treatment and control conditions (Caliendo & Kopeinig, 2005). This

method was developed initially by Rosenbaum & Rubin (1983), but has received much

attention and use since then.

One ofthe main question that arises in stratification matching is the number Of

strata that are appropriate. Five strata are usually suggested as sufficient to reduce 95%

of the bias associated with one single covariate (Cochrane & Chambers, 1965). All bias
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under the unconfoundedness assumption is associated with the propensity score itself, so

this suggests that under normality, the use Of five strata removes most Of the bias

associated with those covariates (Imbens, 2004).

An important step in the implementation Of stratification matching is to check the

balance Of all Of the covariates within each stratum (Aakvik, 2001). This is a built-in

function of Stata’s pscore matching routine.

Weighting on Propensity Score

This is developed more fully in-text, as it was the main matching method used, so

is discussed less here. Propensity scores can also be used as weights to obtain a balanced

sample of treated and untreated cases (Rosenbaum, 1987; Hirano & Imbens, 2001;

Hirano, Imbens, & Ridder, 2003; Imbens, 2004). These weights are used as sampling

weights in a regression.

The goal Of propensity score weighting is to reweight treated and control

participants to make them representative of the population under study. There are

different types of weights that can be used, including those to estimate the average

treatment effect, the treatment on the treated and the treatment on the control. These were

developed in Chapters 2 and 6 and will not be repeated here.

The way in which the propensity score itself is estimated is crucial when

implementing weighted estimators (Freedman & Berk, 2008; Zhao, 2004). One optimal

method to implement these estimators is to use them with regression adjustment (Hirano

& Imbens, 2001), as was done in Chapter 6.

There are limitations of this method. This has been shown to be an Optimal

method only if study participants were independent and identically distributed, selection
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was exogenous, and the selection equation was specified correctly (as discussed above)

(Freedman & Berk, 2008). If this is not the case, weighting is likely to increase random

error in the estimates, and possibly bias the standard errors downward (Freedman &

Berk, 2008). It is sometimes recommended to simply fit a causal model without weights

(Guo & Fraser, 2010).

Propensity Scores Used In Multilevel Models

Propensity Analyses in a Multilevel Context

In this analysis, the treatment Of interest is a school-level treatment—high rates Of

school-level teacher retention. Therefore, the propensity score is estimated at the school-

level, and then that score is introduced into the actual estimation equations at the school

level as well (i.e. as a weight on schools in the weighting equation; as the matching for

strata, etc.) There is work that has been done on the estimation of an individual

propensity score using a multilevel model (Kim & Seltzer, 2007; Arpino & Mealli, 2008),

but little (to none) done on the logistics and implications of doing a school-level

propensity with an individual level outcome and how the models need to be modified

The use Of propensity scores in a multilevel context is relatively new ground. As

Arpino and Mealli state, “In the paper we explore the use of multilevel techniques for the

specification Ofthe propensity score for multilevel data. The issue has received little

focus in the literature. For the best of our knowledge only Kim and Seltzer (2007) address

the issue explicitly. They propose use Of a multilevel model for estimation of the

propensity score and then implementation Of the matching algorithm within each cluster.

Ifwe impose the condition that treated and matched controls must belong to the same

cluster, we then automatically achieve perfect balancing in all the Observed and
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unobserved cluster characteristics. This strategy is not likely to be feasible in those

situations, representing the norm in social and economic Observational studies, where we

have relatively few units within each cluster. In these cases, in fact, it is likely that in

several clusters it is difficult tO find for each treated unit a good matched control

belonging to the same cluster.”

This suggests that the strategy is to estimate the propensity score in a multilevel

framework, and then estimate the treatment effect for each cluster, which is essentially

what 1 am doing when I use the atts command with the bootstrap (cluster) command. This

is not the best application for my question, when I conceive Of the propensity score as

being at level 2. In this case, it does not make sense to estimate the treatment effect

within each cluster (i.e. school) because the schools themselves are applied to treatment

or control. I was able tO use the weighting strategy to implement these models, by

weighting the level-2 Observations (i.e. schools) by their propensity. The results Of this

are below.

Table A3 below shows the estimated effects Of high school-level teacher retention

on student mobility, with estimates from the weighted models, as well as fi'0m the

original unweighted multilevel models. When weighted by propensity to have high

teacher retention using the EOTM, students in schools with high teacher retention are .83

times as likely to change or leave the school, although this effect does not meet the

threshold for statistical significance. The treatment effect for the treated, similarly, is not

statistically significant. However, when looking at the effect Of high school-level teacher

retention on the control schools (treatment effect on the control), students in schools with

high teacher retention are .71 times as likely to change schools as students in schools with
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lower retention, and this effect statistically significant (although somewhat marginally so,

with t-ratio Of-1.820, p-value of .069).

 

Table A3: Estimated Effect of High School-Level Teacher Retention on Student

Mobility

Odds Std t-

Model Coefficient ratio error ratio pvalue

Weighted by propensity (EOTM) -0.18 .83 0.18 0.995 .321

Weighted by propensity -

(treatment effect for the treated) -.27 .76 .20 1.368 .172

Weighted by propensity -

(treatment effect for the control) -0.34 .71 0.19 1.820 .069

Unweighted, with covariates -0.42 0.65 0.19 2.202 0.028

Unweighted, only prior mobility -0.06 0.55 0.17 3.543 0.001

Unweighted, bivariate -1.06 0.35 0.17 6.098 .000

This Obviously yields a different finding than when investigating the relationship

between school-level teacher retention and student mobility using multilevel modeling

with longitudinal data and covariates (the unweighted models). In those models, students

in schools with high teacher retention were significantly less likely to leave or change

schools, with Odd of .65 in the full model, .55 in the abbreviated model, and .35 in the

bivariate model.

Given the concerns with the weighting method, my second strategy was tO

attempt to investigate this using the stratification method. All schools were stratified

according to their propensity score, and then separated into strata, and checked for

balance. For each school, all students nested within that school are then attached to that
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school (and hence, to that strata). Therefore, each strata has a number Of schools and

students whose stratification membership is defined by the school propensity score.

The table below reports the findings from the stratification method, with

bootstrapped standard errors on the ATP.

ATT estimation with the Stratification method Bootstrapped standard

errors

——--—-------———-——--—-———-————--——-——-—---———-—————--—-——

————--——-————-——-——---——-—-—————p—-——————c———o——n—————————————

Within each strata, the average treatment on the treated (i.e. those students who

were in schools with similar propensities to have high teacher retention when the schools

actually had high teacher retention) was -0.087, which means that, when matched by the

school's propensity to have high teacher retention, students in schools with high teacher

retention were significantly less likely tO change schools than those in low teacher

retention schools, by approximately a 10% difference in probability.. In other words,

higher teacher retention "causes" a decrease in student mobility.

However, I became concerned that the multilevel structure Of the data was not

being appropriately taken into account, and therefore used bootstrap standard errors, with

schools identified as the resampling clusters. When using bootstrap standard errors with

clustering accounted for, the average treatment on the treated is in the right direction (i.e.

those who received the treatment were less likely to change schools), but the t-statistic is

not very large, which suggests that this effect has borderline statistical significance.

This highlights one Of the challenges of the multilevel framework—how to

account for the clustered nature of the data without restricting the estimation to a within-

schOOl estimation. The eflect is solely between schools; all students in each school
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experience the same school-level propensity of high teacher retention. The question Of

interest is how students in schools with similar propensities differ in terms Of mobility,

not how students within each school differ in terms Of their mobility decisions. By the

same token, the clustered nature of the data cannot simply be ignored, as the Observations

clearly have correlated errors. When using the bootstrapping command in Stata, the

bootstrapped standard errors are for the ATT—which is the weighted average Of block-

specific treatment effects, which are generated within each block as the average outcomes

of treatment and controls within the same block. When the cluster (schcode) restriction is

imposed, the bootstrapping is done within each school, which is inappropriate, as the

standard error should be estimated on the treatment effect, which will not be within

schools, but between schools.
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APPENDIX D: SENSITIVITY ANALYSES

As this is an applied study using Observational data, I determined it to be critical

to employ sensitivity analyses with each of the research methods, in order to help tO

quantify my results in terms Of how sensitive they might be to hidden bias. There are

various methods to approach sensitivity analyses. The most familiar framework is to

quantify the possible estimates that would result under a variety Of possible conditions.

The purpose there is to introduce measures Of potential bias into the analysis and see

what the resulting effect would be, and whether or not that effect will lose it’s

significance. An extension of this is quantifying the robustness Of the inference tO

violations Of the assumptions by attempting to identify the exactly how much an

assumption must be violated to invalidate an inference (Frank & Sykes et al., 2008;

Diprete & Gang], 2004; Gastwirth, Krieger, & Rosenbaum, 1998; Rosenbaum, 2002).

Sensitivity analyses are used in both contexts in this study. This technical appendix

provides some additional detail regarding these analyses that was not included in the

original chapters.

Sensitivity Analyses to Quantifv the Robustness ofthe Inference

TO express robustness that simultaneously accounts for the relationship between a

confounding variable and the predictor of interest and between the confounding variable

and the outcome in terms relatively accessible to social scientists, I utilize Frank and

colleagues (Frank 2000; Pan & Frank, 2004) impact threshold for a confounding

variable. As mentioned above, there has been work to extend sensitivity analysis into

quantifying the robustness Of the inference. The impact threshold for a confounding

variable approach was developed in response to that work, to address two limitations (as
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outlined by Frank & Sykes et al, 2008. The first is that a confounding variable, by

definition, has a relationship with the predictor Of interest and with the outcome, but the

sensitivity analyses named above treat each component separately. These type of

approaches that focus only on one component and ignore the dependences between the

two components that is created by the presence Of a treatment effect. When there is a

treatment effect, covariates that are correlated with the predictor Of interest are also more

likely to be correlated with the outcome, which will inflate the magnitude of the impacts

of the covariates on the effects (Frank, 2000) and will skew the distribution Of impacts

(Pan & Frank, 2003).

Secondly, most sensitivity analyses are expressed in ways that are not intuitive to

social scientists, such as concordance or non-parametric statistics, instead of in the

general linear model, which is an intuitive part of social scientist’s repertoire Of skills.

Therefore, the sensitivity analyses employed in this work with the teacher

retention models (Chapter 5) and with the undersupply models (Chapter 7), as well as

with the weighted propensity score regressions (Chapter 6), utilize this idea Of the impact

threshold for a confounding variable. Frank (2000) begins by defining the impact of a

confounding variable on an estimated regression coefficient as rv.y><rv.t, where r v9, is the

correlation between a covariate, v, and the outcome, y; and rm is the correlation between

v and t, a predictor Of interest.1 The product rwyxr W captures both the relationship

between the confounding variable and the outcome and between the confounding variable

and the treatment. Moreover it is through the impact that multiple regression adjusts for

 

1 This work is taken extensively from the work Of Frank (2000), and is drawn from the technical appendix

in Frank & Sykes et a1, (2008). The derivations are not mine.
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covariates as in the following expression for a correlation between tand y, partialling for

v:

rt-y - rv-y X rv-t

r ::

\/1—rv'y\[1_rv't ()

Equation (4) shows that any reduction in the partial correlation must be attributed to

 

 

rwyxr v.1, because the correlations in the denominator will serve only tO increase I'toylv

relative to rpy.

TO Obtain the impact necessary to invalidate an inference, r# is defined as a

quantitative threshold for making inferences from a correlation. For example, r# can be

defined by a correlation Of a specific magnitude (e.g., an effect size). Here r# is defined

by statistical significance. Although statistical significance is not sufficient for causal

inference (Wilkinson & Task Force on Statistical Inference, 1999), statistical significance

is often the first threshold in a two-step procedure for making causal inferences, “where

first the likelihood Ofan effect (small p value) is established before discussing how

impressive it is” (Wainer & Robinson, 2003, page 25). Most social scientists are

uncomfortable making causal inferences if their estimated effect (or something more

extreme) could have occurred more than a small percentage (e.g., 5%) of the time by the

chance of sampling when in fact the null hypothesis is true.

Given the definition Of r#, it is clear that the inference fi'0m rx.y is invalid if rx.y IV

. . . . . #
< r#. Therefore to Obtam the Impact necessary to 1nva11date the 1nference, set rx.y Iv < r

in (4). Next, to give maximal credence to the challenge that the inference is invalid
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because Of exclusion Of a confounding variable, maximize (4) with respect to impact.

Frank (2000) shows that this maximum occurs when rv.y=rv., (given the constraint:

2

impact=r v.y><r w). Given this maximum, impact can be substituted for r v.y><r w, v-y

2

and rv-t in (4) and solving for impact yields that rx.y 1v<r# if

impact > (r- r#)/(1- lr#|). (2)

Therefore the quantity (r- r#)/(l -|r#|) defines the impact threshold for a

confounding variable; if there is a confounding variable with impact greater than (r-

r#)/(l-|r#|) then the relationship between the treatment and outcome, given the confound

(rxylv), would fall below the threshold (r#) for making a causal inference. 2

Critically, because the impact is defined by correlation coefficients (impact = r

v.y><r W), it can be readily understood by social scientists comfortable with correlation

and the general linear model. This makes it an ideal complement to our use Of propensity

weighting which is applied to a general linear model.

Multilevel Sensitivity Analyses

The models employed in Chapter 5 and Chapter 7 are multilevel models, with

students nested within schools. This is a common situation with education data. In order

to extend the sensitivity analyses described above into a multilevel framework, I follow

Seltzer, Kim, & Frank (2006) and their extension Of the ITCV into a multilevel context.

 

2 The expressions can be easily adapted to focus on one component correlation when researchers have

specific prior beliefs about the strength Of the other correlation. The expressions can also be modified to

account for the presence Of other covariates in the model. See Frank (2000).
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Frank’s approach described above was originally developed for use in settings with linear

models with non-nested data (Seltzer, Kim, & Frank, 2006).

Seltzer, Kim, & Frank suggest that it is Often beneficial to recast multilevel

models into cluster-level regression analyses and using OLS estimates Of level-1

intercepts or slopes as outcomes. They find that when data are balanced, the OLS

regression with cluster-level predictors will produce estimates of fixed effects and their

standard errors that are identical to those produced by a REML/EB estimation approach

that takes into account the clustered nature ofthe data. If the data are not balanced, they

suggest using a Weighted Least Squares cluster-level regression, using weights based on

the REML estimates Of the variance components (Seltzer, Kim & Frank, 2006). These

weights are constructed as:

0,2
, l

Welght = ;V— where Vj =T (3)

J J

TO apply this framework to the sensitivity analyses in Chapter 5, the following

steps were taken:

1) An unconditional multilevel model was estimated, with the outcome variable as

student mobility. The purpose of this model is to produce estimates Of 1: and 0‘2.

However, since the outcome variable was dichotomous, there is no variance

component (02) produced in the unconditional model. The variance of a

proportion is calculated by np(l-p), where p is the proportion of students in each

school who changed schools.

2) These estimates were used to generate precision weights, with the following

formula:
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0.2
, 1

Precision = Welght = :1: where Vj =T and where 0'2 = ”Pa-P)

J

3) These weights were used as sampling weights in the cluster-level regressions. All

student-level predictors were aggregated to the cluster-level (i.e. the school level).

To obtain the R2 estimates necessary for calculating the impact threshold for a

confounding variable, the treatment is regressed on the predictors Of interest,

. 2 . .

generating an R value. Then the outcome rs regressed on the same predictors,

without the treatment. These R2 values are used to calculate the impact.

In chapter 7, a similar method was utilized. The unconditional model estimated in

step 1 above did produce both an estimate for r and 02. These were used to calculate

precision weights. This was done for each outcome—mathematics achievement, English

language arts achievement, and science achievement, and these weights were used in the

cluster-level regressions as described above.

Sensitivity Analyses with Propensity Score Matching

Before discussing the strategy used to evaluate the sensitivity of the inference

under the stratification and nearest neighbor matching estimates, I will discuss the

propensity score analysis with propensity scores used as weights.

The theory behind sensitivity analysis in this situation is the same as above. Given

a set Of predictors and an outcome of interest, with each school weighted by its

propensity to receive the treatment, how large would an unobserved confound need to be

in order tO invalidate the inference? Therefore, precision weights were constructed as

follows:
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1) The weights Obtained from the multilevel regression predicting student mobility

Obtained in Chapter 5 were utilized again.

2) As the propensity weights are also weights, the product of the precision weight

and the propensity weight was calculated.

3) The full models were ran, weighted by propensity only and also weighted by the

product Of propensity and precision. NO noticeable differences were detected.

4) The impact thresholds were calculated for each propensity weight—the EOTM,

the TOT, and the TOC—in the usual format as described above.

To conduct sensitivity analyses on the stratification and nearest neighbor matching, a

different conceptual framework was applied. The question in sensitivity analyses in

propensity score matching relates to hidden bias——the presence Of an unobserved variable

that would affect both the likelihood to receive treatment and the likelihood to have

increased outcomes. The goal Of these sensitivity analyses is to determine how strongly

an unmeasured covariate must influence the selection process in order to undermine the

implications of the matching analysis (Rosenbaum, 2002; Caliendo & Kopeinig, 2005;

Aakvik, 2001; DiPrete & Gang], 2004; Caliendo, Hujer, & Thomsen, 2005).

The approach is as follows3:

Assume that the probability Of participation in treatment to be:

P(X)=P(Di=1lXi)=F(BXi+YUi) (5)

Where

xi = Observed characteristics for individual i

 

3 Please note: I rely heavily on Rosenbaum, 2002, and a discussion OfRosenbaum found in Caliendo &

Kopeinig, 2005, to represent these ideas. I will not cite repeatedly throughout this section. In particular, I

want tO note that the derivations are not my own but are simply reproduced here for reference and to

appropriately acknowledge the intellectual underpinnings Of the method I applied.
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O i = unobserved variable

y = effect Of u; on the participation decision.

If the study is free Of hidden bias, y will be zero, which indicates the participation

probability will be solely determined by the Observed characteristics (x1). If there is

hidden bias, two individuals (or in this case, schools) with the same observed covariates

(x) will have dijfering chances Of receiving treatment. Assume that there is a matched

pair of schools i andj and also assume that F is the logistics distribution. The Odds that

P(xi) P(xj )

schools receive treatment are then 1_ P(xi) and (1 _ P(x . )) (6)

P(x .) J

J

1 — P .(x1)

 

 

This yields an Odds ratio that is given by:

Px.1—Px. ex x.+ .(,x (1» p06] raj)

P(xJ. )(1-P(x,. )) = exP(’8xi+Wi)

  

= exP[7(ui - u1)] (7)

Both schools differ in their Odds of receiving treatment by a factor that includes

the parameter 7 and the difference in the unobserved covariates (u). If u, = uJ- (there are no

differences on the unobserved covariates) or if 7 =0 (the unobserved variables have no

impact on the probability of participating), the Odds ratio will be one, which implies that

there is no hidden or unobserved selection bias.

The goal Of the sensitivity analyses is to analyze how influence about the

treatment effect might be altered by different values of y and (u; - uj).
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TO conduct these analyses, it is necessary to assume that the unobserved covariate

is a dummy variable. This implies the following bounds on the Odds-ratio that either Of

the two matched schools will receive treatment (Rosenbaum, 2002):

1 P(xl.)(1— P(x .))

er P(xj)(1-P(xl.))

 

Both matched schools have the same probability Of receiving treatment only if

e7=1. If ey=2, then schools that appear to be the same in terms Of their Observed

covariates could still differ in their Odds of receiving treatment by as much as a factor of

2. This makes e7 a measure Of the degree Of departure from a study free of hidden bias

(Rosenbaum, 2002).

To test this, the non-parametric Mantel-Haenszel (MH, 1959) test-statistic is used.

This test statistic compares the successful number Ofpersons in the treatment group

against the same expected number given the treatment effect is zero. In other words, it is

used tO test for no treatment effect within different strata. The test statistic is:

QW = (Yls = E(Y1s) / Var (Y1s) where Y1, = the number Of successful participants,

Y0s is the number Of successful non-participants, and Y5 is the number of total successes

in stratum s. This test statistic follows a chi-square distribution with one degree of

freedom and is given by:

  

 

(9)

[ZS (Y _ NISYS ]2

U2 s =1 1s N

Q = = S

mh Var(U) S leNOsYs(Ns - Ys)

S :1 N2(N — 1)
s s
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In order to utilize this test statistic, the treatment and control group need to be as '

equal as possible, which is accomplished by the matching procedure. Therefore, I can

discuss the possible influences of ey>1. The test statistic th can be bounded by two

known distributions (Rosenbaum, 2002). If e7 =1, the bounds are equal to the baseline

scenario in which there is no hidden bias. As e7 increases, the bounds move apart, and

therefore reflect uncertainty about the test-statistics if there is unobserved selection bias.

To quantify this, there are two variables: Qfm assumes an overestimation Of the

treatment effect and ng assumes an underestimation Of the treatment effect. The two

bounds are given by:

 

(10)

Where E3 and Var( E, ) are the large sample approximations to the expectation and

variance of the number of successful participants when u is binary and for given 7

(Caliendo & Kopeinig, 2005).
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