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ABSTRACT

INTEGRAL DEFERRED CORRECTION METHODS FOR

SCIENTIFIC COMPUTING

By

Maureen Marilla Morton

Since high order numerical methods frequently can attain accurate solutions more

efficiently than low order methods, we develop and analyze new high order numerical

integrators for the time discretization of ordinary and partial differential equations.

Our novel methods address some of the issues surrounding high order numerical time

integration, such as the difficulty of many popular methods’ construction and han-

dling the effects of disparate behaviors produce by different terms in the equations

to be solved.

We are motivated by the simplicity of how Deferred Correction (DC) methods

achieve high order accuracy [72, 27]. DC methods are numerical time integrators

that, rather than calculating tedious coefficients for order conditions, instead con-

struct high order accurate solutions by iteratively improving a low order preliminary

numerical solution. With each iteration, an error equation is solved, the error de-

creases, and the order of accuracy increases. Later, DC methods were adjusted to

include an integral formulation of the residual, which stabilizes the method. These

Spectral Deferred Correction (SDC) methods [25] motivated Integral Deferred Cor-

rections (IDC) methods. Typically, SDC methods are limited to increasing the order

of accuracy by one with each iteration due to smoothness properties imposed by the

gridspacing. However, under mild assumptions, explicit IDC methods allow for any

explicit rth order Runge-Kutta (RK) method to be used within each iteration, and

then an order of accuracy increase of r is attained after each iteration [18]. We

extend these results to the construction of implicit IDC methods that use implicit

RK methods, and we prove analogous results for order of convergence.



One means of solving equations with disparate parts is by semi—implicit integra-

tors, handling a “fast” part implicitly and a “slow” part explicitly. We incorporate

additive RK (ARK) integrators into the iterations of IDC methods in order to

construct new arbitrary order semi-implicit methods, which we denote IDC-ARK

methods. Under mild assumptions, we rigorously establish the order of accuracy,

finding that using any rth order ARK method within each iteration gives an order of

accuracy increase of 7‘ after each iteration [15]. We apply IDC-ARK methods to sev-

eral numerical examples and present preliminary results for adaptive timestepping

with IDC-ARK methods.

Another means of solving equations with disparate parts is by operator splitting

methods. We construct high order splitting methods by employing low order split-

ting mcthods within each IDC iteration. We analyze the efficiency of our split IDC

methods as compared to high order split methods in [77] and also note that our

construction is less tedious. Conservation of mass is proved for split IDC methods

with semi-Lagrangian WENO reconstruction applied to the Vlasov—Poisson system.

We include numerical results for the application of split IDC methods to constant

advection, rotating, and classic plasma physics problems.

This is a preliminary, yct significant, step in the development of simple, high

order numerical integrators that are designed for solving differential equations that

display disparate behaviors. Our results could extend naturally to an asymptotic

preserving setting or to other operator splittings.
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Introduction

Throughout scientific history, experiments, physical and mathematical models, and,

more recently, scientific computing have been partners in generating new knowledge.

Although all are vital components of discovery, we focus on the role that scientific

computing plays. In many cases, experiments may not be feasible due to expense

or physical constraints, and models may be too complex to find analytic solutions.

In these situations, further insight may be found through computationally approx-

imating solutions to models, such as those models given by ordinary differential

equations (ODEs), partial differential equations (PDEs), differential algebraic equa-

tions (DAEs), or others. The daily changes in technology and scientific discoveries

means that the need for innovative numerical methods always exists. In particular,

it is desirable to obtain accurate solutions at a low computational cost and in real

time. Frequently, higher order numerical methods can attain such accuracy more ef-

ficiently than lower order methods, although care must be taken to maintain certain

properties; e.g., for some physical problems, one must be careful that a numerical

method conserves mass when the physical theory asserts that mass is preserved.

In this dissertation, we focus on higher order numerical integrators for the time

discretization of ODEs and PDEs.

Some of the issues surrounding high order numerical time integration include:

difficulty of the method’s construction (for example, the order conditions for con-

structing higher order Runge-Kutta methods and the number of coefficients one

1



must find for some general high order splitting methods increase exponentially with

the order of the method [37, 77]); the equations exhibit multi—scale behaviors and/or

different operators and terms in the equations produce disparate but coupled (fre

quently nonlinear) behaviors, leading to severe timestep restrictions or difficulties

in numerical implementation; and treatment of boundary conditions at high order.

In this dissertation, we contribute to the work that tackles some of these issues by

further developing Integral Deferred Correction (IDC) methods, described below.

One way to overcome the first issue of a. complicated construction of high order

methods was introduced and later expanded upon in articles such as [78, 65, 28,

27, 72]. This class of methods, called Deferred Correction (DC) methods (or Defect

Correction), involves taking a prediction step to form an approximate solution using

a numerical method of choice, then iteratively forming an error equation, solving

for the error using any numerical method of choice, and updating the approximate

solution. The main principle is that, at each iteration, the order of accuracy of the

DC method increases by the order of the numerical method used at each iteration.

The prediction step can be considered one iteration, and each step that solves the

error equation (also called the correction step) can be considered one additional

iteration. The beauty of DC methods is their simplicity in constructing higher

order methods. One only needs to use low order integrators within the prediction

and correction steps, and the iterative process attains arbitrary high order without

needing to consider complicated order conditions. A key component of DC methods

is the treatment of the residual within the error equation. For simplicity, suppose

we are solving an initial value problem (IVP)

y’(t) = f(t,y), y(0) = 310- (1)



The “differential form” of the residual, 7‘, is

7'0) = 77(6) — [(1, 72(0),

where 7) is a provisional numerical solution to (1). Approximating the derivative,

n’(t), within the DC correction step is numerically unstable (see, e.g., [32]). More

recently, Greengard and Rokhlin introduced a variant of DC methods, called Spec-

tral Deferred Correction (SDC) methods, by incorporating the integral formulation

of the residual,

ft <>d — <t>- (tn—[tn ())dOTT T—TIA T] 0 T,T)T T,

to stabilize the correction step [25]. This development sparked renewed interest in

DC methods. Several methods influenced by SDC methods include Krylov Deferred

Correction methods, applied to ODEs and DAEs [41, 42]; semi-implicit and multi-

implicit SDC methods (SISDC and MISDC, respectively) applied to ODEs whose

right hand sides include stiff terms (i.e., terms with disparate sizes) [60, 47, 9]; and

Integral Deferred Correction (IDC) methods, applied to ODEs and PDEs, with a

special choice of nodes and integrators used at each step [18, 17], including adjust-

ments to allow parallel in time implementation of IDC methods [16].

Typically, SDC methods are limited to increasing the order of accuracy by one

after each correction step due to certain smoothness properties that are imposed by

the gridspacing. Some works that adjusted SDC methods to incorporate integrators

other than Euler methods in the prediction and correction loops include [48, 47,

18, 17]. In particular, [18, 17] present IDC methods that allow for any explicit RK

methods of arbitrary order to be used within the prediction and correction loops, and

that allow for an order of accuracy increase greater than one after each correction

3



loop. They rigorously established under certain assumptions on the gridspacing and

the smoothness of the exact solution that, when an rth order explicit RK method

is used to predict and correct the numerical solution, the order of accuracy of the

IDC method increases by r for each prediction and correction loop. Thus fewer

correction loops are required to attain a certain order of accuracy, when compared

to SDC methods. They also found that such high order IDC methods’ stability and

efficiency compared favorably to RK methods alone. In this dissertation, we extend

the construction and theory of IDC methods using explicit RK integrators to the

construction of arbitrary order IDC methods that use implicit RK integrators and

a rigorous presentation of analogous results to the order of convergence theory.

The second issue of high order numerical integrators, that of handling equations

with distinct parts, multi—scale, and/or nonlinear behaviors, is quite broad. We focus

on methods that handle different terms in the equations via separate means. First

consider semi-implicit, or implicit-explicit, integrators. Typically, a semi-implicit

integrator is intended to solve an equation of the form

31,0) = F(t,y) + C(tay), (2)

with appropriate initial or boundary conditions. For simplicity of presentation, we

suppress any non-time dependence that may be in F and G, which could be functions

or operators. Suppose F contains only nonstiff (not particularly large) terms and

G contains any stiff (could be large) terms. Semi-implicit integrators can be used

to solve the stiff part implicitly and the nonstiff part explicitly, thereby gaining the

benefit of the implicit method for the stiffness but potentially saving computational

effort by handling some terms explicitly. Popular integrators include additive Runge-

Kutta (ARK) methods and integrators constructed from linear multi-step methods,

such as Adams or BDF methods. [60, 47] introduce semi-implicit SDC methods that

4



may attain orders of accuracy higher than ARK or BDF methods, but in [60], the

increase in accuracy at each correction loop is limited to lst order, while [47] only

presents specific examples of a 2nd order ARK and a 2nd order BDF method that

may be successfully used in the correction loops. In this dissertation, we expand the

results in [47, 18], and our IDC with implicit RK methods to construct a general

formulation that clearly presents the ability to incorporate any order ARK scheme

into the IDC framework. We denote the new construction as IDC-ARK methods.

We rigorously establish under certain assumptions that, when an rth order ARK

method is used to predict and correct the numerical solution, the order of accuracy

of the IDC method increases by r for each prediction and correction loop. We also

include numerical examples of IDC-ARK methods applied to IVPs that substantiate

the theory and to an advection-diffusion equation, verifying that the semi-implicit

structure allows for an improved CFL condition. To further handle multi-scale

situations, especially equations whose solutions contain initial, inner, or boundary

layers, we also present preliminary results for adaptive implementation of IDC-ARK

methods. Since IDC methods form an approximation to the error at each time step,

they fit naturally into an adaptive setting, where the size of the time step is adjusted

as necessary according to some estimation of the size of the error at that step.

Equations of the form (2) may also be solved via operator splitting methods.

Splitting methods may be useful when, for example, y depends on more than one

spatial variable, say on (271,332), in addition to time, t, but F depends only on

.731 and G depends only on 1172. In this case, we may approximate the solution by

successively solving the following two subproblems,

8w = F, Bty = G',

which now are simple one-dimensional problems rather than a more complicated
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two-dimensional problem. Sometimes also an Operator splitting may be chosen such

that the subproblems are linear although the original problem (2) is nonlinear.

Many high order splitting methods are costly both to construct and to implement

[77], although some reasonable methods have been developed in [49, 50], including

high order splitting methods constructed via DC methods and applied to Vlasov-

Maxwell systems. We wished to seek an improved high order splitting method by

using the IDC framework instead. We present these novel split IDC methods in

this dissertation. They incorporate simple first order splitting methods and second

order Strang splitting methods within the prediction and correction loops to obtain

arbitrary order splitting methods. The construction is specified for application to

the Vlasov-Poisson equations, which are frequently used to describe the behavior of

particles in some plasma physics settings. We show that a new formulation of the

error equation in the correction step is required for proper application to the Vlasov-

Poisson system. As required by the physical theory, we also prove that split IDC

methods for Vlasov equations conserve mass when conservative semi-Lagrangian

WENO reconstruction is employed in conjunction with the IDC splitting method.

The third issue that causes difficulties in numerical time integration, treating

boundary conditions (BCs) in a way that maintains the high order of the numerical

method, will not be discussed in this dissertation. However, this area is essential

if the discussed methods are to be applied to realistic problems. In particular, this

field is mainly unexplored for deferred correction methods. The application of split

DC methods to the Vlasov-Maxwell system in [49, 50] only utilizes periodic BCs.

Essentially, in this dissertation, we also only apply IDC methods to differential equa-

tions with periodic BCs. Motivated by the high order treatment of BCs presented

by LeVeque in [52, 53], we expect that equivalent or alternative means of handling

BCs could be designed to take advantage of IDC’s unique framework of extending

low order methods to high order methods. This design may circumvent the extensive
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approximations of higher order derivatives that are necessary in LeVeque’s work.

Chapter 1 briefly introduces several equations that describe certain physical pro-

cesses that motivate some of the numerical issues we wish to address via IDC meth-

ods. Chapter 2 presents a history and literature review of DC methods and more

recent developments. It also includes a description of our new arbitrary order IDC

methods that incorporate implicit RK methods in their construction and a rigorous

proof of the theoretical order results for such IDC methods. Chapter 3 lays out the

construction of our new semi-implicit IDC-ARK methods, order of accuracy theoret-

ical results, how the semi-implicit proof differs from the implicit proof in Chapter 2,

and application to numerical examples such as Van der Pol’s oscillator, an initial

layer problem, and an advection-diffusion equation. Chapter 4 is a short study on

the implementation of IDC methods in an adaptive setting, with some preliminary

results for adaptive IDC-ARK methods. Chapter 5 shows the construction of new

high order split IDC methods, an analysis of efficiency as compared to high order

splitting methods in [77], a proof of conservation of mass, and numerical results

for its application to constant advection, rotating, and Vlasov-Poisson equations.

Chapter 6 suggests directions for future research, such as extending asymptotic

preserving methods to the IDC framework.



Chapter 1

Physical Motivation

Many physical problems involve both fast and slow events, or can be modeled by

equations that have operators whose numerical solutions can be simplified by op-

erator splitting. Modeling these situations may result in equations that contain

widely separated time scales or equations whose parts may be computed sepa-

rately. These equations include but are not limited to: chemical rate equations,

convection-diffusion equations, Vlasov-Poisson equations, and hyperbolic conserva-

tion laws with stiff relaxation. We present some of these problems as motivation for

studying semi—implicit numerical integrators that handle two different time scales

and splitting methods that allow for simpler numerical computations, although we

have not necessarily tested all the problems described below.

1.1 Chemical Rate Equations

Chemical reactions are often modeled by rate equations that are formed by using the

mass action law. An example of a system of rate equations is given by the ROBER
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problem, which describes an autocatalytic reaction [59]. The system is

d

ayl = —0.04y1+104y2y3. (1.1)

(1

fit” = 0.04y1 — 104y2y3 — 3 - 107313, (1.2)

d 7 2
_ = .1 ,

(1,313 3 0 yg, (13)

y1(0) = 1, y2(0) = 0, 313(0) = 0, (1.4)

where the y,- represent the concentrations of the chemical species involved, and the

coefficients on the right hand sides are the rate constants, which describe the rate

of certain component reactions. The widely disparate rate constants contribute to

the stiff nature of this problem, and the solution to this system changes quickly

initially (although it varies smoothly as time progresses). Typically, there are far

more species involved in a chemical reaction, thus rendering the system of rate

equations much larger than the ROBER problem; e.g., the chemical Akzo Nobel

problem or the pollution problem, both also in [59]. However, the ROBER problem

sufficiently demonstrates that widely separated time scales may arise in chemical

rate equations.

1.2 Convection-Diffusion—Reaction Equations

Multiscale effects also play a role in the solution of convection-diffusion-reaction

equations. Typically, the diffusion term dominates the other terms due to the dis-

cretization of the spatial derivatives, and the reaction term is significantly smaller
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than the other terms. An example of such an equation is given in [45], in the form

    

    

p p’u ]

a rm 6 m2+p

960 (960+Plu

-pYz- . ...y, _

0 0

4 62a

87:2 0
+ 2 2 3y. +

8 T 4 Bu ('9 nos , .

Am+'§(7fi) +835< i=1pDzhflfi7‘) 0

DOBQY- “,2

- ,0 281:5 _ ' '

(1.6)

This system is a one-dimensional version of the simplified, gas-phase, multicompo—

nent, compressible NavierStokes equations with chemical reaction. ()1, A, pDi) are

the transport coefficients, where p is molecular viscosity, A is thermal conductivity,

p is fluid density, and Di is the effective Fickian diffusion coefficient. The species is

designated by i = 1, . . . ,nes, where ncs is the number of chemical species, the fluid

velocity is represented by u, T is temperature, Y,- are the species mass fraction, p

is pressure, e0 is total specific internal energy, h is the partial specific enthalpy of

species i, w,- is the reaction rate of species 2'. The first term on the right hand side is

the convection term, the second term is the diffusion term, and the last term is the

reaction term. In addition to the differences in sizes of the terms that could arise

based on the spatial derivatives, there are also potential separations of time scales

based on the sizes of the transport coefficients and the reaction rates.
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1.3 Vlasov—Poisson Equations

Many natural and industrial processes, such as solar weather and integrated circuits

manufacturing, involve plasmas. A plasma is sometimes called the fourth state of

matter, since adding sufficient energy to a solid produces a liquid, adding energy to

a liquid leads to a gas, and increasing the energy yet again results in a plasma. A

plasma can also be defined as an electrically neutral collection of charged particles.

The sizes, speeds of, and forces acting on or by these charged particles may vary by

several orders of magnitude. Hence it is of interest to consider computational issues

in models of plasmas. As a special case, the electron motion in a one-dimensional

cold plasma with a stationary ion background may be modeled by the following

Vlasov-Poisson equations, where the physical constants have been normalized to

one.

where f (:1:,v,t) is the electron probability density function, x is space, 1) is the

velocity, t is time, E is the electric field, d) is the potential, and p is the charge

density [54]. If we choose to rewrite (1.7) in a Lagrangian framework, from the

point of view of an electron within the flow (as opposed to an Eulerian framework,

which has a fixed spatial grid), and discretize the problem in (.r, v)-phase space, we

obtain N ODE systems with varying stiffnesscs:

cage) = v,(i), (1.10)

v’.(t.) = E(t,:r,-), 2': 1,. . .,N, (1.11)



where the electric field on the right hand side of (1.11) contains contributions from

the electrons, ions, and free space [14]. The velocities and forces may vary sig-

nificantly in magnitude between different values of i and among the terms on the

right hand side of (1.11) for each i. Alternatively, one may use a semi-Lagrangian

framework to solve (1.7) for the distribution, in which case splitting methods can

be applied. Firrther details are presented in Chapter 5.

1.4 Hyperbolic Conservation Laws

The Vlasov equation is one type of a class of problems known as hyperbolic con-

servation laws. Much of the following information about such problems is compiled

from [66, 51, 70]. For simplicity of explanation, we explain hyperbolic conservation

laws via the general scalar one-dimensional case, solving

“t + ffulsr = 0, (1-12)

where f (u) is the flux. Corresponding to the physics involved, such an equation

satisfies conservation of mass. Consider the case where 21(13, t) = p(:r, t), the density,

with flux f(p(:r,t)), over the interval Ii = [:13 1,.7:_+1], where the flow is to the

z— 2 z 2

right:

f(/)(¢L‘,l)) MN) f(p(I,t))

 

l l (1.13)

$Z—% V x2+$
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The integral form of conservation of mass over the interval 1,- is:

mass at [n+1 = / p(r,tn’+l)d.r (1-14)

2 tn+1

= fl.- po, mm + [n f(p(xi_%, z» — we”;mm (1.15)

= mass at tn + flow in — flow out. (1.16)

We sketch how the integral form (1.14) leads to the differential form of the conser-

vation law. Looking at a small piece in space 651: and in time (it, we have

(p($»t"+1)- pt‘r- £70) 51‘ = - (f(p($.+1~t)) - f(p($._1=t))) 515. (1-17)

2 2 z 2

which, upon rearranging, gives

1' ,n+1 — .13, Tlp( ,t (lst p( ,t )= 1 (f(p(:ti+1at))_f(p(x-
17t)))' (1.18)

 

(5.1:

From this equation, we deduce the differential form of the conservation law

Pt + ffplcr = 0, (1-19)

which in a more general case is given by (1.12). In a physical setting, the integral

form (1.14) is more natural and meaningful.

An understanding of some basic analytic properties is needed for considering a

numerical solution. We describe the solutions of two types of equations in terms

of characteristics, the lines along which solutions are constant. First we consider a

linear problem, such as the linear advection-diffusion equation,

at + 111: = 0, u(.r, 0) = u0(:r). (1.20)
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The solution is u(:z:, t) = -u0(;r — t). This solution is constant along characteristics

described by griff- = 1, since

(in. 2) dr (‘9 ('9 (9

dt (at dt 8:13) (at 8:13) ( )

In this situation, the characteristics will not cross. For a nonlinear problem, the sit-

uation is much more complicated, and characteristics may cross after a certain time,

resulting in a discontinuity of the solution. As an example, we consider Burger’s

equation

“t + (223) = 0, u(:L‘,0) = u0(a:). (1.22)

a:

The solution is constant (u = 11.0) along characteristics described by 931% = u, but

since the slope of the characteristics is determined by %, then in many cases, the

characteristics will cross after a certain time; e.g., when u0(:z:) = sin :22. Where

the characteristics come together, a shock forms. This discontinuity means the

differential form of the conservation law does not work, so the integral form is

needed. Only a classical strong solution works for the differential equation, but the

integral equation can be solved by a weak solution. A weak solution is not unique,

but a weak solution satisfying a property called entropy is called the entropy solution,

which is unique. For example, in the Riemann problem, the initial conditions are

given by

at, a: < 512*

note) = , (1.23)

u-r, a: >:r*

where “l and ur are constant functions. If the entropy condition is satisfied, then

“l > ur means the solution will form a shock, and “l < ur means the solution will

form a rarefaction.
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The numerical solution of hyperbolic conservation laws is described in Sec-

tion 5.3, with an emphasis on a numerical method called WENO, which is designed

to solve problems with piecewise smooth solutions that contain discontinuities.

Sometimes hyperbolic conservation laws have a stiff relaxation term R(u), such

as diffusion, on the right hand side:

Ht“. + E)g:f('rt) = 72(11), (1.24)

where R(u) is quite large, thus contributing to the multiscale nature of the problem.

This type of term shows up in models such as shallow water, granular gas, and traffic

flow equations [64] .
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Chapter 2

Deferred Correction Methods

2.1 Defect Correction Methods

Deferred Correction (DC) methods were developed in the 19608 and 1970S. They

can be considered methods to solve a system of ODEs (that may arise within an

algorithm solving certain PDEs), or in the more general sense, to solve an equation

of the form Fy = 0. Our current interest lies in the ODE and PDE application.

2.1.1 DC Algorithm for an IVP

In particular, suppose we are solving the IVP

y’U) = f(t,y). téloaTl,

31(0) = yo-

(2.1)

DC (sometimes called Iterated Defect Correction) involves taking a prediction step

to form an approximate solution via an arbitrary numerical method (e.g. RK), then

iteratively forming an error equation, solving for the error, and updating the approx-

imate solution. It is of interest to note that the approximate solution approaches
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the collocation solution to the IVP as the error is improved at each step [28].

We solve the IVP (2.1) on a grid

0=t0<t1<t2<---<tn<---<tN=T, (2.2)—

where H = tn+1 — tn. Each subinterval [tn,tn+1] is discretized again into M

subintervals

in = 17170 < two < ' -- < fmm < - -- < th/I = tn+1, (2.3)

A1 is fixed. We consider the DC method on one subinterval [tn, tn+1] and drop the

subscript 71. Without loss of generality, we look at the first subinterval, [0. H].

The DC algorithm is as follows [28]:

1. Prediction step: compute an approximate solution to (2.1) over the grid

points (2.3),

0120,10) (01 [or [01, (,4,
77] 0 3771 1---77f7712'--277A/[a

which is an approximation to the exact solution

For example, applying a first order Backward Euler method to (2.1) gives

[0] [0] 0

7’7n+1 = 7].,” + h f(t,ml+1, 7)]n']+1), (2.6)

2. Correction step: Then interpolate nlO] by the Mth degree polynomial sat-

isfying

7)(0)(tm) = nmfo], m = 0,1,...,AI. (2.7)
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Form the residual (originally called the “defect” in this context).

49(1) = (4017(1) — m, We» ta [0. H]- (2.8)

Add the residual dm) (t) to the RHS of the original IVP (2.1) to obtain a new

IVP whose exact solution is n(0)(t).

y'(t) = f(t,y)+d(0)(t), teloiTl.

= f(l.y)+(n(0))’(t)-f(t,n(0)(0) (29)

37(0) = 310-

Solving the new IVP (2.9) by the same method as for (2.1), we obtain the

numerical solution «[0] = WED] ..... 481]. Then we use the known exact dis-

cretization errors, 749,] — n(0)(tm), of (2.9) as an estimate for the unknown

errors 77]? — y(tm) of (2.1).

Then the identity

0 0
y(tm) = rjfn] — Win] — y(tm)) m = 0, 1, . . . , A! (2.10)

is approximated by

77]},1-1- 7,19,14,13]- n(0)(tm)) m = 0,1,. . . , M. (2.11)

The process is then iterated so that we have

It 1 . 0 k

n‘fn+ ] : 77in] — (”fn] _ ”(MU-771)) [m = 0111 ' ' ' 71V]; k = 13 2131- ' '9

(2.12)

k] ___( [kl [kl [kl [kly
where "(1.3) interpolates 77] 7’0 ,711 , - . - 171m 3 - - - ,7]M
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Note that the error estimation method was suggested by Zadunaisky in [78],

where he also references earlier papers where he tried this method, but the iterative

procedure was due to others, e.g. Pereyra, Frank and Ueberhuber, Stetter [65, 28,

27, 72].

2.1.2 DC Algorithm for a General Setting

In a more general setting ([27], [72]), suppose we are solving

Fy = 0 (2.13)

for the solution y, and F is an operator described below. Then the common struc-

tural principle of DC methods is error estimatation of a discretization method plus

iterative improvement of the error estimate, the advantage being that DC proceeds

on the original grid from the first discretization. Stetter first describes a DC method

on general normed linear spaces then proceeds to project the problem onto discrete

spaces and other spaces, e.g. of polynomial interpolants, so that we see the above

case of an ODE on a discrete grid is exactly an example of the general case of DC

methods.

For the basic principle of DC methods, one considers a nonlinear bijective oper-

ator F such that 0 belongs to the range of F. The goal is to find an approximation

to the unique solution y* of (2.13):

1. Use the approximate inverse G’ (or the exact inverse of or the solution operator

of the approximate problem Fy = 0, F m F') to form an initial approximation

yo 2 (70.

2. Form the residual/defect do i FyO.

3. Compute an approximate solution of F3; 2 do (the ”neighboring problem”),
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which is 370 2 (110.

The exact solution to the neighbor problem is known to be yo, so the exact error of

the neighbor problem is known: 370 — 310- However, the exact error of the original

problem is unknown: yo — y*. The error of the neighbor problem is used to estimate

the error of the original problem, and thus y* z 1’0 — (370 — yo) gives an improved

approximation yl to y*:

111 = yo — (g0 - yol- (2-14)

The process may be repeated, for i = 0, 1,2,. . . :

(1,: pg, (2.15)

37; i CF31): 5d) (2.16)

yi+1= yz‘ - (17241 - yo) = (1 - éFlyz' + 310 = yr - (7dr + 110- (2-17)

Note that y* is the solution of (2.13) and a fixed point of (2.17). Thus convergence

occurs if I — CF is a contraction.

When limited to a numerical method on a discrete grid, this general form of a DC

method changes somewhat. A DC method on the discrete space results in an iterate

6,- that approaches a fixed point 5*. In turn, the fixed point 6* should be reasonably

close to the fixed point y* of (2.17) on the original space (of course, appropriate

conditions are required). Typically {* is some collocation solution which in fact

should be close to the projection of y* onto the discrete space.

2.1.3 Differential Formulation of the DC Algorithm

The differential formulation of a DC method is a rewriting of the special case of

application to a system of ODEs [25, 18], or of the time portion of certain PDEs.

As above, consider the IVP (2.1) on the interval [0,1H], subdivided as in (2.3).
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1. Prediction step: compute an approximate solution to (2.1) over the grid

points (2.3),

0 0 0 0
77M =(11%],77[1l,...,n]n],...,7)]w]), (2.18)

which is an rah order approximation to the exact solution

y=(y01y17m~y7nimiy]\[) (219)

For example, applying a first order Backward Euler method to (2.1) gives

[0] [0] . 0

"Im+1 = 7’71), + h/(tm,+1fll]n]+1)- (220)

2. Correction step: use the error function to improve the accuracy of the

approximate solution at each iteration.

For k = 1 to K1oop’ where Kloop is the number of correction steps:

(a) Denote the exact error function from the previous step as

eff-”(1): ya) - n(k—1><t), (2.21)

where y(t) is the exact solution and n(k—1)(t) is an MM degree poly-

nomial interpolating elk—1]. Notice that the error function e(k_1)(t) is

not a polynomial in general.

[fr] : (6%“ diff] (slkl
(b) Compute the numerical error vector, (5 ,. . . , m ,. . . , M), using

th
an (rk) order numerical method to compute the solution of the error

equation,

(eff—1W) = f(t,n(k—1)(t)+e(k'1)(t))-(n(k—1))'(t)e(k—1)(0) = o.

(2.22)
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where n(k_1)(t) and (n(k—1))’(t) are approximated by the Mth degree

polynomial interpolant and its derivative, respectively. {ilk} is an (rk)th

order approximation to

elk—1] = (cg—1],...,e]]€,_1],...,eg[:[_1]), (2.23)

where all?” z elk—Dam) is the value of the exact error function at

tm.

(c) Update the numerical solution nlkl = nlk—I] + dlkl.

2.1.4 Order Theorems for DC Methods

Theorem 2.1.1. Consider a DC method as in Section 2.1.1 with a global [28] or

local [5] connection strategy, equidistant grids hm = h = 7% for all m, fixed degree

M o‘fthe interpolating polynomials, and H ——> 0. If an arbitrary {explicit or implicit)

RK scheme of order p (p g M) is used, and if f satisfies suitable diflerentiability

conditions, then the approximate solution after the kth correction satisfies

77%] _ yam) : 0(h’fn'l71(p(k+1),fll)) f0?" h __) 0, (2.24)

where y is the exact solution.

[27] has a similar version of Theorem 2.1.1, with variant assumptions:

Theorem 2.1.2. If the discretization method is of order q, if the approximation

k—l]
7)] from the previous DC step{s) gives an 0(hr) error, and if certain smoothness

requirements are met, then the result nfkl of a DC step satisfies

"[kl — lIhy = 0(h7nin(r+q),J)) for h —> 0, (2.25)
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where I'lhy is the projection of the exact solution y onto the grid, provided that the

maximum attainable order J is larger than p and q. Moreover, further DC steps are

possible if J > r + q.

In essence, Theorem 2.1.2 tells us that Theorem 2.1.1 holds when p is different

at each DC iteration, i.c. when the discretization method has a different order at

each iteration. Note the importance of equidistant gridspacing. The same results

do not generally hold for nonequidistant grids.

2.1.5 DC Methods and Collocation

As aforementioned, the result of the DC solution approaches a collocation solution,

or rather the fixed point of the DC method is a collocation solution to the problem

(2.13). This collocation solution is determined by the choice of interpolating polyno-

mial, for example, and also determines the maximum attainable order of accuracy of

the DC method. The following theorem from [28], where the discretization method

used at each DC step is backward Euler, illustrates one such claim.

Theorem 2.1.3. 0n [0, H], 77* = (yo, 77f, . . . , 777”) is afixed point of the DC method

with base scheme of backward Euler if and only if

d*(tm) =0, m=0,1,...,M (2.26)

where

M) = Wm) - rattle». (2.27)

and 77(*)(t) interpolates 77* (inc n(*)(t) is the solution of the corresponding collo-

cation scheme). This theorem holds for all nodes (2.3), not necessarily equispaced;

however, equidistant nodes seem to converge to 77* more readily.
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2.1.6 Continuing Developments in DC Methods

In [6], Stetter is quoted: “The scheme [DC] is simple; the essential point is the defini-

tion of the defect [residual].” The treatment of the residual does in fact appear to be

the major factor in successful adaptations of DC methods. In the years immediately

following DC’s conception, some difficulties became apparent. One of these trou-

bles was a lower than expected order of accuracy with nonequidistant nodes (recall

that Theorems 2.1.1 and 2.1.2 required equispacing). However, a benefit of some

nonequidistant nodes is a higher order collocation solution with fewer gridpoints (e. g.

Gaussian quadrature). In 2004, Auzinger et a1 [5] rewrote the residual in several

different ways to obtain similar order of accuracy results for nonequispaced nodes.

For one modified DC method, the residual and the embedded discretization scheme

are both approximated at the unequally spaced gridpoints. For another method,

the residual was interpolated at the unequally spaced nodes while the discretization

method at each iteration was carried out at equidistant gridpoints. Auzinger et

al also provided some numerical examples where their modified DC methods were

successfully (and unsuccessfully) applied to stiff IVPs [6].

Another difficulty of early DC methods is the possible instability of the method

even when the lower order base scheme is stable, which may be due to the dis-

cretization used for forming the residual [40, 35]. The next section suggests how the

discretization of the residual could affect the stability and discusses a more stable

formulation introduced in 2000.

2.2 Spectral Deferred Correction Methods

Recall in Section 2.1.3, the formation of the residual involved the derivative of a

polynomial interpolant. This derivative is typically approximated by what is known
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as spectral differentiation.

A spectral differentiation matrix is a linear map

DM‘ f(.rm) -> f’(.’L'm) , (2.28)

    L d h d

where DM can be found by representing f by a polynomial interpolant of degree

M (or any truncated series expansion), and differentiating the interpolant, so that

the ijth entry of ’DM is:

 

d

Dij = Ely-(allay (2.29)

where

M t_tk

cj(l)= H t--t' (2.30)

k=0,k7éj J k

The problem is that DM is increasingly ill-conditioned as M increases [32]. Spectral

integration, on the other hand, appears to be inherently more stable.

A spectral integration matrix is a linear map

If”: ffCEm) _’ fxmf(x)dx , (2.31)

    _ 1 _ _ Z 1

where IM also can be found by representing f by a truncated series expansion. For

example, representing f by its Lagrange polynomial interpolant of degree M, the
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ijth entry of 1M is:

Ilj Z/t Cj(l)dt, (2.32)

where cj(t) is as defined in (2.30) above.

Perceiving spectral integration’s benefit, Greengard introduced spectral integra-

tion to replace spectral differentiation within spectral methods [32]. He proposed

recasting the differential equation as an integral equation, where the solution can be

stably recovered by integration. For example, he found that for the differentiation

matrix PM, the process of differentiation via Chebyshev series can amplify errors

by a factor proportional to M2, whereas for the integration matrix IM, the process

of integration amplifies errors by a factor of less than 2.4.

In 2000 [25], spectral integration rather than differentiation was applied to the

residual in DC, and the new method was designated as Spectral Deferred Correction

(SDC). Apparently SDC does not have the instability issues which plague classical

DC [60], [40], [35], [32], and it may even cause improved stability in some cases

where explicit RK methods are used as the base discretization schemes [18], [17].

2.2.1 Formulation of SDC Methods

SDC methods are deferred correction methods which use spectral integration to

approximate the residual and (in the original formulation) Euler timestepping to

update the prediction and correction steps [25]. The details of the algorithm may

be seen by applying an SDC method to the scalar IVP (2.1). The time interval,

[0, T], is discretized into subintervals

tn=l1<l2<---<tn<-~<tN=T, (2.33)
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where H = tn+1 —— tn. Each subinterval [tn,tn+1] is discretized again into M

subintervals

tn = tn,0 < tn,0 < ‘ ' ‘ < tnyrn < ' ' ' < t’II,M = tn+1, (2.34)

N1 is fixed. We consider the SDC method on one subinterval [tn, tn+1l and drop

the subscript n.

1. Prediction step: compute an approximate solution to (2.1) over the grid

points (2.34),

gm] 2 (71])0] , "[0], . . . , 717g], . . . mg), (2.35)

which is an rah order approximation to the exact solution

3’: (yoaylp-wymp-qu). (2.36)

For example, applying a first order backward Euler method to (2.1) gives

7731+, = will + h ffim+1fllfg]+1)- (2.37)

2. Correction step: use the error function to improve the accuracy of the

approximate solution at each iteration.

For k = 1 to Kloopi where K1001? is the number of correction steps:

(a) Denote the exact error function from the previous step as

elk—”(0 = W) — ilk—”(0. (2.38)
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where y(t) is the exact solution and n(k_1)(t) is an AIM degree poly—

nomial interpolating nlk_1]. Notice that the error function e(k-1)(t) is

not a polynomial in general.

Compute the residual function,

eff—110) = (77(k_1))’(t)- re, wit—11(0). (2.39)

[kl. - ~ k k .

Compute the numerical error vector, olbl = (6]) ],. . . , 5m ,. . . , 6M), usmg

an (rk)th order numerical method to discretize the integral form of the

error equation,

(eff—1170): /(t,n(’:“1)(t)+ eff-”(0) — Hark—11(0) — C(14)“,

(2.40)

a F(t,e(k_1)(t))— Eff—11(1), (2.41)

where F(t,e(t)) .—_ f(t,n(t) + 6(1)) — f(t, 77(1)). Denote sit] as an (rk)th

order approximation to

e[l€—I] =(€(l)k-1ln lk—ll [k'_1l)3 (242)
..,€nl 3...,611/1

where 47,—1] = e(k—1)(tm) is the value of the exact error function at

(.m. For example, applying a first order backward Euler method to (2.41)
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gives

till = 6t] +"(f(‘1n+1”77(r]:;11)+ 655110» - mm... 43:73)»

(2.43)

_ [t"‘+le(k—1)(t)di. (2.44)

t ..

Note the integral [,1];le ((h-1)(t)dt is evaluated with (A! + 1)th order

(or higher if Gaussian quadrature nodes are used) accuracy via spectral

integration as in (2.32).

((1) Update the numerical solution nlkl = nlk—ll + {ilk}.

2.2.2 Order Theorems for SDC With Euler Base Schemes

In the original SDC paper [25], the gridpoints (2.34) could be arbitrary and the

following theorem is satisfied for SDC with either forward or backward Euler as the

base discretization scheme:

Theorem 2.2.1. [25] For any sufficiently smooth. function f : IR x (C —> C and any

natural numbers M, Kloop’ SDC with either Euler method as the base discretization

scheme with M +1 submeshpoints (on the interval [0, H] ) and KIoop correction steps

converges to the exact solution y = (y0,y1, . . . , ym, . . . , yM) with order of accuracy

0(},mm(M+11Kloop+1))_

Xia, Xu, and Shu [76] also prove a similar theorem. The use of Gauss-Lobatto

quadrature nodes in the submeshpoints results in an improved order of accuracy

when SDC is combined with one of the Euler methods. With M + 1 Gauss-Lobatto

min(2M,K +1))
nodes, the order is 0(h loop [41].
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2.2.3 Stability for SDC Methods With Euler Base Schemes

Stability regions for SDC methods can be calculated in the traditional sense.

Definition 2.2.2. Region of absolute stability. When solving the Dahlquist problem

y, = Ay for t E [0, 1] and A E C (2.45)

mm = 1, (2.46)

the amplification factor Am(A) (or the stability function R(z) for z = Ah 6 C, h is

one timestep) is defined by

Am(A) = R(::) -—'- 771, (2.47)

where 771 is the numerical solution at time t = 1 (ort = h) The region of absolute

stability S is

S(Ah) = 3(2) = {A E C s.t. |Am(A)| g 1} = {z E C s.t. |R(z)| S 1}. (2.48)

SDC with a base scheme of forward Euler has an interesting property that the

size of the stability region increases as the order of the method increases [25]. All of

the SDC methods with a base scheme of backward Euler are A(a)-stable. They are

not L-stable, but the limit lim|A|—>ooAm(’\) is less than %. Unfortunately, some of

the imaginary axis appears to be lost as the order increases [25].

2.2.4 Further Developments for SDC Methods

Several variants of SDC methods have been developed recently. Huang, Jia, and

Minion developed an accelerated version of SDC methods for ODE initial value prob-

lems and for differential algebraic equation systems using Newton-Krylov methods
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[41, 42]. In these so-called Krylov Deferred Correction methods, the original SDC

method acts as a preconditioner for the system. An iteration of SDC preconditions

the equation, a solution for the error is computed by a Newton-Krylov method, and

then the process is repeated, thus accelerating SDC’s convergence to the collocation

solution. Also, Minion developed semi-implicit SDC methods which treat the stiff

and nonstiff parts of a stiff ODE separately via an implicit and explicit method,

respectively [60]. Christlieb, Qiu, and Ong experimented with higher order explicit

RK methods as the base scheme in Integral Deferred Correction methods (IDC),

which are motivated by SDC methods [18, 17] (see also Section 2.3.1). Also, higher

order splitting methods for PDES were constructed by using ADI methods within

the differential DC framework, including applications to Vlasov-Maxwell systems

with periodic boundary conditions [46, 49, 50].

2.2.5 Semi-implicit SDC Methods Constructed with Euler

Methods

When a stiff ODE can be split into a nonstiff part and a stiff part, it is advantageous

to treat the nonstiff term explicitly and the stiff term implicitly in order to save

computational cost but still handle the stiffness effectively. See the introduction

to Chapter 3 for more details on semi—implicit methods. Consider the initial value

problem

y'(’») = my) = [5012(1) + fNU/ay), '56 [0’7”].

31(0) = 310-

(2.49)

The stiff terms are contained in fS(t, y), and fN(t, y) contains only nonstiff terms.

Minion [60] developed semi-implicit SDC (SISDC) methods to handle an IVP

of the form (2.49). In each predicition and correction step of an SDC method,

backward Euler was applied to the stiff term while forward Euler was applied to the
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nonstiff term. I.e.,

1. Prediction step: compute an approximate solution to (2.49) over the grid

points (2.86),

0 0 0 0
T][0] = (77!) ],ng 1,. . . Win], . . . ‘77[i})’ (2.50)

which is a first order approximation to the exact solution

y=(3/01311a-~-~.-33/ma,y/1/[) (2.51)

when we apply forward and backward Euler as follows:

[0] _ [0] 0 0

nm+1 — 77m + hfS(tm+1v77,[n]+1)+ thUma
77in])- (2.52)

2. Correction step: use the error function to improve the accuracy of the

approximate solution at each iteration.

For k = 1 to Kloop’ where Kloop is the number of correction steps:

(a) Denote the exact error function from the previous step as

e<k-1><t> = y(t) — wit—”<0, (2.53)

where y(t) is the exact solution and "(k—1)“) is an Mm degree poly-

nomial interpolating nlk _1l. Notice that the error function e(k—1)(t) is

not a polynomial in general.

(b) Compute the residual function,

Arum : (aw—19W) — f<t.n<k“1)<t>)

elk—1)M— f5<t.n<’°"1)(t>> — fN(t.n(""1)(t))-
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(c) Compute the numerical error vector, dik] = (6gk],. . . , (57%,. . . £5611), dis-

cretizing the integral form of the error equation,

(A's-1w): fs(t~n(k—1)(t) + e(k—1><t>>— fS<t,n(’“*1><t>> (2.54)

+ fN(t.n(k"1)(t) + e<k—1><t>) — fN(t,n(k_1)(t))

(2.55)

_.<k—1)(,)
' (2.56)

: FS(l,e(k—1)(£)) + FN(t,c(k‘1)(t)) - C(k—IW),

(2.57)

where FS(t.e(t)) = fS(t,n(t) + e(t)) — fS(t,77(t)) and FN(t,e(t)) :-

f5(t,7)(t) + e(t)) — fN(t,77(t)). Then (Sikl is a first order approximation

to

eik—ll = (egk_1],...,e££_1],. ..,eg€[—1]), (2.58)

where egg,“ 1] = e(k—1)(tm) is the value of the exact error function at

tm, when we apply a first order backward Euler method to (2.57) gives:

5i:]+1 = dig] + h.(f3(tm+1,n7(rlf;1l)+ 6:310» — fS(tam+1a ”57:11”

(2.59)

+ fotm-Uivli_1)+ 5:90)) - fN(tm,ni,l{—1))) (2.60)

— [5,?“ Ale-1mm, (2.61)

where the integral of the residual is approximated via some quadrature

method, e.g., using (2.31).

(d) Update the numerical solution 77W = nik-li + 6M.
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Order of Accuracy of SISDC With Euler Base Schemes

SISDC with forward and backward Euler has the same order of accuracy rules as

for SDC with forward Euler alone or with backward Euler alone.

Theorem 2.2.3. [25] For any sufficiently smooth function f = f5 + fN : IR x

(C —» C and any natural numbers M, Kloop’ SISDC with backward and forward

Euler methods applied to fS and fN respectively with M + 1 submeshpoints (on

the interval [0, H] ) and Kloop correction steps converges to the exact solution y =

(yo, 3J1. . . . ,ym, . . . , 31M) with order of accuracy O(hmm(M+l’K100p+1)).

Uniform stepsizes may not be necessary, for example, Gauss-Lobatto nodes ap—

pear to work as well [60]. Numerical work suggests that when neither fS nor fN

are stiff, then SISDC with forward and backward Euler over Gauss-Lobatto nodes is

min(2M,K100p + 1) order accurate. However, when applied to Van der Pol’s equa-

tion as given in Section 5 of [60], SISDC shows order reduction for both uniform

and Gauss-Lobatto nodes when fS is stiff.

Stability of SISDC With Euler Base Schemes

Semi—implicit methods designed to solve equations of the form (2.49) require a non-

standard definition of stability. One definition of stability used in [60] considers,

rather than the Dahlquist equation (2.45), a test problem of the form

y’(t) = fiiy+ay

31(0) = 1

(2.62)

where a and H are real and correspond to the stiff and nonstiff situations, respec-

tively. I.e., fiiy is treated explicitly and (13; is treated implicitly when calculating

the stability region for a semi—implicit method. This definition seems lacking, e.g.,
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when (2.62) is employed as a test equation, the case of stiff imaginary values is

excluded, but is reasonable for considering stability of the method when applied

to advection-diffusion equations. The results of using (2.62) indicate that SISDC

with forward and backward Euler have increasing stability as the order increases.

Although stability regions scaled by the number of function evaluations suggest a

different story, accuracy may in fact confirm the indication of the unsealed regions.

See Section 4 of [60] for further details.

2.3 Integral Deferred Correction Methods

2.3.1 Explicit IDC-RK Methods

In [18], higher order explicit Runge—Kutta (RK) integrators as the base discretization

schemes in SDC methods was investigated. It was shown that the order of the SDC

method improves by the order of the RK method for each correction step of SDC

whenever the gridpoints (2.3) are equally spaced, but numerical results show that

the same order increase does not occur with a nonequidistant grid, e.g. Gauss-

Lobatto nodes. Since equidistant gridpoints are used for these methods constructed

with RK integrators, and since incorporating RK methods requires a rewriting of

the integral formulation given in the construction of SDC methods (see Section 2.3.2

for details on the new formulation), these new constructions are desinated Integral

Deferred Correction (IDC) methods. In particular, IDC methods constructed with

RK integrators are designated IDC-RK methods.

The following order result was rigorously derived for explicit IDC-RK methods.

Theorem 2.3.1. Let y(t) be the solution to the [VP (2.1) and y(t) has at least S

(S 2 M + 2) degrees of smoothness in the continuous sense. Consider one time

interval of an SDC method with t E [0, H] and uniformly distributed quadrature
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points (2.3). Suppose an rOth order explicit RK method is used in the prediction step

and (r1, r2,. . . ,rK )th order explicit RK methods are used in Kloop correction

loo

steps. Let 3k = 23?:0 rj. If SKloop g M + 1, then the local truncation error is of

order 0(hSK100'p+1).

Stability regions for fourth, 6th, 8th, and 12th order explicit IDC-RK methods

are plotted in [18]. For 4th order methods, stability regions of SDC with four steps

of forward Euler, of IDC-RK with two steps of 2nd order RK, and of 4th order RK

alone are plotted. Similar combinations are plotted for the 6th, 8th, and 12th order

IDC—RK methods. Rth order IDC-RK stability regions are all larger than the region

for the Rth order explicit RK method. Also, as the order of the base RK scheme

increases, the stability region increases [18, 17]. SDC and IDC methods appear to

have stability-preserving or -enhancing properties, for certain orders, which may be

investigated further in [30, 31, 57].

Accuracy regions were also calculated for IDC-RK methods. A comparison be—

tween lDC-RK and RK methods to show the attainable accuracy for a fixed number

of function evaluations is also given [18, 17].

Definition 2.3.2. An accuracy region for a numerical method is found first by

solving (2.45) with a fixed number offunction evaluations. Then the accuracy region

is given by a contour plot of the error at T = 1 for that fixed number of function

evaluations over A E C.

As with the stability regions, the size of the accuracy region increases as the

order of the base scheme increases. However, the accuracy region of an Rth order

IDC-RK method is not always larger than the accuracy region of an Rth order RK

method. Fourth and sixth order IDC-RK methods have smaller accuracy regions

than the same order RK methods, but an 8th order IDC-RK method (with base
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scheme of RK4) and an 8th order RK method have similar accuracy regions. Also,

12th order IDC-BK methods appear to have accuracy regions comparable to that

of RK12 (and possibly larger than, in some cases).

Efficiency, which quantifies how much computational work is necessary to obtain

a desired error tolerance, is another way to compare various numerical methods.

Since efficiency (as well as stability and accuracy plots) is easier to specify for an

RK method, first consider that IDC methods with Euler or explicit RK methods as

base schemes can be reformulated as a single higher stage RK method [17].

Proposition 2.3.3. [17] An IDC method, constructed using {M + 1) quadrature

nodes and (Kloop+ 1) prediction plus correction iterations of an explicit s-stage RK

method, can be reformulated as a ((Kloop + 1) - s . M)-stage BK method.

Using the RK reformulation of such IDC methods, we can consider their effi-

ciency. The local truncation error (LTE) of a pth order RK method used to solve

(2.1) can be written as

oo . A7;

LTE = Z ’1“: aijD’lj)’ (2.63)

i=p+1 j=l

where h = 7%, a,j are the truncation error coefficients, Dij are the elementary

differentials, and )‘i is the number of elementary differentials of order 0(hi). Then,

if h is sufficiently small, we can bound the LTE by:

LTE S hp+1'/\p+1“Hap+1,jl|00'|le+1,jlloo = Chm—1 ' (bp+1lle+1,jlloo)-

(2.64)
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For two pth order RK methods, the LTE are

LTE1= Clhp+1'(Ap+1lle+1,jllOO) and LTEz = CthJr1 ' (Ap+1||Dp+1,jlloo)-

(2.65)

If the same tolerance c bounds both LTEl and LTEQ, then the largest stepsizes

that will allow this tolerance for both methods are

h1:(l§:—1) and 62 = (13%), (2.66)

respectively, where 2 = Ap+1||Dp+1 jlloo- Since the cost per iteration is 57;, where

the first RK method is computed in 31 stages and the other in 32 stages, and hi

i

is the number of iterations required, then the total amount of work done by each

method is 73%. Taking a ratio of the total amount of work done gives the (relative)

i

efficiency of method 2 as compared with the first method.

efficiency 2M (2.67)

sl/hl

An efficiency close to 1 means that methods 1 and 2 require similar work to achieve

the same error tolerance. An efficiency of 1.5, e.g., means that method 2 requires

50% more work than method 1 to reach the same error tolerance. The results

of IDC-RK efficiency calculations corroborate the results of the accuracy plots for

the 4th, 6th, and 8th order IDC-RK compared with the same order RK methods

(machine precision restrictions prevented the calculation of the efficiency of the 12th

order methods) [17].
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2.3.2 Implicit IDC-RK Methods

In this section, we present a description of implicit RK methods and their formula-

tion within the framework of IDC methods. We provide a general formulation that

allows the construction of an arbitrary order implicit IDC method based upon the

number of correction loops or the order of the (arbitrary) implicit RK subscheme.

The order of accuracy results for implicit IDC-RK methods are analogous to the

results for explicit IDC-RK methods, with some changes in the proof; therefore we

provide a rigorous analysis of the local truncation error of such implicit IDC-RK

methods.

Implicit Runge-Kutta Methods

An implicit Runge—Kutta numerical integrator can be defined as follows:

Definition 2.3.4. [37] Let p denote the number of stages and a11,a12, . . .,a1p;

£121,022, . . "(121); . . .;

“pl: apg, . . . , app; b1, b2, . . . , bp; c1, 02, . . . ,cp be real coefl‘icients. Then the method

P

ki = [(to + Cili. yo + h. 2 az-jkj)fori=1,2,...,p (2.68)

i=1

p .

Tl]. = yo + h 2: bjh‘j (2.69)

i=1

is called a p-stage implicit RK method for solving the IVP {2.1). A RK method has

order r if for a sufficiently smooth IVP (2.1),

”We + h) — mu _<_ MT“. (270)

i.e., the Taylor series for the exact solution y(tO + h) and n1 coincide up to and
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including the term hr .

General Formulation of IDC with implicit RK

Applying the formulation from [18] for IDC with higher order explicit Runge-Kutta,

we obtain a general formulation for IDC with implicit RK methods. Consider the

initial value problem (2.1). The time interval, [0, T], is discretized into intervals

tnztl<t2<---<tn<---<tN=T, (2.71)

where H = tn+1 — tn. Each interval [tn, tn+1l is discretized again into subintervals

tn = t'lt,0 < tlLl < ' ' ' (117137”, < ' ' ' < thl’I = tTIrl-l’ (2.72)

M is fixed. Uniform subintervals h = tn,m+1 — tn,m are assumed, based on the

results of [18]. The IDC method is applied on each time interval [tn, tn+1l- We

drop the subscript it since the method is the same for each time interval. In each

prediction and correction loop of IDC, we apply an implicit RK method as in Defi-

nition 2.3.4.

0 Prediction loop: Use an rOth order numerical method to obtain a numerical

solution

filo] = (7750].d101w - ”777g,- - - 6%)), (2-73)

which is an rOth order approximation to

y = (mi/1, . . . .ym, . . . .311”), (2.74)
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where ym = y(tm) is the exact solution at tm. We apply a an implicit pO-stage

rOth order RK scheme (2.68) as follows:

p0

ki = f(t-m + Cz’h,777[2] + h 2 aljkj) for i = 1, 2, . . . ,po, (2.75)

i=1
PO

0 U

77ln1+1 = 71],} + h 2 bjkj. (2.76)

1:1

0 Correction loop: Use the error function to improve the accuracy of the

numerical solution at each iteration.

For k = l to K100p ( is the number of correction loops):
Kloop

1. Denote the error function from the previous step as

elk—”(v = y(t) — wit—”<6,

where y(t) is the exact solution and 77(k-1)(t) is an Mm degree polyno-

mial interpolating n[k_1l. Note that the error function e(k_1)(t) is not

a polynomial in general.

2. Compute the residual function,

«:(k‘llm e- <n<k‘1))’(t)- Mark—”(0).

In fact, the residual is not computed directly, but an integral of the

residual is computed, as described below.

3. Compute the numerical error vector, blkl = (634,. . . , (5)712] ,. . . , by)”, which

is an rkth order approximation to

e[k_1] = (e])k—1],. [k—l] . ”egg-1]), (2.77)”,6"! , .
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where egg—1] = e(k—1)(tm) is the value of the exact error function at

tm.

To do this, first use an rkth order numerical method to discretize the

integral form of the error equation,

(ark—lbw = F<t,Q<k-1><t)— E(k’1)(t)) e G<t,Q<k—1><t>),

Q(k-1)(0) = 0.

(2.78)

where

Q(k_1)(t) = e(k_1)(t) + E(k_1)(t), (2.79)

Flt, 6(0) = N, W) + 6(1))- “1277(0), (2-80)

t

E(k“1)(t) = / Alf—llama (2.81)

t0

The rkth order numerical approximation to eri-l] = Q(k—1l(tm) is

are]
m .

Then compute the numerical error vector as

5W = Qlkl _ Elk—ll, (2.82)

where Eli—1] = E(k—1l(lm).

We apply a pk-stage rkth order implicit RK method to (2.78), giving,
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for i=1,2,...,pk and m=0,1....,1t’I—1:

,, pk tm cih .

k.- = Fem +c.h. all?” +h Z “2'ij - f, + €(k‘1l<r>dr>.

i=1 0

Qlkl+1__9[kil + h j::k1bjk

5119]+1 _—Q[k]+1 _E[k-ll(tm+1). (2.83)

In fact, we use

It A. tm+1 -_

din]+l :anLl -/to £0” 1)(T)al‘r

k:—

~ Qlfi]+1_ nlfi+ll _ 310 — j: aj(t.]f_17[ 1]) a

where we have approximated the integral by interpolatory quadrature

formulas, as in [25], and multiplied nlk—ll by an interpolation matrix to

obtain its value at intermediate stage times tm + cjh, cj 7t 0, 1 [l8].

4. Update the numerical solution nlkl = n[k_1l + blkl.

Truncation Error for IDC-BE

An understanding of the proof of the order of accuracy of implicit IDC-RK methods

is aided by walking through the case of backward Euler (BE) before the case of

higher order implicit RK as the IDC base scheme. The goal is to show that, under

_ certain conditions, IDC with a first order BE method used in the prediction and

correction steps (IDC—BE) has a local truncation error of 0(hK100p+2). To show

this, we need some definitions and propositions about the degree of smoothness

and differentiation of functions and of discrete data. Some of these definitions and
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properties are given below in Section 2.3.2, but also see [18] for further details. The

8
following notation will be used: 3? = partial derivative and 5% = total derivative,

e.g.

-2léfl@— [it + a—y at (2.84)
d

Several analytical and numerical preliminaries are needed to analyze IDC meth—

ods. The smoothness of discrete data sets will be established, analog to the smooth-

ness of functions; this idea of smoothness is used to analyze the error vectors. Let

v5(t) be a function for t E [0,T], and without loss of generality, consider the first

interval, [0, H], of the grid (2.71). Denote the corresponding discrete data set,

(£4?) = {6640). . . . . (ma/2M», (2.85)

where tm are the uniform quadrature nodes given by (2.72).

Definition 2.3.5. (smoothness of a function) A function w(t), t E [0, T], possesses

. ‘ s, , ._ as , - __
0 degrees of smoothness if Hd illloo .— “53de is bounded for s — 0,1,2,...,o,

where [llél’lloo := ma‘xte[O,T] [Ii/’20)].

Definition 2.3.6. {discrete difi‘erentiation): Consider the discrete data set, (t, 6:),

defined in (2.85), and denote LM as the usual the Lagrange interpolant, an Mth

degree polynomial that interpolates (t,i,b). An sth degree discrete difierentiation is

a linear mapping that maps 1b = (won/21, . ..,ibM) into (1737/), where (dsib)m =

83M

aw

tion €2le '2 .DS ' 1,5, ’thBTC b5 6 R(M+1)X(M+1) and (133)qu = $671“)

(t, wlltztm' This linear mapping can be represented by a matrix multiplica-

ltztm,

m,n=0,...,M.

Given a distribution of quadrature nodes on [0, 1], the differentiation matrices,

. 0 1 . . . . .
D5 ’ l, s = 1, ..., M have constant entries. If this distribution of quadrature nodes
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is rescaled from [0,1] to [0, H], then the corresponding differentiation matrices are

~ .01 ~ s~0,1
D1=717D]’]andD3-—-(T1I)D]9 1.

Definition 2.3.7. The (S, 00) Sobolev norm of the discrete data set (t: if?) is defined

as

(231.0
   

ll}
 

3

OO

0

[3.06 3: go    

0'

l =ZIIDs~r
00 3:0

—>

where dsil' = Id - (b is the identity matrix operating on 1)).

Definition 2.3.8. (smoothness of a discrete date set): A discrete data set, (2.85),

possesses a (o S M) degrees of smoothness if “I; is bounded as h —r 0.“3.00

We emphasize that smoothness is a property of discrete data sets in the limit

——-—>

as h —> 0. We also impose a g M, because dot/2 :- 6, for o > M. See [18] for a

detailed discussion.

Example 2.3.9. (A discrete data set with only one degree of smoothness). Consider

the discrete data set

(Er/7) = {(0.0), (g g) , (g 521-) , (531— 5;) ,(H,O)}.

The first derivative

~ ’ 4 10 10 4
d : —— —— __ _
1w ( 3, 3 ,0, 3 73)?

is bounded independent of H, while the second derivative

57/:— 373 16 112 16 272

'2" 3H’ 3H’ 3H’ 3H’3H ’
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_,—+

is unbounded as H —» 0. Therefore, (t, it) has one, and only one degree of smoothness

in the discrete sense.

For further details, definitions, and properties of smoothness in the discrete and

continuous sense, we refer the reader to [18].

Now consider the local truncation error of SDC methods with a first order back-

ward Euler method in the prediction and correction steps. Analagous to Theorem

4.1 in [18], we have the following theorem:

Theorem 2.3.10. Let y(t) be the solution to the IVP (21) and y(t) has at least

S (S 2 M + 2) degrees of smoothness in the continuous sense. Consider one time

interval of an IDC method with t E [0, H] and uniformly distributed quadrature

points

O=to<t1<---<tm<-~<tM=H, (2.86)

equispaced with h = {g}.

If a first order BE method is used in the prediction and K100], correction steps

”(leap < ll/1+1), then the local truncation error of the IDC method is 0(hK100P+2)

To prove the theorem, two lemmas (below) are required: one for the prediction

step and one for the correction step. Together the lemmas prove Theorem 2.3.10

by mathematical induction on k, the number of correction steps. Lemma 2.3.11,

analogous to Lemma 4.2 in [18], is the initial case. Lemma 2.3.12, analogous to

Lemma 4.3 in [18], is the induction step.

Lemma 2.3.11. (Prediction step). Let y(t) be the solution to the [VP (21) and

y(t) has at least S (S 2 M + 2) degrees of smoothness in the continuous sense.

Consider one time interval of an IDC-BE method with t E [0, H] and uniformly

distributed quadrature points (2. 86). Let ”[0] = (1750],ngol,”.,r).]g],...,n][0[]) be the

numerical solution on the quadrature points (2.86) at the prediction step. Then:
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1. The error vector elol = y — nlO] satisfies

[[e[0]||oo ~ 0(h2) as t —+ 0. (2.87)

2. The rescaled error vector (210] = 1elol has 1W degrees of smoothness in the
h

discrete sense.

Proof. For convenience, drop the superscript [0]. Apply a backward Euler update

to obtain an approximate solution nm+1 = 77m + h f(tm+1, 77m+1). For the exact

solution y(t), Taylor expand y(t)”) = ym about t = tm+1. Then

 

31m+1 = 3m + hf(tm+1v ym+1) + Rm+i (2-88)

'22 <2) (—1)(S-1>h<5-1> (5-1) 5
: y7'l1+1+§yrn+1_m+ (S— 1)! y7n+1 +O(h )+RTTL+1

(2.89)

gives

S—l (+1) .
(-l) 2 ‘ (i) S . S

Rm+1 = :2 Try/m+1 + on. )= Tm+1+ ow ) (290)

Z:

Clearly rm+1 ~ (9(h2) (since y has S degrees of smoothness).

Now consider the error:

em+i = ym+1 - 77m+1 (2-91)

= 31m — 72m + h (f(tm+1vym+l) - f(tm+1i "mi-1)) + Tm+1+ 0013)

(2.92)

i em + hum+1 + Tm+1 + 0(hS) (2.93)
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Taylor expanding about ym+1 gives

um+l = fum+1vym+1l ' fum+1v71m+ll (2'94)

= (jam—Hi ym+1l _ fum+li ym+1 _ em+lll (2'95)

S-2 ' '
_1 2+1 . at _

= Z (—_,i)F—(em+ll15;if(tm+lvym+ll + 0((em+l)S 1) (2'96)

i=1 '

1. Now prove part 1. of Lemma 2.3.11 by induction on m, the index of gridpoints

on [0, H].

c When m = 0, 60 = 0 ~ 0(112).

0 Assume em ~ 0072), and show em+1 ~ (901.2).

Then cm+1 —_— em + hum+1 + Tm+1 + 0(hS), or:

6771+]. — hum+1 = 8n), + 7‘m+1 + 0(h5) (2.97)

= on?) + on?) + 0(65) = on?) (2.98)

Note that

(_1)t+ I: at

em+l _ hum+l = em+1_ h( 2 T<em+lllgyjf<tm+lv ym+l)

i=1 ' '

+ memos—1)).

Letting e = “m+ 1, we have an equation of the form:

(9072) = e + 7.6“, e + 662 82 + - - - + hES_2 63—2 + oozes—1), (2.99)

where the. Zij are bounded and do not depend on h, since y has S degrees of
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smoothness. Now we will show by way of contradiction that e must be 0(h2).

Suppose 6 ~ O(hp) for some p < 2. Then

0(h2) = a0hp+a1hp+1+a2h2p+1+--+a5_2h(S—2lp+l+0(h(S—1)p+1),

(2.100)

where the aj are bounded and do not depend on h, which implies that the 0th

term must cancel with some later term(s). It is impossible for the 0th term

to cancel with more than one term since the coefficients do not depend on h.

Thus we must have

(1_.l

a0

= hp—lp-l for some integer l 2 2. (2.101)

. a . . . . _. .

Since —,—,{3 does not depend on h, the only pOSSibility 15 p = l:lI' Noting that

vp + 1 = 1 — {3—1 < 1 for all v 2 1, we conclude that the right hand side is

larger than C(12), a contradiction.

Hence 6771+1 ~ (9(h2), and therefore (2.87) holds.

. The proof of part 2 of Lemma 2.3.11 is nearly identical to that in Lemma 4.2

of [18]. For completeness, we include the proof here. We again use an inductive

approach, but this time, with respect to s, the degree of smoothness. First,

note that a divided difference approximation to the derivative of the rescaled

error vector gives

I

E 27. r. v

(diam = ——i,l— = 2777.41 + jig—1 + cab-2), (2.102)
. i
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where

 

S—2

~ “m+l "—1 ~ ' 2S—3

um+l = h = E : hi [yiU'rrHl’ym+1)(cm+1)z + 00‘ l»

i=1

24.41 = 2:132 (yam 24.4.1><em+1>i+0<<em+1>54> and ”aloe ~

(9(h). We are now ready to prove that E has M degrees of smoothness by in-

duction. Again, since “aloe ~ 0(h), Ehas at least zero degrees of smoothness

in the discrete sense. Assume that E has 3 S M — 1 degrees of smooth-

ness. We will show that (dlé) has 3 degrees of smoothness, from which

we can conclude that E has (8 + 1) degrees of smoothness. Since fyi has

(S — i — 1) degrees of smoothness in the continuous sense, the vector form

fyi = [fyi(t0,y0), . . . (”Away/1.1)] has (S — i -— 1) degrees of smoothness

in the discrete sense. Consequently, hi_1fyz- (vector) has (S — 2) degrees of

smoothness, which implies that E has min (S — 2, 3) degrees of smoothness.

Similarly, 723 has (S — 2) degrees of smoothness in the discrete sense. Hence

(6115) has 3 degrees of smoothness, which implies that E has (3 + 1) degrees of

smoothness. Since this argument holds for S 2 M + 2, we can conclude that

E has M degrees of smoothness.

Cl

Lemma 2.3.12. (Correction steps). Let y(t) be the solution to the IVP (21) and

y(t) has at least S (S 2 M + 2) degrees of smoothness in the continuous sense.

Consider one time interval of an IDC-BE method with t E [0, H] and uniformly

distributed quadrature points (2.86). Suppose in the (k — 1)th (k S M) correction

step, elk—1] ~ 0(hk+1) and the rescaled error vector Elk—ll = fielk—ll (now

O(h)) has M — k + 1 degrees of smoothness in the discrete sense. Then, after

another correction step:
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1. The updated error vector elk] satisfies

Hemlloo ~ out”). (2103)

2. The rescaled error vector Elk—ll = 1 elk—1] has M — k. degrees of smooth—

ft—E

ness in the discrete sense.

Proof. We integrate (e(k-1))’(t) and use that result and blkl to obtain an equation

for elk]. Then we prove 1. and 2.

Recall the error equation (2.78) at the end of the (k — 1)th correction step, and

integrate it over [tm, tm+1].

451;? = (2)5-” + t:r:n+1F(t,e(k_1)(t))dt— ”Zn-H €(k-1)(t)dt

= (3)1571] +/tm+1 F(t,e(k’1)(i))dt —/t F(t, e(k_1)(t))dt

tm+1 m

— C(k—1)(l)dt

tm

._ t -

= (2% 1] +/ m+1 F(t,e(k_1)(t))dt

_ Utm“ F(t,e(k_1)(t))dt + (-—1)h. r(tm+1,e[f,;]])

 

2
2h (1 [ls—1]

+ (—1) fig (t.m+1,67n+1)+ . . .

M+1 M

M+1 h d [k-ll M+2
+(——1) (M+ 1)!dil‘(P(tm+1’em+1H001 )

— /tm+1€(k—1)(,)d,

tm
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elk—1l_lk—1l+A§1(_1)i+1Ed’i—1F(elk—ll)+0(hIW+2) 

em+l _ em . i! dti—l tm+1,em+1

t

—/ m+16(k—1)(t)dt (2.104)

Irm

Using blkl = (6):]? . . , (5%). . . 2%)) to denote the numerical error vector obtained

from the backward Euler scheme at the kth correction step gives:

+ "1+1”nm+l +6m+1) m+1177m+1l

_ ( tm+1€(k—l)(t)dt+0(h/U+2)) ,
(2105)

,1111_,111+,,(711 11—11,11-11_,(, 11— 11)

tm

where the last term is due to the spectral integration used to numerically integrate

C-(k 1l(11) at M + 1 gridpoints.

Now subtract equation (2.105) from equation (2.104) in order to obtain em

 

m+1'

111 _ 11— 11_,111
em+1_ em+1 m+1

M+1 ' '.—1

67—11 1 hid7 et—h 1)

-/m+1:(:k1“1)(1)dt—6],€]

tm

[k— 1] [k— 1]) [k— 1])

— h(f(t"1+1 77m+1 + 6m+1)f(tm+1’nm+1))

+ (/t"1+1 C(k_1)(t)dt + O(hM+2)).

 

eifiLl = Bib] +”(WWW1 "i:+i] +eih+i]lf(tm+1 "i7,:+i] +6ih+i]ll

IV

1171—1 d2 ,

+ Z(—1)i(,-+1)1_F(tm+ldti Gilly?) + 0(hAI+2)1 (2.106)
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e[';1+1=e[f,] + hughl+1+ rlk+ll + 0(1“”), (2.107)

where

A. k k 1

E7111: 1111111111111 — 11141 11.41] + 61.19)
k

= f(tm+l-ym+ll _ f(tm+11ym+1 — ein1+ll

 

 

AS'_2 1

(-11)2+ 32 1 S—1
= —-f(t1...+1.ym+111e£,,L11 +O<<e[1.11 ).

i=1

and where

N '+1 '
r[k—1]—i h2 d2 [k_1]

Hm+l Z (—1) (i+1)!fip(tm+1’em+l )

i:

Note

1(1.e(’°‘1>(111: 1929(111— f(1 461— elk—11(1))

— +1

£212”:flf(ty(1))(e(k ”(11111101101 1>(1))S-1).
3y]

Since Elk-’1] has (M — k + 1) degrees of smoothness in the discrete sense, then

adZEIk—llu) ~ 011(1) by Proposition 3.19 from [18]. Then

——(——.f<1.99915114191111“

+783;f<1,y<1>>%<e(k 11111111111+0<,—,<~(k ”(113—111154)).
y (.. (

1. Now prove part 1. of Lemma 2.3.12 by induction on m, the index of gridpoints

on [0, H].

53



a When m = 0, ew—— 0 ~ O(hk+2).

0 Assume em ~ O(hk+2), and Show em ~ O(hk+2).
m+1

Then recall

'1ng = 5‘3#84“1.11.1.1 111.11111L.L.1' + O<<eLLL11S—11
i=1

and

$17.1: eLLL]+huLfiL1+1[k+ll+O(hM+2)

Note THC—1] only includes 13%;? ~ O(hk+1) but never elk]
772-11 m+1'

:--1

Also, r7ln+ll = 0(h F) = 001%” = (9(hk’l’2).

Thus

01'1“?) = eLLl+ [k+i]— LnL—l ‘MLSLP

which, just as in the proof of part 1. of Lemma 2.3.11, can be written as

0(hk+2)=a hp+a hp+1+a h2p+1+...+a __ h(S—2)p+1

0 1 2 S 2

+ 00L (S—l)p+1),

k
where e'ln]+1 ~ (901p).

Then the proof is the same as in Lemma 2.3.11, except we assume by way of

contradiction that p < k + 2, rather than p < 2.

. The proof of the second part is nearly identical to that of Lemma 4.3 in [18],

but we include it here for completeness. Again, we use an inductive argument
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based on s, the degree of smoothness of Elk]. First, the rescaled error vector,

Elk], has at least 0 degrees of smoothness since ”5119] ”00 ~ 0(h) is bounded.

Assume that 61k] has 3 < M — 1: degrees of smoothness. We will prove that

(dlelkl) has 3 degrees of smoothness, from which we can conclude that Elk]

has (3 + 1) degrees of smoothness in the discrete sense. The divided difference

approximation to the derivative of the rescaled error vector can be expressed

 

as

111 111
k _ (im+1 — ("37" u[k]+;:[k_1] M—k

((1151 ])m _ —_h—-—: UTII+1+ 711+1 + O(h )

where

u'lkl

u~[I1‘l _ um+1

u—TTL+1 gig—1L1

_‘2: 11((11111(H111W111+11 ym+1)(”[,LL1)i+0(h(3"2)(k+2)+1)

has 3 degrees of smoothness, and

411-1] _"___11]:+i] M 111—1 117 1 1 d (1—1)
m+1 2 111+? =Z(,+1)1d)1,1_11(Eap(tm+lae (tm+1)))

di—13‘2(_ 1)j+1Ill—1).

=Z('+ dtz—l

 

 

1': "I!

ify - d(E(k_1))j , .
(110 1)11](m+1-ym+1)) (1771+111,+_21d_1:1_(,,,1<1—11fyj)

has at least min(S— (j + 1) + k(j — 1) — 1, M— k)> 3 degrees of smoothness.

Since (dl'élkl) has 3 degrees of smoothness, we can conclude that Elk] has

(M + 1 — 11') degrees of smoothness.
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Proof. (of Theorem 2.3.10). Use induction with respect to k, the index of correction

steps in the SDC method.

0 By Lemma 2.3.11, Theorem 2.3.10 is valid for k = 0 and the rescaled error

vector E’lOl has M degrees of smoothness in the discrete sense.

0 Assume Theorem 2.3.10 is valid for (k — 1) correction loops and the rescaled

error vector Elk_1l has (M — k + 1) degrees of smoothness. Then by Lemma

2.3.12, Theorem 2.3.10 is also valid for k correction loops and the rescaled

error vector Elk] has (M -— k) degrees of smoothness in the discrete sense.

Truncation Error for Implicit IDC-RK

Here we provide the local truncation error estimates for IDC methods which use

high order implicit RK methods in the prediction and correction steps.

Theorem 2.3.13. Let y(t) be the solution to the IVP (2.1) and y(t) has at least

S (S 2 M + 2) degrees of smoothness in the continuous sense. Consider one time

interval of an IDC method with t E [0, H] and uniformly distributed quadrature points

{2. 86) Suppose an rolh order implicit RK method is used in the prediction step and

(r1, r2,. . . ’TKloopflh order implicit RK methods are used in K1001) correction steps.

Let 3k = 229:0 rj. If SKloop g M + 1, then the local truncation error is of order

3 +1

001 K1001) ).

The proof of Theorem 2.3.13 follows from Lemmas 2.3.14 and 2.3.17, below, for

the prediction and correction steps, respectively.

The following lemma discusses the local truncation error and smoothness of the

error for the prediction loop of implicit IDC-RK methods.
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Lemma 2.3.14. (Prediction step): Let y(t) be the solution to the IVP (2.1) and

y(t) has at least S (S 2 M+2) degrees of smoothness in the continuous sense. Con-

sider one time interval of an IDC method with t E [0, H] and uniformly distributed

quadrature points (2.86). Let nlOl = (ngolmgoly . .,11.,[,9,l,. . ”$811) be the numerical

solution on the quadrature points (2.86), obtained using an rOth order implicit RK

method (see Definition 2.3.4) at the prediction step. Then:

1. The error vector em = y — nlOl satisfies

14011110 ~ 0am“) (2108)

and

2. The rescaled error vector ElOl = fielo} has min(S—r0, M) degrees of smooth-

ness in the discrete sense.

First consider some useful facts, in the exact solution space and the numerical

solution space, needed to prove the lemma.

Proposition 2.3.15. The exact solution of the IVP (2.1), with S degrees of smooth-

ness, satisfies

S— 1 hJ _ S

11.....1—— 1111 + 2 711010111) + 001 > (2.109)

j: 1

The term y(JJ) in (2.109) can be expressed as

0) 1953.1, 1‘.) = wlwnzwfn , )wifwf 2.11011 ( ,< y<> 1:aqut1,,Q11U(fqt11y < 1

where f, =Q—7-L, the a l,1,12, are constant coefficients, and w),

tqtyqy atqtayqy qutqyqt

wf qt, qt, and n,- are nonnegative integers.
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Equation (2.110) is called ‘elementary differentiation’ in any standard numerical

ODE book, e.g. [37]. and is more easily understood by computing the first few

derivatives of y:

11%) = r; 1191(1) = 11+ 111;

1131(1) = f11+ 2 [1111 + 1111!? + 111/1131; ... (2.111)

The equation can be easily proved by induction on j.

Proposition 2.3.16. Assume that y(t) in IVP (2.1) has S > r degrees of smooth-

ness. Suppose that an rI” order RK method is used to solve {21) If h is the size

of each sub-interval [tm, tm+1l1 within [0, H], then

7.

77771+1 = 77m+hE1(tm177m)+' ' '+:Er(tm1777n)+Rr(tm,72m)+0(hS), (2.112)

where the function E1‘(t, y) is defined in (2.110), and the remainder term

S—l

Rr(t,r}) = Z N (2.113)

'-r+1

ulwni w

2 X31 n- ft2.1—[Mfg w’Um Umlfwf(trn 77m) 1

q1 (ll ”‘1 Zan __ t (1y)(uh/2191 yr. 311.1— y

. wi 111112.111fn
has constant coefi‘lczents 13 1 1 .determined by the formulation of the RK

qut"qy(11"

method.

Proof. The right hand side of (2.112) comes from Taylor expanding the numerical

solution of an rth order RK method. Note that the first r + 1 terms coincide

with the Taylor expansion of the exact solution (2.109). (2.113) can be proved by

induction. [:1
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Proof. (of Lemma 2.3.14). The proof is identical to that given in [18], but we repeat

it here for completeness. The superscript [0] is dropped since there is no ambiguity.

1. First, we prove part 1. of the lemma. From equations (2.109) and (2.112),

we see that a Taylor expansion of the error, em+1 = ym+1 —- nm+1, about

t = tm gives

ern+1 = em + um + 7'1,'m. _ 72m + OMS):

 

where

Um = Z 3(Ezltm1yml— Ei(tm177m)l

i=1 .

7‘0 'S—l—i ._1 . .

hz —1 J (8 )J 8JE- _-
2 F E: ( l ! m -?,(tm,ym) +O((6m)S 7.),

- - J By]

221 3:1

S—l hi ()

71,777, = 2 7y 2 (Lm)

i=T0+1 I

S—l
. wl...wn.ur

T217”: 2 h] 2 fiqldl qgirlfni
.-= , , . 7

j r0+1 QE+Q§SJ—1 Jt ”U t

ni

_.w, 1. “’f m,
11310121193) (15m, Imlf (tmfl? )

Now we bound llelol “00 by induction. By definition, e0 = 0, so obviously e0 ~

(hm—H). Assume that em ~ (MOT—1). Since um ~ (h7'0'f2),7'1’m ~ (hm—H),

and r27", ~ (hm—H), then we have em+1 ~ (hr0+1), which completes the in-

ductive proof.

2. Now we prove part 2. of the lemma, the smoothness of the rescaled error

vector. We again use an inductive approach, but with respect to s, the degree
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of smoothness. Note that a divided difference approximation to the derivative

of the rescaled error vector gives

a 41; . _
(11511,, =w= rm + rm, + 172,", + 0015-70 1),

 

where

“i _ Um

UILL _ h70+1$

0 1 1+1~( 1)— 1 .
1)J h 0 J 3);}. ~

:21!SEi-( 1 -(tm1ym)(€m)]

7' j1= J- ByJ

+0(h5"’"0—1),

~ 7'1m S—l hi_r0—1 -

1,771 hr0+1 2" y 7n 3

i=T0+1 I

b—T0—2

~ T2m ' /w1~-wn-wf_ 1 _ E J E 2

h -:0 . (lg/qt "’93; qt

J qt+q§J <1—1

. (1 q. q.- )wiem. 1111111“? (1m. 11111).

2:1 t t3! y

Now we prove that E has rnin(S — r0, M) degrees of smoothness by induction.

Since ”aloe ~ (h) is bounded, E has at least zero degrees of smoothness in the

discrete sense. Assume that E has .3 < rnin(S —- r0, M) degrees of smoothness

in the discrete sense. We will prove that (d1?) has 3 degrees of smoothness,

from which we can conclude that E has (3 + 1) degrees of smoothness in the

discrete sense. From a similar argument as in the proof of Lemma 2.3.11, a

has 3 degrees of smoothness in the discrete sense. Assuming that y(t) has

S degrees of smoothness, F1 has (S — r0 — 1) degrees of smoothness. Since

5 has 3 degrees of smoothness, 6 has rnin(s + r0, M) degrees of smoothness,
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and 77 = y —- e has rnin(s + r0, M) degrees of smoothness. Thus, 13 has

rnin(s + r0. S — r0 — 1, M), at least 3, degrees of smoothness in the discrete

sense. Therefore, 5 has (5 + 1) degrees of smoothness, and we can conclude

that E has rnin(S — r0, M) degrees of smoothness in the discrete sense.

[:1

The following lemma discusses the local truncation error and smoothness of the

error for the correction loop of implicit IDC-RK methods.

Lemma 2.3.17. (Correction step): Let y(t) be the solution to the IVP (2.1) and

y(t) has at least S (S 2 M + 2) degrees of smoothness in the continuous sense.

Consider one time interval of an IDC method with t E [0, H] and uniformly dis-

tributed quadrature points (2.86). Suppose elk-1] ~ 0(hsk“1+1) and the rescaled

_S£_felk‘1l has M + 1 — sk_1 degrees of smoothness in the

kth

error vector elk— ll =

discrete sense. Then, after the correction step, provided an rkth order implicit

RK method is used and k S K1001),

1. The error vector elk] satisfies

Helklnoo ~ 001%“) (2.114)

and

2. The rescaled error vector Elk] = fielkl has M+1— 5k degrees of smoothness

t

in the discrete sense.

Further, recall the error equation (2.78)

<e(k—1>>’<t) = f(t1n(k—1)(t)+ e('“—1><t>>— 111101-111» _1<k-1>(11

: F(t,e(k—1)(t)) — 105—”(1).
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It can be written as

(62(k—1))'(t)= molt—”<11 — law—”<01 2 G<k—1)<L.o<k—1><a>>. (2.115)

where Qlk-lln) = e(k-1)(1) + E(k—1)(1) and E(k’1)(t) = f6 1(k-1)(1)111. The

analysis for the correction steps in this section will rely on this form of the error

equation (2.115).

Define the rescaled quantities as

(it—11(1): LJ’HM)
h5k—l ’

~ k—l _ 1 k—l
d M) — mid >111,

(311—11,,611—110» = EefiG<H><nhsk-lo<k—U< )1, (2.116)

and thus (2.78) becomes

(or-Wm = 5<k-1)<t.o<k'1>(o). (2.117)

In the correction steps of the IDC method, a p—stage, rth order implicit RK method

(2.68) applied to (2.117) gives

p

11,: C(k-llno +e,11, egg-1] + h 2 11,511,) for 1' = 1,2,...,p, (2.118)

1:1

elixir—11 1. p11. 1111
l—QO + _ 1.7 l' l

3:1

where the Greek letter fl denotes the rescaled solution in the numerical space. In

the actual implementation, we discretize (2.78) as mentioned above in (2.83).
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Proposition 2.3.18. Ife[k_1] ~ Omsk—1+1), then

o(k-1)(i) ~ oasis-1+1) and C(k“1)(t, Q(k-1)(t)) ~ oasis—1+1). (2.120)

Proposition 2.3.19. Suppose elk—1] ~ Omsk—1+1) and the rescaled error vector

Elk—1] = Egg—_Telk—ll has M + 1 — Sk—l degrees of smoothness in the discrete

sense. Then 606—1)“) = 7513—1Q(k—1)(t) satisfies
L _

dl “’(k—
(HQ 1)(t)~0h(1)iflgM+1—sk_1, foralltE[0,H]. (2.121)

Proposition 2.3.20. (“jag-1)“) in (2.117) satisfies

AI——Sk_ 1

~k—1 ~k—1+l_i ~ k—l ~k—1 M+1_

i=1

or equivalently,

A’I—Sk_1 hi

k 1 1 1 ' k— 1 1
€£n+11=ein l+h°k—1 Z HG(_1)(tm,Qin-_ l)+0(hM+1)

i=1

t

—/m+1€(k—l)(r)dr
(2.122)

tm

where

~e_ ~.d2'—1u---ww w.--
G§_11)(t,Q)=;t;:-1-7 1 ”l. fezflfl”(‘k 1) We“ 1h“?

q1q1“q zq _. qi~qz~)
91‘. y t i— tth Q

~ (9h(1), fori g lief — Sk—l'

“’lUn'.w

As before.7w1 1 "i 7,1. are constant coefficients and wiwf, qtn, q‘~, and "i are

qut" (1y qt Q
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nonnegatiue integers.

The proofs of Propostions 2.3.18, 2.3.19, and 2.3.20 are exactly as given in [18].

The proof of the following proposition is the essential difference between the

proofs of the truncation error of the explicit and the implicit cases of an RK method

used in the prediction and correction loops of IDC.

Proposition 2.3.21. The Taylor series for 5(k—1)(t0 + h) = fleas—DUO +

[H

hsi— 151

sufiiciently smooth error function Elk—1)“) and assuming the exact solution y(t)

h) and for in (2.83) coincide up to and including the term hr for a 

has 5' degrees of smoothness.

Proof. First we claim that

risk—113,: k, + OMS—1) for a11i=1,2,...,p, (2.123)

and, in particular, setting

P P

.h—Sk:.,1..:

we claim that we can write, for all i = 1, 2, . . . ,p and for n = 2,3, . . . , S — 1,

hSk-lh—k-

S—23—2 - p :2

=h" Z Z5:2 Z Z Cilia2'11
ll=1l2=1 ln=1j1=1j2= 1 177:1

n

. . 5~— ~. _ . S—l

H ClinJ'm—la‘Jm—Umih A 1kJn kJn)+O(h )’ (2124)

111:2

_ 1 8’ z z— ,—
where Clj — NESTGUO + th, Q0) 21):], A], ’UB;

We prove (2.124), and hence (2.123), by induction on n.
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o n = 2: Using the definitions (2.116) of the rescaled quantities above and Taylor

expanding G about Q0 in the y—variable, we obtain

hSk—IEZ- — kt -_-_ C(to + C'h,Q0 + At) — C(lo + Cz'h,Q0 ‘1' Bi)

1 81111
ll S—l

=:z_:11—1571—y0(t0+czh./1Qo)((
) —(Bz-) )+O(h )

1 l l —u

-) 1 = (A,- — 13,-)ZU121A.1
’1‘ i

Factoring (Aflll — (B [33—1, we obtain

hsk—IE—k12 5:20111-(24, B.,;_)+O(h5 1)

131:1

_ hs , s—1
-52? 011,11 iaazjl(hk—1hj—l k1)+0(h ),

11= J1=1

and repeating the process for hsk“1l;j1 — kjl’

_‘15:? Cllih 2a“(.71

1: J1:1

[221 C h :0 (ask—1k k)+O(hS—1)-
’2J1 “J1J2( J2 kJ2

12:1

W)

S——2$2P

#122: Z Z Z C11iCl2J1aiJ1aJ1J2(ma—1722—kJ'2)

l1=112=1j1=—1j2=1

3—1
+ 0(h ). (2.125)

Thus risk-1'13,- — 1e,- ~ (9012).

o n+1: Assume (2.124) holds for n < S— 1. Following the same process of Taylor
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expanding, etc. as in equation (2.125) in the n = 2 case for hsk ‘17:?" — kjn’

we see that

hSk—IEZ- — k2-

. S—2 10

= h" 2 Z Cilia'ijl

ll,...,ln:1]1,...,jn=l

n

. . 8:. ~, _ , 3—1
H Clmjm_1a]m_1]m(hk 1km km)+0(h )

m=2

S—2 P n

—' n . -- . u .

—h E . Z Clllalfl H Clme_1aJm—1Jm

[1,....ln=1 jl....,jn=1 m=2

S—2 P

, . . . Sk—1~. _ . 5—1

2 Cln+13nh . Z GJWJn+1<h kJn+1 k3n+1)+0(h )

[n+1:1 Jn+1=1

+O(h5”1)

S—2 1)

_ ’+1

— hn Z _ Z 011102th

l1,...,ln+1=131,...,]n+1=1

n+1 S 1

. . . Sk—1~. _ . —

H Clme—laJJIL—11m~(h k3n+1 kJn+1)+O(h )

m=2

It follows that (2.123) holds.
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[kl
Now consider 61 , which we want equal to the last equation of (2.83).

5)“ : hSk—l fill” — E(k_1)(t1)

p

hSk—1@(k—1)(t0) + h 2 b].hSk—1Ej_ E(k—1)(tl)

j=1

p

= (3(k—1)(10)— E(k—1)(11) +11 2 bj (kj + 0015—1))

j=1

. t. +1).

“(bu—A0 5(k1)dr+h 2b k +0015).

0

Recall that the Taylor series for @(k_ 1) (t0+h) and fig“ coincide up to and including

the term hr, since figk] is an rth order implicit RK approximation to @(k_1)(t0+h).

 

Hence

1 (k— 1) Q(k— 1)
h8k_1Q (10+h)= (t0+h)

and

1 [k 1] p S [’6]
hSk—1(€0 +E(t0)+h E bj kj+0(h )) = 521',

i=1

coincide up to and including the hr term.

Also

Q(k_1)(t0 + h) = W11 (ENC—DUO + h) + Egg—”050 + h». 
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and

 flak] = h'gg—1(O[1k]+ E(k_1)(t0 + h) + (9018)).

Since @(k_1)(t0 + h) — flak] = O(hT+1), then

 

  

r+1 : _1_ (kt—1) _ 1 [k] hs_3k_1
0(h ) hSk—le (10+ h) fie-161 +(9( )3

or

1 .— 1 k: 3-

Now since

Kloop

SZM+2>M+125KIOOP= Z
rj,

J=0

then

Kloop

S—Sk__1> Z T'jZTk,

j=k

SOS—Sk_127‘k+l.

This proves Proposition 2.3.21.

Proposition 2.3.22. Suppose we solve the error equation (2.78) using algorithm
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{2. 83). Then the numerical error vector is

elk] —o‘[k]+I5k—1+15(k‘1)(im,§[kl)+...
m+1— m

hSk-1+Tk ~ k—l ~ k -. ~ k—l ~ 1.-
+ —T'——G7(.k_1)(tm.§2lnl) + hbk-l R£k+1)(tm. olnl)

k.

t
_ / m+1€(k—1)(T)d7+ 0(hM+1), (2.126)

tm

~[kl _ 1
where 9m —Wmmid" fom (T)dT) and

M—Sk_1

M-U

Rrk+1 (1”[Q)—— Z hq

q=rk+1

. . w w w

with C(k— 1-) (t, 9) ~ 0,1(1)for qll +qb g M — Sk—l' Here (111 “7212 17;. are

tqt'Qchj qutqy qt 2

constant coefficients determined by (2.83).

Remark 2.3.23. In implementing algorithm (2. 83), one needs to evaluate f (t, n(t))

at some intermediate stage, e. g., att = to + cjh. This results in additional function

evaluations of f (t,n(t)), which is usually the most expensive part of an algorithm.

In our implementation, we avoid this extra cost by performing a polynomial inter-

polation. Specifically, given f = (f(t0,770), . . .,f(tm,17m), . . .,f(tM,77M)), we con-

struct an Mm degree Lagrange interpolant, LM (t, f) and approzcimate f (t, 77(t))| t=t0+Cj h

using LM(t = to + cjh, f) up to O(hM+1).

Remark 2.3.24. To evaluate the integral term in the right hand side of algorithm

k— 1)
(2 83), we construct a Lagrange interpolant LA! (t c( ) and use

69



fifqflflhm24Nmaa=12.m.

to approximate the integral term filo-H:h ((k_1l(t)dt, i = 1, 2,. . . ,p, with an error

0(hM+2).

Proof. (of Lemma 2.3.17). The proof is identical to that given in Section 5.2.3 of

[18], but we repeat it here for completeness.

1. First we prove part 1. of the lemma. By subtracting the numerical error

vector, (2.126), from the integrated error equation, (2.122), we obtain

 

 

 

111 2 1k—11_,1k—11
em+1 em+l m+1

M+1—Sk_1ht

“21+th 2 3.70”“1)(tm. if. 11)

i=Tk+1

hsk—Izhfa“391-_1) elli’l]+E(k‘1)(tm)
my hSk—l

k 1

_Ga—11,Mlnl+Eklhm)
_1 ’ma hsk— 1

,5-[k 1] (k— 1)
s _ ~ +E( (tm) lid-F2_hk 13,76“ tm, 6’” hsk-l +C’)(h )

= elg] + 21%)] + rgkgl] — rgcln + 0(hM+2), (2.127)
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i=1 2! dti_1

_512— 1) (1,, 51,1; 1] +E<(’1U1m(>))

rkkhi (Ii—1

= a jam (f(tm,y(tmll — f (tm,fl(k)(tm)))

_zrzklhTZhi—1L1

. dtil

S-2 ' '_1]+18]

( (11)" ay£(tm,y(tm))(e(em
)1 +O((elk] )5)1)) ,

 

i=1
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and since 3k. = Sk—l + rk,

 

 

k 1 I ~ ~ 1

TlJ—n—]_ h8k_1 Z Halli—10m» in ]) (2.129)

i=Tk+1

[VI—8k . 7‘

' k~ k— 1
: Sk+l

zdz d ~[ ])

h 2:0 (rk+i+1)! dti ((#77661771an

k- ll (—k 1)
k-1 ~ 6[ +E( (tm

T[2,m]=hbl°—1Rrk+l tm. 7” h3k_ 1 (2.130)

twirl—8k

: hsk+1 2 hi

'_ "'t'q

7'_0 qt+qu<l+Tk th

1110”“ ll,- 111mm210““1)1 13W

tthqQ

wln-wn1112f”

Z qu 1””i "i

‘It

Now we may bound “elk—1] ”00 using an inductive argument. By definition,

[kl

(2.128), ulkl ~ 0(h03k+2). By Proposition 2.3.19, dt

r +1 ~ _

film—QM—INUHZtm ~ 0(1). Therefore, rglfmll

60' = 0, so clearly em ~ OMS/6+1). Assume that elk]~ 0(h3k+1), From

[k- 1l
—;I%G(tm3 )=

~ Omsk—H) from (2.129),

and raisin ~ (9(h,5k:+1) from (2.130) and Proposition 2.3.22. Thus em ~

Omsk—H), and the inductive proof is complete.

m+1

2. Now we prove part 2. of the lemma, the smoothness of the rescaled error

vector, using an inductive argument based on s, the degree of smoothness of

Elk]. First, the rescaled error vector has at least 0 degrees of smoothness since

“Elkllloo ~ 0(h) < oo. Assume that Elk] has 3 < M + 2 - 5k degrees of

smoothness in the discrete sense. We will prove that (dlelkl) has 3 degrees

of smoothness, from which we can then conclude that Elk] has (5 + 1) degrees

of smoothness.
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derivative of the rescaled error vector satisfies

  

111161“)— Z+i1AmAA—,,A*£Alm+o1W”k),

where

~[k] k 2.1 — +1 8 (j-1)0 -um h (121)] h k 7f “‘ikl .7T __z=21__2'! dti—111:22(—
Byj(tm y(tm))(€m)

1

+ 0(h(8k+1)(S—2)—1)

h1 d1(di ~ ~-—[k 1])))
C(tm ,

= E) (rk+2+1)'dti dtrk m

‘ ' - wl wnw

,. = 2 11 2 $1,113.).-
A=0 q§+qz2<i+rk Q1A qQ qt

 

 

'H(G(k—1)-(t,
§))wi(a(k_1)(

t9))wf

##5ng

are computed from (2.128), (2.129), and (2.130).

Similarly to previous arguments, 71iflikl has 3 degrees of smoothness in the

114
discrete sense. Also, 771 A has (M — 5k) degrees of smoothness since

dk “[k1])_ dk+1~k—1
dtkG(tm, m PWCX )(t)|t=tm has (M—sk) degrees ofsmooth—

ness. Since};14;A also has min(M — sk1 3) degrees of smoothness in the discrete

sense, we can conclude that (dlelkl) has 3 degrees of smoothness in the dis-

crete sense, which implies that Elk] has (M + 1 — 3k) degrees of smoothness

in the discrete sense, completing the inductive proof.

[:1

Proof. (of Theorem 2.3.13) We prove Theorem 2.3.13 by induction w.r.t. k, the
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index of the correction step in an SDC method. By Lemma 2.3.14, Theorem 2.3.13

is valid for k = 0. Assume that Theorem 2.3.13 is valid for (k — 1) loops of the

correction step, and by Lemma 2.3.17, Theorem 2.3.13 is also valid for k Correction

loops. Cl
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Chapter 3

Semi—implicit IDC-ARK Methods

3.1 Semi—implicit Integration

For many computational implementations of the above problems in Chapter 1, one

must solve many systems of ODEs that involve more than one time scale both

accurately and efficiently. either from the original formulation of the problem as an

ODE system, or as a result of a method of lines approach for PDEs, or because

of employing some other special framework (e.g., as in Section 1.3). Consider a

simplified case where the right hand side of an ODE can be split into two parts, one

stiff (fast) scale, and one nonstiff (slow) scale.

y,(t) = fSva) + fN(t'v3/)a t6 [0,T], (31)

y(0) = yo.

where fS(t, y) contains stiff terms and fN(t, y) contains the nonstiff terms. Apply-

ing explicit numerical integrators to the above initial value problem (IVP) can result

in impractical time step restrictions due to the stiff term, while implicit methods

may involve costly Newton iterations. Semi—implicit, or implicit—explicit (IMEX)
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time integrators, however, can be used to solve the stiff part implicitly and the

nonstiff part explicitly, thereby gaining the benefit of the implicit method for the

stiffness but potentially saving computational effort by handling some terms ex-

plicitly. Popular IMEX integrators include additive Runge—Kutta (ARK) methods,

which combine an implicit and an explicit Runge—Kutta method, and integrators

constructed from linear multi—step methods, such as Adams or BDF methods. Cur-

rently, ARK methods above 5th order have not been constructed without the use of

a defect correction framework [45]. Semi—implicit methods constructed from linear

multi—step methods require multiple starting values, and their stabilities deteriorate

at higher order [36, 4, 48]. We construct arbitrary order semi-implicit integrators by

incorporating ARK methods into the IDC framework, and denote these new semi-

implicit integrators as IDC-ARK methods. A detailed description of ARK methods

follows in Section 3.2, before introducing the construction of IDC-ARK methods.

3.2 Additive Runge—Kutta Methods

One method of splitting an ODE is to partition the right hand side of an IVP into

A parts [20, 1, 45, 56]:

A

y’(t) = f(t,y) = Z f[,,](t.y), tE [01'1“] (3-2)

1/=1

y(0) = 310

and to treat each f[u] with a separate numerical method. When different p—stage

Runge-Kutta integrators are applied to each fiVl’ the entire numerical method is

called an additive Runge—Kutta (ARK) method. If we define the numerical solution

after one timestep h as 771, which is an approximation to the exact solution y(tO +h),
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then one step of a p—stage ARK method is given by

y0+hz Zailjj] f[1/]((to-l-CAVAh, Yj’)

V=1j=1

—y0+hZZb[Af[V1t0+c[AhY (3.3)

u=1i=1

[Vl_

 

where the coefficients are presented1n the Butcher tablein the case of Cj -Jfor

all V: 1,...,A:

[ll [ll [11 [Al nlAl [Al
(:1 all (112 --- (Alp (1110.12 ... all)

[1] [1] [1] [Al [Al [Al
C2 G21 022 ° ' ‘ 02p £121 (122 . . . a2p

[ll [ll [ll [Al alAl [Al
Cp apl ap2 A ' ' app apl ap2 ° ' ' app

[ll [1] [ll [Al [Al [Al
b1 b2 "' bp ... b1 b2 ... bp   

Under certain conditions on the RK coefficients, an ARK method of desired order

can be obtained without splitting error [21, 1, 56, 45].

Without loss of generality, we consider the case A = 2, where the IVP (3.2)

simplifies to the IVP (3.1) where one part, f5(t, y), is stiff, and the other, fN(t, y),

is nonstiff. An IMEX version of ARK is then applied to (3.1), as shown for example
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in the Butcher table,

 

  

0 0 0

S S N

C2 “‘21 “'22 “21 0

(3.4)

S S S N (IN N

Cp apl ap2 app a‘pl ap2 ap,p—1 0

S S S N N N N

b1 b2 b1) b1 52 bp— 1 (’10

where to reduce computational cost, an implicit DIRK method, with zero in the first

diagonal entry, is applied to fS, and an explicit method is applied to fN' Note that,

N
although one can formulate an ARK method with different stage nodes, say 0j and

CJS, taking the same stage nodes, cj——cgv = 033, simplifies the order conditions, as

presented in [45].

In the literature, the definition of ARK for the case of A = 2 usually is presented

in the form of (3.3) [1, 45, 20, 56]. We reformulate the definition of ARK (A = 2)

below to suit our analysis. The equivalence of definitions can be seen by simple

substitution. Our alternate definition can be given as follows:

Definition 3.2.1. Let p denote the number of stages and aN,aS,bN, bS;c -Jbe

real coefifcients. Then the method

-a_ a3 8))
1.,—af110+chyo+hzaUj Zlaiij-D

j=1

p NN ss
771=yO+th¢ki +£22.11), (3.5)

i=1

for a = N, S andz’ = 1, 2, . . . ,p, is a. p-stage ARK method for solving the IVP (3.1).
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Definition 3.2.2. An ARK method has order r if for a sufliciently smooth IVP

(31).

111/(to + h) — 17111 s W“,

i.e., the Taylor series for the erect solution y(to + h) and 771 coincide up to and

including the term. hr.

3.3 Semi—implicit IDC-ARK Methods

Now we present a brief description of the formulation of IDC methods with ARK

base schemes. Then we provide both a general formulation that constructs arbitrary

order semi-implicit IDC methods incorporating (arbitrary order) ARK integrators

and an example involving a second order ARK integrator.

3.3.1 General Formulation of IDC-ARK

Generalizing the formulation from [18] for IDC—RK methods, we obtain a general

framework for semi-implicit IDC-ARK integrators.

Consider the IVP (3.1), where the right hand side is split into stiff and nonstiff

parts, fS(t., y) and fN(t, y), as in Section 3.2. The time interval, [0, T], is discretized

into intervals [tn,tn+1], n = 0,1,...,N, such that

0=t0<t1<t2<---<tn<~-<tN=T, (3.6)

with timestep Hn = ln+1 — tn. Each interval [£71, tn+1] is discretized again into
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M uniform subintervals with quadrature nodes denoted by

£71,771, = in + Nth, m = O, 1, . . . , A", (3.7)

where h = £13k We apply the IDC method on each time interval [tn,tn+1] and

drop the subscript 77. since the same method is applied to each interval. Although it

is possible to use nonuniform quadrature nodes in place of (3.7), we anticipate that

nonuniform nodes will not produce the desired order of accuracy results, based on the

analysis in [17]. Note that this choice of nodes does not preclude the effectiveness of

nonuniform timesteps Hn; for example, we implement adaptive IDC-ARK methods

in Chapter 4, which obviously requires adjusting the size of Hn.

A summary of the IDC-ARK algorithm is as follows. First, in the prediction

loop, we compute a provisional solution to the IVP (3.1) with an rOth order ARK

method. Then for k = 1. . . . , K1mp correction loops, we compute an approximation

to the error using an rkth order ARK method and update the provisional solu-

tion with this approximate. error. Thus an IDC method with order of accuracy

r0 + ---+rk + - - - +rK100p g M+1 is obtained.

Next we provide the details that are necessary for both the implementation of

the IDC-ARK method and the proof of truncation error in Section 3.4.

0 Prediction loop: Use an roth order numerical method to obtain a provisional

solution to the IVP (3.1)

0] = ("101 101 101 101,
77A 0,771,~-a77m,---a77 7

which is an rOth order approximation to the exact solution

y=(y03y17"'aymi"°ayM)i
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where ym = y(tm) is the exact solution at tm, for m = 0, 1, . . . , M. We apply a

pO-stage roth order ARK scheme (3.5) as follows, for a = N, S; i = 1, 2, . . . 1P0

andm=0,1,...,M—1:

i—1

O

= foam + Cihfll'in] + hAZ a’NkJN::agkf»

i=1

pg
[0] _ [0] N N S .S

77,,,+1— 77m + h 2: (bi ki + bi ki )

i=1

0 Correction loop: Use the error function to improve the order of accuracy of

the numerical solution at each iteration.

For k = 1 to K1002? (Kloop is the number of correction loops):

1. Denote the error function from the previous step as

611—1)“): y(t) — n<k‘1)1t>, 13.8)

where y(t) is the exact solution and n(k‘1)(t) is an filth degree polyno-

mial interpolating nlk ‘1]. Note that the error function e(k—1)(t) is not

a polynomial in general.

2. Denote the residual function as

WW) 2 1n<k_1>>’1> 1511 n“1>11» — 1N1t.n<A—1>1t>),
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and compute the integral of the residual. For example,

/tm+lc(k_1)(r)dr (3.9)

t'0

M

g 77%;? — yo ’ 27mfif50jfl7E-k—1A) + fNUjmg-ATIAD,

J:

where 7m. 7- are the coefficients that result from approximating the in-

tegral by interpolatory quadrature formulas, as in [25] (or as described

in Section 2.2, w,

”[k—l] =

7nd- equals the quantity given in equation (2.32)), and

nAk—1)(tj)-

. Compute the numerical error vector, denoted by

.. - k k k

5W = (0]) A, . . . ,5[,,], . . . 3%)). (3.10)

which is an rkth order approximation to the error

el.1-111-11.....i-u,...,ei-”>,

where egg—1A = e(k_1)(tm) is the value of the exact error function (3.8)

at tn} .

To compute 51A] by an rkth order ARK method, we first discretize the
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integral form of the error equation,

1129—11111) = 1511.,11(k-1)11>+ elk—”11» — 151111-111»

+ 1N11.n<k—1>11)+ (AA—”1m — 1N11.wz(k—1)11>>

= 1511. n<k—1>1t) + 1211-111) — E<k—1)11))— 1511. WNW»

+ 1N1t.n<k—1)11>+ 1211-111) - E<k—1)1t>>- 1N1t.n<k‘1)1t>>

2 F511. elk—”11> — 511—1)(,,)+ FN1t.Q(A’A)(t) — Bit—”10)

e 0511. 1294111)) + GN1t.Q(k—1>1t>),

Q(k71)(0) = 0. (3.11)

where

(WC—Uh) = (AA-9(1) + EAk“1)(t), (3.12)

ra1t.e<k—1)1t))= fa(f.n(k_1)(t) + e<k—1)1t>)— 10.11. ilk-1111)).

(1 = N, S,

The fa, a = N, S notation above (with Q and the approximation for E)

is used in the numerical computation, while the Ga, 11 = N, S notation

is employed in the theoretical explanations and proof in Section 3.4.

We apply a pk-stage rkth order ARK method to (3.11) and denote the

rkth order numerical approximation to (Jig—1A = QUE-.1) (tin) by Diff]
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We therefore have, for a- = N, S, i = 1,2, . . . ,pk and m = 0,1,...,M—1:

ki =Gaz(tm+c-,hf2]nA(A+h(Aid/Vaij kjN+:::aiSJkS)j

j=1

N N+ as S E[k— 1
h-(JZCLaI-J-kj+ :1azjkj)— ](t7n+th)),

[kl [kl N N 5-5
am+1 _—o,,, +h 21b, 1,, +1), 1,,- ). (3.14)

i=1

From equations (3.12), we compute our numerical error vector (3.10),

.5111 z 9111 _ Eve-11,

where the components of Elk—ll are Egg—1A = E(A: ‘1)(lm ) In fact, we

use

6AA] [k] tm+1 k—l
+1—_Qm+1 — to c( )(r) dr

(3.9) [k]

z Q7n+1

M

— (71%;? - :1/0 - Z 7m,j(f5(tjan]A—1A)+fjv(’jUAA 1A»).

j=0

where we have approximated the integral by interpolatory quadrature

formulas, as in [25].

In computing (3.14), one needs to evaluate fa(t,n(t)), a = N, S, at

some intermediate stage, e.g., at t = to + cj h. This results in additional

function evaluations of fa(t,r)(t)), which is usually the most expensive

part of an algorithm. In our implementation, we avoid this extra cost by
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performing a polynomial interpolation. Specifically, given

fa : (f(.k(l'017l0)1- - - a f(1(t'nli 7’7”), ' ' '1f(X(LA/I:’7A/I))1

we construct an M”A degree Lagrange interpolant, LM(t, fa) and ap-

proximate fa(t177(t))|t=t0+cjh using LM(t = t0+cjh, fa) up to O(hM+1).

Again note that fa, Fa are more useful for understanding the numerical

implementation, while Ga is employed in the theory in Section 3.4.

4. Update the numerical solution nlkl = n[k_ll + 6m.

3.3.2 Example with Second Order ARK

Now we present an example where a second order ARK scheme is employed in the

IDC framework. We consider the IMEX RK2 scheme from [3], and illustrate that

our formulation is equivalent to Layton’s formulation [47] for this specific IMEX

RK2 scheme. Writing the ARK scheme (we denote it by ARK2ARS) in a Butcher

table, we have:

101—ggd1—d

 

Ol—ggOI—gg

whereg= 1—-‘-é—§ andd= —2—3‘/—§.
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The prediction loop solving (3.1), for a = N, S and m = 0,1,. . . , M — 1, is:

. 0

k? = f(}'(l'"l.77l7An])1

, 0 ,,

A? = fora"). + 9”»: Win] + AA9(kiAV + kgllv

015,} ___ fa(t,m+1,n[,,l + 1.1.119 + (1 — (1)14" + (1 — g)k28 + 925?».

27.],0,A+1= ADA +h((1 —g)(k{V+k§) +9125;V +23%,

The correction loop solving (3.11) is

1.0 = 2011..., 1215;] — Elk—1112...»

kg = Fa(tm+1,a[fil + h(dk{V + (1 — (1)2? +11 — g)k§ + 91239)

_ Elk 11(f(Am+1))

“[5121 = 1215-”? + 2111 — (1)129 + 259 > + 9129’ + 2:»? >1.

Aifih*9i:1+1 ‘ EAAA—IAAA'erll'

Letting 1)AAA—(5[:)A+ nAA— 1A annd QAAA: 6AA] + EAA 1A ,and noting

Q%+C(fs(t,n(k"1)(t))+ fN(t,n(k—A)(t))) from [47] is an approximation of

fttrrranrCh C(k—1)(T)dT, we see that the formulation of IDC constructed with ARK2ARS

in [47] is equivalent to ours, namely:

«bfilgwlfilih 9AAiA+2g12N+2§)— BAA—lAltm‘l'ghl,

2231., =n[§;iA+12.nAAA+ 2121’V +11— «11225V +11—g>2§+g2§>—Elk'”1tm+1>,

k k-l

"inAH =777An+1A +‘AinAA+1

The notation on the left is as in [47], while the notation on the right is ours. Although
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the two formulations are equivalent for this type of second order ARK method, the

incorporation of arbitrary order ARK methods in the corrections is unclear in [47]

but is obvious in equation (3.14).

3.4 Theoretical Analysis of IDC-ARK Methods

In this section the analysis for semi-implicit IDC—ARK methods is presented. Recall

some mathematical preliminaries related to the smoothness of discrete data sets were

introduced in Section 2.3.2. The local truncation error estimates of semi-implicit

IDC-ARK are provided, along with a corollary for the local truncation error of im-

plicit IDC-RK integrators, as an alternative to the presentation in Section 2.3.2.

This paper closely follows the formulation presented in [18], as well as Section 2.3.2.

It is recommended that the interested reader who wishes to understand the analysis

in this work first reads Section 2.3.2, which presents some mathematical prelimi-

naries regarding the smoothness of discrete and continuous data sets,and the basic

framework for analyzing the local truncation error.

The following theorem states that, with the assumption that the IVP is smooth

enough, using an rth order ARK method in the correction loops results in an r-order

increase in accuracy of the IDC method, but the overall IDC order of accuracy will

not be higher than M + 1, the number of nodes in the subinterval [tn, tn+1l- E.g.,

if an rth order ARK method is used in each IDC loop, then the IDC method has

order

rnin(r =2 (1 prediction + K1001) corrections), M + 1).

Theorem 3.4.1. Let y(t), the solution to the [VP (3.1), have at least a (and f5

and fN have at least a — 1) degrees of smoothness in the continuous sense, where
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o 2 M +2. Consider one time interval of an IDC method with t E [0, H] and M +1

uniformly distributed quadrature points (3. 7) Suppose an r0 th order ARK method

)th order ARK methods

loop

are used in Kloop correction steps. For simplicity, assume that cj 9— cN = c5

.7 J

the number of stages for the implicit and explicit parts of each ARK method is the

(3.5) is used in the prediction step and (r1,r2,. . . ,rK

and

same. Let 3k = 2320 rj. If SKloop S M + 1, then the local truncation error is of

3 +1

order (9(h K1001? ).

The proof of Theorem 3.4.1 follows by induction from Lemmas 3.4.3 and 3.4.4,

below, for the prediction and correction steps, respectively, which discuss the 10-

cal truncation error and smoothness of the rescaled error when general high order

ARK schemes are applied in the prediction and correction loops of IDC methods.

Lemma 3.4.3 is the first case, and Lemma 3.4.4 is the induction step. Note that

the smoothness results of the rescaled error vectors in both lemmas are essential

for the proof of the correction loop in Lemma 3.4.4. The smoothness proofs of

Lemmas 3.4.3 and 3.4.4 (analogous to those in [18] and in Section 2.3.2) are quite

technical. Since they are presented earlier for the implicit IDC-RK methods, here

we simply state and sketch a proof for the smoothness of the rescaled error vector

following a forward-backward Euler (FEBE) prediction step in Lemma 3.4.2. The

smoothness proof for the more general case is similar in spirit. Once the smooth-

ness of the rescaled error vector is proved, the magnitude of the error vector follows

directly from Definition 3.2.2.

Lemma 3.4.2. (FEBE prediction step): Consider an IDC method constructed using

M + 1 uniformly distributed nodes, and a FEBE integrator for the prediction step.

Let y(t), the solution to the IVP (3.1), have at least a Z M+2 degrees of smoothness,

and let filo] = (r;([)0], . . . , gig], . . . ,ngefl), be the numerical solution computed after the

prediction step. Then the rescaled error vector, 30] = )12e'lol, has M degrees of
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smoothness in the discrete sense.

Proof. We drop the superscript [0] as there is no ambiguity. Since

7lm+1 = 77TH. + th (tm, 77m) + hfS(tm+1a Urn—Fl): (315)

and

1’~m.+1 . tm+l

31m+1=ym+/ /N(T,;U(T))dT+/t fs(r,:l/(T))dr.

m m

0—2

= ym + thUm, ym) + Z

hi+1 JlfN

. t .0+1)! all" (mflm)
 

_2 . -
U h2+1 dlfs

1 (H1)! dt'l

 

+ hfSUm+1a Urn-+1) + (tm+1a ?/7n+1) + 0070) (316)

2':

Subtracting equation (3.15) from equation (3.16) gives

5m+1 = 6m + h/(fNUm, yin) ‘ fN(tma 77ml)

+ h(fS(tm+1wym+1) — fS(tm+17 77m+1))

0-2 hi+1 dif/v 0-2 hi+1 difs

. (i+1)! dt'i , (1+1)! dii

i=1 i=1

  
(tm. ym) + (tm+1, ym+1) + 0(h0).

where em+1 = ym+1 — nm+1 is the error at tm+1. Let

um = (fNUm, 31m) - fNUm, 77ml) + (f3(tm+1a ym+1) — fS(tnz+la77m+1))v

and

0—2 “‘+1 di

1 fN

i=1 (r+1)!(
 

or;
am an, gm) + fi<t...+1,yn.+1>>.7'm =
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To prove the smoothness of the rescaled error vector, e = e/h, we will use an

inductive approach with respect to s, the degree of smoothness. First, note that a

discrete differentiation of the rescaled error vector gives,

. é .. 1 — gm —2
d: =—T—ni—————=— — Oh" 3.17

( 1()7n' h h +Thm+ ( )7 ( )

We are now ready to prove that g has M degrees of smoothness by induction. Since

llglloo ~ 0(h), thus, 5 has at least zero degrees of smoothness in the discrete sense.

Assume that g? has 3 g M — 1 degrees of smoothness. We will show that (Tl—é has

3 degrees of smoothness, from which we can conclude that g has (3 + 1) degrees of

smoothness.

First,

0—2 .- 1'

um : 2: 562m 6"-)(tm,ym)+ 0:12162'lem-l-1—8y2' (tvm+1 ym—H)

i=1 ° y i=1

+ 0((6m)0’1)+ (9((em2+1)0_1)

a——2 '

1~ (9sz( 1

= Z—2! elnhz 8yz“ (tm gm) +312 7!ém+1hiaz8y2'fium+1 ym+ll

i=1 2:1

+ 0((hé7n,)0--.1) + 0((hém+l)0_l)

 

 

where we have performed a Taylor expansion of fN(t, 77m) about 3; = gm and of

fS(t,77m+1) about 3) = ym+1. Denote fyi to represent either 82f or —;—Sf.

8y _i’

Since fyi has (a — i — 1) degrees of smoothness in the continuous sense, fyi =

[fyz'(t0, yo), . . . , fyz-(tM, yM)] has (a — i — 1) degrees of smoothness in the discrete

sense. Consequently, hi’lfjfi has (a — 2) degrees of smoothness, which implies that

97113 has min (a — 2, 5) degrees of smoothness. Also 7}; has at least 3 degrees of

smoothness from the smoothness property of the IVP (3.1). Hence dig has 3 degrees
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of smoothness => g has (5 + 1) degrees of smoothness. Since this argument holds

for a 2 M + 2, we can conclude that g has M degrees of smoothness. C]

Now we present the lemmas required for the proof of Theorem 3.4.1.

Lemma 3.4.3. (Prediction step): Let y(t), the solution to the [VP (3.1), have at

least a (and fS and fN have at least a — 1) degrees of smoothness in the con-

tinuous sense, where a 2 M + 2. Consider one time interval of an IDC method

with t E [0, H] and uniformly distributed quadrature points (3.7). Let nlol =

(7750] , ngolr . . , 1).,[2] ,. . . , 17%?) be the numerical solution on the quadrature points (3.7),

obtained using an rOth order ARK method {as described in Theorem 3.4.1) at the

prediction step. Then:

I. The error vector em] = y — 7)[0] satisfies Ilelol “00 ~ O(hr0+1).

2. The rescaled error vector elOl = fib—elol has min(o—r0, M) degrees of smooth-

ness in the discrete sense.

Lemma 3.4.4. (Correction step): Let y(t), the solution to the [VP (3.1), have at

least a (and fS and fN have at least a - 1) degrees of smoothness in the continuous

sense, where a 2 M+2. Consider one time interval of an IDC method witht E [0, H]

and uniformly distributed quadrature points (3.7). Suppose e[k—1] ~ 0(hsk‘1+l)

and the rescaled error vector Elk‘ll = fizevc—ll has M + 1 — sk_1 degrees of

smoothness in the discrete sense. Then, after the kth correction step, provided an

rk th order ARK method (as described in Theorem 3.4.1) is used and k g Kloop’

1. The error vector elk] satisfies Hewlloo N O(h8k+1).

2. The rescaled error vector elk] = Lelk] has M+1— 3k degrees of smoothness

h5k

in the discrete sense.



Note that most results and the proofs (e.g. smoothness) are similar to the

analysis in Section 2.3.2 (implicit IDC-RK) and in [18] (explicit IDC-RK). The main

difference between the proof of the truncation error for IDC-RK (explicit or implicit)

and IDC-ARK methods lies in a portion of the proof of Lemma 3.4.4, stated below

as Proposition 3.4.5, following some notational details. The proposition asserts that

the rescaled error. vectors (rescaled by hSk—l), obtained from formally applying

ARK methods to a rescaled error equation, are equivalent to the error resulting

from the numerical formulation that we implement. Thus, since an rkth order ARK

method applied to the rescaled error equations achieves rkth order, the unscaled

numerical implementation is 0(h8k‘1+rk), provided the exact solution y(t) and

the functions fN, fS are sufficiently smooth.

For purposes of clarity, before stating the proposition, we first introduce some

notational details related to the rescaling, and recall the error equation (3.11). The

analysis for the correction steps in this section will rely on this form of the error

equation.

Assume that after the (k — 1)th correction, the method is 0(hSk-1). we rescale

the error 6(k—1) (3.8), and (QM—1) and Ca from the error equation (3.11), by

hSk-l. Then the rescaled equations (3.18) and (3.19) are (9(1) (see Section 2.3.2,

or [18]).

Define the rescaled quantities as

 

ak—lla) .-= flew—1hr). (3.18a)

@(k“1)(t) = fiQlk‘lla), (3.18b)

off—Ila, (Elk‘llan = 11313—1 can, hSk—lo(k—1l(t)), a = N, s. (3.18c)
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Then the rescaled error equation is given by

k—l)
(Few—Wm = El, H)(t,55(k—1)(t))+ 6f,» (“ya—mm, (3.19)

@(k‘llu) = 0.

A p—stage, rth order ARK method (3.5) applied to (3.19) gives, for i = 1,2, . . . ,p

anda=N,S:

”a_~(k‘1)aS~S))
k1. _Ga (t0+cthok— 11+1; (ZaNa”. k]. azjkj)

~[k1 ~[k—11 7” N~N s~s
ol =Q0 with), k, +1), k,- ), (3.20)

i=1

where the Greek letter fl denotes the rescaled solution in the numerical space, and

égc— 1]

equations (3.14) with FN, PS. We use (3.14) with G'N, GS instead of FN, FS for

= @(k—1)(t0), In the actual implementation, we discretize (3.11) as in

the analysis.

The following proposition is where the essential difference between the proof of

the truncation error for IDC-RK [18] and IDC-ARK methods lies.

Proposition 3.4.5. The Taylor series for the rescaled exact error, Elk—1)(t0+h) =

T’s—_TBUC—Uito + h), and for the rescaled numerical error, $6)“ in (3.14),

h

coincide up to and including the term hr for a sufiiciently smooth error function

EVE—1) t , and the exact solution y has a and f , f have a — 1 degrees of
N S

smoothness.

Proof. It suffices to prove the following claim:

risk—1'15? = k? + coma—1), Vi=1,2,...,p, a = N, s, (3.21)
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where k? and ii? are as in equations (3.14) and (3.20). Set

  
 

3—1

A.i=h(z a3’h‘k- 1EN++2111c”risk— 11:5)

J=1

p N :3 ~N S 8 S= k—l .. k—lhZaUh k] +a )1 k1) (322)

F1

F1 N N p N N+ s s
B,_h(Zla3kJ +2333): 11:10;aijkj+ (L319) (323)

J= = j1=

(10:18! (.1, + I ,(o 152/1’”BU—1,llj— l—!ayl1 0 (3.] b 0k—

where a = N, S, and the equalities in (3.22) and (3.23) hold since az’g = 0 forj 2 i.

To prove (3.21), we prove that hSk—IZZQ —- k? = 0(hn) for n == 1, 2, . . . ,a — 1, for

i = 1, 2, . . . , p, and Oz = N, S using induction with respect to n; i.e., we show that

9 a a: n aN(h9k—1N N “3 913—119- S
hk—1"i ki h ZZwlgn kj kJn)+filj,n(h kJn kJn»

l,nj.n

+ who-1), (3.24)

where the notation is as follows.

0—20—2 0—2

2= 22Z Z=22:Z

In 211112 In in J1 J2 J'n

271—711

fllj,Nn22245112210“fllj,n=:: fiCa,

where for the )8 coefficients, C represents some C8’ or CIS. , a represents some all;

aS
or azj, and ON and OS denote that the C, a coefficients that appear in the sums
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depend on a and N or a and S, respectively. For example, if n = 2, then

(IN. 101 N “1N .N ya as S (IN

filj,=2 ClliaiJ1Cl231 “J112+Cllzaz3161231611132

“S: 10: N N US a a3 S (1.3

”112 ”112' ”iJ1CI2J1aJ1J'2 +011,a,,-1012,-1a,-1j2

which is clarified in the expansions below.

We prove (3.24), and hence (3.21), using induction with respect to n, the power

of h in equation (3.24).

o n = 1: Using the rescaled quantities (3.18) and Taylor expanding Ga(t,y)

about Q(k—1’ in y, we obtain for a = N, S:
0

risk—17.7? — k? (3.25)

5,, 1 (k 1) (k 1) p N~N s~s
h C (t0+chQ ( )+h§_:(a,]k] M3113»

J'=1

— Ga(t0 + Cih Q“1)(tO) + N 201319;] + ais’jkgé’))

j=1

s ~(k 1) p N~N s~s
= 0050.0 + C’lh” h k—1(Q (to) + ’1 2:1(02'3'193' + 092'ij ll)

J:

— Ga(t0 + 3,11, (209—”(10) + 3,)

= Ga(t0 + C,,-h, Q(k*1)(l0) + A?) — Ga(t0 + Cih,Q8k—1)+ Bi)

02 1 8’1
1 1

—1:111' —l1G3y0(10
+ C’lh’k—Q(1)(t0)l((A

il 1 - (Bi) 1)

+00104). (3.26)
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ll—vl 1- .

Factoring (Ai)11 — (Bl-)ll = (Ai — Bi) Zvl— 1 Ai I}; 1, we obtam

8 ~__ in ,(r
h k 11.2. —1,.

0—2

—1
= Z cfi,(A,—B,)+ovla )

l1=12

_ 3k—1N- N (,5 5k—175_S

h 12:0119 2(0(13101 kn kJ1’+aiJ1(h' le kn»

71: 1

+C’)1(h:_1)

p N N aS 3k 1~S S
_. 5.—1 _ 0’ ‘.— . _ .—h :2 Z(Cf1',a,j1( k1 k)+ 0,1733.101 kn 1:31))

l1=1j1=1

+O(h”—1)

_ 1 ON 8k_1TN_ ,N 0‘3 3k—1~S_ S_h 2293,3101 1,1 1.] )+13,1(1 k] —jk1))

l,1 J,1

+O(}1"_1), Vi=1,2,...,p. (3.27)

Note here that SON =CO‘ aN and 1303— CaaS
lj,1 lli iJl’ 'lj,1_llialj1

o n + 1: Assume (3.24) holds for n < a — 1 (for both a = N and S). Following

the same process of Taylor expanding as in equations (3.26) and (3.27) in the
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L6

LL...LLL,I+u[1+11’l‘u‘[

a11:11(,_Dq>o+((S3!—5111,111+S-,fv+

1+urI+u£l,1+u‘£1+U‘J

I‘l‘uDI)):i:i

NID+U[[+711

(1_0q)0+((Sal—$3,1-_.3lsq)

I+ururvurI+USJO‘ulI+ururv1151+u7Ou‘l

(s”S’a+s”N’JH

IrI+WWDurI+uI+UrururI+uout

1+uTI+U‘I

Z3Hull:

(14,300+

I+urI+U[I+U[u[_u[I+u

IrIrI+ururvUfI”’0)u[

(N31N3131921)):Z:Zq)019

I+urI+urHuturvurI+U

I+U[{+115{+U-[urvqu+U

1=1+ufr=l+uru?u?

33113339133,1(=
d3—0,23

(14,100+

u‘tu‘J

u[u‘[up)u‘[

01"311—361

1S‘N:3010111311219989AA‘99801=u



where

aJ’V CIA] (IN as ‘S N .

BlJn+1 :filjjlyzc[n+1JnaJan+1 +51].n61n+1JnaJan+F

'SIJJL+1: Ijn Cln+1janJan+1+IJnCln+1jnaJan+1

It follows that (3.21) holds. The rest of the proof of Proposition 3.4.5 is similar to

the implicit IDC-RK analysis in Section 2.3.2. C]

Now we state the implicit IDC-RK results again as a corollary to the semi-implicit

theorem.

Corollary 3.4.6. Let y(t) be the solution to the IVP

y’(t) = f(t,y). £6 [0.71],

M) = yo.

and y(t) has at least a {o 2 M+2) and f has at least 0—1 degrees of smoothness in

the continuous sense. Consider one time interval of an IDC method with t E [0, II]

and uniformly distributed quadrature points (3.7). Suppose an rOth order implicit

RK method is used in the prediction step and (r1,r2,. . . ’TKloopflh order implicit

RK methods are used in K1002) correction steps. Let 3k = 2;:0 rj. If SKloop 3

+1

M + 1, then the local truncation error is of order (9(h loop ).

Proof. The result follows from Theorem 3.4.1, if we set fN = 0. E]

3.5 Stability

The stability of an explicit (or an implicit) scheme can be measured by the conven-

tionally accepted definition of a stability region [37], as presented in Section 2.2.3,
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Definition 2.2.2.

For a semi-implicit numerical method, stability is less easily defined. In the

literature, various measures for stability have been proposed for semi-implicit [60, 9]

or additive Runge—Kutta methods [62, 56, 11]. In fact, all of these definitions can be

applied to any semi-implicit scheme. We focus on two of these definitions. Minion

suggests splitting the Dahlquist-type equation in such a way that the stiff part is

represented as the real part of the eigenvalue and the nonstiff part is represented by

the imaginary part of the eigenvalue, which is useful for seeing whether the numerical

method works for a convection-diffusion problem, but may not be reasonable when

considering a problem with stiff oscillations. Liu and Zou define an A(a)-stable

semi-implicit method (similar to [62], except in [62], they also present a boundary

locus-type method), which could cover a wider class of problems [56].

3.5.1 Stability for Convection-Diffusion Type Problem

First consider the definition from [60].

Definition 3.5.1. The amplification factor for a semi—implicit numerical method,

Am(/\), with A = a + ifi, is interpreted as the numerical solution to

y'(t) = OW) + 213W). 11(0) = 1, (328)

where the explicit component of the numerical method is applied to the imaginary

part ifly(t), and the implicit component of the numerical method is applied to the

real part (xi/(t), after a time step of size 1 for a E IR and 6 6 IR, i.e., Am()\) = y(l).

Definition 3.5.2. The stability region, S, for a semi—implicit numerical method,

is the subset of the complex plane C, consisting of all A such that Am()\) S 1 for

ODE 3.28, i.e., S = {A : Am()\) 3 1}.
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In Figure 3.1a, the stability regions for 3rd, 6th, 9th, and 12th order IDC-

FEBE (IDC constructed using forward and backward Euler) with 2, 5, 8, and 11

correction 100ps, respectively, are computed numerically and plotted. Figure 3.1b

shows 3rd, 6th, 9th, and 12th order IDC-ARK3KC (IDC constructed with 3rd order

ARK3KC) with 0, 1, 2, and 3 correction loops, respectively. The shaded regions

represent the stable regions. Note that for the same order method, IDC-ARK3KC

shows a marked improvement in stability over IDC-FEBE. This correlates with the

results in [18], where it was shown that IDC-RK methods were found to possess

better stability properties than SDC constructed with forward Euler integrators

[18]. Such a stability measure provides insight on the stability property of a
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Rem R90»)

(a) IDC-FEBE (b) IDC-ARK3KC

Figure 3.1: Stability regions for 3rd, 6th, 9th, and 12th order IDC constructed using

(a) forward and backward Euler with 2, 5, 8, and 11 correction loops (and 3, 6, 9, 12

uniform quadrature nodes), respectively, and (b) 3rd order ARK3KC with 0, 1, 2,

and 3 correction loops (and 3, 6, 9, and 12 uniform quadrature nodes), respectively.

The crosses denote the 3rd order stability regions, diamonds for 6th order, circles

for 9th order, and triangles for 12th order. The stability regions are scaled by the

number of implicit function evaluations ((#stages)(M + 1)M, where FEBE has 1

stage, ARK3KC has 4 stages).

semi—implicit method (such as an IDC-ARK method), especially when it is applied

to a convection-diffusion problem (e.g., the problem in Section 3.6.2), where the
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convection term is treated explicitly and diffusion term implicitly.

3.5.2 Stability for Other Types of Problems

We remark that the stability property of the semi—implicit scheme greatly depends

on the splitting of equation (3.1), therefore, the stability analysis must be adapted

for specific problems. Hence we also present a definition from [56] that may apply

to a broader class of problems, although our results are inconclusive.

Rather than the Dahlquist equation (2.45), we consider a test problem of the

form

y'(t) = A5.?! + ANy,

y(0) = 1- (3.29)

/\S and AN depict the eigenvalues of the Jacobian of fS and fN, respectively,

where Re(AS) S O, Re()\N) S 0, and IRe(AS)| >> |Re(AN)|. The semi-implicit

amplification factor, denoted Am(AS,AN), is determined by applying the semi-

implicit numerical method (e.g., (3.4)) to the test problem (3.29) for one time step,

obtaining

y1 = Am(AS,AN) (3.30)

Definition 3.5.3. [56] An A(a)-stability region for a semi—implicit numerical method

is

m
35:5 W = {AN 6 C s.t. [Am()\S,/\N)l $1 VAS 6 55,5}, (3.31)
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where

SCfYS = {)‘S E C s.t. [arg(—/\5)] S 0:, )‘S 75 0} U {0} (3.32)

An L—stable semi-implicit method is an A-stable (i.e., A(%)-stable) which also

satisfies

lim IAm(AS, )‘Nll = 0. (3.33)

AS—>0

Stability regions were numerically and analytically determined for some ARK

methods to confirm the (A-stable type) stability regions presented in [56]. Definition

3.5.3 with a = 7r/2 was used to calculate the regions. ARK2A1, ARK3A3, and

ARK4A2 were chosen due to the obvious difference in size and/or shape among the

methods and between their explicit stability regions (i.e., the stability region arising

when the explicit part of the ARK method is calculated alone as an RK method)

and their semi-implicit stability regions. The general algorithm for computing the

semi-implicit stability regions, using (3.29) and (3.30), follows.

1. Grid the left half complex plane for )‘S'

2. For each fixed AS, find the stability region (according to the usual definition,

Definition 2.2.2) in terms of )‘N'

3. Take the intersection of the stability regions from step 2 to obtain the ARK

stability region.

Remark 3.5.4. In step 1, it is necessary to refine the grid for )‘S close to the

imaginary axis. These values of /\S appear to be the troublesome ones that shrink

the ARK stability region to smaller than the explicit stability region. It may be

unnecessary to include AS with large negative real parts. These observations are

supported by [55, 62/ and by the structure of a typical amplification factor’s equation.
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E.g., in

 

(1 — AS — 9g.) + (1 — ASMN + §A§V

Am). ,A =

(S N) 1-2/\s+/\%

(3.34)

the equation for the amplification factor of ARKZAI, we see that large negative real

values of ’\S make Am(AS, AN) approximately constant in modulus, while values of

AS closer to the imaginary axis may increase the modulus on their own or through

interaction with )‘N' Furthermore, [62/ presents a particular case where it is rigor-

ously shown that the maximum of the amplification factor occurs on the imaginary

axis.

At first glance, ARK methods appear to reduce the stability region; however, when

one considers that this restriction only applies to the nonstiff eigenvalue, while the

stiff eigenvalue may be anywhere in the left-half complex plane, a smaller stability

region may not be unsatisfactory [56]. Nevertheless, we are still limited by the lack

of I-stability (imaginary axis stability, [36]) for the nonstiff component.

The stability regions for IDC-ARK schemes were ascertained numerically as for

ARK schemes. A fourth order IDC-ARK method using ARK2A1 has a semi-

semi-impl A-stability: IDC4 w/ARK2A1

6"“ ——-..— —— .— s _-fi ~ I

-e -s -2: x2 0

(a) IDC-ARK2A1

Figure 3.2: Stability region for fourth order IDC with ARK2A1 in prediction and

correction loops. AN is plotted, consistent with Definition 3.5.3, and a = 7r /2.
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implicit stability region (Figure 3.2a) that is much larger than the semi-implicit

stability regions for both fourth order ARK methods shown in [56]. Unfortunately,

the 8th order IDC-ARK (with ARK2A1) method’s stability region is not A-stable at

all (in the semi-implicit sense of Definition 3.5.3); however, the numerical solution

for (3.35) and (3.36) computed via the same 8th order IDC-ARK method seems to

be stable, perhaps even for c = 0.01.

To investigate the loss of (semi-implicit) A-stability, we first fixed AS, and plotted

some explicit stability regions only. We achieved very reasonable stability regions

that increased with the order of the IDC method, as expected from the results in

[18]. Then we fixed AN, and plotted some implicit stability regions only. We also

plotted some stability regions for implicit IDC-RK methods constructed with a sec-

ond order DIRK method from [2] (Figures 3.3a and 3.3b). Here we discovered the

problem. Clearly the stability regions decrease in size as the number of correction

loops increases and frequently the higher order methods lose A-stability. In partic-

ular, we notice that in Figure 3.3b, the 10th order method loses A—stability; even

A(a)—stability is lost. Hence, although the explicit region increases, as seen in [18],

the implicit region loses A(a)-stability as number of IDC corrections increases, and

the semi-implicit method struggles between improving and worsening its stability.

Thus far the results of measuring semi-implicit stability via Definition 3.5.3 do not

look clear, although the main difficulty appears to arise in the implicit part of the

method, where increasing the order of an implicit method decreases its stability re-

gion. This decrease is well-known for BDF methods, but generally is unpredictable

for implicit RK methods. Also, [56]’s method given in Definition 3.5.3 appears to be

overly restrictive since some numerical solutions still appeared to be stable despite

the numerical method’s loss of semi-implicit stability. Therefore, we chose not to

pursue this means of measuring semi-implicit stability further.
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Stabilityi IDCBDIRK2p106, 0. 1. 2. 3 corrections Stability: |DC10DIRK2p106 0, 1, 2, 3, 4 corrections

   400 -200 o 200

(a) IDC-DIRK2, 8 nodes (b) IDC-DIRK2, 10 nodes

Figure 3.3: Stability regions for IDC with 2nd order DIRK (from [2]) in prediction

and correction loops. The labels are the number of correction loops, and are placed

outside of the stability regions. From 0, 1, . . . ,4 correction loops, the IDC methods

have corresponding order of accuracy 2,4, . . . , 10. Stability regions are standard,

according to Definition 2.2.2.

3.6 Numerical Results

In this section we describe some numerical experiments with various IVPs and an

advection diflusion equation. Numerical experiments support Theorem 3.4.1, which

states that the semi-implicit IDC-ARK methods have similar order of accuracy rules

as for IDC with explicit RK methods [18]. Additionally, in most cases, higher order

IDC-ARK presents an efficiency advantage over existing IMEX ARK schemes. Sev-

eral different ARK methods of various orders were tested Within the IDC prediction

and correction loops: second order ARK2A1 [56] and ARK2ARS [3], third order

ARK3KC [45] and ARK3BHR1 (Appendix 1. in [8]), and fourth order ARK4A2

[56] and ARK4KC [45]. For efficiency, these IDC-ARK methods were compared with

their constituent ARK methods. This section first lists three ODE test problems,

followed by the combined results for order of accuracy, comments on order reduction,

and efficiency results. Then an advection-diffusion equation is described, followed

by its order of accuracy results and comments on an improved CFL condition.
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We further comment that the focus of our study is not the choice of fN, fS, and

thus we make naive choices of fN and fS in each example below, acknowledging

that better choices are likely to exist (in particular, there is much study on the

choice of fN, fS for PDES, such as in [43, 44, 34]). Note also, that, in most of the

literature, the examples of semi-implicit methods used to solve problems with stiff

regions only test convergence and efficiency up to the time just before the stiff layer,

at which point they claim that adaptive steps should be taken [45, 8, 3]. In this

work, we have tested through times that extend beyond the stiff layer, and hence

our results may appear to be worse than they should. Testing our methods in the

standard way is likely to produce much better results than shown here.

3.6.1 ODE Test Problems

Test Problems

The following test problems, an initial layer problem and Van der Pol’s oscillator,

were used in numerical determination of order of accuracy and efficiency. Each IVP

was first computed in a completely nonstiff situation (6 = 1). Then varying levels

of stiffness, which caused each IVP to have a stiff and nonstiff component, were

considered.

1. Initial layer problem

Pareschi and Russo’s example [45], with nonequilibrium, or perturbed, initial

conditions y1(0) = 7r/2 and 312(0) = 1/2 is tested:

31’1“) = W20). t E [0, 4]. (3.353.)

yam = 1110) + 1(sins/1(0) — 312(0). (3.35m
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where we choose

fN = . f5 = 1 .

y1 2(Slny1 — 112)

. Van der Pol’s equation

A standard nonlinear oscillatory test problem, Van der Pol’s equation [60], is

examined:

yi(t) = 1120). l e [0, 4], (3.36a)

its) 1<~yi<t>+<1- y1(t)2)y2(t))s (3.36m
E

with initial conditions y1(0) = 2 and y2(0) = 2/3, and we choose

Order of Accuracy

In the following convergence study, error is plotted versus the stepsize H, where the

error at the final time is calculated by comparing successive solutions. For the IVPs,

the error is the absolute error at. the final time.

In agreement with Theorem 3.4.1, the order of accuracy of the IDC method

increases by the order of the ARK method used for each prediction and correction

loop, as seen for the initial layer problem in Figure 3.4a and for Van der Pol’s

oscillator in Figures 3.4b and 3.5a. Here we choose 6. = 1, pertaining to the nonstiff

scenario. The circles in Figures 3.4a and 3.4b correspond to the error of the 3rd order

ARK3KC method (equivalent to one prediction loop of IDC). It has slope z 3, as
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expected, since a third order ARK method is used and there are M +1 2 3 nodes in

each subinterval [tn, tn+1]. After one correction loop computed using a third order

ARK method (and M + 1 = 6), the crosses show sixth order convergence — an

increase in the order by three. Similarly, a second correction increases the order to

9, as seen with the triangles. Thus three loops (1 prediction + 2 corrections) of a 3rd

order ARK method produces a 9th order IDC method, when there are M + 1 = 9

nodes in each subinterval [tn, tn+1l- Similarly, in Figure 3.5a, we see a fourth order

increase with each loop of the IDC method when the fourth order ARK4KC method

is used (giving an eighth order method after two loops). We also solved these test

problems with various orders of ARK methods (2, 3, 4) and IDC-ARK (4, 6, 8,

9) constructed using second order ARK2A1 [56] and ARK2ARS [3], third order

ARK3KC [45] and ARKBBHRI (Appendix 1. in [8]), and fourth order ARK4A2

[56] and ARK4KC [45] (not all shown). In each implementation, we anticipate that

# loops * ARK order = expected IDC order. In general, the expected order of

accuracy is seen for nonstiff problems.

Order Reduction

For stiff problems, a phenomenon known as order reduction is observed. The ef—

fects of increasing the stiffness of the problems (i.e. decreasing c) on the order of

convergence can be seen in Figures 3.6a and 3.6b. The plots show the error for

computing the initial layer problem, IVP 3.35 and Van der Pol’s oscillator, (3.36)

in a stiff case (6 = 10-3) using third order ARK3KC in O, 1, and 2 correction loops

of IDC. Order reduction that is e-dependent is apparent for both the initial layer

problem, IVP (3.35), and the oscillator, IVP (3.36). Once the stepsize is below 5,

however, it appears that the expected IDC order is achieved. For the initial layer

IVP (3.35), the order reduction clearly still allows for convergence of the method

within the order reduction regime (Figure 3.6a). Van der Pol’s oscillator exhibits
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Figure 3.4: Convergence study of absolute error at T = 4 vs H, for 3rd, 6th, and 9th

order IDC constructed using 3rd order ARK3KC with 0, 1, and 2 correction loops

(and 3, 6, and 9 quadrature nodes), respectively. The order of accuracy is clearly

seen, as the dotted reference lines (with slopes of 3, 6, 9) indicate.
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Figure 3.5: Convergence study of absolute error at T = 4 vs H, for 4th and 8th

order IDC constructed using 4th order ARK4KC with O and 1 correction loops (and

4 and 8 quadrature nodes), respectively. The order of accuracy is clearly seen in

(a), as the dotted reference lines (with slopes of 4, 8) indicate.
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Figure 3.6: Convergence study of absolute error at T = 4 vs H, for 3rd, 6th, and

9th order IDC constructed using 3rd order ARK3KC with O, 1, and 2 correction

loops (and 3, 6, and 9 quadrature nodes), respectively. The dotted reference lines

(with slopes of 3, 6, 9) indicate the expected order of the methods, but note order

reduction.
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instability for larger timesteps; however, once the stepsize is small enough, order

reduction is apparent, and then as the stepsize is further decreased, it appears that

the expected IDC order is achieved (Figures 3.6b and 3.5b). The better behavior

of solutions to the IVP (3.35) is not surprising, since many of the ARK methods

were designed to solve problems similar to (3.35) (see, e.g. [56, 45, 21]), but the

oscillator problem (3.36) has recurring stiff peaks, which are difficult to handle even

with most popular integrators.

Efficiency

To measure efficiency, we plot the number of implicit function evaluations versus

the error. As in the convergence plots, the error is found by comparing successive

solutions (absolute error at the final time). The number of implicit function evalu-

ations is counted numerically by tracking the number of times the “stiff” function

and the Jacobian are called, including the Newton iterations. In general, the higher

order IDC-ARK methods are more efficient than popular ARK methods. We see

two general “rules of thumb.” First, if the order of the method is higher, then fewer

function evaluations are required to reach a low error tolerance. This trend can be

observed for ARK methods (equivalent to a prediction loop) (Figure 3.7a) and when

more correction loops are taken (Figure 3.8a).

Second, the efficiency of an IDC-ARK method generally depends upon its con-

stituent ARK method; i.e., if ARK method a is more efficient than ARK method

b, then IDC constructed using ARK a is more efficient than IDC constructed using

ARK b. For example, an IDC method using the 3rd order ARK3KC frequently is

more efficient than the other methods we tested (see, e.g., Figure 3.7b), but IDC

using ARK2A1 performs relatively inefficiently (as expected since ARK2A1 alone

requires the highest number of function evaluations among the ARK methods we

tested in Figure 3.7a). We note that the behavior for the nonstiff (c = 1, Figure 3.8a)

112



 

 

  
 

  
 

#
i
m
p
l
i
c
i
t
f
u
n
c
t
i
o
n
e
v
a
l
u
a
t
i
o
n
s

3
3
"

D

D

0 E

10- 10'

L... of y1, y2 abs errors

(a) VdP (3.36), e = 1 (nonstiff)

 

 

    

105. .
; +Iocs-3Kc l

' +IDCG-3BHR13

-e- IDCQ—3KC j

-v- lDCQ-3BHR1      
-
-‘-

--

-s
Q

‘~
-.

  
 

#
i
m
p
l
i
c
i
t
f
u
n
c
t
i
o
n
e
v
a
l
u
a
t
i
o
n
s

8

1

L... of y1, y2 abs errors

(b) IVP 3.35, c = 1 (nonstiff)

Figure 3.7: Efficiency studies of # implicit function evaluations vs absolute error

at T = 4, using (a) ARK methods of second (2A1 [56], 2ARS [3]), third (3BHR1

[8], 3KC [45]), and fourth (4A2 [56], 4KC [45]) orders (no IDC). (b) for 6th and 9th

order IDC constructed using 3rd order ARK3KC and 3rd order ARK3BHR1 with 1

and 2 correction 100ps (and 6 and 9 quadrature nodes), respectively.
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Figure 3.8: Efficiency study of # implicit function evaluations vs absolute error at

T = 4, for 3rd, 6th, and 9th order IDC constructed using 3rd order ARK3KC with

0, 1, and 2 correction loops (and 3, 6, and 9 quadrature nodes), respectively).
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and mildly stiff (c = 10_3, Figure 3.8b) cases is similar.

3.6.2 Advection-Diffusion Example

We now consider an advection-diffusion equation

Ht = -—’U.1f + 11.55113, t E [0, 0.1], .73 6 [0,1], (3.373.)

u(x, 0) = 2 + sin(4rrx), (3.37b)

with periodic boundary conditions. We solve the advection-diffusion BVP (3.37) via

method of lines with fast Fourier transform (FFT) for the spatial derivatives and

time-stepping with semi-implicit IDC-ARK, where the advection term is treated

explicitly (fN = —u;1;) and the diffusion term is treated implicitly (f3 2 any).

This choice of methods ensures that the error is dominated by the time-stepping.

We expect that treating the diffusion term implicitly will remove the requirement

that the CFL condition must satisfy At g ch2, and that the CFL condition will be

controlled only by the advection term so that At S ch. To verify this hypothesis,

we plot the error for IVP 3.37 at T = 0.1 versus H 2 At = 0.5Ax, timestepping

with IDC constructed with 3rd order ARK3KC, in Figure 3.9a. The error is the

L1 (spatial) norm of the absolute errors at the final time and was computed by

comparing the numerical solution to a reference solution computed with small Ax

and At. Shown are IDC methods with zero and one correction loops (3rd and

6th order convergence, respectively). Since the expected convergence orders are

seen when At is proportional to Ax, we conclude that it is reasonable to say that

treating the diffusion term implicitly improves the CFL condition to At g ch.

This improvement is exactly what we expect for a semi-implicit method.
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Figure 3.9: CFL study showing absolute error at T = 0.1 vs H 2 At = 0.5Ax. FFT

is used for the spatial discretization, and time-stepping is done with 3rd and 6th

order IDC constructed with 3rd order ARK3KC with 0 and 1 correction loops of IDC,

respectively, where the advection term is treated explicitly and the diffusion term is

treated implicitly. This choice of methods ensures that the error is dominated by the

time-stepping. Since the expected order of accuracy in time is seen, as the dotted

reference lines (with slopes of 3, 6) indicate, it appears that the CFL condition is

At 3 ch.
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3.7 Concluding Remarks

We have provided a general framework for the simple construction of arbitrary order

IMEX methods. These semi-implicit IDC-ARK methods use ARK integrators as

base schemes inside the IDC framework and can thus be constructed to higher order

easily, with no need to consider the complicated order conditions that are typically

required for the construction of ARK methods. High order IDC-ARK methods can

be used to solve multiscale differential equations that involve disparate time scales

more efficiently than popular ARK schemes when a low error tolerance is desired.

We have performed an analysis of the local truncation error of IDC-ARK methods,

shown improved stability over IDC-FEBE methods, and conducted numerical results

showing order of convergence, efficiency, and the potential for an improved CFL

condition. We plan to examine the use of asymptotic preserving ARK schemes (as

in [64], and Section 6.1) in the prediction and correction loops of IDC as a potential

way to mitigate the issue of order reduction that arises with increased stiffness. We

also have begun an investigation of embedded IDC methods, including IDC-ARK,

and their implementation in an adaptive setting (see Chapter 4 for preliminary

results). We anticipate that adaptivity will provide additional efficiency gains over

IDC—ARK, and in fact, adaptive timestepping is the natural way to handle many

multiscale problems.
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Chapter 4

Adaptive IDC Methods

4. 1 Introduction

In this chapter, we consider initial value problems of the form

y' = f5(t.y) + fN(t.y).

y(0) = yo, te [01'1"]. (4-1)

where y 6 IR”, and the function containing stiff terms, fS(t,y) : IR x IR" —> IR",

and the function containing non-stiff terms, fN(t, y) : IR x IR" ——> IR”, are Lipschitz

continuous in the second arguments. When fS = 0, i.e., equation (4.1) contains

only non-stiff terms, explicit integrators such as popular explicit Runge—Kutta (RK)

methods or Adams—Bashforth methods can be applied. When fN = 0, i.e., equa-

tion (4.1) contains only stiff terms, implicit RK methods or Adams—Moulton meth-

ods can be applied [2]. When equation (4.1) contains both stiff and non-stiff terms,

implicit—explicit (IMEX) methods [4] or additive Runge—Kutta (ARK) methods can

be applied [21].

Although in previous chapters we only consider fixed step sizes, to guarantee
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accuracy in the solution of equation (4.1), estimation of the error and adaptive

step size control is often desirable. For example, in Van der Pol’s oscillator (3.36),

there are stretches of time where the solution changes only mildly, punctuated by

oscillatory stiff peaks in the derivative. The stiff oscillations cause methods imple—

mented with a fixed step size to exhibit order reduction, as explained in section

3.6.1. Adaptive time-stepping may be needed for other types of problems as well.

For problems containing only non-stiff terms, a widely accepted approach is to use a

matched pair of explicit RK methods [37], also known in the literature as embedded

RK methods. The premise is to select a pair of RK methods (i) whose Taylor series

approximations agree with the corresponding Taylor terms of the solution up to

orders p and p + 1, and (ii) whose stage weights, aij, and stage nodes, cj, overlap

as much as possible for efficiency. The matched pairs are often expressed compactly

in a Butcher Tableau,

 

where A is an s x 3 lower triangular matrix, b,b and c are s-vectors. An exam—

ple of a pair of matched explicit RK method is the Runge-Kutta—Fehlberg Method

(RKF45), which generates a fourth and fifth order method using six stages. This ap-

proach of matched pairs can be extended to implicit RK and ARK methods. In [33],

matched diagonally implicit RK pairs are discussed, and [45] discusses embedded

ARK methods and error control.

In recent papers [18, 17, 15], the present authors have illustrated that integral

deferred correction (IDC) methods are competitive with popular RK and ARK

methods. In brief, IDC methods are a class of deferred (or defect) correction methods
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that generate a sequence of approximations that successively reduce a residual. First

introduced by Dutt, Greengard and Rokhlin in [25], high order IDC methods can

be constructed systematically without solving tedious order conditions. This work

exploits the framework of an IDC method, using computed approximations of the

numerical error for step size control. In Section 4.2, IDC methods are reviewed, and

numerical comparisons between IDC and existing embedded methods are given in

Section 4.3. Conclusions are given. in Section 4.5.

4.2 Integral Deferred Correction

IDC methods are essentially predictor-corrector schemes. In this section, we first

discuss how the error for an approximate solution is computed. Then, the IDC

framework and algorithm is given. Finally, an adaptive time step control is discussed.

4.2.1 Error Equation

Given an approximate solution, 17(t), to the exact solution, J(t), of (4.1), the error

of the approximate solution is

60) = y(t) — 7MI (42)

Defining the residual, c(t), as

ea) = n’<t) — 1511. n10) -— lye. nu». (4.3)
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then the derivative of the error given in equation (4.2) satisfies

= IS (tsy(1)) — IS (I, "(0) + fN (13(5)) _ f/V (I, 77(1)) — EU)"

The integral form of the error equation can then be obtained,

I I

[60) +/ 6(7) dr] =f5 (t. 720) + 6(t)) - f3 (t. 77(0)
0

+ fN (is 770) + 60)) - fN (t, 77(1))-

An iteration scheme is implemented to generate successively more accurate approx-

imations,

[elk—1hr) + [Qt ilk—1)(T)d»r]l =15 (I,T](k)(l)) — f5 (1, 71(k-1)(t))

+ fN (t7 77(k)(t)) - fN (t, 72(k—1)(t)) . (4-4)

where r)(k)(t) = n(k-1)(t) + e(k"1)(t). It was shown in [18], under mild assump-

tions, that if a pth order single step method is used to approximate equation (4.4),

k—l)
and r}( has q orders of accuracy, then n(k) has (q + p) orders of accuracy.

4.2.2 Implementation of an IDC Method

The time domain [0, T] is first. discretized into N intervals,

tn=nAt, n=O,...,N where Atz—jfg.
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Then, each interval, In 2 [tn, tn+1], is further discretized into M sub-intervals,

- At

In)"; 2 In ‘f‘ "I. ()1, 7n = 0,. . . , A“! Where (SI 1‘ 17.

As described ill [25], discretizing each interval uniformly into M subintervals allows

for an (M + I)” order IDC method. The IDC algorithm, described in Algorithm 7,

is iterated completely in each time interval [tn, tn+1] to define the starting value of

the next interval, [tn+1, tn+2l' Equation (4.4) is rewritten as

Q(k_1)'(t)= f5 (Q(k‘1)(t)+ y(O) + /t(fN(r.n(k‘1))+ f3(7',77(k_1)))dr)

- f,s*(t.77(k_1))

+ fN (QM-”(1) + 31(0) +/

— fN(t.n(k’1)). (4.5)

t

eye. alt-1)) + fslr. 71(k_1)))d7')

where Q(k-1)(t) = e(k-1)(t) + ft {(k—1)(T)Cl7', and the integral

ft (fN(r,n(k_1)) + fS(r,n(k_1)))dr is approximated at the gridpoints tn,m by

an integration matrix (2.31), to accomodate numerical implementation.

4.2.3 Adaptive Time Step Control

In Algorithm 5, we wish to adjust the size of the time step based upon the size of

the error between the numerical and the exact solutions. This adjustment should be

done such that the time step is decreased if the error is too large and increased if the

error is significantly smaller than necessary, since we wish to take as few time steps

as possible. The procedure is as follows. First calculate the solution after one time

step. Then calculate an approximation to the error. The stepsize At and the error

err are input for Algorithm 5, which determines whether the error is acceptable and
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1 Prediction

2 Solve (4.1) via ARK/RK.

3 Corrections

4 fork=1,...,Kl00p

o Solve (4.5) for (QM—ll, the approximation to (205—1) at gridpoints tnfim,

  

5

6 via ARK/RK.

7 0 Update numerical solution:

,111 ,lk—il + Qli—il _ / elk—11(7),).

= elk—11+ y(O) + /(f5(Ts77[k—1])+ rye, n[k_1]))dr-

end
 

Algorithm 1: IDC method

whether the stepsize should be increased, decreased, or maintained. In this work,

we do not consider the consequences of the choice of 0, fl, and '7, but they could be

investigated more thoroughly using, e.g., ideas from [33].

 

Input: At: time step; err: error of new update; TOL: tolerance; 0 < a < 1:

parameter for refining time step; 0 < 7 < l: parameter for coarsening

time step; fl > 1: parameter for coarsening time step (in Figures 4.2a,

4.2b, 4.3a, and 4.1 below, we use a = 0.5, 7 = 0.1, fl = 2)

Output: At: new time step; accept: flag whether to accept new update;

  

1 if err > TOL then /* reject step */

2 I At = aAt, accept = 0;

3 else if err < 7 >1: TOL then /* coarsen step */

4 I At = fiAt, accept = 1;

5 else AI = At, accept = 1 ; /* accept and leave unchanged */

 

Algorithm 2: Determination of step size

For embedded RK (or embedded ARK) methods, two solutions of order p and

p + 1, resp. are calculated. Then, for example, the error can be approximated by

comparing the difference between those two solutions. Each correction iteration of an

k—l])
IDC method includes an error estimator (the correction (SI , making it a natural

choice for adaptive implementation. For IDC methods, the error approximation is
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already built into the IDC method, since each correction 100p solves (4.4) for the

error. If we consider that IDC-RK (IDC-ARK) methods are RK (ARK) methods,

then we notice that embedded IDC-RK (IDC-ARK) methods are a natural analogue

to embedded RK (ARK) methods. In particular, if the final correction of an IDC

method is order q, and the solution just before the final correction is order p, then

the embedded IDC method gives two solutions of order p and p+ q, resp. An obvious

choice for the final correction is q = 1, to avoid extra computational expense when

approximating the error. Note for IDC methods, At is adapted, while (it 2 At/]W

remains uniform for each choice of At.

4.3 Numerical Comparisons

In this section, a numerical study is performed on such as Van der Pol’s oscilla-

tor problem, a stiff ODE, comparing the performance of IDC-ARK methods and

other popular embedded methods. In the figures and table in this section (with

the exception of Figures 4.1a and 4.1b), we use the notation in [59] to compare

various characteristics of the numerical methods and to facilitate future tests with

additional IVP3 in [59]. The notation is as follows:

0 solver The numerical method with which the ODE was solved.

a atol Absolute error tolerance provided by the user.

a scd Minimum number of significant correct digits the numerical solution has

at the end of the integration interval, i.e.

scd = —loglOI|( relative error at the end of the integration interval )Iloo

(4.6)
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0 steps Total number of steps the solver takes, including steps that are rejected

because of error test failures and/or convergence test failures.

0 accept Total number of accepted steps.

0 # imp f Number of evaluations of the implicitly evaluated function, fS (mod-

ified from [59] to count only implicit function evaluations). Implicit function

evaluations are counted by keeping track of how many times the Matlab script

that evaluates the implicit part (fS) is called. We use only implicit func-

tion evaluations based on the assumption (as in [60]) that implicit calls will

dominate due to Newton iterations, although this assumption is not always

valid.

0 #Jac Number of evaluations of the Jacobian of f5. Note: The Jacobian is

used in Newton iterations as part of the implicit method and is calculated

analytically at every Newton iteration in every step, which is likely not the

best way to handle the Jacobian. A smarter choice of Jacobian calculation

should give far fewer evaluations. The tolerance for the Newton iterations is

fixed at = 10—13, and the maximum number of iterations is 10.

We also include the following additional characteristics with notation:

o # refine Number of times the timestep is refined, over the entire calculation.

0 # coarsen Number of times the timestep is coarsened, over the entire calcu-

lation.

o minstep The smallest timestep taken over the integration interval.

0 maxstep The largest timestep taken over the integration interval.
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4.3.1 Van der Pol Oscillator

We consider the application of adaptive semi—implicit methods to Van der Pol’s os-

cillator, as described by equation (3.36), with varying levels of stiffness (stiffness

is increased by decreasing c). As a preliminary test, we considered a recursive im-

plementation of some adaptive IDC-ARK and ARK methods where the stepsize is

only reduced when the error is too large and then reset to the original At for the

next step. Algorithm 5 is far more practical, but we present the results from the

recursive implementation as an example of the improvement that can be possible by

using IDC methods. In comparison with embedded ARK methods, comparable or

improved efficiency seems likely with appropriate choice of base scheme integrators.

For example, I constructed adaptive IDC-ARK methods and found that fewer time

gridpoints are required when using 3. 7(6) order embedded IDC—ARK method (Fig-

ure 4.1b) rather than a 4(3) order ARK method (from [45]) to solve Van der Pol’s

oscillator problem (Figure 4.1a) to the same error tolerance. The 7(6) IDC-ARK

method solves the prediction and the first correction loops via a 3rd order ARK

method from [45] and the final correction approximates the error via semi-implicit

first order forward and backward Euler.

Now we examine the results from adapting the time step via Algorithm 5. In

the figures, tol represents the quantity explained below as atol, and is the tolerance

for the error when choosing whether or not to refine the timestep. The number

of implicit function evaluations is described by # imp f below and is the number

of times the Matlab script calls the stiff function fS (which is evaluated via the

implicit part of the numerical method). From Figures 4.2a, 4.2b, and 4.3a, we see

that, for any choice of tolerance, ARK4(3) is more efficient than the same order IDC

method constructed via a semi-implicit forward and backward Euler combination,

IDC4(3)FEBE. This conclusion holds for the nonstiff (c = 10_1), mildly stiff (e =
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(b) IDC7(6)-ARK3KC/FBE

Figure 4.1: Preliminary results comparing (4.1a) an adaptive ARK method (embed-

ded order 4(3) from [45]) and (4.1b) an adaptive IDC method constructed with a

3rd order ARK method from [45] (both recursively implemented). Both plots show

solution to Van der Pol’s oscillator (c = 1) for the same recursion error tolerance,

10—5.
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Figure 4.2: Efficiency study comparing semi-implicit ARK and IDC-ARK methods

used to solve Van der Pol’s oscillator. Plots show # imp f vs atol, as described in

the text.
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Figure 4.3: Efficiency study comparing semi-implicit ARK and IDC-ARK methods

used to solve Van der Pol’s oscillator. Plots show # imp f vs atol, as described in

the text.
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each At step, not each 6t step.

are for steps of size At, including for the IDC methods, since we accept or reject

various semi-implicit methods when 6 = 10_6. Note here that all characteristics

Table 4.1: Test characteristics from [59] for Van der Pol’s oscillator solved with
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10_3), and stiff (c 2 10‘6) cases of Van der Pol’s oscillator. However, increasing the

order of the IDC method (since a higher order ARK method is not easily constructed

without IDC [45]) compares favorably to ARK4(3) in some cases. For larger error

tolerances, ARK4(3) requires fewer function evaluations, but, in the nonstiff case,

IDC7(6) methods constructed with FEBE or possibly with ARK2 require fewer

implicit function evaluations when a small tolerance is desired (Figure 4.2a). In the

mildly stiff case, IDC7(6) constructed with ARK2 or FEBE requires fewer function

evaluations than ARK4(3) when a small tolerance is desired (Figure 4.2b). When

c = 10—6 (stiff case), only IDC7(6)FEBE requires fewer function evaluations than

ARK4(3) to compute the solution to a small tolerance (Figure 4.3a). This result

may be due to backward Euler’s large stability region, hence improving the stability

properties of IDC7(6). Note that IDC-FEBE methods are essentially identical to

SISDC methods in [60], except we keep the IDC nodes uniform, whereas SISDC

methods typically use some type of Gaussian nodes.

In the Table 4.1, we use the notation from [59], as described above, to compare

semi-implicit ARK, IDC-FEBE, and IDC-ARK methods for solving Van der Pol’s

oscillator when 6 = 10—6 with “exact” solution 3/1 = 0.1706167732170483 * 10,

y2 = —0.892809701024795. Note that all characteristics are for steps of size At,

including for the IDC methods, since we accept or reject each At step, not each 6t

step, and since the substeps of an IDC method can be considered stages of an RK

method. Comparison of the characteristics in the table show that the 7(6) IDC-

ARK and IDC-FEBE methods require far fewer steps than the 4(3) ARK method.

Also, for smaller error tolerances, 7(6) IDC methods require fewer implicit function

and Jacobian evaluations. Overall, the IDC methods of the same order as the

ARK method show worse behavior. For large error tolerances, the ARK method is

better, but for small error tolerances, the higher order IDC methods appear to be
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comparable to the ARK method, even advantageous in some cases.

4.4 Possible Efficiency Simplifications

One idea for making the adaptive IDC more efficient. is to make a more efficient

estimation of the error, elk]. The following idea has not been developed further nor

tested numerically. It is simply presented to suggest that a modified adaptive IDC

method has potential to give better results than indicated in this work. Consider one

step At, where M substeps of size 6t are taken. From [41], we know that the high

order accurate approximate solution, nKlOOP, can be written as a series expansion

K _ K

7; loop = ”[0] + (,[0] + Célol + (3263)] + . . . C loapalol, (4.7)

where "K1001? and (5M are vectors of values over the interval [£7110 in.M = tn+1],

(SM is the approximation to cm at the first correction loop, and C is the matrix

that incorporates the various methods and integrations required to update the error

correction from (Slk—ll to (Slkl. If we can estimate some size of C, then we will not

need to calculate dlkl for each correction before determining whether to adapt the

stepsize. A possible algorithm, for each step At, follows.

1. Find the prediction nlol.

2. Find the first correction lel.

3. Find C.

4. Estimate the size of C. Use the size of C to estimate the size of C2, C3, . . . ,

K

C loop (as few or as many as needed).

5. Determine whether the size of C (or C2, . . .) should give an acceptable error

that is within the desired tolerance.
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6. If the size is acceptable, perform the appropriate number of correction loops.

If the size is not acceptable, refine or enlarge the stepsize as needed, and then

begin again with finding the prediction, step 1.

4.5 Conclusions

An adaptive implementation of IDC-RK and IDC-ARK methods is straightforward,

as well as necessary, since many problems are intractable without adaptive time-

stepping. Semi-implicit IDC-ARK and IDC-FEBE methods can sometimes present

an efficiency advantage over ARK methods in an adaptive time-stepping setting,

while at other times, embedded ARK methods are more efficient. We expect clearer

advantages when comparing adaptively implemented implicit IDC-RK methods with

implicit RK methods, and in solving other IVPs such as initial layer IVPs.
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Chapter 5

Split IDC Methods

5.1 Introduction and Motivation

In this chapter, we are motivated by the general need for studying plasma physics

through modeling and numerical simulations, since many natural and industrial

processes (such as solar weather, integrated circuits manufacturing, military and

space research, and alternative energy sources) involve plasmas. Our contribution

to this area of research is the development of novel split Vlasov solvers that are

constructed to high order in time via IDC methods. In Section 5.1.1, we summarize

a review of developments in plasma models and simulations, and in Section 5.1.2,

we focus more specifically on the Vlasov-Poisson system, some popular methods of

numerical solution, and introduce our work.

5.1.1 General Motivation: Modeling and Simulating Plas-

mas

The information outlined in this section is a summary of the excellent review, [74],

which contains many more details and clarifications of the history of plasma physics,

134

 



modeling, and simulations. First we consider some components of a self-consistent

plasma model to set the stage for the various developments in modeling and numer-

ics. Such a model usually contains some or all of the following components: some

method of calculating velocity, mass density, and pressure, if the plasma is modeled

as a fluid; some means of closing the Navier-Stokes equations; some means of cal-

culating density, temperature, and velocity of a species in a plasma; a method of

obtaining the electron distributions when they are not Maxwellian due to nonequi-

librium conditions. The multitude of factors that might be considered in a plasma

model is not limited to these components and is such that fully treating all contribut-

ing factors is not reasonable analytically nor computationally, so existing models are

of necessity reduced models. Some of these reduced descriptions are touched on next.

In plasmas, electron transport has frequently been modeled by a Boltzmann—type

equation, which is numerically solved ot find the electron distribution function. One

popular means of solution is to first simplify the problem by representing the dis-

tribution function by the first two terms of its expansion (e.g., an expansion in

spherical harmonics), commonly called Lorentz’ two-term expansion. Later, higher

order approximations that included more terms of the expansion were introduced

to overcome some limitations of two-term expansions. Also, the means of calcu-

lating some transport coefficients using the Boltzmann equation and its solutions

were developed, which is important both for comparison with and adding insight to

experimental results.

Considering the ratios of the densities of the various particles that compose a

plasma is also meaningful, and when plasmas are in or near local thermal equilib—

rium, then the mass action law can be used to calculate these ratios, frequently

through minimization of a variational problem. Other factors such as excited states

and departures from the ideal gas must also be heeded, however.

Modeling methods such as Boltzmann equations and local thermal equilibrium
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methods are known as continuum (or fluid) representations since they are continuous

with respect to space and describe averaged quantities. However, continuum mod-

els are not always appropriate; e.g., when deviations from equilibrium are large.

Boltzmann equations are frequently called kinetic equations, though kinetic may

have a different meaning and is sometimes used to refer to particle methods also.

Particle methods are one alternative to continuum methods that in many instances

may capture the physics more realistically. Often particle methods (such as Monte

Carlo methods, which track a collection of particles in space and time, where the

particles represent the species population) and, more recently, molecular dynamics

are used to study the particle behaviors, but they are computationally demanding.

It is increasingly popular to combine various methods in studying plasmas, so that,

for example, one part of the problem is handled with a continuum method, while

another part is handled with a particle method.

Although there are many methods currently available, improvements are still

vital to effectively model and simulate plasmas. In the next section, we describe

more specifically Vlasov equations, which can be considered collisionless Boltzmann

equations, and introduce how we contribute to the ongoing research by presenting

our novel Vlasov solver.

5.1.2 Specific Motivation: Improved Vlasov Solvers

As an initial study, the work in this chapter focuses on the collisionless kinetic model

for a cold plasma, with mobile electrons and an immobile ion background, though

eventually such a work is meant to be expanded to other models and equations. The
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model is given by the Vlasov—Poisson equations,

ft +71 ' Vzlrf + ENNIS) ‘ va = 0, (5.1)

Eftal') = “V3263, “Arab = ‘1 +P(ta1'),

where f (t, .73, 1)) describes the probability of finding a particle with velocity v at po-

sition a: at time t, E is the electric field, 65 is the self—consistent electrostatic poten-

tial, and p(t, :13) = f f (t, :r, v)dv is the electron charge density and the 1 represents

the uniformly distributed infinitely massive ions in the background. All physical

constants in (5.1) have been normalized to one. Other models include the Vlasov-

Maxwell equations, which capture the main behavior of the particle interactions and

the self-consistent field, whenever the Debye sphere contains a large enough number

of particles, and collisional effects can be neglected. If collisional effects should be

considered, there are numerous options, including the BGK-Poisson, BGK-Maxwell,

or Fokker-Planck equations [67, 22, 10].

Various approaches for the numerical solution of Vlasov equations include, but

are not limited to, Eulerian, Lagrangian, and semi-Lagrangian methods. Eulerian

methods solve (5.1) over a fixed :rv-grid, and [26] compares some of these methods.

The fixed numerical grid allows for easy implementation, but a CFL condition is

usually present. Also, as the problem dimension increases, Eulerian methods have

the disadvantage of a significant increase in computational cost; however, they may

employ high order accurate numerical methods to overcome this cost by using a

coarser grid. In places where the distribution is small, they can frequently achieve

high precision [67, 26].

Lagrangian methods involve tracking portions of the plasma as they evolve in

phase space by introducing a flow map of the electron distribution, reformulating

(5.1) into a system of ODEs (Newton’s equations of motion) in terms of the flow
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map, discretizing Newton’s equations, and using the resulting flow map solution to

procure the electron distribution, f. Classical Lagrangian methods include Particle—

in-Cell (PIC) methods, such as those methods reviewed in [75]. PIC methods have

the advantage of accurately maintaining the physics of the problem, including the

nonlinear effects, but require significant computational time and memory and may

have difficulties resolving the tail of the particle distribution due to numerical noise.

Semi-Lagrangian methods combine some of the aspects of both Eulerian and

Lagrangian methods. Essentially, semi-Lagrangian methods find the distribution

function by following the characteristics backward to their base values, which are

interpolated from a fixed grid. Their application to Vlasov equations was presented

in [13], and later applied beyond the electrostatic system to guiding center approx-

imations and a reduced relativistic Vlasov equation in [71].

Vlasov solvers using second order accurate Strang splitting [73] in time and ei-

ther Fourier or spline interpolation were constructed in [13]. Several others have

combined the splitting from [13] with various interpolation methods to obtain Eu-

ler or semi-Lagrangian methods. For example, semi-Lagrangian and flux balance

methods using pointwise weighted essentially nonoscillatory (PWENO) interpola-

tion was applied together with Strang splitting in [12]. In some cases they are able

to avoid spurious oscillations without repressing physical oscillations. In these meth-

ods, the flux balance method is conservative, while the semi-Lagrangian method is

not. Conservative methods, which conserve certain physical properties, applied to

Vlasov equations are also presented in [23, 67]. Methods in [23] include a parabolic

spline method and utilization of a cubic spline, with unknowns reconstructed on

a nonuniform mesh in a conservative way. By including slope-limiters, they were

able to maintain positivity. Their spline-based methods appeared to capture fine

filamentation more precisely than Lagrangian-based interpolation methods. Conser-

vative semi-Lagrangian WENO Vlasov solvers with dimensional Strang splitting are
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given in [67]. The CFL time step restriction was removed, and the higher order spa-

tial methods effectively captured the physics which the Vlasov equations describe.

When resolved equally, the ninth order spatial method was four times cheaper than

the third order method [67].

[12] mentions that, although semi-Lagrangian methods are not limited by a CFL

condition, they are not easily coupled with a collisional term that is stiff compared

to the transport terms. This limitation is because the accuracy in time is not

greater than second order in nonstiff regions when, as is the typical choice, Strang

splitting is applied. Thus we are motivated to examine high order splitting for

Vlasov equations. Several constructions of high order splitting methods have been

developed [77, 38, 69, 46, 49, 50, 39]. These are equivalent to composition methods,

as can be seen in [77, 38]. [50] use Richardson extrapolation and defect correction (in

the differential form) to construct high order splitting methods. They also compare

some of these methods, and in particular, they comment that Yoshida’s high order

splitting methods require a number of coefficients that increases exponentially with

the order of the splitting method, although they advantageously may be constructed

to arbitrary (even) orders. Unlike [77], [39] finds higher order splitting methods

that do not require a backward step for orders greater than two by using complex

rather than only real coefficients in the methods; however, the number of coefficients

required scales similarly to [77]. A fourth order splitting method for a linear Vlasov

equation (E = E(;z:, t), but E does not depend on the distribution, effectively giving

a drifting rotating problem, see (5.151) in Section 5.9.3 below) was presented in [69].

The method uses cubic spline interpolation in both a: and v, and the fourth order

time splitting method is a composition of grid shifts. A CFL condition is given. Note

however, that the application of this fourth order method to a nonlinear problem is

not clear.

Motivated by Schaeffer’s paper, and by the success of the Vlasov solver in [67],
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we expand the results from [67] to examine the same spatial discretization coupled

with higher than 2nd order time splitting. In particular, we focus on using Inte-

gral Deferred Correction (IDC) methods to increase the order of low order splitting

methods, and we examine the effectiveness of our novel construction in solving equa-

tions similar in form to both linear and nonlinear Vlasov equations, generalizable to

solving other PDEs with split operators. Although we do not yet consider collisional

terms, they are the logical next step in our work.

IDC methods are motivated by defect correction methods [72, 27] and, more

recently, Spectral Deferred Correction (SDC) methods [25]. By construction, they

are accurate and efficient time integrators because they easily extend simple lower

order methods to higher order schemes by correcting provisional solutions. Other re-

lated methods for problems containing stiff terms include semi-implicit SDC, multi-

implicit SDC, and Krylov deferred correction [60, 47, 9, 41]. SDC methods, IDC

methods, and their variants can be applied in areas such as chemical rate equa-

tions, hyperbolic conservation laws with or without relaxation, Vlasov equations

in the plasma physics setting, and other similar (frequently multi—scale) problems

[60, 47, 9, 41, 15]. Additionally, recent developments allow parallelization of IDC

algorithms, opening up new possibilities for increased computational speed [16].

The current investigation of splitting methods that use IDC integrators for PDEs

begins with a review of some basic concepts needed for understanding the numerical

solution of PDEs and an introduction to WENO methods, which we use in our

numerical tests, in Sections 5.2 and 5.3. Then we review the fundamentals of semi-

Lagrangian methods in Section 5.4 and of low order splitting methods in Section 5.5.

Section 5.6 presents an overview of IDC methods and explains the construction of a

high order splitting method by utilizing low order splitting methods. In particular,

the type of nonlinearity in the Vlasov system requires a new formulation of the error

equation and the residual in the IDC correction loop. Next we present an analysis
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comparing our high order split IDC methods with Yoshida’s high order split methods

described in [77]. A proof of mass conservation is given in Section 5.8. Numerical

results are in Section 5.9. We apply the split IDC methods to constant advection,

rotation, drifting rotation, and Vlasov-Poisson problems, where we study classic

plasma problems, such as the warm two stream instability and Landau damping.

We wish to determine the benefits and limitations of a solver that is not only higher

order in space but also higher order in time in a semi—Lagrangian setting.

5.2 Method of Lines

Sometimes time-dependent PDEs can be solved numerically by discretizing the spa-

tial derivatives first to obtain a semi-discretized system of ODEs, then numerically

integrating the system of ODEs. This procedure is called the method of lines. It

typically can be used when the time variable is distinct from the space variable(s),

and the solution does not have a sharp front that is a function of both space and

time [2].

For example, a semi-discretization of the linear advection equation

8tu+ caxu = 0, :1: 6 [0,1], t 2 0,

in space via a simple upwind scheme gives N3; ODEs

atUj +c—T = 0, j =1,...N1;, (5.2)

where Uj = 'u.(.7:]-), 3:]- : jAI, and A1? = (1 — 0)/NJ;. Then each ODE in (5.2) can

be solved by the integrator of choice, e.g. backward Euler. Here we apply method of

lines to hyperbolic PDES, such as constant advection equations, a rotating problem,
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and a Vlasov-Poisson system and use IDC methods for the time integration.

5.3 WENO

Many times, conventional spatial discretizations applied to problems that have piece-

wise smooth solutions containing discontinuities result in spurious oscillations in the

numerical solution. The purpose of Essentially Non-oscillatory (ENO) and Weighted

Essentially Non-oscillatory (WENO) methods is to make a higher order spatial ap-

proximation of problems that have piecewise smooth solutions containing disconti-

nuities. In particular, ENO and WENO are designed for hyperbolic conservation

laws, the background of which is outlined in Section 1.4. The following information

is compiled from [66, 51, 70]. ENO and WENO are in fact procedures within a

higher order spatial approximation procedure, so we outline the necessary elements

for the entire procedure.

Two general categories of spatial discretizations are Finite Difference (FD) and

Finite Volume (FV) methods. FD methods use pointwise values of the solutions

and approximate the solutions from the differential form of an equation, e.g., from

an equation such as (1.12), whereas FV methods use cell averages of the solutions

and approximate the solutions from the integral form of an equation, e.g., from an

equation such as (1.14).

By way of illustration, consider FV methods applied to the integral form of a

hyperbolic conservation law, integrated over the cell [2- = [xi_1/2, 122-+1/2].

f1,- utda: + fl,- f(u)1'd:r. = 0 (5.3)
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becomes

0,] [I udz' + f('u,(r,’-+1/2)) — f(u(:r,’:_1/2)) = 0, (5.4)

’l.

and rearranging and dividing by A17, we obtain

atfi /1- uda: = —-A1—-(f(u(x,.+1/2))— f(u(:c,._1/2))). (5.5)
113

Z

The cell average is defined in the usual way as

1

2

Since, for FV methods, only the cell averages are known, but the flux f (21(51:z+1 /2))

is at point values, then an approximation of f(u(:r,i+1/2)) is used instead, given

by the numerical flux fi+1/2' Thus, for MOL, discretizing in a: first, we obtain an

ODE of the form

ail—‘27“) = “2%; (1241/20) - fi_1/2(t)) . (5.7)

Finally, we obtain the updated cell average, figHFI, at time tin—H, by discretizing in

t, e.g., with forward Euler:

,—n+1 —n.

”————" = —i (f“ — f ) <5 8)
At Ag; 7+1/2 i—l/2 ' '

The mystery remaining is how to obtain f2- 21:1 /2, the numerical flux at the cell

boundaries. We would like to use f (17(32,+1 /2)), but we do not know the value of

u at the cell boundary 1?,- +1 /2. We only know it,- to the left (denoted by '7) of the

cell boundary or "771+1 to the right (denoted by +). Hence the calculation of the
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numerical flux must depend upon the left (_) and right (+) values of approximations

to 112-+1/2, or on the left and right cell averages:

fi+1/2 : fA(“z'—+1/2’“f+1/2) (5'9)

= ffaz'ifii—kl): (5.10)

where fi+1/2 should increase with respect to 112' and decrease with respect to 212-+1.

A simple example of a numerical flux for a first order scheme is illustrated below.

 

Since equation (1.12) can be written as

“t + f'(U)u$ = 0, (5.11)

then, considering that f’(u) is related to the slope of the characteristic, it is natural

to choose the numerical flux as

. I "Ex 'f ' u 0

fffltifiz'H) = fl 1) l f (I ) > (5-12)

flat—H) if f (u) < 0

5.3. 1 Reconstruction

For higher than first order schemes one needs a process called reconstruction. The re-

construction problem is: given the cell averages fii, reconstruct the solution u(xz+1/2)

at the cell boundary 1241/2 with higher order. For the first order stencil, we use

only the immediately neighboring cell, either 1,; or Ii+1- More neighboring cells are

used to achieve a higher order stencil. In general, let

Sr = {Ii-“7”""Ii""’I’t—T+k—1} (513)
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denote a stencil, where k cells are used for the stencil, and 7‘ E {k—l, . . . , 1,0, —1}. In

the hyperbolic setting, which we delineate here, one must always use an odd number

k of neighboring cells because the characteristics have a direction. One chooses more

neighbors from the direction from which the characteristic comes. In a hyperbolic

setting, choosing an even number of neighboring cells results in an unstable method

(e.g., centered stencil). Under the right conditions, the order of accuracy of the

reconstruction equals the number of neighboring cells used in the stencil. This

process is very similar to interpolation, e.g., for a 3rd order reconstruction where

k = 3, we find the polynomial p(:r.) = a0 + (11.7: + a2x2 such that p satisfies

1 (1 _ _

A: Ii-1p(.r).,;r — "(1.2-_1, (5.14)

~1— .‘ 1:17 : 77,- (5.15)A3: 12' MW 2,

i d3: = a- . (5.16)

A9” I4+1 12(2) 2+1

Then, since a0, a1, and a2 are known, we can estimate it,+1/2 from the left as

ui_+1/2 = p(:ri+1/2) (5.17)

when p is constructed from a left stencil, S1 = [1,-_1, 1,, [241}. Similarly, 11;: 1/2 =

plxi+1/2)’ when p is constructed from a right stencil, 50 = {I.i, 1,41, 1242}.

t ' ' . 7L 'Two me hods of reconstructing solutions uz+1/2, uz+1/2 at the cell boundaries

for a higher order approximation scheme are EN0 and WENO methods.

5.3.2 ENO

When the solution it contains discontinuities, using all In cells in a stencil 5,» gives

oscillatory behavior near the discontinuities. Consider the case when k = 3. Away
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from a discontinuity, we use three cells for the stencil, e.g., 51 = {I j_1, 1,, It+1},

and achieve a third order approximation. Near a discontinuity, e.g., at xi+1/2,

where the characteristics move from left to right, instead of using three cells as

in 5'1, consider two smaller overlapping stencils 6'1 = {[,_1. 172}: 350 = {1751,41}.

Note that stencil :51 will not cause oscillations in a reconstructed solution because

it contains cells only on one side of the discontinuity, whereas stencil 3'0 contains

the discontinuity and thus will result in oscillatory behavior. Hence in the case

|fi,,_1 - 11,] << It], — '17..,j+1[, ENO will choose stencil 61 as the “better” stencil.

Note that choosing these stencils near the discontinuity will result in a lower order

approximation, but only near the discontinuity. Away from the discontinuity, the

approximation remains fully third order.

In general for FV methods, ENO uses a linear combination of the cell averages '11,;

to reconstruct the solutions “241/2 at the cell boundaries. ENO with FD methods

is similar, except the numerical flux (rather than the solution) is reconstructed at

the cell boundaries. The details are explained below for WENO methods. For an

ENO reconstruction method that uses It cells, the method is order k away from the

discontinuities, and lower order at the discontinuities.

5.3.3 WENO

WENO is similar to ENO, except WENO uses weighted combinations of the sten-

cils to achieve higher order approximations. A WENO method where each stencil

contains k cells has order 21: —- 1 away from discontinuities and order 16 near dis-

continuities. We present the procedures for WENO methods in detail for the FD

case involving one—dimensional scalar flux splitting, followed by an extension to 1-D

systems.
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l-D Scalar Case

First, we present the following outline, given by Procedure 2.5 and 2.2 of [70], of

the spatial approximation of equation (1.12).

1. Since the numerical flux in equation (5.9) should increase in its first variable

and decrease in its second variable, the first step is to form a smooth fiux

 

splitting

M) = (+(u) + flu), (5.18)

where

(If+ (1f—

For example, the Lax-Friedrichs flux given by

Wu) = (f(u) + an). (5.20)

f-(u) = (f(u) — an), (5.21)

[
\
D
I
r
—
I
N
I
r
—
I

ax

where a =mu, [f’(u)|.

2. Identify the cell average of some function y(x) at 33,; with one part of the split

flux, i.e., set

6,- : f+(u,-). (5.22)

Then reconstruct the cell boundary values from the left, vi+1/2, for all 2', e.g.,

via a WENO method as in the subsequent procedure.

3. Set the positive numerical fiux equal to the reconstructed value from the pre-
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vious step:

[111/2 = till/2. (5.23)

Now set

= flu.) (5.24)

and reconstruct the cell boundary values from the right, val/2, for all i, e.g.,

via a WENO method as in the subsequent procedure.

Set the negative numerical flux equal to the reconstructed value from the

previous step:

A

,— _ +

f4+1/2 — vi+1/2' (5‘25)

Form the numerical flux from the positive and negative fluxes at the cell bound-

aries:

f3+1/2 26:1/2 +f711/2’ (5'26)

i.e.,

fi+1/2 = Dill/2 + ”fill/2' (5.27)

Form the ODE

dug—ft) = “Al—$(fi+1/2 — fi—1/2)’ (5'28)
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to be solved by the desired numerical integrator.

Now we present the 1-D WENO reconstruction procedure from [70]. Given the

cell averages i),- of some function v(:r) for each cell 1,, the goal is to obtain upwind-

based (2k — 1)th order approximations, 7.7+ and v.— to v(:r) at the cell
3—1/2 2+1/2’

boundaries.

1. First find the k reconstructed values

(7‘) k—l

Ui-i-I/Q = aCTjEi—T‘l'j’ (5.29)

J:

j come from reconstructing the polynomial whose cell

averages coincide with the cell averages of U (see, e. g., Section 5.3.1 for more de—

whcre the coefficients (:7.

tails on the case k = 3), and the stencil Sr = {Ii—r, li_,.+1, . . . , li—r+k—1}

containing k cells is used, for 7‘ = 0, 1, . . . ,k — 1.

Also obtain the k reconstructed values

k—l

,(7') _ ~ .—,.
1.2._1/2 — Z 07'] L,_,.+J- (5.30)

1:0

k—l

: Z Cr,j'flz'_(r+1)+j, (5.31)

i=0

where Erj = CT-Lj’ over the stencil Sr, for -r = —1,0, 1, . . . ,k — 1.
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2. Find the constants dr and (fr such that

' — A3471 , (7') 5 327"2'+1/2 — Z TUi—f-l/Z ( ° )

r=0

= v(a:z-+1/2) + 0(A232k—1), (5.33)

- — k—lci , (7”) 5 34Ill-_l/Q — Z TU‘i—l/2
( . )

r=0

= v(.7:z-_1/2) + 0(Ax2k—l). (5.35)

Note that (fr 2 dk_1_,..

3. Find the smoothness indicators

k4 21 1 317) (iv) 2
(3r: 2 A2: “ ——"‘ dz, (5.36)

for upwinding in the left to right direction. For upwinding in the opposite

direction, modify the procedure symmetrically with respect to 1727+1/2 to find

the smoothness indicators Br.

4. Form the weights wr and LOT:

wr — 25:; as, 07' (f +61%? (5.37)

(Dr = fi, 517- = (533% (5.38)

forr=0,1,...,k.—1and0<e<<
1.

5. Use the weights, 6.»,- and (Jr, and the kth order reconstructions, ’l)£:)1/2 and

v§:)1/2, to form the (2k — 1)th order reconstructions, 712,11/2 and 122—_1/2, at
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the cell boundaries:

k—l (T)

r=0

k—l (r)

..+ _ E : ~,.,,

Now, for example, we provide the various coefficients, smoothness indicators,

and weights for the case k. = 3, i.e., for a WENO method that is fifth order away

from discontinuities and third order near discontinuities. The coefficients of the

reconstructed polynomials (5.29) are

COO = 1/3, 001 = 5/6. 602 = —1/6, (5.41)

C10 = —1/6, C11: 5/6, c12 =1/3, (5.42)

em = 1/3, c20 = —7/6, 020 = 11/6, (5.43)

500 = 11/6, 501 = —7/6, 502 = 1/3, (5.44)

510 = 1/3, 5‘11 = 5/6, 512 = —1/6, (5.45)

520 = —1/6, 621 = 5/6, 522 = 1/3. (5.46)

The constants (IT, (IT are given by

do = 3/10, d1 = 3/5, (12 = 1/10, (5.47)

4'0 =1/10, do = 3/5, do = 3/10. (5.48)
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The smoothness indicators are

L30 =1—3(E,— 2L—’,'+1 + U,+2)2+ i611,- — 4E,+1+ L,+2)2, 2 (5.49)

131=%(e,_1— 271,46 e,+1)2 + 31(1)v,_1 — v,+1)2, (5.50)

.32 2%(U1—2 — 267—11" Uz)2+,1,(6z—2 4a,_1 + 3602 (5-51)

30 = [352% - 25242 + U21+1)2 + 107Uz‘+3 4U‘z’+2 + 3Ui+1)Qv (5-52)

31 = [:(U‘U1+2 ’ 2U’z‘+1 + U02 + $072362 — U232: (5-53)

- 13 1
. )2

(32 = ‘1—2(U’i+1 — QU’L' + 17,-_1)2 + 3(3Uz’+l “ 4772' + 176—1 (5'54)

l-D Systems

Now, instead of the scalar conservation law (1.12), consider the hyperbolic system

of m equations,

0,6 + f’(u)a,,.u = o. (5.55)

where the m x m Jacobian fI (11) has m real eigenvalues,

A1(u) g ...Am(u), (5.56)

and a complete set of independent eigenvectors (columns),

r1(u), . . . ,1‘m(u), (557)

also referred to as right eigenvectors. The right eigenvectors can be written as

columns of a matrix, R(LL) = (7'1('u.) . ..1'7n,('u.)). Then R—1('u)f’(u)R(u) = A(u),
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where

A(u) = . (5.58)

Am (11.)

R_1('u.) can be written as R7101.) : (11(u.) . . . lm(u)), where the l,('u.) are column

1-(u)f’(u) -_- /\,-(u)l,(u). The simplestvectors referred to as left eigenvectors, i.e., ,,

way to solve the system (5.55) is to apply the scalar WENO method to each of

its m components. However, applying a WENO method to these conservative vari-

ables may not correctly account for the upwind direction. More reliably, one may

solve (5.55) by first transforming the system from the conservative to characteristic

variables, then applying a WENO method componenet-wise to the characteristic

variables, and finally transforming back to the conservative variables. The proce-

dure for solving (5.55) in the characteristic—wise manner using FD and flux splitting

follows (from [70]).

1. For each fixed .r,+1/2, compute an approximation to R(u,+1/2), R-1(u,+1/2),

and Nut—6U?) using, e.g., a simple mean: “7+1/2 z %(u,+1 + u,).

2. Write v, = R‘luj and gj = R_1f(uj) forj in a neighborhood of i.

3. Apply the WENO procedure (component-wise) to 11,- and gj, rather than to

j and fj: for each lth component vj l1 gj [1 l = 1,. . . ,m, where for a Lax-

Friedrich’s fiux we use
7

U

4 =1 51 g N me)» (559)

:1:
2.44/2 (ratherfor the lth component of the characteristic variables, and obtain 6

than ail/2).
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4. Then transform back from characteristic to physical space:

a _ ~i

f1+1/2 ‘ ngl+1/2‘ (5'60)

5. Finally, form the flux fi+1/2 = fz:1/2 + fill/2 and solve:

du,(l.) 1 A A

(1,, = Ema/2 - f._1/2>- (5.61)
 

As an example, we calculate R, A, and R_1 for the shallow water equations

given in [64] .

6 h (9 w 0 0

w h + $112 lie—(g — 7)) %—(%— — 11))

(5.62)

8th (9qu 0

at?!) 81;}: + flax}! %(—2— — 1U)

(9th 0 1 83311. 0

'l' = 2 (5.64)

Btu) 1+h 0 63:11) %'(b2' —w)

The eigenvalues are A1 = v1 + h, A2 = —-\/1 + h, i.e.,

\/1 + h 0

A = . (5.65)

0 —\/1 + h
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1 1

Choosing the right eigenvectors 71(11) = , r2(u) = , we

\/1+h —\/1+h

obtain

1 1

R = , (5.66)

\/1 + h —\/l + h

and

 
1

1

(2‘1 = 5- V 1114‘ . (5.67)

1 _

v1+h

5.4 Semi-Lagrangian Methods

In this section, we describe semi—Lagrangian methods. Suppose we want to solve

the 1D normalized Vlasov-Poisson system

a, f + 6a,,- f + Ea... f = 0, (5.68)

amp = 1 — p, (5.69)

E = —aa;¢, (5.70)

f(0, 26. 6) = f0(~6. 6'). (671)

where f denotes the exact solution, and p = f fde.

The solution f is constant along the particle trajectories. Assume the solution

at time tn is known. Then the solution at time tn+1 is given by

f(tn+1s$.-U) = fan»X(tnatn+la$»U)1V(Un-~ tn.+1»5’31U‘))v
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where (X (tn, tn+11 :r, v), V(tn, tn+11 1:, v)) are the characteristic curves satisfying

dX dV

2 —=EXt t..1. W). ,, < 0,) 

For the semi-Lagrangian method, one approximates f at each space-velocity point

(33,, vj), L' = 1 : N33, j = 1 : NU by updating f at each time step from its value at

the base of the characteristic (X(tn, tn+1,3:,-, vj), V(tn,tn+1,:1:,-,11j)). The value

at the base is computed using high order interpolation, such as cubic splines or

WENO reconstruction, from the known values on the grid. [26]

For example, we can solve at + aux = 0 exactly, obtaining 11(27, t) = 'u0(.r — at),

using a semi-Lagrangian method, as given in Algorithm 3.

 

1 Let u 2 vector of desired solution to be evaluated at :1: = IL‘new.

2 110 = vector of initial values already known at .7: = Hinew-

3 Input (xngw, 110, a, At).

4 SBt Iold 2' (Knew — GAL,

5 Account for boundary conditions, e.g., on a 2L periodic domain:

6 wold = mod (mold + L, 2L);

7 Interpolate “0 to :1: d values (from 110 at 16726111) to obtain 11; e.g., via Matlab

command:

8 u = interp1(:rnew, 110, ram, ’linear');

ol

   
Algorithm 3: Example of solving a simple 1D advection equation via a semi-

Lagrangian method.

For the Vlasov equation, it is advantageous to use a semi—Lagrangian method in

conjunction with an operator splitting method because a convenient splitting choice

allows for an exact solution of a 1D linear advection equation at each split step, as

Section 5.5, following, elucidates.
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5.5 Splitting Methods

fNow let us examine the idea of operator splitting to solve a PDE of the form

Btf + Aazf + Bavf = 0, f(:1:,v, t0) = f0(:r,v), (5.72)

where A = A(v, t), B = B(:1:, t). Note that the Vlasov system (5.1) satisfies these

conditions with A = 1), B = E. The PDE (5.72) may not be simple to solve,

and in particular, for the Vlasov system (5.1) is two-dimensional and nonlinear.

With a clever choice of operator splitting, one may instead solve several simpler

subproblems exactly in order to approximate the solution to (5.72). For the Vlasov

equation, these subproblems are one-dimensional and linear.

For example, we may approximate the solution by noting that (5.72) is equivalent

to the sum of the following two 1D subproblems,

8tf+A8$f=0, atf'l‘BavaO,

and, assuming reasonable discretizations of the derivatives in :6 and v, solving the

split equations:

0 Take a full timestep (to —> to + At) to solve:

.-

8tf+ A317]: = O, f(.’l?, v, to) = f0(:l3,v), (5.73)

Since the exact solution is known, one may simply find the solution as

A.

f(:L", v, to + At) = f0(x — AA't, 1)). (5-74)
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0 Take another full timestep (to ——> to + At) to solve:

~

~ ~

art/:16 [JO-pf: = 0, [(131), to) = f(:1:,v, to + At). (5.75)

Similarly to above, one may find the solution as

A.

.-

f(.r, 1), to + At) = [(1,1) — BAt, to + At). (5.76)

Then fz is a first order solution to (5.72), if the operators A83; and 30..., do not

commute, and if (5.73) and (5.75) are solved with a numerical method that is at

least first order in time. I.e., the error in the solution is due to both the splitting and

the choice of numerical method(s) used at each step of the splitting If A83; and Ba.)

do commute, then there is no splitting error. [73, 24]. However, for this splitting,

note that each subproblem is a 1D linear advection equation, which can be solved

exactly via a semi-Lagrangian method, so the only error is the splitting error.

The popular example of a 2nd order splitting method is Strang splitting (other

names include Marchuk splitting, fractional step method) [13, 73, 58]. We describe

below one timestep of size At, from to to to + At.

0 Take a half timestep (to -—> to + At/2) to solve:

am + Aa$f* = 0, [*(5, v, to) = f0(:r, v). (5.77)

Since the exact solution is known, one may simply find the solution as

f*(.r, 1), to + At/2) = f0(:1: — AAt/2, ’U). (5.78)
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0 Then take a full timestep (to —> to + At) to solve:

8,f** + Bavf“ = 0, f**(:1:,v, 10) = f*(:1:, v, to + At/2). (5.79)

Similarly to above, one may find the solution as

f**(:1:, v, to 5+ At) = f*(:1:, v — BAt, to + At/2). (5.80)

0 Finally, take another half timestep (to + At/2 —+ to + At) to solve:

Utfwm + Aawfspm = 0: fspl'it($1v1t0 + AU?) = f**($1 6160 + At)-

(5.81)

Similarly to above, one may find the solution as

851.16.22.16 + At) = f*(r — AAt/Q. 6. to + At). (5.82)

fsplz't is a second order solution to (5.72), if the operators A83; and Bay do not

commute, and if (5.73) and (5.75) are solved with a numerical method that is at

least second order in time. However, for this splitting, just as for the first order

splitting, note that each subproblem is a 1D linear advection equation, which can

be solved exactly via a semi-Lagrangian method, so the only error is the splitting

error. As mentioned above, commuting operators will not give a splitting error

[73, 13].
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5.6 IDC with Splitting Methods

I11 this section, we expand the results from [67] to examine the same spatial dis-

cretization coupled with higher than 2nd order time splitting, using IDC methods

to increase the order of low order splitting methods, and in following sections, we

examine the effectiveness of our novel construction in solving equations of the form

(5.72). Some aspects of our work are similar to constructions in [46, 49, 50]. Note

we introduce a special change for the IDC method’s error equation for the Vlasov

system, but for constant advection, rotation, and drifting rotation problems, the

error equation is the same as in previous versions of IDC.

5.6.1 Overview of IDC methods

The basic construction of IDC methods is the same as for SDC methods [25, 18, 15].

Suppose we wish to solve the 1D version of (5.1) (given below by (5.88)) to the

final time T. The time interval, [0, T], is discretized into intervals [tn, tn+1], n =

0, 1. . . . , N, such that

0=to<t1<t2<---<tn<-~<tN=T, (5.83)

with timestep
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Each interval [tn, tn+1l is discretized again into M uniform subintervals with quadra-

ture nodes denoted by

1,,30 =1n, (5.85)

anm = tn,0 + mdt, m = 0,1,. . . , A4, (5.86)

where 6t = 96f. We apply the IDC method identically on each time interval

[tn, tn+1l1 so we drop the subscript n so that the notation in (5.86) becomes

tm = t0+m(5t, m=0,1,...,M. (5.87)

For one time interval [1,”, t,,+1], the IDC method calculates a provisional solution

and improves that solution through successive correction loops, which reduce the

size of the error and improve the order of accuracy of the method. Using a known

solution at the initial time, to, the IDC algorithm can be summarized as

1. Prediction (j = 0th loop)

Solve the IVP over the grid (5.87) via a simple numerical integration method,

e.g. lst or 2nd order splitting in time, to obtain a provisional solution, nlol.

2. jth Correction (forj = 1, . . . , J loops)

(a) Solve an error equation (see Section 5.6.3, below) to approximate the er-

ror, (BU—1], between the exact solution and the numerical solution from

the previous, (j — 1)th, loop via a simple numerical integration method,

e.g. lst or 211d order splitting in time.

(b) Update the numerical solution as 77m = nlj—ll + elj—ll.
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Then the solution after the Jth correction loop becomes the initial condition for the

next interval, [t.,,+1. t.n+2], in (5.83). Using a first order split prediction and J first

order split corrections gives a split IDC method that is min(J + 1, M + 1)th order

accurate in time. Using a second order split prediction and J second order split

corrections gives a split IDC method that is min(2(J + 1), M + 1)th order accurate

in time. The details of the prediction and correction loops for equations of the

same form as the Vlasov-Poisson system are explained in Sections 5.6.2 and 5.6.3,

following.

5.6.2 Prediction Loop

The split IDC prediction loop solves an IVP via a straightforward application of

some splitting method as presented in Section 5.5. We clarify a few details as

follows. Suppose we want to solve the 1D Vlasov-Poisson system

a, f + 118$ f + Efa.) f = 0, (5.88)

65.4 = 1 — pf. (5.89)

Ef = —ax¢, (5.90)

f (0. as. 6) = fo(a:,v). (5.91)

where f denotes the exact solution, Ef is the electric field calculated exactly from

f, and pf = f fdv.

We will solve the system for :r E [0, L], periodic in :1: with period L, U E ’R, and

t E [to, t Mr], where M is fixed and the interval is equally subdivided as

t0<t1 < <t,1[1_1 <t1w, dt=tn,+1—tm. (5.92)
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Note that periodicity in x is equivalent to

1 L

E] pfda: = 1 (5.93)

O

[22].

For a prediction loop of IDC, we could solve (5.88) using the first order splitting

method in the same form as (5.73),(5.75) (replacing At with 6t):

8(7)- + 1.18337) = 0, (5.94)

a Er 1 L 7.1 11_, “3/0 p ,1_p, (5.95)

am + E776...) = 0, (5.96)

where 7) denotes the preliminary split solution, which is (9(6t) = 0(At) in time, and

p77 = f fidv. Similarly, one could use the second order splitting given by (5.77),

(5.79), and (5.81), calculating the electric field after (5.77) and using it in (5.79).

5.6.3 Splitting for Correction

In the correction loop, we wish to solve for a correction error e defined as

e = f — 77. (5.97)



The residual r and the electric field correction E6 are defined as

7. i at” + 'Uf);1."l] ‘l' Effj'lfl]

: (8,7) + val") + E77010”) + Bea/()7)

i T77 + re,

EeiEf—ET

69$

w9m

(5mm

(5mm

where 7‘77 depends only on the provisional solution 77 (and hence is known), and 7'6

depends on the unknown error e. Since

—a..~Ef =1— pf,

, 1 L
—8$E” = _/ pTIda; _ p77,

L 0

f=n+a

then we require

—a 16:6-1 lied — e
x1—L0p'g‘p:

where p6 = f edv and thus

L y L L

/ pnda: +/ pedsr = pfda: = L.

0 0 0

Note that a conservative method of calculating 77 ought to result in

L L L

/ pndr = / pfdl‘, i.e., / peda; = 0,

0 0 0
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but we should not assume this, since a solution to a system such as (5.88) requires

that the integral of the right hand side of (5.89) in :1: from 0 to L is zero.

Now differentiating e with respect to t, we obtain

(918 = (31f - 3171 (5.109)

= -55.f - EfL151 — (r — 601:0 — Efam) (5.110)

= —v(9l~e — Efflve — 7', (5.111)

and rewrite as the error equation

are + 110176 + (1377+ EC)8ve = —r7( — re. (5.112)

Note that re is a new term in the error equation and is not found in previous versions

of SDC or IDC. It is required for the Vlasov system’s error equation, but for constant

advection, rotation, and drifting rotation problems, this extra term is zero, giving

the same error equation as expected from prior IDC methods.

In Algorithm 4, we present a pseudo-algorithm to solve the error equation (5.112)

using first order splitting in time. To solve the error equation (5.112) from to to t1,

we first assume that there is no error at t = to, so elt=t0 = 0 and Ee|t=t0 = 0.

At line 12 of the algorithm, we approximate the integral of the residual r77, rather

than the residual itself, using an integration matrix resulting from the integral of

a Lagrange interpolant, as described in [25, 18]. To simplify the algorithm, we

use 6tE€|t=tm8vnltm to approximate the integral of re. However, for a higher

than first order correction loop, a more accurate integration of re (e.g., the same

integration matrix used to approximate the integral of r") is needed. The first step

from to to t1 does not use (E77 + Ee)8ve or ”06336 because of the quantities that

we initialize to zero. Since the error e is quite small, we safeguard the process of
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1 Initialize:

"($111

2 Cltzto = 0. 1‘7" lt=t0 = E77|L=101
e new e

3 (note E lt=t0 = 0, E77 = E77 + E ).

4 for m = 0 do

5 (t0 t0 t1)

6 solve ate = —r7/ for “ltztl

new

7 L. Evaluate El7 lt=t1 using (77 + e)lt=t1-

8 for m = 1 to (M-I) do

new

10 solve ate + E" |t=tm8ve = 0.

11 then solve ate + “(18556 = 0.

_ e
12 then solve ate — —r77 — r for elt2tm+11

new ,

=(m = (E77 — E77)|t=[m 1n re.

new

,4 Evaluate E77 lt=tm+1 using (77 + e)

L—

13 using Eel)

 l1tztm-l—l'   15 Update 77 as "new = 17 + e.

Algorithm 4: One correction loop of IDC for VP using first order time split-

ting.

 

. . . .ncw . .
finding EC by solving for the normalized E” = E" + E8 and then obtaining

new

E6 = E77 — E77 (see lines 7 and 14 in the algorithm). Using the first order

split prediction from Section 5.6.2 and J of the first order split corrections given in

Algorithm 4, the split IDC method is (J + 1)th order accurate in time.

The first order splitting in Algorithm 4 solving (5.112) could be generalized as

solving the error equation found from (5.72)

e = f — 1), (5.113)

r = 8t71+ A8147 + Bavn, (5.114)

ate ‘1‘ 1481;63 + 88118 = —7', C(60) = 0. (5.115)

A first order splitting could be given by:
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0 Take a full timestep (to ——> to + (St) to solve:  

t

8,5 = —7‘ = —8t (77 — f0 '1‘] (148177 + BBQ}T])dT), 1C 3: C(LO), (5.116)

0 Take a full timestep (to —> to + 6t) to solve:

 

a5+8ac=o,1cze. (5mm

0 Take a full timestep (to ——> to + 6t) to solve:

 

8t68p11+ Aaxespll = 0, IC = (:3. (5.118)

Alternatively, a second order splitting of the error equation (5.115) could be given

as [29]:

0 Take a half timestep (to —> to + cit/2) to solve:

(7)731 +./l(’);17(:1 = 0, IC = C(10), (5.119)

0 Take a full (to —> to + (it) timestep to solve:

- Take a half timestep (to ——> to + 61/2) to solve:
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— Take a full (to ——> to + (5t) timestep to solve:

9,63 = —r, 10 = 62(10 + 61/2), (5.121)

— Take a half (to + (It/2 —+ to + 6t) timestep to solve:

8t€4 + 381L164 = 0, IC = e3(t0 + 6t), (5.122)

0 Take a half (to + (St/2 —> to + 6t) timestep to solve:

atesplg + A8336 2 = 0, IC = e4(t0 + 5t). (5.123)
spl

5.7 Efficiency Analysis

The following sketch compares the number of split equations that must be solved

by high order splitting methods constructed via IDC methods and those methods

constructed via Yoshida’s methods in [77]. Note that splitting methods in [39] scale

similarly to methods in [77]. Although the metric we choose below is an imperfect

metric for comparison, it suggests that there is merit in considering high order split

IDC methods. In the comparison we assume the timestep At of Yoshida is the same

as 6t 2 At/M (M = number of substeps in each IDC timestep) of an IDC method;

i.e., for Yoshida, we let T = At, and for IDC methods, we let T = 6t.

Consider a pth order method solving

8,11 = (A + B)u, (5.124)

with exact solution exp(T(A + B)), after one timestep. In keeping with Yoshida’s

notation, a splitting method’s solution S(r) can be written as a composition of
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exponentials

k

3(7) = H exp(c,~rA)exp(d,rB) (5.125)

i=1

= exp(T(A + B) + 0(7—P+1)). (5.126)

\Ve introduce the idea of counting the number of split solves as a measure of the effi-

ciency of the method, with the assumption that each split solve is roughly equivalent

in cost (understanding that each split solve could be significantly different and thus

nullifying our comparison). For example, a first order splitting could have (:1 = 1

and d1 = 1, to give

51(T) = 674.373, (5.127)

which would require two split solves. Similarly, a second order splitting (equivalent

to Strang splitting) could be written with c1 = 1/2, d1 = 1, c2 = 1/2, and d2 = 0,

to give

17A B 17A
32(7) = e? 67 e? , (5.128)

which would require three split solves. For each of Yoshida’s splitting methods that

are higher than 2nd order, one must solve a set of equations (not shown here) to find

the coefficients c,, 11,-. To find the exact coefficients, one must solve the coefficient

equations analytically. In this situation, if the order of the method is p (and p is

even), then the number of nonzero coefficients is 2k — 1, where k = 313/2‘1 + 1.

These coefficients will be referred to as the analytic coefficients. To find a simpler

higher order splitting method, one may solve an approximate set of coefficient equa-

tions, giving fewer coefficients, but they are approximate and not. exact coefficients.
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These coefficients will be referred to as the nonanalytic coefficients. In practice, the

nonanalytic coefficients are used since they make the computation much more cost

effective (see Table 5.1). The number of nonanalytic coefficients is also given by

2k — 1, but k is different: I: 2 21 + 2, where t = 2p/2-1 — 1, and the (even) order

is p > 4. Some of these calculations can also be clarified by examining [77, 49, 50].

The number of nonzero coefficients (analytic or nonanalytic) can be thought of as

the number of split solves required for one timestep of that method.

 

 

 

 

 

 

order Yoshida analytic Yoshida nonanalytic IDC-S2 IDC—S1

2 3 - 3 3

4 7 - 7:1,- 9

6 19 15 12§ 15

8 55 31 17% 21      
Table 5.1: Number of split solves required for one step 7 of each splitting method.

Yoshida’s methods are from [77], and 7’ 2 At. IDC-S2 refers to split IDC methods

constructed with second order splitting, and IDC-Sl refers to split IDC methods

constructed with first order splitting. r 2: 6t for IDC methods.

Unlike Yoshida’s methods, it is not entirely correct to write split IDC methods

as compositions of exponentials. However, we can still count the number of split

solves in one timestep in a similar manner. Recall we are considering the solution of

(5.124), so there will be no partial derivatives in the following analysis. One substep

7 = 6t of the split IDC prediction loop is simply a basic splitting method, which

can be written as (5.127) or (5.128), for example. Thus the cost for one substep of

the prediction loop is 2 solves for a first order splitting or 3 solves for a 2nd order

prediction. One substep of the correction loop, solved according to the first order

170

 



splitting given by (5.116)-(5.118), can be written as

(11(7) = 6746731117), (5.129)

where R(7) is the solution to (5.116). Thus the cost of this correction substep is 3

solves. However, if we look carefully at Algorithm 4, line 6, we see that the very first

substep of an IDC interval, from t = to to t1, only requires the solution of (5.116),

but (5.117) and (5.118) are unnecessary. Thus the first substep of the correction

loop only requires 1 solve, while the last M — 1 substeps require the full 3 solves

seen in (5.129).

Similarly, a second order splitting given by (5.119)-(5.123) can be expressed as

1 1 1 1

02(7) = e2TAe2TBR(T)e2TBe2T/‘, (5.130)

where 12(7) is the solution to (5.121). Thus the cost of this correction substep is 5

solves. Again, since the initial error at each correction is zero, we may adjust the

second order splitting to be more efficient (similarly to Algorithm 4, line 6). Thus

we do not need to solve (5.119) or (5.120) over the first substep, but only

(5.131)

Therefore the first substep of the correction loop only requires 3 solves, while the

last M - 1 substeps require the full 5 solves seen in (5.130).

To coalesce the number of solves required for an IDC prediction and the number

required for a correction into the total number of solves required for one substep

6t, we must first consider one step of size At. For a pth order IDC method, we

subdivide At into M = p - 1 substeps (see (5.83), (5.86) in Section 5.6.1). We

solve for the prediction solution over each of those M substeps. Then we solve for
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the error correction J times over each of those M substeps. Letting P denote the

number of solves required for a prediction substep, 30 the number of solves required

for the first substep of a correction, and s the number of solves required for the

subsequent substeps of a correction, the resulting number of solves over At is

MP + J(80 + (M —1)s). (5.132)

Then we divide by M to obtain the number of solves required for one substep T 2 6t,

solves = P + J(30 + (M — 1)s)/M. (5.133)

For example, if we consider a fourth order split IDC method constructed with first

order splittings, then one must solve one prediction and 3 correction loops, requiring

9 solves per substep:

sotves=2+3(l+2*3)/3=9. (5.134)

For a fourth order split IDC method constructed with second order splittings, one

must solve one prediction and one correction loop, requiring 7:1; solves per substep:

1

solves =3+1(3+2*5)/3=7§. (5135)

See the Table 5.1 for other higher order results comparing Yoshida’s split methods

and split IDC methods. For 2nd, 4th, and 6th order methods, Yoshida and IDC

methods appear roughly equivalent, whereas for 8th order (and higher, though not

shown), IDC methods appear to have an advantage in requiring fewer split solves.
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5.8 Conservation of Mass

In this section, we prove that the split IDC methods constructed in this work pre-

serve total mass in the case of periodic boundary conditions; i.e., for fi1j+1 the

numerical solution to the Vlasov-Poisson system at t = tn+11 :1; = 2:,- = .100 + iAx,

v = vj = U0 + jAv, we desire the discrete version of

:r.v,t d3; dv =/ f f :1:,v,t dxdv 5.136
/X /V f( n+1) X V ( n) ( l

to hold:

N1 —1Ng:— 1 1 qu-‘lNgy—l

71+ ,. , _ n
:0 :0 1,3. ArAv— Z 281A.) (5.137)

.7 i=0

For simplicity, below we drop A:1:Av and the limits on the sums.

Theorem 5.8.1. A split IDC method that is constructed via first order splitting

methods in the prediction and correction loops together with conservative semi-

Lagrangian WEN0 methods, and whose spatial and velocity derivatives in the resid-

ual are approximated via WENO reconstruction, conserves total mass if periodic

boundary conditions are imposed.

Proof. By Proposition 5.8.3 and repeated application (according to the number of

correction loops) of Proposition 5.8.5, both given below. E]

Proposition 5.8.2.

1,6“ = f," — 600,1,flee) — 13:1flee» (5.138)

conserves total mass if periodic boundary conditions are imposed and f," 1/2 is

the numerical flux given by a 2117+ 1 order conservative semi-Lagrangian WENO
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reconstruction. For example, when interpolation and reconstruction is from the left,

the flux: is defined as

“n _ n n L 21.:

for C2Lk+1 a matrix of coefficients and 5 E [0,1/2]. Further details are in [67].

Proof. The sums are over i = 0, 1, . . . , N — 1 (i = N is excluded due to periodicity).

2: 1,6“ = 20," — 561131,,flee) — 15,71, /2(€0)))

= fol — {0 Z(f:::_1/2(€0) _ f,'n_1/2(€Ol)

= 2 f," - §0(-f31/2(€0) +f)7(’1_1/2(€0))

=23
i

where the last equality holds from periodicity, which can be seen by writing out the

fluxes as defined in the proposition. D

Proposition 5.8.2 represents the solution of only one of the split equations in

(5.94). However, conservation also carries through for consecutive splittings.

Proposition 5.8.3. The first order split prediction of a split IDC method solved

via conservative semi-Lagrangian WENO conserves total mass if periodic boundary

conditions are imposed.

Proof. Let f 3‘- denote the solution updating 7‘. in the x direction, given by
2] U]

1;; = 1;;- ‘50”,11/13-(40) — 111/2,1601). (5.140)
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We know by Proposition 5.8.2 that

:1 __ n
2],,- _ 2f”- (5.141)

2 i

for all j. Then let fig-+1 denote the solution updating f;- in the v direction, given

by

+1 5 *

f‘n' 2 f2? — €0(f:j+1/2(€0) “ f,f:j_1/2(€0))- (5'142)
tj

Again, by Proposition 5.8.2, we have

n+1 _ =1:

Eff-j —Zfz'j (5.143)

j i

for all i. Therefore

ft (5.144)

=2 2);} =2 2f};- . (5.145)

1 j 2'

Lemma 5.8.4. If the derivatives are found via WENO reconstruction, then

226-6 ~+EU+€a ~—0 (5146). ' J 23% ,- 11772,] — - -

Proof. From [67], we see that the WENO flux coefficients can be written as a vector,

which for example, when using a 2k + 1th order reconstruction from the left, we
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denote as 1051,+1. Then the numerical flux 1:" can be written
—1/2

A

n _ n .n ,L

Fi—l/Q—(fi—k—1""’ i+k—1)'“’2k+1’ (5147)

and a derivative can be approximated as

l A A

.7 n ~ _ ,n _ n

Now consider the sum in the lemma, with the derivatives approximated as in (5.148).

77+e

ZZUjaEnij++Ei Ev’h‘j
2

=2%2:A1x(Fi+1/2,J' Fi-1/2J')

n+e jn _‘n

+1;szA1U(Fi,j+l/2 Fi,J‘—1/2)

_ _ F733:

 
“n An

‘ 2 Av (—Fi,—1/2 + ELM—U2)

where the last inequality holds by periodicity, which can be seen by writing out the

fluxes as defined above. 1:]

Proposition 5.8.5. The first order split correction of a split IDC method solved

via conservative semi-Lagrangian WENO methods (and whose spatial and velocity

derivatives in the residual are approximated via WENO reconstruction) conserves

total mass if the prediction conserves total mass and periodic boundary conditions

are imposed.
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Proof. Since (5.117) and (5.118) are solved in the same way as the prediction, we

only need to prove that the numerical solution for (5.116) conserves mass. Denoting

e"+1 as the error at the updated time tn+1, we have, as the solution to (5.116),

t

,n+1_ ,n , n+1 n n+1 __ 477+e. ..
(ll-j — (ij — 17.. + 7/Zj — fin ’1‘] 0377),] (T) ‘1’ El: ()1)T]ZJ(T) (17'.

Then

226:3“=ZZetj-ZZ'0§3+1+ZZn-?j
i j i J i j i j

t

._ Z Z]; n+1 2.3-0337),]- (r) + Eg+efhynij(r) dr

i j n

t.

= 2:62] -[ n+1 221583377000 + Egy+eav77ij(7') dT

2' j 'n 2‘ j

{263
2 J

where the second equality holds by the hypothesis, and the last equality holds by

Lemma 5.8.4. C]

Although the results in this section are for split IDC methods constructed via

first order splittings, we anticipate that conservation of mass for split IDC methods

constructed via second order splittings can be similarly shown.

5.9 Numerical Results

We apply the split IDC methods to constant advection, rotating problems, and

Vlasov-Poisson problems, where we study classic plasma problems, such as the warm

two stream instability and Landau damping.

Although some of the following notation used may be obvious, we provide it
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here for complete clarity: At is the timestep as given by (5.84), N33, NU are the

number of space and velocity (or second space, where relevant) steps. Tf is the

final time to which the solution was calculated. When explaining which part of the

operator is used in the splitting, we use the notation of A, B as in Section 5.5. For

spatial differentiations and interpolations, we use WENO reconstruction [19] and

 conservative semi-Lagrangian WEN0 [67]. For error plots, the error is given as the

sum of the [1 and loo norms (l1+loo). Comparison to exact, reference, or successive

solutions is clarified for each test problem.

 

5.9.1 Constant Advection

Here we apply split IDC methods to a constant advection equation,

 
Ht + U]; + U1) 2 0, ((3,1)) 6 [—1,].] X [—1,1], t) 0, (5.149)

u(0, 3:, v) = sin (47r(.r + v)),

u(t, l,v) = u(t. —1.v), u(t,:1:,l)= u(t,:r, —1),

using simple numerical integrators in each split step rather than exact (semi-Lagrangian)

solves. We verify that the split IDC framework attains the expected increase in or-

der of accuracy with each correction loop. Here we use A = B = 1. For the spatial

derivatives, we use fifth or ninth order WENO reconstruction.

In Figure 5.1a, we show error plots from solving (5.149) via split IDC that

incorporates first order splitting where each split step is solved with a forward Euler

(FE) integration. In Figure 5.1b, we show error plots from solving (5.149) via split

IDC that incorporates second order splitting where each split step is solved with a

second order Runge—Kutta integration. Clearly the order of accuracy increases and

the error decreases with each successive correction loop as expected.
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(b) 2nd order split (0, 1, 2 corrections)

Figure 5.1: Convergence study for (5.149) using (5.1a) IDC constructed with lst

order split methods, each split equation is solved via forward Euler, combined with

5th order WENO. The order of accuracy is clear, as reference lines (with slopes of

1, 2, 3, 4) indicate. (5.1b) IDC constructed with 2nd order split methods, each split

equation is solved via 2nd order Runge-Kutta, combined with 9th order WENO.

The order of accuracy is clear, as reference lines (with slopes of 2, 4, 6) indicate.

In both figures, the error is in the norm ll + ’00. compared to a reference solution

computed on a finer time mesh.
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Although we also used semi-Lagrangian split IDC methods with the conserva-

tive WENO construction, the plots are not shown here because the error obtained

was effectively machine precision. There is no splitting error for (5.149) since the

operators commute, so those results are not unexpected. However, since there is

no splitting error, the test of constant advection is not sufficient to verify split IDC

methods’ increase in order of accuracy as the number of correction loops increases.

Thus we consider the rotating problem next.

5.9.2 Rotation

Using split IDC methods with conservative semi-Lagrangian 5th order WENO, we

solved the problem of rotating a nonsymmetric Gaussian initial condition

“t — vug; + :ruv = 0, (1:, v) E [—l, 1] X [—-l, 1], t > 0, (5.150)

u(0. :r, v) = exp (—20(a:2 + 5v2)),

u(t, l, v) = u(t, —1, v). u(t,:z:, 1) = u(t, :r. —1).

Here we used A = —v, B = a: for our splittings.

Time convergence results can be seen in Figure 5.2a for solving (5.150) via split

IDC that incorporates a first order splitting in prediction and correction loops. We

see that the temporal order of accuracy increases by 0(At) with each additional

correction. Although the figure shows results when N3; = NU = 40, which may raise

questions since the Gaussian is sharp enough that more spatial resolution is needed

to capture its peak, we found identical results for N1; = ND 2 400. Figure 5.2b shows

convergence for split IDC that incorporates second order splitting in prediction and

correction loops with N1: = NU = 400. A prediction loop only (or simply a standard

implementation of Strang splitting) gives second order. For a prediction and one
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correction loop, an increase in accuracy by 0(Al2) is expected, and indeed clean

fourth order is acheived. For a prediction and two correction loops, sixth order is

expected, but it is hard to verify due to acheiving Matlab precision quickly. However,

the magnitude of its error is less than the fourth order error.

Since the split operators used here for (5.150) do not commute, the splitting

error will contribute to the error that the IDC methods must correct, and in light

of our results, we conclude that IDC methods are able to correct splitting errors

to achieve higher order split methods. Unfortunately, however, the IDC corrections

appear to introduce a CFL that is not present in the prediction loop. The reason

remains to be discovered. Now we move on to more interesting examples.

5.9.3 Drifting Rotation

In this section, we consider a problem that is similar to the rotating problem, except

there is a drift in time. We refer to the problem as a drifting rotating problem, but

it can also be considered a linear Vlasov equation [69]:

Htf+1’v$f+E(t'T)v'Uf:01 f(03miv) =f0(.77,U), (5151)

where E(t, 2:) : [0, 00) x RN -+ RN is given and smooth. As in [69], we consider :1:

and v E R with

E(l,:r) = —:r — sin(2t),

.7: : R —-> ’R. defined by .7:(0) = 0 and

f’( ) 3&7: sin7(7rs) if 0 < s < 1

S =

0 otherwise
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rot: SLw5, ichLsplit1, Nx=Nv=4O
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Figure 5.2: Convergence study for (5.150). (5.2a) IDC constructed with 1st order

split methods, each split equation is solved in a semi-Lagrangian setting with con-

servative 5th order WENO. The order of accuracy is clear, as reference lines (with

slopes of 2, 3, 4) indicate. (5.2b) IDC constructed with 2nd order split methods,

each split equation is solved in a semi-Lagrangian setting with conservative 5th or-

der WENO. The order of accuracy is clear for 2nd and 4th order, but unclear for

6th order, as reference lines (with slopes of 2, 4, 6) indicate. In both figures, the

error is in the norm ll + loo, comparing successive solutions.
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so that if

F(0, w, v) = f/(rcosl +vsin1 — 2sin1+ sin 2)

- f,(—;r sin 1 + v cos 1 - 2cos 1 + 2cos 2),

then the exact solution [68] is

f(t, :r, v) 2: F’((:r. — sin(2l)) cos(t — 1) — (v — 2cos(2t)) sin(t — l) + sin 2)

-.7-'/((:1: — sin(2t)) sin(t — 1) — (v — 2cos(2t)) cos(t — 1) + 2cos2),

which for t = 1 gives

f(l, 1:, v) = .77’(:r).7"’(v).

Here we use A = v, B = E for our splittings.

Our convergence results can be seen in Figures 5.3a, 5.3b, 5.4a, and 5.4b, where

the error is found by comparing the numerical and exact solutions in Figures 5.3a

and 5.3b and successive solutions in Figures 5.4a and 5.4b. We see that split IDC

that incorporates a first order splitting in prediction and correction loops has the

expected convergence, where the order of accuracy increases by 0(At) with each

additional correction loop.

As with the solution of the rotating problem, we observed a CFL limitation for

split IDC methods. Thus a future step for us is to determine error bounds that

clarified the CFL condition for split IDC methods. However, other higher order

split methods also exhibit a CFL limitation. For example, Schaeffer tested the

second order splitting method from [13] and his own fourth order splitting method

[69] combined with a third order interpolation scheme on (5.151). He tested the
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driftrot2D2: SLw5, idCSLspIit1, Nx=200, Nv=150
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Figure 5.3: The order of accuracy is clear, as reference lines (with slopes of 1, 2)

indicate. In all figures, the error is in the norm [1 +100.
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Figure 5.4: The order of accuracy is clear, as reference lines (with slopes of 2, 3)

indicate. In all figures, the error is in the norm l1 + loo-
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methods numerically with Ax 2 Av and At = c(A:r)5 for a fixed constant c for

his method and At = c(A.r)§ for a (possibly different) fixed constant c for [13]’s

method. The values of At were chosen based on a CFL condition found through a

rigorous error bound, and so that the error bounds in each case should be optimized

[69]. Although Schaeffer’s fourth order method showed an improvement over Cheng

and Knorr’s method, we note that Schaeffer’s method was only implemented for a

linear problem. He displays no results for the nonlinear Vlasov system, and it is not

clear how his method extends to the nonlinear problem. In the following section,

we show that we may apply our split IDC methods to the nonlinear Vlasov—Poisson

system.

5.9.4 Vlasov—Poisson

Now we consider the implications of using split IDC methods with conservative semi-

Lagrangian WENO to solve the Vlasov-Poisson system (5.88) with initial conditions

of a two stream instability and Landau damping. In addition to temporal conver-

gence results, we also include plots of solutions and physical quantities that should

be conserved theoretically. Since the spatial resolution and methods are largely

what influence the accurate numerical representation of the physical quantities, we

do not expect that high temporal order via split IDC methods will improve them;

however, we hope to assert that the physical properties are not unduly degraded by

the split IDC methods’ error correction process.

For both the two stream instability and Landau damping, we impose periodic

boundary conditions in the x-direction and Neumann boundary conditions in the

v-direction. Periodicity in space allows the use of a fast Fourier transform (FFT)

to solve the 1D Poisson equation. The density p(.r, t) is computed by the rectan-

gular rule, p(.r,t) = ff(a:,v,t)dv z Zfi’l f(:r,vj,t)6v and then is normalized as
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described in Section 5.6.3. For the splittings, we use A = v, B = E. Convergence

studies are performed using N3; = NU = 400. Classical theoretical results for the

Vlasov-Poisson system include conservation of the following quantities (i.e., the time

derivative is zero):

0 The LP norm, for 1 S p < 00,

f :r.v,t pdardv, 5.152

./V /X| ( )l ( ) 1'

l

o Entropy,

— f(a:,v,t)ln(f(x,v,t) d2: dv, 5.153

M). > < >

a Total energy,

1f/f(rzt)2dd+l/F‘(t)2d (5154)— .2, 1,, v .7: .v - , :12, . .17..

2 v X 2 X

In our numerical experiments, we checked the time evolution of the discrete versions

of these theoretically preserved quantities. Entropy, energy, and the L1 and L2

norms are approximated by the rectangular rule.

Two Stream Instability

For the two stream instability, we use (5.88) with the initial condition [26]

f(0.:1:,v) = %(l + 502) (l + a((cos(2k.r) + cos(3kat))/1.2 + C08(k;1;)))

-exp(—i:2/2). (5.155)
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with a = 0.1, k = 0.5, :r E [0,27r/k], v E [—7r/k,7r/k], periodic BCs in the :1:

direction, and Neumann BCs in the v direction. Figures 5.5a and 5.5b show time

convergence for split IDC methods with three and four, respectively, nodes in each

subinterval, and in both figures, the error is shown for the prediction loop alone,

followed by the prediction plus an increasing number of correction loops. As with

the constant advection, rotation, and drifting rotation examples, we see a decreased

error and very clear improved order of accuracy with each additional IDC correction

loop.

A first order split solution and a fourth order split IDC solution are shown in

Figures 5.6a and 5.6b, respectively. In both plots, N1; = NU = 400, At = 1/300,

and the final time is Tf = 25.

The physical quantities are shown in Figures 5.7a, 5.7b, 5.7c, 5.7d, and 5.7e. In

all plots, N]; = 64, NU = 128, At = 1/40, and M+1 = 4. The energy, entropy, and

L2 norms are virtually indistinguishable among the numerical methods, so split IDC

methods conserve these quantities equally as well as the first order splitting method.

Although the L1 norm (Figure 5.7a) has one peak for both the first order splitting

(lower peak) and all the split IDC methods shown (higher peak), note that the peak

is very small (< 0(10—5), though the figure shows only 3 0(10’4)). We note

that it should not be surprising that split IDC methods do not preserve positivity

because the structure of IDC methods closely resembles (and when RK methods

are used in the IDC construction, actually is identical to, see [17]) the structure of

RK methods, which are known to be non-positivity preserving for orders greater

than one without special assumptions on the type of problem solved or the size

of the timestep used [7, 61]. The integral f f f(:r,v,t)d:1: dv is clearly conserved

(Figure 5.7b), so these split IDC methods maintain conservation of mass, consistent

with the proof in Section 5.8.
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with lst order split methods, each split equation is solved in a semi-Lagrangian

setting with conservative 5th order WENO. (5.5a) Here three IDC nodes are used,

with 0, 1, and 2 correction loops. The order of accuracy is clear, as reference lines

(with slopes of 1, 2, 3) indicate. (5.5b) Here four IDC nodes are used, with 0, 1, 2,

and 3 correction loops. The order of accuracy is clear, as reference lines (with slopes

of 1, 2, 3, 4) indicate. In both figures, the error is in the norm l1 +100, comparing
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w5. |DCm4J0. Tf=25. Nx=Nv=400. A t=0.0033 w5, IDCm4J3. Tf=25, Nx=NV=400, A t=0.0033

 

(a) lst order (b) 4th order

Figure 5.6: Solution for (5.88) with ICs as in (5.155). IDC constructed with lst

order split methods, each split equation is solved in a semi-Lagrangian setting with

conservative 5th order WENO, NI = N1) = 400, At = 1/300.

Landau Damping

Landau damping is given by (5.88) with the initial condition [26]

f(0, x, v) = (1+ (1 cos(kr)) exp(—o.552)/\/fi, (5.156)

with k = 1, x E [0, 27r], v E [-27r, 27r], periodic BCs in the a: direction, and Neumann

BCs in the v direction, a = 0.5 for strong Landau damping, and a = 0.01 for weak

Landau damping.

Figures 5.8a and 5.8b show time convergence for split IDC methods applied to

weak and strong Landau damping problems, respectively, and in both figures, the

error is shown for the prediction loop alone, followed by the prediction plus an

increasing number of correction loops. As with the previous examples, we see a

decreased error and very clear improved order of accuracy with each additional IDC

correction loop.

For weak damping, a first order split solution and a fourth order split IDC

solution are shown in Figures 5.9a and 5.9b, respectively. In both plots, Nag =
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Figure 5.7: Physical quantities for (5.88) with ICs as in (5.155). IDC constructed

with 1st order split methods, each split equation is solved in a semi-Lagrangian

setting with conservative 5th order WENO, N1; = 64, NU = 128, At = 1/40,

and M + 1 = 4. The labels lst, 2nd, 3rd, and 4th in the legends denote first

order splitting (prediction only), 2nd order split IDC (prediction, 1 correction), 3rd

order split IDC (prediction, 2 corrections), and 4th order split IDC (prediction, 3

corrections) methods, resp.
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Figure 5.8: Convergence study for (5.88) with ICs as in (5.156). In Figure 5.8a,

a = 0.01, and in Figure 5.8b, a = 0.5. IDC constructed with lst order split methods,

each split equation is solved in a semi-Lagrangian setting with conservative 5th order

WENO. Here four IDC nodes are used, with 0, 1, 2, and 3 correction loops. The

order of accuracy is clear, as reference lines (with slopes of 1, 2, 3, 4) indicate. The

error is in the norm 11 + loo, comparing successive solutions.
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w5. lDCm4JO. Tt=16. Nx=NV=400. A t=0.0033 w5. lDCm4J3. Tt=16. Nx=NV=400. A t=0.0033

5

 

(a) lst order (b) 4th order

Figure 5.9: Solution for (5.88) with ICs as in (5.156), oz = 0.01. IDC constructed

with lst order split methods, each split equation is solved in a semi-Lagrangian

setting with conservative 5th order WENO, N3; = NU = 400. (5.9a) At = 1/300.

(5%) At = 1/300.

NU = 400 and At = 1/300, and the final time is Tf = 16.

The physical quantities for weak damping are shown in Figures 5.10a, 5.10c,

5.10d, and 5.10e. We can see that the quantities are essentially conserved for all

methods shown, and IDC methods may have a slight improvement over the first

order splitting alone. Second order split IDC methods were not included in most

graphs since there appear to be stability issues due to the choice of time step. The

expected damping of the electric field is seen qualitatively in Figure 5.11.

For strong Landau damping, a first order split solution and a fourth order split

IDC solution are shown in Figures 5.12a (At = 1/80) and 5.12b (At = 1/80),

respectively. In both plots, N3; = NU = 400, and the final time is Tf = 16.

The physical quantities for strong damping are shown in Figures 5.13a, 5.13c,

5.13d, and 5.13e. We can see that the quantities are essentially conserved for all

methods shown, and IDC methods produce nearly identical results to first order

splitting alone. Second order split IDC methods were not included in most graphs

since there appear to be stability issues due to the choice of time step. The expected

damping of the electric field is seen here qualitatively in Figures 5.14.
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Figure 5.10: Physical quantities for (5.88) with ICs as in (5.156), a = 0.01. IDC

constructed with 1st order split methods, each split equation is solved in a semi-

Lagrangian setting with conservative 5th order WENO, N1; = 64, NU = 128, and

M + 1 = 4. The labels lst, 2nd, 3rd, and 4th in the legends denote first order

splitting (prediction only, At = l /40), 2nd order split IDC (prediction, 1 correction,

At = 1/40), 3rd order split. IDC (prediction, 2 corrections, At = 1/80), and 4th

order split IDC (prediction, 3 corrections, At = 1/80) methods, resp.
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Figure 5.11: Electric field for (5.88) with ICs as in (5.156) and a = 0.01. IDC

constructed with 1st order split methods, each split equation is solved in a semi—

Lagrangian setting with conservative 5th order WENO, NI = 64, N1; = 128, M +

1 = 4. For 1st order: At = 1/80, 2nd order: At = 1/80, 3rd order: At = 1/80, 4th

order: At = 1/80.

w5, |DCm4J0, Tf=16, Nx=Nv=400, A 1:0.0125 w5, |DCm4J3. Tt=16, Nx=NV=400. A t:0.0033

  
(a) lst order (b) 4th order

Figure 5.12: Solution for (5.88) with ICs as in (5.156), a = 0.5. IDC constructed

with lst order split methods, each split equation is solved in a semi-Lagrangian

setting with conservative 5th order WENO, Nx = NU = 400, M + 1 = 4. (5.12a)

At = 1/80. (5.12b) At = 1/300.
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Figure 5.13: Physical quantities for (5.88) with ICs as in (5.156), a = 0.5. IDC

constructed with 1st order split methods, each split equation is solved in a semi-

Lagrangian setting with conservative 5th order WENO, N3; = 64, ND = 128, and

M + 1 = 4. The labels 1st, 2nd, 3rd, and 4th in the legends denote first order

splitting (prediction only, At = 1/40), 2nd order split IDC (prediction, 1 correction,

At = 1/40), 3rd order split IDC (prediction, 2 corrections, At = 1/80), and 4th

order split IDC (prediction, 3 corrections, At = 1/80) methods, resp.
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Figure 5.14: Electric field for (5.88) with ICs as in (5.156), or = 0.5. IDC constructed

with lst order split methods, each split equation is solved in a semi-Lagrangian

setting with conservative 5th order WENO, Nx = 64, N1) = 128, M + 1 = 4. For

lst order: At = 1/80, 2nd order: At = 1/80, 3rd order: At = 1/80, 4th order:

At = l/80.

5. 10 Conclusions

Here we have investigated high order splitting methods using IDC methods con-

structed with low order splitting methods. We have found that these split IDC

methods have potential for improved efficiency over other general order splitting

methods, requiring a number of solves that increases linearly rather than expo—

nentially with the order of the method. We also proved conservation of mass, and

applied some split IDC methods to constant advection, rotating, and Vlasov-Poisson

equations to verify the order of accuracy of split IDC methods. We found that split

IDC methods maintain conservation properties at least as well as low order splitting

methods. Ongoing work is to determine why a CFL restriction is introduced in the

IDC correction step, whether that restriction may be mitigated, and to investigate

high order splitting for other PDEs. The principles for split IDC methods could
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be extended easily from the Vlasov—Poisson Operators to other operators suitable

for splitting methods, such as the Vlasov—Maxwell, BGK—Poisson, or BGK—Maxwell

equations. Future work should also consider how well the high order split IDC meth—

ods handle Vlasov equations with certain collision operators (such as BGK), and

how boundary conditions may be handled in such a way that high order accuracy

is still maintained.
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Chapter 6

Future Work

6.1 Asymptotic Preserving Methods

As mentioned in Chapter 3, semi-implicit IDC methods seem ideal to investigate

higher order asymptotic preserving (AP) methods by utilizing popular low order AP

ARK methods. An AP method is a numerical scheme designed for specific models

containing a small scale 6 (such as shallow water equations with strong diffusive

terms), such that numerical solutions behave similarly to analytic solutions in the

asymptotic limit, and the timestep is independent of e [43, 44, 64, 63]. Both the

numerical method and the form of the model are interdependent and must be chosen

carefully to achieve AP results. However, AP schemes are not yet higher than third

order in time, and it is the existing first and second order schemes that work best

thus far [64, 34]. Using IDC methods, we expect to be able to extend these methods

to higher order in time. We anticipate that incorporating AP schemes into the IDC

framework will make it possible to maintain stability and mitigate order reduction

that occurs in many semi-implicit methods as e shrinks. Additionally, since AP ARK

methods may also be described as splitting methods which solve the stiff part of the

system first [64, 63], we expect some relationship between the split IDC methods
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of Chapter 5 and IDC methods that are constructed via AP ARK methods. In the

subsequent sections, we outline details of our current plans for investigating whether

IDC methods may possess AP properties.

6.2 IDC with AP-ARK Theory

6.2.1 Moving Towards an AP IDC Proof

The algorithm for IDC methods constructed with AP ARK integrators is identical

to the algorithm given in Chapter 3 for IDC—ARK methods, being careful to note

that the cZN aé C? for AP ARK integrators. A main concern is whether the resulting

IDC—ARK method will preserve the AP property of its constituent ARK method.

Applying the ideas in [64, 63], we present a sketch that indicates that, under certain

assumptions, and provided we may answer some questions, it is likely that we may

obtain IDC-ARK methods that are AP methods. From [64, 63], we wish solve

1
5,0 = —(‘);I;F(U) + 2H.(U), (6.1)

(6.2)

where U 6 RD, F : RD x RD, and R : RD x RD. If R is a relaxation operator,

then B.(U) = 0 in the limit as e —> 0, and there exists a constant d x D matrix W

with rank(W’) = d < D and

WR(U) = 0 VU 6 RD. (6.3)

Then also there are of conserved quantities it such that u = WU and R(U) = 0 can

be solved uniquely for U as a function of u, that is, U = 8(u) and R(£(u)) = 0.

Then we may obtain a system of d conservation laws by applying W and (6.3) to
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o,(WU) + 0;,;(WF(U)) = 0, (6.4)

which is holds for every solution U of (6.1). Since 6 ——> 0 gives R(U) = 0, then the

equilibrium system

(9t(u) + Elli-flu) = 0, (6.5)

where Q(u) = WF(8(v)), is a good approximation to (6.1).

0 Prediction

Consider the following prediction step to solve (6.1) via an AP ARK method for the

predicted solution 771 at the next timestep

U0) = UO

H N ('1 VS 81 (1
+ Al 2 (1,-j(—U.rF(U J )lt=t0+CNAt) + Z aijERa] J )lt=t0+cSAt ’

i=l,...,I/S, (6.6)

”1 = U0 + At

VN
VS 1

N (2') S - (2')
/ _ F — 1

Z aI/‘Vi( 81: (U )ltzt0+cNAt) + Z ausi 6 RH] )|t=t0-I~C‘-S At

2:1 ’1. 1:1 I

When 6 —r 0,

S

S 5.1 (1') _ -_ SZlal/SiaULR(U )—0, i—l,2,...,l/ .

J:
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From a lemma in [63], if AS (the matrix from the Butcher table coefficients for at?)

is nonsingular, then R(U(Jj—l)— 0. If the implicit part of the ARK method has stiff

decay, i.e., if aVS]. = b‘JS, then 771 = U(VS), and R(771) = 0 also. By a theorem in

[63], then the AP ARK scheme in (6.6) becomes the RK scheme characterized by

the explicit part of the ARK scheme applied to the equilibrium limit system (6.5).

The proof for the prediction step only requires that all R(U(j)) = 0, but the proof

for the correction step likely requires that R(171) = 0 also. However, if R071) = 0

also, then the AP ARK scheme is also asymptotically accurate for the prediction

 

step; i.e., the order of accuracy of not only the d conserved quantities but also of

the D — d nonconserved quantities should be preserved.

0 Correction

Now we consider the error equation in order to analyze a correction loop. The error

equation is given by

(976 = 8,0 — 87,7]

1 1

= —81.F(U) + ERW) + 511“") — 2307) -

where r is the residual,

1
r = 0,7) + 0:rF(7I) - 2”le

/tr(r)dr— (t)—U +/t8 F(7)—1R( )dr

.tO “77 O .to 113 7 C -77 .

Then the error equation becomes

i)7(e+/r)=—()FF<77+1((+/r) —r-:-/)+—R(r7+(e+/r) —/r)

+ 81,F() — —R(I7)
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or, letting Q = e + f r,

. .. 1 . 1
ao = 41w (77+ Q — fr) + 215(1) + Q — fr) + 0.217(7)) — 213(7)),

01'

t

ato = 49:51? (Q + U0 —/ ame) —1R(n)dr)

t0 ‘5

1 t 1

—R — aL-Ft ——thT+. (out) f0. (1) . (I) )

+ BthrI) — %R(77),

0

Q0=e0+/0 T=0. (6.7)

Now we solve equation (6.7) via an AP ARK method whose implicit part has stiff

decay, so Q(VS) is also the approximate solution to (6.7) at the next timestep.

. VN . t0+cNAt 1

o“) = o0 + At]; a]; (err (om + U0 — [t0 9 551177) — ERMW)

+7)... F(17(t0 + 59010) )

VS 31 . t0+CSAt 1

+ At aij; R 62(3) + U0 —/ J 833F(77) — ;R(77)d’r

. t

—R(n(tO+cfAt)) ), i=1,...,uS.
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Then multiply by e to obtain

. ”N N ( ) t0+CNAt 1

EQU) : EQO + At 2 “ii —68;,;F Q J + U0 —/t J 3317(17) — ;R(77)dr

j=1 0

+6833F(17(t0 + cfAm )

S s
V . t0+c,- At

+ At 2 655']. R (20) + U0 —/ J 53,1707) — R(7})d7’

j=1 t0

—R(n(t0 + cfAt» ) , (6.8)

and consider the limit as e approaches zero. The left hand side of (6.8) goes to zero.

The first term on the right hand side also goes to zero. We wish to prove that the

entire explicit sum and the second part of the implicit sum go to zero, which would

leave us with

(j) 10+CJSAt . S

B. Q + U0 — t 81,1707) — R(77)d1' = 0, J = 1,. . . ,I/ , (6.9)

0

since AS is nonsingular. If (6.9) holds, then, by a similar process as in the rest of

the proof of the theorem in [63], the correction step possesses the AP property. It

seems likely that the explicit sum goes to zero, but it is important to take care with

the fact that the quantity inside F in the first part of the explicit sum contains a

1/6 term. It also seems likely that the second part of the implicit sum goes to zero,

but the fact that the values in the second part of the implicit sum are interpolated

values may affect that conclusion. However, we know that R(17(t0)) goes to zero,

and if the AP ARK scheme has stiff decay, then we know that R071) go to zero

as well. By the same reasoning as for the prediction, the correction step is also

asymptotically accurate if the AP ARK method’s implicit part has stiff decay.
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6.3 AP IDC Methods for P1 Equations

Here we outline a plan for understanding how to implemen AP IC methods applied

to the P1 equations in [34].

6.3.1 The P1 Problem and the Splitting

We begin iwth a presentation of the P1 system and its splitting that is used in AP

methods. The original P1 system that we desire to solve is

(97p + aaxm = 0, (6.10)

b a

(97771 + 255” = -—€—2m,

1001. to) = 100(1).

m(a:, t0) = mO(:r),

where a, b are constants, o = 0(a), and t 6 [t0, to + At].

The first order splitting of (6.10) is given by

(ft/1(1) = 0, (6.11)

(977710) + —%(1 -— (2)3320“) = —%m(1),
e e

10(1)(l‘,t0) = putt).

m(1)($1t0) = mow).

205

 



which solves in the stiff direction first, followed by

0770(2) + ooh-ma) = 0, (6.12)

07mm) + bag/1(2) = 0,

p(2)(fva t0) = puhxt t0 + At),

m(2)(ar, t0) = m(1)(.r, to + At),

the nonstiff direction.

Then rewriting the original system and the splitting with matrices and vectors,

we obtain the original system,

0 —a8

m “2283; —'€g2' m

and the splitting,

pm 0 0 ,,(1)
at 2 .

t = a



and we choose the following matrix and vector designations:

(1) (1) (2)

u = p . u = p , 17(2) — p , (6.13)

m(1) m(1) 171(2)

0 0 0 —a8

F = , G : a:

—b(1-— 62m —o 46;, 0

Then we obtain the original system,

1

(9711 = (7F + G) u, (6.14)

e

741‘: to) = 1400?),

and the splitting,

1

5711(1) = 71721.“), (6.15)
c

u(1)(a:, t0) = u0(:r);

6,4(2) = 011(2), (6.16)

u(2)(a:, t0) = u(1)(a:, to + At),

in vector form. This notation is for ease of the calculations in the following sections.

6.3.2 Asymptotic Limit

In the limit as e -—> 0, the system (6.10) becomes

b
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For an asymptotic preserving method, the numerical solution of (6.10) should match

the numerical solution of (6.17) in the e ——+ 0 limit, for At > 62.

6.3.3 Splitting Error

Now we analyze the splitting error by Taylor expanding the exact solution u of

(6.14),

A12
u.(;17, [.0 + AI.) = (I + Ali), + Ti)“ + . . . )‘ll.0(.’l,'),

where I is the identity matrix. We replace the t derivatives with their equivalent

expressions from (6.14),

1

8 — 1F G 1F Gtt - ‘65 + 3 +

1

= —4F2+—12-(FG+GF)+GE,
e e

and obtain

1

u(:r,t0 + At) = (I + At (7F + C) (6.18)

6

At2 1 1
+— 472+—(ro+or)+o2 +... 110(5).

2 e4 62
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Similarly, we expand the solutions to (6.15) and (6.16) to obtain

1 A121
u(1)(r,t0+At)——— (I +At2F+—2 4F2+...) u(1)(:r,t0), (6.19)

1 At21
I + At—217+ —2-—F2+. ..)u0(:r),

e4

u(2)(r, (.0 + Al)

2

1 + AtG + 91—024mm) 1.0%, to)

<

( 2( At

t

I+AtG+ —02+ ...)u(1)(:1:,t0+At)

+A__t_2 2+ 2 , ,2

Since F and G do not commute, then the exact (6.18) and split (6.19) solutions

 

I+At(    

differ in the At2 term, giving a first order splitting.

Alternatively, the solution to the split equations is given by

u(2)(;r, to + At) = exp ((to + At)ti2F) exp ((tO + At)G) u0(a:),

which indicates that, if F is negative semi-definite, then it seems more likely that

the method will approximate (6.17) as e —-> 0. Also, for the split solution not to

blow up as e —> 0, we require

6.3.4 Split Scheme with one IDC Correction

Now we present the form that the error equation and the split error equation should

take in one correction loop of an IDC method. Let u (as defined in (6.13)) be the

exact solution to (6.14), 77 be the split solution after solving (6.15) and (6.16) exactly,
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i.e. n = 21(2), and define the error, e, and residual, r, as

€=u—77,

1

rzatn— (7F+G) 77.

c

Differentiating 6 with respect to t, we obtain the error equation,

ate = (Stu — am (6.20)

= (—1§F+G)u—((—12—F+G)n+r)
e e

1

= (—2F+G)e—r,

e

e(:r,t0) = 0.

Then we approximate the solution to the error equation (6.20) by the three-part

first order splitting

ate“) = 32mg“), (6.21)

6(1)($, to) = e0(513);

dice) 2 06(2), (6.22)

6(2)(1:, t0) = e(l)(x,t0 + At);

8te(3) = —r = "‘81: (7) - “O — ft; (517 + G) nd'r) , (6.23)

6(3)(a:, t0) = 8(2)(.’L‘, to + At).
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Now for comparison with the common form of (6.10), we change from the vector

notation back to the component-wise notation. The error equation (6.20) becomes

t

atep + aaxem = —8t (77p — p0 +./t aaxnm d7) ,

0

b _0 t b 1 — 62 0

atem + —8;L-ep-— —em- 8,: 77m — mg + (b + —(——))(9;L-77p + —77m (17' ,

62 £2 to £2 62

ep(:z:, t0) = ep’0(:c),

em(:1:,10) = 8771,0(513),

and the split form (6.21), (6.22), (6.23) of the error equation becomes

6,621) = 0, (6.24)

8145) 6326* >865 )— ”2 $3.).

2% to) = e 66:).

e536 to) — em,6< )

6,622) + 663652,) = 0 (6.25)

Btem(2 l + ba$e(2)=00, (6.26)

43%, t0) = eagles, to + At), (6.27)

(3)3)(6, t0) = 6%)(6, to + At); (6.28)
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3 t

ate), ) = —8L (77p — p0 +/ aaxnm d7) , (6.29)

3 t b 1 — c2 , 0

ateln) = ‘at (77m - m0 +/t (5 + i‘éj—Zlarwp + —2'77m dT) , (6-30)

6
0

ef,3)(x, 1.0) = 496,10 + At), (6.31)

(2,2)(6, t0) = (2,83%, :0 + At) (6.32)

6.3.5 Analytic Solutions of Splitting Parts

Here we give the analytic solutions to the split equations (6.11), (6.12), and the

split error equations (6.24), (6.25), and (6.29). To simplify the presentation, let

t = to + At. The solution to (6.11) is exactly

6%) = Mao), (6.33)

mum) = _exp (22.)) [5) 63,66 (.2) awn) d.

where the second equality for ma) holds if there is enough smoothness such that

p“) constant in t gives Egg/2(1) also constant in t.

Now we solve (6.12). Left multiplying (6.12) by

 

 

1 1

95 2 b

VL: 1 ll;— ’

‘95 NEE



one obtains

0,111+ + mam = 0, (6.34)

0,11" — Hagar = 0,

  

<2) (2) (2) (2)+ _ p m _ 2 _p m

‘1’ ‘2a+2./65’ 2’ 2a+2\/a—b'

Then the solution for (6.34) is given by

\IJ+(:1:,t) = \Il+(.1:— «$610),

\I'—(:1:,t)= \II—(x + \/b_bt,t0).

Then some simple calculations give the solution to (6.12) as

p(2)(;,. [)':p()%(()(2(I — V7110) +p(2)(:r+ $120)) (6.35)

+ —\/\7__- ("1(2) (:1: — at, 1.0) — m(2)(:17 + \/(Tbl,, 1.0)) ,

2 , x/5
m( )(u): 375(p(2)((.c—x/a—bt, 10)— p(2)(x+\/a_bt,10))

+%(m(2)(x—\/Ebt,t0)+m(2)(:1:+\/b—bt,t0)).

The solutions for the split error equations (6.24) and (6.25) are analogous to the

solutions (6.33) and (6.35) of (6.11) and (6.12), respectively, and the solution for

the part of the error splitting (6.29) is given by

t

agile. 1) = «22%, to) — (w, t) — pom + / aamflm($e 7) dr) . (6.36)
t0

6296.1.) = (25%, to)

t — 62 a

— (7777203, t) — m0(:r) +/t (b + M—lcz—lwxanJ) + 277m(a:,7) dT) .



6.3.6 Anticipated Numerical Tests

Here we discuss the plans for numerical tests to determine the effectiveness of IDC in

the AP setting, in particular, to determine whether the IDC framework is capable of

maintaining the AP property. To start with, we plan to use periodic boundary con-

ditions and smooth initial conditions. We will solve each splitting analytically, which

is essentially a semi-Lagrangian method. It may be necessary to use WENO recon-

struction for some places where 83; appears, but in other places, setting Ax 2 At

may mean WENO reconstruction is unnecessary. Note that within the WENO

method, the Lax-Friedrichs flux may cause problems for these P1 equations. Per-

haps instead a cubic spline may be used, especially if the nonoscillatory features

of WENO are not required. We intend to test various values of e, for At > 62.

Note, however, that the CFL limitation found numerically for the split IDC meth-

ods in Chapter 5.6 will need to be understood much better before these tests can

be performed reasonably.
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