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ABSTRACT
TORSION IN H-SPACES OF LOW RANK
By

Kai Kie Dai

Our discussion concerns a path connected H-space

X that is also a finite CW complex. By a theorem

of Hopf the reduced cohomology of X with rational
coefficients is an exterior algebra on odd dimensional
generators. The number of generators is called the
rank of X. If Hi(x;z) contains an element of order
pr(r > 1), for some 1i and some prime p, then X

is said to have p-torsion. In particular, if r > 1,

then X 1is said to have higher p-torsion. It has

been shown by W. Browder that if X has rank one, then
X has no p-torsion for any odd p. In addition, it is
a long standing conjecture that (X, the loop space

of X, is torsion free.

The principal results of this thesis are the
following:
(1) If X has rank two, then X has no

p-torsion for p > 5.



(2)

(3)

(4)

(5)

(6)

ii

If X 1is l-connected and has rank 2,
then X has no p-torsion for p > 3.

If X has rank 2, then X 1is torsion
free and X has no higher p-torsion for
any prime p.

If X has rank 2 and has no 2-torsion,
then X has 3-torsion if and only if
HZ(X;Z) has an element of order 3.

(a) If X has rank less than or equal
to 5 and has no 2-torsion, then X

has no p-torsion for p > 5.

(b) If X 1is l-connected, has rank
less than or equal to 4, and has no
2-torsion, then X has no p-torsion

for p > 3.

If X 1is associative (i.e., there
exists a multiplication that is
associative), l-connected, and has

rank less than or equal to 5, then

X has no p-~-torsion for p > 5.
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CHAPTER I

Introduction

A topological space X 1is an H-space if and
only if there exist a distinguished base point e € X,

the unit element, and a continuous map m : X x X -+ X,

called the multiplication, such that m(x,e) = m(e,x) = X

for all x € X. Lie groups and topological groups are

H-spaces. There are H-spaces that are not topological

groups; €.g., S7. A finite H-complex is an H-space

that is also a finite CW complex (for the definition
of CW complex, see [41l; p.401]). A classical

theorm of Hopf says that if X 1is a path connected
finite H-complex, then its reduced cohomology with
rational coefficients is an exterior algebra on odd

dimensional generators:

H* (X:Q) 2= A(X vevenX ),
1 i
where dim x, = nj = odd. If H*(X;Q) 1is generated
_ 3
by X ,...,xni in dimensions Nysecesny respectively,
with ng < nj+l +» then X 1is said to have rank 1 and

type (nl,...,ni). If the integral éohomology of X,



H* (X), contains an element of order pr(r > 1) for
some prime p, then X is said to have p-torsion.
In particular, if r > 1, then X is said to have

higher p-torsion.

The extension to finite H-complexes of known
topological properties of compact Lie groups provides
the principal motivation for the study of finite
H-complexes. A good example of such a theorem is
the Hopf theorem quoted above. In Hopf's original
paper [28] essentially only Lie groups were treated,
but the paper gave rise to the concept of H-complex
since a continuous multiplication was the only
property required. Prior to the paper of Hilton-
Roitberg [27] it was a standing conjecture that if
X 1is a finite H-complex, then there exists a Lie
group Gx such that X has the homotopy type of
Gx X S7 XeooX S7. However, this conjecture was
demolished by P. Hilton and J. Roitberg by showing
that the 1lO0-manifold M7w , the total space of the
principal S3-bund1e over S7 classified by 7uw,
where w classifies Sp(2) = S7, is an H-space
but not of the homotopy type of any Lie group. Thus

the classification problem of finite H-complexes



will not reduce to that of Lie groups. Precisely,

finite H-complexes are classified up to H-equivalence:

An H-map of two H-spaces X and Y with multipli-
cations m and n, respectively, is amap h : X 4 Y
such that the following diagram commutes up to
homotopy:
X x X —8 5 x
l?xh Jﬁ

Y xY —2 s v .

Two H-spaces X and Y are H-equivalent if there exists

a homotopy equivalence h : X + Y which is an H-map.

One approach to the classification problem
is to investigate how much such a complex must look
homologically like a Lie group, i.e., to investigate
all possible finite H-complexes up to H-equivalence by

their rank.

If X 1is a path connected finite H-complex
of rank one, then by the result of W. Browder [15], X
has the homotopy type of Sl, S3, S7, RP3, or RP7. In
[38] it is shown that the set of homotopy classes of
multiplications on a finite H-complex X 1is in one-one

correspondence with [X A X,X], where X A X means the

smash product of X, i.e., the identification space



obtained from X x X by identifying X x (e} U (e} x X
to a single point, and ([X A X,X] means the set of

homotopy classes of maps from X A X to X. This set

could be infinite. For Sl there is only one H-space

1

structure since [S1 A S ,Sl] > [Sz,Sl] = Wz(Sl) = 0.

There are 12 and 120 homotopy classes on S3 and
S7, respectively. Since each multiplication is H-
equivalent to its transpose or opposite, the number
of non-equivalent H-structures is 6 or 60,

respectively. For the projective spaces the number

of non-equivalent H-structures has not yet been settled.

If X is a connected finite H-complex of

rank two and if X 1is torsion free, then X has

the homotopy type of S1 X Sl, S1 X S3. S1 X S3,

7
7 7

E6w ’ E7w ¢+ Or S x S'. This was proved independently

E

by P. Hilton and J. Roitberg [26], M. Curtis and G.
Mislin, E. Thomas, and A. Zabrodsky [unpublished].
The number of homotopy classes of multiplications on
products of spheres can easily be computed and the
number of homotopy classes of multiplications on

SU(3) and Sp(2) is 215 . 39 + 5 ¢« 7 and

220 ¢« 3 - 55 « 7, respectively [34].



The classification of arcwise connected finite
H-complexes of rank two with torsion is not yet
complete. In fact, it is an open problem that if X
is a l-connected finite H-complex with or without
2-torsion, then X has no p-torsion for p > 5. A
related problem is a long standing conjecture that if
X 1is a l-connected finite H-complex, then X, the

loop space of X, 1is torsion free.

Torsion plays an important role in homotopy
classification of finite H-complexes. The purpose
of this thesis is to solve some of the problems on

torsion in finite H-complexes.



CHAPTER II

Preliminaries and Statements of Results

The requisite background for the proofs of the
results in this thesis is sketched in the first seven
sections and the principal results of the thesis are

given in the last section.

§1. On the structure of Hopf algebras.

A good reference for this section is [33].

Let R be a commutative ring with unit. A

graded R algebra consists of a graded R module

A = (a9} and a homomorphism of degree O
4 : A®A »A

called the product of the algebra (u then maps
aP R A? into Ap+q for all p and gq). For a,
a' €A we write aa' = u(a ® a'). The product is

associative if (aa')a" = a(a‘'a") for all

a,a',;a" € A and is commutative if aa' (_1)deg a deg a

a'a for all a,a' € A.



A graded R coalgebra consists of a graded R

module A = {A9} and a homomorphism of degree O
d : A +A QA

called the coproduct of the algebra (so d maps

a? into @, a' 2 a7 for all q). The coproduct

i+j=q
is said to be associative if

(Ad21)d=(12d)d : A +A A RA

and is said to be commutative if Td = 4, where

T : AQ@A A ®A is the homomorphism T(a ® a') =
(-l)deg a deg a a' ® a. A connit for the coalgebra
is a homomorphism ¢ : A + R such that each of the

composites in the diagram,

R ®A

N
a V *

&
1@’9 A ®R

is the identity map.

A Hopf algebra over R 1is a graded R algebra

A which is also a coalgebra whose coproduct
d : A +»A®A

is a homomorphism of graded R algebras. A Hopf algebra

A 1is said to be connected if AO is the free R module



generated by a unit element 1 for the algebra and the
homomorphism ¢ : A + R defined by ¢(al) = a for

a € R 1is a connit for the coalgebra.

Let X be a connected finite H-complex with
multiplication m and K a field. It is well-
known (cf. [36, p.49]) that H,(X:K) is a connected
Hopf algebra with product induced by the multiplication
and the coproduct induced by the diagonal map. Dually,
H* (X;K) 1is a connected Hopf algebra with product
induced by the diagonal map and coproduct induced by

the multiplication.

If A 1is a graded coalgebra with coproduct
d : A +A A, then an element y of A which is
not in A° is called primitive if d(y) = y®l + lay.
Thus for any space Y, whether Y is an H-space
or not, an element y in H,(Y:;K) is called primitive
if and only if the homomorphism A, induced by the

diagonal map has the following property:
A (Y) =y ®1+18Ry.

Primitivity of y in H_(Y¥;K) has nothing to do with
the multiplication. Also if X is a finite H-complex

with multiplication m, then an element y 1in



H* (X;K) 1is called primitive if and only if the
homomorphism m* induced by the multiplication m
has the following property:

m*(y) =1y +vy ® 1.

Notice that primitivity of y in H*(X:;K) depends

on the multiplication m,

An element in a graded algebra is called

indecomposable if and only if it cannot be written as

a product of lower nonzero dimensional elements.

Let X Dbe a connected finite H-complex and
K be a field. For simplification let A be either
H* (X;K) or H*(X:K) and A* be its vector space dual.

Then we have:

Lemma 1.1. ([33; § 3]. Let P(A) denote the
subspace of primitive elements of A and Q(A) the
subspace of indecomposable elements of A. Then

P(A*) = (Q(A))*.

Lemma 1.2. ([33; § 7]. If K 1is perfect,
then A 1is isomorphic as an algebra with a tensor
product A) ®...® A, where A. , 1 < i <n 1is a

Hopf algebra with a single generator X, .
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Lemma 1.3. ([33; § 7]. If A 1is associative
and if K of characteristic zero, then A 1is isomorphic

to an exterior algebra on odd dimensional generators.

Lemma 1.4. ([33; § 4]. Suppose that the field
K 1is of characteristic p # O. Then there is an exact

sequence:
O 4 P(K(EA)) » P(A) -+ Q(Aa),

where P(A) denotes the subspace of primitive elements
of A, Q(A), the subspace of indecomposable elements
of A, and £&A, the image of the homomorphism

. ; = P .
E An -+ Apn defined by E£(x) = x for all x € An’
K(EA) is the subalgebra generated over K by EA,.

In other words, if a primitive element of A is

decomposable, then it is a pth power.

§2. On the types of a connected finite H-complex.

Let X Dbe a connected finite H-complex. There
is a relationship between torsion in X and the possible
types of X. The results listed in this section will
be used to determine the existence of certain p-torsion

in X.
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Lemma 2.1. [l1]. Let X be a connected finite
H-complex of rank one, then X has type (1), (3), or
(7).

Lemma 2.2. [29; Theorem 1l.1]. Let X be a
connected finite H-complex of rank 2 having no 2-
torsion. Then the type of X is (1,1), (1,3), (1,7),

(3,3), (3,5), (3,7), or (7,7).

We remark here that Lemma 2.2 was first proved
partially by J. Adams [4] and completed by Douglas-
Sigrist [24] and was also proved independently by

J. Hubbuck [29].

Lemma 2.3. [29; Theorem 1l.1]. Let X be a
connected finite H-complex of rank less than or equal
to 5 having no 2-torsion. Then the type of X is
a union of sets taken from (1), (3),(7), (3,5), (3,7),
(3,5,7),(3,7,11), (3,5,7,9), (3,7,11,15), (3,5,7,9,11),
or (3,7,11,15,19).

The method in proving Lemma 2.3 is by studying
the projective plane of the finite H-complex defined
in [43] and using a result by W. Browder and E. Thomas

on the cohomology of the projective plane of X [18].
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The machinary is K-theory and Adams operations on K-
theory, which, when a space has no torsion, "represent"
the Steenrod power operations on cohomology [6:; Theorem

6.5].

Later, with similar techniques and a result
by T. Sugawara and H. Toda [45], J. Hubbuck computed
all possible types of a connected finite H-complex
without 2-torsion when the dimension of the generator
of H*(X:Zz) of highest degree is not of the form

s+1_

2 1:

Lemma 2.4. [32; Theorem 1.2]. Let X be a
connected finite H-complex without 2-torsion. If the
dimension of the generator of H*(X;Zz) of highest
degree is not of the form 25+1—1, then H*(X;Zz)
is isomorphic as a Hopf algebra to H*(G;Zz), where
G 1is one of the Lie groups U(n), SU(n+l),

S1 x Sp(n-1), or Sp(n), and n is the rank of X.

We remark here that in Lemma 2.3 and Lemma 2.4
it is originally assumed that H*(X;Q) is primitively
generated, i.e., there exists a set of generators which
are primitive, but this hypothesis is superfluous by a
result due to C. Curjel that X has a multiplication

such that H*(X;Q) 1is primitively generated; cf.[22;88].
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For a l-connected associative finite H-complex
(i.e., there exists a multiplication which is associative)
the types have also been determined for rank less than

or equal to 5 by various people listed below:

Lemma 2.5. Let X be a l-connected associative
finite H-complex. If X 1is of rank one, then the type
of X is (3) [1 or 15]. If X 1is of rank 2, then
the type of X 1is (3,3),(3,5),(3,7), or (3,11) [40].
If X is of rank 3, then the type of X is
(3,3,3),(3,3,7),(3,5,7),(3,3,11), or (3,7,11) [37].

If X 1is of rank 4, then the type of X is
(3,3,3,3),(3,3,3,5),(3,3,5,5),(3,3,3,7),(3,3,5,7),
(3,3,7,7,(3,5,7,9),(3,3,3,11),(3,3,5,11), (3,3,7,11),
(3,7,7,11),(3,3,11,11),(3,7,11,15), or (3,11,15,23)
[29 or 44]. If X 1is of rank 5, then the type

of x is (3,3,3,3,3),(3,3,3,3,5),(3,3,3,5,5),
(3,3,3,3,7),(3,3,3,5,7),(3,3,5,5,7),(3,3,3,7,7),
(3,3,5,7,7),(3,3,5,7,9),(3,5,5,7,9),(3,3,3,3,11),
(3,3,3,5,11),(3,3,3,7,11),(3,3,5,7,11),(3,3,7,7,11),
(3,5,7,9,1),(3,3,3,11,11),(3,3,7,11,11),
(3,3,7,11,15),(3,5,7,11,15),(3,7,9,11,15),(3,7,11,11,15),

(3,7,11,15,19), or (3,3,11,15,23) [25].

We remark here that the main technique used
in the proof above is the results by A. Clark in the

paper "On Ty of finite dimensional H-spaces,"
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appeared in Annals of Mathematics in 1963, and some

extensions of them.

§3. On a relation between generators in H*(X:Zp) and

types of X.

Lemma 3.1. [13; Theorem 4.7]. Let X be a
path connected finite H-complex. If H*(X;Zp) has a
generator in dimension 2m-1, then H*(X;Q) has a
generator in dimension 2mpk-l, o >k > 0. If
H*(X;Zp) has a generator in dimension 2m, then

H* (X;Q) has a generator in dimension 2mpk-1, o >k > 1.

Lemma 3.2. [13; Lemma 6.4]. Let X be a
connected finite H-complex. Let s be the smallest
integer for which HS(X) has p-torsion. Then
s =2n, and if p # 2, then HS(X;Zp) has a
primitive element. Further, if p =2, and if n

is even, then HS(X;Z2) has a primitive element.

Lemma 3.3. [8 and 12]). Let X be a connected
finite H-complex. A necessary and sufficient condition
that X has no p-torsion is that its cohomology with
Z coefficients is an exterior algebra on odd dimensional

P
generators.
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§4. Some facts about torsion in H-spaces.

The p-dimension of a space X 1is the largest

integer t such that Ht(X;Zp) # 0. Similarly, the

rational dimension of X 1is the largest t such that

Ht(X;Q) # 0.

Lemma 4.1. [12; Theorem 7.1]. Let X be a
path connected finite H-complex. Then for all p
the p-dimension of X equals the rational dimension

of X.

Lemma 4.2. [12; Corollary 7.2]. Let X be
as in Lemma 4.1 above. Then Ht(x) >~ Z and Ht_l(X)

is free.

For simply connected, path connected finite

H-complexes, we have:

Lemma 4.3. [12; Theorem 6.11]. Let X be a

l-connected finite H-complex. Then nl(X) = WZ(X) = 0.

The techniques used in §3 and §4 above are a
close study of Hopf algebra structure, Bockstein
spectral sequence, biprimitive spectral sequence,
Serre spectral sequence, and Leray-Cartan spectral
sequence (on the covering spaces of H-spaces). The
reader is referred to the well-written papers quoted

above and the paper by J. Milnor and J. Moore [33].
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§5. On a relation between the homology of X and the

homology of (X.

Even when X 1is a finite H-complex, X will not
be a finite H-complex unless X has the homotopy type
of K(G,2), where K(G,2) 1is the Eilenberg-MacLane
complex and G is finite free abelian [17]. A

theorem by W. Browden states that:

Lemma 5.1. [13; Theorem 5.15]. Let X be

a path connected, simply connected H-space. Suppose

H* (X:K) = A(x «esX_,+4..), an exterior algebra on

1’° m

generators XpoXoreees dim x, = 2ni + 1, K a field.
Then H, ((X;K) = K[yl,...,ym,...], a polynomial
algebra on generators Yqreeoo¥prees with

dim y; = 2ni.

We remark here that the lemma above is true
even without the hypothesis that X 1is an H-space.
The proof can be shown by using Serre's theory of
classes of abelian groups or by using the spectral

sequence of the cobar construction.

Lemma 5.2. [20; Theorem 4.1]. Let X be
a path connected, simply connected H-space of finite
homological type and let s; be the homology

mod p suspension in degree i:
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s; @ Q(Hi(QX:Zp)) -+ P(Hi+1(x’zp”

from the subspace of indecomposable elements of
Hi(QX7Zp) to the subspace of primitive elements of

Hi+l(X:Z Then if p=2, s; is a monomorphism

p)o k
unless 1i = 2q(2 m+2) - 2 for g >0, k >0, and
Q(Hm(QX;Zz)) # 0 and s is an epimorphism unless

i =241 for k >0 and Q(H_(0X:Z,)) # O.

We remark here that the above result is a
slight improvement over that of [13; Theorem 5.13].
The technique of proof is an application of Eilenberg-

Moore spectral sequence.

Lemma 5.3. [19]. If X is l-connected finite
H-complex and if (X 1is torsion free, then X has

no higher torsion.

Lemma 5.4. [13; Theorem 6.6]. Let X be a

path connected finite H-complex. Suppose that X has
no torsion. If s 1is the smallest integer for which

HS(X7Z) has p-torsion, then s = 2n, and n = 1 mod p.

§6. On localization of H-complexes.

One of the powerful techniques in attacking

finite H-complex problems is the concept of localization
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of H-complexes. Localization of CW complexes has been
studied by several mathematicians, notably by J. Adams
[2], D.W. Anderson [5], Bonsfield-Kan [10], Curtis-
Mislin [23], Mimura-Nishida-Toad [35], D. Sullivan
[46], and others. A relatively complete list of
references can be found in [35]. For a description

of the construction of x(p). the localization of

X at the prime p, see one of the above references.

The principal results on X(p) are listed below:

Lemma 6.1l. [35: Theorem 2.4]. The correspondence

X +X is a functor from the homotopy category of

(p)

l-connected CW complexes of finite type to the

homotopy category of l-connected countable CW complexes.

Lemma 6.2. [35; Theorem 2.5]. Let X Dbe a
l-connected CW complex of finite type. Then
H*(x(p)) = H, (X) ® Q(p), where Q(p) denotes the
integers localized at p, (i.e., the ring of rationals
whose denominators when reduced to the simplest form

are prime to p.)

Lemma 6.3. [35; Theorem 7.1]. Let X be an

H-space. Then X(p) is also an H-space.
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Lemma 6.4. [35; Proposition 2.2]. Let X be
a 2-connected CW complex of finite type. Then

(ox) has the homotopy type of Q(X(p)).

(p)

§7. The cohomology of covering spaces of H-spaces.

Let X be a connected finite H-complex. Then
in [39] it is shown that g, the universal covering
space of X, 1is a l-connected finite H-complex. Let
X be a covering space of X. If X h X is the
covering projection, then we can convert X L x to
the fibration sequence X Lx § K(G,1), where i
is the inclusion map and X' has the homotopy type

of X and consider the Leray-Cartan spectral

sequence of this fibration sequence. We have:

Lemma 7.1. [11]]. Let p be an odd prime.
Then H*(X;Z) = A ® E as rings, where A = W*(H*(X?Zp))
= H*(X:Zp)/T, I is the ideal generated by
f*(H*(K(G,l);Zp)) and E 1is the exterior algebra

on n generators XpreeosX where the dimension
r, ry T,

dimensions of a system of generators of the kernel
of f*. If p=2, then the same result holds, but

the isomorphism is only as modules.
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Lemma 7.2. [1l1]. As in Lemma 7.1 above if
X = ;, then the ideal I is generated by Hl(x;zp)
and the subspace B of HZ(X:Zp), where each element
of B 1lies in the image of the Bockstein homomorphism

B : Hl(X:Zp) -+ Hz(x;zp) for every s. The dimension

of the xi's is determinéd by writing the algebra
generated by B as the tensor product of polynomial
rings and truncated polynomial rings. For each
truncated polynomial ring on one generator we get one
x5 whose dimension is the height of the generator

minus one.

§8. Statements of Results.

Throughout this section, X denotes a path
connected finite H-complex and (X denotes the loop
space of X. Also assume that if X 1is a l-connected

finite H-complex of rank 2 having 2-torsion, then
. D * H
H*(X,Zz) > H (GZ'ZZ)'

where G2 is the exceptional Lie group whose cohomology

with 22 coefficients is:

H*(G,y1Z,) = zz[x3]/(x‘3‘) ® A (Sq2x3).



21

the tensor product of a polynomial algebra on one
generator of dimension 3 truncated at height 4 and

an exterior algebra on one generator of dimension 5.

We remark here that this hypothesis might
be superfluous as the proof of it was claimed [unpublished]
by J.R. Hubbuck during the International Conference

on H-spaces at Neuchatel in Switzerland in 1970.

As mentioned in Chapter one it has been shown
by W. Browder that if X is of rank one, then X

has no odd torsion. If X 1is of rank 2, we have:

Theorem 1. If X has rank 2, then X has

p-torsion for p > 5.

Theorem 2. If X 1is l-connected and has rank

2, then X has no odd torsion.

Torsion in X 1is closely related to torsion

in (X. A relation of them is the following:

Lemma 3. Let p be a prime. If X has no

p-torsion, then QX has no p-torsion.

For most known examples of l-connected finite
H-complex X, (X has been shown to be torsion free;
thus it is a long standing conjecture that X is

torsion free. 1In required to this we have:
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Theorem 4. If X has rank 2, then (X

is torsion free.

Recall that if Hl(x;z) has an element of order
p2 for some 1 and some prime p, then we say that

X has higher p-torsion.

Corollary 5. If X is l-connected and has

rank 2, then X has no higher p-torsion for any p.

If X has rank 2, then from Theorem 1 above
we have that X has no p-torsion for p > 5. 1In
the absence of 2-trosion we have an interesting

restriction on the presence of 3-torsion.

Corollary 6. If X has rank 2 and has

no 2-torsion, then X has 3-torsion if and only if

HZ(X;Z) has an element of order 3.

This completes the study of torsion in the

rank 2 case. For ranks higher than 2 we have:

Theorem 7. (i) If X has rank less than or
equal to 5 and if X has
no 2-torsion, then X has
no p-torsion for p > 7.
(ii) If X 1is l-connected, has
rank less than or equal to
4, and has no 2-torsion, then

X has no p-torsion for p > 5.
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The center of SU(n) 1is isomorphic to z, .
a cyclic group of order n [3]. Thus for any prime
P the corresponding projecture group SU(p)/Zp has
p-torsion. However, these groups are not simply
connected. For l-connected finite H-complexes having
no 2-torsion we have Theorem 7 above. For l-connected

associative finite H-complexes we have:

Theorem 8. Let X be a l-connected associative
finite H-complex of rank less than or equal to 5.
Then X has no p-torsion for p > 7. Further, (X

has no p-torsion for p > 7.

For a connected topological group or loop space
G with H*(G;Zp) finitely generated, if p 1is an odd
prime and if H,(G:;Z) has p-torsion, then H*(G;Zp)
is not primitively generated. This is a result by W.
Browder [16; Theorem 1]. A recent result of J.
Hubbuck [31; Corollary 1.3] states that if Y is a
l-connected homotopy commutative and homotopy associative
H-space and if H*(Y;Z) has no p-torsion where p is
an odd prime, then H*(Y:Zp) is primitively generated
if and only if the ring H*(Y;Zp) is isomorphic to

zp[yl,...,ym,...] ® A(xl,...,xn,...), a tensor product
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of a polynomial algebra on generators Yy all having
dimension 2 and an exterior algebra on odd dimensional

generators Xy

As a further application of the techniques of
this thesis, we give a simple proof of Hubbuck's
result quoted above for a l-connected finite H-complex
X when X has rank less than or equal to 4 and

has no 2-torsion.



CHAPTER III

Proofs of Results

Throughout this chapter X denotes a path
connected finite H-complex and QX denotes the loop
space of X. We also assume that if X 1is l-connected

finite H-complex of rank 2, and if X has 2-torsion,
* - o * -

where the cohomology of G is stated in §8 of

2
Chapter II. Again we remark here that this hypothesis
might be superfluous as the proof of it was claimed

[unpublished] by J.R. Hubbuck during the International

Conference on H-spaces at Heuchatel in Switzerland

in 1970.

Theorem l. If X has rank 2, then X has

no p-torsion for p > 5.

Proof. We divide into two cases, namely,
(i) X has no 2-torsion, and (ii) X has 2-torsion.
(i) If X has no 2-torsion, then the type
of x is (1,1),(1,3),(1,7),(3,3),(3,5).,

(3,7), or (7,7) by Lemma 2.2 in Chapter II.

25



(ii)

26

Suppose that X has p-torsion for
p>5. If s 1is the smallest
integer for which HS(X;Z) has
p-torsion, then by Lemma 3.2 in
Chapter 1I, s=2m and, since

p ¥ 2, HS(X;ZP) has a primitive

element. From Lemma 1.1 in

w

Chapter II we have P(H2m(X:Zp))
(Q(Hzm(x;zp)))*, since H*(X;Z))
and H*(X;Zp) are dual to each
other. Thus Hzm(x;zp) has an
indecomposable element; hence a
generator. By Lemma 3.1 in
Chapter II H*(X;Q) has a generator
in dimension 2mpk-1, for some

k, 0<k < . We have 2m > 2,

p>5, and k > 1; so 2mpk-l > 9.

This contradicts the possible types
of X which are (1,1),(1,3),(1,7).
(3,3),(3,5),(3,7), and (7,7).

If X has 2-torsion, then again we
consider two cases, (a) X 1is

simply connected, and (b) X is

not simply connected.
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(a) If X has 2-torsion and is simply connected,
then H*(X;Zz) = H*(GZ;ZZ), where the exceptional Lie

group G2 has mod 2 cohomology:

H* (Gz’zz) =S Zz[x3]/(x§) ® A(s§x3).

the tensor product of a polynomial algebra on one generator
of dimension 3 truncated at height 4 and an exterior
algebra on one generator of dimension 5. Since
H14(G2;Zz) # O and Hi(Gz:ZZ) =0 for i > 14, we
have Hl4(X;Zz) # O and Hi(x;zz) =0 for 1i > 14.
By Lemma 4.1 in Chapter II we have Hi(X:Q) # 0 and
Hi(X:Q) =0 for i > l4. Now, if X has p-torsion
for p > 5, then by the argument used in part (i)
above we see that there is a generator for H*(X:;Q)
in dimension 2mpk—1, where 2m is the smallest
integer for which H2m(x;z) has p-torsion and O < k ( o.
Since X 1is simply connected, we have vl(X) = vz(x) =0
by Lemma 4.3 in Chapter II. This implies that
Hi(X;Z) = HZ(X;Z) =0, Thus, 2m >4, p >5, k > 1,
and so 2mpk—l > 19. This contradicts the fact that
Hi(XrQ) =0 for i > 14.

(b) If X has 2-torsion and is not simply
connected, then consider the universal covering space
X of X. First, observe that X does not have type

(1,1). If X has type (1,1), then H2(X;Z) = Z
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and Hi(x:z) =0 for i > 2 by Lemma 4.2 in Chapter II.
Since X has 2-torsion, Hzn(X;Z) contains an element
of order 2r(r > 1), where 2n 1is the smallest integer
for which Hzn(x;z) has 2-torsion. Since 2n > 2,

we have a contradiction; hence X does not have type
(1,1). Also notice that X 1is simply connected finite
H-complex [see §7 in Chapter II]. From Lemma 7.2 in
Chapter II we have that if (nl,...,ni) is the type

of X, then the possible types of X are (nl,...,ni)
and (1,...,l,n1,...,ni). Let X have type (nl),

i.e., ; has rank 1. Then by Lemma 2.1 in Chapter II
we have n, = 3 or 7. This implies that X has type
(1,3) or (1,7), in which case there is no p-torsion
for p > 5 by the same argument used in (i) above.

Now let ; have rank 2. From Lemma 2.2 in Chapter

II we see that if ; has no 2-torsion, then i

has type (3,3),(3,5),(3,7), or (7,7). So the type
of X 1is (3,3),(3,5),(3,7), or (7,7). As
reasoned in (i) above, X has no p-torsion for

P 2>5 when X has no 2-torsion. If X has 2-

torsion, then again we have:
* ~- D * .
H* (X:2Z,) = H*(G,:Z,).

X has no p-torsion for p > 7 because if it does

H* (X;Q) will have a generator in a dimension at least
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2(1)(7) - 1 = 13. This implies that the type of X

is (1,13) since the top dimension of H*(X;Q) is

14. But then ; is of rank one, a contradiction to
our hypothesis that X 1is of rank 2. Suppose X has
5-torsion. Then H*(X:;Q) has a generator in dimension
2m5k-1 for m >1, k >1, where 2m is the

smallest integer for which Hzm(X;Z) has 5-torsion.
The only dimension to consider is 9 since the top
dimension is 14. Again this implies that the type

of X is (5,9). Now, X has 2-torsion, so let

2n Dbe the smallest dimension in which H*(X;Z) has
2-torsion. We see that 2n 1is not 2,4, or 8 since
then H*(X;Q) will have a generator in dimension
2(1)2k-1, 2(2)2k-l, or 2(4)2k—1, respectively,
which is not 5 or 9. Thus 6 and 10 are the

only remaining possibilities. In either case

H3(X722) = H4(X:Zz) = 0. But H (E;zz) a.-H3(G2:Zz) = 2,

so by Lemma 7.2 in Chapter II, we have a contradiction.

This completes the proof of the theorem.

Remark. The theorem above says that X has
no p-torsion for p > 5. In fact, X may have 2-
torsion; simply let X = GZ' Also, X may have 3-
torsion. Consider SU(3). 1Its center is Zy [3].
Let X be the corresponding projective group PSU(3).

It is obvious that X 1is of rank 2 and HZ(X:Z) o= Z3.
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Theorem 2. If X has rank 2 and is l-connected,

then X has no odd torsion.

Proof. We divide into two cases, namely,
(i) X has no 2-torsion, and (ii) X has 2-torsion.
(i) Let X have no 2-torsion. Since X
is simply connected, we have vl(x) =
wz(x) = 0 by Lemma 4.3 in Chapter II.
This implies that Hl(x) = H2(X) = 0;
hence the type of X is (3,3),(3,5),
(3,7), or (7,7), by Lemma 2.2 in
Chapter II. Suppose that X has p-
torsion for p > 3. Let s Dbe the
smallest integer for which HS(X;Z)
has 3-torsion. Then by Lemma 3.2 in
Chapter II, s=2m and HS(X;ZP)
has a primitive element. From Lemma
1.1 in Chapter II we have that
P(H,, (X:2))) = (QH"(X:2))))*, since
H*(X;Zp) and H*(X;Zp) are dual
to each other. Thus Hzm(x:zp) has
an indecomposable element; hence
a generator. By Lemma 3.1 in
Chapter II, H*(X:;Q) has a generator
in dimension Zmpk-l, for some Kk,

O <k < ». We have that 2m > 4
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since X 1is simply connected, p > 3,

and k > 1; so 2mpS-1 > 4.3-1 = 11.

This contradicts the possible types of

X which are (3,3),(3,5),(3,7), and (7,7).
(ii) Suppose that X has 2-torsion. From

Theorem 1 X has no p-torsion for

P > 5. Thus all we need to show is

that X has no 3-torsion. Suppose

the contrary holds. Then X has

2-torsion and 3-torsion. Consider

X(3), the localization of X at

the prime 3. By Lemma 6.1 in

Chapter 1II, X(3) is a l-connected

CW complex and by Lemma 6.3 in

Chapter II we see that X(3) is a
l-connected finite H-complex.
Since X 1is of rank 2, X(3) is
of rank 2 by Lemma 6.2 in Chapter
II. Also by Lemma 6.2 in Chapter II

we have that X has only 3-torsion

(3)

which implies that X has no

(3)
2-torsion. Now, by the result in
part (i) above we see that this is a
contradiction. Thus X has no p-

torsion for p > 3 and this completes

the proof of the theorem.
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Lemma 3. Let p be a prime and X be
l-connected. If X has no p-torsion, then X

has no p-torsion.

Proof. Suppose that (X has p-torsion for
some prime p. Then by the Universal Coefficient

Theorem for homology:
Hn(ox;zp) = (H ((X:2) ® zp) @ (Hn_l(nx;z)*zp)

we have that if Hn(QX:Z) has p-torsion, then

Hn(ﬂX7Zp) # 0 and H (OX:ZP) # 0. This means that

n+l
Hi(QX7Zp) # O for some positive odd integer 1i. This
implies that H*(QX:ZP) # Zp[yl,...,ym,...], where
dim y; = 2ng; hence H*(X;Zp) # A(xl,...,xm,...), an
exterior algebra on odd dimensional generators by
Lemma 5.1 in Chapter II. But then X has p-torsion
by Lemma 3.3 in Chapter II. This contradicts the
hypothesis that X has no p-torsion. Thus X

has no p-torsion.

Theorem 4. If X has rank 2, then (X

has no p-torsion for any p.

Proof. We divide into 2 cases, (i) X 1is
simply connected, and (ii) X is not simply connected.
(i) Suppose that X is simply connected.
If X has rank one, then X has the
homotopy type of S3 or S7 [15;

Theorem 5.2] and QS3 and QS7 are
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torsion free. Suppose now that X
has rank 2. By Theorem 2 X has no
p-torsion for p > 3. Thus by Theorem
3 above (X has no p-torsion for
P >3. So, if we can show that X
has no 2-torsion, then we are done.
If X has no 2-torsion, then
by Lemma 3 (OX has no 2-torsion and
the theorem is proved. Suppose that
X has 2-torsion. Since X 1is 1-
connected,

H*(X:Zz) o H*(Gz’zz)'

where the cohomology ring H*(Gz;zz)
has one generator in dimension 3

and one generator in dimension 5.

We shall show that (X has no 2-
torsion. Suppose the contrary holds.
As reasoned in the proof of Lemma 3,
Hi(QX7ZZ) contains 2-torsion for some
positive odd integer i. Let m

be the smallest such i. Then
Hm(QX:Zz) contains an indecomposable
element. Since, by Lemma 5.2 in

Chapter 1I,

S, * QH (0X;2,)) = P(H ,(X:2,))
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is a monomorphism for m # 2t(2n)-2,
where t > 1 and 2n = dimension
of some generator of H*(X;Zz), we
see that Hm+1(x;zz) contains a
primitive element. Since

+1
P(H ,,(X:2,)) = (Q(H" " (X:2,)))*,

we see that Hm+l(X:Z2) has an
indecomposable element; hence a
generator. But m+l is even, a
contradiction to the fact that
H*(X;Zz) has generators only in
dimensions 3 and 5.

If X 1is not simply connected,
then consider the universal covering
space X of X. Let (X)),

denote the path connected component
of (X containing the base

point * and let p : ; + X be
the covering projection. Since

Q; is path connected and ((X),

is also path connected, the map

p : Q; + (X), induces a one-

one correspondence between the
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path component of Q; and that of
(X),. Since sz : w1(§5 o= wi(x)

for i > 2 and vi(Y) s'ni_l(ﬁY)

for any Y, we have that

(@) s T3y () =y (0X) = 7y ) (X))
Thus Q; has the weak homotopy

type of ({X), and thus Qg has

the homotopy type of ((X), .

cf. [41l; Chapter 7]. But ; is

a simply connected finite H-complex

of rank 1 or rank 2, so by

part (i) above Qg is torsion free.
Thus ((X), 1is torsion free. The
cohomology of (X 1is the direct sum

of the cohomology of the path components
of (X. Since all path components of

(X have the homotopy type of (0X), .

it follows that X 1is torsion free.

corollary 5. If X 1is l-connected and is of

rank 2, then X has no higher p-torsion for any

prime p.

Proof. By Theorem 4 above (X 1is torsion free.
By Lemma 5.3 in Chapter 2, X has no higher p-torsion

for any prime p.
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Corollary 6. If X 1is of rank 2 and has

no 2-torsion, then X has 3-torsion if and only if

H2(Xzz) has an element of order 3.

Proof. If X has no 2-torsion, then the
type of X is (1,1),(1,3),(1,7),(3,3),(3,5),(3,7),
or (7,7). Suppose X hés 3-torsion. Then H*(X:Q)
has a generator in dimension 2m3k-l, where
O<k <o and 2m 1is the smallest integer for
which Hzm(X:z) has 3-torsion. But 2m cannot
be greater than or equal to 4 Dbecause if 2m > 4,
then we have 2m-3k-1 > 11, a contradiction. Thus

2m = 2,

Remark. As in the remark following the proof
of Theorem 1, PSU(3) has no 2-torsion but has 3-

torsion and HZ(PSU(3):Z) = 2.

Theorem 7. (i) If X has rank less than
or equal to 5 and if X has no 2-torsion, then X
has no p-torsion for p > 7.
(ii) If X 1is l-connected, has
rank less than 5, and has no 2-torsion, then X

has no p-torsion for p > 5.



37

Proof.

(1)

Let X be of rank less than or equal
to 5 and have no 2-torsion. Then

by Lemma 2.3 in Chapter II, the type
of X 1is a union of sets taken from
(1), (3),(7),(3,5),(3,7),(3,5,7),
(3,7,11),(3,5,7,9),(3,7,11,15),
(3,5,7,9,11), or (3,7,11,15,19).
Suppose X has p-torsion for some
p>7. If s is the smallest integer
for which H°(X;Z) has p-torsion, then
by Lemma 3.2 in Chapter II, s = 2m
and, since p # 2, then HS(X:ZP)

has a primitive element. From

Lemma 1.1 in Chapter II we have that
P(HZm(X7Zp)) == (Q(Hzm(x:zp) ))*, since
H*(x:zp) and H*(X:Zp) are dual to
each other. Thus Hzm(x;zp) has an
indecomposable element; hence, a
generator. By Lemma 3.1 in Chapter I1I,
H* (X;Q) has a generator in dimension
2mpk-l, for some k, O < k < o, Let
p=7. If 2m=2 and k=1, then

2mpk-1 = 2+7-1 = 13, a contradiction

to the possible types of X. 1If
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2m=2, k > 2, then 2mp -1 > 2-72-1 = 97,
again a contradiction. If 2m=4 and

k >1, then 2mp<-1 > 4.7-1 = 27. Thus
in any case X has no 7-torsion. Let
p>1ll. If 2m > 2 and k > 1, then
2mp¥-1 > 2-11-1 = 21, which is a
contradiction to the possible types of
X. Thus X has no p-torsion for p > 7.

(ii) Let X Dbe of rank less than or equal to

4 and have no 2-torsion. Then the type
of X 1is a union of sets taken from
(L,(3),(7),(3,5),(3,7),(3,5,7),(3,7,11),
(3,5,7,9), or (3,7,11,15). By the same
argument used in (i) above, we have
that H*(X:Q) has a generator in
dimension 2mpk-l, where 0 < k { =
and 2m is the smallest integer for
which Hzm(x;z) has p-torsion for

some p > 5. Since X is l-connected,
Wl(X) = wz(x) = 0 by Lemma 4.3 in
Chapter II; hence Hl(X) = Hz(x) = 0.
Thus 2m > 4, k >1, and p > 5; so
2mp¥-1 > 4.5-1 = 19. This contradicts

the possible types of X.
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Remark (i). If X 1is a connected finite

H-complex and if X is also homotopy commutative, then
X has no 2-torsion [14; Corollary 8.7]. If X 1is a
connected finite H-complex both homotopy commutative and
homotopy associative, then X is torsion free [14:
Theorem 8.10]. If G 1is a compact Lie group with
trivial center, it follows that G does not admit any

homotopy commutative and homotopy associative multiplication.

Remark (ii). For all the known compact connected

Lie groups G we have that if G has torsion, then
it has 2-torsion. On the other hand, there are finite
H-complexes that have 3-torsion or 5-torsion but not
2-torsion [35; § 8]: however, their ranks are not less

than or equal to 5.

Theorem 8. If X 1is l-connected, associative,

and has rank less than or equal to 5, then X has no
p-torsion for p > 7; furthermore, (X has no p-torsion

for p > 7.

Proof. Let X be a l-connected, associative,
finite H-complex of rank less than or equal to 5. Then
by Lemma 2.5 in Chapter II the type of X 1is (3),(3,3),
(3,5),(3,7),(3,11),(3,3,3), (3,3,5),(3,3,7), (3,5,7), (3,3,11),

(3,7,11),(3,3,3,3),(3,3,3,5),(3,3,5,5),(3,3,3,7),(3,3,5,7),
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(3,3,7,7),(3,5,7,9),(3,3,3,11), (3,3,5,11), (3,3,7,11),
(3,7,7,11),(3,3,11,11),(3,7,11,15), (3,11,15,23),(3,3,3,3,3),
(3,3,3,3,5),(3,3,3,5,5),(3,3,3,3,7),(3,3,3,5,7),(3,3,5,5,7),
(3,3,3,7,7,(3,3,5,7,7),(3,3,5,7,9),(3,5,5,7,9),(3,3,3,3,11),
(3,3,3,5,11),(3,3,3,7,11), (3,3,5,7,11),(3,3,7,7,11),
(3,5,7,9,11),(3,3,3,11,11),(3,3,7,11,11),(3,3,7,11,15),
(3,5,7,11,15),(3,7,9,11,15),(3,7,11,11,15),(3,7,11,15,19),
or (3,3,11,15,23). By using the same argument as in (i)

of Theorem 7 above we see that if X has p-torsion for
p>7 and if 2m is the smallest integer for which
Hzm(x;z) has p-torsion, then H*(X;Q) has a generator

in dimension 2mpk-l for some k, O < k < =, Let

p=7. If 2m=2, k=1, then 2mpk-l = 2+7-1 = 13, a
contradiction to the possible types of X. If 2m=2,

k > 2, then 2mpk-l 2_2-72-1 = 97, again a contradiction.
If 2m=4 and k > 1, then 2mpk-l > 4°7-1 = 27. Thus

in any case X has no 7-torsion. Let p=11. If

2m=2, k=1, then 2mp -1 = 2-11-1 = 21, a contradiction.
If 2m > 2, k > 2, then 2mpk-l > 2+11-1 = 241, again

a contradiction. Let p > 13. If 2m > 1, k > 1,

then 2mpk-1 > 2+13-1 = 25. Thus X has no p-torsion

for p > 7. The last statement of the theorem follows

from Lemma 2.
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Remark. Let X Dbe l-connected, have rank less
than or equal to 4, and have no 2-torsion. If all
generators in H*(X:Zp) for p > 5 have dimension 3,
then H*(QX;ZP) is primitively generated. This is a

special case of Hubbuck's result [31; Corollary 1.3].

Proof. If X 1is l-connected, has rank ( 4,
and has no 2-torsion, then by (ii) of Theorem 7 above X
has no p-torsion for p > 5. Therefore by Lemma 3.3

in Chapter II

H*(X;Zp) - A(xl,...,xi), 1<i<4, p>5,

an exterior algebra on odd dimensional generators. By

hypothesis dim xj =3 for 1 < j<i. It follows that

H*(QX:ZP) = zp[yl....,yi], 1<ig4, p>5 and that
dim yj =2 for 1< j<1i1 by Lemma 5.1 in Chapter II.
Since X 1is l-connected, X 1s 2-connected by Lemma

4.3 in Chapter II. Thus (X is l-connected because
m1((X) = 7,(X) = 0. It follows that Hl(QX;Zp) = O.
Now, dim yy = 2 for 1< j<i and Hl(QX:Zp) = 0;
so if A, 1is the homomorphism induced by the diagonal
map A : X 4+ (X x (X, then

.) = V. l1+1 . H. (0X; H. A
bulyy) =v; ® Ry Ei+?=2 i (0X:2.) @ Hy(OX:2Z.),
i.e., Y is primitive. Therefore H*(QX:ZP) is

primitively generated.-
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