
ABSTRACT

A COMPARISON OF FINITE ELEMENT

AND FINITE DIFFERENCE METHODS

IN ELASTOSTATIC PROBLEMS

by Nicholas P. Dario

Four objectives of this thesis are: to compare finite element

and finite difference solutions to elastostatic problems, to present an

apparently different formulation of the Navier equations in finite

difference form and to demonstrate their applicability, to formulate and

apply the axially symmetric linear strain triangular ring stiffness.

matrix, and to present solutions for simple composite bodies.

For the sake of completeness, finite element stiffness matrices

are derived for plane and axially symmetric problems. Both constant

and linearly varying strain triangles are considered. Nodal point

forces associated with boundary tractions are treated in detail. The

constant and linear strain triangles as well as the constant strain

triangular ring have been presented by other authors. The linear strain

triangular ring has been mentioned by other writers but has apparently

not been specifically presented prior to this. Furthermore, the present

author is unaware of earlier published applications of this stiffness

matrix.

Finite difference expressions associated with the Navier elas-

ticity equations are derived in a more general form which allows con-

sideration of anisotropic materials. This is done by simply replacing
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NICHOLAS P. DARIO

derivatives by appropriate difference expressions. These are also

derived by what is believed to be a different method involving the

equilibrium of a material element. Inherent in the procedure is the

necessity of making assumptions of the strains in terms of displacement

differences. The method has the advantage that static boundary con—

ditions are readily derived as well.

The comparison of the methods is given in terms of Specific

applications. Both plane stress and axially symmetric examples are

included. In each category, a problem with a well—known elasticity

solution is treated so that comparisons can also be made with the so-

called "exact" solution. An application involving a simple composite

body is also presented.

The investigation demonstrates the ability of the finite element

and finite difference methods to give equally good results in displace-

ment analysis. Agreement with elasticity solutions is excellent for

each method. However, the stresses which result from the finite

difference analysis and the finite element analysis using constant

strain triangular elements are generally less satisfactory than those

obtained in the finite element analysis which employs linearly varying

strain triangular elements. This is especially true at boundary points.

Displacements in simple composite bodies treated are also very compar-

able for the various methods. Interfacial stresses, however, were more

erratic for the finite element solutions than for the corresponding

firuxe difference solutions. The smoother variation of the difference

sollndons is believed to be more realistic.
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I. INTRODUCTION

1.1 Remarks

A fundamental problem of mechanics of deformable bodies is the

determination of the state of stress and deformation in arbitrary three

dimensional solids. Of particular importance are two dimensional

situations involving plane stress or plane strain. The literature of

the classical theory of elasticity contains exact solutions to many of

these problems. These are restricted for the most part to two dimen-

sional problems involving simple geometry and boundary conditions. In

more complicated problems, it is necessary to resort to approximate

methods of solution.

Two approximate procedures which have found widespread appli—

cation in recent years are finite difference and finite element methods.

Finite difference methods involve mathematical approximations. The

governing differential equations and related boundary conditions are

replaced by difference expressions. These relate discrete values of

approximating functions at a finite number of points. The result is a

system of linear algebraic equations which is solved by standard numer—

ical procedures. Finite element methods refer to a class of approx—

imate procedures in which the actual body or structure is replaced by

an assemblage of carefully chosen elements connected at a finite

number of points called nodal points. In the stiffness method for

example, an assumption of the strain distribution in the element is
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2

made with strains related to the displacements of element nodal points.

Equilibrium conditions are then satisfied at the nodal points. There is

no need for approximating the governing equations as is the case with

finite difference methods. The approximation,on the contrarg is of a

physical nature. The procedure results in systems of equations which

relate nodal point displacements to nodal point forces through stiffness

or flexibility influence coefficient matrices. These are linear alge—

braic equations which are likewise solved by standard numerical

procedures.

1.2 Previous Developments
 

The first application1 of finite difference methods is apparently

due to C. Runge [1]2. He used the method in the analysis of torsion

problems. L. F. Richardson [2] made further progress by applying an

iterative procedure to obtain the stress distribution in dams.

H. Marcus [3] and later H. Hencky [4] were successful in applying finite

differences in the analysis of plate bending problems. R. V. Southwell

[5] and his students are responsible for many applications in recent

times.

The finite element methods are a generalization of well known

structural procedures which were originally developed in conjunction with

aircraft structural problems. They are related to the so called "matrix

methods of structural analysis" advanced by Langefors [6] and Argyris [7].

1Timoshenko and Goodier, "Theory of Elasticity," Page 461.

2The numbers in square brackets refer to references listed in the

Bibliography.
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3

In recent times, application of these methods to continuum problems and

other structures has been extensive. Their increasing use and develop—

ment is closely related to progress made in digital computation and

generally greater availability of digital computers themselves.

The first achievement in the area of finite element methods is

due to Hrennikoff [8]. He developed a framework analogy for plane stress

problems in which the actual body is replaced by a lattice of beam

elements. The procedure was subsequently improved by McHenry [9] after

which Parikh and Norris [10] generalized the method by including bending.

A most sifnigicant achievement is due to Turner, Clough, Martin,

and Topp [11]. They presented a triangular plate element stiffness

matrix which could be used in the analysis of plane stress problems.

This element is assumed to be in a homogeneous state of strain and

the displacement field is a linear one. This matrix has been used

extensively and is directly responsible for many advances which have

occurred during the past ten years. Argyris [12] has given this matrix

a different form, one which he calls the natural or invariant stiffness.

The original work of Argyris and Kelsey [7,13] demonstrates the

capability of the methods to account for initial strains of a thermal

or misalignment nature. Turner, Dill, Martin, and Melosh [14] consider

the large deformation of heated structures. Argyris [15] discusses

initial strains due to plasticity and thermal effects.

DeVeubeke [16] introduced a plane stress triangle plate element

for which the strain variation is linear and thus the displacement field

is quadratic. This element has been used by some writers including

Argyris [17, 15] and Felippa [18]. It has proven to be very useful

for problems involving stress concentration. Felippa [18] has discussed
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4

other refinements to these stiffness matrices involving quadratic and

higher order strain variation.

Finite elements have also been used in the analysis of plate

and shell problems. Among the many contributors in this regard are

Melosh [l9], Argyris [20], Schmit [21], Clough [22] and Zienkiewicz [23].

Argyris [24] has demonstrated the applicability to large displacement

problems as well. Wilson [25] and Rashid [26] have worked out stiffness

matrices for axially symmetric ring elements. Argyris [24, 27] has

used a tetrahedron element in the analysis of three dimensional problems.

A number of writers have discussed the dynamic problems involving the

determination of natural frequencies and natural modes of oscillation

for various systems [28, 29, 30]. Felippa [18] gives a detailed account

of nonlinear analysis including the formulation and solution of elasto-

plastic problems. Chang and Taylor [31,.32] demonstrate the usefulness

of the method in linear viscoelastic problems which arise in nuclear

reactor work.

1.3 Present Investigation
 

The objective of this present work is to compare solutions of

elastostatic problems obtained by finite element and finite difference

methods. Included are some examples which have known solutions. Thus,

comparisons are also made with the exact elasticity solution in these

cases. It was of primary interest in this dissertation to obtain

solutions to problems involving composite materials. Exact solutions to

such problems are not generally available. In these situations, the

results of several approximate solutions are compared with one another.
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5

Included in this investigation are formulations of the finite

difference and finite element methods for plane stress or plane strain

and axially symmetric elastostatic problems. Particular applications

pertain to plane stress and axially symmetric problems only. Finite

element formulations are given for both constant and linearly varying

strain elements. Finite difference problems are formulated in terms of

displacement (Navier) equations of equilibrium. This is in contrast

with the usual stress function approach which has been used so often in

the analysis of plane problems.
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II. FINITE DIFFERENCE METHOD

2.1 General Remarks
 

The analysis of elastostatic problems by finite difference

methods is a two step procedure. The first step involves obtaining

finite difference expressions for the governing partial differential

equations and associated boundary conditions. These difference

equations relate discrete values of an approximating function at a

finite number of points. A mesh of lines is then superimposed over

the domain of the boundary value problem forming a set of nodal points.

A finite system of linear algebraic equations is obtained by writing

difference equations for each nodal point of the system. The solution

of these equations comprises the second step in the finite difference

procedure. The equations are characterized by the existence of a

relatively small number of non-zero coefficients. The coefficient

matrix is said to be sparsely populated. It is therefore possible to

deal with truly large systems involving as many as 1000 equations.

The solution can be obtained by iterative procedures or by a modified

Gauss elimination technique.

It is possible to achieve the first step in a number of ways.

One of these is to simply replace the governing differential equations

and related boundary conditions by appropriate finite difference

expressions. This would be the most direct approach if boundary
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7

conditions are known in advance. A second approach involves a vari-

ational principle whereby potential energy is

difference form. Letting the total potential

ary value results in both governing equations

expressed in finite

energy take on a station-

and associated boundary

conditions in the form of finite difference eXpressions. Still another

approach involves writing equilibrium equations for material regions

corresponding to interior and boundary points. Approximate expressions

for stresses are used along with any externally applied loads resulting

in finite difference expressions for both interior and boundary points.

2.2. Differential Equations for Plane Stress
 

Consider first the state of stress in

boundary forces which are applied parallel to

are uniformly distributed over the thickness.

a thin plate loaded by

the plane of the plate and

For convenience, the mid-

plane of the plate is taken to be the x-y plane. If the stress compo—

nents oz, Tyz, and sz are zero at every point in the body, the state of

stress is called plane stress. Thus, the state of stress in such a body

is completely specified by the stress components Ox’ oy, and T .

xy

The equilibrium of the force system is expressed by the equations

30 at

—+———’EZ+X-0
8x By

30 31

+——"1+Y=0
3y 3x

(2.1)

where X and Y are body force components reckoned per unit of volume.

For most applications, the orthotrOpic constitutive relation-

ships are sufficiently general. For the case of plane stress these



become

(2.2)

Txy 8 C33ny

In the case of isotropic behavior, the elastic constants are

(2.3)

C33 ' 2(1 + v)

with E the modulus of elasticity and v Poisson's ratio.

The strain-displacement relationships are

Bu

E '—

x 3x

(2.4)

.331
t

Y By

.2231

ny 3y 3x

where u and v are continuous displacement functions in the x and y

directions respectively. The three strain components Ex’ Ey’ ny

cannot be specified independently since they depend on two functions

u and v. By differentiating the equations (2.4) it is possible to show

that the strain components must satisfy the equation
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2 3x2 x y

 

3y

which is called the compatibility equation. Thus if a stress or dis-

placement field is assumed, it is necessary that equation (2.5) be

satisfied in order to assure continuity of deformation.

Then at each point in the body,the equilibrium of the stress

field is expressed by equations (2.1). These can be expressed in terms

of strains by introducing equations (2.2). Thus

36X 8s ayx

C115?+Clz—XBX +C33—Xdy +X=0

36X Be Byx

C21 5;—-+ C22 S§Z-+ C33 —3;X-+ Y = 0

It is now possible to eliminate strains through the strain—displacement

relationships (2.4). The result is

 
32u azu 32v

C -——— + C ——— + (C + C ) + X = 0

11 33 12 333X2 ayz axay

(2.6)

82v 82v 32u
C ———-+ C ———-+ (C + C ) ————-+ Y = 0

22 33 21 33ayz 3X2 Bxay

Equations (2.6) are a generalization of the Navier plane stress equa-

tions. They reduce to the Navier equations for isotropic materials. It

is only necessary to replace the constants C11, C12, C21, C33 by

expressions (2.3). The result is
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2 2 2
E 3 u + 2(1E+ ) 8 u + 2(1E. ) g g + X = 0

l - v2 8x2 v Byz V x y

(2.7)

2 2 2
E 8 v E 3 v + E 3 u + Y = O
 

 
 +

V2 ayz 2(1 + V) 3X2 2(1 " V) Bxay

These last equations are also presented by Sokolnikoff [33] in the

indicial notation and in terms of the Lamé coefficients.

Thus it is seen that the plane stress elasticity problem can be

formulated in terms of two second order partial differential equations

in displacements. In principle, one would hOpe to be able to find dis-

placement functions u and v which satisfy equations (2.6) or (2.7).

Generally, this is a formidable problem so that one is forced to resort

to approximate methods of solution. Finite difference expressions for

these equations will be presented in a subsequent section of this

chapter.

2.3 Differential Equations for Plane Strain
 

Although very different in principle, the plane strain formu-

lation closely resembles that for plane stress. A body is said to be

in a state of plane strain parallel to the x—y plane if the displacement

component perpendicular to this plane is zero for all points in the body

and if the remaining displacements are independent of the z coordinate.

Thus, the relationships

u = u(x,y)

v(x.y) (2.8)<

I

w E 0
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define the state of plane strain. It follows from the strain-displace-

ment relationships that

_ 23.:

e2 I 32 O

y = a” + §3-= 0 (2.9)
yz 3; 32

= 22. 1!.

sz 82 8x

ll

0

The non—zero strain components are Ex’ Ey’ and ny°

The orthotropic constitutive relationships for plane strain are

Ox = C11E): + C12€y

0y = C21€x + C22€y (2.10)

oz = C31€x + C32€y

Txy = uquy

The two remaining shear stresses vanish throughout the body in view of

equations (2.9). For isotropic materials, the elastic constants are

_ (1 - v)E

22 ' (1 + v)(l - 2v)

 

ll

 
c = c = c = c ”E
12 21 13 31 = (1 + V)(1 - 2v) (2.11)

E

can = 2(1 + v)

The equilibrium of the force system for the case of plane strain

is likewise expressed by relationships (2.1). Using the strain-
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12

displacement relationships and the constitutive relationships, (2.10)

above, equilibrium equations in terms of displacements similar to

equations (2.6) can be written for the case of plane strain:

 

   

   

32u 32u 32v

C ———-+ C ———-+ (C + C ) + X = 0
1 an 12 an

1 3x2 3y2 axay

(2.12)

82V 82v 82u

C ———-+ C ——— + (C + C ) ——7—-+ Y = O
22 MM 21 RH ,

3y2 3X2 axdy

For isotropic materials these become

(1 — v)E 82u + E 82u + E 82v + X = O

(l + v)(l - 2v) 8x2 2(1 + v) Oyz 2(1 + v)(l - 2v) DXUy

(2.13)

_ 2 2 2
(l v)E 3 v + E 8 v + E a u + Y = O

(l + v)(1 - 2v) Byz 2(1 + v) 3x2 2(1 + v)(l - 2v) Bxay

The above are the Navier equations for plane strain. They are likewise

presented by Sokolnikoff [33] in indicial notation.

2.4 Differential Equations for Axiallyfl§ymmetric Problems
 

The state of deformation in a solid of revolution is called

axially symmetric if the displacements are the same in all planes which

pass through the axis of revolution. Thus, the circumferential displace—

ment vanishes at each point in the body and the remaining displacement

components depend only on the radial and axial coordinates. These ideas

are expressed by the relationships

u = u(r, z)

w = w(r, z) (2.14)

v E 0
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Here u and w are the radial and axial displacements respectively.

The stress-equations of equilibrium for axially symmetric

problems are

30 31 o - o

r
 

  

rz r 6

at + 32 + r + R - 0

(2.15)

ST 80 T

r2 +.__E.+ r2 + z = 0
Br 32

where R and Z are the radial and axial components of body forces reckoned

per unit volume.

Once again, the orthotrOpic constitutive relationships are of

suitable generality for most problems.

0 = C e + C1262 + C135

r 11 r 8

0

ll C e + C2262 + C236 (2.16)

z 12 r 6

0 II C E + C23€z + C336

8 13 r 8

T = C e

rz Mu rz

The elastic constants for isotropic materials are much the same as those

in the plane strain formulation.

_ (l — v)E

11 22 33 ' (1 + v)(l - 2v)

 

vE

C12 ‘ C21 ’ C23 ’ C32 ’ C13 ‘ C31 ' (1 + v)(l - 2v) (2.17)

 

= ___ll____

Mk 2(1 + v)

The strain-displacement relations in cylindrical components
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applied to the axially symmetric case become

8 = 22.

r at

8w -

Ez ‘ 32
(2.18)

e =-3

6 r

_.22 2!.

er _ 82 + r

When equations (2.18) and (2.16) are introduced into equations (2.15),

a set of equilibrium equations is obtained in displacement components.

  

2 2

€116:—ll +%§}ri)+cwa_—E'C33u—
Br2 322 r2

32w 1 3w
+ C +C + C -C ———+R=O

( 12 an) Braz ( 12 23 ) r 32

(2.19)

2 2 2

1+1; (3w {5%) +C228w+(C12+CLm) 213812

3r2 822

1 Eu _

For materials which display isotrOpic behavior, these become the axially

symmetric Navier equations.

   

 

   

 

__(1 - v)E (aZu + 1_g3) + E 32u _ (1 — v)E 1i_

(1. + V) (1. " 2V) 31:2 1‘ 8r 2(1 + V) 322 (l + V) (l — 2V) r2

+ E 32“ + R = o (2 20)
2(1 + v)(l - 2v) Braz °

_j;__g 32w +’1.§wj (1 - v)E 32w + E a2u

2(1 + v) [BIZ r 3r (1 + v)(l - 2v) 822 2(1 + v)(1 - 2v) Braz

E l Bu _

+ 2(1 + v)(l - 2v) r z + Z - O
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2.5 Finite Difference quations for Plane Stress

Consider the arbitrary domain of

Figure 2.1 corresponding to the plane of

plane stress or plane strain. A mesh

(rectangular in this case)3 is superimposed

over the actual domain. The points of

intersection of these lines within the

 

domain are called mesh (nodal) points.
  

The points of intersection with the boundary Figure 2.1

are called boundary points. It is Rectangular Mesh

usually convenient to use a uniform spacing with equal magnitudes in both

directions. However,in certain cases it is desirable to select a

different x and y spacing, while in still other instances, a nonuniform

spacing is useful. The latter is particularly

1_“__ NW " _

true where stress concentration is f NE

 

involved or in the neighborhood of

irregular boundaries. Only
  

uniform spacing is treated in this work.

"
“
‘
fi
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In Figure 2.2, let the x

and y spacing be h and k respectively. SW 8 SF

r._-___ h +q .- h .— -"

The mesh or boundary points in the

Figure 2.2

Jimmediate vicinity of an arbitrary

Mesh Point and Neighboring

“Bah point 0 are shown. Points

\

SOme formulations may dictate the use of other mesh configurations

(e.g. oblique, polar, or arbitrary curvilinear meshes).
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The partial derivative with respect to x of a function u(x, y)

can be approximated at the point 0 by the first divided difference

it: uE—uw
= -—-————- (2.21)

3x 0 2h

In a like manner

u - u

Bu N S

3y 0 2k .

Approximations to second derivatives can be established in much_the same

u - u

way. At the point 1, midway between 0 and E, gfi-z -§—E——Q’ and at the

au u0"“w
point 3, midway between 0 and W, SE-z __—h———' Thus the second partial

derivative of u with respect to x can be approximated by differences in

the approximate first partial derivatives.

 

 

 

Bu _ Bu

2 3x1 3x3 uE — 2u +

.9111. ._.___h____= 20 u“ (2.23)
2

3x 0 h

2

The finite difference approximation to g—E-obtained in much the same

3y2

way is

2 u - 2n + u
a u z N O S (2.24)

2 2
3y 0 k

2

To obtain the second mixed partial derivative gxgy , the first

Partial derivative of u with respect to y is approximated at points E

and W. That is



 

9
"
"

D
'
v



Then

82u =

3x3y0

 

When equations
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“NE ' “SE

2k

“NW _ "8w

2k

22. _ 32

§__(§2) 2 By E By W = ”NE ’ “SE ' ”Nu + usw (2 25)

3x 8y 0 2h Ahk '

(2.23), (2.24), and (2.25) are introduced into the govern-

ing second order partial differential equations, the finite difference

 

 

 

expressions are obtained. Corresponding to (2.6) for plane stress are

2C11 C33 C11 C3
[ 2 -——J u - -——-(u + uw) — ——- (u + u )
h2 k2 o h2 E k2 N s

[C12 + C33) ( + ) - x (2 26)
4hk VNE vNw vSE sz “ o '

2C33 2C22 C33 C22
0 - -——-(vE + vw) — ——— (vN + VS)

h2 k2 h2 k

_ C21 + C33 ( _ _ + ) _ Y

4hk uNE uNw ”SE ”3w 0

Here X0 and Y0 are body force components applied at the mesh point 0.

If the

become

same spacing is taken in the x and y directions (2.26)

8 - _(Cll + C33) uO 4C11(uE + uw) 4C33(uN + us)

.. _ ._ 3 2
(C + C33)(v v v + vsw) h XO (2.27)

12 NE NW SE



 

I.
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8(C22 + C33) vO - 4C33(vE + vw) - 4C22(vN + vs)

— — — = 2

(C21 + C33)(“NE uNw “SE + “sw) h Y0

These same equations for isotropic materials become

8(3 - v)uO - 8(uE + uw) - 4(1 - v)(uN + us)

- (l + v)(v - v - v + v ) = 8 l—:—BE- h2X (2 28)
NE NW SE SW E O '

8(3 - v)vO - 4(1 - v)(vE + vw) - 8(vN + vs)

- (l + v)(u - u - u + u ) = 8 l—:—33 h2Y

NE NW SE SW E O

The relative magnitudes of the coefficients in the above equations

becomes more apparent when a particular value of Poisson's ratio is

assigned. Taking v = 1-in equations (2.28) one obtains
4

30h2XO

88u0 - 32(uE + uw) — 12(uN + us) - 5(vNE — va — VSE + VSW) = _-ET_——

(2.29)

30h2YO

88vO - 12(vE + vw) - 32(vN + vs) - 5(uNE - uNw — uSE + USW) = ———ET~—

2.6 Finite Difference Equations for Plane Strain
 

The development of finite difference equations for the case of

Plane strain involves the same concepts presented in the previous section.

One simply introduces the partial derivative approximations (2.23),

(2.24), and (2.25) into the appropriate differential equations. When

this is done for the isotropic relations (2.13) with equal spacing, h,

in the x and y directions,the result is
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8(3 - 4v) uO - 8(1 - v)(uE + uw) - 4(1 2v)(uN + us)

 

8(1 + V)(l - 2V) hpx

- (v - v - v + v ) = E 0
NE NW SE sw

(2.30)

8(3 - 4v)v0 - 4(1 — 2v)(vE + vw) - 8(1 v)(vN + VS)

 

= 8(1 + v)(1 - 2v) hZY

- (u - u - u + u ) E 0

NE NW SE SW

These results are more readily compared with corresponding plane

stress equations for a particular choice of Poisson's ratio. Again using

1
v = z-one obtains

2
30h X0

96u - 36(uE + uw) — 12(uN + uS) - 6(vNE - v — v + v ) = E

O

(2.31)

2
30h YO

96vO - 12(vE + Vw) - 36(vN + vs) - 6(uNE - u - u + u ) = E

NW SE SW

2.7 Axially Symmetric Finite Difference Equations
 

The development of Z

finite difference equations for

 

axially symmetric problems is

quite similar to that for plane
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represents one quarter of the cross I

section of a solid of revolution. The
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z axis is the axis of symmetry. A ' ' ' f ' ?   
rectangular mesh has been superimposed

over the region. Figure 2-3

Rectangular Mesh
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A typical mesh point 0

with mesh or boundary points

immediately around it is shown in

Figure 2.4.

of a function u(r,z) up to

and including the second order are

approximated by the following

difference expressions:

 

 

Partial derivatives
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,.NW N; r

? NE

k

0 E

W

k

1.1-

sw g s SE

1. h iJ—t‘-k1 .—

Figure 2.4

Mesh Point and Neighboring Points

 

 

22. 2 ”E - “W
3r 0 2h

.32 . UN - “S
82 0 2k

82u 2 UE ’ 2Uo + uw

8r2 0 h2

2 u u - u + u

8 u 2 NE NW SE SW

Braz 0 éhk

- +
azu 2 ”N 2U0 US

322 O k2

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

These finite difference approximations are introduced into the differ—

ential equations (2.18).

   

  

(uE - 2uO + uw) Cll (uE - uw) (uN - 2uO + us) ‘

C11 + r 2h + cu“ - C33
h2 o k2

+ (c + c ) ("NE wNw wSE + wsw) + C12 ' C23(WN ' ws)+ R

11 an 4hk r 2k



. « '.-,oa

..n



   

  

(wE - 2w0 + ww) ClW (wE — ww) (wN - 2wO + wS)

CHM + r 2h + C22

h2 0 k2

+ (C + C ) (uNE “NW USE + usw) + C23 + CH” (uN - us) + Z = 0

12 1m Ahk to 2k 0

Upon simplification, the above reduce to

h2 h2 h h
(2C11+ 20,.“4 2 + C33 2 ) L10 - C11 (1 + 317—) LIE - C11 (1 - 21' ) Uw

k r0 0 O

+

- C 2---(u + u ) - C12 C77 h-(w - w - w + w )

1.1+ kg N s 4 k NE NW SE sw

C - C
12 23 11 L _ = 2

2 k to (wN wS) h R0 (2.37)

2(C +C 12-) -C (1+—h—) C (1 h)w
22 1+1) 2 w0 an 2r wE 1+1. 21- w

k 0 O

C + C

h 12 an h

' C22 k2 (“N + ”3) ' 4 k (uNE ’ uNw ' SE + ”sw)

C23 4‘ Cm. h h 2
- -—-- (u - u ) = h Z

2 k rO N S 0

When equal spacing is taken for the r and 2 directions, k = h, one

obtains

(2C11+2Cuu+C33—) u0"C11 (1+ '27) uw

— w ) = 1.211 (2.38)
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P
“

 



h h

2(022 + can) W0 7 can” + ZrO) wE 7 can” 7 7;) ww

C + ) C12 + 01,1, (

22(WN ws 7 4 uNE 7 uNw 7 “SE 7' “511)

C23 + Cut. h_( ) _ 1122

2 r UN “13 ‘ o

For the case of isotropic elasticity, the coefficients Ci are given

3

by equations (2.17). The resulting finite difference relationships are

112 h h
8[(3 — 4v) + (1 - v) ——-] uO - 4(1 - v)(2 + ;—) uE - 4(1 - v)(2 - ;—) u

2
r0 0 O

W

— 4(1 - 2v)(uN + us) - (wNE — wNw - wSE + WSW)

h2

= 8(1 + v)(l — 2v) E_IR (2.39)

0

8(3 - 4v) wo - 2(1 - 2v)(2 + $—) WE - 2(1 - 2v)(2 — EL) w

0 O W

-8(1 - v)(wN + wS) - 2 gg-(uN — us) - (uNE - uNW - uSE + USW)

1'12

= 8(1 + V)“. - 2v) -E_7 20

1

Finally for the specific case in which Poisson's ratio is taken as Z.

these become
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112 h h
(16 + 6 2) 110 - 3(2 + r ) uE - 3(2 - ;—) uw - 2(uN + us)

r 0 O

0

1'12

- (wNE - WNW - WSE + WSW) - S'E- RO (2.40)

h h h

16wO - (2 + r ) wE - (2 - ;—) ww - 6(wN + wS) - 2 ¥—-(uN - us)

0 O 0

1'12

7 (“NE7uNw7USE+“sw) 75on

2.8 Alternate Derivation of Plane Stress Difference Equations
 

Finite difference equations corresponding to the previously

mentioned situations can also be derived from the equilibrium of a

material element in the neighborhood of an arbitrary mesh point 0.

This method has the advantage that boundary conditions can be derived in

exactly the same way. This is important in the case of certain ques-

tionable situations such as corners where boundary conditions are not

immediately apparent.

Inherent in this procedure is the need to make assumptions

regarding the strain approximations to be used. Corresponding to dif-

ferent choices for these strain approximations are somewhat different

finite difference equations.

Figure 2.5, on Page 24 illustrates the rectangular region around

the mesh point 0. The x and y dimensions are h and k respectively. X

0

and Y0 are body force components per unit volume assumed to act at the

point 0. In the case of boundary points, to be discussed later, X0 and

Y0 may be components of the static resultant of boundary tractions. The

normal and shear stresses are designated in the usual way and sign
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Figure 2.5

Material Region Around a Mesh Point and

Associated Cartesian Stresses and Body Forces
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conventions of classical elasticity are employed. The four quadrants

around the mesh point 0 are designated as northeast, northwest, south—

west, and southeast beginning in the upper right hand corner and pro—

ceeding counterclockwise. Normal and shear stresses corresponding to

these regions are given superscripts accordingly.

In deriving finite difference expressions corresponding to

previously presented results, it is necessary to express stresses in

terms of displacements through the constitutive relationships and

approximate expressions for strains. For the isotropic materials, the

constitutive relationships (2.2), with isotropic elastic coefficients

(2.3) and strain-displacement relationships (2.4) become

  
P Du 8v

Ox — 2 (3X + V 8y)

1 _

y 1 _ V2 3y 3X

E 3v Bu

Txy 7 2(1 + v) (3x + By (2°41)

E Bu 8v

T (——

yx = 2(1 + v) 8y 3x

The displacement gradients in equations (2.41) are approximated in

Various ways to give the following stress expressions:
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E E vNE 7 vE 7 vN 7 v0
[ + v 2k

1 - v2

E ( N + uNE 7 uN 7 uE 7 u0

1 _ V2 k 2h

(2.42)

E [ E v0 + uNE 7 uE 7 uN 7 “0)

2(1 + v) 2k

E (”N u0 + vNE 7 vN 7 vE 7 V0]

2(1 + v) 2h

E u0 7 “w vN 7 v0 7 VW 7 Vw

( + v )
2 h 2k

1 — v

v - u - u + u - u

E ( N + v N NW 0 w)

1 _ v2 k 2h

(2.43)

E (V0 w + uN 7 U0 7 uNw 7 UW)

2(1 + v) \ 2k

u u v - v + v - v

_E, { 0 + N NW 0 w)

2(1 + v) \ 2h

11 - v - v + v - v

E 0 UN 0 s w 3w

7 h 7 V 2k )
1 — v2

E (,0 u0 7 UN 7 us 7 ”5w

1 +V 21] J

1 - v2

_ (2.44)

E {7 w + ‘10 us 7 “w usw)

2(1 + v) 7 2k

u u v - v + v - v

E { s + 0 w 3 SN)

2(1 + v) 7 2h
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OSE = E [ E O + v E SE 0 S)

x 1 _ v2 h 2k

SE E v0 7 vs uE 7 U0 7 uSE 7 us

o=———1——— 2. Jy 1-V2

(2.45)

TSE = E (VB 7 v0 + uE 7 "SE 7 u0 7 “5)

xy 2(1 + v) h 2k

TSE g E (“o 7 us + vE 7 v0 7 vSE 7 vs)

yx 2(1 + v) k 2h

The equilibrium of an arbitrary element requires that

XF = O

x

2F = 0

Y

If the element is of thickness t, these equations become

k NE k NW k SW k SE

7 2 x 7 7 2 0x 7 7 2 0x + t 2 x

h NE h NW h SW h SE

+ t 2 Tyx + t 2 Tyx - t 2 Tyx - t 2 Tyx + thk X0 - O

(2.46)

h NE h NW h SW h SE

t20y+t20y-t20y-t20y

k NE k NW k SW k SE
_ _ _ _ _ _. + _—-_

+ t 2 Txy t 2 7xy t 2 Txy + t 2 Ixy thk Y0 O

The stresses (2.41) through (2.45) are next substituted into equations

(2.46) and after some simplification with k = h one obtains
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[4(u0 ‘ UE) + 2v(v0 + vE - V —

+ (l - v)(vO + v -

[4(u0 - uE) + 2v(vS + v -
SE

+ (l - v)(vE + v

[4(UO - uw) + 2v(vw + v - v

[4(uO -

[4(V0 - VN) + 2v(uN + u - u

[4(VO - VS) + 2v(uE + u

[4(v0 - VS) + 2v(u0 + uS - uw - USW) + 2(1

[4(v0 -

O

+ (l - v)(vO + v

uw) + 2v(vN + va -

+ (1 - v)(va +

O E

+ (1 - v)(uO + uE

SE

+ (1 - v)(uS + u

+ (1 - v)(uw + u

vN) + 2v(uw + uNW -

+ (1 - v)(uN + u

0

SE

S

S

VC

VN

uNE) + 2(1 - v)(vO - v )

UN

“'11

O

+ 2(1 - v)(uO - uN)

VNE)]

vE) + 2(1 - v)(uO - us)

vO - vs)]

- VSW) + 2(1 - v)(uO - us)

vw 7 sz)]

- vw) + 2(1 - v)(uO - uN)

vN - v0)] = 8h2xO (2.47)

‘U

- us) + 2(1

NE
)1

SE 7 U0 7 “E)]

0

U0

NW

SN 7 ”s)]

- uN) + 2(1

u0 - UN)]

U

E

v)(vO - VE)

v)(vO - vw)

v)(vO - vw)

2
8h YO
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Equations (2.47) are expressed in a form which allows certain boundary

conditions to be derived. These will be discussed subsequently. After

considerable simplification, equations (2.47) can be reduced to the

following:

8(3 - v) uO - 8(uE + uw) — 4(1 - v)(uN + us)

- (l + v)(v - v — v + v ) = 8 l 7 V2 h2X

NE NW SE SW E 0

8(3 - v) vO - 4(1 - v)(vE + VW) - 8(vN + VS)

- (l + v)(u - u - u + u ) = 8 l—:—23 h2Y

NE NW SE NW E 0

These results are identical to those which were obtained in section 2.6

and labeled equations (2.28).

Next, consideration is given to the development of static

boundary conditions. Boundary expressions treated here are restricted

to rectangular boundaries which are parallel to the coordinate axes.

Thus, one is able to deal with points on vertical or horizontal boundary

surfaces as well as 90° corners.

 

 

y I )7!

Other boundary conditions can be approxi- 0

x

mated using sufficiently small spacing. 1 :w E

' O

The first situation treated

h

here is the 90° outside corner. In .

1

Figure 2.6, point 0 is such a corner SW" - m 3

r1 11 hJ

point formed by the intersection of '

Figure 2.6

vertical and horizontal boundary

' P ' t
surfaces. The x and y spacings are Out31de Corner Boundary 01n
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both h. E0 and E0 are the components of the resultant of boundary

tractions.

The finite differences expressions for such a point follow

immediately from equations (2.47). One need only use the left hand side

terms of these equations which pertain to the southwest corner. The

expression in the third bracket in each of equations (2.47) is pertinent.

The result is

E
I—:_:; [4(uO - uw) + 2v(vw + vO - vS - VSW) + 2(1

I

C

v A C

O

l

C

U
) v

I

< < V

I

a
)

X+ (1 — v)(vO + VS W - SW

__E__2_ [4(v0 .. VS) + 28((10 + us - “w - usw) + 2(1 - V)(V0 - V14)

1 - v

I

C

I

(
I
)

v
-
<

+ (1 - v)(uw + 110 SW - uS)] - 0

Upon simplification, the above become

2(3 - v)uO - 4uw - 2(1 - v)uS + (1 + v)vO - (1 - 3 )vw

_ 2 _
8 3>——J1— x (2.48)+ (l - 3v)vS - (1 + v)vSW = E 0

2(3 - v)v0 - 2(1 - v)vw - 4vS + (l + v)uO + (1 - 3v)uw

1 - 3 ) — (1 + ) = 8 lei—VE-f
7 ( V us V “sw E 0

Then for the Special case with v = %-one obtains

301?0

22770 - 1611“ -’ 6118 + 5V0 - Vw + VS -- Svsw a __...E_.._

22v0 - 6vw — 16vS + 5uO + “W - US — SUSW = ——ET7
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Consider next a point 0 on .--*W y

a vertical boundary surface. Such a I

point is illustrated in Figure 2.7.

 

Once again 70 and E0 denote components
 

of the resultant of boundary

tractions. The spacing of mesh

points is h for both directions. 1 E¥E S

)4

.3
.
1
1

.
__

.

f 4

 

The material around the   
mesh point 0 includes the northwest

Figure 2.7

and southwest regions. The

Vertical Boundary Point

expressions which correspond to these

regions are obtained from the third and

fourth bracketed terms in equations (2.47). These terms must be added

to obtain the left hand sides of finite difference equations which

pertain to the boundary point 0. When this is done the result is

E
1 - v2 [8(uo - uW) + 2v(vN - VS + va - VSW) + 2(1 - v)(2u0 - UN - Us)

+ (l - v)(vS - vN + va - vsw)] = 8XO

(2.50)

E
1——-—\-)-2— [4(2Vo - VN -' VS) + 2V(US " UN + UNw - US”) + 4(1 " V)(V0 77 vw)

+ (l - v)(uN - u + u + u )] = 8Y

S NW SW 0

These can be simplified to some extent and upon doing so one obtains
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4(3 - v)uO - 8uw - 2(1 - v)(uN + us) - (1 - 3v)vN + (1 - 3v) vS

1 - v2 -

8 E X0

+ (1 + v) v — (l + v)vSW

NW

(2.51)

4(3 - v) v0 - 4(1 - v)vw - 4(vN + VS) + (1 - 3v)uN - (l - 3v)uS

I

(
D

t
-
<

+ (l + v)uNW - (l + v)uSW — -—Er——- 0

. 1

Then for cases where Poisson's ratio is taken to be 23these become

 

 

   

30)“:O

44uO - 32uw - 6(uN + us) - vN + VS + SVNw - 5vSW = -E——-

_ (2.52)

30YO

44v0 — 12vw - 16(vN + vs) + uN - uS + 5uNw — 5uSW = 7E?“-

The case of a point 0 on a y §

0

horizontal boundary surface is treated ‘ 4} X0

in almost exactly the same manner as I

the preceding. This situation is h

illustrated in Figure 2.8. The

I 4 SE

P a
notation is identical to that used SW 0

h '1 11 H

previously with regard to other I" I‘

boundary points.

Figure 2.8

In this case, the material

Horizontal Boundary

around 0 is in the southwest and Point

southeast regions. Corresponding to

these are the second and third bracketed

expressions of equations (2.47). The
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resulting finite difference equations for such boundary points are

4(3 - v)u0 - 4(uE + uw) - 4(1 - v)uS + (l - 3v)vE - (1 - 3v) vw

 

 

 
 

 

 

   

 

- (l + v)v + (1 + v)v = 8 l—:—23- E

SW SE E 0

(2.53)

4(3 - v)vO - 2(1 - v)(vE + vw) - 8vS — (l — 3v)uE + (1 - 3v)uw

- (1 + v)u + (1 + v)u = 8 l—:-23 E

SW SE E O

1 .
Then for v =74 equatlons (2.53) become

30>?O

44uO - 16(uE + uw) - 12uS + vE - vw - SVSW + SVSE = 7ET—7

_ (2.54)

30Y0

_ _ .. + _ =
44vO 6(vE + vw) 32vS uE uw 5uSW + SuSE E

Finally, the finite difference . NW

equations for a typical 90° inside I

h

corner are discussed below. An

inside corner with material in the I W

northwest, southwest, and southeast

h

regions is illustrated in Figure 2.9.

With material in these three regions, 7 &_1

. " I
CW ‘

all of the bracketed expressions in I t

I'- h w ' .-

equations (2.47) are used except the

Figure 2.9

first. When these expressions are

Inside Corner Boundary

summed and simplified, finite Point

difference equations for a typical

corner point are obtained.
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6(3 - v)uO - 4u - 8uw - 2(1 - v)(uN + 2uS) (1 + v)v0 + (l - 3v)vE
E

- (l - 3v)v + (1 + v)(v - v + v ) = 8-l—:—Xi E

N NW SW SE E O

(2.55)

6(3 - v)vO - 2(1 — v)(vE + 2vw) - 4vN - 8vS - (1 + v)uO - (l - 3v)uE

+(1-3v)u +(1+\))(u -u +u )=81—7—32—17(
N NW SW SE E O

1
When u = z-these become

66u - 16(uE + 2uw) - 6(uN + 2uS) - 5v0 + v - v

0 E N

301710

+ 5(vNw — vSW + VSE) = ~ET—-

(2.56)

66vO - 6(vE + 2vw) - 16(vN + 2vS) - 5uO - uE + uN

301710

+ 5(uNw - uSW + USE) =-—E——

Equations (2.29), (2.48), (2.51), (2.53), and (2.55) form a set

of finite difference expressions which can be used to treat a wide

variety of plane stress problems. Equations of this type are written for

each point in the domain of the physical problem. Equations (2.29) are

for interior points whereas the others pertain to boundary points. The

resulting system of linear algebraic equations is then solved for the

unknown displacements.

These equations are not without restrictions. As formulated,

they assume the material to be homogeneous and isotropic. Anisotropy

can be considered by reformulating the various equations in terms of
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the proper elastic coefficients, as done for example with regard to

interior point equations in section 2.2. The ability to handle non-

homogeneous materials in general and specifically the case of material

composites was of main interest in this investigation. This can be

accomplished by simply allowing for different elastic properties in the

4 regions around an arbitrary point. This idea is discussed further

with regard to axially symmetric problems (page 48 ).

2.9 Alternate Derivation of Difference Equations for Axially Symmetric
 

Problems

As was true for the plane stress (or plane strain) problem, it

is convenient to derive finite difference equations for the axially

symmetric problem by applying equilibrium considerations to a material

element. Boundary conditions can be worked out at the same time with

little extra effort.

2

The axially symmetric

problem is generally a three dimensional AO r7211. 17251

“ I ———.-—

situation insofar as stress and strain 7 ' l. 0 L

r--

are concerned. Figure 2.10 displays ~ g I

the typical element of volume in

cylindrical coordinates. The

increments in the coordinates  
r, 9, and z are taken as h, A8,

and k respectively.

The cylindrical stress components Figure 2_10

are Or’ 0 oz and Trz' The shear stresses
0’ Cylindrical Volume

Ire andTez are identically zero in view of Element
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the axial symmetry. The development of finite difference equations is

quite comparable to the work involved in the plane stress problem. The

existence of a third normal stress, namely 0 is a major difference.
6’

The stresses are more

readily displayed in several ~\_
 

illustrations for this case.

For example, Figure 2.13, page on

35, is a view of the element of

 

 Figure 2.10 corresponding to the  
radial-axial plane. The regions 0  
around an arbitrary mesh point 0 0

are again denoted by northeast,  
northwest, southwest and southeast.

The stress components acting in

, , Figure 2.11

these regions are superscripted

accordingly. The circumferential Circumferential Stresses

stresses are displayed in Figure 2.11

These are generally different in NW N1

the four regions around 0. However, 06 \ \ 00

as shown in Figure 2.12 these do

not vary with 0. A0

The stress-strain

law for axially symmetric (9%) I! NH

problems was presented in ’l 7)

section 2.4. It is repeated

Figure 2.12

here for the isotropic case.

Circumferential Stresses
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Figure 2.13

Material Region Around a Mesh Point and

Associated Cylindrical Stresses and Body Forces
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E

0r = (l + v)(l — 2v) [(7 7 v)7r 7 V(76 7 E72)]

_ E

6 7 (1 + v)(l - 2v) [(1 7 V>76

 

+ u(ez + Er)] (2.57)

- E [(
z 7 (l + v)(1 - 2v)

 

1 — v)ez + u(er + 66)]

E

Trz 7 2(1 + v) er

Introducing the strain-displacement relationships, (2.5), these become

 

 

 

_ E _ Lu 2 BE

Or 7 (l + v)(1 — 2v) [(1 V) 8r + V r 7 V 82

E u Bu 8w 7

00 7 (1 + v)(1 - 2v) [(7 7 V) r + V 8r + V EEJ (2'58)

_ E £911 is 2

Oz 7 (l + v)(l — 2v) [(1 V) az + v 8r 7 V r.  

rz 2(1 + v) Br 82)

zr 2(1 + v) 82 Dr

Proceeding in much the same way as was done for the plane stress

problem, the following approximations for stresses are used:
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ONE = E (1 _ v) uE 7 u0 + uE 7 u0

r (1 + v)(l - 2v) h V h
2(r + —)

0 2

+ v wN - wO + wNE - wE

2k

U U 'U W ‘W

NE _ E _ _9_ E 0 N o
06 - (1 + v)” _ Zv)[(l v) to + u ———————h + v—————-—k ] (2.59)

NE = E (1 _ ) wN 7 W0 + uNE 7 uN 7 uE 7 U0

02 (1 + v)(l - 28) V k V 2h

uNE + uN + E + 110

+ v h

4(r0 + 29

NE = E wE 7 W0 + uNE 7 uE 7 uN 7 U0

Trz 2(1 + u) h 2k

NE = E uN 7 u0 + wNE 7 wN 7 wE 7 W0

Tzr 2(1 + v) k 2h

Similar sets of stresses exist for the northwest, southwest, and south-

east regions.

The pertinent equilibrium equations for the axially symmetric

C388 are

It is significant that the o stresses have a radial component and hence

8

must be accounted for in the radial force equation. In this connection,
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the approximation sin %§-= %2_ is used.

(OISE + 03E) 1;- (r0 + 72518 — (81]:w + i”) 12‘- (r0 - 125118

- 2(03E + ogw + 08w + USE) g-%-%§-+ ROrOAth = 0

(ONE - 0:77) % (r0 + I‘4)118 + (012” — 0:”) % (r0 - %)A6 (2.61)

+ (1:7: + 1:5) % (r0 + gm) - (11:: + 1:727) g (r0 - gm) + ZOrOAth = o

The quantities R0 and Z0 are body force components assumed to act at the

mesh point 0. Introducing the stress approximations of the form (2.59)

into equations (2.61) yields

 

 

  

 

 

E (1 _ V) uE 7 U0 + v uE 7 U0

(l+v)(l—2v) h 2( +g)

r0 2

W ‘W +W "W

N NF E k 11

7V 2k I2<ro72

u - u w - w + w - w

E N 0 NE N E o h h

72(1+v)[ k 7 2h 1207074)

U U “U W ‘W

_ E _ 0 E o N 0 pg

(1+v)(1-2v)[(1 V>¥37V h 7V k J4

u - uw u + uW

_ E (l-v)—O———+\)—2—-————

(1+v)(1-2v) h -
2(rO-f)
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+ E uN ' “0 + w0 ’ ww + wN ’ wNw g.(r ‘g)

2(1 + V) k 2h 2 O 4

_ E (1 _ v) EQ_+ u0 ’ uw + wN ' w0 EE_

(1 + v)(1 - 2v) r0 h *V k 4

u - u +

_ E (1 _ V) o “w + o “w

(1 + v)(1 - 2v) h V 2( _ 3)

r0 2

w - w + w - w

o s w sw k h

+ V 2k ]'2 (r0 ' 2)

_ E uo ’ us + wo - ww + ws " wsw h_( h)

2(1 + v) k 2h 2 r0 4

_ E (1 _ v) :g_+ u0 ' ”w + w0 w3 g5_

(1 + v)(1 — 2v) to h V k 4

+ E (1 _ v) uE - o + uE + u0

(1 + v)(1 - 2v) h V 2(r + g)

0 2

w - w + w - w 1

0 s E SE k h

_ E u0 ' “s + wE ' wo + wSE ’ ws h.( 3)

2(1 + v) k 2h 2 r0 4

U U - U W W

E _g E 0 o s 1 33_ =
(l + v)(l _ 2v) [(1 - v) to + h + v R J 4 + R rohk 0

(2.62)

E (1 - ) wN - w + uNE - UN + uE - uO

(1 + v)(l - 2v) V k V 2h

uNE + uN + uE + u0 h h
+ v -‘(r + z)

4(r + h) 2 O

o 4





  

 
 

 

  

  

 

  

 
 

 

  

+ E wE ' wo + uNE " “E + uN ' u0 §_( +ug)

2(1 + V) b 2k 2 r0 2

+ E (1 _ v) wN " w0 + uN ' uNw + u0 ' uw

(l + v)(1 - 2v) k V 2h

uNw+uN+uw+uOh h

+ v -— (r - —)
Mr _R) 2 o 4

0 4

E wo - ww + uN - u0 + uNw " uw 5_( _ g)

2(l+v) h 2k 2 1”o 2

E (1 v) w0 " wS + u0 ' “w + uS ‘ usw

(1 + v)(l - 2v) k V 2h

uSW + uS + uw + 1.10 h h

+v h -(r --)
4(r _._) 2 O 4

O 4

_ E wo ' ww + u0 ' uS + uw ‘ usw 5_( _ g)

2(l+v) h 2k 2 r0 2

w - w u - u + u - u

_ E (1 _ v) o S + v E 0 SE S

(1 + V)(1 - 2v) k 2h

USE + uS + uE + u0 h h

+ v —-(r + —)

4(r + E) 2 O A

O 4

w — w u - u + u - u

E E 0 E SE 0 S k h

+ 2(1 +'v) [ h + 2k 1'2 (‘0 + 29 + Z0‘0hk ‘ 0

Once again the, terms corresponding to the 4 regions around 0 have been

kept together to facilitate the consideration of boundary conditions and

the governing equations for fiber reinforced composites.

With k = h and a considerable amount of rearranging, equations

(2.62) can be expressed in the following way:
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0 r0

E [[80 - 4v) + 2(5 - 14v) 11--+ 8(1 - v) hi]

(1 + v)(l - 2v) r 2 U0

- 8(1 - v)(2 +:—) uE - 2(1 - 2v)(4 +-1rl—) u

0 O N

h h

+4+(l-6v)—-w—4+(l+2V)—]W~
[ r0]0[ rO Nb

- [4(1 - 4v) + (1 - 6v) 1:3wa + [4(1 — 4v) + (1 + 2v) 26]wa

 

O r2

E
h h2

+ (l+v)(1 _ 2v) §[8(3 - 4v) - 2(5 - 14v) r—+ 8(1 - v) —-]u0

O

- 8(1—v)(2-:—) uw-2(l-2\))(4-:;—) u

0 O N

h h
_[4_ (1—6v)?;]w0+[4- (1+2V) F6]WNW

+[4(l - 4v) - (l - 6v) $3] ww - [4(1 - 4v) - (l + 2v) 2;]wa

2
RE h h

+ (1 + V)(l- 2V) {[8(3 " 4V) - 2(5 - 14V) ;(—)'+8(l - V) :]u0
 

-8(1-v)(2-$—) uw- 2(1-2v)(4—-11-1_——~)u

O O S

h h
+ [4 - (l - 6v) :8on -[4 — (l + 2v) :8]WSW

- [4(1 - 4v) - (l - 6v) %(—)-:lww + [4(1 - 4v) - (l + 2v) $3]wa
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O r

E
h 1.12

+ (1 + v)(l _ 2v) [[80 - 4v) + 2(5 - 14v) I.— + 8(1 - v) 7] 110

O

h h

- 8(1 - v)(2 +?6) uE — 2(1 - 2v)(4 +?(;) uS

-[(4+ (1 - 6v) £—]w0+[4+ (1+2v) E—JWSE

 

O O

+[4(1-4v)+(1-6v) h—Jw -[4(1-4v)+(1+2v)D—wa

rO E rO S

_. 2
- 32h RO (2.63)

E 8(3-4v)+4(2-3v)9— w -4(1-2v)(2+9—)w
(l + v)(1 - 2v) r0 0 r0 E

h h-

- 4(1 - v)(4 +—r—(;) wN+[4 + 2(1 - 3v) EJUO

- [4 + 2(1 + v) g—J uNE + [4(1 - 4v) + 2(1 - 5v) %-] uE

 

O O

- [4(1 - 4v) + 2(1 - v) %-]uNf

0

E h h

+ (1 + V)(]. _ 2V) g[8(3 - 4V) - 4(2 - 3V) r—OJWO - 4(1 - 2v)(2 - 11;) ww

h h

- 4(1 - v)(4 - E3)wN - [4 - 2(1 - 3v) r—O]u0

F b '
h

+ 4 - 2(1 + v) gluw- [Ml - 4V) - 2(1 - 5v) 'r—O’Juw

r

+ L4(1 - 4v) - 2(1 - v) 327—].1Nf

O 
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E

+ (1 + v)(l - 2v)
 

W

h h

[8(3 - 4v) - 4(2 - 3v)-;;J‘w0 - 4(1 - 2v)(2 — ;S) w

h h

-4(1-V)(4-¥) WS+[4-2(l-\)) §]u0

h h
- [4 - 2(1 + v) $6.]USW + [4(1 - 4v) - 2(1 - 5V) EJLLW

h

- [4(1 - v) - 2(1 - v)-¥S] uS

 

E [8(3 - 4v) + 4(2 - 3v) g—{lwo - 4(1 - 2v)(2 + 2—) WE

+ (1 + v)(l - 2v) 0 O

h h

-' 4(1-V)(4 i”??? WS - [4 + 2(1 - 3V) a] [10

h h '
+ [4 + 2(1 + v) 1:6]uSE - [4(1 - 4V) + 2(1 - 5V) r—O'JUE

+ [4(1 - 4v) + 2(1 - v)-%—] uS = 32h2ZO

0

For an ordinary mesh point the bracketed terms on the right hand sides

of equations (2.63) can be added to obtain a more simplified form.

h2 h h
32[(3 - 4v) + (l - v) -—{]u0 - 16(1 - v)(2 + :fDUE - 16(1 - v)(2 - ;f) uw

2
r0 0 O

- 16(1 - 2v)(uN + us) + 2(1 + 2v)-%— (wN - wS) - [4 + (l + 2V)%—]WNE

0 O

+-[4 - (1 + 2v) g—'
h

0 WNW-[4 - (1+ 2v) TJWSW

O

 

+ [4 + (1 + 2v) %—]WSE = 32 (1 + “I? ‘ 2V) h2R0 (2.65)

0
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32(3 - 4v) wo - 8(1 - 2v)(2 + E—) wE - 8(1 — 26)(2 — 4}) w

0 O W

-32(l - v)(wN + wS) - 4(1 - v) {-E—(uN - us) - [4 + 2(1 + v)E—]uNE

O O

+ [4 - 2(1 + v) 2—- NW'— [4 - 2(1 + v) %-] usw

OO

|
.
_
_
_
_
J

C

 

+-[4 + 2(1 + v) %—-]uSE = 32 (l + V>él - 2v) h2ZO

. . l .
For a particular ch01ce of P01sson's ratio, say v = Z3one obtains

(16 + 6-23) u - 3(2 + h—-) u - 3(2 - 9—0 u - 2(u + u )

2 o r E r N N S
r O O

0

3h 3h 3h

+ 4 r (wN _ WS) - (1 + 8 r ) wNE + (1 -.§ r ) wNW

0 0 0

3h 3h __ h2
-(1-—§——r) SW+(1+§-——r)wSE-5—E R0 (2.66)

0 0

16 -(2+-h—)w —(2-1—) -6( + )
wo r E r ww wN wS

0 0

3h 5h 5h

’Zr (UN—US)-(1+gr)UNE+(1-§r)uNw
o o o

- (1 - é-h- u + (1 + 2-E—) u = 5 DE-Z

8 r0 sw 8 r0 SE E 0

Now comparing these equations with equations (2.40) in section

2.7 it becomes apparent that the two sets of equations are not identical.

However, if one makes the additional assumptions that
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NE + NW

SE + SW

NE + NW

SE + SW

equations (2.66) can be shown to be identical to the previous results

obtained from the equations of elasticity. It is unnecessary to do

this, however, since equations (2.65) or (2.66) simply represent a

slightly different set of finite difference equations which should give

equally good results. These equations have been used exclusively

throughout this investigation.

In the previous section which dealt with plane stress problems,

a certain amount of detail was included with regard to boundary condi—

tions. It is possible to do much the same thing here for points on

boundary surfaces of the solid under consideration. However, as these

equations have become more involved, it is advantageous to let the com-

puter do the calculations rather than derive explicit expressions for

boundary points. Thus equations (2.63) or their equivalent are pro-

grammed with each bracketed term a subroutine. Equations for the inter—

ior and boundary points of the problem are generated by calling appro—

priate subroutines. For example, for a point on an outside corner, only

the first bracketed terms are required in the two equations (2.63) to

form the left hand side of such relationships. Thus only the subroutine

which computes the coefficients corresponding to the first bracketed



1': ..n.

...u .4...

a l
\
-

.11. v.1.

I T
:Qupu|Vn

 

cut

u

n

o. v! ,c
‘1

(I 104-6'

.‘ .I

l 'lv

 

9... I... 1 .

L.

I.

to».

  
o .vvtv.v h

9" _

‘ U I

tir I I

(s.

.1!

 

;.2
.

5......
w...

v
'4'

I.

II:

_

«

r..n . v

n .v
n

 

  

v34.

1...}.
. bflm )o

(p

I.

»

fl:

. .
. numr

11

x

1. 



48

terms would be called. In the case of a typical mesh point, each of 4

subroutines must be called to generate the coefficients since all

bracketed terms of equations (2.63) are involved.

In a like manner, one is able

to treat composite materials. As

shown in Figure 2,14, the region

E=5X105psi N
around a particular mesh point in

such a composite may consist of

two different materials. Finite

difference equations for such

a point are obtained by calling

the 4 subroutines discussed  
above but in this case using the

appropriate elastic constants for Figure 2.14

the 4 different regions around the Composite Material R9810“

mesh point 0.

2.10 Finite Difference Stresses
 

As discussed earlier, the finite difference equations derived by

the alternate method were used exclusively in this work. The interior

and boundary point equations form a system of equations which is solved

by standard numericalprocedurestx>yield the displacements for the mesh

points of the problem.

The stresses corresponding to this alternate procedure are

expressed by equations (2.42) through (2.45) for plane stress problems

and equations (2.59) for axially symmetric problems. It is necessary to

exercise care in the interpretation of these stresses. The reason for
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this rests with the fact that a

 

given region is generally associated rSE SW

with 4 different sets of stresses .

Typical

corresponding to the fact that it Region

pertains to as many as 4 different

  mesh points. Thus for example, bNE NWJ

the material region in Figure 2.15 1 2

is simultaneously the NE region

Figure 2.15

for point 1, the NW region for

Material Region

point 2, the SW corner for point 3,

and the SE corner for point 4.

It is, therefore, suggested that a set of mesh point stresses be

defined in terms of these material element stresses. For this purpose,

the mesh point stresses are assumed to be the average of the stresses in

the material regions around the point. Previous experience suggests

that this averaging technique would give good results at interior points

but perhaps less satisfactory results for boundary points.
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III. FINITE ELEMENT METHOD

3.1 General Remarks
 

Finite element methods represent a large class of approximate

procedures in structural mechanics. Basically, these methods involve

replacing the actual structure or continua by a model consisting of a

finite number of carefully selected elements which are connected at a

finite number of points. The approximation is thus a physical one in

constrast to the mathematical approximations of finite difference

methods.

Finite element methods can be classified according to the behav-

ior of elements in the model. A compatible element or a displacement

model is one satisfying compatibility but not equlibrium. An equilib-

rium element or equilibrium model is one which satisfies equilibrium but

not compatibility. A mixed model is one satisfying neither equilibrium

nor compatibility. These classifications are discussed in detail by

de Veubeke [34].

One of the chief purposes of finite element methods in structural

analysis is to develop relationships between generalized loads and

generalized displacements through the elastic and geometric properties

of the element. A second classification of finite element methods is

based on these relationships. In one approach, this is done through the

so called flexibility matrix by which generalized displacements are

derived from generalized forces. The other approach derives the
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generalized forces from the generalized displacements through the appro—

priately named stiffness matrix.

A third classification of finite element methods is based on the

method of solution. The matrix displacement method treats displacements

as unknowns whereas the matrix force method treats forces as unknowns.

A mixed method of.solution is also possible with some unknown forces

and some unknown displacements.

As pointed out by Felippa [18], the direct stiffness method is

perhaps the most powerful and fully developed of the finite element

methods. The direct stiffness method employs a displacement model and

treats displacements as unknowns. The word direct is used to indicate

the way in which the overall structural stiffness matrix is assembled

from the individual element stiffness matrices prior to imposing dis-

placement boundary conditions. Thus in the direct stiffness method,

the overall stiffness matrix is obtained by a simple systematic addition

of element stiffnesses. Argyris [27] and others accomplish this by means

of transformations involving location or "Boolean" matrices. The latter

procedure seems to be less efficient and thus has been avoided by many

investigators.

In the present investigation, the direct stiffness method is

used exclusively. Thus no further reference will be made to other

finite element methods. Furthermore,the philosophy of the method has

been thoroughly treated by a number of writers [35] so that only a brief

description of the basic steps will be presented here. The specific

discussion and examples will relate to two dimensional problems and

triangular elements. It is a relatively simple matter to extend the

work to three dimensional situations.
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3.2 Direct Stiffness Method
 

The behavior of the actual structure or continua is assumed to

be approximated by a discretized structure consisting of an assemblage

of carefully chosen elements connected at a finite number of points.

These may be beam elements in the case of frames, triangular plane stress

elements for certain two dimensional continua, quadrilateral plate

elements for plate flexure, or tetrahedra in the case of three dimen-

sional continua. Other physical problems may dictate use of still

different elements or possibly combinations of these elements for

truly complex structures.

Inherent in the procedure is the assumption of element displace-

ment modes. These displacement modes must satisfy internal compat-

ibility and should insofar as possible maintain compatibility of dis-

placements across element boundaries. The number of displacement modes

used must agree with the number of degrees of freedom of the element

nodal point system. Thus for a plane problem in rectangular Cartesian

coordinates, with n nodal points, the equations

2n

110930 = X Ui(X.y) ai

i=1

(3.1)

2?V(X.y) = V (my) a
1:1 1 1

define the assumed displacement field in terms of independent displace-

ment functions U1 and V1 and generalized displacements ai. These can be

expressed in matrix notation as well.
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u(x,y) = tu<x.y>1t [a]

(3.2)

mm = [V(X.y)]t [a]

As stated above, the dimension of [a] is 2n and it agrees with the number

of degrees of freedom for the element nodal point system.

The next step is to express the nodal point displacements in

terms of the generalized displacements. This is done by evaluating

(3.1) or (3.2) at the nodal point coordinates.

2n

“1 = 1:1 Ui(xjo yj) 0-1

j = l, 2, . . . n (3.3)

Zn

v3 = 121 V1 (xj, yj) Q1

The matrix notation is more compact and allows the Zn equations of

(3.3) to be written as

[U] = [A110] (3.4)

where [u] and [a] are column matrices defined by

= < u1 u2 . . . . u v v . . . . v > (3.5)

(3.6)

The matrix [A] is a square matrix whose rows are formed by evaluating

tflle assumed displacement functions at the nodal point coordinates. Thus
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010:1. y1)U2(x1. yl) . . - . . . U2n(x1. yl)

Ul(x2, y2) U2(X29 Y2) 0 ° 0 0 0 0 U2n(x2’ y2)

[A] = U1(xn) yn) U2(xn’ yn) ' U2n(xn’ yn) (3.7)

Vl(x1, yl) V2(x1, yl) . . . . . . V2n(x1, yl)  

 
3 Vl(xn. yn) V2(xn. yn) . . . . . . V2n(xn. yn)

’

The generalized displacements are then expressed in terms of the nodal

point displacements. This is simply an inversion of equation (3.4).

[a] = [A‘lnu] (3.8)

In the next phase, the strains and stresses are evaluated.

The strains are given by the matrix relationship

[6(X.y)] = [D(X.y)][a] (3.9)

Where [C(x,y)] is a column matrix defined by
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[e(x.y)]t= (ex<x,y> ey<x.y> yxy<x,y>> (3.10)

and the matrix [D] is formed by appropriate differentiation of the dis-

placement functions U and Vi' For example, in the case of plane stress

1

or plane strain

 

 

 

  

 

3U1 8U2 auzn

3x 8x 8x

3V 3V 3V

1 2 2n

GUI 8V 3U2 8V2 8U2n + 3V2n

L-By 8x 3y 8x 8y 3x

The stresses arise from the constitutive relationships and can be written

in matrix notation as

[0(X.y)] = [C][e(X.y)] (3.12)

or in view of equation (3.9)

[0(X.y)] = [C][D(X.y)][a] (3.13)

In the above, the matrix [C] is the matrix of material properties and

[0(x,y)] is the matrix of stress components given by

[0(X.y)]t = ( ox(X.y) oy(X.y) Ixy(X.y) > (3.14)
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It is quite possible to treat very general material characteristics

including orthotropic elasticity and elasto-plasticity. For isotropic

plane stress the matrix [C] becomes

 

_ l v 0 1

E

[c] = —————-—— v 1 0 (3.15)

l - V2 1 — v

L_0 0 2 1  

where E is the modulus of elasticity and v is Poisson's ratio.

A generalized coordinate stiffness matrix, [kc], is derived

from the principle of virtual displacements. It is necessary to equate

the virtual external work to the virtual internal work. Associated with

a set of virtual displacements 6u(x,y) and 6v(x,y) are virtual strains

[56(X,Y)]. The virtual internal work for a differential volume, dV, in

the element is

d<6wi> = [66(x,y)]t [6(x,y)1 dv (3.16)

Using relationships (3.13) and (3.9) this last result becomes

d(6wi) = [66]t [1)]t [C][D][a] dV

where [do] is the column matrix of virtual generalized displacements

associated with 6u(x,y) and 6v(x,y). The total internal work is the

volume integral of the above expression

awi = J [661‘ [D]t [C][D][a] dv

vol
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Since [a] is independent of position

éwi = [66]t I [D]t [c][n] dV [a] (3.17)

vol

Now associated with the generalized displacements [a] are

generalized forces [8]; the product of the generalized displacements and

the generalized forces yields external work. Thus the virtual external

work is

awe = [66]t [B] (3.18)

Since the virtual internal work equals the virtual external

work during any virtual displacement, it follows that

[661‘ 161 = [661‘ I In]t [c1191 dv [a]

vol

However, virtual displacements are arbitrary displacements consistent

with the kinematic constraints. Thus the above equation implies

t

[B] =[ [D] [C][D] W [a] (3.19)

vol

From the definition of the stiffness matrix [ka], that is

[8] = [kalta] (3.20)

one may conclude that

[k ] = I [D1t [c1101 dv (3.21)

a vol
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The nodal point stiffness matrix [k] relates nodal point forces

to nodal point displacements. In view of equation (3.8), the matrix [k]

is derived from [km] by a standard coordinate transformation.

[k1 = [A‘llt [ka][A-1] (3.22)

Having given a general procedure for working out element stiff—

ness matrices, attention is next given to the problem of assembling the

overall stiffness matrix of the discretized structure. In the direct

stiffness method this is a fairly routine procedure. Involved is the

concept that the overall stiffness matrix relates applied loads at the

nodal point of the assembled structure to the resulting nodal point

displacements. A particular coefficient of this matrix associated with

a specific nodal point of the complete structure is the algebraic sum

of corresponding stiffness coefficients of elements which have this same

point a nodal point of the element. In other words, stiffness coeffi-

cients of the complete structure are obtained by summing the stiffness

coefficients of elements surrounding a particular point of the complete

structure. This is an essential feature of the direct stiffness method.

It allows the structural analyst to identify and store only the non-zero

stiffness coefficients of the complete structure. This is a signifi-

cant achievement since stiffness matrices are generally very Sparsely

populated. By storing only the non-zero coefficients, one is able to

consider much finer discretizations of the actual system. Not to be

overlooked, however, is that prior to adding these element stiffness

coefficients they must all have been referred to the same global

coordinate system.
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The next part of the analysis is the determination of element

nodal point forces. These are generally the result of internal stresses

arising from temperature changes or perhaps imperfections, body forces,

and surface tractions. Although it is possible to account for each of

these, for example as in reference [25], only the nodal point loads

arising from surface tractions are considered here.

As pointed out by Archer [36], these forces must not only be

statically equivalent to the distributed boundary forces but they must

furthermore be kinematically consistent with the assumed diSplacement

field corresponding to elements on the loaded portion of the boundary.

Thus it is required that the virtual work done by the actual loads, be

the same as that done by the nodal point forces.

For convenience, the boundary tractions are considered to have

components in the coordinate directions. These are designated by p(s)

and q(s) with p(S) the x component and q(S) the y component. It is

assumed that these have been integrated over the thickness. During a

virtual displacement, the work done by the actual force system is

6W = I [p(S) 6u + q(S) 6v ] ds (3.23)

1 B B B

where uB and VB are boundary displacement components of the loaded

portion of the element. In view of equations (3.2) these boundary

displacements are

C
. II 11131631

(3.24)

4

l

- [VBlla]
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where [UB] and [VB] are row matrices of displacement functions which

have been evaluated on the loaded boundary. Thus equation (3.23) becomes

6w1 - [B < p(s) [U31 + q(s) [v3]) ds [661

But the generalized displacements [a] are related to nodal point displace-

ments by equation (3.8). Writing the above virtual work accordingly

-1

5W1=J (p(s) [UB] + q(s) [VBD ds [A H611] (3.25)

B

It is required that equation (3.25) be equal to the virtual work of the

statically equivalent nodal point forces acting through the same virtual

nodal point displacements. The work of the external nodal point forces is

6w2 = [th [66] (3.26)

where

[f]=<f1f2 ....f f‘f ...£ \

is the matrix of nodal point loads. Finally when (3.26) and (3.25)

are equated, the required nodal point forces become

-1t t t

[£1t = [A 1 I (p(s) [UB] + q(s) [VB] > as (3.27)
B

A more direct approach to obtaining these loads is to express

the boundary displacements in terms of nodal point displacements.
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In general

u(x,y) = tM<x.y>1t [ux]

(3.28)

v(x,y) = [u(x,y)J‘ [my]

On the boundary

uB = [MBJ‘ [u 1

(3.29)

VB = [NB]t [u 1

where

[uxlt = < 61 62 “n >

(3.30)

[u]t=<v1 V2 v11)

The matrices [M] and [N] consist of weighting functions which relate

element displacements to nodal point displacements. As used in (3.29),

these weighting functions have been evaluated on the loaded boundary.

The virtual work of the boundary traction is then

6W1 . [B p(s) [MB]t [66x] ds + I q(anB]t [66y] ds (3.30)

B

Furthermore, the virtual work of the nodal point forces is

6W2 - [fx]t [Gux] + [fy]t [any]

where



w:
‘

M
a
“

..Q‘ .6...

\R‘.l'~

.-
_..—~

‘ A
-n“""“ga

v

o
'
i



62

f

[f]-[ x]

f

Y

Equating owl and 6W2 and noting that [éux] and [Guy] are arbitrary, one

obtains

[fx] [B p(S)[MB] ds

(3.31)

[fy] [B q(s)[NB] d8

The nodal point forces for the complete structure are clearly

the algebraic summations of element nodal point forces. Thus if several

elements join at a boundary point j, the nodal point forces of these

elements which correspond to j are added to obtain the nodal force of

the complete structure.

Having assembled the complete structural stiffness matrix [R]

and the nodal force vector [F] one is led to the matrix relationship

[F] = [Klls] (3.32)

In equation (3.32) [S] is a column matrix of nodal point displacements

of the complete structure. In two dimensional problems the dimension of

[S] is twice the number of nodal points of the assembled structure. The

object now is to determine these displacements. This requires the

inversion of equation (3.32). Since [R] pertains to the unrestrained

structure, it is a singular matrix and thus cannot be inverted until

kinematic constraints have been imposed. This renders the structure

externally stable and has the effect of reducing the size of the
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matrices in (3.32). One may then write

[F] = [Klls] (3.33)

where [K] is non-singular. The solution is

1s] = no"1 [F] (3.34)

and it is obtainable by various inversion techniques. The use of the

Gauss Seidel successive over-relaxation technique is discussed by

Clough [35]. A modification of this procedure has been used throughout

this investigation. A simplification of Gauss elimination applicable

to band matrices has been discussed by Tocher [37].

The final step in the analysis involves the calculation of

stresses. As indicated by de Veubeke [34], the best stresses in a dis-

placement model analysis are those derived from the displacement field.

In the case of linear displacement fields, however, care must be

exercised in interpreting element stresses. Wilson [38] has proposed

an averaging technique which appears to give fairly good results.

Accordingly, the stresses follow from equation (3.13). That is

[0(X.y)] = [C] [D(X.y) ] [a]

The generalized displacements [a] are eliminated using equation (3.8).

Thus element stresses are expressed by the relationship

[u(x,y)] = [c1[D<x,y>1[A“11u1 (3.35)
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Equation (3.35) gives the stress components throughout the element. A

set of nodal point stresses can be derived by evaluating equation (3.35)

at the nodal point coordinates.

3.3 Constant Strain Triangle
 

The simplest 2 dimensional displacement model is the constant

strain triangle proposed by

Turner et a1 [11]. Such an

element is displayed in

Figure 3.1. There is no loss

of generality if the origin of

the local coordinate system is

taken at point 1. The nodal

point system for this case consists

of the three triangle vertices.

 The displacement field is

a linear one expressed by the Figure 3.1

relationships Constant Strain Triangle

u(x,y) - a1 + azx + 03y

(3.36)

v(x,y) - a“ + a x + a6y
5

The a are the generalized displacements of equations (3.1). The matrix

J

relationships (3.2) for this case become
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2

t

"(X’Y)=[U(x,y)] [a]'<1XY000)fi - )

  \(16 l (3.37)

(«:11

2

v(x,y) a [v(x,y)]t [a] = < O 0 0 l x y > < . g

  105)

Evaluating these at the nodal point coordinates gives the specific form

of equation (3.4).

   
  

ul '1 o o o o o7 61

/ \

112 1 x2 y2 0 0 0 oz

113 a 1 x3 y3 0 0 O < a3 g

1 v1 0 0 0 l O 0 a“ (3.38)

K v2 0 O 0 1 x2 y2 \ as /

v3 L0 0 O 1 x3 y3 as

or

In] - [Alla]

The inverse of [A] is easily obtained by partitioning the matrix. Thus
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x2y3'x3y2 0

yz-y3 Y3

-l

[A ] = -—-————- x -x —x
x2y3 x3y2 3 2 3

O O

O 0

L 0 O

The matrix of strains (3.9) is

an ‘

3x ['0 1

3v

[cum] = 3; )= o o

Bu 3v

3§-+ 5;") [_o o

and thus

' 0 l 0

[D(X.y)] = 0 0 0

L 0 0 l 

66

 

 

o o

o 0

o o

x2y3-x3y2 O

yz-ys y3

X3-X "X3

0 o o 1

0 o 1

o 1 o . W

o o”

o 1

1 o]

 

 

0

0

0

0 (3.39)

_y2

x2

“1

92

[“6

(3.40)

The matrix [Q] of elastic properties is (3.15) for plane stress problems.

For plane strain problems

[C] ' (1 + v)(l - 26)

E
 

 
 

(3.41)
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The generalized coordinate stiffness matrix becomes

11: 1 -[ In]t [c1101 dv
0 vol

and since [D] and [C] are independent of position

Ix y - x y Ih

”.1 - [mt [c1112] [ 1 av = 2 3 2 3 2 [131‘ [cm]
V0

 

In the above, -% IX2Y3 - x3y2| is the area of the triangle and h its

average thickness.

The nodal point stiffness matrix is

lx2y3 ' x3Y2] 1

‘ [mt [CHDJIA— 1 (3.42)
 [k1 - h [4‘1]

with the required matrices given by equations (3.39) and (3.40). The

elements of [k] can be written out explicitly from (3.42) without too

much effort. The final result involving 36 coefficients is presented

in reference [14]. In other situations involving more complicated

displacement fields this becomes impractical. In some cases it is pre—

ferable to work out the matrices of (3.42) or its equivalent and to the

perform the matrix multiplication on the computer.

As an example of nodal force calculations determined from

boundary tractions consider the situation illustrated in Figure 3.2.

Shown in the figure is a portion of the curved boundary with a normal

traction p(y). The triangular element 1-2-3 can only approximate the

boundary along 1-2. Clearly, only x-components of nodal point forces

are involved in this example. The first equation of (3.31) is
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[fx] - [ p(y) [MB] ds
B

where [MB] is the column matrix

of weighting functions evaluated

on the boundary. To obtain these 3

 functions consider the first of

equations (3.36).

u(x,y) = al + azx + 03y Figure 3.2

Normal Boundary Traction-CST

The boundary here is identified by the equation x = 0.

Thus

U = u(03Y) a (IB + 03y (3.43)
1

Evaluating the latter at points 1 and 2 on the boundary gives

-h
111 =01 +a3( ‘2‘)

u - a + a (—)

These last equations can be solved for al and dB to give

4.
u U2
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Equation (3.43) can then be written as

-_1.._2 l 2

“B'(2 h)“1+(2+h)“2

The matrix of weighting functions is

[M It ll

.
/
\

N
I
H

_.X

h
o >

N
I
H

+

=
r
v
~
<

B

Then

h

2

N
I
H

+

:
r
r
~
<2

[fxlt 41 P(y) [MB]t ds = p(y) (%_%

L1

2

and the result is

E 1
f1 = [2 (§-%)P(Y)dy

x 1
"2

h

22 = F (%+{’;)p(y)dy

x -2
2

f = 0

For the special case p(y) = p, a constant

=23

f1 2

x

gm!—

f2 2
X

Also, if p(y) is a linear variation expressed by

(3.44)

(3.45)

0‘) dy

(3.46)

(3.47)
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P + P1 P2 - P1

p(y) ' —3—§———' + -—-——- y one obtains

h

fl 6(92 + 2p1)

 

x

(3.48)

h

f2 . 6(21’2 + pl)
x

y, if p(y) is quadratic with the form

9 - p p + p - 2p

P(Y) = P + ‘3————l' + l 2 0 y2 where
0 h 2

h

2

the load intensity at the origin

h

fl =-g (29. + 9,)

x

(3.49)

h
fzx - ‘6' (2134+ P2)

inearly Varying Strain Triangle
 

In order to maintain compatibility between triangular plate

ts and beam segments,

3eke [34] introduced a

lized plane stress element

involves a quadratic

:ement field. Such

nent is displayed in

 

3.3. The origin of

Figure 3.3

1ates is placed at point 1

Linear Strain Triangle

) loss of generality.
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lal point system includes the triangle vertices and the midpoints

triangle sides.

The quadratic displacement field is expressed by the relationships

2 2= + + +u(x,y) a1 azx 03y aux + osxy + o6y

(3.50)

v(x,y) = a + a x + ogy + a x2 + allxy + any2
7 8 10

dal point displacements follow from the matrix equation
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A
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[U] = [MN]

ed by evaluating equations (3.50) at the nodal point coordinates.

tter can be written as

 

ux A11:0 1 ox

= ’ (3.51)
'

uy O 'A22.J ay

[u ]t . < u u u u u u >
x 1231656

]t

[u = < vlv2v3vuv5v6 )
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Also [A22] = [All] with

 

 
  

   

’1 o o o o o

= 2 2

[A11] 1 x2 y2 x2 x2Y2 y2

2 2

1 x3 y3 x3 x3Y3 y3

x2 y2 x2 x2Y2 y;

1 ‘2" ‘2" z— 4 4—

1 xs'xz y3-y2 (xa'x2)2 (X3'X2)(y3'y2) (3'3'3'2)2

2 2 4 4 4

x3 Y3 (5'3’3’2)2 x3Y3 Y3

1 T 2— 4 4 T J

. The inverse relationship of (3.51) is

(3.53)

It is not suggested that an explicit expression for [A_1] be worked out.

The matrix [A—I] can be determined numerically within the computer

Program by simply calling a matrix inversion subroutine. Another

alternative is suggested by de Veubeke [34] whereby displacement

components u(x,y) and v(x,y) are expressed in terms of nodal point dis-

Placements through a set of 6 weighting functions. Thus it is possible

to write

u(x,y) = ulWl + uZW2 + u3W3 + uuW1+ + uSW5 + u6W6

v(x,y) == VIWl + VZW2 + v3W3 + kau + VSW5 + v6W6

The “1. 1 = l, 6, are functions of x and y. For further details, the

reader is referred to reference [34]-
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The matrix of strain components follows from the partial

derivatives of equations (3.50).

[8(X.y)] =

Lu

3y

a].
8x

73

Thus

r0 1 0 2x y

0 0 0 O 0

 L0 0 l 0 A x  l 0 2x y 0]

and the matrix [D(x,y)] corresponding to (3.11) is

[D(x,y)] - 0

0 0 0

0 x 2y

2x y 0

  

(3.54)

The matrices of elastic properties are (3.15) and (3.41) for plane

stress and plane strain respectively.

The generalized coordinate stiffness is

[kg] =
4vol

1an [c1111] «N (3.55)

However, in this case, the integrand is a function of position, as in

equation (3.54) . The calculations thus become rather involved. At this

Pointzta more general matrix of linearly elastic properties is intro—

duced . Thus

[C] -

allows arbitrary anisotropy for the two dimensional case.

—

C11

C21

C

L 31 

12 C13

22 C23

C

32 33

With

(3.56)

this
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value of [C], the integrand in equation (3.55) can be written as

where

[Q11]-

[Q21] -

[on] -

Q11

Q

[an [cub] -

21

 

 

[o o o

0 C11 C13

0 C31 C33

0 2xC11 ZxCl3

0 xc31+7C11 YC13+XC33

Lo 2yc31 2yc33

r0 0 o

0 C13 12

0 C33 C32

0 2xCl3 2xCl2

0 yC13+XC33 yC12+XC32

[ O 2yC33 2yC32

F 0 u 0

u as] L1,

0 21 £14

0 ZXCJl 2XC33

0 xC21+7C31 xC23+YC33

L O 2yC21 2yC23 

 

0 C33 C32

0

c23 C22

0 2xC33 2xC32

O xc23+7C33 xC22+7C32

_0 2yC23 ZyC22

Q12

Q22

0

2xCll

2xC3]

2
4x C11

2
2xyCll+2x C3!

(oxyC31

0

2xCl3

2xC33

2
4x C13

2
2xyC13+2x C33

4xyCn

2
4x CH

2
2x C21+2xyC31

loxyC21

2
6x C33

2.

2x C23+2xyC3‘

éxycy}

 

 

  

(3.57)

0 O

yCll+XCH ZyCH

yC31+xC33 2yCH

2
2xyC11+2x C13 4xyCH

2 2 2
y C11+xy(Cl3+C31) + x C53 2y C13+2xyC33

2 2
2y C31+2xyC33 by C33 J

0 0

xC12+yC13 2yC12

xC32+yC33 2yC32

2
2x C12+2xyCl3 (oxyC12

2 ‘ 2 2

x C32+XY(L12+C33) + y c13 2y C12+2xyc32

2 2
2xyC32+2y C33 4y C3?

(3.58)

0 I)

yC‘lixC.‘ Zyugg

y(la l+x(:', ‘ 2y(17 1

. . 2 ‘
2xyL§l+2x C3; 4xy(.H

2 -- . 2
x2C23+xy(C?)+C33)+y C31 2xyC21+2y C33

2 2
2y C21+2xyC21 by C7;

0 0

xC32+yC33 2yC32

xC22+yC23 2yC22

2
2x C32+2xyC33 éxyC3?

2 ‘ 2 2

X C22+xy(L23+C5?)+y C31 ZXYC23+2Y Ci?

2 2‘
2xyC22+2y 023 4y £92  
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Each of these coefficients must be integrated over the element volume.

What appears to be a very formidable problem is not as bad as it would

seem. Actually there are only 6 different integrals involved. These are

the following:

X ‘2
3

II

3
‘

(x2 + x3)h

U
H
>
'

(yz + y3)h

u
fl
>

(3.59)

17

I

J J

I I

[.2... [W .W...

I I

f

In each of these expressions, h represents the average thickness of the

triangular element and A is its area. Thus the generalized stiffness

matrix is of the form

' dV 2 dV
[k] g I [311+313 _J dv =[IQ1_1_d__:_IQ13d__J

vol . Q21 V . Q22 V

The nodal point stiffness matrix is obtained by the coordinate

transformation (3.22). Thus
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This same matrix is presented by Fellippa [18]. He

derives the matrix in a very elegant way using the novel idea of area

coordinates. It can be expressed in an integrated form as a result of

the approach taken. Its form is readily adapted to computer programming

and consequently was used by the present author in this investigation.

A typical example of the determination of nodal point forces is

considered next. The situation is

illustrated in Figure 3.4 where ‘y p(y)..

a distributed load or traction ,’

acts normal to the boundary.

The triangle side 1-4-2 of length

 

h only approximates the curved

boundary. The origin of coordinates

is the mid point of this side.

From the first equation Figure 3-4

of (33.50) Normal Boundary Traction-LST

u(x,y) a1 + 02x may aux asxy 06y

The boundary in question is characterized by x = 0. Thus

3 2
uB a1 + a3y + 06y (3.61)
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The boundary nodal point displacements are

-h -h 2
u1 - a1 + o3 ( 2) + 06 ( 2)

u“ = a1

h h

u2 - 01 + 0‘3 (2) + a6 (2)

Solving these equations for al, 03, and as one obtains

 

1 H

_ u2 ’ u1

a3 - h

1.11 + u2 - 2uu

a6 =

hi
2

Intrxnducing these results into equation (3.61) yields

+ (.gXE.+ Z.

2 2 4 2

“B = (.1. _ z_)u1 + (1 _ _z_J u h) “2

h2 h hZ “ h2

Thus the matrix of weighting functions is

2 2 2

m§t=(bL-x 9L+% 0 1_fl_o o)

h2 h h2 h2

Then from the first of equations (3.31)

[ix]t = [B p(y) [MB]t ds

(3.62)

(3.63)
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one obtains

 

h

2 2L 1
f1 3 I h P(Y) ( 2 - h) dy

x -—- h

2

h

2 2
f2 = [h p(y) (1—+1>dy

x "'2'

.11

2 4
f = [ p(y) (1-L)dy (3.64)
4 h 2

x - h

2

f3 = f5 = f6 = 0

x x x

If p(y) = p, a constant

a =22
f1 f2 6

x x

(3.65)

2
f” a S-ph

x

p2 + p1 p2 " p1
Then.:for a linearly varying load, p(y) = —-§—-— + ———Fr"“' Y

plh

f1 = 6
x

pzh
f =__ (3.66)

2 6
x

f =-1-( + )h

u 3 p1 p2
x

92 - p1 pl + p2 2p. 2

Finally for a parabolic load p(y) = pO + __—h—__ Y + 2 Y

h

T
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f=3‘-(4p
1 30 - p2 + 2p“)1

h

f2 " ‘33 (-p1 + 4132 + 2P“)

h

f x ' 15 (p1 + p2 + 8p»)

3 - 5 Constant Strain Triangular Ring

(3.67)

The finite element for axisymmetric solids is a circular ring

with arbitrary cross sectional

geometry. The particular case considered

here involves a triangle as shown in

Figure 3.5. In view of the axial

syntmetry, only a segment subtended

by an angle A6 need be shown.

The triangle 1-2-3 is shown in an

arbitrary position in the r-z plane.

The cross section is

re“drawn in Figure 3.6. As

Shown, the nodal point system

which has been selected

comSists of the three triangle

vertices. The radial and axial

displacement components are u

and w respectively. They are

1

independent of 6 in view of the

a

Rial symmetry. Furthermore, the

2

Figure 3.5 r

Constant Strain Triangular

'F

l

21

i

&;

Ring Segment

2 5

i 2

i 1 ' A z

i f 3

K r1”, . z2 ;

-< I. ~ , .

__ , 7... m2. _ - I i

Figure 3.6

Cross Section of Ring Element

Q

ihcumferential displacement component v, is identically zero.

‘

I
-

I
'
-
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The linear displacement field is represented by the equations

u(r,z) = a + a r + a z

 

 

l 2 3

(3.67)

w(r,z) = a“ + asr + asz

2 are evaluated at the nodal point coordinates to obtain

11 1 r1 21 0 0 01 a1

\
12 1 r2 22 0 0 0 “2

J3 - 1 r3 23 0 0 0 a3 5 (3.68)

v1 0 0 0 , 1 r1 21 an

Hz J 0 0 O 1 r2 22 as J

w3 L0 0 0 1 r3 234 as  
latter may be written

[n] = [Alla]

inverse transformation is

A

IM=IKHIM= 5-f—--
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1

r223-‘r322 r3zl-rlz3 rlzz-rzzl

-1 l

1 - [A22] = ; 22-23 23-21 21-22 (3.69)

r — — —

L 3 r2 1r1 r3 1.2 r1 J 

the constant in the denominator is

A = r1(z2 - 23) + r2(z3 — 21) + r3(z1 - z ) (3.70)
2

matrix of strains is

 

. \ 7 22
r 3r

8w

le(r,2)]= £2 $=< 5;:

e .2

6 r '

Bu BE, ;

er } k 3?- 3r ,} 

T differentiating equations (3.67) one obtains

  
 

r0 1 o o 0 0] a1,

0 o o o o 1 012

2)]:- % 1 f o o o . P

L
\ JL0 o 1 o 1 OJ (:6

Matrix of displacement function gradients is accordingly

‘
b
‘

u



[D(r.2)] =

fi
l
l
-
J
O

 f—'
—
'

O

O
O

|
-
'

H
I
N
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l (3.71)

 

The orthotropic stress-strain law is sufficiently general for

rnr>st situations.

r 11 12

Oz _ C12 C22

06 C13 C23

T 0 0

rz

0r [0(r.2)] = [C][e(r.2)]

F01? :isotropic materials the constants are

C11 = C22 = C

(l - v) E

13

23

33

 

v E

33 ’ (1 + v)(l - 2v)

 

C12 = C13 =

E

can 2 2(1 + v)

(1 + v)(l - 2v)

'r

he generalized stiffness matrix is

“.1: j
vol

[D]t [CHD] dv

an

In the axially symmetric case,it is expressed by

(3.72)

(3.73)



  

 

  

Can
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The integrand is independent of 8 so that

[kn] = 2n J [D]t [C][D] r dr dz (3.74)

area

It: is possible to ignore the numerical factor 21: in (3.74). In the

equation [F] = [K][s] for the assembled structure, the factor 211 appears

on both sides and can than be cancelled. The matrix multiplication under

the integral results in

In]t [C][D]r =

(3.75)

{Gas/r (C13+C33) C332” 0 0 23 '

(C13+C33) ((311"':2(313"'(333)r ((313%33)z 0 0 (Clz‘l‘cza)r

(3332/r (€13+(333)z Ctoz+r+ca3""2/r 0 Cuur C23Z

0 O 0 0 0 0

O 0 er O er 0

LC2 3 (C12+C;23)r C232 0 O 0221* J  
Thus the expressions in (3.75) must be integrated over the cross sectional

area Of the ring. This can be done quite easily by means of numerical

integration formulas. After doing this, the nodal point stiffness matrix

can be evaluated from the formula

[k] = [A‘l]t I [D]t [c1[n] r dr dz [A_1] (3.76)

area

N

Ote’ the constant 21! as mentioned earlier is not included here.
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Since the elements employed here are circular rings, the concept

nodal point force must be generalized. It is convenient in this

'd to speak of nodal circle forces. These are then forces on circles

LdiUS equal to the nodal point radius. Thus the problem of replacing

.ary tractions by nodal forces involves determining nodal circle loads.

of the general aspects of the problem are considered here.

For convenience, consider

'e 3.7 where a traction q(r) is assumed

 

:t normal to the area shown. 2!

.s l and 2 are on one side of

Lndary element. Again for . A A bq(r)

:nience, the line 1-2 is taken ‘ rpAAG ,//P\‘&;7“n

, 5. '

a horizontal. O 2 h : /%\\\-
— / da

42 h

The work of the applied 2‘ r

.Symmetry Axis

ng during a virtual displacement

Figure 3.7

is

Axial Boundary Traction-CSTR

6W1 = J 6w q(r) da (3.77)

B

iSplacement w(r,z) can be related to nodal point displacements through

rix of weighting functions as was done in equations (3.28). Thus

mm = [N<r.z)1‘ [2221 (3.78)

1t = (w w w ) (3 79)z 1 2 . . . . n .

le last expression n represents the number of nodal points for the

3IN: .
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Evaluation of (3.78) on the boundary leads to

w =[N]t[u] (380)
B B 2 °

In view of (3.80), equation (3.77) can be written as

t .

5W1= [B q(r) [NB] da [éuz] (3.81)

The work done by a set of nodal circle forces with intensities

6W2 = 222 [rfz]t [(Suz] (3.82)

The matrix [rfz] is a column matrix of products of nodal circle force

intensities and their corresponding radii. It has the form

t

[rfz] - < rlflz r21?22 . . . . rn fnz (3.83)

Now the [Guz] are arbitrary nodal point displacements consistent with

the constraints in the problem. Thus when 6w1 is equated to 6W2 one obtains

2n[rf ]t =J q(r)[N ]t da (3.84)

z B B

A

n example will illustrate the procedure.

From the second equation of (3.67)

(3.85)w(r,0) = on + asr
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Evaluating this expression at points 1 and 2 leads to

S

II

h

a“ + a 5(r0 + ~2—)

(3.86)

h

w -a +a5(ro-§)

2 1+

1;:: should be observed in Figure 3.7 that r1 and r2 are taken as r0 + 2-and
2

r0 - I21- respectively. Equations (3.86) are readily solved for a“ and

or. 5 and when these are introduced into (3.85) the result is

r r

1 0 r l 0 r

w(r,o) - (E-h—+h)w1+(2+h__-h)w2 (3.87)

Thus the matrix of weighting functions is

r r

t l 0 r 1 0 r

[NB] ’ < (2 ' h + h) (2 + ‘ h) 0 >

The components of equation (3.84) are then

h 1 r0 r

21r(r0+§) fl =J (1(I') (E-h—+E) da

2 B

(3.88)

h 1 r0 r

211(r0-E) f2 =J q(r) (2_h—+h) da

2 B

f3 = O

z

I

f q(r) is a constant of magnitude q,
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12+E

2 AM” 6)12 2 +g

r0 2

(3.89)

h

h ro'6

2 =L( )
2 2 h

z r + —-

0 2

, ql ' qz h
1 linearly vary1ng load, q(r) = q1 + ——Hh__— (r - r0 -'§)

qlh h qzroh

T‘ro+z>+—6——
f =

l h

2 r0 +‘2
(3.90)

qlroh + qzh (r _ h)

f _ 6 3 0 z.

2‘ _h
z to 2

In assembling the overall structural load vector, it is

emssary to perform the division indicated in equations (3.89) and

) . The form of (3.88) can be adhered to by defining a structural

(zircle load as the total load on a circle of the prescribed radius.

2<>rresponds to the left hand sides of equations (3.88). However,

tine numerical factor 2n also appears in the generalized stiffness

is it can be cancelled as indicated previously. Thus, the behavior

éassembled structure is characterized by the equation

[IF] = [KIIS] (3-91)

[1?] is the column matrix of assembled structure nodal circle force

E‘1ti.¢=:s. The elements of [rF] are obtained by multiplying the elements

1 by the corresponding nodal circle radii.
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3.6 Linear Strain Triangular Ring

The procedure for developi

88

mg the stiffness matrix and associated

nodzil force vector for such an element has been essentially covered in

the previous articles . The notion of a quadratic strain variation was

treeited in article 3.4. The important aspects of an axially symmetric

ring element were discussed in article 3.5. Consequently only a few

of ‘tlae pertinent results are included here.

A portion of

the finite element is

Show in Figure 3.8. The

nodal point system

c30!‘£S:I.sts of the triangle

vertices and the midpoints

015 its sides. The nodal

POint coordinates are

1 = 1,2,...6

z j - 1,2,...6

The assumed displacement

f“nCt ions are

u(r,z) = a1 + azr + o3z

w(r,z) = a7 + oer + ogz

 

Figure 3.8

Linear Strain Triangular

Ring Segment

2 2
+ our + asrz + 062

(3.92)

22
+ alor + allrz + alzz

The nodal point displacements follow when equations (3.92) are

E:

valuated at the coordinates (r

I:

adial displacements is

 

j’ 21). For example,the column matrix of

 



  
I
.
)



111 F1 r1 21

112 1 r2 22

U3 = 1 r3 23

u1+ 5 1 r1+ 2“

us 1 r5 z5

  

or in short

[ur] = [A11] [at]

Similarly

[uz] = [AZZJIaz]

and [A22] = [A11]

The column matrices in the
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2 2 1

r1 r121 z1 / 0‘1

2 2
r2 r222 22 02

2 2
r3 r323 Z3 fi 013 (3.92)

2 2

rs ruzu Zn “4

2 2
r r Z Z

5 5 5 5 \ Cl5

2 2

r6 r626 zej “6

above relationships are

u“ U5 U6 >

(3.94)

wl+ wsw6 >

a“ (15 0:6 >

(3.95)

“10 “11 “12 >
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Then

r'- '

' A ‘ O a
11 1 r

[u] = [A1121 = ——————
O : A22 oz (3.96)

I

The inverse transformation is

-1 '

All :0 Ur

[a] = _—T:1_ (3.97)

0 :A22 uz

with

-1 -1

[A22] 7 [A11]

It is again desirable to compute the inverse matrix numerically.

The Strains are given by

>

s(r,z) = 4 5" = [D(r,z)][o]

P.

r

Bu 3v
—_

\3—z_ 3r

  

The matrix [D(r,z)] consists of displacement function gradients and is

derived from equations (3.92)-

 



':.z') =

 

11'-1.1!

‘bA‘:
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(3.98)

0 1 0 2r 2 O 0 0 0 0 0 O

D(r,z) = 0 O 0 O O 0 0 O 1 0 r 22

2

~1- 1 5 r z -z—- 0 o 0 o o 0
r r r

0 O 1 0 0 22 0 1 0 2r 2 O J

L.  

The stresses are related to strains through the constitutive

relationships (3.72). The generalized stiffness matrix is

12

“SJ = I [D] [cum dv
vol

The integrand is of the form

[D]

The matrices [Qij] i, j = 1, 2 are presented on the following page.

’— 
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C C +C C 2
11 11 12 11 z 22

r 2C12+c11 (CHER) F c117
r r2 r

2
z z

2(C11+C12) (Chi-C12); 3((3114'912)r 2((311"'(312)2 (C11"‘c12)r—'

2 3
z z 2

(Q1 1] . Cll;; +Cuu (2C12+Cll)z (C11+C12) ; +Cuur Cll :; +2Chuz

2 2
(SCII+4C12)r 3(C11+C12)rz (2C12+C11)z

2 2 2 23
2(Cl)+Cx2)z +C~hr ( C11+L)2) ;—+2C““rz

z?

(Symmetric) C —~ +4C 22
ilr2 '0“

[012] -10211 (3.99)

' d
12 z

0 0 —;—- 0 C12 2C12 r

0 0 2C12 0 2C12r 4Clzz

[Q .. 5 i2,] 0 C2... c12 r 2c“: “12”..” 2c12 r

2
0 O 3Clzr 0 3C12r 6C12rz

2 2
O Cunt 2Cx22 2Cuhr (2C12+Chh)rz 4C122

22 2 2J

0 zcuur CIZF— “Cunt: (C12+2C““)z 2C12 ;_ J

r n

0 0 0 0 0 0 i

C44 0 26““: ch“: 0 :

[(2 l _

22 CH 0 Cur ZCHr ’

2 1

“Cunt ZCuurz 0

2 2
Cllr +Cuuz 2Cllrz

t

(Symmetric)
“C1122 .

 

TheSe expressions assume orthotropic behavior which is identified by

the matrix of elastic properties in equation (3.72).
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To completely formulate the generalized stiffness matrix, [kal’

the coefficients of equations (3.99) must be integrated over the element

v011nne. The axial symmetry quickly reduces this to an area integration

ave]: the triangular cross section. The latter is most efficiently per-

for1nefl by numerical integration formulas.

The nodal point stiffness matrix is

1

[k1 = [A—IJT [ka][A_ 1

 g-
When: ‘these element matrices are referred to the same global coordinate '

3X88, the overall structural stiffness matrix is easily assembled by

the direct stiffness approach.

Nodal circle force intensities are determined as in article 3.5

for? tihe constant strain ring. From the second of equations (3.92)

w(r,o) = 07 + car + alorz (3.100)

In terms of nodal point displacements wl, w2 and w this becomes

 

L1

2
I‘ r r

_ 0 0 _1_ _2_ __1__ 2
w(r,0) — L( 2h + 2h?) + ( 2h hZ] + 2h2 r ] wl (3.101)

rro r3 1 r0 1

+ (2h-+ ———J + ( 2h.- -—3 r + ----—-r2 w2

1. 2112 112 2h2

2 2
r 2r

+ (1 -—3)+——° ——l-r2 w

h2 112 112 “
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The notation here is

of Figure 3.9. The nodal

Le radii are r +2

0 2 ’

h

and r0 - 2 for r1, r“, and

aspectively.

Using the procedure of

:le 3.5, one is led to the

)wing nodal circle force

lsities for the case

= q, a constant:

1

f1 ‘3“
Z

2

fl+ =§qh

Z

1

f2 "3“

94

Figure 3.9

Axial Boundary Traction-LSTR

(3.102)

 





IV. PLANE STRESS APPLICATIONS

The various finite element methods have been widely applied to

plane problems in continuum mechanics. Finite difference methods have

likewise proved to be extremely useful in plane stress analysis;

however, most of the applications have involved the stress function

approach.

Treated first are several plane stress applications. The

emphasis is placed on the comparison of the methods involved. Two fi—

nite element solutions are presented in each case. These involve the

direct stiffness method using linear strain triangles (LST) in the one

solution and constant strain triangles (CST) in the other. One finite

difference solution is given as obtained by the displacement formulation

(FD). Hereafter, the abbreviations LST, CST, and FD will be used to

indicate such solutions. In some examples, the elasticity solution is

also available. The designation "exact" when used will refer to the

elasticity solution.

4.1 Cantilever Beam

As a first example, consider the cantilever beam of Figure 4.1-a,

Page 96. The beam carries a parabolic load on its end whose resultant

is 1000 pounds. Its dimensions in inches include a length of 6, a depth

(If 2, and a thickness of 1/2. The assumed material properties are:

Y(Jung's modulue E = 107 psi and Poisson's ratio v = %u

95
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N
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ll

H
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N
I
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ll

H

 

  

 

P (resultant) = 1000 lb

I §

c =

.. .. .. {—x

c

V

P‘s l = 6

V

Figure 4.1a

Cantilever Beam

Free End Loads Fixed End Loads

 

 

     
 

12.5 1 - g f 1 .5

350. '35 . 1500'

0 a o o (. 3000.

275. ' 4' ‘ ‘ : f 275.

9 o o a 1» 3000.

350.

c c s = 950' 1500.

12.5 r125

65 Nodal Points

Figure 4.1-b

Cantilever Beam - LST Finite Element Configuration
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This same problem, with somewhat different properties, was dealt

with in a paper by Argyris [15]. The author compares the end deflection

obtained from LST and CST solutions with the exact solution. He con—

cludes that the CST solution is unsuitable for this situation.

Elasticity Solution. The cantilever beam is a classical

problem of the theory of elasticity. Its solution may be found in any

of the popular texts. For example, Timoshenko and Goodier present the

solution for two different sets of displacement boundary conditions.

The boundary conditions of the present problem have been chosen so as to

allow free warping of the supported end. Thus in Figure 4.1-a,it can

be observed that u(fi, 0) = v(R, 0) = 0 and u(z, c) = u(l, -c) = O. The

latter prevent rigid body rotation. Following the approach of

Timoshenko [39], the stresses

ny

o = -

x I

o = 0

Y

=_£_ 2-2

Txy 21 (C y )

are valid at points sufficiently distant from the supported end. The

displacements are

2 3 3 2 2 2

= _ Px z _ Ez_. Ez_._ Es_._ £2... £2_

u(x,?) 2E1 6EI + 616 (610 231 “ 6E1)

2 3 2 2 2
= ny Px _ Pc Pc P2

v(x,y) 2E1 + 6E1 [313 + V 6E1 + 2E1) x

  

P22c P£2c P23

+ v )
3IG 6E1 3E1

+ I
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where I represents the area moment of inertia of the beam cross section

and G is the shear modulus.

It is clear that the above stresses are strictly correct only

when the load is distributed parabolically over the free end. However,

any statically equivalent end load will produce these stresses at points

sufficiently distant from the free end. In the finite element and

finite difference methods, distributed loads are replaced by suitable

concentrated forces. Thus in Figure 4.1-b, a set of end loads corre-

sponding to parabolic loading on LST elements is shown. Similarly,

fixed end loads are imposed corresponding to parabolic transverse

loading and linear longitudinal loading. The presence of these loads

insures the validity of the above stresses throughout the beam.

Finite Difference Solution. The finite difference solution was
 

worked out for 3 mesh point systems. This was done to give some indica-

tion of the convergence to the exact solution as the number of mesh

points is increased. The three configurations chosen for this purpose

are shown in Figure 4.2. The mesh point spacing has been successively

reduced by a factor of 2. Accordingly, the mesh point systems consist

of 21, 65, and 225 mesh points respectively. The end loads are also

shown.

Figure 4.3, diSplays the beam deflections obtained using these

three approximations. As would be expected, the results are not

Particularly good until a large number of mesh points is used. Thus the

225 mesh point approximation gives a maximum deflection of

21.237 X 10..2 in. The error here is 3.47%. It is apparent that conver-

gences to the exact solution occurs from below.
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Figure 4.2

Cantilever Beam Finite Difference Configurations
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The flexural stress variation on the particular cross section

x = %-£ is shown in Figure 4.4, page 102. The pattern here is quite com-

parable to that which occurred for deflections. Very good stresses are

obtained using the 225 mesh point approximation. The variation is

essentially linear with a maximum value of 14,620 psi. This last

result is 2.54% lower than the exact stress of 15,000 psi.

CST Solution. The finite element solution using constant
 

strain triangles (CST) was carried through using the 3 configurations

of Figure 4.5. These include 21 nodal points with 24 elements, 65 nodal

points with 96 elements, and 225 nodal points with 384 elements. The

locations of nodal points corresponds identically with the locations of

mesh points for the previous finite difference solutions. The nodal

point loads are the same as those for the finite difference solutions.

The deflection curves for these three approximations are plotted

in Figure 4.6, page 104. The results compare quite closely with those

obtained using the finite difference method. The lower order approxi-

mations are somewhat of an improvement over the corresponding FD solu—

tions. The 225 point solution, however, is slightly worse. Thus for

example, the end deflection is found to be 2.219 X 10_2 in. for the

225 point configuration. This is less than the exact value

2.3175 x 10’2 in. by 4.26%

The flexural stresses, obtained by averaging element stresses,

are diSplayed in Figure 4.7 on page 105. They are generally comparable

to FD Stresses at interior points but are poorer indications of the

true State of stress along boundaries, particularly at the lower order

approx-imations. Even the 225 nodal point approximation gives rather
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Cantilever Beam — CST Finite Element Configurations
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poor boundary stresses. For example, on the cross section x = g 9.

the maximum stress is 12,625 psi, some 15.87. less than the exact value.

It should be mentioned, however, that the element layout affects the

results to some extent. Thus for example, the layout of Figure 4.8 on

page 107 gives somewhat better boundary stresses but less satisfactory

interior stresses and deflections. The maximum stress on the section

x = g- 2. is 13,912 psi compared to 12,625 for the former layout. The

end deflections are 2.2004 X 10”2 in. and 2.219 X 10-2 in. respectively.

It should also be emphasized that in some cases it may be prefer-

able to derive boundary stresses by extrapolation rather than by

averaging element stresses. This last point is a subject in itself.

It: will not be pursued further in this work.

LST Solution. Only a single solution involving linear strain
 

triangles (LST) is considered in detail. The element layout and cor-

responding nodal point loads are seen in Figure 4.1-b on page 96.

Very excellent flexural stresses and deflections are obtained

for this configuration. In Figure 4.9, page 108, deflections are seen to

be nearly identical to the exact deflections. In fact, the end

deflection is 2.319 X 10"2 in. or just .065% higher than the elasticity

SOIUtion. The higher value results from the fact that it is not

p0$31151e to exactly represent the prescribed distributed forces.

The theoretical stress variation is a linear one with respect to

bOth X and y coordinates. Thus in using the linear strain triangles,

one WC>uld expect to obtain stresses which are nearly exact. As seen

in Table 4,3, page 113, this is precisely the case. There is

essentially no difference between the LST and the exact stresses on the
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cross section x = %-£. The only noticeable deviations from the exact

theory occur near the supported and free ends.

Further Comparisons. In order to facilitate comparison of the

three approximate solutions discussed above, the previous results are

tabulated and plotted in a different form. Other results including

shear stresses and longitudinal displacements are presented as well.

Starting with deflections, Tables 4.1 and 4.2 on pages 110 and

111 list deflections corresponding to the 65 and 225 point configura—

tions respectively. In Table 4.1,it may be observed that CST deflec-

tions are somewhat better than FD deflections at the lower order approx-

imations. In Table 4.2, the reverse is seen to be the case at the

laigher order approximation. The results in Table 4.2 are graphically

illustrated in Figure 4.10. Clearly, the LST solution using only 65

Inodal points is superior to CST and FD solutions involving almost 4

times as many points.

The flexural stresses on several cross sections near the fixed

Enid are presented in Table 4.3, page 113. It is evident that the LST

snalution is best in each case. The FD solution is more satisfactory

tfllen the CST solution for this configuration. The stresses for the

(tress section x = %-£ are also presented in graphical form on page 114.

Itis instructive to study the stress distribution on a free boundary.

FVDr example, the theoretical tensile stress on the top of the beam

‘Laries linearly with the horizontal coordinate x. The corresponding

approximate results are listed on page 115 and plotted on the page which

follows. It is clear that none of the solutions is exceptionally good

e"erywhere on the boundary surface. The LST solution is excellent for

heEgions somewhat removed from the free end. The FD solution is
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Table 4.1

Beam Deflections

65 Point Configurations

 

X-Coord. Finite Diff. C.S.T. Elasticity L.S.T.

0. .01905 .02001 .023175 .02319

.5 .01673 .01758 .020350 .02035

1.0 .01443 .01517 .017562 .01757

1.5 .01220 .01285 .014850 .01486

2.0 .01006 .01058 .012250 .01226

2.5 .00805 .00850 .009806 .00980

3.0 .00619 .00651 .007537 .00757

3.5 .00452 .00481 .005500 .00551

4.0 .00306 .00322 .003725 .00373

4.5 .00185 .00202 .002250 .00225

5.0 .00091 .00097 .001112 .00112

5.5 .00028 .00039 .000350 .00036

6.0 .00000 .00000 .00000 .00000
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Table 4.2

Beam Deflections

225 Point Configurations

*65 Point Configuration

X-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

0. .02237 .02219 .023175 .02319

0.25 .02101 .02083 .021760

0.50 .01965 .01948 .020350 .02035

0.75 .01830 .01814 .018949

1.00 .01696 .01680 .017562 .01757

1.25 .01564 .01550 .016194

1.50 .01434 .01420 .014850 .01486

1.75 .01307 .01295 .013533

2.00 .01183 .01171 .012250 .01226

2.25 .01063 .01052 .011003

2.50 .00947 .00936 .009800 .00980

2.75 .00835 .00826 .008642

3.00 .00728 .00719 .007537 .00757

3.25 .00629 .00620 .006488

3.50 .00531 .00524 .005500 .00551

3.75 .00443 .00437 .004577

14.00 .00360 .00354 .003725 .00373

4 .25 .00285 .00282 .002947

4 . 50 .00217 .00213 .002250 .00225

4 . 75 .00158 .00157 .001636

5 . 00 .00108 .00105 .001112 .00112

5 . 25 .00066 .00066 .000682

5 . 50 .00034 .00032 .000350 .00036

S . 75 .00012 .00013 .000121

6 - 00 . 00000 .00000 .000000 . 00000
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y-coord.

- .50

-1.00

y-Coord.

- 1.00

y-Coord.

- .25

- 1.00

113

Table 4.3

Beam Flexural Stress

225 Point Configurations

Finite Diff.

- 6.4

3650.

7293.

10906.

14620.

Finite Diff.

- 10.

4062.

8111.

12057.

15926.

Finite Diff.

- 19.

4386.

8773.

13039.

16684.

3643.

7251.

10840.

12625.

4082.

8063.

11987.

13803.

4395.

8765.

12981.

14595.

Elasticity

3750.

7500.

11250.

15000.

Elasticity

4125.

8250.

12375.

16500.

Elasticity

O.

4500.

9000.

13500.

18000.

L.S.T.*

- .3

3748. **

7495.

11250. **

15004.

L.S.T.*

- .6

3962. **

7926.

12240. **

16554.

L.S.T.*

- .3

4604. **

9207.

13487. **

17767.

* 65 Point Configuration

** Interpolated Result
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Table 4.4

Boundary Flexural Stress

225 Point Configurations

x-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

0. 365. 317. 0. 246.

.25 722. 711. 750. 852. **

.50 1441. 1260. 1500. 1458.

.75 2166. 2147. 2250. 2232. **

1.00 2893. 2527. 3000. 3005.

1.25 3621. 3586. 3750. 3765.

1.50 4351. 3792. 4500. 4524.

1.75 5081. 5022. 5250. 5263. **

2.00 5813. 5056. 6000. 6002.

2.25 6546. 6457. 6750. 6739. **

2.50 7280. 6322. 7500. 7475.

2.75 8015. 7893. 8250. 8240. **

3.00 8751. 7587. 9000. 9004.

3.25 9488. 9329. 9750. 9768. **

3.50 10225. 8852. 10500. 10532.

3.75 10964. 10766. 11250. 11269. **

4.00 11702. 10117. 12000. 12005.

4.25 12440. 12201. 12750. 12745. **

4.50 13175. 11379. 13500. 13484.

4.75 13905. 13621. 14250. 14244. **

5.00 14620. 12625. 15000. 15004.

5.25 15304. 14952. 15750. 15779. **

5.50 15926. 13803. 16500. 16554.

5.75 16450. 15957. 17250. 17161. **

6.00 16684. 14595. 18000. 17767.

* 65 Point Configuration

** Interpolated Result
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consistently lower than the exact solution (except at the free end).

Its variation is essentially linear. The CST solution is very erratic,

at times decreasing with increasing x. This is essentially the result

of the choice for an element layout. As mentioned earlier, the con-

figuration of Figure 4.8 gives somewhat better boundary stresses. In

Figure 4.13 it is apparent that the stress variation using this alter—

nate arrangement of triangles is less erratic. The former arrangement

is clearly scattered on either side of the latter. Apparently a best fit

curve is a better indication of the actual stress variation for CST

configurations. Again it should be kept in mind that these are not the

best boundary stresses. For truly accurate results, one would resort to

extrapolation.

Further insight into the relative merits of the methods dis-

cussed is gained by examining the shear stress distribution. The exact

shear stress varies parabolically with y and is independent of x. Shear

stresses corresponding to the various approximations are tabulated on

page 119 and graphically presented in Figure 4.14. None of the shear

stresses conform very closely with the exact theory. Particularly poor

results occur on the free top and bottom boundaries. Certainly some of

this difficulty arises from the use of constant and linearly varying

strain elements in a parabolic stress field. More satisfactory results

would certainly be obtained if the element size was further reduced.

The FD solution is consistently better than either the LST or CST

solutions. The LST solution is poor because only one element is placed

above and below the neutral surface in this configuration. In doing

this,one is trying to approximate a parabola by a single straight line.

The use of more points in the 225 point CST and FD solutions allows for
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Table 4.5

Beam Shear Stress

225 Point Configurations

Pg.

y-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

O. 1508. 1487. 1500. 1788.

- .25 1409. 1378. 1406.25

- .50 1115. 1088. 1125. 1055.

- .75 641. 611. 656.75

- 1.00 344. 345. 0. 240.

-5
x 12”

y-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

0. 1559. 1560. 1500. 1715.

- .25 1453. 1432. 1406.25

- .50 1128. 1099. 1125. 993.

- .75 599. 560. 656.25

- 1.00 275. 249. 0. 207.

y-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

O. 2053. 1570. 1500. 1747.

~ .25 1932. 1952. 1406.25

- .50 1599. 1172. 1125. 1048.

- .75 962. 946. 656.25

1.00 531. 93. 0. 247.
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a better approximation to such a function. Additional analysis using

more nodal points in an LST solution has shown this to be the case.

Further examination of the results in Table 4.5 indicate that

the end stresses are also poor. This is additional evidence of the fact

that care must be exercised in interpreting such results. Extrapolation

would certainly be advisable in View of the relatively good interior

stresses for the CST and FD solutions.

The last results presented here involve the longitudinal

displacements (u) for points on the free end of the beam. These are

[>resented on pages 122 and 123. They differ little in pattern from

zilready presented transverse displacements. The FD displacements are

silightly better than the CST displacements, but both fall short of the

eoract values. The LST results are very close to the elasticity solution.

Concluding Remarks. The preceding work demonstrates the super—

i()rity of the LST element in the presence of non—uniform stress states.

It: is possible to derive much more acceptable results using fewer nodal

PCIints. The LST analysis is also superior to the particular FD method

enlployed in this work. However, the present work seems to demonstrate

a INDtential for the FD method to give equally good and perhaps even

better stress and displacement results than the CST analysis. This in

tt"3 authors opinion is a significant point since programming the FD

method is to a degree less involved and requires less memory capability.
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Table 4.6

Beam Longitudinal Displacements

225 Point Configuration

(Free End)

y-Coord. Finite Diff. C.S.T. Elasticity L.S.T.*

-1. -.005194 -.005167 -.005400 -.005403

- .75 -.003860 -.003840 —.004013

- .5 -.002557 -.002544 -.002657 -.002681

- .25 -.001273 -.001266 -.001323

0. .000000 .00000 .000000 .000000

.25 .001275 .001267 .001323

.50 .002559 .002544 .002657 .002661

.75 .003862 .003840 .004013

1.0 .005195 .005167 .005400 .005403

* 65 Point Configuration
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4.2 Composite Plate

The second numerical example considered here is that of a

composite plate. One quarter of the symmetrical arrangement is shown

in Figure 4.16 on the page which follows. The plate has a length of

4 in., a width of 2 in. and is of unit thickness. A uniformly distri-

buted load of 1200 psi acts on the top and bottom ends.

As shown in the figure, the plate consists primarily of a

rather flexible material (perhaps plastic) molded around a rather large

rectangular stiffener (perhaps aluminum). The ratio of elastic moduli

is taken to be 20. Throughout the analysis, the continuity of displace-

ments across the material interfaces is assumed. A more ambitious and

realistic example allows the stiffener (inclusion) to be more fiber like

and thus completely surrounded by the matrix. Many such fibers could

conceivably be present. This would of course involve a three dimen-

sional or axially symmetric analysis. A more practical example is

treated in Chapter V of this thesis. Involved is a reinforced cylinder

Which is analyzed using axially symmetric programs.

In the present example, the solution is carried out using two

finite element models and the finite difference method. Several dis—

Placement curves are plotted correSponding to each method to demonstrate

convergence of the approximate solutions to the true solution. Of

Primary interest is the stress distribution along the interface of the

tW0 materials, as it occurs in both the matrix and the inclusion.
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Finite Difference Solution. The FD analysis employed here
 

consisted of 4 different mesh arrangements ranging from a 45 mesh point

configuration to a 231 mesh point configuration. These 4 mesh arrange-

ments are identified in Figure 4.17, page 127 .

It is of particular importance in situations of this kind to

know what deformations occur. One might ask for example how the total

maximum extension compares with that which would occur if no stiffener

were present at all. In Figure 4.18, page 128,the vertical displacement

of the top edge is plotted for the 4 configurations mentioned above.

Clearly, displacement convergence is very rapid. Since no exact solu-

tion is available, one can only make comparisons with problems for

which solutions are available. Thus the maximum displacement of

3.26 X 10-3 in. derived from the 231 point configuration seems very

reasonable when compared with the value 4.8 X 10-3 in. which occurs in

a homogeneous solid plate having E equal to 5 X 105 psi.

The horizontal displacement of this same edge is shown in

Figure 4.19. Again, very rapid convergence is displayed. It is evident

from both Figures that relatively good displacements are obtained with

even a very course mesh spacing. Additional evidence of the nature of

the displacement solution is given by Figures 4.20 and 4.21 on pages 130

and 131 respectively. These are plots of the displacements of points

on the horizontal interface. It is interesting to note that displace—

ments are generally overestimated in the stiffener and underestimated

in the matrix. A final set of curves is plotted in Figure 4.22. These

involve vertical displacements of points on the vertical symmetry axis.

Once again the excellence of the displacement solution is displayed,

even at the crudest approximation.



127

 

45 Mesh Points 91 Mesh Points

'
~
<

—
’
-
1
2
0
.
—

-
—
-

1
2
0
.

-
—
—
-

1
2
0
.

-
—
-
—

1
2
0
.

-
¢
-
1
2
0
.

-
4
-
'
1
2
0
.

—
-
,
-
1
2
0
.

-
—
-
—
-
1
2
0
.

"
F
-

1
2
0

 
153 Mesh Points 231 Mesh Points

Figure 4.17

Composite Plate - Finite Difference Configurations

-
"
'
1
2
0
.

A
6
0
.

 



80+3“(S3HONI)1N3N3001JSIO-A
3003 801

3
-
5
0
’

1

3
-
0
0

1

E
~
5
0

 
~
8
5

 
€
3
1

M
E
S
H

P
O
I
N
T

1
5
3

M
E
S
H

P
O
I
N
T

S
I

M
E
S
H

P
O
I
N
T

4
5

M
E
S
H

P
O
I
N
T

*‘rCDEJ

1
l

4
1
L

~
5
0

~
7
5

1
-
0
0

X
-
O
O
O
R
O
I
N
H
T
E
(
I
N
O
H
E
S
)

F
i
g
u
r
e

4
.
1
8
,

F
D

T
o
p

E
d
g
e

v
-
D
i
s
p
l
a
c
e
m
e
n
t
s

128



80+3'(S3HONIJLN3H3OHWdSIO-fl 3003 d01

1

1
-
0
0

.
7
5
-

1

~
5
0

 
[
]
.
U
l
u

0
—
0
0

0')!

 

€
3
1

M
E
S
H

P
O
I
N
T

1
5
3

M
E
S
H

P
O
I
N
T

S
l

M
E
S
H

P
O
I
N
T

*
5

M
E
S
H

P
O
I
N
T

1 +013

1
L

#
1
4

~
5
0

~
7
5

1
~
0
0

X
-
O
O
O
R
O
I
N
H
T
E
(
I
N
O
H
E
S
)

F
i
g
u
r
e

4
.
1
9
,

F
D

T
o
p

E
d
g
e

u
-
D
i
s
p
l
a
c
e
m
e
n
t
s

129



80+3“(S3HONIJLN3N3301dSIflrfl

.
w
r

~
3
0
1
-   

{
3
-
0
!
.
:

0
-
0
0

 

P
S
I

M
E
S
H

P
O
I
N
T

1
5
3
M
E
S
H

P
O
I
N
T

9
1

M
E
S
H

P
O
I
N
T

9
5

M
E
S
H

P
O
I
N
T

~-+OEJ

1
l

L

.
8
5

.
5
0

~
7
5

X
-
O
O
O
R
O
I
N
H
T
E
E
I
N
O
H
E
S
)

F
i
g
u
r
e

4
.
2
0
,

F
D

H
o
r
i
z
o
n
t
a
l

I
n
t
e
r
f
a
c
e

v
-
D
i
s
p
l
a
c
e
m
e
n
t
s

1
-
0
0

130



EO+3'(S3HONI]lN3N3001dSIO-A

1
~
5
0
r

1
-
0
0
'

~
5
0
L  

O
-
O
O
-

a
.

 0
0

k‘

s‘

~+0El

\

A
1

1
1
.

.
9
5

.
5
0

~
7
5

X
-
C
U
U
R
D
I
N
R
T
E
t
I
N
C
H
E
S
)

F
i
g
u
r
e

4
.
2
1
,

F
D

H
o
r
i
z
o
n
t
a
l

I
n
t
e
r
f
a
c
e

u
-
D
i
s
p
l
a
c
e
m
e
n
t
s

8
3
1

M
E
S
H

P
O
I
N
T

1
5
3
M
E
S
H

P
O
I
N
T

9
1

M
E
S
H

P
O
I
N
T

$
5

M
E
S
H

P
O
I
N
T

1
-
0
0

131



3
~
O
O
~

_L

D

D

CU

25

:3
,4

80+3'(S3HONIJIN3NBOHTJSIO-A

 
0
.
0
1
~

-
"

O
'
I
O
O

’
J

G

8
3
1

M
E
S
H

P
O
I
N
T

1
5
3
M
E
S
H

P
O
I
N
T

S
i

M
E
S
H

P
O
I
N
T

M
S

M
E
S
H

P
O
I
N
T

h‘

~+oc1

1O

l
_
L

.
5
0

1
~
0
0

1
~
5
0

Y
-
O
O
O
R
O
I
N
H
T
E
(
I
N
C
H
E
S
)

F
i
g
u
r
e

4
.
2
2
,

F
D

V
e
r
t
i
c
a
l

S
y
m
m
e
t
r
y

A
x
i
s

v
-
D
i
s
p
l
a
c
e
m
e
n
t
s

2
-
0
0

132



133

CST Solution. The analysis with CST elements was carried out
 

using the three layouts of Figure 4.23 on the following page. The loca—

tion of nodal points is not generally the same as that used in the FD

solution. However, the nodal point system is identical to that used

in the LST analysis.

The convergence of displacements for the CST solutions to an

apparent true solution is illustrated in Figures 4.24 through 4.28

which follow. The 25 point nodal point solution is a rather low order

approximation and evidently gives very poor results. There is not an

appreciable difference between the 81 and 169 point solutions indicating

fairly rapid convergence beyond this point. The maximum extension

derived from the 169 point solution is 3.2551 x 10'3 in. The best FD

solution gave 3.260 X 10.3 in.

LST Solution. The three LST arrangements are illustrated in
 

Figure 4.29, page 140. As mentioned earlier, the corresponding nodal

point systems are identical with those used in the CST analysis.

The top edge displacements are given in Figures 4.30 and 4.31.

These results demonstrate that convergence to the true solution occurs

from below. It is interesting to note that at certain points, the

25 nodal point CST solution is better than the 25 point LST solution

insofar as horizontal displacements are concerned. However, in general,

these LST displacements are higher than both FD and CST displacements and

thus apparently more satisfactory. The maximum extension for the 169

point LST solution is 3.2745 X 10-3 in. The comparable diSplacementS for

the best CST and FD solutions are 3.2551 X 10.3 in. and 3.260 X 10-3 in.

respectively.
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Composite Plate — LST Configurations

Figure 4.29

81 Nodal Points 169 Nodal Points
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The horizontal interface displacements are displayed in

Figures 4.32 and 4.33. The lowest order solution involving 25 nodal

points is quite poor. The 81 and 169 point solutions are much more

comparable. The vertical symmetry axis displacements are seen on

page 146, Figure 4.34. These do not vary appreciably from the lower to

the higher order approximations.

Comparison of the Solutions. For further comparison of the
 

solutions already discussed, the displacements and stresses correspond-

ing to the highest order approximations are considered next. Stresses

at the lower order approximations are not likely to be as meaningful and

are consequently not examined here. The stresses which are used for

this purpose are nodal point stresses obtained by averaging appropriate

element stresses. It was pointed out earlier that these may not always

be accurate on boundary surfaces. The comparisons, however, are never—

theless felt to be largely meaningful.

Beginning with displacements, the plotted information of

pages 147 through 151 pertain to displacements of points on the top

edge, the horizontal interface and the vertical symmetry axis. These

results are also listed in Tables 4.7 to 4.11 beginning on page 152.

The top edge displacements, Figures 4.35 and 4.36, are essentially the

same for the three solutions with the LST results slightly higher in

each case. This is also the case insofar as the vertical symmetry axis

displacements are concerned (Figure 4.39). Noticeable variations be-

tween the three solutions are apparent with regard to the horizontal

interface displacements. The largest variations are seen to occur for

the vertical displacement component (Figure 4.37). The LST
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Table 4.7

Composite Plate Top Edge

3

v-Displacements X 10+

231 Point 169 Point 169 Point

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.T.

0. 2.7391 .7342 .7469

.1 2.7477 .08333 .7446 .7546

.2 2.7730 .16666 .7581 .7736

.3 2.8139 .25 .7909 .8024

.4 2.8681 .33333 .8264 .8414

.5 2.9324 .41666 .8767 .8906

.6 3.0027 .5 .9284 .9454

7 3.0741 .58333 .9876 .0035

.8 3.1424 .66666 .0462 .0633

.9 3.2043 .75 .1045 .1208

1. 3.2600 .83333 .1594 .1747

.91666 .2093 .2264

.2551 .2745
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Table 4.8

Composite Plate Top Edge

u—Displacements X 10+

231 Point 169 Point 169 Point

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.T.

0.

.l .1214 .08333 .1004 .1030

.2 .2402 .16666 .1996 .2046

.3 .3541 .25 .2954 .3024

.4 .4605 .33333 .3876 .3961

.5 .5576 .41666 .4736 .4831

.6 .6443 .5 .5540 .5639

.7 .7206 .58333 .6264 .6360

.8 .7880 .66666 .6928 .7014

.9 .8495 .75 .7517 .7601

l. .9093 .83333 .8063 .8141

.91666 .8570 .8649

.9065 .9143
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Table 4.9

Composite Plate Horizontal Interface

231 Point

x—Coord. Finite Diff.

0. .1604

.1 .1634

.2 .1729

.3 .1909

.4 .2222

.5 .2818

.6 .6577

.7 .8720

.8 1.0194

.9 1.1294

1. 1.2186

v-Displacement X 10+

x-coord.

.08333

.16666

.25

.33333

.41666

.58333

.66666

.75

.83333

.91666

169 Point

C.S.T.

.1603

.1648

.1689

.1830

.1992

.2318

.2776

.5994

.8018

.9442

1.0537

1.1399

1.2125

169 Point

L.S.T.

.1579

.1596

.1649

.1782

.1979

.2318

.2870

.6168

.8316

.9679

1.0769

1.1630

1.2403
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Table 4.10

Composite Plate Horizontal Interface

u-Displacements X 10+3

231 Point 169 Point 169 Point

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.T.

0.

.0180 .08333 .0149 -.0158

.0365 .16666 .0296 -.0317

.0556 .25 .0449 —.0484

.0751 .33333 .0595 -.0659

.0933 .41666 .0756 -.0836

.1654 .5 .0861 -.0985

.2189 .58333 .1418 —.1580

.2646 .66666 .1905 —.2089

.3071 .75 .2310 -.2504

.3487 .83333 .2687 -.2887

.91666 .3045 —.3232

1.0 .3389 -.3577
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Table 4.11

Composite Plate Vertical Symmetry Axis

v-Displacements X 10+3

231 Point 169 Point 169 Point

y-Coord. Finite Diff. y—Coord. C.S.T. L.S.T.

0. 0. O. 0. 0.

.1 .0186 .16666 .0309 .0305

.2 .0370 .33333 .0607 .0596

.3 .0548 .5 .0880 .0865

.4 .0717 .66666 .1123 .1102

.5 .0877 .83333 .1367 .1318

.6 .1027 1. .1603 .1579

.7 .1167 1.16666 .5884 .5860

.8 .1304 1.33333 1.0189 1.0248

.9 .1446 1.5 1.4585 1.4659

1. .1604 1.66666 1.8871 1.8988

1.1 .4140 1.83333 2.3148 2.3250

1.2 .6727 2. 2.7342 2.7469

1.3 .9349

1.4 1.1981

1.5 1.4603

1.6 1.7202

1.8 2.2316

1.9 2.4849

2. 2.7391
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displacements are generally the largest for the 3 sets of results.

The exception to this observation occurs in the stiffener where

displacements are apparently overestimated in general.

Regarding the horizontal interface y =-%

gives a maximum vertical displacement of 1.2404 x 10-3 in. The CST and

, the LST solution

FD difference values for this same displacement component are

1.2125 X 10—3 in. and 1.2186 X 10—3 in. respectively. In this connec-

tion, the LST solution is apparently best.

As a final observation, it should be noticed that FD displace-

ments generally represent a slight improvement over the CST displace-

ments. However, not to be overlooked is the fact that considerably more

points (231) have been employed as opposed to 169 for the CST solution.

In any stress analysis, the location of regions of maximum

stress and the determination of these stresses is of primary concern.

For the present problem, these regions correspond to the material inter—

face. The overall stress distribution obtained from the best solution

for each of the methods is presented in Figures 4.40 through 4.42 on

page 158 through 160. Two sets of stresses are shown for interface

points because some stress components are not continuous across the

interface. It is evident from these results that maximum stresses

indeed occur in the interface regions. In fact, compared to the 1200

psi applied stress very large values of 0y occur in the stiffener.

Along the vertical interface, the methods indicate 0y stresses in excess

of 3600 psi, or a stress concentration factor greater than 3. The

maximum 0y in the matrix is nearly 2300 along the horizontal interface

near the corner. The stress concentration factor is approximately 1.9.
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Further examination of these stress results indicates that UK

is quite small (less than 400 psi) throughout the matrix. In the

stiffener, however, large compressive values as great as 1860 psi arise

along the horizontal interface. This is clearly the result of the

large ratio of elastic moduli for the two materials. Maximum shear

stresses also occur along the material interface. The indicated values

are approximately 700 psi for the stiffener and 500 psi for the matrix.

It is well to recall that due to the sharp corner corresponding

to the intersection of the vertical and horizontal material interfaces,

the theoretical stress components at the corner are undefined. Since

the nodal point stresses represent the average stresses in the

neighborhood of any point, they clearly would not reflect this situation.

A second point of clarification is in order. Regarding inter-

facial stresses, certain components should be continuous across the

interface in view of equilibrium considerations. For instance, 0y and

Tyx should be continuous across the horizontal interface whereas 0x and

Txy should be continuous across the vertical interface. The results

in Figures 4.40 through 4.42, however, do not reflect this. The difference

is apparently due to the fact that nodal point stresses are indicative

of the average stress around a given point. These discrepancies would

diminish if smaller spacing and smaller triangles were used in the

vicinity of the interface. Along with this, one could extrapolate

from the interior points and this should further improve the results.

These ideas, however, probably would not greatly improve the situation

at the corner.

In order to examine and compare these interfacial stresses in

greater detail, certain of these are next tabulated and plotted together.
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Beginning with ox, this component should be continuous across the

vertical interface but discontinuous across the horizontal interface.

The former stresses are relatively small and therefore not considered

further. The latter are listed in Tables 4.12 and 4.13. The matrix

stresses are shown in the first of these tables and the stresses for the

stiffener in the second. These stresses are the average of element

stresses around a given point. The averaging is done only for elements

in regions of the same material. In Figure 4.44, the interfacial stress

OK for the stiffener is rather erratic for the LST and CST solutions.

The smooth variation of the finite difference solution seems much more

realistic. The erratic tendencies of the finite element solutions are

no doubt partly due to the choice of an element layout. It was observed

with regard to the cantilever beam of section 4.1 that other configur-

ations give rise to improved boundary stresses. It is felt, however,

that to some extent, this behavior is a characteristic associated with

the use of triangular elements in finite element methods. In view of

this, it seems likely that some sort of a best fit curve is more repre-

sentative of the true stress state.

The normal stress component 0y is listed for the three solutions

in Tables 4.15 through 4.18. The first two tables pertain to the

horizontal interface whereas the others pertain to the vertical inter-

face. These same results are graphically presented in Figures 4.44 and

4.45 on pages 168 and 171. It is apparent from these figures that the

three solutions are more comparable than they were for the 0X stress.

The finite element 0y stresses display a much smoother variation than ox.

In Figure 4.44, the largest deviations in fly across the horizontal

interface obviously take place at the corner. In fact these deviations
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Table 4.12

Composite Plate Horizontal Interface Stress

oX (Matrix)

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.

O. 243 O. 187 238

.1 245 .08333 244 239

.2 250 .16666 185 234

.3 264 .25 256 251

.4 304 .33333 179 256

.S 12 .41666 302 294

.6 -102 .5 24 -2

.7 - 42 .58333 -105 -114

.8 -16 .66666 - 28 - 55

9 - 5 7S - 32 - 28

l. - 2 .83333 — 7 - 6

.91666 - 6 — 2
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Table 4.13

Composite Plate Horizontal Interface Stress

ox (Stiffener)

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.T.

—1500 -930 -1554

~1519 .08333 -l452 ~1585

-1564 .16666 -896 -1275

-1583 .25 -l432 -1734

-l36l .33333 '751 ~186O

-1147 .41666 -1049 -1427

.5 - 411 - 586
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Table 4.14

Composite Plate Horizontal Interface Stress

0 (Matrixy )

 

x-Coord. Finite Diff. x-Coord. C.S.T. L.S.T.

O. 1319 O. 1323 1327

.l 1328 .08333 1329 1335

.2 1356 .16666 1347 1356

.3 1410 .25 1381 1413

.4 1514 .33333 1435 1468

.5 1198 .41666 1525 1566

.6 849 .5 1103 1197

.7 823 .58333 834 871

.8 816 .66666 826 858

.9 818 .75 812 847

1. 830 .82222 816 825

.91666 820 822

1.0 827 828
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Table 4.15

Composite Plate

Horizontal Interface Stress

oy (Stiffener)

y-Coord. Finite Diff. y-Coord. C.S.T. L.S.

O. 1295 O. 1308 1316

.1 1306 .08333 1304 1266

.2 1346 .16666 1367 1164

.3 1464 .25 1438 1259

.4 1864 .33333 1726 1473

.5 3740 .41666 2188 2118

.5 2889 3377
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y-Coord.

1.5

1.6

1.7

1.8

1.9

2.0

Composite Plate Vertical Interface Stress

Finite Diff.

136

137

138

141

146

151

157

162

163

148

1198

1602

1413

1319

1269

1241

1224

1213

1206

1202

1200

Table 4.16

Cy (Matrix)

y-Coord.

O.

169

.16666

.33333

.66666

.8333

.16666

.3333

.66666

.8333

C.S.

177

144

190

160

244

180

1103

1484

1285

1240

1215

1205

1201

L.S.

154

159

157

167

185

194

1197

1504

1238

1228

1212

1204

1200

 I
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v
r
—
n
-
n
-
r
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Table 4.17

Composite Plate Vertical Interface Stress

oy (Stiffener)

Finite Diff. y—Coord. C.S L.S.T.

2290 0. 2255 2245

2302 .16666 2319 2289

2341 .33333 2365 2397

2411 .5 2657 2628

2540 .66666 2734 3212

2677 .83333 3368 3761

2893 l. 2889 3377

3171

3483

3691

3740
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become very apparent as the corner is approached. In Figure 4.45,

the stress oy is different in the matrix and stiffener due to the

difference in elastic properties.

The interfacial shear stresses on the vertical interface are

shown in Table 4.18 for the matrix and in Table 4.19 for the stiffener.

These are also plotted in Figure 4.46. The results are again quite com-

parable for the three solutions. The largest deviations occur at the

corner where stresses in the stiffener are indicated to 532, 551, and

721 psi respectively for the FD, CST, and LST solutions respectively.

Concluding Remarks. The three solutions seem to have compar-
 

able capability for predicting displacements in a simple composite. The

maximum overall extension did not vary appreciable for the three

solutions. The situation insofar as stress is concerned is somewhat

different, however. The finite element solutions in general and the

CST solutions more specifically display erratic tendencies. The finite

difference stresses vary in a much smoother fashion and consequently

seem more realistic. It is well to recall in this connection that the

best FD solution employed 231 points whereas the best finite element

solutions used only 169 points.

An additional remark is in order at this point. For truly

accurate analysis, one would use an arrangement of elements whereby many

more smaller elements would be placed along the interface. In this

way a better indication of the complicated state of stress would be

achieved. This is a very easy thing to do within the framework of the

Finite Element Theory. A similar concept in the finite difference

 



y-Coord.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.0

Composite Plate Vertical Interface Stress

Finite Diff.

37

75

113

155

200

251

310

383

476

318

167

173

162

148

134

118

99

75

45

26

173

Table 4.18

Txy (Matrix)

y—Coord.

0.

.16666

.33333

.66666

.83333

1.

1.16666

1.33333

1.5

1.66666

1.83333

2.

C.S.T.

34

61

128

197

293

398

295

162

162

131

105

64

42

58

118

213

321

425

371

371

198

150

115

64

15

.
3
-

‘
1
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Table 4.19

Composite Plate Vertical Interface Stress

T (Stiffener)

XY

 

y-Coord. Finite Diff. y-Coord. C.S.T. L.S.T.

0. 17 O. 39 8

.1 50 .16666 79 70

.2 103 .33333 183 113

.3 160 .5 273 241

.4 224 .66666 468 500

.5 297 .83333 468 420

.6 379 1. 551 721

.7 667

.8 532

.9 448

l- 532
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analysis would involve a transition region whereby the mesh spacing

would accordingly be diminished. This effect is not as readily

achieved as the comparable concept in the finite element method. No

attempt has been made to develop the idea in this research.



V. AXIALLY SYMMETRIC APPLICATIONS

The finite element methods are not limited to two dimensional

problems, and for that matter neither are the finite difference methods.

Three dimensional analysis, however, is considerably more involved

and generally requires significantly more computer memory. Conse—

quently, most of the applications have involved plane stress or plane

strain.

The axially symmetric applications generally involve a triaxial

state of stress. The special character of such situations results in a

two dimensional displacement field. As a result, the axially symmetric

elasticity problem is almost as readily formulated as the true two

dimensional problem.

TwO axially symmetric applications are treated in this section.

Included are a thick hollow cylinder subjected to internal and external

pressure and a composite solid cylinder uniformly stressed at its ends.

Both finite element and finite difference solutions are included for

each example. The finite element solutions employ the constant strain

triangular ring (CSTR) and the linearly varying strain triangular ring

(LSTR) discussed in Chapter III. The finite difference solution

involves the axially symmetric Navier equations; however, the particular

equations used correspond to the alternate derivation of section 2.9. The

primary emphasis here as in Chapter IV is on the comparison of the

methods involved. In the case of the thick cylinder, comparison is also

made with the known elasticity solution.

177  
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5.1 Thick Cylinder
 

The thick cylinder under internal and external pressure is a

fundamental problem of the Theory of Elasticity. A portion of such a

cylinder is shown in Figure 5.1, page 179. The numerical properties

pertinent to this application are also shown. These include outside and

inside radii which are 10 in. and 5 in. respectively. The material is

assumed to have a Young's modulus E = 107 psi and a Poisson's ratio

”-1-4.

internal pressure p1 is 9000 psi. The finite element solution for a

The external pressure designated by po is 15,000 psi. The

similar thick cylinder has been considered by a number of other writers.

For example, Wilson [25] reports very excellent results using the

constant strain triangular ring element.

Elasticity Solution. The general elasticity solution for the
 

thick cylinder is presented in the text by Timoshenko and Goodier [39].

Using the notation of Figure 5.1, the stresses are

2 2 _ 2 _ 2

a b (p0 pi) 1 pie pob

o = - +

b2 - a2 r2 b2 - a2

   

2 2 _ 2 _ 2

a b (p0 pi) 1 pi8 pob
0 = - ' +

b2 _ a2 r2 b2 _ a2

   

The radial strain is
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Eliminating the stresses, one obtains

  

 

2 2 _ 2 _ 2

1 a b (p0 pi) (1 + 0) pi8 pob

5r”? °——‘—+ °<1‘V>b2 _ a2 r2 b2 _ a2

Similarly

2_ 2
E =_X (0 +0 ) =___2_2 p13 Pb

Z E r 6 E b2_az

The displacements are obtained by integrating the strain

displacement equations. Thus from the relationships

E = 32

r 8r

6 _ a:

z 82

one can derive

  

2 2 _ _ 2

[_ a b (p0 p1) . (1 + v) Pia p b

 

The approximate solutions of the finite element and finite

difference methods follow. The results are exceedingly good in each

case and thus only one solution for each method is presented.

Numerical Solutions. In analyzing the thick cylinder, the
 

configurations of Figure 5.2 on the following page were used. As can be

seen, a small axial segment is involved using a total of 105 points in

each case. Half of the segment is above the r - 8 plane and half of it
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is below the r - 0 plane. The nodal circle force intensities associated

with the external and internal pressures are shown. In the finite

element method, these must be multiplied by corresponding nodal circle

radii before they can be used in the equilibrium equations. The LSTR

solution uses 40 triangular ring elements as shown in the figure. The

CSTR solution employs 160 triangular ring elements.

As typical indications of the accuracy of the approximate

solutions, the radial displacement, radial stress and circumferential

stress are summarized and compared with exact results. The specific

values used in this comparison correspond to the cylinder mid-plane

and are specified as u(r,0), or(r,0) and 06(r,0).

Beginning with the radial displacements, these are tabulated

on page 183. The same information is plotted on the following page,

Figure 5.3. The solid curve represents the exact solution. The

approximate solutions are shown with appropriate characters as noted in

the figure. Clearly, there are no significant deviations from the

exact solution for any of the approximate solutions.

The radial stress is plotted in Figure 5.4 and tabulated on

page 185. The radial stress is compressive throughout the body and

ranges from 9000 psi on the inside surface to 15,000 psi on the outside

surface. It is apparent that each approximate solution is excellent at

the interior points. Noticeable deviations from the exact stresses

occur at the inner and outer surfaces for the FD and CSTR solutions.

Thus on the inside surface, the error is 4.37% for the FD solution and

6.43% for the CSTR solution. The error in the LSTR solution is only

0.46%. All of these are higher than the exact stress. On the outside

surface, the errors are less than 0.5% for all solutions.
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TABLE 5.1

Thick Cylinder Radial Displacement u(r,0) x 10.-3

 

r—Coord. Finite Diff. C.S.T.R. Elasticity L.S.T.R.

5.00 -1.l364 -l.1365 -l.1375 —1.1372

5.25 -l.1445 -l.1448 -l.1455 -1.1452

5.50 -1.1548 -l.1548 -l.1557 —l.1555

5.75 -l.1669 —1.1672 —1.1679 -1.l675

6.00 -l.1807 —l.1808 -1.1816 —l.l814

6.25 -1.l959 ~l.l962 -1.l968 -l.l965

6.50 —l.2124 —l.2125 -l.2133 —1.2131

6.75 -l.2301 -l.2303 -l.2309 -1.2306

7.00 —l.2488 -l.2489 -1.2496 -1.2494

7.25 —l.2683 -1.2685 -1.2692 -l.2689

7.50 -l.2887 -l.2888 -l.2895 —1.2893

7.75 -1.3099 -1.3101 -1.3107 -1.3104

8.00 -1.3317 —1.3318 -l.3325 -l.3323

8.25 -1.3541 -1.3543 -1.3549 -l.3546

8.50 -l.377l -l.3772 -1.3778 -l.3776

8.75 -1.4005 -1.4007 -l.4013 -1.4010

9.00 —1.4245 —1.4246 -1.4252 -l.4251

9.25 —1.4489 -l.4491 —l.4496 ~l.4493

9.50 -1.4737 —l.4738 —1.4744 -l.4742

9.75 -1.4988 -1.4990 -l.4995 -1.4992

10.00 -1.5243 -l.5244 . -1.5250 -l.5248
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Table.5.2

Thick Cylinder Radial Stress or(r,0)

r-Coord. Finite Diff. C.S.T.R. Elasticity L.S.T.R.

5.00 — 9392. - 9578. - 9000.0 - 9040.

5.25 - 9735. - 9738. - 9743.7 - 9725.

5.50 -10379. —lO375. -10388.4 ~10410.

5.75 -10944. -10948. -lO950.8 —10937.

6.00 -ll44l. -ll434. -11444.4 —ll477.

6.25 —11878. 11877. -11880.0 -11867.

6.50 -12265. —12259. -12266.0 —12275.

6.75 -12610. -12608. -126lO.4 -12604.

7.00 —12918. -129l3. -12918.3 -12934.

7.25 -13l95. -13l94. -13195.0 -13187.

7.50 —l3444. -l3440. -13444.4 -l3448.

7.75 —l3670. -l3669. -l3670.1 ~13667.

8.00 —13875. -13872. ~13875.0 —13883.

8.25 —l4062. —1406l. -l4061.5 -l4056.

8.50 -14232. —l4230. —1423l.8 —l4234.

8.75 -14389. -l4388. -14387.7 —l4387.

9.00 -l4532. -l4530. -l4530.8 -14534.

9.25 -l4665. -l4663. -l4662.5 ~14658.

9.50 -14787. -l4783. —l4783.9 -l4784.

9.75 -14899. —l4896. —l4896.1 -l4897.

10.00 —l4952. —l4925. -15000.0 -1507l.
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The circumferential stresses are also compressive throughout the

body. They are considerably higher than the radial stresses and range

from 19,000 psi on the outside surface to 25,000 psi on the inside

surface. The numerical and exact results are listed in Table 5.3 and

plotted in Figure 5.5. Once again, the agreement of the numerical re-

sults with the exact theory is excellent. The largest deviation occurs

with the FD and CSTR solutions on the inside surface. The errors here

are 0.43% and 0.7% for the two solutions respectively. The largest

error for the LSTR solution is a mere 0.1% on the outside surface.

Concluding Remarks. In the preceding discussion, axially
 

symmetric finite difference and finite element solutions for a

pressurized thick cylinder were compared with the exact solution from

the theory of elasticity. Remarkably good results were obtained by each

method for both displacements and stresses. The finite element solution

employing linearly varying strain triangles gave slightly better results

than the other solutions. The differences in this example, however,

were generally very insignificant.

5.2 Composite Solid Cylinder
 

The second axially symmetric problem treated in this work in—

volves a solid cylinder which is subjected to a uniform axial end load.

Such a cylinder is displayed in Figure 5.6. In this application, the

outer cylinder (matrix) is reinforced with a relatively large concentric

cylinder(stiffener)of a much stiffer material. The particular case

considered here assumes a 1 inch radius for the outer cylinder and a

length of 4 inches. The stiffener has a radius of %-inch and its length
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Table 5.3

Thick Cylinder Circumferential Stress 06(r,0)

r-Coord. Finite Diff. C.S.T.R. Elasticity L.S.T.R.

5.00 -25149.7 —25173.9 -25000.0 -25007.2

5.25 -24225.3 -24241.3 —24256.2 —24245.1

5.50 -23586.6 —23589.1 -236ll.5 -23614.5

5.75 -23027.5 -23035.1 —23049.1 —23037.0

6.00 -22536.1 -22536.7 -22555.5 -2256l.6

6.25 -22102.3 -22107.7 -22120.0 —22112.6

6.50 -21717.4 -21718.1 -21733.7 —21733.4

6.75 —21374.4 -21378.8 ~21389.5 —21380.4

7.00 -21067.5 -21068.4 —2108l.6 ~21083.4

7.25 ~2079l.7 -20795.4 —20804.9 -20800.3

7.50 —20543.l ~20544.2 -20555.5 -20554.0

7.75 -203l8.l -20321.3 —20329.8 —20322.2

8.00 -20113.9 -20115.0 -20125.0 -20125.0

8.25 -19928.0 -l9930.7 -19938.4 -19935.5

8.50 -19758.2 -l9759.4 ~19768.l —l9766.3

8.75 —l9602.8 -l9605.2 —19612.2 —19605.3

9.00 -19460.3 -l946l.3 -19469.1 -l9468.4

9.25 -l9329.3 -19331.l —l9337.4 -l9335.8

9.50 -19208.9 —l9208.9 -19216.0 —l9213.9

9.75 -19098.4 -l9097.8 -l9103.8 -l9096.5

10.00 -18975.2 -18968.2 -19000.0 -l9019.3
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is 2 inches. The material properties are E = 5 x 106 psi and v = %

for the matrix and E = 107 psi with v = %-for the stiffener. The mag-

nitude of the applied stress is 1200 psi. The materials are assumed to

be perfectly bonded throughout the analysis so that complete displace-

ment continuity is maintained across the material interface.

Referring once again to Figure 5.6, it can be seen that the

stiffener does not extend throughout the length of the matrix. For this

situation, there is no exact solution available. Accordingly, only

approximate solutions are considered here. As was true for earlier

applications, both finite difference and finite element solutions are

included in the analysis. Convergence of the various solutions is

demonstrated using several approximations for each method.

Finite Difference Solution. Four difference solutions were
 

employed in the analysis of the above mentioned problem. The mesh point

arrangements used are displayed in Figure 5.7 where %-0f the cylinder

cross section is shown. The 4 approximations involve 45, 91, 153, and

231 mesh points. The geometry for each case is identical to that

used in the similar plane problem treated in Chapter IV. The difference

equations of this analysis utilize nodal circle force intensities

(lb/in). The force intensities which correspond to the 1200 psi applied

stress are also shown in the figure. The intensity at the symmetry

axis is undefined since at this location r = 0. For the purpose of

numerical calculations, it is reasonable to use a small finite value of

r, say r = .001. The particular equations programmed in this work

involve a numerical factor of 5 on the right hand sides. Therefore in

preparing data, the intensities of Figure 5.7 must be multiplied by 5.
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The character of the FD solution is demonstrated in Figures 5.8

and 5.9. These illustrations pertain to axial displacements which occur

at the cylinder end and along the horizontal material interface. Addi—

tional displacement results are presented in Appendix A, beginning on

page 247. In Figures A1 and A2 radial displacements for these regions

are plotted. In Figures A3 and A4 , axial and radial displacements

are presented for selected points. Referring to Figure A3 , page 249

it should be observed that the axial displacements at r = 0 on the

cylinder end seem unrealistic. These are greater than displacements

as"E

for the point immediately to the right. This discrepancy is believed to

be the result of the sigularity at the symmetry axis. Extrapolation

from the interior results in a more realistic symmetry axis displacement.

The extrapolated results are shown in Figure A3 as well. These are

used in further displacement discussions.

0n the end of the cylinder, Figure 5.8, for example, axial dis-

placements range from approximately 3.0 x 10-3 in. to somewhat more than

3.4 x 10m3 in. The average deviation between the lowest order solution

and the highest order solution is approximately 6%. The variations

between the 231 point solution and the 153 point solution are 1% and

less. Convergence to an exact solution evidently occurs from below.

In Figure 5.9, axial displacements for points in the stiffener

are shown as well. These results are comparable to Figure 5.8 in the

sense that relatively little improvement is realized in going from the

153 point solution to the 231 point solution. Noticeable deviations

occur, however, with regard to the lower order solutions, especially for

the 45 point solution. The tendency for displacements to be under

estimated in the matrix and over estimated in the stiffener is
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apparent from Figure 5.9.

It is of interest to consider the effect of extrapolation on

certain of these results. To this end, the Richardson Formula [40]

is applied.

In the above formula, II and 12 are approximations to some function

corresponding to nodal point systems whose numbers are ml and m2. I is

the extrapolated value of the function.

The result of applying this formula to selected FD displacements

is shown in Figure 5.10, page 197 . Both axial and radial displacements

are shown. It is evident that the extrapolated results generally repre-

sent some improvement. In fact extrapolating between the 91 and 153

point solutions gives displacements which are a slight improvement

over results derived from the 231 point solution. A peculiar situation

occurs at the upper right hand corner point of Figure 5.10. The

radial displacement apparently increases when the number of mesh points

is increased. The extrapolations, however, appear to decrease.

The stress distribution for the highest order FD solution

(231 mesh points) is presented in Figure 5.11. The stresses shown

‘were obtained by averaging the stresses for the material regions around

the mesh point. At each point, the stresses are listed vertically in

the order or, 02, o , and Trz' Two sets of stresses are given for the
0

mesh points on the material interface. Those to the right and above

the interface were computed from the matrix stresses. Those to the

1eftzand below the interface were obtained from stresses in the
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stiffener.

In analyzing the data of Figure 5.11, the rather large axial

stress in the stiffener is a significant feature. The axial stress is

seen to exceed 4800 psi and thus indicates a stress concentration factor

of more than 4. Axial stress in the matrix is as high as 1871 psi or

more than 50% higher than the applied stress. The presence of the

rather rigid inclusion gives rise to large radial and circumferential

stresses in the stiffener. These are compressive stresses near the

interface which exceed 2400 psi. The corresponding stresses in the

matrix are 500 psi tension and less. The shear stresses are greatest in

the stiffener and do not appear to exceed 800 psi.

As was true for the similar plane problem of Chapter IV, the

stresses are undefined at the corner of the stiffener and the matrix.

Obviously, neither the difference method nor the finite element method

is able to predict such stresses. In view of this, it is instructive

to examine in greater detail the corner stresses which were used to

obtain the nodal point stresses of Figure 5.11. These stresses are

shown below in Figure 5.12

  

 
 
 

in the order 0 , o , o , and .

r z 0 r

525 l —19

Trz. It is significant that the 2081 ‘2002

577 Q 433

low axial stress in the lower right -108 498

region results in the smaller ? ~ .. \A

‘ £71903. -403 ;
average for the three Tidax/Whjbi 114

41401 ‘- -214
unshaded regions. The axial [>706 .y\ 692

*i/f/s 1.4;”,
strresses in particular are large 1°“ T((" ' ‘ m—w~ -

colllpiared to the applied stress Figure 5,12

(12(30 psi) but are certainly finite. FD Corner Stresses
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Referring once again to Figure 5.11, two other points are

significant. First of all, the stress components for points on the

symmetry axis are generally quite unrealistic. The lack of agreement

between radial and circumferential stresses is an apparent discrepancy.

Much better results are obtained using a quadratic extrapolation from

the interior. The second point relates to interfacial stresses. From

equilibrium considerations certain of these, as indicated in Chapter IV,

should be continuous across the interface. Thus in this case, 02 and

Trz should be continuous across the horizontal interface whereas or

and Trz should be continuous across the vertical interface. This is

apparently not the case. The discrepancies aregreatest near the corner.

CSTR Solution. Three CSTR finite element solutions used in
 

this analysis are shown in Figure 5.13. These include a 32 element

layout with 25 nodal points, a 128 element layout with 81 nodal points,

and a 288 element layout with 169 nodal points. The nodal circle force

intensities associated with a uniform axial stress of 1200 psi are

shown for each case. These have been multiplied by appropriate radii.

Typical displacement curves for the CSTR solutions are plotted

in Figures 5.14 and 5.15. The end displacements are shown in Figure

5.14. These displacements range from 3.06 X 10_3 in. to 3.43 X 10.3 in.

for the highest order solution. The lower order displacements are

consistently less than these. There is not an appreciable difference

Iaetween the 81 and 169 point solutions indicating reasonably good con—

‘vergence of displacements.

The axial displacement variation along the horizontal inter-

I

féice is shown in Figure 5.15. The trend in these curves is much the

 



Composite Cylinder — CSTR Configurations

Figure 5.13
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same as in Figure 5.14. The tendency for displacements to be over-

estimated in the stiffener is apparent.

Additional displacement results are presented in Appendix A.

Radial displacements are plotted in Figures A5 and A6 for points

on the end horizontal interface respectively. In Figures A7 and A8 ,

displacements for various points are listed on cross sectional diagrams.

Of particular interest are certain radial end displacements which are

apparently underestimated by the method.

Extrapolated displacements corresponding to selected points are

listed in Figure 5.16, page 205. Both axial and radial displacements

are shown. In the case of the maximum axial displacement for example,

the best extrapolated result is a .16% improvement over the 169 point

approximation. As was true for the FD results, extrapolation between

the two lower order solutions gives results which are comparable to the

169 point solution.

The stress distribution for the 169 nodal point CSTR solution

is displayed in Figure 5.16. The stresses are listed in the order

or, oz, 0 , and Trz for each point. These are nodal point stresses

0

obtained by averaging appropriate element stresses. As was explained in

the earlier FD solution, two sets of stresses are shown along the mat—

erial interface, one set corresponding to the matrix and the other to

the stiffener.

The overall situation is quite similar to the FD solution.

Axial stresses in the stiffener as large as 4547 psi are observed. Com-

pressive radial and circumferential stresses exceed 2600 psi along the

horizontal material interface. The maximum observed shear stress is

896 psi.
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The symmetry axis stresses, though more reasonable than the FD

stresses, are also apparently incorrect.

stresses should be the same here but are not.

the FD solution exhibits discrepancies with regard to certain stress

components which should be continuous across the material interface.

The radial and circumferential

The CSTR solution like

These discrepancies are more pronounced at the corner.

The element stresses which

were averaged to obtain the corner

nodal point stresses are shown in

Figure 5.18. The shaded region

is part of the stiffener and the

unshaded region is the matrix. The

element stresses corresponding to

the two materials are averaged to

obtain the nodal point stresses

of Figure 5.17. These averages

are considerably smaller than the

maximum element stresses. In view

of larger stress predicted to

the left and below the corner,

the average stresses for the corner in

Figure 5.17 seem quite unrealistic.

LSTR Solution.
 

employed the three configurations of Figure 5.19.
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CSTR Corner Stresses

The finite element analysis with LSTR elements

Involved are 25, 81,

and 169 nodal point systems comparable to those used in the CSTR

solutions. The 25 point layout utilizes 8 elements, the 81 point
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Composite Cylinder - LSTR Configurations
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layout 32, and the 169 point layout 72. The axial nodal circle force

intensities are shown for each case. They must be multiplied by corre—

sponding nodal circle radii for use in the equilibrium equations.

The variation of axial displacements for the cylinder end is

shown in Figure 5.20. In the illustration, the displacements range from

3.1 X 10.3 in. at the symmetry axis to 3.47 X 10-3 in. at the cylinder

periphery. As was true for the previous FD and CSTR solutions, conver—

gence to the exact solutions apparently occurs from below.

Horizontal interface axial displacements are plotted in Figure

5.21. In this figure, the 81 and 169 point solutions are seen to be

very comparable. The 25 point solution is significantly different from'

the others. The displacements of selected points, as predicted by the

three approximate solutions, are listed in Figures A9 and A10 in

Appendix A. It is evident from these figures that all displacements

are not consistently underestimated or over estimated by the procedure.

In particular, a number of radial displacements display somewhat of an

oscillatory convergence. Radial displacements for points on the end and

horizontal interface are plotted in Figures All and A12 respectively.

Extrapolated displacements obtained from the Richardson Formula

are presented in Figure 5.22. Although these are not significantly

different from the 169 point solutions, they evidently do provide a

further improvement in these results. Extrapolation between the 25 and

81 point solutions gives better results than the 169 point solution.

The variation of stresses for the 169 point LSTR solution is

Seen in Figure 5.23. The results presented are nodal point stresses

‘Which were obtained by averaging element stresses. The axial stress in

the stiffener exceeds 5000 psi. Compressive radial stresses in excess
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LSTR Extrapolated Displacements
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Figure 5.23, LSTR Stress Distribution
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of 2800 psi and compressive circumferential stresses in excess of

2700 psi exist along the material interface. The maximum shear stress

is 934 psi.

The results in Figure 5.23 seem very plausible. The only

questionable stresses occur at the corner where the two materials join.

The decreases in radial and circumferential stresses in the stiffener

do not seem realistic. These decreases are

 

the result of averaging carried out over

166 143

elements around the corner. Evidence 2138 2130

460 453

of this point is apparent in 60 311

Figure 5.24 where element 540 —79

2009 1. 1447

stresses are shown. 522 / 226

-52 X 767

Referring once again  
 

to Figure 5.23, the agreement of

radial and circumferential stresses

at the symmetry axis is significant.

There is essentially no difference

in these stress components for any

of the points on the symmetry axis.     
Certainly, this is further evidence of

Figure 5.24

the excellence of the LSTR solution.

LSTR Corner Stresses

There are, however, discrepancies

in certain interfacial stresses. The axial stress should be continuous

across the material interface but it apparently is not.
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Comparison of Solutions. In the preceding discussion of dis-
 

placement solutions, the FD, CSTR, and LSTR results were seen to display

similar trends as the number of points was increased. In order to com-

pare these results in more detail, a number of displacement and stress

curves are included here corresponding to the highest order approxi-

mation used for each method. The same displacements discussed earlier

are used. The stress comparisons are made in terms of interfacial

stresses which are generally the largest stresses for the various

regions of the body.

Axial displacements for the 3 solutions are listed in Tables 5.4

and 5.5. These same results, presented graphically in Figures 5.25

and 5.26, need little additional explanation. Axial displacements for

the 3 solutions are very comparable. The LSTR solution is consistently

better than the other solutions. The CSTR solution falls short of

both the LSTR and FD solutions. It should again be noted that the axial

displacements ar r = 0 for the difference solution are extrapolated

results.

Radial displacements are plotted in Figures 5.27 and 5.28. The

end displacements are practically identical for the 3 solutions. Radial

displacements along the horizontal interface differ only slightly. The

LSTR solution is again best and the FD solution next best.

The stress variation along the material interface is of part—

icular interest. This is the region of maximum stress for both the

matrix and the stiffener. Consequently, stress comparisons are made

in terms of these regions.

The interfacial stresses corresponding to the various solutions

are tabulated on pages which follow. These same results are presented



216

Table 5.4

Composite Cylinder End

+

w-Displacement X 10 3

231 Point

r-Coord. Finite Diff. r-Coord.

0. 3.06009 0.

.1 3.07403 .08333

.2 3.10145 .16666

.3 3.19698 .25

.4 3.18106 .33333

.5 3.23094 .41666

.6 3.28273 .5

.7 3.33222 .58333

.8 3.37573 .66666

.9 3.41084 .75

1.0 3.43700 .83333

.91666

1.0

169 Point

CSTR

.06694

.07794

.08960

.11678

.12577

.18456

.22391

.26598

.30623

.34236

.37264

.40430

.42934

169 Point

LSTR

3.10207

3.11008

3.12732

3.15033

3.18033

3.21873

3.25999

3.30169

3.34268

3.37960

3.41214

3.44154

3.46693
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Table 5.5

Composite Cylinder

+3

Horizontal Interface w-Displacement x 10

231 Point 169 Point 169 Point

r-Coord. Finite Diff. r-Coord. CSTR LSTR

0. .25098 0. .24688 .24535

.1 .25308 .08333 .25439 .24533

.2 .26456 .16666 .25847 .25171

.3 .28617 .25 .27776 .26938

.4 .32339 .33333 .29641 .29399

.5 .39318 .41666 .33674 .33452

.6 .82465 .5 .39235 .40165

.7 1.04466 .58333 .76011 .78139

.8 1.18220 .66666 .97726 1.01132

.9 1.27788 .75 1.11206 1.14399

1.0 1.35295 .83333 1.21204 1.24273

.91666 1.28542 1.31620

1.0 1.34747 1.38196
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graphically as well. In Tables 5.6 and 5.7 and in Figure 5.29, radial

stresses along the horizontal interface are shown. The three methods

give very comparable radial stress in the matrix where the stress level

is quite low. In the stiffener, the radial stress variation is quite

different. The finite element solutions are very erratic and seem

less reasonable than the finite difference stresses. Much the same

behavior was observed in Chapter 4 with regard to the composite plate

example. It was noted there that this behavior depends to some extent

on the finite element configurations. Also, one could use smaller

triangles around the interface to improve the situation.

The axial stress variation along the horizontal interface is

given in tables on pages 227 and 228. These results, which are also

plotted in Figure 5.30, are more comparable than radial stresses in the

same region. The methods predict axial stresses of more than 3500 psi

in the stiffener and 1800 psi in the matrix. Axial stress variations

along the vertical interface are given in Tables 5.10 and 5.11. In

Figure 5.31, this same information is seen to display a similar trend

for the three methods. Fairly significant variations in axial stress

occur near the corner of the stiffener. Typical of this is the maximum

axial stress which is 4831 psi for the FD solution, 4547 psi for the

CSTR solution, and 5047 psi for the LSTR solution.

The final comparison here pertains to the circumferential

stress along the horizontal interface. These stresses are shown in

Tables 5.13 and 5.14. The plotted results in Figure 5.32 are more

(:omparable in the matrix, where stresses are tensile and relatively

ssmall, than in the stiffener where stresses are compressive and rather

ZLarge. It has previously been mentioned that FD stresses along the
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Table 5.6

Horizontal Interface Stress

or (Matrix)

231 Point

388 .0

387 .08333

401 .16666

427 .25

485 .33333

34 .41666

-l46 .5

- 55 .58333

- 20 .66666

- 6 .75

- 2 .83333

.91666

1.0

169 Point

CSTR

296

378

310

409

319

481

73

-151

- 37

~40

169 Point

LSTR

364

369

360

405

414

473

32

-l60

- 71

- 35
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Table 5.7

Horizontal Interface Stress

or (Stiffener)

231 Point 169 Point

r-Coord. Finite Diff. r-Coord. CSTR

.O -2319 .0 -1425

.l -2451 .08333 -2616

.2 -2477 .16666 -l752

.3 -2445 .25 —2351

.4 -2103 .33333 -l49l

.5 —1803 .41666 -l750

.5 - 950

169 Point

LSTR

-2537

-2660

-2173

-2735

-2843

-2227

-1108
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1.0

1496

1555

1585

1650

1776

1399

939

896

876

867

868
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Table 5.8

Horizontal Interface Stress

oz (Matrix)

231 Point

Finite Diff. r-Coord.

.0

.08333

.166666

.25

.33333

.41666

.58333

.66666

.75

.83333

.91666

1.0

169 Point

CSTR

1571

1584

1604

1649

1709

1828

1291

921

905

874

871

865

867

169 Point

LSTR

1553

1577

1619

1681

1742

1874

1415

968

943

919

882

869

865
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Table 5.9

Horizontal Interface Stress

oz (Stiffener)

r-Coord. Finite Diff.

1325

1555

1565

1724

2265

4831

231 Point 169 Point 169 Point

r-Coord. CSTR LSTR

.0 1621 1637

.08333 1164 1393

.16666 1305 959

.25 1414 1151

.3333 1845 1509

.41666 2481 2420

.5 3520 4206
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1.0

1.1

1.2

1.3

1.4
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1.6

1.7

1.8

1.9

2.0 1203
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Table 5.10

Vertical Interface Stress

oz (Matrix)

231 Point

Finite Diff. z-Coord.

199 0.0

199 .16666

198 .33333

198 .5

134 .66666

195 .83333

192 1.0

187 1.16666

175 1.33333

140 1.5

1399 1.66666

1871 1.83333

1609 2.0

1465

1379

1321

1279

1248

1224

1209

169 Point

CSTR

259

210

266

314

309

218

1291

1682

1403

1316

1256

1222

1196

169 Point

LSTR

213

215

222

215

223

231

1415

1727

1369

1305

1246

1221

1195
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Table 5.11

Vertical Interface Stress

oz (Stiffener)

231 Point

Finite Diff.

3637

3638

3646

3667

3719

3820

3998

4267

4600

4802

4831

z-Coord.

.166666

.33333

.5

.66666

.83333

1.0

169 Point

CSTR

3565

3600

3572

3785

3792

4547

3520

169 Point

LSTR

3590

3577

3622

3676

4198

5047

4206
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symmetry axis are unlikely to be valid, and thus extrapolation from the

interior is desirable. In Figure 5.32, the FD stress at r = 0 is an

extrapolated result. The CSTR stresses in the stiffener exhibit to

some extent the erratic behavior of the radial stresses in this same

region.

Concluding Remarks. The axially symmetric finite difference
 

and finite element formulations are apparently equally acceptable in

their ability to predict displacements in simple composite solids.

Although no numerical comparisons have been employed, convergence to

exact displacements is quite comparable for the three methods.

The formulations, however, lead to somewhat different solutions

insofar as stress is concerned. Certain stress components are very

similar, for example, the axial stress in the axially loaded composite

solid. Other stresses, however, tend to be very much different. The

radial stresses and circumferential stresses displayed different

variations along the material interface. The finite element stresses

were more erratic. In this connection, best fit curves seem to be more

realistic.
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Table 5.12

Horizontal Interface Stress

231 Point

Finite Diff.

506

386

399

422

471

265

23

19

16

14

12

0e (Matrix)

r-Coord.

.08333

.16666

.25

.33333

.41666

.58333

.66666

.75

.8333

.91666

1.0

169 Point

CSTR

337

376

367

404

399

468

238

43

41

22

23

18

18

169 Point

LSTR

364

370

378

405

422

469

246

38

28

21

14

10
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Table 5.13

Horizontal Interface Stress

o0 (Stiffener)

231 Point 169 Point 169 Point

r-Coord. Finite Diff. r-Coord. CSTR LSTR

0. 161 -1077 -2536

(-2508)*

.l -2488 .08333 -2654 —2646

.2 -2467 .16666 ~2352 —2651

.3 -2447 .25 -2444 -2723

.4 —2271 .33333 -2078 —2678

.5 -1401 .41666 —2001 -2317

.5 -1425 -1540

*Extrapolated
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VI. CONCLUSIONS AND RECOMMENDATIONS

Finite element and finite difference methods have been

formulated for plane and axially symmetric stress analysis. Stiffness

influence coefficient matrices for the direct stiffness method have

been discussed. These relate to the constant and linearly varying

strain triangle and triangular ring elements. Nodal point forces

associated with arbitrary distributed boundary loads were treated for

each case. The formulation of the difference method was done in terms

of the Navier equations of Classical Elasticity Theory. Difference

equations were derived by expressing the equilibrium of a material

element. Involved are assumptions of strains in terms of displacement

differences.

The methods were applied to both plane stress and axially

symmetric elastostatic problems. Two examples with well known elasticity

solutions provided an excellent basis for comparison for both stress and

deformation analysis.

6.1 Conclusions
 

The finite difference and finite element methods have proved to

be very capable in the deformation analysis of elastic solids. The

finite element solutions employing linear strain triangular elements

(LST) were consistently better than either the finite difference

236
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solutions or the finite element solutions which employed constant strain

triangular elements (CST). The improvement was not excessive in every

case when a comparable number of points was utilized. In the cantilever

beam problem, however, the LST solution for deflections was signifi—

cantly better. The finite difference (FD) solutions were comparable to

the CST solutions but generally gave somewhat better results.

In the analysis of stress, nodal point stresses, obtained by

averaging element stresses, were employed. A similar concept was

employed with regard to the difference method whereby nodal point

stresses were obtained by averaging the stresses for the regions around

the mesh point. In this connection, the LST formulations were signifi-

cantly better than the CST and FD formulations. This was particularly

true along free boundaries. The FD solutions were generally better

than the CST solutions and in some cases were comparable to the LST

solution. It should be mentioned, however, that in regard to certain

interfacial stresses associated with composite materials, both finite

element methods exhibited erratic stress variations suggesting the

desirability of using best fit curves in interpreting these results.

The finite difference method, on the other hand, gave much smoother

stress variations and consequently appeared to be more realistic.

6.2 Recommendations
 

The capabilities of the finite element and finite difference

methods, in the analysis of elastostatic problems, have been demon-

strated for a limited class of applications. The presentation of the

difference method in particular was limited to special geometrical

situations. In view of this as well as results obtained in this
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investigation, a number of recommendations are advanced. These follow

immediately.

Difference Method. The scope of the finite difference method,
 

as presented in this work, included both plane and axially symmetric

analysis. The formulation of boundary equations, however, was limited

to surfaces parallel to the coordinate surfaces of the problem. It is

possible to approximate other situations within the framework of this

analysis by treating arbitrary boundaries as a series of broken lines as

in Figure 6.1a for example. This technique has not been investigated

here. To achieve any degree of accuracy, it would no doubt be

necessary to utilize a variable mesh spacing. This last point has not

been developed here either. A more suitable approach from a geometric

stand point would eliminate the ragged edge as in Figure 6.1b. The

development of boundary equations for such situations has not been

pursued here and appears at first glance to present difficulties if

considered from the equilibrium point of view as in sections 2.8 and

2.9.

The method requires further development and application in

addition to that discussed above. The possibility of treating 3-dimen—

sional problems with simple boundaries presents no difficulties. The

procedure of section 2.8 would be applied to the 3—dimensional Navier

Equations. Computationally, however, there may arise problems

associated with computer memory capability. For example, where each

plane stress or axially symmetric equation involves l8 non-zero

coefficients, the 3-dimensional equations involve 57 non-zero

coefficients. Thus for problems with comparable numbers of mesh points,
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approximately‘+.22 times as much memory capability is required.

Stiffness Method. The plane stress triangle utilizing either
 

constant or linear strain variation has been rather thoroughly investi-

gated by various authors. The constant strain triangular ring has been

used extensively as well. From the limited scope of this research,

the linear strain triangular ring appears to give the same degree of

improvement in axially symmetric problems that the linear strain

triangle gives in plane stress analysis. It is therefore recommended

that additional applications of this element be treated to indicate

its full capability.
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Appendix A

ADDITIONAL RESULTS

Additional results were made reference to in Chapter V with

regard to displacements for the composite cylinder problem. These

results follow immediately.
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(E) - Extrapolation  «m—n   
Figure A3.

FD Axial Displacements
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-.0357 -.1287

Figure A4.

FD Radial Displacements
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CSTR Axial Displacements

Figure A7.
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CSTR Radial Displacements
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3.0776(25) 3.0990(25)

3.0859(81) 3.1389(81)

3.1024(169) 3.1503(169)

1.6273 1.7008

1.7140 1.7871

1.7358 1.7985

.2672 .2928

.2342 .2733

.2454 .2694

.1397 .1497

.1450 .1608

.1456 .1561

 

3.2123(25)

3.2434(81)

3.2600(169)
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1.9631
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.3850

.3962

.4017

.1836

.1732

.1755

3.3144(25)

3.3615(81)

3.3796(169)
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2.1611

2.1804

1.0248

1.1290

1.1440

.4192

.4462

.4520

(25) - 25 Point LSTR

(81) - 81 Point LSTR

(169) - 169 Point LSTR   
Figure A11.

LSTR Axial Displacements
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3.4493(81)

3.4669(169)
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2.2837

2.3002
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1.3750
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.5496
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-.0108 -.0331 -.0555
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-.0105 -.0291 -.O726

(25) - 25 Point LSTR

(81) - 81 Point LSTR

(169) - 169 Point LSTR

-.0145 -.0330 -.0575

-.0164 -.O365 -.0588

-.0165 -.0359 -.0579

Figure A12.

LSTR Radial Displacements
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Appendix B

COMPUTER PROGRAMS

The computer programs which were used in the analysis of

axially symmetric problems by the difference method and by the LSTR

finite element method are presented on the following pages. Included

is a brief description of each program, the program itself, and sample

data. The output of each program tends to be excessive and consequently

is not presented.
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FINITE DIFFERENCE PROGRAM

FOR AXIALLY SYMMETRIC ANALYSIS

The axially symmetric finite difference analysis involves 3 main

steps: (1) generate equilibrium equations, (2) solve the system of

algebraic equations for displacements, and (3) calculate stresses. It

is possible to obtain mesh point loads directly as part of the computer

analysis, but this is not a feature of the present program. Mesh point

loads must be computed outside the program and are thus handled as input

information.

The equations of section 2.9, namely (2.62), are the equilibrium

equations related to the first step in the analysis. In the original

program (included here), these were coded in a more simplified form

. l . . . . .
w1th h = k and v =-— It 18 not difficult to remove these restrictions.4.

The coding of the equations is accomplished in terms of 4 subroutines

called COFNE, COFNW, COFSW, and COFSE. Then for each mesh point, one

or more of these routines is executed depending on whether the point is

an interior point or any of a number of types of boundary points. This

necessitates the classification of mesh points and the assignment of a

coding number for each type. The classification used here is presented

in Table B1 on pages 262 and 263. In certain applications involving

symmetry with respect to the r - 6 plane, equilibrium equations for

points in the r - 6 plane are obtained from two additional subroutines

called SYMNSE and SYMNSW.
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The input information to the computer consists of mesh point

identification numbers and material properties. Generally speaking, it

is also necessary to provide information indicating which points are

immediately around a given mesh point. For rectangular applications,

this is done automatically in a subroutine called COORD.

The coefficient matrix for the system is very sparesely popu-

1ated. In fact, no row of the matrix has more than 18 non-zero entries.

The equations are solved by a modified Gauss Seidel Iterative procedure

in which only non-zero coefficients are stored in the computer memory.

A location array is also required to identify the displacement associated

with a given coefficient of the matrix.

The final step in the analysis involves the computation of

stresses. For each interior point, for example, 4 sets of stresses are

computed corresponding to equations (259 ). The stresses for the mesh

point are taken to be the average of these sets of stresses.

The simplified computer program for this analysis follows

beginning on page 264. A list of Fortran Symbols used is given on

pages 274 and 275. Sample data for the program is presented on page

276 and 277.
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Table B-1

Finite Difference Mesh Point Coding

Code Description

1 Ordinary interior point

2 Right vertical boundary point

3 Top horizontal boundary point

4 Corner point

5 Point on symmetry axis

6 Horizontal boundary point on symmetry axis

7 Center point with r-B a plane of symmetry

8 Right vertical boundary point with r-6 a plane

of symmetry

 

NW NE

SW SE

  

 
 

[SW 3 SE

  

NE

SE

SE

 

 

9
T
7

A 7

SE

   
 

   



Code

10

11

12

13

14

15
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Table B—1 (Continued)

 

 

   

 

  

 

 

Description

NW NE

Interior point with r-6 8 plane of symmetry . r

SE ; sw

Corner point - [a

NE

Left vertical boundary point

SE

Left vertical boundary point with r-6 a plane NE

of symmetry r

SE

  

Corner point

Corner point In

 

Bottom horizontal boundary point [NW INE ]

 



O

100

51

47

41

36

74

7O

88

87

39

89

99

31

264

AXIALLY SYMMETRIC FINITE DIFFERENCE PROGRAM

PROGRAM AXSFD

FINITE DIFFERENCE PROGRAM FOR AXISYMMETRIC

ELASTOSTATIC PROBLEMS

DIMENSION RR(231)9E(23194)

COMMON 5(462.18),NC(23199)9NTYP(231)yUI46219N9N29H9C1y

lSRRI231)oSZZ(ZBIIoSTT(231)oSRZ(231),KAD(23l)oSZRIZBlI

FORMAT STATEMENTS

FORMATIBFIOoI)

FORMATI9I594E1806)

FORMATIBEIDobI

FORMATI9I594F805)

FORMATIIOISI

READ IN DATA

READ 369N9NOUT9KDAT

IFIEOFvbOITIoTO

READ 479H9C1

PRINT 369N9NOUT9KDAT

PRINT 479H9CI

N2=2*N

READ 369INTYPIIIOI=IONI

PRINT 369(NTYPII)9I=19NI

GO TOIBTQBSIKDAT

GENERATE MESH POINT DATA

CALL COORD

READ IOOQIIEIIQJIQ J=Io4)g I=IQNI

GO TO 89

DO 39 I=19N

READ 419TNCIIQJ)9J=IQ9IOIEIIQJI1J=194I

DO 99 I=19N

PRINT SlyINCII9JIyJ=109IQIEIIgJI0J=1941

READ 479(RR(II9 I=19N)

PRINT 479(RRIII9 I=11NI

INITIALIZE COEFFICIENT ARRAY

DO 31 I=19N2

DO 31 J31918

S‘I’J)=OO

DEFINE COEFFICIENTS

DO 60 J=19N

KEY=NTYPIJI

I=2*J’I

II=2*J

R=RRIJT

GO TOI1929393919495969594919591929II'KEY

IF X<l

1 EM=EIJOII

CALL COFNEIIoIloEHgR)

GO TOI2960’601609496096096096096094960g60960,2IyKEY

EM=EIJOZI

CALL CUFNNII’IIOEM’R)

GO TO I393960960960960960960960960960960960960960I,KEY

EM=EIJ93I

CALL COFSWIIoIlvEMvRI
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GO TO (496094960960960IQKEY

4 EM=ETJ94I

CALL CUFSEII9IIOEM’R,

GO TO 60

5 EM=ETJQII

CALL SYMNSETI’IIQEMQR)

GO TOT6096096096096096096096096960660960IgKEY

6 EM=ETJ92)

CALL SYMNSHIIQIIvEMvR)

6O CONTINUE

IFTNOUTI77978977

77 DO 75 I=19N

PRINT 369TNCIIOJI9J=199I

PRINT 769(S(2*I‘19JI9J=1918)

75 PRINT 769TST2*IQJI9 J=1918I

76 FORMATT4E20.8I

GAUSS SEIDEL OVER RELAXATION PROCEDURE

78 CALL FDIFF

STRESS CALCULATIONS

DO 90 I=IoN

SRRIII=0o

SZZTII=Oo

STTTII=Oo

SRZTII=0c

SZRTII=0o

9O KADIII=0

DO 50 I=19N

KEY=NTYPIII

GO TO T10191029103910391019104910191029101910491019101

IolOIoIOZvIOIIQKEY

101 CALLSTNEII9ETIQIIORRTIII

GO TO I102950950950,1049509509509102950’1049104950950,

IIOZIyKEY

102 CALLSTNNIIQETlozIyRRTIII

GO TO (10391039509501509509509 509509509509509509509

lSOIoKEY

103 CALLSTSNTITETIQ3I9RRTIII

GO TO T1049509104950950950g50950950950950,50I,KEY

104 CALLSTSETIQETIQ419RRTIII

50 CONTINUE

COMPUTE AVERAGE STRESSES

DO 91 I=19N

SAD=KADTII

SRRIII=SRRTIIISAD

SZZTII=SZZTII/SAD

STTTII=STTTIIISAD

SRZTII=SRZIIIISAD

91 SZRTII=SZRTIIISAD

PRINT 94

94 FORMATT/l/I7H AVERAGE STRESSESI

DO 92 I=IQN

93 FORMAT1I5.4E15.3)

SHEAR=TSRZTII+SZRTIIIIZo

92 PRINT 93vIoSRRTII,SZZTI)9STT(IIQSHEAR
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GO TO 74

71 STOP

END

SUBROUTINE CDORD

DIMENSION RRIZ3II95I23194)

COMMON 5(462918)9NC(23199I9NTYP(231)oUI462I9N9N29H9C19

ISRRI23II9$ZZIZ3IIQSTTTZBII9$RZTZ3II9KADT231115ZRIZ3II

READ 419KX

41 FORMATI615I

PRINT 419KX

DO 90 I=19N

NCII91I=I

KEY=NTYPIII

DO 64 J=299

64 NCTIQJI=O

GO TO (91992993994999995996997998995999996996997998I

loKEY

94 NCIIv4I=I-I

NCTI95I=I+KX

NCT1181=I+KX-I

GO TO 90

91 NCTIQZI=I+I

NCTI93I=I-KX

NCTI94I=I-I

NCTI951=I+KX

NCTI96I=I-KX+I

NCTI97I=I-KX-I

NCII,8I=I+KX-l

NCTIQ9I=I+KX+I

GO TO 90

92 NCTIO3I=I-KX

NCTIo4I=I-1

NCTI951=I+KX

NCTIV7T=I-KX-I

NCIIOBI=I+KX-l

GO TO 90

93 NCIIvZI=I+l

NCTIv4I=I‘I

NCTI’5)=I+KX

NCTIOBI=I+KX-I

NC‘I’9I=I+KX+I

GO TO 90

95 NCT112I=I+I

NCTIQSI=I+KX

NCTIO9I=I+KX+I

GO TO 90

96 NCII92I=I+I

NCTI,3)=I-KX

NCT196I=I-KX+I

GO TO 90

98 NCTIOZI=I+I

NCTIQ3I=I'KX

NCTIO4I=I-l

NCT196I=I-KX+I

NCTIQTI‘I-KX-I
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GO TO 90

NCTI92I=I+I

NCTIQBI=I-KX

NCTI95I=I+KX

NCII96)=I-KX+I

NCTI99I=I+KX+I

GO TO 90

NCTIO3I=I-KX

NCTI94I=I‘I

NCTI97I=I-KX~I

CONTINUE

RETURN

’ END

SUBROUTINE COFNEIIvIl9EvR)

COMMON 5(462918),NCI23199)9NTYP(231)9U(46219N,N2,H9C19

ISRRTZBI19$ZZIZ3II9STT(231ToSRZTZ3IIoKADTZBIIoSZRIZ3l)

Q=HIR

SII9II=STI91T+T4o+g75*Q+lo5*Q**2I*E

STI121=SII921+Tlc“o125*QI*E

STI93I=STIQ3I-T30+105*OI*E

STI94T=STI94I+9125*Q*E

ST I’S)=STI’SI‘T10+025*QI*E

STI,6)=S(I,6I+.375*Q*E

STIQIZT=STI912)“TI.+.375*Q)*E

STIIQII=STI191I+Tlo+oIZS*QI*E

ST11921=STI192I+T4o+lo25*QI*E

STI193I=STI193I-o125*Q*E

SI1194I=SIIIQ4I-TI.+.5*QT*E

SIII'SI‘STII'SI’.3TS*Q*E

STI196I=SIIlobI-T3o+o75*Q)*E

STIIQIIT=SIIIQII)-TI.+.625*QI*E

RETURN

END

SUBROUTINE COFNHIIOIIOE'RI

COMMON ST462918IQNCT23199I9NTYPT23II,UT462)9N9N29H9C19

lSRRT23lIoSZZTZBI)oSTT(231)oSRZTZ3l)9KADI23119SZRIZ31)

Q=HIR

STIOII=STIOII+T4o-.75*Q+lo5*Q**ZI*E

STI921=STI921-(Io+o125*Q)*E

STIo5I=STIQSI-Tlo-025*O)*E

SII961=SII96I+u375*0*E

STIOTI:STI’7I‘T3O’IQS*QI*E

STI,8)=SII,81+.125*Q*E

STIvl4I=SII914I+Tlo-6375*0I*E

SIIlvl)=S(IIolI‘Ilo-6125*QI*E

SIIIOZI=SIII92I+(4.-1625*Q)*E

SIII,5I=STII,5I-.375*Q*E

STI196I=STIlvbT-T3o-u7S*QI*E

STI197I=STIlo7I-0125*Q*E

ST1198I=ST1198I’T10-05*0)*E

STII'IBI=S(I1913I+TIo-0625*0I*E

RETURN

END

SUBROUTINE COFSNIIvIlonRI



268

COMMON ST462918)9NCI2319919NTYPT23IIQUT462I9N9N29H9C19

ISRRI23I)oSZZTZBIIvSTTT23ITQSRZT23I)9KADIZ3IIQSZRI23I)

Q=HIR

STIQII=STIQII+I4.-.75*0+I.5*Q**2)*E

STIOZI=STI92I+Ilo+0125*QI*E

STI97I=51197I-I3o'105*QI*E

STI98I=STI98I-o125*Q*E

STI99I=STI99I-IIo-025*QI*E

SII'IOI=SII’10I-0375*Q*E

STI016I=STIolbI-Tlo-.375*QI*E

STIIQII=STII,II+(I.-.125*QI*E

STIIQZI=STIIvZ)+(4.*l.25*QT*E

SIIIQTI=SIIIy71+oIZS*Q*E

SII198T=SII198I-TIo-o5*QI*E

STIIO9I=SII199I+o375*Q*E

STI1910I=STII,IO)-T3.*.75*Q)*E

ST11915I=SI119151-(Io-o625*QI*E

RETURN

END

SUBROUTINE COFSEIIoIloEvRI

COMMON ST4629IBIONCT23IT9I9NTYPT23IToUT462IvN9N29H9C19

ISRRT23IIQSZZI23IIvSTTTZ3IIQSRZT23II9KADT23I)9$ZR(231)

Q=HIR

STI,II=STIQII+T4.+.75*Q+I.5*Q**2I*E

SII921=SII921“(Io-o125*OI*E

STIQ3I=STI93I'(3o+lo5*QI*E

SII94I=SII94T-o125*Q*E

ST199I=STIO9I'TIo+o25*QI*E

STI9IDI=STI910I‘0375*Q*E

STI,IBI=STI,IBI+TI.+.375*0I*E

STIIvII=STIIQII-T1o+0125*QI*E

STI192I=SIIleI+T4.+I.25*QT*E

STI193I=STI193I+0125*Q*E

STIIO4T=SIIIQ4I-TI.+.5*QI#E

STI199I=STIlv9I+u375*Q*E

STIIQIOI=STIIQIOI-T3o+.75*QT*E

STII,I7)=S(II,I7)+TI.+.625*QI*E

RETURN

END'

SUBROUTINE SYMNSE TIPIIoEvR)

COMMON ST462918I,NCIZBI’QIQNTYPTZBII’UT4OZION9N2’HQCI’

ISRRTZ3IIQSZZTZ3II9STTT23ITOSRZI23IIoKADTZ3IIoSZRT23II

Q=HIR

STIQII=SI191I+(8o+105*0+3o*0**2I*E

STI,3I=STI,3)‘I6o+3o*QI*E

STIQSI=SII95I'I2c+o5*QI*E

ST1,12I=SII912,-(20+075*0I*E

5(196)=S(I96I+o75*Q*E

STIIQZI=SIII,2I+T8.+2.5*0I*E

STII,4)=STII,4I-T2.+QI*E

RETURN

END

SUBROUTINE SYMNSH IIOIIQEQRI

COMMON ST462918I9NCI23199I9NTYPTZ3I)9UT46219N9N29H9C19

ISRRI231)9522(231)vSTTTZSIITSRZTZBII9KADT23IIOSZRT23II
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O=HIR

STIOII=SIIOII+T80-105*0T30*0**2)*E

SI1,7)=S(Iv7)-I6.-3.*QI*E

STI,5)=51195)-(2.-.5*01*E

SII.6)=S(I,6)+.75*Q*E

STIoI4I=STIvl4)+(2.-.75*O)*E

ST11921=STIl.2)+(8.-2.S*Q)*E

S(1198)=S(1198)-(2.-Q)*E

RETURN

END

SUBROUTINE FDIFF

DIMENSION FI462)9LL(462)

COMMON 5(46291819NC(23199),NTYP(231)9UT46219N9N29H9C19

1SRRT231)9$ZZIZ3IIQSTT(231)oSRZIZBllyKADTZBIToSZRIZBII

SIMULTANEOUS EQUATIONS

GAUSS SEIDEL OVER RELAXATION METHOD

THIS PROGRAM IS INTENDED FOR FINITE DIFFERENCE EQUATIONS

READ 479BETA9CON

READ 479(FTI)9I=19N2)

PRINT479IFTII9I=IQNZI

FORMATT8F10.0I

FORMATI4OIZI

READ 469(LLTII9 I=ION2I

PRINT469TLLTII9 I=19N2I

KK=O

READ ZOOOINIT'KIT

FORMATTIbISI

IFIINITI20192029201

READ 8991TUTII9 I=19NZI

GO TO 32

DO 2 I=19N2

“(II=00

DIFF=OOO

KK=KK+1

DO 30 I=19N

IO=2*I'I

IE=2*I

UBAR=FTIOI

VBAR=FTIET

DO 28 J=lg9

JO=2*J“I

JE=2*J

K=NCIIQJI

IFI K I 29928929

KO=2*K-I

KE=2*K

IFTIO-KOI4IQ4004I

UBAR=UBAR-STIOvJOI*UTKO)

UBAR=UBAR-STIOOJE)*UTKEI

IFIIE’KEI43942'43

VBAR=VBAR-STIE9JEI*U(KE)

VBAR=VBAR~STIE9JOI*UTKOI

CONTINUE

“BAR=UBARISTI091)
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63

65

51

50

52

36

30

15

54

33

35

34

37

38

899

12
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VBAR=VBARISIIE92)

IFTLLTIOII60961960

UI=UTIUI+BETA*(UBAR-U(IOII

GO TO 62

U130.

IFILLIIETI63964963

VI=UIIEI+BETA*IVBAR-U(IEII

GO TO 65

VI=00

UDMAX=ABS (Ul-UTIOI)

VDMAX=ABS TVl-UIIETI

UTIOI=UI

UTIEI=VI

IFIVDMAX-UDMAXI50950951

DMAX=VDMAX

GO TO 52

DMAX=UDMAX

IFI DMAX-DIFFT30936936

DIFF=DMAX

CONTINUE

KTEN=KKIKIT

IFIKK-KIT*KTEN)49894

PRINT 589KK

FORMATTIIO)

PRINT 549(UIII9I31’N2I

FORMATT17H ITERATION COUNT=IIO//)

FORMATTbEZOOB)

PUNCH 899vIUTII9 I=IvN21

TEST FOR CONVERGENCE

IFTDIFF‘CONI 33932932

PRINT 350KK

FORMAT T25H THE NUMBER OF ITERATIONSo//TIIO)I

PRINT 34

FORMATI42H NODAL POINT R’DISPLACEMENT Z’DISPLACEMENT)

DO 37 I=19N

IO=2*I'I

IE=2*I

PRINT 38919UIIDIOUTIEI

FORMATII1292E1506I

PUNCH 8999(UII), I=19N21

FORMATI4E20.8I

PRINT 12

FORMATI4OH POINT RADIAL STRESS AXIAL STRFSS

137HCIRCUMFERENTIAL STRESS SHEAR STRESS)

RETURN

END

SUBROUTINE STNETIoEvR)

COMMON SI462918),NC(23199)9NTYP(231)9U146216N9N29H9C19

ISRRTZBIIOSZZTZ3IIOSTTT23IIOSRZIZBIIQKADT23II9$ZRIP3II

B=H

D=E/TII.+CII*(I.*2.*CIII

DI=EII2.*(I.+CII)

JO=NCTIOII*2

JE=NCIIQZI*2

JN=NCTIv3I*2
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JNE=NCI1961*2

IO=JO-1

IE=JE-1

IN=JN~1

INE=JNE“1

RR=D*((Io-C1I*(UIIEI'UIIOIIIH+C1*(U(IE)+U(IOII/

1(2.*(R+H/2o)I+C1*(UIJN)-U(JO)+UIJNEI-UIJE1)/(2.*B))

TT=D*(I10‘C1’*U(IO)/R+C1*TU(IE,“UTIOIT/H+

1C1*(U(JNI-U(JO)1/B)

ZZ=D*((Io'Cl1*(UIJN17UIJOII/O+C1*IU(INEI-

IUIINI+U(IE)-U(IOI1/(2o*HI+C1*IUIINEI+UIIN)+

2UIIE)+U(IO)1/(4.*IR+o25*HIII

RZ=DI*((UIJEI’UTJOII/H+IUIINEI-UIIEI+U(IN)-

1U(IO)I/I2o*811

ZR=DI*( (UIINI’UIIO)I/B+IUIJNE1-UTJNI+UIJEI’

IUIJO)1/(2.*H)I

TA=IRZ+ZRIIZO

SRR(II=SRR(II+RR

SZZ(II=SZZ(I)+ZZ

STTIII=STTIII+TT

SZRIII=SZRIII+ZR

SRZIT)=SRZII)*RZ

KADIII=KADIII+1

PRINT lO’IQRROZZOTTOTA

FORMATI1493F15o2!10X9F15o29va5H STNE)

RETURN

END

SUBROUTINE STNNIIvaRI

COMMON 5(46291819NCI2319919NTYPIZ3119U(46219N9N29H9C19

lSRRI23119SZZIZ3I)95TTI231IvSRZIZ3IIvKADTZ31)oSZRIZ31)

B=H

D=EITI 10+C1 ’*I10"20*C1))

DI=E/(2.*(10+C111

JO=NC(1911*2

JH=NCIIO4)*2

JN=NC(113)*2

JNN=NC(197)*2

IO=JO-1

IN=JN-l

IH=JN-l

INH=JNH-1

RR=D*( (1.“C11*(U(IU)-U(INIT/H+CI*IUIIW)+UT IOIII

1(2.*IR-H/2o)I+C1*(UIJN)-U(JOI+UIJNN)-U(JWII/(2o*81I

TT=D*((Io-C1)*U(IO)/R+Cl*(U(IO)-U(IH)I/H+

1C1*(UIJN)-U(JO)I/BI

ZZ=D*((Io-C1I*(U(JN)-U(JO))/B+C1*(U(IN 1‘

IUIINNI+UIIO)'U(IN)I/(2.*H1+CI*IU(INHI+UIINI+

ZUIIHI+UIIOII/(4o*(R-.25*HTI1

RZ=DI*(IUIJO)‘UTJHII/H+(U(INHI-UIIW)+UIIN)-

1U(IOII/(Zo*BII

ZR=DI*(IUIINI'U(IO)I/B+(U(JN I-UIJNHI+UIJO)‘

1UIJNI)/(2.*H)1

TA=IRZ+ZRI/2o

SRRTII=SRRII1+RR
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SZZIII=SZZIII+ZZ

STTIII=STTIII+TT

SZRIII=SZRIII+ZR

SRZIII=SRZIII+RZ

KADIII=KADIII+1

PRINT 10919RR92Z9TT9TA

FORMATII493F15.2910X9F15.296X95H STNN)

RETURN

END

SUBROUTINE STSHIIoEoRI .

COMMON SI46291819NCI23199),NTYPI231)9UI46219N9N29H9C19

ISRR(231I9$ZZIZ3119STTIZ31)95RZI231)9KAD(23119$ZRI231)

B=H

D=E/((10+Cl’*(l.-ZO*C1),

Dl=E/(2.*(1.+C11)

JO=NC(191)*2

JH=NCIIQ4I*Z

JS=NC(195I*2

JSH=NCI198)*2

IO=JO-1

IN=JN-1

IS=JS-1

ISH=JSH-1

RR=D*((1.-C1)*(U(IUI-U(IWI)/H+CI*(UIIHI+U(IO))/

l(2.*(R-H/2.)1+CI*(UIJO)-U(JSI+UIJW)-U(JSN))/(2.*B)I

TT=D*((lc-Cl1*UIIOI/R+Cl*(U(IOI-UIIN))/H+

1C1*(U(JO)-U(JS))/B)

ZZ=D*((lc-CI)*(U(JOI-U(JS))/B+CI*IU(IS )-

IUIISHI+UIIO)-U(IN))/(2.*H)+C1*(UIISN)+U(IS)+

2U(IH)+U(IO))/(4.*(R-.25*H)1)

RZ=DI*((UIJOI-UIJN11/H+(U(IO I-UIIS )+U(Iw1-

IUIISNII/I2.*BII

ZR=DI*((U(IOI-U(IS))/B+(U(JO )-UIJW)+U(JS)-

lU(JSN))/(2.*HI)

TA=(RZ+ZR)/2o

SRRII)=SRR(I)+RR

SZZIII=SZZIII+ZZ

STT(II=STTII)+TT

SZRIIT=SZRIII+ZR

SRZ(I)=SRZ(I)+RZ

KADIII=KADIII+I

PRINT IOOIQRRQZZQTTyTA

FORMATII493F15.2910X9FI5.296X95H STSN)

RETURN

END

SUBROUTINE STSEIIonRI

COMMON 5(46291819NC(2319919NTYP(231)9U(462)9N9N29H9C19

ISRRI231I9$ZZIZ3II9STTIZ31IvSRZIZ31)9KAD(23119$ZR(231)

B=H

D=E/((1.+C1)*(l.-2.*C1))

Dl=E/(2.*(1.+C1I)

JO=NC(191)*2

JS=NC(195I*2

JE=NCII,2)*2

JSE=NCIIv9)*2
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IO=JO'1

IS=JS’1

IE=JE-1

ISE=JSE-1 ‘

RR=O*I(lo'Cl)*IUIIEI-U(IOII/H+CI*IU(IE)+UIIOII/

1T2.*IR+H/Zo)1+C1*IUIJOI-UIJSI+U(JE I”UIJSFII/(2.*HI)

TT=O*I(lo-C1I*UIIOI/R*C1*(UIIEI‘UIIO)I/H+

1C1*IUIJOI'U(JSII/BI

ZZ=D*IIla-C1)*IU(JOI-UIJSII/B+C1*(UI ISEI"

11H ISI+UIIEI-‘UIIOII/IZ.*HI+C1*(U(ISEI+UIISI+

ZUIIEI+UIIOII/I4o*IR+o25*HIII

RZ=DI*IIUIJEI‘UIJOII/H‘I'IUIIEI-UIISEI4'UIIOI-

IUIISII/I20*B)I

ZR=01*IIUIIOI-UIIS)I/B+(UIJSEI’UIJSI+UIJE)-

1UIJO)’/I2o*HII

TA=IRZ+ZRI/Zo

SRRIII=SRRIII+RR

SZZIII=SZZIII+ZZ

STTIII=STTIII+TT

SZRTII=SZRIII+ZR

SRZIII=$RZIII+RZ

KADIII=KADIII+1

PRINT IOOIvRszZvTTvTA

FORMATII493F15o2910XQF15.296X95H STSE)

RETURN

END



RR(I)

E(I,J)

S(I,J)

NC(I,J)

NTYP(I)

U(I)

N

H

Cl

SRR(I)

SZZ(I)

STT(I)

SRZ(I)

SZR(I)

NOUT

KDAT

FORTRAN PROGRAM SYMBOLS

AXIALLY SYMMETRIC FINITE DIFFERENCE PROGRAM

Mesh Point Radius Array

Elastic Modulus Array

Equilibrium Equation Coefficient Array

Location Array for Equilibrium Coefficients

Mesh Point Identification Array (see Table Bl)

Displacement Array

Number of Mesh Points

Mesh Point Spacing

Poisson's Ratio (used as 1/4 in the equilibrium equations

of this program but could be generalized)

Mesh Point Radial Stress Array

Mesh Point Axial Stress Array

Mesh Point Circumferential Stress Array

Mesh Point Shear Stress

Mesh Point Shear Stress

Indicator to surpress printing equilibrium equations.

If NOUT is non-zero, equations are printed.

Indicates that mesh point data (N, E w, etc.) will be

read into the program or generated by COORD routine.

IF KDAT is 2, the data is generated. IF KADT is l,

the data is read in.

When data is generated, it is necessary to indicate

the number of mesh points in the radial direction (KX).

274



F(I)

LL(I)

BETA

CON

NCY

KIT

INIT

275

Indicates the number of mesh points in the radial

direction for rectangular cross sections.

Array of Mesh Point Force Intensities

Displacement Boundary Condition Array

LL(I) is non-zero for restrained displacements.

Relaxation Factor

Convergence Criterion

Number of Cycles Allowed for Iterative Solution

Cycle Print Interval Indicator

Initial Displacement Indicator

If INIT is zero, initial displacements are set to zero.

Otherwise, displacements are read in.
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AXIALLY SYMMETRIC FINITE ELEMENT

PROGRAM USING LINEAR STRAIN TRIANGULAR RINGS

Like the finite difference program, the finite element program

has 3 main parts: (I) generate stiffness coefficients, (2) solve the

system of equilibrium equations, and (3) compute stresses. Nodal forces

are determined outside of the program and thus become part of the input

data.

The computer program consists of the main program and several

subroutines. The main program is essentially involved with reading in

the element and nodal point data and initialization. An array (LOC)

of location elements is also defined in the main program. The location

array indicates the position of non—zero elements in the stiffness

matrix. This is necessary in this procedure since only non—zero stiff—

ness coefficients are stored.

The subroutine STIFl generates the stiffness coefficients. The

subroutine makes use of several other routines in the process.

The quanties in equation (3.99) are formed in the subroutine

Form B. The integration of these expressions over the volume is per-

formed numerically in the subroutine NUMINT. A quintic formula discussed

by Felippa [18] is used in this connection.

The displacement transformation matrix of equation (3.96) is

then generated. The inversion of (3.97) is accomplished by calling a

278
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standard matrix inversion subroutine. Since such routines are available

on all modern systems, the program is not listed here. The routine

STIF2 is then executed many times to complete the formulation of the

overall stiffness.

The equations of the system are solved iteratively in the sub-

routine GSORP. Involved is a modification of the Gauss-Seidel over

relaxation procedure. Relaxation factors of 1.6 to 1.9 seem to give the

most rapid convergence for such problems.

The final step in the analysis involves the determination of

stresses. Element nodal point stresses are calculated in the subroutine

STRSA. The strains are obtained first from the product of the matrix

[D] in equation (3.98) and the column matrix [a] of (3.97). The matrix

[D] is generated in still another program called FORM G. Element nodal

point stresses follow from the stress-strain law. Nodal point stresses

for the overall structure are obtained by simply averaging the element

nodal point stresses.

The finite element program including the above mentioned sub-

routines is presented next. A listing of Fortran program symbols used

begins on page 290. A sample data set is shown on page 292.
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301
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149

152

600

150

113
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AXIALLY SYMMETRIC FINITE ELEMENT PROGRAM

LINEAR STRAIN TRIANGULAR RING ELEMENTS

PROGRAM LST

FINITE ELEMENT PROGRAM-LINEAR STRAIN ELEMENTS

AXISYMMETRIC ELASTOSTATIC PROBLEMS

COMMON RI169I.Z(169).EI72)9PRI72IQNII72I9NZI7219N3I721

19N4I72I.N5I72I9N6T72I9NMATI72I.FI338).LLI338).LI(12).

25(3389501.LOCI16995OIOSIGZI16992I.SIGT(169.2)9

39LTI338)9KEYI33819UT338I1KADI16992).SIGRI1699219

4SIGRZI169.219TI293381oCON9KEX9NCY.BETA.M.MP,M2.KIT

FORMAT STATEMENTS

FORMATI55H

FORMATI8I10)

FORMATI8F10.6)

FORMATI1215)

FORMATI8F10.11

FORMATI4OIZI

INPUT ELEMENT AND NDDAL POINT DATA

READ 301

IETEOF96OIIOOO6OO

READ 1029M9MP11P

PRINT 301

M2=2*MP

READ 10418ETA

PRINT 10498ETA

READ IOZ.KEX9NCY.KIT

PRINT 1029KEX9NCY9KIT

READ 1049(RIII9I=19MPI

PRINT 1049IRIIIQI=19MPI

READ 1049IZII19I=19MPI

PRINT 1049IZI 91:1.MPI

READ 1519(N1 N2IIIoN3III9N4TIIoN5II).N6II

9 I

I

I I=I.M)

PRINT 1519(Nl 2(119N3(I)9N4II)9N5(I).N6

I

I

v )9

I I)! I=19MI

READ 1049TFI

PRINT 104vIF

READ 1529INMA

PRINT 1529(NMA 9 I=19MI

READ 1499(EI1I9P II91=19MI

PRINT 1499IEIII9P IIIOI=19MI

READ 1520(LLTII9 I=19M2I

PRINT 1529(LLTII! I=19M21

INITIALIZE STIFFNESS AND LOCATION ARRAYS

DO 201 IA=19M2

DO 201 JA=1950

SIIA.JA)=0.0

DO 202 IA=19MP

DO 202 JA=1950

LOCIIAvJAI=O

INITIALIZE NODAL POINT STRESS ARRAYS

DO 107 I=1.MP

DO 107 J=192

KADIIOJI=0

19M21

=19M2)

I

I

I N

) =

I I

T 9 I=19MI

I

I

R

1

I

I

9

)9

(I)

III

R
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)

107

209

210

230

250

270

290

220

224

211

288

278

212

285

311

284

281

SIGRI IOJI=00

SIGTII'J)=0.

SIGZII.J)=0.

SIGRZII9JI=0.

DEFINE LOCATION ARRAY

DO 212 I=19MP

DO 209 J=1.M2

LTIJI=0

DO 211 N=19M

11=NIINI

12=N2INI

I3=N3INI

I4=N4INI

15=N5INI

I6=N6INI

LII11=2*I1‘1

LIIZI=2*12*1

LII3I=2*I3-1

LII4I=2*I4-1

LII5I=2*I5-1

LII6I=2*I6‘1

LIITI=2*11

LII81=2*12

LII9I=2*I3

LII101=2*I4

LIIII)=2*I5

L11121=2*I6

IFIII‘II 21092209210

IF (12‘11 23092209230

IF (13-11 25092209250

IF II4-II 27092209270

IF II5'II 29092209290

IE (16-1) 21192209211

DO 224 15:1912

L1=LIIISI

LTIL11=1

CONTINUE

KEYIII=0

DO 278 JA=19M2

IFILTIJA1127892789288

KEYIIIzKEYII1+1

K1=KEYIII

LOCII9K11=JA

CONTINUE

CONTINUE

PRINT OUT LOCATION ARRAY

IFIIP128592849285

DO 311 JA=19MP

KK=KEYIJAI

PRINT 2799 KK

FORMAT (6I101

PRINT 2799 ILOCIJA91T19 IT=19KKI

CONTINUE

DEFINE STIFENESS ARRAY

CALL STIFI



O

121

111

110

122

100

12

10

15

282

PRINT OUT STIFFNESS ARRAY

IFIIP112191229121

DO 111 I=19M2

PRINT 1109ISII9J19 J=19501

FORMATI8F15.5I

GAUSS SEIDEL OVER RELAXATION PROCEDURE

CALL GSORP

CALCULATE STRESSES

CALL STRSA

GO TO 1

STOP

END

SUBROUTINE STIF1

DIMENSION SEEI3.7).MTI4.3I9LI619RNI6I9ZNT6I9XI(1519

1A1696)90(696198112912)9LIPI6I9NIPI6)

COMMON RI169I.Z(169I9EI72I9PRI7219NII72)9N2I7219N3I72)

1.N4(721.N5172).N6(721.NMATI7219FI338I9LLI33819LI(1219

23(338950)9LOCI16995019SIGZI169.2).SIGT(169.2).

39LTI33819KEYI33819UI338I9KADI16992)9SIGR(1699219

4SIGRZI169.219T12933819CON9KEX9NCY98ETA9M9MP.M29KIT

READ 129IISEEII9J1913193I9J=197I

FORMATI6F13.81

READ 109IIMTII9JI9J=193I9I=194I

FORMATIIZI5)

DO 400 N=19M

I1=NIINI

12=N21NI

I3=N3INI

I4=N4INI

IS=N5INI

I6=N6INI

C11=EINI*II.-PR(N)1/I1.-PRIN)‘2.*PRINI**21

C12=EINI*PRINI/I1.'PR(NI-2.*PRINI**2)

C44=EINIII2.+2.*PRIN)I

C=C11+C12

LI1I=N1INI

LI21=NZINI

LI3I=N3INI

LI4I=N4INI

LI5I=N51NI

LI6I=N6INI

DO 15 I=196

J=LIII

ZNIII=ZIJI

RNIII=RIJI

PERFORM NUMERICAL INTEGRATION

CALL NUMINTIRN.ZN.XI.SEE.MTI

CALL FORMBIB9XI9C9C119C129C44)

FORM DISPLACEMENT TRANSFORMATION MATRIX

DO 72 I=196

AIIQII:I.

AII921=RNIII

AII93I=ZNTII

AII94I=RNIII*RNII)



72

291

421

833

411

400

50

35

283

AII95I=RN(I)*ZNII)

ATI961=ZNIII*ZNIII

DO 291 JG=196

DO 291 KG=196

DIJG9KGI=AIJG9KGI

CALL MINVID969DET9LIP9NIPI

D IS NOW THE INVERSE OF A

FORM DT*B*D

LII1I=2*11-1

LIIZI=2*IZ-1

LII3)=2*13-1

LII4I=2*I4-1

LII5I=2*I5-1

LII6I=2*16-I

LII7I=2*II

LIIBI=2*IZ

LII9I=2*I3

LIIIOI=2*I4

LIIIII=2*15

LIIIZI=2*16

DO 411 JA=196

JT=LIJAI

DO 833 I=19MP

IFIJT-1183394219833

CALL STIF2IJA9I9D9B)

GO TO 411

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE NUMINTTX19Y19XI9SEE9MT)

DIMENSION X116).Y1(6).X11519Y1151.XMI1519XI(151.XXI15)

DIMENSION SEEI39719MTI493I

COEF=X1(2)*(Y1I3I-Yl(1I)+Xl(1)*IYII2)-Y1(3)I+X1(3)*

IIYIIII-YIIZII

COEFBCOEF/H.

XXI11=0225

XXI21=.13239415

XXI3I=XXIZI

XXI4I=XXIZI

XXI5I=.12593918

XX161=XXI5I

XXI7I=XXI5I

DO 50 I=1915

XIIII=00

DO 75 K=194

L=MTIK911

M=MTIK92I

N=MTIK93I

DO 2 1:197

XIII=XIILI*SEEI19I1+X1IM)*SEE(29II+X11NI*SEE(3.II

YIII=Y1ILI*SEEI19II+YlIM)*SEE(29II+Y1INI*SEE(39II

DO 35 I=197

XMIII=XXIII*XIII



100

75

150

60

284

DO 100 I=197 .

XII11=X1111+XMIII

XIIZ)=XII2)+XMIII/XIII

XII3I=XII3I+XMII)IIXIII**21

XII4I=XII4I+XMII1*YIII/XIII

XII5)=XII5I*XMII1*YIII/IXIII**21

XII6I=XII6I+XMIII*YII)**2/IXII)**2)

XII7I=XII7I+XMIII*XII)

XII8I=XII8I+XMIII*YIII

XII9I=XII9I+XMII)*XIII**2

XI1101=XII101+XMIII*XIII*YTII

XII11)=XI(111+XM(I)*YIII**4/XIII**2

XII12)=XI(12)+XMII)*YIII**2/X(II

XIII3I=XIIl3I+XMIII*YIII**3/XIII**2

XI(14)=XI(14)+XMIII*YIII**3/XII)

X1115I=XII15I+XMIII*YIII**2

CONTINUE

CONTINUE

DO 150 I=1915

XIIII=XIIII*COEF

RETURN

END

SUBROUTINE FORMBIB9XI9C9C119C129C44)

DIMENSION 811291219XIII5)

DO 60 I=1912

DO 60 J=1912

BI IVJI=00

BII.1)=C11*XII3I

811921=C*XII21

8(193I=C11*XI(5I

8(194)=12.*C12+C111*XIIII

811951=C*XII4I

BII96I=C11*XII61

81199I=C12*XII2)

8(19111=C12*XII1I

8‘19121=2.*C12*XII4I

BIZ.2I=2.*C*XIIII

BIZ.3I=C*XII4I

8(2941=3.*C*XI(7I

BIZ.5I=2.*C*X1181

8(296I=C*XI(12)

812.9)=2.*C12*XI(1)

BIZ9III=2.*C12*XII7I

BIZ.121=4.*C12*XII81

BI393I=C44*XIIII+C11*XI(6)

813941=12.*C12+C111*XIIBI

8(3951=C44*XII7)*C*X1112)

8(396)=2.*C44*XII8)+C11*XII13I

8T39BI=C44*XIIII

BI399I=C12*XII4I

813910132.*C44*XII7I

8139111=IC12+C44I*XII8)

8(39121=2.*C12*XII12I

BI4.4)=I5.*C11+4.*C121*XI(9)



66

221

285

8(495133.*C'XII101

BI496I=IZ.PC12+C111*XIII5)

BI4.9I=3.*CIZ*XII7I

8(49111=3.*C12*XII9I

8(49121=6.*C12*XII101

815.5I=2.*C*XI(151+C44‘XII91

81596)=C*XII14)+2.*C44*XII101

BI598I=C44*XI(71

BIS.9I=Z.*C12*XII8)

8(59101=2.*C44*XII9I

8(59111=(2.*C12+C44I*XII101

8159121=4.*C12*X1115I

8(69613C11*XI(11)+4.*C44*XI(15)

BI6.81=2.*C44*X118)

8‘699)=C12*XI(121

8169101=4.*C44*X1110)

8169111=IC12+2.*C44I*XI(15)

8169121=2.*C12*X1114I

8(89813C44*XI(11

8(89101=2.*C44*XII7I

8(8911)=C44*X1(81

BI999I=C11*XI(11

8(991118C11*XIITI

8199121=2.*C11*X118)

8(109101=4.*C44*XI(91

8(109111=2.*C44*XIIIOI

BIII.11)=C11*XIT91+C44*XI(151

81119IZI=Z.*C11*XI(101

BI12.12)=4.*C11*XI(15I

DO 66 131911

J1=I+1

DO 66 J=J1912

BIJ9II'8119JI

RETURN

END

SUBROUTINE STIFZIM99I9D9BI

DIMENSION DI696).8(12912)

COMMON R1169I.Z(169)9E172).PRI7219NII72)9N2(72)9N3(72)

9N4I72)9N5I7219N6I7219NMATI72I9FI33819LLI33819LI(1219

25(3389501.LOCI169950195IGZ(169.21oSIGTI16992).

9LT(338).KEY(33819U(338)9KAD(1699219$IGR(169.2)9

4SIGRZI1699219TIZ933819CON9KEX9NCY9BETA9M9MP.M2.KIT

DO 221 J=1.M2

DD 221 KP=1.2

TIKP.J)=O.

DO 222 J=1.6

J6=J+b

K=LIIJ6)

L=LI(J)

DO 222 KI=196

K16=KI+6

DO 222 KJ=1.6

KJ6=KJ+6

TI1.L)=T(1.L)+D(KI.M9)*B(KI.KJ)*D(KJ.J)

TI1.K)=T(l.K)+D(KI.M9)*B(KI.KJ6)*D(KJ.J)



222

240

317

339

382

386

10

11

12

377

314

376

332

345

347

396

348

346

355

394

329

328

286

TI29LI=TIZ9LI+DIKI9M9I*BIKI69KJ)*DIKJ9JI

TIZ9KI=TIZ9KI+DIKI9M9I‘8IK169KJ6I*DIKJ.JI

J2=2*I

J1=J2‘1

DO 240 K=1950

KISLOCII9KI

IFIK1119291

SIJ19KI=STJ19KI+TII9KII

SIJ29KI=SIJ29KI+T129K11

RETURN

END

SUBROUTINE GSORP

COMMON RI169I9ZII69I9ET7219PRI7219N1(7219NZI7219N3(72)

19N4I7219N5I7219N6I72I9NMATI72I9FI33819LLI33819L1(1219

25(338950)9LOCII6995019SIGZII699219SIGTI1699219

39LTI33819KEYI33819UI33819KADI1699219SIGR11699219

4SIGRZI169.2I.TI2.33819CON9KEX.NCY.8ETA.M.MP.M29KIT

CON=1.0*I10.**I'KEXII

PRINT 3399 CON

FORMAT (23H CONVERGENCE CRITERION= E20.81

SEIDEL ITERATION

PRINT 38698ETA

FORMAT (19H RELAXATION FACTOR= E20.8)

READ 109INIT

FORMATIIOISI

IFIINITI 119377911

READ 129IUIII9 I=19MZI

FORMATI4E20.8)

GO TO 376

DO 314 I=19M2

UIII=0.0

KK=0

DIFF3000

KK=KK+1

IFIKK’NCY) 34693469345

PRINT 347

FORMAT IZIH CYCLE LIMIT EXCEEDEDI

PRINT 396

FORMATI30H THE CURRENT DISPLACEMENTS ARE)

PRINT 3489KK9 (01119 I=19NMI

FORMAT (1H09I59I4E15.811

GO TO 1

DO 330 I=1.M2

IFILLIIII3309355933O

KJ=II+1)/2

U8AR=FIII

NUMSKEYIKJI

DO 328 J=19NUM

N=LOCIKJ9JI

IFIN-II32993949329

DIAG’SII9JI

GO TO 328

UBAR=U8AR-SII9JI*UINI

CONTINUE

 



364

336

330

306

305

304

303

333

335

334

337

338

44

100

287

UBAR=UBARIDIAG

UI=UIII+BETA*(UBAR-U(III

DMAX=ABS (UI'UIII)

UIII=U1

IFIDMAX-DIFFI 33093369336

DIFF=DMAX

CONTINUE

KTEN=KKIKIT

IFIKK-KIT*KTENI 30393069303

PRINT 3059KK

FORMATI17H ITERATION COUNT3110/l)

PRINT 3049TU|II9 I=19M2)

PUNCH 3049IUIII9 I=19M21 .

FORMATI4E20.81 -

CONTINUE

TEST FOR CONVERGENCE

IFIDIFF-CDN) 33393329332

PRINT 3359KK ”5

FORMAT IZ5H THE NUMBER OF ITERATIONS9/IIIIOII ‘

PRINT 334

FORMATI42H NODAL POINT R*DISPLACEMENT Z-DISPLACEMENT)

DO 337 I=19MP

IO=2*I-I

IE=2*I

PRINT 3389I9UIIOI9UIIEI

FORMATIIIZ9ZE20.81

PUNCH 304.1UIII9 I=1.M21

RETURN

END

SUBROUTINE STRSA

DIMENSION LIP1619NIPI619L1619A1696).GI4912).8I121

DIMENSION EPI4I9STRT419CEI494)

COMMON R116919ZI16919E17219PR17219NIITZI9N2I7219N3I72)

19N4I7219N5I7219N6I7219NMATI7219F133819LL133819LI(1219

25(33895019LOCI16995019SIGZIIb99219SIGTI1699219

39LTI3381.KEYI33819UI33819KADI1699219SIGR11699219

4SIGRZI1699219TIZ9338I9CON.KEX.NCY.BETA.M.MP.M29KIT

PRINT 44

FORMATIITH ELEMENT STRESSES/l/I

DO 926 I=19M

PRINT 10091

FORMATIle ELEMENT NUMBER=I51

LTII=NIIII

LIZI=NZIII

LIBIBNBII)

LI4I=N4III

LISI=NSIII

LI6IBN6III

DO 10 J=196

LYSLIJI

AIJ’II‘FIQ

AIJ9ZI=RILYI

AIJ93I=ZILY1

ATJ94I=RILYI*RILYI

A(J95)=R(LYI*ZILY)
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20

30

77

51
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62

37

38

39

17

71

926
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A(J96)=Z(LY)*ZILYI

CALL MINVIA969DET9LIP9NIP)

DO 20 N81912

BIN130.

00 30 N8196

DO 30 J8196

LYBLIJI

JE=2*LY

JO=2*LY-1

BINIIBINI+AIN9JI*UIJ01

K=N+6

BIKIBBIKI+AIN9JI*U(JEI

DO 77 K=194

DO 77 J=194

CEIK.JI=O.

PO=PRIII

Y=EIII

CEIIOII=Y*I10"P0’III.-PO"ZO*P0**ZT

CEIl.2)=Y*PO/(1.-PO-Z.*PO**ZI

CEIZ9118CEII9Z)

C51494I=YIIZ.+Z.*POI

CEIZ9218CEII91)

CEI39318CEII91)

CEIZ931=CEII9ZI

CE(392)8CE(192)

CEI1931=CEII9ZI

CEI3911=CEII921

KAY=NMATIII

DO 71 N=196

LY=LINI

CALL FORMGIG9LYI

DO 51 J=194

EPIJ)=0.

DO 52 J=194

DO 52 K81912

EPIJI=EPIJI+GIJ9K)*BIK)

DO 61 J=194

STRIJI‘O.

DO 62 J=194

DO 62 K8194

STRIJI=STRIJI+CEIJ9K)*EP(K)

GO TO (3793819KAY

JZ=1

GO TO 39

JZ=2

SIGRTLY9JZI=SIGRILY9JZ)+STR(11

SIGZILY9JZI=SIGZILY9JZI+STRIZI

SIGTILY9JZ)=SIGT(LY9JZI+STRISI

KADTLY9JZI=KADTLY9JZI+1

SIGRZILY9JZI=SIGRZILY9JZI+STRI41

PRINT 179LY9ISTRINKI9 NK=194I

FDRMAT(110.4F20.21

CONTINUE

CONTINUE
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PRINT 461

FORMATIZIH NODAL POINT STRESSES/l/I

DO 511 I=19MP

IFIKADII911132593269325

SAD=KADII911

SIGRII9II=SIGRII9IIISAD

SIGZII911=SIGZII9IIISAD

SIGTII9II=SIGTII9lIISAD

SIGRZII911=SIGRZII9IIISAD

IFIKADII921132793289327

SID=KADII921

SIGRII921=SIGRII9ZIISID 5

SIGZTI921=SIGZII9ZIISID

SIGTII921=SIGTII.ZI/SID

SIGRZII9ZI=SIGRZTI9ZIISID

PRINT 512919SIGRII9119SIGZII9119SIGTII9119SIGRZII911

FORMATIIS94F20.ZI ;

PRINT 5139SIGRII9219SIGZII9219 SIGTII9219SIGRZII921 r
 

FORMATI11X94F19.ZI

RETURN

END

SUBROUTINE FORMGIG9LYI

DIMENSION GI49121

COMMON RI1691921169I9EITZI9PRI7219N117219N2(721.N3(72)

19N4(7219N5I7219N6T7219NMATI7219FI33819LLT33819LI(12).

25‘33895019LOC116995019SIGZII699219SIGTI1699219

39LTT33819KEYI33819UI33819KADI169921.51GR(169.2)9

4SIGRZI169.21.TIZ.338)9C0N9KEX9NCY9BETA9M9MP9M2.KIT

X=RILYI

Y=ZILYI

IFIX-.001)11912912

X=.001

DO 10 13194

DD 10 J=1912

GIIQJI=0.

GTI'ZI‘I.

GIIQ4I=Z.*X

GII9SI=Y

6‘299I=1.

GIZ9III=X

GIZ9IZI=2.*Y

GI3.11=1./X

61392131.

GI393I=YIX

GI3.4)=X

GI3.5I=Y

GI396)=Y*Y/X

614.3131.

GI495I=X

GI4pb’=Z.*Y

614981=1.

GI4.10)=2.*X

GI49llI=Y

RETURN

END



R(I)

2(1)

N1(I)

N2(I)

N3(I)

N4(I)

N5(I)

N6(I)

PR(I)

E(I)

NMAT(I)

F(I)

U(I)

LL(I)

S(I,J)

LOC(I,J)

SIGR(I,J)

SIGZ(I,J)

SIGT(I,J)

SIGRZ(I,J)

FORTRAN PROGRAM SYMBOLS

AXIALLY SYMMETRIC FINITE ELEMENT PROGRAM

Radial Coordinate

Axial Coordinate

Element Nodal Point Numbers

Poisson's Ratio

Elastic Modulus

Material Indicator for Composites

Nodal Point Force Array

Nodal Point Displacement Array

Displacement Boundary Condition Array

Stiffness Coefficient Array

Location Array

Radial Stress Array

Axial Stress Array

Circumferential Stress Array

Shear Stress Array
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M

MP

BETA

CON

NCY

KIT

A(I,J)

c11,c12,c44

CE(J,J)

SEE(I,J)

MT(I,J)

T(I,J)

EP(I)

STR(I)

G(I,J)

IP

INIT
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Number of Finite Elements

Number of Nodal Points

Relaxation Factor

Convergence Criterion

Number of Cycles Allowed for Iterative Solution

Cycle Print Interval Indicator

Transformation Array from Generalized Displacements

[a] to Nodal Displacement [u]

Elastic Constants

Elastic Constants

Numerical Integration Coefficients

Numerical Integration Nodal Point Numbers

Temporary Equilibrium Equation Array

Element Strains

Element Stresses

Displacement Gradient Matrix

Indicator to surpress printing stiffness coefficients.

If IP is non-zero, coefficients are printed.

Initial Displacement Indicator

If INIT is zero, initial displacements are set to

zero. Otherwise, displacements are read in.
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