ABSTRACT

A COMPARISON OF FINITE ELEMENT
AND FINITE DIFFERENCE METHODS
IN ELASTOSTATIC PROBLEMS

by Nicholas P. Dario

Four objectives of this thesis are: to compare finite element
and finite difference solutions to elastostatic problems, to present an
apparently different formulation of the Navier equations in finite
difference form and to demonstrate their applicability, to formulate and
apply the axially symmetric linear strain triangular ring stiffness
matrix, and to present solutions for simple composite bodies.

For the sake of completeness, finite element stiffness matrices
are derived for plane and axially symmetric problems. Both constant
and linearly varying strain triangles are considered. Nodal point
forces associated with boundary tractions are treated in detail. The
constant and linear strain triangles as well as the constant strain
triangular ring have been presented by other authors. The linear strain
triangular ring has been mentioned by other writers but has apparently
not been specifically presented prior to this. Furthermore, the present
author is unaware of earlier published applications of this stiffness
matrix.

Finite difference expressions associated with the Navier elas-
ticity equations are derived in a more general form which allows con-

sideration of anisotropic materials. This is done by simply replacing
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derivatives by appropriate difference expressions. These are also
derived by what is believed to be a different method involving the
equilibrium of a material element. Inherent in the procedure is the
necessity of making assumptions of the strains in terms of displacement
differences. The method has the advantage that static boundary con-
ditions are readily derived as well.

The comparison of the methods is given in terms of specific
applications. Both plane stress and axially symmetric examples are
included. In each category, a problem with a well-known elasticity
solution is treated so that comparisons can also be made with the so-
called "exact'" solution. An application involving a simple composite
body is also presented.

The investigation demonstrates the ability of the finite element
and finite difference methods to give equally good results in displace-
ment analysis. Agreement with elasticity solutions is excellent for
each method. However, the stresses which result from the finite
difference analysis and the finite element analysis using constant
strain triangular elements are generally less satisfactory than those
obtained in the finite element analysis which employs linearly varying
strain triangular elements. This is especially true at boundary points.
Displacements in simple composite bodies treated are also very compar-
able for the various methods. Interfacial stresses, however, were more
erratic for the finite element solutions than for the corresponding
finite difference solutions. The smoother variation of the difference

solutions is believed to be more realistic.
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I. INTRODUCTION

1.1 Remarks

A fundamental problem of mechanics of deformable bodies is the
determination of the state of stress and deformation in arbitrary three
dimensional solids. Of particular importance are two dimensional
situations involving plane stress or plane strain. The literature of
the classical theory of elasticity contains exact solutions to many of
these problems. These are restricted for the most part to two dimen-
sional problems involving simple geometry and boundary conditions. 1In
more complicated problems, it is necessary to resort to approximate
methods of solution.

Two approximate procedures which have found widespread appli-
cation in recent years are finite difference and finite element methods.
Finite difference methods involve mathematical approximations. The
governing differential equations and related boundary conditions are
replaced by difference expressions. These relate discrete values of
approximating functions at a finite number of points. The result is a
system of linear algebraic equationswhich is solved by standard numer-
ical procedures. Finite element methods refer to a class of approx-
imate procedures in which the actual body or structure is replaced by
an assemblage of carefully chosen elements connected at a finite
number of points called nodal points. In the stiffness method for

example, an assumption of the strain distribution in the element is
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2
made with strains related to the displacements of element nodal points.
Equilibrium conditions are then satisfied at the nodal points. There is
no need for approximating the governing equations as is the case with
finite difference methods. The approximation, on the contrary, is of a
physical nature. The procedure results in systems of equations which
relate nodal point displacements to nodal point forces through stiffness
or flexibility influence coefficient matrices. These are linear alge-
braic equations which are likewise solved by standard numerical

procedures.

1.2 Previous Developments

The first application1 of finite difference methods is apparently
due to C. Runge [1]2. He used the method in the analysis of torsion
problems. L. F. Richardson [2] made further progress by applying an
iterative procedure to obtain the stress distribution in dams.

H. Marcus [3] and later H. Hencky [4] were successful in applying finite
differences in the analysis of plate bending problems. R. V. Southwell
[5] and his students are responsible for many applications in recent
times.

The finite element methods are a generalization of well known
structural procedures which were originally developed in conjunction with
aircraft structural problems. They are related to the so called "matrix

methods of structural analysis' advanced by Langefors [6] and Argyris [7].

1Timoshenko and Goodier, "Theory of Elasticity,'" Page 461.

2The numbers in square brackets refer to references listed in the
Bibliography.






3
In recent times, application of these methods to continuum problems and
other structures has been extensive. Their increasing use and develop-
ment is closely related to progress made in digital computation and
generally greater availability of digital computers themselves.

The first achievement in the area of finite element methods is
due to Hrennikoff [8]. He developed a framework analogy for plane stress
problems in which the actual body is replaced by a lattice of beam
elements. The procedure was subsequently improved by McHenry [9] after
which Parikh and Norris [10] generalized the method by including bending.

A most sifnigicant achievement is due to Turner, Clough, Martin,
and Topp [11]. They presented a triangular plate element stiffness
matrix which could be used in the analysis of plane stress problems.
This element is assumed to be in a homogeneous state of strain and
the displacement field is a linear one. This matrix has been used
extensively and is directly responsible for many advances which have
occurred during the past ten years. Argyris [12] has given this matrix
a different form, one which he calls the natural or invariant stiffness.

The original work of Argyris and Kelsey [7,13] demonstrates the
capability of the methods to account for initial strains of a thermal
or misalignment nature. Turner, Dill, Martin, and Melosh [14] consider
the large deformation of heated structures. Argyris [15] discusses
initial strains due to plasticity and thermal effects.

DeVeubeke [16] introduced a plane stress triangle plate element
for which the strain variation is linear and thus the displacement field
is quadratic. This element has been used by some writers including
Argyris [17, 15] and Felippa [18]. It has proven to be very useful

for problems involving stress concentration. Felippa [18] has discussed
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other refinements to these stiffness matrices involving quadratic and
higher order strain variation.

Finite elements have also been used in the analysis of plate
and shell problems. Among the many contributors in this regard are
Melosh [19]! Argyris [20], Schmit [21], Clough [22] and Zienkiewicz [23].
Argyris [24] has demonstrated the applicability to large displacement
problems as well. Wilson [25] and Rashid [26] have worked out stiffness
matrices for axially symmetric ring elements. Argyris [24, 27] has
used a tetrahedron element in the analysis of three dimensional problems.
A number of writers have discussed the dynamic problems involving the
determination of natural frequencies and natural modes of oscillation
for various systems [28, 29, 30]. Felippa [18] gives a detailed account
of nonlinear analysis including the formulation and solution of elasto-
plastic problems. Chang and Taylor [31,.32] demonstrate the usefulness
of the method in linear viscoelastic problems which arise in nuclear

reactor work.

1.3 Present Investigation

The objective of this present work is to compare solutions of
elastostatic problems obtained by finite element and finite difference
methods. Included are some examples which have known solutions. Thus,
comparisons are also made with the exact elasticity solution in these
cases. It was of primary interest in this dissertation to obtain
solutions to problems involving composite materials. Exact solutions to
such problems are not generally available. In these situations, the

results of several approximate solutions are compared with one another.
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Included in this investigation are formulations of the finite
difference and finite element methods for plane stress or plane strain
and axially symmetric elastostatic problems. Particular applications
pertain to plane stress and axially symmetric problems only. Finite
element formulations are given for both constant and linearly varying
strain elements. Finite difference problems are formulated in terms of
displacement (Navier) equations of equilibrium. This is in contrast
with the usual stress function approach which has been used so often in

the analysis of plane problems.






II. FINITE DIFFERENCE METHOD

2.1 General Remarks

The analysis of elastostatic problems by finite difference
methods is a two step procedure. The first step involves obtaining
finite difference expressions for the governing partial differential
equations and associated boundary conditions. These difference
equations relate discrete values of an approximating function at a
finite number of points. A mesh of lines is then superimposed over
the domain of the boundary value problem forming a set of nodal points.
A finite system of linear algebraic equations is obtained by writing
difference equations for each nodal point of the system. The solution
of these equations comprises the second step in the finite difference
procedure. The equations are characterized by the existence of a
relatively small number of non-zero coefficients. The coefficient
matrix is said to be sparsely populated. It is therefore possible to
deal with truly large systems involving as many as 1000 equationms.

The solution can be obtained by iterative procedures or by a modified
Gauss elimination technique.

It is possible to achieve the first step in a number of ways.
One of these is to simply replace the governing differential equations
and related boundary conditions by appropriate finite difference

expressions. This would be the most direct approach if boundary
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7
conditions are known in advance. A second approach involves a vari-
ational principle whereby potential energy is expressed in finite
difference form. Letting the total potential energy take on a station-
ary value results in both governing equations and associated boundary
conditions in the form of finite difference expressions. Still another
approach involves writing equilibrium equations for material regions
corresponding to interior and boundary points. Approximate expressions
for stresses are used along with any externally applied loads resulting

in finite difference expressions for both interior and boundary points.

2.2. Differential Equations for Plane Stress

Consider first the state of stress in a thin plate loaded by
boundary forces which are applied parallel to the plane of the plate and
are uniformly distributed over the thickness. For convenience, the mid-
plane of the plate is taken to be the x-y plane. If the stress compo-
nents Oy Tyz’ and T,x are zero at every point in the body, the state of
stress 1s called plane stress. Thus, the state of stress in such a body
is completely specified by the stress components O s cy, and 1__.

Xy
The equilibrium of the force system is expressed by the equations

a0 9T
XX i x=0
ax ay
(2.1)
90 oT
+—X4+y=0
oy 9x

where X and Y are body force components reckoned per unit of volume.
For most applications, the orthotropic constitutive relation-

ships are sufficiently general. For the case of plane stress these



become

(2.2)
oy =C 1€x + szey
Txy = C33ny
In the case of isotropic behavior, the elastic constants are
E
C = C =
2
11 2 1 - 2
(2.3)
vE
C = C =
21
12 1 -2
A
33 21 +v)
with E the modulus of elasticity and v Poisson's ratio.
The strain-displacement relationships are
, -
x X
(2.4)
., =
y ay
- U 4 3V
ny oy oxX

where u and v are continuous displacement functions in the x and y
directions respectively. The three strain components €x? ey, ny
cannot be specified independently since they depend on two functions

u and v. By differentiating the equations (2.4) it is possible to show

that the strain components must satisfy the equation
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X y Xy
+ = (2.5)
2 ax2 axay

which is called the compatibility equation. Thus if a stress or dis-
placement field is assumed, it is necessary that equation (2.5) be
satisfied in order to assure continuity of deformation.

Then at each point in the body, the equilibrium of the stress
field is expressed by equations (2.1). These can be expressed in terms

of strains by introducing equations (2.2). Thus

asx 13 ayx

C11 % + C12 5;1-+ C33 —S;X-+ X=0
Sex o€ aYX

C21 5;— + C22 Syx + C33 —SEX +Y=20

It is now possible to eliminate strains through the strain-displacement

relationships (2.4). The result is

3%u 3%u v _
C11 ;;; + C33 ayz + (CIZ + C33) a%3y +X=0
(2.6)
3%v 32y 32u _
“22 ;+ ©3 ;:;+ (€51 * C33) axay | r=0

Equations (2.6) are a generalization of the Navier plane stress equa-
tions. They reduce to the Navier equations for isotropic materials. It
is only necessary to replace the constants C,,, C,,, C,,, Cj, by

expressions (2.3). The result is
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E 32u + E 32u + E 32v + X =0
1 - \)2 3)(2 2(1 + \)) ayz 2(1 - V) Bxay
(2.7)
2 2 2
E Vv E 9V + E o¢u +Y=0

+
v2 ay2 2(1 + v) 5x2 2(1 - v) ax3y

These last equations are also presented by Sokolnikoff [33] in the
indicial notation and in terms of the Lamé coefficients.

Thus it is seen that the plane stress elasticity problem can be
formulated in terms of two second order partial differential equations
in displacements. In principle, one would hope to be able to find dis-
placement functions u and v which satisfy equations (2.6) or (2.7).
Generally, this is a formidable problem so that one is forced to resort
to approximate methods of solution. Finite difference expressions for
these equations will be presented in a subsequent section of this

chapter.

2.3 Differential Equations for Plane Strain

Although very different in principle, the plane strain formu-
lation closely resembles that for plane stress. A body is said to be
in a state of plane strain parallel to the x-y plane if the displacement
component perpendicular to this plane is zero for all points in the body
and if the remaining displacements are independent of the z coordinate.

Thus, the relationships

u = u(x,y)
v = v(x,y) (2.8)

w=0
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11
define the state of plane strain. It follows from the strain-displace-

ment relationships that

= oW _
ez Y 0
Y =?£+8_V= 0 (2-9)

yz ay 9z

au oW
zZX 0z + 9X

The non-zero strain components are € ey’ and ny'

The orthotropic constitutive relationships for plane strain are

Q
]

+
C. € C1

x 115x 2fy

Q
i
O
™
+
(]
™

(2.10)

Txy ‘-}lony

The two remaining shear stresses vanish throughout the body in view of

equations (2.9). For isotropic materials, the elastic constants are

N (1 - v)E
227 (1 +v)(A - 2v)

11

C.,.=C,. =C,, =C vE

12 21 13 31 T A+ W - 2v) (2.11)

E

Cuu = 2(1 + v)

The equilibrium of the force system for the case of plane strain

is likewise expressed by relationships (2.1). Using the strain-
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displacement relationships and the constitutive relationships, (2.10)
above, equilibrium equations in terms of displacements similar to

equations (2.6) can be written for the case of plane strain:

32u 3%u 32v
C,, —+¢C,, —+ (C,, +C_.) +X=0
Ly 12 Ly
t ax? dy? ox3y
(2.12)
3%v 3%v 32%u
c,,—+¢C, —+ (C,, +C,_,) — + Y =0
22 Ly 21 Ly
3y2 %2 axXJy
For isotropic materials these become
(1 - VE 3%u E 3%u E 3%v _
T+ W@ -2 ,, " 20+ v ’y? Y 2A T A -2y axay TX=0
(2.13)
- 2 2 2
(1 - V)E v + E 94V + E 94u +Y=0

1+v)Q - 2v) 3y2 2(1 + v) 52 2(1 + v)(1 - 2v) oxay

The above are the Navier equations for plane strain. They are likewise

presented by Sokolnikoff [33] in indicial notation.

2.4 Differential Equations for Axially Symmetric Problems

The state of deformation in a solid of revolution is called
axially symmetric if the displacements are the same in all planes which
pPass through the axis of revolution. Thus, the circumferential displace-
ment vanishes at each point in the body and the remaining displacement
components depend only on the radial and axial coordinates. These ideas

are expressed by the relationships

u = u(r, z)
w=w(r, z) (2.14)

vz0
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13
Here u and w are the radial and axial displacements respectively.

The stress-equations of equilibrium for axially symmetric

problems are

a0 T g =0
r

rz r 6
3r+az+ - + R=20
(2.15)
9T 00 T
rz + z . rz +72=0
or oz r

where R and Z are the radial and axial components of body forces reckoned
per unit volume.
Once again, the orthotropic constitutive relationships are of

suitable generality for most problems.

Q
]

C,,e + Clzsz + Clae

r 117 r 6

Q
]

C,.e + C22€z + C23€

, = Cipe, (2.16)

6

o, =C,. e + C23ez + C33€

(¢] 137 r §)

T =C, €
rz L4 rz

The elastic constants for isotropic materials are much the same as those

in the plane strain formulation.

_ (1 - v)E
11 22 33 (1 + v)(1 - 2v)

vE
Cip=Cpy =Cyy3=C3,=Cy=0Cy, = 1+ v)( - 2v) (2.17)

= E
uy 2(1 + v)

The strain-displacement relations in cylindrical components
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applied to the axially symmetric case become

e = du

r or

ow -

€, = 3z (2.18)
£, = =

(0] r

- du v

Yez = 3z T ot

When equations (2.18) and (2.16) are introduced into equations (2.15),

a set of equilibrium equations is obtained in displacement components.

2 2
Cll(a_'li "'%%Lrl) +Cuua_u'C33u_
or? 522 r2
32w 1 ow
+(C_+C + -C 2224+ R=0
( 12 uh) araz ( 12 23 ) r 3z
(2.19)
32w 1 aw) 52w 32u
( =) +C_ —+(_+C )~
uy 52 r or 22 522 12 4y’ 3roz
1 5u

For materials which display isotropic behavior, these become the axially

symmetric Navier equations.

(1 - V)E (3211 + 13)3) + E 3%2u (1 - V)E u_
(1 + \)) (l - 2\)) 31‘2 r ar 2(1 + \)) 322 (l + \)) (l - 2\)) I‘2
+ E 32w _ R=0 (2.20)
2(1 + v)(1 - 2v) 3raz :
E 32w . 1 ow (1 - V)E 52w E 52u
2(1 +v) [arz T ar) (1 +v)(AQ - 2v) 522 + 2(1 + v)(1 - 2v) drdHz
E 1 du

+ 2(1L + v)(1 - 2v) ;'§E.+ z=0
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2.5 Finite Difference Equations for Plane Stress

Consider the arbitrary domain of
Figure 2.1 corresponding to the plane of
plane stress or plane strain. A mesh
(rectangular in this case)3 is superimposed
over the actual domain. The points of
intersection of these lines within the
domain are called mesh (nodal) points.
The points of intersection with the boundary

are called boundary points. It is

Figure 2.1

Rectangular Mesh

usually convenient to use a uniform spacing with equal magnitudes in both

directions. However, in certain cases it is desirable to select a

different x and y spacing, while in still other instances, a nonuniform

spacing is useful. The latter is particularly

NW
true where stress concentration is '{“—“ NE
involved or in the neighborhood of k ¥
irregular boundaries. Only . )| 0 E
3
uniform spacing is treated in this work.
4
In Figure 2.2, let the x T
1
and y spacing be h and k respectively. SW S SE
r._,_“ h ey - - }1 — .’-
The mesh or boundary points in the
Figure 2.2

immediate vicinity of an arbitrary

mesh point O are shown.

Mesh Point and Neighboring

Points

Some formulations may dictate the use of other mesh configurations
(e.g. oblique, polar, or arbitrary curvilinear meshes).
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The partial derivative with respect to x of a function u(x, y)

can be approximated at the point O by the first divided difference

u -
3 E_ "W
?:% = = (2.21)
0
In a like manner
u - u
Ju N S
ou . 8 o (2.22)
ay 0 2k

Approximations to second derivatives can be established in much the same

u, - u

way. At the point 1, midway between O and E, %§-= —ELT;—JQ and at the
su _ Yo T Y%

point 3, midway between O and W, Y i Thus the second partial

derivative of u with respect to x can be approximated by differences in

the approximate first partial derivatives.

du _ du
2 X, 90Xy  up - 2u_ +
2%u _ _E 2o Y (2.2%)
2
X 0 h
2
The finite difference approximation to g—g-obtained in much the same
ay?
way 1is
2 u. - 2u +u
dcu ~ N 0 S (2.24)
2 2
ay 0 k
2
To obtain the second mixed partial derivative gxgy , the first

partial derivative of u with respect to y is approximated at points E

and W. That is
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au _"We ” YsE
oy E 2k
u  _ Tww” Ysw
3y W 2k
Then
du _ 3u
3%2u _ 3 2Y) - Ve Y Uk T e T Uwwt Usw (2.25)
3x8y0 9x 3y 0 2h 4hk ’

When equations (2.23), (2.24), and (2.25) are introduced into the govern-
ing second order partial differential equations, the finite difference

expressions are obtained. Corresponding to (2.6) for plane stress are

2C C C C
11 33 1
f———— 2 ———J u, = — (u, +u ) - — (u, + u.)
2 2 oL E " Y . N S
C.. +C
12 33
e ) e v Vs Vs = %o (2.26)
2C43  2C,, Ci, ¢,y
— Vg - — (v + V) - —— (v + vy
h2 k2 h?2 k
C..+¢C
21 33
- 4hk (ugp = uyy ~ Ugp ¥ ugy) = Yy

Here XO and Yo are body force components applied at the mesh point O.

If the same spacing is taken in the x and y directions (2.26)

become
8(Cll + C33) uy - 4C11(uE + uw) - 4C33(uN + uS)

- - - = h2
(c. + C33)(v v v.. + vsw) h XO (2.27)

12 NE NW SE
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8(C22 + C33) Vo = 4C33(vE + vw) - 4C22(vN + vS)
- - - = h?
(Cpp + Cy3)(uyp = vy = ugp + ug) = heY,
These same equations for isotropic materials become
8(3 - v)u0 - 8(uE + uw) - 4(1 - v)(uN + uS)
-1+, -V -V, +v.,) =28 1-v? h?X (2.28)
NE NW SE Sw E 0 :
8(3 - v)v0 - 41 - v)(vE + vw) - 8(vN + vS)
-1+ v)(u -u., -u., +u.,) =28 l_:_ﬁi h2y
NE NW SE SW E (0]

The relative magnitudes of the coefficients in the above equations
becomes more apparent when a particular value of Poisson's ratio is

assigned. Taking v = % in equations (2.28) one obtains

30h2x0

88uo - 32(uE + uw) - 12(uN + uS) - S(VNE - Vaw T VsE + vsw) =—5
(2.29)

30h2YO

88v0 - 12(vE + vw) - 32(vN + vS) - 5(uNE - U T Yk + usw) = —

2.6 Finite Difference Equations for Plane Strain

The development of finite difference equations for the case of
Plane strain involves the same concepts presented in the previous section.
One simply introduces the partial derivative approximations (2.23),
(2.24), and (2.25) into the appropriate differential equations. When
this is done for the isotropic relations (2.13) with equal spacing, h,

in the x and y directions, the result is
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8(3 - 4v) uy - 8(1 - \))(uE + uw) - 4(1

Zv)(uN + uS)

_8(1 +v)(1 - 2v) .,
E h xO

(2.30)

8(3 - 4v)v0 -4 - 2v)(vE + vw) - 8(1 - v)(vN + vS)

S 8(1+vA -2v) .,
- E h Y

- (ugg = Uy~ ugp *ougy)

These results are more readily compared with corresponding plane
stress equations for a particular choice of Poisson's ratio. Again using
1
v = g onme obtains

30h2x0
96u . - 36(uE + uw) - 12(uN + us) - 6(v - v - v + v, ) = —

0 NE NW SE SW E

(2.31)
2
30h YO

96vO - 12(vE + vw) - 36(vN + VS) - 6(uNE -u -u._+u.) = 5

NW SE SwW

2.7 Axially Symmetric Finite Difference Equations

The development of z

finite difference equations for

axially symmetric problems is
quite similar to that for plane

stress or plane strain. Figure 2.3

L e ————

! l

represents one quarter of the cross I | i
{

} ;

section of a solid of revolution. The

z axis is the axis of symmetry. A

rectangular mesh has been superimposed

over the region. Figure 2.3

Rectangular Mesh






A typical mesh point O

with mesh or boundary points

immediately around it is shown in

Figure 2.4. Partial derivatives

of a function u(r,z) up to

and including the second order are

approximated by the following

difference expressions:

20

W u I
f NE
k
0 E
W
k
|
SW 5 SE
[, h —L- h L

Figure 2.4
Mesh Point and Neighboring Points

U -
9 E- W
5% - (2.32)

0

U, . =-u
du _ N S
9z S 2k (2.33)
32u Ug = 2up + uy

. (2.34)
ar? 0 h?
32u _ UNE T Uww T YsE t Usw (2.35)
drdz . 4hk :

0
2 u - 2u.  +u
9 : . N o s (2.36)
2

9z 0 k

These finite difference approximations are introduced into the differ-

ential equations (2.18).

(ug = 2up +u))  Cpy (up - up) (uy = 2up +ug) Y
C, + + C,, - Cqy
h2 !.'0 2h K2 ré
f @€ +C ) (g = Yaw ~ Yse t Vsw) . Cpp = Cpyy - ws)+ R =0
11 Ly 4hk r 2k (0}






(wE - 2w0 + ww) Cw (wE - ww) (wN - 2w0 + wS)
Cuu + - oh + C22
h? 0 k?
+(C._+C ) e~ U~ Mse * s | C23 G Gy m v z =0
12 by 4hk r, 2k 0]
Upon simplification, the above reduce to
h? h2 h h
(2C11+2C'_’q—2+c33 ) ) uO—Cll (l+2—r—) UE'-C].1 (1- 27 ) Llw
k r 0]
0
C + C
h 12 4y h
T (uy +ug) - 4 k “ng T Vaw T Yse T Vsw)
cC,.-C
12~ “23 h h_ _ .
5 K Xy (wN wS) h RO (2.37)
2. +c D% c,. (1+=%) C.. (1 -2 w
22 7wy 0 Yo T M 2r. ) YE T “uu 2r. ) Y
k 0 0
C + C
h 12 Ly h
" G2 Wy *wg) = i (g 7 Yy T Yep Uy
C23 + Clo'-o h h 2
- — — (u, - u.) = h*z
2 k I, N S 0

When equal spacing is taken for the r and z directions, k = h, one

obtains
(2¢c,. + 2C + C E)u--C (1+L)u—C (1-—h—)u
11 s T Y33 T, ) Y T b 2r) Y T ‘1 7r Yw
r 0 (0)
0
C + C
12 Ly
Cyy (uy + ug) - 4 G'NE = Vi T VsE T W)
C - C
12 33 h _ = n2
5 — (wN ws) h R, (2.38)
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h h
2(C,, +C,) wy - C, (A + 2ro) wg = C,, (1 m) YU
c N Cip, + Cyy (
22wy + Vo) - 4 U~ Unw T Ysp T Ysy)
C.. +C
23 Ly h_ _ _ 2
- 2 I (uy = ug) = b7z,

For the case of isotropic elasticity, the coefficients Ci are given

A
by equations (2.17). The resulting finite difference relationships are

h? h h
8l(3-4v) + (L-v) —)u -4 -vQ2+)u -40-vQ2=-u

2
ro 0} 0

W

- 4(1 - 2v)(uN + us) - (wNE -V T YsE + wsw)

h2

= 8(1 + v)(1 - 2v) e R (2.39)

(0]

8(3 - 4v) wy - 2(1 - 2v)(2 + trl_o) vg T 2L - 2@ - %(;) "

~8(1 = V) (uy + ug) - 2 :—O (uy = ug) = Caye = u, = ugy + ug)

h2
= 8(1 + v)(1 - 2v) T Z0

1
Finally for the specific case in which Poisson's ratio is taken as 4

these become
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h? h h
(16 + 6 2) uy - 3(2 + ;—) up - 3(2 - ;—) u, - 2(uN + uS)
T 0 0
0
h2
- (wNE - Yaw " YsE + wsw) =5 T R0 (2.40)
h h h
16wo - (2 + - ) wp < (2 - ;—) Wy T 6(wN + ws) -2 T (uN - uS)
0 0 0
h2
- (ugg —ugy ~ugp Fugy) =5 5%

2.8 Alternate Derivation of Plane Stress Difference Equations

Finite difference equations corresponding to the previously
mentioned situations can also be derived from the equilibrium of a
material element in the neighborhood of an arbitrary mesh point O.
This method has the advantage that boundary conditions can be derived in
exactly the same way. This is important in the case of certain ques-
tionable situations such as corners where boundary conditions are not
immediately apparent.

Inherent in this procedure is the need to make assumptions
regarding the strain approximations to be used. Corresponding to dif-
ferent choices for these strain approximations are somewhat different
finite difference equations.

Figure 2.5, on Page 24 illustrates the rectangular region around
the mesh point O. The x and y dimensions are h and k respectively. X

0]

and YO are body force components per unit volume assumed to act at the

point O. In the case of boundary points, to be discussed later, XO and

YO may be components of the static resultant of boundary tractions. The

normal and shear stresses are designated in the usual way and sign
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Material Region Around a Mesh Point and
Associated Cartesian Stresses and Body Forces
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conventions of classical elasticity are employed. The four quadrants
around the mesh point O are designated as northeast, northwest, south-
west, and southeast beginning in the upper right hand corner and pro-
ceeding counterclockwise. Normal and shear stresses corresponding to
these regions are given superscripts accordingly.

In deriving finite difference expressions corresponding to
previously presented results, it is necessary to express stresses in
terms of displacements through the constitutive relationships and
approximate expressions for strains. For the isotropic materials, the
constitutive relationships (2.2), with isotropic elastic coefficients

(2.3) and strain-displacement relationships (2.4) become

E du v
Ox = 5 (3)( + v W)
1 -
o= E %X-+ v %5
y 1 - v2 y

E (EX Jdu

Txy = 2(1 + v) ‘“ox + 3; (2.41)
E Jdu av
Tyx T 2(1 + v) (3; + X

The displacement gradients in equations (2.41) are approximated in

various ways to give the following stress expressions:



(2.42)

(2.43)

(2.44)
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SE E E 0 E SE 0 S
fo] = ( + v )
X 1 - 2 h 2k
SE E Yo 7 Vs Ug T Yo * Ugp T Yg
oy = ( K + v >h )
1 - v2
(2.45)
SE_ __E (VE"’0+“E'“SE+”0'“S)
xy 2(1 + v) h 2k
SE_ _E (o~ s +VE_VO+VSE-VS)
yx 2(1 + v) k 2h
The equilibrium of an arbitrary element requires that
IF. =0
X
IF =0
y
If the element is of thickness t, these equations become
k NE k NW k Sw k SE
t 2 9% ~ t 2 ox -t 2 ox + t 2 Ox
h NE h Nw h SW h SE
+t 2 Tyx +t 2 Tyx -t 2 Tyx -t 2 Tyx + thk XO =0
(2.46)
h NE h NW h SW h SE
t 2 oy + t 2 oy -t 2 0y -t 2 Oy
k NE k NW Kk _SW k SE _
+t 2 Txy -t3 Txy -t 2 Txy +t 2 1xy + thk YO =0

The stresses (2.41) through (2.45) are next substituted into equations

(2.46) and after some simplification with k = h one obtains
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E

2 [4Cug = up) + 2v(vy + v, - Ve " Vne) F 20 - Vv ey - u))
+ (1 - v)(vO + vy - Vg - VNE)]
+ ) E ” [4Cuy = up) + 2v(vg + vgp - vy - vp) + 200 - v) (uy - ug)
- v
+ (L= Vv + v - vy - V)]
+ - E > [4Cuy = u)) + 2u(v, + vy = vg = v ) + 2(1 = v) (ugy - u)
-V
+ (1 - v)(vO + Vg T VT vsw)]
+ . E 2 [4Cu, - w) + 2v(vg + v = Vg v+ 200 - ) (ug - uy)
-V
+ (1= ) (v + vy = vy - V)] = 8h7Xg (2.47)
. -Evz [4Cvy = v) + 2v(ug + uy = up = ue) + 201 = v) (v - vp)
+ (1 - v)(uO +up - oug - UNE)]
.- E ~ (40 = vg) + 2ulug + ugp = g - ug) + 201 = W) vy - v
-V
+ (1 - v)(uS +ugp - ug - uE)]
+ 1 E . [4(V0 - VS) + zv(uo +ug - oug - usw) + 201 - v)(v0 - vw)
- v
+ (1 - v)(uw +uy - oug, - us)]
+ ) 2 " [4Cvy = v) + 2u(ug + ug, = vy - u) + 201 - v (vy - v)
- v

_ 2
+ (1 v)(uN + u 8h YO

- Yo T U]
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Equations (2.47) are expressed in a form which allows certain boundary
conditions to be derived. These will be discussed subsequently. After

considerable simplification, equations (2.47) can be reduced to the

following:
8(3 - v) u, - 8(uE + uw) - 41 - v)(uN + uS)
- Q1+VvVv,.-v,. . - v..+v.) =28 2—3—23 h2x
NE NW SE SW E (0]
8(3 - v) Vo < 4(1 - v)(vE + vw) - 8(vN + vS)
- 1+vWVu,. -u_ -u +u)=sl‘—"—2h2y
NE NW SE NW E 0

These results are identical to those which were obtained in section 2.6
and labeled equations (2.28).

Next, consideration is given to the development of static
boundary conditions. Boundary expressions treated here are restricted
to rectangular boundaries which are parallel to the coordinate axes.
Thus, one is able to deal with points on vertical or horizontal boundary
surfaces as well as 90° cormers. _

Other boundary conditions can be approxi- Y J__- Y0
mated using sufficiently small spacing. l Tw " L X

The first situation treated

0

h
here is the 90° outside cormer. In |
|
Figure 2.6, point O is such a corner @ _J 9
re h
point formed by the intersection of
Figure 2.6

vertical and horizontal boundary

i d Point
surfaces. The x and y spacings are Outside Cormer Boundary Poin
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both h. io and Y. are the components of the resultant of boundary

0]
tractions.

The finite differences expressions for such a point follow
immediately from equations (2.47). One need only use the left hand side
terms of these equations which pertain to the southwest corner. The

expression in the third bracket in each of equations (2.47) is pertinent.

The result is

E
[ 2 [4Cuy = up) + 2v(v, + vy = v = v ) + 2(1 - V) (uy = ug)
+ (1 - v)(v0 + Vg TV T vsw)] = BXO
E
L. 2 [4(V0 - vS) + 2v(u0 +ug - - usw) + 2(1 - v)(v0 - vw)

|
=]

+ (1 - \))(uw + uy sw us)] = 8Y0

Upon simplification, the above become

2(3 - v)uO - 4uw -2 - \))uS + (1 + \))v0 - (1 -3)v

1 -v2
3 X, (2.48)

+ (1 - 3v)vS -1+ v)vSw =8

2(3 - \))v0 - 21 - \))vw - Avs + (1 + v)u0 + (1 - 3v)uw

1 - v2 ¢
E Y0

(1 - 3\))uS - (1 + v)uSw = 8

Then for the special case with v = % one obtains

30)’(O
22uO - l6uw - 6uS + SVO - vy + vS - SVSw = E

30?0 (2.49)
22vo - 6vw - 16vS + 5u0 + u, ~ Yg - Susw =5
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Consider next a point O on ,--%M N v
a vertical boundary surface. Such a 1 l

point is illustrated in Figure 2.7.

h
Y
| 1 0
Once again X_ and Yo denote components ’ W_L XO
h
[

0
of the resultant of boundary

tractions. The spacing of mesh

The material around the

points is h for both directions. t Sw S
et

mesh point O includes the northwest
Figure 2.7
and southwest regions. The
Vertical Boundary Point
expressions which correspond to these
regions are obtained from the third and
fourth bracketed terms in equations (2.47). These terms must be added

to obtain the left hand sides of finite difference equations which

pertain to the boundary point O. When this is done the result is

E
T o2 [8(uo - uw) + 2v(vN - Vg + Vaw " VSW) + 2(1 - v)(2uO - uy - us)
+ (1 - v)(vS -yt v T VSW)] = 8X0
(2.50)
E
L 2 [4(2V0 - vy T VS) + Zv(us - uy + U "~ uSN) + 4(1 - v)(vo - vw)

+ (1 - v)(uy - ug +u +usw)]=8§

S NW 0o

These can be simplified to some extent and upon doing so one obtains
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4(3 - v)uo - 8uw -2Q - v)(uN + uS) -1 - 3v)vN + (1 - 3v) Vg

- v? -
BL—\)X

+ 1 +v)v 3 o

N (1 + \))vsw

(2.51)

4(3 - v) Vo = 4(1 - Vv, - lo(vN + vs) + (1 - 3v)uN - (1 - 3v)us

1%

- v2 .
+ (1 + \))uNw -1 + \))uSw =8 l_ETX_' Y

0

Then for cases where Poisson's ratio is taken to be %3these become

6]
44u0 - 32uw - 6(uN + uS) - vy + Vg + Sva - Svsw =5
_ (2.52)
30Y0
44v0 - 12vw - 16(vN + vs) + uy - ug + 5uNw - 5uSw =5
The case of a point O on a y 7
0]
horizontal boundary surface is treated | + XO
Uﬁ x O --q.h' <E
in almost exactly the same manner as *

the preceding. This situation is h

illustrated in Figure 2.8. The

notation is identical to that used SW S

t
previously with regard to other and ’l‘ '
boundary points.

Figure 2.8
In this case, the material

Horizontal Boundary
around O is in the southwest and Point
southeast regions. Corresponding to

these are the second and third bracketed

expressions of equations (2.47). The
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resulting finite difference equations for such boundary points are

4(3 - \))uO - 4(uE + uw) - 41 - \))uS + (1 - 3v)vE - (1 - 3v) vy

A+ vve + L+ =8tz g
SW SE E 0
(2.53)
4(3 - \))vO - 2(1 - v)(vE + vw) - 8vS - (1 - 3\))uE + (1 - 3v)uw
- 1+ V)u.,+ (1 + vVu =8 l_:_ii Y
SW SE E 0)
1 .
Then for v = 7 €quations (2.53) become
30X,
44u0 - l6(uE + uw) - 12uS + Ve TV, - SVSw + SVSE =5
_ (2.54)
BOYO
44v0 - 6(vE + vw) - 32vS - ug + uy - 5uSw + SUSE =5
Finally, the finite difference N N
y
equations for a typical 90° inside I 7
h 0 X
corner are discussed below. An
inside corner with material in the I W x()
0
northwest, southwest, and southeast -
h
regions is illustrated in Figure 2.9.
With material in these three regions, ' L
oW X
all of the bracketed expressions in | i
=] h ety ! [
equations (2.47) are used except the
Figure 2.9

first. When these expressions are
summed and simplified, finite
difference equations for a typical

corner point are obtained.

Inside Corner Boundary
Point
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6(3 - \))uo - 4uE - 8uw - 2(1 - v)(uN + 2uS) - 1+ \))v0 + (1 - 3\))vE

P S
(1 3\))vN + (1 + v)(va - Veu + VSE) = 8 g XO
(2.55)
6(3 - v)vO - 2(1 - \))(vE + 2vw) - 4VN - 8vS - (1 + v)uO - 1 - 3\))uE
+ (1 - 3v)u, + (1 + v)(u - u +u..) =28 l_:_ﬁi Y
N NW SW SE E 0

When v =-% these become

66u0 - 16(uE + 2uw) - 6(uN + 2us) - Svo + v, -v

E N
30X,
+ 5(vNw - Vou + VSE) =5
(2.56)
66v0 - 6(vE + 2vw) - 16(vN + ZVS) - 5u0 - ug + uy
30Y,
+ S(UNw - Uy + USE) =5

Equations (2.29), (2.48), (2.51), (2.53), and (2.55) form a set
of finite difference expressions which can be used to treat a wide
variety of plane stress problems. Equations of this type are written for
each point in the domain of the physical problem. Equations (2.29) are
for interior points whereas the others pertain to boundary points. The
resulting system of linear algebraic equations is then solved for the
unknown displacements.

These equations are not without restrictions. As formulated,
they assume the material to be homogeneous and isotropic. Anisotropy

can be considered by reformulating the various equations in terms of
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the proper elastic coefficients, as done for example with regard to
interior point equations in section 2.2. The ability to handle non-
homogeneous materials in general and specifically the case of material
composites was of main interest in this investigation. This can be
accomplished by simply allowing for different elastic properties in the
4 regions around an arbitrary point. This idea is discussed further

with regard to axially symmetric problems (page 48 ).

2.9 Alternate Derivation of Difference Equations for Axially Symmetric

Problems

As was true for the plane stress (or plane strain) problem, it
is convenient to derive finite difference equations for the axially
symmetric problem by applying equilibrium considerations to a material
element. Boundary conditions can be worked out at the same time with
little extra effort.

The axially symmetric

problem is generally a three dimensional [--%.r

situation insofar as stress and strain

are concerned. Figure 2.10 displays

the typical element of volume in
cylindrical coordinates. The

increments in the coordinates

r, 8, and z are taken as h, A6,
and k respectively.

The cylindrical stress components

Figure 2.10

are 0_, © o and t__. The shear stresses
r z rz

8’ Cylindrical Volume

T o andTez are identically zero in view of Element

"—'w“
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the axial symmetry. The development of finite difference equations is
quite comparable to the work involved in the plane stress problem. The

existence of a third normal stress, namely o is a major difference.

6’

The stresses are more

readily displayed in several -

illustrations for this case.
For example, Figure 2.13, page AW

35, is a view of the element of

Figure 2.10 corresponding to the

&
radial-axial plane. The regions ch L////

around an arbitrary mesh point O %

are again denoted by northeast,

northwest, southwest and southeast.
The stress components acting in

. . Figure 2.11
these regions are superscripted

accordingly. The circumferential Circumferential Stresses
stresses are displayed in Figure 2.11

These are generally different in NW Ni
the four regions around O. However, 0 \ \ %0

as shown in Figure 2.12 these do

not vary with 0.

. } o
The stress-strain
law for axially symmetric Omw ’{ ’l 0
(]
problems was presented in
section 2.4. It is repeated

Figure 2.12

here for the isotropic case.
Circumferential Stresses
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SW

o h  ——
NW NqL— __» ___TNE
I
| S |
| 1 R NE |
N I o —t— ZT | K
w mo
r . rz NE I
+?0 r I
TNw R0
r.z - L - .—+h
SW 7Sk |
r Tz gg
' r
SW
Y Trz
sw*¢ v SE
zr zr
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. ~— 1 ___|
o o— —_——
S SE
Figure 2.13

Material Region Around a Mesh Point and

Associated Cylindrical Stresses and Body Forces
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E
O T T F V@ = 2wy LA Ve,

+ \)(ee + ez)]

E
6 = L F v = 2vy LU= Ve

+ v(ez + er)] (2.57)

E
z (1 +v)A1 - 2v) [a - v)ez + v(er + Ee)]

E
Tyz 200 + V) 'rz

Introducing the strain-displacement relationships, (2.5), these become

_ E [ Ju u ow

e s mv v o e Wl I R vl e v
B} E [y Uy, du, B

S T A Fwa-2n LV r‘“\’ar’k"azJ (2.58)
- E ’ w au u

9, < (1 + v)(@ - 2v) L(l v) 32z +ov or +ov r

. oo B | aw, u
rz 2(1 + v) or 9z
. . _E  [ou, ow
zr 2(1 + v) 0z or

Proceeding in much the same way as was done for the plane stress

problem, the following approximations for stresses are used:
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NE E 1 - B Yo, e Y
r aQ+wva - 2v) h v h
2(r. + )
0" 2
\ wN - wo + wNE - WE
v 2k
u u - u w - W
NE _ E Y% E- Y N 0
o T aas 2\))[(1 v) s + v — + ” ] (2.59)
NE _ E 1-uy M"Y | "eT"TY Y%
%2 ad+wda - 2v) v K v 2h
UNE + UN + uE + uO
+ v h
4(1‘0 +’Z)
NE _ __E [YE ~ Yo N YWe T Y T Uy T Y
Trz = 2(1 + v) h 2k
NE _ E [Y% " Y% . YW TN T YE T Y
zr 2(1 + v) i k 2h

Similar sets of stresses exist for the northwest, southwest, and south-

east regions.

The pertinent equilibrium equations for the axially symmetric

case are
IF_ =0
r

IF_ =0

It is significant that the o

must be accounted for in the radial force equation.

6

(2.60)

stresses have a radial component and hence

In this connection,
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the approximation sin %9-= %ﬁ_ is used.
@ + 0% X (r + Byno - N + o) X () - Byae
+ (TSS - T:E) %'(ro * %’Ae + <T§¥ - Tiz) %'(ro - E)Ae
- 205" + op" + oot + 05" DX 20 4 R r a0k = 0
(0" = o5 B+ Byno + N - o) B (r, - Bao (2.61)
+ (TEE + Tiz) % (ro + %)Ae - (rgz + Ti:) %—(r0 - %)AB + ZOrOAOhk =0

The quantities R0 and ZO are body force components assumed to act at the

mesh point O. Introducing the stress approximations of the form (2.59)

into equations (2.61) yields

E 1-v) E_ "o, ug * Yo
dT+ v - 2v) v h "2( + 0y
To %2
w - W + w - W
N NE ~ YE [k h
v 7K ]7 ry + 3
u. — u w -w, tw., -w
E N" Y% “Ne "YW TVYE Y% | n h
+2(1+\))[  t > ]5(r0+4)
E [ % “£ " Y% N 7 Yo ]nk
T AT VA - (1“’)}3*" n o YV |
) E r(l_ )“o"‘wJr Uy oy
aA+va - 2v) v h v :
L z(ro-_z-)
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s E [N "% Yo "W T "wi|h . _h
2(1 + v) k 2h 2 0 4
. u u, - W,.,. - W
E 0 o~ YW N 0 | hk
T+roa-m [PV " TR VTR ]4—
_ E ’(1 . Yo T Y . Uy tuy
1T+ VA - 2v) v h "2( _ by
- L )
W. - W, +WwW_ -w
o~ s W Ysw ]k h
tv 7K ]5%‘5)
_ E Yo "V Yo T "W V¥s " Vs ln . -
2(1 + v) k 2h 2 ‘o T %
E ( Y Yo T Yy Yo " ¥s | nk
A+ Va<-an @ -V T, A S S 4
t AT - UE;UO+vUE+UOh
v VL 2(r, + 2)
o072
W. - W, +w_ -w
0" ¥Ys Vg T Vsg Jk h
v 7K JE'(ro +3)
___E o "%  "E" " T VsE T YsTh .+ b
2(1 + v) k 2h 2 ‘o7 %
u u. - u W - W
E 0 £~ Y 0 s | hk _
(1+v)(1_2v)[(1-v)-%+v m + v m J4— +R0r0hk—0
(2.62)
‘ W, - W u - u, +u. - u
E 1-wy N "W %
(1 +v)Q1Q - 2v) k 2h
UNE+UN+UE+u0h h
+ v —(r +Z)
4(r +h) 2 0
0" %






+ __E w13""0+“NE"“E‘L“N’“o K o 4+h
2(1 + v) h 2k 2 ‘To 7 2
. E (l_\))“’N""o+ Uy T Uy T U T Yy
A+ va-2vw Kk v 2h
uNw + uN + uw + uO h h
+ v 2 (ry = )
ar - By 2 ‘o T %
0~ 4%
E wo"“'w*r“N"uo+“Nw'“w ko _h
2(1L + v) h 2k 2 ‘o T 2
_ E (1 - )"o""s+ Up T Uy T U5 T Ygy
A+ v - 2v) v Kk v 2h
s uSw + uS + uw + uo E ( _ h)
v i(c. - D 2 o " &
0~ 4
__E wo""w+“‘0-“s+“w'“sw K oo _h
2(1 + v) h 2k 2 ‘To 7 2
W, - W u, - u. +u - u
) E (1 - v) 0 S 4, -E 0 SE S
1+ v)Q - 2v) k 2h
uSE+uS+uE+u0h h
+ v - (r + 5)
ir + B 2 ‘o T g
o7 %
W, - W u. - u +u.-u
E E 0 E SE ) s |k h
+2(1+v)[ h + 2k ]E(r0+5)+20rohk'0

Once again the terms corresponding to the 4 regions around O have been
kept together to facilitate the consideration of boundary conditions and
the governing equations for fiber reinforced composites.

With k = h and a considerable amount of rearranging, equations

(2.62) can be expressed in the following way:
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0 r

> 5[8(3 - 4v) + 2(5 - 14v) h 8(1 - v) Ei]‘,
T +v)AQ - 2v) r | %
0

- 8(1 - v)(2 +‘1}—) up - 21 - 20) (4 +%—) u

0 0 N

+|14 + (1 - 6v) 2—-]&70—[4+ (1+2\))h—}wNE

0 o

- rI,(l - 4v) + (1 - 6v) };_OJWE + [4(1 - 4v) + (1 + 2v) :—O}wa

0] r2

E h h2
taEvwa-m )[8(3 = 4v) = 2(5 - 14v) —+ 8(1 - V) —"]uo
0

h h
- 8(1 -v)(@2 - a) u, - 2(1 - 2v) (4 - r—) uy

0

oo a-ewy e +]a- @+ 2]
rO 0] ro NW

+]14(1 - 4v) - (1 - 6v) %g]ww - [4(1 - 4v) - (1 + 2v) %]WNX

2

—E h h?2
+(1+\))(1_2\)) {[8(3"4\))-2(5—14\))§+8(1—\))r Juo

h h
- 8(1L -v)(2- ;8) u, - 201 - 2v) (4 - =) ug

0

+ La - - 6v) %—]WO -[4 - (1 + 2v) h‘"]"sw

0 To

- 141 - 4v) - (1 - 6V) %()—]ww+[4(l - 4v) - (1 + 2v) %]wsf






b4

0 r

E h h2
taErwa-m {[8(3 = 4v) +2(5 - 14v) =+ 8(1 - V) —;J u,
0

h h
- 8(1 - v)(2 +%) up - 2(1 - 2v) (4 +-IT)—) ug

h h
—[(4+ (1 - 6v) ;a]wo+[z.+ (1 + 2v) Q]WSE

+[4(1 - 4v) + (1 - 6v) %(-)-]wE - [4(1 - 4v) + (1 + 2v) :—onsf

= 32h°R, (2.63)

E

E h .
a1 +va - 2v) j[8(3 - 4v) + 4(2 - 3v) %]WO - 4(1 - 2v)(2 +%) w

h h
- 4(1 - v) (4 +§) wN+[4 + 2(1 - 3v) ;EJUO

[

-4 + 201 + v) %—] uge * [4(1 - 4v) + 2(1 - 5v) {}-] ug
o 0

[ h
-laqa - av) + 2 - W) 27;]“N
i 0

E h h
taFvwa-mv 2[8(3 - 4v) - 42 - 3v) ;Sl]wo - 41 - 2v)(Q - )

W

h h
-4 - V) - ;S)wN - [a -2(1 - 3v)~;g] uo

h ' h
+[Io - 21 + v) %JUNW- [4(1 - 4v) - 2(1 - 5v) g]uw

h
+[4(1-4v) -2(1 - v) r—o]uN}/
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Yo

E h
M S ) {[8(3 - 4v) - 4(2 - 3v) %

h h
_4(1-\))(4-?(;) ws+[4—2(l—\)) ;(;]uo

[ h [ h
- Lé - 2(1 + v) %]USW*- 4(1 - 4v) - 2(1 - 5v) r—o]uw

[ h'
-]14(1 -v) -2(1 -v) —|u
o

t AT Va2

E [8(3 - 4v) + 4(2 = 3) ‘r‘—}wo - 4(1 - 2v)(2 + ‘%) w

0]

h h
- 4(1-v)(4 +;—(‘)‘) ws - [4 + 2(1 - 3v) r—o'] uO

i .
+lar2a+v o -la@-av) +20 -5 2 u
ro SE ro E

+la@ - av) + 20 - ) tr‘— u\ = 32n2z
0

- 4(L - 2v)(2 - ‘;—) v,

0o

o E

For an ordinary mesh point the bracketed terms on the right hand sides

of equations (2.63) can be added to obtain a more simplified form.

h? h h
321(3 - 4v) + (1 - v) — ug - 16 (1 - v)(2 +r_)uE - 16(1 - v)(2 - —r—) u

r2 0

0

- 16(1 - 29) (uy + ug) + 2(1 + 2v) -‘;— (= wg) - [4 + (1 + 2v)%—]w

0

+(4—(l+2v):—.

h
J wNw—[lo - (1 + 2v) r—-]wsw

0

.

A
h -
+ 4+(1+2v)r—0]wSE-32

(1 +v)@Q - 2v)
E 0

0 W

0 NE

h2R (2.65)
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32(3 - 4v) Wy - 8(L = 202 + 1) W - 8(L - 202 - ) w

(0] (0] W

NE

=32(1 - v)(wy + wo) - 4(1 - V) %g (uy = ug) - [4 +2(1 + v)%g]u

-

h h
+ L4 - 2(1 + v) ;g] U T [4 -2(1 + v) ;g] Ugy

+| 4+ 201 + v) E—-]USE = 32

| J AL+ VA -2v) 5,
0

E 0

For a particular choice of Poisson's ratio, say v = %3one obtains

6 +60 u —32+8) w -3 -My 4 C 20 + )
2’ Y% r.’ YE .’ Y N Ys
r 0 0
0
3h 3 h 3 h
e My vy - (WA ) v+ (- g ) gy
0 0 0
3 h 3 h _ < h?
- (1 - g ;— wsw + (1 + § r—) WSE =5 E_ R() (2.66)
0 0
ow - Q+2y w - @2 -2y w - b +w)
Yo r.’ YE r’ “w YN T Vg
0 0
3 h 5 h 5h
'4:0(“N'“s)'(1+§T)“NE+(1'§T)“NW
0 0
-1 - 2h u,, + (1 + é-E—-) u,. =5 h? Z
8, "SW 8 r,” "SE E ‘o

Now comparing these equations with equations (2.40) in section
2.7 it becomes apparent that the two sets of equations are not identical.

However, if one makes the additional assumptions that
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NE + NW
SE
NE + Nw

SE + SW

equations (2.66) can be shown to be identical to the previous results
obtained from the equations of elasticity. It is unnecessary to do
this, however, since equations (2.65) or (2.66) simply represent a
slightly different set of finite difference equations which should give
equally good results. These equations have been used exclusively
throughout this investigation.

In the previous section which dealt with plane stress problems,
a certain amount of detail was included with regard to boundary condi-
tions. It is possible to do much the same thing here for points on
boundary surfaces of the solid under consideration. However, as these
equations have become more involved, it is advantageous to let the com-
puter do the calculations rather than derive explicit expressions for
boundary points. Thus equations (2.63) or their equivalent are pro-
grammed with each bracketed term a subroutine. Equations for the inter-
ior and boundary points of the problem are generated by calling appro-
priate subroutines. For example, for a point on an outside corner, only
the first bracketed terms are required in the two equations (2.63) to
form the left hand side of such relationships. Thus only the subroutine

which computes the coefficients corresponding to the first bracketed
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terms would be called. 1In the case of a typical mesh point, each of 4
subroutines must be called to generate the coefficients since all
bracketed terms of equations (2.63) are involved.
In a like manner, one is able

to treat composite materials. As

shown in Figure 2,14, the region ‘ﬁ:

around a particular mesh point in

such a composite may consist of

two different materials. Finite E. 0

difference equations for such

a point are obtained by calling

the 4 subroutines discussed

above but in this case using the

Figure 2.14

appropriate elastic constants for
the 4 different regions around the Composite Material Region

mesh point O.

2.10 Finite Difference Stresses

As discussed earlier, the finite difference equations derived by
the alternate method were used exclusively in this work. The interior
and boundary point equations form a system of equations which is solved
by standard numerical procedures to yield the displacements for the mesh
points of the problem.

The stresses corresponding to this alternate procedure are
expressed by equations (2.42) through (2.45) for plane stress problems

and equations (2.59) for axially symmetric problems. It is necessary to

exercise care in the interpretation of these stresses. The reason for
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this rests with the fact that a

4 3
given region is generally associated '}E SET
with 4 different sets of stresses

Typical
corresponding to the fact that it Region
pertains to as many as 4 different
mesh points. Thus for example, iﬁE NWJ

1 2

the material region in Figure 2.15
is simultaneously the NE region

Figure 2.15
for point 1, the NW region for

Material Region
point 2, the SW corner for point 3,
and the SE corner for point 4.

It is, therefore, suggested that a set of mesh point stresses be
defined in terms of these material element stresses. For this purpose,
the mesh point stresses are assumed to be the average of the stresses in
the material regions around the point. Previous experience suggests

that this averaging technique would give good results at interior points

but perhaps less satisfactory results for boundary points.
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III. FINITE ELEMENT METHOD

3.1 General Remarks

Finite element methods represent a large class of approximate
procedures in structural mechanics. Basically, these methods involve
replacing the actual structure or continua by a model consisting of a
finite number of carefully selected elements which are connected at a
finite number of points. The approximation is thus a physical one in
constrast to the mathematical approximations of finite difference
methods.

Finite element methods can be classified according to the behav-
ior of elements in the model. A compatible element or a displacement
model is one satisfying compatibility but not equlibrium. An equilib-
rium element or equilibrium model is one which satisfies equilibrium but
not compatibility. A mixed model is one satisfying neither equilibrium
nor compatibility. These classifications are discussed in detail by
de Veubeke [34].

One of the chief purposes of finite element methods in structural
analysis is to develop relationships between generalized loads and
generalized displacements through the elastic and geometric properties
of the element. A second classification of finite element methods is
based on these relationships. In one approach, this is done through the
so called flexibility matrix by which generalized displacements are

derived from generalized forces. The other approach derives the
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generalized forces from the generalized displacements through the appro-
priately named stiffness matrix.

A third classification of finite element methods is based on the
method of solution. The matrix displacement method treats displacements
as unknowns whereas the matrix force method treats forces as unknowns.

A mixed method of.solﬁtion is also possible with some unknown forces
and some unknown displacements.

As pointed out by Felippa [18], the direct stiffness method is
perhaps the most powerful and fully developed of the finite element
methods. The direct stiffness method employs a displacement model and
treats displacements as unknowns. The word direct is used to indicate
the way in which the overall structural stiffness matrix is assembled
from the individual element stiffness matrices prior to imposing dis-
placement boundary conditions. Thus in the direct stiffness method,
the overall stiffness matrix is obtained by a simple systematic addition
of element stiffnesses. Argyris [27] and others accomplish this by means
of transformations involving location or '"Boolean'" matrices. The latter
procedure seems to be less efficient and thus has been avoided by many
investigators.

In the present investigation, the direct stiffness method is
used exclusively. Thus no further reference will be made to other
finite element methods. Furthermore, the philosophy of the method has
been thoroughly treated by a number of writers [35] so that only a brief
description of the basic steps will be presented here. The specific
discussion and examples will relate to two dimensional problems and
triangular elements. It is a relatively simple matter to extend the

work to three dimensional situations.
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3.2 Direct Stiffness Method

The behavior of the actual structure or continua is assumed to
be approximated by a discretized structure consisting of an assemblage
of carefully chosen elements connected at a finite number of points.
These may be beam elements in the case of frames, triangular plane stress
elements for certain two dimensional continua, quadrilateral plate
elements for plate flexure, or tetrahedra in the case of three dimen-
sional continua. Other physical problems may dictate use of still
different elements or possibly combinations of these elements for
truly complex structures.

Inherent in the procedure is the assumption of element displace-
ment modes. These displacement modes must satisfy internal compat-
ibility and should insofar as possible maintain compatibility of dis-
placements across element boundaries. The number of displacement modes
used must agree with the number of degrees of freedom of the element
nodal point system. Thus for a plane problem in rectangular Cartesian

coordinates, with n nodal points, the equations

b
u(x,y) = U, (x,y) a
oy 1 i
(3.1)
b
v(x,y) = vV, (x,y) o
& 4 i

define the assumed displacement field in terms of independent displace-

ment functions U, and V, and generalized displacements « These can be

i i i’

expressed in matrix notation as well.
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ulx,y) = [UGx,y)]1° [a]
(3.2)

vix,y) = [V(x.y)]t [a]

As stated above, the dimension of [a] is 2n and it agrees with the number
of degrees of freedom for the element nodal point system.

The next step is to express the nodal point displacements in
terms of the generalized displacements. This 1s done by evaluating

(3.1) or (3.2) at the nodal point coordinates.

2n
uy= 1

U, (x
i=1 1

j’ Yj) ai
j=1,2,...n (3.3)

2n
vJ = izl Vi (xj, yJ) ay

The matrix notation is more compact and allows the 2n equations of

(3.3) to be written as
[u] = [A]l[a] (3.4)
where [u] and [a] are column matrices defined by

[u]t = < I N A A (3.5)

t
[a]l™ = ( @ Ay ... .0 (3.6)

n Gn+l . . . . . (lzn >

The matrix [A] is a square matrix whose rows are formed by evaluating

the assumed displacement functions at the nodal point coordinates. Thus
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U G y) UG v ) e Uy ()
Ul(xz’ y2) Uz(xz’ Yz) e & o o o o Uzn(xz) yZ)

[A] = Ul(xn, Yn) Uz(xn’ yn) £t e e Uzn(xn’ yn) (3‘7)

v (xs yl) V(x5 y)) e e e e V2n(x1, yl)

ivl(xn’ yn) Vz(xn’ yn) L R S Vzn(xna yn)

%

The generalized displacements are then expressed in terms of the nodal

point displacements. This is simply an inversion of equation (3.4).
-1
[a] = [A "][u] (3.8)

In the next phase, the strains and stresses are evaluated.

The strains are given by the matrix relationship

[e(x,y)] = [D(x,y)][a] (3.9)

where [€{x,y)] is a column matrix defined by
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[e,y]" = (5, ) e Guy) v, (oY) ) (3.10)

and the matrix [D] is formed by appropriate differentiation of the dis-

placement functions U, and V,. For example, in the case of plane stress

i i

or plane strain

aU1 3U2 aU2n

o e

aV oV aV

1 2 2n

(D(x,y)] 3y 3y 5 (3.11)

U, . aVl 3U2 . 8V2 auzn . av2n

L-ay 90X oy 9x oy 9x

The stresses arise from the constitutive relationships and can be written

in matrix notation as
[o(x,y)] = [Clle(x,y)] (3.12)
or in view of equation (3.9)
[o(x,y)] = [C][D(x,y)][a] (3.13)

In the above, the matrix [C] is the matrix of material properties and

[0(x,y)] 18 the matrix of stress components given by

[0Gy1® = (o, Guy) o (oY) T (y) ) (3.14)
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It is quite possible to treat very general material characteristics
including orthotropic elasticity and elasto-plasticity. For isotropic

plane stress the matrix [C] becomes

1 v 0
E
[C] = — v 1 0 (3.15)
1 -2 1 -y
0 0 >

where E is the modulus of elasticity and v is Poisson's ratio.

A generalized coordinate stiffness matrix, [ka]’ is derived
from the principle of virtual displacements. It is necessary to equate
the virtual external work to the virtual internal work. Associated with
a set of virtual displacements Su(x,y) and 8v(x,y) are virtual strains
[Se(x,y)]. The virtual internal work for a differential volume, dV, in

the element is

d(GWi) = [Ge(x,y)]t [o(x,y)] av (3.16)
Using relationships (3.13) and (3.9) this last result becomes

d(sw,) = [6a]® [D]" [CI[D][u] aV
where [8a] is the column matrix of virtual generalized displacements

asgsociated with Su(x,y) and 6v(x,y). The total internal work is the

volume integral of the above expression

™, J (821" [D]® [c]ID][a] av
vol
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Since [a] is independent of position

Su, = [6a]® J (D] [C]ID] 4V [a] (3.17)
vol

Now associated with the generalized displacements [a] are
generalized forces [B]; the product of the generalized displacements and
the generalized forces yields external work. Thus the virtual external

work is

oW = (621 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>