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ABSTRACT
AN EMPIRICAL COMPARISON OF TESTS OF THE HYPOTHESIS
OF NO FIXED MAIN EFFECTS IN THE MIXED MODEL

By William G. Darnell

This study considered the possibility of using an F-ratio
statistic, mean square treatment/mean square interaction, to test the
hypothesis of no fixed main effects in the mixed model when the variance-
covariance matrix for means is nonhomogeneous. The F-ratio and exact
T2 statistic are compared with the appropriate tabled F distribution
under the null hypothesis and with each other for power.

A Mnte Carlo routine involving a composite random generator,
exponential approximation to the normal, and a factorial structure was
used to generate the basic score matrix. Several correlation matrices
and variance sets were considered. The empirical probabilities of the
statistics were compared with tabled F distributions with appropriate
degrees of freedom. The empirical power of the two statistics was
plotted and compared for several sets of main effects.

Under the null hypothesis the F-ratio proved to be susceptible
to dispersion in the correlation matrix and particular sets of variance.
The T2 statistic remained slightly conservative for all comparisons.
The liberal effect on the F-ratio proved to be a monotonic function of
the amount of dispersionm in the correlations. The power comparisons
demonstrated the F-ratio to be well behaved and generally more powerful
than the erratic T2 statistic. The T2 statistic was sensitive to
patterns as well as magnitude of the fixed effects when the variance-

covariance matrix was nonhomogeneous.






William G. Darnell

It was concluded that there are only a few circumstances under

which the F-ratio should not be considered as an alternative test of

the hypothesis. 1If the intermean correlations are expected to approach

1.00 or if radical variance patterns are expected, the T2 statistic

should be used. 1In all other cases the F-ratio is recommended although

minor modifications of the test may be necessary.
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CHAPTER I: THE PROBLEM AND PURPOSE OF THIS INVESTIGATION

Introduction

The mixed model analysis of variance is the appropriate analysis
procedure for a wide variety of experimental situations commonly found
in the behavioral sciences, education in particular. The mixed model
is an analysis of mean differences similar to the common analysis of
variance except that one of the categorical variables (factors) is
sampled. An example should point out the basic differences between
the mixed model analysis of variance and the common or fixed effects
analysis of variance.

Consider a situation in which there are 25 schools and 12 age
levels and the experimenter wishes to measure some ability and determine
whether differences exist as a function of the schools or as a function
of the levels or, possibly, if some interaction of schools and levels
is the important contributor to the variance existing in the means. 1If
he employed all schools and all age groups in a completely crossed ex-
periment, the results could be analyzed using fixed or common analysis
of variance. But it may be economically or practically infeasible to
use all of the schools and/or all levels and it may be necessary to
sample the schools and/or levels used in the study and to generalize
the results to all schools and levels.

If both factors are sampled, that is say ten schools and five
age levels are considered, a situation exists which demands components
of variance analysis, a random effects analysis of variance model. 1If
only one of the factors is sampled, say schools, and all categories of

the other factor are included, the appropriate analysis procedure would






2
involve the mixed model. The fixed effects or common analysis of
variance should be used in this situation only if all possible cate=-
gories for each factor had been included.

A common application of the mixed model analysis of variance in
education is the analysis of profile data. 1In particular, consider the
situation in which the observations take the form of a battery of tests
and the problem is to test for differences in group profiles. The
tests comprise a fixed, exhausted experimental factor and the indivi-
duals or groups of individuals the other.- Individuals is the random
factor, since we wish to generalize our results not simply to the selected
group of individuals under investigation but to all individuals in the
population from which they were randomly sampled. (Greenhouse-Geisser
1959)

Consider another example which illustrates an application of the
mixed model. Suppose an experimenter is interested in the effect of three
different tasks on a subject's ability to learn lists of paired associates
in a verbal learning study. Recognizing that the variance in individuals
on such tasks is large, the experimenter controls for individual differ-
ences by using the same set of subjects for each treatment application.
Furthermore, the experimenter is aware that some systematic trial related
change may occur. 1In an attempt at further control he measures each
subject three times on parallel forms of the dependent variables after
each task is performed. The order in which the tasks are assigned each
subject is randomized and the subjects are selected at random from some
specified population. The tasks are the fixed factor in this-study since
three and only three are included in the experiment. The subjects

comprise a random factor since the experimenter wishes to generalize






his results to some population from which the subjects can be considered
a sample. Since a fixed and a random factor are employed in the above
study, analysis must be performed under the assumptions of the mixed
model.

These few examples demonstrate the wide applicability of the
mixed model and illustrate the basic characteristics of an experiment
which would fit the mixed model. It has two factors. (Generalizations
to more than two factors are available. See Scheffe 1959, pp. 275-289.)
One of the factors is fixed; it exﬁausts all possible values of the fac~
tor, and generalizations from the data will not be made beyond the
categories investigated. . The other factor is a random factor, the levels
of the factors are a random sample of those to which the results will be

generalized.

The Model

The statistical model for the mixed model as developed by Scheffe
(1956a) contains a restriction and an assumption which are of interest.
The assumption, basic to most parametric statistics, is that errors are
independent. The restriction permits one to use an F-ratio of mean
squares to test the hypothesis of null fixed treatment effects only when
the variance~covariance matrix of treatment means over levels is highly
symmetric.1 It is the restriction that has received major attention in

this investigation.

1 A highly symmetric matrix is one in which all variances are equal
and covariances are equal.






Scheffe (1956a) assumes that the k'th unit observation of the
ij'th cell of the score matrix is represented by the structure

(1.1) yijk = mij + eijk,
where:

(1.2) the "errors" {eijk} are independently distributed
with zero means and variance o'i, and are independent of the '"true"
means {m. }

ij} .

Mj is a vector random variable on an I variate multinormal dis-

tribution with variance-covariance matrix, V, and mean vector,
U= (/41,/42, ---ﬂi, ---/41). /‘i is defined to be the mean
of the i'th component, /‘( = M. and ﬂj = %mij/l. The following

effects are defined

X, =y - A
b = -AL
; My -
Cij=mij -ﬂi-,aj+,a.

The '"true'" mean m 4 is the non-error portion of equation (1.1)
and may now be represented as

(1.3) my = S+ d(i +bj +°ij’

The notion of "true'" mean will be important in subsequent discussions.

The restriction under consideration involves the true mean mij'

For a specific i, my 5 is a random variable with expected value,/;(i
and a variance @ ;; which is a function of the variance of the random
effects bj and cij as well as the covariance of these two variables,

Cov(b, c;). Similarly for i', m

i i is a random variable with some

1

variance ‘i'i' and expected value JMyr. The restriction requires that

(1.4) for all 1, (1 =1...1) ;= @ °



and

(1.5) for i f i ¢ .. = Covim, m ) =f6°
where P is the population correlation coefficient. That is, the
covariances for all intertreatment sets of means are equal and for all
treatments the variance of the means within the treatment category over
levels must be constant,

When the errors are uncorrelated and conditions (l.4) and (1.5)
are satisfied the analysis is quite straight forward and requires no
difficult computation. F = mean square fixed effects/mean square interaction
is the appropriate test of the hypothesis of null fixed effects. But
this is seldom the case since correlations among the cell means, mjj»
are quite apt to exist. It is absurd to assume that these intertreat-
ment correlations will be equal in all situations involving the mixed
model. As a matter of fact, unequal correlations will be the usual
case. When the intermean correlations are unequal the F-ratio is no
longer exactly distributed as F in spite of the independence of the two
mean squares and identical expected value under the null hypothesis
(Scheffe 1956a, p. 32). When (l.4) and (1.5) are not satisfied the
exact test of the hypothesis is multivariate. Hotelling's T2 (Hotelling
1931), as recommended by Scheffe, or the more general multivariate

analysis of variance (Rao 1952), could be used here.

Discussion
The multivariate procedures provide theoretically exact tests
but are cumbersome and unwieldy when the calculations are attempted.

Calculation of these statistics involves matrix inversion or, at best,



the calculation of several determinants and requires the use of a high
speed computer when the number of treatments and hence the dimension of
the codeviance matrix exceeds two. Further, the use of multivariate
methods, in particular the employment of mean square ratios and multi-
variate procedures in the analysis of one set of data, is an unfamiliar
procedure. The analysis of variance procedure remains appropriate for
testing the nullity of the levels and interaction effects. The exact
test is therefore avoided by many researchers familiar with common
analysis of variance. Even when multivariate tests are attempted by
the researcher the general problem of interpreting high powered statis-
tics leaves the user in a quandary.

The multivariate test has other limitations. It requires that

the number of categories of the random factor exceed or at least equal

the number of categories of the fixed factor. Imhoff (1962) has indi-

cated that the T2 statistic has low power in general and particularly

low power when the number of levels is close to the number of treat-

ments. This low power should be expected since the degrees of freedom
associated with the denominator of the test are (R - C + 1), a very
small number when R and C are close to being equal. For small degrees
of freedom in the denominator, the statistic F has a very large stan-
dard deviation, and for fixed 'alpha' power is inversely related to
the size of the standard deviation. Further, "If the approximate test

is used and the hypothesis is rejected we could follow it with an

approximate S or T method of multiple comparisons..." (Scheffe 1959, p. 271),

Computational facility, familiarity, and ability to handle cases
not fitting the multivariate statistic make the analysis of variance

procedure a very desirable method. The problem as noted before is that



the F-ratios do not have an exact F-distrsbution when conditions (1.4)
and (1.5) are not satisfied. Errors will be incurred if the analysis
of variance procedures are used to test the hypothesis of null treat-
ment effects when there exist non~equal correlations between treatment
means. Scheffe (1956a, 1959) indicated that "...it is not clear at
present whether in practice the use of this exact test instead of the
approximate F-test...based on referring MSA/MSAB to F-tables with I-1
and (I-1), (J-1) d.f. is worth the extra computational labor involved."
(1959, pp. 270-271) He also stated after a discussion of the simpli=-
city of the F-ratio and the possibility of its use as an approximate

test that "A justification of this would be welcomed by the practitioner,

because the computations are simpler and more familiar than those with

Hotelling's Tz, but until numerical investigations2 are made which
indicate the errors involved are tolerable, the practice should be
suspect‘in the present case." Such a numerical investigation is not
in evidence in the literature.

If conditions (1.4) and (1.5) are satisfied, that is if the
means for any treatment over levels have equal variances and there is
mutual independence across treatments or, at worst, equal correlations,
the test of the hypothesis of null fixed treatment effects is a ratio
of mean squares. This ratio is exactly distributed as F with appro-
priate degrees of freedom much like the test for common or fixed effects
analysis of variance. The computational formulas employed in obtaining

the mean square estimates are identical to those of the fixed model.

2 Italics added.






This procedure is easy to use and involves no difficult analysis proce=-
dures and may tempt the practitioner to employ the test even when the
conditions are not satisfied. Sensing this possibility Scheffe sounds

the following note of caution, ''We do not recommend that the assumption

..s0rdinarily be made in applications, where there usually exists no

real symmetry corresponding to it.'" (Scheffe 1959, p. 264)

The Problem

Given that the data fits the mixed model but the intertreatment
correlations and/or variances in the means are unequal, a common situa-
tion, what procedures does the experimenter follow for analysis? Does
he use one of the theoretically exact but cumbersome multivariate methods?
Does he use the familiar, arithmetically simple but questionable analysis
of variance? Both of the above are with varying degrees of justification
available in the literature, but the question remains unanswered since
there has been no serious attempt at validation. Information must be
provided to reduce the problem of decision. It is the problem of

providing such information which gave rise to this investigation.

The Purpose

It was the purpose of this investigation to determine whether
the errors incurred by using the univariate F test in this special
case of the mixed model are tolerable.

This study was designed to compare the F-ratio and T2 tests on
the basis of power for a few selected sets of conditions as well as

to investigate the deviation of the distribution of mean square ratios






under the null hypothesis from what would be the exact distribution if
there were equal correlations and variances in the means for treatments
over levels.

Comparisons were empirical, based on a large number of samples
from specified populations. The data were generated by means of a
Monte Carlo sampling technique on a Control Data Corporation 3600
computer. The procedure and the conditions employed will be discussed

in the following chapter.






CHAPTER II: CONDITIONS UNDER INVESTIGATION AND
METHODS OF DATA COLLECTION

Introduction

The object of the investigation is not to support or invalidate
a theory, but to obtain useful information which can guide the working
statistician when he suspects that he is outside theory.. As noted
earlier, it is often doubtful whether real data collected from real
subjects actually fits the assumptions of the statistic desired. 1In
the case of the mixed model seldom, if ever, will the experimenter be
able to state conclusively that conditions (l1.4) and (l.5) are met
since whenever levels and interaction effects exist the intertreat-
ment mean variances and covariances may not be equal. The basic
question therefore is, "What happens to the distribution of the two
statistics under consideration when this restriction is violated?"
Further, might there exist other conditions in the data which will
effect the seriousness of this violation?

It might be helpful to clarify these basic questions and the
problem at hand with a parallel example from the fixed effects model
which has been thoroughly investigated. Suppose one was asked, "In
the fixed effects model analysis of variance, what is the effect upon
the results of the analysis if the assumption of normally distributed
errors with equal variance in all cells is violated?" Without any
difficulty one would answer, possibly citing Scheffe (1959), Norton
(1952), or a reliable text like Hays (1963), that violation of these
assumptions is not serious if one has sufficiently large sample
sizes and, the sample sizes are equal. .Notice that the statement

concerning the tolerability of errors is qualified with a statement

10
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of conditions which are related to, yet external to, the assumption.

In an attempt to discover whether such qualifying conditions exist

in the case under consideration certain conditions external to the
assumptions, yet felt to have possible bearing on the tolerability of
errors when the assumptions are violated, were included. The basic
question was investigated by the inclusion of several cases of unequal
correlation.

What conditions should one impose on the data? Of the many
variables which could affect the distribution of the F-ratio, which
ones should be investigated? To what extent should each variable
selected be scrutinized? These are the problems of this section.

It was difficult to rank the variates in order of importance
or even decide upon which should be included and which should not be
included in this initial investigation. It was decided to include as
many variates as time would permit, each variate to be crossed with
the other variates under consideration in an attempt to discover inter-
actions which might affect conclusions about the tolerability of errors.
Over 100 sets of conditions were considered in the investigation of
the distributions of the F-ratio and T2 under the null hypothesis.

The power comparisons, while involving fewer actual sets of conditions,
involved over 100 cases since 10-14 sets of means were used in each
comparison. It is felt that the data presented here permits a substan-
tial first look at the problem of the mixed model in the case of non-
symetric variance-covariance matrix of the means.

Those variates selected for investigation are presented below.
Following the initial presentation of the variates, a brief discussion

of each is included.
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Questions for Investigation

1. Does the inequality of correlation (Covariance) between
means over levels introduced intolerable differences between the
actual distribution of F-ratios and the tabled F-distributions with
(I-1) and (I-1)(J-1) degrees of freedom? Does it affect the power
relationship of the F-ratio and T2 based tests?

2. Does the lack of homogeneity of variance in the means
introduce intolerable differences between the actual distribution
of F-ratios and the tabled F-distribution with (I-1) and (I-1)(J-1)
degrees of freedom? Does it affect the power relationship of the
F-ratio and T2 based tests?

3. 1Is the number of units per cell a factor influencing the
distribution of the F-ratios when the symmetry assumption is not
satisfied? Does it affect the power relationship of the F-ratio
and T2 based tests?

4, 1s the number of levels a factor influencing the distribu-
tion of the F-ratios when the symmetry assumption is not satisfied?
Does it affect the power relationship of the F-ratio and T2 based
tests?

5. Does the level of significance chosen affect the power
relationship of the F-ratio and T2 based tests?

Attached to each of the above questions is a corollary. If
the variable affects the distribution or the power of one of the
tests, what is the magnitude and direction of the effect?

After having observed the partial answers to the above questions,
the most important question of all must be answered. What are the
implications of this collection of facts for the practitioner, the
user of statistics? From the combination of data bearing on the
distribution of the test statistics under the null hypothesis and
the information gleaned from the power comparison can it be determined
whether the errors incurred by violation of the symmetry assumption
are tolerable?

Specific Conditions Considered

In this investigation three treatments have been considered.

Initially it was the intention of the investigator to include more
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than three treatments and cross number of treatments with all other
factors under consideration. This intention was not followed up for
two reasons. First, time became prohibitive. Each time a new treat-
ment total is applied the number of cases to be investigated increases
substantially. Secondly, considering number of treatments other than
three loses meaning if the effect of number of treatments cannot be
analyzed for a given covariance matrix or set of covariance matrices
that can be considered equivalent. Similarly equivalent sets of
variances must be available. The same variance-covariance matrices
cannot be considered for sets of three, four, and five means.

Correlations -- This is the most important question asked in

this investigation. In order to determine the effect of unequal
correlations in the treatment means upon the distributions of the
F-ratio several sets of correlations were considered. An attempt
was made to look at both the magnitude and dispersion of the cor-
relations. The correlation matrices included in this investigation
are identified in table 2.1. Four sets of correlations might be con-
sidered the substructure of this factor since they were crossed with
almost every other combination of factors in this study. They are
identified below as Low, Medium, High, and Disperse I. It was from
these correlation matrices that the basic data indicating effects

of magnitude and amount of dispersion in the correlations was to

be obtained. The effect of the second aspect of this dual problem
was further investigated by the inclusion of the matrix identified
below as Disperse II. The case of independent means, no correlation,

and several cases of equal correlation, were also included in
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order to check out the contention of the theory that the F-ratio is
an acceptable test if the correlations are equal. Further, two sets
of data were included which involved negative correlations. The case
of perfectly correlated means was also included in expectation that
it might provide unique considerations. Correlation matrices, Medium
and Disperse I were included in the power comparison.

Variance -- Homogeneity of variance in the means is the lesser
part of the assumption which has given rise to this investigation and
hence is interesting in its own right. 1In addition the crossing of
the variance vectors and the correlation matrices provides an oppor-
tunity for isolating covariance.

For almost all cases of the other variables, two sets of
variances were considered in order to determine whether homogeneity
was a significant factor. In the case of three treatments the variances
imposed on the treatment means were (100, 100, 100) in the case of
homogeneous variance and (225, 100, 25) to establish the case of un-
equal variance. Other sets of variances were considered in order to
investigate problems of unequal variance independent of the other factors.
The sets of variances considered for this purpose were, (assigned
respectively to treatments as were the above cases) (25, 100, 225);

(60, 100, 00); (100, 100, 00); (2500, 10000, 25000); and (10000, 00,00).
For the case of four treatments similar sets of equal and unequal
variances were considered. (100, 100, 100) and (225, 100, 25) were

compared for their affect on the power of the statistics.
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Number of Units Per Cell -~ Two and ten observations per cell

were the usual cases of this factor considered in this study. All
cases of the other variables were compared for ten observations per
cell. Two and five observations per cell were considered for the
purpose of replication and to confirm an expectation that this
variable would not affect the F-~ratio. The interesting case of

one observation per cell was considered for a limited number of
cases. For those covariance matrices which resulted in divergence
from tabled probabilities additional analysis were performed using
25 observations per cell. For power comparisons, 2, 5, and 10
observations per cell were considered.

Number of Levels =~ The usual case in this analysis involved five

levels although liberal consideration was given to the case of three and
ten levels for those variance and covariance matrices which indicated a
possible serious discrepancy between the actual distribution of the F-
ratio and the tabled values. From the inclusion of these three cases

it was expected that any pattern existing would appear. Number of levels
was expected to affect the power of the statistics since it directly
influences degrees of freedom. Three, five, and ten levels were considered
for the case of independent correlation.

Levels of Significance -~ All of the conditions above were compared

for "alpha" equal to .10, .05, .025, .01, .00l.

Effects == All power comparisons involved 10 to 14 sets of means
representing different noncentrality parameters. The sets of means con-
sidered are listed in table 2.2 along with their sum of squares. Care

was taken to select mean vectors which were linearly independent.






Table 2.2 - The Fixed Effects Considered for Power Comparisons

Mean Vector (&, “2, d3)

oA, = Effect of i'th Treatment C’%
(.75, -.05, -.70) 1.1
(-2, .25, 1.75) 7.1
(3, -1, -2) 14
(4, -1, -3) 26
(5, 0, -5) 50
(7, =5, =2) 78
(9, -1, -8) 146
(13, -1, -12) 314
(19, -13, -6) 566
(20, 0, -20) 800
(24, -22, -2) 1064
(30, -20, -10) 1400
(+50, 0, -50) 5000
(75,-10, -65) 9945

Procedure

This study involved the calculation of a large number of F-ratios
and T2 based F-statistics (1,000 for each set of conditions in both the
power and null hypothesis phase of the investigation) based on samples
from population distributions with specified characteristics. Follow-
ing generation the resulting empirical distributions of the F-ratio and
T2 based F were compared with each other and with the tabled F-distri-
bution with appropriate degrees of freedom. For the power comparisons
the power of the statistics was determined for selected sets of mean
differences for each of the conditions considered. The power of the
two statistics was then plotted and inspection of the power curves and
the tabled power values used to determine the relative merit of the two
statistics. Results of the two phases were merged in order to draw
some conclusions concerning the tolerability of errors incurred under

the null hypothesis.

17
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Samples were generated and the F and T2 statistics were .calculated
on a Control Data Corporation 3600 computer at Michigan State University's
Computer Center. The procedure described in parts 1, 2, and 3 below is
commonly called the Monte Carlo technique. The unfamiliar reader may wish
to consult Green (1963), Guetzekow (1962), or Kahn (1956).

1. Generation of uniformty distributed random numbers. Although
the term random number is used here it should be noted that the numbers
are truly pseudo-random numbers since they have a finite period and can
recycle. This first step of the procedure is extremely important to the
outcome of the investigation. If an inappropriate generator is selected
the results will be invalidated. There are three popular computer based
techniques for generating pseudo-random numbers (Green 1963, pp. 163-164).
An additive technique whith involves adding the preceding random number to
a random number generated earlier and retaining a fractional part of the
resulting sum as the new random number. The representational formula of
this method would be

(2.1) Xy = X5 + n (mod 1)

*3
where X3 represents the random number being generated. The modulus value
usually represents the capacity of a machine register. Mod 1 is purely
symbolic, It indicates that a remainder is saved as the random number.

The multiplicative method of random number generation uses the
preceding random number as the basic unit. This random number is then
multiplied by a constant C and a fractional part of the product is kept
as the new random number. This prodedure may be symbolically represented
as follows

(2.2) xj = ij-l (mod 1)

Where again x4 represents the new random number.
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The composite method involves a multiplicative and an additive
operation in the generation of new instances. The preceding random
number is multiplied by a preselected odd integer C and an odd constant
or another random number Xj-2 is added to this product. As in the case
of the above generators a remainder is kept as the new random number

X The symbolic formula for this routine would be

je

(2.3) Xy = ij_1 + X5.2 (mod 1)

Other methods such as entering a table or using an electronic
roulette wheel have been attempted as random number generators. These
techniques have met with little success since most mechanical devices
have biasing irregularities and tables lack completeness (Brown 1951).
Such procedures predated the use of the high speed computing machine
and have been replaced by modern computerized procedures such as those
discussed above.

Empirical studies by Green, Smith, and Klem (1959) have indicated
that many additive routines exhibit serial correlations in the numbers
generated. When the number of random numbers used to start the routine
is small, the data generated by an additive routine failed to pass the
"runs tests' For larger samples of starter numbers the runs test was
not significant. In order to protect against serial correlationmns,
large sets of starter numbers are required each time the generator is
employed. The additive generator was not used since serial correlations
could appear and confound the results of the study. Further, thousands
of starter sets would be required. It was decided that one of the
faster multiplicative or safer composite routines should be employed
even though Green (1963, p. 167) notes that "....the runs test is very

sensitive and failure to pass this test does not mean the numbers are

badly awry."
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Green (1963, p. 165) recommends the use of a multiplicative
generator for obtaining random numbers on the basis of empirical tests
by Greenberger (1961) which indicate that the multiplicative generator
passes all of the tests of randomness including the runs test. Further,

it has been found to have a period of 233

, over eight billion numbers.
It is a faster routine than the composite generator discussed below

and has a period which is shorter although this seems unimportant

since its period as noted is tremendous. This method was not incorpor-
ated in this study for reasons to be discussed below, but is very
desirable because of its large period and relatively short computation
time.

The composite generator introduced by Rotenberg (1960) was
selected as the method of random number generation to be used in this
investigation. It has all of the desirable characteristics of a random
number generator and an extremely large period of 235. That is, it
generates all the numbers which can be represented by 35 bits before
cycling, over 32 billion random numbers. Green's (1963, p. 168) only
criticism of this generator is that it takes more time than the multi-
plicative generator. This is a valid criticism and one which would
have caused the investigator to select the multiplicative generator
if another aspect of the programming had not required otherwise.

All random number generators require at least one starter number,
and in the case of the additive generator n such numbers are required.
The selection of starter numbers can be a problem if the program must
be used many times in a given study. Several common practices are

followed in the selection of these starter numbers. Random numbers
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might be selected from a table of random numbers and fed into the
machine or, in order to make the program self contained, an internal
figure such as the date might be used. The computer's time clock was
used in this investigation since a self contained program was desired
and the time clock reading in millionths of a second would feed the
same number into the generator only one time in many million runms.

I1f the same number is used on two runs the exact same set of random
numbers will be generated.

The use of the time clock incurs difficulties when one uses a
multiplicative generator. What would happen to the multiplicative
generator if the clock had just turned over and it read all zeros or
the majority of the dials were zero? The results would be consecutive
generation of zeros, not very random. Further, is it not possible that
one of the random numbers generated by the routine will be zero? The
composite generator employed protects against this difficulty by pro-
viding a constant which is added to the starter number of the preced-
ing random number. For this reason the composite generator was selected
in preference to the faster multiplicative generator. It was preferred
to the additive generator because of its tendency to generate data
with serial correlations built in if n % 16 starter numbers are
employed and the difficulty of selecting large sets of starter numbers
for each of the over 200,000 runs employed in this study.

2. Once generated the uniform random numbers were transformed
into random deviates from a distribution closely resembling a normal
distribution with mean zero and a standard deviation of one by means

of a logarithmic function which is the inverse of an exponential
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approximation to the intractable cumulative normal distribution
function. The exponential approximation to the normal employed was
offered by Kahn (1956, p. 43) and is given below.

(2.4) £(x) = BePX / (1 + %2 B Y 0,
where x has mean 0 and variance 4{2/332. The transformation
employed was the inverse of (2.4)

(2.5) x=FLYR) =-1/B-1n (/R -1) B > 0,
where R is the generated random number and 1/B = \’374( = . 568234601.
The value of 1/B was selected since it generates data which is near
normal with a mean, median, and mode near zero and a variance of one.
The approximation function (2.5) was thoroughly tested before it was
employed. The distribution of 10,000 scores was found to be slightly
non-normal when compared with theoretical probabilities using the x2
goodness of fit test. This minor difference (XZ: p € .10 for n=10,000)
has little practical significance since any statistic susceptable to
such minor violation of the normality assumption could never be
employed with real data (see figure 2.1). There existed the possibil-
ity that the transformed variables might no longer be random. Hence,
the 10,000 scores were subjected to the runs test in order to double
check the generator as well as the transformation. The obtained Z for
the large sample runs test was .0175 indicating that there existed no
serious positive or negative cycles in the data.

3. The generation of the score matrix from which the statis-
tics under consideration were calculated involved two steps. First,
an LxC matrix of means was generated, L being the number of levels and
C being the number of treatments under consideration. C sets of L

means were generated in such a way that they represented samples of
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size L from a C variate population with specified variances and
covariances. For the null-hypothesis considerations, each of the
populations had mean zero. Hence, any differences in the means of
the C samples would represent chance treatment effects only. For
the power comparisons the vector of treatment effects was added to
the means of each treatment group at this point.

The desired intertreatment correlations were generated by
means of linear transformations which parallel the theory of factor
analysis (Harmon, 1965). Specifying the coefficients to be used in
the linear transformation is identical to selecting the matrix of
factor loadings in the factor analysis model. The population
intercorrelations are completely determined by these factor loadings
and can be represented as a product of the matrix of factor loadings
and its transpose.

1f we let M represent the matrix of means, A the matrix of pre-
specified factor loadings, and Q the matrix of factor scores (random
N(0,1) deviates), then it is well known that M = AQ and R = AA' where
R is the matrix of intermeasure or in this case intertreatment corre-
lations. The result of this transformation is an LnxC matrix of
scores with the following properties L = number of levels, n = number
of observations per cell (n = 1 when generating means), C = number of
treatments. The i'th (i = 1...C) column of this resulting matrix
represents the means for the first treatment over levels. The values
in each of the L rows represent the means for the L levels over treat-
ments. That is, element aji is the mean for level j and treatment i.
The intercolumn correlations are specified by AA'. The variance of

the means within any treatment group are also specified by the
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coefficients selected for the linear transformation. The routine was
checked by generating several score matrices and correlating the
observations by means of an independent correlation program.

The means having been generated it was then necessary to gen-
erate n error units per cell in order to complete the score matrix.
The error units in this investigation are assumed to be independent
observations from normal populations with mean zero and variance one.
Hence, for each error term desired it was only necessary to generate
a random uniform deviate and transform it by means of equation (2.5)
into a random deviate from the desired normal distribution. Once
generated the error term was added to the mean for a given cell. This
process was repeated n times until the cells of the score matrix were
filled. Each observation yijk can be represented therefore as a
linear function of its '"true mean", mij’ and an error term, eijk'

4, The F and T2 statistics were calculated using scores of the
data matrix. The calculation formulas for the mean squares of the
F-ratio are identical to those of the common univariate analysis of
variance. The calculation formulas for the T2 based test are similar
to those found in Hotelling's original publication (1931) or presented
with example by Rao (1952, pp. 237-246). The specific method to be
followed for the mixed model is presented by Scheffe, (1956a, 1959).

5. As noted in section 3 of this discussion, the desired
theoretical fixed treatment effects were added directly to the cell
means when they are required for power comparisons. Care was taken

when selecting the means to select mean vectors which were linearly

independent.
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6. The empirical distributions resulting from the analyses were
hand tabulated initially in order to check on the program. In the
later phases of the investigation a sub-routine was added to the basic
program which automatically tabulated the values of the statistics as
they were produced.

In summary, random samples from normally distributed popula-
tions with specified conditions imposed on the means were generated.

The F-ratio and T2

statistics were then calculated for each of 1,000
sets of data for each set of conditions. The resulting empirical dis-
tributions were then tabulated for values of special interest and
appropriate comparisons made.

The results obtained from this investigation and a discussion
of these results are presented in the following chapter. The basic

data are frequency counts for values of the statistics specified by

the theoretical distributions.



CHAPTER III: PRESENTATION AND ANALYSIS OF RESULTS

Introduction

This investigation concerns the tolerability of the errors
incurred when the F-ratio statistic is used to test the hypothesis
of null fixed treatment effects under the mixed model instead of
using the theoretically exact T2 based F statistic when conditions
(1.3) and (1.4) are not satisfied. The question is not one which
asks whether the distribution of the F-ratio is identical to the
distribution of F with (I-1) and (I-1)(J-1) degrees of freedom;
it is expected that differences do exist. Hence, a statistical
test of no difference or goodness of fit is not appropriate. The
analysis of the data is, for the most part, logical and based on
the assumption that the observed emperical probabilities closely
approximate the true but unknown probabilities.

For each set of conditions the distribution of the F is

2 based statistics. The

approximated by 1,000 F-ratios and 1,000 T
resulting probabilities estimates are very accurate for all points
of the corresponding distribution and are particularly good when
large or small probabilities are estimated. In the majority of the
cases considered, the probabilities of interest are either large
or small.

The one situation in which moderate probabilities are of
interest is in the case of power comparisons. But in this case
the moderate probabilities will occur between the points of inflection

of the power curves where the curves are relatively stable and have

a high positive slope. Between the points of inflection the power
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curves are almost straight lines when plotted on semi-log paper
against the noncentrality parameter or the sum of squared fixed
effects. (The graphs reported in this investigation are on 4 cycle

by 10 to the inch semilogarithmic graph paper.) Since the curves

are expected to be straight, any deviations from the true probability
between the inflection points would be very much in evidence.

The standard error of estimating a true probability is a
function of the probability being estimated and the size of the
sample from which the probability is estimated. For all sets of
conditions considered in this study the number of observations in
the sample is large and constant, N = 1,000. The other variable
affecting the standard error of estimate, size of probability being
estimated, will in general be either very large, greater than .90,
or very small, less than .10. The most serious difficulty in
estimating the true probability as noted above will be in the case
of power comparisons where the probability being estimated is near
.50. Below is tabled the standard error of estimating the proba-
bility for several true probability values.

Table 3.1 - Standard Error of Estimating P for
Several True Probability Values

Standard Error of Estimating

True Probability (P)* the True Probability (N=1,000)
.01 .00316
.05 .00686
.10 .00949
.20 .01265
.30 .01449
.40 .01549
.50 .01581

*1f P>».50 use 1-P to determine the standard error of the sampling
distribution.



28

It should be noted that the poorest case, P = .50 has a
standard error of only .01581. This means that if the true proba-
bility were .50 over 99 percent of the observed values would fall
between .4526 and .5474 and over 95 percent of the values would
fall between .4684 and .5316. This situation improves rapidly as
the true probability tends away from .50. For the case of P = .90
we have 99 percent of the scores falling between .87153 and .92847,
and over 95 percent of the observed probabilities falling between
.88102 and .91898. Hence, whatever the true probability, the
estimates in the following tables can be considered close approxima-

tions.

Probabilities Under the Null Hypothesis

Introduction

Probability points of interest were calculated for a variety
of treatment mean intercorrelations. The case of three treatments
was of primary interest and the number of levels and observations
per cell were varied. Within treatment variances were also varied
with interest centering on the following sets of standard deviations;
(10, 10, 10) and (15, 10, 5). 1In addition, some special cases were
considered for their unique interest. Several cases were replicated
in order to verify results and to check upon the reliability of
the estimates.

The conditions considered and the resulting probabilities
are presented in Table I of Appendix A. Due to the variety of
conditions the table may prove cumbersome when first inspected but

should be clarified by the discussion in this chapter.
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For each set of conditions the estimated true probability
and the tabled probability are compared for the following probabil-
ity points: {F | »>F & .10; .05; .025; .01? . The
probability in the appendix table is the proportion of emperical
values of the statistic which exceed the value of the statistic
normally associated with a given probability. For each run, column
1 specifies the number of levels, treatments, and units considered
in that run. Column 2 specifies the variances for the means of
respective treatments over levels. Columns 3 and 4 specify the
covariance and correlation of the means. (In Columns 3 and 4, 1,

2 identifies the correlation or covariance for the means of treat-
ment groups one and two.) Columns 5 and 6 are the emperical
probabilities of the two statistics compared against the tabled

probabilities.

Results

Correlation

Is the magnitude of the correlations.Oor the amount of dis-
persion of the correlations a factor influencing the acceptability
of the F-ratio as an approximate test of the hypothesis of no fixed
main effects in the mixed model? Using three treatments, five levels
and ten observations per cell as a base, twelve sets of correlations
with varying signs and magnitudes were considered.
Magnitude -- In runs 53, 54, and 55 the size of the correlations
are increased while holding dispersion in the coefficients fairly

constant. Low and medium correlations do not have a liberalizing
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effect on the F-ratio. The set of high correlations appear to
have a slight effect which is probably a result of chance rather
than true effect. When the other runs in which these correlation
matrices are considered are inspected, it becomes clear that if

an effect exists it is at best minor. Table 3.2 below summarizes
the runs in which these matrices were crossed with equal variance.
Less than 3 percent of all of the F-ratio probabilities considered
were more than two standard deviations away from the tabled proba-
bility; none were greater than three standard deviations away.
Further, an inspection of table 3.2 shows very little difference

2

in the F-ratio and T“ based statistic.

Table 3.2 - The Average Emperical Probability Associated with
Correlation Sets High, Med and Low when Variances are Equal

Correlation F-Ratiote = 12! A =
Matrix .100 .050 .025 .010 .100 .050 .025 .01l0
High .104 .054 .028 .012 .098 .047 .023 .008
Med .092 .048 .028 .012 .099 .053 .027 .010
Low .096 .044 .021 .009 .097 .049 .022 .009

Most Liberal Run
Run 96 - High .118 .061 .032 .0l6

Spread or Dispersion -- In runs 54, 56, and 57 the average magnitude

of the correlation array is held constant and the dispersion in the
coefficients is varied. These matrices have been identified as Med,

Disperse II an Disperse I for the sake of discussion (see table 2.1).
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These three matrices have approximately the same average magnitude,
approximately .50. The dispersion in the coefficiences as indicated
by a transformed variance coefficient is as follows: Med - 12,
Disperse II - 30, and Disperse I - 51.
An inspection of the empirical probabilities in the main
table indicated that as dispersion increases the F-ratio becomes
increasingly liberal. Run 54, as indicated earlier, indicates that
matrix Med has little effect on the distribution of the F-ratio.
Disperse I and Disperse II, runs 56 and 57, have a definite positive
bias on the distribution of the F-ratio. For each set of conditions
considered Disperse I and Disperse II continue to affect the statistic.
The size of the effect is related to the amount of dispersion. Dis-
perse I is most spread and has the greatest effect. For medium
dispersion none of the F-ratio probabilities were more than two
standard deviations above the tabled probability. The effect of
Disperse 11 falls between that of Med and Disperse I. The T2 statistic
does not reflect the effect of disperse correlations.
Table 3.3 summarizes the runs which involve these matrices

when the variances are equal.

Table 3.3 - The Average Emperical Probability Associated with

Correlation Sets Med, Disperse I, and Disperse II
When Variances are Equal

Correlation F-Ratio: o= Tzzo(:.

Matrix .100 .050 .025 .010 .100 .050 ,025 .010
Disperse I .132 .079 .048 .023 .098 .049 .026 .012
Disperse II .122 .062 .036 .016 .096 .048 .025 .009
Med .092 .048 .028 .012 .097 .049 .022 .009

Most Liberal Run
Run 42-Dis.I. .147 .089 .059 .027
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Equal Correlation =- The above discussion of dispersion in the

correlations almost precludes the need for discussing the problem of
equal correlation. In this case dispersion is at a minimum and the
resulting lack of effect on the distribution of the F-ratio follows
logically. The full range from EQ(.00) through EQ(l.00) was considered
and no effect was found as long as the variances were equal.

When unequal variance was cross with perfect correlation (1.00),
the F-ratio reflects a definite positive bias. This effect was one of
the most severe found in the investigation. It was not in evidence
for any other cases of high correlation (see discussion of unequal
variance).

Table 3.4 - The Average Empirical Probability Agsociated With

Correlation Sets EQ(.00), EQ(.25), EQ(.50),
EQ(.75), EQ(1.00) When Variances are Equal

Correlation F-Ratio: &X = T2; o=
Matrix .100 .050 .025 .010 .100 .050 .025 .010
EQ(.00) .097 .,048 ,025 .,009 .097 .046 .021 .006
EQ(.25) .082 .031 .016 .008 .093 .039 .020 .012
EQ(.50) .092 ,042 ,020 .008 .09 .053 .029 .013
EQ(.75) .083 .042 .020 .008 .075 .035 .011 .007
EQ(1.00) .098 .048 .025 .010 .098 .048 .024 .010

Most Liberal Run
Run 45-EQ(1.00) .104 .049 .023 .010

Negative Correlation -- Runs 64, 65, 70, 80 represent four special runs

with negative correlations., The effect on the F-ratio closely resembles
the results of positive runs., It appears as though the negative cor-
relation tends to suppress the liberalizing effect of the disperse coef-
ficients., There is insufficient evidence to identify a general result.

See Chapter IV for discussion of limitdtions of this study.
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Variance

Does non-homogeneous variance in the means affect the distri-
bution of the F-ratio? For the majority of cases considered the
effect of inequality of variance was tested using a moderate set of
variances (225, 100, 25). Five special cases were also considered
(runs 82. through 85 and 90). .

Holding all other factors equal and comparing parallel runs it
is apparent that moderate inequality of variance does not influence
the F-ratio as long as the correlations remain less than one.

Table 3.5 below summarizes the runs with moderate inequality
of variance. The probabilities in the table closely resemble those
achieved when the variances were equal (tables 3.3 and 3.4) in all
cases except EQ(1.00). Dispersion in the correlation coefficients
continues to have an effect. Cases of moderate dispersion and equal
variance do not disturb the distribution of the F-ratio. The T2
statistic is again unaffected and continues to be slightly conservative
even in the case of EQ(1.00).

Table 3.5 - The Average Empirical Probability Associated With

All Positive Correlation Sets When the Variances
Are Unequal V(225, 100, 25)

Correlation F-Ratio: & = T2 . =
Matrix .100 .050 .025 .010 .100 .050 .025 .010
Low .102 .054 .026 .012 .099 .049 .023 .008
Med .099 .051 .028 .012 .098 .047 .023 .008
High .107 .058 .032 .014 .096 .048 .026 .009
Disperse 11 .118 .067 .037 .018 .091 .045 .032 .012
Disperse 1 .128 .076 .047 .022 .098 .047 .025 .010
EQ(.00) .103 .054 .029 .012 .094 .045 .020 .008
EQ(.25) .099 .051 .030 .013 .092 .047 .020 .008
EQ(.50) .102 .055 .027 .014 .100 .049 .026 .010
EQ(.75) .104 .058 .026 .012 .084 .034 .016 .004
EQ(1.00) .146 .093 .060 .034 .096 .047 .023 ,009

Most Liberal Run
Run 18-EQ(1.00).172 .113 074 .042
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Runs 82 through 85 and 90 involve cases of extremely non-
homogeneous variances. In each case the variances differ radically.

The effect these cases had on the F-ratio was of approximately the same
magnitude as the interaction of EQ(1.00) and V(225, 100, 25). One case,
v(100, 100, 0) did not follow the rule and must be explained as a chance
phenomenon since V(100, 100, 1) and V(0, 100, 0) did have an effect.
The effect is not due to the dispersion in the variances but rather must
be due to the pattern of variances since the effect of V(0, 100, 0) is
greater than V(10,000; 100; 0).

Covariance

The seriousness of the interaction of unequal variance and perfect
correlation leads to the suspicion that covariance is the critical factor
since perfect correlation has no effect when the variances are equal. The
interaction of EQ(1.00) and unequal variance involves covariances more
disperse than cases Disperse I and Disperse II with equal variance, and
has a correspondingly more liberal effect on the F-ratio.

That covariance is the factor and not correlation is not reason-
able., Consider the cases of High and Med correlation with unequal vari-
ance. They have a covariance dispersion greater than Disperse I or Dis-
perse II with equal variance yet do not liberalize the F-ratio. Simi=
larly Disperse I with equal variance has a less disperse covariance
than with unequal variance; yet, the bias is greater with the smaller
covariance,

Number of Units Per Cell

Do the number of observations per cell influence the deviation

of the F-ratio from the tabled F distribution? It might be expected
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that some of the niceties of large sample statistics may wipe out
differences in distribution. This is not the case, nor should it be.
The problem is not with the error term which is unit bound and hence
related to sample size but, rather, a problem of means. Sample size
is related to standard error of estimating a cell parameter and is
normally reflected in the distribution of the statistic by the degrees
of freedom. The degrees of freedom of the statistics under considera-
tion are a function of the number of levels and the number of treat-
ments only and not sample size. Alternatively, an error in setting

up the generating function may have suppressed any indirect effect of
this factor since the within cell variance was small compared to the
variance in the treatment means.

The effect of sample size was examined by holding all conditions
constant and varying sample size. The comparison is most complete for
the case of three treatments and five levels although some comparisons
are available in Appendix A for the case of three treatments and three
levels and for the case of three treatments and ten levels., For the
case of three treatments and three levels, sample sizes 1, 2, 5, 10, 25
were considered.

Sample size did not prove to have an effect on the distribution
of the F-ratio. The probabilities associated with the distribution of
the F-ratio for the case of Disperse I are reproduced in table 3.5
below. A similar lack of effect was apparent for all other correlation

matrices.



Table 3.6 - Probabilities of the F-Ratio Associated With the Case

of Disperse 1 for Varying n (Variances Equal).

F-Ratio
LxTxn .100 .050 .025 ,010
5x3x1 .130 .077 .044 .023
5x3x2 . 147 .089 .057 .024
5x3 x5 147 .089 .059 .027
5x3x10 .142 .092 .051 .028
5x 3 x 25 141 .081 .049 .033

Varying sample size has essentially no effect on the distribu-

tion of the F-ratio. While not as obvious, the lack of trend for the

case of Disperse II supports this conclusion.

Table 3.7 - Probability of the F-Ratio Associated With the Case

of Disperse 11 for Varying n (Variance Equal).

LxTxn .100 .050 .025 .010
5x3x1 .120 .058 .028 .009
5x3x2 .119 .057 .033 .015
5x3x5 .124 .066 .041 .019
5x3x10 . 144 .077 .046 .026
5x3x 25 .116 .057 .035 .013

In general, inspection of the tables indicates a remarkable

similarity in distributions for all conditions irrespective of the

sample size, including samples of size one.

Number of Levels

The number of levels may be the underrated variable in this
study. It is possible that the number of levels could play much the
same role in the case of means as sample size does when considerations
involve unit error. The effect is not in evidence in the null hypothe-

sis phase of this investigation but is apparent when power is considered.
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For the case of three treatments; three, five and ten levels
were considered. Tabled below are the results of this comparison for
the interesting correlation matrix Disperse I. The probabilities
have been averaged over sample size for all runs with equal variance.

Table 3.8 - Average Probability Associated With F-Ratio for Case

Disperse I With Varying Number of Levels
(Variances are Equal).

F-Ratio
No. of Levels .100 .050 .025 .010
3 .132 .077 . 046 .024
5 .139 . 083 . 049 .026
10 .123 .073 . 046 .018

Summary

The size of the correlations in the means does not bias the
distribution of the F-ratio. Dispersion in the correlations is a
factor. The discrepancy between the distribution of the F-ratio and
the tabled F with (I-1) and (I-1)(J-1) degrees of freedom increases
monotonically with the amount of dispersion. The deviations are
predictable and seem to have an upper limit.

Inequality of variance is a factor worthy of consideration only
if the differences in the variances are severe or if the correlation
in the means is 1.00.

Size of sample and number of levels did not prove to have any
effect on the distribution of the F-ratio.

The T2 statistic was unaffected by the varying conditions and

proved to be a conservative test of the hypothesis.



Power Comparisons

Introduction

The use of a statistical test involves two decisions. The
distribution of the statistic must be considered under the null hypo-
thesis, and the distribution under alternative hypotheses must also
be considered. Part II of this investigation considers probabilities
under alternative hypotheses. The results are presented below.

The graphed power comparisons of the F-ratio statistic follow.
For each set of conditions considered the power of the statistic was
determined for five commonly chosen levels of significance: .10, .05,
.025, .01, .001. Levels .10, .025 and .00l are included in the graphs
and all probabilities are tabled in Appendix B.

The ordinate of each graph is the probability of rejecting the
null hypothesis. The abscissa represents the sum of the squared fixed
effects. For each statistic there are three plots representing three
common levels of significance. The graphs have been prepared on
semi-logarithmetic graph paper (4 cycles by 10 to the inch).

Results

Number of Levels -- Figures 3.1, 3.2, 3.3 represent the power

of the statistics when all of the conditions of the mixed model are
satisfied. The treatment means are independent over levels, variances
are equal, and normality and independence assumptions are satisfied.
In each case, three treatments and ten observations per cell are con-
sidered, and number of levels is varied. Fig. 3.1 represents the

case of three levels, Fig. 3.2 - five levels, and Fig. 3.3 - ten levels.
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An investigation of the three graphs yields the following observations:

1. First, and most obvious, the power of the statistic is a
monotonically increasing function of the sum of the main effects squared.
That is, the greater the difference in treatment means the greater the
probability that the statistic will recognize these differences. For
each curve there are two points of inflection between which the power
statistic increases most rapidly. These characteristics are common to
most of the curves which follow and represent the typical power curve
of a statistic whose test is one tailed.

2. Throughout the three sets of conditions the T2 statistic
has less power than the F-ratio. The difference between the power of
the F-ratio and the T2 statistic is most serious when "alpha" is fixed
at .00l and least different for "alpha'" set at .10. For the case of
three levels the power of 12 is essentially zero when the power of the
F-ratio is 1.00 for & = .00l. For the same conditions the power of
T2 is approximately .80 when the F-ratio reaches 1.00 for & .- = .10.

3. The power of the T2 statistic as well as the power of the
F-ratio increases as the number of levels considered increases.
Similarly, the difference between the power of the two statistics
decreases as the number of levels increases.

Sample Size ~-- Figures 3.4, 3.5, and 3.6 demonstrate the effect of
varying sample size on the power of the statistics. In each case there
are moderate correlations imposed on the means and the usual error
assumptions are satisfied. Three treatments and five levels are

congsidered and the sample size is varied.
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1. The power curves are again monotonically increasing, but
the smoothness of the T2 statistic power curve is interrupted to a
small degree at approximately the same point on the three power curves.
The F-ratio power function continues with smooth predictability. (The
points of interruption in the 72 curve are T oK 2 = 149 and 800.)

2. Comparing the three graphs it can be seen that varying the
sample size has no effect on the power of the statistics. For the three
sample sizes considered the three power curves are nearly identical.

3. 1f figure 3.6 is compared with figure 3.2 it is apparent
that the statistics are more powerful when the means are moderately
correlated than when there exists no correlation in the means.

Variance -- Figure 3.7 represents the empirical power of the sta-
tistics when the within treatment variance in the means is not equal
for all treatments. Three treatments, five levels and ten observations
per cell are considered. There are no correlations imposed on the means
and all of the usual assumptions concerning errors are satisfied.

1. The power curves are again basically monotonically increasing
except for a few inversions in the curve of the 72 statistic. This
tends to confirm the exaggerations noted in the power curve for the case
of medium correlations and leads to the suspicion that the power of the

12

is not a monotonic function of mean differences. It appears to be
sensitive to deviations from homogeneity in the variance-covariance
matrix. If this is the case the T2 is impure as a test of mean differ-

ences and becomes a test of gross distribution differences. The F-ratio

continues to behave in a predictable manner.
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2. A comparison of figures 3.2 and 3.7 indicates that the power
of the F-ratio is not affected by non-homogeneous variance. The curve
of the T2 is affected as noted above but the power of the statistic
not otherwise increased.

3. The power of the F-ratio continues to exceed that of the 72
based statistic.

Correlations -- Figure 3.8 is a graphic comparison of the two

statistics under the case of extremely disperse correlations in the
means. Three treatments, five level and ten observations per cell are
considered. The mean variances are held constant and the usual error
assumptions are satisfied.

1. The power of the F-ratio is not affected by disperse corre-
lations in the means. When figures 3.8 and 3.6 are compared very
little difference exists in the power curves of the F-ratio indicating
that the increased dispersion has not altered. the distribution substan-
tially. This is surprising since increased dispersion had a measurable
effect under the null hypothesis. One of two explanations is possible.
Either dispersion has no effect on the power and magnitude of the cor-
relations does (Med and Disperse 1 have same average magnitude), or
when alternative hypotheses are considered the small amount of disper-
sion in evidence in Med was sufficient to exert the effect of disperse
correlations on the F-ratio when the null hypothesis is false. (Item 3,p.49)

2. The effect on the power of the 12 is severe. Figures 3.4,
3.5, 3.6, and 3.7 indicates that the 12 might be sensitive to lack of
homogeneity in the variance-covariance matrix and 3.7 indicates that

possibly the power function of this statistic was not monotonically
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related to increases in mean differences under all conditions. All of
these indications are confirmed by this situation. The power function
is grossly non-monotonic. It is evident that the statistic is sensitive
to deviations other than those treated in the hypothesis tested. This
condition was replicated in order to reconfirm these results. The
erratic pattern held up under replication.

3. In this case the power of the T2 statistic exceeds the power
of the F-ratio in selected cases, but these cases follow no predictable
pattern. The power of the T2 statistic deviates from the normal pattern
of a one-tailed statistic while the F-ratio remains predictably smooth.

4, It was suspected that the nature of the fixed effects might
have caused the erratic performance of the T2 statistic's power curve.
The fixed effects used for the power comparisons (table 2.2) were
checked to determine if there might be some explainable reason. for the
behavior of the T2 statistic. The drops in the power curve occurred
when ZK,; 50, 146, and 800 and the curve peaked when ZBQL =78
and 566, The T2 power curve similarly misbehaved in the earlier situa-
tions also. It is not clear but it appears as though the pattern of
the fixed effects may affect the power of the T2. Very possibly this
effect is an interaction of the treatment mean vector and the matrix of
treatment mean variances and covariances since T2 is a product of this
vector and matrix. In this case the power decreased when the effect of
the second treatment was negligible with respect to the effect of the
first and third treatment and the power increased when the effect of the

third treatment was small relative to the first two treatments.
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Summary

The power comparison of the F-ratio and T2 based statistics
indicates that the F-ratio is in general more powerful than the 12
based statistic and has a much better behaved power function.

The power of the F-ratio is most superioer for small "alpha'" and
a small number of levels. As the number of levels and the size of the
type one error increase, the power advantage of the F-ratio decreases
but remains in the favor of the F-ratio. The number of units per cell
has no effect on either power function.

When non-homogeneous variances and correlations were considered
some strange results were discovered. Moderately unequal variance had
no effect on the power of the F-ratio and the effect of correlations on
the power of the F-~ratio appeared to be an effect of magnitude rather
than dispersion; a reversal of the findings in Part I.

The power function of the T2 was disturbed by both unequal vari-
ances and unequal correlations. The function became non-monotonic and
appeared to be ‘influenced by the pattern of the fixed effects
when the variance-covariance matrix is non-homogeneous. This effect is

reasonable since the power of T2

is a quadratic function, the size of
which changes as a function of both the length and direction of the

main effect vector.






CHAPTER IV: DISCUSSION AND CONCLUSIONS

Summary

The mixed model analysis of variance is a useful technique of
behavioral science research. Its use has been restricted because the
test procedures are complex and difficult to interpret. The appropri-
ate test of the hypothesis of null-fixed effects is a multivatiate
technique unfamiliar to most educational researchers. This investiga-
tion considered the possibility of replacing this multivariate
procedure with a familiar F-ratio test.

MS
The approximate F-ratio, F = a/MSab, was compared with the

exact T2

based test for a variety of conditions under the null hypothe-
sis and several alternative hypotheses. The comparison was based on
1,000 observations of each statistic for each case considered. The
data from which the statistics were calculated were generated using a
computerized Monte Carlo procedure.
Results

Under the null hypotheses the F-ratio proved to be moderately
liberal for selected conditions. The T2 based statistic remained
slightly conservative for all conditions considered. Those conditions
which liberalized the F-ratio were disperse correlation patterns, inter-
action of perfect correlation and unequal variance, and variance
patterns which deviated radically from homogeneity.

The number of observations per cell, number of treatments, number
of levels, magnitude of correlation, and moderate non-homogeneity of

variance had no effect on the distribution of the F-ratio under the

null hypothesis.
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Magnitude of correlation, number of levels, and level of
significance did affect the power comparison of the F-ratio and 72
based statistic. Unequal variance also caused deviations in the power
curve of the T? based F.

The F-ratio had superior power under almost all conditions, and

was particularly superior when the number of levels and "alpha" were

small. The T2

became very erratic when the dispersion of the correla-
tions increased. 1In this erratic condition it exceeded the power of
the F-ratio for a few selected sets of means.
Discussion
It must be concluded that the F-ratio, mean square of fixed
effects/mean square of interaction effects, is an acceptable alternate
test of the hypothesis of null fixed main effects under the mixed model.
The errors incurred by using the F-ratio instead of the exact

12

based F test are predictable, generally small, and appear to have
an upper limit. In addition to simplicity and wider applicability the
advantages of the F-ratio include superior power and a well behaved
power function.

The effect of disperse correlations of the F-ratio is monotoni-
cally related to the amount of dispersion in the coefficients. The
liberalizing effect can be counteracted by appropriately adjusting the
critical value required for rejecting the hypothesis. The most severe
deviation due to disperse correlations could be corrected by selecting
the critical value associated with the next common '"alpha level" below

the desired "alpha level." For example, selecting the critical F associ-

ated witha(= .100, .050, .010, .001 will provide a conservative test
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fora( = ,100, .050, .025, .010 respectively. 1In many cases no
adjustment is required or a lesser adjustment would be satisfactory.

The F-ratio has superior power and in most cases remains nearly
as powerful as the T2 based statistic after adjustment. (See power
charts - Chapter III)

An adjustment such as the one described above should conteract
the problem of severe deviations in the mean variances as well.

The interaction of perfect correlations and unequal variance has
a low probability of occurrence. If it is suspected that this condi-
tion exists in the data, the T2 based statistic should be used.
Exactly what adjustment is required is not clear since only one set of
variances was considered. Further, the magnitude of the adjustment
required to correct the F-ratio may bring about severe loss of power.

Questions for Further Investigation

This investigation has demonstrated that it is reasonable to
consider the F-ratio statistic as a test of the hypotheses of no fixed
main effects.

The problem of negative correlations was not satisfactorily
answered. In this study negative correlation was confounded with
disperse correlations. The effect of the negative correlations was
to suppress the effect of disperse correlations indicating that nega-
tive correlation may cause the F-ratio to be conservative. This
effect requires further exploration.

The interaction of unequal variance and perfect correlation
requires further examination. Only one set of variance was considered.

Would other variance sets cause an even greater effect?
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What is it that caused the variance to have an effect when
radical patterns were considered? The results were mixed and confus~
ing.

Might number of levels prove interesting in the case of the
null hypothesis if a greater number, 25 or 50, were considered?

Further examination of the sensitivity of the T2 to pattern of
mean effects when the variance-covariance is non-homogeneous should
be very interesting.

The question of generalization of results to more than three
treatments has not been answered. Increasing the number of treatments
makes possible variance and covariance patterns not considered here.
Unique considerations may evolve when more than three treatments are
considered.

All of these questions require further investigation. In par=-
ticular the general question involving the use of univariate tests in
circumstances requiring multivariate techniques requires definite
consideration.

Summary Conclusion

Unless the inter-treatment mean correlations are perfect or
near perfect, the mean square F-ratio may be used to test the hypothe=-
sis of no fixed treatment effects. This test may require a simple
ad justment depending upon the dispersion in the correlations or the

pattern of variances.
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APPENDIX A

The following table is a summary of conditions and the
empirical probability of rejecting a true null hypothesis for the
F-ratio and T? statistics.

For each set of conditions the estimated true probability and
the tabled probability are compared for the following probability
points {FIP(; > F) < .10, .05, .025, .01} . The probability in
the following table is the proportion of empirical values of the
statistic which exceed the value of the statistic normally associated
with a given probability. For each run, column 1 specifies the number
of levels, treatments, and units considered in that run. Column 2
specifies the variances for the means of respective treatments over
levels, Columns 3 and 4 specify the covariance and correlation of
the means. (1,2 identifies the correlation or covariance for the
means of treatment groups one and two.) Columns 5 and 6 are the
empirical probabilities of the two statistics compared against the

tabled probabilities.
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APPENDIX B
The following tables are a summary of conditions and the
empirical probability of rejecting a false null hypothesis for the
F-ratio and the T2 based statistic. The tables correspond to respec-
tive figures in Chapter III. Figure 3.1 is a partial graphic
representation of the results in Table 1. The critical values of

the F-ratio correspond to F and for the

o (T - 1); (T - 1)(L - 1)
2 .
T4 they correspond to F"‘:(T -1 (L-T+1)° For each cell in

the tables below, the top number represents the empirical power of
F ratio and the lower figure represents the empirical power of T2,
In all cases three treatments have been considered.

Listed below are the conditions which were imposed on the
population represented in each table:

Table 1 - Independent Means
3 Levels
10 Observations
Equal Variance

Table 2 - Independent Means
5 Levels
10 Observations
Equal Variance

Table 3 - Independent Means
10 Levels
10 Observations
Equal Variance

Table 4 - Med. Correlation in the Means
5 Levels
2 Observations
Equal Variance

Table 5 - Med. Correlation in the means
5 Levels
5 Observations
Equal Variance

Table 6 - Med. Correlation in the Means
5 Levels
10 Observations
Equal Variance
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Table 7 - Independent Means
5 Levels
10 Observations
Unequal Variance

Table 8 - Disperse Correlation in the Means
5 Levels
10 Observations
Equal Variance



TABLE 1

2
ai .100 .050 .025 .010 .001
.75, =.05, =.70] .107 .061 030 .008 .000
1.055 .087 .035 .019 .006 .001
-2, .25, 1.75 .105 .054 .027 013 ,001
7.125 .102 .050 .022 .010 .002

3, -1, -2 129 .067 .039 013 001
14 .095 .048 .020 .008 .000

4, -1, -3 142 .066 .034 .0L7 002
26 .096 .043 .023 .008 .001

5, 0, =5 .208 .125 .072 023 003
50 .125 .068 .034 .010 .001

7, =5, -2 273 149 .075 .039 007
78 .157 .081 .040 .014 .002

9, -1, -8 .393 .231 L1139 .067 .005
146 174 .103 .045 .016 .000
13, -1,-12 611 422 .269 .130 011
314 .236 .105 .055 .025 .002
19, -13, -6 .832 .676 495 .299 .055
566 .319 .164 .079 .021 .001
20, -0, -20 . 924 .809 637 397 081
800 .381 .191 .088 .034 .004
30, -20, -10 .991 .959 .862 661 192
1400 .531 .286 .138 .057 .008
50, -0, -50 1.000 1.000 1.000 .990 670
5000 .785 478 .264 114 .006
75, -10, -65 1.000 1.000 1.000 1.000 934
9945 .908 .584 .335 .132 .010
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TABLE 2

2
- .100 .050 | .025 .010 .001
.75, -.05, =.70]  .092 . 046 .022 .010 .000
1,055 .087 .051 .022 .008 .002
-2, .25, 1.75 124 .063 .036 .018 .003
7.125 .122 .056 .028 .015 .000

3, -1, =2 L151 .080 .043 .018 .003
14 .130 .074 .036 .012 .000

4, -1, -3 .190 .092 .049 .023 .001
26 142 .080 .038 .012 .001

5, 0, =5 .321 .179 .099 .049 .007
50 .240 .119 .064 .023 .002

7, =5, =2 .397 293 .184 .098 .015
78 .312 .182 .094 .028 .002

9, -1, -8 651 .483 .361 L221 .047
146 .482 .290 .158 .082 .007
13, -1,-12 .910 .821 .705 .537 157
314 . 746 .526 .346 .167 .023
19, -13, -6 .988 .959 .924 .833 .402
£566 .920 .787 .585 .314 .053
20, -0, -20 .999 .993 .976 .930 .596
£00 . 964 .851 664 .435 .082
24, -22, -2 .999 .997 .991 .974 .768
1064 .938 .930 .791 . 560 .103
30, -20, -10 1.000 1.000 | 1.000 1.000 1.000
1400 L 957 .961 .862 .659 .138
75, =10, =65 1.000 1.000 | 1.000 1.000 1.000
9945 1,000 1,000 ] 1.000 999 ,802
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TABLE

Z

= ol .100 .050 .025 .010 .001
.75, -.05, -.70 124 .073 04T .01bh . 000
1.055 .116 .061 .028 .013 .001
-2, .25, 1.75 .173 .101 .022 022 .002
7.125 .16 .081 .041 .019 .003
3, -1, -2 2275 147 09T J0GT 006
, 4%4 .213 .109 .065 .027 .004

=1, -3 I8G . . . .
26 33 | A | s | S | 5
5, 0, -5 .39 410 « 289 . 1/0 U3)
50 .500 .349 .221 .122 .014
7, =5, =2 .738 .615 438 .319 L113
7€ .680 .517 .377 .225 .048
9, -1, -8 . 941 .874 .801 .673 .318
146 .902 .£03 .667 .496 147
13, -1, -12 .999 .995 .985 .965 .795
314 .992 .981 .946 .§70 L448
19, -13, -6 1.000 1.000 1.000 .999 .980
566 1,000 .999 .997 .981 .808
20, -0, -20 1.000 1.000 1.000 1.000 1.000
800 1,000 1.000 1.000 .996 .924
30, -20, -10 1.000 1.000 1.000 1.000 1.000
1400 1,000 1,000 1.000 1.000 .999
50, =0, -50 1.000 1.000 1.000 1.000 1.000
5000 1.000 1.000 1.000 1.000 1,000
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TABLE 4

2
S5 ol .100 .050 .025 .010 .001

{
.75, =.05, -.70 .115 .055 .021 .004 .000
1.055 080 ,044 ,023 . 008 .000
-2, .25, 1.75 .155 .080 .036 .015 . 004
71.125 143 ,081 044 ,021. .002
3, -1, -2 .215 .118 .069 .031 .001
14 .219 124 .064 .031 .004
4, -1, -3 .344 .215 127 .057 .016
26 297 181 096 .039 .001
5, 0, =5 .571 .413 .259 142 .026
50 445 291 .161 .074 .011
7, =5, -2 .726 .573 .431 .239 .058
78 625 ,420 ,238 113 .014
9, -1, -8 .899 ©.810 .679 .504 .167
146 ,789 .585 396 L212 .025
13, -1,=12 .998 .973 .935 .840 .499
314 . 964 .852 .672 414 .074
19, -13, -6 1.000 1.000 .996 . 984 329
566 .999 .978 .929 721 .165
20, <0, -20 1.000 1.000 1.000 .998 2932
800 1.000 .992 .947 776 19
24, -22,-2 1.000 1.000 1.000 1.000 .985
1064 1.000 .997 .988 .919 .334
30, -20, -10 1.000 1.000 1.000 1.000 997
1400 1.000 .999 .997 .965 .467
50, -0, =50 1.000 1.000 1.000 1.000 1.000
5000 1.000 1.000 1.000 .999 .878
75, -10, =65 1.000 1.000 1.000 1.000 1.000
9945 1.000 1.000 1.000 1.000 .988
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TABLE 5

2
= L .100 .050 .025 .010 .001

) i
.75, -.05, =.70 \127 064 .027 012 .002
1.055 .104 .060 .026 .016 .003
-2, .25, 1,75 .185 .099 .055 .023 .003
7,125 ,158 ,090 .053 .025 .001
3, -1, =2 .249 145 .076 .036 .007
14 223 111 .063 .024 .001
4, -1, -3 .360 .226 .130 .069 ,012
26 ,291 152 ,086 ,053 .005
5, 0, =5 .559 407 274 .170 .032
50 438 ,269 .157 .080 .005
7, =5, =2 .726 .559 .398 214 .040
78 ,612 L415 .250 .121 .011
9, -1, -8 .913 .811 .701 .502 .043
146 .780 ,590 .364 .170 .027
13, -1, -12 .995 .984 .953 .864 .496
314 : ,954 ,856 ,685 429 .081
19, -13, -6 1.000 1.000 .998 .990 .842
566 1,000 ,988 .992 741 .157
20, -0, =20 1.000 1.000 1.000 .999 .951
800 1,000 2999 ,975 741 .157
24, =22, =2 1.000 1.000 1.000 .999 .982
1064 ,997 _,997 .991 .925 .311
30, 220, =10 1.000 1.000 1.000 1.000 .999
1400 1,000 1,000 ,996 .960 .406
50, -0, =50 1.000 1.000 1.000 1.000 1.000
5000 1.000 1,000 1,000 1,000 868
75,.-10, -65. 1.000 1.000 1.000 1.000 1.000
9945 1.000 1..000 1,000 1,000 ,986
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TABLE 6

2
= oL .100 .050 .025 .010 .001
i
.75, =05, =.70 120 062 024 004 000
1.055 .117 .061 .028 .012 .001
=2, .25, 1.75 175 .099 047 017 .002
7.125 .151 .074 .033 .012 .005
3, -1, -2 241 157 078 L0531 L004
14 .213 .109 .049 .021 .003
4, -1, -3 .329 .205 132 .066 ~009
26 .280 .158 .077 .029 .001
5, 0, -5 . 548 3869 264 153 026
50 .393 .234 .130 .054 .004
7, =5, -2 724 .586 LG43 .260 .045
78 .627 .437 .260 134 .018
9, -1, -8 .906 .803 .668 59% .169
146 .773 .569 .341 .165 .019
13, -1,-12 9% .981 .946 879 529
314 .965 .890 .673 418 .051
19, -13, -6 1.000 | 1.000 996 978 812
566 1.000 .983 .923 .725 .152
20, -0, =20 1.000 | 1.000 T.000 2999 938
£00 .999 .988 .940 .760 162
24, =22, 2 1.000 | 1.000 1.000 | 1.000 .985
1064 1.000 .996 .990 .916 .333
30, -20, -10 1.000 | 1.000 1.000 | 1.000 997
1400 1.000 | 1.000 1.000 .957 .428
50, -0, -50 1.000 | 1.000 1.000 | 1.000 1.000
5000 1.000 | 1.000 1.000 | 1.000 .845
75, =10, =65 1.000 | 1.000 1.000 | 1.000 1.000
9945 1.000 | 1.000 1.000 | 1.000 .987
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TABLE 7

2
- X4 . .100 .050 .025 .010 .001
13, =4Ud, =.70 . 106 .U0Z U35 .U14 . 00Z
1.055 .075 .039 .021 .006 .000
-2, .25, 1.75 . 140 .074 .033 015 002
7.125 .105 .047 .020 .014 .001
3, -1, -2 .166 .082 .052 024 003
14 .128 .067 .038 .019 .001
4, -1, -3 .201 132 075 L033 004
26 .161 .085 044 .016 .002
5, 0, -5 .299 . 19% 116 .065 0I%
50 .262 .134 .056 .028 .001
7, =5, =2 377 250 169 099 01%
78 .241 .129 .072 .023 .002
9, =1, -8 .590 455 337 208 048
146 .456 .289 .181 .095 .012
13, -1, -12 842 723 . 606 A TI3%
314 .729 .553 .337 .167 .025
19, -13, -6 947 .907 .843 724 379
566 .762 .551 .376 .200 .018
20, -0, =20 .993 .979 .935 . 864 520
800 .978 .879 .681 .420 .065
30, -20, -10 1.000 .998 .992 981 824
1400 .975 .887 714 461 .068
50, -0, -50 1.000 1.000 1.000 1.000 .999
5000 1.000 1.000 1.000 .994 .537
75, =10, -65 1.000 1.000 1.000 | 1.000 T.000
9945 1.000 1.000 1.000 1.000 .793
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TABLE 8

2
- & .100 .050 .025 .010 .001

i
e75, =.05, =.70 137 .087 .057 .029 .004
1.055 .091 .041 .016 .013 .000
-2,7.25, 1.75 .166 111 .072 .040 -011
7.125 -145 .075 -034 .016 -005
3, -1, -2 -259 -180 -129 .083 .017
14 -333 -189 .101 -043 -005
4, -1,-3 .321 221 .153 .09 .029
26 .403 .253 134 .065 .005
5,0, -5 L4535 .378 - 287 .198 .049
50 -396 -239 .115 -053 .008
7, -5, -2 -734 .587 .431 -265 .069
78 -954 -843 .670 .429 -076
9, -1,-8 .83%4 L7564 -642 .510 .199
146 .£30 .633 472 -253 -038
13,-1,-12 .975 .950 -906 .€06 .480
314 .963 .872 .657 416 .070
19, -13,7-6 1.000 =999 -9% .976 .798
566 1.000 | 1.000 1.000 -990 -565
20, -0, -20 1.000 .999 -998 .991 .884
800 -999 -986 .932 -739 .171
30, -20, -10 1.000 | 1.000 1.000 [ 1.000 .987
1400 1.000 } 1.000 1.000 | 1.000 .884
50, -0, -50 1.000 | 1.000 1.000 | 1.000 1.000
5000 1.000 | 1.000 1.000 -989 -856
75, -10, -65 1.000 [ 1.000 1.000 | 1.000 ..990
9945 1.000 | 1.000 1.000 | 1.000 - 994
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