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ABSTRACT

AN EMPIRICAL COMPARISON OF TESTS OF THE HYPOTHESIS

OF NO FIXED MAIN EFFECTS IN THE MIXED MODEL

By William G. Darnell

This study considered the possibility of using an F-ratio

statistic, mean square treatment/mean square interaction, to test the

hypothesis of no fixed main effects in the mixed model when the variance-

covariance matrix for means is nonhomogeneous. The F-ratio and exact

T2 statistic are compared with the appropriate tabled F distribution

under the null hypothesis and with each other for power.

A rbnte Carlo routine involving a composite random generator,

exponential approximation to the normal, and a factorial structure was

used to generate the basic score matrix. Several correlation matrices

and variance sets were considered. The empirical probabilities of the

statistics were compared with tabled F distributions with appropriate

degrees of freedom. The empirical power of the two statistics was

plotted and compared for several sets of main effects.

Under the null hypothesis the F-ratio proved to be susceptible

to dispersion in the correlation matrix and particular sets of variance.

The Tzzstatistic remained slightly conservative for all comparisons.

The liberal effect on the F-ratio proved to be a monotonic function of

the amount of dispersion in the correlations. The power comparisons

demonstrated the F-ratio to be well behaved and generally more powerful

than the erratic T2 statistic. The T2 statistic was sensitive to

patterns as well as magnitude of the fixed effects when the variance-

covariance matrix was nonhomogeneous.
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It was concluded that there are only a few circumstances under

which the F-ratio should not be considered as an alternative test of

the hypothesis. If the intermean correlations are expected to approach

1.00 or if radical variance patterns are expected, the T2 statistic

should be used. In all other cases the F-ratio is recommended although

minor modifications of the test may be necessary.
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.CHAPTER I: THE PROBLEM AND PURPOSE OF THIS INVESTIGATION

Introduction
 

The mixed model analysis of variance is the appropriate analysis

procedure for a wide variety of experimental situations commonly found

in the behavioral sciences, education in particular. The mixed model

is an analysis of mean differences similar to the common analysis of

variance except that one of the categorical variables (factors) is

sampled. An example should point out the basic differences between

the mixed model analysis of variance and the common or fixed effects

analysis of variance.

Consider a situation in which there are 25 schools and 12 age

levels and the experimenter wishes to measure some ability and determine

whether differences exist as a function of the schools or as a function

of the levels or, possibly, if some interaction of schools and levels

is the important contributor to the variance existing in the means. If

be employed all schools and all age groups in a completely crossed ex-

periment, the results could be analyzed using fixed or common analysis

of variance. But it may be economically or practically infeasible to

use all of the schools and/or all levels and it may be necessary to

sample the schools and/or levels used in the study and to generalize

the results to all schools and levels.

If both factors are sampled, that is say ten schools and five

age levels are considered, a situation exists which demands components

of variance analysis, a random effects analysis of variance model. If

only one of the factors is sampled, say schools, and all categories of

the other factor are included, the appropriate analysis procedure would





2

involve the mixed model. The fixed effects or common analysis of

variance should be used in this situation only if all possible cate-

gories for each factor had been included.

A common application of the mixed model analysis of variance in

education is the analysis of profile data. In particular, consider the

situation in which the observations take the form of a battery of tests

and the problem is to test for differences in group profiles. The

tests comprise a fixed, exhausted experimental factor and the indivi-

duals or groups of individuals the other.» Individuals is the random

factor, since we wish to generalize our results not simply to the selected

group of individuals under investigation but to all individuals in the

population from which they were randomly sampled. (Greenhouse-Geisser

1959)

Consider another example which illustrates an application of the

mixed model. Suppose an experimenter is interested in the effect of three

different taSks on a subject's ability to learn lists of paired associates

in a verbal learning study. Recognizing that the variance in individuals

on such tasks is large, the experimenter controls for individual differ-

ences by using the same set of subjects for each treatment application.

Furthermore, the experimenter is aware that some systematic trial related

change may occur. In an attempt at further control he measures each

subject three times on parallel forms of the dependent variables after

each task is performed. The order in which the tasks are assigned each

subject is randomized and the subjects are selected at random from some

specified population. The tasks are the fixed factor in this study-since

three and only three are included in the experiment. The subjects

comprise a random factor since the experimenter wishes to generalize





his results to some population from which the subjects can be considered

a sample. Since a fixed and a random factor are employed in the above

study, analysis must be performed under the assumptions of the mixed

model.

These few examples demonstrate the wide applicability of the

mixed model and illustrate the basic characteristics of an experiment

which would fit the mixed model. It has two factors. (Generalizations

to more than two factors are available. See Scheffe 1959, pp. 275-289.)

One of the factors is fixed; it exhausts all possible values of the fac-

tor, and generalizations from the data will not be made beyond the

categories investigated.. The other factor is a random factor, the levels

of the factors are a random sample of those to which the results will be

generalized.

The Model

The statistical model for the mixed model as developed by Scheffe

(1956a) contains a restriction and an assumption which are of interest.

The assumption, basic to most parametric statistics, is that errors are

independent. The restriction permits one to use an F-ratio of mean

squares to test the hypothesis of null fixed treatment effects only when

the variance-covariance matrix of treatment means over levels is highly

symmetric.1 It is the restriction that has received major attention in

this investigation.

 

1 A highly symmetric matrix is one in which all variances are equal

and covariances are equal. '





Scheffe (1956a) assumes that the k'th unit observation of the

ij'th cell of the score matrix is represented by the structure

(1.1) yijk = mij + eijk,

where:

(1.2) the "errors" {eijkl are independently distributed

with zero means and variance 5:, and are independent of the "true"

means £m. .}
ij .

Mj is a vector random variable on an I variate multinormal dis-

tribution with variance-covariance matrix, V, and mean vector,

U = (”ls/‘2, "-fli’ ---flI). [(1 is defined to be the mean

0‘ _ _ u

of the 1 th component, fl — I“. and flj — EILmij/I' The follow1ng

effects are defined

«1 =,ai v“-

b. =U“j 'l“-
J

Cij ==mij -,ai - ”j '1',“-

The "true" mean mij is the non-error portion of equation (1.1)

and may now be represented as

(1.3) mij = fl+ «i +bj +Cij'

The notion of "true" mean will be important in subsequent discussions.

The restriction under consideration involves the true mean mij‘

For a specific 1, mij is a random variable with expected valuen/Mi

and a variance crii which is a function of the variance of the random

effects bj and cij as well as the covariance of these two variables,

Cov(b, Ci). Similarly for i', miuj is a random variable with some

variance ‘i'i' and expected value flit. The restriction requires that

(1.4) for all i, (i = 1...I) 041,: 0’2



and

(1.5) for i 7! i' (fl, = Cov(mi, mi.) =fl62

where P is the pOpulation correlation coefficient. That is, the

covariances for all intertreatment sets of means are equal and for all

treatments the variance of the means within the treatment category over

levels must be constant.

When the errors are uncorrelated and conditions (1.4) and (1.5)

are satisfied the analysis is quite straight forward and requires no

difficult computation. F =' mean square fixed effects/mean square interaction

is the apprOpriate test of the hypothesis of null fixed effects. But

this is seldom the case since correlations among the cell means, mij’

are quite apt to exist. It is absurd to assume that these intertreat-

ment correlations will be equal in all situations involving the mixed

model. As a matter of fact, unequal correlations will be the usual

case. When the intermean correlations are unequal the F—ratio is no

longer exactly distributed as F in spite of the independence of the two

mean squares and identical expected value under the null hypothesis

(Scheffe 1956a,[L 32). When (1.4) and (1.5) are not satisfied the

exact test of the hypothesis is multivariate. Hotelling's T2 (Hotelling

1931), as recommended by Scheffe, or the more general multivariate

analysis of variance (Rao 1952), could be used here.

Discussion
 

The multivariate procedures provide theoretically exact tests

but are cumbersome and unwieldy when the calculations are attempted.

Calculation of these statistics involves matrix inversion or, at best,



the calculation of several determinants and requires the use of a high

speed computer when the number of treatments and hence the dimension of

the codeviance matrix exceeds two. Further, the use of multivariate

methods, in particular the employment of mean square ratios and multi-

variate procedures in the analysis of one set of data, is an unfamiliar

procedure. The analysis of variance procedure remains apprOpriate for

testing the nullity of the levels and interaction effects. The exact

test is therefore avoided by many researchers familiar with common

analysis of variance. Even when multivariate tests are attempted by

the researcher the general problem of interpreting high powered statis-

tics leaves the user in a quandary.

The multivariate test has other limitations. It requires that

the number of categories of the random factor exceed or at least equal

the number of categories of the fixed factor. Imhoff (1962) has indi-

2
cated that the T statistic has low power in general and particularly

low power when the number of levels is close to the number of treat-

ments. This low power should be expected since the degrees of freedom

associated with the denominator of the test are (R - C + l), a very

small number when R and C are close to being equal. For small degrees

of freedom in the denominator, the statistic F has a very large stan-

dard deviation, and for fixed 'alpha', power is inversely related to

the size of the standard deviation. Further, "If the approximate test

is used and the hypothesis is rejected we could follow it with an

approximate S or T method of multiple comparisons...” (SCheffe 1959, p.271)

Computational facility, familiarity, and ability to handle cases

not fitting the multivariate statistic make the analysis of variance

procedure a very desirable method. The problem as noted before is that



the F-ratios do not have an exact F-distrsbution when conditions (1.4)

and (1.5) are not satisfied. Errors will be incurred if the analysis

of variance procedures are used to test the hypothesis of null treat-

ment effects when there exist non-equal correlations between treatment

means. Scheffe (1956a, 1959) indicated that "...it is not clear at

present whether in practice the use of this exact test instead of the

approximate F-test...based on referring MSA/MSAB to F-tables with I-1

and (I-l), (J-l) d.f. is worth the extra computational labor involved."

(1959, pp. 270-271) He also stated after a discussion of the simpli-

city of the F-ratio and the possibility of its use as an approximate

test that "A justification of this would be welcomed by the practitioner,

because the computations are simpler and more familiar than those with

Hotelling's T2, but until numerical investigations2 are made which
 

indicate the errors involved are tolerable, the practice should be

suspect in the present case." Such a numerical investigation is not

in evidence in the literature.

If conditions (1.4) and (1.5) are satisfied, that is if the

means for any treatment over levels have equal variances and there is

mutual independence across treatments or, at worst, equal correlations,

the test of the hypothesis of null fixed treatment effects is a ratio

of mean squares. This ratio is exactly distributed as F with appro-

priate degrees of freedom much like the test for common or fixed effects

analysis of variance. The computational formulas employed in obtaining

the mean square estimates are identical to those of the fixed model.

 

2 Italics added.





This procedure is easy to use and involves no difficult analysis proce-

dures and may tempt the practitioner to employ the test even when the

conditions are not satisfied. Sensing this possibility Scheffe sounds

the following note of caution, "We do not recommend that the assumption
 

...ordinarily be made in applications, where there usually exists no

real symmetry corresponding to it." (Scheffe 1959, p. 264)

The Problem
 

Given that the data fits the mixed model but the intertreatment

correlations and/or variances in the means are unequal, a common situa-

tion, what procedures does the experimenter follow for analysis? Does

he use one of the theoretically exact but cumbersome multivariate methods?

Does he use the familiar, arithmetically simple but questionable analysis

of variance? Both of the above are with varying degrees of justification

available in the literature, but the question remains unanswered since

there has been no serious attempt at validation. Information must be

provided to reduce the Problem of decision. It is the problem of

providing such information which gave rise to this investigation.

The Purpose
 

It was the purpose of this investigation to determine whether

the errors incurred by using the univariate F test in this special

case of the mixed model are tolerable.

This study was designed to compare the F-ratio and T2 tests on

the basis of power for a few selected sets of conditions as well as

to investigate the deviation of the distribution of mean square ratios
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under the null hypothesis from what would be the exact distribution if

there were equal correlations and variances in the means for treatments

over levels.

Comparisons were empirical, based on a large number of samples

from specified populations. The data were generated by means of a

Monte Carlo sampling technique on a Control Data Corporation 3600

computer. The procedure and the conditions employed will be discussed

in the following chapter.





CHAPTER II: CONDITIONS UNDER INVESTIGATION AND

METHODS OF DATA COLLECTION

Introduction
 

The object of the investigation is not to support or invalidate

a theory, but to obtain useful information which can guide the working

statistician when he suspects that he is outside theory._ As noted

earlier, it is often doubtful whether real data collected from real

subjects actually fits the assumptions of the statistic desired. In

the case of the mixed model seldom, if ever, will the experimenter be

able to state conclusively that conditions (1.4) and (1.5) are met

since whenever levels and interaction effects exist the intertreat-

ment mean variances and covariances may not be equal. The basic

question therefore is, ”What happens to the distribution of the two

statistics under consideration when this restriction is violated?"

Further, might there exist other conditions in the data which will

effect the seriousness of this violation?

It might be helpful to clarify these basic questions and the

problem at hand with a parallel example from the fixed effects model

which has been thoroughly investigated. Suppose one was asked, "In

the fixed effects model analysis of variance, what is the effect upon

the results of the analysis if the assumption of normally distributed

errors with equal variance in all cells is violated?" Without any

difficulty one would answer, possibly citing Scheffe (1959), Norton

(1952), or a reliable text like Hays (1963), that violation of these

assumptions is not serious if one has sufficiently large sample

sizes and, the sample sizes are equal. .Notice that the statement

concerning the tolerability of errors is qualified with a statement

10
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of conditions which are related to,yet external to, the assumption.

In an attempt to discover whether such qualifying conditions exist

in the case under consideration certain conditions external to the

assumptions,yet felt to have possible bearing on the tolerability of

errors when the assumptions are violated, were included. The basic

question was investigated by the inclusion of several cases of unequal

correlation.

What conditions should one impose on the data? Of the many

variables which could affect the distribution of the F-ratio, which

ones should be investigated? To what extent should each variable

selected be scrutinized? These are the problems of this section.

It was difficult to rank the variates in order of importance

or even decide upon which should be included and which should not be

included in this initial investigation. It was decided to include as

many variates as time would permit, each variate to be crossed with

the other variates under consideration in an attempt to discover inter-

actions which might affect conclusions about the tolerability of errors.

Over 100 sets of conditions were considered in the investigation of

the distributions of the F-ratio and T2 under the null hypothesis.

The power comparisons, while involving fewer actual sets of conditions,

involved over 100 cases since 10-14 sets of means were used in each

comparison. It is felt that the data presented here permits a substan-

tial first look at the problem of the mixed model in the case of non-

symetric variance-covariance matrix of the means.

Those variates selected for investigation are presented below.

Following the initial presentation of the variates, a brief discussion

of each is included.
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_Questions for Investigation
 

1. Does the inequality of correlation (Covariance) between

means over levels introduced intolerable differences between the

actual distribution of F-ratios and the tabled F-distributions with

(I-1) and (I-1)(J-l) degrees of freedom? Does it affect the power

relationship of the F-ratio and T2 based tests?

2. Does the lack of homogeneity of variance in the means

introduce intolerable differences between the actual distribution

of F-ratios and the tabled F-distribution with (I-1) and (I-l)(J-l)

degrees of freedom? Does it affect the power relationship of the

F-ratio and T2 based tests?

3. Is the number of units per cell a factor influencing the

distribution of the F-ratios when the symmetry assumption is not

satisfied? Does it affect the power relationship of the F-ratio

and T2 based tests?

4. Is the number of levels a factor influencing the distribu-

tion of the F-ratios when the symmetry assumption is not satisfied?

Does it affect the power relationship of the F-ratio and T2 based

tests?

5. Does the level of significance chosen affect the power

relationship of the F-ratio and T2 based tests?

Attached to each of the above questions is a corollary. If

the variable affects the distribution or the power of one of the

tests, what is the magnitude and direction of the effect?

After having observed the partial answers to the above questions,

the most important question of all must be answered. What are the

implications of this collection of facts for the practitioner, the

user of statistics? From the combination of data bearing on the

distribution of the test statistics under the null hypothesis and

the information gleaned from the power comparison can it be determined

whether the errors incurred by violation of the symmetry assumption

are tolerable?

Specific Conditions Considered
 

In this investigation three treatments have been considered.

Initially it was the intention of the investigator to include more
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than three treatments and cross number of treatments with all other

factors under consideration. This intention was not followed up for

two reasons. First, time became prohibitive. Each time a new treat-

ment total is applied the number of cases to be investigated increases

substantially. Secondly, considering number of treatments other than

three loses meaning if the effect of number of treatments cannot be

analyzed for a given covariance matrix or set of covariance matrices

that can be considered equivalent. Similarly equivalent sets of

variances must be available. The same variance-covariance matrices

cannot be considered for sets of three, four, and five means.

Correlations —- This is the most important question asked in
 

this investigation. In order to determine the effect of unequal

correlations in the treatment means upon the distributions of the

F-ratio several sets of correlations were considered. An attempt

was made to look at both the magnitude and dispersion of the cor-

relations. The correlation matrices included in this investigation

are identified in table 2.1. Four sets of correlations might be con-

sidered the substructure of this factor since they were crossed with

almost every other combination of factors in this study. They are

identified below as Low, Medium, High, and Disperse I. It was from

these correlation matrices that the basic data indicating effects

of magnitude and amount of dispersion in the correlations was to

be obtained. The effect of the second aspect of this dual problem

was further investigated by the inclusion of the matrix identified

below as Disperse II. The case of independent means, no correlation,

and several cases of equal correlation, were also included in
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order to check out the contention of the theory that the F-ratio is

an acceptable test if the correlations are equal. Further, two sets

of data were included which involved negative correlations. The case

of perfectly correlated means was also included in expectation that

it might provide unique considerations. Correlation matrices, Medium

and Disperse I were included in the power comparison.

Variance -- Homogeneity of variance in the means is the lesser

part of the assumption which has given rise to this investigation and

hence is interesting in its own right. In addition the crossing of

the variance vectors and the correlation matrices provides an Oppor-

tunity for isolating covariance.

For almost all cases of the other variables, two sets of

variances were considered in order to determine whether homogeneity

was a significant factor. In the case of three treatments the variances

imposed on the treatment means were (100, 100, 100) in the case of

homogeneous variance and (225, 100, 25) to establish the case of un-

equal variance. Other sets of variances were considered in order to

investigate problems of unequal variance independent of the other factors.

The sets of variances considered for this purpose were, (assigned

respectively to treatments as were the above cases) (25, 100, 225);

(00, 100, 00); (100, 100, 00); (2500, 10000, 25000); and (10000, 00,00).

For the case of four treatments similar sets of equal and unequal

variances were considered. (100, 100, 100) and (225, 100, 25) were

compared for their affect on the power of the statistics.
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Number of Units Per Cell -- Two and ten observations per cell
 

were the usual cases of this factor considered in this study. All

cases of the other variables were compared for ten observations per

cell. TWo and five observations per cell were considered for the

purpose of replication and to confirm an expectation that this

variable would not affect the F-ratio. The interesting case of

one observation per cell was considered for a limited number of

cases. For those covariance matrices which resulted in divergence

from tabled probabilities additional analysis were performed using

25 observations per cell. For power comparisons, 2, 5, and 10

observations per cell were considered.

Number of Levels -- The usual case in this analysis involved five
 

levels although liberal consideration was given to the case of three and

ten levels for those variance and covariance matrices which indicated a

possible serious discrepancy between the actual distribution of the F-

ratio and the tabled values. From the inclusion of these three cases

it was expected that any pattern existing would appear. Number of levels

was expected to affect the power of the statistics since it directly

influences degrees of freedom. Three, five, and ten levels were considered

for the case onindependent correlation.

Levels of Significance -- All of the conditions above were compared
 

for "alpha" equal to .10, .05, .025, .01, .001.

Effects -- All power comparisons involved 10 to 14 sets of means

representing different noncentrality parameters. The sets of means con-

sidered are listed in table 2.2 along with their sum of squares. Care

was taken to select mean vectors which were linearly independent.





Table 2.2 - The Fixed Effects Considered for Power Comparisons

Mean Vector (“(1, 6‘2, c‘B)

6‘1 = Effect of i'th Treatment (,3

(.75, -.05, -.70) 1.1

(-2, .25, 1.75) 7.1

(3, -l, —2) 14

(4, -1, -3) 26

(5, 0, -5) 50

(7, -5, -2) 78

(9, -1, —8) 146

(13, -l, -12) 314

(19, -l3, -6) 566

(20, 0, -20) 800

(24, -22, -2) 1064

(30, -20, -10) 1400

(+50, 0, -50) ' 5000

(75,-10,-65) 9945

Procedure

This study involved the calculation of a large number of F-ratios

and T2 based F-statistics (1,000 for each set of conditions in both the

power and null hypothesis phase of the investigation) based on samples

from population distributions with specified characteristics. Follow-

ing generation the resulting empirical distributions of the F-ratio and

T2 based F were compared with each other and with the tabled F-distri-

bution with apprOpriate degrees of freedom. For the power comparisons

the power of the statistics was determined for selected sets of mean

differences for each of the conditions considered. The power of the

two statistics was then plotted and inspection of the power curves and

the tabled power values used to determine the relative merit of the two

statistics. Results of the two phases were merged in order to draw

some conclusions concerning the tolerability of errors incurred under

the null hypothesis.

17
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Samples were generated and the F and T2 statistics were calculated

on a Control Data Corporation 3600 computer at Michigan State University's

Computer Center. The procedure described in parts 1, 2, and 3 below is

commonly called the Monte Carlo technique. The unfamiliar reader may wish

to consult Green (1963), Guetzekow (1962), or Kahn (1956).

1. Generation of uniformiy distributed random numbers. Although

the term random number is used here it should be noted that the numbers

are truly pseudo-random numbers since they have a finite period and can

recycle. This first step of the procedure is extremely important to the

outcome of the investigation. If an inapprOpriate generator is selected

the results will be invalidated. There are three pOpular computer based

techniques for generating pseudo-random numbers (Green 1963, pp. 163-164).

An additive technique whiCh involves adding the preceding random number to

a random number generated earlier and retaining a fractional part of the

resulting sum as the new random number. The representational formula of

this method would be

(2.1) xj = xj_1 + -n (mod 1)

"j

where x- represents the random number being generated» The modulus value
J

usually represents the capacity of a machine register. Mod 1 is purely

symbolic. It indicates that a remainder is saved as the random number.

The multiplicative method of random number generation uses the

preceding random number as the basic unit. This random number is then

multiplied by a constant C and a fractional part of the product is kept

as the new random number. This prodedure may be symbolically represented

as follows

(2.2) Xj = ij_1 (mod 1)

Where again xj represents the new random number.
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The composite method involves a multiplicative and an additive

operation in the generation of new instances. The preceding random

number is multiplied by a preselected odd integer C and an odd constant

or another random number xj_2 is added to this product. As in the case

of the above generators a remainder is kept as the new random number

x The symbolic formula for this routine would bej.

(2.3) x-J = ij_1 + xj_2 (mod 1)

Other methods such as entering a table or using an electronic

roulette wheel have been attempted as random number generators. These

techniques have met with little success since most mechanical devices

have biasing irregularities and tables lack completeness (Brown 1951).

Such procedures predated the use of the high Speed computing machine

and have been replaced by modern computerized procedures such as those

discussed above.

Empirical studies by Green, Smith, and Klem (1959) have indicated

that many additive routines exhibit serial correlations in the numbers

generated. When the number of random numbers used to start the routine

is small, the data generated by an additive routine failed to pass the

"runs tests" For larger samples of starter numbers the runs test was

not significant. In order to protect against serial correlations,

large sets of starter numbers are required each time the generator is

employed. The additive generator was not used since serial correlations

could appear and confound the results of the study. Further, thousands

of starter sets would be required. It was decided that one of the

faster multiplicative or safer composite routines should be employed

even though Green (1963, p. 167) notes that "....the runs test is very

sensitive and failure to pass this test does not mean the numbers are

badly awry."
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Green (1963, p. 165) recommends the use of a multiplicative

generator for obtaining random numbers on the basis of empirical tests

by Greenberger (1961) which indicate that the multiplicative generator

passes all of the tests of randomness including the runs test. Further,

it has been found to have a period of 233, over eight billion numbers.

It is a faster routine than the composite generator discussed below

and has a period which is shorter although this seems unimportant

since its period as noted is tremendous. This method was not incorpor-

ated in this study for reasons to be discussed below, but is very

desirable because of its large period and relatively short computation

time.

The composite generator introduced by Rotenberg (1960) was

selected as the method of random number generation to be used in this

investigation. It has all of the desirable characteristics of a random

number generator and an extremely large period of 235. That is, it

generates all the numbers which can be represented by 35 bits before

cycling,over 32 billion random numbers. Green's (1963, p. 168) only

criticism of this generator is that it takes more time than the multi-

plicative generator. This is a valid criticism and one which would

have caused the investigator to select the multiplicative generator

if another aspect of the programming had not required otherwise.

All random number generators require at least one starter number,

and in the case of the additive generator n such numbers are required.

The selection of starter numbers can be a problem if the program must

be used many times in a given study. Several common practices are

followed in the selection of these starter numbers. Random numbers
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might be selected from a table of random numbers and fed into the

machine or, in order to make the program self contained, an internal

figure such as the date might be used. The computer's time clock was

used in this investigation since a self contained program was desired

and the time clock reading in millionths of a second would feed the

same number into the generator only one time in many million runs.

If the same number is used on two runs the exact same set of random

numbers will be generated.

The use of the time clock incurs difficulties when one uses a

multiplicative generator. What would happen to the multiplicative

generator if the clock had just turned over and it read all zeros or

the majority of the dials were zero? The results would be consecutive

generation of zeros, not very random. Further, is it not possible that

one of the random numbers generated by the routine will be zero? The

composite generator employed protects against this difficulty by pro-

viding a constant which is added to the starter number of the preced-

ing random number. For this reason the composite generator was selected

in preference to the faster multiplicative generator. It was preferred

to the additive generator because of its tendency to generate data

with serial correlations built in if n § 16 starter numbers are

employed and the difficulty of selecting large sets of starter numbers

for each of the over 200,000 runs employed in this study.

2. Once generated the uniform random numbers were transformed

into random deviates from a distribution closely resembling a normal

distribution with mean zero and a standard deviation of one by means

of a logarithmic function which is the inverse of an exponential
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approximation to the intractable cumulative normal distribution

function. The exponential approximation to the normal employed was

offered by Kahn (1956, p. 43) and is given below.

(2.4) f(x) = BeBx/ (1 + a“)2 B > O,

2
where x has mean 0 and variance 4f2/3B . The transformation

employed was the inverse of (2.4)

(2.5) x = P'1(R) - -l/B- 1n (l/R -1) B :5 0,

where R is the generated random number and l/B = V374 = . 568234601.

The value of l/B was selected since it generates data which is near

normal with a mean, median, and mode near zero and a variance of one.

The approximation function (2.5) was thoroughly tested before it was

employed. The distribution of 10,000 scores was found to be slightly

non-normal when compared with theoretical probabilities using the X2

goodness of fit test. This minor difference (X2: p 4: .10 for n=10,000)

has little practical significance since any statistic susceptable to

such minor violation of the normality assumption could never be

employed with real data (see figure 2.1). There existed the possibil-

ity that the transformed variables might no longer be random. Hence,

the 10,000 scores were subjected to the runs test in order to double

check the generator as well as the transformation. The obtained Z for

the large sample runs test was .0175 indicating that there existed no

serious positive or negative cycles in the data.

3. The generation of the score matrix from which the statis-

tics under consideration were calculated involved two steps. First,

an LxC matrix of means was generated, L being the number of levels and

C being the number of treatments under consideration. C sets of L

means were generated in such a way that they represented samples of
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size L from a C variate pOpulation with specified variances and

covariances. For the null-hypothesis considerations, each of the

populations had mean zero. Hence, any differences in the means of

the C samples would represent chance treatment effects only. For

the power comparisons the vector of treatment effects was added to

the means of each treatment group at this point.

The desired intertreatment correlations were generated by

means of linear transformations which parallel the theory of factor

analysis (Harmon, 1965). Specifying the coefficients to be used in

the linear transformation is identical to selecting the matrix of

factor loadings in the factor analysis model. The pOpulation

intercorrelations are completely determined by these factor loadings

and can be represented as a product of the matrix of factor loadings

and its transpose.

If we let M represent the matrix of means, A the matrix of pre-

specified factor loadings, and Q the matrix of factor scores (random

N(O,1) deviates), then it is well known that M = AQ and R = AA' where

R is the matrix of intermeasure or in this case intertreatment corre-

lations. The result of this transformation is an LnxC matrix of

scores with the following properties L - number of levels, n = number

of observations per cell (n = 1 when generating means), C = number of

treatments. The i'th (i = l...C) column of this resulting matrix

represents the means for the first treatment over levels. The values

in each of the L rows represent the means for the L levels over treat-

ments. That is, element aji is the mean for level j and treatment 1.

The intercolumn correlations are specified by AA'. The variance of

the means within any treatment group are also specified by the



24

coefficients selected for the linear transformation. The routine was

checked by generating several scorezxnatrices and correlating the

observations by means of an independent correlation program.

The means having been generated it was then necessary to gen-

erate n error units per cell in order to complete the score matrix.

The error units in this investigation are assumed to be independent

observations from normal pOpulations with mean zero and variance one.

Hence, for each error term desired it was only necessary to generate

a random uniform deviate and transform it by means of equation (2.5)

into a random deviate from the desired normal distribution. Once

generated the error term was added to the mean for a given cell. This

process was repeated n times until the cells of the score matrix were

filled. Each observation yijk can be represented therefore as a

linear function of its "true mean", mij’ and an error term, eijk'

4. The F and T2 statistics were calculated using scores of the

data matrix. The calculation formulas for the mean squares of the

F-ratio are identical to those of the common univariate analysis of

variance. The calculation formulas for the T2 based test are similar

to those found in Hotelling's original publication (1931) or presented

with example by Rao (1952, pp. 237-246). The specific method to be

followed for the mixed model is presented by Scheffe, (1956a, 1959).

5. As noted in section 3 of this discussion, the desired

theoretical fixed treatment effects were added directly to the cell

means when they are required for power comparisons. Care was taken

when selecting the means to select mean vectors which were linearly

independent.
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6. The empirical distributions resulting from the analyses were

hand tabulated initially in order to check on the program. In the

later phases of the investigation a sub-routine was added to the basic

program which automatically tabulated the values of the statistics as

they were produced.

In summary, random samples from normally distributed popula-

tions with specified conditions imposed on the means were generated.

The F-ratio and T2 statistics were then calculated for each of 1,000

sets of data for each set of conditions. The resulting empirical dis-

tributions were then tabulated for Values of special interest and

appropriate comparisons made.

The results obtained from this investigation and a discussion

of these results are presented in the following chapter. The basic

data are frequency counts for values of the statistics specified by

the theoretical distributions.



CHAPTER III: PRESENTATION AND ANALYSIS OF RESULTS

Introduction
 

This investigation concerns the tolerability of the errors

incurred when the F-ratio statistic is used to test the hypothesis

of null fixed treatment effects under the mixed model instead of

using the theoretically exact T2 based F statistic when conditions

(1.3) and (1.4) are not satisfied. The question is not one which

asks whether the distribution of the F-ratio is identical to the

distribution of F with (I-1) and (I-l)(J-l) degrees of freedom;

it is expected that differences do exist. Hence, a statistical

test of no difference or goodness of fit is not apprOpriate. The

analysis of the data is, for the most part, logical and based on

the assumption that the observed emperical probabilities closely

approximate the true but unknown probabilities.

For each set of conditions the distribution of the F is

2 based statistics. Theapproximated by 1,000 F-ratios and 1,000 T

resulting probabilities estimates are very accurate for all points

of the corresponding distribution and are particularly good when

large or small probabilities are estimated. In the majority of the

cases considered, the probabilities of interest are either large

or small.

The one situation in which moderate probabilities are of

interest is in the case of power comparisons. But in this case

the moderate probabilities will occur between the points of inflection

of the power curves where the curves are relatively stable and have

a high positive slope. Between the points of inflection the power

26



27

curves are almost straight lines when plotted on semi-log paper

against the noncentrality parameter or the sum of squared fixed

effects. (The graphs reported in this investigation are on 4 cycle

by 10 to the inch semilogarithmic graph paper.) Since the curves

are expected to be straight, any deviations from the true probability

between the inflection points would be very much in evidence.

The standard error of estimating a true probability is a

function of the probability being estimated and the size of the

sample from which the probability is estimated. For all sets of

conditions considered in this study the number of observations in

the sample is large and constant, N = 1,000. The other variable

affecting the standard error of estimate, size of probability being

estimated, will in general be either very large, greater than .90,

or very small, less than .10. The most serious difficulty in

estimating the true probability as noted above will be in the case

of power comparisons where the probability being estimated is near

.50. Below is tabled the standard error of estimating the proba-

bility for several true probability values.

Table 3.1 - Standard Error of Estimating P for

Several True Probability Values

Standard Error of Estimating

True Probability (P)* the True Probability (N=l,000)

L01 .00316

.05 .00686

.10 .00949

.20 .01265

.30 .01449

.40 .01549

.50 .01581

*If P)250 use l-P to determine the standard error of the sampling

distribution.
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It should be noted that the poorest case, P = .50 has a

standard error of only .01581. This means that if the true proba-

bility were .50 over 99 percent of the observed values would fall

between .4526 and .5474 and over 95 percent of the values would

fall between .4684 and .5316. This situation improves rapidly as

the true probability tends away from .50. For the case of P = .90

we have 99 percent of the scores falling between .87153 and .92847,

and over 95 percent of the observed probabilities falling between

.88102 and .91898. Hence, whatever the true probability, the

estimates in the following tables can be considered close approxima-

tions.

Probabilities Under the Null Hypothesis

Introduction
 

Probability points of interest were calculated for a variety

of treatment mean intercorrelations. The case of three treatments

was of primary interest and the number of levels and observations

per cell were varied. Within treatment variances were also varied

with interest centering on the following sets of standard deviations;

(10, 10, 10) and (15, 10, 5). In addition, some special cases were

considered for their unique interest. Several cases were replicated

in order to verify results and to check upon the reliability of

the estimates.

The conditions considered and the resulting probabilities

are presented in Table I of Appendix A. Due to the variety of

conditions the table may prove cumbersome when first inspected but

should be clarified by the discussion in this chapter.
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For each set of conditions the estimated true probability

and the tabled probability are compared for the following probabil-

ity points: {F I P (f> F) 1’: .10; .05; .025; .01} . The

probability in the appendix table is the proportion of emperical

values of the statistic which exceed the value of the statistic

normally associated with a given probability. For each run, column

1 specifies the number of levels, treatments, and units considered

in that run. Column 2 specifies the variances for the means of

respective treatments over levels. Columns 3 and 4 specify the

covariance and correlation of the means. (In Columns 3 and 4, l,

2 identifies the correlation or covariance for the means of treat-

ment groups one and two.) Columns 5 and 6 are the emperical

probabilities of the two statistics compared against the tabled

probabilities.

Results

Correlation

Is the magnitude of the correlationsor the amount of dis-

persion of the correlations a factor influencing the acceptability

of the F-ratio as an approximate test of the hypothesis of no fixed

main effects in the mixed model? Using three treatments, five levels

and ten observations per cell as a base, twelve sets of correlations

with varying signs and magnitudes were considered.

Magnitude -- In runs 53, 54, and 55 the size of the correlations

are increased whihaholding dispersion in the coefficients fairly

constant. Low and medium correlations do not have a liberalizing
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effect on the F-ratio. The set of high correlations appear to

have a slight effect which is probably a result of chance rather

than true effect. When the other runs in which these correlation

matrices are considered are inspected, it becomes clear that if

an effect exists it is at best minor. Table 3.2 below summarizes

the runs in which these matrices were croSsed with equal variance.

Less than 3 percent of all of the F-ratio probabilities considered

were more than two standard deviations away from the tabled proba-

bility; none were greater than three standard deviations away.

Further, an inspection of table 3.2 shows very little difference

in the F-ratio and T2 based statistic.

Table 3.2 - The Average Emperical Probability Associated with

Correlation Sets High, Med and Low when Variances are Equal

 

Correlation F-Ratiozd = T25 d =

Matrix .100 .050 .025 .010 .100 .050 .025 .010

High .104 .054 .028 .012 .098 .047 .023 .008

Med .092 .048 .028 .012 .099 .053 .027 .010

Low .096 .044 .021 .009 .097 .049 .022 .009

Most Liberal Run

Run 96 - High .118 .061 .032 .016

,Spread or Dispersion -- In runs 54, 56, and 57 the average magnitude

of the correlation array is held constant and the dispersion in the

coefficients is varied. These matrices have been identified as Med,

Disperse 11 an Disperse I for the sake of discussion (see table 2.1).
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These three matrices have approximately the same average magnitude,

approximately .50. The dispersion in the coefficiences as indicated

by a transformed variance coefficient is as follows: Med - 12,

Disperse II - 30, and Disperse I - 51.

An inspection of the empirical probabilities in the main

table indicated that as dispersion increases the F-ratio beComes

increasingly liberal. Run 54, as indicated earlier, indicates that

matrix Med has little effect on the distribution of the F-ratio.

Disperse I and Disperse 11, runs 56 and 57, have a definite positive

bias on the distribution of the F-ratio. For each set of conditions

considered Disperse I and Disperse II continue to affect the statistic.

The size of the effect is related to the amount of dispersion. Dis-

perse I is most spread and has the greatest effect. For medium

dispersion none of the F-ratio probabilities were more than two

standard deviations above the tabled probability. The effect of

Disperse II falls between that of Med and Disperse I. The T2 statistic

does not reflect the effect of disperse correlations.

Table 3.3 summarizes the runs which involve these matrices

when the variances are equal.

Table 3.3 - The Average Emperical Probability Associated with

Correlation Sets Med, Disperse I, and Disperse II

When Variances are Equal

 

Correlation F-Ratio: d: T2:o(:.

Matrix .100 .050 .025 .010 .100 .050 .025 .010

Disperse I .132 .079 .048 .023 .098. .049 .026‘ .012?

Disperse II .122 .062 .036 .016 .096 .048 .025 .009

Med .092 .048 .028 .012 .097 .049 .022 .009

Most Liberal Run

Run 42-Dis.I. .147 .089 .059 .027
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Equal Correlation -- The above discussion of dISpersion in the
 

correlations almost precludes the need for discussing the problem of

equal correlation. In this case diSpersion is at a minimum and the

resulting lack of effect on the distribution of the F-ratio follows

logically. The full range from EQ(.OO) through EQ(1.00) was considered

and no effect was found as long as the variances were equal.

When unequal variance was cross with perfect correlation (1.00),

the F-ratio reflects a definite positive bias. This effect was one of

the most severe found in the investigation. It was not in evidence

for any other cases of high correlation (see discussion of unequal

variance).

Table 3.4 - The Average Empirical Probability Assoéiated With

Correlation Sets EQ(.OO), EQ(.25), EQ(.SO),

EQ(.75), EQ(1.00) When Variances are Equal

 

Correlation F-Ratio: 0( = T2: °< =

Matrix .100 .050 .025 .010 .100 .050 .025 .010

EQ(.OO) .097 .048 .025 .009 .097 .046 .021 .006

EQ(.ZS) .082 .031 .016 .008 .093 .039 .020 .012

EQ(.SO) .092 .042 .020 .008 .094 .053 .029 .013

EQ(.75) .083 .042 .020 .008 .075 .035 .011 .007

EQ(1.00) .098 .048 .025 .010 .098 .048 .024 .010

Most Liberal Run

Run 45-EQ(1.00) .104 .049 .023 .010

Negative Correlation -- Runs 64, 65, 70, 80 represent four special runs

with negative correlations. The effect on the F-ratio closely resembles

the results of positive runs. It appears as though the negative cor-

relation tends to suppress the liberalizing effect of the diSperse coef-

ficients. There is insufficient evidence to identify a general result.

See Chapter IV for discussion of limitations of this study.
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Variance

Does non-homogeneous variance in the means affect the distri-

bution of the F-ratio? For the majority of cases considered the

effect of inequality of variance was tested using a moderate set of

variances (225, 100, 25). Five special cases were also considered

(runs 82 through 85 and 90)..

Holding all other factors equal and comparing parallel runs it

is apparent that moderate inequality of variance does not influence

the F-ratio as long as the correlations remain less than one.

Table 3.5 below summarizes the runs with moderate inequality

of variance. The probabilities in the table closely resemble those

achieved when the variances were equal (tables 3.3 and 3.4) in all

cases except EQ(1.00). Dispersion in the correlation coefficients

continuesto have an effect. Cases of moderate dispersion and equal

variance do not disturb the distribution of the F-ratio. The T2

statistic is again unaffected and continues to be slightly conservative

even in the case of EQ(1.00).

Table 3.5 - The Average Empirical Probability Associated With

All Positive Correlation Sets When the Variances

Are Unequal V(225, 100, 25)

 

Correlation F-Ratio 3 at = T2 2 3

Matrix .100 .050 .025 .010 .100 .050 .025 .010

Low .102 .054 .026 .012 .099 .049 .023 .008

Med .099 .051 .028 .012 .098 .047 .023 .008

High .107 .058 .032 .014 .096 .048 .026 .009

Disperse II .118 .067 .037 .018 .091 .045 .032 .012

Disperse I .128 .076 .047 .022 .098 .047 .025 .010

EQ(.OO) .103 .054 .029 .012 .094 .045 .020 .008

EQ(.25) .099 .051 .030 .013 .092 .047 .020 .008

EQ(.SO) .102 .055 .027 .014 .100 .049 .026 .010

EQ(.75) .104 .058 .026 .012 .084 .034 .016 .004

EQ(1.00) .146 .093 .060 .034 .096 .047 .023 .009

Most Liberal Run

Run 18-EQ(1.00).172 .113 .074 .042
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Runs 82 through 85 and 90 involve cases of extremely non-

homogeneous variances. In each case the variances differ radically.

The effect these cases had on the F-ratio was of approximately the same

magnitude as the interaction of EQ(1.00) and V(225, 100, 25). One case,

V(lOO, 100, 0) did not follow the rule and must be explained as a chance

phenomenon since V(lOO, 100, l) and V(O, 100, 0) did have an effect.

The effect is not due to the diSpersion in the variances but rather must

be due to the pattern of variances since the effect of V(O, 100, O) is

greater than V(10,000; 100; 0).

Covariance
 

The seriousness of the interaction of unequal variance and perfect

correlation leads to the suspicion that covariance is the critical factor

since perfect correlation has no effect when the variances are equal. The

interaction of EQ(1.00) and unequal variance involves covariances more

disPerse than cases Disperse I and Disperse II with equal variance, and

has a correspondingly more liberal effect on the F-ratio.

That covariance is the factor and not correlation is not reason-

able. Consider the cases of High and Med correlation with unequal vari-

ance. They have a covariance diSpersion greater than Disperse I or Dis-

perse II with equal variance yet do not liberalize the F-ratio. Simié

larly Disperse I with equal variance has a less disperse covariance

than with unequal variance; yet, the bias is greater with the smaller

covariance.

Number of Units Per Cell

Do the number of observations per cell influence the deviation

of the F-ratio from the tabled F distribution? It might be expected
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that some of the niceties of large sample statistics may wipe out

differences in distribution. This is not the case, nor should it be.

The problem is not with the error term which is unit bound and hence

related to sample size but, rather, a problem of means. Sample size

is related to standard error of estimating a cell parameter and is

normally reflected in the distribution of the statistic by the degrees

of freedom. The degrees of freedom of the statistics under considera-

tion are a function of the number of levels and the number of treat-

ments only and not sample size. Alternatively, an error in setting

up the generating function may have suppressed any indirect effect of

this factor since the within cell variance was small compared to the

variance in the treatment means.

The effect of sample size was examined by holding all conditions

constant and varying sample size. The comparison is most complete for

the case of three treatments and five levels although some comparisons

are available in Appendix A for the case of three treatments and three

levels and for the case of three treatments and ten levels. For the

case of three treatments and three levels, sample sizes 1, 2, 5, 10, 25

were considered.

Sample size did not prove to have an effect on the distribution

of the F-ratio. The probabilities associated with the distribution of

the F-ratio for the case of DiSperse I are reproduced in table 3.5

below. A similar lack of effect was apparent for all other correlation

matrices.



Table 3.6 - Probabilities of the F-Ratio Associated With the Case

of Disperse I for Varying n (Variances Equal).

 

F-Ratio

L x T x n .100 .050 .025 .010

5 x 3 x l .130 .077 .044 .023

5 x 3 x 2 .147 .089 .057 .024

5 x 3 x 5 .147 .089 .059 .027

5 x 3 x 10 .142 .092 .051 .028

5 x 3 x 25 .141 .081 .049 .033

Varying sample size has essentially no effect on the distribu-

tion of the F-ratio. While not as obvious,the lack of trend for the

case of Disperse II supports this conclusion.

Table 3.7 - Probability of the F-Ratio Associated With the Case

of Disperse II for Varying n (Variance Equal).

 

L x T x n .100 .050 .025 .010

5 x 3 x l .120 .058 .028 .009

5 x 3 x 2 .119 .057 .033 .015

5 x 3 x 5 .124 .066 .041 .019

5 x 3 x 10 .144 .077 .046 .026

5 x 3 x 25 .116 .057 .035 .013

In general,inspection of the tables indicates a remarkable

similarity in distributionsfor all conditions irrespective of the

sample size, including samples of size one.

Number of Levels
 

The number of levels may be the underrated variable in this

study. It is possible that the number of levels could play much the

same role in the case of means as sample size does when considerations

involve unit error. The effect is not in evidence in the null hypothe-

sis phase of this investigation but is apparent when power is considered.

36
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For the case of three treatments; three, five and ten levels

were considered. Tabled below are the results of this comparison for

the interesting correlation matrix Disperse I. The probabilities

have been averaged over sample size for all runs with equal variance.

Table 3.8 - Average Probability Associated With F-Ratio for Case

Disperse I With Varying Number of Levels

(Variances are Equal)-

 

F-Ratio

No. of Levels .100 .050 .025 .010

3 .132 .077 .046 .024

5 .139 .083 .049 .026

10 .123 .073 .046 .018

Summary

The size of the correlations in the means does not bias the

distribution of the F-ratio. Dispersion in the correlations is a

factor. The discrepancy between the distribution of the F-ratio and

the tabled F with (I-1) and (I-l)(J-l) degrees of freedom increases

monotonically with the amount of dispersion. The deviations are

predictable and seem to have an upper limit.

Inequality of variance is a factor worthy of consideration only

if the differences in the variances are severe or if the correlation

in the means is 1.00.

Size of sample and number of levels did not prove to have any

effect on the distribution of the F-ratio.

The T2 statistic was unaffected by the varying conditions and

proved to be a conservative test of the hypothesis.



Power Comparisons

Introduction
 

The use of a statistical test involves two decisions. The

distribution of the statistic must be considered under the null hypo-

thesis, and the distribution under alternative hypotheses must also

be considered. Part II of this investigation considers probabilities

under alternative hypotheses. The results are presented below.

The graphed power comparisons of the F-ratio statistic follow°

For each set of conditions considered the power of the statistic was

determined for five commonly chosen levels of significance: .10, .05,

.025, .01, .001. Levels .10, .025 and .001 are included in the graphs

and all probabilities are tabled in Appendix B.

The ordinate of each graph is the probability of rejecting the

null hypothesis. The abscissa represents the sum of the squared fixed

effects. For each statistic there are three plots representing three

common levels of significance. The graphs have been prepared on

semi-logarithmetic graph paper (4 cycles by 10 to the inch).

Results

Number of Levels —- Figures 3.1, 3.2, 3.3 represent the power

of the statistics when all of the conditions of the mixed model are

satisfied. The treatment means are independent over levels, variances

are equal, and normality and independence assumptions are satisfied.

In each case,three treatments and ten observations per cell are con-

sidered, and number of levels is varied. Fig. 3.1 represents the

case of three levels, Fig. 3.2 - five levels, and Fig. 3.3 - ten levels.
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An investigation of the three graphs yields the following observations:

1. First, and most obvious, the power of the statistic is a

monotonically increasing function of the sum of the main effects squared.

That is, the greater the difference in treatment means the greater the

probability that the statistic will recognize these differences. For

each curve there are two points of inflection between which the power

statistic increases most rapidly. These characteristics are common to

most of the curves which follow and represent the typical power curve

of a statistic whose test is one tailed.

2. Throughout the three sets of conditions the T2 statistic

has less power than the F-ratio. The difference between the power of

the F-ratio and the T2 statistic is most serious when "alpha" is fixed

at .001 and least different for "alpha" set at .10. For the case of

three levels the power of T2 is essentially zero when the power of the

F-ratio is 1.00 for 0‘ = .001. For the same conditions the power of

T2 is approximately .80 when the F-ratio reaches 1.00 for 0(g = .10.

3. The power of the T2 statistic as well as the power of the

F-ratio increases as the number of levels considered increases.

Similarly, the difference between the power of the two statistics

decreases as the number of levels increases.

Sample Size -- Figures 3.4, 3.5, and 3.6 demonstrate the effect of

varying sample size on the power of the statistics. In each case there

are moderate correlations imposed on the means and the usual error

assumptions are satisfied. Three treatments and five levels are

considered and the sample size is varied.
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l. The power curves are again monotonically increasing, but

the smoothness of the T2 statistic power curve is interrupted to a

small degree at approximately the same point on the three power curves.

The F-ratio power function continues with smooth predictability. (The

points of interruption in the T2 curve are 2 °C 2 = 149 and 800.)

2. Comparing the three graphs it can be seen that varying the

sample size has no effect on the power of the statistics. For the three

sample sizes considered the three power curves are nearly identical.

3. If figure 3.6 is compared with figure 3.2 it is apparent

that the statistics are more powerful when the means are moderately

correlated than when there exists no correlation in the means.

Variance -- Figure 3.7 represents the empirical power of the sta-

tistics when the within treatment variance in the means is not equal

for all treatments. Three treatments, five levels and ten observations

per cell are considered. There are no correlations imposed on the means

and all of the usual assumptions concerning errors are satisfied.

1. The power curves are again basically monotonically increasing

except for a few inversions in the curve of the T2 statistic. This

tends to confirm the exaggerations noted in the power curve for the case

of medium correlations and leads to the suspicion that the power of the

T2
is not a monotonic function of mean differences. It appears to be

sensitive to deviations from homogeneity in the variance-covariance

matrix. If this is the case the T2 is impure as a test of mean differ-

ences and becomes a test of gross distribution differences. The F-ratio

continues to behave in a predictable manner.
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2. A comparison of figures 3.2 and 3.7 indicates that the power

of the F-ratio is not affected by non-homogeneous variance. The curve

of the T2 is affected as noted above but the power of the statistic

not otherwise increased.

3. The power of the F-ratio continues to exceed that of the T2

based statistic.

Correlations -- Figure 3.8 is a graphic comparison of the two
 

statistics under the case of extremely disperse correlations in the

means. Three treatments, five level and ten observations per cell are

considered. The mean variances are held constant and the usual error

assumptions are satisfied.

1. The power of the F-ratio is not affected by disperse corre-

lations in the means. When figures 3.8 and 3.6 are compared very

little difference exists in the power curves of the F-ratio indicating

that the increased dispersion has not alteredi the distribution substan-

tially. This is surprising since increased dispersion had a measurable

effect under the null hypothesis. One of two explanations is possible.

Either dispersion has no effect on the power and magnitude of the cor-

relations does (Med and Disperse I have same average magnitude), or

when alternative hypotheses are considered the small amount of disper-

sion in evidence in Med was sufficient to exert the effect of disperse

correlations on the F-ratio when the null hypothesis is false. .(Item .3,p_.49)1

2. The effect on the power of the T2 is severe. Figures 3.4,

3.5, 3.6, and 3.7 indicates that the T2 might be sensitive to lack of

homogeneity in the variance-covariance matrix and 3.7 indicates that

possibly the power function of this statistic was not monotonically
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related to increases in mean differences under all conditions. All of

these indications are confirmed by this situation. The power function

is grossly non-monotonic. It is evident that the statistic is sensitive

to deviations other than those treated in the hypothesis tested. This

condition was replicated in order to recdnfirm these results. The

erratic pattern held up under replication.

3. In this case the power of the T2 statistic exceeds the power

of the F-ratio in selected cases, but these cases follow no predictable

pattern. The power of the T2 statistic deviates from the normal pattern

of a one-tailed statistic while the F-ratio remains predictably smooth.

4. It was su3pected that the nature of the fixed effects might

have caused the erratic performance of the T2 statistic's power curve.

The fixed effects used for the power comparisons (table 2.2) were

checked to determine if there might be some explainable reason for the

behavior of the T2 statistic. The drOps in the power curve occurred

when 2‘8; 50, 146, and 800 and the curve peaked when Zak; = 78

and 566. The T2 power curve similarly misbehaved in the earlier situa-

tions also. It is not clear but it appears as though the pattern of

the fixed effects may affect the power of the T2. Very possibly this

effect is an interaction of the treatment mean vector and the matrix of

treatment mean variances and covariances since T2 is a product of this

vector and matrix. In this case the power decreased when the effect of

the second treatment was negligible with respect to the effect of the

first and third treatment and the power increased when the effect of the

third treatment was small relative to the first two treatments.





51

Summary

The power comparison of the F-ratio and T2 based statistics

indicates that the F-ratio is in general more powerful than the T2

based statistic and has a much better behaved power function.

The power of the F-ratio is most superior for small "alpha" and

a small number of levels. As the number of levels and the size of the

type one error increase,the power advantage of the F-ratio decreases

but remains in the favor of the F-ratio. The number of units per cell

has no effect on either power function.

When non-homogeneous variances and correlations were considered

some strange results were discovered. Moderately unequal variance had

no effect on the power of the F-ratio and the effect of correlations on

the power of the F-ratio appeared to be an effect of magnitude rather

than dispersion; a reversal of the findings in Part I.

The power function of the T2 was disturbed by both unequal vari-

ances and unequal correlations. The function became non-monotonic and

appeared to be influenced, by the pattern. of the fixed effects

when the variance-covariance matrix is non-homogeneous. This effect is

2 is a quadratic function, the size ofreasonable since the power of T

which changes as a function of both the length and direction of the

main effect vector.





CHAPTER IV: DISCUSSION AND CONCLUSIONS

Summary

The mixed model analysis of variance is a useful technique of

behavioral science research. Its use has been restricted because the

test procedures are complex and difficult to interpret. The appropri-

ate test of the hypothesis of null-fixed effects is a multivatiate

technique unfamiliar to most educational researchers. This investiga-

tion considered the possibility of replacing this multivariate

procedure with a familiar F-ratio test.

MS

The approximate F—ratio, F = a/MSab, was compared with the

exact T2 based test for a variety of conditions under the null hypothe-

sis and several alternative hypotheses. The comparison was based on

1,000 observations of each statistic for each case considered. The

data from which the statistics were calculated were generated using a

computerized Monte Carlo procedure.

Results

Under the null hypotheses the F-ratio proved to be moderately

liberal for selected conditions. The T2 based statistic remained

slightly conservative for all conditions considered. Those conditions

which liberalized the F—ratio were disperse correlation patterns, inter-

action of perfect correlation and unequal variance, and variance

patterns which deviated radically from homogeneity.

The number of observations per cell, number of treatments, number

of levels, magnitude of correlation, and moderate non-homogeneity of

variance had no effect on the distribution of the F-ratio under the

null hypothesis.
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Magnitude of correlation, number of levels, and level of

significance did affect the power comparison of the F-ratio and T2

based statistic. Unequal variance also caused deviations in the power

curve of the T2 based F.

The F-ratio had superior power under almost all conditions, and

was particularly superior when the number of levels and "alpha" were

small. The T2 became very erratic when the dispersion of the correla-

tions increased. In this erratic condition itexceeded.the power of

the F-ratio for a few selected sets of means.

Discussion
 

It must be concluded that the F-ratio, mean square of fixed

effects/mean square of interaction effects, is an acceptable alternate

test of the hypothesis of null fixed main effects under the mixed model.

The errors incurred by using the F-ratio instead of the exact

T2
based F test are predictable, generally small, and appear to have

an upper limit. In addition to simplicity and wider applicability the

advantages of the F-ratio include superior power and a well behaved

power function.

The effect of disperse correlations of the F-ratio is monotoni-

cally related to the amount of dispersion in the coefficients. The

liberalizing effect can be counteracted by apprOpriately adjusting the

critical value required for rejecting the hypothesis. The most severe

deviation due to disperse correlations could be corrected by selecting

the critical value associated with the next common "alpha level" below

the desired "alpha level." For example, selecting the critical F associ-

ated with4(= .100, .050, .010, .001 will provide a conservative test
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for“ = .100, .050, .025, .010 respectively. In many cases no

adjustment is required or a lesser adjustment would be satisfactory.

The F-ratio has superior power and in most cases remains nearly

2 based statistic after adjustment. (See poweras powerful as the T

charts - Chapter III)

An adjustment such as the one described above should conteract

the problem of severe deviations in the mean variances as well.

The interaction of perfect correlations and unequal variance has

a low probability of occurrence. If it is suspected that this condi-

tion exists in the data, the T2 based statistic should be used.

Exactly what adjustment is required is not clear since only one set of

variances was considered. Further, the magnitude of the adjustment

required to correct the F-ratio may bring about severe loss of power.

Questions for Further Investigation
 

This investigation has demonstrated that it is reasonable to

consider the F-ratio statistic as a test of the hypotheses of no fixed

main effects.

The problem of negative correlations was not satisfactorily

answered. In this study negative correlation was confounded with

disperse correlations. The effect of the negative correlations was

to suppress the effect of disperse correlations indicating that nega-

tive correlation may cause the F—ratio to be conservative. This

effect requires further exploration.

The interaction of unequal variance and perfect correlation

requires further examination. Only one set of variance was considered.

Would other variance sets cause an even greater effect?
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What is it that caused the variance to have an effect when

radical patterns were considered? The results were mixed and confus-

ing.

Might number of levels prove interesting in the case of the

null hypothesis if a greater number, 25 or 50, were considered?

Further examination of the sensitivity of the T2 to pattern of

mean effects when the variance-covariance is non-homogeneous should

be very interesting.

The question of generalization of results to more than three

treatments has not been answered. Increasing the number of treatments

makes possible variance and covariance patterns not considered here.

Unique considerations may evolve when more than three treatments are

considered.

All of these questions require further investigation. In par-

ticular the general question involving the use of univariate tests in

circumstances requiring multivariate techniques requires definite

consideration.

Summary Conclusion
 

Unless the inter-treatment mean correlations are perfect or

near perfect, the mean square F-ratio may be used to test the hypothe-

sis of no fixed treatment effects. This test may require a simple

adjustment depending upon the dispersion in the correlations or the

pattern of variances.
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APPENDIX A

The following table is a summary of conditions and the

empirical probability of rejecting a true null hypothesis for the

F-ratio and T2 statistics.

For each set of conditions the estimated true probability and

the tabled probability are compared for the following probability

points (FIN? > F) .5. .10, .05, .025, .013 . The probability in

the following table is the proportion of empirical values of the

statistic which exceed the value of the statistic normally associated

with a given probability. For each run, column 1 specifies the number

of levels, treatments, and units considered in that run. IColumn 2

specifies the variances for the means of respective treatments over

levels. Columns 3 and 4 specify the covariance and correlation of

the means. (1,2 identifies the correlation or covariance for the

means of treatment groups one and two.) Columns 5 and 6 are the

empirical probabilities of the two statistics compared against the

tabled probabilities.
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APPENDIX B

The following tables are a summary of conditions and the

empirical probability of rejecting a false null hypothesis for the

F-ratio and the T2 based statistic. The tables correspond to respec-

tive figures in Chapter III. Figure 3.1 is a partial graphic

representation of the results in Table 1. The critical values of

the F-ratio correspond to F and for the

a< :(T - 1); (T - 1)(L - 1)

T2 they correspond to FOQNT _ 1); (L _ T + 1). For each cell in

the tables below, the top number represents the empirical power of

F ratio and the lower figure represents the empirical power of T2.

In all cases three treatments have been considered.

Listed below are the conditions which were imposed on the

population represented in each table:

Table 1 - Independent Means

3 Levels

10 Observations

Equal Variance

Table 2 - Independent Means

5 Levels

10 Observations

Equal Variance

Table 3 - Independent Means

10 Levels

10 Observations

Equal Variance

Table 4 - Med. Correlation in the Means

5 Levels

2 Observations

Equal Variance

Table 5 - Med. Correlation in the means

5 Levels

5 Observations

Equal Variance

Table 6 - Med. Correlation in the Means

5 Levels

10 Observations

Equal Variance
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Table 7 - Independent Means

5 Levels

10 Observations

Unequal variance

Table 8 - Disperse Correlation in the Means

5 Levels

10 Observations

Equal Variance



TABLE 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

a1 .100 .050 .025 .010 .001

.75, ~.05, ~.70 .107 .061 .030 .008 .000

1.055 .087 .035 .019 .006 .001

-2, .25, 1.75 .105 .054 .027 .013 .001

7.125 .102 .050 .022 .010 .002

3, ~1, ~2 .129 .067 .039 .013 .001

14 .095 .048 .020 .008 .000

4, ~1, ~3 .142 .066 .034 .017 .002

26 .096 .043 .023 .008 .001

5, o, ~5 .208 .125 .072 .023 .003

50 .125 .068 .034 .010 .001

7, ~5, -2 .273 .149 .075 .039 .007

78 .157 .081 .040 .014 .002

9, ~1;~8 .393 .231 .139 .067 .005

146 .174 .103 .045 .016 .000

13, ~1,-12 .611 .422 .269 .130 .011

314 .236 ,_¥.105 .055 .025 .002

19, ~13, ~6 .832 .676 .495 .299 .055

566 .319 .164 .079 .021 .001

20, ~o, ~20 .924 .809 .637 .397 .081

800 .381 .191 .088 .034 .004

30, ~20, ~10 .991 .959 .862 .661 .192

1400 .531 .286 .138 .057 ,y .008

50, -0, ~50 1.000 1.000 1.000 .990 .670

5000 .785 .478 , .264 .114 .006

75, ~10, ~65 1.000 1.000 1.000 1.000 .934

.. 9945 ‘ .908 .584 .335 .132 .010      
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TABLE 2

 

 

 

 

 

 

 

 

 

 

 

 

 

      

2

Egg 1 .100 .050 .025 .010 .001

.75, ~.05, ~.70 .092 .046 .022 .010 .000

1.055 .087 .051 .022 .008 .002

-2, .25, 1.75 .124 .063 .036 .018 .003

7.125 .122 .056 .028 .015 .000

3, ~1, ~2 .151 .080 .043 .018 .003

.14 .130 .074 .036 .012 .000

4, ~1, ~3 .190 .092 .049 .023 .001

26 .142 .080 .038 .012 .001

5, o, ~5 .321 .179 .099 .049 .007

50 .240 .119 .064 .023 .002

7, ‘5, '2 .397 .293 .184 .098 .015

78 .312 .182 .094 .028 .002

9, ~1, ~8 .651~ .483 .361 .221 .047

146 .482 .290 .158 .082 .007

13, ~1,-12 .910 .821 .705 .537 .157

314 .746 .526 .346 .167 .023

19, ~13, -6 .988 .959 .924 .833 .402

566 .920 .787 .585 .314 .053

20, ~o, ~20 .999 .993 .976 .930 .596

800 .964 .851 .664 .435 .082

24, ~22, *2 .999 .997 .991 .974 .768

1064 .988, .930 .791 .560 .103

30, ~20, ~10 1.000 1.000 1.000 1.000 1.000

1400 .997 .961 .862 .659 .138

75,-10,-65 1.000 1.000 1.000 1.000 1.000

.9945 1.000 1.000 1.000 .999 .802
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TABLE 3

 

 

 

 

 

 

 

 

 

 

 

 

      

2

2" .100 .050 .025 .010 .001

.75, ~.05, ~.7o .124 .073 .041 .016 .000

1.055 .116 .061 .028 .013 .001

~2, .25 1.75 .173 .101 .022 .022 .002

7.125 . 6 .081 .o 1 .019 .003

3, ~1, ~2 .224 .147 7091 .04r .006

4 14 3 .213 .109 .065 .027 .004

3 " " 382* O o o .

26 .353 3% .13? .82? .863

5, 0, -5 .5397 .410 .289 .170 .035

50 .500 .349 .221 .122 .014

7, ~5, -2 .738 .615 .488 .319 .113

78 .680 .517 .377 .225 .048

9, ~1, ~8 .941 .874 .801 .673 .318

146 .902 .803 .667 .496 ..147

13, ~1, ~12 .999 .995 .985 .965 .795

314 .992 .981 .946 .870 .448

19, ~13, ~6 1.000 1.000 1.000 .999 .980

.566 1.000 .999 .997 .981 .808

20, ~o, ~20 1.000 1.000 1.000 1.000 1.000

800 1.000 1.000 1.000 .996 .924

30, ~20, ~10 1.000 1.000 1.000 1.000 1.000

1400 1.000 1.000 1.000 1.000 .999

50, ~o, ~50 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 1.000 1,000
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TABLE 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

2

2‘ .100 .050 .025 .010 .001

1

.75, ~.05, ~.70 .115 .055 .021 .004 .000

1.055 .080 .044 ..023 .008 .000

-2, .25, 1.75 .155 .080 .036 .015 .004

7.125 .143 .081 .044 .021- .00;;,

3, ~1, ~2 .215 .118 .069 .031 .001

14' .219 .124 .064 .031 .004

4, ~1, ~3 .344 .215 .127 .057 .016

26_ .297 8,181 8,096 .039 .001

5, 0, ~5 .571 .413 .259 .142 .026

50. .445 .291 .161 .074 .011

7, ~5, ~2 .726 .573 .431 .239 .058

78 ._.625 ..420 _8,238 .113 .014

9, ~1, -8 .899 ‘ .810 .679 .504 .167

146.. .789 .585 .396 .212 .025

13, ~1,-12 .998 .973 .935 .840 .499

314 .964 .852 .672 .414 .074

19, ~13, -6 1.000 1.000 .996 .984 .829

566 .999 .978 .929 .721 .165

20, .0, ~20 1.000 1.000 1.000 .998 .932

800 1.000 .992 .947 .776 .194

24, ~22,.2 1.000 1.000 1.000 1.000 .985

1064 1.000 .997 .988 .919 .334

30, ~20, ~10 1.000 1.000 1.000 1.000 .997

1400 1.000 .999 .997 .965 .467

50, ~0, ~50 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 .999 .878

75, ~10, ~65 1.000 1.000 1.000 1.000 1.000

9945 1.000 1.000 1.000 1.000 .988
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TABLE 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

2

z o( .100 .050 .025 .010 .001

. 1

.75, ~.05, ~.70 .127 .064 .027 .012 .002

1.055 .104 .060 .026 .016 .003

~2, .25, 1.75 .185 .099 .055 .023 .003

7.125. -158 .090 .053 .025 .001

3, ~1, ~2 .249 .145 .076 .036 .007

14 .223 -111 .063 .024 .001

4, ~1, ~3 .360 .226 .130 .069 .012

26 .291 .152 .086 .053 .005

5, 0, ~5 .559 .407 .274 .170 .032

50 .438 .269 .157 .080 .005

7, ~5, ~2 .726 .559 .398 .214 .040

78. ..612 .415 .250 .121 .011

9, ~1, -8 .913 .811 .701 .502 .043

146 .780 _.590 .364 -170 .027

13, ~1, ~12 .995 .984 .953 .864 .496

314 ' ..954 .856 ..685 .429 .081

19, ~13, -6 1.000 1.000 .998 .990 .842

566 1.000 .8.988 .992 .741 .157

20, ~0, ~20 1.000 1.000 1.000 .999 .951

800 1.000 ..999 -975 .741 .157

24, ~22, -2 1.000 1.000 1.000 .999 .982

1064 ..997 ._.997 .991 .925 .311

30, 920, ~10 1.000 1.000 1.000 1.000 .999

1400 1.000 .1.000 .996 .960 .406

50, ~0, ~50 1.000 1.000 1.000 1.000 1.000

.5000 1.000 1.000 1.000 1.000 ..868

75,.~10, ~65. 1.000 1.000 1.000 1.000 1.000

9945 1.000 1.000 1-000 1.000 .986
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TABLE 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

2

ygi:¢,<_ .100 .050 .025 .010 .001

1

.75; ~.05, ~.70 .120 .062 .024 .004 .000

1.055 .117 .061 .028 .012 .001

~2, .25, 1.75 .175 .099 .047 .017 .002

7.125 .151 .074 .033 .012 .005

3, ~1, ~2 .241 .157 .078 .031 .004

14 .213 .109 .049 .021 .003

4, ~1, ~3 .329 .205 .132 .066 .009

26 .280 .158 .077 .029 .001

5, 0, ~5 .548 .389 .244 .143 .026

50 .393 .234 .130 .054 .004

7, ~5, ~2 .724 “2586 .443 .260 .045

78 .627 .437 .260 .134 .018

9, ~1, ~8 .906 .803 .668 .494 .169

146. .773 .569 .341 .165 .019

13, ~1;:12 .994 .981 .946 .879 .529

314 .965 .890 .673 .418 .051

19, ~13, ~6 1.000 1.000 .996 .978 .812

A. 566 1.000 .983 .923 .725 .152

20, ~0, ~20 1.000 1.000 1.000 .999 .938

800 .999 .988 .940 .760 .192

24, ~22,-2 1.000 1.000 1.000 1.000 .985

1064 1.000 .996 .990 .916 .333

30, ~20, ~10 1.000 11000 1.000 1.000 .997

1400 1.000 1.000 1.000 .957 .428

50, ~0, ~50 1.000 1.000 1.000 1.000 1.000

5000 1.000_ 1.000 1.000 1.000 .845

75, ~10, ~65 1.000 1.000 1.000 1.000 1.000

9945 1.000 1.000 1.000 1.000 .987
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TABLE 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2x 1 . 100 .050 .025 .010 .001

.75, -;05, =.70 .106 .0627 .035 1014 .002

1.055 .075 .039 .021 .006 .000

-2, .25, 1.75 .140 .074 .033 .015 .002

7.125 .105 .047 .020 .014 .001

3, ~1, ~2 .166 .082 .052 .024 .003

14 .128 .067 .038 .019 .001

4, ~1, ~3 .201 .132 .075 .033‘ .0047

26 .161 .085 .044 .016 .002

5, 0, ~5 .299 .194 .116 .065 .0147—w

50 .262 .134 .066 .028 .001

7, ~5, ~2 .377 .250 .169 .099 .014

78 .241 .129 .072 .023 .002

9, ~1, ~8 .590 .455 .337 .208 .048

146 .456 .289 .181 .095 .012

13, ~1,.12 .842 .723 .606 .441 7134

314 .729 .553 .337 .167 .025

19, ~13, ~6 .947 .907 .843 .724 .379

566 .762 .561 .376 .200 .018

20, ~0, ~20 .993 .979 .935 .864 .520

800 , .978 .879 .681 .420 .065

30, ~20, ~10 1.000 .998 .992 .981* .824

1400 .975 .887 .714 .461 .068

50, ~0, ~50 1.000 1.000 1.000 1.000 .999

5000 1.000 1.000 1.000 p .994 .537

75, ~10, ~65 1.000 1.000 1.000 1.000 1.000

9945 1.000 1.000 1.000 1.000 .793      
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TABLE 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

‘:E;,(~ .100 .050 .025 .010 .001

i

.75, .,05, .,70 .137 .087 .057 .029 .004

1.055 .091 .041 .019 .013 .000

-2, 25, 1.75 .166 .111 .072 .040 .011

7.125 .145 .075 .034 .016 .005

3, ~1, -2 .259 .180 .129 .083 .017

14 .333 .189 .101 .043 .005

4, -1, -3 .321 .22I’ .153 .094 .029

26 .403 .253 .134 .065 .005

5, 0, -5 .485 .378 .287 .198 .049

50 .396 .239 .115 .053 .008

'7, -5, -2 .734 .587 .431 .265 .069

78 .954 .843 .670 .429 .076

9, -1,-8 .834 .744 .642 .510 .199

146 .830 .633 .472 .253 .038

13, ~1,-12* .975 .950 .906 .806 .480

. 314 .963 .872 .657 .416 .070

19, -I3, -6 1.000 .999 .994 .976 .798

566 1.000 1.000 1.000 .990 .565

20, -0, ~20 1.000 .999 .998 .991 .884

800 .999 .986 .932 .739 .171

30, -20, ~10 1.000 1.000 1.000 1.000 .987

1400 1.000 1.000 1.000 1.000 .884

50, -0, -50 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 .989 .856

75, -10, ~65 1.000 1.000 1.000 1.000 ..990

9945 1.000 1.000 1.000 1.000 .994      
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