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ABSTRACT

ROTATORY INERTIA EFFECTS OF ATTACHED MASSES

ON THE VIBRATION FREQUENCIES OF

BEAMS AND PLATES

by Salil Kumar Das

This investigation concerns itself with the effect of rotatory inertia

. of attached masses on the vibration frequencies of beams and plates.

The equations which are derived, are quite general and can be used for

any number of attached masses. The usual assumptions of Hooke’s Law,

isotropy of material and small deflection theory are assumed in deriving

the general equations.

In the case of plates, rotatory inertia and shear deformation of

the plate are neglected, whereas, for the beam, only part of the shear

is neglected. In the latter case, the resulting equation is compared with

Timoshenko's reduced equation and is shown to give the same result.

Solutions were obtained with the help of digital computer and an

accuracy of about five places was realized. The tables of values, given

in this work, contain only the frequencies, the mode shapes being omitted

because of prohibitive amount of space required to tabulate them.

As may be expected, the solutions obtained are approximate,

rather than exact. In order to verify these results, a series of experi-

ments were performed and the calculated frequencies compares with the

measured ones. The agreement is very encouraging and seems to be

quite adequate for most practical purposes.

In Chapter V, a method is developed, that can be used for many

problems which involve concentrated masses. A few examples are worked

out and results are compared with values from other chapters. The

agreement seems to be quite good.
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Moment of inertia of a mass about n axis, placed at
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A non-dimensional inertia parameter.
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CHAPTER I

INTRODUCTION

Inertia is an inherent property of matter in motion. When a body

oscillates about a point or line, the inertia in question is called rotatory

inertia. If a mass is attached to a beam or plate, it is well-known that

the natural frequency of the system is reduced due to translatory inertia

of the mass. If the rotatory inertia of the mass is also taken into

account, keeping the mass constant, the frequency is further reduced.

In this investigation, a study has been made to determine the effect of

rotatory inertia of attached masses on the frequencies of vibration of

beams and plates. In the general theory, rotatory inertia and shear

deformation of the plate are neglected, but for the beam, only part of

the shear deformation is neglected. The assumptions of Hooke's Law,

isotropy of material and small deflection theory, are made in the

derivation of the fundamental equations. These equations can be applied

to any type of variable thickness beams or plates with an arbitrary

number of masses attached to the systems at different points.

In order to investigate this effect of rotatory inertia, several

approaches may be taken. In the case of a beam, having one or two

masses, the classical approach may be used. For this case, each mass

is replaced by the equivalent shear force and bending moment and these,

in turn, are employed to give the required boundary conditions for the

differential equations. The number of simultaneous differential equations

that arise from this procedure is one more than the number of attached

masses. As may be expected, this method becomes quite laborious when

the number of attached masses is more than two, and also, it is difficult



to generalize it to an arbitrary number of masses, because the boundary

conditions that will have to be satisfied for each differential equation

are influenced by the boundary conditions of the system, as well as the

locations of the masses.

To avoid this difficulty, d'Alembert's principle together with

the principle of virtual work is used to find the governing partial dif-

ferential equation. This approach leads to a single differential equation.

Since the primary interest here is in free vibrations, a harmonic

oscillation is assumed, with the result that the governing partial dif-

ferential equation is reduced to an ordinary differential equation. The

displacement function is then expanded in terms of the normal functions

of the corresponding uniform beam. The number of terms taken in the

expansion will depend on the'accuracy required of the lower mode

frequencies, as well as the number of modes under investigation.

Taking a finite number of terms of this expansion, a system of linear

algebraic equations are obtained. Finding a solution other than the

trivial one demands the vanishing of the determinant of the coefficients

of these equations and this gives the frequency equation. . Actually, the

set of algebraic equations generate a pair of symmetric matrices, the

order of each of which is the same as the number of terms taken in the

expansion of the displacement function. These, in turn, can be solved

by the usual matrix methods. In the present investigation, the digital

computer was used to solve these matrices. The eigenvalues of the

matrices gave the frequency functions and the mode shapes were obtained

from the eigenvectors. .

For the case of a beam or plate without any attached masses, this

method generates two symmetric matrices, one from the elasticity

terms and the other from the translatory motion, rotatory inertia and

shear deformation of the system. Once these matrices are known, the



addition of masses to the system add certain terms on the latter matrix.

As these terms are functions of the points of application of the loads,

there are no integrals involved and as such the computation of these

values is quite simple.

In Chapter V, an approximate method is derived for finding the

frequencies of a system loaded with concentrated masses, when the

unloaded frequencies of the original system are known. This method

has been introduced previously by D. Young (11):: and applied for the

fundamental mode only. The present method differs from that

presented in (11) in the sense that there is no trial and error solution.-

necessary and also it is applicable for higher modes. Some results by

this method are compared with results from other chapters and agree-

ment is found to be very good.

Historical backg round:

The earliest work done on beams with rotatory inertia of load

apart from Rayleigh's work, seems to be that of R. M. Davies (1-4).

In his papers, Davies considered a uniform cantilever beam with a load

at the free end. The effects of shear deformation and rotatory inertia

of the beam are included in (4). R- H. Scanlan (5, 6) introduced the

effect of rotatory inertia of loads by the usual method for lumped

systems, obtaining a matrix in terms of displacements and angles.

The same work was further investigated by H- E. Fettis (7) who obtained

a variation of about 46% on the second mode of a wing when rotatory

inertia of the engine was included. R. F. S. Hearmon and E. H. Adams

(8) employed Rayleigh's approximation to the case of a loaded vertical

strip to {include the effect of rotatory inertia of the load. References (9)

through (17) deal with concentrated and distributed masses on beams,
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Numbers in parentheses refer to the Bibliography at the end.



neglecting rotatory inertia of the loads. So far, no general solution

seems to have been presented for loaded beams and plates considering

the rotatory inertia of the loads except in (5,6). It is to be noted that

in (5, 6) the matrix is of higher order due to the use of slope functions

as separate unknowns. Also, it should be pointed out that the accuracy

of the results in lumped mass systems depend on the manner in which

the mass distribution is assumed, as shown by J. P. Ellington (29).

This is not necessary in the present method.

Plate
 

Considerable work has been done on vibration of plates but very

few publications were found on rotatory inertia effects of masses on

plates. A brief bibliography regarding the effect of engine mass on wing

vibration may be found on page 361 of (6). G. B. Warburton (18) gives

a detail analysis of vibration of uniform plates together with a long

bibliography and B. B. Raju (19) gives a fairly complete bibliography of

important publications about variable thickness plates. R. E. Roberson

in (20) and (21) analyses the vibration of uniform circular plates with

the help of Dtrac 6 function to represent the attached mass at the center,

the former one for a free plate and the latter for a clamped plate.

W. F. Z. Lee and E. Saibel (12) consider the case of a simply supported

circular plate with a mass at center and obtain the solution in terms of

the normal functions of the plate which are Bessel functions. J. Hansen,

E. Warlow-Davis and J. Taylor (28) illustrates an interesting way of

analyzing experimentally the effects of engine mass on the flexural and

torsional vibrations of a wing. This includes the effects of weight of the

engine and also its rotatory inertia.



CHAPTER II

GENERAL THEORY

(a) Plate

From classical theory, for a uniform plate,

D v4 + h 52‘” — (x t) (1)w p "B—tz— - Cl . Y .

If there is no external load q = O and Equation (1) reduces to

52w
D V‘ + h = 0 2

W p ‘5? ‘ ’

The general expression of plate vibration, including rotatory inertia

and shear deformation of the plate, is given by R. D. Mindlin (22) as

2 3 Z 2

 

This equation may, perhaps, be solved by a direct application of the

Ritz method or the equivalent energy equation may be derived and solved.

However, when the plate carries attached masses, it is convenient to use

energy principles; otherwise, generalization to an arbitrary number of

masses is not easily affected. Following R. D- Mindlin (22), the

secondary effects due to rotatory inertia and shear deformation of the

plate will be neglected in the following discussion. 1

, From (23), the increment of potential energy of a plate element

during vibration is given by

.55st <§—:¥—>2+ <3§¥>2+ asses
h h

2

<z<——

- —2

+ 2(l-v) ($53!;ng ] dxdydz; -



E {h(x.j)}3

12(1-vh

 Integrating the above equation with respect to z and denoting

by D results in

 

2w 2w Zw

5-[5ffD{(fi—lz+(%2—)z+2v(§xz)(§yz)

52w 2 (4)

2(1-V) (m) 1 dx le

Equation (4) is quite general when deflections are small and lateral

dimensions of the plate are large compared to the thickness h(x, y).

Consider w = ¢(t)W(X, y) (5)

Substituting in equation (4)

 

Z Z Z

-—mD{<<%—‘Yz—>Z+<%—WT may?”

52W (6)

+ 2 1- 2 ’- dx d( ”(B—E3) } ¢ _ 3”]

Considering harmonic oscillations, assume

¢(t) : Sin pt and W(x, y) = E E AmnXmlx) Yn(y) (7)

m=l n=l

where X and Y are the normal functions of the corresponding uniform

beams in'the respective directions and m and n are corresponding mode

numbers. Substitution of Equation (7) into Equation (6) gives

dz- sz
=;.[ffn{(m:5”:15Arm—(13:59Yn)2+(70:51:51.A.mnxmn)z

+2 (‘5
Vm=1n=l

Amn—zm—Yn)(m§121AmnXm—;9—)

+2(1-v)(m°5 5 A dxm dY (8)
__ z

=ln=1 mu (1;: dy__n_) } Sinz pt dxdy]



If a virtual displacement is taken in the form

6 W(x, y) = 5».inin (9)

the virtual work done by the elasticity forces becomes

a v
5Ue = -O-A_-j 6A”

co co dem dzx1

— - [ND { (1.31.31 Amn —z-d?{ Y) (7Y3)

+( '5 °5AmnXd—TZYHHX‘f-l-{Qq
m=1n= l m dy 1 dy

2

+v(m%lng£°lAm g—EEIzn—Yn)(X-d—,1—)

co an szn
+ ugh?1 n§l Amn Xm ) (-—21-dx Y) (10)

a» co 'dX dY dX- dY-
- _m_.n. _1 __.1 ' 7- . ..+2(1 vumzzl n§1 Amn d; dy ) (dx dy ) 15m pt dx dy]¢5A1J

The inertia force of an element dx dy of the plate is

z

- p h-gtjw— dx dy. = [ p p2 h W (X, y)dxdy] Sin pt.

Therefore the virtual work done by the inertia force of the entire plate

is

°° °° . 2

= [p psz h (mg, n§1 AmnXmYn)Xin 6Aijdx_dy,] sm pt (11)

When the plate is free from attached masses, the total virtual work done

by these forces equals zero, from which the natural frequency equation

is found to be*

 

2:: .

This same equation has been derived by Ritz method in Appendix B, for

the purpose of verification.



a: co dZX dei 0° 0° dZYn

H D[ {mél n§1 Amm de YnH—T Yj) + (1.1231 nEIAmnXm ayz)

Y! m3 on d-’-XEa sz;

Xiddy H + V1<m§1n§l Amn dx Yn) (Xi dy )

A X dZYn dei

H
M
S

+ (m
 

“
M
B

Yj)1

  

0° 0° de dY ° dY'

= ’- ffh( 5 c5 A X Y)(X-Y.)dxd (12)
p p m=1n=l mn m n 1 J - Y

It may be mentioned that when the plate is of uniform thickness, D and. h

are constants and as such, Equation (12) can be evaluated quite easily:

However, it is preferred to leave the equation in its present form to

achieve conditions of generality in subsequent developments.

Let there be k number of masses attached to the plate at points

(xhyl), (xz,yz), ----- , (xk,yk ), having masses M1, M2, - - - -, Mk

and moments of inertia. (11x: 11y), (sz, 12y), ----- , (Ikx, Iky) where

the first subscript k denotes the position of the masses and the second

subscript x or y denotes the axis about which the moments of inertia

are calculated. The total virtual work done by the masses, due to trans-

latory motion, is given by

k

6U = k1; [M gig—.5

t _ k W]X=Xk,y:Yk

, k a. .. (13)
= E

p k:]_{ [Mk mél 11g]. AmnXmYn][X1Y.j] 6 Alj Sin2pt}x:Xk, yzyk

To include the effect of rotatory inertia, it should be noted that the masses

will have components of rotation about both x and y directions and the

net effect will be rotation about some intermediate axis. It is shown in



Appendix A that the virtual work done by two torques in the x and y

directions, on two virtual angles 6 (£3?) and 6 (T) respectively, is

aw
Tx 6 (T) - Ty 6 (T). For k number of masses, the virtual work

due to rotatoryyinertia of the masses is given by

 

k ow
aur: 121 [Tkx 6(—5-) - TkyM—g—H

k 52 aw aw az aw 6w
2 - Z

k=l[IkX-B—t-z (T) 6 (T) + Iky atz( ax))6 (T1?)]x=xk'y=yk

k dYn dY
: ___J_

p k§1[(1kxmz_1 n21 AmnXmTy ) (X > ‘5 AiJ

°° Slim d_X.i . .. - z
+ (Iky mEI n21 Amn dx Yn) (dx YJ) 6 A13] S1n th=Xk,y=yk

(14)

Adding all the virtual works from Equations (10), (11), (13) and (14), and

equating them to zero, the final form of the frequency equation is found

to be

E co co de dX1

12(l-vz) ffh3[(m§l r112;A ndi Yn)(d Y3)

m dZY.

+(m2-2-l nz=lArnnXm gym1dyh)

co dZX dZY-

E1 Amn de Yn) (Xi dyg )

dz'X

+(212AmaniyanlejH

dY
 

Q

+Z(l-v)( 2 "2°: A de dYn
m=l

n=1 mn dx )6?ch filldxdy

_ 2 a) co .

+ kél Mk(m§l nél Amnann)(Xin)}X=Xk.Y"-Yk

1‘ co dYn
+ 151i 1kx(mz:.__1 n21 AmnXm—dy )(X —-J)

. (15)
m on

+ I A 9511‘ Y n) (d——X1 Yj)}_ _]ky (1,331 31 mn dx x-Xk,Y-Yk
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Eh3 . .
where D has been replaced by 12” v ) . Th1s 15 the general frequency

equation for a variable section plate with any number of masses attached

to the plate at arbitrary points.

(b) Beam

In this part, as with the plate, the usual assumptions are made

regarding Hooke's Law, isotropy and small deflection theory. The

general equation contains the effects due to rotatory inertia of the beam

and also some part due to shear deformation. These secondary effects

are included as in Timoshenko beam theory excepting a few secondorder

terms including the fourth—order time derivative function which are

neglected. The validity of the resulting equation, for a uniform beam,

is compared in Appendix D with that of (23) and they are found to be

exactly the same. The strain energy of bending of the bar at any instant

13

E L a2 I ‘
v = "'2“ IOIbIMIEfi—IZ d; (16)

Let Y = <I>(t) Y(x)

Considering harmonic oscillations, assume

an

¢(t) : Sin pt and Y(x) = :51 An Xn

where Xn are the normal functions of the corresponding uniform beam.

Thus

(D

y = (n‘El Aan) S1n pt (17)

Substitution of Equation (17) into Equation (16) gives

_. E °° dzxnz -2
V- T{I:Ib(n§1An'd—x[—) d3iSin pt
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Taking a variation 6 Ai in one of the coefficients Ai of y, the virtual

work done by elasticity forces during the virtual displacement is given by

6U — 6A — E{fLI (E A dZX‘IdZX‘dxb' Z t a A- (18)
e—-5Ai 1" b “3373? inhp 10 n=1

The inertia force of an element dx of the beam at any instant is

2

-pA g—fi- dx. So the total work done by the inertia force on a virtual

displacement 6y (= Xi 6Ai Sin pt) is

L 5’-

fa U1: - (pA-a—E’de) (Xi 6A,) Sin pt

z p p2{ fol“ (A $21 Aan)Xidx I smz pt 6A, (19)

From Equations (18) and (19), the frequency equation for a variable thick-

ness beam, neglecting rotatory inertia and shear deformation of the beam

is given by

L dZXh dZXi

n dxz) dxz

 

a) L on

A( g Aan)Xidx = E f0 Ib(n§1 An 1 dx (20)pzpf
0

Let there be k number of masses attached to the beam at points

x1, x2, - - - -, xk, having masses M1, M2 - - - --, Mk and moments of

inertia II, 12, - - - Ik’ The virtual work done by the masses during

translatory motion is

k 52

6 Ut : - k§1[MkB_t¥- (6y)]x=x‘k

k

- 2 2 M 35
-p k=1[ k(n=

1 Aan)Xi]x:Xk Sinz pt 6A1 (21)

The virtual work done by the rotatory inertia forces of the masses

is

 

f

‘S ee Appendix C



12

6U — >1; [(1 #53 a 5”
r"-kzl kxt) (Tn x=xk

2 k dX dX; . z
:[p 1321 { Ik(nE1 An—E—dx ) } ] sm pt 6A, (22)

x=xk

Rotatory inertia torque of an element dx of the beam is,“

529 53

'prW—dx"plb 53%”!
(23)

Therefore, the virtual work done is

3

”Huh“: Ibs‘xbsiz 5 (1%”

L on dX dX' .

mam. IbIAAn-a-f-I .1; deszpt 6A. <24) 

Shear torque in an element dx of the beamg"

E a az

To 6.7% Ti.”1"

So the virtual work done is

is

1

6Usb= -p —§—GIOLBB—(Ibg—t’é) 5 (Tile) dx

pZ k'G-E-——[f:T (Ib nE 1Aan)----—d-l—i dx] SinZ pt 6 A1 (25)

Adding all the virtual work from Equations (18), (19), (21), (22), (24)

and (25) and equating it to zero, the frequency equation is obtained as

2[ {LIME AX)X-dx+ :{M(% AX)X'i
ppo n=1nn1 k=1 kn=lnn1 x=xk

k
m an dXi L w dxn dXi

2_:1{Ik(n§1An dx) dx i + p "olb(n§lAnndx—’dx dx

x=x1<

a
+P'ETE'36 lid—ain'bnmE 1Aan)d dx]

a, 2 z

=E fi‘IbInglAn ‘gznjng-dx (26)

 
>’

i<S ee Appendix D
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This is the general frequency equation for a variable thickness beam

with k number of masses attached to it at arbitrary points. It is used

in its complete form to evaluate the frequencies of a beam in Chapter

III and verified by experiments in Chapter IV.

(c) Uniform beam
 

When the beam is of uniform cross section, Equation (26) reduces

to

k

pz[pAfLOEAnn-X)de+k2{M(nEAnn-X)X
0 n=1 k( -1 1x:xk

k dX
Xn d):

+kz=l {11531 An xd) }

x=Xk

dX E dX-t
__d_n_ 1‘ .._...a And—X34

+prfL(rE-31An ) dxdx+p1b kIG f:(1§]‘Adx)dx dx]

dZXi'I }
-E1 IL? A dx 27- bi 09,21 mm)? "

When the rotatory inertia and shear deformation of the beam are neglected,

Equation(27) reduces to

 

pZ[pAfL(°>5 AX )X‘dx+ >1“: {M (‘5 AX )X}
o n=l n n 1 k=l kn=l n n 1 x=xk

k

+ k§1{'1k(§1AnE§_n)dxi} 1— n— x x=xk

L ’- d
EIb f0 (2 Andan) dxgdx (28)

Equation (28) is used in Chapter III to find the frequencies for three cases

of a simply supported beam. The frequency values are tabulated and

plotted in terms of a reference parameter. Actually, the expansion of

the series in Equation (28) was carried up to 12th modes, even though

the values given in the tables are up to 6til modes. This was done with



14

a view to improve the accuracy of the lower modes. The secondary

effects of rotatory inertia and shear deformation of the beam are

expected to be small because of the length of the beam.

Due to orthogonal property of the normal modes, Equations (27)

and (28) will simplify considerably, but that aspect is shown in each

case separately.

Also it may be mentioned that Equation (28) can be derived directly

from Equation (15) by assuming Yn = Yj = 1, v = O, Ikx = 0, and

Iky = 1k.



CHAPTER III

NUMERICAL EXAMPLES

(a) Plate

For this part, .a square plate was used, as in Figure 1. The thick-

ness at the middle was 0.125" which decreased gradually to 0. 0625"

at the edge. This was the same plate as model E of B. B. Raju (19).

 

x ‘T

 
0
.
1
2
5
”

1

     
 

Figure 1. Variable thickness plate.

To facilitate computation, this part of the analysis is divided into

two sections. The first section contains the evaluation of the natural

frequencies of the plate and section 2 contains that of the plate with mass

15
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attached. It may be mentioned that in (19), finite difference method was

used to find the natural frequencies of the plate.

(1) Without attached mass. To find the natural frequencies,
 

Equation (12) was used. The plate was assumed to be simply supported.

Taking only one term of the series gives,

 

 

 

dZX, de sz, dZY

HD[{(A11—;2'1Y)(—5—2-x11Y)+(A11X1—71‘1(X1(11)}

de, dZY sz dZX

+ ”1(A11Tz—Y1)(X1d—y'z—l’) ‘1' (P*11)(ld)l (le YIIi

dx, dY, dX, dY,

= P2 p If h IAIIXIYII (XIYII dx dy (29)

For this case X1 = Sin 1T: , Y1 = 51,,ng

Substitution of these values in Equation (29) results in

4 .

1T E 3 , 2 TTX , 2 1Ty , z TTX , 2 fly

((va) [ If h {2 Sin _a S1n —a + 2 v(S1n —a Sln _a ) 

+2(1—v) C0321): C0523 1 dx dy

a a

=pzp{fthinz-1-EESinz¥}dxdy (30)

Let ho be the thickness at the center of the plate and assume—h —'y.

0

Then 7 has the following relations:

IfX§Y_<_a-x 7(X.Y)=(%-+-5

If y: x: a-y va. y) = (%+ %>

0. 5 5 7 _<_ 1.0

The integrals in Equation (30), as well as others to come, were

solved in the digital computer with program. EAI-M with 48 divisions
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between the limits. With this program, an accuracy up to about 7 places

has been realized. This program uses quadrature formula (25) Q66,

obtained from a 62!} degree polynomial that fits the f(x) values at the

seven points indicated, by integrating over the six panels, between

x0 and x6. Actually, 49 points were used between limits, whereby eight

cycles were necessary to cover the complete range. The following

values are shown, as representative examples, that were used for

Equation (30) .

1’°2—"y ’3'2—1” 5X =010 000
10 Sm a 10 v Sm a dIaIdIaI . 3 499 4

l 2 EX 1 3 2111‘. 35 X : O 1 1

Io Cos a f0 ‘Y Cos a d(a)d(a) .05392394 (3 )

1 -"Z “Y 1 ’ Z LX 1‘. X :2

IO Sm —a f0 7 Sm a d(a)d(a) 0.198397736

In (19), the frequency p is expressed in terms of a reference parameter

_ ] Do h 1,
p0 — W W e e

_ E1193

D0 ‘ 12(1-v I

With the help of Equation (31) and taking v = a} the first approximation to

the fundamental frequency is found to be

pZ/poz = 2. 1164356114

or p/po = 14.3582752

The experimental value for this case is 13. 78, a variation of only

4. 19 p. c. Next, nine terms of the series in Equation (12) were taken

for i = 1,, 2, 3 andj = l, 2., 3. To get the non-trivial solution, the

determinant of the coefficients must vanish and this gives a determinant

of the form I[A] - A [B]| = 0 where x = 1%, [A] is the matrix of the

elements on the right hand side of Equation (12) and [B] is the matrix of
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the remaining part. The two matrices are shown in Table 2. Table 1

contains the frequency values obtained through M-Sprogran of MISTIC.

Table 1. Natural frequencies of plate.

 

 

Mode p/po from p/po from Extrapolated p/po from

6 terms 9 terms p/po (19)

1 13.794 13.738 13.693 13.568

2 35.065 34.731 34.464 33.195

3 35.065 34.731 34.464 33.195

4 55.234 55.234 55.234 52.279

5 73.935 71.665 69.849 66.121

6 70.479 70.479 70.479 68.001

7 88.909 83.339

8 88.909

9 124.850

 

(2) With attached mass. For this part, a mass was assumed to be
 

located at x =(2/3)a and y =(2/3)a. This point was chosen with a view to

get higher rotatory inertia effects for all modes under consideration.

Equation (15) is the governing equation. Assuming the load to be fixed

perpendicular to the neutral surface of the plate, Ix = IV, the rotatory

inertias about x and y axes.

zz

Letlx=I = a_r_n_2[3_3_ wheres:
 , [3 is a non-dimen’ional

 

Y 4
*

inertia parameter , m is the mass of the plate and M is the total attached

2t a2
mass. In this case mp = g p.

___.

as

‘ This notation came from the beam analysis, where B = R/L, R being the

radius of a disc fitted on the beam and L is the length of the beam.
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Substitution of the above values in Equation (15) gives

2 Z
E3 1 3 m a, d Xm dZXi . ,

12 PP (l-vz) “2J6 7 { (m§1 n§1 Amn dxz Yn) ( dxz Y3)

m m dZYn sz'

+ ‘mél £31 AmnXmV) ”‘1 .172"

w o dZXm ,sz- co co sz . de' .

+ ”(14.21 .ElAmnW Yn’ “1.1—er “mil .331 AmnXm—d—yfI ”$341)

. 0° 0° de. dY dX‘ dY- x y
_ , __ J _J __; .. _

+2“ v);(IIT§1.nZ—_31 Amn dx dy ) (dx dy ) } d(a)d(a)

=~[ fgfgy (mil n; Amn XmYnHXiYfidq-Ng)

a) m

+§-{ (1(le rg AmnXmYnHXin)

 

dfizaz w w dYn _ de

+ 4 (m‘El r531 AmnXm dy ”Xi dy )

2 z - (32)
dB a 0" °° de; ‘ dXi

+ 4 mél n§1 Am“ dx Yn” dx YJ) } 35335.3“-23

mTTX

  Assuming Xm = Sin , Yn = Sin nTry 9 expanding the series to any

number of terms and equating the determinant of the coefficients to zero,

a matrix of the form I [A] - X [B]! = 0 is obtained. This, in turn, was

solved by M-S program of MISTIC. For this case, a 9 terms expansion

was used. It is to be noted that the 9 term expansion is quite small for

a problem of this type. But as each integral of Equation (32) used to

take a long time (about 4-5- minutes of machine time) it was decided to be

satisfied with 9x9 only. An extrapolation (ha) is used to improve the

accuracy of the results. 3

In Equation (32), the first term of the right hand side and the complete

left hand side has already been evaluated in section 1. To find the other

values, the following values of the parameters a. and (3 were used.

1.0 and 2.5a

l3 0.1, 0.2, 0.3 and 0.4
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Tables 3 and 4 contain. the p/po values, some of which are compared

with the experimental values in Table 16.

(b) Cantilever beam

In this part of the investigation, a cantilever beam, as in Figure 2,

was used. The complete analysis is divided into three sections.

Sections (1) and (2) contain the evaluation of the natural frequencies of the

beam, without and with corrections for rotatory inertia and shear

deformation of the beam respectively. To get reasonable variations due

to these correction terms, the length of the beam was purposely made

\\\\\\\\\
{in/Attac

hed/m ss

\ z; (B) (A)

k
\\\\\\\\‘.._—— ,3.

L
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T
.
.
.

 
 

  

 

Figure 2. Variable thickness cantilever beam.

short (20"). The results are shown in Table 5. -In section (3) a mass is

assumed to be attached at a point three-fourths the length of the beam

away from the fixed end. Tables 6, 7 and 8 show the values of the fre-

quencies for different values of o. and 6. , In. Figure 3 the above values

are plotted to show the effect of 6 on the frequencies. Numbers on the

right give the corresponding mode of vibration.

(1) Natural frequency without rotatory inertia and shear deform-
 

ation. For this case, Equation (26) reduces to
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Table 3. Frequencies of plate with attached mass.

 

 

 

Mode 6 terms 9 terms Extra-

expansion expansion polated

(1:10, 6:01 1 7.39 7.35 7.32

2 23.08 22.68 22.36

3 32.25 32.25 32.25

4 47.55 46.55 45.75

5 61.98 53.20 46.18

(1:10, [3:0 2 1 7.36 7.33 7.31

2 21.08 19.88 18.92

3 25.00 24.27 23.69

4 38.44 34.99 32.23

5 48.38 42.56 37.90

(1:10, 6:0 3 l 7.32 7.29 7.27

2 17.96 16.03 14.49

3 18.85 17.69 16.76

4 33.25 30.79 28.82

5 45.95 41.30 37.58

(1:1 0, 6:0 4 1 7.25 7.22 7.20

2 14.83 12.97 11.48

3 15.03 13.67 12.58

4 31.26 29.43 27.97

5 45.15 40.76 37.25
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Table 4. Frequencies of plate with attached mass

 

 

 

Mode 6 terms 9 terms Extra

n n

exp — exp — polated

(1:2 5, 6:0 1 1 55:05 5.02 5.00

2 21.28 20.58 20.02

3 28.20 27.83 27.53

4 42.09 38.90 36.35

5 50.74 45.39 41.11

a: 2.5, 6 =0.2 1 5.03 5.00 4.98

2 16.82 15.03 13.60

3 18.09 16.92 15.98

4 32.59 30.06 28.04

5 45.82 41.23 37.56

d=2.5, 6: 0.3 1 5.00 4.98 4.96

2 12.70 10.87 9.41

3 12.72 11.67 10.83

4 30.12 28.43 27.08

5 44.80 40.47 37.01

0.: 2.5, 6:0.4 1 4.95 4.93 4.91

' 2 9.38 8.44 7.69

’ 3 10.04 8.84 7.88

4 29.39 27.93 26.76

5 44.56 40.33 36.95
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p201: A (n21 Aan)Xidx = E 1:11) ($21 An (1:?) 22:23 dx (33)

Here,

D 44,42 - 313), A =9?” -%)Z,1b,= $9 -31534

Now let

Xi = (195,: gig—(L kip gill—>519”: 31: = z and Xv = 64 pity}

With these notations, Equation (33) becomes

1:12-21:11}; Ann) 4142 = xv 132-214 { n21 An<1<nL1z ¢n"}(kiL)2¢i"dz

(34)

The primes on the cps indicate differentiation with respect to (knx).

. Expanding the above series, any number of modes may be evaluated.

For convenience, only nine terms were taken. It is interesting to see

the effect on convergence of the number of terms taken of the series in

Equation (34). Taking only one term gives

I;(2-z)z¢.zdz - X v(k.L)‘ I; (z—z)*(¢,")zdz = 0

Here (le)‘ = 12.3623643

l

(k,L)“ fo(2—z)‘ (¢1")Zdz = 137.188301

and f;(z—z)2¢1~’-dz = 1.448431%

from which XV: 1.05579794 x 10"2

and p1: 1.21652099'J —E—;
pL

This is a variation of 5. 2 p. c from the result obtained from nine terms

expansion. By taking two terms of the series in Equation (34), the result
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was p1 = 1.1574033 5] —-§4-— and the variation is reduced to 0. 09 p. c.

pL

In Table 5 the frequency values are given in terms of a reference para-

mater Pr = 0. 87900 [TIE—.24— , which is the fundamental frequency of a

one inch diameter uniform cantilever beam. '

(2) Natural frequency with rotatory inertia and shear deformation.

In this part,it was assumed that 21:; and k' = O. 847, as given in (27).

Values of k' for other cross sections may be obtained from the same paper.

With these, Equation (26) reduces to

co 0.06481823101 a»
I; (2-z)z(n2:31 An¢n1 chidz + L2 f;(2-z)4 { uglAnanmn'} (1314.31.12 

- 0. 196772924
. L2 f;(2-z)3 (£51 An¢ n)(kiL)<)>i'dz

1 a: n u

= xv1012-21‘1nzgl An(knL)z¢n 1 (14141241 dz (35)

From Equation (35) it is clear that the effect of rotatory inertia and shear

deformation is dependent on the length of the beam, as is well-known.

In case of simple supports, knL = rm and as such, the length term in the

denominator of the second term on the left is replaced by the corre8ponding

wave length term, as in (23).

The second and third terms on the left are the only additional ones

and substituting these terms, the following values of p/pr, as given in

Table 5, were :obtained.

(3) Frequency with mass, rotatory inertia and shear deformation.

In this section, the same beam as in Figure 2 is used with a mass at

x = }; (arbitrary). For this case Equation (26) becomes
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p"'[410"-6 (2-—)2(>3___ 1n4,4144de + {M(>3 11.13.1914

+ I]? ( {10201 An(knL)¢n')(kiL)¢i' } 3L

71—

An(knL) ¢nv)(kiL)¢i'dx 

110 254°”+ z{1———:‘}f(2-L)(n§_1024L 1

E L a)

- 2615152k::<'G Io (Z'E)3(n§1An¢n
)(kiL)¢i'dx

 

_ $142 [0 (2' £19,121 "°‘n(1<nL)?"l’n")“(ii-9291.51X (36)

For the beam in question, mb = mass of beam — 48 

_ E . _ M. _umbLz 2 x_

Let Xv-W, Cl—‘mb‘ , I— 4 [3 and L-z

With these notations, Equation (36) reduces to

[1312-2121n21 An4n14idz +-:- {a<n"2:14n4n>4i + °—‘3— (2 An<kL14n'1<k,L)4 1

 

 

31:.

4

0.0 on

_0. 1 6772 24 o

9L. 9 I; 12.-21%;; An4n11kiL14i'dz]

- N1 f;(2-z)‘ { ngl An(knL)Z¢n"} (kiL)Z¢i"dz] = 0 (37)

It is seen that Equation (35) is same as Equation (37) except that two more

terms are added to the latter equation. Equation (37) was solved for the

following values of o. and 6.

a = 0.5, 1.0, 2.5, 5.0, 7.5 and 10.0.

6 = 0.4 and 0.5.
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Also, only nine terms of the series in Equation (37) were taken.

In Figure 3 the ordinate represents the ratio of the loaded frequency to

that of the unloaded one. It is seen that the second mode is the one

most effected by change of 6. The fifth mode values were not plotted

primarily because it was not possible to verify these values experimentally,

and secondly, there seemed to be some small error in the values. This

was concluded from the fact that the values were larger for a = 7. 5 than

a = 5.0 and again decreasing for a = 10.0, which does not seem logical.

The variation is very small and can be attributed to accumulation error

from the digital computer.

(c) Uniform beam

In this section, three cases of a simply supported beam are investi-

gated. The expansion of the series in Equation (28) was carried out to

the twelfth mode. But the values given in the tables are up to sixth mode

only. Rotatory inertia and shear deformation of the beam are neglected in

this section.

The three cases investigated are:

(1) A mass at mid-point of the beam.

(2) Two equal masses at quarter points from the ends.

~ (3) One mass at quarter point from one end.

(1) A mass at mid-point of the beam (Figure 4a). For this case,
 

 

. . . L , iwx

Equation (28) 18 used With xk : ~2- and Xi = Sin L

Since IL X.X.d - I: f . _ .

o 1 J x - 2 or 1 — J

= 0 for i 1: j

and L dZXi dZXj 1417‘ . .

0 fori1=j
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Table 6. Frequencies of cantilever beam with attached mass,

 

 

Parameter Mode p/pr from p/pr from Extra-

6 terms 9 terms polated

expansion expansion

c1=0.5 6=0.4 1 0.793 0.793 0.793

2 3.066 3.032 3.005

3 10.568 10.469 10.390

4 14.750 13.846 13.123

5 28.539 26.928 25.639

0:0.5 6=O.5 1 0.764 0.763 0.762

2 2.663 2.628 2.600

3 10.525 10.370 10.246

4 14.312 13.492 12.836

5 28.426 26.872 25.629

a=1.0 6=0.4 1 0.619 0.619 0.619

2 2.345 2.309 2.280

3 10.102 9.974 9.872

4 14.015 13.210 12.566

5 28.186 26.519 25.185

0:1.0 6=0.5 1 0.591 0.591 0.591

2 2.012 1.981 1.956

3 10.066 9.932 9.825

4 13.789 12.970 12.315

5 28.115 26.476 25.165
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Table 7. Frequencies of cantilever beam with attached mass.

 

 

 

Parameters Mode p/pr from p/pr from Extra-

6 terms 9 terms polated

expansion expansion

a==2.5 6==0.4 1 0.420 0.420 0.420

2 1.565 1.539 1.518

3 9.727 9.593 9.486

4 13.549 12.751 12.113

5 27.917 26.250 24.916

0:2.5 6:0.5 1 0.398 0.398 0.398

2 1.334 1.310 1.291

3 9.727 9.579 9.461

4 13.450 12.673 12.051

5 27.889 26.165 24.786

0:5.0 6=0.4 1 0.305 0.305 0.305

2 1.127 1.106 1.089

3 9.586 9.480 9.395

4 13.365 12.602 11.992

5 27.847 26.109 24.719

(1: 5.0 6=0.5 1 0.288 0.288 0.288

2 0.959 0.942 0.928

3 9.586 9.466 9.370

4 13.323 12.560 11.950

5 27.832 26.024 24.578
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Table 8. Frequencies of cantilever beam with attached mass.

 

 

Parameters Mode p/pr from p/pr from Extra-

6 terms 9 terms polated

expansion expansion

o.=7.5 6=0.4 1 0.251 0.251 0.251

2 0.928 0.910 0.896

3 9.558 9.420 9.310

4 13.309 12.560 11.961

5 27.850 26.137 24.767

o.=7.5 6=0.5 1 0.237 0.237 0.237

2 0.788 0.774 0.763

3 9.551 9.416 9.308

4 13.280 12.518 11.908

5 27 . 848 26. 066 24. 640

c1'-'10.0 6=0.4 1 0.219 0.218 0.217

2 0.805 0.791 0.780

3 9.522 9.409 9.319

4 13.280 12.518 11.908

5 27.830 26.066 24.655

a=10.0 6=0.5 1 0.206 0.206 0.206

2 0.685 0.673 - 0.663

3 9.522 9.409 9.319

4 ' 13.252 12.489 11.879

5 27.804 26.024 24.600
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Equation (28) reduces to

 

 

A'L <9 n17 , in 0° n17 nTr 111' in
z 1 . __ __ _.p[pA( 2 )+M(nZ:1 An Sin—Z—) S1n-2— +-I(nE1AnLCos 2) LCOS 2 ]

-4 4
1 77

- EIb A121? (38) ~

' z 4

Le. a=1\_4,1=21n_hb_gz andpElmz, (39)
mb 4 Zmbp L

With these notations, Equation (38) reduces to

 

Ai 0° . mt , in 172062 0° nTr , iTr‘

[_ +c1 (ngl AnSin 2 )S1n—2— + 4 (nélAnnCosT)1Cos 2]

= 114Ai (40)

For each value of i in Equation (40), the corresponding vibration

mode of the beam is obtained. The following values of 0. and 6 were used

in Equation (40).

o. 0.5, 1.0, 2.5 and 5.0,

6 0, 0.1, 0.2, 0.3, 0.4 and 0.5.

In Figure 5 the ratios of kL values for the loaded beam to that of the

unloaded beam are plotted against 6 values for only three values of 0..

The function kL for the loaded beam is defined by the following relation

T3

kL =4J_n.‘.§13.1‘_ ="412T1 (41)

b

where x are the eigenvalues of Equation (40). It should be noticed in

 

Equation (40) and Figure 5, that when the beam is vibrating in odd modes

e. g. i = 1, 3, 5 etc. , the mass does not rotate and inertia terms drop out

of Equation (40). For even modes, the mass only rotates and does not

move up and down. As such, the terms with o. in Equation (40) drop out.

From (23), for an uniform beam,

2: E1]£2z 2

4 _ P _ P mb
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and this is the same relation as in Equation (41). For a simply supported

uniform beam knL .= n77. As such, each kL values obtained from Equation

(40) were divided by 7177 to plot Figure 5.

To check the convergence of the series in Equation (40), one term of

the series is taken with i = 1. This gives

X1:(%’+Q)

1

°r 9‘4 ‘ T‘ 4.17777:

The following are the values of le for different 0.

 

 

0. 0 0.5 1.0 2.5 5.0 7.5 10.0

le 77 0. 84089777 0.75983677 0.63894377 0.54910077 0.577 0.46713877

(le)12 17 0. 84012577 0. 75860177 0. 63733077 0. 54745577 0.49840877 0.46560477

p.c 0 0.092 0.163 0.253 0.300 0.319 0.329

variation

 

As may be seen, the error gradually increases with increasing 0. because

with higher 0., the mode shape of the beam deviates more and more from

a sine curve which is assumed here in this case. This was verified from

the eigenvectors.

In this problem, it is 'seen that the odd and even modes separate

out. So,to get two terms of the series in Equation (40), it is necessary

to use n = 1, 3 and i = 1, 3. With these, the determinant takes the form

[(i-+o.)-)\] (-c1)

1- a) [(i-+a) - 811]

The following are the values obtained from this determinant.
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o. le p. c variation k3L (k3L)lz p. c variation

from (lehz

 

0.5 0.840243« 0.014 2.712914 2.69809n 0.549

1.0 0.758790« 0.025 2.643974 2.623534 0.779

'2.5 0.637576n 0.039 2.58369w 2.55836n 0.990

5.0 0.5477064 0.046 2.55870« 2.53104" 1.078

7.5 0.4986514 0.049 2.54967« 2.52166n 1.111

10.0 0.465838w 0.050 2.545024 2.516654 1.127

 

As may be seen, the series converges very rapidly and even one or two

terms of the series give fairly accurate results for this problem.

. Next consider the even modes. In this case Equation (40) becomes

. 2 2

[éL+1T_9_E_(%

2 n=

n77 , 177 _ ,4

4 Ann C05 —2') 1 COS '22-] 7- X 1 A1 (42)

1

Taking one term of equation (42) gives

[%--+ “1683] =16x (43)

In this equation, the frequency depends on both <1 and 6. . This is because

the rotatory inertia I of the mass depends on both (refer to Equation (39)).

Taking a. = 1.0, 6' = 0. 1 and 0. 5, the following values are obtained.

 

 

0. =1.0

p 0.1 0 5

k¢L. 1.911934 1.28138n

(kZL)12 1. 90493“ 1.18667“

p. c variation 0. 367 7. 981
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It may be seen from the above values that rotatory inertia changes the

 mode shape considerably from Sin which is assumed by taking only

one term. This is the reason for the high difference of 7. 981% for

6 = 0. 5. From this, one can conclude that for high rotatory inertia, the

convergence of the series is slow and needs more terms of the series.

This situation was encountered during the experiment with plates

[Chapter IV, Part (a)].

Taking two even terms of the series in Equation (42) the frequency

equation is obtained as

(«1)- + 177-662 -16).) (-2 773683)

¥ . 0 (44)

(-2172682) (4— + 4 772862 — 256).)

For a. = 1.0, 6 = 0.1 and 0. 5, the following'values were obtained for kZL

and k4L.

 

 

<1 = l. 0

6 0.1. 0 5

kZL 1. 9083977 1. 2295077

p. c variation from

(kzL)12 0.182 3.609

k‘L 3. 5308477 2.8906177

(k4L112. 3. 3762577 2.6421077

p.c variation 4.579 9.41

J

The variation of kzL for o. = 1.0 and 6 = 0. 5 from (kthz is now reduced

to 3.609%. This shows that the series is reasonably convergent.

Next, the series in Equation (40) were expanded to twelve terms

and the roots were obtained through the digital computer. Table 9 gives

the kL values up to sixth mode. For this particular problem, the even

modes were most effected by 6. The convergence was found to be quite

rapid and as such extrapolation was not deemed necessary.



Table 9.
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Frequencies of simply supported uniform beam with mass at

center
(loaded kL)

77

 

 

Mode

Parameters 1

 

2 3 4 5 6

a-0.5 (3:0 0.8401 2.0 2.6981 4.0 4.6395 6.0

(1—0.5 6=0.1 0.8401 1.9514 2.6981 3.6286 4.6395 5.1607

G=0.5 (3:02 0.8401 1.8203 2.6981 3.1046 4.6395 4.8164

Q=0.5 (3:0.3 0.8401 1.6569 2.6981 2.8567 4.6395 4.7429

o.= 0.5 6=0.4 0.8401 1.5058 2.6980 2.7466 4.6392 4.7169

a—o.5 6=0.5 0.8401 1.3799 2.6980 2.6920 4.6392 4.7057

0,-1.0 8:0 0.7586 2.0 2.6235 4.0 4.5829 6.0

(1:1.0 (3:0.1 0.7586 1.9049 2.6235 3.3763 4.5829 4.9442

o.=1.0 6=0.2 0.7586 1.6848 2.6235 2.8859 4.5829 4.7503

0:1.0 6=0.3 0.7586 1.4729 2.6236 2.7300 4.5820 4.7137

0:1.0 73:04 0.7586 1.3100 2.6236 2.6702 4.5820 4.7002

(1 1.0 73:05 0.7586 1.1867 2.6236 2.6421 4.5820 4.6947

(1" 2.5 (3:0 0.6373 2.0 2.5584 4.0 4.5400 6.0

a: 2.5 (3:0.1 0.6373 1.7825 2.5584 3.0260 4.5400 4.7900

6: 2.5 8:0.2 0.6373 1.4432 2.5583 2.7166 4.5407 4.7113

0.: 2.5 8:0.3 0.6373 1.2153 2.5584 2.6477 4.5407 4.6939

6:2.5 6=0.4 0.6373 1.0642 2.5583 2.6230 4.5407 4.6916

:1: 2.5 (3:0.5 0.6373 0.9568 2.5583 2.6117 4.5413 4.6900

a= 5.0 6:0 0.5475 2.0 2.5314 4.0 4.5241 6.0

0.: 5.0 73:01 0.5475 1.6308 2.5314 2.8326 4.5241 4.7372

11" 5.0 (3:02 0.5475 1.2477 2.5315 2.6546 4.5243 4.6978

11: 5.0 (3:0.3 0.5475 1.0350 2.5315 2.6196 4.5243 4.6908

0.= 5.0 6=0.4 0.5475 0.9013 2.5312 2.6068 4.5165 4.7018

0: 5.0 (3:0.5 0.5475 0.8083 2.5312 2.6018 4.5165 4.6861
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Figure 5 .

 
Frequency distribution for simply supported beam;

mass at center.
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(2) Two equal masses at quarter points from the ends (Figure 46).

For convenience of calculations, the two masses are assumed to be equal

in all respects. From Equation (28), the frequency equation is given by

 

 

A1 00 , n77 , 177 0° , 3n77 , 3i77

[—Z + d{(n§lAnS1n-—4)S1n 4 -+ (IE1 An51n 4 )sm 4 1

772 062 9’ n77 , 177 0° 3n77 , 3i77

+ —————4 { (I21 An 11 Cos —4 )(1 Cos —4)+(nZ_3__1An n Cos 4 )(1 Cos—-4

= X 14Ai
(45)

Comparable to the last section, when i = 4, 8 etc. the 0. terms drop out

and when i = 2, 6, 10 etc. , the 6 terms drop out. . In the remaining modes

both terms are present.

Taking only one term of the series in Equation (45), with n = i =1,

the first mode frequency equation is obtained as

[i—+c1+—‘B——‘"z;12 1:1 (46)

Assuming a = 1. 0, 6: 0. 1 and 0. 5, the following values are obtained

for le.

 

 

 

c1 = 1.0

(3 0.1 0.5

le 0.75674377 ' 0.69714077-

(lehz 0.75566717 0.69517777

p. c variation 0.142 0. 282

 

In a similar manner, Equation (45) was solved with twelve terms of the

series. Table 10 gives the 51%- values for different values of o. and 6. The

graphs of Figure 6 shows the variation of kL due to variation of 6 for three

values of 0. These values are given only up to sixth mode.



Table 10.

41

Frequencies of simply supported uniform beam with two equal

masses at quarter points.

 

 

Mode

Parameters 1

 

2 3 4 5 6

d= 0.5 6 =0 0.8401 1.5173 2.6981 4.00 4.6395 5.2584

c1= 0.5 6=0.1 0.8376 1.5173 2.5803 3.3935 4.1267 5.2584

c1= 0.5 6 =0.2 0.8303 1.5173 2.2980 2.6640 3.6266 5.2583

a.= 0.5 6 =0.3 0.8186 1.5173 2.0317 2.2254 3.4611 5.2583

a.= 0.5 6 =0.4 0.8032 1.5173 1.8386 1.9433 3.3983 5.2576

o.= 0.5 6 =0.5 0.7848 1.5173 1.7028 1.7448 3.3692 5.2576

c 1.0 6=0 0.7586 1.3345 2.6235 4.0 4.5829 5.1551

0. 1.0 6=0.1 0.7557 1.3345 2.4113 3.0488 3.8112 5.1549

o.=1.0 6 =0.2 0.7471 1.3345 2.0225 2.2866 3.4196 5.1549

c1= 1.0 6 =0.3 0.7334 1.3345 1.7468 1.8891 3.3249 5.1539

a=1.0 6 =0.4 0.7157 1.3345 1.5714 1.6429 3.2915 5.1539

0.=1.0 6 =0.5 0.6952 1.3345 1.4562 1.4723 3.2756 5.1539

a= 2.5 6 =0 0.6373 1.0951 2.5584 4.0 4.5401 5.0779

o.= 2.5 6 =0.1 0.6343 1.0951 2.1293 2.5400 3.4724 5.0779

11: 2.5 6 =0.2 0.6255 1.0951 1.6590 1.8418 3.2650 5.0770

(1: 2.5 6 =0.3 0.6116 1.0951 1.4084 1.5110 3.2239 5.0770

o.= 2.5 6 =0.4 0.5939 1.0951 1.2635 1.3108 3.2095 5.0770

0: 2.5 6=0.5 0.5738 1.0951 1.1728 1.1733 3.2017 5.0840

(1: 5.0 6 =0 0.5475 0.9313 2.5314 4.0 4.5242 5.0490

0.- 5.0 6 =0.1 0.5446 0.9313 1.8782 2.1717 3.3177 5.0507

0.: 5.0 6 =0.2 0.5365 0.9313 1.4105 1.5554 3.2063 5.0507

c1= 5.0 6=0.3 0.5237 0.9313 1.1899 1.2730 3.1855 5.0507

c1= 5.0 6 =0.4 0.5074 0.9313 1.0667 1.1034 3.1767 5.0384

0.- 5.0 6=0.5 0.4892 0.9313 0.9911 0.9873 3.1723 5.0384
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(3) One mass at quarter point from one end (Figure 46). For this

case, Equation (28) reduces to

. a, - 2 2

[35-1156 (31A,, Sin?) Sin-11'— +..-..—.——-—-TT“‘3
on n77 , i77 .

4 4 (nE Ann COS Til-)1 COS T]: X14Ai (47)

Taking only one term of the series in Equation (47),

77 2062

4 ]= 1 (48) [i-+%+

With a = 1. 0, 6 = 0. 1 and 0.5, the following values are obtained for le.

 

 

a = 1.0

6 0.1 0 5

le 0.83832377 0.78624077

(lehz 0.83086511' 0.7792350”

p. c. variation 0. 8976 0. 8990

 

Even with one term, the results are within one percent of the twelve

term series.

It-is interesting to note that for 0. =1.0 and 6 =0, le is 0.83316577

whereas, for 0. =1.0 and 6 = 0. 5, le is 0. 7792351T , a variation of

6.472 p.c. The combined effect of (1 =1.0 and 6= 0. 5 is 22.077 p. c from

the unloaded frequency of the beam.

Next, a twelve term series expansion of Equation (47) was taken

and the values of-EI: that were obtained are given in Table 11. The graphs

of these values are shown in Figure 7.



Table 11.

   

quarter point.

44

Frequencies of simply supported uniform beam with mass at

 

 

Mode

Parameters 1 2 3 4 5 6

d=-0.5 620 0.8998 1.7570 2.8739 4.0 4.7524 5.6075

0.: 0.5 6 =0.1 0.8981 1.7554 2.7915 3.6309 4.5726 5.5543

0.: 0.5 6 =0.2 0.8929 1.7499 2.4945 3.2539 4.4796 5.4501

0.: 0.5 6 :0.3 0.8843 1.7373 2.1855 3.1605 4.4569 5.4096

0.: 0.5 6 =0.4 0.8727 1.7089 1.9851 3.1316 4.4476 5.3912

6: 0.5 6 :0.5 0.8582 1.6530 1.8814 3.1192 4.4458 5.3834

(1: 1.0 6:0 0.8332 1.6819 2.8495 4.0 4.7006 5.5749

G: 1.0 6=0.1 0.8309 1.6767 2.6749 3.4098 4.4857 5.4458

0: 1.0 6:0.2 0.8240 1.6570 2.2278 3.1483 4.4345 5.3535

(1: 1.0 6=0.3 0.8128 1.6077 1.9514 3.1050 4.4257 5.3289

(1: 1.0 6=0.4 0.7977 1.5215 1.8358 3.0910 4.4193 5.3230

(1: 1.0 6:0.5 0.7792 1.4312 1.7941 3.0845 4.4176 5.3142

(1: 2.5 6:0 0.7180 1.6114 2.8301 4.0 4.6594 5.5530

0.: 2.5 6=0.1 0.7154 1.5919 2.4013 3.1862 4.4242 5.3329

0.: 2.5 6:0.2 0.7076 1.5082 1.9232 3.0827 4.4033 5.2841

(1: 2.5 6=0.3 0.6950 1.3636 1.7866 3.0664 4.4004 5.2743

(1: 2.5 6=0.4 0.6779 1.2408 1.7491 3.0615 4.3999 5.2729

0.: 2.5 6:0.5 0.6576 1.1554 1.7348 3.0588 4.3959 5.2729

0: 5.0 6:0 0.6238 1.5811 2.8225 4.0 4.6435 5.5444

0.: 5.0 6=0.1 0.6213 1.5327 2.1423 3.1074 4.4028 5.2865

0.: 5.0 6:0.2 0.6138 1.3474 1.7948 5 3.0607 4.3909 5.2603

0.: 5.0 6=0.3 0.6016 1.1666 1.7356 3.0530 4.3914 5.2562

0: 5.0 6=0.4 0.5852 1.0504 1.7191 3.0495 4.3903 5.2077

0: 5.0 6:0.5 0.5658 0.9766 1.7119 3.0486 4.3792 5.1690
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Figure 7.

 
Frequenéy distribution for simply supported beam;

mass at quarter point.



CHAPTER IV

EXPERIMENTAL RESULTS

As mentioned earlier, three cases were investigated experimentally.

They are:

(a) Plate: This was a square plate, 9"x9", made of aluminum.

The thickness at the middle of the plate was 0. 125" which

gradually decreased to 0. 0625" at the edges. The mass was

fixedatx=E3-a-, y=%.

(b) Cantilever beam: The beam was made of aluminum and 20"

long. The diameter at the fixed end was 1" which gradually

decreased to i” at the free end. The mass was fixed at

x -‘ LL.- 4 ,

(c) Uniform beam: This was a steel bar, 1" in diameter and 35"

long between supports. Two cases of this setup were investi-

gated:

(1) The mass was attached at the mid-point of the beam.

(2) The mass was attached at quarter point.

The different types of supports, used in the experiments, are shown

schematically in Figure 8. Figure 8a is for the plate which rests on the

support along four edges. By spreading some special fine grained sand

along the edges and vibrating the plate by pulsed air, it was brought to

resonance. The side bolts were then gradually tightened until the sand

along the edges just stopped vibrating. This gave the condition for simple

supports where the edges should not move but can rotate. Due to finite

width of the supports, there was friction and this raised the frequencies

of the plate .

46
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Figure 8b shows the support arrangement for the cantilever beam.

The beam was fixed on a bearing and the whole assembly was fixed on

a heavy steel table with a C-clamp. It was found from1the natural

frequencies of the beam that the support was weak. But as no other sup-

port arrangement could be built near the compressor, this was taken

to serve the purpose. ‘3

The support for the uniform beam was made from three channel

iron sections with stiffening ribs, as shown in Figure 8c. Two steel

plates were then welded on the two vertical channels and the bearings were

bolted to these two plates. Two 1/2" holes were drilled through the beam

at the ends and these were honed to fit two ground 1/2" pins. The two

pins were then fitted on the bearings with screws. To remove middle

plane forces along the beam, one end of one of the holes on the beam was

cut out. The whole assembly was then clamped onto the table with two

C-clamps.

The systems were vibrated with pulsed air, supplied from a com-

pressor at about 90 psi. The setup used was the same as used by

B. B. Raju (19). To find resonance of the beams, a vibration pickup, in-

stead of SR-4 gages, was used. This had the advantages of higher signal

strength and also it could be moved to any point along the beam. A SR-4

gage was used in the case of the plate.

To vary the rotatory inertia of the attached masses, keeping the

mass constant for each value of a, it was necessary to fix clamps on the

bars with extensions attached to the clamps. The masses were slid- -

on these extensions. As only some part of the attached masses .could be

slided, it was necessary to compute the lengths at which the sliding masses

had to be fixed to get the required amount of rotatory inertia. The compu-

tations are shown in the following pages.
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Plate
 

In order to attach masses on the plate, the plate was drilled at

x = 333- = 3;. A 1/2" diameter magnesium rod was chosen and it

was threaded throughout its whole length. This rod and other masses

were fixed at desired locations with the help of six nuts. Following are

the data for this setup.

2 2

Weight of aluminum plate = mpg = toa (pg) = 0. 675#
 

3

Weight of threaded magnesium rod = 0.0625#

Length of threaded magnesium rod = 5%“.

Therefore effective diameter of magnesium rod = 0.463" (at (pg)=. 065#)

Weight of six nuts 2 0. 375#

Therefore, weight of each nut = . 0625#

Height of each nut = 0.482“.

With this setup, only two values of 0. were used. They were 1.0 and 2. 5.

Following are the data.

Weight of rod and six nuts = 0.4375#

0. =1.0; extra weight = 0. 2375#

This weight was made from a steel plate, having a 1/2" diameter

hole, with dimensions 2%" x 2" x1277" -'

c1.=72”.5; extra weight = 1. 25 #.

This was also made out of a steel plate with a %-" hole at the middle,

having dimensions 315,-?" x 1%" x%". The weight of this plate was 1#. So,

this plate, together with the first plate and a washer (0.0125# - height 0. 1"),

the total weight was 1,. 25#. It was found that if a single weight of 1. 25#

is made, 6 = 0. 2 is not possible to obtain...

Let I1. = required moment of inertia;

2
ampa

4 [32

13 . 65

g

I
I

0.62 
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0. 1 1

From Figure 9., rotatory inertia of two nuts = ——03 5

. . 0. 171
rotatory 1nert1a of rod : _

0. 18415

Total rotatory inertia of Figure 9 = g

1 

1
1
1
1
“
”

1
'
1
1
I
1
’
r

£
5

6
4

     
—: r

o. 7042”/

 

Figure 9. Plate with rod attached

(1: 1.0 (6=0.1 and 0.2 are not possible)

1. . ..20., r=fl=02_765+(fl1f
g g g

So, L = 1.64" (Figure 103.)

Similarly, for 6 = 0.4, L = 2. 3"

  

.1
(1: 2.5

Ir=34 5 Bl

8

Z

(3: 0.2 11,:1-366 =_1.1799 +0.0625L

So, L = 1.728" (Figure 10b)

2 3.074 _0.375 L2 +0.0161 L + 1.06081
0:0.3 1,.

g g g g

 

So, L = 2.29" (Figure 10c)
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Mas ses on plate .
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5.46 _ 0.5248 + 0.02L + 1.13751.z

1' 8 8 8 8

 

So, L 2.08" (Figure 10d).

Table 12 gives the natural frequencies of this plate and Table 13 gives

those of the loaded plate. Since frequencies in cycles per second gives

a better feel of the phenomenon, they are also tabulated.

Table 12. Experimental frequencies of plate without attached mass.

 

 

Mode Theoretical Experimental Theoretical Experimental

Frequency Frequency p/pr p/pr

1 206.5 209 13.693 13.78

2 518 514 34.464 34.2

3 518 514 34.464 34.2

4 831 824 55. 234 54. 8

5 1051.5 1026 69.849 68.2

 

Note: Since the plate is square and symmetrical, the second and third

modes are usually accepted as the same. But due to unsymmetric plac-

ing of the attached mass, these two modes are not same for the loaded

plate. As such they are assumed here as different.
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Table 13. Experimental frequencies of plate with attached mass.

 

 

 

o. 6 Mode Theoretical Experimental

Frequency .Frequency

1 0 0.3 1 109.3 113

2 218 214

3 261.5 256

4 434 427

5 564 560

1 0 0.4 1 108.1 112

2 172.7 159

3 189.3 186

4 421 416

5 560 553

2 5 0.2 1 74.9 76

2 204.5 ---

3 240.1 ---

4 422 414

5 563.5 561

2.5 O 3 1 74.6 75

2 141.9 ---

3 163.7 ---

4 407.5 398

5 557 552

2 5 0.4 1 73.7 74

2 113.9 ---

3 118.5 ---

4 403 387

5 556 547

 

Note: For a. = 2.5 and 6 = 0.2, 0.3,, 0.4, it was not possible to get any

good response for the second and third modes, even with the full pres-

sure on. There were some reaponses near about the theoretical values

but the presence of subharmonics of higher modes made it very difficult

to locate these values accurately and as such they are not filled in. For

the value corresponding to the second mode of 0.: 1 and 6: 0.4, it was

noticed that the load vibration was very violent. The high variation be-

tween theoretical and experimental value seems to be due to slow con-

vergence of the series. Higher number of terms in the series apparently

must be taken to improve these values.
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(b) Cantilever beam
 

At the earlier stages, a steel bar was chosen for this part of the

experiment. But while checking the natural frequencies of the unloaded

bar, it was found that the support was too weak for this purpose

(Figure 8). Consequently, an aluminum bar had to be used. The different

weights that were made to suit the different values of 0., were no longer

found adequate when the beam material was changed. Instead of making

the weights again, it was decided to draw curves of theoretical values

of frequencies vs. 0. for each 6 and compare the experimental frequencies

for those 0. values that were available from all the weights. Only three 0.

values were available and these are 3.64, 6. 18 and 7. 915. The following

calculations are made on this basis. The data for this setup are given

below.

2%), # (Figure 11)

1%), # (Figure 2)

Weight of clamp

Weight of beam

{(+44 (Figure 13a)

%—# (Figure 13b)

311-5 # (Figure 13c)

441-147 (Figure 13d)

Weight of clamping piece

Weight of first mass

Weight of second mass

Weight of third mass

Referring to Figure 2,

Weight of (A) + (B) = 1%; #. So weight of (A) = 0.945#.

~ L2 94.5 ’-
11, : (LI—:2..— gz : _g_9£_ (49)

Clamp : steel (Figure 11)

li- Si-
 

2
«d

Rotatory inertia of clamp = p[ [1'6 '3- "rsdr + [121? 32.x, 1

g

Let Ix = Moment of inertia of any mass about an axis x, through its center

of gravity.
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In the following, Ix of the clamping piece (Figure 13a) will be neglected

First mass: Figure 13b and clamping piece 13a

Total weight on bar = 3125 #

‘So, 0. = 3.64

34 .

From Equation (49), Ir = i 62

Comparing with Equation (50), 6 = 0.1, 0.2 and 0. 3 are not possible.

 

  

0.

Ix of first mass = 722'
(51)

g

2

For6=0.4 1r=.___55~0 240.6 +0.722 +1;

g g 8 g

80. L = 3.70"

Similarly for 6 = 0. 5 L = 6.685".

Second mass: Figure 13c and clamping piece 13a

Total weight on bar = 5. 8431#

 

So, a=6.18, Ir: 5—824—3—1— (32

IX of second mass = 0°575 (52)

8

0'575 + 4—9 (L+0.23)zInertia at distance L = ——

8 168
2

So, total inertia = _41'23684- ——l°4gO8L + ————3°4:65L (53)

With these, the following values are obtained.

 

For 6=0.4 L: 3.72"

For 6: 0.5 L=5.335"

Third mass: Figure 13d and clamping piece 13a.

Total weight on bar = 7.469#

So a = 7.915,1r = 746°982

1. 54

(54)IX of third mass = ——
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Figure 13. Masses for cantilever beam.
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1. 4

Inertia at distance L = 5 + 12— (L + 0. 5)2

8 168

. 1 . . 1 2
So, total inertia = 43 3 2+ 4—————6875L + 5—03SL (55)

8 g g

Therefore, for 6 = 0.4 L = 3.45"

for 6:0.5 L=4.89"

Table 14 contains the experimental values obtained and these are compared

with the theoretical values obtained from Figure 3.

(c) Uniform beam
 

The same clamp and weights were used for both the settings, the

first one being for the masses at the center and the second one for that

at quarter point away from one end. Following are the data for this part.

Beam length between supports = 35"

Diameter of beam (uniform) = 1"

-Material - Carbon steel drill rod (SAE1096)

Young's Modulus = 30. 5 x 106 psi

Density of beam material = 0. 283# in3.

Beam weight = 71-2-71}

Weight of clamp = 211-2- #

Weight of clamping piece = «ii-7')!

Weight of first mass (0: 0.5) = 3242-11}

Weight of second mass (0. = 1.0) = 4H4)!

Weight of third mass (0. = 2. 5) = 16%)?

Weight of fourth mass (0. = 5.0) = 363-117

The following calculations are made on this basis. The same clamping

piece as in Figure 13a was used.
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Table 14. Experimental frequencies of cantilever beam with and

without attached mass.

 

 

0. 6 Mode Theoretical Experimental

Frequency Frequency

0 0 1 92.8 91

2 390.8 385

3 963.8 947

4 1795.2 ---

3.64 0.4 1 24.9 25

2 89.75 89

3 664 657

4 858 857

0.5 1 23.45 22.7

2 77 77

3 664 648

4 850 846

6.18 0.4 1 19.5 20

2 70.6 71

3 663 658

4 855 850

0.5 1 18.3 17

2 59.75 60

3 663 655

4 845 839

7.915 0.4 1. 17.3 17

2 61.5 58

3 660 651

4 850 841

0.5 1 15.63 14.7

2 52.8 52

3 660 650

4 846 838

 



60

Clamp : steel (Figure 12)

1 1

 

 

 

 
 

 
 

 

 
 

 

Rotatory inertia of clamp = p[ fl %- 77r3dr + [I 2 ]

T 125

11 .4

= 6 (56)
8

2
0

Ir : 333171121”— (32 : gig—O 0132 (57)

1 00
0= 0.5 ; From Equation (57) II. = -2g— 62

From Equation (51) IX = 0°;22

1 1 . 0. 3So, Ir : 200 [52 : 16 4 + 722 +_I:_

8 8 8 8

For 6=0.4 L=8.9"

For 6:0.5 L= 13.7" (not possible).

0. =1.0 ; From Equation (57) Ir = -2-4g—- 62"

From Equation (54) Ix = if?-

2400 2 116.4 1.54 11 z 75 2
: —— : + — .50,11. g (3 g g +32gL+16g(L+0 5)

From this, for 6 = 0.3 L = 4.05"

for 6 = 0.4 L :6.90"

for 6 = 0.5 L = 9.46"

c1 = 2.5 ; From Equation (57) II. = 60:0 67‘

Referring to Figure 14a,

_ 2.795 . _ . . . _ . .
. 1X1 - —-—g—— , 1x2 — negligible , 1x3 — negligible

14.92 1.565 0.115

8 8 8

6000 l . . .
Ir = fl, = 47 065 + 39 172 L+ 16 94 L2

8 8 8 8
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So, for 6 :0.3 L = 3.87"

for6=0.4 L =5.97"

for6=0.5 L =8.06"

c1 = 5.0; From Equation (57), Ir = 12:00 62

Referring to Figure 14b,

I =35.5 ; I = 0.426 ; I : 0.404

X1 g X2 g X3 g

26.7 5.11 4.84

ml: _"" ; m2 : ; m3 2

8 8 8

r : 12000 62 = 243.93 + 59.43 L + 36.99 L2

8 8 8 8

From this, for 6 = 0. 3 L = 4.08"

I for 6 =0.4 L=6.06"

for 6 = 0.5 L = 7.975".

T able 15 contains the frequency values for the system with the mass at

the center and Table 16 contains those with the mass at quarter point.
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Figure 14. Masses for simply supported beam.
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Table 15. Experimental frequencies of uniform simply supported beam

with mass at the center.

 

c1 6 Mode Theoretical Experimental

Frequency Frequency

0 5 0.4 1 45.2 46.6

2 145 145

3 466 473

4 483 484

1.0 0.3 1 36.8 37

2 139 139.5

3 440 437

4 477 478

0.4 1 36.8 37

2 110 111

3 440 437

4 457 456

0.5 1 36.8 37

2 90.2 92

3 440 437

4 447 446

2.5 0.3 1 26 . 27

2 94.5 94

3 418 421

4 448 447

0.4 1 26 . 27

2 72.4 71

3 418 421

4 440 439

0.5 1 26 27

2 58. 6 57

3 418 421

4 436.5 433

5.0 0.3 1 19.2 19

2 68. 6 68

3 411 414

4 439 437

 

Continued
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Table 15 - Continued

 

 

 

u 6 Mode Theoretical Experimental

Frequency Frequency

5.0 0.4 1 l9. 2 19

2 52 52

3 411 414

4 436 434

0. 5 1 19. 2 19

2 41.8 41

3 411 414

4 433.5 430
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Table 16. Experimental frequencies of uniform simply supported beam

with mass at quarter point.

 

 

 

c1 6 Mode Theoretical Experimental

Frequency Frequency

0 5 0.4 1 48.75 49

2 187 188

3 252 249

4 627.5 619

1.0 0.3 1 42.3 43

2 165 167

3 244 251

4 617 619

0.4 1 40.7 42

2 147.2 146

3 216 214

4 612 618

0.5 1 38.9 35

2 131 134

3 206 208

4 609 615

2.5 0 3 1 30.9 30

2 119 117

3 204.6 197

4 602 594

0.4 1 29.4 28

3 98.6 100

3 195.8 198

4 600 593

0.5 1 27.65 27

2 85.5 84

3 192.8 188

4 599 591

5.0 0 3 1 23.15 22

2 87.2 83

3 193 191

4 597 590



Table 16 - Continued
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o. 6 Mode Theoretical Experimental

Frequency Frequency

5.0 0.4 1 21. 9 21

2 70. 75 72

3 189 188

4 596 560

0. 5 1 20. 5 19

2 61 64

3 187. 5 185

4 550 555
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Discussion pf Experimental Results
 

The following remarks seem appropriate before the final results

are discussed. In the case of the simply supported uniform beam with

a mass at mid-point, the first mode was quite simple to find. The

amplitude became fairly large and the scope trace was almost perfectly

sinusoidal. The higher modes required judgment on the part of the

investigator. As the frequency was increased, the scope trace did not

remain sinusoidal until the next higher mode was reached. It was

observed that the amplitude of the next higher mode may become smaller

than that shown just before the resonant frequency was reached. The

only way to obtain the resonant frequency was by noting the trace which

should be sinusoidal.

In the case of the same beam with mass at the quarter point, the

maximum amplitude was seen to be at the fourth mode. The remarks

made for the previous case apply to this case also. Subharmonics of

the fourth mode presented considerable difficulty which had to be reduced

by the use of a filter. One important aspect noticed in this experiment

was that if the nozzle was placed at any arbitrary point of the beam, the

resonant frequency was higher than the theoretical values. When the

nozzle was placed at the point where the amplitude was maximum, the

resonant frequency was minimum and gave best agreement to the theo-

retical value. This point of maximum amplitude was very close to the

value obtained from the eigenvectors.

The results obtained experimentally agreed fairly well with the

theoretical values. There are several reasons for discrepancies as

listed below.

(a) Slow convergence of the series: This seemed to be the main
 

reason for the cases of variable section beam and plate. This is obvious

from the results of the higher modes. Also, in some cases, particularly
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the second mode of the loaded plate, the load was observed to vibrate

considerably in the plane of the plate. This effects the rotatory inertia

of the attached mass. The maximum variation of experimental values

from the theoretical values are most evident in this mode.

(b) The reasons given in (19) applies to both plate and beams.

These are (i) determination of exact resonance, (ii) errors in the read-

ing instruments, (iii) actual model differing from the theoretical model,

(iv) inaccuracies in the physical constants, (v) support conditions,

(vi) vibration of support, (vii) damping in the material, and (viii) effect

of air mass. The effects of (ix) large amplitudes, and (x) shear and

rotatory inertia of the system are applicable to plate only, because a

vibration pick-up, used in the case of beam, reduced the amplitude and

shear and rotatory inertia effects were also taken care of.

(c) Rotatory inertia Ix of the clamping piece. In the calculation
 

of length to produce certain amount of rotatory inertia, this Ix part was

neglected. The effect of this is quite small and should be less than a

fraction of a percent.

(d) Slackness in tightening bolts. When the masses were fixed
 

on the clamps, they were fastened with two bolts to the clamping piece.

It was seen that if these bolts are loose, the frequency was higher

because the load had the freedom to remain at the same place instead

of moving with the clamp. The contribution due to this appears negligible

because the bolts were checked occasionally.

(e). Variation of 0. values. As may be seen (page 581101" the uniform
 

beam, the weights that were used to produce particular values of 0. were

a little off. The maximum variation was less than one percent and as

such the variation in frequencies should be less than one percent.



CHAPT ER V

REDUCED MASS SYSTEM

From a paper by D. Young (11) it was seen that the effect of a

concentrated mass on a beam can be approximated by reducing the

mass of the beam at the position of the concentrated mass in such a way

that the natural frequency of the beam without concentrated mass is

same as a single mass placed at the position of the concentrated mass

and assuming the intertia of the entire beam to be zero. It is stated

in the above paper that this method is valid only for the fundamental

mode. It is the purpose of this chapter to show that the above method

can be used for higher modes also. And the same method may be used,

with sufficient accuracy, for plates as well. For this method, the

natural frequencies of the unloaded beam or plate are needed, which

can be derived by standard formulas and also the stiffness coefficients

of the beam or plate at the positions of the concentrated masses.

These can be derived or in complicated cases, they may be obtained by

measurement. The procedure for beam may be described as follows.

The same applies for plate as well.

Let there be a concentrated mass at

g 4— 5_ g point P, at a distance "a" from the

a __..:.[ left support (figure at left). The beam

 

 

may have any type of supports at the

ends. If the first mode frequency of the loaded beam is required, then

the mass of the beam is replaced at P by a reduced mass mr, where m1.

is unknown. Let the Spring stiffness (force per unit deflection) of the

beam at P be k. Then from the elementary formula for a spring mass

system, it is known that natural frequency is given by,

69
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4" = L (58)
m1.

where w is in radians per sec.

In order to use this method, 03 must be known. From Equation(58),

m1. = :32- (59)

As k depends on the position P, even for the same beam, mr depends

on P also. After mr is obtained, this mass is superposed on the concen-

trated mass M at P. Then the frequency of the beam with the concentrated

mass is given by

 

k k
2_ _ __

p ’ (M+mr) ’ (M+ £2) (60)

Example: Simply supported uniform beam with a mass at the center

(Figure 15a). From elementary theory

1 _ PL3

ymax " 48EI

Therefore, k = spring stiffness at center

_ 48E‘I

- T

4
E

For this beam, 03'? = grab—II}—

So, from Equation(59)., m1. = 0.492767 mb.

 

Let a concentrated mass M be placed at the center and assume a = HT-

' b

From Equation(60),

2 _ 48EI '

P1 ‘ mbL3(d + 0.492767mb) (61)

Table 17 shows the values of p1 for six different values of o. and

these values are compared with the values obtained from Equation(40)o

with 6 = 0.
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Mass arrangements for reduced mass system.Figure 15.
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T able 17. First mode frequencies for a simply supported beam with a

concentrated mass at the center, obtained by reduced mass

method.

(1 p1 from Equation(61) p, from Equation(40) Variation

x EI x E1 in p. c.

mL3 mL3

0.5 6.9534 6.9661 -0.182

1.0 5.6705 5.6797 -0.162

2.5 4.0048 4.0089 -0.102

5.0 2.9561 2.9580 -0.064

7.5 2.4506 2.4517 —0.044

10.0 2.1388 2.1396 -0.037

 

If there are n masses or the 1121 mode is required, then the beam

mass should be replaced by n masses. If there are concentrated masses,

then these reduced masses should be placed on the concentrated masses,

in order to keep the order of the matrix to a minimum. But if only the

n'E-hmode is required with lesser number of concentrated masses, then

they may be placed anywhere. However, if placed on equal intervals, the

computation becomes a little simpler.

Example: As an example, the previous example is taken and the

third mode is evaluated. (The second mode is same as an unloaded beam,

since the rotatory inertia of the mass is neglected.) For this case, the

beam mass is divided into three equal masses m at quarter points and
r

mid-point, as shown in Figure 15b. To find the frequency, the influence

coefficient method is used. Denoting by 6nf the deflection at n produced

by an unit force at f, the following relations may be obtained from‘any

strength of materials book (see Reference 30).
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611 = 633:18C

512: 521: 532: 523: 22C

613 = 631: 14C

622 - 32C

L3

where c — _1536EI

Considering A1, A2 and A3 as the amplitudes of the three locations and

assuming harmonic oscillations, the following three equations are obtained.

3
’ I- mrp2c[18A1 + 2215.2 + 14A3]

.3
”

I- mrp2C[22A1 + 32Az + ZZA3]

A3 = Imp-24141».l + .2215.2 + 18A3]

Solving these equations give,

)‘1 = 63.1126984, X2 = 4.0, A3 = 0.8873016

wh r )x‘ 1

e e — m '

Since the highest frequency is needed,

1 (k3L)3EI
p2 :— :

3 mrk3c mbL

from which, mr = 0. 2193994mb.

Adding mass M of the concentrated mass to the middle reduced mass,

gives

m1=mr

0. 2193994mb

m2 = mr + M

= mb(a +0. 2193994)

m3 = m1.

0. 2193994mb

With these three new masses, the frequency equations become,
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m, = 3.9491892A1+ (226 + 4.8267868)A,_ + 3.0715916A3

XAZ = 4.8267868Al + (326 + 7.0207808)A2 + 4.8267868A3 (62)

m3 = 3.0715916Al + (226 + 4.8267868)Az + 3.9491892A3

The solution of these equations, with o. = 0. 5, give,

x1: 29.744403; x2 = 0.8775976, x, = 0.2971586

EI
from which pg = 5168. 957m .

It is interesting to note that the result obtained from Equation(40) was

pi = 5162. 10 fig— , a variation of only 0.102%. Considering pf, it is

found that pf = 51.640 gig— , whereas, the value obtained from Equation

b

(40) was 48. 526mEIIJ . This variation is 6.4%, which is fairly high.

b

From this it is concluded that this method is accurate only for the

particular mode for which the unloaded frequency is matched.

Table 18 compares the results obtained from both the methods for

different values of a.

Table 18. Third mode frequencies for a simply supported beam with a

concentrated mass at the center, obtained by reduced mass

 

 

 

method.

0. p3 from Equation(62) p3 from E uation(40) Variation

x _E_I_3_ xfifr in p.c.

mbL mbL

0.5 71.895 I 71.848 0.065

1.0 68.459 67.932 0.776

2.5 65.627 64.599 . 1.591

5.0 64.497 63.244 1.981

7. 5 64.095 62.758 2.130

10.0 63.888 62.509 2. 206
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Next, the third mode of an unsymmetrical case is investigated,

as in Figure 15c. As in the previous case,

mr = 0. 2193994 mb

Adding the concentrated mass M to the left mr, the frequency

equations are found to be

RA, = (180. + 3.9491892)A, + 4.8267868A2 + 330715916143

XAZ = (22a + 4.8267868)A1 + 7.0207808Az + 4.8267868A3 (63)

Substituting different values of 0., the following values of frequencies are

obtained, as shown in Table 19, and these are compared with the values

obtained from Equation (4 7).

Table 19. Third mode frequencies for a simply supported uniform beam

with a concentrated mass at quarter point, obtained by reduced

mass method.

 

 

 

(1 p3 from Equation(63) p3 from E nation (47) Variation

mbL mbL

0.5 81.689 81.516 0.212

1.0 80.558 80.139 0.523

2.5 79.699 79.049 0.822

5.0 79.374 78.627 0.950

7.5 79.261 78.480 0.995

10.0 79.203 78.404 1.019

 

This method is helpful in finding the frequencies not only for masses

placed at the positions of the reduced masses as explained above, but
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also can be used for any other positions. In this case, the order of the

matrix to be solved increases. This is illustrated by an example below.

Example: Let there be a mass at quarter point of the beam as

shown in Figure 15d, and assume that the first mode m1. is placed at

the middle of the beam. For this case,

mr = 0.492767mb.

To find the first mode frequency, assume two lumped masses, Inr at

middle of the beam and M at quarter point. Assuming stations (1) and (2),

as shown in Figure 15d,

XAI 18MA1 + zzmrAz

(64)

m, ZZMAI + 32mrAz

As mentioned earlier, the order of the matrix has increased, in this

case, to 2. If there were n masses and the first mode frequency is

desired, then the order of the matrix will be (n + 1). Solving Equations

(64) for different values of 0., two frequencies are obtained for each 0.,

the lower one being the first mode frequency. This way the values shown

in Table 20 were obtained and they are compared with the corresponding

values from Equation(47)..

‘ The same procedure may be followed for plates also. The natural

frequency and spring stiffness of the plate may be measured or calculated,

and from this the reduced mass value is obtained. Adding this reduced

mass onto the concentrated mass, the loaded frequency can be easily

evaluated.
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Table 20. First mode frequencies of a simply supported beam with a

concentrated mass at quarter point, obtained by reduced

mass method.

 

 

 

(1 p1 from Equation(64) p, from Equation(47) Variation

x EI xf—E—T; in p.c.

mbL3 mbL

0.5 8.031 7.991 0.501

1.0 6.889 6.851 0.555

2.5 5.109 5.087 0.432

5.0 3.851 3.840 0.286

7.5 3.216 3.210 0.187

10.0 2.818 2.814 0.142

 



CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary
 

The effect of rotatory inertia of attached masses on. the vibration

frequencies of beams and plates is analyzed by the method of normal

mode superposition; this method is also known as the method of

undetermined coefficients. General equations are derived for variable

thickness beams‘ and plates with arbitrary number of attached masses.

In the numerical examples, only one or two masses are used and the

resulting eigen value problem is solved by the use of digital computer.

In the experimental part, only one mass was used. The frequency values

were obtained experimentally with a pulsed-air vibrator. The theoretical

and experimental values are compared and the variations between the two

are discussed.

In the latter part of this work, a method is developed by which the

frequencies of systems, loaded with concentrated masses, can be pre-

dicted by the knowledge of the unloaded frequencies of the system. The

results from this method are compared with the results from other

sections.

Conclusions
 

The normal mode superposition method seems to be very well suited

for problems concerning vibrations of beams and plates. For uniform

systems (beams of plates), the integrals can be evaluated quite easily

but for systems with variable thicknesses, the use of the digital computer

is essential.
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The accuracy of the results depends mainly on the number of

terms taken in the series expansion of the displacement function. It is

apparent that when a load is added to a uniform beam, a certain number

of terms of the series are needed for certain accuracy. The number of

terms needed for the same accuracy will increase if rotatory inertia of

the load is taken into account. If in addition to this, the beam happens

to be of variable thickness or the uniform beam is replaced by a uniform

plate, a still higher number of terms in the series expansion will be

necessary. As may be seen, for a plate of variable thickness with attached

mass, the number of terms required will be very high. Since extreme

accuracy is not the primary object of this investigation, only nine terms

were taken. The extrapolation formula used seems to improve the values

reasonably well, at least for the higher modes. However, there is some

reservation in the mind of the author at using this formula. A point of

uncertainty is the way the shear deformation term is introduced. The

transformation of the terms of the differential equation to energy forms

was necessitated by the requirement of introduction of the loads and rotatory

inertia of the loads. Since the shear deformation term introduces very

little correction, especially for the lower modes, the effect of error in

the assumption for shear deformation will not effect the final results

much. Actually it seems to improve the results as expected. Further

study in this area seems to be in order.

When this work was started, it was assumed that normal functions

are the best functions in terms of which the deflections may be represented.

But as seen from the wedge problem in Appendix E, it may be concluded to

be erroneous. Also, normal functions are difficult to handle, particularly

for clamped and free edge conditions. This suggests the necessity of

investigating other functions, mainly polynomials, which can be used for

problems of this type. This will reduce the amount of time required for

numerical calculations .
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From the curves of frequency vs 8 with o. as parameter, it looks,

as if, with higher (3, the frequency remains constant. When 13 is high,

however, it means that physically the mass or masses do not rotate.

This may be used as a means of application of bending moment or other

constraints for further investigation. The same conclusions can be drawn

for higher a. In this case, the translatory motion of the mass is reduced.

The results presented here from theory seem . to compare quite

well with experimental values. To improve the values, two aspects need

considerable attention. The most important factor is to use higher number

of terms in the theoretical calculations. Even with the best extrapolation

formulae, it is not always possible to get very good results. The second

part that needs attention is the support conditions in the experimental set-

up. The simple. support for the beam was fairly good with careful lubri—

cation of the pins and occasional checking of the support screws. But the

cantilever support was definitely weak as shown by the results of natural

frequencies. The worst case of support was found in the case of plate.

Some other design of support seems essential for better verification of

the theory.

In the reduced mass method, some of the results seem very good

whereas some are not so good. Even though the variations are within

2. 5 p.c. , this may perhaps be improved. The only reason that can be

offered for discrepancies is error in numerical calculations. Further

investigation in this line seems advisable.

The following are a few of the items that can be suggested for future

investigations. They are given separately for beams, plates, etc.

Beams

, (1) Variation of cross-sections other than assumed here. If stepped

beam is used, the integrations will contain limit points other than from

Oto 1.
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(2) Include the neglected terms for shear deformation. Also a better

relation for shear deformation may, perhaps, be derived. One helpful

suggestion is to use the normal functions given by T. C. Huang (31).

(3) The nature of constraints that can be incorporated by proper

selections of a and B quantities, as mentioned earlier in this chapter.

(4) Addition of work done by W. F. 2. Lee and E. Saibel (12) to the

present work, which opens up a whole variety of problems that can be

solved quite easily. This may include the cases of continuous beams,

sprung masses, elastic foundation, etc.

(5) The effect of stretching of the center line of the beam due to

addition of load.

(6) Study of visco-elastic beams.

(7) Use of finite difference for this type of problems.

(8) Forced vibration.

Plates

(1) Inclusion of shear and rotatory inertia of plate. Procedure

outlined in (32) may be helpful in this respect.

(2) Use of other end conditions than simple supports.

(3) Continuous plates.

(4) Use of finite difference.

(5) Effect of stretching of the middle plane due to application of

loads.

(6) Study of viscoelastic plates.

(7) Forced vibration.

Reduc ed mas s
 

(1) To include rotatory inertia effects of loads.

(2) Approximate non-linear behaviour of beams or plates, withload

attached. Since the method reduces the whole system to a spring mass

system, this study seems possible.
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In the experimental part, subharmonics and ultraharmonics were

observed in almost all cases. One important difference between the two

was noticed. Assuming p to be the main frequency, the subharmonics

of p had the frequency of p, as measured from the oscilloscope trace,

but ultraharmonics had the frequency of the ultraharmonic itself. And

this created a little confusion at the early part of the experiment.

Comparing with the natural frequency results of B. B. Raju (19)

it is observed that the finite difference results gave a lower bound

whereas, this method gave an upper bound to.the actual frequency values.

The explanation for the latter case seems to follow from Rayleigh's

principle but the reason for the lower bound in the former case is not

clear. All the same, further investigation should be carried out to

establish the validity of this observation.
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APPENDIX A

WORK DONE BY ROTATORY INERTIA OF ATTACHED

MASSES ON PLATE

To include the effect of rotatory inertia of the masses, it should

be borne in mind that the masses will, in general, rotate about both x

axis as well as y axis and the net effect will be rotation about some other

intermediate axis in the x, y plane. To appreciate this physically,

consider a right handed Cartesian coordinate system and let a body of

mass m be located at point P at a distance ‘-
’

—'

”

 

L below the x, y plane i. e. in z direction.

When the plate vibrates, there will be

inertia forces generated due to inertia of the

 

mass and this in turn will produce a torque

Tn' Let its components be Tx and Ty in the Figure (a)

x and y directions respectively. From elementary theory,

030

From Figure (a), it is clear that due to bending in the x direction, Ty will

produce work given by - Ty _TOW and due to bending in the y direction,

Tx will produce work equal to Tx TW. In Figure (a), the point P moves

0w W .
to Q due to Ty— and then from Q to R due to - Tc- . Since both

motions are present at the same time and simple harmonic motion is

assumed, the mass will move parallel to PR. It is parallel, because

the point P will also be moving up and down. Since the force field, generated

by the inertia force, is conservative (no damping assumed), the total work

. . 0w 0w .
done by the torques Ty and TX in mov1ng thru' -W and 17 18

same as the work done by the torque Tn in moving the point P thru' PR.
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(An alternative proof of this is given in the next paragraph. *) This gives

 

 

. . . . W 0W
a Simple relat1on for the work done by the 1nert1a forces as Tx137) -TY(W ).

In this analysis, it was assumed that TX and TV

0

are constant and 6W 5W as small which x

7532' ‘8; a
is valid for virtual work principle. Tn

For a mathematical proof, the following n

may be considered. 17

Referring to Figure (b), let there be two Y

torques Tn and Tt acting in two normal (Figure (b)

directions at point 0. If two variations are given in the n and t directions

i. e. 6 Egg) and 6 (-'%%v)’ then the work done by the torques Tn and Tt is

0w 5W

r Tn‘S‘TT) ' TEN—6?)

Tx Cos 0 + Ty Sine

U

But T

n

Tt= - TxSin0+TyCos0

0w ow 0w .
m - —B—X COS 9W 51n9

6W: _ awsme + 0w C086

at X By

Substituting these in the above expression for Ur and simplifying, the

same result is obtained e. g. ,

Ursz6(—%—V;V) - gap—gig)

X

Ty—N
.

Inertia Torque—«g?
Inert1a force

-T){'_—."

 

 

   3'
Figure (c)

 

*

The writer is indebted to Dr. W. A. Bradley, Professor of Applied

MechanicsDepartment, M.S.U. , for this proof.
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As regards the signs of Tx and Ty, consider Figure (c). Assume that

a mass is attached at a certain distance below point P. When the plate

vibrates, for positive w, the inertia force will be directed as shown

in Figure (c). This force will create a torque as indicated. The com-

ponents of this torque in the x and y directions have opposite signs.

From this it is apparent that both the terms in Equation (14) have negative

signs.



APPENDIX B

VERIFICATION OF PLATE EQUATION BY RITZ METHOD

The Ritz method is used in this section to evaluate Equation (12).

In this case, the expression for potential energy remains the same as

in Equation (4). The kinetic energy of the vibrating plate is given by

”_"H h (—5_t )zdx dy

— .9.— Z °° °° z 2
- 2 p H h (mg 112;, AmnXmYn) Cos pt dx dy

Let p If h(m2 n2 .4.,,,,nxmyn)z Coszpt dx dy = Q (13-1)
=1

Then T: p Q-Z-

Equating the maximum values of V and T,

2 __ 2 Vmax
(B-2)p _.

Qmax

Applying Ritz method,

 

z

05p z 0Aij

6 > 5 _ .

or 2 Qmax aAij Vmax ‘ 2 Vmax aAij anax _ 0 (Since Clniax I

(B-3)

p2

But from Equation B-2, Vmax = 3- Qmax’

Substituting in Equation (B-3),

5 2 5 _

2 aAij Vmax " p 3A“ Qmax "

b 2 .
or [2 V - p ] = 0 (B-4)

aAij max Qmax

90
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Substitution of V from Equation (8) and anax from Equation (B-l)

into Equation B 4 and performing the indicated differentiation results

in

m (D d_2_TXm dSXi

a) (D

+ (mg-=1 nz=1Amnddx§ ) (X1:+a}

a: dZX ydzy-

V{(mz:'1n2:1 Arnn—d—Tmen) (XIT7L)

+(mzlnglAmnxmddY—41—HdzxiYj)}

+

kuz: A de dYn
l X.

1n=1 mn dx dy

d1 de

)‘dx dy) 11‘1“”

Z ”h(g g A x Y)(X-Y)dd
pp m=1n=1!“n n 1.1 xy

which is the same as Equation(12).

 



APPENDIX C

WORK DONE BY ROTAT ORY INERTIA OF ATTACHED

MASSES ON BEAM

To find the virtual work done by the rotatory

«mm-w- inertia of the masses, an arbitrary mass M is

taken as shown in Figure (a). Considering an

 

 

r element of the mass at a distance 17 from the

V x axis gives

Figure (a)

d(Torque) = d (Volume)px(-Acceleration) x r)

where p = mass density.

If the mass rotates through an angle 0 = -§—: about the z axis, then

d(Torque) = -(<11V)p(é 7?) 71

_ 03 z

--pxt an

3

virtual work done = - pgbggtz dV n2 6 (121‘)

3

Total virtual work done = - IV p bxytz n2 6 (12!: )dV.

Considering only rigid mass and uniform density, it is found that

63 b . . . . .
p, 53?th and 6 (132‘) is independent of the integration variable. As such,

the total work done is given by

”059??? «Hg-E) (v n’dv

= “15¢th 5 (.831)

where I = 0 IV 79" dV is the mass moment of inertia. about x axis.
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APPENDIX D

WORK DONE BY ROTATORY INERTIA AND SHEAR

DEFORMATION IN BEAM

Rotatory Ine rtia
 

To find the virtual work done by the rotatory
 

inertia of the beam, an elemental volume dV

at a distance 17 from the bent neutral line of

 

 3 the beam is taken (Figure (a))

Figure (a)

d(mass) = pdV = pbd ndx where b = width of beam at

x and in

°. d(force) = -bp(8n )dn dx

d(torque) = -bp8 n‘zdndx.

Torque = -p [Aw n‘zbdn)dx = -péibdx (D-l)

the virtual work done by the section dx is

h

d(work) = - pédx [ I: bnzdné (19': 1]

-7-

.- - pé dx 1b 6 (%) = -pr3—§:'35th d" 5 ‘33?

L ..

total virtual work done = - p f0 Ibdeé (g9

 

 

    

Shear

Considering an element as in Figure (b) it

n 19‘ 11+ 4*

L I is seen that in order to include the effects

.4 «L‘A‘Ififi‘vd‘ of rotatory inertia and shear deformation of

Figure (b) the beam, the follOWing relations must be

satisfied.
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6M 8 6"
-—5—X + TX (9A) - 1130-535

(D-Z)

a 6’

‘61“! A) = M 8%

where M = Bending moment across a section = - EI DY

. b 5x

q = Average shear = k'GB = EGGS-)2: - 1y) .

Y’= Slope of center line without shear

_ _ 5
f5 — Shear angle at the center - 33E - 9’

Substituting the respective values in Equations (D-Z) gives

E‘c‘i‘iubBQY) + “6% “00%?
03-3)

2

mag; - 793,5) + k'GB-baé= Ar§~§

For a uniform beam, 1;! can be eliminated between these two

equations and a single equation may be obtained for y. But when the beam

is of variable cross-section, it is difficult to eliminate ‘1’- In the case

of the cantilever beam under investigation in which the shear deformation

has been included

5A 1T1T x x

A=—(2-—>z , —3—=-—(2-—)
16 L x 8L L (D-4)

_ 17 x 4 OI _ _ 11' -35 3

I ‘ 1024 (2 L) ’ 5x ’ 256L (2 L)

From Equation (D-4i) it is seen that when L = 20"

0A
('3?max - -0.0393

03-5)

91 = -0.00491
‘T’max
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Since this investigation concerns itself only with modes up to the fourth,

the shear angle 8 at the center may be assumed to be small. As such,

the term k'Gfi %-g- in the second equation of (D-3) may be neglected in

comparison to the first term. This gives

by Bay p 52’};
: - __ D-

x 5x2 k'G t2 ( 6)

Differentiating the first of Equation (D-3) with respect to x and substituting

g—‘f from Equation (D-6), the final form of the equation reduces to

E6972(Ib§'7) + A434 45.6%,.)- Ea—izsza 65>
D-7

+ an. (magma 6‘ = 1 1

p3; Btz k'G t

It is shown in (23) that the last term is of second order compared to the

third and fourth terms. Also, for the lower modes, it is reasonable to

2

assume the fifth term to be small since gig: is small and 3??? should

not be too large. Neglecting these two terms, Equation (D-7) reduces to

2 2 z 3 2 2

EfirufifiHApgi- p53“. 3. >-§6§2ub%¥>=0

(D-8)

In Equation(D.-8) the third term is the first spatial derivative of

the rotatory inertia torque, as may be seen from Equation (D-l). The

first term also can be shown to be the first spatial derivative of the

elasticity torque (this term is used here to keep the same notation) as

follows .

6 U6 = I:(Torque) { 6 (angle)}dx

Etagubg—Eg) a (1‘?me

EILaubgfiba)3;<6y>dx
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Integrating by parts ,

Z

5Ue=E[Ib%—§5;(5Y)]oLo-EfL1b(%¥)5—T(5Y)dx

For any standard end conditions, the first term is zero, because

for a fixed end '36; (5 Y) =

2

for a simple support 3575 = 0

 

6" _
for a free end 3:5 — 0

Therefore

(25y 52
6Ue=-EfoIb (F)3;2-(6y)dx

=-E{f:"1b( ndan)ddX; dx)Sin7‘pt 6A1 (D-9)

where the series expansion of y and 6y. are substitutederom

Chapter II, Part (b). As may be seen, Equation (D-9) is the same as

Equation (18). It is difficult to show that the second term is the spatial

derivative of the inertia torque for a variable cross-section beam.

This appears to be due to the neglected term in the second equation of

Equations (D-3). An alternate way of defining the shear angle 8 might

remove this difficulty. In the case of a uniform beam, A is constant.

Expanding y in terms of an infinite series of normal functions of the

beam, it can be shown easily that this represents the inertia torque.

This follows easily from the relations of the type gag-i2- = kLXn. From

these analogies, it is reasonable to assume that the fourth term is the

spatial derivative of the shear torque. With this assumption, the work

done by the shear deformation is given by

2

6Usb= k-,—-"GfoL59;(1b%-t§)5 (Sign). (p-10)
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Since no example was found for the shear correction on a variable thick-

ness beam, the case of an uniform simply supported beam is taken to

check the validity of the above assumptions. This case is treated in (23).

For this case, Equation(26) reduces to

 

 

 

  

L a) L 00 an dX'

7‘ Z . _ 1

“DA f0 (n21 Anxn)x1dx I “b f0 (IE—1A“ dx) dx ‘1"

E L 00 an dXi

+ plbk'G‘ro (IE-=1 n dx 1 dx ‘1"

L dSX dX‘Z

=EIb{f (2 An x—z")1dx} (1)-11>
o n—l

But Xn= Sin “5" ,

L L ,

f0 Xindx = -2- for 1 =1

= 0 fori=(=J

[1.Xm dX _17-7- for,_

0 dx dx _ 2L 1“]

=0 fori#J

and

I-‘dei dxz ' i4“4 . .
f0 _xz_d -d—):-)- dx- -—2—3L , fOI‘I-J

=0 fori#j

Substituting these in Equation (D-ll), results in

1211.2 izflz 1411.4

P2M —) ‘1’ pr(Af'—'2L_) + p1b_%(Ai—2L)] = EIb(Ai—3'—) (D-12)

Assuming pAL = mass of the beam = mb

 

x = l.”-
i

a2 ._. 2111.1.

mb

and Ipr = IbI'Xb = yzmb
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and substituting in Equation (D-12) gives

1

"482
Z 22 7

1 —

1 “True it”

 

Considering the last two terms as small compared to unity, the

denominator can be expanded in a binomial series. Neglecting all higher

order terms, it is found that

Tl’za 1 “272 E

p‘ 1.2 [1'2 x (1+k'G )] (13-13)
I

which is the same as Equation (140) of (23).



APPENDIX E

VIBRATION OF A WEDGE

This problem was investigated with a view toward checking the

convergence of the series of normal functions for a uniform cantilever

beam. The problem was investigated by G. R. Kirchoff (24) who

obtained an exact solution, neglecting

rotatory inertia and shear deforma-

tion of the wedge.

For this case, Equation (20)

 

 

{m L __ ’

rFigure (a) represents the frequency equation.

From Figure (a) 2b(L-x) 2b3 3

- —— Ib = -— (l - --)

Xn = Cos h knx - Cos knx - o. n(Sin3h knx - Sin knx)

The values of knx, 9n were obtained from (26).

I.t =
e de ‘1 dacn18p ¢n
 

With these notations, Equation (20) reduces to

p2 [L‘A.(§5 11 ) -d - ich I z A.nk " "d ,E 1no mfl n¢n¢,x— o h(n_1 nflqfi¢ x (-)

where prime represents differentiation with respect to (knx).

Assuming only one term of the series in Equation E- 1,

2kfbz
 

. ,_ L

131-@381")de = 3%?”- Iou-{dex mm

The following are the values of these integrals:
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0.19346191

1 x X

10(1 - ‘1'.) (0.12 ““321

1 3‘. Z n 2 i

10(1 - L) (01 )d(L) 0.5791407

Substitution in Equation E-2 gives

b -

p = 6.0833815 -7 I E
L —-—3p

which is a variation of about 14.4 p. c. to that of (24). It maybe recalled

that by assuming another series and applying Ritz method, the value

obtained in (23) by one term approximation was 5.48. This is a variation

of only 3. 1 p. c. This shows that the use of functions, other than normal

functions, may sometimes be profitable but this needs judgment on the

part of the investigator. As the normal functions are standard functions,

they can be used more effectively, if suitable tables can be prepared for

different types of integrals of these functions.

To check the convergence, two terms of the series in Equation E-l

were taken. The value obtained for the first mode frequency was

5.434991 b . .
2n L3 13:3 , a variation of only 2. 26 p. c.

The problem was further investigated with eight terms of the series

 

 

and the following results were obtained. The exact frequency value for

the fundamental mode is 5°2i15 E;- I E 

30

First mode frequencyL————3——2165 'E‘; ,(—'—fp

Second mode frequency'-—--—--152'-—--3—--17 31):: I é);

Third mode frequency 31——_17:-—2:1IE3'H—E

The exact solution results for the remaining two modes were not available

but they are listed here as reference.
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