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ABSTRACT

ROTATORY INERTIA EFFECTS OF ATTACHED MASSES
ON THE VIBRATION FREQUENCIES OF
BEAMS AND PLATES

by Salil Kumar Das

This investigation concerns itself with the effect of rotatory inertia
of attached masses on the vibration frequencies of beams and plates.

The equations which are derived, are quite general and can be used for
any number of attached masses. The usual assumptions of Hooke's Law,
isotropy of material and small deflection theory are assumed in deriving
the general equations.

In the case of plates, rotatory inertia and shear deformation of
the plate are neglected, whereas, for the beam, only part of the shear
is neglected. In the latter case, the resulting equation is compared with
Timoshenko's reduced equation and is shown to give the same result.

Solutions were obtained with the help of digital computer and an
accuracy of about five places was realized. The tables of values, given
in this work, contain only the frequencies, the mode shapes being omitted
because of prohibitive amount of space required to tabulate them.

As may be expected, the solutions obtained are approximate,
rather than exact. In order to verify these results, a series of experi-
ments were performed and the calculated frequencies compares with the
measured ones. The agreement is very encouraging and seems to be
quite adequate for most practical purposes.

In Chapter V, a method is developed, that can be used for many
problems which involve concentrated masses. A few examples are worked
out and results are compared with values from other chapters. The

agreement seems to be quite good.
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NOMENCLATURE

Plate:
D Plate rigidity defined by El:—f(—(lx_—’vg-;- .
U Work done. Subscripts with U refer to work done by
particular type of forces.
(x,y) Coordinates on plate surface.
E Modulus of Elasticity.

h(x,y) Thickness of plate at any point (x, y).
v Poisson's ratio.

w (x, y, t) Deflection of plate in z direction.

t Time.

P Mass density of plate material, assumed to be constant.
q Distributed load per unit area.

A% Potential energy.

T Kinetic energy.

W(x,y) Plate deflection defined by Equation (5).

P Circular frequency, radians per sec.

G Shear Modulus.

o(t) Function of time defined by Equation (5).

M Mass of load placed at xk, yj.

L, Moment of inertia of a mass about n axis, placed at
Xk, Yk) D = xXory.

a Liength of the sides of a square plate.

a Ratio of weight of attached mass to that of the plate.

B A non-dimensional inertia parameter.
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NOMENCLATURE - Continued

Beam:
E Modulus of Elasticity.
U Work done. Subscripts with U refer to work done by
particular forces.
y Deflection of the center line of beam.
L Length of beam between supports.
X Distance along center line of beam from left hand support.
p Mass density of beam material, assumed to be constant.
Ip Moment of inertia of beam sections about plane of bending.
Xm Normal function of the corresponding uniform beam for
the m'2 mode.
An Coefficients for series expansion of y.
P Circular frequency, radians per sec.
A% Potential energy of the vibrating beam.
A Beam cross section.
I Mass moment of inertia of kt?mass about plane of bending.
k' Shape factor for cross-section of beam.
My Mass of kth mass.
my, Mass of beam.
My .
ak —= , mass ratio.
mp Ri
Pk Inertia parameter. This equals to — for an attached mass
in the shape of‘ﬁ disc whose radius 18 Ry. For other shapes
of load, = .
ﬁk akmbLz
4
m EI
N 2—p7-_rn_bbL3 ; a frequency parameter.

(knL.),, kL value for the n111 mode, obtained from a 12 terms
expansion of y.

/ 21,3
kL 4 rré—lﬁ:L— ; Ipo is moment of inertia of beam at x = 0.
o
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CHAPTER I

INTRODUCTION

Inertia is an inherent property of matter in motion. When a body
oscillates about a point or line, the inertia in question is called rotatory
inertia. If a mass is attached to a beam or plate, it is well-known that
the natural frequency of the system is reduced due to translatory inertia
of the mass. If the rotatory inertia of the mass is also taken into
account, keeping the mass constant, the frequency is further reduced.
In this investigation, a study has been made to determine the effect of
rotatory inertia of attached masses on the frequencies of vibration of
beams and plates. In the general theory, rotatory inertia and shear
deformation of the plate are neglected, but for the beam, only part of
the shear deformation is neglected. The assumptions of Hooke's Law,
isotropy of material and small deflection theory, are made in the
derivation of the fundamental equations. These equations can be applied
to any type of variable thickness beams or plates with an arbitrary
number of masses attached to the systems at different points.

In order to investigate this effect of rotatory inertia, several
approaches may be taken. In the case of a beam, having one or two
masses, the classical approach may be used. For this case, each mass
is replaced by the equivalent shear force and bending moment and these,
in turn, are employed to give the required boundary conditions for the
differential equations. The number of simultaneous differential equations
that arise from this procedure is one more than the number of attached
masses. As may be expected, this method becomes quite laborious when

the number of attached masses is more than two, and also, it is difficult



to generalize it to an arbitrary number of masses, because the boundary
conditions that will have to be satisfied for each differential equation
are influenced by the boundary conditions of the system, as well as the
locations of the masses.

To avoid this difficulty, d'Alembert's principle together with
the principle of virtual work is used to find the governing partial dif-
ferential equation. This approach leads to a single differential equation.

Since the primary interest here is in free vibrations, a harmonic
oscillation is assumed, with the result that the governing partial dif-
ferential equation is reduced to an ordinary differential equation. The
displacement function is then expanded in terms of the normal functions
of the corresponding uniform beam. The number of terms taken in the
expansion will depend on the accuracy required of the lower mode
frequencies, as well as the number of modes under investigation.
Taking a finite number of terms of this expansion, a system of linear
algebraic equations are obtained. Finding a solution other than the
trivial one demands the vanishing of the determinant of the coefficients
of these equations and this gives the frequency equation. Actually, the
set of algebraic equations generate a pair of symmetric matrices, the
order of each of which is the same as the number of terms taken in the
expansion of the displacement function. These, in turn, can be solved
by the usual matrix methods. In the present investigation, the digital
computer was used to solve these matrices. The eigenvalues of the
matrices gave the frequency functions and the mode shapes were obtained
from the eigenvectors. |

For the case of a beam or plate without any attached masses, this
method generates two symmetric matrices, one from the elasticity
terms and the other from the translatory motion, rotatory inertia and

shear deformation of the system. Once these matrices are known, the



addition of masses to the system add certain terms on the latter matrix,
As these terms are functions of the points of application of the loads,
there are no integrals involved and as such the computation of these
values is quite simple.

In Chapter V, an approximate method is derived for finding the
frequencies of a system loaded with concentrated masses, when the
unloaded frequencies of the;- original system are known. This method
has been introduced previously by D. Young (1 1)* and applied for the
fundamental mode only. The present method differs from that
presented in (11) in the sense that there is no trial and error solution:
necessary and also it is applicable for higher modes. Some results by
this method are compared with results from other chapters and agree-

ment is found to be very good.

Historical background:

The earliest work done on beams with rotatory inertia of load
apart from Rayleigh's work, seems to be that of R. M. Davies (1-4).
In his papers, Davies considered a uniform cantilever beam with a load
at the free end. The effects of shear deformation and rotatory inertia
of the beam are included in (4). R. H. Scanlan (5, 6) introduced the
effect of rotatory inertia of loads by the usual method for lumped
systems, obtaining a matrix in terms of displacements and angles.
The same work was further investigated by H. E. Fettis (7) who obtained
a variation of about 46% on the second mode of a wing when rotatory
inertia of the engine was included. R. F. S. Hearmon and E. H. Adams
(8) employed Rayleigh's approximation to the case of a loaded vertical
strip to include the effect of rotatory inertia of the load. References (9)

through (17) deal with concentrated and distributed masses on beams,

sk
Numbers in parentheses refer to the Bibliography at the end.



neglecting rotatory inertia of the loads. So far, no general solution
seems to have been presented for loaded beams and plates considering
the rotatory inertia of the loads except in (5,6). It is to be noted that
in (5, 6) the matrix is of higher order due to the use of slope functions
as separate unknowns. Also, it should be pointed out that the accuracy
of the results in lumped mass systems depend on the manner in which
the mass distribution is assumed, as shown by J. P. Ellington (29).

This is not necessary in the present method.

Plate

Considerable work has been done on vibration of plates but very
few publications were found on rotatory inertia effects of masses on
plates. A brief bibliography regarding the effect of engine mass on wing
vibration may be found on page 361 of (6). G. B. Warburton (18) gives
a detail analysis of vibration of uniform plates together with a long
bibliography and B. B. Raju (19) gives a fairly complete bibliography of
important publications about variable thickness plates. R. E. Roberson
in (20) and (21) analyses the vibration of uniform circular plates with
the help of Dérac 6 function to represent the attached mass at the center,
the former one for a free plate and the latter for a clamped plate.

W. F. Z. Lee and E. Saibel (12) consider the case of a simply supported
circular plate with a mass at center and obtain the solution in terms of
the normal functions of the plate which are Bessel functions. J. Hansen,
E. Warlow-Davis and J. Taylor (28) illustrates an interesting way of
analyzing experimentally the effects of engine mass on the flexural and
torsional vibrations of a wing. This includes the effects of weight of the

engine and also its rotatory inertia.



CHAPTER II

GENERAL THEORY

(a) Plate

From classical theory, for a uniform plate,

D vtw + p h ¥ . (x t) (1)
w p > T qix, Y,
If there is no external load q = 0 and Equation (1) reduces to
diw
D V%w + p h =0 2
wtehFE (2)

The general expression of plate vibration, including rotatory inertia

and shear deformation of the plate, is given by R. D. Mindlin (22) as

2 3 2 2
(vz-—%—a%)(nvz-—%}i—f’?)w+ ph-%—:zv—=0 (3)

This equation may, perhaps, be solved by a direct application of the
Ritz method or the equivalent energy equation may be derived and solved.
However, when the plate carries attached masses, it is convenient to use
energy principles; otherwise, generalization to an arbitrary number of
masses is not easily affected. Following R. D. Mindlin (22), the
secondary effects due to rotatory inertia and shear deformation of the
plate will be neglected in the following discussion.

From (23), the increment of potential energy of a plate element

during vibration is given by

= Ez? 02w 03w Qiw 0w
V= iy [ (P )
2
+ 2(1-v) (&_‘g})z] dxdydz; -% Lz < -}Zl



. N . E {nxy}?
Integrating the above equation with respect to z and denoting msL
by D results in

ll

FUID L G+ (5 + 2 v (30 (31

2y (4)
+ 2(1-v) (m)z} dx dy]

Equation (4) is quite general when deflections are small and lateral

dimensions of the plate are large compared to the thickness h(x,y).

Consider w = ¢(t)W(x,y) (5)

Substituting in equation (4)

[.”D{ ( )2+(TT)2+2V( bXZ)( ayz)
3tw 2 (6)

Considering harmonic oscillations, assume

$(t) = Sin pt and W(x, y) = g 3 AmnXpm(x) Y_(y) (7)
m=1 n=1

where X and Y are the normal functions of the corresponding uniform
beams in the respective directions and m and n are corresponding mode

numbers. Substitution of Equation (7) into Equation (6) gives

_ 2 = d2 2 Yy ..
=r JID {5 5 ‘AmanP Yn)® + z1 z: AmnXp, mgy?

F2v( °_£1 po mn—zm—Y)( z z; Apn m——)})—)

m=1 n=1

® dXy  dY, o, . 2 (8)
te(l-v) (2 = Angg e 3 )2} sin’ pt dx dy]




If a virtual displacement is taken in the form
SW(x,y) = 6Ainin (9)

the virtual work done by the elasticity forces becomes

oV
3_ 8 Ay
d*Xm

-UID{(Z 3 Amn g Yol (Tgz

6U,

dle

Yj)

m=1 n=

s 202 oA dZYon —-1—)

m=1 n=1

a*x a’y;
tv (2 £ oA ST Y (X 5!

® d’yy, dei
+ v(rnz1 Z X

(10)

dXm dY, ) (de dY;
: dx dy

2(1 2 A ] Sin? pt dx dy]6A
+ ( -v)(m:z:l n=1 mn ) mn pt Y] 1J

The inertia force of an element dxdy of the plate is

o %w _ 2 .
-p h-a—t1— dx dy = [ p P h W (x, y)Jdxdy] Sin pt.
Therefore the virtual work done by the inertia force of the entire plate
is
2 ® o . 2
=[PP/ h( 2, Z AmnXmYn)XiYj 6Ajjdxdy] Sin'pt (11)
When the plate is free from attached masséé, the total virtual work done

by these forces equals zero, from which the natural frequency equation

is found to be*

* ,
This same equation has been derived by Ritz method in Appendix B, for
the purpose of verification.



® da*X d%X; dzy
[/ D] { 21 21 Amn 22 Yot 1Y) + (. z z_ Amnxmﬁ‘zyn)
d?y; o ® d?x d2y;
g b v LG 2] A Yo K d)
o © dYn
+(Z) Z Amp )<—+ Yyl
® = dX,, dY dx; dy;
- —m bol 1 1
re0e (2 8] Amn SR Faoy (5 G ) Jaxey
=ptp [fh( 2 2 A X_Y)(XY)dxd (12)
PP mZ1 n21 “mnimtnl B Y

It may be mentioned that when the plate is of uniform thickness, D and- h
are constants and as such, Equation (12) can be evaluated quite easily:
However, it is preferred to leave the equation in its present form to
achieve conditions of generality in subsequent developments.

Let there be k number of masses attached to the plate at points
(1, 1), (xz,v2), = = - = - » (Xks» Yk ), having masses M;, M,, - - - -, My
and moments of inertia. (I;x, Ily), (Ix, Izy), ----- v (Iexo Iky) where
the first subscript k denotes the position of the masses and the second
subscript x or y denotes the axis about which the moments of inertia
are calculated. The total virtual work done by the masses, due to trans-

latory motion, is given by

k 2
§U, = - = [M S — 5w
t k=1 k Etz ]x=xk’y:yk
(13)

k
=p° 2 [ My z ZA

s 2
12 2 Z) An X YnllX;Y5] 6 A, Sin'pt ]

J X=Xk, Y=Yk

To include the effect of rotatory inertia, it should be noted that the masses
will have components of rotation about both x and y directions and the

net effect will be rotation about some intermediate axis. It is shown in



Appendix A that the virtual work done by two torques in the x and y

Ow dw
directions, on two virtual angles § (T) and & (—6_—) respectively, is
T 6(—6—6“’) T 6(TW) For k byr f ss)s( the virtual work
x y) - Ty = ) or k number of masses, the virtu o

due to rotatory inertia of the masses is given by

K
8Ur= 2 [Tix 6(%%) - Tkyé(_g_:/')]

.k 3%  dw Ow, 0% dw, . , Ow
- 'kzzl[lkx 6tz‘6y) 6 (By’+lky 5t Fax) 8 6x)]

> D> d¥n, . 4Yj N

X=Xk, Y=Yk

1]

©® ® dXm dX; .2
> —_= - Y ij
t ey m21 21 Amn g, Yo G50 Yj) 8 Ayj] Sin P =i y= vy

(14)

Adding all the virtual works from Equations (10), (11), (13) and (14), and

equating them to zero, the final form of the frequency equation is found

to be

E 3, ® 0@ dZXP da%X;
12(1-v?) [In [(mz=:l nz=;l Amn dx Yn) (dxz YJ)

[

® dZYg a’y;
* (mél nzzl AmnXm dy ) (X4 dy )

® @ 2X a?y;
v {2 % Amn dx! Yn) (Xj dyg )

(o}

© ® a2y, . ,d%X;
P21 2 AmnXm TGP) G5 YY) }

> o dXy dY, , dX;  dY;

@ [« ]
=pleffn( 2, 2 AL XmY) (X;¥; dxdy
> { $ T AgX X
MG E) E) AmnXm Yl in)}x=Xk,y=yk
k

2 a2y (2 Ame¥m gy )G )

(15)
® o dXm dXj
_1 .
+ Iky’ (m‘;_'l ngl Amn dx Yn) (dx YJ) } x:Xk’y:Yk]
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Eh? -
where D has been replaced by 205 - This is the general frequency
equation for a variable section plate with any number of masses attached

to the plate at arbitrary points.

(b) Beam

In this part, as with the plate, the usual assumptions are made
regarding Hooke's Law, isotropy and small deflection theory. The
general equation contains the effects due to rotatory inertia of the beam
and also some part due to shear deformation. These secondary effects
are included as in Timoshenko beam theory excepting a few second.order
terms including the fourth-order time derivative function which are
neglected. The validity of the resulting equation, for a uniform beam,
is compared in Appendix D with that of (23) and they are found to be
exactly the same. The strain energy of bending of the bar at any instant
is

E & 0%y .2 |
Ve = [TpegF ) dx (16)
Let y = ¢(t) Y(x)
Considering harmonic oscillations, assume

[--]
¢(t) = Sin pt and Y(x) = nz=:1 A Xp

where X, are the normal functions of the corresponding uniform beam.

Thus
m .
y = (n§ A _X_) Sin pt (17)
Substitution of Equation (17) into Equation (16) gives

_E ® d*Xn .2 . 2
V = T{f(l;lb(nza'l Al d7—) dx } Sin® pt
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Taking a variation 6 A; in one of the coefficients A; of y, the virtual

work done by elasticity forces during the virtual displacement is given by

dv L. =, &%, dX; . 2
BU, = - 37 0A -E{fo I, (r;zzlAnW)a—x,dx}Sm pt &6 A; (18)

The inertia force of an element dx of the beam at any instant is
2
-pA %—g— dx. So the total work done by the inertia force on a virtual
displacement 6y (= X; 6§ A; Sin pt) is

L 2 .
6 U; = -j;) (pA%t%—dx) (X; 6 A;) Sin pt

L, ® :
p P { [T (AT AX)Xidx | Sin®pt 644 (19)

From Equations (18) and (19), the frequency equation for a variable thick-
ness beam, neglecting rotatory inertia and shear deformation of the beam

is given by

L ® L © d%Xs . d?X:
PP p [T A(Z, AnXp)Xjdx=E [ I(Z A L 3

1 n dxz ) de dx ( ZO)

Let there be k number of masses attached to the beam at points
X1, Xz, = = - -, X}, having masses M,;, M, - - - -, M) and moments of
inertia I, I;,- - - I, The virtual work done by the masses during

translatory motion is

k 32
6 Ug = - kél [MkFt-Z_ (6y)]x=x’k

k
@
=p" (2 M (Z) AnXgXy] _ Sin®pt 84 (21)

The virtual work done by the rotatory inertia forces of the masses

is

s
See Appendix C
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i} o’ oy
6Ur - kz-'-:l [(Ikg)sltz) 6 Ox )] X=X
k
2 dX, dX . 2 ,
=Pz, { K (Z, An—5) 2 }X_Xk ] sin®pt 6A; (22)

Rotatory inertia torque of an element dx of the beam is™

d2% o3
'PIbW“ dx = - p Iy &g{zdx (23)
Therefore, the virtual work done is

3
CUip = -0 f; 1b5>%%2 s (50 a

dXp . dX; -
—tn A
=p’p [f n— An Ix ) g dx ] Sin® pt i (24)

Shear torque in an element dx of the beam™ is

E 9 0?
WG o (b —Fg) o

So the virtual work done is

L 33
e B 13y

. pE L 9 dx,,
P XG [fo 0x (Ib n Aan)

dx] SinZ pt & A; (25)

Adding all the virtual work from Equations (18), (19), (21), (22), (24)
and (25) and equating it to zero, the frequency equation is obtained as

k

2o M A(R ApX)Xgdx + = { Ml . AnXp)X; |
Plely #aZ) Anfn/ i k=1 ki gz #nfnldi X=XR
K
® dXnp dXi 4 dXp, dX;
z ln(z, an g 5! +pf:Ib(nz=:1And ax Tax
X=X
ey 2, Anxn S5 ax)
k'G o Ox b nn
® d*X,,. d’X;
- E Jf;lb(nélAn_Zn)Ef'd (26)

*
See Appendix D
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This is the general frequency equation for a variable thickness beam
with k number of masses attached to it at arbitrary points. It is used
in its complete form to evaluate the frequencies of a beam in Chapter

III and verified by experiments in Chapter IV.

(c) Uniform beam

When the beam is of uniform cross section, Equation (26) reduces

to
K
oAl T T A X )Xidx + = L Mp( 2. A X)X, ]
PUPAT, 2 Al Ridx Tz U Mkls) Safnl Ry o
k .
+ .2 {Ik(z AdX“ X
k= X=X|
® dxXj E dX}
+prJ‘::(n§An——n-) dx+pr-FéﬁfL(Z d dx]
_ @ d*Xn dei
=Elp { (2, An oM S2F ax ] (27)

When the rotatory inertia and shear deformation of the beam are neglected,

Equation(27) reduces to

p[pA M (3 A X)Xdx + >1:< IMp( S AL )X )
o 'm=] “nTRI k=1 Klaz1 ntnl 8 o

k

® dX dX
ozl (2 oa,SE) S Y ]
K21 ' "k ‘n=1 nTdx _—
2
E I f;‘(z Andx“)d—x}-dx (28)

Equation (28) is used in Chapter I1II to find the frequencies for three cases
of a simply supported beam. The frequency values are tabulated and
plotted in terms of a reference parameter. Actually, the expansion of
the series in Equation (28) was carried up to IZt-}-l- modes, even though

the values given in the tables are up to 6'1'1 modes. This was done with
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a view to improve the accuracy of the lower modes. The secondary
effects of rotatory inertia and shear deformation of the beam are
expected to be small because of the length of the beam.

Due to orthogonal property of the normal modes, Equations (27)
and (28) will simplify coﬁsiderably, but that aspect is shown in each
case separately.

Also it may be rmentioned that Equation (28) can be derived directly

from Equation (15) by assuming Y, = Yj =1, v=0, Ixkx =0, and

Iky = Ik.



CHAPTER III

NUMERICAL EXAMPLES
(a) Plate

For this part, a square plate was used, as in Figure 1. The thick-

ness at the middle was 0.125" which decreased gradually to 0.0625"

at the edge. This was the same plate as model E of B. B. Raju (19).

T
IS
%4——
Q
g

inl
— —ﬂt_

0.0628"

-1
N

U

Figure 1. Variable thickness plate.

To facilitate computation, this part of the analysis is divided into

two sections. The first section contains the evaluation of the natural

frequencies of the plate and section 2 contains that of the plate with mass

15
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attached. It may be mentioned that in (19), finite difference method was
used to find the natural frequencies of the plate.

(1) Without attached mass. To find the natural frequencies,

Equation (12) was used. The plate was assumed to be simply supported.

Taking only one term of the series gives,

¢ d*x d’y da*y
.”D[{(Aud lYl)(dleY) + (A X, l)(Xl dyé !
d*X, a’y a2y dzx
+ v { (A d_Z_Yl) (Xy === o7 L)+ (AIIXI l) ( F Yy}
dX, dy,, ,dX, dY,
+2(1-v) { (A ) o & )} ]dxdy
=p® p [] h(ALX,Y)) (X,Y)) dx dy (29)
For this case X, = Sin ": , Y, = sml'al’

Substitution of these values in Equation (29) results in

TT‘E 3 . 2 X . 2Ty . 2 TX . 2 Ty
128}(.1_2—-\1) [ .”h {281n e Sin = + 2 v (Sin ?Sln -;—)

+2(1-v) Cos? == Cos? X } dx dy
a a
= p? p{fthlnzﬂx inzla‘l}dxdy (30)

Let hy be the thickness at the center of the plate and assume— o=
0

Then vy has the following relations:

Ifx<y<a-x v(x,y) = (F+

The integrals in Equation (30), as well as others to come, were

solved in the digital computer with program. EAI-M with 48 divisions
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between the limits. With this program, an accuracy up to about 7 places
has been realized. This program uses quadrature formula (25) Q,,
obtained from a 6t—h degree polynomial that fits the f(x) values at the
seven points indicated, by integrating over the six panels, between

Xp and x¢. Actually, 49 points were used between limits, whereby eight
cycles were necessary to cover the complete range. The following
values are shown, as representative examples, that were used for

Equation (30).

2 TX

1}

Lging IY (1 .3 o XaX 1
fo Sin®* — fo v> Sin d(a)d(a) 0.1304990400

! 2 Iy o3 2 X 4% aqX
fo Cos® — fo ¥’ Cos® — d(7)d(3) 0.053923941 (31)
2 P, <

—_ 0.198397736
a

Ysing Ity si %al
fo Sin® — fo'ySm dE)d()

In (19), the frequency p is expressed in terms of a reference parameter

= / ———;Do wher
Po = P hoa €
_ Ehy
Do= 121559
With the help of Equation (31) and taking v = ¥+ the first approximation to

the fundamental frequency is found to be
p% /po? = 2.11643567"

or p/po = 14.3582752

The experimental value for this case is 13.78, a variation of only
4.19 p.c. Next, nine terms of the series in Equation (12) were taken
fori=1, 2, 3and j=1, 2, 3. To get the non-trivial solution, the
determinant of the coefficients must vanish and this gives a determinant
of the form |[A] - X [B]] = 0 where \ = "—;%f—, [A)is the matrix of the
elements on the right hand side of Equation (12) and [B] is the matrix of
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the remaining part. The two matrices are shown in Table 2. Table 1

contains the frequency values gbtained through M-5program of MISTIC.

Table 1. Natural frequencies of plate.

—_— =
Mode p/po from p/po from Extrapolated p/po from
6 terms 9 terms p/Po (19)

1 13.794 13.738 13.693 13.568

2 35.065 34.731 34.464 33.195

3 35.065 34.731 34.464 33.195

4 55.234 55.234 55.234 52.279

5 73.935 71.665 69.849 66.121

6 70.479 70.479 70.479 68.001

7 88.909 83.339

8 88.909

9 124,850

(2) With attached mass. For this part, a mass was assumed to be

located at x =(2/3)a and y =(2/3)a. This point was chosen with a view to
get higher rotatory inertia effects for all modes under consideration.
Equation (15) is the governing equation. Assuming the load to be fixed
perpendicular to the neutral surface of the plate, I, = Iy, the rotatory

inertias about x and y axes.
2.2

Letl, = IY = Q—IEEEL where a = M. , P is a non-dimentional
s
inertia parameter , m_ is the mass of the plate and M is the total attached
2
mass. In this case mp = Ztga p.

*
"This notation came from the beam analysis, where 8 = R/L, R being the
radius of a disc fitted on the beam and L is the length of the beam.
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Substitution of the above values in Equation (15) gives

Ehg? 1 ® @ d’X d’Xj
12 pp (l-vz) [J;fo 73{ (mzzl nél Amn dxzm Yn) dle Yj)

2 o d’Yn d’Yj
* (m§l nz=1 Amn¥m dy’ ) (Xi dy

2 d®Xp, d?Y ® o d?y.. ., d%X;i .
FYOZ D Amr R Yn) (Xigh )t v( 2 2 A nXmg ) (V)
® ® d¥Xm dY, , ,dX; dY, X\ .y
v (. £l Xyg L
+20-v)(. E, =, Amn-g 3y ) (55 dy )} d(=)d¢)

=TLEvCE 2 Amn XmYa (XY ;dE)ad)

2 (- d a
t{ a2, 2 A XmYn)XiY))
apla? , ® @ d¥n, . 4Yj
Yo 2 E AmeXmg )X )
. (32)
ap’a’® T 2 Ky v @iy,
3 mZ1 21 AmnTgt YalGgs Y)) }x=ﬁqy=ﬁ

mux

Assuming Xm = Sin , Yp = Sin 2y, expanding the series to any
number of terms and equating the determinant of the coefficients to zero,
a matrix of the form |[A] - A [B]| = 0 is obtained. This, in turn, was
solved by M-5 program of MISTIC. For this case, a 9 terms expansion
was used. It is to be noted that the 9 term expansion is quite small for
a problem of this type. But as each integral of Equation (32) used to
take a long time (about 4—%— minutes of machine time) it was decided to be
satisfied with 9x9 only. An extrapolation (h?) is used to improve the
accuracy of the results. '

In Equation (32), the first term of the right hand side and the complete
left hand side has already been evaluated in section 1. To find the other

values, the following values of the parameters a and B were used.

1.0 and 2.5

a

p

0.1, 0.2, 0.3 and 0.4
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Tables 3 and 4 contain. the p/p, values, some of which are compared

with the experimental values in Table 16.

(b) Cantilever beam

In this part of the investigation, a cantilever beam, as in Figure 2,
was used. The complete analysis is divided into three sections.
Sections (1) and (2) contain the evaluation of the natural frequencies of the
beam, without and with corrections for rotatory inertia and shear
deformation of the beam respectively. To get reasonable variations due

to these correction terms, the length of the beam was purposely made

\\\\\\\\\\\ /—Attached mass

% v (B) (A)
N\ ‘
AT Fp

L

I"_"I

4
|
1

C—

Figure 2. Variable thickness cantilever beam.

short (20"). The results are shown in Table 5. In section (3) a mass is
assumed to be attached at a point three-fourths the length of the beam
away from the fixed end. Tables 6, 7 and 8 show the values of the fre-
quencies for different values of a and B. In Figure 3 the above values
are plotted to show the effect of B on the frequencies. Numbers on the

right give the corresponding mode of vibration.

(1) Natural frequency without rotatory inertia and shear deform-

ation. For this case, Equation (26) reduces to
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Table 3. Frequencies of plate with attached mass.
Mode 6 terms 9 terms Extra-
expansion expansion polated
a= 1.0, B=0.1 1 7.39 7.35 7.32
2 23,08 22.68 22.36
3 32.25 32.25 32.25
4 47.55 46.55 45.75
5 61.98 53.20 46.18
a= 1,0, B=0.2 1 7.36 7.33 7.31
2 21.08 19.88 18.92
3 25.00 24.27 23.69
4 38.44 34.99 32.23
5 48. 38 42,56 37.90
a= 1.0, B=0.3 1 7.32 7.29 7.27
2 17.96 16.03 14.49
3 18.85 17.69 16.76
4 33.25 30.79 28.82
5 45.95 41.30 37.58
a= 1.0, B=0.4 1 7.25 7.22 7.20
2 14,83 12.97 11.48
3 15.03 13.67 12.58
4 31.26 29.43 27.97
5 45.15 40.76 37.25
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Table 4. Frequencies of plate with attached mass

Mode 6 terms 9 terms Extra
n n
exp — exp — polated

a=2.5 =0.1 1 .5.05 5.02 5.00
2 21,28 20.58 20.02

3 28.20 27.83 27.53

4 42.09 38.90 36.35

5 50.74 45.39 41.11

a= 2.5, p=0.2 1 5.03 5.00 4.98
2 16.82 15.03 13.60

3 18.09 16.92 15.98

4 32.59 30.06 28.04

5 45,82 41.23 37.56

a=2.5 p=0.3 1 5.00 4.98 4.96
2 12,70 10.87 9.41

3 12.72 11.67 10.83

4 30.12 28.43 27.08

5 44,80 40.47 37.01

a= 2.5 p=0.4 1 4.95 4.93 4.91
2 9.38 8.44 7.69

3 10.04 8.84 7.88

4 29.39 27.93 26.76

5 44.56 40.33 36.95
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oo [N A (2] Akoxiax= B[N0 (3, An ) SX a3y
Here,
D=%(2-3), A=1r(2-3) Iy = gorl(2- 28
Now let
Xj= ¢5 -g—p%r—- = klp cdlfkl )p(¢1) % = z and \y =m%21—r—-

With these notations, Equation (33) becomes

1 2, 2
[(2-2)% (Z

S Ap o) oidz= Ay [(2-2)* [ 2

| An(kpL)? 6" (IGL)? 6 dz
(34)

The primes on the ¢s indicate differentiation with respect to (kpX).
Expanding the above series, any number of modes may be evaluated.
For convenience, only nine terms were taken. It is interesting to see
the effect on convergence of the number of terms taken of the series in

Equation (34). Taking only one term gives

f;(Z-z)chlzdz - A L [ (2204, ")dz = 0

Here (k,L)* = 12.3623643
1
(k, L)* fo(z-z)* (¢,")2dz = 137.188301
and f;(Z-z)2¢1zdz = 1.44843126

from which A, = 1,05579794 x 10-2

and p; = 1.21652099J i{

pL

This is a variation of 5.2 p.c from the result obtained from nine terms

expansion. By taking two terms of the series in Equation (34), the result
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was p; = 1.1574033 Jb—-g;— and the variation is reduced to 0.09 p.c.

In Table 5 the frequency values are given in terms of a reference para-

mater p, = 0.87900 p—g;— , which is the fundamental frequency of a

one inch diameter uniform cantilever beam. ’

(2) Natural frequency with rotatory inertia and shear deformation.

E
In this part,it was assumed that c=3
Values of k' for other cross sections may be obtained from the same paper.

and k' = 0.847, as given in (27).

With these, Equation (26) reduces to

® 0.06481823101 ®
[} (2-2)%( 2| Andg) d3dz + ——1 fL2-2)* {_Z| AnlknL)é n'} (kjL)¢;d2

-0.196772924
. T2

[[(2-2° (2| Ané )(kLig;'d

1 ® " "
=2 J(2-2*{ Z) Ap(nL)* ey | (L)%¢; dz  (35)

1

From Equation (35) it is clear that the effect of rotatory inertia and shear
deformation is dependent on the length of the beam, as is well-known.
In case of simple supports, k,LL = nm and as such, the length term in the
denominator of the second term on the left is replaced by the corresponding
wave length term, as in (23).

The second and third terms on the left are the only additional ones
and substituting these terms, the following values of p/p,, as given in

Table 5, were obtained.

(3) Frequency with mass, rotatory inertia and shear deformation.

In this section, the same beam as in Figure 2 is used with a mass at

x = % (arbitrary). For this case Equation (26) becomes
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L @ 2
p*[p [ " g (2- TV (Z ) Agep)eidx + { M(Z, Agop)e;
I @
+ 77 (Z) AnlkaL)e,M(gL)es" } 50
T

e -————E L x S ] [}

v E L X @
- seerT B (2-30( 2 Andy) (i L)y dx

- TE L

1024L2 fo Ap(kaL) %0, ") (k5 L) ¢ "dx (36)

LIV TRS
(2- L) (nz=:1

TmpL
For the beam in question, mp = mass of beam = ISP

E o.M _ampl® g x
Let Xv—m, a—‘mb' ; I = 1 B® and I, =2

With these notations, Equation (36) reduces to

@ 2 @®
[[}(2-2)* (£, Ant)eidz + = {a (B Aene, + B E| AnlkLion (5110 )

3L
4
0. ®
+ 064?-‘]2.823101 J-; (2_2)4 { n§1 An(knL)q)n'} (le)¢1'dz
0.196772924 ®
L 190TT292 1 (2,203 § ) Antn) (K L)é;"dz]
- Nl f(‘)(z-z)‘ { :2:1 An(kpL)?¢n"} (kL)%¢;"'dz] = 0 (37)

It is seen that Equation (35) is same as Equation (37) except that two more
terms are added to the latter equation. Equation (37) was solved for the

following values of a and B.

0.5, 1.0, 2.5, 5.0, 7.5 and 10.0.

a

0.4 and 0.5.

B
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Also, only nine terms of the series in Equation (37) were taken.

In Figure 3 the ordinate represents the ratio of the loaded frequency to

that of the unloaded one. It is seen that the second mode is the one

most effected by change of 8. The fifth mode values were not plotted
primarily because it was not possible to verify these values experimentally,
and secondly, there seemed to be some small error in the values. This
was concluded from the fact that the values were larger for a = 7.5 than

a = 5.0 and again decreasing for a = 10.0, which does not seem logical.
The variation is very small and can be attributed to accumulation error

from the digital computer.

(c) Uniform beam

In this section, three cases of a simply supported beam are investi-
gated. The expansion of the series in Equation (28) was carried out to
the twelfth mode. But the values given in the tables are up to sixth mode
only. Rotatory inertia and shear deformation of the beam are neglected in
this section.
The three cases investigated are:
(1) A mass at mid-point of the beam.
(2) Two equal masses at quarter points from the ends.

- (3) One mass at quarter point from one end.

(1) A mass at mid-point of the beam (Figure 4a). For this case,

. . . L . imx
Equation (28) is used with xj = 3 and X; = Sin T
Since L L

fo Xindx =3 fori=j

=0 fori#j
and L a%X; d%X; itnt o
fO dxz de' dx = —TZL fori= )

0 fori$j
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Table 6. Frequencies of cantilever beam with attached mass,

Parameter Mode p/pr from p/pr from Extra-
6 terms 9 terms polated
expansion expansion

a=0.5 =0.4 1 0.793 0.793 0.793

2 3.066 3.032 3.005
3 10.568 10.469 10.390
4 14.750 13.846 13.123
5 28.539 26.928 25.639
a=0.5 B=0.5 1 0.764 0.763 0.762
2 2.663 2.628 2.600
3 10.525 10.370 10. 246
4 14.312 13.492 12.836
5 28.426 26.872 25.629
a=1.0 =0.4 1 0.619 0.619 0.619
2 2.345 2.309 2,280
3 10.102 9.974 9.872
4 14.015 13.210 12.566
5 28.186 26.519 25.185
a=1.0 B=0.5 1 0.591 0.591 0.591
2 2.012 1.981 1.956
3 10.066 9.932 9.825
4 13.789 12,970 12.315
5 28.115 26.476 25.165
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Table 7. Frequencies of cantilever beam with attached mass.

Parameters Mode p/pr from p/pr from Extra-
6 terms 9 terms polated
expansion expansion

a=2.5 =0.4 1 0.420 0.420 0.420

2 1.565 1.539 1.518
3 9.727 9.593 9.486
4 13.549 12,751 12,113
5 27.917 26.250 24.916
a=2.5 B=0.5 1 0.398 0.398 0.398
2 1.334 1.310 1.291
3 9.727 9.579 9.461
4 13.450 12,673 12,051
5 27.889 26.165 24,786
@a=5.0 p=0.4 1 0.305 0.305 0.305
2 1.127 1.106 1.089
3 9.586 9.480 9.395
4 13.365 12.602 11.992
5 27.847 26.109 24.719
a=5.0 p=0.5 1 0.288 0.288 0.288
2 0.959 0.942 0.928
3 9.586 9.466 9.370
4 13,323 12.560 11.950
5 27.832 26.024 24,578
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Table 8. Frequencies of cantilever beam with attached mass.

Parameters Mode p/pr from p/pr from Extra-
6 terms 9 terms polated
expansion expansion

a=7.5 =0.4 1 0.251 0.251 0.251

2 0.928 0.910 0.896
3 9.558 9.420 9.310
4 13.309 12.560 11.961
5 27.850 26.137 24.767
a=7.5 B=0.5 1 0.237 0.237 0.237
2 0.788 0.774 0.763
3 9.551 9.416 9.308
4 13.280 12.518 11.908
5 27.848 26.066 24.640
a=10.0 =0.4 1 0.219 0.218 0.217
2 0.805 0.791 0.780
3 9.522 9.409 9.319
4 13.280 12.518 11,908
5 27.830 26.066 24.655
a =10.0 B=0.5 1 0.206 0.206 0.206
2 0.685 0.673 . 0.663
3 9.522 9.409 9.319
4 13.252 12.489 11.879
5 27.804 26.024 24.600
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Figure 4. Mass arrangements for simply supported beam.
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Equation (28) reduces to

AL ® nm im ® nm nm, iw im
z 1 . .
p°[pA( > ) + M(n§1 A SmT) SmT +1 (nEI T Cos > )-—-L Cos > ]
4_4
i*n
= EI Aiz—L-g (38)
M _ampl? o, _ ELn*
Let a-= my, I= 4 B and \ = Jszbp T (39)
With these notations, Equation (38) reduces to
A @ . nm .im ﬂzaﬁz ® nmw, . im
[ +a (nZ:Zl A Sin 5 )S1n-2— + Y (nEIAnnCosT)1Cos 3 1
= \ifA; (40)

For each value of i in Equation (4)), the corresponding vibration

mode of the beam is obtained. The following values of a and B were used
in Equation (40).

a =0.5, 1.0, 2,.5and 5.0 _

g =0,0.1, 0.2, 0.3, 0.4 and 0.5.

In Figure 5 the ratios of kL values for the loaded beam to that of the
unloaded beam are plotted against P values for only three values of a.

The function kL for the loaded beam is defined by the following relation

4| m, p°L 1
kL =% ht ~_ = 4| — 1
Elp TN (41)
where \ are the eigenvalues of Equation (40). It should be noticed in

Equation (40) and Figure 5, that when the beam is vibrating in odd modes

e.g.i=1, 3, 5 etc., the mass does not rotate and inertia terms drop out

of Equation (40). For even modes, the mass only rotates and does not

move up and down. As sﬁch, the terms with a in Equation (40) drop out.
From (23), for an uniform beam,

2 2 El
k* = P_ - ___pmb, whereai‘= =b_

a;  EIL pA
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and this is the same relation as in Equation (41). For a simply supported
uniform beam k L .=nm. As such, each kL values obtained from Equation
(40) were divided by nm to plot Figure 5.

To check the convergence of the series in Equation (40), one term of

the series is taken with i = 1. This gives

)\1=(i-+o.)

1
or SRR e

The following are the values of k;L for different a.

a 0 0.5 1.0 2.5 5.0 7.5 10.0
kL m 0.840897w 0.759836w 0.638943w 0.549100w 0.5 0.467138™
(k, L)y, m 0.8401257w 0.7586017w 0.637330w 0.547455m 0.498408w 0.465604w
pP-cC 0 0.092 0.163 0.253 0.300 0.319 0.329
variation

As may be seen, the error gradually increases with increasing a because
with higher a, the mode shape of the beam deviates more and more from
a sine curve which is assumed here in this case. This was verified from
the eigenvectors.

In this problem, it is seen that the odd and even modes separate
out. So,to get two terms of the series in Equation (40), it is necessary

tousen=1, 3andi=1, 3. With these, the determinant takes the form
[ +a) -] (-a)
(-a) [G+a) - 811)

The following are the values obtained from this determinant.
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a kL p.c variation kL (kzL),, p.c variation
from (le)lZ

0.5  0.840243m 0.014 2.71291m  2.69809n 0.549
1.0 0.758790m  0.025 2.64397T  2.62353m 0.779
2.5  0.637576m  0.039 2.58369r  2.55836m 0.990
5.0  0.547706m  0.046 2.55870m 2.53104m 1.078
7.5  0.49865lw  0.049 2.54967n  2.52166m 1.111
10.0  0.465838m  0.050 2.54502m  2.516657 1,127

As may be seen, the series converges very rapidly and even one or two
terms of the series give fairly accurate results for this problem.

Next consider the even modes. In this case Equation (40) becomes

2, a2 .
Aj , map” 2 am, ™oy o g A
l": + 3 (n2=1 A n Cos > ) i Cos 5 ] = NifAg (42)
Taking one term of equation (42) gives
[+ + w%p?] =16\ (43)

In this equation, the frequency depends on both a and 8. This is because
the rotatory inertia I of the mass depends on both (refer to Equation (39)).
Takinga = 1.0, = 0.1 and 0.5, the following values are obtained.

a=1.0
B 0.1 0.5
k,L 1.91193w 1.28138w
(kL) 1.90493w 1.18667w

p.c variation 0.367 7.981
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It may be seen from the above values that rotatory inertia changes the
mode shape considerably from Sin -Z—TI-T_‘E which is assume@ by taking only
one term. This is the reason for the high difference of 7.981% for
B =0.5. From this, one can conclude that for high rotatory inertia, the
convergence of the series is slow and needs more terms of the series.
This situation was encountered during the experiment with plates
[Chapter IV, Part (a)].

Taking two even terms of the series in Equation (42) the frequency
equation is obtained as

(§ + m2ap? -161) (-2 w2ap?)
=0 (44)
(-27m%aB?) & +4 n2aB? - 256)\)

Fora=1.0, $=0.1and 0.5, the following values were obtained for k,L

and kL.

a=1.0

¢} 0.1. 0.5

k,L 1.90839 1.22950™
P.c variation from

(k,L),, 0.182 3.609

kL 3.53084n 2.89061™

(k,L);, 3.376257 2.642107
p.c variation 4.579 9.41

The variation of kL. for a =1.0 and B =0.5 from (k,L),, is now reduced
to 3.609%. This shows that the series is reasonably convergent.

Next, the series in Equation (40) were expanded to twelve terms
and the roots were obtained through the digital computer. Table 9 gives
the kL values up to sixth mode. For this particular problem, the even
modes were most effected by B. The convergence was found to be quite

rapid and as such extrapolation was not deemed necessary.
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Table 9. Frequencies of simply supported uniform beam with mass at

center (load:d kL,
W

Parameters 1 2 3 4 5 6
a=0.5 B=0 0.8401 2.0 2.6981 4.0 4.6395 6.0
a=0.5 8=0.1 0.8401 1.9514 2.6981 3.6286 4.6395 5.1607
a=0.5 8=0.2 0.8401 1.8203 2.6981 3.1046 4.6395 4.8164
a=0.5 =0.3 0.8401 1.6569 2.6981 2.8567 4.6395 4.7429
a=0.5 =0.4 0.8401 1.5058 2.6980 2.7466 4.6392 4.7169
a=0.5 B=0.5 0.8401 1.3799 2.6980 2.6920 4.6392 4.7057

=1.0 p=0 0.7586 2.0 2.6235 4.0 4.5829 6.0
a=1.0 B=0.1 0.7586 1.9049 2.6235 3.3763 4.5829 4.9442
a=1,0 B=0.2 0.7586 1.6848 2.6235 2.8859 4.5829 4.7503

=1.0 p=0.3 0.7586 1.4729 2.6236 2.7300 4.5820 4.7137
a=1.0 B=0.4 0.7586 1.3100 2.6236 2.6702 4.5820 4.7002
a=1.0 p=0.5 0.7586 1.1867 2.6236 2.6421 4.5820 4.6947
a=2.5 =0 0.6373 2.0 2.5584 4.0 4.5400 6.0
a=2.5 =0.1 0.6373 1.7825 2.5584 3.0260 4.5400 4.7900
a=2.5 B=0.2 0.6373 1.4432 2.5583 2.7166 4.5407 4.7113
a= 2.5 p=0.3 0.6373 1.2153 2.5584 2.6477 4.5407 4.6939
a=2.5 B=0.4 0.6373 1.0642 2.5583 2.6230 4.5407 4.6916
a=2.5 B=0.5 0.6373 0.9568 2.5583 2.6117 4.5413 4.6900
a=5.0 =0 0.5475 2.0 2.5314 4.0 4.5241 6.0
a=5.0 B=0.1 0.5475 1.6308 2.5314 2.8326 4.5241 4.7372
a=5.,0 B=0.2 0.5475 1.2477 2.5315 2.6546 4.5243 4.6978
a=5.0 =0.3 0.5475 1.0350 2.5315 2.6196 4.5243 4.6908
a=5.0 B=0.4 0.5475 0.9013 2.5312 2.6068 4.5165 4.7018
a=5.0 =0.5 0.5475 0.8083 2.5312 2.6018 4.5165 4.6861
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Figure 5.

Frequency distribution for simply supported beam;
mass at center.
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(2) Two equal masses at quarter points from the ends (Figure 4b).

For convenience of calculations, the two masses are assumed to be equal

in all respects. From Equation (28), the frequency equation is given by

[ +a { ( E An Sln-—) Sln 4 + (nZ A, Sin 3n1r) Sin 3im }
n? ap? @ nw,,, im ®© 3im
+ - { (nzzl A, n Cos —4—)(1 Cos TH (nZ___ Arn Cos )(1 CosT

=X\ i4Ai (45)

Comparable to the last section, when i = 4, 8 etc. the a terms drop out
and wheni =2, 6, 10 etc., the f terms drop out. In the remaining modes
both terms are present.

Taking only one term of the series in Equation (45), withn =1 =1,

the first mode frequency equation is obtained as

[‘+<1+—p—"‘z‘;12 ] =2 (46)

z

Assuming a= 1.0, B=0.1and 0.5, the following values are obtained

for kL

a=1.0
] 0.1 0.5
K, L 0.7567431 0.697140™
(k,L),, 0.755667w 0.695177~
p.c variation 0.142 0.282

In a similar manner, Equation (45) was solved with twelve terms of the
series. Table 10 gives the -kTL values for different values of a and 8. The

graphs of Figure 6 shows the variation of kL. due to variation of B for three

values of a. These values are given only up to sixth mode.
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Table 10. Frequencies of simply supported uniform beam with two equal
masses at quarter points.

Mode
Parameters 1 2 3 4 5 6

a=0.5 =0 0.8401 1.5173 2.6981 4.00 4.6395 5.2584
a=0.5 p=0.1 0.8376 1.5173 2.5803 3.3935 4,1267 5.2584
a=0.5 p=0.2 0.8303 1.5173 2.2980 2.6640 3.6266 5.2583
a=0.5 p=0.3 0.8186 1.5173 2.0317 2.2254 3.4611 5.2583
a=0.5 p=0.4 0.8032 1.5173 1.8386 1.9433 3.3983 5.2576
a=0.5 B=0.5 0.7848 1.5173 1.7028 1.7448 3.3692 5.2576
a=1.0 =0 0.7586 1.3345 2.6235 4.0 4.5829 5.1551
a=1.0 =0.1 0.7557 1.3345 2.4113 3.0488 3.8112 5.1549
a=1.0 B=0.2 0.7471 1.3345 2.0225 2.2866 3.4196 5.1549
a=1.0 p=0.3 0.7334 1.3345 1.7468 1.8891 3.3249 5.1539
a=1.0 p=0.4 0.7157 1.3345 1.5714 1.6429 3.2915 5.1539
a=1.0 B=0.5 0.6952 1.3345 1.4562 1.4723 3.2756 5.1539
a=2.5 =0 0.6373 1.0951 2.5584 4.0 4.5401 5.0779
a=2.5 p=0.1 0.6343 1.0951 2.1293 2.5400 3.4724 5.0779
a=2.5 p=0.2 0.6255 1.0951 1.6590 1.8418 3.2650 5.0770
a=2.5 p=0.3 0.6116 1.0951 1.4084 1.5110 3.2239 5.0770
a=2.5 B=0.4 0.5939 1.0951 1.2635 1.3108 3.2095 5.0770
a=2.5 p=0.5 0.5738 1.0951 1,1728 1.1733 3.2017 5.0840
a=5.0 =0 0.5475 0.9313 2.5314 4.0 4.5242 5.0490
a=5.0 p=0.1 0.5446 0.9313 1.8782 2.1717 3.3177 5.0507
a=5.0 B=0.2 0.5365 0.9313 1.4105 1.5554 3.2063 5.0507
a=5.0 p=0.3 0.5237 0.9313 1.1899 1.2730 3.1855 5.0507
a=5.0 p=0.4 0.5074 0.9313 1.0667 1.1034 3.1767 5.0384
a=5.0 B=0.5 0.4892 0.9313 0.9911 0.9873 3.1723 5.0384
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(3) One mass at quarter point from one end (Figure 4c). For this

case, Equation (28) reduces to

Aj @ . nm, . im | wlap? @ nm. . ime L4
[-2—+0, (n2=1 An SlnT) SlnT + —4—— (nEI Ann Cos 4 )1 Cos T]— Ai Al (47)

Taking only one term of the series in Equation (47),

m 2qp?

1 bl
[2'+2+ 2

1= (48)

With a=1.0, B=0.1and 0.45, the following values are obtained for k,L.

a=1.0
B 0.1 0.5
kL 0.838323 0.786240~
(k,L),, 0.830865™ 0.779235w
pP.c.variation 0.8976 0.8990

Even with one term, the results are within one percent of the twelve
term series.

It is interesting to note that for a =1.0 and B =0, kL is 0.833165™
whereas, for a =1.0 and g =0.5, k;L is 0.7792357, a variation of
6.472 p.c. The combined effect of a =1.0 and = 0.5 is 22.077 p.c from
the unloaded frequency of the beam.

Next, a twelve term series expansion of Equation (47) was taken
and the values of—l% that were obtained are given in Table 11. The graphs

of these values are shown in Figure 7.
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Table 11. Frequencies of simply supported uniform beam with mass at
quarter point.

e —— —_——— ———————

Parameters 1 2 3 4 5 6

a=-0.5 B=0 0.8998 1.7570 2.8739 4.0 4,7524 5.6075
a= 0.5 B =0.1 0.8981 1.7554 2.7915 3.6309 4,.5726 5.5543
a=z 0.5 B =0.2 0.8929 1,7499 2.4945 3.2539 4.4796 5.4501
a= 0.5 B =0.3 0.8843 1.7373 2.1855 3.1605 4.4569 5.4096
a= 0.5 B=0.4 0.8727 1.7089 1.9851 3.1316 4.4476 5.3912
a= 0.5 B =0.5 0.8582 1.6530 1.8814 3.1192 4.4458 5.3834
a= 1.0 B =0 0.8332 1.6819 2.8495 4.0 4.7006 5.5749
a= 1.0 B =0.1 0.8309 1.6767 2.6749 3.4098 4.4857 5.4458
a= 1.0 B=0.2 0.8240 1.6570 2.2278 3.1483 4.4345 5.3535
a= 1.0 B =0.3 0.8128 1.6077 1.9514 3.1050 4.4257 5.3289
a= 1.0 B =0.4 0.7977 1.5215 1.8358 3.0910 4.4193 5.3230
a= 1.0 B=0.5 0.7792 1.4312 1.7941 3.0845 4.4176 5.3142
a= 2.5 B =0 0.7180 1.6114 2.8301 4.0 4.6594 5.5530
a= 2.5 B =0.1 0.7154 1.5919 2.4013 3,1862 4.4242 5.3329
a= 2.5 B=0.2 0.7076 1.5082 1.9232 3.0827 4.4033 5.2841
a= 2.5 Bf=0.3 0.6950 1.3636 1.7866 3.0664 4.4004 5.2743
a= 2.5 P =0.4 0.6779 1.2408 1.7491 3.0615 4,.3999 5.2729
a= 2.5 B =0.5 0.6576 1.1554 1.7348 3.0588 4.3959 5.2729
a= 5.0 =0 0.6238 1.5811 2.8225 4.0 4.6435 5.5444
a= 5.0 B =0.1 0.6213 1.5327 2.1423 3.1074 4.4028 5.2865
a= 5.0 p=0.2 0.6138 1.3474 1.7948 : 3.0607 4.3909 5.2603
a= 5.0 f=0.3 0.6016 1.1666 1.7356 3.0530 4,.3914 5.2562
a= 5.0 B=0.4 0.5852 1.0504 1.7191 3.0495 4.3903 5.2077
a= 5.0 B=0.5 0.5658 0.9766 1.7119 3.0486 4.3792 5.1690
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CHAPTER 1V

EXPERIMENTAL RESULTS

As mentioned earlier, three cases were investigated experimentally.
They are:
(a) Plate: This was a square plate, 9'"x9', made of aluminum.
The thickness at the middle of the plate was 0.125" which

gradually decreased to 0.0625" at the edges. The mass was

fixeda.tx=-2?a-, y=%.

(b) Cantilever beam: The beam was made of aluminum and 20"
long. The diameter at the fixed end was 1'" which gradually

decreased to §'' at the free end. The mass was fixed at
Lo 3L
=
(c) Uniform be?am: This was a steel bar, 1" in diameter and 35"
long between supports. Two cases of this setup were investi-
gated:
(1) The mass was attached at the mid-point of the beam.

(2) The mass was attached at quarter point.

The different types of supports, used in the experiments, are shown
schematically in Figure 8. Figure 8a is for the plate which rests on the
support along four edges. By spreading some special fine grained sand
along the edges and vibrating the plate by pulsed air, it was brought to
resonance. The side bolts were then gradually tightened until the sand
along the edges just stopped vibrating. This gave the condition for simple
supports where the edges should not move but can rotate. Due to finite
width of the supports, there was friction and this raised the frequencies

of the plate.

46



47

N
N

AN

w
)

9"

(a) Plate

i —]

| 20" J|

AN A,

-
e/
\—
~
7
é
2
r ]
(b) Cantilever beam
I_- 35”
(h T
-
Ky 3 ¢ o3
. il
R
(c) Simple support
Figure 8. Schematic diagrams of supports.



48

Figure 8b shows the support arrangement for the cantilever beam.
The beam was fixed on a bearing and the whole assembly was fixed on
a heavy steel table with a C-clamp. It was found from.the natural
frequencies of the beam that the support was weak. But as no other sup-
port arrangement could be built near the compressor, this was taken
to serve the purpose. |

The support for the uniform beam was made from three channel
iron sections with stiffening ribs, as shown in Figure 8c. Two steel
plates were then welded on the two vertical channels and the bearings were
bolted to these two plates. Two 1/2'" holes were drilled through the beam
at the ends and these were honed to fit two ground 1/2'" pins. The two
pins were then fitted on the bearings with screws. To remove middle
plane forces along the beam, one end of one of the holes on the beam was
cut out. The whole assembly was then clamped onto the table with two
C-clamps.

The systems were vibrated with pulsed air, supplied from a com-
pressor at about 90 psi. The setup used was the same as used by
B. B. Raju (19). To find resonance of the beams, a vibration pickup, in-
stead of SR-4 gages, was used. This had the advantages of higher signal
strength and also it could be moved to any point along the beam. A SR-4
gage was used in the case of the plate.

To vary the rotatory inertia of the attached masses, keeping the
mass constant for each value of a, it was necessary to fix clamps on the
bars with extensions attached to the clamps. The masses were slid -
on these extensions. As only some part of the attached masses could be
slided, it was necessary to compute the lengths at which the sliding masses
had to be fixed to get the required amount of rotatory inertia. The compu-

tations are shown in the following pages.



49

Plate

In order to attach masses on the plate, the plate was drilled at

x = Za = -2—3. A 1/2" diameter magnesium rod was chosen and it

3 3
was threaded throughout its whole length. This rod and other masses

were fixed at desired locations with the help of six nuts. Following are

the data for this setup.

2 2
Weight of aluminum plate = mpg = t;a (pg) = 0.675#
Weight of threaded magnesium rod = 0.0625#
Length of threaded magnesium rod = 5%"'.

Therefore effective diameter of magnesium rod = 0.463" (at (pg)=.065#)
Weight of six nuts = 0. 3754

Therefore, weight of each nut = .0625#

Height of each nut = 0,482".

With this setup, only two values of a were used. They were 1.0 and 2. 5.
Following are the data.

Weight of rod and six nuts = 0.4375#

a =1.0; extra weight = 0, 2375#

This weight was made from a steel plate, having a 1/2" diameter
hole, with dimensions 23" x 2" x4 "
a.= 2.5; extra weight = 1,25 #.

This was also made out of a steel plate with a ' hole at the middle,
having dimensions 3" x 1§ " x+ ', The weight of this plate was 1#. So,
this plate, together with the first plate and a washer (0.0125# - height 0.1"),
the total weight was 1,25#. It was found that if a single \a'/eight of 1.25#

is made, B = 0.2 is not possible to obtain..

Let 1. = required moment of inertia;

am a.z 2

—— B

13.65
g

aﬁz
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0.01315
g

From Figure 9, rotatory inertia of two nuts =

rotatory inertia of rod = 0—1—71-

0.18415
g

Total rotatory inertia of Figure 9 =

ol

5
|
[N, Pt
- —— > e
0./1042" [_ T
N
hm

Figure 9. Plate with rod attached

a=1.0 (B=10.1 and 0.2 are not possible)
B=0.3 o 1.227 = 0.2765 + 0.3625 L2
g g g

So, L = 1.64" (Figure 10a)

Similarly, for f = 0.4, L = 2.3"

a=2.5 I, = 3215 g2
S g
2
Pl e 1.366 _1.1799  0.0625 L
g g g

So, L = 1,728" (Figure 10b)

2
8=0.3 Ir=3.074 _0.375 L +0.0161L +1.06081
g g g g

So, L = 2.29" (Figure 10c)
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2

o)
1]

So, L

2.08" (Figure 10d).
Table 12 gives the natural frequencies of this plate and Table 13 gives
those of the loaded plate. Since frequencies in cycles per second gives

a better feel of the phenomenon, they are also tabulated.

Table 12. Experimental frequencies of plate without attached mass.

Mode Theoretical Experimental Theoretical Experimental
Frequency Frequency P/Pr pP/Pr
1 206.5 209 13.693 13.78
2 518 514 34.464 34.2
3 518 514 34.464 34.2
4 831 824 55.234 54.8
5 1051.5 1026 69.849 68.2

Note: Since the plate is square and symmetrical, the second and third
modes are usually accepted as the same. But due to unsymmetric plac-
ing of the attached mass, these two modes are not same for the loaded
plate. As such they are assumed here as different.
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Table 13, Experimental frequencies of plate with attached mass.

a <) Mode Theoretical Experimental
Frequency Frequency
1.0 0.3 1 109.3 113
2 218 214
3 261.5 256
4 434 427
5 564 560
1.0 0.4 1 108.1 112
2 172.7 159
3 189.3 186
4 421 416
5 560 553
2.5 0.2 1 74.9 76
2 204.5 ---
3 240.1 ---
4 422 414
5 563.5 561
2.5 0.3 1 74.6 75
2 141.9 ---
3 163.7 -—-
4 407.5 398
5 557 552
2.5 0.4 1 73.7 74
2 113.9 ---
3 118.5 ---
4 403 387
5 556 547

Note: For a =2.5and $=0,2, 0.3, 0.4, it was not possible to get any
good response for the second and third modes, even with the full pres-
sure on. There were some responses near about the theoretical values
but the presence of subharmonics of higher modes made it very difficult
to locate these values accurately and as such they are not filled in. For
the value corresponding to the second mode of a=1 and B= 0.4, it was
noticed that the load vibration was very violent. The high variation be-
tween theoretical and experimental value seems to be due to slow con-
vergence of the series. Higher number of terms in the series apparently
must be taken to improve these values.



54

(b) Cantilever beam

At the earlier stages, a steel bar was chosen for this part of the
experiment. But while checking the natural frequencies of the unloaded
bar, it was found that the support was too weak for this purpose
(Figure 8). Consequently, an aluminum bar had to be used. The different
weights that were made to suit the differe.nt values of a, were no longer
found adequate when the beam material was changed. Instead of making
the weights again, it was decided to draw curves of theoretical values
of frequencies vs. a for each B and compare the experimental frequencies
for those a values that were available from all the weights. Only three a
values were available and these are 3.64, 6.18 and 7.915. The following

calculations are made on this basis. The data for this setup are given

below.

25 # (Figure 11)
14 # (Figure 2)

Weight of clamp

Weight of beam

-}i—-# (Figure 13a)
- # (Figure 13b)
3-}-5 # (Figure 13c)
44 (Figure 13d)

Weight of clamping piece

Weight of first mass

Weight of second mass

Weight of third mass

Referring to Figure 2,

Weight of (A) + (B) = 1 #. So weight of (A) = 0,945#.

L2 94, 5ap2
Ir = OLZ.L ‘32 = _g_CLB. (49)

Clamp : steel (Figure 11)

1 1
Iz 3 x%dx
Rotatory inertia of clamp = p| fi‘s % mridr + fll > ]
g

Let I, = Moment of inertia of any mass about an axis x, through its center

of gravity.
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In the following, I, of the clamping piece (Figure 13a) will be neglected.
First mass: Figure 13b and clamping piece 13a
Total weight on bar = 3% #

'So, a = 3.64
343.75

From Equation (49), I, = B

Comparing with Equation (50), § =0.1, 0.2 and 0.3 are not possible.

0.722

g

2
For B =0.4 [ = 55.0 _40.6  0.722  L?

r g g g g

Ix of first mass =

(51)

So, L. = 3.70"
Similarly for 8 =0.5 L =6.685".

Second mass: Figure 13c and clamping piece 13a

Total weight on bar = 5. 8431#

So, a=6.18, I_.= 284.31 2

i g
I, of second mass = 0.575 (52)
g

0. 4
Inertia at distance L = 9.575 + —9 (L + 0.23)2

g log
41.3368+ 1.408L . 3.4065L2

g

So, total inertia =

(53)

With these, the following values are obtained.
For p=0.4 L=3.72"
For B =0.5 L =5.335"

Third mass: Figure 13d and clamping piece 13a.

7.4694#

So a = 7.915, I, = 746'95"'

Total weight on bar

I, of third mass = —— (54)
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Figure 13. Masses for cantilever beam.
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1.54 75

Inertia at distance L = + (L + 0.5)2
8 log
2
So, total inertia = 43, 312+ 4.6875L + 5.03151, (55)
g g
Therefore, for pf =0.4 L = 3.45"
for B =0.5 L =4.89"

Table 14 contains the experimental values obtained and these are compared

with the theoretical values obtained from Figure 3.

(c) Uniform beam

The same clamp and weights were used for both the settings, the
first one being for the masses at the center and the second one for that

at quarter point away from one end. Following are the data for this part.

Beam length between supports = 35"
Diameter of beam (uniform) = 1"
-Material - Carbon steel drill rod (SAE1096)
Young's Modulus = 30.5 x 10° psi
Density of beam material = 0.283# in>,
Beam weight = 71133-#
Weight of clamp = 24 #
Weight of clamping piece = §5-#
Weight of first mass (a=0.5 = {4
Weight of second mass (a = 1.0) = 4%—#
Weight of third mass (a = 2.5) = 1653 #
Weight of fourth mass (a = 5.0) = 36§#

The following calculations are made on this basis. The same clamping

piece as in Figure 13a was used.
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Table 14. Experimental frequencies of cantilever beam with and
without attached mass.

a B Mode Theoretical Experimental
Frequency Frequency
0 0 1 92.8 91
2 390.8 385
3 963.8 947
4 1795, 2 ---
3.64 0.4 1 24.9 25
2 89.75 89
3 664 657
4 858 857
0.5 1 23.45 22.7
2 77 77
3 664 648
4 850 846
6.18 0.4 1 19.5 20
2 70.6 71
3 663 658
4 855 850
0.5 1 18.3 17
2 59.75 60
3 663 655
4 845 839
7.915 0.4 I. 17.3 17
2 61.5 58
3 660 651
4 850 841
0.5 1 15.63 14.7
2 52.8 52
3 660 650
4 846 838
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Clamp : steel (Figure 12)
1 1

Rotatory inertia of clamp = p[ [, % nridr + fx 5 ]
T 12-_
116.
- 6.4 (56)
g
2
I, = .a_r_n_4b£_ p2 = %Zﬂ ap? (57)
1200
a= 0.5 ; From Equation (57) I, = = p?
From Equation (51) I, = 0';22
1 116. . 2
So, 1, = 200 g2 = 16.4 +0 722 +_I:_
g g g g
For f=0.4 L=8.9"
For B=0.5 L = 13.7" (not possible).
a=1.0 ; From Equation (57) Ir = -2—4g—00— [32
From Equation (54) = —l-gi‘}
2400 ., 116.4  1.54 11 2, 15 2
T em— = + — .
So, 1. p B . p + 33g L+16g(L+O 5)
From this, for § =0.3 L =4.05"
for g =0.4 L =6.90"
for B =0.5 L =9.46"
a =2.5; From Equation (57) L. = 60g00 g
Referring to Figure 14a,
_ 2.795 _ .. . _ . .
le = g—- ; Ixz = negligible ; Ix3 = negligible
14.92 1.565 0.115
m; = ; my = ; My =
g g g
000 147, . .
I = 6 B2 = 47.065 + 39.172 L+ 16.94 L2

g g g g
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So, for p=0.3 L =3.87"
for =0.4 L =5.97"
for B =0.5 L =8.06"

a =5.0; From Equation (57), I, = -%)2 B2
Referring to Figure 14b,
I = 35.5 .1 = 0.426 L1 = 0.404
X4 g xZ g X3 g
26.7 5.11 4.84
m, = —m m, = — ; ms; = ————
g g g
.= 12000 8 - 243.93 + 59.43 L + 36.99 L2
g g g g
From this, for § =0.3 L =4.08"
for p =0.4 L =6.06"
for B =0.5 L =7.975".

"I able 15 contains the frequency values for the system with the mass at

the center and Table 16 contains those with the mass at quarter point.
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Figure 14. Masses for simply supported beam.
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Table 15. Experimental frequencies of uniform simply supported beam
with mass at the center.

a B Mode Theoretical Experimental
Frequency Frequency
0.5 0.4 1 45.2 46.6
2 145 145
3 466 473
4 483 484
1.0 0.3 1 36.8 37
2 139 139.5
3 440 437
4 477 478
0.4 1 36.8 37
2 110 111
3 440 437
4 457 456
0.5 1 36.8 37
2 90.2 92
3 440 437
4 447 446
2.5 0.3 1 26 ) 27
2 94.5 94
3 418 421
4 448 447
0.4 1 26 27
2 72.4 71
3 418 421
4 440 439
0.5 1 26 27
2 58.6 57
3 418 421
4 436.5 433
5.0 0.3 1 19.2 19
2 68.6 68
3 411 414
4 439 437

Continued
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Table 15 - Continued

a ) Mode Theoretical Experimental
Frequency Frequency
5.0 0.4 1 19.2 19
2 52 52
3 411 414
4 436 434
0.5 1 19.2 19
2 41.8 41
3 411 414
4 433.5 430
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Table 16. Experimental frequencies of uniform simply supported beam
with mass at quarter point.

a g Mode Theoretical Experimental
Frequency Frequency
0.5 0.4 1 48.75 49
2 187 188
3 252 249
4 627.5 619
1.0 0.3 1 42.3 43
2 165 167
3 244 251
4 617 619
0.4 1 40.7 42
2 147.2 146
3 216 214
4 612 618
0.5 1 38.9 35
2 131 134
3 206 208
4 609 615
2.5 0.3 1 30.9 30
2 119 117
3 204.6 197
4 602 594
0.4 1 29.4 28
2 98.6 100
3 195.8 198
4 600 593
0.5 1 27.65 27
2 85.5 84
3 192.8 188
4 599 591
5.0 0.3 1 23,15 22
2 87.2 83
3 193 191
4 597 590




Table 16 - Continued
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a Mode Theoretical Experimental
Frequency Frequency

S.0 1 21.9 21

2 70.75 72

3 189 188

4 596 560

1 20.5 19

2 61 64

3 187.5 185

4 550 555
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Discussion of Experimental Results

The foliowing remarks seem appropriate before the final results
are discussed. In the case of the simply supported uniform beam with
a mass at mid-point, the first mode was quite simple to find. The
amplitude became fairly large and the scope trace was almost perfectly
sinusoidal. The higher modes required judgment on the part of the
investigator. As the frequency was increased, the scope trace did not
remain sinusoidal until the next higher mode was reached. It was
observed that the amplitude of the next higher mode may become smaller
than that shown just before the resonant frequency was reached. The
only way to obtain the resonant frequency was by noting the trace which
should be sinusoidal.

In the case of the same beam with mass at the quarter point, the
maximum amplitude was seen to be at the fourth mode. The remarks
made for the previous case apply to this case also. Subharmonics of
the fourth mode presented considerable difficulty which had to be reduced
by the use of a filter. One important aspect noticed in this experiment
was that if the nozzle was placed at any arbitrary point of the beam, the
resonant frequency was higher than the theoretical values. When the
nozzle was placed at the point where the amplitude was maximum, the
resonant frequency was minimum and gave best agreement to the theo-
retical value. This point of maximum amplitude was very close to the
value obtained from the eigenvectors.

The results obtained experimentally agreed fairly well with the
theoretical values. There are several reasons for discrepancies as

listed below.

(a) Slow convergence of the series: This seemed to be the main

reason for the cases of variable section beam and plate. This is obvious

from the results of the higher modes. Also, in some cases, particularly
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the second mode of the loaded plate, the load was observed to vibrate
considerably in the plane of the plate. This effects the rotatory inertia
of the attached mass. The maximum variation of experimental values

from the theoretical values are most evident in this mode.

(b) The reasons given in (19) applies to both plate and beams.
These are (i) determir}ation of exact resonance, (ii) errors in the read-
ing instruments, (iii) actual model differing from the theoretical model,
(iv) inaccuracies in the physical constants, (v) support conditions,

(vi) vibration of support, (vii) damping in the material, and (viii) effect
of air mass. The effects of (ix) large amplitudes, and (x) shear and
rotatory inertia of the system are applicable to plate only, because a
vibration pick-up, used in the case of beam, reduced the amplitude and

shear and rotatory inertia effects were also taken care of.

(c) Rotatory inertia I, of the clamping piece. In the calculation

of length to produce certain amount of rotatory inertia, this I, part was
neglected. The effect of this is quite small and should be less than a

fraction of a percent.

(d) Slackness in tightening bolts. When the masses were fixed

on the clamps, they were fastened with two bolts to the clamping piece.

It was seen that if these bolts are loose, the frequency was higher
because the load had the freedom to remain at the same place instead

of moving with the clamp. The contribution due to this appears negligible
because the bolts were checked occasionally.

(e) Variation of a values. As may be seen (page 58) for' the uniform

beam, the weights that were used to produce particular values of a were
a little off. The maximum variation was less than one percent and as

such the variation in frequencies should be less than one percent.



CHAPTER V

REDUCED MASS SYSTEM

From a paper by D. Young (11) it was seen that the effect of a
concentrated mass on a beam can be approximated by reducing the
mass of the beam at the position of the concentrated mass in such a way
that the natural frequency of the beam without concentrated mass is
same as a single mass placed at the position of the concentrated mass
and assuming the intertia of the entire beam to be zero. It is stated
in the above paper that this method is valid only for the fundamental
mode. It is the purpose of this chapter to show that the above method
can be used for higher modes also. And the same method may be used,
with sufficient accuracy, for plates as well. For this method, the
natural frequencies of the unloaded beam or plate are needed, which
can be derived by standard formulas and also the stiffness coefficients
of the beam or plate at the positions of the concentrated masses.

These can be derived or in complicated cases, they may be obtained by
measurement. The procedure for beam may be described as follows.
The same applies for plate as well.

Let there be a concentrated mass at

g é g point P, at a distance "a' from the

— a 4.4 left support (figure at left). The beam

may have any type of supports at the
ends. If the first mode frequency of the loaded beam is required, then
the mass of the beam is replaced at P by a reduced mass m,, where m,
is unknown. Let the spring stiffness (force per unit deflection) of the
beam at P be k. Then from the elementary formula for a spring mass

system, it is known that natural frequency is given by,

69
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k
2 _
w? = g (58)

where w is in radians per sec.

In order to use this method, w must be known. From Equation(58),

mr = Iz- (59)

As k depends on the position P, even for the same beam, m, depends
on P also. After my is obtained, this mass is superposed on the concen-
trated mass M at P. Then the frequency of the beam with the concentrated
mass is given by

k

Kk =
2 _ - =
P° M+ myp) (M + %,) (60)

Example: Simply supported uniform beam with a mass at the center
(Figure 15a). From elementary theory

] _ pPL3
Ylihax = Z8EI

Therefore, k = spring stiffness at center

_ 48EI
- LT
4
. mEI
For this beam, u)f = ;—n-b—Lg—

So, from Equation(59), m,. = 0.492767 my.

Let a concentrated mass M be placed at the center and assume a = o
’ b
From Equation(60),
2 _ 48EI
P = m, L*(a + 0.492767my) (61)

Table 17 shows the values of p, for six different values of a and
these values are compared with the values obtained from Equation(40)s

with § = 0.
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T able 17. First mode frequencies for a simply supported beam with a
concentrated mass at the center, obtained by reduced mass

method.
a p, from Equation(6l) p, from Equation (40) Variation
x ’EI x ’ EI in p.c.
mL> mL’

0.5 6.9534 6.9661 -0.182

1.0 5.6705 5.6797 -0.162

2.5 4.0048 4,0089 -0.102

5.0 2.9561 2.9580 -0.064

7.5 2.4506 2.4517 -0.044

10.0 2.1388 2.1396 -0.037

If there are n masses or the n111 mode is required, then the beam
mass should be replaced by n masses. If there are concentrated masses,
then these reduced masses should be placed on the concentrated masses,
in order to keep the order of the matrix to a minimum. But if only the
n@mode is required with lesser number of concentrated masses, then
they may be placed anywhere. However, if placed on equal intervals, the
computation becomes a little simpler.

Example: As an example, the previous example is taken and the
third mode is evaluated. (The second mode is same as an unloaded beam,
since the rotatory inertia of the mass is neglected.) For this case, the
beam mass is divided into three equal masses m_, at quarter points and
mid-point, as shown in Figure 15b. To find the frequency, the influence
coefficient method is used. Denoting by 6, the deflection at n produced
by an unit force at f, the following relations may be obtained from any

strength of materials book (see Reference 30).
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= 18c

O
—
—

|

o
w
w

|

612= 68, = 63, = 6,3 = 22c

613 = 631 = 14C
6,, = 32c
3
where c = —I—"—
1536E1

Considering A, A, and A3 as the amplitudes of the three locations and
assuming harmonic oscillations, the following three equations are obtained.

A, = m_p®c[18A, + 22A, + 14A;]

A, = m_p®c[22A, + 32A, + 22A,]

z
|

= m,pic[14A, + 22A, + 18A,]

Solving these equations give,

h x— z .
w e
er

Since the highest frequency is needed,

1 (k;L)’EI

pz = e— =
3 mrhiC mpL

from which, m,=0. 2193994mb.

Adding mass M of the concentrated mass to the middle reduced mass,
gives

m,; = my,

1]

0.2193994my,
m,=my+M

= mp(a +0.2193994)
mj3 = m,
0.2193994my,

With these three new masses, the frequency equations become,
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MA, = 3.9491892A, + (22a + 4.8267868)A, + 3.0715916A,
AA, = 4.8267868A, + (32a + 7.0207808)A, + 4.8267868A, (62)
MA; = 3.0715916A, + (22a + 4.8267868)A, + 3.9491892A,

The solution of these equations, with a = 0.5, give,

N = 29.744403; N, = 0.8775976, X3 = 0.2971586
EI

from which p} = 5168.957 r-n—bL—3 .

It is interesting to note that the result obtained from Equation(40)was
El

p; = 5162.10 —3— a variation of only 0. 102%. Considering p?, it is
found that pf = 51.640 -n—1E_I'I__,T , whereas, the value obtained from Equation
El b

@0) was 48. 526m . This variation is 6.4%, which is fairly high.

L
From this it is concluded that this method is accurate only for the
particular mode for which the unloaded frequency is matched.

Table 18 compares the results obtained from both the methods for

different values of a.

Table 18. Third mode frequencies for a simply supported beam with a
concentrated mass at the center, obtained by reduced mass

method.

a p; from Equation(62) ps from E uation(40) Variation

EI x / EI in p.c.
mbL3 mbL3

0.5 71.895 71.848 0.065

1.0 68.459 67.932 0.776

2.5 65.627 64.599 1.591

5.0 64.497 63.244 1.981

7.5 64.095 62.758 2.130

10.0 63.888 62.509 2,206
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Next, the third mode of an unsymmetrical case is investigated,

as in Figure 15c. As in the previous case,
m, =0.2193994 my

Adding the concentrated mass M to the left m,, the frequency

equations are found to be

ANAp = (18a + 3.9491892)A, + 4.8267868A, + 3.0715916A,

NA, = (22a + 4.8267868)A; + 7.0207808A, + 4.8267868A, (63)
Substituting different values of a, the following values of frequencies are

obtained, as shown in Table 19, and these are compared with the values

obtained from Equation{47).

Table 19. Third mode frequencies for a simply supported uniform beam
with a concentrated mass at quarter point, obtained by reduced
mass method.

a ps from Equation(63) p; from Equation(47) Variation
EI EI .C.
N, ,,’__3. P

* N mpl? * Y mpL
0.5 81.689 81.516 0.212
1.0 80.558 80.139 0.523
2.5 79.699 79.049 0.822
5.0 79.374 78.627 0.950
7.5 79.261 78.480 0.995
10.0 79.203 78.404 1.019

This method is helpful in finding the frequencies not only for masses

placed at the positions of the reduced masses as explained above, but
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also can be used for any other positions. In this case, the order of the

matrix to be solved increases. This is illustrated by an example below.
Example: Let there be a mass at quarter point of the beam as

shown in Figure 15d, and assume that the first mode m, is placed at

the middle of the beam. For this case,

my = 0.492767my,.
To find the first mode frequency, assume two lumped masses, m, at
middle of the beam and M at quarter point. Assuming stations (1) and (2),

as shown in Figure 15d,

NA, = 18MA, + 22m A,

(64)

NA, = 22MA, + 32mA,

As mentioned earlier, the order of the matrix has increased, in this
case, to 2. If there were n masses and the first mode frequency is
desired, then the order of the matrix will be (n + 1). Solving Equations
(64) for different values of a, two frequencies are obtained for each a,

the lower one being the first mode frequency. This way the values shown
in Table 20 were obtained and they are compared with the corresponding
values from Equation(47).

- The same procedure may be followed for plates also. The natural
frequency and spring stiffness of the plate may be measured or calculated,
and from this the reduced mass value is obtained. Adding this reduced
mass onto the concentrated mass, the loaded frequency can be easily

evaluated.
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Table 20. First mode frequencies of a simply supported beam with a
concentrated mass at quarter point, obtained by reduced
mass method.

a p: from Equation(64) p, from Equation(47) Variation
EI J_EL in p.c.
Eees N
0.5 8.031 7.991 0.501
1.0 6.889 6.851 0.555
2.5 5.109 5.087 ' 0.432
5.0 3.851 3.840 0.286
7.5 3.216 3.210 0.187
10.0 2.818 2.814 » 0.142




CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

The effect of rotatory inertia of attached masses on the vibration
frequencies of beams and plates is analyzed by the method of normal
mode superposition; this method is also known as the method of
undetermined coefficients. General equations are derived for variable
thickness beams_and plates with arbitrary number of attached masses.

In the numerical examples, only one or two masses are used and the
resulting eigen value problem is solved by the use of digital computer.

In the experimental part, only one mass was used. The frequency values
were obtained experimentally with a pulsed-air vibrator. The theoretical
and experimental values are compared and the variations between the two
are discussed.

In the latter part of this work, a method is developed by which the
frequencies of systems, loaded with concentrated masses, can be pre-
dicted by the knowledge of the unloaded frequencies of the system. The
results from this method are compared with the results from other

sections.

Conclusions

The normal mode superposition method seems to be very well suited
for problems concerning vibrations of beams and plates. For uniform
systems (beams or plates), the integrals can be evaluated quite easily
but for systems with variable thicknesses, the use of the digital computer

is essential.

78
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The accuracy of the results depends mainly on the number of
terms taken in the series expansion of the displacement function. It is
apparent that when a load is added to a uniform beam, a certain number
of terms of the series are needed for certain accuracy. The number of
terms needed for the same accuracy will increase if rotatory inertia of
the load is taken into account. If in addition to this, the beam happens
to be of variable thickness or the uniform beam is replaced by a uniform
plate, a still higher number of terms in the series expansion will be
necessary. As may be seen, for a plate of variable thickness with attached
mass, the number of terms required will be very high. Since extreme
accuracy is not the primary object of this investigation, only nine terms
were taken. The extrapolation formula used seems to improve the values
reasonably well, at least for the higher modes. However, there is some
reservation in the mind of the author at using this formula. A point of
uncertainty is the way the shear deformation term is introduced. The
transformation of the terms of the differential equation to energy forms
was necessitated by the requirement of introduction of the loads and rotatory
inertia of the loads. Since the shear deformation t.érrn introduces very
little correction, especially for the lower modes, the effect of error in
the assumption for shear deformation will not effect the final results
much. Actually it seems to improve the results as expected. Further
study in this area seems to be in order.

When this work was started, it was assumed that normal functions
are the best functions in terms of which the deflections may be represented.
But as seen from the wedge problem in Appendix E, it may be concluded to
be erroneous. Also, normal functions are difficult to handle, particularly
for clamped and free edge conditions. This suggests the necessity of
investigating other functions, mainly polynomials, which can be used for
problems of this type. This will reduce the amount of time required for

numerical calculations.
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From the curves of frequency vs B with a as parameter, it looks,
as if, with higher B, the frequency remains constant. When B is high,
however, it means that physically the mass or masses do not rotate.

This may be used as a means of application of bending moment or other
constraints for further investigation. The same conclusions can be drawn
for higher a. In this case, the translatory motion of the mass is reduced.

The results presented here from theory seem . to compare quite
well with experimental values. To improve the values, two aspects need
considerable attention. The most important factor is to use higher number
of terms in the theoretical calculations. Even with the best extrapolation
formulae, it is not always possible to get very good results. The second
part that needs attention is the support conditions in the experimental set-
up. The simple support for the beam was fairly good with careful lubri-
cation of the pins and occasional checking of the support screws. But the
cantilever support was definitely weak as shown by the results of natural
frequencies. The worst case of support was found in the case of plate.
Some other design of support seems essential for better verification of
the theory.

In the reduced mass method, some of the results seem very good
whereas some are not so good. Even though the variations are within
2.5p.c., this may perhaps be improved. The only reason that can be
offered for discrepancies is error in numerical calculations. Further
investigation in this line seems advisable.

The following are a few of the items that can be suggested for future

investigations.' They are given separately for beams, plates, etc.

Beams

(1) Variation of cross-sections other than assumed here. If stepped
beam is used, the integrations will contain limit points other than from

0tol.
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(2) Include the neglected terms for shear deformation. Also a better
relation for shear deformation may, perhaps, be derived. One helpful
suggestion is to use the normal functions given by T. C. Huang (31).

(3) The nature of constraints that can be incorporated by proper
selections of a and B quantities, as mentioned earlier in this chaptevr.

(4) Addition of work done by W. F. Z. Lee and E. Saibel (12) to the
present work, which opens up a whole variety of problems that can be
solved quite easily. This may include the cases of continuous beams,
sprung masses, elastic foundation, etc.

(5) The effect of stretching of the center line of the beam due to
addition of load.

(6) Study of visco-elastic beams.

(7) Use of finite difference for this type of problems.

(8) Forced vibration.

Plates

(1) Inclusion of shear and rotatory inertia of plate. Procedure
outlined in (32) may be helpful in this respect.

(2) Use of other end conditions than simple supports.

(3) Continuous plates.

(4) Use of finite difference.

(5) Effect of stretching of the middle plane due to application of
loads.

(6) Study of viscoelastic plates.

(7) Forced vibration.

Reduced mass

(1) To include rotatory inertia effects of loads.
(2) Approximate non-linear behaviour of beams or plates, with load
attached. Since the method reduces the whole system to a spring mass

system, this study seems possible.
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In the experimental part, subharmonics and ultraharmonics were
observed in almost all cases. One important difference between the two
was noticed. Assuming p to be the main frequency, the subharmonics
of p had the frequency of p, as measured from the oscilloscope trace,
but ultraharmonics had the frequency of the ultraharmonic itself. And
this created a little confusion at the early part of the experiment.

Comparing with the natural frequency results of B. B. Raju (19)
it is observed that the finite difference results gave a lower bound
whereas, this method gave an upper bound to.the actual frequency values.
The explanation for the latter case seems to follow from Rayleigh's
principle but the reason for the lower bound in the former case is not
clear. All the same, further investigation should be carried out to

establish the validity of this observation.
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APPENDIX A

WORK DONE BY ROTATORY INERTIA OF ATTACHED
MASSES ON PLATE

To include the effect of rotatory inertia of the masses, it should
be borne in mind that the masses will, in general, rotate about both x
axis as well as y axis and the net effect will be rotation about some other
intermediate axis in the x, y plane. To appreciate this physically,
consider a right handed Cartesian coordinate system and let a body of

mass m be located at point P at a distance

-
—
—
——

L below the x, y plane i.e. in z direction.
When the plate vibrates, there will be

inertia forces generated due to inertia of the

mass and this in turn will produce a torque

T,. Letits components be T, and Ty in the Figure (a)
x and y directions respectively. From elementary theory,
026

From Figure (a), it is clear that due to bending in the x direction, TY will
produce work given by - Ty —?rw and due to bending in the y direction,
T4 will produce work equal to Ty __EV_V In Figure (&), the point P moves
ow W :
to Q due to T— and then from Q to R due to - =% Since both
motions are present at the same time and simple harmonic motion is
assumed, the mass will move parallel to PR. It is parallel, because
the point P will also be moving up and down. Since the force field, generated
by the inertia force, is conservative (no damping assumed), the total work
AW ow .
. . '
done by the torques TY and T in moving thru -y and 17 is

same as the work done by the torque T in moving the point P thru' PR.
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(An alternative proof of this is given in the next paragraph. *) This gives

a simple relation for the work done by the inertia forces as T (T) -T (%—-W).

In this analysis, it was assumed that Ty and TY

0
are constant and ow , ow as small which P %
o0x oy

is valid for virtual work principle. Tn

For a mathematical proof, the following n
may be considered. t

Referring to Figure (b), let there be two b4
torques Tn and Tt acting in two normal (Figure (b)

directions at point 0. If two variations are given in the n and t directions

i.e. 6 (—g—Y-,) and § (%—), then the work done by the torques T, and T is

U, =T 6(T) -T 6(%&)

'I‘x Cos 6 + Ty Sin 6

But T
n

Ty = - Tx Sin 6 + Ty Cos 8
ow bw

3o = Q'C"T Sin 6
%—VE TSmG + %%’Cose

Substituting these in the above expression for U, and simplifying, the

same result is obtained e.g.,

=T 5(—5—) -T 6(—%‘w)

X
Ty —~ .
Inertia Torque——%f‘ Inertia force
-Tx—-— :

y
Figure (c)

*
The writer is indebted to Dr. W. A. Bradley, Professor of Applied
Mechanics Department, M.S.U., for this proof.
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As regards the signs of T, and Ty, consider Figure (c). Assume that
a mass is attached at a certain distance below point P. When the plate
vibrates, for positive w, the inertia force will be directed as shown
in Figure (c). This force will create a torque as indicated. The com-
ponents of this torque in the x and y directions have opposite signs.

From this it is apparent that both the terms in Equation (14) have negative

signs,



APPENDIX B
VERIFICATION OF PLATE EQUATION BY RITZ METHOD

The Ritz method is used in this section to evaluate Equation (12).
In this case, the expression for potential energy remains the same as

in Equation (4). The kinetic energy of the vibrating plate is given by
__bp OW .,
T = > ff h (T) dx dy
N 2 2 2 2
=—=—p [/ h (m2=1 n}._zl ApnXmYn)® Cos® pt dx dy
f @© [ ] X 2 2 _ 1
Let p[[h (2, Z, AmnXpyYn)® Cos’pt dx dy = Q (B-1)

Then T = p? Q-Z

Equating the maximum values of V and T,

2_ 2 Vmax (B-2)

p° =
Qma.x

Applying Ritz method,

dp?
=0
SAij
e) d _ .
or 2 anax BII—J' Vmax -2 Vmax EJ Qmax =0 (Slnce anax # 0)
(B-3)
p?
But from Equation B-2, Vmax = > Qmax'
Substituting in Equation (B-3),
o 2 9 _
2 aAij Vmax = P sAij Qmax = 0
o .
or qu [2 Vimax - P® Qumax] = 0 (B-4)
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Substitution of V.. from Equation (8) and Q. 54 from Equation (B-1),
into Equation B-4 and performing the indicated differentiation, results
in

@ o d*Xm d*Xi
IID{GE, 2 Ama—gg Yo S5z Y))

® o 2 y.
F(8) 2 A o) 06 TT)

m=1 n=1

+

® o d®*Xm . %Y
V{(mz':"l nL;l Amn dx? Yn) (Xi dy )

® o d’y, , ,d%Xi
tZ) 2 AmnXmge) (52 Y;) )

dXi
dx

+

20- { (2 8 A Em 2,
m=1

dYj
n=1 mMmn dx dy d)r)}]dxdY

2 [+ -] @
PPpffh( Z, Z, AmnXyYy) (X;Y;) dxdy

which is the same as Equation(12).




APPENDIX C

WORK DONE BY ROTATORY INERTIA OF ATTACHED
MASSES ON BEAM

& To find the virtual work done by the rotatory
;:{.- dn inertia of the masses, an arbitrary mass M is
~-{I taken as shown in Figure (a). Considering an
x

r element of the mass at a distance n from the
y x axis gives
Figure (a)

d(Torque) = d (Volume)px(-Acceleration) x n

where p = mass density.

If the mass rotates through an angle 0 = 1?—)2‘ about the z axis, then

d(Torque) = -(dV)p(8 n)n

_ o’ 2
=-p %Ot dVv n
. _ o’ )
virtual work done = - p&gtz dv n“é (T)Xc)
Total virtual work done= - [ p oy nté (T?X )av
v P §xdt? x o

Considering only rigid mass and uniform density, it is found that
3’ oYy :. - . : ,
P, 5,%1:2 and 6 (T-:Xc) is independent of the integration variable. As such,

the total work done is given by

-pf—,fgtz 6(—%{) [y n*av
) 'Ié%}t" 8 (‘%)

where I = p fv n? dV is the mass moment of inertia about x axis.
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APPENDIX D

WORK DONE BY ROTATORY INERTIA AND SHEAR
DEFORMATION IN BEAM

Rotatory Inertia

To find the virtual work done by the rotatory

inertia of the beam, an elemental volume dV
-] at a distance 7 from the bent neutral line of

the beam is taken (Figure (a))

)
Figure (a)

d(mass) = pdV = pbdndx where b = width of beam at
x and 7

. d(force) = -bp(én )dn dx

d(torque) = -bp6 n?dndx.
Torque = -p J‘A(é n*bdn)dx = - p8Idx (D-1)

the virtual work done by the section dx is

h
d(work) = - pfdx [ f{ bn.zdné(%-}{ )]
T

= - pb dx I, 6(%};) = -plbagaztz dx 6(66%)

v w kd édxé EX
t 1 S -
otal virtual or one P f Ib ( )

Shear
Considering an element as in Figure (b) it
M1 me P
L T is seen that in order to include the effects
..i dx .._QA*?;(,A)d‘ of rotatory inertia and shear deformation of
Figure (b) the beam, the following relations must be

satisfied.
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s
N Fam - P

(D-2)
o 3?
Bx (@8 = Ao 5k
where M = Bending moment across a section = - EI Oy
_ b "dx
q = Average shear = k'Gp = k'G(g—z'- -vy)
X
¥ = Slope of center line without shear
B} _ 9
B = Shear angle at the center = _S)Xc -V
Substituting the respective values in Equations (D-2) gives
Bk o5 + A0 3 = o F¥
(D-3)

Ak'c;(%% - %Y) + k'GB%é p%i‘é

For a uniform beam, y can be eliminated between these two
equations and a single equation may be obtained for y. But when the beam
is of variable cross-section, it is difficult to eliminate ¥ . In the case
of the cantilever beam under investigation in which the shear deformation

has been included

™ X dA x
A=—z@-T)P , 5= - (2-%)
16 L x 8L L (D-4)
_m X 14 o1 - ™ X3
1*Toz2 -V » 3" - e ®-1
From Equation (D-4) it is seen that when L = 20"
6A
amax = 70-0393
(D-5)
or = -0.00491

% "max
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Since this investigation concerns itself only with modes up to the fourth,
the shear angle B at the center may be assumed to be small. As such,
the term k'Gf %ﬁx in the second equation of (D-3) may be neglected in

comparison to the first term. This gives

o o’y p &%
_a_Y = - £ B_X D-
X Ox? k'G t? (D-6)
Differentiating the first of Equation (D-3) with respect to x and substituting
%—‘5 from Equation (D-6), the final form of the equation reduces to

My Fp _Ipp dy _, (D-7)

+_6TTT k'G ot

It is shown in (23) that the last term is of second order compared to the

third and fourth terms. Also, for the lower modes, it is reasonable to
2

assume the fifth term to be small since %1’1: is small and %ﬁ should

not be too large. Neglecting these two terms, Equation (D-7) reduces to

2 2 z d2
B W)t A0 SE - 0 5 Uy g3 - Sa S -0
(D-8)

In Equation(D.-8) the third term is the first spatial derivative of
the rotatory inertia torque, as may be seen from Equation (D-1). The
first term also can be shown to be the first spatial derivative of the
elasticity torque (this term is used here to keep the same notation) as

follows.

6Ug = f;J(Torque) { & (angle) }dx

L Y6 Q) ax

BN 3 £ oy ax
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Integrating by parts,

A%y d L L, o o?
= - é d
U, = E[lp 3% 3= (6 ] - E [0 3% ) 3z (6y) ax
For any standard end conditions, the first term is zero, because

for a fixed end Ta; (6y) =

2
for a simple support %xg =0

2
for a free end g;; = 0

Therefore

2
6Ue=-Ef:" -g—’é)g?;- (6y) dx

& Xn ) d le dx } Sin? pt §A; (D-9)

L [- -]
_-E{'ro b (%) An

where the series expansion of y and 6y are substituted. from

Chapter II, Part (b). As may be seen, Equation (D-9) is the same as
Equation (18). It is difficult to show that the second term is the spatial
derivative of the inertia torque for a variable cross-section beam.
This appears to be due to the neglected term in the second equation of
Equations (D-3). An alternate way of defining the shear angle § might
remove this difficulty. In the case of a uniform beam, A is constant.
Expanding y in terms of an infinite series of normal functions of the
beam, it can be shown easily that this represents the inertia torque.
This follows easily from the relations of the type %%(2 = k;xn. From
these analogies, it is reasonable to assume that the fourth term is the

spatial derivative of the shear torque. With this assumption, the work

done by the shear deformation is given by

2
6Ugp = - k'G f F(Ib%—t;) 6 (g'}xc) dx (D-10)
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Since no example was found for the shear correction on a variable thick-
ness beam, the case of an uniform simply supported beam is taken to
check the validity of the above assumptions. This case is treated in (23).

For this case, Equation(26) reduces to

L, 2 L, dXn, dX;
2 . —_—) —1
p*[ pA fo (2, A X )Xjdx + ply fo (Z, An ) 58 O
E ,L @ an Xm
teb k'G fo (nz=1 Ix !
L d? Xn Xm
=El, {[ (Z,An—P) =% dx}  (D-11)
o n=1
. nmTx
But Xn = Sin —L—' ,
L L .
Io Xindx =3 fori=j
= 0 fori#j
deXl dX _ i?n? for i =
o dx dx T 2L -
=0 fori#j
and L &% d'xg j4m
J‘o dx dx dx = 2L° fori=
=0 for i % j

Substituting these in Equation (D-11), results in

2 e 1211.2 4 t

Pi[pA(A4 ) + plp(Ay—— =t plb—r (AT )] = Elb(Al—"s—) (D-12)

Assuming pAL = mass of the beam = my

N=
i
mp
and IppL = Ibfzb = 'yzmb
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and substituting in Equation (D-12) gives

2 nta’ zz1 "4
p: - Ty E T 2
1 _—
\ ( STt g vY]

Considering the last two terms as small compared to unity, the
denominator can be expanded in a binomial series. Neglecting all higher

order terms, it is found that

p = v [I'E X (1+ka )] (D-13)

which is the same as Equation (140) of (23).



APPENDIX E

VIBRATION OF A WEDGE

This problem was investigated with a view toward checking the
convergence of the series of normal functions for a uniform cantilever
beam. The problem was investigated by G. R. Kirchoff (24) who
obtained an exact solution, neglecting
rotatory inertia and shear deforma-

tion of the wedge.

For this case, Equation (20)
——=L _.__’
Figure (a) represents the frequency equation.

From Figure (a) 2b(L-x) Zb3 3
= com———— Ib = -—— (1 = —)

X,=Coshkyx-Coskyx-a n(Sin h kyx - Sin k,x)
The values of k,x, ap, were obtained from (26).

dPXn _ . P aP

L i,
*t 3P n JkxP 0

With these notations, Equation (20) reduces to
2o (A (% A dx = E 2| AnkZ 6" kf;"d 1
PP o (n=1 n ¢n)¢1 X = fO Ib ( )k-l ¢1 X (E' )

where prime represents differentiation with respect to (kpx).

Assuming only one term of the series in Equation E-1,
zk,‘b’- VY 2p*p (L, x . .,
[F0- 2@ maax = 2R R X))k (E-2)

The following are the values of these integrals:
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0.19346191

1 X X
[ -3) (4)? diF)

! .)E 2 12 l{_
[ (1= D)) = 0.5791407

Substitution in Equation E-2 gives

b N
p=6.0833815 =5 [ E
L 3

which is a variation of about 14.4 p.c. to that of (24). It may be recalled
that by assuming another series and applying Ritz method, the value
obtained in (23) by one term approximation was 5.48. This is a variation
of only 3.1 p.c. This shows that the use of functions, other than normal
functions, may sometimes be profitable but this needs judgment on the
part of the investigator. As the normal functions are standard functions,
they can be used more effectively, if suitable tables can be prepared for
different types of integrals of these functions.

To check the convergence, two terms of the series in Equation E-1

were taken. The value obtained for the first mode frequency was

5.434991 b o
>or 13 ’3? , a variation of only 2.26 p.c.

The problem was further investigated with eight terms of the series

and the following results were obtained. The exact frequency value for

. 5.315 b
the fundamental mode is 5 i , 3?

First mode frequency —— 3165

b
L3
Second mode frequency ———— 15.317 %3-

2m

31.371 b E

Third mode frequency — >

‘T*ﬁ

The exact solution results for the remaining two modes were not available

but they are listed here as reference.
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