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ABSTRACT

SYNTHESIS OF A STATE MODEL

FOR HYSTERETIC DEVICES

BY

Artice M. Davis

In its most general setting, the fundamental task which this

thesis attempts to accomplish is an investigation of the application

of a specific model to the characterization of hysteretic effects.

More specifically, an algorithm is outlined for the synthesis of the

model parameters from experimental measurements on an actual

hysteretic device.

In the course of development, a discrete state space repre-

sentation is derived for the model. A simulation routine using this

state description is then outlined. A more general continuous

model is developed, and a state space description for it is advanced.

Another simulation a1gorithm--in this case a continuous one—-is

presented.

AS a consequence of the work embodied here, a computer

package is available for modeling hysteretic devices and for incor—

porating them into larger networks for simulation purposes.
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CHAPTER I

INTRODUCTION

The phenomenon of hysteresis arises in a multiplicity of situ-

ations in the physical realm. In such diverse fields as physiology,

elasticity, electrical engineering and soil sciencel'4, hysteresis

effects appear--and astonishingly exhibit the same class of charac-

teristics. This uniformity is a good prognostication for an attempted

generalization of a specific model to encompass a wider category.

In the work presented here, the immediate tie is to the properties of

ferromagnetic material. An underlying current of thought, however,

tends toward hypothesizing that the characteristics of this particular

process proffer a basis for the representation of more general types

of hysteretic phenomena.

1. l. The Problem

In most works purporting an explanation of hysteresis effects,

one fact is conspicuous in its absence: the definition of the term it-

self. Some of the notable features of ferromagnetic material--the

shape of the saturation loop, minor loop behavior, and cyclic demag—

netization—~are usually listed, but no attempt is made at a general

definition. Thus, it is perhaps of benefit to attempt such a clarifica-

tion at this point.

The principle feature which distinguishes ferromagnetism,

mechanical backlash, and the like from other effects is their static

nature. Although rate dependent effects are present, they only

I
”
.





appear as perturbations to the static characteristics. The attempt

here will be the clarification of the essential elements of hysteresis--

those present at extremely low rates of variation. The following

definition could be phrased in terms of relations between pairs of

variables associated with a multiterminal component or system, but

it will be tacit here that the object under consideration is two-terminal.

Consider, then, the oriented object of Figure l. 1. 1:

 

   

Figure 1. 1. 1

X and Y are input and output time functions, and F is the operator

associated with the object. Let X range over the space of testing

functions such as the one shown in Figure 1. 1. Z.

x(t)_

   

 

Figure l. 1. 2

In order to qualify as a testing function, a given input X must possess

the following property: there must exist two adjacent time intervals

(to, t1) and (t1, t2) such that X is monotone in opposite senses in the

two intervals. to, t1, and t2 are arbitrary.





Now let x and y be the restrictions of X and Y to (to, t2), and

let ny be the consequent relation in RxR. Define x(to) = xa and

x(t2) = xb, and let M be the maximum value of the magnitude of the

slope of x on the interval (to, t2). Then:

Definition: If there exist a pair of values xa and

xb such that, for each associated testing function with

finite M, ny is double valued; and if forX fixed outside

(to, t2) ny approaches a limiting double valued rela—

tion as M goes to zero, the object will be called

hysteretic.

Note that this proposed definition precludes such objects as inte-

grators and RC circuits from being labeled hysteretic. Although

double valued relations ny are produced, they are always dependent

upon the exact nature of the input. The definition above character—

izes objects which do not have this precise dependence.

With the definition disposed of, more practical questions be-

gin to arise. Do all replicas of a given object behave in the same

manner? If so, can their behavior be generically characterized--

does there exist a model representative of them all? How catholic

is that model with regard to the larger class of hysteretic objects?

Finally, one is led to ask the very practical ”nuts and bolts" ques-

tion: "C an the model parameters be determined by experimental

measurements on the object?"

Some of these questions have been answered. Empirical ob—

servations indicate that all replicas do behave generally in like man-

ner. Several models have been proposed, both for specific processes

and for hysteresis in the abstract, although their collective merits





are moot. The question of catholicity has not been adjudicated. A

model for the ferromagnetic process has recently been proposedS,

and this thesis attempts to answer the synthesis question for it. In

addition, certain features of the model are developed farther--

features such as its state- space representation and simulation

characteristic 5 .

l. 2. Background

The phenomenon of ferromagnetic hysteresis is usually treated

by simply ignoring its existence. When it is not ignored, the proce—

dure is almost always one involving piecewise linearization of the

major loops. Although the area of circuit analysis has been under

development since the very beginnings of electrical engineering,

there is yet a paucity of theory pertaining to iron core inductors.

Several interesting assaults have been launched against the bastion

of the problem, but on the whole there has been a dearth of ”doings”

in the area. In fact, the different approaches can be discussed seri-

atim. These different methods are effectively enumerated by tag-

ging them with names: Ewing, Weiss, Preisach, Volterra, Chua,

and Resh. The first five will be synopsized in this section, and the

sequel will be concerned with a full development of the last.

Ewing's Modelé. Ewing's work adumbrated that of Weiss and a

number of others. His main contribution consisted of the develop-

ment of a physical analogy to the behavior of a ferromagnet. As

indicated in Figure 1. Z. 1, his model consists of a number of small

magnetic dipoles, pivoted and free to rotate in a plane.
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Figure l. 2. 1

In the absence of any external field, their mutual interaction aligns

them in such fashion that the potential energy of the configuration is

a minimum. Such a configuration is not necessarily unique--one

such is illustrated in Figure 1. 2. 1.

If an external field is now applied in some arbitrary direction,

the dipoles begin to rotate in an elastic fashion about their axes. The

term elastic is used in the sense that should the field be reduced,

the rotation will exactly reverse. At some critical value of applied

field, the assemblage becomes unstable, and an abrupt macroscopic

change in configuration results. The change is, as intuitively ex—

pected, nonreversible. This particular happenstance is the result of

the interaction of the dipoles, and is in such a manner as to reduce

the total energy of the configuration.

As the applied field continues to increase, there will be a

further elastic rotation of the dipoles and other irreversible changes

of configuration. A final elastic rotation evinces itself as saturation

is approached. If the external field is now reduced, the initial path

will not be retraversed by consequence of the previous irreversible

changes. The resulting hysteresis loop looks remarkably Similar

to that observed for iron. The Ewing model results are depicted in

Figure 1. Z. Z.



 

 
Figure 1. Z. 2

As a physical experiment, Ewing's model is sirnple--the

mathematics is more complex. Several investigators.7 have attempted

the analysis of Ewing models in one, two and three dimensions. All

tries proved fruitless for models whose number of component di-

poles was other than trivially small. Another seeming disadvantage

of the model is that when scaled to atomic dimensions it gives quanti-

tatively incorrect results7. This is perhaps not such an important

objection for, as one writer has pointed out8, the physical processes

involved bear such close resemblance to those now known to hold for

ferromagnetic action. The model remains valid as an analogy,

albeit a mathematically intractable one.

Weiss' Workg. Weiss' analysis was an attempt to describe

the Ewing model in mathematical terms. As a prelude, Langevin10

had derived an expression for the magnetization of a paramagnetic

material—-one consisting of magnetic dipoles having no interaction,

but which are under the influence of thermal effects. The Ewing

model, as mentioned above, is intractable. This complexity led

Weiss to postulate as an approximation that each dipole experiences

a total magnetic field made up of the external field and an additive

component due to the effects of the other dipoles. This additive



component became known as the ”molecular field”. Weiss made the

assumption that it is proportional to, and collinear with, the total

magnetization. Combining this with Langevin's previous results, he

arrived at an expression for the magnetization as a function of

applied field.

Space here does not permit replication of the works of Langevin

and Weiss, but the important features can be underscored. This

attack led to the first analytical expression for ferromagnetic be-

havior. It permitted calculation of thermal effects and led to the

postulation of ferromagnetic domains. On the other hand, there were

serious flaws. The assumption that the molecular field is collinear

with the magnetization vector is too restrictive, and he allowed for

no dependence on the crystalline structure of the material.

Volterra's Theory”. With Volterra there was an effective

shift of emphasis; he attempted to explain hysteretic action as a

general phenomenon. Although Volterra seems to have been moti—

vated primarily by the elastic behavior of solids, he postulated the

validity of his theory on a more sweeping plane. He considered a

physical system to be an operator defined on a suitable class of

functions. He further restricted himself to linear operators of the

special form

t

x(t) : Ky(t) +5 ¢(t,z)y(z)dz

-00

where x(t) is the input function and y(t) the output. For ferromag-

netic material, this assumes the form

t

H(t) : u;IB(t)+S ¢(t,z)B(z)dz

-oo





where the symbols have the usual significance. q>(t, z) is termed the

hereditary kernel. These equations fall into the general category

commonly given the name Volterra's Integral Equations of the Second

Kind. The pioneering efforts of Volterra and Fredholm were directed

toward solution of these equations for the output function in terms of

the input.

The innate disadvantage of this theory is the absence of any

correlation between the describing equation and the physical mecha-

nisms underlying the hysteretic process. It will be demonstrated

later that there is a correspondence in form with ferromagnetism,

but a very Pflfl assumption continues to mar its features.

Preisach's Solutionlz. After its enunciation by Preisach, this

theory went through a process of evolution, culminating in the work

of Biorci and Pescettil3. From a practical viewpoint, their work

has produced quite useful results in spite of the limitations to be

alluded to later. It is perhaps worthwhile to note that the resulting

model bears certain points of contact with the one currently being

investigated, although the latter is more general in nature.

The Preisach development begins with the assumption that the

body of ferromagnetic material under consideration consists of an

aggregate of infinitesimal volume elements, each characterized by

the relation of Figure l. 2. 3. I is the magnetization of the infinitesi-

mal volume experiencing a field intensity H. a and b are allowed to

vary from one element to another, but 10 remains fixed. It must be

true that a 2 b, since energy can only be dissipated in each element.

In addition, no element has a 2 H3 or b S-HS, the saturation field

field intensity. It is possible to characterize the model by a region





 

1

 

   

 
Figure 1. Z. 3

in the (a, b) plane, on which is defined a distribution function ¢(a,b).

¢(a,b)dadb, then, is the number of elements which possess (a,b)

pairs lying in the rectangular region centered at (a, b) with sides of

length da and db. The planar situation is shown in Figure 1. 2.4.

 

 

 

Figure 1. Z. 4

It has been shown that all volumes with defining number pairs (a, b)

belonging to AOB go to positive magnetization under a cyclically de-

creasing H field. All others go to negative magnetization.

If the distribution function 4) is known, it is possible to deter-

mine the magnetization as a function of the applied field. Any

continuous input function can be broken up into monotone segments,

and these monotone segments define resulting regions in the plane.
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The magnetization is then expressible as

I(H) = 2155'; ¢(a,b)dadb

Q

where Is is the saturation value of I associated with HS, and Q is

that region whose elements have undergone an odd number of re-

versals. A procedure has been outlined for determining 4) from ex-

perimental measurements--if certain restrictions are imposed. A

more careful discussion of this theory is contained in reference 13.

The Preisach theory has been quite useful to practically ori-

ented investigators, but there are several flaws. Primary among

them is the entirely irreversible nature of the process. This is a

result of the square loop characterization of the elemental volumes.

It is tempting to equate these volumes with ferromagnetic domains.

They do not, however, exhibit such physical properties as elastic

wall growth which domains are known to possess. Thus, the model

must be considered as an abstract analogy to hysteretic behavior,

and its application must be limited to materials in which the ir-

reversible processes are dominant

Chua's Methodl4. Chua, in the manner of Volterra, attempted

to model the general phenomenon of hysteresis by mathematical ab-

straction. He proposed the nonlinear differential equation

g = g[x(t)- f(y(t))]

for which he proceeded to demonstrate hysteretic behavior. In order

that they be realizable, the functions g and f must be odd and invert-

ible. Chua outlines a simple procedure for deriving f and g from

measurements on the saturation loop. This implies that devices

with identical saturation loops must exhibit identical minor loops. It
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would appear from experimental observations that this is too sim-

plistic a view.

In addition to this, the model also implies that a complete set

of state variables is provided by the instantaneous values of the in-

put and output. Experiment indicates that, at least for ferromag—

netic devices, there is a major loop passing through each point (x,y)

inside the saturation loop. Thus, assumption of an initial state (x,y)

should immediately result in the traversal of that loop. Simulation

of the Chua model does not result in such closure--see Figure 1. Z. 5.

The solution spirals inward and asymptotically approaches a steady

state loop.

Discussion of Previous Work. In all of the prior work, one 

fact is evident: with the exception of Chua, no investigator has ap—

proached the subject from an engineering stance. In all cases,

strong features were nullified to some extent by debilitating ones.

An additional factor exhibited by all these models is the characteris-

tic of abstract analogy to physical hysteretic behavior—-not necessarily

a point of weakness, and one shared by the present model. The

model to be considered next appears to obviate many of these short—

comings. The state characterization techniques and synthesis

procedures developed for it appear to extend to some of the previous

models as well.
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CHAPTER II

THE BEAM- ROD ANALOGY

As mentioned previously, all of the hysteretic models to date

have possessed inherent shortcomings. They have run the gamut

from the abstract to the concrete, but there has been a common

thread of correspondence, in the main, among them. The disappoint-

ing feature is the lack of any sort of chronological evolution. In 1969,

however, Resh5 delivered a paper describing a model which appears

to consolidate the features of the previous models, while improving

upon and generalizing their capabilities. This correspondence is

3 posteriori, and is deeply imbedded in the theoretical aspects of

the model, but definitely exists. Hence, its more general nature can

be shown. This section is devoted to the exposition of the basic

model and its ancillary aspects. Following Resh's development, the

basic model will be described; afterward its correspondence with

the physics of ferromagnetism will be delimited. Some related con-

ceptual and computational features will then be developed.

2.1. The Basic Model5

The essential feature of the model investigated here is its form

as a mechanical analogy to the ferromagnetic process. Its configura-

tion is illustrated in Figure 2. l. 1. It consists of a set of flexible

beams attached to a rigid surface P and a rod R which moves parallel

with the surface. There are two types of beam: one variety is



9
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5

Figure 2. l. l

engaged by the rod as it moves past the beam's equilibrium position

from left to right, and the other kind is picked up as the rod moves

past it from right to left. The former type of beam will be dubbed

"right active" and the latter "left active”. The equilibrium posi-

tions of the beams are distributed in some manner, and the drop-off

positions and coefficients of elasticity are allowed to vary from one

beam to another. While a given beam is engaged by the rod, its

force versus flexure relation is assumed linear-~the beam merely

behaves like a linear spring affixed to the rod.

There are two important characteristics which should be

noted at this point. The nature of the flexing process of an engaged

beam is elastic and reversible until the drop- off point is attained.

The other item of note is the autonomous nature of the process when

the beam drop point is exceeded. This represents an energy dissi-

pation activity which is decoupled from the input. These two features

provide, on a macroscopic energy process level, a tight correspond-

ence with solid state theory.

The current status of ferromagnetic theory is such that a

qualitative description of the magnetization curve is available. In

the virgin, or undisturbed, state, a body of ferromagnetic material

can be thought of as consisting of elementary dipoles. These dipoles

are arranged such that all dipole moments in a small volume element,
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or domain, have the same direction. The boundary of each volume,

called a Bloch wall, consists of a layer of atoms several atoms

thick. In the Bloch wall, the magnetization varies smoothly in

direction from one side to the other, with parallelism being main-

tained on each side with the contiguous domain magnetization.

When an external field is applied and increased from zero,

whichever of two adjacent domains has its magnetization vector

closest in direction to the applied field begins to engage in territorial

expansion at the expense of its neighbor. The atoms in the Bloch

wall begin to rotate in order to align themselves more closely with

those of the burgeoning domain; hence, with the applied field. This

process is, of course, being replicated thousands of times through-

out the mass of material. If the applied field continues to increase,

a point is eventually reached such that less energy is required to

maintain the configuration if those domains which have magnetizations

more-or-less antiparallel with the applied field flip those magnetiza-

tions by pi radians. This activity, when initiated, proceeds autono-

mously, with energy being irretrievably lost by the concomitant eddy

currents. All these reversals do not, of course, proceed in unison.

They are, on the contrary, distributed with different critical values

of field; this produces the discontinuities known as the Barkhausen

effect.

As the process continues, another type of activity is initiated:

gross restructuring of individual domain geometry. This is also an

irreversible stage in the process. Finally, as saturation is approached,

all domains rotate their magnetization vectors elastically to pro—

duce final alignment with the applied field.
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The preceding discussion indicates that there are two process—

es at work--one reversible, the other irreversible and autonomous

when initiated. It is clear that the beam- rod analogy exhibits the

same type of loss mechanisms. Thus, it is evident that its corres—

pondence with ferromagnetic behavior is tight. It also seems alto-

gether reasonable to postulate these mechanisms as being responsible

for hysteretic effects in general. Indeed, it appears that such ef-

fects have been observed in at least one other context-~the elastic

behavior of solids”.

Z. Z. The Resh- Preisach Plane

A one-to— one correspondence can be set up between the model

and a parameter plane with an associated distribution function.

There are some points of similarity with the plane of Preisach's

model, but the interpretation of the distribution function is different.

This will become clear subsequently.

Consider the plane sketched in Figure 2. 2. l.

 

 

 
Figure 2. 2. 1

Each beam in the model can be represented as a point in the plane

plus a number representing its coefficient of elasticity. If a beam

in the model has equilibrium position ai, drop off point bi’ and



.
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elasticity coefficient Ki’ it will be represented by a point (ai, bi) in

the Resh—Preisach (or RP) plane. The point in the plane and the

constant Ki suffice to characterize the beam. The rod position x

can be represented as a point on the a axis. If the rod has increased

its position monotonically from - co to x, the resultant force on it

will be the sum of the forces due to those beams which have been

engaged but not dropped. Mathematically, such beams can be de-

scribed as those with ai < x and bi > x. In the plane, such beams

occupy the shaded region of Figure 2.. 2. l. A moments reflection

will reveal that the half-plane above the b = a line represents right—

active beams, and the lower half-plane left- active ones.

The preceding state of affairs is evidenced when the rod moves

monotonically from — 00 to x. Suppose now that it increases mono-

tonically from - 00 to x0 and then decreases from x0 to x < x0. The

rod will then start to "back off" from those right- active beams still

engaged at x0, and it will begin to acquire new left- active ones. This

situation is sketched in Figure 2. 2. 2, with the shaded regions again

representing active beams; that is, those which are engaged and

delivering a component of force to the rod.

 

 
Figure 2. 2. 2
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Following this line of thought, one can break up any continuous input

function into monotone segments, thus determining the region of

active beams for a given input function at any instant of time.

One of the most important effects which any model should ex-

hibit is that of cyclic demagnetization. Resh demonstrated such an

effect for the beam- rod model by assuming an input possessing a se-

quence of adjacent intervals of monotonicity (of alternating senses),

such as a sinusoid, whose peaks smoothly decreased in amplitude

from infinity to zero. The resulting region of active beams is shown

in Figure 2. 2. 3. In like fashion, one can demonstrate cyclic mag-

netization effects, a virgin magnetization curve, and the cyclically

demagnetized remagnetization curve.

b

 

Figure 2. 2. 3

Z. 3. Mathematical Development

It is possible, then, to determine the region of active beams

for any given input function and any instant of time. The primary

item of interest, however, is the force versus displacement function.

The past discussion has centered about intrinsically geometric fac-

tors: the beam equilibrium positions, their drop— off points, and the

position of the rod. At this juncture, the question of magnitudes

must be answered. How does the distribution of coefficients of

elasticity from one beam to another influence the force versus
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displacement relationship? Before exploring the possible answers

to this question, a detour will be made for the purpose of developing

a continuous version of the model.

In order to facilitate later investigation, it is essential that

the model be generalized. Suppose the number of beams is allowed

to approach infinity and each coefficient of elasticity allowed to tend

to zero in such a way that the effective coefficient of elasticity per

unit area. of planar surface remains constant. In this manner, one

is led to consider a continuous model. A function 4) can then be de—

fined on the plane such that c’p(a, b) da db is the effective elasticity

coefficient of a beam at (a,b) equivalent to the mass of 4) in a rec—

tangle with centroid at (a, b) and sides of length da and db. Con-

sideration of the force due to one such element and summing over

all such infinitesimal elements yields the force:

f(x) : 55 (x - a)¢(a,b)dadb

Q

where Q is the active region as previously defined, but extended to

the continuous case.

The continuous model is appealing; for on a macroscopic level,

an actual ferromagnet does exhibit smooth behavior--the discontinuous

structure is of a "fine grain” nature. In addition, the continuous

model provides an effective tool for both conceptual and computa-

tional purposes. Although the beams in the model have lost their

structural identity in the transition to the continuous model, the

terminology will be retained. The background idea is that the model

has a basically discrete character, but that the number of beams is

so large that it is more convenient to think in terms of a continuum.
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Returning now to the discrete model, it is evident that the

total force on the rod is the sum of the forces due to the active

beams:

f(x) : Z (x- ai) - Ki

Active

Region

where the parameters are the same as before. It is possible to re-

write this as

f(x) = Z SiKi(x - ai)

where the sum is taken over the entire planar aggregate, and Si has

the appearance of a state variable associated with the ith beam:

0; beam i unengaged

Si(x) :

l; beam i engaged

The corresponding state—like variable of the entire model is then the

Cartesian product of the individual ones, and it can be written as a

vector

§:[s s
T

1, 2,...,sN] .

The above expression is an input— output state relation and takes the

form

f(x) = STK(x 1- a)

where; — [a1,a2,.. ,aN] ,—l = [1,1, ,1]T, and

K1 0 . 0

K = .0 K1 . 0

0 0 K





21

With the input- output state relation disposed of, it becomes

necessary to determine a state transition function or algorithm.

This is necessary for the unique determination of the force in terms

of the displacement. Although it is possible to go through an active

beam pattern analysis for each monotone segment in an input func-

tion, the nature of the state vector indicates the utility of a modular

approach. Each beam can be analyzed for state transitions and

then incorporated back into the aggregate to determine the overall

state transition.

The above plan of attack requires a state model for an indi-

vidual beam. Since there are two types of beams, there are two

varieties of state model. Some consideration of the beam- rod

analogy reveals the efficacy of the following pair:

 

Left— Active Right— Active

Figure 2. 3. 1

As an example, consider a right- active beam. If the beam is un—

flexed, Si is zero. If the rod position is greater than the equilibrium

position of the beam, the state will remain the same. This will ob-

tain until the rod position becomes less than the equilibrium position

of the beam, in which case the state goes to ”enabled” and Si remains
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zero. Then any motion of the rod back above the equilibrium posi-

tion will cause the beam to enter the ”flexed" state, with Si 2 1.

Similar verification can be made for the other transitions shown.

In actuality, it is evident that Si is not a state variable. It is

a function defined on the state space of beam i. The state of a beam

can be written as a variable which assumes the values Flexed, E-

flexed, or Enabled. If Si were invertible, it would also qualify as a

state variable. Unfortunately, this is not the case, but the vector

S serves essentially the same function as a state vector in the input-

output state relation. The state vector of the model is a vector con-

sisting of the entries Unflexed, Enabled, or Flexed in each position.

At any rate, a complete state model is available for the finite beam

discrete analogy.

2.. 4. The Process Model

It is possible to derive a model for the ferromagnetic process

which is a direct consequence of physical theory. Its very generality

does not allow its use as a quantitative solution, but its conceptual

power will be evident. It is introduced here to coalesce all the mod-

els which have been discussed (including the bearn—rod analogy) and

to provide a framework for their comparison.

Consider the magnetization process for a uniform ferromag-

netic toroid which is isotropic and homogeneous. If a current

carrying conductor of small diameter is wound around the torus, the

applied field intensity can be shown to be axial with respect to its

cross section. In consequence of this, as well as the absence of

physical boundaries, the magnetization is uniform.
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The current carrying conductor produces a magnetic field

intensity H = Ba/po, where Ba is the induction which would result if

the torus were not present. The factor Ba (or H) can be considered

as the motivating force for the ferromagnetic process. This disturb-

ing influence causes the magnetic dipoles to begin to align themselves

as outlined previously. This creates a resultant induction field

which adds to Ba' This perturbed field creates further alignment,

and so on. The resulting process-derived model is outlined in

Figure 2. 4. 1.

 

 

 
“o

   

C(-

Figure 2.. 4. 1

As indicated, the operator F is a functional relationship between the

resultant induction field and the magnetization M. Note that this

model is only valid if the magnetization can be characterized by a

single number. In particular, if M is a spatial variant, the induc-

tion field at a particular point depends upon the entire distribution

of magnetization.

Consider now the relation between this general model and those

previously outlined. Suppose first that the operator F is given by

t

F (x(t)) = - S ¢(t,7)x(’r)d7

’ -oo





Z4

and GE 1.

Then,

M(t)

t

- 5-0:“,7) [Batu + no M(T)] d'r

But B(t) = Ba(t) + no M(t), so

t

u;1[B(t) - 3am] = - X_Oo¢(t.7)B(7)d'r

or finally,

t

H(t) = u: B(t) +5 ¢(t,T)B('T)d'r

which is precisely Volterra's equation. Thus, Volterra's model is

the special case which results when the operators F and G assume

the special form indicated above.

Now consider Chua's model. The proposed differential equa—

3%: = g[x(t)- £(y<t))]

can be interpreted as a representation of the following system:

tion

 

   

 

 
 

f()’

   

Figure 2. 4. 2

This model can also be brought into agreement with the process

model. One feature, though, is clear--since there is no additive

term proportional to the input, the output variable of this model
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must be considered as corresponding merely to the magnetization

M. The correspondence with the process model is clear. In this

.(xm) = yoga)...

case,

G(x(t)) = f(x)

What of the current model under investigation? Inasmuch as

it is a physical analogy, rather than a mathematical abstraction, the

correspondence is not readily brought to light. In spite of this,

there are several salient points to be noted. The model is an at-

tempt to represent the driving forces--the causative agents--of the

ferromagnetic process. This includes the basic operator $51. the

feedback configuration, not merely the forward path alone. The

additive term proportional to the input can be automatically taken

care of by virtue of the elastic character of the constituent beams.

Prior models have generally, in the context of the process model,

consisted of specialized assumptions about the nature of the opera-

tors involved. The beam- rod model undertakes the general synthesis

of those operators under the one assumption that they can be repre-

sented by an aggregate of elemental beams. The previous discussion

of the correspondence between those processes at work in the model

and those inherent in ferromagnetic action bodes well for such a

modeling attempt.

2. 5. Preliminary Results and Characteristics

As described in Resh‘s 1969 paper, a heuristically synthesized

model was available at the inception of this work, although the order

of the model was low. It produced a reasonable hand-calculated
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saturation loop and crude cyclic demagnetization effects. In an

effort to extract as much information as this model would yield, a

discrete state simulation model was programmed for the finite beam

analog. This algorithm, utilizing the previously described state

model, is presented in Figure 2. 5. 1. An input- output characteriza-

tion for each of several different inputs was derived in the form of

a computer generated plot. Some of these characteristics are

demonstrated in the figures immediately following 2. 5. 1.

Although there are several different possible correspondences

between model and ferromagnet in terms of terminal variables, it

is natural on several accounts to take the force f as analogous to H,

applied field intensity, and the rod position x as analogous to B, the

magnetic induction. The voltage versus current characteristic of an

iron core inductor, then, would be obtained by allowing H to be pro-

portional to the current I and differentiating the B variable to obtain

the voltage.
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CHAPTER III

SYNTHESIS OF THE MODEL

3. l. The Definition of the Problem

In order that an iron core inductor or other hysteretic ferro—

magnetic device can be incorporated into a larger network for simu-

lation purposes, it is essential that the model parameters be known

quantitatively. In particular, this means knowledge of the beam

elasticities, equilibrium positions, and drop- off points for the dis-7

crete model or the distribution function (i) for the continuous case.

In either event, an experimental technique must be available for ob-

taining pertinent measurements on a particular device. It would be

most desirable for measurements on a single specimen of a given

type of material, say Arnold Deltamax, Permalloy, or the like, to

yield a model valid for all members of that category. A final answer

to this must await experimental verification, but this chapter outlines

a measurement technique which effectively yields the model para—

meters. The main objective of the discussion at hand, then, is the

delineation of a synthesis procedure which accepts these measure-

ments and produces the desired parameters. The work embodied in

this thesis will be concerned with synthesizing these parameters on

the basis of static or dc measurements. Incorporation of frequency

effects should be looked upon as an extension of the current effort.

The investigation of a problem of this nature necessarily en-

tails the question: What are the general characteristics of the device

30
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whose model is to be synthesized? For the case at hand, there is

no simple answer. Physicists have purveyed a dark pessimism

with regard to such a description. In fact, one writer16 goes so far

as to aver, ". .. even the simplest B versus H curves conceal a lot

of complicated events. It is not surprising, then, that efforts to

use empirical formulas to describe such curves. . . are doomed to

failure. " The allusion is to suchtired workhorses of engineering-

oriented magnetic theory as the Law of Steinmetz.

In spite of the above pessimism, an abundance of insight is

afforded by the subjection of the device to a wide range of input

time functions. Plotting the output versus input gives rise to a set

of planar relations. Upon inspection of a large sample of such rela-

tions, a number of regularities emerge. For example, all inputs

which increase monotonically from a large negative value, to a

large positive value, thence to another large negative value result

in the same relation-~that of Figure 3. 1. 1(a). The precise meaning

of ”large'I will be clear from subsequent elaboration. Figures

3. 1.1(b) and 3.1. 1(c) indicate other such categorical features.

The process of constructing a model on anidflrc basis when

a finite number of input- output relations are given is often termed

behavioral modeling. Theoretically, if an infinity of such relations

are determined for inputs ranging over the class of all such possible,

the model will be ideal. This means that the output can be determined

from such a model for any input which the environment can supply.

Since such a characterization is obviously impractical, one must

content himself with more miserly results. One of the first features

to note, in a search for a more practical approach, is the concept of

'
fi
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equivalence mentioned above. This concept is inextricably inter-

twined with the idea of state, but for present purposes, the major

import lies in the reduction of the number of relations which must

be investigated. If an increasing set of input— output relations is

determined, it should be a requirement that the resulting models

converge, in some fashion, to the ideal. Another salient point is

the following. If a given behavioral model possesses close ties with

known physical processes at work within the object, the validity of

the model can only be enhanced. This desirable quality is one fea-

ture inherent in the model under investigation here.

These few remarks are intended as a prelude and delineator

of the work to follow. At various stages in the development, some

conunentary will be made to correlate current aspects with these

remarks.

3. 2. Experimental Measurements

As pointed out in the preceding section, laboratory measure—

ments must be performed on a given device in order to obtain input

data for a synthesis procedure. Such measurements need be exact

only to a degree relative to the precision of the synthesis routine.

No attempt is made in this thesis to provide numerically precise

tolerances, so the main interest will focus on the development of

suitable techniques of measurement.

The terminal variables of interest are current and voltage in

the case of an iron core inductor. The point was made previously,

though, that the choice of current and flux linkage is more appropriate

to the model. The terminal voltage, of course, is obtainable from

the flux linkage by differentiation.
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The preponderance of iron core inductors are of the closed

flux variety. This means that the continuous flux paths lie entirely

(for all practical purposes) within the ferromagnetic core of the

inductor. A smaller number of practical inductors are of an open

flux nature. Flux measurements for the latter are not difficult at

either dc or higher frequencies. The discussion will center general-

ly about the closed- flux type of inductor and specific ally upon the

toroidal form. The uniformly wound toroid with its lack of normal

surfaces, has the nice aspect of possessing uniform magnetization.

Ac measurements are not difficult for the torus, but dc tests are

exceedingly difficult. The closed nature of the flux paths preclude

utilization of any such device as a Hall- effect or magnetometer

probe. The common method of ac testing involves driving one wind-

ing of the toroid with a periodic current, then integrating the voltage

induced in a sense coil. This provides a voltage proportional to the

flux change in the toroidal core. The test configuration in shown in

Figure 3. 2. 1.

This type of setup works well for ac measurements; in fact,

a common RC integrator can be used at the higher frequencies.

Since the voltage induced in the search coil is proportional to the

time derivative of the flux, a slowly varying, or "dc" , input current

will result in a miniscule output voltage. Another shortcoming is

the decay time, or holding time, of the integrator. When the input

to the integrator changes and then goes to zero for a long period of

time, the integrated value decays toward zero. Several attempts

have been made to obtain satisfactory integration at these low rates

of change of the input. The most effective solution to date has been
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16' 17’ 18 with feedback to obtainthe use of ballistic galvanometers

high integrator accuracy. These instruments are very delicate, so

a more robust integration unit is desirable.

The techniques for obtaining practical integration are explored

in the appendix. At this juncture, it is sufficient to state that dc

tests are practical. In fact, using the experimental arrangement

illustrated in Figure 3. 2. 2, it was found feasible to manually con-

trol the driving current into the toroid and concurrently plot the

input-output characteristic by means of an x-y recorder. Several

relations of interest are shown in Figures 3. 2. 3 through 3. 2. 6 for

two radically different types of core material-~one square loop and

the other of softer material. One feature resulting from these ex—

perimental investigations is at variance with the work of previous

inquirers. At dc, minor loops close immediately and do not approach

such a loop only as a limit. It seems suspect that lack of immedi-

ate closure is an ac effect, perhaps caused by eddy currents.

3. 3. The Search for the Support of the Distribution Function

With measurement techniques available, it is now possible to

break the theoretical soil with confidence. As a cornerstone for the

analytical framework, these experimental techniques provide some

of the coarser characteristics which the beam- rod model must ex—

hibit. The first logical step would seem to be the query, ”What

coarse characteristics of the model give rise to these coarse ex-

perimental features?" This is indeed a logical question, and a solid

answer to it is available.

One of the most general characteristics of the model is the

support of the distribution function 4;. The support of 6,!) is defined by
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5(4)) = {(a,b):¢(a,b) if 0}

It is plausible that 8(4)) could be the entire plane, but it seems in-

tuitive that this is not the case. It would be convenient, in the light

of later developments, if the support were a compact set. In any

event, it is certainly reasonable to postulate a region for the sup-

port and subject it to experimental test. Such a procedure bears

fruit in the current investigation and, as will be argued later, pro—

duces a logically palatable result.

It is perhaps wise at this point to inventory the available tools.

There are two of major importance: the heuristically synthesized

finite beam model provided by Resh and the previously outlined dis-

crete state simulation algorithm. The extant model, though of low

order, gave important clues. In the first place, there was a region

of regularly spaced beams with identical coefficients. This was

concluded to account for the behavior observed in the "body” of the

characteristic, that is the state determined portion. It is helpful

to study the planar description of the model which is provided in

Figure 3. 3.1. Another category of beam possessed very large drop

values, and their coefficients varied in a rather precipitous manner

from one beam to its neighbor. It was felt that these "boundary"

beams accounted for the overall shape by virtue of their nonlinear

behavior, and for the behavior in the saturation region by reason of

their large drop values.

Resh‘s model provided nice results as far as the saturation

loop and magnetization curve were concerned, but minor loop be-

havior was relatively crude. Cyclic demagnetization effects were in

evidence, but they too were of a somewhat crude nature. These strong
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but coarse correspondences seemed evidence of the correct nature

of the accompanying approximation to 8(4)). The prominent features

of this approximation are:

1. It consists of the union of three regions, one with

finite drops and the other two with very large,

perhaps infinite, drops.

2. There are no beams with equilibrium positions

larger in magnitude than the saturation value of

displacement.

With these features in mind, it was decided that the correct

approach was to perturb the parameters of Resh‘s model and in-

vestigate, using the finite state algorithm, whether the results were

a refinement or a degradation. The simulation results were obtained

in the form of a computer generated plot of an input- output relation.

A standard piecewise—linear driving function was selected such that

sufficiently rich hysteretic behavior could be observed. The first

perturbation was of a minor nature: the constituent beams were

merely multiplied in number along the linear geometry of the original

model, with the total coefficient per unit length remaining the same.

The resulting perturbation is shown in Figure 3. 3. 2, and the sirnula—

tion result in 3. 3. 3. The results were essentially the same as for

the original. There was a marked increase in smoothness, although

the cyclic demagnetization effects and minor loops were unimproved.

The next perturbation was more pronounced. The original

model outlines were retained, but this basal skeleton was filled with

equally spaced beams of constant coefficient. The boundary beams

were retained intact, for the overall shape of the saturation loop was
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correct. These results are presented in Figures 3. 3. 4 and 3. 3. 5.

There was a dramatic increase in overall smoothness, as well as

in cyclic demagnetization effects. The latter, however, seemed to

possess some undesirable characteristics which were remarkably

tenacious. The semimajor loops refused to produce sides which

were distinct from those of the saturation loop. Upon consideration

of the Resh-Preisach plane, it was felt that beams must be present

at points well away from the b=a line in a perpendicular direction in

order to provide more reasonable interior loops.

In keeping with this attitude, the next perturbation was even

more of a departure. Body beams were arranged in the configuration

of a square centered at the origin with sides of length me (xm being

the saturation value of displacement). The perturbed geometry and

the simulation results were those of Figures 3. 3. 6 and 3. 3. 7. Al-

though the overall shape was completely distorted, the minor loop

behavior appeared to be very much like that sought.

After performing a number of more detailed perturbations and

simulations, one fact seemed clear. A trade- off of some nature

was needed between the models of Figures 3. 3. 4 and 3. 3. 6. But

how is a trade- off between two geometric patterns to be accomplished?

After some thought, the answer presented itself——simply increase

the vertical dimensions of Figure 3. 3. 4. Then a square of beams

(Figure 3. 3. 6) would be imbedded in a trapezoid of beams (Figure

3. 3. 4). The result is indicated in Figure 3. 3. 8. Figure 3. 3. 9

contains the resulting simulation relation. Cyclic demagnetization

loops and overall shape appear correct, but there are undesirable

discontinuities in the saturation region.
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The final solution is now at hand. By splitting the preceding

trapezoidal region into three parts, as indicated by the dotted lines

in Figure 3. 3. 8, the cyclic characteristics of the square are re-

tained, and the overall shape is maintained, while the discontinuities

in the saturation region have been deleted. The beams previously

contained in the top and bottom triangular components are moved

into positions with very large drop values. The final configuration

is shown in Figure 3. 3. 10, and its characteristics are depicted in

Figure 3. 3. 11.

One final facet should be pointed out at this stage of develop—

ment. A given finite beam model can be improved dramatically in

fineness by simply spreading the beams in a vertical direction.

This distributes the drop points, and thus the discontinuities, over

an interval rather than concentrating them at a single point. Figure

3. 3. 12 is the simulation result of the same model as that of Figure

3. 3. 10 with a ten for one vertical spread in drop values. Note the

decrease in the amplitude of the discontinuities.

Now that the extent of the support of 4) has been delimited for

the discrete model, it can also be enunciated for the continuous

case. Figure 3. 3. 13 indicates the generic character of the most

general possible structure of 5(4)). The major features are as

follows: There is a square region consisting of body beams. This

region contains the memory elements of the model. There are two

regions with infinite values of drop. Both have equilibrium position

values distributed between - Xm and +xm, with xm being the satura-

tion value of rod displacement.

f
}
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In accord with the previous allusion, this region for 5(4)) is

logically defensible. In fact, it could possibly have been deduced by

proceeding from observed characteristics alone. Although the con-

tinuous model provides an accurate picture on a macroscopic level,

the fine grain structure reveals basically discontinuous processes

at work. These processes do not appear in the saturation region.

Hence, in the model, no beams can be dropped for [X] > xm. In

addition, the input- output relation is linear in the saturation region.

This implies that no additional beams are acquired for [X] > xm.

A farther feature is the fact that the relation does not consist of the

horizontal axis (that is, the mmf, or force f, is nonzero) for [X] > xm.

This implies that beams with infinite drops do exist in the model.

These facts coupled with a few thought experiments imply the region

of Figure 3. 3.13 for S(¢).

3. 4. Synthesis Considerations

With the knowledge of the most general region possible for the

support of (I), it becomes feasible to consider the more concrete

problem of synthesizing the model parameters. As was indicated in

Figure 3. 3. 13, it is convenient to think of 4) as representing the

beam mass distribution in the square, and of two other functions r

and s as representing the two linear distributions at :t 00. When

considering the discrete model then, it is convenient to simply imag-

ine these functions as being evaluated at a finite set of points. If

these values are multiplied by an area weighting factor, there arises

a discrete approximation to the continuous model. This is simply

the inverse of the process used to make the transition from the

discrete to the continuous model. In fact, if the continuous model
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can be synthesized, it is possible to immediately make such an

approximation--thereby allowing the Barkhausen effect to reappear.

For the purpose of mitigating the synthesis problem as much

as possible, it becomes desirable to farther simplify the model by

introducing reasonable assumptions such as, for example, symme-

tries of the various distribution functions. An added simplification

is possible for the boundary distribution functions. To investigate

this, it is necessary to consider the expression for the force con-

tributed by the boundary. This is readily seen to be

X

x m

g(x) = y (x- a)r(a)da+S (x- a)s(a)da

-x X

m

The corresponding expression for the discrete model is:

g(x) = Z (x- ai)ri +2 (x- ai)si

a..<_x a.>x

1 1

where the ai are the equilibrium positions for the discrete model

and ri and si are the elasticity coefficients of the top and bottom

boundary beams.

It is interesting to consider the derivation of these boundary

distributions if g(x) is a prescribed function. Note that, on the con-

trary, g(x) will not in general be known. The assumption is merely

made for the purpose of deriving properties of the boundary distri-

bution functions. Under this proviso, then, differentiating the first

of the above expressions twice results in

g”(X) = f(X) + S(X)

The most striking feature here is one of redundancy: a single func—

tion would suffice. If either r or s were identically zero, the re-

sulting force component would be of constant sign (assuming the other
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function is always _>. 0)--this conflicts with intuition and the under-

lying physical mechanisms. In fact, it would imply a very strong

asymmetry in the saturation loop. Hence, it appears that r and 5

should possess an alternation property--that is both are never zero

simultaneously. A more explicit form will be presented later.

Turning to the other simplification mentioned above, it is

pertinent to inquire as to possible symmetry of the function <1). In

measurements on actual devices, it is observed that should any se-

quence of inputs be negated in sign, the corresponding output func-

tion experiences a similar sign inversion. Since the boundary dis-

tribution is memoryless, a little thought will convince one that this

sign characteristic should also hold for the force due to the function

<1). One symmetry condition which furnishes this behavior is given

by

¢(—a,-b) = ¢(a,b)

It is possible to use this symmetry condition to explicate the

nature of the boundary distribution. If the saturation loop is swept

out, the resulting forces can be written:

f+(x) : g(x) + 6+(x)

f-(X) = 80!) + 6"(X)

where f+(x) and f-(x) are the saturation loop forces with x increasing

and decreasing, respectively; g(x) is the force due to the boundary

distribution; and 6+(x) and 6-(x) are the body contributions, also for

x increasing and decreasing, respectively. Now the symmetry con-

dition ¢(-a,-b) = ¢(a,b) implies that 6+(x) : - 6-(-x). This can be

seen by inspection of Figure 3. 4. 1. Then, manipulation of the above

pair of equations results in
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f+(x) + £’(-x) = g(x) + g(-x)

In light of the above discussion of the ”oddness" of hysteretic be-

havior, f+(x) = -f_(-x). Hence, g(x) = -g(-x), and the function g is

odd. This implies the boundary distribution indicated in Figure

3. 4. 2.

The basic characteristics of the model have been made con—

crete, and the stage is set for expounding the method of synthesis of

q) and r. This question will occupy center stage in the next section.

3. 5. Synthesis of the Distribution Functions

There are a number of techniques which suggest themselves as

answers to the synthesis question. The prominant characteristic

with which the successful candidate must be endowed is practicality.

A number of different methods were considered along the path toward

selection of the one presented in the sequel, but all others suffered

badly when extracted from the theoretical world. In truth, several

seemed quite attractive when considered from the viewpoint of mere

theoretical plausibility alone. Their downfall came at the hands of

the ever—present demand for reasonable core storage and computation

time on the digital machine. The one presently to be described

possesses reasonable characteristics in those areas; it also provides

excellent synthesis capabilities.

One of the most reliable weapons in the numerical analyst's

arsenal is the polynomial approximation. The usual usage is in

providing an approximation to a scatter of data or to a more complex

function. The main requirement which the data must meet is the

possession of a compact support--if the fit is to approximate the

entire data set. For instance, Weierstrass' Theorem in one
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dimension is valid only for a closed interval of finite length. Of

course, polynomial approximations are feasible in two dimensions,

where the support must be a compact set. The importance of the

previous effort in search of the support of 4) is now apparent. The

function «1) is defined and nonzero only on the closed square (a com-

pact set), and the function r is defined and nonzero only on a closed

interval of finite length (another compact set). Thus, polynomial

approximations would be practical if the functions 4) and r were known.

But, this is precisely the synthesis question itself! How then can

the possibility of polynomial approximations be exploited?

Suppose the existence of such an approximation is as sumed--—

that ¢ and r are continuous. For a given degree of approximation,

the problem devolves to one of determining a given number of coef-

ficients. A number of measurements are needed which will allow

these coefficients to be determined. The question is, ”What kind and

how many?" Of course, since a least squares solution is contem-

plated, the answer to the latter part is, ”As many as feasible. " To

acquire a grasp on the former requires a little more effort.

With this objective in mind, consider the planar representation

of Figure 3. 5.1(a). The square is partitioned into N2 equal sub-

squares, and the interval (O,x ) into N/2 equal subintervals (by
m

construction N is even). The function (I) is assumed to be represented

by discrete beams centered in the small squares, and r by beams

centered in the subintervals. If x is allowed to increase from -00 to

xj, 'then to decrease to Xi’ those beams in the shaded regions will be

engaged. This measurement process is illustrated in Figure 3. 5. 1(b).

There are (N (N- l) )/2 unknowns in the square and the same number of
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possible measurements. Note that those beams for which b = a have no

effect and can be ignored. The boundary beams, represented in con-

tinuous form by r, constitute an additional N/2 unknowns. Figures

3. 5. 2(a) and (b) represent a possible means for including an addi-

tional N/2 measurements by way of the cyclically demagnetized

remagnetization curve.

The purpose of the preceding discussion is to motivate and

heuristically justify the measurements to be performed for input to

the continuous model synthesis procedure. There are NZ/Z measure-

ments and N2/2 unknowns. It seems that these NZ/Z measurements

would suffice to determine the discrete model parameters, but their

independence has not been verified. Fortunately, the synthesis pro-

cedure to be outlined does not require independence, although the

supposition will be made that this type of measurements provides

enough info rrnation for the continuous model. This, too, is non-

critical, as will be brought to light later.

Although the measurements have been decided upon, the ques—

tion of synthesis is still open. To fill this hiatus, the continuous

synthesis procedure will now be explored. Utilizing the previously

stated assumption of continuity of both 4) and r, it is possible to hy-

pothesize the existence of polynomials P(a,b) and Q(a) approximating

4) and r uniformly to an arbitrary degree. Suppose

Nil N+1

P(a,b) = 2 Za..al-le-l
1.1

i=1 j=1

N+l

1-1

and Q(a) : Eb a
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where the range of indices has been selected for ease of program-

ming on the digital machine. Then, the resulting approximation f'

to the force versus displacement characteristic can be found for any

sequence of input variations. For the set of measurements outlined

above, there are four requisite force expressions: the ascending

saturation loop, that due to decreasing input after a monotone in-

crease from -oo to some value xo (semimajor loop); the cyclically

demagnetized remagnetization curve (CDRC); and the force in the

saturation region (lxl Z xm). The last form is obtained from any

of the others by inclusion of only the expression for the force due to

the boundary distribution. The different cases will be explored one

by one, but first the symmetry condition on 4) will be translated into

a requirement on polynomial coefficients. The stipulation that

¢(-a,-b) = ¢(a,b) implies that

N+1 N+1

Z a'ij[1- (4)1“) a1‘1b3'1 3 0

i=1 j=l

Hence, aij : 0 if i+j is odd. This will, of course, significantly en-

hance computation speed. The following expressions are derived

from consideration of events in the Resh-Preisach plane.

The Ascending Saturation Loop: 

x Xm

f'(x) : S day (x — a)P(a,b)db

-xrn x

+ sgn (x) r(x - a)Q(a sgn(x)) da

0

where the latter term is the boundary force, which can also be writ-

ten in the less compact, but more intuitive form
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(x — a)Q(a)da; x Z 0

o

g(x) = o

g(x- a)Q(-a)da; x<0

x

Then,

N+1 N+1 x
x m '-l ._1

f'(x) = E 2 any day (x-a)a1 bJ db

1‘] -x x
i: j:1 m

i+j even

N+1
x ._1

+ Z bi. sgn(x)5> (x- a)(a sgn(x))1 da

i=1 0

or

N+1 N+1 N+1

l _
f (x) .. Z Z aij Hij(x) + Z biBi(x)

i=1 j:1 i=1

i+j even

where

x
X m ._1 .-1

H..(x) =§ day (x-a)a1 bJ db

13 -x x
m

and

x . l

Bi(x) : sgn(x)§ (x— a)<a sgn(x))1_ da

0

Semimajor Loop:

x
x xm o x

f'(x) : 5 daSV (x- a)P(a,b)db +5 daSI (x — a)P(a,b)db

x-X X --X

m mo

x

+ sgn(x)5‘ (x - a)Q(a sgn(x))da

o
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N+1 N+1

= 2: 21a [£:da£:(x-a)aiullril

all

i=1 j=1

i+j even

x N+1

O X ._1 ._1

+5 daS‘ (x - a) a1 b3 db] + Z 1:»i - Bi(x)

X -X .

m l1:

or

N+1 N+1 N+1

I ._ I
f(x) _ Z 2 aij Hij(x’xo)+ :biBi(x)

i=1 j=l i:l

i+j even

where

x
x m ._1 '-1

H'..(x,x) = yday (x- and1 b3 db
ij 0 -x x

0

x0 x

+5 da‘S‘ (x- a)a1_1bJ-1db

x -x
m

Note the role played by the ”turn- around" value x It is very sug-

gestive of a state variable. The ramifications of this observation

will be winnowed out in a later chapter.

Cyclic ally— DemayLnetized Remaggietization Curve:

The planar region extant under cyclic demagnetization has al-

ready been depicted. lf, after cyclic demagnetization, the input in—

creases from zero monotonically past the saturation value, the CDRC

will be generated. At any point x,

xm x x -b

f’(x) : S db‘S‘(x- a)P(a,b)da+§ dby (x- a)P(a,b)da

x -b —x x

m

x

+ sgn(x) f(x - a)Q(a sgn(x)) da

0
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N+1 N+1 x

m x 1-1 '-1
= Z Z a..[:5’ dbS (x-a)a bJ da

1] x -b

121 j=l

i+j even

N+1

x ‘b 11'1
+Sd1331 (x-a)a- bJ' da]+ Zbi'Bi(x)

-X X .

m 1:1

or

N+1 N+1 N+1

l _ n ,
f (x) _ Z aij Hij(x) + 2 b1 Bi(x)

i=1 j=l i=1

i+j even

where

xm X i 1 ‘ 1
H!‘.(x) = S. db5‘(x- a)a- bJ‘ da

11
x -b

-b . 1 .1

+yxdbS‘ (x- a)a1_ bJ- da

-x x

m

By generalization on the above results and some study of the

configurations in the plane, it is apparent that the force after an

arbitrary sequence of input variations can be written as an integral

expression. Hence, a finite— sum approximation is available for any

input. Another, and very important, feature should also be noted.

Each of the above expressions for the force approximation is linear

in the unknowns. The indices can be reordered such that each is a

single dimensional linear combination of the unknowns, with the

coefficients being the defined functions of x. An additional feature

is the ease of calculation of these coefficients--the double integrations

involve only powers and are easily computed on the machine.

The linearity of the equations in the unknowns aij indicates the

applicability of a linear least—squares technique. The particular one

chosen is embodied in a routine available from the IBM Scientific



 



73

Subroutine Package. It utilizes Householder's20 method for trans-

forming an arbitrary matrix to triangular form through the applica-

tion of unitary transformations. This procedure is attractive from

a numerical standpoint.

Synthesis results are very nicely demonstrated by the accom-

panying figures. Some show relations obtained experimentally.

Others are due to the synthesized model. Computed polynomial

parameters have been inserted into a continuous simulation routine

which is described elsewhere in this thesis. The demonstrated syn-

thesis results form the output of this routine. As is clearly evident,

the synthesis procedure provides a close match between model and

real device. Note that the figures have different scales. It also

appears that the semimajor loops alone provide as accurate a model

as that provided by their combination with the CDRC.

One of the attractive features of the polynomial approximation

synthesis is its flexibility. If any additional type of behavior within

the capabilities of the model is desired, it is relatively simple to in-

corporate such a fit into the existing procedure. For instance, if

minor loops in a particular region are required to be represented

more exactly, the desired equations can be included in the routine.

Thus, at the expense of increase in complexity, it appears that a

synthesis as accurate as desired can be obtained. The figures indi-

cate the range of capability of the procedure. Materials of both soft

and very hard composition, with their great variance in properties,

have been successfully modeled.
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76

 

 

Synthesized 4th Degree

Model Results: Minor

Loops. 
Figure 3. 5. 5



 



77

 

  

"2

.5. 4 7

Experimental Data for

Square Loop Toroid.

  
 

 
Figure 3. 5. 6



   



78

 

 

 

 

Synthesized Model Using

4th Degree Polynomials.

 
Figure 3.5. 7

r
}





79

 

 

Synthesized Model Using

 

5th Degree Polynomials.

 
Figure 3. 5. 8

 





CHAPTER IV

THE CONTINUOUS STATE MODEL

4. l. The Need for a Continuous Model

The early stages of this entire investigation hinged about the

finite-beam discrete state model. As a tool, it was exceedingly use-

ful at that point in time. It allowed an experimental program to be

carried out that resulted in discovery of valuable first- order informa-

tion about the model. As an efficient computational tool, though, it

was found lacking. For each change in the input variable, the re—

sulting value was subjected to a concatenation of several comparisons

for each beam. Consequently, for a fairly large model-~one involv—

ing perhaps hundreds of beams—-the simulation was destined to be

lengthy.

Another shortcoming of the discrete state model is its concep-

tual rigidity. Regardless of how many beams are incorporated into

a model, the state space remains finite. On the other hand, the

continuous analog admits a continuum of active-bearn regions.

Hence, it is essential that a more general state description be con—

sidered: one which will describe the continuous model as well as

the disc rete one.

4. 2. The Continuous State Representation

As previously mentioned, it is possible to consider the con-

tinuous form of the beam- rod analogy as being the limiting case of

80
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the finite-bearn one. Unfortunately, this process does not yield a

continuous state description; it is essential that the basic model

features be re- examined in the plane. For ease of discussion, the

term ”beam" will be retained—-it should be interpreted as meaning

the discrete equivalent of a small planar region.

With an eye toward developing such a state model, consider

the following possible active-bearn pattern in the plane:

 

Figure 4. 2. 1

This pattern is a prototype of an entire class. There are two such

classes, depending on the sign of the velocity of the rod, )2. The

force resulting from the active— beam region is obtainable by analogy

with the discrete model:

f(x) = 55‘ (x - a)¢(a,b)dadb + g(x)

Q

where Q = Q+U Q- is the region of active beams, and g(x) is an

input- determined function given by

x

y(x- a)r(a)da; x2 0

g(x) = 00

f(x- a)r(-a)da; x< 0

x
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or

x

g(x) = sgn(x)S (x - a) r(a sgn(x)) da

0

It is possible then to loosely consider Q as the state of the model.

Q is a function of the entire time function x(- ) up to time t (the device

is nonanticipative). It is also possible to write the above expression

in the form

f(x) = 531x - a)S(a,b)¢(a,b)da db + g(x)

where S(a,b) is the characteristic function of the set Q,

1, (a,b) 6 Q

S(a,b) :

0, (a, b) ¢ Q

and the integral is taken over the entire plane, or equivalently over

the support of <19. Either of the above equations qualifies as an input—

output state relation. In order that the state description be complete,

it is essential that a method be available for describing state transi—

tions as a function of the input. It is also necessary to make the

definition of the state of the model a little more concrete. Such a

state description is available, but before it can be developed, it is

essential that the characteristics of the active regions be elaborated

upon.

One of the most striking features of the region Q is its non-

connected nature. It can be described as the union of two regions,

Q+ and Q_, where Q+ is the region of engaged right- active beams,

and Q_ is the region of engaged left- active beams. If x < O at the

instant of validity of the description of the region, as in Figure 4. 2. l,

the top left corner of Q_ will fall on the b = a line. If x > 0, the lower

right corner of Q+ will fall on this line. The regions Q+ and Q-
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exhibit very regular features: in fact, they are horizontal— and

vertical- edged polygons in the plane. As such, they are completely

determined by their ”convex corners"; i. e. , those which protrude

from the regions. The ensuing development will describe this repre—

sentation, and will elaborate upon the state space of the model.

In order to fix ideas, assume that the region under discussion

is Q+, the region of engaged right-active beams. The properties of

Q— are exactly analogous to those of Q+. The upper boundary of Q+

is a line segment with right endpoint at (x,xm). The left and right

boundaries are vertical line segments whose endpoints will shortly

be described.

Perhaps the most lucid description of the region Q+ is a se-

quential account of the manner in which it takes form under a proto-

typic input waveform. A representative sequence of events is sketched

in Figure 4. 2. 2. There are several important features of note. The

convex edges, other than perhaps the sidecorners, reside at points

in the plane given by (1 i’ r.1), where {Ii} is the sequence of points

within the interval (-xm,xm) where x(t) ”turns around" from left to

right; that is, where x(t) changes from monotone decreasing to mono-

tone increasing. {ri} is the sequence of right ”turn—around" points.

The bottom left-most corner is given by (—xm, r1) if the first turn-

around was on the right, and by (f 1’ r1) if the first turn- around was

on the left. The bottom right-most corner is given by (x, r
last)’

where rlast is the last turn- around on the right if x is decreasing,

and by (x,x) if x is increasing.

The principle result of such a description of the active beam

regions is an analytical definition of the state of the model--it is
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difficult to manipulate patterns. The two sequences {1i} and { ri}

above can be combined into one; namely, {xi} , the set of turn-

around points of x(t). One other item must be available, as men-

tioned above, for a viable state description. This quantity is the

sign of the derivative of x, sgn(x(t) ). An alternative is to keep

record of the nature of the last turn- around; that is, whether it was

of the left or right kind. Hence, an element of the state space of the

model is given by the pair (v,x), where v = sgn(x), and; = {xi} ,

the turn- around sequence.

Now that the nature of the state space is clear, the only task

remaining is the derivation of an algorithm for finding the state for

 

any input function segment, given any initial state. Note that the

state must yield to some rather obvious restrictions: there cannot

be two successive turn- arounds of the same kind, and so forth.

Suppose then that an initial state is given. This means specifically

that the sign of the velocity at some time to is given, as well as the

last left and right turn— arounds. Then, a little contemplation of

such a diagram as Figure 4. 2. 2 indicates the following:

1. If x(t) exceeds either the last left or the last right

turn— around, M are deleted from the sequence 32.

The sequence is then reindexed so that the previous

next- to-last pair is now the last pair (in indicial

terms).

2. If x(t) changes sign at some time t', without hav-

ing committed an excess as described in part

one, x(t‘) is appropriately assigned as the new

last element after the sequence is reindexed.
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3. If x(t) exceeds either +x or -x , the sequence
m m

becomes vacuous, and the model is input-

determined.

Although a state transition function is not available in closed

form, the above discussion provides a basis for a practical state

transition algorithm. Its implementation will be considered in the

next section.

4. 3. The Continuous Simulation Algorithm

Once the nature of the state space has been brought to light, it

is important to consider its practical usage. The most pressing

need is for a simulation routine which will accept the model para-

meters and deliver, for an arbitrary input, the output time function.

This is important, both as a tool for checking the validity of a syn-

thesized model and as an adjunct to other routines in a general net-

work simulation package.

In the digital machine, the time variable ranges over a dis-

crete set; this implies a somewhat simpler method for finding turn-

around points. In the continuous time case, a turn- around point is

a value xi such that x(t) = xi, x(t) = 0, and 5t(t) 7! 0 for some t. In

the discrete time case, a turn- around point is a value xi such that

x(tk) : xi for some value of k and either

1. x(tk_1) < Xi’ x(tk+1) < xi

or

2.x( >x,x( >x

tk- 1) i tk+l) i

No derivatives need be calculated. The direction of motion of x is

available by storing the character of the last turn- around point. If

this is done, it is only necessary to compare the two most current

points.
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The procedure for modifying the state was outlined in the pre—

vious section, but there are some special cases. If the saturation

loop is being traversed, there is only one active beam region. In

this case, a turn- around indicates the inception of a new region. The

theory still applies, but special care is required in its implementa-

tion. The fact that this can occur as a consequence of either of two

types of turn— arounds compounds the complexity. These happen-

stances are provided for in a straight-forward fashion, but some

care is required in the programming. The logical flow diagram for

state transition determination in the simulation algorithm is pre-

sented in Figure 4. 3. 1. Other details of the algorithm are straight-

forward.

Once the state is found, the output can be evaluated by solving

the input- output relation for a given instantaneous value of the input.

If the model under consideration is discrete, this involves the

evaluation of a finite sum; if the model is continuous, a double inte—

gral must be evaluated. This is the only modification required when

changing the algorithm to accept one or the other--the state transi—

tion algorithm remains the same. In the evaluation of the input-

output state relation (in either case), two techniques can be used:

the integral or sum can be taken over the entire active region at each

iteration, or it can be calculated only over the regions of newly

acquired and recently dropped beams. In the latter case, the process

is more susceptible to accumulation of error. The former case is

better from a numerical point of view, but is slower.

The differential type of algorithm was selected for implementa—

tion because of its speed. Figure 4. 3. 2 shows the nature of a typical
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change in the active beam region. Utilizing the discrete model for

comparison with the discrete algorithm, the continuous version

proved to be on the order of six to ten times faster for typical in-

puts. No problem was encountered with error accumulation. The

blackboard of past history is erased when operation enters the satur—

ation region; but for long— duration inputs which do not drive the de-

vice into saturation, error accumulation could become significant.

The algorithm presented above is complete; that is, given the

initial state and future values of the input, the future output can be

determined. For the studies being described in this thesis, how—

ever, it was not essential that the initial state be provided. All

inputs utilized possessed the happy feature of starting in one of the

saturation regions. In this region, the model is input determined,

so no initial state was required. As soon as the operation enters

the non-saturation zone, the algorithm commences to generate its

own states. Hence, the flow diagram of Figure 4. 3. 1 does not pro-

vide for inserting an initial state.

One item of interest pertaining to operation of the algorithm

is the fact that, theoretically, the sequence associated with the state

can be of infinite extent. In View of the fact that machine storage is

finite, something must be known about the nature of the input wave—

form so that storage bounds can be set. In the absence of such

knowledge, a reasonable amount of storage can be allocated, and a

monitor can be set up to warn of imminent overflow.

It is possible to summarize the advantages of the continuous

algorithm by reiterating the fact that it subsumes the discrete model

and allows for greater generality, both computationally and
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conceptually. Several model characteristics are plotted in Figures

4. 3. 3 and the following two in order that those assertions be sub-

stantiated by graphical evidence.
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Figure 4. 3. 3

 

Continuous Simulation

of Finite Beam Analog
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Continuous Simulation

of Finite Beam Analog

with a Large Number

of Elements.

 
Figure 4. 3. 4
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Figure 4. 3. 5

 

Continuous Simulation

of Polynomial Fit to

Artificial Data.



 



CHAPTER V

CONCLUSIONS

In the course of the investigation described in these pages, a

number of important advances were made. Beginning with Resh's

basic model and continuing through the development of a rather com—

plex, but efficient, simulation algorithm, a continuing path of pro-

gress was traversed. That path has not halted in a cul- de-sac, but

has branched out into a multiplicity of paths. Several seem to

beckon with the promise of dramatic developments ahead.

The View back along the path reveals the following concrete

results. A discrete state model was developed for the original finite

beam analog. It was used to more fully explore the capabilities of

that model, as well as to derive the support of the characterizing

beam elasticity density function. A continuous analog was derived

by proceeding from the finite—bearn version. A synthesis algorithm

was developed for the continuous model, and a set of experimental

measurements was developed to support that procedure. Finally, a

continuous state algorithm was developed which provides a fast,

efficient simulation of either the discrete or the continuous analog.

The mainstream of the work embodied here flowed along three

channels: theoretical, laboratory experimental, and computer simu-

lation experimental. Transition was made frequently from one area

to another in order to bulwark an idea conceived in one with results

from another.
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As a result of the work done here, it is possible to experi—

mentally characterize iron core inductors with either hard or soft

cores; to synthesize the model parameters; and, utilizing the con-

tinuous state algorithm, to incorporate these inductors into a larger

network for simulation purposes. The techniques developed here

are also directly applicable to the most important of the earlier

models, that of Preisach.

At the present stage of development, it is possible to glimpse

a few outlines of developments along the paths ahead. As work has

progressed, an intuitive idea has been taking form of the general

nature of the distribution function (1). It should be non— negative

definite and should peak near the b : a line. It will perhaps be pos—

sible to utilize this characteristic to advantage.

Another intuitive idea is the following: Magnetic dipoles, gas

molecules, and the like, are distributed in number exponentially

with energy. The function ¢(a, b) can be considered as that density

function such that ¢(a,b)da db is the number of beams of unit elasticity

coefficient in the elemental area da db. The maximum energy stored

in one such beam is given by—é—(b — a)2. Hence, it is reasonable to

assume that

b-a

o-
-<

¢<a,b) = Ke

)

where 0' is a dispersion factor and K is a constant. Indeed, promis-

ing results have already been obtained for this assumed form.

A large amount of effort has gone into attempting the synthesis

of the discrete analog. All efforts have ultimately failed, although

valuable insight has resulted from each attempt. The basic problem

lies in determining an independent set of measurements. In almost
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all cases, a set of K measurements resulted in a set of K—l inde-

pendent equations. It seems that not enough is known about the re-

lation between sets of physical measurements and the dependence

characteristics of the resulting set of mathematical equations.

Another exacerbating factor pertaining to synthesis of the discrete

model is its complexity. Even if the resulting equations were in-

dependent, the system order is high. This would perhaps require

sparse matrix techniques, and it would certainly entail a closer in-

vestigation of the spreading technique mentioned in the text. Of

course, least squares synthesis is also plausible in the discrete

case.

Another area for future work pertains to the goodness of fit

qualities of the continuous synthesis procedure. What should be

the distribution of measured data in order to provide the best fit?

What should be the relative orders of the boundary and body poly-

nomials to provide the best fit with accompanying reasonable com-

puting time?

Finally, there is the question of frequency effects. Can these

rate dependent facets of hysteresis be accounted for by the finite

mass beam- rod interaction dynamics of the analog? It appears

reasonable to tackle this problem through the means of "fuzzy" set

theory, for example. In any event, this particular avenue of develop—

ment has, as yet, remained untraveled.

Thus, in addition to the concrete results which have been es—

tablished, it appears that prospects are bright for future extensions

to the current work.
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APPENDIX

THE PRACTICAL ASPECTS OF INTEGRATION

An ideal integrator, mathematically perfect, can be represented

by:

 

x(t)—9 F(-,-) -->y(t)

   

 

where the operator F is defined by

t

F(x,t) = §x(a)da VtZO

o

The LaPlace transform of the output time function y(t) is related to

that of the input by

1

ms = g(xe) +y(0))

or assuming y(O) : 0,

l

Y(S) = §X(S)

The integrator can thus be represented by a transfer function G(s) =

1/s.
 

xme ms)»;- Y<s>

   

Now consider the practical aspect of realizing G(s). This is impos—

sible to perform exactly, for the pole at the s—plane origin represents
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an infinite dc gain. This fact implies that any attempt to integrate a

variable will face practical obstacles.

The obvious, and probably the best (in some sense) approxima-

tion to G(s) is by a transfer function which consists of a simple pole

perturbed from the origin by a slight amount.

jw jw

G(s) X G(s)

Then,

1

S-6

 
/\

G(s) 2

Now 6 cannot be perfectly arbitrary, for the dc gain is now - —:—, and

it must be real if G is to be realizable. The case where E > O is also

ruled out because this would imply instability. Hence, G(s) can

practically be approximated by the above G(s) for 6 < O, and the

approximation converges to the ideal form as 6 —> 0—.

Reverting to the time domain, the transform version of the

input- output relation

(8 - C)Y(S) = X(S)

becomes

%- 61' = X(t)

Thus, the imperfect integrator can be modeled by:

x(t) a Y(t)
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It is found that in practice virtually all integrator circuits can

be modeled by the above abstract form, or by the differential equa-

tion

d

atWY = x

Note that M = -€ :11, where A is the amplifier gain.

The generality of this abstract integrator model can easily be

seen by consideration of a number of examples. It should be observed

that such examples tend to fall into two categories: those whose im—

perfection is due to imperfect elements and those which contain ideal

elements, but are imperfect for structural reasons. The addition of

imperfect elements to the latter category merely exacerbate the

s ituation .

Example 1:

ei(t) CI 60“)

This circuit is an old friend, almost a party regular, because

of its simplicity and passive elements. Summing currents at the out—

put node results in

01‘
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If the substitutions y = eo and ei/RC = x are made, it is evident that

l .

E. This

circuit falls into the second category, for it is imperfect even though

the governing relation is of the form 3% + py : x with u, :

the components are assumed ideal. A further disadvantage stems

from the fact that as H -> O, x —> 0. Thus, even though the amplifier

gain in the abstract model is increasing, the attenuation in the actual

circuit is going up.

 

    

Example 2:

'— _ _ ’1

lr— I J“
l [Kl—— leaky capacitor

‘V

i“) “' RIEI
D II [E 2' 60m

| l

L. _ _ __ _J —

In this circuit, if the capacitor were ideal, the integration

would be perfect, for the terminal relation for a capacitor is

t

e(t) =—51(a)da + e(O). With this configuration, though, the capaci-

o

tor is "leaky”. Summing currents,

de

i(t) : C dt 
e

+3

01'

22+;e . 1.
dt RC 0 C

which is in the general form with, once again, H :-1&;-.

H —+ 0 and the capacitor becomes ideal. In this case, x : El and no

AsR—soo,

,

input attenuation results as H —> 0.
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Example 3:

 

As a final example, consider the operational amplifier inte-

grator with finite input impedance. ,Since the interest here is in very

low frequency inputs, this is adequate allowance for non-ideal charac-

 

teristics. Then, summing currents at Sj’

ei-es (1 es

“in. +Cat‘eo‘es’ :5.-

But,e =e /A, so
S 0

e de

1 l l l l o

n'(§+ri) Keo+c(1"§)dt -0

or

9:2 __1___._1+l . - i
dt‘(A-1)C R R1 o“R

Hence, the general equation is once more satisfied with:

e. R+R.

11

Y-e’ Xurv Mm

A is ordinarily negative, and as A —> — 00, H —> 0+. There is no in—

crease in attenuation. Since operational amplifiers are readily

available with extremely high gains, this configuration is very attrac-

tive. Note, however, that it is of the second category, because if A

is finite, H )5 0 even though Ri ~> oo.
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Analysis of Error:

Consideration of the general imperfect integrator equation

d

at + W = x

once again yields the solution

t

y(t) = Sle'lla'a )x(a)do.

o

where the initial value of y is assumed to be zero. The departure

from ideal is given by the multiplicative factor e_“(t-(1 ). If H is

very small, this term will be close to unity over the range of inte-

gration——if t is not too large. It is apparent that p is a direct mea-

 

sure of the quality of the integrator.

Now, suppose the above equation is integrated by parts. There

results:

t t a _ (t )

y(t) : yx(s)do —S‘ [‘8‘ x(¢)d<r:' ' “e ‘1 —a do

0 o 0

Hence, the error after the passage of t units of time is:

t o.

'H‘S‘ [5‘ x(a)d(r:l e'Mt-a ) do

0 o

6(t)

and

t

y(t) : 31X(0’)d0' + 6(t)

0

Suppose x(t) changes and then remains at zero; that is, assume

x(t) E 0 for t > T. Then, for t > T,

T

y(t) : S‘x(0')do + 6(t)

o

with
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Thus,

T

y(t) : e-“(t-T) [S(T) + yx(o)d0]

0

Hence, the output can be written

y(t) = y(T) e'u‘t’T’; t2 T

This represents a decaying exponential with time constant p. There-

fore, the decay time is a directly measurable criterion of integrator

quality.

The fact that the decay time is inversely proportional to u gives

a clue to possible methods for improvement. The following one can

be applied to any of the three previous examples, but the following

discussion will center on the ”op- amp”.

 

 

 

  
   

J!

I\

s.

ei 1' e e0
R s

1?sz

F3

el-eS Be -eS eS

R + R ”at“ “35)::

but, es :eo/A, so

de e.
o E 2(A 14A _ _1

C(I'A) dt +<R‘ R ' Ri eo ‘ R

infinite decay time will result when the coefficient of eO vanishes:

E.__1_Z__l _

R AR+Ri ‘0
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or

. = : (. a)1
Consideration of the loop gain reveals that this is precisely the con-

dition for oscillation. Hence, [3 must be adjusted for a magnitude

somewhat below this figure. This same type of positive feedback can

be applied to the other examples investigated. It has been applied

quite successfully in the development of the ballistic galvanometer

instruments mentioned in the text. These devices also fit the general

model presented here.

Drift:

 

In spite of its other attractive features, the operational ampli-

fier suffers from the bane of dc drift (a problem not so troublesome

with the ballistic galvanometer instruments). This arises as a re-

sult of power supply voltage variation and the temperature dependence

of transistor leakage currents. The resulting drift voltage at the

output can be divided by the gain and referred to the amplifier input.

Assuming that the op- amp is used in the configuration of Example 3,

and that the overall integrator can be approximated otherwise as

ideal (that is, M = 0)

Then,
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If e is constant, for example,

1:

y(t) = §x(a)da + 6 ‘ t

0

Methods of Controlling Drift: 

In some applications, the signal to be integrated does not con-

tain frequency components extending to dc. For example, if a

ferromagnet is excited by a sixty hertz mmf, the response voltage in

a Faraday search coil has a fundamental of sixty hertz. In this case,

the following scheme is effective:

y(t)

 

Thus, since the integral of a slowly varying quantity is even more

slowly varying, g(t) : yt€(a)da and h(t) : e(t). Thus, the drift has

been eliminated. O

Other applications do not exhibit such nice features. If the in—

put has frequency components extending to dc, another approach

must be taken. Chopper stabilization is such an approach, and is

well covered in the literature. Even with chopper stabilization,

though, the drift is objectional when the signal to be integrated has

very low amplitude. Further improvement can be effected by intro-

ducing a small compensating voltage at the summing junction--one

which approximates the internal offset. An even further reduction

can be made by using two integrators.
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x(t) o

0 yz

Operation is based on the following fact: Regardless of how

fine one trims a compensation voltage, there is an average drift in

one direction. Thus, the above circuit is adjusted such that "on the

average” 61 is increasing and 62 decreasing, or vice versa. With

x(t) E 0, v and v2 are trimmed until the output is approximately zero
1

for every t. In practice, this seems to provide good results. The

two integrator amplifiers are physically mounted in propinquity to

one another, so it is possible to match offsets rather closely.

The aforementioned technique is the one selected for the experi—

mental work embodied in this thesis. Another possibility is at hand,

though, and should be mentioned: the possibility of using digital

integration techniques .

 
 

 

  

      

Accumu

A/D lator D/A

Sampled ConsTan

 
 

 

This setup essentially performs a Riemann Sum approximation to the

integral. If T is the sampling period,
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1%]

y(t) = EXHT) - T

i=1

where [7%] is the greatest integer function. As T —> 0, the above sum

converges to the integral of x over [0, T]. Any offset in the A/D con-

vertor will show up in a fashion analogous to that for the analog inte-

grator. Static offset, though, can be compensated for by feeding in

zero level and subtracting that digital number from all forthcoming

samples. It would be difficult to analyze this configuration for its

error, but one factor is clear: digital stores are not "leaky", so the

equivalent ,1 would be infinite.
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