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ABSTRACT

MODELS FOR THE CLASSIFICATION OF PROBLEMS

AND THE PREDICTION OF GROUP PROBLEM-SOLVING

FROM INDIVIDUAL RESULTS

by James H. Davis

Eureka problems (word puzzles having unique

solutions), were worked on by individuals, and by 23

Egg groups in which unrestricted, face-to-face inter-

action was permitted between members who had no

tradition of working together. The first objective of

the study was to introduce an ordering of problems and

a method measuring that order. Second, the investiga-

tion sought to predict group problem solving performance

from a knowledge of the problem solving behavior of

persons working as individuals. Major emphasis was

placed upon the development of a model that dealt

concurrently with group product and emergent group

structure. Third3 the frequently-noted superiority of

problem solving groups over individuals working on the

same problems was critically examined.

A model for the distribution of solution times of

individual solvers was developed from the idea that the

solution of a problem is composed of several steps or
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stages, and solution occurs upon completion of the

k-th stage. Problems can be classified as to the

number of stages, which is assessed from the distribu-

tion of individual solution times. The Classification

Model (statistically a waiting-time model) predicted

solution times to be a gamma distribution. The argu-

ment proceeded logically to the gamma distribution from

such assumptions as that the probability of a stage

solution is constant over time until solution occurs,

any one time interval is taken so small that one and

only one stage may be solved within it, and the stages

are independent and equally difficult.

Two models for predicting group from individual

performance were proposed, viz., the Hierarchical and

Equalitarian Models. These models predicted the

distribution of group solution times to be a simple

transformation of the gamma distribution that fitted

the individual solution times. The Hierarchical Model

assumed that group members organized themselves into a

hierarchy with the more successful members consuming

more than their share of the group's time. The

Equalitarian Model assumed each member took his share

of the group's working time, whether he contributed

to solution or not.

Data were gathered from individuals working alone
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and from 29 322 groups of four. These data were:

(a) correctness of solution, and (b) the time

consumed on each problem. Each group and each indivi-

dual were tested on a sample problem and three experi-

mental problems, the experimental problems being given

in different orders for different subjects. In the

groups, not only was solution time recorded, but also

a count of the frequency with which each member talked,

their choices for future problem-solving partners,

observation of member contributions and any unusual

events.

The parameter k of the gamma distribution (inter-

preted as the number of problem stages) was estimated

by the method of moments from the sample observations.

The theoretical curves thus determined were found to

fit the distributions of individual solution times for

all three problems. The Equalitarian but not the

Hierarchical Model was found to predict the distribution

of group solution times in each case. Implicit support

for the social psychological assumptions of the

Equalitarian Model was found through an analysis of the

partner-choice data. The analysis of the communication

frequencies of group members, however, was indecisive.

The problem solving behavior of individuals was

pooled mathematically and such concocted groups were

 



 

 

 

 



 

James H. Davis

found to perform significantly better than the real

groups on two of the three problems. This finding

was interpreted to indicate that member interaction

actually inhibited problem solving, at least under the

conditions of this investigation.

9mmW
Frank Restle, Major Professor
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CHAPTER I

INTRODUCTION

In his review of human problem solving, Duncan

(1959) summarized his conclusions thus: "The field of

problem solving is poorly integrated. The reasons for

this seem to be the use of a 53223 varietz 22 EEEEE 32

provide problems, the freguent use 23 unanalzzed 22g

*

non—dimensionalized variables, the lack of an agreed-
 

 

upon taxonomy of behavioral processes, and to some

extent the failure to relate data to other data or to

theory. Problem solving particularly needs research

to determine the simple laws between dimensionalized

independent variables and performance" (1959, p. h26).

Duncan was, of course, referring particularly to

investigations of the problem solving process £23 is.

But there are two sub-areas of research and theory

that are of particular interest to the social psychol-

ogist. First, there are studies of group problem

solving in which members of a small group collectively

address themselves to some problem or task; of major

interest are those cases where the group's performance

has been contrasted with individual effort, (Lorge,

Fox, Davitz, and Brenner 1958).
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2.

Second, small group researchers have often used problems

and other tasks to focus the group's effort, while their

main interest was in manipulating other situational vari-

ables and observing their effects on group structure or

various group processes, e.g., creating an out-group

threat and observing the increased cohesion of the group

under study.

It is the writer's contention that the poor organi-

zation and integration of studies, reported by Duncan,

creates a difficulty for those who use problems in the

course of investigating other phenomena, e.g., communi-

cation structures in small, task-oriented groups. At

the heart of many difficulties is the lack of knowledge

about the task or problem itself: How may problems be

ordered or classified to provide some continuity across

situations and provide a basis for comparison between

studies employing different problems in the study of the

same phenomenon?

The lack of a systematic treatment of the problem

itself precludes the kind of social-psychological theory

that deals simultaneously with the nature of the problem,

the group product (task performance), and the social

behavior of the individuals in the group. Even regard-

ing the group network studies, which deal with the

effects of imposed communication structure on group

 

 





 

  

performance, Glanzer and Glaser comment, "Perhaps the

most surprising thing about the entire area has been

the fact that despite the highly formal origins of these

studies, the organized body of theory has not yet ap-

peared" (19576, p. 35).

With this overview in mind, the purpose of this

dissertation can be described as an attempt, first, to

introduce an ordering of problems and a method for

measuring this order, and second, to predict group

problem solving performance from a knowledge of the

problem solving behavior of persons working as indivi-

duals. Major emphasis is placed upon the development

of a model that deals concurrently with group product

(problem solving performance) and the emergent structure

of the group. In addition, the frequently noted

superiority of problem solving groups over individuals

working on the same problems (Shaw, 1932) is critically

examined.

RESTRICTIONS 0F SCOPE

Before examining previous research it is well to

specify the restrictions of this inquiry. Only verbal

problems will be considered, for these generate inter-

personal interactions and lead to social organization.

Only problems with definite answers, which the subject

can solve without special outside knowledge, are useful

 

 

 



 

 

 

 



 

in the present experiments. These problems are called

"Eureka problems," (Large 23 31., 1958, p. 355). Only

23.222 groups with unrestricted face-to-face contact

will be considered. Groups may restrict their communi-

cations or choose leaders, and a structure may emerge,

but the present study does not involve imposing a

communication network or social organization upon the

group.

CLASSIFICATION OF WORD PROBLEMS:

STUDIES FOCUSING ON THE PROBLEM AND ITS ELEMENTS

Despite the need for studying the problems them-

se1Ves, implied above by Duncan, the literature

contains little that represents a systematic attack on

the behavioral effects of the particular problem--

especially word problems. Studies focusing on problems

BEE 33 have been mainly concerned with (a) criteria for

selecting problems, (b) presenting problems by different

methods, or (c) varying the elements of problems. These

will be considered in turn.

a. Criteria for selecting problems. Ray (1955) has

developed several criteria for tasks suitable for pro-

blem solving studies. For example, one should choose

problems which may be scored along a continuum; the

problem should restrict subjects to few hypotheses

about its solution, etc. Unfortunately, Ray did not

 

      
 



 

 

 

 

 



 

 

5.

consider verbal problems at all. Marks (1951)

suggested that problems should be plausible (stimulate

interest), complex and difficult (elicit solving

behavior), structured (allow quantification and the

recasting of the problem in different contexts), and

solvable.

The selection of problem criteria does not really

meet the issue of problem classification as set forth

in this study. Not only does "meeting the criteria"

depend heavily on subjective decisions by the investi-

gator, but it avoids the question by restricting the

kinds of problems that may be used. For instance,

Marks' criteria would exclude many word puzzles,

although these have been among the more important

tasks for studying social interaction. However, the

problems selected for this study appear to meet the

major criteria outlined by Ray and Marks, viz.,

continuum, restricted hypotheses, plausible, complex,

structured, and solvable.

b. Variations in Method of presentation of problems.

There have been several studies in which the experi-

menter varied a problem's "concreteness" (Saugstad,

195?; Large, Tuckman, Aikman, Spiegel, and Moss, 1955a,

1955b, Cobb and BrenneiSe, 1952; and Gibb, 1956).

Large £3 21. (1955a, 1955b) presented the "mined road

problem" at seven different levels of reality (verbal,

 

 
   



    
 



6.

photographic, miniture scale model, real presentation,

or various amounts of the model and real situation).

Level of reality appeared to have little effect on

problem-solving performances. These investigators were

not concerned with ordering problems, but rather  
explored the effects of administering the same problem

under different conditions. Style of problem presenta-

tion, therefore, does not bear directly upon the

question of problem classification.

0. The effects of manipulating the elements of a

 

problem. Katz (in Duncan, 1959) found that increasing

the degree of disorder in which digits were presented

increased the errors made in computing sums. Benedetti

(1956) searched for those aspects of Luchins water jar

problems which might be contributing to rigidity; he

added one, two, or three jars to the original problems

with noticeable effect. The increased freedom of

choice seemed to destroy much of the rigidity noted

with the series of problems. Judson and Cofer (1956)

presented a group of four words to subjects who were

to choose the word that was out of place; each con-

tained two ambiguous words and two unambiguous words.

The subjects tended to choose on the basis of the

first appearing unambiguous word. Dominance of the

first occurring ambiguous word was increased by

increasing the number of ambiguous words between the





 

two unambiguous words.

Battig (1957), using a task that met Ray's

criteria, had his subjects play a word game in which

they were to guess a word, given only the number of

letters it contained. A significant difference in

variability of performance between words was found,

much of which seemed attributable to the specific

letters contained in the words. There was limited

evidence that word length and frequency of usage were

important variables.

Admittedly, the studies dealing with the effects

of varying the elements of a problem were not concerned

with ordering problems and introducing a method for

measuring this order. Various manipulations of the

number of pieces, number of alternatives, etc., are not

represented in this investigation. But this last group

of studies does illustrate the importance of a particu-

lar problem and the behavioral effects of slight varia-

tions in the problem. Presumably the addition of

problem elements would increase a problem's complexity

or heterogeneity. The necessity of a solver's choosing

from among the added elements would add another stage

to the problem-solving process. Duncan has said, "In

contrast to the experiments on methods of problem

presentation, studies of variation among problem ele-

ments consistently reported at least some significant

 

 

 



 

  

  
 



 

 

8.

effects, occasionally powerful effects, on problem

solving performance. Thus, performance on a problem

may or may not be influenced by contextual variables,

such as methods of presentation that do not change

relationships among elements of a problem. But

changes of a problem's internal structure usually

influence performance, even in cases where the problem

remains, in some physical sense, the same." (1959,p.h10)

Duncan's recent review of human problem solving includes

an important summary of studies of tangental interest

to the issue of problem classification.

PROBLEMS AND GROUP SOLVING

It is no surprise that in studies employing some

kind of task the particular task seems to make a great

deal of difference in group behavior. In this

"...generalizationsconnection, Lorge gt 3;. have said,

about problem solving and about group superiority seem

to depend upon the nature of the tasks" (1958, p. 356).

The same authors generally criticize the research on

group versus individual problem solving on the grounds

that investigators have paid insufficient attention to

the particular task; the usual tasks are petty, unreal,

etc. But most of all, the diversity of the tasks used

by different investigators has been so great that it is

difficult to draw conclusions about the superiority of

 

 

 





 

 

groups over individuals.

An ordering of tasks within a problem class would

seem to be a first step in studying task-inspired

influences on group-individual differences. The present

study explores an approach to the ordering of problems,

the number of steps or stages to arrive at a solution.

In a recent theoretical study, Roby and Lanzetta

(1958) have emphasized the importance of the particular

task to group functioning. They suggest that "objective"

task properties be given equal status with "modal" task

properties. An objective property is one for which a

single, definite, value may be specified through

either measurement or control. A modal property

"...reflects 'typical' behavior of individuals or task

variables but is subject to variation due to group

characteristics and their interaction effects with

other task properties" (Roby and Lanzetta, 1958, p. 89).

These authors present a rather complex descriptive

paradigm of the interaction of "group-task systems."

Although, they do not present a true classification

scheme for problems, Roby and Lanzetta point out that

a severe limitation on such a design has been the

general neglect of task parameters in small group

research.

The classification and prediction models, to be

presented subsequently, take cognizance of Roby and
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Lanzetta's recommendations. The Classification Model

represents an attempt to deal with at least one kind

of task parameter (stages to solution). The prediction

models relate group pr0perties with task properties

while focusing on the product of group interaction--

problem solution.

GROUPS VERSUS INDIVIDUALS

Formal models of small group behavior appear to

have been very slow in developing. Hays and Bush (l95h)

have expressed surprise that so few mathematical models

have been constructed for use with group interaction,

inasmuchas the utility of such an approach has been

demonstrated in learning theory, etc. These authors

speculated that it is the great complexity of social  
interaction which has hampered the development of

mathematical models. They also pointed out that in the

early stages of model construction the particular task

is crucial. Many suitable tasks could be appropriated

from experimental psychology. These should be (a) tasks  
in which the number of behavior possibilities is limited

(important for model building) and (b) tasks whose

behavior-producing capacity is well known for individual

_
_

_
_

_
_
_
.
-
_

subjects.

Among the models which have recently been suggested

are those of Hays and Bush (195%), and Large and

_
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Solomon (1955).

The work of Hays and Bush draws directly upon that

of Bush and Mosteller (1953). Two models for group

action are proposed and an experimental test of the

predictions, using three-man groups and a two—choice,

probability-type learning task. The "Group-Actor Model"

assumes that the group acts as if its guesses are those

of an individual, i.e., individuals and groups were

taken to be entirely interchangeable actors in this

situation. The "Voting Model" assumes that no basic

change occurred between the individual guessing alone

and the guessing that takes place in a group, i.e.,

three men behave as if they were independent voters.

Neither model was rejected when compared with group

data. In fact, the observed group results fell between

the predictions of the two models and the authors

interpreted the models as establishing limits for the

behavior of such groups.

The authors lamented that they did not collect

individual data which would have allowed clearer inter-

pretation. Unfortunate, too, is the fact that the

Hays-Bush models appear to be restricted rather

definitely to the two-choice learning task they employed.

Nevertheless, their work demonstrates the feasibility of

such an approach and the possibility of making use of

existing models from other fields in the study of small

 

 

 





 

 

12.

groups. Their results forced them to shift the focus

of attention from the adaptive to the integrative

aspects of interaction--something not anticipated until

they began to speculate about the requirements of a

more suitable model.

Lorge and Solomon (1955) reinterpreted Shaw's 1932

results with a group problem solving model which utilizes

results obtained with individual solvers. The Lorge-

Solomon model predicts the solution probability of an

r-man group to be the probability of one or more solu-

tions by the r individuals working alone. Thus the

model relies upon a simple pooling effect, and inter-

action is assumed to have no effect on the probability

that a group will solve a problem. These authors

proposed their model as an alternative interpretation

of the results obtained by Shaw (1932).

Generally speaking, groups are considered to be

superior to individuals in solving problems. The evi-

dence for such a position is much less than one might

suppose, considering the extent to which the view is

held. The preeminent position of the group in solving

problems is reflected by the following quotation from

Kelley and Thibaut: “...group problem solving involves

individual problem solving, 222 £222 £253. The 'extra'

does not refer to a 'group mind' or a magical 'plus'

which arises out of groups. Rather, it refers to the

 

 
 

 



   

 

 

 

 

  



 

  

13.

simple fact that the thinking done by a group member

occurs in a different context from that done by the

‘isolated' thinker. Because it occurs in communica-

tion and interaction with other persons, the products

of the group member's thought may be unpredictable

from the observation of solutions obtained in isola-

tion" (195b, p. 738).

Watson (1928) conducted one of the early studies

to compare groups and individuals working at the same

problem. Individuals and groups of three to ten mem-

bers were to produce small words from long ones. The

average number of words produced by the group was

considerably higher than that produced by the best indi-

vidual. Watson then examined his groups more closely;

he added together all of the different words of indivi-

dual subjects and compared the results with their

subsequent behavior in a group. The real groups were

found to be clearly inferior to the "summated" groups.

These results suggested that real groups did not take

into account the resources of all members.

The most frequently cited study in the area of

group problem solving is that of Shaw (1932). In the

first half of the experiment, individuals and groups

of four worked on three similar eureka problems. In

the second half, subjects were given three rather

different problems-~unscrambling words to form the
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last sentence of a prose passage, unscrambling words to

create the last lines of a sonnet, and discovering the

shortest route for two school buses, given certain

conditions.

Shaw interpreted her results as indicating a clear

superiority in favor of groups, and accounted for this

on the grounds that groups tended to reject incorrect

solutions by members and to guard against errors.

HoweVer, Shaw grouped all of the problems together when

comparing the proportion of correct solutions among

groups with that among individuals. Lorge and his co-

workers have closely scrutinized the Shaw experiment.

"For the first period, on the so-called Eureka problems,

three of the 21 individuals and three of the five groups

solved the first problem; no individual and three groups

solved the second problem; and two individuals and two

groups solved the third problem. No individual solved

more than one problem, but just three groups made the

eight group solutions. Two groups and 16 individuals

never solved any of the three puzzles. For the

second period problems, three of 17 individuals and

four of the five groups solved the first problem

completely; a fifth group and seven other individuals

made just one error. No individual and no group

solved the other two problems. Group superiority

rests only on the eight solutions by groups in contrast
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with the five by individuals. In general, interpreters

of the Shaw experiment have disregarded not only the

similarity among the three problems but also the fact

that the solutions were based on the sum overall prob-

lems rather than on the number of identical solutions

by groups. For instance, when only the solutions by

individuals and by groups for the first problem are

compared, there is no statistically significant

difference. Shaw neither discussed the fact that two

of the groups never solve any of the three puzzles, nor

the relative efficiency of three solutions among 21

individuals versus three solutions for five groups of

four members each, i.e., 20 individuals altogether"

(1958, p. 355).

Marquart (1955) advanced criticisms similar to

those of Lorge. Essentially replicating the Shaw

experiment, Marquart obtained comparable results with

groups and individuals. She analyzed her data so as

to take account of the effect of grouping individuals,

and she then discovered the group-individual discre-

pancy to be negligible. In fact, individuals had a

slight advantage over groups. (Note the similarity

between Marquart's results and the earlier findings

of Watson (1928).

Thorndike (1938) obtained the usual group

superiority in comparing individuals with groups on
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four verbal problems. The problems were presented so

that some subjects could make only a limited number of

reSponses to them; other subjects were allowed an un-

limited number of reSponses. Thorndike hypothesized

that as the range of responses increased the superi—

ority of groups over individuals would increase. In

general, the results tended to confirm his hypothesis.

Unfortunately, Thorndike made no analysis that would

throw light on the question of group superiority

based only on the pooling of individual solutions.

Husband (19u0) found pairs superior to individuals

in solving word puzzles and arithmetic problems.

However, groups needed to solve the problems in one-

half the time required by individuals in order to

"justify" themselves. When the data were analyzed in

terms of how efficiently groups and individuals used

their time, he concluded that the time saved by the

pairs was never more than a third.

Taylor and Faust (1952) compared group and indi-

vidual performance on a game of Twenty Questions which

resembled a eureka problem. The proportion of solu-

tions favored groups over individuals. However, in

terms of man-hours required for a solution, individuals

were superior.

Faust (1959) reported two group-individual experi-

ments, identical except for a slightly different
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composition of subjects. In both experiments he found

that four—man groups averaged more problems solved,

both verbal and spatial, than did individuals. When

these observed groups were compared with "nominal"

groups, generated from the mathmatical model of Lorge

and Solomon (1955), a significant difference was found

on only one of the problems used with the second experi-

ment. In this case the real group was superior to the

"nominal" group: Thus, the results of Faust's well-

executed study are generally in line with previous

experimental evidence.

Faust pointed out that the Lorge-Solomon Model A

provides a much-needed baseline against which to compare

the effects of social interaction in real groups. (The

same proposition is advanced later in the present

study).

The preceding discussion suggests that more groups

are likely to solve a problem than individuals. That

the interpretation is not as simple as it first appears

is indicated by the fact that the group superiority

disappears when individuals are artificially pooled in

a manner approximating the group aggregation. On some

efficiency measures, time for example, the individuals

turned out to be superior when pooled in this way.

Watson (1928) even suggested that group interaction,

instead of providing an extra boost, resulted in
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restraint.

A recent review by Large 33 21. (1958) provides a

convenient summary of group-individual experiments. One

should consult this review for studies not limited to

Ed £22 groups and eureka problems.

The above studies suggest that small, problem-

solving groups have not received the attention they

deserve in regard to formal models or the precise

organization of group—individual solving data. The

recommendation by Hays and Bush that existing models

from other fields may be modified for use with small

groups seems quite appropriate, considering the impor-

tance of the work of Bush and Mosteller (1955) to the

developments in the next chapter.

SUMMARY

The study of group problem solving requires (a)

an apt and relevant description of the problems used

and how they are solved, (b) a systematic way of repre-

senting both the pooling of individual work and social

interaction in group work, and (c) a sufficient volume

of data to permit an exact comparison between groups

(and individuals. A review of previous work indicates

that (a) There is no suitable framework for describing

problems. (b) The pooling of individual accomplishments

is clarified by the Large-Solomon model, which however
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does not deal with social interaction. Some possibi-

lities of social interaction are bracketed but not

specified by the work of Hays and Bush on group learning.

(0) Experimental comparisons of group and individual

problem-solving are neither numerous nor, in the main,

done on a sufficiently large scale to give a clear indi—

cation of whether, and to what degree, groups can out-

perform individuals.

 

  



 

 

  
 



 

 

CHAPTER II

THEORY

The problem solving process, which begins with the

presentation of the problem, is terminated when the sub-

ject arrives at a correct solution, when he arrives at

an incorrect solution he believes correct, or when the

experimenter arbitarily ends the experimental session.

Although the proportion of correct solutions is a

standard means of describing experimental results in the

area of problem solving, the inefficiency of such an

approach is revealed by the question: What proportion

of correct solutions occurs after what time interval?

The choice of different time intervals (two seconds,

three minutes, 12 hours, etc.) can yield different

proportions. A distribution of solution times over

 

s0me interval is more desirable. Consequently, enough

time should be allowed so that the subjects themselves

terminate the process. These more nearly complete

data are advantageous for: (a) classifying problems,

and (b) constructing a model for prediction of group

problem solving.

In this chapter attention is focused on the

distribution of the times when the problem solving

process terminates, and the correctness of answers,

When subjects work individually and when they work in

20.
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small 29 Egg groups. When groups of subjects work to-

gether on the problem it is also possible to observe

their statements, questions, etc., and to study the

social structure which emerges during the problem

solving process.

The central issue is the prediction of group per-

formance from individual performance. It does not seem

feasible to attempt to predict the performance of each

individual or group separately, because one can collect

only a small amount of information about each subject

aside from his actual problem solving performance.

Hence the problem may be approached through a stochastic

model which attempts to account for the distribution of

observations gathered. In this way the complete data,

including mean, variance, and shape of the obtained

distribution, can be brought to bear on the theoretical

issues.

CLASSIFICATION:

A MODEL FOR THE DISTRIBUTION OF SOLUTION TIMES

Under standard conditions a particular problem

should consistently yield a characteristic distribution

of solution times for samples of subjects drawn from

the same parent population. The following discussion

derives a theoretical distribution, using the approach

of Bush and Mosteller (1955, Chap. 1h). Consider first
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that time is divided into short, equal intervals of

duration h. In any interval the subject may either

solve the problem or not. Imagine that there exists a

probability p that the problem is solved in the N-th

interval, given that it has not been solved previously.

The probability p is taken to be constant over intervals

and each interval represents an independent event.

The probability that the problem is solved in the

first interval is p. The probability that the problem

is first solved in interval 2 is (1-p)p, which is the

joint probability that it is not solved in the first

interval and is solved in the second. The probability

that the problem is solved in the N-th interval is

(1-p)N-1p, the probability that it is not solved in any

of the first N-l intervals and then is solved in the

N-th interval. Since each interval is of length h the

solution time T, when the problem is solved in the N-th

time interval, is

(1) T a Nh

Let the probability of solution at time T be called

P(T). In this simple one-stage process,

(2) HT) = p<1~p>N‘1

which is the geometric distribution. This is a posi-

tively skewed distribution with mean 1/p and variance

(l-p)/p2-

The problem solving processes dealt with here may
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be expected to approximate the situation given above,

except that solution of the problem may require the

completion of more than one stage. Now consider that

there are k stages to be accomplished, and that solu-

tion of the problem is recorded when all k stages have

been completed. Assume further that each of the k

stages has probability p of being completed in a given

time interval of duration h, and assume that h is

chosen so small that two stages are never completed in

the same interval.

The probability that the k-th stage is Completed

at trial N is given by the negative binomial (Pascal)

distribution,

N-l k N

(3) P(N) = k-l p (1-P)

  

An intuitive justification of this formula is given by

Bush and Mosteller, and its derivation is also discussed

by Feller (1957, pp. 155-157). (Note that (3) reduces

to (2) when k = 1). It can be shown that the expected

number of intervals, E(N) is

()4) E(N) = k/p

and, since each interval is of duration h, the expected

time to solution is

(5) E(T) = h.E(N) a hk/p .

Furthermore, the variance of the negative binomial

distribution is

<6) o’zm) . ku-pvpz .
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The variance of the time scores is obtained by multi-

plying the variance of N by hz, which gives

(7) C72(T) = h2k<1-p)/p2

Other statistical prOperties of the Pascal distribution

are discussed in standard sources on probability theory

and mathematical statistics (Fisher, 1950; Feller, 1957).

The above model is not quite satisfactory because,

in the problem solving process, time is measured as a

continuous variable rather than as a succession of

finite intervals. The above argument is applied to

continuous time by letting the duration of an interval,

h, approach zero as a limit while keeping the "rate,"

or probability per unit time p/h, constant. Let the

first interval be designated 0, the second 1, etc.;  since T 2 Nb, the geometric distribution of (2) becomes

(8) P(T) = (1-p)Np = (1—p)T(hp .

Let p/h = Abe a constant so that p = Ah and

(9) P(T) = (1—Ah)T/hlh

If one takes the limit of p(T) as hs-) 0, the term Ilh

goes to 0 and, consequently P(T) approaches 0. There-  
fore let

(10) f(T; A) .. lim (1-lh T/h )Lh

h--> _E‘o ' "‘ " " '

= K11“; (1.. AMT/h

h--) o

. A T/h - AT
and it can be shown that (1- h) approaches e 0

Hence,

(11) f(T; A) = Ae- AT .

_
.
.
.
_
.
-
_
_
_
.
_
.
.
—
—
—
—
—

 

 



 

 

 

 

 



 

25.

If each individual stage has the distribution

 

f(T3 A.) = .Ae- T, the distribution of solution times

to complete k stages in the gamma distributionA

- T k-l

(12) gm A. k) . A e (AT) .

(k-l)

The gamma distribution g(T; A., k) may be readily

obtained from f(T; A.) by the use of moment generating

functions, but such a development is beyond the scope

of this thesis.

From formula (12),

(13) E(T) = k/A

and

(11.) (72(1“) = k/ A2 .

Figure 2.1 shows the graph of gamma distributions

with k = 2 and k = U. As k increases the graph of the

function becomes more nearly symmetrical.

The parameter k depends on the structure of the

problem and how it is solved by the subjects; k must

be estimated from the data.

An estimate of k can easily be obtained using

only the first two moments of the distribution. Recall

that equations (13)

(1b) gave the mean and variance as

E(T) = kM

g2(T) . k/ A2
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Therefore,

(15) hm] 2 = 1:2 AZ - 1.

O'2(T) k //12

Replacing the population expectation and variance by

estimates from the data, T and 5T2 respectively, one

has

A _ 2
(16) k . (T) .

PREDICTION or GROUP FROM INDIVIDUAL PERFORMANCE:

LORGE AND SOLOMON MODEL

Lorge and Solomon (1955) have suggested a non-

interactional ability model, which however does not

take into account the distribution of solutions over

some experimental time interval. Their model provides

the main example of an approach to the prediction

problem. Lorge and Solomon submit the hypothesis that

group superiority on eureka problems is not due to

social interaction, but simply to the abilities of the

members. "Such an hypothesis may be expressed in terms

of two ability models: (A) group superiority is a

function only of the ability of one or more of its

members to solve the problem without taking account of

the interpersonal rejection and acceptance of sugges-

tions among its members; (B) group superiority is a

function only of the pooled abilities of
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its members. The latter model, B, implies that any

problem may be composed of, and solved in, two or more

stages. Model B reduces to Model A for one-stage

problems." (1955, p. 140)

 Consider first the Lorge and Solomon Model A.

PG = probability that a group of size r solves

the problem;

PI a probability that an individual solves the

problem.

Now l-PI is the probability that an individual will not i H

solve the problem, and the probability that none of a

group of r persons will solve is (l-PI)r . Consequent-

ly the probability that a group of size r will solve  
the problem is

 
r l(17) PG = l-(l-PI) . 1,

Equivalently

l/r ;

(18) PI = 1-(l-PG) .

Model B: Recall that a problem may be solved in two

or more independent stages. Equations (17) and (18)

may then be generalized to the k-stage case. Let P .

  
Ia

be the probability that an individual will solve

stage j. H

k r] k

(19) PG = TI [l-(l-PIj) , PI .‘TI' Fla 1

jul i=1

i
I
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where Model A applies at each stage j. If PIj = P is

assumed to be the same for all stages,

(20) PG = [1-(1-P11/k)r] k

(The argument may be extended to the case where

PIj is not constant from stage to stage).

The Large-Solomon model does not take into account

the distribution of solution times, and the results may

depend upon the time given the subjects.

PREDICTION: COMBINATION OF CONTRIBUTIONS MODEL

The Lorge-Solomon approach may permit prediction

of the proportion of groups which solve a problem, but,

as just indicated, such a preportion depends upon the

time given the solvers. A satisfactory resolution of

the theoretical problem involves predicting the distri-

bution of group solution times from the distribution of

individual solution times.

The problem will first be taken up for the idealized

case in which all individual subjects and all groups

solve the problem. It is necessary later to consider

the consequences of having nonsolvers in the experiment,

but this discussion will be postponed until later.

To evaluate the possibility of group facilitation

or interference, one must first decide the performance

which would result if the members of the group proceed

without any important effect on one another's success.
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In analyzing this situation it is most convenient

to proceed at once to the model of continuous time.

Recall that in the case of individual solvers the

probability of solution per unit time was A.. If one

has a group of r independent SOIVers contributing to

the group, then the probability per unit time is r). .

This approach can be used, despite its great simplicity,

because it is assumed in going to continuous time that

the time interval h is very small. As h approaches

zero the probability that two different subjects will

both make a contribution at the same time becomes

negligible. Hence, there exist none of the diffi-

culties, discussed by Lorge and Solomon, of taking

account of the possibility that a group may contain  
more than one Solver. Since the concern here is with

solution times, even if a group has more than one

 solver, one may neglect the infintesimal possibility  
that both solve at exactly the same time. Supposing,

in the same Spirit as the Large-Solomon model, that the

group solves the problem immediately after the first

subject solves, groups will differ from individuals

only in the probability-per-unit-time parameter, which

in groups is rzi .

The above argument obviously applies to the one-

stage problem. However, it should be clear that it

applies equally well to the k-stage problem, for the ‘
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number of subjects in the group can in no way change

the number of stages in the problem. The prediction

of group performance from individual performance, in

this idealized case, is very simple. Let the gamma

distribution for probability-per-unit-time of a) and k

stages be called g(T;,\ , k).

Hypothesis: If performance of individual solvers

is described by g(T¥,l, k), then performance of groups

of r solvers will be described by g(T; rA, k).

As was mentioned at the beginning of this chapter,

subjects can arrive at wrong answers. In the case of

individuals working alone one can make quite adequate

estimates of the prOportion of subjects who will not

arrive at the correct answer. When there is, say, one

such person in a group of four, the group will very

probably arrive at the correct answer. In fact, the

nature of the experimental problems being what they

are, it is unlikely that a whole group of size four will

arrive at a wrong answer. However, it seems evident,

that a group member, who alone would arrive at a wrong

answer (or fail to arrive at an answer at all), is not

likely to aid his group in arriving at the correct

answer.

One may formulate two hypotheses about the effects

of these wrong answers and no answers, and these two

hypotheses have different implications for the
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distribution of success of groups. One asked of the

data will be which of these two hypotheses is the more

reasonable.

The first hypothesis is that non-solvers are non-

functional in their groups. If so, a group with two

solvers and two non-solvers will solve the problem

just as rapidly as a group of two solvers alone. This

would happen if solvers suppress non—solvers, forming

an intellectual "hierarchy." The second hypothesis,

which seems to square better with informal observation,

is that the non-solvers consume some share of the

groups working time, though they do not contribute to

solution. This would reflect an equalitarian group

structure. In this case, a group with two solvers and

two non-solvers should take longer than a group made

up solely of two solvers. If it is assumed that non-

solvers consume their share of the group's time, the

following proposition is suggested. Let A be the

number of solvers and B be the number of non-solvers in

a group, where A + B a r is the number of persons in the

group. The probability of solution-per-unit-time for

each of the A solvers will be [A/ (A + B)]A . Thus, if

there are A solvers in the group and l}/ (A + B“ A_is

the rate at which each contributes, the group rate is

A ~ [A/ (A + B)1)\ = [A2/ (A + 3)]A .

In other words, if the distribution of solution
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times of individual solvers is described by g(T;A.s k),

then the two hypotheses are:

prothesis l, Hierarchical Model: Non-solvers have

no effect, and the group's distribution of solution

times will be described by g(T; A,K , k);

Hypothesis 3, Equalitarian Model: Non-solvers

consume time, and the group‘s distribution of solution

times will be described by g(T; [Az/ (A + B)] A . k)-

Except by extremely detailed and accurate protocols

of group discussion, solvers are indistinguishable from

non-solvers within a group. However, suppose that pro-

portion 2 of the individuals solve the problem correctly,

and the remainder, arrive at a false conclusion or no

answer and are non-solvers. Since the groups are

formed randomly, the probability that a group will have

exactly A solvers and r-A - B non-solvers is given by

the binomial distribution,

(21) P (A) AZ) aA (1-a)r'A .

The performance of a collection of groups can now

be predicted. Hypothesis 1, that non-solvers have no

effects, gives the proposition:

The distribution of solution times of a collection

of groups will be described by (Hierarchical Model)

r

(22) me =2 [P (A) gm AA, k)] .

A-O

Similarly, Hypothesis 2, that non-solvers consume

time, leads to the proposition:

  



 

 

 



 

 

The distribution of solution times for a collection

of groups will be described by (Equalitarian Model)

(23) wEm a if [p (A) g(T; [AZ/(A + B)]/\ ,1.) .

A=0

sThese last two distributions do not have any very

simple explicit forms. However, all the parameters

(a, A., and k) can be estimated from the performance of

individuals (by the method of moments). Then it is

possible to compute the above distributions simply by

taking the gamma distributions from a table (Pearson,

1922) for various values of k and T, and computing the

weighted average, following the above equations through.

With groups of size r = u, this process is not overly

laborious. The predicted distributions can be compared

with the obtained results.

If, as in the present study, the fitted gamma

distribution is very close to the obtained distribution

of individual solution times, the predictions can be

made directly from the distribution of solution times

obtained from the individual solvers without going

through the fitted gamma distribution.

A final note on the use of estimates in making

predictions is in order. Some practical problems are

associated with the use of k rather than the parameter

itself. The sampling distributions of these estimates

are not known and it is not possible to set up confidence

 

 



    



 

intervals in the customary fashion. Large samples

(such as those used in the study to be reported in

Chapter IV) will be of some assistance with this prob-

lem. If predictions are made from Q instead of k, but

the predictions are treated as fixed values, one fails

to take account of the sampling variations of the pre-

dictions. Hence, any regular statistical test is overly

stringent.

SUMMARY

The distribution of group solution times is pre-

dicted from ).(individual solver rate of solution),

k (stage-structure of the problem), and the distribution

of A (the manner in which groups are formed). The

parameters k and ).are estimated from the first two

moments of the sample of individual solvers. The

proportion of all individuals who solved a problem, 3,

can be used with the binomial formula to give P (A).

The intuitively more difficult problem of predicting

the distribution of group solution-times actually turns

out to be easier than the problem of predicting the

probability of group solution. Conceptually, this

represents an improvement over the Large-Solomon

formulation.

 

 

 



 

 

 

 

 



 

 

 

CHAPTER III

EXPERIMENTAL PROCEDURE

The quantitative models stated in Chapter II were

submitted to experimental test. A large number of

college students were given several Eureka problems to

solve, and their times to completion and correctness of

solution were observed. These data are the basis for

evaluating the gamma-distribution hypothesis, and serve

as the source of estimates of .X, k, and a. A number of

gg Egg groups of four students each were also given the

same problems under similar conditions except that the

members of group cooperated in solving the problems.

Comparison of group with individual performance were

used to choose between the Hierarchical and Equalitarian

models. Data on communication and social structure

within the working groups were also collected.

SUBJECTS

The subjects were 267 volunteers from an introduc-

tory psychology course. The sign-up sheets had spaces

for four subjects at each experimental session. When

four subjects signed up and appeared on time, they were

tested as a group. Whenever a group could not be formed,

as when only two or three subjects signed up, a subject

failed to appear, or some other accident occurred, the

36.
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subjects present were tested as individuals. This method

of assignment to the Group and Individual Conditions

was not random,

who appeared on

on the behavior

sign up, or who

likely that the

but the assignment of any particular S

time at the laboratory depended solely

of other students who did or did not

did or did not report on time. It is

Group and Individual Conditions were

composed of comparable samples of the population. This

recruiting method was used to maximize the number of

four-person groups obtained with the least waste of

subjects. Subjects at any one experimental session,

group or individuals, were of the same sex. There were

twelve groups of men and ten groups of women. There

were 98 men and 81 women tested as individuals.

APPARATUS AND MATERIALS

The room in which the experiment was conducted was

a ho ft. x 22 ft. seminar—type classroom. For the

experiment, two tables were removed from their usual

semi-circular arrangement and placed to one side. Four

straight-backed chairs were placed around one of them;

the other table, behind which E was seated during

experimental sessions, was located six to eight feet

away. At the experimenter's table was a large faced

clock (from which elapsed time could easily be obtained),

four cumulative frequency counters, and an electric

 

 



 

 

 



 

 

 

38o

timer which emitted a soft click every six seconds.

During a group session, the four 85 were seated

around the table and a carboard plaque, bearing the

identifying letter A, B, C, or D, was placed in front

of each. Individual sessions were conducted with 55

seated at the group table and/or other tables located

about six feet away, depending on the number of indi-

vidual 55 available for any one session.

The four eureka-type problems used were labeled

"Sample," 3, 5, and 8. The magnitude of the numbers

was meaningless and.served only to bolster problem

security; if 85 perceived the problems on which they

labored as only three of a larger series, they would

possibly be less inclined to relate them to naive class-

mates. Each problem was mimeographed on a separate

sheet of paper.

The first or sample puzzle, used for practice, was

developed for this study in colaboration with

Dr. F. Restle, although it has no doubt appeared else-

where.

SAMPLE

A drunk is walking down the sidewalk; his condition is

such that he is unable to proceed without stumbling and

staggering. He decides that he wants to cross to the

other side of the street. Unfortunately, he is so

inebriated that he staggers back and forth, from one

side of the street to the other--wasting a great deal

of effort. Finally, he is able to stay on the side of
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the street he had been aiming for. He continues his

journey on that side of the street.

Among the following, which is the best guess as to the

number of times he crossed the street in either direction?

1. h h.8

2. 5 506

3. 2

Puzzle #3 (hereafter referred to as the "Rope

Problem") was taken from Dudeney (1958) and subse-

quently modified.

3.

My dungeon did not lie beneath the moat, but was in one

of the most high parts of the castle. So stout was the

door, and so well looked and secured withal, that escape

that way was not to be found. By hard work I did remove

one of the bars from the narrow window, and was able to

crush my body through the opening; but the distance to

the courtyard below was so exceedingly great that it was

certain death to drop thereto. I did find in the corner

of the cell a rOpe that had been left there and lay hid

in the darkness. But this rope had not length enough,

and to drop in safety from the end was nowise possible.

So I made haste to divide the rope in half and to tie

the two parts thereof together again. It was then full

long and did reach the ground, and I went down in safety.

How could this have been? (Answer: Divide the rope

lengthwise and tie the ends of the unraveled rope

together).

Puzzle #5 (hereafter referred to as the Double

Problem) was adapted frOm one given by Kaufman (l95b).

5.

Here is a simple question. It happens to be couched in

complex phraseology, but that shouldn't disturb you if

you can find a way to reduce it to the fundamentals. It

can be done by rephrasing the question in such simple

terms that the answer is immediately apparent.
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Now go ahead:

"If the puzzle you solved before you solved this one,

was harder than the puzzle you solved after you solved

the puzzle you solved before you solved this one, was

the puzzle you solved before you solved this one hard .

than this one?" (Answer: Yes; problem says it was 3

harder in the beginning and the central portion is a

self-defeating qualification).

Answer

Yes No Why?

Puzzle #8 (hereafter called the Dust Problem) was

constructed by the writer, using the familiar Luchins

water jar problem as a guide.

8.

As a prOSpector you have been very successful. You

have a container that holds exactly 163 ounces of gold

dust. You must discharge a debt by paying exactly 77

ounces of gold fudy (no more, no less) to a friend.

You have containers that hold exactly lh ounces, 25

ounces, and 11 ounces. How would you remove the exact

amount from the safe, using only these four containers?

You must use all four containers. (Answer: Subtract

the following from the 163 ounces container:

2(25) + 1% + 2(11) = 86 or 25 + 2(1b) + 3(11) = 86).  The above problems were developed on the basis of

a pilot study. This preliminary investigation suggested

problems which seemed (a) to yield a high probability

of solution within 12 minutes and (b) to represent,

intuitively, differing numbers of stages. The number

of stages to solution of a eureka problem may be

likened, in the ideal case, to the number of moves to

solution of a chess problem. The chess player may or
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may not make an appropriate or an inappropriate move

in any one interval of time. Obviously a eureka prob-

lem is less specifiable than a chess problem and hence

less readily analyzed into sub-strategies or stages.

In fact, it is a goal of this investigation to provide

a framework within which the eureka problem may be

analyzed into moves or stages.

Consider, intuitively, the Rope Problem. Once a

subject hits upon the idea that the rope may be divided

lengthwise, escape from the dungeon is possible. On

this basis the Rope Problem would consist of one stage;

only one strategy is involved. In the Double Problem,

on the other hand, the subject must note that the prob-

lem states the previous puzzle was harder; then he must

realize that the subsequent verbiage refers only to the

present puzzle which is less difficult. The answer is

self-evident with the completion of these two or three

stages. The Gold Dust Problem requires perhaps three

or four stages to completion. The subject must realize

that he is to subtract each container in turn, leaving

the original with the correct amount of gold dust. The

second stage is reached when the subject decides the

number of times the 25 oz. container is to be sub-

tracted. Stages three and four would be the number of

times the 1b oz. and 11 oz. containers, resPectively,

are filled and emptied.
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Note that these stage-estimates are intuitive.

Future investigation may show, for example, that the

Rope Problem requires two stages: one for the length-

wise unraveling of the rape and another for the joining

of the ends together. Or it may even be discovered that

reading and comprehending the nature of the problem

requires one or more stages. Whatever future research

reveals the nature of these stages to be, the present

investigation is concerned only with empirically esti-

mating their number for a particular problem.

The questionnaire used to evaluate group choice

structure arising from collective effort is given

below:

QUESTIONNAIRE

 

Your Letter

 

Age

 

'Sex

Your answers to the following questions will be kept in

the strictest confidence.

Consider each question carefully before you answer. Your

reSponse should refer only 32 the immediately preceding

 



   

 

 

 



 

I43.

problem! Problems differ a great deal.

1. In a few weeks, new groups may be assembled for work
on similar problems; participants would be paid and con-
siderable prize money would be awarded to the best-per-
forming group. Which members of this group would you
like to have with you, if you were to decide to partici-
pate in such a contest? Consider performance on the
immediately preceding problem only. Indicate your-choice
(s) by a check mark(s) before the appropriate letter.
You may decide to check none, one, two, or three of the
other members of the group.

 

Think carefully.

Person A

 

Person B
-————

Person 0

 

Person D

 

a. As a separate issue, rank the other members of this

group-~one through four on the basis of how much you

feel that they contributed toward the solution of the

immediatelz preceding problem. In your ranking, include

individual X (a fictitious person) whom you know to be

an "average solver" of problems like the one you have

just considered. Rank 1 would be the person contrlbu-

ting the most; rank 2 the next greatest contributor, etc.

Person A

Person B

Person C

Person D

Person X (An average solver

of such a problem)

PROCEDURE

In both the Group and Individual Conditions the Sample

Problem was given first, with a time limit of five

minutes. The experimenter answered any questions and
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then proceeded to the first of the three test problems;

twelve minutes were allowed for each of these problems.

For any experimental session, the order of presentation

of the three problems was randomized. After E had dis—

tributed a copy of the problem to every S in the room,

he retired to the table where the timing apparatus was

located and gave the signal to commence work. The

experimenter then recorded his observations.

1. Group Condition.

Only one four-person group was tested at an experimental

session. When the 55 had been seated around the square

table, E placed the cardboard plaque, bearing the

identifying letter, in front of each. The experimenter

then gave the following verbal instructions to the

group:

"I would like to thank you for coming here this after-

noon (evening). In a few moments I will give you a kind

of word puzzle or word problem on which you are to work

as a group. Talk freely among yourselves and try to

'think out loud' as much as possible."

"Try to work as rapidly as you can and still do the best

work possible. It is very important, if this experiment

is to be successful at all, that I have an accurate

record of how long it took you, as a group, to solve
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the problem. Please do not arrive at an answer you feel

is correct and then wait until the alloted time has

elapsed before you write down the group's answer.

"When you, as a group, have decided on a solution, one

of you (anyone will do) should write it down immediately

and then jot down the time remaining as given by this

clock. You read the clock this way ...

"You will have three problems in all. A maximum of 12

minutes will be alloted for each problem. I will tell

you when to begin and when to stap, if that is necessary.

Are there any questions-~I will not be able to answer

questions after we begin."

After collecting the practice problem, the E answered

any further questions and corrected the procedures if

necessary. The E continued with the following:  
"Here is a copy of one of the 'real' problems: you

must stop and start when I signal: Begin."

Following each problem, E advised the group, "Here is a

very short questionnaire, pertaining to the problem you

have just finished; you will have three minutes in which

to complete it. I know that you may be reluctant to

answer at first, but I would like to have your honest

opinion anyway."
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E closed the session as follows: "I would like to

thank you for your time and cooperation. It is very

important to the success of this study that you do not

reveal to others the nature of these problems: some of

your classmates may receive some of the same problems

when they serve as subjects later on. In fact, the

best-performing group will win a prize of $8.00--about

$2.00 per individual."

The exPerimenter emphasized certain aSpects of the

proceedings with informal asides. For example, it was

stressed that the questionnaire referred only to the

immediately preceding problem, and just before handing

out the Double Problem it was casually pointed out that

each problem was complete in itself and referred only

to itself.

One measure of problem-solving activity was the fre-

quency with which each S talked. During the inter-

action, E recorded the frequency with which each

member communicated.to another member or to the group

as a whole. The recording was accomplished by means

of four hand-tally counters-~one for each member of the

group. The clock and timer shielded this activity from

the Ss and none of them gave any indication they were

aware of the fact that they were being observed in this

Way. Every time a member addressed a communication to
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another member or to the group he was counted as having

"talked." Every six seconds, at the soft click of the

timing device, E registered a count on one (or more)

counters depending on which members were talking at

that time. If no one was talking, no entry was made.

This yielded a systematic time-sample of verbal activi-

ty of the Ss sufficient to indicate which one talked

most often and longest, prerequisite to the descrip-

tion of a communication structure. The six-second

interval was chosen as the shortest which could be

recorded with precision by E under the conditions of

observation and the other activities he had to main-

tain. Ideally, the total speech of a S would be re-

corded as a deflection on a kymograph and the area

circumscribed by the base line and deflection would be

taken as the communication measure.   
Another important datum was, who did most to solve the .

problem? Right after completion of the problem, E i

made an intuitive estimate as to the major contributor I

to the solution. Furthermore, any unusual events which

occur during problem-solving may lead to deviations

from the overall theoretical predictions. Consequent-

ly, observations of unusual happenings were recorded-—

e.g., angry exchanges, pre-group friendships, etc.  
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2. Individual Condition

One, two, or three Ss were tested individually at an

experimental session and were seated in the same

general area as that occupied by groups. The experi-

menter gave the following verbal instructions:

"I would like to thank you for coming here this after—

noon (evening). In a few moments I will give you a

kind of word puzzle on which you are to work indivi-

dually. Please do not talk among yourselves now or at

any time during the course of the experiment.

"Try to work as rapidly as you can and still do the

best work possible. It is 3331 important, if this

experiment is to be successful at all, that I have an

accurate record of how long it took you to solve the

problem. Please do not arrive at an answer you feel

is correct and then wait until the alloted time has

elapsed before you write it down.

"When you have decided on a solution, you should write

it down immediately and then jot down the time remain-

ing as given by this clock. You read the clock this

way. 0 0

"You will have three problems in all. A maximum of 12

minutes will be alloted for each problem. I will tell
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you when to begin and when to step, if that is necessary.

Are there any questions--I will not be able to answer

questions after we begin."

After collecting the practice problem, E answered any

further questions and corrected the procedures if

necessary. E continued with the following: "Here is

a copy of one of the lreal' problems; you must stop and

start when I signal...begin."

Following each problem, E advised the individuals,

collectively: "I would like for you to list the names

of three of your acquaintances who, in your opinion,

would do well on the kind of problem you have just

finished. It is preferred that those named be students

at MSU--but that is not necessary; they could be any-

one at all."

The E closed the Session as follows: "I would like to

thank you for your time and cooperation. It is very

important to the success of this study that you do not

reveal to others the nature of these problems; some of

your classmates may receive some of the same problems

when they serve as subjects later on. In fact, the

best-performing individual will win a prize of $2.00.”

Again, E emphasized certain aspects of the proceedings

With informal asides. For example, it was emphasized
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that a particular name-listing applied only to the

immediately preceding problem. And just before handing

out the Double Problem it was pointed out that each

problem was complete in itself and referred only to

itself.

Each S received the same problem. After he had written

down the solution, he recorded the time in minutes and

seconds that had elapsed; the time was obtained from

the large-faced clock.

When it became apparent that all 55 had finished, E

waited a couple of minutes longer, to avoid creating

a sense of urgency in the Ss finishing late, and then

stopped the clock. Following the collection of papers,  
the 55 received a blank sheet of paper and were

requested to name three of their acquaintances, any 2

three at all, they felt might do well on the immediate-  
ly preceding problem. This activity was designed as a E

counterbalance to the questionnaire of the Group Condi-

tion. The same data were collected for each problem.

SUMMARY

Each group and each individual was tested on the

sample problem and three experimental problems, the

eXperimental problems being given in different orders

for different 55.
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Solution time was recorded for each individual on

each problem. In the groups, a count of frequency with

which each member talked, their choices of future

partners in such problem-solving work, observations of

contributions of each, and any unusual events, were also

recorded.

 

 
 



  

 
 



 

 

CHAPTER IV

RESULTS

In direct comparison, group problem solving was

found to be clearly superior to individual problem

solving. As is shown in Table n.1, a higher proportion

of groups than individuals solved each of the three

problems correctly. Although more groups solve the

problems, groups and individuals do not seem to differ

systematically on mean time to a right or wrong answer;

see Table h.2. In fact, standard t-tests applied to

the differences between individual and group mean

times on each problem do not show significant differences.

However, mean solution time does differ from problem

for both groups and individuals.

The distributions of answer-times (right or wrong)

throughout the lZ-minute experimental sessions are

represented by the frequency polygons in Figures b.l

(Individual Condition) and h.2 (Group Condition). To

facilitate graphical representation, subsequent dis-

cussion will deal with cumulative relative frequency

distributions.

The statistical models discussed in the previous

chapter use the idea that stages of problems are

solved at randomly distributed times, so that total

time to solution should have a gamma distribution, and

the parameter k of the distribution should be the

52.
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Table h.1 Individuals Vs. Groups on each experimental

problem, T a 720 seconds.

 

 

 

Individual Group Individual

Condition Condition Vs.

Group**

Prob— No.of No.of Prop.of No.of No.of Prop.of two tail

lems Cases* 501- Solvers Cases 501- Solvers tests)

vers vers

3 178 133 .735 22 21 .955 Z=2.h8 (p 4.013)

5 177 89 .503 22 17 .773 Z-2.7o(p L .007)

8 163 71 .h36 22 17 .773 Z-B.30(pL .oo1)

       
 

*The relative frequency of correct answers for the

Individual condition were based on different numbers of

subjects. Some few subjects were discarded because they

did not comply with the directions, found it necessary

to leave early, etc. There was no evidence to indicate

that any systematic bias affected the results.

** The statistical tests reported in Table h.1

make use of normal curve theory where

P1 ‘ P2

%
[p(l-p) (N1+N2)/N1N2]

and P is the proportion answering correctly among N
1

indiv duals; p2 is the proportion of correct answers

among N2 groups.
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Table h.2 Mean 1 Standard Deviation of Solution Times

in Seconds for Groups and Individuals.

 

 

 

 

 

Outcome froblem Individuals Groups

Correct 5 325.8 1 15h.l 330.0 1 216.2

Solution 8 “14.9 1 166.7 h19.h 1 219.9

Wrong or 3 2h9.1 i 151.5 (Only one case)

No solution 5 276.8 .+_ 169.0 376.0 1 227.7

8 h62.5 1 3h6.2 h86.0 1 217.2

3 208.0 1 127.h 172.3 + 1h2.0

A11

5 301.5 1 163.0 3h0.h i 21h.1

Subjects

8 hhl.8 1 282.6 h3h.5 1 215.0   
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number of stages in the problem.

CLASSIFICATION: THE MODEL FOR THE

DISTRIBUTION OF SOLUTION TIMES

Bach problem was classified by its distribution of

individual solution times. Only the distribution of

solvers was used for this purpose; non-solvers (those

who failed to solve or gave a wrong answer) were

excluded from this analysis, since a person who fails

to solve the problem may have blundered on any one of

the k stages; it is not possible to determine from the

data the stage on which this might have occurred. Con-

sequently, data composed of persons who failed at

different and unknown stages cannot be expected to

provide an estimate of the number of stages in the prob-

lem.

Hypothetically, this distribution of solution

times is a gamma distribution, and k is the number of

stages in the problem. The parameter k was estimated

by the method of moments, equation (16).

A

k = (71")2 ,

2
S

T

An estimate ofll, the rate parameter, was obtained by

the method of moments making use of equations (13 and
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1h),

 

Table 4.3 shows the estimated number of stages and

the estimates of rate of solution of each stage (1,) for

each problem. As might be expected, k1 did not turn out

to be an integer for any one of the three problems.

Theoretically, k should be an integer, but it is not

surprising that the estimates, which are subject to

error, do not happen to be integers.

The obtained estimates of k for the three problems

in order were similar to the intuitive estimates

established from pre-experimental inspection of the

problems. Moreover, the small number of stages esti-

mated is in fair accord with intuition. For example

the estimate of n.47 stages (Table h.3) for the Double

problem is similar to the three stage pre-exPerimental

Speculation.

The sampling distribution of k is unknown under

the estimation method used. To provide a check on

the estimates, the theoretical curve, determined by a

particular k1, was fitted to the observed distribution

of solutions for each problem. The appropriate cumu-

lative relative frequency curves are shown in Figures

2.3, b.h, and h.5. The obtained distributions are

strikingly similar to gamma distributions, as
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hypothesized. The theoretical curves were taken from

tables of the incomplete gamma function (Pearson, 1922).

Transformations of the time scale, etc., necessary for

the use of the tables are discussed in Appendix 1.

Goodness of fit was tested by the Kolmogorov-

Smirnov one—sample test. (See Walker and Lev, 1953;

Siegel, 1956). For each problem, the statistical hypo-

thesis tested was whether the sample of individual

solvers could reasonably have been thought to come from

a population having the theoretical distribution. This

hypothesis was regarded as tenable for each problem.

That is to say, the theoretical curves determined by

£5 a 2.8, 25 = n.5, and k8 - 6.2 gave acceptable fits

to the data for problems 3, 5, and 8. See Table h.h.  
Reading 2322. The eXperimental time interval for

any one problem has heretofore been treated as a uni- '

form block of time. However, one can distinguish

between the relatively—invariant time required to read I

a problem and the highly variable time to solve it. It )

would be desirable to remove the reading time.

It was assumed as a rough estimate, that the '

first solver would solve the problem about 10 seconds i

after reading time was completed. This gave estimates “

of reading time for the three problems of 50, b0, and

90 seconds respectively. When these solution-times

were subtracted from all individual time-scores, the '
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Table h.3 Method of moments estimates of k and‘A for

each problem. (Individual solvers)

 

 

A _ ‘ _

Problem k a (T) 2/ 5T2 A a T / st

3 (Rape) 2-83 .1u6

5 (Double) #.U7 .137

8 (Gold 6.21 .150

Dust)
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Table h.h Summary of Kolmogorov—Smirnov one-sample,

goodness-of—fit tests for theoretical

curves determined by estimates of k.

Problem No. of A (maximum) Sig. Values

Solvers k D of D: .05

theoret.-obs.|) level

3 (Rape) 133 2.8 .110 .118

5 (Double) 89 “'05 0086 elul"

8 (Gold 71 6.2 .082 .161

Dust)

 

 





65.

resulting net solution times also fit gamma distributions,

with k' = 1.5, 3.b, and 3.8 reapectively, where k' is

the estimate from net solution times. Note that this

is a sharp drop from the estimates of k obtained before;

2.8, n.5, and 6.2.  Subsequent to the completion of the main experiment,

students in a regular class meeting of elementary

psychology at Miami University (Ohio) were given the

same three problems with essentially the same instruc-

tions, except that they were directed to record the

time when they finished reading the problem, as well

as when they had written an answer. The mean reading

times for problems 3, 5, and 8, as recorded by the

Miami students, were 62.7, 61.0, and h1.9 sec. (See

Table h.5).

The Miami University students were probably quite

similar to the Michigan State University students, in

reading time of such simple problems. If the Miami

reading times are subtracted from the times-to-solution

in Table u.2 above, new estimates of the number of

stages in these problems can be obtained. These new

estimates, with reading time removed, are 1.3, 3.0, and

5.0 for problems 3, 5, and 8 re5pective1y. The writer's

judgments of number of stages were 1, 2 or 3, and 3 or u

(see Chapter III above).

The Miami students were also asked to estimate the
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number of stages in each of the problems, discounting

reading time. The definition of a stage was essential-

ly as given above in this dissertation, and the subjects

made their judgments after having solved the problems in

question. The mean judgments of number of stages, for  
problems, 3, 5, and 8, were 2.8, n.0, and 6.3. These

mean judgments differ from the best estimates (using the

gamma-distribution theory) by 1.5, 1.0, and 1.3 stages,

with the students' judgments being higher than the ,

theoretical estimates, a very striking correlation. It

should be borne in mind that the theoretical estimates

come from the distributions of solution times, which

 

were entirely unknown to the judges; and the theoreti-

cal estimates in no way used the judgments of the

students. Hence, the two estimates were entirely inde-

pendent and could have been completely unrelated.

Hereafter "solution time" will refer to net time,

with reading time (estimated by the rough method of

the original study) subtracted. Using the k'.1 suggested

by table 4.5, new theoretical functions were selected

from Pearson's tables (1922) and fitted to the new

distributions of individual solution times. By in-

spection of Figures 4.6, n.7, and b.8, it is evident

that high agreement exists between the data and the

theoretical curves. Results of the Kolmogorov-

Smirnov one sample goodness to fit test appear in Table h.6.
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Table 1h5 Estimates of k and A with reading time

included and with reading time removed,

where reading time was estimated by two

different methods.

 
 

Reading Time Included Reading Time Removed

 

 

 

A A Original Esti- Second Esti-

Problem k A mate removed made Removed

/\ A

as A} flu Am

3 2.8 .1146 1.6 .108 1.3 .099

5 11.5 .137 3J4 .120 3.0 .111

8 6.2 .150 3.8 .117 5.0 .1314
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PREDICTION: THE LORGE AND SOLOMON MODEL

As indicated in earlier discussion, the Lorge and

Solomon Model does not deal with the question of the

time interval allowed. In assessing the predictive

usefullness of their model it was, therefore, necessary  
to apply it at various arbitrarily selected points in

time.

The probability of an individual solution at every

fifth time unit was taken to be the cumulative relative

frequency of solutions by T a 50, 100, 150,..., 720.

(Transformations of the time scale to take reading time

into account were unnecessary since they do not affect

the calculations.)

One first considers the case of a one-stage prob—

lem (Model A). Of the 178 individuals, .118 had solved

Problem 3 by T a 100. Applying Model A (equation (18))

to this observed value of PI', the predicted cumulative

relative frequency for the group is

PG' e l - (1 - .118)“ = .395 .

By T . 150 the probability of a correct solution had

become .332 and the predicted group value is

PG' . 1 - (1 - .332)” e .800 .

The same procedure was repeated for all the points

selected on the individual cumulative relative frequency

distribution. (PI' is the sample estimate of PI).
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Table h.6 Summary of Kolmogorov—Smirnov goodness—

of-fit tests for curves determined by

fi'i (i . 3, 5, 8).

   

 

Problem No. of A D Sig. Values

Cases k' (maximuml theoret. of D: .05

obs. level

3 133 1.6 .092 .118

89 3.h .080 .1uu

71 3.8 .098 .161
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Under the assumption of two equally probable

stages, equation (21), Model B, was used to predict the

group probabilities. For example, on Problem 3 the

probability of an individual solution by T a 100 was

taken to be .118 and by T a 150 this probability was

.332, just as before. For k a 2, the group predictions

were

PG' . [1—(1-(.118)%)u] 2 . .66n and

PG' - [1-(1-(.332)%)u] 2 - .927 .

Figures n.9, “.10, and b.11 show the cumulative

relative frequencies observed for groups and individuals

(at every 50 seconds) along with the values predicted by

the Lorge and Solomon Model (k - l and k = 2). Pre-

dictions of group performance are poor on each problem,

and the predictions become worse with the larger value

of k. Only for Problem 3 (The Rope Problem) would one

regard as tenable the hypothesis that the observed dis-

tribution of group solution times was drawn from the

theoretical distribution represented by the Lorge-

Solomon predictions, 0n Problem 3, this null hypothesis

was tenable for both R = l and k = 2. However, the pre-

dictions were everywhere uncomfortably larger than the

observed proportions of group solutions. A summary of

the Kolmogorov-Smirnov significance tests on each prob-

lem appears in Table h.7.

The estimates of R from the classification section
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are decidedly inappropriate with the Lorge-Solomon

Model, regardless of their usefulness in choosing

descriptive functions. Inspection of predicted and

observed curves (Figures 4.9, 4.10, and 4.11) suggests

that k must be taken less than one to provide good

agreement between the two throughout the experimental

interval. Any k<.1 is uninterpretable psychologically;

so it is concluded that the Lorge-Solomon Model as

applied here is unsuitable.

In essence, the Large-Solomon Model predicts the

probability of a group solution to be the probability

of solution by any of four persons working separately.

Groups in this study were found to fall 2212! this

standard. That is, the real groups did not do as well

as was expected on the basis of a simple pooling of

individual results by means of the Lorge—Solomon Model.

PREDICTION: THE COMBINATION-OF-CONTRIBUTIONS MODELS

Two combination-of—contributions Models were pro-

posed in Chapter II: (1) The Hierarchical Model; and

(2) The Equalitarian Model.

The Hierarchical Model

 

Suppose that non-solvers are non-functional in

their groups, as when the "solvers" in the group suppress

the contributions of non-solvers and form a functional

hierarchy. A group with two solvers and two non-solvers
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Table 4.7 Kolmogorov-Smirnov goodness-of-fit tests

of predicted group solutions (Lorge-

Solomon Model) with the observed data.

 
 

 
 D

Problem No. of (maximum) theoret.- Sig.Values of D for

 

Cases obs.l ) 25 df: .05 .01

k s l k = 2 level level

3 22 .211 .245 .270 .320

5 22 .314 .385 .270 .320 .

8 22 .306 .521 .270 .320
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would be expected to solve a problem just as rapidly as

a group of two solvers alone. Then the probability of

a group solution over time may be written as

h

(24) WH(T') =- z [Pr(A) g(T'; Aim] .
A=0

 
 

where A is the number of solvers in the group.

(The more general form was given in Chapter II, equa-  tion (22). Here T' time after reading is completed, has

been substituted for T, and r s 4). Computationally

more convenient is

4

(25) WHIT') - Z [Pr(A) gIAT';A,k)] .
A=0

It is proved in Appendix 2 that the distribution

g(T'; A ).,k) is equal to g(AT';}l,k).

The excellent fits obtained with the classifica-

tion model (Figures 4.6, 4.7, and 4.8) suggested that  
prediction may proceed directly from the obtained dis- i

tribution of individual solvers, rather than going

through the fitted gamma distribution, g(AT';A_,k).

Let h(T') by the obtained cumulative relative frequency  
distribution of individual solvers on a particular prob- l

lem. Using the obtained data, the theoretical probabi-

lities, WH(T'), may be obtained from

g

(26) wH(T') .. Z [Pr(A) h(AT')] .

A=0

An example of the computations involved in the

group predictions is given below. From Table 4.1,

2 = .735 of all subjects solved Problem 3 and .265 were
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non-solvers. Equation (21) becomes

PrIA) =5 (:l (.735)A (“265)”-A
A=0

Thus, for Problem 3 one has

(2?) WH(T') e .005 h (or') + .052 h (T') +

.222 h (2T') + .421 h (3T') + .300 h

(4T').

For example, when T' a 70,

wH(70) e ).005) (o) + (.052) (.271) +

(.222) (.346) + (.421) (.850) + (.300)

(.917) = .787 .

Here, h(O), h(70), h(140), h(210), and h(280) are obtained

from Figure 4.6, with T' = TL50. The curve of predicted

group solutions under the Hierarchical Model was obtained

by applying equation (27) at each time T'.

Similarly, for Problem 5, with 3 = .503, h obtained

from Figure 4.7, and T' = Th40,

(28) wH(T') = .063 h (OT') + .250 h (T') +

.375 h (2T‘) + .250 h (BT') + .063 h

(4T') ;

and for Problem 8, with 2 a .436, h from Figure 4.8, and

T' = T290,

(29) . wH(T') = .099 h (or') + .308 h (T') +

.366 h (2T') + .192 h (3T') + .037 h

(4T') .

The obtained cumulative relative frequency distri-

butions of group solutions appear in Figures 4.12, 4.13,
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and 4.14 for Problems 3, 5, and 8 respectively. The

obtained distributions are solid lines, the predictions

from the Hierarchical Model are dotted lines. Large

discrepancies between the observed and predicted pro-

babilities are evident. Kolmogorov-Smirnov one-sample,

goodness of fit tests are summarized on Table 4.8.

The prediction was statistically tenable for Problem

3, but could be rejected confidently for Problems 5 and 8.

These results indicate the Hierarchical Model to be

unsuitable--at least with regard to Problem 5 and Prob—

lem 8. A comparison of Figures 4.9, 4.10, 4.11, with

4.12, 4.13, 4.14 suggests that the predictions under

the Hierarchical Model are close to, and about as good

as, those attained with the Large-Solomon Model A (k-l).

The Equalitarian Model

The Equalitarian Model says that non-solvers

consume their share of the group's working time, though

they do not contribute to the solution. That is, A

solvers work on the problem; B non-solvers take their

share of the group's time. Consequently, if A solvers

are working, A/(A + B) is the rate at which they work.

The earlier statement of the Equalitarian Model

(equation 23) may be rewritten as

u

' = A A2 T'3A9k)(30) WE(T ) Ago [Pr-I ) gi‘r‘a :l

 

 

 

 
I

l

l

l



   



l
.
0
0
~

.
9
5
- I I I I

m m m m

I~ .0 Ln st

I

L0

M

Aouenbeij 911112193 eAiq'eInumj)

.
2
5
“   

0
0
.
0
0
0
.
0
0
.
0
0
0
.
.
.

.
.
o
-
o
-
o
o
o
o
o
o
o
o
o
.
.
.
n
"

.
.
-
—
-
-
-
.
.
.

/
‘
—

.
o
e
o
'

/
_
_
.
_
-
_
_
_
.
_
_
_
/

/
_
.
.
_
_
.
_
’

o
.
.
.

9
.

.
-
_
_
_
_

P
r
o
b
l
e
m

3

.
I

I
I

I
‘
I
—
‘

2
6
0

3
0
0

3
4
0

3
8
0

4
2
0

4
6
0

5
0
0

5
4
0

5
8
0

6
2
0

6
6
0

7
0
0

T
I

(
T
i
m
e

i
n
s
e
c
o
n
d
s
)

I
I

6
0

1
0
0

1
4
0

1
8
0

2
2
0

F
i
g
u
r
e

4
.
1
2

—
O
b
s
e
r
v
e
d
c
u
m
u
l
a
t
i
v
e

r
e
l
a
t
i
v
e
f
r
e
q
u
e
n
c
y

o
f
g
r
o
u
p

s
o
l
u
t
i
o
n
s

i
s
s
h
o
w
n
a
s
a

s
o
l
i
d

l
i
n
e
.

P
r
e
d
i
c
t
i
o
n
s
u
n
d
e
r

t
h
e
H
i
e
r
a
r
c
h
i
c
a
l
M
o
d
e
l
a
r
e

s
h
o
w
n
a
s

a
d
o
t
t
e
d

l
i
n
e
.

P
r
e
d
i
c
t
i
o
n
s

u
n
d
e
r

t
h
e
E
q
u
a
l
i
t
a
r
i
a
n
M
o
d
e
l

a
r
e
s
h
o
w
n
a
s

a
b
r
o
k
e
n

l
i
n
e
.

T
h
e

H
i
e
r
a
r
c
h
i
c
a
l
M
o
d
e
l
p
r
o
v
i
d
e
s

a
n
u
n
a
c
c
e
p
t
a
b
l
e

f
i
t

t
o
t
h
e
o
b
s
e
r
v
e
d

g
r
o
u
p

s
o
l
u
t
i
o
n
s
;

t
h
e
E
q
u
a
l
i
t
a
r
i
a
n
M
o
d
e
l
p
r
o
v
i
d
e
s
a
c
c
e
p
t
—

a
b
l
e

p
r
e
d
i
c
t
i
o
n
s
.

82.

 

 

 



 

  

 



Aouenbexg aAiieIa‘d aAn'eImunf)

1
.
0
0
.
.

.
9
5
—

 
P
r
o
b
l
e
m

5

,
I

l
1

I
I

2
0

6
0

1
0
0

1
4
0

1
8
0

2
2
0

2
6
0

3
0
0

3
4
0

3
8
0

4
2
0

4
6
0

5
0
0

5
4
0

T
I

(
T
i
m
e

i
n
s
e
c
o
n
d
s
)

F
i
g
u
r
e

4
.
1
3

-
O
b
s
e
r
v
e
d
c
u
m
u
l
a
t
i
v
e

r
e
l
a
t
i
v
e
f
r
e
q
u
e
n
c
y

o
f
g
r
o
u
p

s
o
l
u
t
i
o
n
s

i
s

l
i
n
e
.

P
r
e
d
i
c
t
i
o
n
s
u
n
d
e
r

t
h
e
H
i
e
r
a
r
c
h
i
c
a
l
M
o
d
e
l

a
r
e
s
h
o
w
n
a
s

a
d
o
t
t
e
d

l
i
n
e
.

u
n
d
e
r

t
h
e
E
q
u
a
l
i
t
a
r
i
a
n
M
o
d
e
l

a
r
e
s
h
o
w
n

a
s

a
b
r
o
k
e
n

l
i
n
e
.

A
s

w
i
t
h
P
r
o
b
l
e
m

M
o
d
e
l

d
o
e
s

n
o
t

s
u
c
c
e
s
s
f
u
l
l
y
a
c
c
o
u
n
t

f
o
r
t
h
e

d
i
s
t
r
i
b
u
t
i
o
n

o
f
g
r
o
u
p

s
o
l
u
t
i
o
n
s
.

    

I
.
.
.
.
.
.
I
O
O
O

.

fi
—

I

5
8
0

6
2
.
0

6
6
0

7
0
0

s
h
o
w
n
a
s

a
.
s
o
l
i
d

P
r
e
d
i
c
t
i
o
n
s

3
,

t
h
e
H
i
e
r
a
r
c
h
i
c
a
l

83.

 



   



Aouanbex g aAu‘eIeu aAiq'eInum Q

0
0
0
.
.

.
8
5
'

D
C

.
.
.

.
.
.
.
.
.

c
o

.
0

O

.
7
5
-

   

84.

P
r
o
b
l
e
m

8

 
I

1
I

I
v

I
l

2
0

6
0

1
0
0

1
4
0

1
8
0

2
2
0

2
6
0

3
0
0

3
4
0

3
8
0

4
2
0

4
6
0

5
0
0

5
4
0

5
8
0

6
2
0

6
6
0

7
0
0

T
I

(
T
i
m
e

i
n
s
e
c
o
n
d
s
)

F
i
g
u
r
e

4
.
l
4

-
O
b
s
e
r
v
e
d

c
u
m
u
l
a
t
i
v
e

r
e
l
a
t
i
v
e
f
r
e
q
u
e
n
c
y

o
f
g
r
o
u
p

s
o
l
u
t
i
o
n
s

i
s
s
h
o
w
n
a
s

a
s
o
l
i
d

l
i
n
e
.

P
r
e
d
i
c
t
i
o
n
s
u
n
d
e
r

t
h
e
H
i
e
r
a
r
c
h
i
c
a
l
M
o
d
e
l

a
r
e
s
h
o
w
n
a
s

a
d
o
t
t
e
d

l
i
n
e
.

P
r
e
d
i
c
t
i
o
n
s

u
n
d
e
r

t
h
e
E
q
u
a
l
i
t
a
r
i
a
n
M
o
d
e
l

a
r
e
s
h
o
w
n
a
s
a
b
r
o
k
e
n

l
i
n
e
.

A
s

w
i
t
h
P
r
o
b
l
e
m
s

3
a
n
d

5
,

t
h
e

H
i
e
r
a
r
c
h
i
c
a
l
M
o
d
e
l

y
i
e
l
d
s
p
r
e
d
i
c
t
i
o
n
s

s
i
g
n
i
f
i
c
a
n
t
l
y
d
i
f
f
e
r
e
n
t

(
t
o
o

h
i
g
h
)
f
r
o
m

o
b
s
e
r
v
a
t
i
o
n
.

T
h
e

E
q
u
a
l
i
t
a
r
i
a
n
M
o
d
e
l
a
g
r
e
e
s

s
a
t
i
s
f
a
c
t
o
r
i
l
y
w
i
t
h

t
h
e
o
b
s
e
r
v
e
d

d
i
s
t
r
i
b
u
t
i
o
n

o
f
g
r
o
u
p

s
o
l
u
t
i
o
n
.

 
 



 

 

 

 



 

85.

Table h.8 Kolmogorov-Smirnov one—sample, goodness-

of-fit tests for observed and predicted

group solutions under the Hierarchical

 

  
 

MOdel 0

Problem No. of D Sig. Values of D

Cases (Maximum) theoret.- for 25 df:

obs.() .05 level .01 level

3 22 .ZHZ .270 .320

5 22 .371 .270 .320
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which is convenient for computations. Again, predictions

were made from the obtained distribution of individual

solvers, hi(T'), rather than the fitted gamma distribu-

tion, g(T';A~,k). The predictions are

4 2

(31) WE‘T" = Z} [rr(A) h( A T'fl
A=0

K_———

Sample computations for the group predictions under the

Equalitarian Model are given below. As in the case of

the Hierarchical Model, one has for Problem 3

#

MA) = z (i) (.735)A (.255)”'A .
A:

and thus

(32) wE(T') - .005 h (or') + .052 h (.25T')

+ .222 h (T') + .u21 h (2.25T') + .300

h (uT').

For example, when T' . 7o

WE(70) = (.005) ()) + (.052) (.038) +

(.222) (.271) + (.hzi) (.737) + (.300)

(.917) . .6u7.

The curve of predicted group solutions under the

Equalitarian Model was obtained by applying equation

(33) at each time, T'.

Similarly, for Problem 5 with h from Figure n.7,

(33) WE(T') a .063 h (or') + .250 h (.25T‘)

+ .375 h (T') + .250 h (2.25T') + .063

h (uT'),
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and for Problem 8, with h from Figure “.8,

(31+) wEW) - .099 h (01") + .308 h (.25T')

+ .366 h (T‘) + .192 h (2.251“ + .037

h (uT') .

Predictions from the Equalitarian Model were com-

pared with the data from problem solving groups. The

predicted distributions of group solutions appear in

Figures b.12, b.13, and b.1h as broken lines. On all

three problems the corre5pondance between prediction

and observation is striking; the predicted distribu-

tions of group solution times are very close to the

observed distributions of group solution times.

Kolmogorov-Smirnov goodness-of—fit tests provide no

evidence against the hypothesis that the sample obser-

vations have been drawn from a theoretical population

having the predicted distribution. See Table h.9 for

a summary of these significance tests.

These results agree with the proposition that non-

solvers, those members of a group who are for some

reason on the wrong track, take a full part in group

discussion and consume their share of the group's time.

The successful Equalitarian Model has a variety of

implications about group structure. (a) All members

of the group contribute about equally to the discussion,

whether they are helpful or not. (b) The group does not

form a hierarchical structure with a particular member
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Kolmogorov-Smirnov one sample, goodness-

of-fit tests for observed and predicted

group solutions under the Equalitarian

Model.

 

Problem

D

No. of (maximum ltheoret.- Sig. Values of

Cases obs. I) D for 25 df:

.05 level .01 level

 

22 .159 .270 .320

22 .138 .270 .320

22 .093 .270 .320
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or members taking over, but is equalitarian. (c) The

superiority of groups which solve over groups which

fail to solve is explained merely on the basis of acci-

dents of individual successes, not on the basis of the

evolution of superior social organization.

The big question is whether non-solvers consume as

much time as solvers in the group discussion. Even

though the group process was observed in some detail,

this question remains unanswered because the observer

was unable to decide who the solvers and who the non-

solvers were. A variety of other observations were

made successfully, however, and can be used to test

some of the consequences of the mathematical model.

EMERGENT SOCIAL STRUCTURE

The Equalitarian Model implies that the group

members equally share the group's working time. In

structural terms, the implication is that an equali-

tarian organization should emerge during the social

interaction attending the attempt to solve the prob-

lem. The companion-choice data, gathered for each

group after each problem were cast in the form of

square matrices with binary entries—~a 1 represented a

choice and a 0 absence of choice. These h X b arrays

are called "sociomatrices" by Glanzer and Glaser (1959).

The three sets of post-problem choices generated three
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sociomatrices for each group. A typical sociomatrix

is given in Figure b.15. Rows represent "choosers"

and columns represent those chosen.

Each column of the sociomatrix was summed to give

the total choices received by each group member. The

analysis proceeded on the column totals. An estimate

of the uncertainty, H, of each set of column totals

was computed. Uncertainty, in information theory, is

defined by the formula:

r

(35) H :3 --Z Pi logz P

1-1

1 i

where an event has r possible outcomes, the i-th of

which has a probability Pi’ and i = l, ..., r. (Miller,

1955). The sample estimate, Q, may be written as

r

(36) Q = -.Z Pi 10g2 pi ,

i=1

where r is group size (h in this case) and Pi is the

obtained relative frequency of the i-th column.

Uncertainty is at a maximum, 2.0 when the four cate-

gories are equiprobable (Pi = .250). Minimum uncer-

tainty is, of course, H = 0.0. Thus for the present

case 0.0<H<2.0.

Generally Speaking, the estimates g are biased.

For example, suppose that the true probabilities

P1 = P2 = P3 = Pu = .25, hence the true H = 2. If a

small sample of observations are recorded, the values

, and

3

of the sample relative frequencies, p1, p2. p
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Ph make up a multinomial distribution. In general, the

sample relative frequencies will be unequal. These

random inequalities of the p's will always reduce a,

with the result that all values of H are less than or

equal to the true H = 2, and the mean E(§)< H. With

samples as small as those in the choice matrices

studied here, the bias is considerable.

The four categories of the sociomatrix were con-

sidered equally probable under the hypothesis of an

equalitarian choice structure. Given this hypothesis

it was possible to ascertain the expected value of the

estimated uncertainty for a particular grand total of

choices, M, in a sociomatrix and a particular number

of categories, r - h. Making use of tables prepared

by Rogers and Green (1955), theE(H) was compared with

g computed for the sociomatrix of each group, where

E(H) is the first moment of sample information

(uncertainty) and H is the sample information as com-

puted from (36).

Like the more traditional indices of group

structure, the sampling distribution of H is unknown.

Consequently, it was not possible to perform a signi-

ficance test in connection with the difference

(H—E(H)), noted for a particular matrix. (Unlike

most indices of group structure, however, it was at

least possible to decide what value of uncertainty
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might be expected for a given number of choices and a t

given number of equiprobably categories). In the

absence of a suitable probabilistic statement, the

comparisons of H and E(fi) were scrutinized and the

general correspondence was deemed satisfactory.

However, interest was mainly in the central

tendency that characterized the structural properties

of the eXperimental groups. Consequently, the mean

A A

of thenvarious values of H was computed (i.e., H =

 

(1/n) i§;.1111)’ and the mean of thenvarious values of

E(H) as well (i.e., E(H) = (1/n) 2 E(H)i ). These

data are summarized in Table h.10:1 Inspection of this

table reveals rather striking similarities between the

mean uncertainty and the mean of the uncertainties ex-

pected for each group under the equalitarian hypo-

thesis. In fact, t-tests (solvers only) performed on

the difference (H -E(H) ) for each of the three prob-

lems were not significant.

The inclusion of non—solving groups produced

almost no change in the mean uncertainties. In fact

the means of the non-solving groups behave in about the

same way as the solving groups. Although the mean un-

certainties of the non-solving groups are somewhat

lower than those of the solving groups (on both prob-

lems 5 and 8), the differences do not appear so great

as to lead one to speculate that non-solving groups
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developed a different structure.

Additional support for the hypothesis of equali—

tarian structure was developed by considering the

possible consequences should a non-equalitarian struc-

ture emerge from the problem-solving interaction. An

equalitarian structure might emerge when the problem

has a larger number of stages; more stages would, pre-

sumably, require more and diverse contributions from

the members. Assume further that these talkers or

contributors were recognized by others in the group.

Important talkers or contributors would be reflected

in the companion-choice structure; this structure

would become more equalitarian as the number of stages

increased.

To summarize, assume that successful problem

solvers 1) talk more and 2) are recognized by others

and become "leaders" or "stars" of the group. Both

assumptions are, of course, denied by the Equalitarian

Model. Inspection of the mean expectancies in Table

“.10, which are very similar for each of the three

problems, does not suggest the emergence of a non-

equalitarian structure as the number of stages in-

creases. In the analysis of variance, reported in

Table b.11, the mean square for problems was not Signi-

ficant. In this analysis (performed on groups which

solved all three problems), the criterion variable
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X

Table 4.10 Mean uncertainty, H, of member companion

choices--means and standard deviations

for problems 3, 5, and 8.

Solvers Solvers & Non-Solvers

Problem n H H E(H) n H H E(H)

3 (Rope) 21 1.6092 .3505 1.5U82 22 1.6178 .thh 1.5h8?

5(Double)17 1.55h2 .3991 1.5720 22 1.5bl7 .hOhZ 1.5719

8 (Gold 17 1.hu03 .h628 1.5h57 22 1.u161 .u633 1.5388

Dust)

Non-Solvers

3 (Rope) 1 --- --- -—-

5(Double)

8 (Gold

Dust)

5 1.b992 .5211 1.5718

5 1.33U0 .5092 1.5152 
 

-A

Tests of the hypothesis the population value is E(H) for

solving groups.

 

 

Problem t df Probability

3 (Rope) 0.800 20 <.50

5 (Double) -0.18h 16 <.50

8 (Gold Dust) -0.939 16 <2uo
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was sample uncertainty, computed from the choice

matrices, and the results are in accord with the equali-

tarian hypothesis.

Communication structure was analyzed in similar

fashion to provide support for the dispersion assump-

tion of the Equalitarian Model. As expected, a group

member addressed most of his communications to the

group at large rather than another member. It was

possible to assign a set of talking frequencies,

weighted for length of communication, to each group

member. A communication structure was obtained for

each group in this way. Each group's communication

structure on each problem was summarized by computing

the uncertainty, H, for each set of four frequencies.

Uncertainty was computed from equation (36), as before,

after the frequencies had been converted to relative

frequencies by dividing them by the total communica-

tions of all group members.

The equalitarian structure preposition may be

restated in terms of intermember communication; un-

certainty approaches 2.0 when members talked equally

often, equally long. Conversely, if one member

monopolizes the conversation, $.15 near 0.0.

As before, the first moment of the sampling dis-

tribution of H was approximated for each set of r a 4

equiprobable categories and the group total of M
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Table h.ll Analysis of variance where criterion

variable is sample uncertainty, com-

puted from the sociomatrices of choices.

 
 

 

 

Sum of dfi Mean Square F

Source Squares

Groups 2.u8u9 13 .1912 1.996 N.S.

Problems .1185 2 .0593 -—

Error 2.U902 26 .0958

Total 5.0936 #1

 

 

 Analysis of variance where criterion variable is .

sample communication uncertainty. '

 

  
Sum of df Mean Square F

Source Squares .

Groups .b85h 13 .0373 1.719 N.S.

Problems .0515 2 .0258 1.189 N.S. ‘

Error .5659 26 .0217 i

 

Total 1.1022 #1 !
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communications. The Rogers and Green (1955) tables

A

for E(H) do not extend beyond the case where M = 10.

It was, therefore, necessary to make use of the Miller-  
Madow approximation presented by Rogers and Green. The

formula was as follows:

A

(37) E(H) = 10g2 r - (10g, e) (r2 + 611(r-1)-l), M>r .

2

12M  
Again, ignorance of the sampling distribution of

H precluded testing the difference, H—E(H) for signi-

ficance in each of the experimental groups. The

difference of central interest, however, was g - 81%).

Table h.l summarizes these data for communication

structure. Significant differences (t-tests) were

found on each of the three problems between the  
X

observed mean uncertainty of solving groups, H, and

the hypothesized value. Unfortunately, it was not

possible, experimentally, to distinguish between sol-

vers and non-solvers and one may only conclude that  some people talked more than others. This by no

means controverts the idea that non-solvers talk as

much as solvers; the result is neutral on that issue.

However, the (in fact) quite high estimates of H for

communication indicate that contributions were actually

widely spread. Tb make a more complete statement one

would have to know something about individual dif-

ferences. Concentrate for the moment on the absolute
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X

Uncertainty, H, of member communications--

 

 

 
 

Table n.12

means and standard deviations for Problems

3, 5, and 8.

Solvers Solvers & Non-Solvers—"_

Problem X A fl’A X A __A

N H sH E(H) N H sH E(H)

3 (Rope) 21 1.8085 .1601 1.9945 22 1.81#5 .1586 1.99h6

5 (Double) 17 1.7951 .1755 1.99h9 22 1.813h .1778 1.9952

8 (Gold 17 1.78h8 .1585 1.9956 22 1.771# .1685 1.9957

Dust)

Non-Solvers

3 (Rope) 1 ---- --- ---

5 (Double) 5 1.8755 .1888 1.9965

8 (Gold 5 1.7256 .2133 1.9962

Dust)  
 

’A

Test of the hypothesis the population value is E(H) for

solving groups.

 

 
 

 

Problem t df Probability

3 (Rope) -5.296 20 .001

5 (Double) -u.69u 16 .001

8 (Gold Dust) -5 .usu 16 .001
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value of mean H; if all four subjects talk with equal

frequency, H - 2.0. Note that if three-and one-half

subjects talked with equal frequency, one would have

the uncertainty 1.80 which is about the g (communica-

tion) observed on each of the three problems. This

is 21232 to no organization, regardless of the de-

cision required by the statistical test.

As before, (p. 81, paragraphs 1 and 2) compari-

sons among the mean communication uncertainties,‘H,

on the three problems revealed them to be quite similar.

In the analysis of variance reported in the bottom half

of Table b.1l, the mean square for problems was not

significant. In contrast to the just preceding, inde-

cisive analysis of communication structure, the

analysis of variance was interpreted as offering

further indirect support of the equalitarian structure

prOposition.

SUMMARY OF RESULTS

The major points of this chapter may be summarized

as follows:

1) It was found that word problems could be classi-

fied, without resorting to subjective decisions, by

means of rational curve-fitting in accord with the

mathematical model. Gamma distributions were success-

fully fitted to distributions of solution times.
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Estimates of the number of stages in each problem were

close to judgments of number of stages obtained in

subsidiary observations.

2) A mathematical model was developed for pre-

dicting the distributions of group solution times from

the distributions of individual solution-times; the

theoretical predictions (the Equalitarian Model) were

very close to the obtained data on all three of the

problems employed.

3) Observations of the groups' social inter-

action and emergent structure were found to be in

general accord with subsidiary assumptions of the

successful Equalitarian Model.

b) Group performance was inferior to individual

performance when the latter was pooled according to the

non-interacticnal model of Lorge and Solomon.  



 

 

 



 

CHAPTER V

DISCUSSION AND CONCLUSIONS

Suppose that the mean times to completion of two

processes are equal at, say, 10 minutes. Imagine the

first process yields highly variable data with a

standard deviation of 10 minutes and a J-shaped distri-

bution. This would be interpreted as a one-stage pro-

cess in which the probability of the event is very low,

the rate parameter being 0.1 per minute. Suppose that

the other process has a mean of 10 minutes but much

smaller variance, having a standard deviation equal to

1 minute and a more nearly symmetrical, bell-shaped

distribution. One would interpret this as a loo-stage

process, each stage of which has a rate (probability

per unit time) 100 times greater than in the first pro-

cess. Thus, while solving a eureka problem and reading

an essay may take the same (average) time, the problem

solving process, having one or two lowhprobability

stages, would yield very variable data; and the reading,

being made up of a great many high-probability stages,

would yield much less variable data. These general

relationships seem intuitively compelling, and the

waiting-time theory used in this study is merely a

mathematical idealization of this line of argument.

102.
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CLASSIFICATION MODEL

The mathematical model takes advantage of a great

deal of information; the distribution of individual

solution times as well as the proportion of right and

wrong answers. The theoretical model begins with simple

assumptions; that the probability of solving a stage is

a constant over time until solution, and that the times

to solve the several stages of a problem are independent

and have equal means. From these assumptions, and the

concept of continuous time, precise logical argument

leads to the gamma distribution. The derivation is, in

fact, a fairly routine application of the methods of

probability theory.

This model had two empirical hurdles to surmount.

First, it claimed that times to solution would have a

gamma distribution. The obtained distributions were

close to the fitted gamma and did not differ in any

significant way. Second, it was possible to estimate

k, the number of equally-difficult stages, for each of

the three problems. The writer's intention and

intuition was that the three problems differ in number

of stages, and have approximately 1, 2 or 3, and 3 or

b stages, respectively. Miami University students

judged that the problems would have about 3, b, and 6

stages. The best estimates from the data are 1.3,

3.0, and 5.0, which progress in the direction intended
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and are of about the magnitude expected. Thus, the

estimates of R from the data (depending on the squared

mean divided by the variance) have some apparent vali-

dity. Only further investigations of stages in prob-

lem-solving will determine whether this is an accident.

At present, except for an intuitive judgment of the

number of distinct "ideas" required to obtain the

solution, there is no adequate description of the

stages involved.

The number of stages appears to be the number of

distinct ideas which must be conjoined to obtain the

correct answer. The subject must have idea 1 Egg idea

2 22d so forth, if he is to complete stage 1 and stage

2, etc. If there are several answers to the problem,

so that the subject may have idea 1 g; idea 2 23 ...

and so forth, this should make the problem easier,

increasing the rate A.. This disjunction might very

well correspond to a single stage. Thus, to some

degree, the notion of stages is related to the logical

requirements of the problem, at least to the logical

interrelationships of the ideas involved. This does

not yield a complete description of the hypothetical

process, however. Given any set of ideas one could

specify the various compounds which would solve the

problem. However, we do not know for sure what ideas

the subjects entertained, so that we know the logical
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structure and not the elements embedded in that struc-

ture. Only further empirical separation of stages can

fulfill the final requirement.

While the concept of "number of stages," k, has

some value in beginning an analysis of problem—solving,

it should be emphasized that the number of stages esti-

mated by the present method is only an approximation.

One would expect that in most problems with several

stages, the stages differ in difficulty and have dif-

ferent values of)‘. Given any set of stages and their

)k-values one can construct the distribution of total

times. However, any empirically-determined distribu-

tion of total times can be closely approximated by

various.combinations of stages and..A-values. The only

workable unigue answer to the question, How many stages

does this problem involve? is attained by first assum-

ing that all the component stages have equal values of

)\. The resulting estimate is something like the

information-theory idea that the information transmitted

through a given system, if it is 2 bits, is "equivalent"

to a system which can discriminate exactly four equi- .

probable categories. The system may actually be dis-

criminating nine unequally probable categories, and the

fact that information transmitted equals 2 bits does

not reveal the fine grain. In a similar way, the esti-

mate of 3 stages says that the subject's performance is
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"equivalent" to three equiprobable stages, though it

might actually consist of 5 or 6 stages which differ

widely in probability or rate,;‘.

Experimental separation of stages is needed before

definite conclusions can be drawn. A first step in

that direction was taken in the followeup study, in

which reading-times were estimated and subtracted from

problempsolving data. Intuitively, reading the problem

is a multi—stage process in which each stage has a high

value of A . Compared with problem-solving, reading

the problem consumes a relatively constant amount of

time. Similarly, it may be presumed that time to write

the solution is relatively constant, and since it can

easily be measured it should be separated from pure

problem-solving time. Possibly, by the use of proto-

cols, it is possible to determine when the subject

overcomes various stages of the problem, such as

"understanding" the problem, obtaining an hypothesis,

etc. Such logical or psychological analysis may lead

to an understanding of the stages of problempsolving,

but each such analysis should be adepted with caution.

The data of this study suggest that some problems in-

volve compounds of "part problems", and that each

part (even though it may involve formulation of the

problem, discovery of an hypothesis, devising a test

of the hypothesis, etc.) is mastered in a single, all-
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or—nothing stage. This view is supported by the close

correlation of estimated number of stages with what

appear to be the number of parts into which the problem

can be divided; particularly, it is interesting to note

that the gold-dust problem has answers which involve

about six measurements, and is estimated to involve

about six stages.

The method of classifying problems according to

the number of stages involved can, in principle, be

applied to other than Eureka problems. For example,

a geometrical proof might involve roughly as many

stages as there are steps in the proof. A cross-word

puzzle might involve as many stages as there are diffi-

cult words to discover. A task which yields relatively

invariable times, such as manipulating a large number

of blocks in a routine way, would presumably have a

very large number of stages. One way of investigating

the present model is by studying tasks which, prima

facie, differ widely in number of stages.

This discussion has resolutely used the phrase

"number of stages" in place of the more natural ad-

jective, "complexity." In the model, the difficulty

of a problem (that is, for example, mean time to

solution) depends upon both k, the number of stages,

and A(, the probability of accomplishing a given stage

per unit time. The mean is, in fact, k(1/)\) . The
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term "complexity" refers to both of these factors, for

a problem may be complex because it involves many

stages to completion, or complex because, at the one

stage required, there are many alternative possibilities.

The number of wrong alternatives does not affect k, but

when there are many alternatives the probability of the

correct one is presumably low, henceakwould be low.

Though the present data give no such indication, it

is plausible to suppose that the emergent structure of a

permanent problem-solving group might be affected by the

kind of problems they work on. If each problem is main-

ly of a single stage, the group might develop a

hierarchical structure, attempting to let the best prob-

lem-solver remain in control. Multi-stage problems, on

the other hand, would tend to favor an equalitarian

structure so that various members can contribute to the

solution.

GROUPS VS. INDIVIDUALS

Although the present data are more extensive, and

analyzed in more detail, than previous results, the

general relationship between individual and group per-

formance agrees well with earlier findings. Groups

outperformed individuals, as has been almost universally

true in earlier studies. Furthermore, the groups were

less efficient than would be expected by pooling the
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abilities or accomplishments of individuals. The

observation that actual groups lie between individuals

alone and pooled individuals agrees with results of

Husband (19h0) and Taylor and Faust (1952), and the

observation of Watson (1928) though Faust (1959) found

a slight superiority of real groups over pooled indi-

viduals. The present data indicate that real groups,

while as £233 as pooled individuals, are comparatively

slow. In Figs. n.9, “.10, and b.11, in which group

data are compared with Large-Solomon predictions, the

largest discrepancy is at some intermediate time,

roughly at the mean time-to—solution. With small

numbers of groups it is possible that various results

would occur depending on the total time given the sub-

jects; the usual procedure gives only one point of the

cumulative distribution.

In the present study, groups failed to reach the

level predicted by the Lorge-Solomon pooling model, or

by the Hierarchical Model which is, in effect, the

continuous analog of the pooling model. The interpre-

tation offered, which is embedded in the assumptions

of the Equalitarian Model, is that group members who

are on the wrong track consume as much group time as do

members who are approaching solution. The pooling

models pool the abilities or accomplishments but do not

pool the disabilities and errors of the members in the
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group. That is, the Large-Solomon model combines the

wheat and leaves behind the chaff. The Equalitarian

model which fits the present data, pools both wheat and

chaff.

In a sense, the Large-Solomon model is impossible,

for until the problem is solved no member of the group

knows who is on the right and who on the wrong track.

Before solution there is no possible mechanism within

the group for singling out the wheat from the chaff.

The Large-Solomon model, and the Hierarchical Medel

formulated here, both set an unrealistic standard for

groups.

The data and the Equalitarian Model indicate that,

in terms of man-hours, it is cheaper to have individuals

solve problems separately than to use groups. Four indi-

viduals in separate rooms will, on the average, solve a

problem sooner than the same four individuals in a face

to face group. On this criterion, groups are clearly

inefficient problem-solvers. Yet this conclusion is

seriously misleading.

First, the Equalitarian Model differs from the

Hierarchical Model only when the probability of solu-

tion, a, is less than one. If all subjects would solve

the problem, there would be no difference between the

models. What is more, in that case a group of size

r would have a rate of r,&_, if individuals have a rate
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of A; whence groups would be precisely as efficient as

individuals. It is only the probability of an indivi-

dual failing to solve the problem, which slows down

the group average. In the case of individual failures,

the group has an advantage over individuals quite aside

from Speedp-for the group yields a single answer, and

the individuals working separately may offer several

different answers. It seems improbable that a group of

size h, for example, could attain agreement on a wrong

‘answer in problems like those use in this study. Hence  
it is very probable that the group will yield the

correct answer. Individuals, on the same problem, may

have a considerable probability of giving a wrong

  answer.

In an experiment, one tends to ignore the indivi-

dual failures for the experimenter knows the right

answer to the problem. In any real life application,

there would be no eXperimenter with the correct answer

written down. If there were, there would be no need

for either the individuals in separate rooms or the

group.

Though the individuals will, on the average,

obtain a correct answer before a group, they may also

obtain some wrong answers. Working separately, four

individuals would not separate the correct from the

wrong answers, and as a result the first individual
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solution (which on the average will be before the

group solution) cannot be accepted with any confidence.

The group solution has a probability 1 - (l-a)r of

being correct, when 3 is the probability that an indi-

vidual is correct and the group is of size r. The

first individual solution has only probability g of

being correct. In this sense the group is slower but

surer.

It should be remarked that the present model makes

sense only if the problem is one of searching for a

unique correct answer. In a "human relations" problem

(Large, et a1.,1958) the task may be to assemble a

"answer a "large number of ideas none of which is the

In such a task, mutual stimulation may be an important

advantage, whereas the drawback of groups, that non-

solvers take up as much time as solvers, may not be

found if virtually all ideas are accepted as valuable.

Groups may have advantages, in real life, which

are not reflected in the experimental conditions

 
studied here. For example, it is possible that a group

will persevere longer on a problem than the individuals

would separately, thus enhancing the probability of an

eventual solution. Work in a group may be conducive to

higher or more appropriate motivation than work alone. 
The exigencies of group management may lead to such

benefits as regular work hours, orderly arrangement of
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materials, etc., which would give group workers an

advantage over individuals. By the same reasoning, of

course, members of groups may have the disadvantage of

working at other than their own best time, of strugg-

ling with an inappropriate organization of material,

etc. Such factors are probably more characteristic of

stable than of the ad hoc groups discussed in this

study, and there is no reason to believe that the simple

models employed here would apply to very different

situations with new properties.

The observations of groups in this study agreed

quite well with the supposition that they were

organized in an equalitarian structure. The success

of the Equalitarian Model suggests that, at any rate,

members who are on the wrong track contribute their

share to the discussions. The data on choice of

future partners failed to reveal any noticeable trace

of stable leadership within groups. An equalitarian

structure is, as was discussed above, relatively slow

and sure for it devotes time to members who contribute

only confusion, but at the same time it provides a

check against error. An hierarchical structure should,

according to the present analysis, increase Speed but

also increase the probability of accepting a wrong

solution. The conditions under which a hierarchy would

arise may be at least imagined; if the group were under
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extreme time pressure and could not afford to "suffer

fools gladly," it might be induced to adopt a hierarchi-

cal structure. The experimental conditions employed

here, giving enough time for almost all individuals to

solve the problems or arrive at a satisfying error, are

clearly not those which would most probably lead to a

hierarchy.

THE EFFECTS OF INDIVIDUAL DIFFERENCES

If there are large and stable individual dif-

ferences between subjects in their abilities to solve

these problems, then the number of stages in the prob-

1ems is underestimated. Individual differences would

inflate the variances of time scores, and since k is

estimated by the squared.mean divided by the variance,

this would decrease the estimate of k below what it

should be.

Large and stable differences should, however, pro-

duce discernable hierarchical structures in groups, and

should lead groups to prefer to choose one bright

member over the others. The lack of any such hierarchy

suggests that any differences between subjects were

imperceptible to the subjects themselves.

Furthermore, an investigation was made of solvers

and non-solvers among the individuals working on the

three problems. While the form of the data.makes it
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difficult to perform a suitable statistical test, the

indication was that there was little correlation

between success on the three problems. This is not

unexpected when it is noted that the subjects were all

drawn from an elementary psychology course and were

thus of a restricted range of talent, and when it is

recalled that the present three-problem experiment

would constitute a very short and unreliable intelli-

gence test.

CONCLUSIONS

 It was found that the distributions of solution

times on three problems were adequately described by

gamma distributions. Gamma distributions arise from

a rational consideration of the stochastic theory of E

waiting times. Estimates of the number of equally-
I

I

difficult stages involved in the three problems, 1

l agreed in substance with the intentions of the experi-

menter and with judgments by a group of students.

Furthermore, inspection of the logical structure of

the problems suggested that the number of stages is

close to the number of ideas which must be conjoined E'

to arrive at the solution. §

Groups of four subjects solved a significantly

higher proportion of problems than did individuals.

However, groups which solved took about as long as ‘
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individuals who solved. It was found that group

performance could‘ggt be predicted accurately from

individual performance on the assumption that

accomplishments were simply pooled. If, however, it

is also assumed that group members on the wrong track

consume their share of group time, so that both

accomplishments and failures of the individuals are

pooled, the entire distribution of group solution-times

could be predicted accurately.

The Equalitarian Model, which accurately predicted

group performance, led to the expectation that there

would be no hierarchical structures within groups.

Sociometric choices made after each problem supported

this hypothesis, since they were in agreement with an

hypothesis of random, equiprobable choice between

group members.

 



   



 

APPENDIX I

Use of Pearson's Tables of the Incompleteléfunction

In this study P(k) = (k-l) E (K an integer).

Let AT = x. If

(1)

(2)

(3)

(it)

(5)

(6)

Q

P(k) =/e'xxk'1dx

0

(see Mood, 1950), let

x

[fix(k) =Jére-xXk-ldx

The ratio of these two functions is the density

[fix(k) .

r (1:)

Pearson (1922) defines

x

Flu: + 1) ./ e-xxpdx .
o

In this notation, equation (3) may be rewritten as

F'xho)

F (1))

Pearson defines

1 o

I(x.1:°)==)_nlt(p+ )

[I(p + 1)

Due to computational difficulties, Pearson tables

not I(x,p) but the auxillary function I(u,p) where

i i

u = x/(P + 1)2 or x = u(p + 1)2

117.
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If p + l is taken equal to k, then by substitution

u a x/k%.

Furthermore p = k - 1.

Recall x = A.T. Hence

(7) u a x/k% = T

”
h
e
>
4

Equation (7) takes T into u, and it is the u argument

which has been tabled extensively by Pearson (1922).

However, the transformation to u is facilitated

by noting that k = [E(T)] 2/0r2('r) and 2): E(T) /g2(T) .

Substituting these expressions in (7)

  

 

' E(T)

(8) u H T O (T_ v‘ = '72:;-

_J.'.'.. T .

[Em] 2 2 U

L (72(T) .4)  
Using the sample value 5, equation (8) may be written as

u=T/So

The tables are entered with appropriate u and

A

p a k-l, where k is the sample estimate of k.



 

 



APPENDIX 2

Proof that g(T;aA,k) u g((XT;)k,k)

 

The function. Wi(T) =AEE0 [Pr(A) g(T;CX)\,k)1

(generalized form) is not convenient for computational

purposes. In the second term of Wi(T) it is more

advantageous for the coefficient(1.to appear with the

variable T rather than the parameter A.. Therefore, it

is necessary to prove:

(1) and/Lt) = you» A,k) .

Recall that

(2) g(T; /\ .k) = _)\_ e'AT(/)T)k-1.

(k-l) 2

Thus, AK

-0( T _

(3) among) = 0:3: : e (dink 1

and

(u) g(aT;/\,k) = 31 .e‘aATm/xnk'l,

In order to abbreviate notation, let G(T) = c(T;o(A,k)

be the cumulative distribution of g(T3CXal,k) and H(T)

be the cumulative distribution of g(o('r; )L ,k) s q(T).

It is sufficient to prove that G(T) a H(T).

It follows that

(5) d G(T) -O(. (T) d d HT = (T).

dT q an 'dta'T) q

Let CIT a z; then

119.

)1

)1
).

)1
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(6) a G(TL=O(fd Hum] .
dT [dz

Multiplying both sides of (6) by l/CK .

(7) (1/00 [3T em ]= d Hm

dz

Obviously G(T) = H(T) if d G(T) = d H(T), since

d d

G(0) a H(O) a O and G(a0) a H(°°) a 1.

Now one may write

(8) d H(T) e gg, H(T)_ . dz ,

dT dz dT

but from (7)

<1 mm = <1/OL)[d Gm ]
 

  

dz l_dT

Hence,

(9) <1 mm = (1/O()[d 6(1)] . 2.2;
dT l_dT dT

Since 2 =C(T, it follows that

(10) 2.2. = O( -

dT

Substituting (10) in (9). one has

 

dT dT

(11) d H(T) a (1/Cx) [ d G(T)]CX . d G(T) . Q.E.D.

dT
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