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ABSTRACT

MODELS FOR THE CLASSIFICATION OF PROBLEMS
AND THE PREDICTION OF GROUP PROBLEM-SOLVING
FROM INDIVIDUAL RESULTS

by James H. Davis

Bureka problems (word puzzles having unique
solutions), were worked on by individuals, and by ad
hoc groups in which unrestricted, face-to-face inter-
action was permitted between members who had no
tradition of working together. The first objective of
the study was to introduce an ordering of problems and
a method measuring that order. Second, the investiga-
tion sought to predict group problem solving performance
from a knowledge of the problem solving behavior of
persons working as individuals, Major emphasis was
placed upon the development of a model that dealt
concurrently with group product and emergent group
structure. Third, the frequently-noted superiority of
problem solving groups over individuals working on the
same problems was oritically examined.

A model for the distribution of solution times of
individual solvers was developed from the idea that the

solution of a problem is composed of several steps or
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stages, and solution occurs upon completion of the
k-th stage. Problems can be classified as to the
number of stages, which is assessed from the distribu-~
tion of individual solution times. The Classification
Model (statistically a waiting-time model) predicted
solution times to be a gamma distribution. The argu-
ment proceeded logically to the gamma distribution from
such assumptions as that the probability of a stage
solution is constant over time until solution occurs,
any one time interval is taken so small that one and
only one stage may be solved within it, and the stages
are independent and equally difficult.

Two models for prediocting group from individual
performance were proposed, viz., the Hierarchical and
Equalitarian Models. These models predicted the
distribution of group solution times to be a simple
transformation of the gamma distribution that fitted
the individual solution times. The Hierarchical Model
assumed that group members organized themselves into a
hierarchy with the more successful members consuming
more than their share of the group's time. The
Bqualitarian Model assumed each member took his share
of the group's working time, whether he contributed
to solution or not.

Data were gathered from individuals working alone
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and from ad hoc groups of four. These data were:

(a) correctness of solution, and (b) the time
consumed on each problem. Each group and each indivi-
dual were tested on a sample problem and three experi-
mental problems, the experimental problems being given
in different orders for different subjects. In the
groups, not only was solution time recorded, bhut also
a count of the frequency with which each member talked,
their choices for future problem-solving partners,
observation of member contributions and any unusual
events.

The parameter k of the gamma distribution (inter-
preted as the number of problem stages) was estimated
by the method of moments from the sample observations.,
The theoretical curves thus determined were found to
fit the distributions of individual solution times for
all three problems. The Equalitarian but not the
Hierarchical Model was found to predict the distribution
of group solution times in each case. Implicit support
for the social psychological assumptions of the
Equalitarian Model was found through an analysis of the
partner-choice data. The analysis of the communication
frequencies of group members, however, was indecisive,

The problem solving behavior of individuals was

pooled mathematically and such concocted groups were
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found to perform significantly better than the real
groups on two of the three problems. This finding
was interpreted to indicate that member interaction
actually inhibited problem solving, at least under the

conditions of this investigation.

Trvonte. (Quthe

Frank Restle, Major Professor
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CHAPTER I

INTRODUCTION

In his review of human problem solving, Duncan
(1959) summarized his conclusions thus: "The field of
problem solving is poorly integrated. The reasons for
this seem to be the use of a great variety of tasks to

provide problems, the freguent use of unanalyzed and

*
non-dimensionalized variables, the lack of an agreed-

upon taxonomy of behavioral processes, and to some
extent the failure to relate data to other data or to
theory., Problem solving particularly needs research
to determine the simple laws between dimensionalized
independent variables and performance"” (1959, p. 426),
Duncan was, of course, referring particularly to
investigations of the problem solving process per se.
But there are two sub-areas of research and theory
that are of particular interest to the social psychol=-
ogist, TFirst, there are studies of group problem
solving in which members of a small group collectively
address themselves to some problem or task; of major
interest are those cases where the group's performance
has been contrasted with individual effort, (Lorge,

Fox, Davitz, and Brenner 1958).

*
Emphasis supplied.






2,
Second, small group researchers have often used problems
and other tasks to focus the group's effort, while their
main interest was in manipulating other situational vari-

ables and observing their effects on group structure or

various group processes, e.g., creating an out-group
threat and observing the increased cohesion of the group
under study.

It is the writer's contention that the poor organi-
zation and integration of studies, reported by BDuncan,
creates a difficulty for those who use problems in the
course of investigating other phenomena, e.g., communi-
cation structures in small, task-oriented groups. At
the heart of many difficulties is the lack of knowledge
about the task or problem itself: How may problems be
ordered or classified to provide some continuity across
situations and provide a basis for comparison between
studies employing different problems in the study of the
same phenomenon?

The lack of a systematic treatment of the problem
itself precludes the kind of social-psychological theory
that deals simultaneously with the nature of the problem,
the group product (task performance), and the social
behavior of the individuals in the group. Even regard-
ing the group network studies, which deal with the

effects of imposed communication structure on group






performance, Glanzer and Glaser comment, "Perhaps the

most surprising thing about the entire area has been

the fact that despite the highly formal origins of these
studies, the organized body of theory has not yet ap~-
peared" (19576, p. 35).

With this overview in mind, the purpose of this
dissertation can be described as an attempt, first, to
introduce an ordering of problems and a method for
measuring this order, and second, to predict group
problem solving performance from a knowledge of the
problem solving behavior of persons working as indivi-
duals. Major emphasis is placed upon the development
of a model that deals concurrently with group product
(problem solving performance) and the emergent structure
of the group. In addition, the frequently noted
superiority of problem solving groups over individuals
working on the same problems (Shaw, 1932) is critically

examined.
RESTRICTIONS OF SCOPE

Before examining previous research it is well to
specify the restrictions of this inquiry. Only verbal
problems will be considered, for these generate inter-
personal interactions and lead to social organization.
Only problems with definite answers, which the subject

can solve without special outside knowledge, are useful







in the present experiments., These problems are called

"Bureka problems,"” (Lorge et al., 1958, p. 355). Only
ad hoc groups with unrestricted face-to-face contact
will be considered. Groups may restrict their communi-
cations or choose leaders, and a structure may emerge,
but the present study does not involve imposing a
communication network or social organization upon the
group.

CLASSIFICATION OF WORD PROBLEMS:
STUDIES FOCUSING ON THE PROBLEM AND ITS BLEMENTS
Despite the need for studying the problems them-

selves, implied above by Duncan, the literature

contains little that represents a systematic attack on
the behavioral effects of the particular problem--
especially word problems. Studies focusing on problems
per se have been mainly concerned with (a) criteria for
selecting problems, (b) presenting problems by different
methods, or (c) varying the elements of problems. These
will be considered in turn.
a. Criteria for selecting problems. Ray (1955) has
developed several criteria for tasks suitable for pro-
blem solving studies. For exemple, one should choose
problems which may be scored along a continuum; the
problem should restrict subjects to few hypotheses

about its solution, etc. Unfortunately, Ray did not
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consider verbal problems at all. Marks (1951)
suggested that problems should be plausible (stimulate
interest), complex and difficult (elicit solving
behavior), structured (allow quantification and the
recasting of the problem in different contexts), and
solvable.

The selection of problem criteria does not really
meet the issue of problem classification as set forth
in this study. ©Not only does "meeting the criteria
depend heavily on subjective decisions by the investi=-
gator, but it avoids the question by restricting the
kinds of problems that may be used. For instance,
Marks' criteria would exclude many word puzzles,
although these have been among the more important
tasks for studying social interaction. However, the
problems selected for this study appear to meet the
major criteria outlined by Ray and Marks, viz.,
continuum, restricted hypotheses, plausible, complex,
structured, and solvable.

b. Variations in Method of presentation of problems,
There have been several studies in which the experi=-
menter varied a problem's "concreteness" (Saugstad,
1957; Lorge, Tuckman, Aikman, Spiegel, and Moss, 1955a,
1955b, Cobb and Brenneise, 1952; and Gibb, 1956),

Lorge et al. (1955a, 1955b) presented the "mined road

problem" at seven different levels of reality (verbal,







6.
photographic, miniture scale model, real presentation,
or various amounts of the model and real situation).
Level of reality appeared to have little effect on
problem~solving performances. These investigators were
not concerned with ordering problems, but rather
explored the effects of administering the same problem
under different conditions. Style of problem presenta-
tion, therefore, does not bear directly upon the
question of problem classification.
c. The effects of manipulating the elements of a
problem. Katz (in Duncan, 1959) found that increasing
the degree of disorder in which digits were presented
increased the errors made in computing sums. Benedetti
(1956) searched for those aspects of Luchins water jar
problems which might be contributing to rigidity; he
added one, two, or three jars to the original problems
with noticeable effect. The increased freedom of
choice seemed to destroy much of the rigidity noted
with the series of problems. Judson and Cofer (1956)
presented a group of four words to subjects who were
to choose the word that was out of place; each con-
tained two ambiguous words and two unambiguous words.
The subjects tended to choose on the basis of the
first appearing unambiguous word. Dominance of the
first occurring ambiguous word was increased by

increasing the number of ambiguous words between the







two unambiguous words.

Battig (1957), using a task that met Ray's
criteria, had his subjects play a word game in which
they were to guess a word, given only the number of
letters it contained. A significant difference in
variability of performance between words was found,
much of which seemed attributable to the specific
letters contained in the words. There was limited
evidence that word length and frequency of usage were
important variables.

Admittedly, the studies dealing with the effects
of varying the elements of a problem were not concerned
with ordering problems and introducing a method for
measuring this order. Various manipulations of the
number of pieces, number of alternatives, etc., are not
represented in this investigation. But this last group
of studies does illustrate the importance of a particu-
lar problem and the behavioral effects of slight varia-
tions in the problem. Presumably the addition of
problem elements would increase a problem's complexity
or heterogeneity. The necessity of a solver's choosing
from among the added elements would add another stage
to the problem-solving process., Duncan has said, "In
contrast to the experiments on methods of problem
presentation, studies of variation among problem ele-

ments consistently reported at least some significant
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effects, occasionally powerful effects, on problem
solving performance. Thus, performance on a problem
may or may not be influenced by contextual variables,
such as methods of presentation that do not change
relationships among elements of a problem. But

changes of a problem's internal structure usually
influence performance, even in cases where the problem
remains, in some physical sense, the same." (1959,p.410)
Duncan's recent review of human problem solving includes
an important summary of studies of tangental interest

to the issue of problem classification.
PROBLEMS AND GROUP SOLVING

It is no surprise that in studies employing some
kind of task the particular task seems to make a great
deal of difference in group behavior. 1In this

"...generalizations

connection, Lorge et al. have said,
about problem solving and about group superiority seem

to depend upon the nature of the tasks" (1958, p. 356).
The same authors generally criticize the research on
group versus individual problem solving on the grounds
that investigators have paid insufficient attention to
the particular task; the usual tasks are petty, unreal,
etc. But most of all, the diversity of the tasks used
by different investigators has been so great that it is

difficult to draw conclusions about the superiority of







groups over individuals.,

An ordering of tasks within a problem class would
seem to be a first step in studying task-inspired
influences on group-individual differences. The present
study explores an approach to the ordering of problems,
the number of steps or stages to arrive at a solution.

In a recent theoretical study, Roby and Lanzetta
(1958) have emphasized the importance of the particular
task to group functioning. They suggest that "objective"
task properties be given equal status with "modal" task
properties. An objective property is one for which a
single, definite, value may be specified through
either measurement or control. A modal property
", ..reflects 'typical'’ behavior of individuals or task
variables but is subject to variation due to group
characteristics and their interaction effects with
other task properties" (Roby and Lanzetta, 1958, p. 89).
These authors present a rather complex descriptive
paradigm of the interaction of "group-task systems."
Although, they do not present a true classification
scheme for problems, Roby and Lanzetta point out that
a severe limitation on such a design has been the
general neglect of task parameters in small group
research.

The classification and prediction models, to be

presented subsequently, take cognizance of Roby and
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Lanzetta's recommendations., The Classification Model
represents an attempt to deal with at least one kind
of task parameter (stages to solution). The prediction
models relate group properties with task properties
while focusing on the product of group interaction--

problem solution.
GROUPS VERSUS INDIVIDUALS

Formal models of small group behavior appear to
have been very slow in developing. Hays and Bush (1954)
have expressed surprise that so few mathematical models
have been constructed for use with group interaction,
inasmuchas the utility of such an approach has been
demonstrated in learning theory, etc. These authors
speculated that it is the great complexity of social
interaction which has hampered the development of
mathematical models. They also pointed out that in the
early stages of model construction the particular task
is crucial. Many suitable tasks could be appropriated
from experimental psychology. These should be (a) tasks
in which the number of behavior possibilities is limited
(important for model building) and (b) tasks whose
behavior-producing capacity is well known for individual
subjects.

Among the models which have recently been suggested

are those of Hays and Bush (1954%), and Lorge and
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Solomon (1955).

The work of Hays and Bush draws directly upon that
of Bush and Mosteller (1953). Two models for group
action are proposed and an experimental test of the
predictions, using three=-man groups and a two-choice,
probability-type learning task. The "Group-Actor Model”
assumes that the group acts as if its guesses are those
of an individual, i.e., individuals and groups were
taken to be entirely interchangeable actors in this
situation. The "Voting Model" assumes that no basic
change occurred between the individual guessing alone
and the guessing that takes place in a group, i.e.,
three men behave as if they were independent voters.
Neither model was rejected when compared with group
data. In fact, the observed group results fell between
the predictions of the two models and the authors
interpreted the models as establishing limits for the
behavior of such groups.

The authors lamented that they did not collect
individual data which would have allowed clearer inter=-
pretation. Unfortunate, too, is the fact that the
Hays-Bush models appear to be restricted rather
definitely to the two-choice learning task they employed.
Nevertheless, their work demonstrates the feasibility of
such an approach and the possibility of making use of

existing models from other fields in the study of small
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groups. Their results forced them to shift the focus
of attention from the adaptive to the integrative
aspects of interaction--something not anticipated until
they began to speculate about the requirements of a
more suitable model.

Lorge and Solomon (1955) reinterpreted Shaw's 1932
results with a group problem solving model which utilizes
results obtained with individual solvers. The Lorge-
Solomon model predicts the solution probability of an
r-man group to be the probability of one or more solu-
tions by the r individuals working alone. Thus the
model relies upon a simple pooling effect, and inter-

action is assumed to have no effect on the probability

that a group will solve a problem. These authors
proposed their model as an alternative interpretation
of the results obtained by Shaw (1932).

Generally speaking, groups are considered to be
superior to individuals in solving problems. The evi=
dence for such a position is much less than one might
suppose, considering the extent to which the view is
held. The pre;minenc position of the group in solving

problems is reflected by the following quotation from

Kelley and Thibaut: "...group problem solving involves
individual problem solving, but much more. The 'extra!
does not refer to a ‘'group mind' or a magical ‘plus'

which arises out of groups. Rather, it refers to the
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simple fact that the thinking done by a group member
occurs in a different context from that done by the
'isolated' thinker. Because it occurs in communica-
tion and interaction with other persons, the products
of the group member's thought may be unpredictable
from the observation of solutions obtained in isola~
tion" (1954, p. 738).

Watson (1928) conducted one of the early studies
to compare groups and individuals working at the same
problem. Individuals and groups of three to ten mem=-
bers were to produce small words from long ones. The
average number of words produced by the group was
considerably higher than that produced by the best indi-
vidual. Watson then examined his groups more closely;
he added together all of the different words of indivie
dual subjects and compared the results with their
subsequent behavior in a group. The real groups were
found to be clearly inferior to the "summated" groups.
These results suggested that real groups did not take
into account the resources of all members.

The most frequently cited study in the area of
group problem solving is that of Shaw (1932). 1In the
first half of the experiment, individuals and groups
of four worked on three similar eureka problems. In
the second half, subjects were given three rather

different problems--unscrambling words to form the
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last sentence of a prose passage, unscrambling words to
create the last lines of a sonnet, and discovering the
shortest route for two school buses, given certain
conditions.

Shaw interpreted her results as indicating a clear
superiority in favor of groups, and accounted for this
on the grounds that groups tended to reject incorrect
solutions by members and to guard against errors.
However, Shaw grouped all of the problems together when
comparing the proportion of correct solutions among
groups with that among individuals. Lorge and his co-
workers have closely scrutinized the Shaw experiment.
“For the first period, on the so-called Eureka problems,
three of the 21 individuals and three of the five groups
solved the first problem; no individual and three groups
solved the second problem; and two individuals and two
groups solved the third problem. No individual solved
more than one problem, but just three groups made the
eight group solutions. Two groups and 16 individuals
never solved any of the three puzzles. For the
second period problems, three of 17 individuals and
four of the five groups solved the first problem
completely; a fifth group and seven other individuals
made just one error. No individual and no group
solved the other two problems. Group superiority

rests only on the eight solutions by groups in contrast
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with the five by individuals. In general, interpreters
of the Shaw experiment have disregarded not only the
similarity among the three problems but also the fact
that the solutions were based on the sum overall prob-
lems rather than on the number of identical solutions
by groups. For instance, when only the solutions by
individuals and by groups for the first problem are
compared, there is no statistically significant
difference. Shaw neither discussed the fact that two
of the groups never solve any of the three puzzles, nor
the relative efficiency of three solutions among 21
individuals versus three solutions for five groups of
four members each, i.e., 20 individuals altogether'
(1958, p. 355).

Marquart (1955) advanced criticisms similar to
those of Lorge. Essentially replicating the Shaw
experiment, Marquart obtained comparable results with
groups and individuals. She analyzed her data so as
to take account of the effect of grouping individuals,
and she then discovered the group-individual discre-
pancy to be negligible. 1In fact, individuals had a
slight advantage over groups. (Note the similarity
between Marquart's results and the earlier findings
of Watson (1928).

Thorndike (1938) obtained the usual group

superiority in comparing individuals with groups on
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four verbal problems. The problems were presented so
that some subjects could make only a limited number of
responses to them; other subjects were allowed an un-
limited number of responses. Thorndike hypothesized
that as the range of responses increased the superi-
ority of groups over individuals would increase. In
general, the results tended to confirm his hypothesis.
Unfortunately, Thorndike made no analysis that would
throw light on the question of group superiority

based only on the pooling of individual solutions.

Husband (1940) found pairs superior to individuals
in solving word puzzles and arithmetic problems.
However, groups needed to solve the problems in one=-
half the time required by individuals in order to
"justify" themselves. When the data were analyzed in
terms of how efficiently groups and individuals used
their time, he concluded that the time saved by the
pairs was never more than a third.

Taylor and Faust (1952) compared group and indi-
vidual performance on a game of Twenty Questions which
resembled a eureka problem. The proportion of solu-
tions favored groups over individuals. However, in
terms of man-hours required for a solution, individuals
were superior.

Faust (1959) reported two group-individual experi-

ments, identical except for a slightly different
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composition of subjects. 1In both experiments he found
that four-man groups averaged more problems solved,
both verbal and spatial, than did individuals. When
these observed groups were compared with "nominal®
groups, generated from the mathmatical model of Lorge
and Solomon (1955), a significant difference was found
on only one of the problems used with the second experi-
ment. In this case the real group was superior to the
"nominal" group. Thus, the results of Faust's well-
executed study are generally in line with previous
experimental evidence.

Faust pointed out that the Lorge-Solomon Model A
provides a much-needed baseline against which to compare
the effects of social interaction in real groups. (The
same proposition is advanced later in the present
study) .

The preceding discussion suggests that more groups
are likely to solve a problem than individuals. That
the interpretation is not as simple as it first appears
is indicated by the fact that the group superiority
disappears when individuals are artificially pooled in
a manner approximating the group aggregation. On some
efficiency méasures, time for example, the individuals
turned out to be superior when pooled in this way.

Watson (1928) even suggested that group interaction,

instead of providing an extra boost, resulted in
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restraint.

A recent review by Lorge et al. (1958) provides a
convenient summary of group-individual experiments. One
should consult this review for studies not limited to
ad boc groups and eureka problems.

The above studies suggest that small, problem-
solving groups have not received the attention they
deserve in regard to formal models or the precise
organization of group~individual solving data. The
recommendation by Hays and Bush that existing models
from other fields may be modified for use with small
groups seems quite appropriate, considering the impor-
tance of the work of Bush and Mosteller (1955) to the

developments in the next chapter.
SUMMARY

The study of group problem solving requires (a)
an apt and relevant description of the problems used
and how they are solved, (b) a systematic way of repre-
senting both the pooling of individual work and social
interaction in group work, and (c) a sufficient volume
of data to permit an exact comparison between groups
and individuals. A review of previous work indicates
that (a) There is no suitable framework for describing
problems. (b) The pooling of individual accomplishments

is clarified by the Lorge-Solomon model, which however
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does not deal with social interaction. Some possibi-

lities of social interaction are bracketed but not
specified by the work of Hays and Bush on group learning.
(¢) Experimental comparisons of group and individual
problem-solving are neither numerous nor, in the main,
done on a sufficiently large scale to give a clear indi-

cation of whether, and to what degree, groups can out-

perform individuals.







CHAPTER II

THEORY

The problem solving process, which begins with the
presentation of the problem, is terminated when the sub-
ject arrives at a correct solution, when he arrives at
an incorrect solution he believes correct, or when the
experimenter arbitarily ends the experimental session.
Although the proportion of correct solutions is a
standard means of describing experimental results in the
area of problem solving, the inefficiency of such an
approach is revealed by the question: What proportion
of correct solutions occurs after what time interval?
The choice of different time intervals (two seconds,
three minutes, 12 hours, etc.) can yield different

proportions. A distribution of solution times over

some interval is more desirable. Consequently, enough
time should be allowed so that the subjects themselves
terminate the process. These more nearly complete
data are advantageous for: (a) classifying problems,
and (b) constructing a model for prediction of group
problem solving.

In this chapter attention is focused on the
distribution of the times when the problem solving
process terminates, and the correctness of answers,

when subjects work individually and when they work in

20.
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small ad hoc groups. When groups of subjects work to-
gether on the problem it is also possible to observe
their statements, questions, etc., and to study the
social structure which emerges during the problem
solving process.

The central issue is the prediction of group per=-
formance from individual performance. It does not seem
feasible to attempt to predict the performance of each
individual or group separately, because one can collect
only a small amount of information about each subject
aside from his actual problem solving performance.
Hence the problem may be approached through a stochastic
model which attempts to account for the distribution of
observations gathered. 1In this way the complete data,
including mean, variance, and shape of the obtained
distribution, can be brought to bear on the theoretical
issues.,

CLASSIFICATION:
A MODEL FOR THE DISTRIBUTION OF SOLUTION TIMES

Under standard conditions a particular problem
should consistently yield a characteristic distribution
of solution times for samples of subjects drawn from
the same parent population. The following discussion
derives a theoretical distribution, using the approach

of Bush and Mosteller (1955, Chap. 14). Consider first
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that time is divided into short, equal intervals of
duration h. In any interval the subject may either
solve the problem or not. Imagine that there exists a
probability p that the problem is solved in the N-th
interval, given that it has not been solved previously.
The probability p is taken to be constant over intervals
and each interval represents an independent event.

The probability that the problem is solved in the
first interval is p. The probability that the problem
is first solved in interval 2 is (1-p)p, which is the
joint probability that it is not solved in the first
interval and is solved in the second. The probability
that the problem is solved in the N-th interval is
(l—p)N-lp, the probability that it is not solved in any
of the first N-1 intervals and then is solved in the
N-th interval. Since each interval is of length h the
solution time T, when the problem is solved in the N-th
time interval, is
(1) T = Nh
Let the probability of solution at time T be called
P(T). In this simple one-stage process,

(2) P(T) = p(1-p)" "

which is the geometric distribution. This is a posi-
tively skewed distribution with mean l/p and variance
(1-p) /5.

The problem solving processes dealt with here may
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be expected to approximate the situation given above,
except that solution of the problem may require the
completion of more than one stage. Now consider that
there are k stages to be accomplished, and that solu-~
tion of the problem is recorded when all k stages have
been completed. Assume further that each of the k
stages has probability p of being completed in a given
time interval of duration h, and assume that h is
chosen so small that two stages are never completed in
the same interval.,

The probability that the k-th stage is completed
at trial N is given by the negative binomial (Pascal)
distribution,

N-1 N-k
(3 P(N) = lk-l) p(1-p)
An intuitive justification of this formula is given by
Bush and Mosteller, and its derivation is also discussed
by Feller (1957, pp. 155-157). (Note that (3) reduces
to (2) when k = 1). It can be shown that the expected
number of intervals, E(N) is
(%) E(N) = k/p
and, since each interval is of duration h, the expected
time to solution is
(5) E(T) = h.E(N) = hk/p .
Furthermore, the variance of the negative binomial
distribution is
(6) o2 = k(1-p) /o .







2L,

The variance of the time scores is obtained by multi-
plying the variance of N by hz, which gives
(7) g?m - w2k (1-p) /p”
Other statistical properties of the Pascal distribution
are discussed in standard sources on probability theory
and mathematical statistics (Fisher, 1950; Feller, 1957).

The above model is not quite satisfactory because,
in the problem solving process, time is measured as a
continuous variable rather than as a succession of
finite intervals. The above argument is applied to
continuous time by letting the duration of an interval,
h, approach zero as a limit while keeping the "rate,"
or probability per unit time p/h, constant. Let the
first interval be designated 0, the second 1, etc.;
since T = Nh, the geometric distribution of (2) becomes
(8) P = ) - @) Pp .
Let p/h = Abe a constant so that p = Ah and
(9) 1) = -An ™2 An
If one takes the limit of p(T) as h-=) 0, the term /\h
goes to 0 and, consequently P(T) approaches 0. There-

fore let

(10) 1 A = 1im (1-Aw P Ay
i Rl b

h
- Alim (1- /\h)T/
h==> 0
T/h =
and it can be shown that (1- Ah) approaches e )'T

Hence,

(11) ST A ) = Ae” Az
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If each individual stage has the distribution
£(T; A,) = As- AJ; the distribution of solution times

to complete k stages in the gamma distribution

(12) et Av k) = Ao "‘T< An ¥kt
e

The gamma distribution g(T; )., k) may be readily
obtained from f(T; A ) by the use of moment generating
functions, but such a development is beyond the scope
of this thesis.

From formula (12),

(13) B(T) = K/A
and
(1) o?m =/ A% .

Figure 2.1 shows the graph of gamma distributions
with k = 2 and k = 4. As k increases the graph of the
function becomes more nearly symmetrical.

The parameter k depends on the structure of the
problem and how it is solved by the subjects; k must
be estimated from the data.

An estimate of k can easily be obtained using
only the first two moments of the distribution. Recall
that equations (13)

(14) gave the mean and variance as

E(T) = X/A

0’2(1‘) = k/ A?
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Therefore,
s el - /A% -
ofm ok /A®
Replacing the population expectation and variance by
estimates from the data, T and st respectively, one

has

(16) Ra_@m® .

PREDICTION OF GROUP FROM INDIVIDUAL PERFORMANCE:
LORGE AND SOLOMON MODEL
Lorge and Solomon (1955) have suggested a non-

interactional ability model, which however does not
take into account the distribution of solutions over
some experimental time interval. Their model provides
the main example of an approach to the prediction
problem. Lorge and Solomon submit the hypothesis that
group superiority on eureka problems is not due to
social interaction, but simply to the abilities of the
members. "Such an hypothesis may be expressed in terms
of two ability models: (A) group superiority is a
function only of the ability of one or more of its
members to solve the problem without taking account of
the interpersonal rejection and acceptance of sugges-
tions among its members; (B) group superiority is a

function only of the pooled abilities of
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its members. The latter model, B, implies that any
problem may be composed of, and solved in, two or more
stages. Model B reduces to Model A for one-stage
problems.” (1955, p. 140)

Consider first the Lorge and Solomon Model A.

Let
P = probability that a group of size r solves
¢ the problem;
PI = probability that an individual solves the
problem.
Now 1-P_ is the probability that an individual will not

Re
solve the problem, and the probability that none of a
r
)

group of r persons will solve is (1-PI « Consequent-

ly the probability that a group of size r will solve

the problem is

r
(17) P, = 1-(1-P)) .
Equivalently

l/r
(18) Py = 1-(1-PG) .

Model B: Recall that a problem may be solved in two
or more independent stages. Bquations (17) and (18)

may then be generalized to the k-stage case., Let P_.

I3
be the probability that an individual will solve
stage j.

: S
= -(1=-P.. Py = P
(19) B [1 (1P} 5 Pp 13
j=1 i=1
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where Model A applies at each stage j. If PIj = P is
assumed to be the same for all stages,
(20) Py = [1-(1-?11/“)’] ¥

(The argument may be extended to the case where
PIj is not constant from stage to stage).

The Lorge-Solomon model does not take into account

the distribution of solution times, and the results may

depend upon the time given the subjects.
PREDICTION: COMBINATION OF CONTRIBUTIONS MODEL

The Lorge-Solomon approach may permit prediction
of the proportion of groups which solve a problem, but,
as just indicated, such a proportion depends upon the
time given the solvers. A satisfactory resolution of
the theoretical problem involves predicting the distri-
bution of group solution times from the distribution of
individual solution times.

The problem will first be taken up for the idealized
case in which all individual subjects and all groups
solve the problem. It is necessary later to consider
the consequences of having nonsolvers in the experiment,
but this discussion will be postponed until later.

To evaluate the possibility of group facilitation
or interference, one must first decide the performance
which would result if the members of the group proceed

without any important effect on one another's success.
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In analyzing this situation it is most convenient
to proceed at once to the model of continuous time.
Recall that in the case of individual solvers the
probability of solution per unit time was ).. If one
has a group of r independent solvers contributing to
the group, then the probability per unit time is rA .
This approach can be used, despite its great simplicity,
because it is assumed in going to continuous time that
the time interval h is very small. As h approaches
zero the probability that two different subjects will
both make a contribution at the same time becomes
negligible. Hence, there exist none of the diffi-
culties, discussed by Lorge and Solomon, of taking
account of the possibility that a group may contain
more than one solver. Since the concern here is with
solution times, even if a group has more than one
solver, one may neglect the infintesimal possibility
that both solve at exactly the same time. Supposing,
in the same spirit as the Lorge-Solomon model, that the
group solves the problem immediately after the first
subject solves, groups will differ from individuals
only in the probability-per-unit-time parameter, which
in groups is r/\ .

The above argument obviously applies to the one-
stage problem. However, it should be clear that it

applies equally well to the k-stage problem, for the
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number of subjects in the group can in no way change
the number of stages in the problem. The prediction
of group performance from individual performance, in
this idealized case, is very simple. Let the gamma
distribution for probability-per-unit-time of A. and k
stages be called g(T;;{, k).

Hypothesis: If performance of individual solvers
is described by g(T;;{, k), then performance of groups
of r solvers will be described by g(T; rAh, k).

As was mentioned at the beginning of this chapter,
subjects can arrive at wrong answers. In the case of
individuals working alone one can make quite adequate

estimates of the proportion of subjects who will not

arrive at the correct answer. When there is, say, one
such person in a group of four, the group will very
probably arrive at the correct answer. In fact, the
nature of the experimental problems being what they
are, it is unlikely that a whole group of size four will
arrive at a wrong answer. However, it seems evident’
that a group member, who alone would arrive at a wrong
answer (or fail to arrive at an answer at all), is not
likely to aid his group in arriving at the correct
answer.

One may formulate two hypotheses about the effects
of these wrong answers and no answers, and these two

hypotheses have different implications for the
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distribution of success of groups. One asked of the
data will be which of these two hypotheses is the more
reasonable.

The first hypothesis is that non-solvers are non-
functional in their groups. If so, a group with two
solvers and two non-solvers will solve the problem
just as rapidly as a group of two solvers alone. This
would happen if solvers suppress non-solvers, forming
an intellectual "hierarchy." The second hypothesis,
which seems to square better with informal observation,
is that the non-solvers consume some share of the
groups working time, though they do not contribute to
solution., This would reflect an equalitarian group
structure. In this case, a group with two solvers and
two non=-solvers should take longer than a group made
up solely of two solvers. If it is assumed that non-
solvers consume their share of the group's time, the
following proposition is suggested. Let A be the
number of solvers and B be the number of non-solvers in
a group, where A + B = r is the number of persons in the
group. The probability of solution-per-unit-time for
each of the A solvers will be [/ (A + B A . Thus, ir
there are A solvers in the group and B/ (A + Bﬂ A is
the rate at which each contributes, the group rate is
AL, [A/ (A + E)l)\ = [AZ/ (A + B)]A %

In other words, if the distribution of solution
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times of individual solvers is described by g(T;)., k),
then the two hypotheses are:

Hypothesis 1, Hierarchical Model: Non-solvers have
no effect, and the group's distribution of solution
times will be described by g(T; A A~, k) ;

Hypothesis 2, Equalitarian Model: Non-solvers
consume time, and the group's distribution of solution
times will be described by g(T; [Az/ (A + Bﬂ ‘A » k).

Except by extremely detailed and accurate protocols
of group discussion, solvers are indistinguishable from
non-solvers within a group. However, suppose that pro-
portion a of the individuals solve the problem correctly,

and the remainder, arrive at a false conclusion or no

answer and are non-solvers. Since the groups are
formed randomly, the probability that a group will have
exactly A solvers and r-A = B non-solvers is given by
the binomial distribution,
(21) P (4) -(;] R

The performance of a collection of groups can now
be predicted. Hypothesis 1, that non-solvers have no
effects, gives the proposition:

The distribution of solution times of a collection

of groups will be described by (Hierarchical Model)

r
(22) W (T) = P (A) (T A, W] .
w(D Ago [ e ]

Similarly, Hypothesis 2, that non-solvers consume

time, leads to the proposition:
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The distribution of solution times for a collection
of groups will be described by (Equalitarian Model)
@) W - § [P e [/ s m]X, W .

A=0

—These last two distributions do not have any very
simple explicit forms. However, all the parameters
(a, A;, and k) can be estimated from the performance of
individuals (by the method of moments), Then it is
possible to compute the above distributions simply by
taking the gamma distributions from a table (Pearson,
1922) for various values of k and T, and computing the
weighted average, following the above equations through.
With groups of size r = 4, this process is not overly
laborious. The predicted distributions can be compared
with the obtained results.

If, as in the present study, the fitted gamma
distribution is very close to the obtained distribution
of individual solution times, the predictions can be
made directly from the distribution of solution times
obtained from the individual solvers without going
through the fitted gamma distribution.

A final note on the use of estimates in making
predictions is in order. Some practical problems are
associated with the use of Q rather than the parameter
itself. The sampling distributions of these estimates

are not known and it is not possible to set up confidence
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intervals in the customary fashion. Large samples

(such as those used in the study to be reported in
Chapter IV) will be of some assistance with this prob-
lem. If predictions are made from Q instead of k, but
the predictions are treated as fixed values, one fails
to take account of the sampling variations of the pre=-
dictions. Hence, any regular statistical test is overly

stringent.
SUMMARY

The distribution of group solution times is pre-
dicted from A (individual solver rate of solution),

k (stage-structure of the problem), and the distribution
of A (the manner in which groups are formed). The
parameters k and ).are estimated from the first two
moments of the sample of individual solvers. The
proportion of all individuals who solved a problem, a,
can be used with the binomial formula to give P (A).

The intuitively more difficult problem of predicting
the distribution of group solution-times actually turns
out to be easier than the problem of predicting the
probability of group solution. Conceptually, this

represents an improvement over the Lorge-Solomon

formulation.







CHAPTER III

EXPERIMENTAL PROCEDURE

The quantitative models stated in Chapter II were
submitted to experimental test. A large number of
college students were given several Eureka problems to
solve, and their times to completion and correctness of
solution were observed. These data are the basis for
evaluating the gamma-distribution hypothesis, and serve
as the source of estimates of X, k, and a. A number of
ad hoc groups of four students each were also given the
same problems under similar conditions except that the
members of group cooperated in solving the problems.
Comparison of group with individual performance were
used to choose between the Hierarchical and Equalitarian
models, Data on communication and social structure

within the working groups were also collected.
SUBJECTS

The subjects were 267 volunteers from an introduc-
tory psychology course. The sign-up sheets had spaces
for four subjects at each experimental session., When
four subjects signed up and appeared on time, they were
tested as a group. Whenever a group could not be formed,
as when only two or three subjects signed up, a subject

failed to appear, or some other accident occurred, the

36.
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subjects present were tested as individuals. This method

of assignment to the Group and Individual Conditions
was not random, but the assignment of any particular S
who appeared on time at the laboratory depended solely
on the behavior of other students who did or did not
sign up, or who did or did not report on time. It is
likely that the Group and Individual Conditions were
composed of comparable samples of the population. This
recruiting method was used to maximize the number of
four-person groups obtained with the least waste of
subjects. Subjects at any one experimental session,
group or individuals, were of the same sex. There<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>