SOME THEOREMS ON
EXTENDING AUTOMORPHISMS

Thests for the Dogrn of Ph. D.
MICHIGAN STATE UNIVERSITY
Franklin D. Demana
1966



THESC

This is to certify that the

thesis entitled

"Some Theorems on
Extending Automorphisms"

presented by

Franklin D. Demana

has been accepted towards fulfillment
of the requirements for

Ph.D. gegree in_Mathematics

Q7 A,

0 Major professo

Date_ March 14, 1966

Q-169

LIBRARY

Michigan State
University






ABSTRACT
SOME THEOREMS ON EXTENDING AUTOMORPHISMS
by Franklin D. Demana

One method to gain some information about the automorphism
group, A(G), of a group G is to consider classes of subgroups of G
on which the automorphisms act as permutations. Two basic problems
must be contended with in any investigation of this kind. First,
given a subgroup A of G and an automorphism a of A , does
there exist an automorphism y of G such that y|A = a? Secondly,
given a normal subgroup A of G , a an automorphism of A , B
an automorphism of G/A, does there exist an automorphism y of G
such that y|A = a and v induces B on G/A ? In chapter one we
consider these problems and now list some of the results we have
obtained. This list is not meant to be complete but to give ex-
amples of the type of results obtained.

§1) Let G = AB ,_‘A<1G, a € A{A), and P € A(B). Then
necessary and sufficient conditions that there exist vy € A(G) such
that y|A = aand v|B =P are that

¢} alAMB = BJANB ;

(ii} ma =an on A,
b bﬁ

(2} let G =AB, AQG, ANB = (1), and « € A(A). Then neces-
sary and sufficient conditions that there exists y € A(G) such that
Y|A = a are that there exist B € A(B) and a function f from B

to A satisfying
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1
(i) f(b;b,) = £(b;)f(b,) for all by, b, € B;

(ii) ma = am on A.

b £(b)bP
(3) Let G be the relative holomorph of A by K with
Z(A) = (1). Then a necessary and sufficient condition that a € A{A)
can be extended to G 1is that there exists an automorphism © of
K such that o !pa = p® (mod I(A)) for all B ¢ K.
n

(L) Let AQG, G = ) ap,; G/A = {5y, By, +++, B},

a ¢ A(A), and B € A(G/A). Then necessary and sufficient conditions

that there exists y € A(G) such that y|A =a and y|G/A =8 are
that
(i) there exists a function f from G/A to A such that
-1

b
b = -a b 1 = b B = b
f(Bibj) ajs f(Bi)f(bj) 3 where bibj aijbk and b, b,

5
(ii) m_a = am, on A .
b, £(b,)b.

(5) Let G =AB, AQG, A()B = (1), and vy € A(G) such that
Y|A = a € A(A). If BY = x"1Bx for some x € A then the function
f , see (2) above, from B to A induced by y is f(b) = x‘lxb_B
where b = f(b)bB and B € A(B).

It would be nice to have a result like (2) above in case A 1is
supplemented in G 1i.e., there exists a subgroup B of G such
that G = AB and A(B # (1). Although this is not possible we
are able to obtain something in this direction by looking at a re-
stricted class of supplements. Next we turn our attention to lift-

ing power and central automorphisms. If A 1is a normal subgroup of

G = AB we define
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Hom (,Z(A)) = {f € Hom(a,z(A))|f(a) # a~! for a ¥ 1]}

1]

Hom (A,z(n)) = {f ¢ H-ém(A,Z(A))\f(b-lab) = b !f(a)bl.
Then we show that

(6) let G =AB with AQG . If f €Hom(A,2(A)) and
AMB < ker f then the central automorphism Qry aaf = f(a)a , of
A associated with f can be extended to G.

(7) Let G =AB with AQG . Then v € B(A,G) = {y € A(G) |AT=A)
is central if and only if there exist f and g such that

(i) £ ¢ Hom(A,Z(G)(MA), g € Hom(B,2(G)), and f(a)g(b) <
(ab)™! for all ab # 1
(ii) f(b lab) = f(a) for all a € A and b € B;

(iii) f(b) = g(b) for all b ¢ A(B .
Other results of this type are obtained for power automorphisms.

Now let B(A,G) denote those automorphisms of G which leave
A invariant and C(A,G) those automorphisms which fix A element-
wise. Then we obtain the following results:

(8) let G = AB, AQG, and AMB = (1). If |a]| #1or 2
then A has a nontrivial automorphism that can be lifted to Q.
let G = AB with AQG . We define B = {n, € A(A)[b € B}, Then

(9) If G=4B,A<dG, Cgla) = (1) , B" QA() , and AB
is a characteristic subgroup of A <then every automorphism of A can
be extended to G i.e., B(A,G)/C(A,G) ~ A(A).

(10) Let A be a normal abelian subgroup of G . Then
|c(A,G)| = 1 if and only if G is abelian, [G:A] = 2

is odd.,
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(10} tells us when an automorphism of A has a unique extension
to G since |C(A,G)| is the number of ways an automorphism of A
can be extended to G .

In chapter two we turn our attention to the following situa-
tion. Let A be a complemented subgroup of G and denote by 2
the set of all complements of A in G . If D(A,G) denotes those
elements of B(A,G) which fix every complement of A then
B(A,G)/D(A,G) = X is a permutation group on §} . Our goal was to
characterize wheﬁ all complements of A are conjugate in terms of
a permutation condition on (X ,{). Although we were unable to do
this we did obtain some results in this direction,

(11) If (X ,Q) is a primitive permutation group then all
complements of A are either conjugate or normal.

(12) 1f (X, ) is a primitive permutation group then either

A is characteristically simple or if H 1is a characteristic sub-
group of A then H NA(B) = <§A(B) .
(13) 1If (X, ) 1is 3/2-fold transitive then all complements
of A are either conjugate or normal provided any one of the follow-
ing conditions hold:
(i) (|a], |B/B']) =1 where B' is the derived group of B;
(ii) if there exists a normal subgroup H of G such that
H=A and HON,(B) = (1);
(iii) if NA(B) is a Hall subgroup of A with a normal comple-
ment;

(iv) if z(A)N,(B) = Z(NB)) and there exists at least one

x €A - N, (B) such that (|x| , [N, (B)]) = 1;
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(v) if A _(B) is not nilpotent.
A

We also obtained some results in case (X ,Q) is a sharply

doubly transitive permutation group.
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INTRODUCTION

When studying automorphisms of a group G some very natural
questions arise. Can we start with a subgroup A and by "extend-
ing" its automorphisms obtain every automorphism of G ? Of course
the answer to this question is no if A 1is not characteristic in
G . If A 1is characteristic then the answer is yes but how to do
this is another problem. One might be tempted to think that if A
is characteristic then every automorphism of A ought to be extend-
able to G . The example in 1.1 shows this conjecture to be false.
Since not every automorphism of a subgroup can be "lifted" to G we
begin by finding necessary and sufficient conditions under which an
automorphism can be "extended". First we clear up the notian of "ex-
tending" or "1lifting" automorphisms.

If A 1is a subgroup of G and a an automorphism of A then
a 1is "extendable" or "liftable" if and only if there is an automor-
phism y of G such that YlA = a. Also if G =AB and 1 € Hom(B,G)
then the pair a, 7 is "extendable" or "liftable" if and only if
there is an automorphism y of G such that Y\A = a and YlB = T
Finally, if a 1is an automorphism of the normal subgroup A and
B an automorphism of G/A then the pair a, P is "extendable" or
"liftable" if and only if there is an automorphism y of G such
that y|A = a and y induces B on G/A.

In chapter one we obtain necessary and sufficient conditions in
each of the cases mentioned above. We are also concerned with the
problem of lifting certain types of automorphisms, namely, power auto-

morphisms and central automorphisms. Let B(A,G) denote the set of
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automorphisms of G which leave 4 invariant ang C(A,G) “the set
of automorphisms of G which rix A elementwise, Then C(A,G) is
normal in B(A,G) anq B(A,G) £(A,6) is isomorphic to a subgroup
of the automorphisy group of A, 1Ip fact, IE(A,G),/C(A,G)I is the
number of automorphisms of that can be extended to G |, We try
to find out Something about the structure of B(A,G),/C(A,G) and
also find conditions when every automorphisn Or no automorphism can
be extended to G, Finally, under very special hypothesis on G,

We count the number of Ways a particylar automorphism of A can be
lifted to G and when an automorphism of 5 can be paired with a
unique automorphism of g complement of 4 and lifted to G.

In Chapter Two Wwe restrict our attention to a complemented sub-
group A of g group G. Then we define Q ¢4 be the set of all
complements of 4 ip G. The set D(A,G) of a11 automorphisms of
G which fix every complement forms a normal subgroup of the group
B(A,G). We then see that the factor group X = B(A,G) D(A,G) is
a permutation group acting on the set Q , Naturally one would like
to know necessary and sufficient conditions that will guarantee when
all complements are conjugate, Although we are not able to do this
at this time we do obtain several in\:eresting results in this di-
rection. What we do is impose the conditiong Primitive, 3/2-fold
transitive, and sharply 2-fold transitive on X and investigate the
complements in these cases. If (X ;) s Primitive then we show

that a1} complements are either normal or conjugate, By placing
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certain additional restrictions on G we get the same result in
case (X ,Q) is 3/2-fold transitive. We also try to find out
something about G , A , and X wunder these hypotheses. The re-
sults are not complete and many interesting questions remain un-
answered.

Our main interest was in finite graups and, in fact, all groups
considered in Chapter Two and 1.l of Chapter One are assumed finite.
However, in 1.2 and 1.3 of Chapter One the results hold as stated
for infinite groups unless otherwise stated.

The reader is asked to consult the index of notation for

identification of symbolic notations of groups, sets and relations.



CHAPTER I

1.1 Introduction

Let A be a normal subgroup of the group G. The two main prob-
lems considered in.this chapter are lifting automorphisms of A to G
and pairing an automorphism of A with an automorphism of G/A and
lifting to G. In 1,2 we give sets of necessary and sufficient con-
ditions solving these problems under various hypotheses on G, The
question of lifting certain types of automorphisms, namely power
automorphisms and central automorphisms, is considered in 1.3.
Finally, in 1,4, we investigate the group B(A,G) to some extent.

It is difficult to make very general statements since the prob-
lem considered is quite complex, To illustrate this we first show
that given any odd prime p and any positive integer n greater than 1

there exists a group G with characteristic subgroup A such that

n-2 n
G = AB, AMB = (1), |B| = 2, and +%%%%+ = E——5§§—lll. The latter

implies that for each automorphism of A that can be extended to G
p’2(p"-1)
there are at least ———5:%-——— - 1 automorphisms of A that cannot
be extended to G.
Let A be an elementary abelian p-group of order pn generated
. -1
by aj, ..., a . Let B = <b>where b2 =1, ba;b = a;", and ba.b = a;

for i = 2,3, ...,n. Now A is a normal p-Sylow subgroup of G = AB

so clearly characteristic, The center of G is generated by Bpye0058

so any automorphism of G must leave < a,,...,a > invariant, Let a be
any automorphism of < Q2500053 > and r and s any two integers such

that 0O =r <p-1and O <s = p-1. Then the mapping y of G defined

S
by ar = aj, aY¥

a . r. . ,
;=a; (i=2,...,n), and b’ = ajb is an automorphism

L
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of G and one can easily check that these are all the automorphisms
of G. It is well known [3, pg. 86] that the order of the automorphism

group of <@,, ...,a > is G -1 (" -p) ... (" '-p™"?). Therefore,

we have |A(G)| = p(p-l)(pn-l—l)(pn—l-p) e (pn-l-pn-z) so that
By | _ 1) ("p) ... ("-p") M2 "1)
a@G)| pl-1)(" -1 ) ... (" 1p™?) p-1

1.2 Necessary and Sufficient Conditions for Extending Automorphisms

Definition 1.1: Let A be a subgroup of G. If B is a proper

subgroup of G such that G = AB then B is said to be a supplement of
A in G. Moreover if A()B = (1) then we say that B is a complement

of A in G. We refer to A as being supplemented or complemented in G,

Let A be a normal subgroup of G which is not contained in the
Frattini subgroup of G. It has been shown [2] that A possesses a
supplement, say B, in this case. The first two results we obtain

are generalizations of those appearing in [5].

Theorem 1.2: Llet G = AB, AQG, a ¢ A(A), and B ¢ A(B). Then
necessary and sufficient conditions that there exist y € A{G) such
that v|A = a and v|B = B are that

(1) «|AyB = BIAMB ;
(2) ma =amf on A.
The proof of this theorem follows immediately from the more

general result:

Theorem 1.3: Let A, A;, B, B, be subgroups of G with A and A,
normal in G, A and B isomorphic to A, and B, respectively under ¢ and

T, and G = AB = A;B,. Then necessary and sufficient conditions for
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the existence of an automorphism y of G such that y|A = ¢ and YlB =T
are that
(1) o|AMB = 7|AMB ;

(2) Mo = oan on A.

Proof: (a) Necessity

Let y € A(G) such that y|A = g and y|B = t. Then clearly
o|AB = t|A(\B. Ifa €Aandb €B then (ab)¥ = a"b¥ = a%b" =
BT 2% - 57a®. e can also write ab - bblab so that (ab)¥ =

(bb™1ab)Y = BY (b 'ab)Y = (b 'ab)® = b"a%%. Hence we have

1}

T T
bTaGb = bTabo or ao'b abc for all a € A. Therefore, ﬁbo = gt .
bT

(b) Sufficiency
o

.
Now G = AB = A;B, with A = A,, B> B,, olAr\B =

T|AMB, and mo = on . lLet ab (2 €A, b € B) be any element of
b

G and define v by (ab)” T

n

for i = 1,2 then ay'a, = bzb]l € ACB and since o|A/MB = 7|A(MB
we have
-1 -1
(az al)o = (bzbl )T
_1 -1
(23)" af = b3(p})
afb] = agb;
(albl)Y = (agbz)Y
Hence v is well defined.

-1
If ab € ker y i.e., if (ab)’ =a%" =1 thena® = (6™)" €A, MNB,

_1 _ -1 _ R 1
and since o " |A; /B, = 7 1\Alf"\Bl we have (a9)° = [(®T)"'iT or
a =b !, Thus ab = 1 and ker v = (1). So yis 1-1 and clearly y is

onto since G = A B,.
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Now let g, = a,b, and g, = a,b, be any two elements of G where

a, €Aand b, €B for i = 1,2. Then g,9, = a;(b;asb; )b;b, =

-1 -1
bl Y o 1 °© T T .
a;a, bjb, so that (g;g,)" = a;a; bib;. But mo = on . SO we have
b
-1
o T T
(9:92)" = aja, bib;

o] ObITbTbT
a3z 102

T O_-T
afbjayb; bibj

I

0L T, OpT
aib;asb,

(albl)Y(azbz)Y

S

i}

Therefore y is an automorphism of G such that Y\A = g and YlB = T,

Using this result we can obtain a set of necessary and sufficient
conditions for lifting an automorphism of a normal subgroup which is

not contained in the Frattini subgroup.

Corollary 1.L: Let G = AB, A G, and @ € A(A). Then necessary

and sufficient conditions that there exist y € A(G) such that y|A =«
are that

(1) there exists a subgroup B, of G isomorphic, say under T, to
Band G = AB,;

(2) «|AMB = 7|]AMB ;

(3) Mo = aan on A.



Proof: (a) Necessity
Let v € A(G) such that y|A =a. (1) is clear if we set B; = BY
and 7 = y|B. (2) and (3) follow immediately from Theorem 1.3.
(b) Sufficiency
From the sufficiency of Theorem 1.3 with A; = A and

o = a there exists y € A(G) such that y|A = a.

Now if we impose the stronger condition that A be complemented

in G then we can refine the conditions somewhat.

Theorem 1.5: Let G = AB, A QG, A/)B = (1), and « € A(A). Then
necessary and sufficient conditions that there exists y € A(G) such
that y|A = a are that there exist B ¢ A(B) and a function f from B

to A satisfying
b—ﬁ
1
(1) f(b;b,) = £(b;)f(b,) for all b,,b, ¢ B;

(2) ma = anf(b)bp on A.

Proof: (a) Necessity

Let v € A(G) such that y|A = a. Since A()B = (1) each g €G
has a unique representation as g = ab with a € A and b € B. Hence
we can write b = £(b)b" with £(b) € A and b’ € B where £(b) and b"
are uniquely determined by b. Thus f is a function from B to A.
Define p by bP = b*. B is well defined since b* is uniquely determined
by b. If by, b, € B then (byb,)" = £(byb,)(b,b,)P. But v € 4(G) so

we 2lso have »



(b;b,)Y = bbY

- £(b,)bf £(b,)pk

- £(b,)b8 £(0,) (F) P8
oD g g
= f(b;) f(b,) bibh

(b8t
£(b,) £(b,) bPof and since A7)B = (1)

Hence f(blbz)(blbz)ﬁ

(65) 7!
it follows that f(b;b,) = f(b;) f(b,) and (blbz)13 = bEbE.

Thus f has the desired property and B is an endomorphism of B. Let

b € ker P i.e., 5% = 1. Then we have [f(b)-Y_lb]Y - (b)) ! £(b)bP -
bB = 1 and since y € A(G) we must have f(b)_Y_lb =1, Now

b = 1”(b)Y-l € A since Y\A €A(A) sob € AMB = (1). So ker B = (1)
and B is 1-1. Clearly P is onto so B € A(B). Define 1 by bT = b’ =

f(b)bﬁ. Then, by the necessary part of Theorem 1.3, we have

a = amn = qam .
bT f(b)bB

b
(b) Sufficiency
Let f be a function from B to A and P € A(B) satisfying
(1) and (2) of the theorem. Define ¢ by b7 = f(b)bﬁ. Since f is
a function and P an automorphism ; is well defined. Let b, b,
be any two elements of B and we have
£(byb,) (b;b,)P
b]B
£(b,) £(b,) = bbpk

(b1b,)7

1}

£(b,)bP £(b,)p; ook

£(b,)bP £(b,)bk

I

- T
bT b] .
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Thus T is a homomorphism from B into G. Let b € ker 4 then bT =
f(b)b‘3 = 1 so that v - f() ' ¢ A. Since bP € Band A\B = (1) we
nust have b[3 = 1. Hence b = 1 since B ¢ A(B). Therefore ker = (1)
and , is an isomorphism. Set B; = BT then clearly G = AB; and since
n

a =a anm _ we have by the sufficiency part of Corllary 1.l

m =
b f)bP BT
that there exists a y € A(G) such that y|A = a.

The function f in the above theorem has two other properties

which will be useful later so we will establish them now.

Lemma 1.6: For the function f in Theorem 1.5 we have
(i) £(1) =1
(ii) £ 1) =b P rm) P for a1l b € B.

b}ﬁ
Proof: In f(b,b,) = £(b,) f(b,) set b, = b, = 1 and we get

n

£(1) = £(1)£(1) or £(1) = 1. Now set b, =b ' and b, = b and we get

f( b)) = £(b7h) f(b)bﬁ

£(1) = £~ Do P £(o)bP,

Since £(1) = 1 we have f(b ') = L f(b)_lbﬁ.

We notice that this function f need not be a homomorphism as will

be illustrated in the following example.

Example 1: G = <a,b>, A = <a>, B = <>, a'' = b2 = 1, and ba =
a 'b. Define the mapping vy by a¥ = ai, bY = aJb where (i,n) =1
and O < j < n-1. ¥y € A(G) and the function f from B to A induced by

v maps b to aJ. Since \aJ\ need not be 2, f need not be a homomorphism,
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If we add to the hypothesis of Theorem 1.5 the condition that
each automorphism of A induced by an element of B is an inner auto-
morphism of A then we can replace condition (2) of the theorem by
one of different form. Under this hypothesis we can write M= ﬁg<b)

with g(b) € A for each b € B and obtain:

Theorem 1.7: Let G = AB, A 4G, A()B = (1) and assume for each

b € B there is a g(b) € A such that m_ = ﬂg(b) on A. Then necessary

b

and sufficient conditions that a € A(A) can be extended to G is that

there exists a function f from B to A and a B € A(B) such that

9<bl~£3>
(1) £(b,b,) = £(b,) £(b,) for all b,, b, € B;

]

(2) £(b) = g(®)*g®P)™* (mod z(a)) for all b ¢ B.

Proof: (a) Necessity
Let v € A(G) such that yv|A = a. Then, by Theorem 1.5, there
exists a B ¢ A(B) and a function f from B to A such that f(b;b,) =

£(b,) £(b,)P1 and ma = a

b Since ”b = ﬂg(b~ on A we can write

)P )

f(b,b,) = f(by) f(bz)g(bl ). If x € A then it is easy to show that

nxa = am a so we have 0 (b)a = am - Thus
X 9 g(b)

m,a = am
b £(b)bP

"g)* T (o) P

ey E®) b

o) T By

n

Hence Tep) = ™ on A so that f(b)

ad) (P

g(b)ag(bp)'1 (mod Z(A)).
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(b) Sufficiency
Let a, B, and f be given satisfying (1) and (2).

Since n 6" n g we can rewrite (1) as f(b;b,) = f(b,) f(bz)b1
b, Q(bl )

for all b;, b, € B. Now an and since

£(o)pP RO OLTTf(b)ﬁg(bﬁ)

F(b) = g()%g®P)™! (mod Z()) we have n... = n A.
b g g mo we have ﬂl(b) g(b)ag(bﬁ)"l on Thus

i and since

TP T O w8 T )% wmh) o) g(b)°

g(b) € A we have an = ﬂg(b)a. Hence arm a.

g(p)® roypf @) T

Therefore, by the sufficierncy part of Theorem 1.5, there exists y € A(G)

such that y|A = a.

Definition 1.8: Let G = AK, A(K = (1), K < A(A) with defining

relations a ‘aa = a¥ for all a € A and a € K. Then G is called the

relative holomorph of A by K. If K = A(A) then G is called the

holomorEh of A.

Next we consider some of the previous theorem if we restrict G
to be a relative holomorph of A. If we try to apply Theorem 1.2 to

G i.e., try to extend a € A(A), © € A(K) to G then the condition of

b b

the theorem becomes Ba = aﬁe for all B € K since m, = B on A. There-

B

fore if y € A(G) such that y|A = a and v|K = © then y = m s the inner
automorphism of the holomorph of A induced by the element a, where
a € NA(A)(K). However, if we apply Theorem 1.5 to G with the added

condition Z(A) = (1) we have a little more success for we are able

to obtain the following result:
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Theorem 1.9: Let G be the relative holomorph of A by K with
Z(A) = (1). Then a necessary and sufficient condition that a ¢ A(A)
can be extended to G is that there exists an automorphism © of K

such that a”!pa = B° (mod I(A)) for all B € K.

Proof: (a) Necessity
Let v € A(G) such that v|A = a. Then,by the necessary part of

Theorem 1.5, there exists a © € A(K) and a function f from K to A

such that £(B,B,) = £(B;) f(BZ)BIe for all B;,B, € K and mua = an

B £(p)p°

Now nB = B on A so the latter condition becomes Pa = anf<ﬁ)ﬁe or

a-lBa = nf(B>Be. Hence a_lBa = Be (mod I(A)) for all B ¢ K.

(b) Sufficiency

Let a ¢ A(A), © € A(K) such that a-lﬁa s Be (mod I(A))
for all B ¢ K. Then we can write a 'Ba = ﬁf(B)ﬁp where f(B) € A.
First we show that f is a function from K to A, If f(B) is not
unique then we could have f(B) = a, or £(B) = a, where a'lﬁa =

® Hence m. =1u_ onA. Thus ala;l ¢ 2{n)

] -1
m = .
alB and a “Pa naZB a, a,

and since Z(A) = (1) we have a; = a,. Therefore,  is a function

from K to A. Let B;,B, be any two elements of K and we have

nf(ﬁlﬁz)(ﬁlﬁ2>e = a_lplﬁ2a

a” Bjaa” Bya

e e
e (p,)P1Tr(p,) P2

[SIPNC)
ﬁf(ﬁl)ﬂf(ﬁz)ﬁze BIBZ

BS. Now © € A(K) so we have

AL
)ﬁze and since Z(A)

since B?nf(ﬁz> =1

£(B,By) -

n

(1) it follows that

(8, "1 (B,
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f(BB,) = £(By) f(ﬁz)ﬁze. Since ﬂﬁ = B on A we can rewrite a-lBa =

"f(s)Be as “—l”g“ = ”f(g)"ﬁe- Thus mga Summarizing we

art "
£(B)p°

have a € A(A), © € A(K), and a function f from K to A such that

£(B;8,) = £(B;) f(BZ)BIe for all B,,B, € K and nBa = an nA.

[e]
£(p)p°

Therefore, by the sufficiency part of Theorem 1.5, there exists v € A(G)

such that v|A = a.

Now we consider a relative holomorph of A by a cyclic subgroup
of A(A). However, we do not assume that Z(A) = (1) in the result

that follows.

Theorem 1.10: let G = A <B>, B € A(A), and B—laﬁ - aP for an1

a € A. Then necessary and sufficient conditions that a € A(A) can
be extended to G are that

_1
(1) there exists a ¢ A such that a fa = naﬁk where (k,|Bl) = 1;

(2) al+ék+ézk+°°'+é(r—l)k = 1 where r = |B].

Proof: (a) Necessity

Let v € A(G) such that y|A = a. Then, by the necessary part of
Theorem 1.5, there exists a © € A(<p>) and a function f from <B> to
A such that f(B,B,) = £(B;) f(ﬁz)Bze for all B,,B, € <p> and 1 .a =

a on A. Since © € A(<p>) we have B® = B where (k, |B]) = 1.

£(8%) (89)°
Let r = |B| and we have

1 =17 = (gN)Y = (1T

(£ ()T

- I»<B) 1+ék+§2k+. . .+§<I‘— ! )I{Brk



15

) f<B)1+§k+§ak+...+g(r-1)k

Thus we have (2) with a = f(B). Now set t =1 in 7 ao=an Lo
B £(B7)(B")

C]

and we get mya = am . But WB = B on A so we have fa = am B

P £(p)p°

—l _
or a “fa = m B

(b) Sufficiency

let a € A(A), a € A, and k be given satisfying (1) and

k

(2) of the theorem. Define 8 by B® = B* then clearly @ ¢ A{<B>) since

i + _k+...+ —(i_l)k
(k,|B]) = 1. Let f(B) = a and define £(p') = £(p)’ P B
S t +71 14 _k+oolJ. _(S.}-t-l)k
for all i > 2. low £(p%p%) = £(p%*%) = r(p)"*F P and
. ~-Sk -k -(s-1k -] {t-1)k -sk
() <p0F T < ppy B B T gy e T

-k -(s+t-1)k
i} f(B)1+B tee et s+t

- £(8%").
-8
Hence we have shown that f(B,B,) = £(B;) f(BZ)Bl for all By,B, €

<B>. Since a—lﬁa = ﬂf(ﬁ)ﬁk we have

(a-lﬁ(l)i _ (ﬁf(ﬁ)gk)i

a—lﬁla ik

Tpcay B g (7B
-1,1 . _ ik
£(gh)

S .. -1
Now ﬁﬁ = B on A so we can rewrite the above equationasa 'm , a =

ﬁl
or m ., a =a

; n ( i)< i)e . Thus we have a € A7A),
p £(B7) (B

”f(Bi)”Bik
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8 € A(<B>), and a function f from <P> to A satisfying f(B;B,) =
-8
£(B,) f(ﬁz)ﬁl for all B;,p, € P>and m ;@ =am . . o0
p! £(g") (")

Therefore, by the sufficiency part of Theorem 1.5, there exists

n A,

v € A(G) such that v|A = a.

Now we turn our attention to the following question. Let A be
a normal subgroup of G, a € A(A), and B ¢ A(G/A). Under what condi-
tions can we put a and P together to get an automorphism of G i.e.,
under What conditions does there exist a y € A(G) such that v|ao =«
and y induces the automorphism B on G/A? We will use the notation
YlG/ﬁ = B to mean that y induces the automorphism B on G/A. First
we consider the special case when A is supplemented in G and notice
that we have essentially answered this question in Corollary 1.l.
In the following theorem G = AB and we must insist that coset repre-
sentatives be chosen from B so that all the statements made are

meaningful,

Theorem 1.11: Let G = AB, A A G, a € A(A), and B € A(G/A).

Then necessary and sufficient conditions that there exisis y € A(G)
such that y|A = a and v|G/A = B are that

(1) there exists a subgroup B;of G such that G =AB,, B I B, under
r, and ¢ induces B on G/A;

(2) alAMB = t|AMB;

(3) ma ¢ am _on A,
bT

Proof: (a) Necessity

Let v ¢ A(G) such that v|4 = a and y|G/A = B. Set B, = BY and
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T = Y\B. Clearly Y\G/h = ¢|G/A = B where we mean of course that coset
representatives are chosen from B. Now (1), (2), and (3) follow from

Corollary 1.l.

(b) Sufficiency

Let a, B, =, and B; be given satisfying (1), (2), and
(3) of the theorem. Then, by Corollary 1.lL, there exists y € A(G)
such that y|A = ¢ and yv|B = 7. Thus v|G/A = 7|G/A = B and we have

the result.

In the next result we only assume that A is a normal subgroup
of G. Let a set of coset representatives of A in G be fixed so that
we can write G = Ab,(JAb,\ ) - -(JAD where b; = 1. We denote the
elements of G/A by 51,52,"',56, If b, and bj are any two coset repre-
sentatives then we can write bib‘ = ai.b

J Jk

of aij constitute a factor set. For more information concerning

where aij € A and the set

factor sets the reader can consult [3, pg. 218]. Now if B € A(G/A)
we denote the image of Bi under P by b . where i is some positive

1
integer from 1 to n. Then with this notation we have the following

result.

n
Theorem 1.12: Let A QG, G = () Ab,, G/A = {b;,b,,---,5 1,
i=1

a € A(A), and B € A(G/A). Then necessary and sufficient conditions

n

that there exists y € A(G) such that y|A = a and v|G/A = B are that

(1) there exists a function f from G/A to A such that f(BiBj) =

at® £1(5,) £(®.) i’ a .
1] 1) ( J) i*j* )
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(2) LA

Proof: (a) Necessity

Let v ¢ a(g) Such that y|a = o and y|G/A = B.
b}’ = f(Ei)b « Where f(Ei) € A and Ef =

We can wri te

since v|G/A = B. Thus
- §
is a function from G/ to A since e
Sentation of the forp g

ach g ¢ g has a unique re-

pre-
abl. where z €A,
coset Tepresentativeg then bjbi

and bj be any two

“a b andBp -3
ij"k i

J Tk
we have (bl,bj)Y =b so that

Since v e (g)

b
Hence f(EiB‘.) = a;? f(El.)f(Ej) 1 a

which éstablishes (1),
a be any element of A a

Let

nd bl, any coset Tepresentatve and we cap write
b,
21

bl.a = b.abi bi =a bi' Hence
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b ! bla

ab _
£(G.)a i =a ! £(5,)

b £(6,)7 b:la
a i’

£(5,)b -
.

b,
i

Therefore, n _0 - aﬁ(f(ﬁi)b M)-1 or m a =am
7
(b) Sufficiency
let @ € A(A), B € A(G/A), and f be a function from G/A
to A which satisfies (1) and (2) of the theorem. Define y by (abi)Y =

a. . S . . .
a I(Bi)b .- Since each element of G is uniquely represented in the
=

form ab, with a2 ¢ A and 1 <i <ny is well defined. Let g; = a;b,

and g, = azbj be any two element§lof G and then we have g,g,
b.

albiazbj = albiazbglbibj =aa, ' a, b

Jk

where b.b, = b . Now using
i7] k

(1) and (2) at the appropriate steps we have

b. a
b;la . o
= a3y Ay £ (b, j)bk*
-1
a bgla a a bi*
= aja a,.a,, £(b.)f(b. a b
172 1591 ( i) ( J) S
-1
a b;la - - bi*
= aa, f(b.)f(b.) b b .
1 J i'«\' j-“-
- -1
a a(f(bi)b-*> =\, -1
= alaz ! f(Ei)b _\;f(b')b _‘f.b _u_b E
S R S S
- ayf(b,)b La3b, £(5.)7'1(b,)p G
i” i’ i’ J

= 277 (B,)b )Lagf(Bj)b
i i
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1}

(albi)Y(azbJ)Y

d1 92-

Thus y is an endomorphism of G. Now let abi € ker vy i.e., (abi)Y =

aaf(Ei)b . =1. Thenb =b; =1 and since B ¢ A(G/A) and B? =b
i i i

we must have b, = b; = 1. If in (1) we set Bi = Bj = b, we get
f(b,) = f(6,)f(®,) or f(b;) = 1 since a,;; = 1. Hence a® = 1 and
since @ € A(A) we have a =1, Therefore ker v = (1) and we have shown

that v is 1-1. Finally let g = abi be any element of G, Since

B ¢ A(G/A) there exists a bj such that Eg = Bi' Hence B§ =b . = Ei
J
or b = bi' Since a € A(A) there exists a; € A such that a? =
5
-1 . Y a . -1
af(b,)”". Therefore (a;b.)' =a; f(®.)b =a £(F.) 1(b.)b, = ab,
J J J jN J J 1 1

and vy is onto. We have shown that y ¢ A(G) and clearly y|A = a.

Further (Abi)Y = Ab\{ =A f(Bi)b . =Ab = (Abi)ﬁ so that y|G/A = .
i” i”

We can observe that nowhere in the proof of the above theorem
did we need the fact that G/A was finite. It is easily verified
that this theorem is true even if G/A is infinite.

The conditions obtained in the above theorem leave something
to be desired. However, we must remember that the hypothesis includes
the case that A is contained in the Frattini subgroup of G. From
(3, pg. 156] we have that the Frattini subgroup consists of the non-
generators of G, Thus it is not surprising that the conditions should

be as they are.
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We can obtain a corollary to the above result in the following
‘way. Suppose A< Gand a € A(A). Then necessary and sufficient
conditions that there exists y € A(G) such that y|A = a are that
there exists B ¢ A(G/A) and a function f from G/A to A which satisfy
(1) and (2) of Theorem 1.12.

Now we will illustrate Theorem 1.12 with two examples. In the
first £ will turn out to be a homomorphism. In general f need not be
a homomorphism, in fact, it may be less well behaved than the func-
tion which appears in Theorem 1.5. This will be pointed out by the

second example given below.

Example 2: G = <a,c>, a® = ¢2 = 1, cac = a5, Let A = Z2(G) =
©(G) = < a?> and as coset representatives we choose b, =1, b, = a,
by = ¢, and by = ac. The mapping y defined by a’ = ac, c' = adc is
an automorphism of G. If a = y|A and B = y|G/A then we have
<al>a —> < a?>ac
a : a2 = a% and B :

< al>c —> < a2>c

Direct computation gives £(b,) = 1, £(b,) = 1, ©(bs) = a%, £(B,) =

a4, and

an =1 az; =1 az; =1 agy =1

aj, =1 az, =a’ az, =at ag, = a°

a;z =1 a,z =1 azz =1 gz =1

ajqg =1 azq =27 234 = at ag4q = 2°
Since A = Z(G) condition (1) of Theorem 1.12 reduces to f(EiBj) =
f(Ei)f(gj)agia'*.* . One can verify from the information given

i
above that a?. = a . where =1, 25 =L, 3 =3, and " = 2.
1

Thus f is a homomorphism.
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-1 ,
Example 3: G = <a,c >, a?? =c¢3 =1, cac = al% Let

A = 8(Q) = <a>> and as coset representatives we choose b, = 1,
bz = a2, by = ¢, by = c?, bg = ac, b, = a?c, bg = ac?, and
by = a2c2. The mapping y defined by
a — a4c
Y
c = a%
is an automorphism of G. If a = v|A and B = v|G/A then we have
<ad> a —> <ad3 ac
a : a3 —>al2and B :
<ad> c —= <ad ¢

Now a,, =1 so a%z = 1. Since (-52)‘3 = Be we have 2* = 6. But gy =

18 .. .a _ . L .
a so that a,, % a., ., = agg contrary to the previous example.
2'«\' 27:

and f is not a homomorphism.
We observe from example 2 that if A < Z(G) then condition (1)

. - - -G‘ (o ]
of Theorem 1.12 reduces to f(bib.) = f(bi)f(B.)a.. a ., .. Thenf{ is
J J 1] l_]
a
a homomorphism iff a., =a | .
1J LI
1
If, in Theorem 1.12, we impose the further restriction that G =
AB and A/MB = (1) then we can choose the coset representatives as

elements of B. From [3, pg. 221] we know that the factor set is

trivial in this case i.e., aij = 1 for all i and j so that (1) reduces

b~4
to £f(®.b.) = 7(®.)f(®.) i" . Since G/A = B we can cansider f as a
1] 1 J

-T

function from B to A with the property that f(b;b,) = f(bl)f(bz)b’
for all b;,b, ¢ B where TB is the automorphism of B induced by p.

So (2) reduces to m.a = am 1, - Thus this function is the same

f(b)b P

as the function which occurs in Theorem 1.5. We notice that f is

b
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almost a crossed homomorphism [L, pg. 105] of B to A and, in fact,
would be if we insisted that A be abelian. In the next two results
we try to find out when f behaves like a principal crossed homo-

morphism [L, pg. 106].

Theorem 1.13: Let G = AB, A 4G, A(DB = (1), a € A(A), B € A(G/A),

and 'r‘3 the automorphism of B induced by P. If there exists an x € A

such that ma = an then the pair a, B can be extended to an
b x"'p Bx ’

. . ~ -1 . ~ L. ~
automorphism y of G. Moreover, BY = x”"Bx and the function f from

B to A induced by y acts like a principal crossed homomorphism.

-7
ﬁ s - n -1.b B
Proof: For each b ¢ B we define f(b) ¢ A by f(b) = x "% .

Clearly f is a function from B to A and if b;,b, are any two elements

of B we have

T
£(b,b,) = ik (P1b2) i

x~ P2 Bbl P

-7

- - =T
-1 bl B(x—l)bl ﬁxbz Bbl ﬁ

X X

-7

e on
G P 5)(x-1xb2 Pop, P

n

)
-7
£(b,)E(b,)P1

n

TR -
T _ T T TR T 1T
Since f(b)b P o« L Ty Poxly ﬁxb 13b B X b Bx we have

=a ‘ma or ma = an

11 =0 b b

8 Summarizing we have
f(b)b

x-leBx f(b)bTB

a ¢ A(A), 8 € A(B), and a function f from B to A such that f(b,b,) =
-7
f(bl)f(bz)bl for all by,b, € B and ma = ar . Therefore, by
T
£(b)b P
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the sufficiency part of Theorem 1.5, there exists y € A(G) such that
. T T
v|A = a and b¥ = £(b)b B Now, as was shown previously, bY = £{b)b .
- T - T T
x5 Bx so that BY = x 'Bx. Finally, (Ab)Y = AbY = Af(b)b P o P (Ab)B

so that y|G/A = B.

Theorem 1.1L: Let G = AB, AQG, A()B = (1), and y € A(G) such

that yv|A = a € A(A). If BY = x 'Bx for some x € A then the function

-p
-1
f from B to A induced by v is f(b) = x x>

B ¢ A(B).

where b' = f(b)bB with

Proof: By the necessary part of Theorem 1.5 b’ = f(b)bp where

B ¢ A(B). Since BY = x 'Bx we can write bY = x 'Bx for each b € B
where b € B. Now b’ = x Bx = x lxb b so we have f(b)bB - x5 B
—=1

and since A\B = (1) it follows that f(b) = x %P and B = bP.

_ipP
Hence f(b) = x b7

If A is complemented in G and we also assume that all complements
of A are conjugate (this could be achieved by insisting {|A],IBl) = 1

for example) then we can obtain the following corollary to Theorem 1.1L.

Corollary 1.15: Let G = AB, A G, A( B = (1), and assume all

complements of A are conjugate. If y ¢ B(A,G) then b’ = f(b)bB

1B
where B € A(B) and f(b) = x L2 7 for some x € A.

Proof: By the necessary part of Theorem 1.5 b’ = f(b)bB where
B ¢ A(B). Since v ¢ B(A,G) we have G = (AB)" = AYBY = ABY so that
BY is a complement of A. Thus there exists an x € A such that BY =

x 1Bx. The result now follows from Theorem 1.1,
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One might be tempted to try to obtain a result like Theorem 1.5
in case A is supplemented in G. However, it is not possible to relax

the condition A( )B = (1) as will be seen by the following example.

Example li: G = <a,b >, a4 = b% = 1, a2 = b2 and ba = a b,
Llet A = <a >and B=<b > then A()B = <a?>, Let y be any auto-
morphism of G which leaves A invariant. We can write yY = f(y)yﬁ
for any y € B where f{y) € A and yB ¢ B. However, 1 = 17 = p2b2 =

a2b2 so we could choose f{1) = a2 so that f violates (1) of Lemma 1.6.

£(b)bF

1}

If G =AB, AQG, and y € B(A,G) then we can write b'

with £(b) ¢ A and bP ¢ B. Since ab = bb lab we have (ab)Y = (bb”'ap)’

it

and exactly as in the proof of Theorem 1.3 we can show that ma =

b

anm on A for all b ¢ B where @ = y|A. If b ¢ A()B then we have

f(b)bB
e = f(b)bB. However, in general, we cannot decide if B ¢ A(B) or
if f behaves like the function in Theorem 1.5. If we examine the
first part of the proof of Theorem 1.5 we find that the key step in
concluding that f and P satisfy (1) and (2) was the application of

-1
A(YB = (1) to the equation f(bb,)(b,b,)P - f(bl)f(bz)(be) P8,

By-1
But if we know that either B ¢ A(B) or f(b,b,) = f(bl)f(bz)(bl)

then both must hold. Hence we have:

Theorem 1.16: Let G = AB, A< G, and vy € B(A,G). Then f(b,b,) =

_B )
£(b,)f(b,)?1 for all by,b, € B iff p ¢ A(B) where bY = £{b)bP with

f(b) ¢ A and HP € B.
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Throughout the remainder of this section G will be a finite group.

If B, is a supplement of A in G such that |B;| = |B| and B, =

P : 1y F ; b P
{f(b)b"|B € A(B) or equivalently f(b;b,) = f(b,)f(b,)"! for all
b,,b, € B} then we say that B, is related to B and write B, ~ B.

We call f an associating function and P an associating automorphism.

With this notation we have:

Theorem 1.17: Let G = AB with A 4 G. Then x 'Bx ~ B for all

X € A, Moreover we can choose an associating function f which behaves

like a principal crossed homomorphism and an associating automorphism

~ . o _l -l
Proof: We can write X bx = X bxb b =Xx X b. For each

-1 -1
-1 - -
b ¢ B define £(b) = x X . Then x 'Bx = {f(b)b|f(b) = x '%° for

all b € B}. Hence x-le ~ B with the desired properties.
Summarizing the remarks preceeding Theorem 1.16 we have:

Theorem 1,18: Let G = AB with A QG. If v € BA,G), b’ = f(b)bp

with £(b) ¢ A and bP ¢ B, and v|A = a then
(1) % = £(b)bP for all b € A(IB;

(2) ma = an on A.

£(b)bP

Next we obtain a partial converse of the above theorem.

Theorem 1.19: Let G = AB, A 4G, and B, ~ B with associating

function f and associating automorphism B. Then a ¢ A(A) can be

extended to G if
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(1) b* = £(b)bP for all b ¢ A(IB;

(2) ma = am on A.

£(b)bP

Proof: Define ; by b' = f(b)bﬁ. Since f is a function and B
an automorphism ¢ is well defined. Let b;,b, be any two elements of
B and we have

(bb,)T = f(blbz)(blbz)B
- (o))e ()0 BB
= f(bl)b?f(bz)bzﬁbEbE
- £(b,)bP £(b,)8
= b] b, . |

Thus 7 is a homomorphism from B to B;. Clearly T is onto and since
G is finite 7 is an isomorphism. From (1) we have b® = b7 for all

b € A()B. From (2) we have m.a = ar -~ on A. Therefore, from the
bT

sufficiency part of Theorem 1.3, there exists y ¢ A(G) such that

b
Y\A = a.

1.3 Power and Central Automorphisms

In the first three results of this section we consider the prob-
lem of extending a power automorphism of A to G. A power automorphism

. k . iy s .
maps each a € A onto a where k is some fixed positive integer.

Theorem 1.20: Let G = AB, A 4G, and A()B = (1). Then every

power automorphism of A can be extended to G.
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~ . . . ~ . a k
Proof: Let a be any power automorphism of A i.e., a = a

for all a € A where k is some fixed positive integer. We show that
the pair a, lB can be lifted to G. By Theorem 1.2, we need only show
ba

that M@ = am on A. Now if a is any element of A we have a =

(b lap)® = (b'ap)® = b laMp = b7 1a% = a%P so that ma = am on A.

The above result tells us that when A is complemented then every
power automorphism can be lifted. Now if y ¢ B(A,G) such that v|A
is a power automorphism then what is its effect on the rest of G?
This question is answered by the next theorem when A is supplemented

in G.

Theorem 1.21: Let G = AB with A< G. If v ¢ B(A,G) such that

YlA = a is a power automorphism of A then b’ = g(b)b where g is a
-1
function from B to CG(A) and g(b;b,) = g(bl)g(bz)bl for all b,,b, € B.

. .Q K
a=anr onA. lLeta =a

Proof: By Theorem 1.3 we know that i
bT

b

where k is some fixed positive integer. Now

ba ab’
a = a

(b”'ab)®= b Ya"pY

(b_lab)k; PN

b~ lafp = pYalY
so that b'b ! ¢ Co(R). set pYb™! = g(b) with g(b) € Co(A) then
clearly g is a function since y ¢ A(G). Since y ¢ A(G), (bb,)Y =
bYbY for all b,,b, ¢ B. Hence

g(b;b,)bib, = g(b;)b;g(b,)b,

[}

-1
g(b;b,)byb, = g(b,)b,g(b,)b; b,b,

b‘l
g(blbz) g(bl)g(bz) L

n
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Under certain conditions we can take such a function as described
in the above theorem, pair it with a power automorphism of A and ex-

tend to G.

Theorem 1.22: let G = AB, A 4G, and A(B = (1). Let a € A(A)

be a power automorphism and g a function from B to CG(A) such that
-1

a(byby) = g(b,)alb,)P! for all b,,b, ¢ B and g(b) % b™! (mod (A))

for b 4+ 1. Then the pair a,r, where b” = g(b)b, can be extended to

v € A(G) provided G is finite.

Proof: We will show that we have all the conditions of Theorem 1.3

satisfied. (1) is clear. Since g(b) ¢ CG(A) we have an = o) *

M, on A. a is a power automorphism of A so that ma = am . Hence

am = am = ma so we have (2). Now 7 is well defined since g is
bT

a function and if b,,b, are any two elements of B we have

1]

(byb,)T = g(b,b,)b;b,

-1
b
g(bl)g(b2> 1 b,b,

-1
Q(bl)blg(bz)bl ble

9<b1)b19(b2)b2

b] bJ .

Thus T is a homomorphism, Let b ¢ ker T i.e., bT = g(b)b = 1. Then
g(d) = b7 ! so clearly g(b) = b’ (mod (A)). Thus b = 1 and ker -~ = (1),
Since G is finite + is an isomorphism. Finally we must show that

G = AB, where B, = B'. Assume otherwise. Then we must have A()B, 4 (1)

since G is finite. So there exists a b € B and an a € A such that
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g(b)b = a where a 3 1. Then g(b) = ab™! so that g(b) = b~ ' (mod (A)).
-1
Hence b = 1 and from g(b;b,) = g(bl)g(bz)bl one can easily show that

g(1) = 1. Therefore, a = 1 which is a contradiction. Hence we must

have G = AB,.

The remaining results in this section have to do with lifting

central automorphisms of A to G. y is said to be a central automorphism

of the group H if hY = z h where 2, ¢ Z(H) for all h ¢ H. One can

show that the mapping h to z, is a homomorphism of H into Z(H). Thus

h

A . . . . R T .
if @ is a central automorphism of A we can write a~ = f(a)a for all

a ¢ A where f ¢ Hom (A,Z(A)). Clearly f(a) $a ' if a 4 1. We define

Hom(A,Z(A)) = {f ¢ Hom(A,z(a))|f(a) 4 a™! for a 4 1}. It was shown
in [1] that there is a 1-1 correspondence betweeg the central auto-
morphisms of A and the elements of Hg; (A,Z(A)). Let A be supple-
mented by B in G and define Hom(A,Z(A)) = {f ¢ Hom(A,Z(2)) |f(b™ lab) =
b 'f(a)b for all a ¢ A and b ¢ B}. Then we have

Theprem 1.23: let G = AB with A 4G. If f ¢ ng(A,z(A)) and

a .
. . . . . f . .
A()B < ker f then the central automorphism a., a’ = f(a)a, of A

associated with f can be extended to y € A(G) such that Y\B = lB'

Conversely, if y € B(A,G) is such that y|A = a. is central and v|B =1,

then f € Hom(A,Z(A)) and A()B < ker f.

Proof: (a) Llet f ¢ HSE(A,Z(A)) such that A( B < ker f. Then
a.
ar, defined by a ts f(a)a, is a central automorphism of A. We will

A, = aA.m

show that a.|A(B = 15|A(MB and ma, M

so that, by Theorem 1.2,
a.

the pair a.,ly can be extended to G. Now if b € A()B then b T

f(b)b = b since b ¢ ker f. Hence a[A(B = 15[A(B. Let a be any
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baf -1 9 -1 -1
element of A and we have a = (b"ab) ©~ = f(b "ab)b ‘ab =
-1 -1 -1 -1 % ab :
b "f(a)bb "ab =b "f(a)ab =b "a b =a so that ma. = a.m

b f I b’

(b) Let y € B(A,G) such that v|A = a, is central and v|B = 1g.
apm on A and af\Afﬂ\B =

Then, by Theorem 1.2, we must have m a.

b1

a-
15/AMB. Let b € A(B then we have b = b'B = b " = £(b)b so that

f(b) = 1 and A()B < ker f. Let a be any element of A and we have

(b_lab)CLf - (f(a)a)®

(b 'ab)b tab = b 'f(a)ab

lr(a)bb tab

(b 'ab)b tab = b~
a1 -1_
f(b "ab) = b f(a)b.
Therefore, f € Hom (A,Z(n)).
If we add to the above theorem the further restriction A()B = (1)
then the condition A(T)B < ker f is trivally satisfied so we can re-

phrase the theorem as follows:

Theorem 1.2L4: Let G = AB, A< G, and A()B = (1). If f ¢

Hom (A,Z(A)) then the central automorphism a. of A associated with T

can be extended to y € A(G) such that y|B = 1_ and conversely.

B
What conditions must we put on a € A(A) so that a can be extended
to a central automorphism of G? This question is answered in the

nexXt result under the hypothesis that A is supplemented in G.

Theorem 1.25: Let G = AB with A 4 G. Then + ¢ B8(4,G) is central

iff there exist homomorphisms f and g such that
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(1) £ ¢ Hom (A,2(G)MA), g € Hom (B,2(G)), and £(a)g(b) 4 (ab)”’
for all ab 4 1;
(2) f(b 'ab) = f(a) for all a ¢ A and b ¢ B;
(3) f£(b) = g(b) for all b ¢ A(M)B.

Moreover a’ = f(a)a, b7 = g(b)b where a = v|A and r = v|B.

Proof: (a) Necessity

Let v € B(A,G) such that v is a central automorphism of G. Then
we can write x! = h(x)x for all x € G where h ¢ Hg; (G,2(G)). Define
fand gby £ = h|A and g = h|B. Clearly g ¢ Hom (B,2(G)). Since v ¢
B(A,G) a’ = f(a)a ¢ A so we must have f(a) € A. Thus f(a) € Z(G)(MA

and f ¢ Héh (A,A(Z(G)). Since v € A(G), (ab)”

h(ab)ab 4 1 if ab 4 1

so h(ab) = f(a)g(b) % (ab)™" if ab 4 1. Since £

h|A we have

f(b 'ab)

h(b 'ab) = h(b) *h(a)h(b) = h(a) = £(a) since h(a) ¢ Z2(a).

(3) is obvious in view of the way f and g are defined.

(b) Sufficiency
Now suppose f and g are given satisfying (1), (2), and
(3) of the theorem. Define h by h(ab) = f(a)g(b) and y by (ab)Y =

a%" where a” = f(a)a and bT = g(b)b. Then we have (ab)’ =

f(a)ag(b)b = f(a)g(b)ab = h(ab)ab where h(ab) ¢ Z(G). If we show
that h ¢ Hom (G,2(G)) we will have the desired result. Now if a;b,=
.. , -1 -1
ab, with a, ¢ A and b, € B for i = 1,2 thena, a, = bb; ¢ A(MB
so by (3) we have
-1 -1
-1, -1
f(a,) "fa;) = glb,)glb,)

f(al)g(bl) = f(az)g(bz)
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h(a;b;) = h(ayb,).
Thus h is well defined. Let a;b; and a,b, be any two elements of G
where a, € A and b, €B for i = 1,2. Then a;b;ab, = a,(bab;')b;b,
so that using (2) at the appropriate step we have

h(a,b,a,b,) = h(a,(b,a,b;)b,b,)

= f(a,(b,a,b;'))g(b;b,)
= £(a,)f(bja,b; ) g(b;)glb,)
= f(a;)f(a,y)g(by)g(by)
= f(a;)g(b;)f(a,)g(b,)
= h(a;b;)h(asb,).
Hence h € Hom (G,2(G)). Finally if ab 4 1 then, by (1), we have

h(ab) = r(a)g(b) 4 (ab)™" so that h ¢ Hém (G,Z(G)).

The above result tells us little of what happens to B. If we
further hypothesize A abelian and A()B = (1) then the result can
be sharpened. Under these conditions it is easy to show that Z(G) =
A;B, where A, = C,(B) and B, = C5(A)Z(B). With this notation we

have:

Theorem 1.26: Llet G = AB, A QG, A abelian, and A\\B = (1).

Then necessary and sufficient conditions that y € B(A,G) is central
are that there exists a homomorphism f from B to A, and a B € A(B)
such that

(1) a(=y|A) and B are multiplier automorphisms with multipliers
from A, and B, respectively;

(2) ma = am on A,
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Proof : (a) Necessity
Let vy € B(A,G) be central. Then we can write 9" = h(g)g where
h(g) € Z(G) for all g € G. By Theorem 1.5 there exists a function f
from B to A and a B € A(B) such that f(b,b,) = f(bl)f(bz)bIB for all
a = an Now b = f(b)bB so we have bY = f(b)b’3 =

£ (b)bP
h(b)b and by the remarks preceding this theorem we can write h(b) =

b,,b, € B and m
a,b, witha;, €A, and b, € By since h(b) € Z(G). Since A()B = (1)

it follows that f(b) = a; and bB = b,b. Therefore f is a function
from B to A; and B is a multiplier automorphism with multipliers

from B;. Since A; = CA<B) we have f(b;b,) = f(bl)f(bz)bzi3 = £(b,)f(b,)
so that f is a homomorphism from B to A;. Let a € A then since

vy € B(A,G), a’ = h(a)a € A so that h(a) € A. Thus h(a) € AMZ(G) = A,
so that a = YlA is a multiplier automorphism with multipliers from

A;. Now ma = an

b am, since f(b) € A and

£(o)pP - T (b)byb b

by € Cy(A). Thus ,a =am.

(b) Sufficiency

Let a,B, and f be given satisfying (1), (2), and (3) of
the theorem. By (2) we can write bB = b;b with b, € B;. Thus
a

= am since f(b) € A and b, € B; = CB(A). But,

"f(b)bp = %Mt (b)b,b b

by (3), am, = ma so that am a. Hence, by the sufficiency

fo)pf P

part of Theorem 1.5, there exists y € A(G) such that y|A = a and

b’ = f(b)bﬁ. By (2) we can write a® = a,a with a; ¢ A,. Therefore
(ab)T = a®Y = a,ar (b)bP = a,af(b)b,b - a,f(b)b,ab and since
a,f(b)b, € A;B; = Z(G) we have that vy is a central automorphism of

G.
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1.4 The Group B(A,G)

Recall that B(A,G) = {y € A(G)|y|A = a € A(R)}. We define

C(A,G) = {y € B(&,G)[y|A = 1,}. Then we have

Theorem 1.27: C(A,G) < B(A,G) and [B(A,G):C(A,G)] = the number

of automorphisms of A that can be lifted to G.

Proof: Let y € B(4,G) and ¥ € C(A,G). If a is any element of

=-1= -1 = -1 1 -1
A then we have a¥ YY = (@Y )Y'= (a¥ )Y = a A since a¥ € A. Thus

v '¥r|a = 1, and v %y € c(A,G). Hence C(A,G) < B(A,G).

If v,y, € B(A,G) and v, |A = v, |A then y3'y,|A = 1, so that

A
v2'y1 € C(A,G). Thus y,C(A,G) = v,C(A,G) and we have the second

assertion of the theoremn,

The next result tells us when no automorphism of A different
from lA can be lifted to G under the hypothesis that A is comple-
mented in G. In view of the above theorem this also tells us when

B(A,G) = C(A,G).

Theorem 1.28: Let G = AB, A 4G, and A(DB = (1). If |a]| % 2

then A has a nontrivial automorphism that can be lifted to G i.e.,

|B(a,G)/c(a,G)| 4 1.

Proof: Suppose that B(A,G) = C(A,G). Then since My € B(A,G)
for all g € G we must have ad = a. Thus A =< Z(G) soBdGand G = A x B.

Let a be any element of A(A). Since my = 1, for all b ¢ B we have

ma = am . Hence, by Theorem 1.2, the pair a,ly can be extended to

b B

G. Therefore, we must have a = lA i.e., lA(A)\ = 1 and since A is
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abelian it follows that \A\ = 2. This is a contradiction so the

theorem is true.

The next theorem gives us a set of sufficient conditions under
which every automorphism of A can be extended to G. But first we
prove a lemma which is of some interest itself. Let B be'a supple-
ment of A in G and define B" to be the subgroup of A(A) consisting
of those automorphisms of A induced by the elements of B i.e.,

B - {ﬁb\A\b € B}. Then we have:

Lemma 1.29: let G = AB, Aq G, and CB(A) =1. If ac¢ NA(A)(B )

and A()B is a-invariant then there exists a unique B e A(B) such

that the pair a,P can be lifted to an automorphism of G.

Proof: Let b; and b, be any two elements of B, If m = n

b, b,

on A then b;lbl € CB(A) and since CB(A) = 1 it follows that b, = b,.
We will use this fact several times in the proof. From the above
remarks it follows that B :‘B*. Since a ¢ NA(A)(B*) and B ~ B we

= -1
have for each b ¢ B a unique b ¢ B such that a ma = T Define B

by v - . Clearly B is well defined. let b ¢ ker B i.e. pP - 1.

S

Then o *ma = m, = 1, so that m_ =1

b A b Hence b ¢ CB(A) = 1 and ker B =

i
(1). B is onto since a induces an automorphism of B® and B ~ B.

Now let b, and b, be any two elements of B and we have

-1 - - -
=CL1TTTT(I=(IlﬂCIG,lﬂCI=TTTT=ﬂ

it =a m a .
(blbz)ﬁ Dby b b, by b, ij bB b’?bs

Therefore, since (blbz)[3 € B and b?bg € B we have that (blbz)B =

pPr8. 50 B ¢ a(B).
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If x € A then it is easy to show that a‘lnxa = ma. Thus if
-1
b € A()B then n B " a ma=m sinceb ¢€A. Since A()B is a-
b b
invariant, b> ¢ A()B < B. Therefore T 5 = U, implies that pP - pe,
b b

Hence a|A()B = BJ|A()B. Summarizing we have a ¢ A(A) and B ¢ A{B)

such that a|A(B = B|A(B and ma = arn Therefore, by Theorem 1.2,

b

a and Y\B = B.

there exists y ¢ A(G) such that y|A
Finally suppose that the pairs a,P;, and a,B, can both be extended

to G. Then, by Theorem 1.2, we have ma = am and m . a = am
> b LB b

m g, S° that bBl - bP2, Since b is an arbitrary
bP2

NP

Hence n

1
]
puuw |
Q
1

bﬁl

element of B we must have B; = B,.

If we add to the hypothesis of the above lemma B < A(A) and
A()B characteristic in A then we can say that each a ¢ A(A) can be
paired with a unique B € A(B) and extended to G since NA(A)(B*) = A(A)
and A(")B is a-invariant for each a ¢ A(A). The next result gives
us a set of sufficient conditions under which every automorphism of

A can be extended to G that was referred to above Lemma 1.29.

Theorem 1.30: Let G = AB, A 4G, Cy(a) = (1), B° < A(A), and

assume that A(")B is a characteristic subgroup of A. Then

B(A,G)/C(A,G) = A(A).

Proof: Clearly B(A,G)/C(A,G) = to a subgroup of A(A) under the
correspondence yC(A,G) <—> Y\A. By the remarks following Lemma 1.29

each automorphism of A can be extended to G so, by Theorem 1.27,

(B(a,G):C(A,G)] = |A(A)|. Thus B(A,G)/C(A,G) =~ A(A).
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If an automorphism of a subgroup can be extended to the whole
group then it can usually be done in many ways. In fact Theorem 1.27
tells us that it can be extended |C(A,G)| ways. In our next result
we try to find out when an automorphism of a normal abelian subgroup
has a unique extension to G. This, of course, is equivalent to ask-

ing when is |C(A,G)|

1]

1. First we prove the following:

Lemma 1.31: If A G and C(A,G) = (lG) then CG(A) = 2(G).

Proof: Clearly Z(G) < CG(A). Let g ¢ CG(A) then " € C(A,G) =
(lG) so x9 = x for all x ¢ G. Hence g ¢ Z2(G) and we have CG(A) <

Z2(G). Thus CG(A) = 2(G).

Theorem 1,32: Let A be a normal abelian subgroup of G. Then

C(A,Q) = (1G) iff G is abelian, [G:A] = 2, and |A| is odd.

Proof: (a) Necessity

Suppose C(A,G) = (lG). Then, by Lemma 1.31, CG(A) = 2(G). Since
A is abelian we have A < CG(A) = Z{G). Hence if g ¢ G then ng € C(A,G)
so x9 = x for all x ¢ G. Thus g ¢ Z{(G) and since g was arbitrary we
have that G is abelian. Now we will show that G must split over A,

We can write G =S_ x +*»xS_,A=A_ x---xA_ ,and GA =
Py P, Py P,

S X *+* xS where S is a p.-Sylow subgroup of G, A = A S,
P, P, P, p;-SYy group » p, () P’

and §p :‘Sp /A . We will assume that G does not split over A and
i i i

arrive at a contradiction by constructing a nontrivial automorphism

v of G such that y|A = 1, and v|G/A =1 By Theorem 1.12 we need

G/A"

only construct a nontrivial homomorphism f from G/A to A to accomplist

this. If (|A|,[G:A]) = 1 then G splits over A so we may assume that
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for some i, Ap + (1) and §p i (1). If Ap is a direct factor of

i i i

Sp for each i then G splits over A so we may assume for some i that
i

A is not a direct factor of Sp . There is no loss in generality
i i

if we assume i = 1. Define f|§b =1 for i >1., Now Sp is a direct
: 1
1

product of cyclic subgroups, say Sp =C; X »°» X CS where Ci is
.. 1

generated by X, Then we can write Ap =A; x 0 X AS where Ai =
1

Ap (*\Ci. Since Ap is not a direct factor of Sp there exists at
1 1 1

least one A, such that 1 5 Ai ? Css iay A,. Define f‘Ci = 1 for
i>1. Let |x,| = pi and A, = < x,P1> where we may assume O < u < t.,
The only cosets of G/h on which f has not been defined are of the

K k K
form x;A. Define f(xjA) = (x,P1)". Clearly f maps G/A into A;. Now

any two elements g;,g, of G/A can be written in the form g, =

xlklyA, g, = xlkzzA where y and z belong to C, X --- X CS XS x *°'x ¢
Hence f(gl) = (Xl ), f(92> = (Xl 1) , and f<9192) = (X; )

since 5152 = x§k1+k3)yzA. Therefore f is a homomorphism from G/h to

4

u :
A and f{x,A) = x,P? 1 1 so f is nontrivial and we have arrived at a
contradiction. Thus we may assume that G splits over A,

Let G = AB, A()B = (1), and B ¢ A(B). Since m = 1; for all

b € Bwe have m 1, = so that, by Theorem 1.3, the pair lA’ B

1.
p'a ~ AT B

can be extended to v ¢ A(G). Now y ¢ C(A,G)= (1.) so we must have

)
=1y i.e., |A(B)| = 1. Since B is abelian we must have |B| = 2.
Let B = <b > where b2 = 1, If there exists an x ¢ A such that x2 = 1
then, using Theorem 1.3 as before, we can show that the pair lA: T

where bT = xb can be extended to y ¢ A{(G). But y ¢ C{A,G) = (lG} SO We

must have y = 1.. Hence bT = b i.e.., x = 1 and |A]| is odd.
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(b) Sufficiency
Let G be an abelian group such that G = AB, A()B = (1),

|B| = 2, and |A] odd. Let B = <b > where b2

1. If v ¢ C(A,Q)

then b is an element of the coset Ab since G

A\ Ab. Hence there
exists an x ¢ A such that b’ = xb. But |b| = 2 so that |xb| = 2.

Hence (xb)? = x2b2 = x2 = 1 which contradicts the fact that |A| is

A\

odd unless x = 1. Therefore, y = lG and we have shown that C(A,G) = (1.).
J

Now we try to find out something about the structure of B(A,G)/@(ADG).
We know that B(A,G)/C(A,G) is isomorphic to a subgroup of A{A) and
also that NG(A)/CG(A) is isomorphic to a subgroup of A(A). The
next result tells us that B(A,G)/C(A,G) contains a subgroup isomorphic

to NG(A)/CG(A) and we make no assumptions about A.

Theorem 1.33: B(A,G)/C(A,G) contains a subgroup isomorphic to

NG(A)/CG(A).

Proof: We define ©: NG(A)/CG(A) —> B(A,G)/C(A,G) by (gCG(A))e =
ngC(A,G). Since g ¢ NG(A), ", € B(A,G). If gch(A) = gch(A) then

9.9, € CG(A) so that m = = g, € C(A,G). Therefore
9291 92 !

17 C(A,G) = ng C(A,G) and © is well defined. Let gch(A) and gch(A}
2

be any two elements of NG(A)/CG(A). Then we have

(9:C5(8) 9,05 (A = (98,04 (A))°

=1 C(A,G
919 (A,G)

=n n C(A.G
91 92 ( ’ )

= g C(A,G)mg C(A,6)
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(S) e
so that © is a homomorphism. Let gC.(A) ¢ ker © i.e., (ch(A))e =

C(A,G). Then ﬁg € C(A,Q) so a% = a for all a ¢ A. Hence g ¢ CG(A)
and ker © = (1). Thus © is an isomorphism.

In the remarks preceeding Lemma 1.31 we mentioned that the number
of ways an automorphism of A can be lifted to G equals |C{A,G)|. In

the next result we calculate |C(A,G)| under very special hypothesis

on Q.

Theorem 1.34: Let G = AB, A 4G, A()B = (1), Cg{R) = (1), A abelian

and assume that all complements of A are conjugate. Then |C(A,G)| =

[A:CA(B)].

Proof: Let a ¢ NA(A)(B*). By Lemma 1.29 there exists a unique
B € A(B) such that the pair a,B can be extended to G. Then, by

Theorem 1.2, ™

T -1
p& = am 8 on A, Let x ¢ A and define Tﬁ by b B X be.

b

-1 ~
a ma on A, Therefore,

Since A is abelian we have w b

=1 =
x 'bPx  bP
a = an and, by Theorem 1.3, the pair a,TB can be extended to
b P
Y € A(G) such that y|A = a and v|B = T8
Now let y ¢ B(A,G) such that y|A = a. Then,by Corollary 1,15,

-e
b’ = £(b)b® where 6 ¢ A(B) and f(b) = x °  for some x € A. Thus

BY = x 1% 1 = x % %° = x b% so that, by Theorem 1.3, we
must have m . a = amn = qQm . Since x € A and A is abelian this
b Y -1, 8
b X 'b'x
reduces to ma = arn . Therefore, by the sufficiency part of Theorem 1.2,
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the pair a,9 can be extended to G. But P is unique so we must have
© = B. We have shown that if y ¢ B(A,G) such that y|A = a then
bl = x" P for some x ¢ A, Finally if x,y € A and x_lex = y_ley
then yx ! ¢ CA(B). Hence the number of ways a can be extended to G
is the number of distinct cosets of CA(B) in A i.e., [A:CA(B)],

Therefore, |C(A,G)| = [A:C/ (B)].

If we add B" Q A(A) to the hypothesis of the above theorem
then, by Theorem 1.30, B(A,G)/C(A,G) = A(A) and it follows that

B(A,6)| = [c(a,6)| |a@)| = [a:c, (B)]IA(A)|.



CHAPTER II
2.1. Introduction

Throughout this chapter A will be a complemented subgroup of
G and at first we do not insist that A be normal in G . We will
construct a permutation group on the complements of A in G and
investigate what happens to G wunder various hypotheses on this per-
mutation group. For the sake of completeness several definitions
relévant to the theory of permutation groups will be included. One
question we have in mind is what condition on this permutation group
will insure that all complements of A in G are conjugate.

Denote by ! the set of all complements of A in G . If
vy € B(A,G) and B 1is any complement of A in G then it follows
that G = G' = (AB)Y = AYBY = ABY so that BY is a complement of
A in G . Thus the elements of B(A,G) can be considered as per-
mutations of the set & . B(A,G) need not be a permutation group on
0 since different elements of B(A,G) may induce the same permuta-
tion on 2. However, we can obtain a permutation group on § in the
following way. Let D(A,G) denote those elements of B(A,G) which
fix every element of { i.e., y € D(A,G) if and only if B' =B

for all B € . Then we have:

Lemma 2.1: D(A,G) < B(4,G)

Proof: let vy € B(A,G) and © € D(A,G). If B is any comple-
=1 -1 -1
ment of A in G then we have BYSY = (BV)®Y = (BY)Y =B
since B" € Q. Hence vOy ! € D(A,G) and D(A,G) is normal in

B(A,G).
L3



L&

Now X = B(A,G)/D(A,G) can be considered as permutations on

by defining BY = BY where Y = yD(A,G), vy € B(A,G) . If ¥,, ¥,

€ X induce the same permutation on $ i.e., if BY1 = BY2 for

-1
all Be Q then B'1Y2 =B for all B € Q so that vy,y, ' € D(A,G).
Thus y; =y, . For vy €B(A,G) we denote by vy the coset of X

which contains v . At this point we give an example that will be

referred to later.

Example 1: G = <a,b,c >, a5 =Db2 =c% =1, bab=a ',

bc =cb , clac =a2 . Let A = <a,b> then the complements of

A are:
By = <c> = {1,c,c?,c3} By = <bc> = {1,bc,c?,bc3}
B, = <«ac> = {l,ac,a%c?,a3C3} By = <abc> = {l,abc,a3c?,a2bc3}
B, = «@2c> = {1l,a2c,a3c?,ac3} B, = «a?bc> = {1,a2bc,ac?,a4bc3}
By = «@a3c> = {l,a3c,a2c2,a%c3} By = <@dbc> = {1,a3bc,a%c?,abc3}
B, = <a%c> = {l,a%c,ac?,a2c3} By = <a4bc> = {1,a%bc,a2c?,a3bcl}
Now the automorphisms of G are:
a —>al a —>al a —> al a—>al a —>al
b—>b b —> a4b b —> a3b b —> a?b b —> ab
c—>c c —> ac c —> alc c — adc c —> a‘c
a —>al a —> al a —>al a —al a —>al
b—->b b — a3 b —> a4b b —> ab b —> a?b
c —> be3d c —> a2bc3 c —> abc3 c —> a4bc3 c = adbc?

where 1 = 1,2,3,4. From the above it is clear that A is charac-

teristic in G so B(A,G) = A(G). The only automorphisms which fix
‘ i
a —=> a

By are b —> b for i =1,2,3,4. Of these only the identity fixes
C => C
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B, so clearly D(A,G) = (1). Thus X ~A(G). Now a 'Bpa <al'c >
for i =1, 2, 3, L so By, B,, B, By, B4 form a conjugate class.
Similarly a 'Bga' = <a2'bc > for i = 1,2,3,4 and By, By, By, B,
By form a conjugate class. To show that ( X,Q) 1is a transitive

permutation group we need only show the existence of an automorphism

a —> a
which sends B, to Bs. Now b —b sends B, to Bs so (X, )
¢ => bc3

is transitive.
If all complemenis of A in G are conjugate then (X ,&)
is a transitive permutation group; in fact, the subgroup
1(G)D(A,G)/D(A,G) 1is transitive on §. However, from the above ex-
ample we can see that transitivity of (X, Q) is not sufficient
to insure that'all complements of A are conjugate. In the next
example we point out the fact that (X, ) need not be transitive.
Example 2: G = <Xx,y,z> , x5 =y2 =122 =1, yxy =x ~ ,
yz = zy , zxz = X '. Let A = < x,y > then the complements of A

are: By =<2z > B, = <xz >, B, = <x22>, By = <x3z >, By =
<x4z >, By = <yz >. Now x'iBoxi = <x3lz > for i=1,2,3,L so
that By, B, B,, Bz, By form a conjugate class. It is easily
verified that Z(G) = By so no automorphism of G can map By to
any other complement. Consequently (X,) is not transitive. We
may observe that this group is a subgroup of the group in example
one where X =a , y =b, and z = c?.

Our objective in this study is to find a permutation condition
that will characterize when all complements of A in G are con-

Jugate but at present we have not found such a condition. However.

we do have several interesting results in this direction.
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2.2 The Group (X, Q)
If &= (B;, By, *++, B} isa subset of O and y = vD(A,G) € X

> Tt BrY} .

1]

Then by AY we mean 47 = (B,Y, B,'

Definition 2.2: If (X ,0) 1is transitive then a subset A

of & is called a block if and only if

(1) 1< |a|l <)@l
(2) A;mA = {g for each y € X.

Definition 2.3: The transitive permutation group (X ,Q) is

said to be primitive if and only if it has no blocks.

Now we can obtain the following result:

Theorem 2.L: If (X, Q) 1is a primitive permutation group
then either
(1) all complements of A are normal

or (2) all complements of A are conjugate.

Proof: Let B € (. If B<G then every complement of A

is normal since (X ,Q ) 1is transitive. Suppose B is not normal

in G and consider the set A = {B'™X = x !Bx|x € A}. Suppose

A?(”\A #J for some y €X i.e., there exist x and y in A such
that (x_le)? =y By. Now (x'le)? = (x 'Bx)Y = (x7)7'BYXx" where
v = yD(A,G). Since y € B(A,G) we have x' € A so that BY =
xYy"1Byx™ € A . Thus A? =4 . If 1< 8|l < |9 thena isa
block of (X, Q) so since (X,Q) is primitive we must have either

lal =1 or 4| = | al. |a] = 1 implies that B4 G so we must
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have |a]| = |§)|. Therefore, all complements of A in G appear in
A i.e., all complements of A in G are conjugate.

To this point we have not hypothesized A normal in G . How-
ever, if A 1is normal in G then from the above result we see that
all complements of A in G are conjugate if (X ,Q) is a primi-
tive permutation group and A 1is not a direct factor of G . That

these conditions are not necessary is pointed out by the following,

example.
Example 3: G = <a,b >, al5 =Db2 =1, bab = a™l . Let A= <a>
then the complements of A are: B, = <alb >, j=0,1,2,---,1L,

Now A is normal in G and (|A|, [G:A]) =1 so that A 1is charac-
teristic. Hence B(A,G) = A(G). The automorphisms of G are:

i
a—a

Y where (i,15) =1 and j = 0,1,2,---,14. The only

i’j: b — ajb
automorphisms which fix By are of the form Yi,o . Of these only
the identity fixes B; so clearly D(A,G) = (1). Hence X =~ A(G).
Now aSBoa_S = < a2% > so all complements are conjugafe and (X ,Q)
is transitive. However, (X ,Q) is not primitive for we will show
that 4 = {Bo, Bs, Byo) 1is a block of order 3. let B_ = <a'B> €A

‘Y'. . . .
0,5,10 then B >J = <a"™ b > . If 5 does not divide

i.e., r

1
<

Y. o Y. .
j then 5 does not divide ri + j and B_’7 £a. Hence A *J(Ma =

in this case, If j =0,5,10 then ri + j will take on the values

[
>3

Y- .
0,5,10 mod 15 as r takes on the values 0,5,10. Hence 4 ~’JMA =
Therefore, A 1is a block and (X, ) is imprimitive.
In the next result we obtain some information about the structure of

A incase (X,Q) is primitive.
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Theorem 2.5: If (X,, Q) is primitive then either

(1) A 1is characteristically simple
or (2) if H 1is a characteristic subgroup of A then HNA(B) =<A
where B is any element of Q)

Proof: Suppose A is not characteristically simple and let H
be a characteristic subgroup of A . By Theorem 2.L all complements
of A are normal or all complements of A are conjugate. If B €
and B<QG then H NA(B) =HA =A . Thus we can assume that B 1is
not normal in G . Form the set A = [BFX = x Bx|x € H} and let

Yex . If AYNAa#£F i.e., if there exist x and y in H such

that (x 'Bx)Y = y !By then BY = xYy !Byx Y where ¥ = yD(4,G).

Since vy|A € A(A) and H 1is characteristic in A we must have

x('¢H. Thus BY ¢a . If 1< |a| <|q| then s is a block so

since (X ,Q) 1is primitive we must have either |A| =1 or
lal = || . 1f [a] =1 then H=N,(B) . If [a| = || then
all complements of A appear in A and it follows that | Q\ =

[H:H ONA(B)] . Since all complements of A are conjugate we also

have |Q| = [A :N,(B)] . Thus
EROYNEL

v, B)H| = ———
A [HOW (8) |

= v, @] ol =G| :N,B)] =[]

so that NA(B)H = A,
We can observe that we did not use the full power of H being
characteristic in A but just invariant under X . So we have the

following as a corollary to the proof of Theorem 2.5.

Corollary 2.6: If (X ,Q) 1is primitive and H a subgroup of &

N, (B)
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N, (B)
invariant under X then HNA(B) =
A
From this point on we will assume that A 1is a normal comple-
mented subgroup of G . The fixed group of an element B € ) , de-
noted by X p, is the set of y in X such that BY =B . It is
well known that [7, pg 15] 1in a primitive permutation group the

fixed group of a point is maximal. Thus X B is maximal in X and

we can obtain the following result where I(A) = I(A)D(A,G)/D(A,G).

Theorem 2.7: If (X ,Q) 1is a primitive permutation group and

A is not a direct factor of G then X =X BIIAS.

Proof: If T, € Xy for all a €A i.e., if a 'Ba = B for

all a € A then B4 G and A 1is a direct factor of G since
A 4 G. Hence there exists x € A such that Fx £X 5 Thus the

group generated by X g and m  is X since Xy is maximal in X

let 8,, 6, ¢X p Where 6i = ©,D(A,G) for i =1,2. One can easily

show that ©,m 8, = 9,6, o, SO that we have ©,m06,= 0,0,m

x 2 x62

)
Since x €A , x 2 ¢A and it follows that the group generated by
Xp and w  is X pI{A) .

We can replace the hypothesis A not a direct factor of G by
the condition (|A],|B|) = 1 in the above theorem for if B <G then

B is characteristic since (|A|,|B|) = 1. But (X,Q) is transi-

tive so that |Q | = 1. Thus we have:

Theorem 2.8: T1f (X ,Q) 1is a non-trivial primitive permutation

group and (|A],|B]|) =1 then X = X T(A).
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Definition 2.9: The permutation group (X , Q) is said to be

3/@—fold transitive if and only if (X ,{2) is transitive and the

orbits of ()(BJKZ—[B}) have equal length.

Definition 2.10: A subgroup N of the permutation group (X, )

is said to be semiregular on ( if and only if Ny = (1) for all
BeQ.

Example 1 shows that transitivity of (x,g}) will not insure
that all complements of A are conjugate. Also, from example 3, we
see that primitivity of (X,Q) is too strong. So the condition
seems to rest somewhere between transitivity and primitivity. Now
we will impose the condition 3/2-fold transitivity on ( X,Q) which
is weaker than primitivity. We will obtain a theorem like Theorem

2.4 under additional hypothesis on G . But first we need.

Lemma 2.11: If (X, Q) 1is transitive and I(G) is semiregular

on ) then

(a) N.(B,) = N.(B) =N,(B)B for any two complements B,, B
G'\o1 G A 15
(b) Every complement of A 1is contained in NG(B) for any

(c) NA(B) and NG(B) are normal subgroups of G ;

(d) N,(B) and NG(B) are invariant under B(A,G);

(e) If y ¢ B(A,G) and bY = £(b)bP with f and B as given
in Theorem 1.5 then f € Hom (B,Z(NA(B)));

(f) If B € Q then B( B, 1is normal in B for any B, in {

(g) For any B €  we have B! < CgA) = M x 1Bx where &'
XcA

is the derived group of B,
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Proof: (a) Let g be any element of ‘NG(BI). Then

Fg € IZG;B = (1) so that ﬂg € D(A,G). Thus g ¢ NG(B) and we
1
have N.(B,) SNy (B). Similarly N (B) SN.(B;) so N_(B) = N.(B,).

(b) From (a) we have NG(BI) = NG(B) and since B; = NG(Bl)
we have B, < NG(B) for any B; € Q.

(c) For g ¢ G we have g'lNG(B)g = N;(g''Bg) and, by (a),
lig (g 'Bg) = Ny (B) so g 'Ny(B)g = Ny(B). Now g 'N,(B)g = A since
A<QGand g 'N)(B)g = N,(B) since N.(B) 4 G. Thus g‘lNA(B)g <
A(’\NG(B) = NA(B).

(d) Llet y €B(A,G) then (N5 (B))" =N (B") and N,(BY) = N, (8)

¢
by (a). Thus (NG(B))Y = N.(B). Now (NA(B))Y S A since AY =A
and (N, (B))" < N.(B) since (NG(B))Y = N.(B). Hence (NA(B))Y <
AMN(B) =1, (B).

(e) Let B € and y € B(A,G). Then for any b ¢ B we have
bY = £(b)bP where B e€A(B) and f is a function from B to A
satisfying f(b,b,) = f(bl)f(bz)bIp for all by, b, € B. Also, from

Theorem 1.5, we know that mwa = an where a = Y‘A. By (b)

b £(b)bP

BY < NG(B) = NA(B)B so f(b) € NA(B) for all b € B. Since G = AB,

AMB = (1), and A<QG we know that N,(B) = C,(B). Thus

f(b,b,) = f(bl)f(bz)bIB reduces to f(b;b,) = f(b,)f(b,). By (d),

Y € B(NA(B), NG(B)). Therefore, by Theorem 1.5, ma = an
NA(B)‘ But on NA(B) = CA(B) we have m = lNA(B) so this equation
reduces to "e(b) = lNA(B) or f(b) € Z(NA(B)). Hence f ¢ Hom(B,Z(NA(B))).

(f) Let B, B, be any two elements of . Since (X, Q) is

transitive there exists y € B(A,G) such that BY = B,. Therefore, by
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Theorem 1.5, we can write B; = BY = {f(b)bﬁlb € B} with f and B
as given in the theorem; By (e) f is a homomorphism and we will
show.that B/ B; = (ker f)p . Let b €B(\B; then there exists
b, € B such that b = f(bl)blﬁ. Since A()B = (1) and f(b;) €A
we must have f(b,) = 1. Thus b; € ker f and blB = b. This
implies B () B; = (ker f)B and it is easily shown that (ker f)B =
B(B;. Thus B () B; = (ker f)p. Since ker f 4 B we have
B()B, 4 B.

(90 Let x €A and b € B . Then x 'bx = (x bxb™1)b., Set
f(b) = x bxb™! then x 'Bx = {f(b)b|b € B} and, by (e), f isa
homomorphism from B to Z(NA(B)). Therefore, for any b,,b, € B

we must have f(b;b,) = f(b,b;). Thus

x 'b,b,xb; b} ! x b ,b,xb] b3 ?

b,bxb, by '

b,bxby'b,"

-1, - -1, -1
(b]'b3'bb,)x x(b]'b3 b,b,)

So  by'by'bb, € C5(A) and B' SCy(A). Clearly Cg(a) = (—Q x 'Bx
X€

so we have the desired result.

We may observe that the transitivity of (X, ) was used only
in part (f).

If A 1is a subset of {2 then by XZA we mean the set of all

¥ € X such that "BY = B for all B € 4 .

Definition 2.12: The transitive permutation group (X, Q) is

said to be Frobenius if and only if X p # (1) and X 5 = (1) when-

ever lAl = 2,
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If (X,Q) 1is a Frobenius group then from [7, pg. 11] we know
that the elements of X which fix no element of (! together with
the identity form a nilpotent characteristic subgroup of X . For
the sake of reference we will state two results which appear on pages

25 and 32 respectively of [7]:

Theorem 2.13: If (X,Q) is 3/?-fold transitive then either

(X,Q) is primitive or ( X, @) 1is a Frobenius group.

Theorem 2.1L: If (X, Q) 1is 3/2-fold transitive and N < X

then either N 1is transitive on @ or N 1is semiregular on § .

Now we are in a position to obtain the theorem referred to earlier.

Theorem 2.15: If (X ,Q ) is 3/2-fold transitive then all comple-

ments of A in G are either normal or conjugate provided any one
of the following conditions hold:
(a) (|a], |B/B'|) = 1 where B' is the derived group of B;
(b) If there exists a normal subgroup H of G contained in
A such that H r“\NA(B) = (1);
(c) 1If N,(B) 1is a Hall subgroup of A with a normal complement;

()

—
By

Z(A) (‘)NA(B) = Z(NA(B)) and there exists at least one
element of A - NA(B) whose order is relatively prime to \NA(B)l;

(e) 1If A/NA(B) is not nilpotent.

Proof: Assume (X, ) 1is 3/2-fold transitive and the comple-
ments of A are not all normal or conjugate., By Theorem 2.13 either
(X,Q) is primitive or (X, Q) 1is a Frobenius group. If (X ,Q)

is primitive then, by Theorem 2.l, all complements are normal or
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conjugate. So we may assume that (X ,Q) is a Frobenius group.
Now ITG) <1‘X so, by Theorem 2.1), either T(G) is transitive on
Q  or semiregular on Q . If TUG) is transitive on Q then all
complements are conjugate so we may assume that T(G) is semiregular
on Q . Next we show that if B ¢ Q then (1) %NA(B) AA ., If
NA(B) =A Then B 4 G and every complement is normal as (X ,Q)
is transitive. Thus N (B) #A. If Ny(B) = (1) then Ng(B) =
NA(B)B =B. TI(G) is semiregular so, by Lemma 2.11(c), NG(B) d a.
This is a contradiction since B = NG(B) is not normal in G. Hence
u @) A ).

Thus (X ,Q ) 1is a Frobenius group, T(G) is semiregular,
(1) %NA(B) # A, and all complements of A are not normal or con-
jugate. If B; =B, B, ---, B_ are the elements of ( then,

n

applying Lemma 2.11, we have the following structure on G:

(1)

Now we will impose the conditions (a) through (e).
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(a) let B e O . By Lemma 2.11(e) if B, = {r(b)bP|b € B} is
any complement of A we know that f € Hom (B,Z(NA(B)). Since the
image of B wunder f is.abelian we may consider f as an element of
Hom (B/B!, Z(NA(B))) in the obvious way. But |f(b)| must divide
|b| and since (|a], |B/B'|) = 1 we must have f(b) =1 for all
b € B, Thus B, =B so that O = {B}. Hence B 1is the only comple-
ment so must be normal.

(b) Let H 4G, HSA,and H(N,(B) = (1). If h ¢H and
b is any element of B then h 'bhb ' ¢ H since H 4 G . DNow
b € Ny(B) and, by Lemma 2.11(c), N;(B) 4 G so that h™lbhb ™! ¢ N, (B).
Hence h™'bhb™! € H(MIN (B) =H(MN,(B) = (1) so bh = hdb for all
b €B. Thus h € NA(B), a contradiction, and the result holds in
this case.

(c) Let A = NA(B)D where D(’\NA(B) = (1) and D Q A. Since
NA(B) is a Hall subgroup of A we have (lNA(B)|,[A : NA(B)])= 1.
Thus (|D|, [A : D]) =1 and since D 9 A we must have D character-
istic in A. Since A 9 G and D 1is a characteristic subgroup of
A we have that D g G . Then D Q9 G, D=<A, and Df'\NA(B) = (1)
and we can apply (b).

(d) Let x €A =N (B) such that (|x[, |N,(B)|) = 1. Since
x £N,(B) = C (B) there is at least one element of B, say b ,
such that x 'bxb ! # 1. But, as in the proof of Lemma 2.11(g), the
function f defined by f(y) = x lyxy'' for ally € B is a homo-

morphism fraon B to Z(N,(B)). Thus x 'bxb !

€2, (B)), say
x bxb™! = n, and n # 1. Since 2Z(A) M N,(B) = Z(N,(B)) we have

n € Z(A). Let lx\ = d then from bxb ! = xn we have



(bxp 1% = (xn)¢
bxdb"1 = xdnd
1 = nd.

However, (d, lNA(B)l) =1 so nd 41 and we have a contradiction.
Thus the theorem is true in this case.

(e) Since (X,Q) is a Frobenius group we have, from the re-
marks preceeding Theorem 2.13, that the elements of X which fix no
element of ) together with the identity form a nilpotent character-
istic subgroup, say Y , of X . By Lemma 2.11(c), NA(B) and
NG(B) are normal in G. We show that each g € G — NG(B) fixes
no element of ! so that G/NG(B) is isomorphic to a gubgroup of
Y . DNow if " fixes B; € Q then 'r?g eI_(CTYBl = (1) so that
”g € D(A,G). Hence "g fixes B i.e., g€ NG(B)’ a contradiction.
Therefore, A/NA(B) ;—G/NG(B) and since G/NG(B) is isomorphic to
a subgroup of Y ‘we have A/NA(B) is isomorphic to a subgroup of y .
But Y is nilpotent so A/ (B) is nilpotent which is a contra-
diction. Thus the theorem is true in this case.

Whéther the conditions in the above theorem are necessary is an
open question at this time. We do not have an example of a group G
in which (X ,Q) 1is 3/2-fold transitive and the complements of A
are neither conjugate nor normal.

Finally we conclude this chapter by imposing a condition on

(X,Q) which is considerably stronger than primitivity.

Definition 2.16: The permutation group (X, ) 1is said to be

2-fold transitive if and only if X ; is transitive on the set Q —{r}.
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From [7, pg 20] every 2-fold transitive group is primitive so

this condition is stronger than primitivity.

Definition 2.17: (X ,0) 1is said to be sharply 2-fold transi-

tive if and only if
(1) (X ,Q) 1is 2-fold transitive;

(2) |X,| =1 whenever |a| = 2.

Al
Now we will assume that (X, ) is sharply 2-fold transitive,

This is a stronger condition than primitivity so all previous re-

sults hold true in this case.

Theorem 2.18: If (X ,00) 1is sharply 2-fold transitive and

(|al, |[B]) = 1 then X is fixed-point-free on the set A — N, (B).

Moreover |XB| > 1.

Proof: From the remarks preceeding Theorem 2.8 we note that B
cannot be normal in G . Hence A -N,(B) £d. let a €A - N, (B)
and ¥ € X 5 such that Y £ D(A,G). This can be done since (X,Q)

is 2-fold transitive. Since |X {Bl,a_lBa}\ S 1 and T is not the

identity we must have (a-lBa)? #a 'Ba. Let ¥ = vyD(A,G), vy € B(A,G)
and we have (a—lBa)? = (a™'Ba)Y = (a¥) 'BYaY - (aY)-lBaY so that
a¥a™l £ NG(B). In particular, a¥a™' ¥ 1 so T is fixed-point-free
on A -1N,(B).
Now we will show that ‘X:B‘ > 1 by showing that there exists
a b €B suchthat m €D(A,G). If m €D(A,G) for all b ¢ B
then for any a ¢ A — NA(B) and all b ¢ B we must have b '(a 'Ra)b =

1

a 'Ba. Thus aba ! ¢ N-.(B). Since A 4G and A(MB =1

we have NG(B) = NA(B)B and NA(B) = CA(B). Since

(lal, 1B]) =1, [aba™"| = || , ana N (B) = C,(B) we must have
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aba”! € B. Therefore, a € Ny(B) which is a contradiction.

In the proof of the above theorem we did not use the condition
(|a], |B]) = 1 to show that X g was fixed-point-free on A -N,(B).
However, without this hypothesis it is possible that B 4G so
that the set A - NA(B) is empty. As é consequence of the above

theorem we have:

Theorem 2.19: If (X,Q) 1is sharply 2-fold transitive,

(lAl, |B]) = 1, and A is not an elementary abelian p-group then

(1)_§n,(B) £a.

Proof: As in the proof of Theorem 2.10 we must have NA(B) $.A.

By Theorem 2.10 |X:B| > 1 and X:B is fixed-point-free on A - NA(B).
If NA(B) = (1) then X g contains a fixed-point-free automorphism
of A of prime order. Thompson [6] has shown that if a group has a
fixed-point-free automorphism of prime order then the group is nil-
potent. So A 1is nilpotent. Now (X, ) 1is primitive and

NA(B) = 1 so, by Theorem 2.5, A must be characteristically simple.
But A nilpotent and characteristically simple implies that A

must be an elementary abelian p-group which is a contradiction.

Therefore, (1) ¥ NA(B) fA.



INDEX OF NOTATION

I. Relations:

In

Is a subgroup of

Is a proper subgroup of

A b

Is a normal subgroup of

n

Is isomorphic to

x =y mod A means xy ! €A

Is an element of

z Is not an element of

II. Operations:

G® The image of the group G under the mapping ©
ge The image of the element g under the mapping ©
& x lgx

Y]A The restriction of the mapping vy to the set A
M The automorphism sending g to x lgx

gprrer 991992

1A The identity automorphism of A

G/H Factor Group

X Direct product of groups

[G:H] Index of H in G

<5 Subgroup generated by

{1 Set whose members are

{x|P} Set of all x such that P 1is true

la| Number of elements in G
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lgl Order of the element g

Groups and Sets:

Hom(G,H) The group of all homomorphisms from G to H

ker y The set of all g such that g" =1

A(G) The automorphism group of G

B(A,G) The set of all vy € A(G) such that AY = A
z2(a) The center of G

CG(H) The centralizer of H in G

NG(H) The normalizer of H in G

2(G) The Frattini subgroup of G

1(G) The inner automorphisms of G

[o4 The empty set

A-B The set of all x in A and not in B
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