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ABSTRACT

KOTHE FAMILIES IN VECTOR LATTICES

By

Charles Good Denlinger

In 1934 Kdthe and Toeplitz introduced the notion of the o-dual

AX of a vector space A of real sequences:
o= Uy b [lxy | <= (x e,

and defined a '"perfect'" sequence space A to be one such that A = AXX.
In many important cases, the a-dual and the Banach dual of a sequence
space coincide. In any case, the ideas suggested by the notion of
a-duality have stimulated extensive investigations into the topologi-
cal and order properties of real sequence spaces. This theory, with
its various generalizations, has become known as the theory of K&the
spaces.

In the present thesis we proceed from the original notion of
K8the sequence spaces, along lines 6f generalization different from
those heretofore undertaken. We consider families [Xi’ I] of elements
X in a vector lattice E, indexed by an arbitrary set I. We let
wI(E) denote the collection of all such families, and consider certain
vector sublattices of wI(E), analogous to the familiar subspaces ¢,

c., ¢, and ¢ (1 < < ©) of the space w of all real sequences. The
0 p P = p q

order properties of these vector sublattices are studied.
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The notion of an "order summable'" family [Xi’ 1] is of fundamental
importance in the development of this thesis, and appears not to have
been exploited before, in the manner in which it is used here.
Consider the collection V(I) of all finite subsets of I, partially
ordered by inclusion, as a directed set. If we let {TJ} denote the
net of sums Ty = ZieJlxi| (J e V(I)), then a family [xi, 1] is said
to be order summable if the net {TJ} is order bounded in E; equiva-
lently, {TJ} is order convergent in the Dedekind completion E of E.
The collection of all such [Xi’ 1] generalizes the sequence space 21’
and is denoted f%(E).

This concept of summability leads to a generalization of K&the's
a-dual. We embed E in its universal completion E# and choose a
weak order unit 1 in B#. By the work of Vulikh and others we know
that there is a unique multiplication operation in E#, relative to
1. We use this multiplication to define the 'X-dual" of AI(E)
wI(E) as the collection A?(E) of all [yi, 1] in wI(E) such [Xiyi’ 1]
is an order summable family of elements of E for every [xi, I] in
AI(E). In addition, we use this multiplication operation in B# to
define the vector lattice QE(E, 1) (1 < p < =) as the collection of
all [xi, I] in mI(E) such that [x?, I] € [%(ﬁ). Analogues of the
H6lder and Minkowski inequalities are established, and attention is

directed to conditions which will guarantee cbI(E) c QI;(E, 1) e

JUE, D en(®), if 1 <p <q <=, and f2E, DI = g4, D,

ot
if %-+ %-= 1. Corresponding to each y € A?(E), the mapping y

~ E
from AI(B) into E defined by y (x) = z=

X.y. 1s shown to be a
1el 171
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positive, order-continuous linear mapping.

Throughout the thesis considerable attention is given to the case
in which E is a normed vector lattice. We define %-norms on f%(B)
and p-norms on RE(E, 1), which behave like the usual norms on 21
and Qp’ respectively. Conditions under which these norms are essen-
tially unique are studied. These considerations involve the problem
of extending a monotone norm from E to its Dedekind completion E.
Semi-continuity and continuity of the norm on E are relevant.

Another dual, the Y-dual of a subset AI(E) E;wI(E) is defined
and discussed briefly in the final section of the thesis. It is
similar to the X-dual, but is independent of the choice of unit 1
in E#.
An interesting result of a different nature is obtained at the
end of Chapter I. Using an approach to Banach limits for bounded
sequences of real numbers, developed in a paper by Simons, we are
able to define, and prove an existence theorem for, Banach order

limits of order bounded sequences in vector lattices. Several

criteria for almost order convergence are developed.
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INTRODUCTION

A vector lattice i1s a vector space E over the real scalar

field R, equipped with a partial order < (which is reflexive, anti-
symmetric, and transitive) such that

(1) x <y implies x+ z <y + z for all z in E,

(2) x > 0 implies ax > 0 for all real o > 0, and

(3) E is a lattice under <.

Thus every two-element set {x,y} in E has a supremum, denoted sup{x,y}
or xv y, and an infimum, denoted inf{x,y} or x A y.

Since its inception around the year 1930, the theory of vector
lattices has greatly enriched the field of functional analysis. A
brief account of its origins and early contributors may be found in
the forward of Vulikh [18] and in the introduction to Zaanen [21].

For expositions of some of the major results of the theory of vector
lattices, the reader is referred to Vulikh [18], Luxemburg and Zaanen
[6], and Nakano ([7] and [8]).

Vector lattices have been called by various other names; for
example, '"linear lattices" or "semi-ordered linear spaces'" in the
works of Nakano, "Riesz spaces" in the works of Bourbaki, Vulikh,
Luxemburg and Zaanen, and 'K-lineals'" in the works of various Russians.

The basic definitions and fundamental properties of vector

lattices may be found scattered throughout the literature; for example,



see Namioka [9], Peressini [10] or Vulikh [18]. As a convenience
to the reader a few of these basic facts will be given here. The
set E' = {x e E : x > 0} is called the positive cone of E, and has
the properties ' + E+_C. E+, T e for all A € R+, and
E'n (-E7) = {0}, If x e E we let x = xv 0, x = (-x) v 0 and
|x| = x+v X ; then x = x+ - x—, |x| = x+ + x and x+/\ x =0. If
|x] A |y| = 0 we say that x and y are disjoint and write x L y.
Vector lattices are necessarily distributive lattices. If x,

y, and z are arbitrary elements of a vector lattice E, the following

relations hold:

(4)  =(xvy) = (-x) A (-y), -(xry) = (-x) Vv (-y);
(5) (xvy)+ = x+v y+, (xr\y)dr = x A y+;
(8) (xvy) =x vy, xay) =x Ay ;

(7) 1if aeR+, then a(xvy) = ax v ay and a(xAy) = ax A ay;

(8) (xvy) + z = (x+z) v (y+z), (®Ay) + z = (x+z) A (y+2);

]
[}

(9) x +y = (xvy) + (xny), |x-y| = (xvy) (xAy) 3

(=) 4y, x Ay = x- (x9)7;

(10) xvVvy

(11)  (xy)T ix+ Fy, k)T < x4y

(12) |xry| < |x| + |yl Hxl -lyll < |x-y|;

(13)  |(xvz) - (yvz)| < |x-y|, |(xn2) - (yAz)| < |x-y]|;
(14) if %, y, z > 0, then (x+y) A z < (xA2) + (yrz);
(15) x <y if and only if x' <y  and x >y ;
(16) |x| <y if and only if -y < x <y;

(17) xL y if and only if |x| v |y| = |x| + |y];

(18) if x =y - z fory, z >0, thenx+§y and x < z; if in

addition y L z, then x = y and x Z.



Proofs for these well-known relations may be found in the literature
cited above.
Given vector lattices E and F, a linear isomorphism y: E > F

such that x > 0 if and only if Y(x) > 0 is called a vector lattice

isomorphism; we then write y: E = F. If y: E > F is a vector lattice
isomorphism and A € E, then sup A exists in E if and only if sup Y(A)
exists in Fj in that case, Y(sup A) = sup Y(A). The analogous state-
ment for infima also holds. Unless otherwise specified, the term
"isomorphism" will, in this thesis, mean "vector lattice isomorphism".
A linear subspace M of a vector lattics E is said to be a vector
sublattice of E if, for each x, y in M, the supremum of x and y in E
is also in M. It then follows from (4) above that the infimum of
x and y in E is also in M,
A (lattice) ideal of a vector lattice E is a linear subspace
I € E such that y € I whenever |y| < |x| for some x ¢ I. An ideal
is necessarily a vector sublattice. A vector sublattice M of E is

said to be order closed if it contains sup A, for every subset A of M

having a supremum in E. An order closed ideal is sometimes called
a band.

A vector lattice E is said to be Archimedean if every x ¢ et
satisfies the equation inf{%x: n ¢ N} = 0; equivalently, if x, y € gt
such that Ax <y for all A > 0, then x = 0. It is well-known (see
Vulikh [18], p. 75) that any n-dimensional Archimedean vector lattice

is isomorphic to R". Every vector sublattice of an Archimedean
vector lattice is Archimedean. Any vector lattice of real-valued

functions, with the usual pointwise-defined linear operations and






order, is Archimedean.

A vector lattice E is Dedekind complete (resp. Dedekind o-complete)

if every subset (resp. countable subset) of E which is bounded above in
E has a supremum in E. Either of these conditions is sufficient to
imply that E is Archimedean. Every ideal in a Dedekind complete (resp.
o-complete) vector lattice is also Dedekind complete (resp. o-complete).
A Dedekind complete vector lattice in which every set of pairwise dis-
joint elements is bounded is said to be universally complete. Any
order-closed vector sublattice of a universally complete vector

lattice is also universally complete.

A vector lattice E is order separable if every subset A of EY
having a supremum in E contains a countable subset with the same
supremum. Any ideal in an order separable vector lattice is again
order separable.

An element 1 in a vector lattice E is called a weak order unit
if x A 1 > 0 whenever x > 0 in E, and is called a strong order unit
if for every x e EY there exists a scalar A > 0 such that Ax <

Given vector lattices E and F, E is said to be order-dense in F
if every £ > 0 in F* satisfies the condition f = sup{e € E: 0 < e < f};
E is said to be guasi-order-dense if for each £ > 0 in F there exists
an e € E such that 0 < e < f. It is well-known that in an Archi-
medean space F,order-denseness and quasi-order-denseness are equiva-
lent.

We list here a few of the common vector lattices. The space w
of all real sequences, with its usual (coordinate-wise defined)

linear operations and order relation, is an example of a universally



complete vector lattice. Real Euclidean n-space R" is isomorphic

to an order-closed ideal of w, and hence R" is also universally com-
plete. The familiar sequence spaces 2p (1 <p <=, <y (the space

of all zero-convergent sequences), and ¢ (the space of finite sequences)

and ¢ are Dedekind complete

are ideals in w; hence lp (1 <p <), <

vector lattices. The space £ _ of bounded sequences is often denoted m.
The vector sublattice c, consisting of all convergent real sequences,
is not an ideal in w, and is not Dedekind complete. The vector
lattice F(X) of all real-valued functions on an abstract set X, with
linear operations and order defined pointwise, is universally complete.
A universally complete vector lattice of key interest in current
research is the space M(X, 2, u) of equivalence classes of almost-
everywhere finite-real-valued, p-measurable functions on the measure
space (X, €, ), again with linear operations and order defined point-
wise, The spaces Lp(X, 2, ) (L < p <) are ideals inM(X, @, u),
and hence are Dedekind complete vector lattices. Finally, the space
C(X) of continuous real-valued functions defined on a compact
Hausdorff space is a vector lattice which need not be Dedekind
complete.

If {xa} is a monotone increasing (resp. decreasing) net in a

vector lattice E, with supremum (resp. infimum) x, in E, then we

0

write x4 x_ (resp. x_ ¥ x.). A net {x } in E is said to order
o 0 Q 0 o —_—
converge to X, in E if it is order bounded and if there exists a

net {ya} in EV such that |xa - x| <Yy ¥ 0. If {xa} order converges

to x,, Wwe write x 3 x , Or X, = o-1lim x .
0 o 0 0 a a

If {xa} order converges then it has a unique o-limit, and every



subnet of {xa} o-converges to the same o-limit. Order convergence
preserves sums, scalar products, suprema and infima; more precisely,
. o
if x S x and y ._°>y, then x_ +y 5 x + vy, ax —3Ax (A e R),
o a a o a
X,V yo‘-f_s XV y, and X, N ya—opr y. Given a bounded net {X(x} in a
Dedekind complete space, we define l&m X, = igf
. o . c e T .
sgp égg xB; then xa——ax if and only if lém Xa = x = lim X,
It is easily seen that if I is an ideal in a vector lattice E
and {xa} is an order bounded net in I, then xali»x in E if and only if
o _ .
xa._a»x in I.

A sequence {xn} in a vector lattice E is said to order *-converge

to an element x € E (denoted xn—ﬁ>x) if every subsequence of {xn} has
a subsequence that order-converges to x. The properties of order
convergence described in the preceding two paragraphs hold for

order *-convergence as well,

If we consider the vector lattice?ﬂ of equivalence classes of
finite (a.e.) Lebesgue-measurable functionson [0,1], with the usual
order, then order convergence is equivalent to convergence almost
everywhere and order ¥®-convergence is equivalent to convergence in
measure.

A net {xa} in a vector lattice E is said to be y-uniformly
convergent to an element x ¢ E (for a given y € E) if for every

positive real number §, there exists a, such that |xu - x| < 8y for

0

all o > a.. A net {xa} in E is said to be uniformly convergent if

0

ey s . . u
it is y-uniformly convergent for some y € Ej in symbols, xa—a)m
In an Archimedean vector lattice, uniform convergence implies order

convergence,






Many of the vector lattices studied in functional analysis are
also normed spaces. If .l is a norm on a vector lattice E such

that |x| < |y| implies || x| < |y|, then lI.|| is called a monotone norm,

and (E, <, Il.[\) is said to be a normed vector lattice. A Banach

lattice is a norm-complete normed vector lattice; if E is a Banach
lattice, g’ is necessarily norm-closed. An M-space is a Banach
lattice in which x, y > 0 implies ||xv yll = max{\ix\, |yll}; an
L-space is a Banach lattice in which x, y > 0 implies |x + y\ =

izl + iyl. In his famous paper [3] Kakutani proved that every
L-space is isomorphic and isometric to Ll(X, Q, ) for some locally
compact Hausdorff space X and some positive Radon measure y defined
on X. In another famous paper [4] Kakutani proved that every M-space
is isomorphic and isometric to a vector sublattice of C(X) for some
compact Hausdorff space X. Vulikh ([18], theorem VII.7.1) has shown
that every L-space is Dedekind complete and has the property that

X, v 0 implies “Xa“ Vv 0.

In the present thesis it is shown that the theory of (real)
K8the sequence spaces (see K&the [5], § 30) can be generalized in a
meaningful way to spaces of families of elements in a vector lattice.
Given a vector lattice E and a nonempty set I, the notation [xi, 1]
will denote a family of elements Xy of E, indexed by the set I.

This is a generalization of the notion of a sequence [xn, N] in E.
Accordingly, the question arises as to whether it is possible and
fruitful to define spaces of families in E analogous to the familiar

sequence spaces w, ¢, Cys Cs and Qp (1 < p < =), using only the theory






of vector lattices. It is this question which gave rise to the
author's investigations, culminating in this thesis.

The basic spaces mI(E), ¢I(E) and mI(E)vgeneralizing w, ¢ and
m, respectively, are introduced in the beginning of Chapter I. A
large portion of Chapter I is devoted to an investigation of the
order properties of these, as well as of more general, vector sub-
lattices AI(E) of wI(E). Order convergence and order *-convergence
in AI(E) are related to order convergence in E. Possession by E of
properties such as the Archimedean property, Dedekind completeness,
universal completeness and order separability is related to the
possession by AI(E) of the same properties. Dedekind and universal
completions are discussed in this context.

Chapter I ends with an application, somewhat unrelated to the
remaining material in the thesis. A paper [16] of S. Simons is
extended to yield a definition of, and an existence theorem for,
"Banach o-limits" in vector lattices. Several criteria for "almost
o-convergence'" are developed.

Chapter II introduces and develops a theory of order summable
families in a vector lattice E. Of primary interest are families
[xi, I] for which there exists an element u € E such that for every
finite subset J & I, z Ixi| < u, The collection of all such families

ied
is a generalization of 21, and will be denoted le(E). For each
[xi, 1] in £1I(E) there exists a "sum". lei| in E, the Dedekind
completion of E. This sum is seen to ;Z an order continuous function

of [xi, I]. Several other types of summable families are considered.

In Chapter III representation theory, universal completion, and



multiplication in Archimedean vector lattices are used to generalize
the theory of QP spaces and Kothe dual sequence spaces to the context
of Archimedean vector lattices. For 1 < p < <, the space,QpI(E,1) is

defined as {[xi, 1] ¢ wI(E): ) Ixilp < u, for some u € E}, where the

iel
multiplication is performed in E", the universal completion of E,
relative to a fixed weak order unit 1 in E#. Analogues of the HOlder

and Minkowski inequalities are established, and some attention is
directed to conditions which will guarantee ¢I(E)Q QPI(EJ) = ,QqI(E,1)
EmI(E) if1 <p<gq <=

Given a weak order unit 1 in B#, the Kothe X-dual of a vector
sublattice Ai(E) of wI(E) is the ideal A;(E) = {[yi, 1] ¢ wI(E):
[xiyi, 1] € ?1I(ﬁ),‘v [Xi’ 1] ¢ AI(E)}. Attention is given to
conditions which will guarantee the duality relationships among the
aforementioned spaces which one is led to expect from their analogous
real sequence spaces. Corresponding to each y € A?(E), the mapping
y* from XI(E) into E is defined y*(x) = ‘leiyi; y* is shown to be
a positive order-continuous linear mappi;;.

Another type of dual, the Kdthe Yy-dual of a vector sublattice
AI(E) of wI(E), is introduced and discussed briefly in the final
section of Chapter III. Its chief advantage lies in its independence
of the choice of weak unit 1 in E#.

Throughout the thesis considerable attention is given to the case
in which (E, <, | .JI) is a normed vector lattice. Norm-bounded and
order-bounded families [xi, I] are discussed and related in Chapter I.

If (E, <, |.l) is a normed vector lattice, a monotone norm \\.“2

on Qll(E) such that (1) x; = 0 for all but finitely many i € I implies






10
“[xi, 11| = " Y |xi|u, and (2) ) |Xi| <y for every finite subset
: iel ied

J e I implies "[xi, I]“! < \vlls is called an { -norm on Q1I(B). In
Chapter II it is shown that for every normed vector lattice E there
exists a minimal and a maximal { -norm on fll(E). Conditions under
which Xll(E) has a unique f-norm are considered. These considerations
involve the problem of extending a monotone norm from E to ﬁ, as
recently studied by Solov'ev [17] and Reichard [12]. Semi-continuity
and continuity of the norm | .| on E are utilized in this study. In
Chapter III this line of study continues, with the definition and

discussion of p-norms and p-additive p-norms on pr(E, 1).






CHAPTER I

GENERAL FAMILIES IN A VECTOR LATTICE

Section 1. The fundamental spaces wI(E), mI(E), and ¢I(E).

We begin with a vector lattice E and an arbitrary nonempty index
set I, The notation [xi, I] will be used to denote a family of ele-
ments X in E indexed by the set Ij strictly speaking, [xi, 1]
could be regarded as a mapping from I into E. Proceeding in analogy

with sequence spaces, we define the spaces

wI(E) = {[xi, 1]: x, € E Yie I},

mI(E) = {[xi, I] ¢ wI(E): Au e E such that |xi| <uVi e I},
and

¢;(E) = {[xi, 1] e wy(E): %, = 0 for all but finitely many i}.

The elements of mI(E) will be called (order)-bounded families, and

the elements of ¢_(E), finite families.
I ]

The proof of the following proposition is straightforward and

easy; it will be omitted.

(1.1) Proposition. If E is a vector lattice and I is an

arbitrary index set, then wI(E) is a vector lattice, relative to
the definitions

[xi’ I] + [yi’ I] = [xi + Yio I]:

A[xi, 1] = [Axi, 1] (x e R),

[xi’ 1] = [yi’ I:I@xi f‘yi Vi e I.

11






12

In the vector lattice wI(E) it turns out that

[xi, 1]v [yi, 1]

[x;s 11N Dy, 1]

[xi‘J Vi I] and

[xi/\ Vi 1].

Moreover, mI(E) and ¢I(E) are ideals in wI(E).

Note that in case E= R and I = N (the set of natural numbers),
the spaces wI(E), mI(E) and ¢I(E) coincide with the usual sequence
spaces w, m and ¢, respectively. This case also serves to show that
mI(B) is not necessarily a band in wI(E). The set {(1, 2, «c., N,

0, 0, ve.):n=1,2, ...} is a subset of mN(R) having supremum

(1, 2, ooy n, ntl, ...) in wN(R), but this supremum does not belong
to mN(R). Similarly, consideration of the set {en: n=1, 2, ...} of
sequences e = (0, 0y ¢eey 1,0, ...), whose nth term is 1, shows

that ¢I(E) is not necessarily a band in mI(E) or wI(E).

For any vector lattice E and any i0 e I, it is evident that
the set

Gpsy (E) = {[xi, 1] € wI(E): Xy = 0 ¥i# io}

’
I 0

is a vector sublattice of wI(E) isomorphic to E.
The proofs of the following two propositions are straightforward,

and not very instructive for our purposes; they will thus be omitted.

(1.2) Proposition. If E and F are isomorphic vector lattices,

then there exists an isomorphism y: wI(E)-—>wI(F) whose restrictions
to mI(E) and ¢I(E), respectively, are isomorphisms onto mI(F) and
¢I(F).

(1.3) Proposition. If E is a vector lattice, and I and J are




13

two sets of the same cardinality, then there exists an isomorphism
/R wI(E) - wJ(E) whose restrictions to mI(E) and ¢I(B), respectively,
are isomorphisms onto mJ(E) and ¢J(E).

The converse of (1.2) is false. As a counterexample, consider

2
the spaces wN(R) and wN(R ). The m;p [(an’ Xn2)’ N] » [x(n,i)’ Nx{1, 2} ]
is clearly an isomorphism from wy(R ) onto w (R), and by (1.3)
N Nx{1,2} )
the latter space is isomorphic to wN(R). Thus wN(R) x wN(R ).
2

However, R # R .

Suppose E is a vector lattice on which there is defined a

norm Il .. We call a family [xi, 1] in wI(E) norm-bounded if there

is a positive real number M such thatl\xin < M for all i € I. In
general, there is no relationship between the order-boundedness and
norm-boundedness of a family [xi, I], as the following examples
will demonstrate.

Consider the vector lattice ¢ of finite real sequences, with
its usual order and "sup" norm. For each n € N we use the customary
notation e, to denote the "nth basis unit vector" e = (0, 0y weoy 1, 0,00.)
whose Kth term is 1 if k = n, 0 if k # n. 1In wN(¢) the family
[en, N] is norm-bounded but not order-bounded.

Let BVO[O,l] denote the vector space of all real-valued
functions f of bounded variation on the unit interval [0,1]such that
£(0) = 0. The set {f ¢ BVO[O,l]: f(t) >0 VO <t <1} is a positive
cone, inducing a partial order under which BVO[O,l] is a vector
lattice. We take the total variation as norm; i.e. || £ll = Té(f).

Then the family [fn’N] defined by the following formula,






fn(t) =

cannot be norm-bounded. Howeverlfn(t) < 2 for every n ¢ N and

0 <t <1; thus [fn, N] is order bounded. Thus order-bounded sets
need not be norm-bounded.

If E is a vector lattice on which there is defined a norm | .|,
and I is a nonempty set, we let NI(E) denote the collection of all
norm-bounded families of elements of Ej

N(E) = {[x., 1] e w (E): 3Me R" alx.l <M Vie I}

I i I i
Now NI(E) is a vector subspace of wI(E). Moreover, if we define

"[xi, I]“m = ?zg Hxi” for each [Xi’ 1] in NI(E), then NI(E) is

easily seen to be a normed space. With the ordering induced from
wI(E), NI(E) is a partially ordered vector space, but need not be
a vector lattice.

To see that NI(E) need not be a vector lattice, consider again
the vector space E = BVo[O,l]. This time let the positive cone be
{f ¢ BV0[0,1]: f is non-decreasing} and let the norm be "f“ =
sup {If(t)l: 0 <t <1}. We first show that for this ordering,
£7 is the positive variation of the function f:

n
£7(t) = Pg (£f) = sup {izl[f(xi) - f(xi_l)]+: n ¢ N and

0=x, <X, < ... <x_ =11,

2 n

Now 0 < s <t <1 implies Pg(f) - Pz(f) = P: (£) > £(t) - f(s) which
implies Pg(f) - f(t) 3_P§(f) - f(s). Thus Pg(f) - f(t) is a non-

decreasing function of t for 0 < t < 1; i.e. Pé)(f) > f, Also,
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Pé)(f) > 0 since Pé)(f) is non-decreasing. Now suppose g > f and
g > 0; that is, g and g-f are both non-decreasing on [0,1]. Then for
any 0 <s <t <1 and any partition s = g St el <t =t
of the interval [s,t], we have for each 1 <i<n,
(et - £(e ] - [glr; ) - £, Dl >0,
so that g(ti) - g(ti—i) Z.f(ti) - f(ti_l). We also have
glty) - g(t, ;) > 0. Therefore
gt - gt > [£(r) - £x, DT,
and hence g(t) - g(s) = P:(g) z_P:(f) = Pg(f) - Pz(f). We thus have
g(t) - Pg(f) > g(s) - Pg(f). From this we see that g - Pé)(f) is an
increasing function on [0,1]; i.e. g 3_Pé)(f). Therefore,
£7(t) = Po(D).
By this result, we conclude further that |f| is the total
variation function of f: |£|(t) = Tg(f), for 0 < t < 1.
Now consider the family [fn, N] e wN(E) (E = BVO[O,l]),

given by sin S if-l <t <1,
t n— -

£(1) =

Sl -

0 if 0 <t <
Then [fn’ N] e N_(E) since "fnu <1, but I[fn’ N]| = [Ifnl’ N]
¢ NI(B) since “]fn|“ + ® as n > ., Therefore, NI(BVO[O,1]) is

not a vector lattice.

(1.4) Proposition. If (E,<) is a vector lattice on which there

is defined a norm ||.||, and if I is an arbitrary set, then
(a) (E,<,0LI is norm-complete if and only if (NI(E),jJ“Mm)
is norm-complete;
(b) W .l is monotone on E if and only if (N (E),< “.”m) is a

normed vector lattice;
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(¢) (Ey < |-I) is an M-space if and only if (NI(E), <,

“.\m) is an M-space.

Proof. (a) Suppose (E, ||.l) is norm-complete, and let
{[xgn), I]} be a Cauchy sequence in NI(E). Then for each i in I,
{xgn)} is a Cauchy sequence in E; hence it norm-converges to some
element Xy in E. Consider the family [xi, I]. Let § > 0. Since
3 M >0 such that n, m > M implies “[xgm) - xgn),l]"m < §, we also
have u[xgn) . I]“m < “[ng), I]"m + § whenever n > M. For each
i in I, we then have

(n) (M) .

"xi “ f."xi " + 83

thus letting n - « we have
o (n) (M

gl = 2gm 1™ < )+ e
There fore [xi, 1] € NI(B). It remains to show that {[xgn), 1]}
“'“m - converges to Exi, 1].

Let § > 0 and choose M as above. Then m > M implies

Ix. - xgm)“= lim \xgn) - xfm)ﬂ < $§ for all i in I. Hence, m > M

i i oo Il 71 i -
implies “[xgm), 1] - [xi, I]“m < §, which establishes the desired
convergence.

To prove the converse, suppose that (NI(E)’ H.“m) is norm-
complete, and let {xn} be a Cauchy sequence in E. The sequence of

(n) _ «

constant families [xgn), I] given by Xy N is then a Cauchy

sequence in NI(B), and thus must converge to an element [xi, 1] in

NI(E). Thus for every § > 0 there exists M > 0 such that n > M
(n)

oo (n)
1mpllesl\[xi , I] - [xi, I]nm < §; hence, “xn - xi“ = “xi xﬂLi $
(i € I). Therefore, {xn} is norm-convergent in E, proving that E is

norm-complete.
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(b) Suppose that || .|| is monotone on E. Let [xi, 1] € NI(E);
then there is some u in R such that Hxi“ < u for all i € I. Hence,
“Ixil“ = "xi“ < u for all i € I, so that I[xi, I][ = [Ixi|, I]e NI(E).
Therefore NI(E) is a vector lattice. We shall next show that “'“m is
monotone on NI(E)‘ If ][xi, 1] §.|[yi, 1]| in NI(E), i.e., [lxil, 1]
5_[|yi|, 1], then Iki| j_lyil for all i € I; thus "xi“ j_“yi“ for all
i e I, which implies “[xi, I]“m j_“[yi, I]“m‘

The converse is easily seen by the fact that NI(E) contains con-
stant families.

(¢) If (E, <,\.ll) is an M-space, then for [Xi’ 1], [yi, I] in

+ ‘ :
NI(E) , n[xi, IJv [yi, I]“m = ”[xi V o Yss I]“m = sup {llxi N yiH: ie I}
- - < -
= sup Uixl v lyls 1e 13 S Gsup NV Gsup [y, = N, 130

iel 1el

||[yi, I]“m, which, together with (a), implies that (NI(E)’ < “'“m)
is an M-space. The converse is easily seen, since NI(B) contains con-

stant families.

(1.5) Observations. If (E, <, ||.l|) is a normed vector lattice,

then mI(E) and NI(E) are normed vector lattices and are ideals in

wI(E). The proof of (c) above shows that if E is a normed vector
lattice, then “.Hm preserves suprema on mI(E)+ if and only if \l. |l
preserves suprema on E'.

If (E, <, |.II) is a normed vector lattice in which every norm-
bounded set is order-bounded, then the norm Il.l is said to be mono-

tone bounded. Note that in such a case, mI(E) = NI(E).
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Section 2. Cartesian products and direct sums.

It is well-known that the Cartesian product gEu of an arbitrary
collection {Ba: o € '} of vector spaces, i.e., the set of all maps
£f: T > L&Ea such that for all a € ', f(a) € Eu’ is a vector space under

the operations

(f + g) (a) = £(a) + g(a),

(Af) (o) = A(£(a)).

The subspace consisting of all f such that f(a) = 0 for all but finitely
many o is called the direct sum of the spaces Ea and is denoted % BOL.
If each of the spaces Ea is a vector lattice, then gEa is also a
vector lattice, under the ordering:
f < g if and only if f(a) < g(a) for all a € T,
The positive cone in IIE  is thus H(E+). Moreover, @E 1is an ideal in
a o oo a o
IE , with positive cone @(E +).
a o a a
If Ba = E for all o € I'y then the space gEa may be denoted gE

or EF.

(2.1) Proposition. Under the ordering described above,

. = pl -
wI(E) = E (= E7) and ¢I(E) = f@&E.

101

(2.2) Proposition. If {Ea: a € T} is a collection of vector
lattices and I is an arbitrary set, then

1'otrEy olrer (By)-

Moreover, if Ea = E for all o in I', then both of the above spaces are

(E).

isomorphic to OIyp

Proof. Let [fi’ 1] € wI(agrEa). Then for each i ¢ I, fi is a

mapping from T to\éEa such that fi(a) € Ea for all a € I'. Let
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w([fi, 1]) be the map F: I' » LﬁwI(Ea) such that F(a) = [fi(a), 1]
for all a ¢ I'. That is,
v(ls,, 1D (o) = [£, (o), 1],
and hence, V¥: wI( I Ea) > g”wI(Ea)' It is a routine matter to verify
that ¢ is a (vector lattice) isomorphism.

(E)

In case Ea = E for all a € I'y we use the map m: wI( g Ea) > Wryr

given by the formula
ﬂ([fi, 1)) (i, a) = fi(a).

Again, it is routine to verify that 7 is an isomorphism.

(2.3) Remarks. If {Ea: a € T} is a collection of vector lattices
and I is an arbitrary set, then

m 1 E =~ I m.(E ).
I(aeF a) ael I( d)

The restriction of the map ¥ given in (2.2) establishes the desired
isomorphism.
The second assertion of (2.2) does not extend to the spaces mI(.);

(E) is not necessarily isomorphic to 1_ m_ (E).

in general
& > Mpyr ael I

For example,

neN
This may be seen by noting that meN(R) has a strong order unit (any

positive constant map on NxN), while mN( I R) does not have a strong
neN
order unit (since gR does not).
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Section 3. Order properties in subspaces of wI(E).

In this section we investigate relationships between various
order properties which may be possessed by the vector lattice E, and
those possessed by wI(E) and its vector sublattices.

(3.1) Proposition. If E is an Archimedean vector lattice, then
any vector sublattice of wI(B) is Archimedean.

Proof. Since a vector sublattice of an Archimedean vector lattice
is Archimedean, it suffices to consider wI(B). Suppose E is Archi-
medean. If [Xi’ 1], [yi, 1] ¢ u)I(E)+ with A[xi, 1] 5_[yi, 1] for
all X > 0, then kxi <y for all A > 0 and i € I; hence, X, = 0 for

all i € I, so that [Xi’ I] = 0. Therefore, wI(E) is Archimedean.

(3.2) Definition. A vector sublattice wI(E) will be said to have

the regular supremum property if, for arbitrary U E.XI(E), an element

[zi, 1] in XI(B) is the supremum of U only if, for every i e I,

0

z, =sup {x, : [x,, I] e U}.
i i i

Note that the phrase "only if'" may be replaced by "if and only
if", since the addition of "if'" merely adds a condition which is

trivially satisfied by every vector sublattice of wI(E).

(3.3) Proposition. If E is a vector lattice, every ideal AI(E)
in wI(B) has the regular supremum property.
Proof. First we show that wI(B) itself has the regular supremum

property. Let UE wI(E) and [Zi’ I] = sup U. Let io € I. Then z,
0
is an upper bound in E for {xi : [xi, 1] e U}. Suppose y is another
0
upper bound for this set. Then the family [yi, 1] in wI(E) given by
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y if i = io,
z; if 1 # iys

is an upper bound in w_(E) for U. Thus [y., I] > [z., I]; in part-
I 1 -1

icular, y = yio Z‘zio. Therefore zio = sup {xio: [xi, 1] ¢ U},

Now let AI(E) by any ideal in wI(E), and let U S.AI(E) with
[Zi’ I] = sup U in AI(E). Then [zi, I] = sup U in wI(E), since A (E)
is an ideal. Thus zio = sup {xiO: [Xi’ I] ¢ U}, as shown above.
Therefore, AI(E) has the regular supremum property.

(3.4) Proposition. If E is a vector lattice, every vector sub-
lattice AI(B) of wI(B) containing ¢I(E) has the regular supremum pro-
perty.

Proof. Suppose ¢I(E)‘E AI(E), and let U be a subset of AI(E)

having supremum [Zi’ 1] in AI(E). Let i, ¢ I. Then z; is an upper

0
0
bound for {xi : [xi, I] € U}. Suppose y is another upper bound; then
0
Ly + z, ) is still another upper bound, since y + z, 2% ot
0 0 0 0

for all [xi, I] € U. Define the family [yi, 1] by
y - zio if i = io,
0 if 1 # 1y

Then [yi, 1] e‘¢I(E) E:AI(E), so that the family [(%yi + zi), 1] =

% [yi, 1] + [Zi’ I] belongs to AI(E) and is an upper bound for U.
1 1 :
%y + %z, > z, , which
o7 Yo
implies y 22 Therefore, z, = sup {xi : [xi, 1] ¢ U}.
0 0 0

Thus [Csy, + z.), I] > [z., I]; in particular,
£l i =% P

To find examples of vector sublattices AI(E) which do not have
the regular supremum property, one must thus go beyond the familiar

sequence spaces. Consider E = R, and I = [0,1], the closed unit
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interval. As a vector sublattice of wI(R), the space C[O,l] does not

have the regular supremum property. Indeed, the family U = {fn: n e N}
1

—

given by fn(x) = %" (0 < x < 1), has the constant function 1 as its
supremum in C[0,1]; but sup {f (0):ne N} = o.

In view of the fact that wI(E) has the regular supremum property,
we see that a vector sublattice XI(E) has the regular supremum property
if and only if any subset U having a supremum in AI(E) has the same

supremum in wI(E).

(3.5) Proposition. Let E be a vector lattice, let AI(E) be an

(o)

ideal in wI(E), and let {[xi R I]&ef be a bounded net in AI(E).

Then [xi(a), 11 3 [Xi’ 1] in XI(E) if and only if xi(a)—gyxi (in E)

for all 1 € I.

Proof. First note that each net {xi(a)} is order-bounded in E.
(o) o) . .
Suppose [Xi , I]-—»[xi, I] in E., Then there is a net

{[yi(a), 1]} in AI(E) such that l[xi(a), 1] - [Xi’ 1]| 5_[yi(a), 1] v o.

(a) (o)

That is, [Ixi - xi|, 1] 5_[yi , I] ¥+ 0. Thus for each i ¢ I,

(a)

Ix.(a) - X i-yi ¥ 0, using the regular supremum property. Hence,

i i|
o) o . .
xi( )——»xi in E for each 1 € I.

(a) o

Now suppose that for each i ¢ I, X, X Then for each i,

() _ x.I < yi(a) + 0. Then

there exists a net {yi(a)} in E with |xi i =

[yi(a), 1] ¥ 0 in w (E), and I[xi(a), 1] - [x, 1] < [yi(d), 1].

Therefore, [xi(a), I]-ga[xi, I] in wI(E), as well as in the ideal XI(E).

(3.6) Proposition. Let E be a vector lattice, let AN(E) be an
(k)

ideal in wy(E), and let {[xn

, NJ} be a bounded sequence in ANCED.
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(k) . . . . (x) . .
Then [xn , N] -JL)[xn, N] in AN(E) if and only if x %5 x_ in E

for all n e N.

Proof. Suppose [x;k), N] N [xn, N] in AN(E). Let n e N, and
k(i)}?_ of {x(k)}.
i= n

consider any subsequence {xn By *-convergence,

. © ''(3 ©
{[xﬁ(l)’ N]}i=1 has a subsequence {[xk (l)’ N]}i=1 order converging

k(l)} (l)}

to [xn, N] in AN(E). Then {x has the subsequence {x

(k) *

order converging in E to X s by (3.5). Therefore X T—> % in E.
(k) = k(i) ®
» NI}, L

Now suppose that for every n e N, x ' —>x . Let {[x

be an arbitrary subsequence of {[x(k) N]}. By *-convergence there
k(i) o

(o]
exists a subsequence {k1 (1)}i=1 of {k(l)}i=1 such that x, —> x,.
Continuing inductively, for every n = 2,3,... there exists a sub-
4@ kn(i) o
sequence {k_ (i)},_, of {k (1)} such that x — x_. For each
n i=1 n n
(1), kn(1)
n € N we thus have a sequence {y } in E such that |x - xnl
< L1 v 0
—7n

Let n ¢ N. Then for j > n, kj(j) is a term of the sequence

{kn(i)}; i.e., kj(j) = kn(i) for some i > j. Then for j > n,

k+(3) k, (1) :
x_J - X = |x " - X < y(l) < ygn) ¥ 0. That is, for each
n n n nf —’n —71
ks (1) ks (1)
neN, xnl —439 X Therefore, by (3.5) [xnl R N]-—29 [xn, N]

in AN(E). But this means that every subsequence of {[xik), N1} has
in turn a subsequence order converging in XN(E) to [xn, N]. There-

fore, [x(k), N] —£» [x ,N] in AN(E).
n n

It may be of some interest to note that the proofs given for

the "only if" parts of (3.5) and (3.6) remain valid under the less
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restrictive hypothesis that‘AI(E) (resp. AN(E)) is a vector sub-

lattice of mI(E) with the regular supremum property.

(3.7) Definition. Given a vector lattice E, we define Ei(E) =
{[xi, 1] ¢ wI(E): X, = 0 for all but countably many i € I}.

We note that E&(E) is an ideal in wI(E).

(3.8) Proposition. Let E be a nontrivial vector lattice.
(a) 1If AI(E) is an ideal in E&(E) containing ar . (E) for some
»+0
i0
able.

€ I, then E is order separable if and only if XI(E) is order separ-

(b) wI(E) is order separable if and only if E is order separable
and I is a countable set.

Proof. (a) Since ideals in order separable spaces are order
separable, it suffices to prove that E&(E) is order separable when-
ever E is. Thus suppose that E is order separable, and let A be a
subset of EE(E)+ having supremum [zi, I] in E&(E). Then z, = 0 for

all but countably many i, say i = i Since for each j, zj =

1,12,...

sup {xj: [xi, I] € A}, we know that for each [xi, I] in A, x; = 0

except for i = il’ i2,.... Thus by order separability of E, for
each n = 1,2,..., there is a countable set {[xin’j), I]: 5 = 1,2,...}
in A such that
(n,3). .
z, = sup {xi 237, j=1,2,...}.
n n

Then z, < sup {xgh’]): h=1,2,...53=1,2,...} < sup {xi : [xi, 1]
n n n
€ A} = z, » since E&(B) has the regular supremum property. Therefore,
n
[Zi’ 1] = sup {[x(h’j)

N , It h=1,2,...5 3 =1,2,...},
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and we see that A has a countable subset with the same supremum.
(b) In view of (a) it suffices to prove that if I is uncountable,
then wI(E) is not order separable. Suppose I is uncountable. Pick
any e > 0 in E, and let [e, I] denote the constant family [Xi’ 1]
where X, = e for all i € I. For each i, € I define [e(io), I] to be

0

the family [yi, 1], where y; = 0 if i # io, and y; = e ifi=1 Let

0‘
A= {[e(io), 1]: io € I}. It is clear that sup A = [e, I] and that
A has no countable subset whose supremum is [e, I]. Therefore wI(E)

is not order separable.

(3.9) Proposition. Let E be a vector lattice. Then E has a weak
order unit if and only if wI(E) has a weak order unit. E has a strong
order unit if and only if mI(E) has a strong order unit.

Proof. (a) If 1 is a weak order unit in E, a weak order unit
[ei, 1] in wI(E) may be obtained by defining e, = 1 for all i e I.
Conversely, if [zi, I] is a weak order unit in wI(E) we may pick i e I

0

and let e = zio; then e is easily seen to be a weak order unit in E.
(b) Suppose 1 is a strong order unit in E, and again define
e, = 1 for all i € I. Then [ei, I] € mI(E). If [yi, 1] e mI(E) then
there exists y ¢ E' such that |yi| <y for all i € I. There exists
A > 0 in R such that Ay < 1; hence, Ik[yi, I]| < 1. Therefore, [ei, 1]
is a strong order unit in mI(E).
On the other hand, if [Zi’ I] is a strong order unit in mI(E),
pick io € I and let e = zg . Let x € E. Defining X, =X for all

i e I, we have [xi, 1] ¢ mI(E). Then there exists X > 0 in R such

that 0 < A[x., 1] < [z., I1]. In particular, Ax = Ax, < z, = e.
- i - -7 i, = i,
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Therefore, e is a strong order unit in E.

(3.10) Proposition. If E is a vector lattice, and AI(E) is any

ideal in mI(E) containing a. ., (E) for some i, € I, then

I,lo 0
(a) E is Dedekind complete if and only if AI(E) is Dedekind com-
plete;
(b) E is Dedekind o-complete if and only if AI(E) is Dedekind
o-complete.
Proof. We prove (a) only; the proof of (b) is analogous. Since
Dedekind completeness is inherited by ideals, it is sufficient to

prove that wI(E) is Dedekind complete whenever E is.

(a)

Suppose E is Dedekind complete, and let A = {[xi , IJ: a €T}

be a subset of wI(E) having an upper bound in wI(E). Then for each
(),

iel, {xi : o € I'} is bounded above in E; hence it has a supremum
z, in E. By the regular supremum property, [Zi’ I] = sup A in wI(E).

Therefore, wI(E) is Dedekind complete.

The condition that AI(E) be an ideal in wI(E) was included in
(3.10) to facilitate the "only if" part of the proof. Consider the
example E = R, wN(E) = s, AN(E) = ¢c. Then ¢ is a vector sublattice
of wN(E) which contains aN,iO(E) for every io e N, but E is Dedekind
complete while ¢ is not Dedekind complete. Notice that ¢ even has

the regular supremum property by (3.4).

. (E) for some i, € I was
I,lo 0

The condition that XI(E) contain o
included in (3.10) to facilitate the "if" part of the proof. If we
leave out this condition, we can easily find a counterexample to (a).

Take E = ¢, I = {1}, and AI(c) = c Then AI(E) is Dedekind complete,

Ou
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while E is not.

(3.11) Proposition. If E is a vector lattice, and AI(E) is any

order closed ideal of wI(B) containing o_ ., (E) for some i, € I, then

I,lo 0
E is universally complete if and only if AI(E) is universally complete.
Proof. Since universal completeness is inherited by order closed
ideals, it suffices to prove that wI(E) is universally complete when-
ever E is.
Suppose E is universally complete. Then wI(E) is Dedekind com-

plete by (3.10). Let {[xga), I]: o € T} be a set of pairwise disjoint

Ga): ael}is a
i

positive elements of wI(E). Then for every i € I, {x
s . s s + .
set of pairwise disjoint elements of E , so this set must have an

upper bound u, in E:

us Z_xga) (for all o € T).
But then [ui, 1] Z_[xga), I] for all & € T'. Therefore mI(E) is

universally complete.

(3.12) Proposition. Suppose E is a vector sublattice of a vector

lattice F. Let AI(E) denote one of the spaces wI(E), ¢I(E), a (E)

I,10

or mI(E), and let XI(F) denote the corresponding space for F. Then,
considering AI(E) as a vector sublattice of AI(F),

(a) if E is an ideal in F, then AI(E) is an ideal in AI(F);

(b) if E is order dense in F, then XI(E) is order dense in AI(F);

(e¢) if E is quasi order dense in F, then AI(E) is quasi order
dense in AI(F);

(d) if E is order closed in F, then AI(E) is order closed in AI(P).

Proof. (a) Let [Xi’ 1] e XI(B) and [yi, 1] ¢ wI(F) such that
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I[yi, I]I g_l[xi,I]|; i.e., Iyi| §_|x1| for all i e I. If E is an
ideal in F, then y; € E for all i € I, so that [yi, 1] e AI(E).

(b) Suppose E is order dense in F, and let [fi’ 1] >0 in XI(F).
Then for each i ¢ I, £, = sup {e: 0 < e i'fi’ e € E}. Since AI(E) has
the regular supremum property, we thus have [fi’ 1] = sup {[ei, 1]:
0 5_[ei, 1] i_[fi, 1], [ei, 1] e A (E)}. But this means that A (E) is
order dense in AI(F).

(¢) The proof of (c) is trivial.

(d) Suppose E is order closed in F. Let A QEwI(E) have supremum
[fi’ 1] in wI(F). By the regular supremum property in wI(F), fi =

sup {ei: [ei, I] € A} for every i in I. But then fi € E for each i.

Therefore [fi’ I] e wI(E). Therefore wI(E) is order closed in wI(F).

Section 4. Dedekind completion and universal completion.

The relationship between the Dedekind completion of E and that
of wI(E) is simple and natural. In this section we establish this
relationship and its ramifications for certain subspaces of wI(E).
Similarly we examine the universal completions of E and wI(E). These
results will find application in the next chapter.

Propositions (4.4) and (4.7) are the only original results in
this section. Definition (4.1) and proposition (4.2) may be found
in Luxemburg and Zaanen [6, section 32]; proposition (4.3) may be
found in Nakano [8, §30], Peressini [10, pp. 151-154] or Vulikh

[18, pp. 108-113].

(4.1) Definition. Given a vector lattice E, a Dedekind completion
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of E is a vector lattice é such that

(a) é is Dedekind complete,

(b) there exists a one-one linear y: E - é such that Y(x) < y(y)
whenever x <y,

(c) for every ¥ > 0 in E there exist x, y in E such that 0 < y(x)

<R < Uy,

(4,2) ProEosition. Let E, ﬁ and Y be as defined in (4.1).

(a) The map ¥ preserves arbitrary suprema and infima.

(b) Every R in é satisfies sup {y(x): x € E, ¥(x) < &} = % =
inf {Y(y): y € E, v(y) > &},

(c) Condition (c) of (4.1) may be replaced by the pair of con-
ditions: (i) for each 0 < &% ¢ é there exists x € E such that 0 < x < 8,
and (ii) the ideal generated in E by E is ﬁ.

(d) If 1 is a weak (resp. strong) order unit in E, then (1)

A

is a weak (resp. strong) order unit in E.

(4.3) Proposition. A vector lattice E has a Dedekind completion
if and only if E is Archimedean. Moreover, any two Dedekind completions
of E are isomorphic.

Henceforth we shall regard an Archimedean vector lattice E as
already a subspace of its Dedekind completion E, with the map ¥ being

merely the inclusion mapping.

(4,4) Proposition. If E is an Archimedean vector lattice, then

(a) T(B) = mI<§);

(b) @ = ¢I(§);
= ~
(c) mI(E) = mI(E).
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Proof. Since E ;é, we may regard wI(E), ¢I(E) and mI(E) as
vector sublattices of wl(ﬁ), ¢I(§) and mI(E), respectively.

(a) By (3.10) wl(ﬁ) is Dedekind complete. Now let 0 < [ﬁi, 1]
3 wI(é). Then for every i € I such that Ri # 0, there exist Xis V4

in E such that 0 < X, SR 2V Defining X, Ty 0= 0 for those i

such that ﬁi = 0, we have
0 < [x,, 1] < [&,, 1] < [y,, 1.

Therefore, wI(é) > wI(E) by the uniqueness result of (4.3).

(b) The proof of (a) carries over to this case.

(c) Only a slight modification needs to be made to the proof
of (a) to cover this case. If [ii, I] ¢ mI(E), then there exists
¥ € é such that ﬂi < ¢ for every i € I; but then by (4.1) there exists
y € E such that § < y. Then take y; =V for all i € I, and proceed

as in the proof of (a).

The notion of universal completion may be found in Nakano [8, §3u]
or Vulikh [18, pp. 1u42-144], although Vulikh prefers the term "maxi-
mal extension". Both (4.5) and (4.6) are drawn from these sources.

(4.5) Definition. A universal completion of a vector lattice E

is a vector lattice E# such that

#

(a) E is universally complete,

#

(b) E is isomorphic to an order-dense vector sublattice of E".

(4.6) Proposition. A vector lattice E has a universal completion
if and only if E is Archimedean. Moreover, any two universal com-
pletions of E are isomorphic.

In view of proposition (4.6), we shall hereafter, for the sake
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of convenience, regard E as a vector sublattice of its universal
completion E#. It is not hard to see that E is then the ideal gener-

ated by E in E#.

(4.7) Progosition. If E is an Archimedean vector lattice, then

= u @t

wI(E
Proof. By (3.11) wI(B#) is a universally complete vector lattice
containing wI(E), and by (3.12) wI(E) is order dense in wI(E#). Apply

the uniqueness part of (4.6).

Section 5. Banach o-limits in Archimedean vector lattices.

In a recent paper by S. Simons [16] we find a novel approach to
the theory of ordinary Banach limits for bounded real sequences.
This approach may readily be adapted to the context of vector lattices,
leading to the establishment of "Banach o-limits" for the space of
order bounded sequences in a vector lattice E, i.e., mN(E). The
results (5.4) - (5.12) of this section are thus generalizations of
results already known for ordinary Banach limits, as presented in
Simons [16] or Goffman and Pedrick [2].

Throughout this section, let E represent an arbitrary Archi-
medean vector lattice. The elements [xn, N] of mN(E) are merely

sequences in E, and thus for convenience will often be denoted {xn}.

(5.1) Definition. (a) o: mN(B) > mN(E), called the "shift

operator] is defined by c{xn} = {xn+1}.

(b) L: mN(E) + E is defined by L{xn} = Um x_ (= 1Rf igg X

in E).
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(c) S: my(E) > E is defined by S{xn} = sup x_ (in E).

(d) «<(E) = {{xn} € mN(E): lim x_ = l;m x_» in E}.
Note that c(E) is the set of all sequences in E which order converge

in E; c(E) is a vector sublattice of mN(E).

(5.2) Definition. A Banach o-limit on mN(E) is a linear map

g: mN(B) > ﬁ such that
goo<g=<s8;

i.e., go o (%) < g(x) <S(x) for all x ¢ mN(E).

We let BL(E) denote the collection of all Banach o-limits on mN(E).

A mapping T: E -+ F from E into a vector lattice F is said to be
sublinear if

(a) T(Ax) = AT(x) for all x e E, X ¢ R+, and

(b) T(x +y) < T(x) + T(y) for all x,y € E,
As an example, observe that the standard argument used for real sequences
applies here to show that the map L: mN(E) > é is sublinear. It is
easily seen that a sublinear map T: E > F will have the following
additional properties:

(c) T(0) = 03

(d) -T(x) < T(-x) for all x ¢ E;

(e) if f: E > F is linear and f(x) < T(x) for all x € E, then
-T(-x) < f(x) < T(x) for all x € E.

It has been noted (see e.g. [10], p. 78) that the proof of the
classical Hahn-Banach theorem remains valid if R is replaced by an

arbitrary Dedekind complete vector lattice.
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(5.3) Proposition. (Hahn-Banach). Let E be a vector space,
F be a Dedekind complete vector lattice, and p: E - F be sublinear.

If f: E, » F is a linear map defined on a linear subspace E

1 of E,

1
with f(x) < p(x) for all x € E1, then there exists a linear extension

f of f to all of E, with F(x) < p(x) for all x ¢ E.

(5.4) Proposition. If T: E > F is a sublinear mapping from E
into a Dedekind complete vector lattice F, then for every x ¢ E,
T(x) = sup {g(x): g € L(E, F), g < T},
where L(E, F) denotes the space of all linear maps from E to F.
Proof. Let x ¢ E. We need only show that T(x) < sup {g(x):
g e L(E, F), g < T}. Let [x] denote the linear span of x, and define
f: [x] > F by f(ox) = aT(x). Then f is linear and dominated on [x]

by T, since

(1) a > 0 implies f(ax) = aT(x) = T(ax), and
(ii) o < 0 implies f(ax) = aT(x) = (-a)[-T(x)] < (-a)T(-x) = T(ax).
Thus by the Hahn-Banach theorem, there exists g € L(E, F) with g < T

and g(x) = T(x). Therefore T(x) < sup {g(x): g ¢ L(E, F), g < T}.

(5.5) Proposition. If ge ®£(E), then
(a) goo =g,
(b) g=<L,
(c) {xn} € c(E) implies g(x) equals the order limit of {xn},
(d) g2>0.
Proof. (a) Let x ¢ mN(B). Then -(g o 0)(x) = (g o 0)(-x)
< g(-x) = -g(x) by (5.2) and the linearity of g and o. Thus (g o o)(x)

> g(x). Combining with (5.2), we have g o 0 = g.
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(b) Let x ¢ mN(E). For each n € N, g(x) = (g o o) (x) = ...
_ n . . -
= (g oo) (x) < sup {xk. k > n} by (5.2). Thus g(x) < ipf igg x, = L(x).
(c) Let x = {x_} € c(E). Then lim x_ = 1im x_ in E, so -L(-x) = L(x).
n = 'n n ‘n
But since L is a sublinear map satisfying (b), -L(-x) < g(x) < L(x).

Therefore, g(x) = L(x), which equals the order limit of x.

=0,

(d) x > 0 implies -x < 0; whence, g(-x) < L(-x) = inf sup x
- - - nank

so that g(x) = -g(-x) > 0.

Observe that if g € L(E, F) satisfies (a) through (d) of (5.5),
then g € BR(E). Thus our present definition of Banach o-limits coin-
cides with the usual definition of Banach limits (see Goffman and
Pedrick [2], section 2.10) in case E = R. As in the case of ordinary

Banach limits, we say that a sequence {xn} € mN(E) is almost o-convergent

to ¥ € E if g{xn} = R for every g € Bf(E). For each e € E, the
sequence (e,0,e,0,...) is almost o-convergent to %e, by (5.5).

We now consider the existence of Banach o-limits.

(5.6) Definition. A sublinear map T: mN(E) + E is said to

(a) generate Banach o-limits if every g ¢ L(mN(E), E) such that

g < T is a Banach o-limit;

(b) dominate all Banach o-limits if g < T for each g ¢ ®E).

Observe that L dominates all Banach o-limits by (5.5)3; moreover,
any sublinear T generating Banach o-limits must satisfy T < L by
(5.4) and (5.5)

As a consequence of (5.4), it follows that the existence of
Banach o-limits can be proved by exhibiting a sublinear T which

generates Banach o-limits.
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(5.7) Proposition. A sublinear map T: mN(B) —>EA generates
Banach o-limits if and only if

(a) T <S, and

(b) To(o -1I)<0
(where I denotes the identity map on my(E)).

Proof. First, assume (a) and (b). Thus every g € L(mN(E), é)
such that g < T must satisfy g < S and g o (0 -I) < 0. By linearity
of g the latter inequality becomes g o 0 < g. Thus g ¢ B8L(E).

To prove the converse, suppose T generates Banach o-limits. Let
g € L(mN(E), é) with g < T. Then g is a Banach o-limit, so g o o < g < S;
hence, g <Sand g o (6 - I)=(g oo)- g <0, Applying (5.4), we have

(a) and (b).

As a consequence, we can see that the map L of (5.1) does not
generate Banach o-limits, since L does not satisfy (b) of (5.7). Indeed,

if e >0 in E, then L o (0 - I) (e,0,e,04...) = L(-e,e,-e,e,...) = e > 0,

(5.8) Proposition. (Existence of Banach o-limits). The map

1 n
QUx b = SN
is a sublinear map Q: mN(E) + E which generates Banach o-limits.

Proof. Sublinearity of Q follows from sublinearity of lim. Let

x = {x_} e m(E). Then Q(x) j_igE'%-z (s(x)) = S(x), and

n
k=1

Qo (o0 - 1I)(x)=0Q(ox - x)

1 vn
32 e (pq — %0
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< m

Sl

% [s(x) - xl] = 0.

Therefore by (5.7), Q generates Banach o-limits.
(5.9) Proposition. If we define the map W: mN(E) - é by

W(x) = sup {g(x): g e BL(E)}
and let T denote a sublinear mapping from mN(E) into é, then

(a) W is sublinear, generates Banach o-limits, and dominates
all Banach o-limits;

(b) T generates Banach o-limits if and only if T < W;

(c) T dominates all Banach o-limits if and only if W < T;

(d) a sequence x = {xn} is my(E) is almost o-convergent if
and only if =W(-x) = W(x).

Proof. That W is sublinear is clear. Since each g ¢ B3(E)
satisfies the conditions of (5.7), so must W. Thus W generates
Banach o-limits. That W dominates all Banach o-limits is inherent in
its definition. Then (b) follows directly from (a) and (5.4); (c)
follows from (a) and the definition of W.

By our remarks following (5.2), we know that for all g ¢ &f(E),
-W(-x) < g(x) < W(x). Thus -W(-x) = W(x) implies that x almost
o-converges to W(x).

Conversely, suppose X almost o-converges to R ¢ é. Then -x
almost o-converges to -R, so that W(-x) = g(-x) for arbitrary g e ®{(E).
But then the linearity of g implies -W(-x) = -g(-x) = g(x) = W(x).

Therefore, (d) holds.

(5.10) Proposition. If we let SN(E) denote the collection of

all x = {xn} e my(E) such that the sequence {sn} of partial sums
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_tn .
s, = Zk=1 ¥ is order bounded, then for every x ¢ mN(E)

W(x) = inf {S(x + 2z): z ¢ SN(E)}.
Proof. Let V(x) = inf {S(x + z): z ¢ SN(E)}. By (5.9) it
suffices to prove that V is a sublinear mapping which both generates
and dominates all Banach o-limits.

Let %, ¥ € mN(E). For every 215 2, € SN(E) we have z, + z, ¢ SN(E)

2 1 2

and S(x + y + z, + 22) < S(x + Zl) + S(y + z2). Thus

1
inf {S(x+y + 2): z¢ SN(E)} <8(x+z) +S(y+ 22);

then taking infima, first over z, in Sy,(E), then over z, in Sy(E),
’ N N

1 2

we obtain
Vix + y) < V(x) + V(y).
Therefore, V is sublinear.

Now V < S, since 0 € Sy(E). Let x ¢ mN(E). Then ox - x € Sy (E)
and every z € SN(E) satisfies V(z) < 03 hence, Vo (o - I) (%) <O.
Therefore, (5.7) implies that V generates Banach o-limits.

Let g € R(E) and x ¢ mN(E). Each z ¢ SN(E) may be written

z = 0oy - y, where y = {0, Sy» S

n
03 +ets S R mN(E) with s, © ) z,.
i=1

Thus S(x + z) = S(x + oy - y) > g(x + oy - y) = g(x) + (goo)y - gly)= g(x).
Taking infimum over all z in SN(E), we obtain V(x) > g(x). Therefore,

V dominates all Banach o-limits.

(5.11) Proposition. For every x = {xn} € mN(E), W(x) = inf {lim

J>

n, € N}.

k € N; ng, n K

1 vk
E'zi=1 Xni+j 2% "t

[Equivalently, W(x) = inf {%—S(Z?zlcni(x)): k eN 3 n,,n sy My € N}.]

25
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e N}.

Jp— R )
Proof. Let p(x) = inf {%ig ” zi=1xni+j'

By (5.9) it suffices to prove that p is a sublinear mapping which

k € N; D3y peee sl

2° k

both generates and dominates all Banach o-limits.
(a) We first show that p is sublinear. That p(Xx) = Ap(x) for
all A >0 is clear from the definition of p. To establish subadditivity,

let x = {xn} and y = {yn} belong to mN(E). Let k,1 ¢ N and Dy sDpseens

Dy Mol yeeeym € N. By definition of p,

p(x + y) < lim 1 vk L (

— t3» k1l fi=1 &j=1 )

X +
n.+m.+t yn.+m.+t
i 3 13

and using the subadditivity of lim,

— 1 vk 1 —— 1 vk 1l
P+ y) < Timgw Loy Dy “ngemore T 0 RT Li=1 L3=1 Ingtmrt
17l =1 17k =1 %
=1 zj=1(%i£ kil % amrt) K zi=1(%i2 TLYn amt)
1 ] j=1 1
Since this inequality holds for arbitrary k € N and n1+mj, n2+mj,...,

nk+mj e N, upon taking the infimum over these variables, we obtain

the inequality

1
j=1 Yn,+m.+t
1]

1 k _
p(x + y) 5% Zil p(x) + = Ei=1(l_1>2 %Z ),

and of course z%=1 p(x) = p(x). Then taking the infimum over

el

1 ¢ N and n +m,, n.tm s Mytm € N, we obtain

22" 1

p(x +y) < p(x) + p(y).
gy cres Dy € N. Then by
(5.5) g(x) = %-g(2§=1 o"i(x)) j;% S(z§:1 o"1(x)). Hence, taking

(b) Let g ¢ @{(E), and let k, n,, n

the infimum over k, n » N, , we obtain g(x) < p(x). Therefore,

10 e Ty

p dominates all Banach o-limits.

(c) To show that p generates Banach o-limits we use (5.7).
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Clearly p < S. Let x € my(E); then there is some u € E such that
- N

n, ¢ N we have

Ixn| < u for all n € N. For arbitrary k, ng, n K

0s tee

p(ox - x) < %ig i Z?=1(Xn.+1+j - xn.+j)' In particular, we may take
i i

n, = ifori=1, ..., k, and obtain the inequality

(x = X, .

— 1 vk =1
p(ox - x) E-z. (%, .- Xy, .) = % Kt 143

5—%»2 1=1""1+1+4] it+)
2

Thus p(ox - x) < i for all k € N. By the Archimedean property in
E, we thus have p(ox - x) < 0. Therefore by (5.7), p generates

Banach o-limits.

(5.12) Proposition. A sequence {xn} € mN(E) almost o-converges
to & ¢ E if and only if

% =11

3

1
P ‘n nt1 n+p

f

holds uniformly in n.

This proposition may be proved by a straightforward alteration
of the proof for ordinary Banach limits, presented by Goffman and
Pedrick [2]. The alteration is required in order to remove the depend-
ence of their proof on the linearity of the order. Proposition (5.11)
was proved here by a similar alteration of proofs given in Goffman

and Pedrick.






CHAPTER II

SUMMABLE FAMILIES IN A VECTOR LATTICE

Section 6., Some types of summable families.

We continue to let E denote an arbitrary vector lattice and I
denote an arbitrary nonempty set. The theory of summable families
will require the use of convergent nets in mI(E), The basic notions
of order convergence were presented in the introduction.

Let V(I) denote the collection of all finite subsets of I, and
partially order V(I) by inclusion: Jl < J2 if J1 c J2. Given a
family x = [xi, 1] in wI(E), we shall be concerned with the nets

{GJ(X)} and {TJ(X)} defined over V(I) by

GJ(X) = i;in’ and TJ(X) = i;J|xi

We say that [xi, 1] is order summable (to an element x € E) if

GJ(X) ~£;x0; in symbols,

We say that [Xi’ I] is absolutely order summable, if {TJ(X)} order
converges to some element of E. Thus x is absolutely order summable

if and only |x| is order summable. If oJ(x)-—£$x » then we say that

0

[xi, 1] is uniformly summable to Xy if {TJ(x)} converges uniformly

to an element of E, we say that [xi, 1] is absolutely uniformly sum-

mable.

40
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(6.1) Definition. Given a vector lattice E and an arbitrary

nonempty set I, we let Q;(E) denote the collection of all [xi, 1] in

w (E) which are order summable, and we let Q?(E) denote the collection

of all [xi, 1] in wI(E) which are uniformly summable. Finally, we let

,Qi(E) = {[xi, I] e wI(E): du e E 31§J|Xi| <uVJe WI)}.

(6.2) Proposition. 2§(E) and 2¥(B) are vector subspaces of

wI(E); 2%(E) is an ideal in wI(E).
Proof. It is clear that each of these spaces is closed under
.o . o
scalar multiplication. Let x = [Xi’ 1], v = [yi, 1] ¢ ZI(E). Note

that for each J € V(I), o _(xty) = (%, +y.) = X, + y. =
P igJ 171 ing ing

oJ(x) + oJ(y). Since the nets {cJ(x)} and {cJ(y)} are order conver-

gent, say to x, and Yo respectively, they are order bounded, and there

0
exist nets {uJ} and {VJ} in E such that

| <v. v o.

IoJ(x) - x| < 3

¥ 0 and |oJ(y) -y

J 0

Then |0J(x+y) - (x0+y0)| §_|0J(x) - xol + |0J(y) - yOI Suyt vy b o,
Thus x + y € Q?(E). There fore Q? is closed under addition. The
proof that 1?(E) is closed under addition is similar. Therefore

Q?(E) and 2¥(E) are vector subspaces of wI(E).

The proof that ﬁi(E) is an ideal is easy, and will be omitted.

In contrast to the space Q;(E), the collection of all absolutely
order summable families [xi, 1] in wI(E) does not even form a vector
subspace of wI(B). As a counterexample, consider E = ¢, the space
of convergent sequence. For each n € N we continue to let e = (0,0,

e00314,04...) whose kth term is 1 if k = n, and 0 if k # n. We let
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1=1(,1,...,1,...) each of whose terms is 1. The families x = [en, N]

I(—1)nen| = 1. On the other hand, given k € N, EE=1|en + (_1)nen|

and y = [(-1)nen, N] are each absolutely order summable, with zneN|en

=2neN

= (04240.4450,2,0,0,...)3 thus TJ(X + y) is not order convergent in c.
Hence x + y is not absolutely order summable. Therefore, the collec-
tion of all absolutely order summable families [xn, N] e wN(c) does

not form a vector subspace of wN(c).

(6.3) Proposition. If E is an Archimedean vector lattice,
then X‘I‘(E) < f1(E) = 2%(5).

Proof. In an Archimedean vector lattice, uniform convergence
implies order convergence. Thus Q?(E)‘E 1§(B).

Let [xi, 1] ¢ 2§(B). Since order convergent nets are bounded,

there exists u € E such that lZieJ X, Zu for every J e V(I).

As shown in the appendix, an Archimedean vector vector lattice E
is isomorphic to a vector sublattice of C_(Q), for some extremal
compactum Q. For convenience we identify E with its image in C_(Q).

Then for every J € V(I) and every t e Q, |XieJ xi(t)| = xi|(t)

|zieJ

< u(t). Remember that each xi(t) is a real number. Consider an

arbitrary J € V(I). For each t € Q, let Jt = {ied: xi(t) > 0},

+

Then zieJ Xy (t) = ziEJt xi(t) < u(t). Therefore, for every

ot
ied 71

J e V(I), z < u. Similarly we can show that zieJ X, Su.

Hence for every J ¢ V(I),

+

b < 2u.

zieJlxi|= 2ieJ x ZieJ i

Therefore, [Xi’ 1] e Qi(B). We conclude that Q?(E)«;_l%(B).
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(6.4) Proposition. (a) If E is a finite dimensional Archimedean
vector lattice, then 2§(B) = 2¥(E).

(b) If E is a Dedekind complete vector lattice, then 2§(B) = Q%(E)°

Proof. (a) It is well known that any finite dimensional Archi-
medean vector lattice E, say of dimension n, is isomorphic to R®. In
Rn, order convergence and uniform convergence are equivalent. Thus
23E) = Q1.

(b) Suppose E is Dedekind complete. Let x = [xi, 1] € f%(E).
Then x' = [x;, I] and x = [x;, I] also belong to ﬁi(B). Since
&J(x+)}and &J(x-)}are bounded monotone nets in a Dedekind complete
space, they must order converge to some elements u, v € E. Now
OJ(X) = OJ(x+) - OJ(X-) = TJ(X+) - TJ(X-). Hence, {oJ(x)} order
converges, which implies that x € ,Q(I)(E). Therefore, zi(E) c Q?(E).

A Dedekind complete vector lattice is necessarily Archimedean.

Thus by (6.3) we also have 2§(E) ;.R%(E). Therefore, 1§(E) = fi(B).

Proposition (6.4) shows that for a Dedekind complete vector
lattice E, a family [xi, 1] is order summable if and only if it is
absolutely order summable. The same proof would show that in a
Dedekind e~complete vector lattice E, a sequence [xn, N] is order
summable if and only if it is absolutely order summable.

If [xi, I] is absolutely order summable, then .ZI|xi| =
ie

{ .|t J e V(I) ; that i (x) * ..
sup 1§J|Xl| € ; that is, 7 (x igI|xl|

The proof of the following proposition is straightforward and is

omitted.
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(6.5) Proposition. Let A and B be disjoint nonempty subsets of

I, and let [xi, 1] € wI(E) such that zieA s and zieB

Define the families [ui, I] and [vi, I] by

xi exist in E.

x, if 1 € A, x, if i € B,
i i

[
"
<
"

0 if i ¢ A, 0 if i ¢ B.

Then
() Lien %5 = Lier % 39 Liep %5 7 Lier Vio

(b)

zieAUB X, exists in E, and is equal to zieA X, zieB X

Section 7. The space l%(E).

We begin this section with several examples, obtaining fé(E) for
several familiar sequence spaces E. Recall the definitions of the

sequence spaces w, ¢, my, and £, given in the introduction.

1

It is quite easy to see that Iﬁ(R) coincides with the familiar
vector lattice 21.

If X is a vector sublattice of the space w of real sequences,
then we may view Qﬁ(k) as the collection of all infinite matrices
(xnm) (with the customary component-wise definitions of the linear
operations and order) such that each column of (xnm) satisfies the

o0
defining conditions on A, and each row satisfies zm_ X | =y <=

1| nm n

for some sequence {yn} € .
It is thus clear that

1 ©
) = {x V0, ] lx <o),

X
nm

and from this it follows that fh(w) = UN(%Q.

A matrix (xnm) belongs to f&(¢) if and only if (i) for every m,
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Xom = 0 for all but finitely many n, (ii) for every n there exists

v, € R such that 2m=1|x =y _, and (iii) v, = 0 for all but

nml n

finitely many n. Taken together these conditions yield a simpler
description of,Qﬁ(¢) as the space of all (xnm) such that

(i')  there exists n, such that x =0 for all n >n

0 0°

< oo

o0
(ii') for every n, Zm=1|xnm| H

that is, the rows are all %, -sequences, and from some row on, all

1

the rows are zero. It is thus apparent that

D) = ().

(7.1) Proposition.

(a) Qﬁ(m) = {(x J:duce R> V¥n, z:zllx | < ul;

nm
(b) fﬁ(m) contains a proper ideal isomorphic to mN(Ql).
Proof. (a) A matrix (xnm) belongs to fﬁ(m) if and only if

(i) for every m there exists uo € R such that |x__| L for every

for every n.

nm

ne N, (ii) for every n there exists y_ € R such that m_ X
Yy n m=1'"nm

Vs and (iii) there exists u, € R such that y, Lu

0 0

Observe that (i) follows from (ii) and (iii). Then (a) is apparent.
(b) It is clear that mN(Ql) is isomorphic to the space
M = {(xnm): (i) Vn>zm=1lxnm| < w, (ii) Vn13um e R > |xnm| i_uann,

and (iii) m_ u < »,}, with the pointwise-defined linear operations
m_1 m ’ p P

oo

and order. If (xnm) € M, then for every n, zm=1|xnm| :-zm=1 u <3
1 . s . 1
< .
hence (xnm) € QN(m). Therefore, mN(ll) is isomorphic to M & QN(m)
From its definition it is clear that M is an ideal in Qﬁ(m). Now let
I denote the identity matrix I = (Inm) with Inm =0 ifn #m, and 1

if n = m. Then by (a) I E.Qﬁ(m)° On the other hand I ¢ M. Hence,

M is a proper ideal in f&(m).
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(7.2) Proposition. fﬁ(ll) = {(x ): Jue RaVik,l , 21:1=1 zr]1.1=1|xnml

< u}.

Proof. By the remarks at the beginning of this section, a matrix

(xnm) belongs to Qa(ll) if and only if (i) for every m there exists

R such that ). __| = (ii) f th ist R
um € suc a n=1 X = um, 11 or every n ere existTs yn €

oml

such that z;=1|xnm| = y,» and (iii) E:=1 y o<

If (x_) Ql(z ), we define as above and let u Zm
nm’ € INYF170 Yn € n=1 Yn°

k 1 k
)

k ©
Then for every k,l , En=1 m=1|xnm| §_Zn=1 zm=1lxnm| = Zn=1 Y, < u.

On the other hand suppose (xnm) is a matrix and u € R such that

k 1 . -
for every k, 1, zn=1 m=1|xnm| < u. Then (i) and (ii) clearly hold
‘o . ® oy K ® -
for (xnm). We also have (iii), since zn=1 y, = iig n=1 (zm=1|xnml) =
lim lim zk zl |x_ | < u. Therefore (x_ ) € Ql(l ).
kre 150 “n=1 #m=1'"nm' — nm N*™"1

As a consequence of (7.2) we see thatlﬁﬁ(ll) is the space of all
(xnm) such that the double series Zn,m Xm is absolutely convergent.

We turn now to f%(E) for a general Archimedean vector lattice E.
Recall that we regard E as embedded in its Dedekind completion E.
Consider an arbitrary [xi, 1] in f%(E). Since [xi, 1] may also be
regarded as an element of f%(ﬁ), we know by (6.4) that there exist

elements %X, § in E such that

x.|.

8= ligr % ad 9 = byl

(7.3) Proposition (order continuity of the sum). Let E be an

Archimedean vector lattice, and suppose {[xgd), I]}aef is a net in
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Q%(E) such that [xga), 11 > [yi, 1] € ﬁi(E). Then in E,

J(a) _ (o) o
where & = Ziel X and § = 2.

ier Yit

Proof, (a) First suppose [xga), 1] > 0 for all ael, and

[xiul, 1] + [yi, I]. Then clearly &(a) 4+ and sup (a)
sup sup ZleJ (a) = sgp sgp zisJ xga) = sup (o- llm z eJ (a))
sgp EieJ y; = . Therefore, ﬁ(a) + 9.
(b) Now suppose [xia), I] ¥ 0. Pick an arbitrary ay e T.
men [x;%0 - (%, Heeo = [x{%), 11 - [x{®, 11 + [0, 1]
L oalo ot LL%0) (a)  _ (ag) _ (a)
n QI(E) + Thus by (a) ZlEI - 2ieI % - z1eI( ° * )

(ao)

JLag) _ ,(a)
+ zieI X g %07 - gt

(for a > ag).  That is, 4 ﬁ(a) (a> ag),

(o)

and hence by cancellation, -%

(a)

+ 0 (a > ag).  Therefore, % h‘«a .

Since this is true for every ay € I', we conclude that Q(a) v 0.

(¢) Finally suppose [xia), I] SN [yi, I]. Then there exists

a net {[u(a), 1]} in f%(E) such that [Ixia -V |, 1] < [u(a), I] v 0.
By (®) 1 Ea) ¢ 0. mhen [2(% - 9] - 251 Xia) “lier Vil

(a) (o) J(a) o
Zlell yil 5-zieI ug ¥ 0. Therefore, % — .
(7.4) Proposition. If {Ea: ael'} is a collection of vector

lattices and I is an arbitrary nonempty set, then

1 1
QI(nasT Ba) N aeFkI(E ).
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The proof of (7.4) amounts to showing that mapping ¢ defined in
the proof of (2.), when restricted to,fi(na Ea)‘ gives the desired
isomorphism.

Many of the results of section 3 carry over to Qi(E). In particu-
lar, the proof of (2.12) remains valid, establishing the following
proposition:

(7.5) Proposition. Given that E is a vector sublattice of F,

(a) if E is an ideal in F, then Q%(E) is an ideal in ﬂi(F);

(b) if E is order dense in F, then ﬂ%(E) is order dense in Ri(F);

(c) if E is quasi order dense in F, then Q%(E) is quasi order
dense in Q%(F);

(d) 1if E is order closed in F, then 2%(5) is order closed in Ii(F).

(7.8) Proposition. If E is an Archimedean vector lattice, then

f%(E) is order dense in the (Dedekind complete) vector lattice ﬁ%(ﬁ),
1 : o oloa o

but in general QI(E) does not coincide with QI(E). Specifically,

AP Loy o gloa

QI(B) is the ideal generated by II(E) in II(B).

Proof. By (7.5) Q%(E) is order dense in ﬁ%(ﬁ). Let X denote
the ideal generated by fi(E) in ki(ﬁ). Then X is a Dedekind complete
vector lattice in which Q%(B) is order dense. If [ii, I] ¢ A+,
then by a well-known characterization of the ideal generated by a
vector sublattice, there exists some [Xi’ 1] € l%(E) such that

2~
[i., 1] < [x., I]. Therefore, by (4.1) X = 1( )
1 - 1 I

We now present an example of a vector lattice E such that

1y, 1,0 :
QI(E) # II(E). Let E denote the vector lattice of all eventually
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constant sequences of real numbers. Then E = m. Let {pk: k e N}
denote the set of prime numbers, with Py # Pyt if kX # k'. For each
k € N, let {xik)} denote the sequence

x(k) i 1 1if Py divides n,

n 0 if Py does not divide n.

Then [{xik)},k e N] ¢ ]ﬁ(m) = Qﬁ(ﬁ), since VJ e V(N), ZkeJl{x;k)}l

< (1,1,1,...,41,...) € m. Suppose, on the other hand, that [{xék)},keN]

N
€ Q&(E). Then there exists [{yﬁk)}, k e N] ¢ f&(E) such that
xgk) f.Ygo for every n, k. Thus H-BGJ € E such that zkeN yék) <y,

(k)}

for every n. Now by definition of E, for each k the sequence {yn

is eventually constant; hence its terms are eventually > 1. Let

p € N For each i = 1,2,...,p there exists n, € Nan > implies

P (k)

(1) .
' k=g Yy 2P

> 1. Thus n > max {nl, n . np}implies )

A
hence, y, 2P This result contradicts the eventually constant

nature of {yn}. Therefore, [{xik)}, k e N] ¢ jﬁ(B).

Section 8. ‘?%(E) as a normed space.

Throughout this section we shall assume that (E, <, ) is a
normed vector lattice as defined in the introduction. We shall
examine several natural norms induced on f%(E) by the norm .| in E.

(8.1) Definition. An 2-norm on 9%(5),-relative to b\, is any

monotone norm W .l on ﬂi(E) such that

() [x;, 1€ 6.(B) implies | [x;, 11], = |}

Ixi|“5

iel

(b) if ZieJlxil <y e E for all J € V(I), then H[xi, I]"Q <yl
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For each [xi, 1] ¢ Q%(E) we define

"[Xi’ I]“1 sup {“ZieJlxi|“: Je V(I)},

“[xi, I]"l'

Existence of the real numbers “[xi, I]“1 and “[xi, I]“l' follows

inf {full: }

ieJIXiI <ueE YJe W(DI.
from the monotonicity of | .|| on E, the order boundedness of the set

{ZisJ|Xi|: J e V(I)}, and the completeness of R.

(8.2) Proposition. If (E, <,[.)) is a normed vector lattice,
then
(a) “."1 and "'“1' are £-norms on f%(E);
(b) any 2-norm “.“2 on f%(E) satisfies the inequality
<
IR

Proof. (a) We first establish the triangle inequality for

“.”1 and “.“1,. Let [xi, 1], [yi, I] e Q%(E). Then n[xi,l] + [yi,I]“1
= s ITieqlxs + vsll < Sup \\EieJlxil * ZieJ|3’i|“ < sup (“ zieJl"il“

* “ZieleiH\) =

triangle inequality. Let u,v € E such that for every J e V(I),

l[xi, I]”1 + “[yi, I]“l' Thus “'“1 satisfies the

|xi| < u and Z |yi| < v. Then ZieJ|xi + yil < u+ v and hence,

ZieJ ied
by monotonicity of |.|l on E, “[xi, 1] + [yi, I]“i, <lu+ v <
full + “vﬂ. Taking infima in this inequality, first over all such u

[xi’ Ilul'

+ “[yi, I]“1,° Therefore, “.“1 and\l.“l, satisfy the triangle

and then over all such v, we obtain “[Xi’ 1] + [yi, I]"l,.il

inequality. It is then quite clear that “."1 and “.“1, are norms

onf%(E).

That the norms “.“1 and “.“1, are monotone is also clear. Now
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suppose [xi, 1] ¢ ¢I(E). Let J0 = {i¢€e I: s # 0}. Then by monoton-

icity of .\, “[xi, I]”1 =‘\2ieJOIXi|u = “[xi, I]"l,. That || .||, and

“."1, satisfy (b) of (8.1) is obvious. Thus n.H and ”."1, are

1
L-norms onf%(E).

(b) Suppose that l.ll is an %-norm on E, and let [xi, I] e ﬁ%(E).

L
For each J € V(I) define [xi(J), 1] ¢ ¢I(E) by

|xil ifiedJ,
xi(J) =
0 if 1 ¢ J.
Then [Ixi|, 1] = syp [xi(J), 1].  As Qi(E) is a normed vector lattice,

"[Xi,l]uz = “[‘Xils I]“Q =l\83p[xi(J), I]nl z_sgp"[xi(J), I]ug =

sgp“zieJlxi|“= “[xi, I]"l' That u[xi, I]“l 5_“[xi, I]“l' is clear from

definition (8.1). Therefore, (b) is true.

(8.3) Proposition. The norm ).l is additive on E' if and only
if |1, is additive on 1%(3)*.

Proof. Suppose |l.|l is additive on EV, and let [x,, 11, [y;s 1] e
@7 men [ Txg, 11+ Iyy, 11 = sup |1, gtxpry ) = suplll g %, +
A E sw (|I;, x|+ VI, vD = sw ] x || + sup 1%, vl

since "sup" here represents the o-limit of a net of real members, and
J

o-limits preserve sums. Thus “.H1 is additive on Q%(E)+.

For the converse, suppose n.u is additive on Q%(B)+. Given

1

Xy y € E+, pick arbitrary i e I and define [xi, I] and [yi, 1] by

0

x if i =i, y if i = i

X, = y. =
. 0 if i # iy, .

0’
0 if 1 # io.

Thenl\x + yH = “[Xi’ I] + [yi, I]ul = “[Xio I]”l + n[yi’ I]“1 =
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Ix\l + llyll, and hence, ||.|| is additive on ET.

(8.4) Example of a normed vector lattice (E, <, |.[[) for which

and || .\ are not equivalent. Let E = m, with the

the norms | . |l

1 1!

usual order but with the norm
Ixn| .
“{xn}“ = sup — + lﬁmlxn|.
Recall from section 7 the representation of the elements of Qﬁ(m) as

matrices. For each k € N let Sk denote the matrix whose i, jth

entry is 0 if i # j or if 1 = j <k, and is 1 if i = § > k:

(0 0 )
S% " 100...100 -k row
00...010
00 ...001
& J.

Then {Sk} is a sequence intfﬁ(m), the n'® column of which is a

sequence {sﬁk)} emy S = [{sik)}, neN]. By definitionl\Sk“1 =

k 1 1 . .
sgp\\zn€J|si )|“ =t 0=, while "Skul' = inf{yull: ¥J € V(N),
2n€J|sI(]k)| < u} = %+ 1. Thus \\sk\\1 + 0, while ||skl\1, > 1.

Therefore, the two norms are not equivalent.

(8.5) Proposition. Letll."2 denote an %-norm on ﬁ;(E)‘

(a) 1If {[xgn), I]}:=1 ".“z-converges to an element [yi, I] of
Q i(E), then for each i € I,{xin)} Il .| -converges in E to Y-

(b) (Q%(E), jﬁﬂﬂh) contains a norm-closed subspace, namely

ar ; (E), which is isometric to E. [Thus (Q%(E), "'“2) is norm
o
0

complete only if E is |.l-complete.]
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Proof. (a) Since “'“1 < ".“2, it suffices to prove the result
for “.“1. If “[xgn), 1] - [yi, I]“1 + 0, then sgp“ Zi€J|x§n) - yi|” + 0,
(n)

hence Vi ¢ I,lx yi“ = “lxin) - yi[" -+ 0.

i

(b) Let io € I. We already know that the map y - [yi, 1], where

(E).

y. =yandy, =0 for i # i , is an isomorphism of E onto a_ .
19 1 0 I,lo
By definition “[yi, IJ“Q = y . Thus this map is also an isometry.

That ar (E) is norm closed follows from (a).
]
0

In many important cases there is only one suitable f£-norm on‘Q}(E).
It is thus of interest to consider conditions under which this will
happen. Two concepts which prove to be important in this investigation

Al

to the Dedekind completion E. These concepts are presented more fully

are semi-continuity of “.H on E and uniqueness of extension of

in the thesis of R. Reichard [12], and I shall present here only
those details which seem relevant or enlightening in the present

context.

l in a normed vector lattice

(8.6) Definition. The norm

(Ey <y ||l.l) is said to be
(a) semi-continuous if 0 f_xT 4 x implies s¥p\\xTH = ﬂx";
(b) continuous if . v 0 implies i?f\\xTn = 03
(c) sequentially continuous if x_ ¥ 0 implies igf Han = 0.

Notice that a continuous norm is also semi-continuous, for if
| .| is continuous and x_ * x, then x - x_ + 0 and lx - xTH v 03
hence, 0 < [ x| - s¥plle“ = inf {“x“-“xgﬂ < inf lIx - xT“ = 0, and

therefore, | x|l = s¥p|\xJ(.






Sk

Also note that in a normed vector lattice with continuous norm,
order convergence implies norm convergence. For if X, -+ x, then there
. . - < . - <
exists a net {ya} with |x xa| <y, ¥ 0. But then || x xa“ <y, \
¥+ 0. Therefore, we have in particular,

X = x, implies x = ﬂ.“-lﬁm zisJ X, .

zieI i

As noted in the introduction, every L-space has a continuous
norm. The spaces LP and lp are additional examples of normed vector
lattices with continuous norm.

In the space m with the usual ordering, the usual normllx“ =

sup|xn| is semi-continuous but not continuous. Semi-continuity may
n

L _ (D) -
be seen as follows: if s_ = {xn } o4 {yn} ¥y, then s¥p]\sTH =

(1) (1)) _
(), ()

= sup sup |X = sup|y | =|yll. That .|l is not
n T n "N

sup (sup|x
T n

continuous may be seen by considering Sy = (04,0400 4lylyeeeylyen),
all of whose terms are 1 except the first k, which are 0. Clearly
s, ¥ 0, butlls || =1 Y k.

Consider again the space m with its usual ordering, but this

time with the norm \x||, = sup|x | + Tim x_ . If for each keN we
’ n 0 n 1

let Sy denote the sequence (1,1,...,1,0,0,...) whose nth component

En is 1 if n <k and is 0 if n > k, then s +* T = (1,1,.0..051,1,..4).
But “Sk“* = 1 for every k, while H]“* = 2. Thus we have an example
of a norm H.”* which is not even semi-continuous.

(8.7) Proposition. Suppose (E, <, “.“) is a Dedekind complete

normed vector lattice with semi-continuous || .||, and “'“2 is an %2-norm

on‘f%(B). If {[xﬁa), I]}aef is a net in Q%(E) which “."Q-converges

(o) _ y L)

to [yi, I] e Q%(E), and if we define (for all a € T) x ieI| N
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and y = ZieI|y.| , then x(a)ﬂ& y. That is,
[ (u) I]_\\Jl‘ [ 1] MO
LTI Gy, 17 tmpites T, [+ 6],
Proof. Since ., <|. HIL it suffices to prove the result for

I "1 Suppose u[xi 5 I] - [y . I]nl-—>0 that is, sup“ 212J| (@) _

(ot)l < ‘x(u)

yi\“ > 0. Forevery a e T, |x - yi| + |yi\ (i e T3

hence for each J € V(I),
(a)
sup zlEJ‘ ‘ = sy (215\1 =5 I+ z1»:J‘yi|)

<sw Lol -yl + sup 1 eqlvsl
Interchanging |x§a)| and |yi\ , we obtain a similar inequality, and

combining these two inequalities we obtain
(o)

sup ZleJ e swp Tieglvsl| < sup Liegl®s ™ - vils
that is, \x(“) i il sy oy G v;| s from which it follows that
g -y = I|S§P ZieJ"‘gu) - yi'“’
Now for each a e T, §,_|{® -y |+ sw Il «® g |5 hence, by
semi-continuity of ||.|, sup " zlEJ (0') -y, H\ “sup zlEJ (a) -y, \“
Therefore, [x* - y|| istn lEJ\x“‘) A EXR

One can easily construct an example to show that without the
hypothesis of semi-continuity, the conclusion of (8.7) need not hold.
Consider E = m, with the usual order and with the norm

ﬂ{xn}u = sw J_:_n_L + l_im']xnl 3
Let Sk be defined as in (8.4), let I denote the infinite identity

denote the k X k identity matrix, and let V, denote

matrix, let I i

k

the infinite matrix all of whose entries are 0 except the first k






entries along the diagonal, which are 1:

I o) @ @]
v, = atiadlle s 2l s S8 | lemadiidsa,
o0l0 ot
Then (Vk} is a sequence in ,Q’%((m) and ”Vk - I||1 = l\Sk+1“1= %* 0,

as shown in (8.4). Representing Ve and I in the form V, = [vr(lk),

nelN]and I = [en, N] (vf‘k), e, € E) we have [vlik), nEN]ﬂ)[en,N].
On the other hand, for each k ¢ N, [ v‘(]k) = (1,1,...51,0,...)

whose first k terms are 1, while ZnEN gtes (@ 15400 s lgwae)y @1l oF

whose terms are 1. Thus “ EHEN vék) o ZnsN en“ = H(0,0,...,i,l,...)n

== +1 #0. Ve therefore have the desired counterexample:

[Vr(;k), neN] M“r[en» N1, while Znevar(:k)l & Lol

(8.8) Proposition. If (E , <, || is a normed vector lattice

with semi-continuous | .|, then, relative to .|,

(a) l\.ll1 is semi-continuous onﬂ%(E);

() |- ]\1 is the only semi-continuous %-norm on J@(E);

(c) x = Ziel‘ | implies “[xi, I]”IL = || x|l for every %-norm
on f%(E).

Proof. (a) Suppose 0 < [xir), 1] + [yi, 1] in l%(}:). By (3.3)
for each i € I, 0 :xiT) t y;3 hence, for all J e V(I), 0 izisJ xi‘)
+ EisJ v Then by semi-continuity of ““, sup nzisJ x(iT)“ =

(1) (1)
nii;J yi[l. We therefore have sup n[xiT . I]nl = sup s}j\p ”EicJ xiT ”
(1) b

= sgp S¥p “zisJ xiT ll = Sgp “ZisJ yi H = H [yi, I]Ili‘ Therefore,

| 15 "1 is semi-continuous.
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(b) Let|. “L be a semi-continuous %£-norm. Define the net

{[x; (D, I as in (8.2). since [|x (D], 1]+ [Ix;], 1] =

JeV(I)

H:x.l, I][ , we have by semi-continuity and definition of 2-norm that

ICxgs 13, = NCigls 10, = swl =gl 1l

"

o (DRI R [PA P
Therefore, | . “L = . Hi'
(c) ZieJlxil 4+ x over the directed set V(I). Hence, by semi-

continuity of II. |, Sgp “zilexiln = lIxl; i.e., “[xi, I]"1 = [Ixll.

On the other hand,

Tiealxsl <% ¥o e wr) mglies |Gy, 1, < Ul

Thus we have "'ul <\ .[|1, which in combination with (b) of (8.2)

yields the desired equality || ‘“1 =4 ”1

(8.9) Corollary. If (E, <, ll.[l) is a Dedekind complete vector
lattice with semi-continuous [l.[, then there is one and only one
%-norm on p%(E), relative to [l.|l; namely | -“1.

The proof follows directly from (6.4) and (8.8).

(8.10). Example: We shall exhibit here a normed vector lattice
(E, <, | .|) with semi-continuous | .|, such that not all 2-norms on
fi(E) are semi-continuous. By virtue of (b) in (8.8) we need only

produce an example in which “"1 # ““ Note that in our example

e
of (8.4) we did not have a semi-continuous | ..
Let E denote the space of eventually constant sequences of real
numbers, with the usual ordering and with the norm
el = s 8600 I,

where §(n) = 1 if n is even, and 2 if n is odd. Thatl .|| is a norm
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is easy to see; we show only the triangle inequality: |x + vl =

sup G(n)\xn*ryn\ <sw §(n) (\xn] + \ynl) < swp 8(n) \xnl +sw 8(n) |yn|

= | x|l + lyll. Semi-continuity of |.| is also easy to see. Suppose
0 :x(t) +y in E. Let x(1> = {x‘gT)) and y = {yn}; then for each n,
() Oy . (1) _
0 2R by by (3.3). Thus sup | % “ = sup sup §(n) ® =
(1) _ E
s:p 8(n) sup x = s:p §(n) VAR “y“-

For each n ¢ N, let e, denote the sequence eq.= (0505 7 63 15 0rtea )

i term 1 and all others zero. Consider [eQn’ N] e f%(E).

having nt
We have " [62n‘ N]”1 S sgp “ anJ e?n“ = 1, since each eon has all its

odd terms equal to 0. But if E

feg Sop SUEE forevery Je (1),

then u must have its even terms equal to 1, from some point onj; hence

lull > 2. Thus “ [e2n’ N]“ > 2, and therefore

0 2
Vel # 1D
(8.11) Monotone extensions gu t_oé. In this number we present

results without proof. For details and references, consult R.
Reichard [12] or V. A. Solov'ev [17]

Suppose (E, <, |.[l) is a normed vector lattice. By a (monotone)

%

extension |.|” of |.|| to the Dedekind completion £ of E we mean a
norm on E which agrees with I\H on E and is monotone on E. Then
(B, 2 1. "*) is clearly a normed vector lattice. Given an arbitrary
R ¢ E we define

HR“U = inf {|yl: |&] <y ¢ E}, and

p(R) = sup {|zll: 0 <z < |%|, z e E}

* B3
Clearly every monotone extension Il “ of || H satisfies p(.) < “ ||

<l
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The following facts will be useful in the sequel.

(a) Proposition (Vulikh). I .|)u is a monotone extension of ||. |l
to E.

(b) Proposition (Nishura - Lozanovski). If (E, <, Il .l) is a
Banach lattice, then (ﬁ, | '"u) is also a Banach lattice.

(c) Note. the map p: E -+ R" is not generally a norm.

(d) Proposition. If .|l is semi-continuous on E, then p'is'a
semi-continuous norm on E, which we denote | . Ilp. In fact, | .llp
is the unigue semi-continuous monotone extension of 0l to E.

(e) Proposition (Solov'ev - Reichard). If .l is continuous

on E, then | .\\u is continuous on E and is the unigue monotone
extension of II.ll to E.

(£) Proposition (Solov'ev). If .l is sequentially continuous
on E, then | .|l is continuous if and only if E is of countable type

(i.e., every bounded subset of pairwise disjoint elements of E is
countable).

(g) Proposition (Vulikh [18], Chapt. VII, §6). If (E, <, | .ID
is Dedekind o-complete, with sequentially continuous | Al s then

(i) |||l is continuous.

(ii) (E, <) is Dedekind complete.

.) is a normed vector lattice,

(8.12) Proposition. If (E, %, |

and [Xi' 1] a?%(ﬁ), with & = | [Xi[ in £, then

iel
@ [Ixgs 1My, = Mol s
(b) if ||.|l is semi-continuous, then "[xi’ I]u1 = llgnp,

Proof: (a) N[x;, 1ll;, = inf Cluls I yl%| < utoe WD} =

Jl
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inf {lul: Ziallxil =% <ue E}=Hﬁnu~

(b) In the semi-continuous case we have, using (8.11) (d),

g 10, = s U3y = 0 D3l = o Byl =,
(8.13) Corollary. If ll.ll is a continuous norm on E, then there

s al!
exists one and only one &-norm on f I(E) , relative to |l ..

Proof. In the case of a continuous || .\|, we have ““u = || up on
E by (8.11) (e). Apply (8.12) and (8.2).
It is clear, in view of (8.12), that if the norm || A is semi-

continuous, then any property on (E, <, | .|) which implies p(.) =
I Ilu on E, will imply that f}(E) has a unique %-norm. Such properties
were investigated by R. Reichard, in [12]. 1In particular, the

"projection property" in E is one such property.

We next consider the question of continuity of the norm ““1
on ?}(}:) for a given continuous norm | Non B. 1t is clear that
continuity of Il. I alone does not imply continuity of | “1 For in

view of (8.11), continuity of llﬂl entails that?}t(E) be of countable

type, which cannot be true if I is an uncountable set.

(8.14) Proposition. If (E, %, .l is a normed vector lattice
with continuous |l .[l, then [. “1 is sequentially continuous on ﬁ%(E).

Proof. Suppose {[xﬁn), 1]} is a sequence inf}(}:), with

9(n)

[x§n), I] ¥+ 0. For each n ¢ N there exists ¢ E such that

(n) _
9 = sw zicJ ®; (J e (1)),
and by (8.13)

L™l = o™, 1l
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Note that for each n, the net {ZitJ xgn)}JcV(I) decreases in E

to 0, since

3 (n)so) % (n) (n)
13f ZitJ %00 = 13f (zieI xin -1 et > (see (6.5))

ot ied i
L G.)) (n)
=9 -sw [k
= 0.
Thus by continuity of ||.| , for each n we have inf “z x(n)u =0
e T lligg %5 :
A (1)“
Let § > 0. Then there exists JO € V(I) such that uiitJo Xy
ek For each 1 € I x(n) ¥ 03 hence z x(n) ¥ 0. By continuit;
2’ by 3 » biegy M « By y
of n", u xgn)u + 0. Thus there exists n_ e N such that for all
.'LEJO i 0
(n) $
B2 Mg nzisJo | < 3
(n) (n) (n)
For every n > Ny, We thus have | ¢ nu = nzicJo X zitJoxi “

<

g 1™, 11, = 1£ 0™ = 0.

Z'EJO x§n)n + “ZitJo xin)” < % + "ZitJo xil)“ < 8. Therefore,

Given a norm-complete normed vector lattice (E, <, \.|), one may
ask whether )%(E) is norm-complete for some %-norm |. “L' The

following two results are partial answers to this question. Recall

that the norm || . “ on the vector lattice E is said to be monotone
bounded if every .|l -bounded subset of E is order bounded. We say
that a norm |. || on a vector lattice E is monotone complete if, for

each sequence {x } in E such that 0 <x_+ and I x | <M<o forall

n € N, there exists an element x in E such that x $RE

(8.15) Proposition. If (E, %, |.I) is a Banach lattice with a

monotone bounded norm | .|, then ﬂ;(}:) is |. l[i-complete.
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Proof. Let {[xﬁn), 1]} be a ﬂ,“l—Cauchy sequence in,qi(E).
Then for each i ¢ I, (xin)} is a [l .[-Cauchy sequence in E. Thus, by

completeness of E, for each i ¢ I there exists %, ek such that
(n)
\lxi - xin > 0.
Now consider the family [xi, I]. Let & > 0. Then there exists
M e N such that n > M implies “[xin)- xﬁM), I:”' 5 §, by the Cauchy

<) xﬁM)\” T

property. That is, n > M implies Sgp “ Ziedl 5

M) S (n)
Observe that for each J e V(I), ”Zizdlxi - Xy \” = |\EiEJ|l%m X -
XEM)‘“ = lrixm “ ZieJ‘X:('Ln) - XEM)!“ <6. since | .|| is monotone bounded,
and since the set{}. |x, - ng)| :J € V(I)} is norm bounded, this
ied' i i

set must also be order bounded. Further,

and [x(im, 1] ¢ ?%(E). Therefore, [xi, 1] ¢ I%(E). Finally,

M M
E I AR i OO £ ]

EiEJ‘

“[xin), = [xi, 11”1 + 0, since for each J € V(I), n > M implies

“[xi - xfln), I]"l < "[x.1 - xiM), ]’.]“1 + 1[[x§m - x§n), I]nl’ and it

has already been shown that each of the two terms on the right side

of this last inequality are less than §. Therefore,n[xi, 1] - [xin), I]“1

+ 0. Therefore, (ﬂ%(}:), 1) is norm complete.

(8.16) Proposition. If (E, <,[.[) is a normed vector lattice

with semi-continuous, monotone complete norm I A » then every 2-norm
1\.“1 on,Q%l(E), relative to Il.|, is monotone complete.
Proof. It is clearly sufficient to prove that | .“1 is monotone

(k)
n

complete. Suppose that 0 < [x ', N] 4+ and for all k ¢ N,
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“[Xr(lk)' N:IU1 < M < », Then for each n there exists an element X, of
E such that x(k) + % by our hypothesis on E. Then [xx(]k), N] +

[Xn’ N] in mN(E). It remains to show that [xn,N] belongs to [ﬁ(E).

Lo r . r
For each r e N, let 7 = Zn=1|x | = 2 o1 %y)+ Then 0 <t 4,

and for every r, || = M (o-1m X(k))“ “O 1im In i r(xk)\ W
" sup zn 1 r(]k) = sup l‘zn 1 :‘k)“ » since Il . “ is semi-continuous.
But sup “ zn 1 i‘k)" “[xr(xk)' N]“1 < M, for every r. Therefore, by

the monotone completeness of | I on E, there exists an element x € E

such that Tt % Therefore, [xn, N] sﬂ;(}]).






CHAPTER III

A KOTHE-TYPE DUALITY THEORY

Section 9. Multiplication in Archimedean vector lattices.

In Chapter III we consider only Archimedean vector lattices.
It will be seen that Archimedean vector lattices all have a general
multiplicative structure (however weak) which is sufficient to
enable us to formulate a general theory of what we may reasonably
call Kéthe-family spaces, analogous to real K&the sequences spaces.

(9.1) Definition. Let E be a Dedekind o-complete vector lattice
with a weak order unit 1. We say that E admits a multiplication
operation relative to 1 if, corresponding to certain pairs x, y of
elements of E, there exists a "product" xy, which obeys the conditions:

(M1) for every x € E, x| exists and equals x;

(M2) if xy exists, then yx exists and equals xy;

(M3) if xy, (xy)z and yz all exists, then x(yz) exists and
equals (xy)z;

(M4) if xy and xz exists, then x(y + z) exists and equals
Xy + yz3

(M5) if xy exists and a € R, then (ax)y exists and equals a(xy);

(M6) if x, y > 0 and xy exists, then xy > 0;

(M7) if xy exists, |x'| < |x| and |y'| < |y|, then x'y' exists;

(M8) =xlLy if and only if XY exists and equals 0.

64
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(9.2) Observations. For any multiplication operation relative
to a weak order unit 1 on a Dedekind o-complete vector lattice E,
the following additional properties hold:

(M) if 0 <x <y, z >0 and yz exists, then 0 < xz < yz;

(M10) if xy exists, then

G =Ky e Xy,
(xy) = x'y + %y
[yl = Ix| Iyls

(M11) if 1 is a strong order unit, then E is closed under this
multiplication.

In 1940 B. Z. Vulikh ([19] and [20]) demonstrated a method for
constructing, within an arbitrary Dedekind complete vector lattice
with weak order unit 1, a product xy satisfying (M1) through (M8).
Vulikh's method has been made accessible to the English-reading
mathematician in the papers ([13] and [1“]) of Rice. We give here
a brief outline of this approach.

Let E be a Dedekind complete vector lattice with weak order
unit 1. Define the collection of "unitary" elements of E by

u(E, 1) = {e € E: e A (I-e) = 0}.
Every element x € £" is the supremum of all the scalar multiples of
unitary elements that lie below it. The multiplication is then
defined as follows:

(a) fore, e e uE, 1), ee' =ene';

(b) for x, y >0, xy = sup {oBee': 0 < ae < x, 0 < Be' <y,
e,e' € u(E, 1), a,B8 ¢ R'} if this supremum exists (otherwise xy is

not defined);
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(¢) for x,y e E, xy = x+y+ - x+y_ - x‘y+ + xy if all the

products on the right side exist (otherwise xy is not defined).

(9.3) Proposition. (Uniqueness of the product; Rice [18l;
theorem 5.1). In a Dedekind complete vector lattice E with weak
order unit 1, if x * y denotes another multiplication on E satis-
fying (M1) - (M8), then x * y exists if and only if xy exists; more-

over x * y = xy.

(9.4) Proposition. (Rice [13], lemma 5.2 and theorem 5.3):
Let 1, 1' be two units in a Dedekind complete vector lattice E.
Denote the product relative to ]1by xy and the product relative to
1" by x * y. Then
wE, 1') = {1'e: e € u(g, N},
and for every x, y € E, if xy and x * y both exist, then

x %y = (xy) * 1.

The development of the representation theory, outlined in the
appendix, provided another proof that every Dedekind complete vector
lattice admits a multiplication operation, and made possible further
elucidation of the nature and properties of such multiplications. Let
Q denote an arbitrary quasi-extremal compactum, as defined in the
appendix. It can be shown that the usual (pointwise) multiplication
of functions is an operation on C_(Q) satisfying (M1) through (M8),
relative to the usual 1-function: 1(t) = 1 for all t € Q. Moreover,
C,(Q) is closed under this operation; C.(Q) is a commutative ring with

identity. The same remarks hold for C(Q).
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Using the representation theory, and this multiplication in Cw(Q),
we have immediately the following proposition:

(9.5) Proposition. Every Dedekind c-complete vector lattice E
with a weak order unit 1 admits a multiplication operation relative
to 1. If, in addition, 1 is a strong order unit, then E is closed

under this multiplication.

(9.6) Multiplication in Archimedean vector lattices. If E is

an arbitrary Archimedean vector lattice, we may embed E in its
universal completion E#, and thus by picking an arbitrary weak order
unit 1 in E# we obtain, as a consequence of (9.5), a "product"
defined on certain pairs of elements of E, which has the properties
(M2) through (M6) and (M8). Of course, if E already contains a

weak order unit 1, then 1 is also a weak order unit for E#; if we
take the multiplication relative to this 1, we will then have property
(M1) in E.

From (M7) we see that if E is closed under the multiplication
induced from E#, then so is E.

Proposition (9.5) showed how a change of unit elements affects
the definition of the product of two elements. The following propo-
sition will show that, given two different universal completions of
E (necessarily isomorphic), the unit elements may be chosen in such

a way as to induce the same multiplication in E.

(9.7) Proposition. Suppose Eﬁ and Eg are universally complete
#

vector lattices, and suppose y: El s Eg is an isomorphism. Let 11

denote a weak order unit in Ef; then 12 = \b(]l) is a weak order unit
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#

in Eg. Denote the products in Ej and Ez, relative to 11 and ]2
respectively, by xy and x®y, respectively. Then
Wxy) = W(x) * Y(y).

Proof. In view of (M10) it suffices to prove this identity for
X, y > 0. Note that u(Eﬁ, 12) 2ff e Eﬁ: £fA (12—f) = 0} = {y(e):
e e Eﬁ, N (11—e) = 0} = w[u(Ef, 11)]. Now xy = sup {aB(e A e'):
0 <oe <x,0<Be'" <y; e e'e u(Ef,Il); a,8 € R*}. Since Y is an
isomorphism, we thus have

W(xy) = sup {aB(Y(e) A Y(e')): 0 < ae < x, 0 < Be' <y, etc.}

sup {aB(£*£'): 0 <of < W(x), 0 <pf' < Y(y); £,f' € u(Eg, 103

2
a,B € Ry,

w(x) * u(y).

By theorem 3.1 of Rice [13], and observing that E € l::, we have
the following proposition.
(9.8) Proposition. If E is an Archimedean vector lattice with
weak order unit 1, then for every x e et ana every positive ingeger n,
1

t root of x (denoted x™) in E.

there is a unique positive n
Later in this chapter we shall wish to raise elements of our
vector lattice to arbitrary positive real powers. If E is an Archi-
medean vector lattice, x € EY ana p is a positive real number, the
symbol xP is ambiguous, in the sense that it depends upon the choice
of multiplications taken in E#. Nevertheless, corresponding to each
representation of E# as a space C_(Q) and each choice of weak order

unit 1 in E, the symbol xP is well-defined by the representation

theory.

sup {aB(¥(e) * Y(e')):0 < a(P(e)) < Y(x), 0 < B(W(e) < Y(y), etc.}
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(9.9) Proposition. If E is an Archimedean vector lattice closed
under the multiplication induced on E by multiplication relative to
some unit 1 in E#, then for every x ¢ E* ana every positive real
number p, %P € E.

Proof. Let n denote the least positive integer greater than or
equal to p. Representing x as an element of C_(Q), with 1 represented

by the function 1(t) = t, for all t ¢ Q, we see that

£ ixn\/ xn-l,

since x(t) < 1 implies (1) = xn_l(t), while x(t) > 1 implies (1)
< x(t). But E is closed under the multiplication, and E is an ideal

# n n-1
X

in E". Therefore, x V € E; hence, *F ¢ B.

The following proposition and corollary may be found in Rice [13]
as theorem 10.3 and corollary 10.3.1.

(9.10) Proposition. (order continuity of the product) Let E
be a universally complete vector lattice, and let (Xct}’ (yu) be two
nets in E indexed by the same directed set. If Xa_g x and ya—°>y
in E, then xayu—°> Xy .

(9.11) Corollary. Suppose {Xct)’ (ya} are two nets in a
Dedekind complete vector lattice E, indexed by the same directed set.
If xa—ov X, yu-oyy, XY, € E for all ¢, and there exists z ¢ E

such that \xuyai < z for all a, then the product xy exists in E

and x 5%
oo o

Many of the spaces encountered in applications of vector lattice

theory have a natural multiplication defined on them already, without
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reference to their universal completion. Many of these spaces are

not Dedekind complete, or do not contain a unit element. For example,
the space C[0,1] and the sequence space c are vector lattices which

are not Dedekind complete, while the space ¢ of finite sequences does
not have a weak order unit. In each of these spaces the pointwise

(or coordinatewise) product provides a natural multiplication operation.

In cases such as these it is natural to ask whether the given
multiplication coincides with that obtained by embedding the vector
lattice in its universal completion and choosing some appropriate
weak order unit.

Suppose E is a vector lattice of real-valued functions f: X - R
defined on some abstract set X, with the vector lattice structure
induced from mx( R), and with the pointwise multiplication operation.
Assume further that for every & ¢ X, there exists f ¢ E such that
£(g) # 0. Then E# = wX(R). Let 1 denote the constant function,

T(g) = 1 for all £ ¢ X. (We do not assume 1 ¢ E.) Then the point-
wise multiplication operation on E# satisfies (M1) through (M8),
and hence by (9.3) is the only such operation that can be defined

#

on E” with1as unit. Therefore in this case, the multiplication on
E does coincide with multiplication induced from E#, relative to this

unit 1.

Section 10. The spaces {2(E, 1), 1 <p < =.

We continue to assume that E is an Archimedean vector lattice,
embedded in its universal completion E#. The vector lattice E# has

a weak order unit 1, which of course is not unique.
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(10.1) Definition. Given an Archimedean vector lattice E, and
an arbitrary weak order unit 1 in E#, for each 1 < p < », we define
QP(E {[x ,I]:m(E) Ju € E such that VJ e ¥(I), 2 J|x1
< u}. Here the powers |xi|p are taken in E#, relative to 1. Thus

neither Ix \P nor z |p can be expected to belong to E. But if

u:J

[xi, 1] e ?E(E, 1), then, since E is an ideal in E#, all the powers

P &
and all the sums EiEJl |p belong to E. Thus

,QI;(E, = {[xi, 1] e wI(E): [xg, 1] e ﬂ;(f)}.
For the sake of uniformity of notation, we define D;(E, 1) = Qi(E),

and 472, 1) = 47®) = m(®).

(10.2) Example. Let E = m; then E# = s. Consider the family

[en, N] ¢ wN(E), where e = (0,0,...41,0,...), as defined in the
examples following (1.1). If we take 1 = (1,1,...,1,...) then [en,N]
c,?ﬁ(E, 1) for every 1 < p < =. On the other hand, suppose we take

#

1' = (1,1/2,1/3,...). Then 1' is a weak order unit in E". For each

P
n I55

nEN,lﬁ e u(E, 1'). Relative to'l',(-]-'e )p=1€.and!e
o nn nn n
Pz Pt

1. . .
np(;en) e,- Thus relative to T |enlp ¢Eif p > 1.

neN
Therefore, [en, N] ¢ ﬂﬁ(}:, 1" if 1 < p < ». This example shows that
QII’(E, 1) does indeed depend upon the choice of unit taken in E#.
This example exhibits another phenomenon which will be of some
significance later. E is closed under multiplication relative to 1,
but not under multiplication relative to 1'. Let us denote the
product of two elements X, y € E*, relative to 1', by x ®* y. Then
1 %1 =sup {aBee': 0 <ae <1,0<Be' <1,e,e"cuE, 1"}

> sup {nz(%en) * (%en): NS0 1240 wiedtl = Sup {nen: =0 2 ns drode
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Hence, 1 # 1 ¢ m = E. Thus E (= £) is not closed under multiplication
relative to 1'.
The following proposition shows that definition (10.1) is neither

vacuous nor trivial.

(10.3) Proposition. If I is an infinite set, and 1 <p < q < =,

then (a) f?(E, 1) - ¢;(E) is nonempty;

(b) p%(E, 1 —ﬂE(E, 1) is nonempty;

(c) if E is closed under multiplication, then op(®) = {32, 13
(d4) if 1 ¢ E, then ]FI’(E, nefiE;

(e) if 1 ¢ E and E is closed under multiplication, then

op(Bre 3, he ke, HefiE.

()" HE ¢I(E)§Q§(E, 1) for some 2 < p < =, then £ is closed
under multiplication.

Proof. Since I is an infinite set we may assume, without loss
of generality, that N& I.

(a) The result is clear if p = ®; hence, we assume p < ®,
Pick an arbitrary u > 0 in E. Since E is order-dense in E#, we may
1/p B2

pick an x € E such that 0 < x < u and consequently 0 < X

Define [x,, I] € w_(E) by
i I
/P
(.— 3 18 3 e N
0 if i ¢ N.

Then [xi, 1] e??(E, 1) since for every J e V(I), Z |xi\p =

ied
- -2
EneJl\Nn 250 i<>:neNn ) ueE. Clearly, [x; 1] ¢ ¢(E).
(b) First suppose q < @. Pick an arbitrary u e E and x € E

with 0 < x% < u as in (a) above. Define [xi, il e wI(E) by
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1/p
(}-) x ifieN,

i

0 if i ¢ N.
Q. -a/p.a i
isJ‘xi‘ - ZneJ N = s <2n=1 nq/p) u ekl

since q > p. Thus [Xi’ 1] e Q%(E, 1). However, zin

For every J e V(I), Z
P _
|xi| &

=1ph -1 P . . .
ZnEJ{\N‘n | = <zneJ{\Nn 3 x° which, by the Archimedean property in
E, cannot be bounded by an element of E. Thus [xi, 1] tQI;(E, .

Now let q = =. Pick an arbitrary u > 0 in E and define

u if i € N,

y. =
s o if i ¢ N,

B P i P
Then [yi. 1] e RI(E), but [yi, 1] tﬂI(E, 1) since the sums ZisJ[yi‘ 5
being integral multiples of up, cannot be bounded in ﬁ, again by the

Archimedean property.
(c) Suppose E is closed under multiplication. If [xi, 1] e ¢I(E),

let J = {i e I: x; # 0}; then zisJ‘xi‘p < zicJO‘xi\p’ which belongs
to E by (9.9). Thus [x;s 1] e?‘{(}:, 1.

(d) Let1 eE and [xi,I] EE‘;(E, 1);sayz |xi\P_<_ut:E,

ied
for all J € V(I). By representing ®y and u as functions in C_(Q), we
see that \xilp < u Vi implies |xi\ <uv1leEVieI. Hence, [xi, pil
e 47,

(e) Suppose 1 e E and E is closed under multiplication. Let
[xi, 1] e Qg(E, 1). In view of (d) we assume q < ». Then there exist

u, v € E such that for every J e V(I), z |xi|p < u, and for every

ied

ey ixi\ < v. By (9.9) v3P ¢ £, We thus have, for any J € V(I),

[P |5, |P < w3 T, %, [P < o3P uc £,
1 e 1 e

il
Lol = Ligslx ied
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Therefore, [Xi’ Ile f%(E, .

(£f) Suppose ¢I(E) =4 QE(E) for some 2 < p < «. Since xy =
%Ex+y)2 = (x—y)2] we need only show that E is closed under squaring.
Let % € I§, & # 0; then there exists x € E such that |)’t| < x. Pick

an arbitrary i € I and define

0

£ Afidesiy

0 ifAE io.

Then by hypothesis, [xi, 1] 52113(}:, 1), so there exists u e E such
that \xilp <u for all i ¢ I. From the representation theory we see
that x2 e Py x. Thus

62
& <

Thus ).(2 € ﬁ, since E is an ideal in E".

(10.4) Corollary. If 1 is a strong order unit for E or E, and
1<p<qse, then ()2, DefiE, DeliE.
Proof. If 1 is a strong order unit, then by (M7), E is closed

under multiplication.

(10.5) Examples. It is not hard to find spaces E which satisfy

the condition
4 o ® elbE, he ke, hellmE.

Consider R, R®, the space RY of all real-valued functions on an abstract
set I, the space C(X) of all bounded, continuous, real-valued functions
on a topological space X, the space m of all bounded sequences, the
space ¢ of all convergent sequences, and the space of eventually
constant sequences. All these spaces satisfy condition (e) of prop-

osition (10.3); thus they satisfy (+).
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On the other hand, many common spaces do not satisfy condition (t).
Consider E = £, with termwise multiplication, and take 1 to be

#

the usual constant sequence 1 = {1,1,1,...} in E" (= w). For each

ke T
If q > 1, then [Sn, N] ¢ Q;}(E, 1), since the series Z:ﬂ (%)q converges
and hence, [S:, N] e P:‘(E). But the series Z;zl % diverges; hence,
there is no § & 2, such that S 2§ Vn. Thus [s , N ¢ f;(m. We
therefore have in this case,

fRe, » e, b,
for all q > 1.

Now consider E = Ll[O,l], with the linear operations and order

defined pointwise, and with the usual constant function 1. Recall
that Li[O,l] 2 Lp[o,1] F] Lq[O,l] 2L[0,1], for 1 < p <q <« Thus

there exists a function £ ¢ E' such that £ ¢ LP[O,:L] - Lq[o,i]. Pick

any io € I and define [fi‘ 1] e mI(E) by setting
£ oifi=i,

fi = o

0 if i ¢# io.

Since ££ ¢ E but £¢ is not bounded above by any element of E, [fi' 1]
€ ,Ql;(}:, 1) and [fi‘ 1] e ¢I(E), but £ ¢f§(E, 1). For this example,
therefore,

op(E) ¢ 23, 1), and

e, b g liE, .

(10.6) Proposition (order H&lder inequality). If p, q are finite
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positive real numbers such that %'f = 1, then [xiyi, 1] cl%(fl)

1
q
whenever [xi, 1] e QII)(E, 1) and [yi, 1] e ﬂ%(E, 1). More precisely,

if for all J € V(I), ) |xi\P < u and Einlyilq < v, then for all

ied
Je W(I),
Lieglxysl cuv v
Proof. In the representation of E# as C_(Q), let q and }:
represent x; and Vis respectively. We use a well-known lemma, found

in Royden [15], page 112, which says that if a,8 ¢ R* and 0 < A < 1,
A 1-X
o

then 8 < da+ (1-2)8.
Thus |x_(‘t) —(t)‘ <t (t)‘p + —|y'(t)|q whenever Xy X;(t) and i ¥ (t)
are both finite. In case \?I(tﬂ = ® op |y_i'(t)| = «, this inequality

still holds. Therefore, for each i € I,
AR TALET TALY
1
so that for all J e V(I), ziaJ]xiyil s Eilex |P+ 3 21£J|y 19 <

1
=u +
P

o =

i(%*‘%) (uv v) =uv v,

(10.7) Proposition (order Minkowski inequality). For each p > 1,

if [xi, 15l 9 [yi, 1] E‘pII)(E, ]), then [xi * Y 1] cﬂ?(}:, 1); more
precisely, for J e V(I),
z Jlx T34 ‘P e 216\] b Iiedlyilp)'
Thus P?(E, 1) is an ideal in w (E) .
Proof. Note that \xi + yilP i(lxi\ + [y.\)p _<_[2(|xi| N |yi|)]p.
In the representation of E# as C (Q) let X and y represent X, and
Yo respectively. Then for all t € Q, (|x | v [V'|) () = |x—(t)l v

iyi(t)| , and since these are extended real numbers, [(|W'| i |y |)(t)]p
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= 7Py [Tl mhus (xgl v ly;DP = %Py v lP < [%]P +
ly;IP. Therefore, for all J e W(D), [, sl +v;I® < 2P [;_ (Ix|
lyg P < 2P 3 gl P+ Ty glyy 1P
(10.8) Proposition. If [xia), I]—°> [yi, 1] infli(E, 1), then
(a) A
Boatne B Gl P s
Proof. Since [|x(a)\p, 1] and in|P. 1] belong tof%(ﬁ), we

may apply (7.3) to yield the desired conclusion.

(10.9) Proposition. (a) If E is Dedekind complete, so is Q?(E, 1

(b) Q?(E, 1) is order-dense inﬂ?(ﬁ, 1)5 ?g/(}l,\]) is the ideal

generated byp?(E, 1) in g?(é, 1)

Proof. (a) As shown in (3.10), if E is Dedekind complete, then
6 (E) is Dedekind complete. By (10.7) 122, 1) is an ideal in w (E);
hence, it must be Dedekind complete.

(b) The proof of (3.12) (b) remains valid, with A (E) = {2(E, 1)

and F = E, showing that HE(E, 1) is order dense inﬂ?(é, 1). The

ideal generated by QE(E, 1) majorizes JZ;I’(E, 1) in the sense of defini-
tion (4.1) (c); hence, by (4.1), it must equalk/?(;).

There are spaces which satisfy the condition (t) of (10.5), but
which fail to satisfy the criteria of (10.3) (e). We shall see as a
result of (10.12) that among such spaces are the sequence space ¢,
the space of all real-valued step functions on R, and the space <Ry
of real-valued continuous functions on R with compact support. We
now consider a property which will guarantee condition (f) in a vector

lattice.
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(10.10) Definition. A subset {e : a e I} of a vector lattice
E is said to be a generalized strong order unit for E if
(a) e N eg = 0 whenever o # B, and

(b) given any x € E+, there exists T€ T and 0 < A <1
4 y

such that sup {e : a e TheE and Xix <sup {e :aceTh

(10.11) Proposition. Let E be an Archimedean vector lattice
with a generalized strong order unit {ea: a € T}. Then in E# the

element 1 = sup {au: a € T} is a weak order unit, and for any T€ T,

#

sup {e : a e T} e ulE, n.

Proof. First note that 1 e E# since every set of pairwise

disjoint elements of E# has a supremum.

# #

Now let x" > 0 in E". There exists an element x € E such that

0 <x< x#, and there exists a subset T € T such that 0 < Ax <

#

sup{ea:aeT}i]. Hence, TAx" >1TAx>1A Xx=Xix >0. Thus

1 is a weak order unit in e,
Let o ¢ I'. Then 1 - £ (ZBEI‘ es) Shrey = EB?‘G eg = sw {eB:

8 # a}. Thus e, N a - ea) e A (sup (eB: g # al) = sup {(eu/\ es):

#

8 # a} = 05 thus, e e u(E", .

Now u(E#, 1) is a complete Boolean algebra (see Vulikh [18],

#

theorem IV.2.1). Hence, for every T € TI', sup {ea: aeT}eus", 1.

(10.12) Proposition. If E is an Archimedean vector lattice with
generalized strong order unit {eu: a €T}, and if 1 = sup (ea: a e T}
R
in E7, then

(a) E is closed under multiplication relative to 1;

® o ® e {2E, De i, DelIE), forany 1 <p <q <o
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Proof. (a) Let x,y € E. Then x < A£) and y < A £, for some

f1=sup(eu:usT1}aE, f2=sup(eu:a£T2}eE, 0 <Ay <1,

and 0 < A, < 1. Then xy < (M £ ) = (A AD(E£) = A A (£ A £)
€ E, so that xy € E.
(b) That wI(E) Qf?(}:, 1) follows from (10.3)(c). Let [xi. 1]

€ III)(E, 1). Then there exists u € E such that Z

15J|xi|p <u for

every J € V(I). There exists f = sup (eu: aeTleE and 0 <A <1

such that u < Af. Then for all i ¢ I, |x;|P < Af. Note that £/P - ¢

#

since f € u(E", 1). Thus for all i ¢ I, | & Al/pf e E. Therefore,

[xi, 1] e 9;(5). Therefore, Q?(E, e Q;(E).

Again let [xi, I e ﬂl;(}:, 1). Then there exist u,v € E such

that for all J ¢ V(I),Z. \x.lp<u and for all i € J, |x,| < v.
Ted s = 1=

Now v < Al for some A > 0. Thus for all J e V(I), Zilexilq =

zieJlxi\q_Plxi‘P < 3P ZieJlxilp < %Py = 9Py e E.

Therefore, [xi, 1] ¢ Q?(E, 1). We have proved gg(E, He Q%(E, n.

Section 11. p-norms on the spaces ,QI;(E, D.

Throughout this section we assume that (E, <,[.l) is a normed
vector lattice. It is natural to question whether it is then possible
to define a norm on f?(}:, 1) which behaves like the usual norm | xl =
(z:=1lxn|p) ip for x = {xn) in the familiar sequence space lp. In
section 9 we saw that there is possibly more than one %-norm on R}(E)
relative to ||.ll; similarly, we shall have to allow for more than one

suitable p-norm onf?(E, 1), relative to |l.I.
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(11.1) Definition: If (E, <, |.l|) is a normed vector lattice,

then a p-norm on ,QI;(E,T), relative to I|.[|, is any monotone norm | 'Hp

P in }3, then for all u, v € E

cnfg(}:, 1) such that if & = Zisl‘xii

such that u < % < v,

Wal® < e, 10l < 1P,
Equivalently, cz(i()l/P i” [xi, I]“p < uﬁni/p (see (8.11)).
In view of the last inequality, one would expect the presence
of a p-norm onﬂ?(}], 1) to be closely related to the presence of a
monotone extension ||.[l4 of the norm ||.|| onto all of E. Indeed it

turns out that to each such extension there corresponds, in a natural

way, a p-norm \\.H*p on 11;(}:, 1). The following definition is motivated
by (8.12).
Suppose || .[l4 is a monotone extension of Il to B. For each [xi, 1]

€ EI;(E, 1) there exists a unique element
s P2
x—ziﬂ\xﬂ € E.

If we define, for every [xi, 1] e,Ql;(E, 1955

NEx;o 2l = 121377,

then , as we shall show in corollary (11.4), “'“*p is a p-norm on
RI;(E, 1). This norm will be called the "p-norm associated with [.Il4".
Note that if we define \\[xi, I]“.,k1 = |2ll,, where & = zicl‘xi[ 5
" i
then || .||*1 is an %-norm cn(I(E)‘
If E is Dedekind complete, then we write “'“p instead of ““*P

(11.2) Proposition (H8lder's Inequality). Let p, q be positive

real numbers with % + % = 1, and suppose \l“* is a monotone extension

of |.| to E. 1If [xi. 1] C(?(E, 1) and [yi, 1] sfz%(}:, 1) then
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[xiyi, 1] e Qi(ﬁ) and
([P0 3 IR | YRS Y [ 2 I
Proof. That [Xiyi‘ 1] e Ri(ﬁ) was proved in (10.6). Let x =
[Xi' 1) and y = [yi, 1]. Assume x # 0 and y # 0, since otherwise the
desired inequality is trivially true. Now represent each Xy and iy
as functions X, 77 € C,(Q). For each t ¢ Q,' let X = %,

P

x(0)|P

(B *o

yilt)
iyl *5

and B =

and apply the lemma mentioned in the proof of (10.6). We thus obtain

XA [xs] Yoo 4 [lygl \a
it g1

el 19Ty = 2 \Telhey * 3Bl (fie1).

Then, letting & = ). |x,1p and § = ). |y.\q, we have
iel' ™1 1eIMd
Lo glxy. ]
ied' Mivi 1 P i qQ
< Tieal %l — Iyl
= J
O T e alype? T

2 1 P 1 q
= e lieal®l® g Ly

< — + < N
= MRl allyT
Thus, taking the norm |l.[4 of both sides, we obtain

“zi:ﬂ"iyim* g

1,
Tl W%, —
| I*P I1¥] *q
from which the desired inequality follows immediately.
In the proof of the following proposition, the argument is anal-

ogous to the usual derivation of Minkowski's inequality from Holder's

inequality (see Goffman and Pedrick [2], pp. 4,5).
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(11.3) Proposition (Minkowski's inequality). Suppose [l.{, is
a monotone extension of |.| to E, and let 1 < p < ». Then for all
x =[x, 1] andy = [y;, 1] inf5E, 1,

It vl = ey + Uy
§ -1
Proof. For each i ¢ I, |xi + yi\p < [xi + yi|p |xi\ by |xi +
yi|p_1\yi\. Note that Uxi + yi|p_1, 1] s}l%(E, 1), since
(|x.1 + yi|P_1)q = |x‘. + yi\P. Thus by the order H8lder inequality

_1 -1
(10.6), both I:[xi + yi\P \xi‘, 1] and [lxi + yi\p \yi|, 1] belong

to,?%(f), and in E we have

P p-1 p-1
A R L A (R T R PO (R L )
Taking the norm [|.|x of both sides, and applying H&lder's inequality

(11.2), we obtain the inequality mizllxi + yi|p” < |[|:|x1 + yi\P_i,
*

I]“*q“["r I]||,kp U, + yi|p“1, I]“*ql‘[yi, I]“*P. That is,
bes yig, < loer 9P Gl + vley)
and we thus have
e+ ylhale + 187 < el + Ivlag) e+ 9P
|Pn1/P)P_1 = el + vl

Now ||x + yl\E;l N (HZieI‘Xi +y; P“i/q

s pa-q||l/q P-4 "
= \lziellxi + yi[ ”* = Jlx+y) “*q. Therefore, cancelling
this common factor from both sides of the last inequality above, we

obtain the Minkowski inequality.

(11.4) Corollary. Given any monotone extension |.[ly of [l.|l to

E, and any p > 1, ll.|l*P is a p-norm onf?(}:, 195
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(11.5) Observations. We list here a few facts about p-norms on
fIID(E, 1) which follow rather easily. Suppose (E, <, |.[) is a normed

vector lattice.

1/
(a) If Eielixilp = x ¢ E, then U[xi, I]ﬂp = |x|*P, for any
p-norm ".“P' Hence, if E is Dedekind complete, there exists only one

p-norm on QE(E, 1), relative to \l.ll.

() 1£l.0y, and |l .Il# are equivalent monotone extensions of | .|

to E, then || .l and |l.l, are equivalent p-norms on fP(E, 1).
P #p I

(¢) If |l.lx is a semi-continuous monotone extension of |.ll to
é, then || '"*p is semi-continuous on;“l’(E, 1)

(d) Any condition on E which will guarantee that p(.) = H."u
on E (e.g., continuity of |.l|, or the projection property in E) will

imply that »’E(E, 1) has only one p-norm, relative to .l .

(e) If| .l is a continuous norm on E, then | .\‘up is sequentially
continuous onp?(E, .

(£) If |.l is a monotone extension of |.|| to E, then we may

obtain a p-norm H'H*P* extending |. ﬂ*p to ,Q?(}f, 1) by defining

. | 1/p
[[ESS A IE ) IR ENE, [t
(11.6) Definition. If (E, <, ||.|) is a normed vector lattice
and 1 < p < «, the norm ﬂ" is said to be p-additive if |x + yﬂp =

\|pr + \|y|\p whenever x A y = 0 in E.

An obvious example of a p-additive norm is the norm H{xn)“ =
® 1/
(Zn=1‘xn|P> P on ILP.

(11.7) Proposition. Suppose E is Dedekind complete. If Il is

additive on E+, then “'"p is a p-additive p-norm on P?(E, 1) ~TE4dn
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addition, 1 € E and I contains at least two elements, then the
converse is true.
Proof. (a) Suppose | .| is additive on E', and let [xi, I

[yi, 1] s,QI;(E, 1) with [xi, 1] A [yi, 1] = 0. Then Xi N Yy for all

ieI, and
([ IO e LT DA PR LY
= g (%P + 1y 9] otnce %A v = 0)
= [ Lierl 7] + "ZicI]yi‘P“ (since Il is
additive on EV)
Sl [0S L (eS|
(b) Suppose |.| is a norm on E such that | .Hp is p-additive.

Suppose that le E and that there exist i0 # i1 in I. Let x,y € B

Observe from the representation of E# as a space C_(Q) that xl/p

ip € E =E. Similarly, yi/p € E. We thus define

<
1V x e E. Hence, x

[Xi, b 8 [yi’ 1] e QXI:(E, 1) by setting

x1/P sEdad, /P i£1=4,
*; = and I s
0 1f1¥10 0 1f1¥11.
Since H.Hp is a p-additive p-norm on ,(’II)(E, 1) we then have |lx + y| =
1/pyp 1/py|P = Pl - k
[x*®yp & (PP = “Em(xi +y;) “ = “[xi * 34 1]\|§ E
1/ 1/
(1| L (w23 L 1O o B (St N T P
Therefore, | .|| is additive on BY®
(11.8) Proposition (Solov'ev [17], theorem 8). 1If .| is additive
on E+, then there exists a monotone extension \[.l\* of |I.1 to E which

s 14t +
is additive on £,
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(11.9) Corollary. “ .”*P is then a p-additive p-norm on E?(E, .

Section 12. K&the X-dual spaces

Throughout section 12 we continue to assume that E is an Archi-
medean vector lattice, embedded in its universal completion E# = C_(Q),
and that 1 is a fixed wesk order unit in ET. We may assume that 1
is represented by the constant function, 1(t) = t for all t € Q. We

denote the product (relative to 1) of two elements x, y € E# by xy.

(12.1) Definition. If AI(E) is an arbitrary subset of mI(E), we
define its K&the X-dual, relative to 1, to be the set D\I(E)]T =

([yi, e 0 (E): V[xi, 1] € A(E), 3u e E such that ZisJ\xiyﬂ <u
¥J e V(I)}. Since E is an ideal we have
T . 1,2
Do) = tygs 11 e w®): [xgyy, 1l e QI@) Yix,s 11 e A ()}
Observe that from (10.6) it follows that if p and q are finite

real numbers such that % + % = 1, then ,@?(E, e [Q%(E, ’I)]?.

To simplify notation, [AI(E)]T will often be written X)I((E), 1
the element 1 is understood to be fixed. It must be emphasized that
the space D\I(E)]]X depends upon the element 1. In (10.2) we have seen
an example of a vector lattice E containing weak order units 1,1' such
that E is closed under multiplication relative to 1, but not under
multiplication relative to 1'. Using proposition (12.5) below, we

see that [ﬂi(m)])]( # [f;(m)]zl(w

We employ another notational simplification: we often write

x’l"‘(g) o [xI(m];‘x instead of [[xln:)]f]’]‘.






(12.2) Proposition. If AI(E) is an arbitrary subset of mI(E),
then N{(E) is an ideal in w (E).

Proof. Let [y,, 11, [z;, 1] e AX(E) and [x;, 1] ¢ A[(E). There
exist u,v € E such that for every J ¢ V(I), zieJ‘xiyil <u and
EilexiZi‘ < v. By (M4) we may use the distributive law, and thus
Zis\]‘xi(yi + zi)\ < zisJ‘xiyil + zis\]‘xizil < u+ v. Therefore,
[xi, 1] + [yi, 1] e A?(E). That A;(E) is closed under scalar multi-
plication is obvious.

Let [Vi’ jofl 6 mI(E), with \[vi, ]| = \[yi, 1]|. Then for all

Je v, I glevil = Ll vl < Tyl s |o= Tyglxgysl < ue

Therefore, >\>I((E) is an ideal.

(12.3) Definition. A subset AI(E) of mI(E) is x-perfect (relative

. N XX
to 1) if A (E) = [AI(E)]1 &

(12.4) Proposition. If )\I(E) is an arbitrary subset of mI(E),
then

() (@) = 2X(E) whenever A (E) € u(E);
XX

1) A E) s K@)

(c) )\);(E) is X-perfect;

(d) )\)I(X(E) is the smallest X-perfect subset of wI(E) containing
A (E)s
(e) if XI(E) is X-perfect, then /\I(E) is an ideal in mI(E);
. . X 2
(£) 1if A (B) = [)\I(E)]], then AI<E>«22I<E, 1.
The proof of (12.4) follows the standard argument. See Kdthe

[s], s30.
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(12.5) Proposition. If I is an infinite set, the following are
equivalent:
X
(@ [o(®)]7 = w (®);
X
®) o= [w®1;
(¢) E is closed under multiplication (relative to 1);

@ 5®e im;

© 1@ UmI.

Proof. We shall prove (c)=%(a) =>(b) =(c)=»(d) =>(e)=>(c).
Clearly, (c) = (a). That (a)=>(b) and (d)=> (e) are seen immediately
by using (13.3) - (a), (b). That (b)=»>(c) and (e) =>(c) are also
seen readily, by noting that either (b) or (e) will imply that
¢I(E)§P§(E, 1), which, by (10.3) (f), implies (c). Thus it remains
only to prove (c)=»(d).

Assume (c) and let [x,, 1] ¢ JZ?(E), [y;» e I%(E). There

exist u, w € E such that ]xi

<ufor all i € I and zieJ‘yil <w
for all J € V(I), and hence 2i€J|xiyi\ < ZieJ u \yi\ = u zileyi‘ <

wwe o s [x, 1] Ui
(12.6) Proposition. If 1 ¢ E, then
(a) [mI(E)])](ng(E);
® Wi efie.
Proof. (a) If 1 e £, then by (10.3) - (&), J2(E, 1) m(E).
But [mI(E)]T sQi(}:, 1y,
(b) since 1 e B, 1 <e for some e ¢ E. Let [x,, I] ¢ [R;(E)]’f. |

2®);

The family [yi, I] defined by y; = e, for i e I, belongs to 21
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thus there exists u € E such that 2

lEJ|xiyi\ < u for all J e V(I).

Then for all J e V(I),
Lioglxgl = Ligglxsle = Ts glxgys | < u.

Therefore, [xi, 1] e III'(E).

By (12.5) (e) and (12.6) we have the following result.
(12.7) Corollary. If 1 e E and E is closed under multipli-
cation relative to 1, then [1;(E)]?|( = }%(E). (Thus, 1?(5) is

X-perfect, relative to 1.)

(12.8) Proposition. If E has a countable exhausting set (i.e.,
a set (en: n = 1,2,...} such that for every x ¢ E, |x| ien for some
n e Ny, then [ (5))je ¢ (E).

Proof. Let (en: n = 1,2,...} be a countable exhausting set in
EY. Let [yi, 1] e [wI(E)]){ and JO = {iel: s # 0}. We shall show
that Jo is finite. Suppose to the contrary that Jo is infinite;

without loss of generality, assume N € J By the Archimedean prop-

0
erty in E#, for each n € N there exists \_ e R+ with I)\ yz‘ £e .
n n"nl = n

Define [xi, 1] e mI(E) by
xiyi iF 4 ey
0 if i ¢ N,

Let u e E'. Then there exists n, € N such that u < g IfJ

is any finite subset of N containing Ny, we have chJlxnynl =

]xnyn\ £ u. Therefore, [yi, 1] ¢

ZneJ“nyi‘ 3 eno; hience zn:J

X
[mI(E)]-l 5

(12.9) Example of a vector lattice E (in this case, Dedekind
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complete and with 1 € E) such that [‘Q:I(E)];(ﬁj?;(}:). Let E = 11, E# = w
with the usual vector operations, order and unit. Let [en, N] e wN(E)
be given by e, = (0,0,...,1,0,...) with 1 in the nth position only.

® 1 X
Clearly, [en, N] ¢ fN(E). But [en, N] e [{N(E)]-l. For suppose

[xn, N] EQ[%I(E)', say | < u for all J € V(N). Then zilexiei[

seal®sl

< Lieglg] v for all g € Y(N).  Therefore, [E,i(}:)]? £ yE.

(12.10) Proposition. If 1 is a strong order unit for E, and if

Al
1<Paq<"°WlthE+€=1,then

X
e, Iy = fHE, .
Thus each f};(}:, 1) is X-perfect. The only self X-dual subspace of

w(B) is {25, 1.

Proof. Note that E is closed under multiplication, since 1 & ;8
Assume I is an infinite set, since the result is trivial if I is
finite. Without loss of generality we may assume N < I.

(a) Ifp == and q =1, the result follows by (12.7).

(b) Consider p = 1 and q = *». Suppose [yi, 1] ¢9;(E). Then
there exists a sequence {ik) of distinct positive integers such that
]yik[ £ k31, Define [Xi’ 1le mI(E) by setting
L oaes=4,

0 ifi¢ {ik: keN}.

1 ‘
Then |:xi I]e pI(E) since, for each J € V(I), 219J|"i| = ziklexik|

) -2 o -2 : -2
E EikcJ Kl (Zk=1 : )1' However, [, slxyv, | = zikeJ Ky






S0

£k 1. Thus the sums z |xiyi\ (J € V(I)) are unbounded in Ej;

ied
hence, [y,, 1] ¢ [Qi(a)]’]‘. Therefore, [ﬂ}(E)]’](sf;(E). Since

E is closed under multiplication, the converse containment holds by
(12.5) (d). Therefore, equality holds.

(c) Consider 1 < p,q < =. Let [yi, 1] e [QE(E, 'l)];(. Suppose

for contradiction that [yi, 1] ¢ Q%(E, 1). Since p > 1, there exists
n, € N such that ny(p-1) > 2. Then there exists a sequence {J,} of

pairwise disjoint subsets of N such that for each k € N,

q no+l
ZieJklin b Lk 1.
For each k € N, let )\k =sup {A: 0 <A <1, AM.k iknoﬂ 1}. Then
A < KO T, put Al/pMk 2% 1. pefine [x;, 1] € u (E) by
1/p ,-ng q-1 5
. )‘k k |yi\ ifie J s
i
0 b 2 tUk 1 k

Then [x JeT]ve QP(E 1), since for each k ¢ N, le"k |p

-nop|, | (a-1p -nop q _ nop
b M vl = A D Il S

KTROP R0t yno(pml) + 1y < 1 since ng(p-1) +1 < =241

= 2 = 1/p ,-ng q. 2
= -1. On the other hand, zisJklxiyil = EieJk ATk Iyi| =
KPP £ kPO KM 1 = kL Thus there exists no k € N such

that for all J ¢ WD), [;_/lxy;| <k 1. That is, [y;, 1] ¢ W3z, DI},

ied
This is a contradiction. Therefore, [:?1;(}:, 1)])](4 ,?%(E, 1). Com-
bining this result with (10.6), we see that the desired equality holds.

(4) Finally, suppose A(E) = AJ(E). By (12.4) (£), A (E) &
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P2, 1), Hence, A (B) = X&) 2 Ui, DI = 4%, 1). Thereore,

209,
ME) = {3, .

Section 13. Linear mappings from AI(E) into E.

(13.1) Definition. Given vector lattices E and F, a linear
mapping f: E > F is said to be

(a) positive if x > 0 implies f£(x) > 03

(b) strictly positive if x > 0 implies £(x) > 03

(c) order bounded if f is bounded on each order interval of Ej

(d) sequentially order continuous if f is order bounded and if

for sequences (xn} in E, xn-—sbo implies f(xn)—"-»o-,

(e) order continuous if f is order bounded and if for arbitrary
nets {xa} in E, xu_‘lo implies f(xu)—%o.

It is clear that strictly positive = positive = order-bounded.
Note that any vector lattice isomorphism is both strictly positive
and order continuous.

If E and F are arbitrary vector lattices, we let L+(E, F) denote
the family of all positive linear maps from E to F. Then L+(E, F)
is a cone (not necessarily generating) in the vector space L(E, F)
of all linear maps from E into F. Let Lb(E, F) denote the family of
all order bounded linear maps from E to F; Lb(E, F) is a linear sub-
space of L(E, F), partially ordered by the cone L+(E, F).

Suppose that F is Dedekind complete. Then Lb(E, F) is a vector
lattice with the order induced by the cone L+(E, F); in fact, Lb(E, F)

is Dedekind complete (see Vulikh [18], theorem VIII. 2.1). When F is
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Dedekind complete, a necessary and sufficient condition for an

additive map f: E > F to be order-bounded is that f = g for

1~ By
some g, g, € L+(E, F) (Vulikh [18], theorem VIII. 2.2). Moreover,
the spaces LO(E, F) and LSO(E, F) of all order continuous and all
sequentially order continuous maps f ¢ L(E, F), respectively, are
order-closed ideals (bands) in Lb(E, F) (Vulikh [18], theorems
VIII. 3.3 and VIII. 4.3).

For an arbitrary vector lattice E, any Banach o-limit g e B{(E)

is an example of a positive (hence order bounded) linear mapping

g: m(E) > f], as shown in (5.5).

(13.2) Example. For the vector lattice E = m there exists no

sequentially order continuous g € B{(E). To see this let g e BL(E).

Y (k) s (k) _ o
Define x '€ mN(E) by setting x = {xkn}n=1 where
O£l <inis k=1
oy
k01 ifn > ke
Then x(k) ¥ 0; but for each k, g(x(k)) = lnim xék) = 1, since x(k) €

c(E). Therefore, g is not sequentially order continuous.

(13.3) Proposition. If order convergence of sequences in E
implies uniform convergence, then every g ¢ Bf(E) is sequentially
order continuous.

Proof. Let xn—(l)O in E. Then there exists u e E so that for
every 8§ > 0 there exists ng € N such that n > ny implies |xn\ < bu.
Thus n 2 ny implies |g(xn)\ < g(|xn\) < 6g(u). Therefore, g(xn)—uvo

in E, which implies g(xn)—%o in B.
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(13.4) Example. The linear map f: fi(E) ~E given by f([xi, 1])

= Eisl xi is order continuous, as shown in (7.3).

(13.5) Proposition. Let AI(E) be a vector sublattice of mI(E),

andy = [y,, 11 ¢ [\ ()]}, Define the map v A(E) + £ by YR
Tier *y¥y» for all x = [x;, I] € A (E). Then

@ ¥ e Pom, B

(b) y*io ify > 03

(c) if AI(E) is an ideal, then y* > 0 if and only if y, > 0 for
every i € I such that )‘I(E) contains an element [Xi’ 1] with Xy # 03

(d) if AI(E) is an ideal, then y* is order continuous.

Proof. (a) The results of section 6, along with (M4) and (MS5),

% B * o
show that y is linear. It is clear thaty = (y+) -(y) , and

% o B &
that both (y+) and (y )" are positive. Therefore, y € Lb(AI(E), E).

*
(b) Ify >0, then it is clear from the definition of y that

.

2
(c) Suppose AI(E) is an ideal and y > 0. Suppose AI(E) con-
tains [xi, I] with Xy # 0. Then XI(E) contains the element [xi, I],
0

fie 0 Seks : sy 4oz i '
where x 0if i # i, and xio \xiol. Since [Xi’ 1] > 0 and

' & '
xioyio EisI ®iy; 2 0, we must have yiO > 0 (see (M10)).
(d) Suppose x(a) = [x(iu), I]—°>0 in )\I(E). Recalling (3.5),
x§°‘)—°»o in E (hence in E#) for all i € I. Thus for each i,

xga)yiﬁ)o in E# (hence in the ideal E) by (9.10). Applying (3.5)

again, [x(ia)yi, 1] %0 in ,QJI'(}E). Therefore, by (7.3) y*(x(a)) =






oy
(a)

2 *
ZieI xs yi_i)(l in E. Therefore, y 1is order-continuous.

(13.6) Proposition. Suppose E is an Archimedean vector lattice

and 1 is a weak order unit in E#. Then, taking multiplication rela-
tive to 1,
(a) if p and q are finite real numbers such that -Il)—*r % = 1, then

%
for every y € ,!II’(E, 1), y is a positive, order continuous linear

mapping from Rﬁ(E, 1) into E;
(b) if E is closed under multiplication, relative to 1, then for
every 1 < p,q < = such that%-r % = 1 and for every y CQE(E, 1)

B
y is a positive, order continuous linear mapping fromf}l(E, 1) into

E.

Proof. Both (a) and (b) are corollaries of (10.6), (12.5), and

(13.5).

Section 1u4. Convergent families in a vector lattice.

In this section we define and discuss a notion of convergence
for families [xi, 1] in mI(E). We shall not assume that I is a
directed set, or even a partially ordered set. Thus this notion is
not to be confused with that of convergence of a net over I. In
addition to abstracting a notion of convergence, this idea leads to

an example of a vector sublattice of wI(E) whose K&the X-dual can
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be described in terms of the spaces already discussed.

(14.1) Definition. A family [xi, 1] e w(E) is said to be
zero-convergent if there is some y > 0 in E such that for every

§ > 0 there exists J e V(I) such that

\

| 5 < 8y whenever i ¢ J.
We let cg(}:) denote the collection of all zero-convergent [xi, 1]

in wI(E).

(14.2) Proposition. (a) c?(E) is an ideal in mI(E), with
o8 = ) = m(B);

(b) if I is an infinite set and E is nontrivial, then cg(E)
is not a band in mI(E);

(c¢) if E is Archimedean, Dedekind o-complete or Dedekind
complete, then cg(E) has the same property; and conversely.

Proof. (a) is trivial. Pick e > 0 in E. For each j ¢ I,

(3) (3)

define [x(i]), 1] by setting £ =0if i # 3, and My 3 dids =g

(3)

Then (I:xi , I]: 3 € I} is a subset of c?(E) having supremum [yi, 1]

in wI(E), where y; = e for all i € I; since [yi, 1] # cg(E), c?(E) is

not a band. Finally, (d) is a consequence of (3.1) and (3.10).

Let E be an Archimedean vector lattice. Consider an arbitrary
[xi, 1] e mI(E). In E construct the net (RJ: J e V(I)} indexed by
the directed set V(I) with its usual partial order (inclusion), by
defining
&y = swpg x|

the supremum being taken in E. Observe that SIJ ¥. The following
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result is then clear.

(14.3) Proposition. If E is an Archimedean vector lattice, a

family [xi, 1] in mI(E) is zero-convergent if and only if iJ v 0

uniformly in E.

(14.4) Example. In mR(R) define [xr, R] by
1if0<r <1,
xr‘
0 if |r| > 1.

Then [xr, R] is a family which is not zero-convergent, even though

s o
as a net over the directed set R, xr—>o.

(14.5) Proposition. For any vector lattice E and any set I,
u (9
e e .

Proof. We may assume I is infinite, since for finite I, f‘;(E) =
cg(E) = wI(E). Let [Xi’ 1] e Q;(E). There exist x, y € E such that
for all § > 0 there exists Jg ¢ V(I) such that J =2 s implies ‘(zigJ xi)
-xl <Ly,

=2
Let § > 0. For each i ¢ Jg, if we let J' = J U {i}, then ‘xi|

Al ‘(zieJ' xi\ - oxlos MziaJé "i\ -«

=iy % - zieJ6

< 8y. Therefore [xi, 1] e cg(E).

(14.6) Definition. A family [xi, 1] in u (E) is said to be
convergent to an element x € E if |:xi - x, I] is zero-convergent.
We denote this by XX We let CI(E) denote the collection of all

convergent families [xi, 1].

(14.7) Proposition. If [xi, ey IR [yi, 1] e e(E), A e R, and



-
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Xy —I+ Xy yi——I> y, then

(a) R F YRR Y

(b) )\xi-l—))\x;
(c) XN Y PR XVYS

(@) Ky N YT RAY.

Proof. There exist Ugs Uy, U € E such that for all 6§ > 0, A # 0,

3

3
[ & N
and ka - x| %Y whenever i ¢ Ji' g J2, k ¢ JB' Let 6§ > 0,
J = Jlu J2UJ3 and z = 2(u1\l u2). Then for all i ¢ J, we have

there exist Jis J2, J, € V(I) such that \xi - x| _<_6u1, |yj -yl iéuz,

(a) |(xi + yi) - (x+ )| o< lxi - x|+ ‘yi -yl f_éu1 + 5u2
< 8z. Thus Xty prxtY.

®) |ax; - ax| = |>~Hxi - x| < 8uy. Thus dx, —> x.

(e) Note that (x; v ;) - (xv y) =[x - (xv v [y, -
kv lelx -0V G -y 5—2- z, and similarly, (x V y) -
GV y;) < (x - %)V (y -y;). Therefore, \(xi\‘ y) - (kv )
< 8z. Thus XV Yy XV Y.

(d) By (b) -%; —7> -x and -y —> -y. Then by (e) =%, v -y, >
-x V -y; hence, by (b) —(—xi vV o-yy) i -(-x NV -y). That is,
XNV P ORAY.

(14.8) Proposition. (a) co(E) S c (E) Em (E);

(b) cI(E) is a vector sublattice of wI(E), but can not be an
ideal in mI(E) if I is an infinite set and E is nontrivial.

Proof. (a) is easy to see. That cI(E) is a vector sublattice

follows from (14.7). That cI(E) is not an ideal is seen by the
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following argument. Without loss of generality we assume N & I.
Pick any e > 0 in E, and consider the family [xi, 1] defined by

e if i = 2n for some n e N,

0 otherwise.

We have 0 < [xi, I] < [yi, I] € CI(E)’ where V) for all i e I3
but [xi, 1] ¢ cI(E) while [yi, 1] e CI(E)' Therefore, cI(E) is not

an ideal.

(14.9) Proposition. For any Archimedean vector lattice E,

(a) if E is closed under multiplication relative to 1, then
1 X 0 X 0 1 X
QI(E) = [cI(E)]-l < [cI(E)]-I and e (E) € o (E) & [er(E)]].

(b) if 1 is a strong order unit for E, then [cg(E)]# =

X _ o1

Lo, = f1®).

Proof. (a) By (12.4) and (12.5), CS(E) = cI(E)e mI(E) implies
1 X X 0 X
QI(E) = [mI(E)]] < [CI<E)]] c [CI(E)]]‘ On the other hand, by (12.5)
we also have mI(E) = [J%(E)]T-

(b) Pick an element e € E such that 1 < e. Then e is also a

strong order unit for E. We assume I is an infinite set, since other-

wise [cg(E)]T f%(E) = mI(E). Without loss of generality we may
thus assume N = I.

Suppose [xi, 1] ¢ [%(E)A Then there exists a sequence {Jk} of

pairwise disjoint subsets of N such that for all keN, ZisJ \xil £ kZe.
k
" gL Aaak
Then defining [yi, 1] € mI(E) by y; = e ifie Jk’
0 if i ¢ Uk=1 Jk’
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0 1
we have [yi, 1] ¢ cI(E). But Zing\xiyﬂ = EieJk(f e\xin

£k e. Thus z |xiyi| £ k13 hence, [xi, 1] ¢ [c?(E)]?l(. Therefore ,

iEJk
[c?(E)]X g}?%(}:), The desired equality then follows with the aid of

(a).

Section 15. K&the Y-dual spaces.

The theory of K&the y-duality presented here is based on a
definition which may not seem as natural as the corresponding
definition in the theory of K&the X-duality. It does, however, have
two major advantages; it is independent of the unit 1 chosen in E#,
and certain expected duality relationships may be established with
apparently weaker hypotheses.

Throughout section 15 we shall again assume that E is an Archi-
medean vector lattice, embedded in its universal completion E# =

C_(Q), with 1 denoting the constant function T(t) =1Vt e Q. If

X, ¥ € E#, xy will denote the product of x and y, relative to 1.

(15.1) Definition. If )\I(E) is an arbitrary subset of mI(E),
then we define its K&the y-dual to be
R s 1. #
DB = tly;s 1] e wp®): Dxyyys 11 € f7ED) VIx;, 11 € 2 (EDY,
where the multiplication is taken relative to 1. For convenience we

shall sometimes write )\)I/(E).

(15.2) Remarks. Using the result (9.4) of Rice, we see that the

definition of [xl(}:)]y is not affected by the choice of the unit 1.
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For if 1' is another unit and multiplication of x and y relative to

1' is denoted x * y, then by (9.4) Ein

|xiyij < u implies
Biealtgtyal = LigglOyp) #11= (figglepyl) #1200,

rae i s 3 3
and similarly, zieJlxi’yil < v implies zisJ!xiyil ek

Moreover, proposition (9.7) shows that the definition of [AI(E)]‘V
is not affected by the choice of universal completions E# of E. Thus
the K&the y-dual of )\I(E) is determined intrinsically by AI(E) itself,
and the embedding of E into E# is merely instrumental in computing
D @Y.

We say that a vector sublattice )‘I(E) of mI(E) is y-perfect if

= Yy
A (E) = e

Corresponding to propositions (12.2) and (12.4) for X-duals, we
have the following proposition for y-duals. As the arguments are

entirely analogous, we shall omit them.

(15.3) Proposition. Suppose XI(E) is an arbitrary subset of
w(E). Then
(a) )\{(E) is an ideal in mI(E);

() A(E) € u (B) impries W (E) € W(B), for any u (E) < w (B);
Wigy.

(e) A (E) €27 (E);

(d) A‘}/(E) = X'}I‘yy(E) (X}II(E) is y-perfect);

(e) A)Ily(E) is the smallest y-perfect vector sublattice of w (E)
containing AI(E);

(f) if )\I(E) is y-perfect, then XI(E) is an ideal in wI(E).
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(15.4) Proposition. (a) ¢Y(E) = w (B); 6.(B) € uf(E);

(b) if E# has a countable exhausting set, then u\{(E) = QI(E);

() if )‘I(E) is y-perfect, then ¢I(E) = AI(E).

Proof. (a) is trivial. The proof of (b) uses the same line of
thought as the proof of (12.8), and uses (a) as well. To see (c),
observe that ¢I(E) =4 m‘¥(E) §X¥y(E), for any )\I(E), since )\‘}'(E) <

wI(E).

# #

(15.5) Definition. (a) ;I(E) = {[xi, T]ie mI(E): Iu" € E

such that ]xi\ iu# ¥ie I}. We also write T;(E) = EI(E).
(b) F%(E) = ([xi, 1] e w (B): Bu# ¢ £ such that VJ e w(1),

Ligglsl <.
(c) for each 1 <p < =, I?(E) = ([xi, 1] ¢ wI(E): 3u# € E#

such that W e V(I), ]. |%,|P < u#}.
degd? iy =
Note that as in (15.2), the definition of III)(E) is independent
# #

of the universal completion E" and the unit 1 chosen in E".

(15.6) Proposition. For any infinite set I and any 1 <p < q <=,
P q o
we have ¢.(E) & II(E) %II(E) g 4 (B).
Proof. The arguments used in proving (10.3) may easily be
revised to establish these results. We do not include the resulting

proofs.

It is quite easy to extend the order Hélder inequality (10.6) to

the spaces I?(E), I%(E) for extended real numbers p,q such that

O |

+ %= 1; from this it follows that
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Yy
e elim,
whenever % + % = 1. It is also quite easy to extend the order

Minkowski inequality, from which it follows that ]?(E) is an ideal.

(15.7) Proposition. (a) [J5®)1 = F1(®).

(b) If E# has a strong order unit, then for all 1 <p, q <«

such that §-+ %= 1is: U?(E)]y =-§<11(E).

The proof is completely analogous to (12.7) and 12.10).

Finally, since a norm | .|| on E cannot, in general, be extended
monotonely to E#, we do not consider f-norms or p-norms for the

spaces T}(E) or I?(E).
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APPENDIX

REPRESENTATION THEORY AND UNIVERSAL COMPLETION

In this appendix we present, without proofs, a few pertinent
results from the "representation theory" of vector lattices, as devel-
oped in Vulikh [18]. The power of this theory lies in the result that
every Archimedean vector lattice E may be represented by a function
space; more precisely, E is isomorphic to an order-dense vector sub-
lattice of a known space C_(Q). Moreover, C_(Q) turns out to be the
universal completion of E, and thus the Dedekind completion of E is
the ideal generated by E in C_(Q). For proofs and more details con-
cerning these results the reader may consult Chapter V of Vulikh's
book [18], which is the most exhaustive presentation of this represen-

tation theory available in the English language.

(16.1) Definition. A compactum (compact Hausdorff space) is said
to be

(a) totally disconnected if the open-closed sets form a basis
for its topology;

(b) extremal if the closure of every open set is open-closed;

(c¢) quasi-extremal if the closure of every open Fc—set is open-
closed.

By a rather simple point-set argument, one can show that every
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quasi-extremal compactum is totally disconnected. However, the subspace
X = {O,ti,%,%, ...,trl—l,...} of the real line R provides a counterexam-
ple to the converse; X is totally disconnected but not quasi-extremal.
If Q is an extremal or quasi-extremal compactum, then C_(Q) will
denote the collection of all continuous, extended real-valued functions
f on Q such that {x ¢ Q: |f(x)\ = =} is nowhere dense in Q. The
assumption that Q is extremal or quasi-extremal allows one to show
that C_(Q) is a vector lattice, under the usual (pointwise) definition
of addition, scalar multiplication, and order. Note that any non-

negative constant function serves as a weak unit for Cm(Q).

(16.2) Proposition. If Q is an extremal (resp. quasi-extremal)
compactum, then C_(Q) is a Dedekind complete (resp. Dedekind o-complete)
vector lattice. Moreover, if Q is extremal, Cm(Q) is universally

complete.

(16.3) Proposition. If X is a Dedekind complete (resp. Dedekind
o-complete) vector lattice with a weak order unit 1, then there exists
an extremal (resp. quasi-extremal) compactum Q such that X is isomor-
phic to an order dense ideal X' of the space C_(Q).

Moreover, the isomorphism can be realized so that C(Q), the set
of finite-valued functions f in CN(Q), is a subset of X', and so that

the unit 1 is mapped onto the function which is identically 1 on

o

(16.4) Proposition. Every Dedekind complete vector lattice X is
isomorphic to an order-dense ideal X' in C_(Q) for some extremal

compactum Q, which is unique up to homeomorphism.
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Moreover, X is universally complete if and only if X' = C_(Q);

i.e., if and only if X = C_(Q).

(16.5) Corollary. A vector lattice E has a universal completion
if and only if E is Archimedean; any two universal completions of E
are isomorphic.

The proof of (16.5) consists of embedding E isomorphically as a
vector sublattice of its Dedekind completion é, and then embedding E
in C_(Q) for appropriate Q. In the composite embedding, arbitrary
suprema and infima in E are preserved. The algebraic and lattice
operations on elements of E correspond to the pointwise operations

on the extended-real-valued functions in C_(Q).
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