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ABSTRACT
GENERALIZED SYLOW TOWER GROUPS
By

James B. Derr

Both finite solvable groups and finite nilpotent groups
can be characterized in terms of their Sylow structures.

In this vein, P. Hall showed that a finite group is sclvable
if, and only if the group has a complete set of pairwise
permutable Sylow subgroups. And it is well known that the
Sylow subgroups of a finite nilpotent group centralize one
another.

The aim here i1s to study the structure of groups whose
Sylow subgroups satisfy a normalizer condition (N). If
S 1s a collection of subgroups of a finite group, we say
S satisfies (N) 1if, for every pair of subgroups of
relatively prime orders in S, at least one of the sub-
groups normalizes the other.

We first consider groups having a complete set of
Sylow subgroups which satisfies (N). These groups are
called generalized Sylow tower groups (GSTG). Sylow tower
groups are GSTG's and GSTG's are solvable. All subgroups
and factor groups of GSTG's are again GSTG's and the
direct product of GSTG's having the same normalizing
structure is a GSTG. The main result on GSTG's is the

following.
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James B. Derr

Iheorems If G is a GSTG, the nilpotent length of
G 1is less than or equal to the number of distinct prime
divisors of the order of G and, if equality holds, G
is a STG.

We next consider condition (N) for the set of all
Sylcow subgroups of a group. If the set of all Sylow sub-
groups of a group satisfies (N), the group is called an
N-group. An N-group is necessarily a GSTIG and, if G 1is
a GSTG whose order is divisible by at most 3 primes, then
G 1is either an N-group or a STG. The inheritance proper-
ties of N-groups are identical with those of GSTG's and
the classes of N-groups with similar normalizing structures
are non-saturated formations.

B. Huppert has studied groups with a permutability
condition (V) on the set of all Sylow subgroups. A
group satisfies (V) if any two Sylow subgroups of rela-
tively prime orders permute as subgroups. We can then
characterize N-groups as follows.

Iheorem: Let G satisfy (V). Then G is an N-
group if, and only if

(1) G 1is a partially complemented extension of a
nilpotent group H by a nilpotent group K, and

(2) if p and q are distinct primes, then the
Sylow p-subgroup of H normalizes the Sylow g-subgroup
of K or the Sylow g-subgroup of H normalizes the Sylow
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p-subgroup of K.

We briefly consider condition (N) for Sylow systems
of a group. A solvable group 1is a strongly Sylow towered
group (SSTG) if some Sylow system satisfies (N). We give
the following characterization of these groups.

Iheorem: G is a SSTG if, and only if G 1is an
extension of a nilpotent group H by a nilpotent group
K where H and K have relatively prime orders and
elther H or K 1s a p-group.

The relative positions of various classes of solvable
groups are shown by the following diagram. A line indi-
cates that the lower class of groups lies in the higher

class.
solvable
GSTG
STG
N-groups supersolvable SSTG
nilpotent

In order to give a decomposition of GSTG's in terms
of N-groups, we examine the invariant series of a group
whose factor groups are N-groups. These series are called

invariant N-series.
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A GSTG G has a unique descending invariant N-series,

whose length is denoted by m(G). m(G) is the minimal
length of an invariant N-series of G and hence gives a
measure of the deviation of the GSTG from an N-group. A
GSTG G also has a unique ascending invariant N-series,
whose length is denoted by e(G). We show by example
that e(G) need not equal m(G).
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INTRODUCTION

Some well-known classes of finite groups can be
described in terms of their Sylow structure. P. Hall [6]
showed that finite solvable groups are characterized by
the existence of a complete set of permutable Sylow
subgroups. And finite nilpotent groups are known [13] to
be the direct product of their Sylow subgroups. Recently
Huppert [9,10] has characterized groups in which any two
Sylow subgroups of different orders permute as groups.

The aim here is to study groups which satisfy a
normalizer condition (N) on a collection of subgroups.
If S8 1s a collection of subgroups of a group, we say S
satisfies (N) 4if, for every pair of subgroups of rela-
tively prime orders in S, at least one normalizes the
other. In chapter I we take a complete set of Sylow sub-
groups for our collection of subgroups. If some complete
set of Sylow subgroups of a group satisfies (N), the
group is called a generalized Sylow tower group (GSTG).
The collection of subgroups considered in chapter II is
the set of all Sylow subgroups of a group. A group G is
called an N-group if the set of all Sylow subgroups of G
satisfies (N). It is clear that every N-group is
necessarily a GSTG.

In chapter III we take a Sylow system of a group for
our collection of subgroups. This choice is based on the

work of P. Hall [6] on solvable groups. A group G is
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2
called a strongly Sylow towered group (SSTG) if some Sylow
system of G satisfies (N). In chapter IV we try to
measure the deviation of an arbitrary GSTG from being an
N-group. To accomplish this, we consider the normal series
with N-factor groups of a GSTG. Among these series there
is a unique descending invariant series, called the lower
N-series of the group. This series is similar to the
hypercommutator series of a solvable group. The length of
the lower N-series of a GSTG gives the deviation of the
group from being an N-group. There is also a unique
ascending invariant series of a GSTG, called the upper
N-series of G. An example shows that the length of the
lower N-series may be shorter than the length of the upper

N-series.
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CHAPTER I

Solvable groups are characterized [6] by the existence
of a complete set of permutable Sylow subgroups. We replace
the permutability requirement by a normalizer condition
(N) and examine groups with a complete set of Sylow sub-
groups which satisfies (N). This class of groups includes
the Sylow tower groups (STG) among others and so we call
such groups generalized Sylow tower groups (GSTG). The
main result shows that the nilpotent length of a GSTG G
is at most w(G), the number of distinct prime divisors
of |G|. And if the nilpotent length of G equals w(G),
then G 1is a STG. We conclude the section with a
construction process which yields GSTG's of arbitrarily
high nilpotent length.

For the sake of completeness and easy reference, we
include some definitions and basic theorems for solvable

groups.

Theorem 1.1 [4]
If G 1is a solvable group of order mn, where
(m,n) = 1, then
i.) G has at least one subgroup of order m
ii.) any two subgroups of G of order m are
conjugate
iii.) any subgroup of G whose order divides m

belongs to some subgroup of order m.
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Definition 1.2
A subgroup H of G 1is called a Hall subgroup of

G if (|H|,[(G:H]) = 1. If 7 1is a set of primes, then

a Hall subgroup H of G 1is a Hall m=subgroup of G 1if

c(H) € m. For a set of primes m and a group G, G

will denote a Hall m-subgroup of G.
Dﬁflnliinn_l&3. | - a.
Let G be a finite group of order Py "Pp "*°Pp s
where Py sPys 5P, are distinct primes. If Si is a
Sylow p;-subgroup of G (i =1,2,+++,7r), then a set
S = {81,8,,°"»5,} is called a complete set of Sylow
Subgroups of G. A complete set of pairwise permutable
Sylow subgroups of G 1is called a Sylow basis of G.
The set of 2¥ Hall subgroups of G formed by taking
all (group theoretic) products of members of a Sylow basis

of G 1is called a Sylow system of G.

Definition 1.4
Let & and T be Sylow systems of a group G.

We say of and T are conjugate if for some g € G,
T8 ¢ o for all T €% . We denote this by T8 = A .

Theorem 1.5 [5]
A finite group G 1is solvable if, and only if G

has a Sylow system.

Theorem 1.6 [6]

All Sylow systems of a solvable group G are conjugate.
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Iheorem 1,7 [6]

Let H be a subgroup of the solvable group G and
let 7 bea Sylow system of H. Then there is a Sylow
systen ¥ of G such that 7 = {SNH|S €]

Definiti 1.8

If o s any Sylow system of G, the system norma-
lizer, N;(d), associated with & 1is the set of elements
in G which normalize every member of J:

NG(J) = {geG|sB =285, for all S € 4 }.

One can easily show that the system normalizer NG( <)

is the intersection of the normalizers of the Sylow sub-

groups which belong to o

Iheorem 1.9 [7]
The index of a system normalizer in G is the number

of distinct Sylow systems of G.

Iheorem 1.10 [7]

A system normalizer N (&) 1is the direct product of
its Sylow subgroups N;, where N, =8, N NG(Si'), 8; =
Sylow pi-subgroup of 4 and Si' = Sylow pi-complement

of o .

We are now ready to introduce the normalizer condition

(N) which is used throughout this work.
Definition 1,11

Let o Dbe a collection of subgroups of a group G.
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We say _of satisfies (N) if, for any two subgroups of

relatively prime orders belonging to J , at least one of

the subgroups normalizes the other.

Definiti 1,10
If G has a complete set of Sylow subgroups which

satisfies (N), G is called a generalized Svlow tower
group (GSTG).

p ] 1.13
A GSTG G 1is necessarily solvable.
Proof:

Let o = {81,52,--~,Sr} be a complete set of Sylow
subgroups of G which satisfies (N). Then Sisj = Sjsi
for 1<1i<j<r and o 1is a Sylow basis for G. By

Theorem 1.5, G 1s solvable.
O

Definition 1,1k

A finite group G 1is called a Sylow tower group (STG)
if every nontrivial factor group of G has a nontrivial,
normal Sylow subgroup.

Equivalently a group G 1is a Sylow tower group if G

has an sscending series of normal subgroups Si with

S =1, 8 =G and ®1/8,_, = the normal Sylow p,-subgroup
of G/Si—l' This series is called a Sylow Lower of G.
Iheorem 1,19

If G 1is a STG, then G 1is a GSTG.
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7
Proof: (Induction on wm(G)).

If m(G) =1, G 1is a p-group and the assertion is
trivial. If #(G) =2 and G is a STG, then G has a
normal Sylow subgroup and G 1is clearly a GSTG.

Now assume the theorem holds whenever w(G) £ k and
let G be a STG with w(G) = k + 1. Since G 1is a STG,
G has a normal Sylow subgroup S. Let S' Dbe any
complement of S in G. S' is a STG and w(S') = k.

By induction, S' has a complete set of Sylow subgroups
{Tl,TZ,"',Tk} which satisfies (N). Since S 1is a
normal subgroup of G, {S,Tl,T2,'°',Tk} is a complete
set of Sylow subgroups of G which satisfies (N) and so

G 1is a GSTG.
O

Proposition 1,16

If G is a GSTG, then every Sylow basis of G

satisfies (N).

Proof:

Since G 1is a GSTG, some complete set of Sylow sub-
groups of G, 4 = {Sl,“-,Sk}, satisfies (N). Then «of
is a Sylow basis of G which satisfies (N). If 7T is
any other Sylow basis of G, then by theorem 1.6

7 = 48 = {Slg,“',Skg] for some g € G. Since
S; < NG(s;) implies sigsNG(sjg), %7 = 48 satisifes

(N).
O
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More generally, whenever a collection & of subgroups
of a group G satisfies (N), every conjugate &8 (g € G)
of o satisfies (N).
We now study the inheritence properties of the class

of GSTG's.

Lemma 1.17
If G 1is a GSTG and H is a Hall subgroup of G,
then H 1s a GSTG.

Proof:
Let of = {Sl,'°',Sk} be a complete set of Sylow
subgroups of G which satisfies (N). Let

K = Si s Si be the product of those Sylow subgroups
1 m

of & whose orders divide |H|. Then K 1is a Hall sub-
group of G and |K| = |H|. By theorem 1.1 K is conju-
gate to H and hence H = K€ for some g € Go. Then

{Sig,°° ",Sig} is a complete set of Sylow subgroups of
1 m

H which satisfies (N). O

Iheorem 1.18

If G is a GSTG and H 1is a subgroup of G, then H
is a GSTG.

Proof: (Induction on |G|)

Assume the theorem holds for all groups of order 1less
than |G|. If w(H) ﬁ m(G), then H 1lies in a proper

Hall subgroup H of G. By the preceding lemma H is a
GSTG. Induction then implies that H 1is a GSTG.
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Now let w(H) = m(G). If A is any Sylow system of
H, then, by theorem 1.7, there is a Sylow system 4 of
G such that H = {HN S |S €& }. Since w(H) = m(G),
H NS is nontrivial for every S € . In particular
then, if {Sl,°° °°,Sk} is the set of all Sylow subgroups
of 4 , {HN Syscc seLHN 5,3 1s a complete set of Sylow
subgroups of H. By theorem 1.16 {Sl,°° °°,Sk} satisfies
(N) and consequently {H N Syscr vo,HN Sk} satisfies

(N). Then H is a GSTG. O

Lemma 1.19 [13,p.13%]

Let G Dbe a finite group and let ¢ be a homomorphism
of G onto G°. Then P is a Sylow p-subgroup of ¢d
if, and only if P = GS’ for some Sylow p-subgroup Gp
of G.

Iheorem 1,20
The homomorphic image of a GSTG G is again a GSTIG.

Proof:
Let o be a homomorphism of G onto G° and let
o = {Sl,°° °°,Sk} be a complete set of Sylow subgroups
of G which satisfies (N). By lemma 1.19,
.xo = {Slo,” °-,Sk°} is a complete set of Sylow subgroups
of G°. Since S;’ normalizes S;’ whenever Si normalizes
S., &7 satisfies (N) and G° is a GSIG. o
Suppose H 1is a normal subgroup of G and both H

and CO/H are GSTG's. Can we conclude that G is a GSTG?
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10
The following examples show that we cannot answer "yes" even
for simple cases.

Example 1.

Ah is a GSTG, since the Sylow 2-subgroup of ALF is
normal. And sh/Ah is a cyclic group of order 2. Yet
S), 1s not a GSTG since W(Sh) =2 and S, has no normal
Sylow subgroup. Hence a GSTG extended by a cyclic group
of prime order is not necessarily a GSTG.

Example 2.

Sy x A, 1is not a GSTG since 1T(S3 x 4,) =2 and
S3 X AL+ has no normal Sylow subgroup. Yet both C34 S3
and S3 X Ah/C3 are GSTG's. This shows that an extension
of a cyclic group of prime order by a GSTG is not necessar-
ily a GSTG.

Relative to this question however, we can show the

following.

Iheorem 1.21

G 1is a GSTG if, and only if G/Z(G) is a GSTG.

Proof:

Because of theorem 1.20, we need only show the necessity.

Choose o = {Gys* +*»G.} to be a complete set of
Sylow subgroups of G such that

d = {Glz(G)/z(G)," °c, GkZ(G)/Z(G)} is a complete set

of Sylow subgroups of Q/Z(G) which satisfies (N).
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Suppose GiZ(G)/Z(G)

1<1i, § Lk
Since G

Then

X € Gi’ a

J
x o
Gj < (Gj Z2(G))X

°

pj-subgroup of Gj

GjZ(G)/Z(G) implies

11
normalizes GjZ(G)/z(G) for

(sz(c))x = Gy * 2(6) for all
Gj « Z(G) and
Gj « Z2(G), ij= Gj’ the unique Sylow

Z(G). Hence, GiZ(G)/z(G) normalizes

G; £ Ng(G;) and it follows that of

satisfies (N). O
Corollary 1.22
Let Z_(G) ©be the hypercenter of G. G 1s a GSTG

if, and only if Q/Z

Theorem

Proof:
Let 1 9 Z(G)

central series of G

By the isomorphism

Since Q/z
k

and theorem 1.21 implies O/,

inductively shows at

is a GSTG,

(G) is a GSTG.

1.20 shows the sufficiency.

z,e +- -+ a2z =2 (G)

1 k
defined inductively by 2i+l/, =
1

be the upper
Z(G/Zi)‘

theorems

k=1, is a GSTG

z(C
/Zk-l

is a GSTG. Proceeding

k-1

th Step that G 1s a GSTG.

the k
a
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12
We now consider the direct product of GSTG's.
Definiti 1.23
Let & ©be a collection of Sylow subgroups of a group
G. If all Sylow p-subgroups of & normalize all Sylow

gq-subgroups of s , where p and q are distinct primes,

we say p_normalizes q relative to ¥ and write
P —‘> q.
Definition 1.24
Let H and K be GSTG's and let H = {Hl,-°-,HS]

and K = {Kl,°-°,K be complete sets of Sylow subgroups

t}
of H and K (respectively) which satisfy (N). We say
H and K are (M)-similar if for any pair of distinct
primes p, q € c(H) N c(K), either

i) p o> a4 and PR 4

or ii) q ;;> p and q 3> P

Since any two complete sets of Sylow subgroups of a
group which satisfy (N) are conjugate, definition 1.24
is independent of the choice of the sets H and K .
The proofs of theorems 1.18 and 1.20 show the following.
Proposition 1.25
If H and K are subgroups of a GSTG, then H and
K are (N)-similar GSTG's.
p ] 1,26

If H and KX are normal subgroups of a GSTG G, the
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factor groups G/H and G/K are (N)-similar GSTG's.

We can now describe the direct product of GSTG's.

Iheorem 1.27
Hx K 1is a GSTG if, and only if H and K are

(N)-similar GSTG's.

Proof:

Proposition 1.25 shows the sufficiency. To prove
the necessity, let H and K be (N)-similar GSTG's and
let H = {H, |r € c(H)} and X = (X, |t € c(K)} Dbe
complete sets of Sylow subgroups of H and K which
satisfy (N). The set & = {H. x K, |Hr =1 if r ¢ c(H),
K.=1 if r € c(K); r €c(H) Uc(K)} is a complete set
of Sylow subgroups of H x K. Let p and q ©be distinct
prime divisors of |H x K|. Since H and K are

(N)-similar we may assume p ;T> q and p > q. Then

H N;.(H K K H K
P < Ny q)’ . < N q) and consequently p * %5
normalizes Hq x K. Since p and q are arbitrary, &

q

satisfies (N) and H x K is a GSTG.
O

The previous result can be extended to central products.

Definiti 1,08

Agroup G=H K with HNK < Z(G) and H K Co(K)
is called the central product of H and K.
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Iheorem 1.29
The central product of H and K 1is a GSTG if, and

only if H and K are (N)-similar GSTG's.

Proof: Theorem 1.25 shows the sufficiency.

To verify the necessity, let H and K be (N)-similar
GSTG's. Since H L CG(K), M=HNK 1s normal in
G=H K. Then H/M and K/M are (N)-similar GSTG's

and hence G/ﬁ = H/M X K/M is a GSTG. Therefore

&

-G _«~« M
Z(G) /2(52 is a GSTG and theorem 1.21 shows G is
M

a GSTG. ’ o

The class of all (N)-similar GSTG's may be shown to
be a formation in the sense of Gaschiitz [3].

Lemma 1,30

If H and K are normal subgroups of G, then

Q/H nk 1s isomorphic to a subgroup of G/H X G/K.

Proof:
Define the mapping t : G —> G/H X Q/K by
t(g) = g x gk, for all g € G. t is a homomorphism into

G/ x 8/¢ whose kernel is H N K. i

Proposition 1,31
Let H and K be normal subgroups of G. If Q/H
and 9/; are (N)-similar GSTG's, then O/y nx 1is a GSTG.
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Proof:
Ir Oy anda %4 are (N)-similar GSIG's, then
G/H X G/k is a GSTG. Since G/ﬁ nk 1S isomorphic to a

subgroup of G/H X G/K, G/H nx 1s a GSTG. 0

Defipiti 1.32
A formation F is a collection of finite solwvable

groups satisfying
i) 1 €eF
ii) G € F implies every homomorphic image of G
belongs to F

iii) N; and N, normal subgroups of G with

G/ G/ . . G
’ € F implies / € F.
N1 N2 Nl N N2

The formation is saturated if Q/Q(G) € F implies G € F.
Let * be a relation on the set of all primes. A
GSTG G 1is i i * if, for some complete set
of Sylow subgroups <4 of G, p*q implies the Sylow
p-subgroup of 8 normalizes the Sylow q-subgroup of & .
Then if H and K are GSTG's compatible with a relation

*, H and K are (N)-similar. Consequently, theorems
1.26, 1.27 and 1.31 show that the set of all GSTG's
compatible with a relation * 1is a formation. It is not
known if the formation 1s saturated.

The following definitions and theorems are needed

for the main result of this section and for chapter IV.






16

Definition 1.3%4

Let G be a solvable group.

i) The Fitting subgroup of G, denoted F(G), is the
maximal normal nilpotent subgroup of G. It is
well known [13, p.166] that F(G) is the product
of all normal nilpotent subgroups of G.

ii) The Fitting series of G 1is defined inductively
F
_ i+1 _ G _

iii) The length of the Fitting series of G, denoted
£(G), is the nilpotent length of G.

iv) A normal series with nilpotent factors is called
a nilpotent serijes.
We combine several results of Spencer [12] in the
next statement.
Proposition 1.39
Let G be a solvable group. Then
i) The length of any nilpotent series of G is
greater than or equal to 4£(G).
ii) For a normal subgroup K of G, L(G/K) < 2(G).
1ii) For H a subgroup of G, £(H) < £(G).

iv) For normal subgroups H and K of G,

V) (Y 6)) = @),
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We are now able to state the main result of chapter I.

Theorem 1.36
If G 1is a GSTG, then £(G) < w(G).

Proof: (Induction on |G]).
If m(G) £ 2, then G has a normal Sylow subgroup and
surely 4£(G) < m(G).
Let G Dbe a GSTG with 7(G) = k > 3 and take
to be a complete set of Sylow subgroups which satisfies
(N).
Case 1. G has a normal Sylow subgroup, T (say).
Since G is a GSTG, the factor group G = G/T is
a GSTG. w(G) = k-1 and by the induction assumption

£(G) <m(G) =k -1. Hence G has a nilpotent series
H H
_—-T d 1 qeood k-l “‘G
1 = /T /T /T_ /T.

Then 1@ T =« Hl4 cec aq HK-l = G 1s a nilpotent series
of G of length k and theorem 1.35 (i) implies £(G) < k.
Case 2. No Sylow subgroup of G is normal.
Since G is a GSTG, G 1is solvable and has a minimal
normal subgroup M, which has prime power order. Let
IM| = p® and let P denote the maximal normal p-subgroup
of G. If Sp is the Sylow p-subgroup of G Dbelonging
to & , then Sp contains P.
By assumption Sp.§ G. Then, for some prime q % p,

the Sylow g-subgroup Sq of & fails to normalize Sp.
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Since & satisfies (N), this means Sp normalizes Sq.
Then Sq < CG(P) = C, because P normalizes Sq, Pag@
and (|P], |Sq|)
C = CG(P) Q G,

1. Notice that, since P a G,

C NP denote the maximal normal

Now let PO
p-subgroup of C. Since P 1is a G
p-group, Z(P) ¥ 1 and
134 2(P) £ P.. Since Sq L C,

C . ..
/Pb is a nontrivial C = CG(P) p

solvable group and therefore
S Cnp =P

has a minimal normal subgroup 1 °

V/Pb 4 1. Suppose IY/P | is a power of the prime r.
o

Now r % p, for r = p implies that V is a normal

p-subgroup of C properly containing Po - contradicting

the maximality of P_. Let W/P denote G

o)
the maximal normal r-subgroup of C/P . "CG(P)
o)

W . . . W
Then /P is characteristic in

(o] 0P

o

C/P Q G/P and hence normal in Q/P .
o o 0

By the isomorphism theorems, W < G.

Since W centralizes P and W/P is an r-group,
o

W = WO X Po where WO is the Sylow r-subgroup of W.

Since the normal Sylow r-subgroup Wo of W 1is character-

istic in W a G, wo is normal in G.
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. G G
Now consider the factor groups /P and /w . By
o)
the induction hypothesis, L(Q/P) < W(G/P) = k and
6%y ) <m(®, ) =k Since PNW_ =1, Proposition
o) o

1.3% iv) shcws that £(G) = L(G/Ptﬁw ) £ k and the theorem
o

is proved. -

Lemma 1,37
Let G be a STG with 4£(G) =n(G). If S and T

are Sylow subgroups of G having relatively prime orders,

S does not centralize T.

Proof

Assume that G 1is a STG of minimal order which satis-

(by minimal counterexample)

o0

fies the hypothesis of the theorem but fails to satisfy the
conclusion. Then £(G) =7(G) =n>3 and G has a
Sylow tower

19 S5, @85,5;,9 <« »-- a Sn'°S S, =G,

1 21 271
where Si is a Sylow p,;-subgroup of G (i = 1,2,°**,n).

The factor group G/S is a STG with W(Q/S ) =n-1.
1 1

Since Q/S is a STG and £(G) = n, L(G/S ) =n-1-= W(G/S ).
1 1 1

Consequently, by the minimality of G, no Sylow subgroups of

9/ having relatively prime orders centralize one another.
51

But, since we assumed G does not satisfy the conclusion
of the theorem, some Sylow pj-subgroup T of G centra-
lizes some Sylow p,-subgroup V of G. Then the Sylow
pj-subgroup TSl/S' of Q/S centralizes the Sylow
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Consequently j =1 or k =1 and we may assume that the
Sylow pk-subgroup V of G centralizes Sl‘ Since
S1 4 G and Sk = V& for some g € G, Sk centralizes Sl'

Since S, 9 G, CG(Sl) is a normal subgroup of G

1
containing Sk' Let m be the smallest integer, 2 { m £ n,
for which p_ ||cG(sl)| and put R =85 -+ 5,8 N C4(8)),
R 1s a normal subgroup of G and by the choice of m, P
and p, are the only prime divisors of . |[R|. Since
R < CG(Sl), any Sylow p -subgroup R~ of R centralizes
the normal Sylow p,-subgroup R; =§; N CG(Sl)' Then
R = Rl X Rm and Rm is a characteristic subgroup of the
normal subgroup R of G and hence Rm a G.

Suppose Rm is a Sylow subgroup of G. Then
RmSl =R, x8

1 1s a normal nilpotent subgroup of G and

148,R @ 8,8/Rj@ e a8 1°°85,8)R a8 181" "8,5,Rya°°aG

is a nilpotent series of G having length n-1. Then
proposition 1.35 1) implies £(G) < n - 1, which is a

contradiction. Therefore Rm 1s not a Sylow subgroup of

S
G and consequently we are assured that kRm/R is a
m

nontrivial Sylow P, ~subgroup of G/R . Since Sk L CG(Sl)’
m

SkRm SlRm G
/R centralizes /g + Then w("/p ) =n and the
m m m

minimality of G imply L(Q/R ) < n. Since L(G/S ) <n
m 1
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and R NS, =1, proposition 1.39 iv) implies that

L(G) = z(G/R ns ) <n - which is a contradiction.
m 1 O

Iheorem 1.38
If G is a GSTG and 4£(G) = w(G), then G 1is a STG.

Proof: (Induction on |G|).

If w7(G) £ 2, G has a normal Sylow subgroup and
clearly G 1is a STG-

Let G be a GSTG with £(G) = m(G) = n 2> 3. We
distinguish two cases.

Case 1. G has a normal Sylow subgroup K.

G/ 1is a GSTG and, by theorem 1.36,
Z(G/K) < W(G/K) =n-1. Since #(G) = n, we must have
L(G/K) = n-1. Then the induction assumption implies that
G/K is a STG. Let G/k have Sylow tower

S,K S 0«5 K
- _K 1 -1 1 G
l = /K 4 /Kd o o o o d n /K = /K, Where Si

is a Sylow pi-subgroup of G. Then

l aKa« SlK 4 + + =+ 4 Sn_l--'SlK =G

is a Sylow tower of G and G 1is a STG.

Case 2. No Sylow subgroup of G is normal.

Then, as in the proof of theorem 1.36, there exist
normal prime power order subgroups M1 and M2 of G

with (|M1|,|M2|) = 1. Consider the factor groups G/M
1

and 9, or 6. 1r #(% ) <n ana (%) <n,
> 1 2
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proposition 1.35 iv) implies 4(G) < n, a contradiction.

Therefore we can assume L(G/M ) = n. Since M, cannot
1

be a normal Sylow subgroup of G, 1T(G/M ) =n = z(G/M )
1 1

and the induction assumption implies Q/M is a STG.
1
M S.-M S, S M

T 1 11 171 G
Let l = / Q / qQ o ° « 4Q / = /
Ml Ml Ml Ml

be a Sylow tower of Q/M s Where Si is a Sylow p;~subgroup
1

of G (i=1,2,:+2,n). Furthermore, choose Sn to be the
Sylow pn-subgroup of a Sylow basis & of G which satis-
fies (N) and contains 8.

Suppose Ml £ S, for some k < n. Then

k' TS51M = S5y
since 4£(G) = n, #(H) = m(H) = k., By the induction assump-

H=S8 is a normal Hall subgroup of G and,
tion H is then a STG and consequently has a normal Sylow

subgroup W. Since H 1is a normal Hall subgroup of G,

W is then a normal Sylow subgroup of G - a contradiction.
Consequently, since a normal p-subgroup of a group lies in
every Sylow p~subgroup of the group, we must have M1 £ Sn‘

Since S and Sn were chosen to belong to a Sylow

1
basis & of G which satisfies (N), either S, normalizes
S, or S, normalizes §S;. Suppose first that S < N;(8;).
Then M1 normalizes Sl and SlMl = Sl X Ml’ since

[Sl,Ml] <8N Ml = 1. Consequently 8; is a characteristic
subgroup of SlMl 4 G and hence S1 is a normal Sylow

pl—subgroup of G - a contradiction. Now suppose
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5, < NG(Sn)° Since S,M, @ G, we then have that the Sylow

11
S M
p,-subgroup L 1/ of G/ centralizes the Sylow
1 Ml Ml
SpiMy n G
pn-subgroup /Ml = /Ml of /Ml° Consequently, since
q/ o
M, is a STG, £( /M ) n-1 - which is a contradiction.
1

Therefore this case cannot occur and the theorem is proved.

O

The remainder of the chapter is devoted to showing
that GSTG's of arbitrarily high nilpotent length do exist.
The construction process given utilizes wreath products,
which we now describe.

Let A and B be finite groups and let AlB| denote
the direct product of |B| copies of A. Suffix the |B]

Bl by the elements of B and construct

direct factors of A
a group W = A wr B, which is the extension of AIBI by B.
To complete the definition of W, we specify the automorphisms
induced on A1l by the elements b € B. If a € Ay

i
o ab as the element corresponding to a in
-1

define b

H

nb for any element n € A

A b* This determines b

b3
The group W = A wr B 1is called the wreath product of A
Ly B and its order is |A|IBI - |B|.

Proposition 1,39

If A and B are GSTG's of relatively prime orders,

A wr B 1is a GSTG.
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Proof:

Let Q = {A1,°°,A and ® = {Bl,oo,Bz} be Sylow

"
bases of A and B (respectively) which satisfy (N).
Let AilBl denote the subgroup of A!Bl wnich is the
direct product of |B| copies of A, (1 =1,°,k). Then
AiIBI is a Sylow subgroup of AIBI and every element of
B normalizes AilBl (1 =1,°°,k). Furthermore,

A, < NA(Aj) implies AiIBI normalizes AJIBI. Therefore
W = {AllBl,",Alel,Bl,",Bz} is a Sylow basis of

A wr B which satisfies (N). a
Lemma 1.4%Q

Let A and B be finite groups and let K4 A. If

W

W = A wr B, then w/KlBI g'A/K wr B.

Proof:

KIB| 'is normal in W = AIBI - B, since KIB| s,AlBI
and by the definition of multiplication in W, B normali-
zes KIBl. We will show that the mapping

® ° b°al°-°alB| -> b°a1K'°a|B|K for b € B, ay € Ab

i
is a homomorphism from W to A/K wr B with kernel KlBI

and image A/K wr B.
Clearly the mapping is well-defined and has image
A/k wr B. Let c,d €B and n;,g; €4y < AlB| for
i
i=1,,|B].

(1) o 1is a homomorphism.
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o [(c gl°°g|B|)°(d nl°°n|B|)] =

v [cd (g1°°ng|)d(nl°°nlB|)] =

© o —_ d —
® [ed (hyn;="higngP)s by = g € hp i 80 = 1,2, |B|

= cd (hln1K°°h|B|n|B|K)
= cd (thQOhlBIK)(anoonIBIK)

= . d .
= cd (glK gIB|K) (an nIBlK)

i

[c(glK°°gIBlK)][d(an°°nlB|K)]

® (Cgl°°g|B|) ° (d nl°°n|B|),
(2) Ker o =klBl,
.. -7 = xlBI .. - xIBl
o (c g, gIBI) =1=K » c gK nglK = K
©«c=1 and g; €K 1= 1,°°,|B|
i

B
® C gl°~g|B| € K| |. O

Theorem 1.41 [13, p.167]

If G is a finite group, then Fit(G) = ® iﬁ | K(p),
P||G

where K(p) is the intersection of all Sylow p-subgroups
of G and Fit(G) denotes the Fitting subgroup of G.

As a corollary of theorem 1.41, we have the following.

Lemma 1.42

If G = Gy x°°X G, 1s the direct product of finite
groups, then Fit(G) = Fit(Gl) X° X Fit(Gk).

Proposition 1.43

If G 1is a finite group of nilpotent length k and
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C = <c> 1is a cyclic group of order 4, (|G|,4) = 1, then
G wr C has nilpotent length k + 1.

Proof:

(1) Fit (G wr ¢) = (Fit(a)) IC1,

By lemma 1.k2 Fit(alCl) = (F1£(6))!® and consequentiy
(Fit(G))ICI is a normal nilpotent subgroup of G wr C.
Hence (Fit(6))!Cl < Fit(a wr o).

Suppose (Fit(6)) |Gl < Fit (G wr C) and let
den € Fit(G wr c)\\(Fit(G))ICI, where d €C and n € Glcl.
Then d = ct for 1<15

at-1 d
n «+ en n for any integer t,

Since (dn)% = gt
d'n has order j-4' where jl|G||C| and 1% £'|%. Then
(dn)? has order £' and (dn)d € Fit(G wr C). Since
G wr C 1is solvable, there exists x € G wr C such that
(dn)J € ¢*X and therefore (dn)Jd = (c")X for some w,
1<w ; L. Then c" € Fit(G wr C) and Fit(G wr C) has
a nontrivial Hall subgroup H whose order divides |C]|.
Then H < C and hence H £ Z2(G wr C) - since C 1is
cyclic and (|H|,|G|) = 1. This is impossible and there-
fore we must have (Fit(G))lCI = Fit(G wr C).

Now use induction on £(G) to complete the argument.
If #(G) =1, then surely #(Gwr C) £ 2. If #(G wr C) =1,

then G wr C = G x C, which is nonsense. Therefore

£(G wr C) = 2 in this case.

Let £(C) =m and put F = Fit(G). Then £(°/p) =m-1
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and by induction z(G/F wr C) = m. Applying lemmas 1.40

G ~ G wr C ~ GwrC
and 1.42 we have /F wr C = /Flcl - /Fitﬂ}wrC)°

G wr C -
Therefore 4( /Fit(G wr C)) = m and consequently
£(Gwr C) =m +1 - and the proof is completed. m]

Let C.,C Cn denote cyclic groups whose orders

1° 2,°°’
are relatively prime in pairs. Then, by the previous results,

we see that the repeated wreath product

W= ((+(Cy wr Cylwre+)wr C_~ is a GSTG of nilpotent length
n. Hence if k and n are any positive integers and

k 2 n, we can construct a GSTG G with £(G) = n and
m(G) = k.



Chapter IT

In this chapter we consider condition (N) for the
collection of all Sylow subgroups of a group. If the set
of all Sylow subgroups of G satisfies (N), we call G
an N-group. Clearly every N-group is a GSTG. The inheri-
tance properties of N-groups are identical with those of E
GSTG's and certain subclasses of N-groups are (non-satura=

ted) formations. 1

Using some results of Huppert [10], it is shown that
the nilpotent length of an N-group is at most 2. A
characterization of N-groups as a special type of product
of nilpotent groups is then obtained. The remaining re-
sults describe the Sylow structure of N-groups or the
structure of groups which just fail being N-groups.

We begin by formally defining an N-group.

Definiti 5.1

Let Syl(G) denote the set of all Sylow subgroups
of G. A finite group G is an N-group if Syl(G) satis-
fies (N).

Several observations follow immediately. If G 1is
an N-group, then every complete set of Sylow subgroups of
G satisfies (N). In particular, every N-group is a GSTG
and consequently is solvable. And since a finite nilpotent
group is the direct product of its Sylow subgroups, a
finite nilpotent group is clearly an N-group. Furthermore,

every group which is a nilpotent group extended by a p-group
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is an N-group. 83 is an example of such a group. The next
two examples further describe the position of N-groups re-

lative to other classes of solvable groups.

Example 1.
The following is an N-group which is not a STG. Let

5 2 3 3
H=@ <%J& =1>x ®m <b|b =1>x ®m <%Jc =1>
i=1 1 j=1 k=1

and k = <xX,y,z> £ Aut(H), where

X _ X _ X _ -
ai - ai+l, bj - bj’ Ck - Ck (36 - al)
Y- v y_ }
b= byy, a7 = a3y ¢ = ¢y (b3 b, )
Z _ z2 _ Z _ —

Define G to be the split extension of H by K -

= [H]*K. Then G is an N-group whose Sylow structure

is described by k/s*\ . Since G has no normal
2 —»

Sylow subgroup, G 1is not a STG.
Example 2.
A supersolvable group which is not an N-group. Let
G be the split extension of C, = < X |x” = 1> by
Aut(C7) =<y |x = x3 > = Cg» and put G, = <y3>,
G3 = <y2>. G 1is supersolvable since 1 <4 C7 Q C7G3 a G
is an invariant series of G with cyclic factors. And G
is not an N-group because G3,i NG(Géx) and G£x<i NG(G3).
p {ti > 2
If G is a GSTG and w(G) £ 3, then G is either a



‘lrl..ql-r.l..l..l.ﬂ‘l‘u“u. Y =7 2l
hh! -
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STG or an N-group.
Proof:
If m(G) £ 2, then G has a normal Sylow subgroup and
G 1is a STG and an N-group. Suppose w(G) = 3 and let

{GP,G G.} be a Sylow basis for G which satisfies (N).

q’
If G has a normal Sylow subgroup, then G 1s a STG.
Otherwise we may assume Gp £ NG(Gq), Gq < NG(Gr) and

G, < NG(Gp). We will show that every conjugate of Gp in
G normalizes Gq. Consider (%f, for any g € G. Since

G = GpGqu, g = xyz for some x € Gp, y € Gr’ z € Gq.

8 - g XVZ - g VZ = ¢ 2
Then Gp Gp Gp Gp » since y € G, < NG(Gp).

Since Gp normalizes Gq and z € Gq, Gpg = sz norma-
lizes Gq(= qu). Therefore every Sylow p-subgroup of G
normalizes every Sylow g-subgroup of G. The argument may
be repeated to show qu < NG(Gr) and Grg < NG(Gp), for
all g € G. O

Proposition 2.3

Let G be an N-group and let some Sylow p-subgroup
of G normalize some Sylow g-subgroup of G, where p ¥ q.

Then every Sylow p-subgroup of G normalizes every Sylow

q-subgroup of G.

Proof:

Let P € Sylp(G), Q € Syl q(G) and suppose P
normalizes Q. Since all Sylow subgroups of G of the
Same order are conjugate in G, it is sufficient to show

that P* normalizes QY, for all x,y € G.
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Since every complete set of Sylow subgroups of G forms
a Sylow basis, PX and Qy belong to some basis 7 of
G. Likewise P and Q belong to some Sylow basis o
of G. By theorem 1.6 & and % are conjugate in G
and so there exists g € G such that Px = Pg, Qy = Qg.
Since P normalizes Q, P& normalizes Qg and we are
done. O

We now examine the inheritance properties of N-groups.

Lemma 2.Y%

Let H be a subgroup of G. If P 1is a Sylow p-
subgroup of H, then P =H N P for some Sylow p-subgroup

P of G.
Proof:

By theorem 1.1 P 1lies in some Sylow p-subgroup P
of G. Then P HNP. Since HNP is a p-subgroup of
H which contains a Sylow p-subgroup P of H, we must

have P = H n P.

Proposition 2.9
If G 1is an N-group and H £ G, then H 1is an N-group.

O

Proof:

Let P € Syl p(H), Q € Syl q(H) where p ¥q. By
lemma 2.4 there exist subgroups P € Syl p(G) and
€ Syl q(G) such that P=H NP and Q =H N Q. Since

is an N-group we may assume Q normalizes P. Then

o o ol

=H NQ normalizes P = H n P. 0
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p £ 5.4

The homomorphic image of an N-group G 1is again an
N-group.

Proof:

Let o be a homomorphism of G onto G°. Let
P €Sylp(G°) and Q € Sylq(G°) where p $ q. By
lemma 1.19 there exist Sylow p- and g-subgroups Gp and
Gq of G such that P = Gp° and Q = Gq°. Since G
is an N~group we may assume Gq normalizes Gp. Then
an normalizes Gp° and the assertion follows. O

The next definition is crucial for the study of

direct products of N-groups.

Definiti 2.7
The N-groups H and K are said to be gimilar if

for any pair of distinct primes p, q € c(H) N c(K), either

i) p > q and P > q
Sy1(H) Sy1(K)
or 1ii) gq >p and a >p .
Sy1(H) Sy1l(X)

The proofs of propositions 2.5 and 2.6 have established
the next results.

Proposition 2.8

If H and K are any subgroups of an N-group, then
H and K are similar N-groups.

Proposition 2.9

If H and K are any normal subgroups of an N-group

G, then Q/H and Q/K are similar N-groups.
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The next theorem is the analogue of theorem 1.27 for
N-groups.

p £ 510

H x K is an N-group if, and only if H and K are
similar N-groups.

Proof:

The sufficiency follows from Proposition 2.8.

To show the necessity, let H and K ©be similar

N-groups. Let p and q be distinct primes and suppose

P >q and p >q. If P €Sylp(H x K) and
Sy1(H) Sy1(K)

Q € Sylq(H x K), then P = Hp X Kp and Q = Hq X Kq for

some Hp € Syl p (H), Hq € Syl q (H), Kp € Syl p(K) and

Kq € Syl q(K). Consequently P = Hp X Kp normalizes

Q = Hq X Kq and the assertion follows. O

The groups S, and S3 x Ay, which were discussed in
the first chapter, show that an N-group extended by a
cyclic group need not be an N-group and that a cyclic group
extended by an N-group need not be an N-group.

Using the same argument as for GSTG's [theorem 1.21],
we can prove that a group G 1is an N-group if, and only
if Q/Z(G) is an N-group. Consequently proposition 2.10
can be extended to central products using the argument for
theorem 1.29. Similarly the proof of proposition 1.31
carries over to the present case and establishes the next

result.
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p it 5.1

Let H and K be normal subgroups of G. If G/H
and G/k are similar N-groups, then G/H nk 1s an N-group.

We are now in a position to see what collections of
N-groups are formations.

Definiti 5,10

Let * Dbe a relation on the set of all primes. An
N-group G 1is i * if p * q implies that
every Sylow p-subgroup of G normalizes every Sylow g-
subgroup of G.

Since any two N-groups compatible with a relation *
are similar, it follows from propositions 2.6 and 2.11 that
the set of all N-groups compatible with a given relation
* 1is a formation. The next example shows these formations
are not necessarily saturated.

Example: Let S Dbe the nonabelian group of order

7247 =47 =,

73 and exponent 7 defined by S = <x,y,z| x

yZ = yX, xZ = X, x = x>, S is generated by y and z

and S' = <x>. Let D be the group of automorphisms of S

2 2 3
defined by D = <d | a = 1, v =y, 24 = 2, y¥ =y,

3
zd = z6 >. Take G to be the split extension of S by

D. Then &(G) = <x> =8' and

- <Y,d2,X>/ <z,d3,x>/

G . G
/8(q) = x> + Since /gqy

<x>

is the direct product of similar N-groups, G/Q(G) is an
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N-group. Yet G 1is not an N-group because
<a®* ¢ Ny(<ad>) ana <ad> 4 Ny(<a®F).
Huppert [10] has studied groups which satisfy (V):
every pair of Sylow subgroups of different orders permute

as subgroups. He proves the following result.

TIheorem 2,13
If G satisfies (V), then Q/Q(G) is isomorphic

to a subgroup of a direct product of groups of orders
ay by
P; ~ 4y » where p, and q, are primes (not necessarily
distinct).
As a consequence of this we have the following.
Proposition 2,14
If G is an N-group, then 4£(G) < 2.
Proof:
Since an N-group clearly satisfies (V), theorem 2.13
n ay bi

G ~ -
shows /Q(G) “Hce izl T;» Wwhere ITiI =p;

For each integer k, 1 < k £ n, define the projection
me of H into T, by m (tl'°tk--tn) = t,, where

ty etriﬁ . Since H 1is isomorphic to a factor group
of G, H 1is an N-group. Consequently the homomorphic
image of H under m_, denoted Im(wk), is an N-group for
k =1,°**,n. Since Im(vk) < T, at most two primes
divide |Im(m )| and so #(Im(m)) < 2. Since

n
H<® 7 Im(m) proposition 1.35 implies
k=1
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n
L(H) < 2(® 7 Im (vk)) < max {z(Im(ﬂk)} < 2. Conse-
k=1 1<k <n
quently £(G) £ 2. O

We now examine N-groups having nilpotent length exactly
2 more closely.

Defipiti 5,15

Let G be a group with normal subgroup H. We say
K is a partial complement of H in G if G =H « K and
K is a proper subgroup of G. The subgroup H N K is

normal in K, but is not necessarily the identity.

Theorem 2,16 [8]

If C'/H is any nilpotent factor of G, then some
system normalizer NG(-J) of G is a partial complement
of H in G.

Let the hypercommutator of G be the intersection of
all normal subgroups K of G such that Q/K is nilpotent.
G/H (G) 1is nilpotent and H_(G) is the minimal (normal)

subgroup with this property. If £(G) = 2 and G is an
A-group (i.e. all Sylow subgroups of G are abelian),
Taunt [14] shows that any system normalizer of G 1is a
complement of H_(G).

We can characterize N-groups as a special product of

nilpotent groups.

Iheorem 2,17
Let G satisfy (v). Then G is an N-group if, and



37

only if
(1) G 1is a partially complemented extension of a nil-
potent group H by a nilpotent group K
and (2) if p and q are distinct primes, then Hp norma-
lizes Kq or Hq normalizes Kp.
Proof:
Let G be an N-group of nilpotent length 2. By theorem
2.16, G = H_(G) - NG( d) for some system normalizer
NG( 4) of G. Since #(G) =2, H_(G) 1is nilpotent and,
by theorem 1.10, NG( d) 1is always nilpotent. Consequently
(1) holds.
To verify (2), let p and q be any distinct prime
divisors of (IHm(G)I,IG/H“(G)I), Put H = H_(G),

K = N3(8) and consider the subgroup L, = Hp(Kqu) of G.

Ll is an N-group of order paqb and consequently K

q
normalizes HK or HK normalizes K_ . In the latter
PP pPp q
case Hp normalizes Kq. In the first case, we may assume
Kq < NG(Hpr) and H Kp K¢ NG(kq) - for otherwise we are

is similar to G, H K must norma-

qQq

p
done. Then, since Ll

i HK .
lize oop

Now consider the subgroup L, = Hq(Kqu) of G. L,
is an N-group of order paqb and so Kp normalizes
K H K i K .
Hq q or g normalizes o In the latter case,

Hq L NG(Kp) and we are done. Otherwise we may assume Kp

normalizes HqKq and HqKq 31 NG(Kp). Since L, 1is
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similar to G, we must have H K normalizes H K .
PP qq

Therefore Hpr and HqKq normalize one another and,

since they have relatively prime orders,

HK , HK HK NHK = 1. Thi blishes th
[ pp’ g q] L op g 1 is establishes the
sufficiency.

We now show the necessity. Suppose G satisfies (V)
and conditions (1) and (2) hold. We proceed by induction
on w(G).

If G 1is a p-group, the theorem is trivial. Suppose

G| = p3qP =H-K=(8H)(KK). By (2
|G| = p?q® and let G =H ( > q)( 5 q) y (2) we
may assume Hp normalizes K_ . Since K 1is nilpotent,

q

Kp normalizes Kq. And since H 1s a nilpotent normal

subgroup of G, Hq 94 G. Then Hpr normalizes HqKq
and G 1is an N-group.

Suppose w(G) = k> 3 and let p and q be any
distinct prime divisors of |G|. Let Gp and Gq be any
Sylow p- and gq-subgroups of G (respectively). By Sylow

arguments we then have

Gp = (Hpr)x = HprX for some x € G
= K)=HkKY G.
Gq (Hq q) Hq q for some y 61
Since G satisfies (V), L = (Hpr)(Hqqux ) is a sub-

group of G, for all x,y € G. L 1is a proper subgroup of
G which satisfies the induction hypothesis and so L 1is

an N-grouA Hence HK normalizes H K yx-l or HKYX
b pp qq q

K _. =g KX HK Y =¢
normalizes Hp P Then Gp Hp p normalizes q q
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or Gq = Hqqu normalizes HprX = Gp° Since Gp and Gq
were chosen to be arbitrary Sylow subgroups of G, we have
shown that G 1is an N-group. O

Owing to Taunt's result on A-groups, we see that con-
dition (1) of theorem 2.17 can be improved to complements
(in place of partial complements) for N-groups with abelian
Sylow subgroups. It is not known if this is generally true
for N-groups. The following examples show the conditions
of theorem 2.17 cannot be relaxed.

Example 1.

Let G be the split extension of C7 by
Aut (C7) = Cg. We already know G 1s not an N-group.
G satisfies (1) and (2), but fails to satisfy (V).

Example 2.

3 5 2 3
Let W= 7 <a.la.“=1>x® m <Db,|b,°=1>
i=1 j=1 4

_ X _ X _ v o_
and let H = < x,vlai = as417 bj = bj’ bj = bj+1’

a; = a3, @, = ay, by = by > < Aut (W. Put G = [W]'H,
the split extension of W by H. G satisfies (V) and
condition (1) but is not an N-group = since m(G) = 2
and G has no normal Sylow subgroup.

In view of theorems 2.16 and 2.17, we try to describe
the system normalizers of an N-group.

p {tion 2.18

Let G be an N-group. If & = {Sl,°-,Sk} is a

Sylow basis for G, then the system normalizer assoclated
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n
with ® is NG( d) =@ T N, where N =C (T, « - T,)

oy k™ %, 1 )
for T;, °* *,T, those members of S \\{Sk} which norma-
lize Sk'
Proof:
n
By theorem 1.10, NG( ) =@ T L., where
i=1
L. =8, N NA(S.'"), S.' = 7w 8S..
G ’ .
1 i i i J#i Jj
Let x €L, =8, N NG(Sk') and let y € T*-'T,.

Then [y,x] € S, n Sk' =1 and so x € Ng = CSK(T1°'T1)'

Conversely, let w € CS.(Tl"TL) = N.. Then w €8S,

K
and by our choice of T1,°°-,Tz, w € NG(Sk') - since S,
normalizes all members of o \‘{Tl""’TL}’ 0O

The order of a system normalizer can also be computed
using theorem 1.9 : [G : NG(-S)] = the number of distinct
Sylow bases of G. Since the number of Sylow bases for an
N-group G 1is the number n of complete sets of Sylow

subgroups of G, we see n = ¢ [G :NG(Sk)] and
_ |G
Ing()] = 181/ .

Although we gave an example to show that G need not
be an N-group whenever Q/Q(G) is an N-group, we can make
some progress in this direction.

Proposition 2,19

- .ab G .
If |G| = p?q” and /@(G) is an N-group, then G

is an N-group.

TR

[’r-;g-
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Proof:
We may assume that Q/Q(G) has normal Sylow p-subgroup

G_8(G) _ -
p /Q(G), Let W = NG(Gp). If W= G, then Gpc G

and we are done. Otherwise W 1lies in some maximal sub-

. G,8(G) G
group S of G. Let x € G\S. Since /Q(G)4 /Q(G)’

G_$(G) S
/G(G)>x = P /e < s

< GPXQ(G) < S and there exists s € S with

G_*3(G) G_#(G)
we have P /Q(G) = (

Hence G X

-1
Gps = pr. Since c,pxs - Gp’ xs - €W = NG(Gp) and
(xs"1)s = x €S - a contradiction. 0O
Proposition 2,20
If Q/Q(G) is an N-group and all maximal (proper)

subgroups of G are N-groups, then G 1is an N-group.

Proof:
Let Gp € Syl p(G) and Gq € Syl q(G) for p # q.
G G, ()
Since /Q(G) is an N-group, we may assume /Q(G)

G_8(G)
p = =
normalizes /Q(G)° Let W NG(Gp). If W= G, then

Gp Q G and we are done. Otherwise W 1lies in some maximal

G &(G)
subgroup S of G. Since q /Q(G) normalizes

G_8(G) c_*8(G) G_#(G)
P sy vesee P /aey = (P /el

GpQ(G) 3 iy
= /Q(G) < /Q(G)’ for all x € Gq. Hence Gp £S
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and there exists s € S with pr = Gps. Then
xs-1 €EWLS and x € S. Hence Gq < S. Since S 1is an
N-group by assumption and < Gp, Gq > £ S, either Gp

normalizes Gq or Gq normalizes Gp° O
We mention a result of Rose [11] for classes of groups

closed under homomorphic images (i.e. Q-closed).

Iheorem 2,21
Let €@ ©be any Q-closed class of groups. Suppose G
is a finite solvable but non-nilpotent group in which every

abnormal maximal subgroup is a @ -group. Then G has a

normal subgroup W of prime power order such that G/w
is a € =-group.
Since N-groups form a Q-closed class, the theorem

applies if we let @ = class of all N-groups.

;:_:g




Chapter III

The idea of a Sylow system is basic to P. Hall's in-
vestigation of solvable groups. In this section we consider
condition (N) for Sylow systems of a group. If some Sylow
system of G satisfies (N), we call G a strongly Sylow
towered group (SSTG). The inheritance properties of SSTIG's
are derived and we give a characterization of these groups.

We begin with a formal definition.

Definition 3.1

Let G be a solvable group. If some Sylow system

&4 of G satisfies (N), G is called a strongly Sylow
towered group (SSTG).

It follows immediately that a SSTG is necessarily a
GSTG. The next examples show that SSTG's are unrelated to
N-groups.

Example 1.

Let G = [C7]°06, the split extension of C7 by its
automorphism group. Write Aut(C7) = Cg as the product
of its Sylow subgroups, C2 X C3. G is a SSTG since

é = {1,C7,C3,02,C7C2,C7C3,C2C3,G} is a Sylow system of
G which satisfies (N). By a previous remark, G is not
an N-group.

Example 2.

We will show [Proposition 3.4] that a SSTG is necessarily
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a STG. Therefore the example of an N-group which is not a
STG, given in chapter II, is an N-group which is not a SSTG.
p { £ 3,2
If G 1is a SSTG, then every Sylow system of G satis-

fies (N).
Proof:
This follows at once from the fact that all Sylow sys-
tems of a group are conjugate [Theorem 1.6]. O
p 1t 1.3

If G is a SSTG, then every subgroup H of G 1is a
SSTG.

Proof:

Since G 1is solvable, the subgroup H 1s solvable.
Let Y Dbe any Sylow system of H. By theorem 1.7 there
is a Sylow system & of G such that M = {HNS|S € &1.
Since & satisfies (N), % satisfies (N). ]

p i £ 3]

If G 1is a SSTG, then G 1is a STG.

Proof: (Induction on w(G))

If m(G) £ 2, then G has a normal subgroup and clearly
G is a STG. Suppose 7(G) =n >3 and let & be a
Sylow system of G. Let T and W be complementary
(proper) subgroups of G belonging to 8 - i.e. G=T-W
and T NW=1. Since «f satisfies (N), we may assume

T normalizes W. Then W aG=T.W.




45
By induction, both T and W are STG's. Let
1 & Tl~4 oo e a Tk o Tl =T
W

and 1 aW, aq °° 4 Wz o W

1 1

be Sylow towers of T and W. Then

laWa - AW, W, = WaT.Wa ¢¢ e a T «« T W=G

1 ) 1 1 k 1
is a Sylow tower of G and G is a STG. O
Lemma 3.9

Let G be a finite solvable group and ¢ a homomqr-
phism of G onto G°. Then L is a Hall m-subgroup of
c° if, and only if L = H°, for some Hall wm-subgroup H
of G.

Proof:

Let V Dbe any Hall m-subgroup of G. Then Ve s
a Hall m-subgroup of G°, since [G° :V°]|[G:V] and
|V | ||V|. Since G 1is solvable, G° 1is solvable and
theorem 1.1 implies V' and L are conjugate in c’.
Therefore L = (VO)X° = (v¥)%, some x € G. 0

Proposition 3.6

If G 1is a SSTG and ¢ 1is a homomorphism of G onto
G°, then G° is a SSTG.

Proof:

Let # be a Sylow system of G. Then &° = {8°|S €d}
is, by the lemma, a Sylow system of G°. And S° normali-
zes T° whenever S normalizes T (S,T € £#). Therefore

4% satisfies (N) and G° 1is a SSTG. 0
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In order to study direct products of SSTG's, we need
to define similarity for SSTG's.

Definition 3.7

Let H and K be SSTG's with Sylow systems
H = {Hnln,s c(H)} and ¥ = {KWIW f=
A be arbitrary disjoint sets of primes. If either
(1) Hy normalizes H,
(i1) H, normalizes Hy and K, normalizes K;, we say "

H and K are similar SSTG's,
It is easy to check [Propositions 3.3 and 3.6] that

and KZ normalizes KA or

all subgroups and factor groups of a SSTG are similar SSTG's.
And by adapting the argument used for the direct product of
GSTG's [theorem 1.27] to the present situation, weﬁhave the
following.

Proposition 3.8

H x K is a SSTG if, and only if H and K are
similar SSTG's.

SSTG's can be characterized as follows.

Jheorem 3,9
G 1is a SSTG if, and only if G 1is a split extension

of a nilpotent group A by a nilpotent group B with
(lA],|B|) =1 and either A or B a p-group.

Proof:

Let 4 be any Sylow system of G. Let S and T be
any distinct non-normal Sylow subgroups of # and let S'

and T' be (respectively) the complements of S and T

c c(K)}. Let T and .‘
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in A& . 8ince 4 satisfies (N) and S4G, T4 G,
we must have S' 4 G and T' Q2 G. Furthermore, we may
assume S normalizes T. Now S L T'<Q G implies

[S,T] L T* NT =1 and hence, any distinct non-normal
Sylow subgroups of & centralize one another. If we let _
A be the product of all the normal Sylow subgroups of G E\

and B be the product of the non-normal Sylow subgroups f

of G in & , then G = [A]*B and (|A],|B]|) = 1.

We now show that either A or B 1is a p-group. F -
Assume this is not the case and suppose m(A) =k > 2,
m(B) = £ 2> 2. Let N;,°**,N. denote the normal Sylow

subgroups of G and let S °'°,Sz denote the non-normal

l,
Sylow subgroups of G belonging to £ . Without loss of

generality we may assume that Nl does not normalize Sl'
If some normal Sylow subgroup N, (i > 2) fails to norm-

alize some Sj (j 2 2), consider the subgroups lej and

N.S;. Now lej and N;8; belong to $ and

(llej|’|Nisll) = 1. Hence N;S, normalizes N;S, or

Nisl normalizes lej' Then [Nl,Sl] < N1 n Nisl =1 or

[Ni’sj] NN lej = 1 - a contradiction. Therefore we

see Ni normalizes Sj whenever 1i,j 2 2. Consequently
Nl must not normalize Sj for j = 2,°***,4. In particu-
lar, Nl does not normalize 82.

Now suppose N. normalizes S1 whenever 1 2 2.

i
Then Ni normalizes every non-normal Sylow subgroup Sj
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k L
and H= 7 Ni * m S, 1s a nilpotent subgroup of G.
i=2 j=1
Therefore G = [Nl] « H - which is a contradiction. Hence,
we may assume that N2 fails to normalize Sl°
Consider the subgroups lel and N2S2 of G. lel

and N282 belong to £ and have relatively prime orders.
Therefore lel normalizes N282 or N282 normalizes

lel' Then [Nl’SZ] <N n N282 =1 or

[N2,Sl] <N, NN;S; =1 - which is a contradiction. This

establishes the sufficiency.

Let G be the split extension of a p-group A by a
1""’Bn~
denote the Sylow subgroups of B. Then the Sylow system

nilpotent group B where (p,|B|) = 1. Let B

of G generated by the Sylow basis {A,Bl,---,Bn} clearly
satisfies (N) and G is a SSTG.

Now let G ©be the split extension of a nilpotent
group A by a p-group B with (|A],p) = 1. Let
{Al,"',Ak} be the complete set of Sylow subgroups of A.
Then the Sylow system of G generated by the Sylow basis
{A1,°--,Ak,B} of G clearly satisfies (N) and G 1is
a SSTG. O

We now give an example of a supersolvable group which
is not a SSTG. Let G be the split extension of C3 X Cll
by its automorphism group C2 X ClO’ Then
1 4C3<1 C3 x C;1 9 C, (C3 X Cll) 4 G 1is a cyclic invariant

series of G, and G 1s supersolvable. By the preceeding
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theorem, G 1is not a SSTG.
The group G = C3 wr C2 is an example of a SSTG which

is not supersolvable.

The following diagram shows the relative positions of
various classes of solvable groups. A line indicates the
class at the lower end lies in the class at the upper end.

All containments are proper.

solvable
|
GSTG
SLG
| \\\\\\\\\\
N-groups supersolvable  SSTG

|

nilpotent




Chapter IV

If G 1is a solvable group, the Fitting length of G
is a measure of the nilpotency of G. We ask if there is
a measure of the deviation of a GSTG from an N-group. This
leads to an examination of invariant series whose factor
groups are N-groups. Such series will be called invariant
N-series.

A GSTG G has a unique descending invariant N-series,
called the lower N-series for G. The length of the lower
N-series, denoted by m(G), is the minimal length of an
invariant N-series of G. A GSTG G also has a unique
ascending invariant N-series, called the upper N-series
for G. The length of this ascending series is denoted by
e(G). The nilpotent length of G 1is greater than or equal
to e(G).

An invariant N-series 1 a4 le e e o 4 Lk = G with

L.
1+1/L a maximal normal N-subgroup of Q/L
i i

(0 <i<k-1) 1is called a maximal invariant N-series of
G. If k 1is the length of a maximal invariant N-series
of G, then m(G) < k £ e(G). We show by example that
k can be less than e(G), but it is not known if k
must equal m(G).

We begin with the following observation.

Lemma 4,1

Let H and K be (N)-similar GSTG's. If H and K




ﬂ . - “,v,n..':—
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are N-groups, they are similar N-groups.

Proof:

Let p and g Dbe distinct primes. Since H and
K are (N)-similar GSTG's, we may assume that some Sylow
p-subgroup of H normalizes some Sylow g-subgroup of
H and, some Sylow p-subgroup of K normalizes some
Sylow g-subgroup of K. If H and K are N-groups,
proposition 2.3 then implies that every Sylow p-subgroup
of H normalizes every Sylow g-subgroup of H and,
every Sylow p-subgroup of K normalizes every Sylow
gq-subgroup of K. O

Our study of ascending invariant N-series of a GSTG
is motivated by Ba=r's work [1] on supersolubly immersed
subgroups.

Definiti 4,2

A subgroup H of a group G 1is N-embedded in G
if for every pair of distinct primes (p,q), either
Gq < NG(Hp) or Hp < NG(Gq) for all Hp € Syl p (H),

Gq € Syl q (G).

A normal p-subgroup of a group is an example of an
N-embedded subgroup. An N-embedded subgroup need not be
normal however. For example, a Sylow 2-subgroup of S3
is an N-embedded subgroup which is not a normal subgroup.

p Lt 4,3

If H is N-embedded in G, then H 1is an N-group.

e T e

L
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Proof:
Let Hp and Hq be arbitrary Sylow subgroups of H
corresponding to distinct primes p and q. Let G_ Dbe

q

a Sylow g-subgroup of G containing Hqﬁ Then

Gq < NG(Hp) or Hp < NG(Gq)' Consequently we see Hq

normalizes H or H normalizes G. N H = H . O
p p q q
Proposition 4. U4
If H and K are N-embedded in G, then H N K is N-
embedded in G.
Proof:
Let p and q be distinct primes and consider
(H n K)p € SyLp(H NnK) and Gq € Syl q(G). By lemma
2.4 (Hn K)p = Hp n Kp for some Hp € Syl p (H),
K S . i | K
p € ylp(K). DNow if Hp's NG(Gq) or K NG(Gq),
then (H NK) =H_NK_  normalizes G_.,. Otherwise G
P p p q q
normalizes both Hp and Kp. Then Gq normalizes
H NK_=(HnK)_.
p p ¢ )P =
Proposition 4,9
If K 1is N-embedded in G and H 1is a Hall sub-
group of K, then H 1is N-embedded in G.
Proof:
This follows at once since Sylow subgroups of H

are also Sylow subgroups of K.
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An arbitrary subgroup of an N-embedded subgroup is not
necessarily an N-embedded subgroup. For example, let G

be the split extension of A x B by C, where

A=< ala3 1> B=«K blb3 = 1> and

C

<cla®=b, b =a>c Aut (Ax B). Then A x B 1is
N-embedded in G but neither A nor B 1is N-embedded in
G.

Proposition 4.6

If H is N-embedded in G and K L H, K <4 G, then
K 1is N-embedded in G.

Proof:

Let p and q be distinct primes and Kp € Syl p (K),
G, € Sylq(G). Since K £ H, Kp =K NH_ for some

q p
. N = n
Hp € Sylp(H). If Hp £ G(Gq), then Kp K Hp
normalizes Gq. Otherwise Gq <L NG(Hp) and, since
Ka G, Gq normalizes K N Hp = Kp. O
Proposition 4,7

If H is an N-embedded (normal) subgroup of G and
¢ 1is a homomorphism of G onto G°, then H®° is an
N-embedded (normal) subgroup of G°.

Proof:

Let p3 q and let P € Sylp(H®°), Q € Syl q(G?).
By [13, p.134], P = (Hp)° and Q = (Gq)o for some
H_ € Sylp(H), G

P q
G, either Hp < NG(Gq) or Gq < ING(Hp). Then P

€ Syl q(G). Since H 1is N-embedded in
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normalizes Q or Q normalizes P. O

In particular, every conjugate of an N-embedded sub-
group is an N-embedded subgroup.

All the previous results hold for arbitrary finite
groups. From this point on;, we restrict our attention to
GSTG's.

p ] 4.8

Let G Dbe a GSTG with N-embedded subgroup H. Then
every Sylow p-subgroup of H normalizes every Sylow
q-subgroup of G or every Sylow gq-subgroup of G norma-
lizes every Sylow p-subgroup of H, for p and q dis-
tinct primes.

Proof:

Let p ¥ @ and consider Hp € Syl p (H), Gq € Syl q (G).
Since H 1is N-embedded in G, Hp qu is a subgroup of G,
for all x € G. Since G 1is a GSTG, all the subgroups
Hqux are (N)-similar. Therefore, either G_* normalizes

q
Hp or Hp normalizes qu, for all x € G. O

Iheorem 4,9
Let H be an N-embedded (normal) subgroup of G- and

let K Dbe an N-embedded normal subgroup of G. Then the
product H + K is an N-embedded (normal) subgroup of G.
Proof:
Let p 3 @ and consider (H~K)p € Syl p (HK) and

Gq € Syl q (G).
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We first show (H’K)p = prpr for some Hp € Syl p (H),
Kp € Syl p(K) and x € HK. Let P be any Sylow p-subgroup
of H. Then P K Gp for some Gp € Syl p(G) and

P=HnN Gp. Since K44 G, K n Gp = Kp is a Sylow p-sub-
group of K and Kp Q,Gp. Then PoKp is a p-subgroup of
H°K and |P-Kp| = |P|*|K_|, the order of a Sylow subgroup

—P

|P nK_|
P

of H-K. Therefore (H-K)p = (P'Kp)x = PXKpX for some
x € H-K.
Since G 1is a GSTG, all subgroups of G are (N)-

similar GSTG's and hence p 3> q or q > p, where 4

is a Sylow basis of any subgroup of G.
Suppose first that »p :;> q. ©Since H 1is N-embedded
in G, every conjugate HX of H is N-embedded in G.

Then H *G  is a subgroup of G and consequently pr

q
normalizes Gq (x € G). Likewise KpXGq is a subgroup
of G and pr normalizes Gq (x € G). Then
prpr = (HK)p normalizes Gq.
. X X
—_— R G
Now suppose q J> p.- Since Hp Gq and Kp q are

subgroups of G, Gq normalizes both pr and pr
(x € G). Then Gq normalizes prpr = (HK)p and the

theorem is proved. O

Corollary 4%.10

The product of all normal N-embedded subgroups of G

is a characteristic N-embedded subgroup of G. We denote
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this maximal normal N-embedded subgroup of G by E(G).
Corollary 4,11
The characteristic subgroup E(G) of G is the inter-
section of all maximal N-embedded subgroups of G.
Proof:
Let {MX}XEA be the set of maximal N-embedded sub-

groups of G. By theorem 4.4 the intersection N Mx
A EA
is ‘an N-embedded subgroup of G. And, by theorem 4.7,

n Mx is a characteristic subgroup of G. Consequently
A EA

n Mx < E(G).
A EA

By the preceding theorem we know MX-E(G) is an
N-embedded subgroup of G, for each X €A. Since Mk is
a maximal N-embedded subgroup, E(G) £ Mx for each X €A

and E(G) < n MX. O
X EA

Using the maximal normal N-embedded subgroup E(G)
of G we can define a unique ascending invariant N-series
of the GSTG G. Before proceeding to this, we examine the
subgroup E(G) in more detail.

p i t3 4 10

If G 1is a GSTG, then Fit(G) < E(G).

Proof:

The Sylow subgroups of Fit(G) are normal p-subgroups
of G. Since a normal p-subgroup is N-embedded, the asser-

tion is proved. O

™

‘iﬁ-—s—
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Since S3 is an N-group which 1s not nilpotent,
Fit(S3) i Sy = E(S3)o Therefore we cannot hope for

equality in proposition 4.12.

Iheorem 4.13

Let K ©be a normal N-subgroup of G. If H is a E\
normal N-embedded subgroup of G, then the product H K .
is an N-group.

Proof:

Let p ¥ q and consider (HK)p € Sylp(HK) and
p and (HK)q < Gy
€ Syl q(G). Since H and K

(HK)q € Syl q (HK). Let (HK)p LG

G S G G
where P € Syl p (G), a

are normal in G, we have the following relations:

HNG = = H
> HpeSylp(H), H NG, quSqu( )s
KnGg =K K KNG, =K S K d
D D € Syl p (K), n q q € Syl q(K) an
HK) =HK NG_=HK HK) =HK NG, = HK.
( )p p pp’ ( )q q qq
By lemma 4.1 we may assume that p TI> q for a Sylow

basis & of any N-subgroup of G. Since H 1is N-
embedded in G, Hqu is an N-subgroup of G and hence
Hp,s NG(Gq). Since HK 4 G, this implies that Hp norma-
lizes HK N Gq = (HK)q° Hqu is also an N-subgroup of

G and so Gp < HG(Hq). Therefore Kp =K n Gp normalizes
Hq° Since K_ is an N-subgroup of G, Kp also normalizes

i K = .
Kq and hence Kp normalizes the product Hq q (HK)q

Therefore both Hp and Kp normalize (HK)q and the

assertion follows. O
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The following example shows we cannot drop the normality
of the subgroup K 1in theorem 4.13. G = [C7]'C6 is the
product of a normal N-embedded subgroup C7 and a (non-

normal) cyclic subgroup C6’ but G 1is not an N-group.

Corollary Y.14

A maximal normal N-subgroup of G contains every
normal N-embedded subgroup of G.

In particular, the subgroup E(G) 1lies in every
maximal normal N-subgroup of G. The next example shows
that E(G) is not necessarily the intersection of all

maximal normal N-subgroups of G.

b

Let S, = <a,b|a3 = b2 =1, a = a2>, C5 = <d|d5 = 1> and

3

G = S3 wr C5. We show that E(G) is the (normal) Sylow

C
3-subgroup of G and S3| Sl is the only maximal normal
N-subgroup of G.

(1) E(G) = G3, the Sylow 3-subgroup of G.

cs |

Since G 1is the split extension of 83 by CS’

o

S3 is a maximal normal N-subgroup of G. Then

|Cc |
E(G) < S5 5" and consequently 5’l |[ECG)|. Furthermore,

G, ©G implies G, £ Fit(G) < E(G). We will show

3
21 |ECC) |.

Assume to the contrary that 2 | |E(G) | and let

3

T
.
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t = (yl’y2’y3’yh’y5) be an element of order 2 in E(G).
Conjugating t by the appropriate element of G3 gives

an element w = (xl,x2,x3,xh,x5) 3 1 in E(G), where each

Xy is b or 1. Since all cyclic permutations of w and
all products of these cyclic permutations are elements of E\
E(G), we may assume without loss of generality that o

w = (b;b,x3,xh,x5)° By the normality of E(G) in G,

z = (ba,b,x3,xh,x5) € E(G). Let =z Dbelong to a Sylow -

-
L

2-subgroup E, of E(G). Since E, does not normalize B--

d

C5’ C5 must normalize E2. Consequently 2z~ € E2 and

zzd = (baxg,bba,x3b,x4x3,x5xu) € E2. But bb? = a.l is
a 3-element and hence zzd is not a 2-element - which
is nonsense. Therefore 2 l |EC(G) |.

C
(2) S3I 5' is the only maximal normal N-subgroup of G.
Suppose to the contrary that M 1is a maximal normal

C
N-subgroup of G different from S3I 5'. Since E(G) < M,

Gy < M. Then M 3 S3 CS implies M contains a 5-element
of G. Since M 4G, M must then contain every 5-element
of G. Let x = (b,1,1,1,1). Then d* €M and

d"*a¥ = (b,b,1,1,1) € M. Since M a G, this implies

t = (b,b,1,1,1) €M and t% = (1,b%,b,1,1) € M. Let ¢
belong to the Sylow. 2-subgroup M2 of M. Since M is
an N-group and 5 —> 2, C5 ~normalizes M2. Consequently
d -1

and tt& = (p?,bb%,b,1,1) € M,. But bb® = a

d

to €M

2.
is therefore not a 2-element -

2
is a 3-element and tt
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which is nonsense.

p {tion 4.15

If H and K are (N)-similar GSTG's, then
E(H x K) = E(H) x E(K).

Proof:

Since E(H) and E(K) are normal N-embedded subgroups
of Hx K, E(H) x E(K) < E(H xK).

Let E, = {h € Hlhk € E(H x K) for some k € K} and
E, = {k € K|hk € E(H x K) for some h € H}. By the
~ EqK E(Hx K) -K
~ By _ X
- /K - /K°

~ El
isomorphism theorems E, = /E K
1

Since E(HXK) ‘K/K

is a normal N-embedded subgroup of HXK/K,
El is a normal N-embedded subgroup of H and so El < E(H).
Similarly E2 < E(K). Therefore, E(HxK) E, X E2 <
< E(H) x E(K). 0
Baer [1] has shown that a normal supersolvably immersed
subgroup K of a group G satisfies the following properties:
(1) If K<S <G and S/k is supersolvable, then S 1is
supersolvable.
(2) The elements of G induce a supersolvable group of
automorphisms on K.
The corresponding properties do not hold for normal
N-embedded subgroups of a group.

(1) Let _G = [C7]°06. E(G) = C7 and G/C

1

C but
7 6

G 1is not an N-group.

(2) Let G = C5 wr S and let G5 be the Sylow 5-subgroup
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of G. ©Since SM is not an N-group, the automorphism
group induced on G5 by the elements of G 1is not an
N-group.
Consequently we expect the ascending invariant N-series
of a GSTG which arises in connection with the subgroup E(G)

to have some shortcomings.

Definiti 4,16
If G 1s a GSTG, the upper N-serijes of G is the

invariant series of G defined inductively by EO =1,
E

i+1/E' = E(Q/E.). The length of this series, denoted
i i

by e(G), is the number of distinct nontrivial terms in
the series.

Since the Fitting subgroup of G 1lies in E(G), the
next result is clear.

Proposition 4,17

If G 1is a GSTG, then e(G) < £(G), the nilpotent
length of G.

We now compare the upper N-series of a GSTG G with

the maximal invariant N-series of G.

Iheorem 4,18

Let t be the length of a maximal invariant N-series

of G. Then e(G) > t.
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Proof:
Let 1 = MO'° Ml<l oo a Mt = G be a maximal invar-

iant N-series of G and let

1=E04El<1°° 4En=G

be the upper N-series of G. Since Ml is a maximal normal
N-subgroup of G, B, = E(G) < M,. By the isomorphism
E
BM, o . B
theorems /ﬁ = /E aM. - l/(E aM.) - Then

1 2 1 —2 1
El

EMy G
/M is a normal N-embedded subgroup of ~/y and
1

1
EM M
2 l/Ml < 2/Ml - So E, < M;. Inductively

E M
k k-1
/v

k-1

is a normal N-embedded subgroup of G/M
k-1

and E, < M . Therefore e(G) 2 t. O
We show by example that the length of the upper
N-series may be strictly greater than the length of some

maximal invariant N-series of a GSTG.

Example: Let G = (S3 wr C5) wr C,.

By our previous remarks we know £(G) = 4 and it is
easy to see that G is a STG with Sylow tower
1 a G3 < G2,34 G2’3’5 4 G. Furthermore, 1 a G2,3 4a G
is a maximal invariant N-series of G having length 2.

We will show that e(G) = 3. Since G, 3 1s a maxi-
3
mal normal N-subgroup of G, E(G) < G, 3+ We showed
b
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o5

previously that E(S3 wr C5) = C3 Hence, by 4.15,

e51, Io1 _

E(G2’3’5) = (C3 G3o Then, by proposition 4.6,

EB(G) = E(G) n G2,3’5,s E(G2,3’5) = G3. And since

Gy 4 G, G3 £ E(G) and we have shown E(G) = G3. Since
G G2 3 l
/E(G) has nilpotent length 3 and ’ /E(G) < ]
i o
< E(%/gegy)» it follows that e(G) = 3. ;
In our search for a unique invariant N-series of 5

minimal length we turn to a consideration of descending
invariant N-series.

Proposition %4.19

Let Ml and M2 be normal subgroups of a GSTG G.
If Q/M and Q/M are N-groups, then G/M AM

1 5 1 5 is an

N-group.

Proof:

By lemma k4.1, G/M and Q/M are similar N-groups

1 2
and consequently G/M X Q/M is an N-group. Since
1 2
9/ ~ G G G
S/ ox s / : -
Ml n M2 Ml M2 M1 n M2 is an N-group. O
p it 4,20

Let M be a normal subgroup of G and o a homomor-

phism of G onto G°. If G/M is an N-group, then

0
M° 4 G¢° and G / \O is an N-group.
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Proof:
By the isomorphism theorems M° 4 G°. Let P and Q

—

g
be arbitrary Sylow p- and g~subgroups of G /Mo° Then

G _°M° G °m°
p= P / and Q= 4 / for some G_ € Syl p(G),
M° M° b
G N |
Gq € Syl q (G). Since /M is an N-group, P /M g -
G M G M G M o
normalizes ¢ /M or ¢ /M normalizes P /M' It f

follows that P normalizes Q or Q normalizes P. O

For a GSTG G, let M(G) denote the intersection of
all normal subgroups K such that G/K is an N-group.
We then have the following result.

Corollary 4,21

The subgroup M(G) is the minimal normal subgroup
K of G such that G/K is an N-group. M(G) 1is a
characteristic subgroup of G.

Proof:

The first statement follows at once from proposition
4.19. And proposition 4.20 shows M(G)? = M(G) for every
automorphism o of G. O

The subgroup M(G) will be used to define a unique
descending invariant N-series of G. First we develop
some properties of this subgroup.

p {t] )y, 0o

If G is a GSTG with subgroup K, M(K) < M(G).
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Proof:
By the isomorphism theorems
e T %00 € Y mMen M awe 1
an N-group and M(K) < K n M(G) < M(G). O
Let G = [C7]-06 and K = C7-029_ G. Then M(K) =1 #,'

and K n M(G) = C, = M(G). Therefore, we cannot hope for

equality in proposition 4.22.

Let G be a GSTG with normal subgroup K. If K<L,
L <G, then M(PK/) = M(L)'K/K.
Proof: 1K
By proposition 4.20 K/aﬂl)K is an N-group
K

M(L) ‘K/K.

LK
Now let M(LK/K) = w/K. Hence K’Gd = LK/w is an

and consequently M(LK/k) <

N-group. Since K < W < LK, LK/W = Lw/w = L/itﬁw is an

N-group. Then M(L) < L N W< W and consequently
M(L)K w _ LK
/k < /K = M( /k). O

The next result is mentioned only for completeness.

p 4] ) ol
Let A and B be (N)-similar GSTG's. Then
M(A x B) = M(A) x M(B).
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Proof:

. AxB _ A B
since “/yioxme) = /M) X /M)’
M(A x B) < M(A) x M(B).

~s

By the isomorphism theorems, A/AnM(AxB)

T M(AXB).A/M(AXB)’ which is an N-group. Hence
M(A) < A N M(A x B) < M(A x B). Similarly M(B) < M(AxB)
and the assertion follows. O
Definiti 4,25
Let G be a GSTG. The lower N-series of G is the
invariant series of G defined inductively by M0 = G,

1

is the number of distinct nontrivial terms in the series.
P {t] Y
If K< G, then m(K) < m(G).

Proof':

Proposition 4.22. O
p {tiop Lt.27

If K <G, then m(%/) < m(c).

Proof:

Let G=Mol> Ml> .o > M, =1 be the lower N-

£
series for G. Then, by Proposition 4.23,

M M. K M K
G -— O |~ 1 D o 0 o > L _ K
/k - /k - /K - - /k - /K

is the lower N-series of G/K. O

M; = M(M;_,). The length of this series, denoted by m(G),

iETEEY
.
i
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The next result shows that the lower N-series of G

is an invariant N-series of G having minimal length.

Iheorem 4,28

Let G be a GSTG. Then any invariant N-series of G
has at least m(G) distinct nontrivial terms.

Proof:

Let G = LO'> Ij.> cee e D Lk = 1 be any invariant
N-series of G and let G = MOD Mlb .o > Mz =1 be

the lower N-series of G.

Since G/L is an N-group, M; < L;. Next,
1

M ~ Mo L
/M . - /L < /L , Wwhich is an N-group. Hence
12 2 2
M
/MlnL2 is an N-group and M, < M; NL, < L,. Proceeding
i/ "y
inductively, c implies that
MiNls4q Lin

Migp <My 0Ly £L;, . It follows that k 2 £ = m(G).
O
The preceding argument has established the following
relation between the terms of the lower N-series and the
terms of the upper N-series.
Corollary 4,29
Let 1=Eo< E1<l o <En=G be the upper N-

series of G and let G=MO> Mlx> . \>M£=1 be
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the lower N-series of G. Then Lk < En-k’ 0 Lk L &.
We have shown that the length t of any maximal
invariant N-series of a GSTG G satisfies the relation
m(G) < t < e(G). An example was given to show that t
need not be e(G). However, it is not known if t must
equal m(G).
There is a refinement theorem for N-series which

should be mentioned, although we have not been able to use

it.
Iheorem 4,30
Let 1=H04 H14 oo ‘szG and
1 = K04 K14 o < Kt = G be invariant N-series of G.
If 42> t, then
i) 149 H NK,9Q .. 2= H, NK, 9H,  .4.. 2H, =G

1 1 t t t+l 4

is an invariant N-series of G, and

o o 1S b .o E ry
ii) G®K _, N H,_, = K} NHy (4t-7) ®1 1is an
invariant N-series of G.
: H
1) We show 11 i+l/ is an N-group for
HiﬂKi
H. . NK, K, (H, .NK._.)
. _ i+l i+l ~ T17Ti+l i+l
0<i<4-1. /u, . 0K, - /x, S
i+l i i

< i+l/K ,» Wwhich is an N-group. Similarly
i

K

Hig" i+1,
H.NK.
i i+

Land

i+l/H , which is an N-group. Then
1 i

L)

¥

Nz e
i
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finlin By, e am
H; NK, (H; ;1K) N (H MK L))

N-group.

ii) Consider consecutive terms Ka n Hb and

Ka+l n Hb+l of the series. By the isomorphism theorems
far1Moey e T, g
Ka+lng Hb
fa1Mpr1 = farl, Then a*17b¥L,
K NH, K, K, NHy
K NH
and 3%l b+1/K nH are N-groups. Therefore
a b+l
NH
atl b+l/Kang is an N-group. 0

Although I have not been able to show that the length
of a maximal invariant N-series of a GSTG G is m(G), I
strongly suspect that this is the case. If so, GSTG's
might be described in terms of their maximal invariant
N-series. This possibility will be considered in the near

future.




INDEX OF NOTATIONS

I. Relations:
c Is a subset of
< Is a subgroup of
34 Is not a subgroup of
< Is a proper subgroup of (i for emphasis)
4 Is a normal subgroup of

Is not a normal subgroup of

Is a proper normal subgroup of

Is a characteristic subgroup of

Is an element of

A~ m Q0 A B

Is not an element of

II. QOperations:
N Set difference
< > Subgroup generated by
X Direct product of groups
n
®11=rlGi Gl x-°°xGn
n
izlGi < Gl,°°“,Gn >
|G| The number of elements in G
c(G) Set of prime divisors of |G|
m(G) The number of prime divisors of |G|
£(G) The Fitting (nilpotent) length of G

e(G) Defined on page 61
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m(G) Defined on page 66
[G:H] Index of H in G

G/H Factor group
G* x-l G x
a® x1ax
[x,y]  xtylxy
[H,K] Subgroup generated by all [h,k]; h € H,
k € K
ITI. OQther:s
Z(G) Center of G
z2 (G) Hypercenter of G
H_(G) Hypercommutator of G
F(G) Fitting subgroup of G (also denoted
Fit(G))
$(G) Frattini subgroup of G
G' Derived group of G
E(G) Defined on page 56
M(G) Defined on page 64

Aut(G) Automorphism group of G
S Symmetric group of degree n
A Alternating group of degree n
Syl (G) Set of all Sylow subgroups of G
Syl p(G) Set of all Sylow p-subgroups of G.
(H]-K Split extension of H by K
H wr K Wreath product of H by K
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