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ABSTRACT

GENERALIZED SYLOW TOWER GROUPS

By

James B. Derr

Both finite solvable groups and finite nilpotent groups

can be characterized in terms of their Sylow structures.

In this vein, P. Hall showed that a finite group is solvable

if, and only if the group has a complete set of pairwise

permutable Sylow subgroups. And it is well known that the

Sylow subgroups of a finite nilpotent group centralize one

another.

The aim here is to study the structure of groups whose

Sylow subgroups satisfy a normalizer condition (N). If

S is a collection of subgroups of a finite group, we say

S satisfies (N) if, for every pair of subgroups of

relatively prime orders in S, at least one of the sub-

groups normalizes the other.

We first consider groups having a complete set of

Sylow subgroups which satisfies (N). These groups are

called generalized Sylow tower groups (GSTG). Sylow tower

groups are GSTG's and GSTG's are solvable. All subgroups

and factor groups of GSTG's are again GSTG's and the

direct product of GSTG's having the same normalizing

structure is a GSTG. The main result on GSTG's is the

following.
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James B. Derr

‘Ihegrem: If G is a GSTG, the nilpotent length of

G is less than or equal to the number of distinct prime

divisors of the order of G and, if equality holds, G

is a STG.

We next consider condition (N) for the set of all

Sylow subgroups of a group. If the set of all Sylow sub-

groups of a group satisfies (N), the group is called an

N-group° An N-group is necessarily a GSTG and, if G is

a GSTG whose order is divisible by at most 3 primes, then

G is either an N-group or a STG. The inheritance prOper-

ties of N—groups are identical with those of GSTG‘s and

the classes of N-groups with similar normalizing structures

are non-saturated formations.

B. Huppert has studied groups with a permutability

condition (V) on the set of all Sylow subgroups. A

group satisfies (V) if any two Sylow subgroups of rela-

tively prime orders permute as subgroups. We can then

characterize N-groups as follows.

.Ihggzem: Let G satisfy (V). Then G is an N-

group if, and only if

(1) G is a partially complemented extension of a

nilpotent group H by a nilpotent group K, and

(2) if p and q are distinct primes, then the

Sylow p-subgroup of H normalizes the Sylow q-subgroup

of K or the Sylow q-subgroup of H normalizes the Sylow
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James B. Derr

p-subgroup of K.

‘We briefly consider condition (N) for Sylow systems

of a group. A solvable group is a strongly Sylow towered

group (SSTG) if some Sylow system satisfies (N). We give

the following characterization of these groups.

.Iheorem: G is a SSTG if, and only if G is an

extension of a nilpotent group H by a nilpotent group

K where H and K have relatively prime orders and

either H or K is a p-group.

The relative positions of various classes of solvable

groups are shown by the following diagram. A line indi-

cates that the lower class of groups lies in the higher

class.

solvrble

GSTG

.I.

N-groups supersllvable SSTG

nilpltent

In order to give a decomposition of GSTG's in terms

of N-groups, we examine the invariant series of a group

Whose factor groups are N—groups. These series are called

invariant N—series.
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A GSTG G has a unique descending invariant steries,

whose length is denoted by m(G). m(G) is the minimal

length of an invariant N-series of G and hence gives a

measure of the deviation of the GSTG from an N-group. A

GSTG G also has a unique ascending invariant N-series,

whose length is denoted by e(G). We show by example

that e(G) need not equal m(G).
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INTRODUCTION

Some well-known classes of finite groups can be

described in terms of their Sylow structure. P. Hall [6]

showed that finite solvable groups are characterized by

the existence of a complete set of permutable Sylow

subgroups. And finite nilpotent groups are known [13] to

be the direct product of their Sylow subgroups. Recently

Huppert [9,10] has characterized groups in which any two

Sylow subgroups of different orders permute as groups.

The aim here is to study groups which satisfy a

normalizer condition (N) on a collection of subgroups.

If S is a collection of subgroups of a group, we say S

satisfies (N) if, for every pair of subgroups of rela-

tively prime orders in S, at least one normalizes the

other. In chapter I we take a complete set of Sylow sub-

groups for our collection of subgroups. If some complete

set of Sylow subgroups of a group satisfies (N), the

group is called a generalized Sylow tower group (GSTG).

The collection of subgroups considered in chapter II is

the set of all Sylow subgroups of a group. A group G is

called an N-group if the set of all Sylow subgroups of G

satisfies (N). It is clear that every N-group is

necessarily a GSTG.

In chapter III we take a Sylow system of a group for

our collection of subgroups. This choice is based on the

work of P. Hall [6] on solvable groups. A group G is
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2

called a strongly Sylow towered group (SSTG) if some Sylow

system of G satisfies (N). In chapter IV we try to

measure the deviation of an arbitrary GSTG from being an

N-group. To accomplish this, we consider the normal series

with N-factor groups of a GSTG. Among these series there

is a unique descending invariant series, called the lower

N-series of the group. This series is similar to the

hypercommutator series of a solvable group. The length of

the lower N-series of a GSTG gives the deviation of the

group from being an N-group. There is also a unique

ascending invariant series of a GSTG, called the upper

N-series of G. An example shows that the length of the

lower N-series may be shorter than the length of the upper

N-series.
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CHAPTER I

Solvable groups are characterized [6] by the existence

of a complete set of permutable Sylow subgroups. We replace

the permutability requirement by a normalizer condition

(N) and examine groups with a complete set of Sylow sub-

groups which satisfies (N). This class of groups includes

the Sylow tower groups (STG) among others and so we call

such groups generalized Sylow tower groups (GSTG). The

main result shows that the nilpotent length of a GSTG G

is at most n(G), the number of distinct prime divisors

of IGI. And if the nilpotent length of G equals v(G),

then G is a STG. We conclude the section with a

construction process which yields GSTG's of arbitrarily

high nilpotent length.

For the sake of completeness and easy reference, we

include some definitions and basic theorems for solvable

groups.

W4 [1+]

If G is a solvable group of order mn, where

(m,n) = 1, then

i.) G has at least one subgroup of order m

ii.) any two subgroups of G of order m are

conjugate

iii.) any subgroup of G whose order divides m

belongs to some subgroup of order m.



11;

lov‘

.1

so

I‘~

 

a

(
'
7
3

C\'

i...

 

I
.
“

(
I
)

a
)

:
I

n
o

1
-
4

U
)

(
U

,
L
:



D E' 1!. J 2

A subgroup H of G is called a Hall.suhgndup of

G if (IH|,[G:H]) = 1. If r is a set of primes, then

a Hall subgroup H of G is a Hall m;suhgrgnp of G if

C(H) g n. For a set of primes a and a group G, G”

will denote a Hall r-subgroup of G.

A . . al 32 ar
Let G be a finite group of order pl p2 °-°pr ,

where pl,p2,---,pr are distinct primes. If Si is a

Sylow pi-subgroup of G (i = l,2,°-°,r), then a set

J = {51’52’°'°’Sr} is called a mists set at 511m

subgroups of G. A complete set of pairwise permutable

Sylow subgroups of G is called a Sylow basis of G.

The set of 2r Hall subgroups of G formed by taking

all (group theoretic) products of members of a Sylow basis

of G is called a Sylow system of G.

.Definitidn_li&

Let ‘29 and 7 be Sylow systems of a group G.

We say a? and ‘7’ are coniugate if for some g E G,

Tg E J for all T 6’5“. We denote this by 7g = A) .

.Ihedrem_li5 [5]

A finite group G is solvable if, and only if G

has a Sylow system.

.Thenrem_lié [6]

All Sylow systems of a solvable group G are conjugate.
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W[6]

Let H be a subgroup of the solvable group G and

let 7’ be a Sylow system of H. Then there is a Sylow

system J of G such that ‘7 = {S (THIS 63/}.

.Dfifiiniiifln_li5

If J is any Sylow system of G, the system mm-

liner, NG( .3), associated with .3 is the set of elements

in G which normalize every member of .3:

NG(el) = {g 6 G ISg = S, for all S 6 3 }.

One can easily show that the system normalizer NG(~l)

is the intersection of the normalizers of the Sylow sub-

groups which belong to J

W [7]

The index of a system normalizer in G is the number

of distinct Sylow systems of G.

W[7]

A system normalizer NG(:J) is the direct product of

. _ , _
lts Sylow subgroups Ni’ where Ni — Si n NG(Si ), Si —

Sylow pi-subgroup of .9 and 81' = Sylow pi-complement

of .4 .

We are now ready to introduce the normalizer condition

(N) which is used throughout this work.

W

Let I; be a collection of subgroups of a group G.



6

We say ._g£_satisfies__£fll if, for any two subgroups of

relatively prime orders belonging to .3 , at least one of

the subgroups normalizes the other.

D E' 'I' J 12

If G has a complete set of Sylow subgroups which

satisfies (N), G is called a_generalized_§ylgw_tgmer

sump (GSTG).

2 'I' J 13

A GSTG G is necessarily solvable.

moi:

Let 2y = {81,82,---,Sr} be a complete set of Sylow

subgroups of G which satisfies (N). Then 8.8. = 8.8.
l J 3 l

for 1.5 i.$ jys r and a? is a Sylow basis for G. By

Theorem 1.5, G is solvable.

C]

W'

A finite group G is called a.fileW.LQE££.£ZQup (STG)

if every nontrivial factor group of G has a nontrivial,

normal Sylow subgroup.

Equivalently a group G. is a Sylow tower group if G

has an ascending series of normal subgroups S1 with

S0 = l, Sk = G and Si/Si__l = the normal Sylow pi-subgroup

of G/Si-l' This series is called a Sylow.tgwer of G.

W

If G is a STG, then G is a GSTG.
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7

.Ezggf: (Induction on W(G)).

If r(G) = l, G is a p-group and the assertion is

trivial. If W(G) = 2 and G is a STG, then G has a

normal Sylow subgroup and G is clearly a GSTG.

Now assume the theorem holds whenever r(G) S k and

let G be a STG with w(G) = k + 1. Since G is a STG,

G has a normal Sylow subgroup S. Let S‘ be any

complement of S in G. S' is a STG and n(S') = k.

By induction, 8' has a complete set of Sylow subgroups

{T1,T2,°'°,Tk} which satisfies (N). Since S is a

normal subgroup of G, {S,T1,T2,'°°,Tk} is a complete

set of Sylow subgroups of G which satisfies (N) and so

G is a GSTG.

C]

W

If G is a GSTG, then every Sylow basis of G

satisfies (N).

EIOQ£=

Since G is a GSTG, some complete set of Sylow sub-

groups of G, .3 = {Sl,'°-,Sk}, satisfies (N). Then 23

is a Sylow basis of G which satisfies (N). If .73 is

any other Sylow basis of G, then by theorem 1.6

I7 = 43g = {S g,"°,Skg} for some g 6 G. Since

81; NG(sj) implies sig 5 NG(Sjg), ’5’ = .83 satisifes

(N).

C]
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8

More generally, whenever a collection a: of subgroups

of a group G satisfies (N), every conjugate 3g (g 6 G)

of 93 satisfies (N).

We now study the inheritence prOperties of the class

of GSTG's.

Lemma_l.._lZ

If G is a GSTG and H is a Hall subgroup of G,

then H is a GSTG.

Emmi:

Let as = {Sl,'°°,Sk} be a complete set of Sylow

subgroups of G which satisfies (N). Let

K = Si '°° Si be the product of those Sylow subgroups

l m

of 3 whose orders divide IHI. Then K is a Hall sub-

group of G and IKI = |H|. By theorem l.l K is conju-

gate to H and hence H = Kg for some g 6 G. Then

{Sig,°° °°,Sig} is a complete set of Sylow subgroups of

l m

H which satisfies (N). U

W

If G is a GSTG and H is a subgroup of G, then H

is a GSTG.

.Ezggf: (Induction on IGI)

Assume the theorem holds for all groups of order less

than IGl. If w(H).§ n(G), then H lies in a prOper

I‘Iall subgroup H of G. By the preceding lemma H is a

GSTG. Induction then implies that H is a GSTG.
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9

Now let W(H) = V(G). If ()4 is any Sylow system of

H, then, by theorem 1.7, there is a Sylow system :3 of

G such that 74 = {H O S IS Gig }. Since W(H) = F(G),

H n S is nontrivial for every 8 E El . In particular

then, if {Sl,°° °°,Sk} is the set of all Sylow subgroups

of .3 , {H n 31,” °°,H 0 SK} is a complete set of Sylow

subgroups of H. By theorem 1.16 {Sl,°° °°,Sk} satisfies

(N) and consequently {H n Sl,°° o»,H fl Sk} satisfies

(N). Then H is a GSTG. ~ E]

Lemma_l..13 [Um-131+]

Let G be a finite group and let a be a homomorphism

of G onto Ga. Then P is a Sylow p-subgroup of Go

if, and only if P = G;’ for some Sylow p-subgroup Gp

of G.

W

The homomorphic image of a GSTG G is again a GSTG.

Email:

Let a be a homomorphism of G onto GO and let

.J = [Sl,°° °°,Sk} be a complete set of Sylow subgroups

of G which satisfies (N). By lemma 1.19,

.30 = {Sl°,°° ”’SkO} is a complete set of Sylow subgroups

of GO. Since Sf, normalizes 85’ whenever Si normalizes

s., .3“ satisfies (N) and GO is a GSTG. [:1

Suppose H is a normal subgroup of G and both H

and Q/H are GSTG's. Can we conclude that G is a GSTG?
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10

The following examples show that we cannot answer "yes" even

for simple cases.

.Examnla_le

AM is a GSTG, since the Sylow 2-subgroup of Ah is

normal. And Sh/Au is a cyclic group of order 2. Yet

SM is not a GSTG since W(Sh) = 2 and SM has no normal

Sylow subgroup. Hence a GSTG extended by a cyclic group

of prime order is not necessarily a GSTG.

Example_2.

S3 x A“ is not a GSTG since 1T(S3 x Ag) = 2 and

S3 x AG has no normal Sylow subgroup. Yet both C36 S3

and S3 x AH/C3 are GSTG's. This shows that an extension

of a cyclic group of prime order by a GSTG is not necessar-

ily a GSTG.

Relative to this question however, we can show the

following.

W

G is a GSTG if, and only if G/z(G) is a GSTG.

£19m:

Because of theorem 1.20, we need only show the necessity.

Choose :8 = {G1,°° °°,Gk} to be a complete set of

Sylow subgroups of G such that

3: {G12(G)/Z<G),.. ", GkZ(G)/Z(G)} is a complete set

of Sylow subgroups of Q/Z(G) which satisfies (N).
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Suppose GiZ(G)/Z(G) normalizes GjZ(G)/Z(G) for

1.3 i, j.$ k. Then (GjZ(G))x = Gj . Z(G) for all

x 6 G1. Since Gj 4 G5 - Z(G) and

x 0G3 .g (GJ 2(0))x Gj - Z(G), G;‘= Gj, the unique Sylow

pJ-subgroup of G3 . Z(G). Hence, GiZ<G)/Z(G) normalizes

G.Z(G) . J
a y/Z(G) implies 61.5 NG(GJ) and it follows that

satisfies (N). D

.dedllazz_l.22

Let Z,(G) be the hypercenter of G. G is a GSTG

if, and only if 9/2 (G) is a GSTG.

‘Ezggfz Theorem 1.20 shows the sufficiency.

Let 1 4 Z(G) = leI '- -- 4 Zk = Zm(G) be the upper

central series of G defined inductively by Zi+l/Z = Z(Q/Zi)'

1

By the isomorphism theorems

._G_. __G_.

.41 g' zk-l/I : Zk-l/

Zk Z z(G/Z )

zk_l k-l

__G_.

G Zk-l
Since /z is a GSTG, /' G is a GSTG

k z( /Z

k-l

and theorem 1.21 implies 9/2 is a GSTG. Proceeding

. k-l

th
inductively shows at the k step that G is a GSTG.

C]
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12

We now consider the direct product of GSTG's.

D E' 'I' J 23

Let :9 be a collection of Sylow subgroups of a group

G. If all Sylow p-subgroups of a? normalize all Sylow

q-subgroups of :9 , where p and q are distinct primes,

we sayWand write

10 "P q~

.Dfifiniilgn_l&ZE

Let H and K be GSTG's and let °H= {Hl,-°-,HS}

and I< = {Kl,°-°,Kt} be complete sets of Sylow subgroups

of H and K (reSpectively) which satisfy (N). We say

H and K are .LN);similar if for any pair of distinct

primes p, q E C(H) O C(K), either

1) p '17) q and p :5) q

or ii) 0‘7? p and Q?) Do

Since any two complete sets of Sylow subgroups of a

group which satisfy (N) are conjugate, definition 1.2%

is independent of the choice of the sets “H and ‘K .

The proofs of theorems 1.18 and 1.20 show the following.

W

If H and K are subgroups of a GSTG, then H and

K are (N)-similar GSTG's.

E 'I' J 25

If H and K are normal subgroups of a GSTG G, the
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factor groups 9/H and 9/K are (N)-similar GSTG's.

We can now describe the direct product of GSTG's.

W

H x K is a GSTG if, and only if H and K are

(N)-similar GSTG's.

Brim:

Pr0position 1.25 shows the sufficiency. To prove

the necessity, let H and K be (N)-similar GSTG's and

let 7( = {Hr Ir 6 c(H)} and TC = {Kr Ir 6 c(K)} be

complete sets of Sylow subgroups of H and K which

satisfy (N). The set :3 = {Hr x Kr |Hr = 1 if r t C(H),

Kr = 1 if r é C(K); r E C(H) U c(K)} is a complete set

of Sylow subgroups of H x K. Let p and q be distinct

prime divisors of IH x KI. Since H and K are

(N)-similar we may assume p gr> q and p';:> q. Then

H N H K N K H Kp.$ H( q)’ p'3 K( q) and consequently p x p

normalizes Hq x Kq. Since p and q are arbitrary, 8!

satisfies (N) and H x K is a GSTG.

C]

The previous result can be extended to central products.

D E' 'I' J 28

A group G = H - K with H O K.g Z(G) and H.$ CG(K)

is called the central_ngdnct of H and K.



1h

W

The central product of H and K is a GSTG if, and

only if H and K are (N)-similar GSTG's.

‘Erggf: Theorem 1.25 shows the sufficiency.

To verify the necessity, let H and K be (N)-simi1ar

GSTG's. Since H.$ CG(K), M = H O K is normal in

G = H ° K. Then H/M and K/M are (N)-similar GSTG's

and hence 9/8 = H/M x 3/“ is a GSTG. Therefore

.9

.11.. g M .

z(g) /Z(G) is a GSTG and theorem 1.21 shows G is

M

a GSTG. ‘ C]

The class of all (N)-similar GSTG's may be shown to

be a formation in the sense of Gaschfitz [3].

Lamma_l_._3.0

If H and K are normal subgroups of G, then

Q/HITK is isomorphic to a subgroup of 9/H x Q/K.

Emmi:

Define the mapping t : G'-> 9/H x Q/K by

t(g) = gH x gK, for all g 6 G. t is a homomorphism into

Q/H x G/k whose kernel is H n K. G

E 'I' J 3]

Let H and K be normal subgroups of G. If 9/H

and G/k are (N)-similar GSTGfs, then Q/HIlK is a GSTG.
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limit:

If Q/H and Q/K are (N)-similar GSTG's, then

G/H x G/k is a GSTG. Since G/HITK is isomorphic to a

subgroup of G/H x Q/k, Q/HITK is a GSTG. [3

D E' 'I' J 32

A formation F is a collection of finite solvable

groups satisfying

i) 1 e F

ii) G e F implies every homomorphic image of G

belongs to F

iii) Nl and N2 normal subgroups of G with

9/ 9/ . . G

, 6 F lmplles / 6 F.

The formation is saturated if 9/i(G) 6 F implies G E F.

Let * be a relation on the set of all primes. A

GSTG G is compatible_with__i if, for some complete set

of Sylow subgroups 43 of G, p’tq implies the Sylow

p-subgroup of :8 normalizes the Sylow q-subgroup of :8 .

Then if H and K are GSTG's compatible with a relation

*, H and K are (N)-similar. Consequently, theorems

1.26, 1.27 and 1.31 show that the set of all GSTG's

compatible with a relation * is a formation. It is not

known if the formation is saturated.

The following definitions and theorems are needed

for the main result of this section and for chapter IV.
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D E! 'I' J 3

Let G be a solvable group.

i) The Eitting_suhgronp of G, denoted F(G), is the

maximal normal nilpotent subgroup of G. It is

well known [13, p.166] that F(G) is the product

of all normal nilpotent subgroups of G.

ii) The Eitting_series of G is defined inductively

F

_ i+l _ G _

iii) The length of the Fitting series of G, denoted

z(G), is the nilpotent_length of G.

iv) A normal series with nilpotent factors is called

a.nilpntent_series-

We combine several results of Spencer [12] in the

next statement.

.Ernnnsiiidn_li35

Let G be a solvable group. Then

i) The length of any nilpotent series of G is

greater than or equal to L(G).

ii) For a normal subgroup K of G, £(Q/K) S L(G).

iii) For H a subgroup of G, £(H) S £(G).

iv) For normal subgroups H and K of G,

£(Q/HI1K) .3 max [£(G/H), £(G/K)}.

v) z(9/¢(G)) = £(G).
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We are now able to state the main result of chapter I.

W

If G is a GSTG, then £(G) _<, 1r(G).

Proof: (Induction on IGI).

If F(G) g 2, then G has a normal Sylow subgroup and

surely £(G) g F(G).

Let G be a GSTG with F(G) = k.2 3 and take .J

to be a complete set of Sylow subgroups which satisfies

(N).

Case 1. G has a normal Sylow subgroup, T (say).

Since G is a GSTG, the factor group 'G = Q/T is

a GSTG. W(G) = k-l and by the induction assumption

k -lJ Hence 'G has a nilpotent series2(6) _<. m(E)

._ H H -
l = T/T Q l/T 4 00.4 k l/T : G/T.

Then 1‘4 T 4 H14 °°°.4 HK-l = G is a nilpotent series

of G of length. k and theorem 1.35 (1) implies L(G) S R.

Case 2. No Sylow subgroup of G is normal.

Since G is a GSTG, G is solvable and has a minimal

normal subgroup M, which has prime power order. Let

IMI = pm and let P denote the maximal normal p-subgroup

of G. If SD is the Sylow p-subgroup of G belonging

to J , then Sp contains P.

By assumption Sp,§ G. Then, for some prime q i p,

the Sylow q-subgroup Sq of :3 fails to normalize Sp.
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Since :8 satisfies (N), this means Sp normalizes Sq

Then Sq‘g CG(P) = C, because P normalizes Sq, P 4 G

and (IPI, ISqI) 1. Notice that, since P 4 G,

c = CG(P) .4. G.

Now let P C O P denote the maximal normal
0

p-subgroup of C. Since P is a G

p-group, Z(P) # l and

1:} Z(P)_§ PO. Since sC1 g c,

C . . . _
/PO is a nonterlal C — CG(P) P

solvable group and therefore

S CIlP = P0

has a minimal normal subgroup

Y/P i'I. Suppose IY/P I is a power of the prime r.

o 0

Now r # p, for r = p implies that V is a normal

p-subgroup of C prOperly containing Po - contradicting

the maximality of PO. Let W/P denote TG

o

the maximal normal r-subgroup of C/P . "CG(P)

o

W . . . . "W
Then /P 18 characteristic in

0
hp

0

 
C/p‘a G/P and hence normal in Q/P .

o o o

By the isomorphism theorems, W 4 G.

Since W centralizes P and W/P is an r-group,

o

W = W6 x PO where W0 is the Sylow r-subgroup of W.

Since the normal Sylow r-subgroup WO of W is character-

istic in W 4 G, W0 is normal in G.
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. G G

Now conSlder the factor groups /P and /w . By

0

the induction hypothesis, £(Q/p) S ”(Q/P) = k and

£(9/w ).$ ”(Q/w ) = k. Since P n WO = l, PrOposition

o o

1.3M iv) shows that £(G) = ‘(Q/prlw ).g k and the theorem

0

is proved. D

Lemma_l.._12

Let G be a STG with £(G) = r(G). If s and T

are Sylow subgroups of G having relatively prime orders,

S does not centralize T.

Ezggf: (by minimal counterexample)

Assume that G is a STG of minimal order which satis-

fies the hypothesis of the theorem but fails to satisfy the

conclusion. Then £(G) = F(G) = n.2 3 and G has a

Sylow tower

l 4 S 4 S S ‘3 .. .. 4 S '°S S = G,
1 2 l n 2 l

where Si is a Sylow pi-subgroup of G (i = l,2,°°°,n).

The factor group 9/8 is a STG with ”(9/8 ) = n-él.

l I

Since 9/8 is a STG and 2(6) 2 n, 1(9/8 ) = n-l = r(9/S ).

l l 1

Consequently, by the minimality of G, no Sylow subgroups of

Q/ having relatively rime orders centralize one another.
31 p

But, since we assumed G does not satisfy the conclusion

of the theorem, some Sylow pj-subgroup T of G centra-

lizes some Sylow pk-subgroup V of G. Then the Sylow

TS

pj-subgroup 1/S of 9/8 centralizes the Sylow

l l
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VS

p -subgroup 1/ of 9/ .
k S S

l l .
TSl ._ V31 ._

This is impossible unless /S = l or /S = l.

l 1

Consequently j = l or k = 1 and we may assume that the

Sylow pk-subgroup V of G centralizes 81' Since

S1 4 G and Sk = Vg for some g e G, Sk centralizes 81'

Since 81‘4 G, CG(Sl) is a normal subgroup of G

containing Sk' Let m be the smallest integer, 2.$ m.$ n,

for which pm |cG(sl)| and put R = sIn -- 3251 n cG(sl).

R is a normal subgroup of G and by the choice of m, p1

and pm are the only prime divisors of .|R|. Since

R.S CG(Sl), any Sylow pm-subgroup Rm of R centralizes

the normal Sylow pl-subgroup R1 = Sl n CG(Sl). Then

R = R1 x Rm and Rm is a characteristic subgroup of the

normal subgroup R of G and hence lea G.

Suppose Rm is a Sylow subgroup of G. Then

RmSl = Rm x Sl is a normal nilpotent subgroup of G and

1 4 313m“ S251Rm“ " “Sm-1"S2Slfim‘ Sm+lSm--l' "(3251Rm""“G

is a nilpotent series of G having length n-l. Then

prOposition 1.35 1) implies 1(G).$ n - l, which is a

contradiction. Therefore Rm is not a Sylow subgroup of

S

G and consequently we are assured that kRm/R is a

m

nontrivial Sylow pk-subgroup of Q/Rm. Since Sk.$ CG(Sl)’

S R S R

k m/R centralizes l R/R . Then v(G/R ) = n and the

m m m

minimality of G imply 1(9/R ) < n. 'Since ‘(Q/S ) < n

m l



21

and Rm 0 S1 = l, prOposition 1.35 iv) implies that

£(G) = £(Q/R OS ) < n - which is a contradiction.

m l E]

.Theorem_llld

If G is a GSTG and £(G) = v(G), then G is a STG.

Exggf: (Induction on IGI).

If w(G).$ 2, G has a normal Sylow subgroup and

clearly G is a STG.

Let G be a GSTG with £(G) = F(G) = n.2 3. We

distinguish two cases.

Case 1. G has a normal Sylow subgroup K.

Q/K is a GSTG and, by theorem 1.36,

2(G/k).s "(Q/K) = n-1. Since £(G) = n, we must have

1(Q/K) = n-l. Then the induction assumption implies that

G/K is a STG. Let G/K have Sylow tower

S K S °°°S K
—' K I -l l G
l 2 /K4 /K4 oo 00 d n /K: /K, Where 81

is a Sylow pi-subgroup of G. Then

1 a K 4 le 4 ~ . . 4 sn_l---le = G

is a Sylow tower of G and G is a STG.

Case 2. No Sylow subgroup of G is normal.

Then, as in the proof of theorem 1.36, there exist

normal prime power order subgroups M1 and M2 of G

with (|M1|,|M2|) = 1. Consider the factor groups Q/M

l

and G/M of G. If z(Q/M ) < n and L(9/M ) < n,

2 l 2
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prOposition 1.35 iv) implies £(G) < n, a contradiction.

Therefore we can assume £(Q/M ) = n. Since Ml cannot

1

be a normal Sylow subgroup of G, r(G/M ) = n = 2(9/M )

l l

and the induction assumption implies G/M is a STG.

, l

M S M S °°°S M
'— l 1 l n l l G

M1 M1 M1 M1

be a Sylow tower of G/M , where Si is a Sylow pi-subgroup

l

of G (i = l,2,--°,n). Furthermore, choose Sn to be the‘

Sylow pn-subgroup of a Sylow basis :3 of G which satis-

fies (N) and contains Slo

Suppose M1.$ Sk’ for some k < n° Then

H = Sk"SlMl = sk-osl

since £(G) = n, L(H) = H(H) = k, By the induction assump-

is a normal Hall subgroup of G and,

tion H is then a STG and consequently has a normal Sylow

subgroup W. Since H is a normal Hall subgroup of G,

‘W is then a normal Sylow subgroup of G - a contradiction.

Consequently, since a normal p-subgroup of a group lies in

every Sylow p-subgroup of the group, we must have Ml.$ Sn'

Since S1 and Sn were chosen to belong to a Sylow

'basis 3 cd‘ G- which satisfies (N), either Sl normalizes

Sn or Sn normalizes 81' Suppose first that Sn.$ NG(Sl).

Then M normalizes S1 and SlMl 2 S1 x Ml’ since
1

[Sl’Ml]'S S1 0 M1 = 1. Consequently S1 is a characteristic

. subgroup of SlMl a G- and hence S1 is a normal Sylow

pl—subgroup of G - a contradiction. Now suppose
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81.3 NG(Sn). Since SlMl'd G, we then have that the Sylow

S

pl-subgroup 1 1/M of 9/M centralizes the Sylow

l l

S M S
_ n l _ n G

pn subgroup /M1 - /Ml Of /Ml. Consequently, since

G

/M1 is a STG, z(9/M ).$ n-l - which is a contradiction.

1

Therefore this case cannot occur and the theorem is proved.

C]

The remainder of the chapter is devoted to showing

that GSTG's of arbitrarily high nilpotent length do exist.

The construction process given utilizes wreath products,

which we now describe.

Let A and B be finite groups and let AIBl denote

the direct product of IBI GOpies of A. Suffix the IBI

IBI by the elements of B and constructdirect factors of A

a group W = A wr B, which is the extension of AlBl by B.

To complete the definition of W, we Specify the automorphisms

induced on AIBI by the elements b e B. If a 6 Ab ,

i

-161b as the element corresponding to a in

-1

define b

IBI.
Ab b“ This determines b rlb for any element n 6 A

i

The group W = A wr B is called the.mneaih.pzndnnt.nf .A

.hy .B and its order is IAIIBI ° lBI.

W

If A and B are GSTG's of relatively prime orders,

A wr B is a GSTG.
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Email:

Let _O-= {A1,°°,Ak} and Q> = {Bl’°°’BL} be Sylow

bases of, A and B (reSpectively) which satisfy (N).

Let AilB' denote the subgroup of AIBI which is the

direct product of IBI c0pies of A1 (i = 1,°°,k)° Then

A1IBI is a Sylow subgroup of AIBI and every element of

B normalizes AiIBI (i = 1,°°,k). Furthermore,

A1 3 NA(A.) implies AiIBI normalizes Aj IBI. Therefore

WV'= {A1|B|,°-,Ak|BI,Bl,°°,B£} is a Sylow basis of

W = A wr B which satisfies (N). D

LemmaJIItO

Let A and B be finite groups and let K;g A. If

w = A wr B, then W/KIBI '5' A/K wr B.

Proof:

KIBI is normal in w = AIBI . B, since KIBI <_i AIBI

and by the definition of multiplication in W, B normali-

zes KIBI. We will show that the mapping

o : boal-°°alBl'—> b°alK°°a|B|K for b E B, a1 6 Abi

is a homomorphism from W to 4/K wr B with kernel KlBl

and image A/K wr B.

Clearly the mapping is well-defined and has image

A IBI,[K wr B. Let c,d 6 B and ni,gi 6 Abi S A for

i = l,°°,|B|.

(l) m is a homomorphism.
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r 00 o .0 ——

w L(C g1 g|B|) (d nl n|B|)] -

m (c

m [cd (gl°°g|B|)d(nl°°nlB|)] =

d

m [Cd (hlnl°°h|B|n|Bl)]: ht : gs 6 Ab 3 S: t : 1929°°lBl

Cd (hlanoohlBlnlBlK)

= cd (th°°h|B|K)(an°°nlBlK)

u .. d ..
— cd (glK gIBIK) (an nlBlK)

: [C(glK°°g|B|K)][d(an°°n|BIK)]

m (cgl°°g|B|) ° w (d nl°°n|B|).

(2) Ker co=K|B|.

oo __- lBl oo — lBl

g1 ng|)-l—K ecglK nglK—K

e c = l and g. 6 K i = l °° IBIl bi 3 9

B
G C gl°°ng| E Kl ‘. U

W [13, p.167]

If G is a finite group, then Fit(G) = e in | K(p),

P G

where K(p) is the intersection of all Sylow p-subgroups

of G and Fit(G) denotes the Fitting subgroup of G.

As a corollary of theorem 1.Hl, we have the following.

Lemma_li&2

If G = G x Gk is the direct product of finite
l Xoo

STOUps, then Fit(G) = Fit(Gl) X°°X Fit(Gk).

.Ezanasiiion_lla3

If G is a finite group of nilpotent length k and
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C = <c> is a cyclic group of order 2, (IG|,£) = 1, then

G wr C has nilpotent length k + l.

.Eroof=

(1) Fit (G wr c) = (Fit(G))lCI.

By lemma l.h2 Fit(G|C|) = (Fit(G))|C| and consequently

(Fit(G))|C| is a normal nilpotent subgroup of G wr C.

Hence (Fit(G))ICI S Fit(G wr c).

SUppose (Fit(G))ICI < Fit (G wr C) and let

d°n e Fit(G wr c)\\(Fit(G))|C|, where d e c and n e GICI.

Then d = c1 for 1.3 i < A.

dt’1 d .
n - o n 11 for any integer t,Since (dn)t = dt

d-n has order j-z' where jllGIlCl and 1 # L"£. Then

(dn)j has order 1' and (dn)j 6 Fit(G wr C). Since

G wr C is solvable, there exists x 6 G wr C such that

(dn)j 6 0x and therefore (dn)j = (cw)x for some w,

1.$ w.; 2. Then cw e Fit(G wr C) and Fit(G wr C) has

a nontrivial Hall subgroup H whose order divides ICI.

Then, H.g C and hence H.$ Z(G wr C) - since C is

cyclic and (IH|,|G|) = 1. This is impossible and there-

fore we must have (Fit(G))|C| = Fit(G wr C).

Now use induction on £(G) to complete the argument.

If £(G) = 1, then surely L(G wr C).$ 2. If £(G wr C) = 1,

then G wr C = G x C, which is nonsense. Therefore

£(G wr C) = 2 in this case.

Let £(G) = m and put F = Fit(G). Then 2(9/F) = m-l
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and by induction 1(9/F wr C) = m. Applying lemmas 1.HO

G gGWI’C :GwrC
and 1.H2 we have /F wr C — /F|Cl — /Fit(Glm7C)°

G wr C _
Therefore L( /Fit(G wr C)) — m and consequently

L(G wr C) = m + l - and the proof is completed. I]

l’ 2,°°,Cn denote cyclic groups whose orders

are relatively prime in pairs. Then, by the previous results,

Let C C

we see that the repeated wreath product

 

W = ((°(C1 wr 02)wr°°)wr Cn is a GSTG of nilpotent length

n. Hence if k and n are any positive integers and

k,2 n, we can construct a GSTG G with £(G) = n and

1T(G) = k.



Chapter II

In this chapter we consider condition (N) for the

collection of all Sylow subgroups of a group. If the set

of all Sylow subgroups of G satisfies (N), we call G

an N-group. Clearly every N-group is a GSTG. The inheri- .

tance prOperties of N-groups are identical with those of [

GSTG's and certain subclasses of N-groups are (non—satura‘

ted) formations. r

 Using some results of Huppert [10], it is shown that

the nilpotent length of an N-group is at most 2. A

characterization of N-groups as a Special type of product

of nilpotent groups is then obtained. The remaining re-

sults describe the Sylow structure of N-groups or the

structure of groups which just fail being N-groups.

We begin by formally defining an N-group.

D E’ 'Ii 2 1

Let Syl(G) denote the set of all Sylow subgroups

of G. A finite group G is an N;grgnp if Syl(G) satis-

fies (N).

Several observations follow immediately. If G is

an N-group, then every complete set of Sylow subgroups of

G satisfies (N). In particular, every N-group is a GSTG

and consequently is solvable. And since a finite nilpotent

group is the direct product of its Sylow subgroups, a

finite nilpotent group is clearly an N-group. Furthermore,

every group which is a nilpotent group extended by a p-group



 
 

29

is an N-group. S3 is an example of such a group. The next

two examples further describe the position of N-groups re-

..- -. -~

lative to other classes of solvable groups.

We.

The following is an N-group which is not a STG. Let

s 2 3 3
H==®1r <aila.‘2 =l>x®1r <bj ij =1>x®1r <ck|ck5 =l>

i=1 1 i=1 k=l

and k = <x,y,z> g Aut(H), where

x_, _ x__ _
ai ai+l’ bjx- bj’ ck - ck (a6 — a1)

bjy“ bj+l’ aiy= ai, cky= Ck (b3 = b1)

z_ z_ z_ _
ck — Ck+l’ ai — ai, bj — bj (CH - cl).

Define G to be the Split extension of H by K -

= [H]°K. Then G is an N-group whose Sylow structure

is described by ,(’5*\ . Since G has no normal

-——>

Sylow subgroup, G is not a STG.

.Example_21

A supersolvable group which is not an N-group. Let

G be the Split extension of C7 = < x Ix7 = l > by

.Aut(C7) = < y Ixy = x3 > 5 C6’ and put G2 = <y3>,

G3 = <y2>. G is supersolvable since 1 4 C7 4 07G3 4 G

is an invariant series of G with cyclic factors. And G

is not an N-group because 3.3 NG (G2x) and G: .j NG).(G3

E 'I' 2 2

If G is a GSTG and v(G).S 3, then G is either a
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STG or an N-group.

Proof:

If F(G).S 2, then G has a normal Sylow subgroup and

G is a STG and an N-group. Suppose H(G) = 3 and let

{Gp,G Gr} be a Sylow basis for G which satisfies (N).
q,

If G has a normal Sylow subgroup, then G is a STG.

Otherwise we may assume Gp,$ NG(Gq), Gq.$ NG(Gr) and

Gr,$ NG(Gp). We will Show that every conjugate of Gp in

G normalizes Gq. Consider Ggg, for any g E G. Since

G = GpGqu, g = xyz for some x E Gp, y E Gr’ 2 E Gq.

8 = XYZ 2 YZ = Z
Then Gp Gp Gp Gp , since y E Gr,$ NG(Gp).

Since Gp normalizes Gq and z 6 Gq, Gpg = sz norma-

lizes Gq(= qu). Therefore every Sylow p-subgroup of G

normalizes every Sylow q-subgroup of G. The argument may

be repeated to Show qu.$ NG(Gr) and Grg g NG(Gp), for

all g E G. D

W213

Let G be an N-group and let some Sylow p-subgroup

of G normalize some Sylow q-subgroup of G, where p # q.

Then every Sylow p-subgroup of G normalizes every Sylow

q-subgroup of G.

Proof:

Let P E Syl;)(G), Q 6 Sy1<1(G) and suppose P

normalizes Q. Since all Sylow subgroups of G of the

Same order are conjugate in G, it is sufficient to show

that Fx normalizes Qy, for all x,y E G.
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Since every complete set of Sylow subgroups of G forms

a Sylow basis, PX and Qy belong to some basis 7’ of

G. Likewise P and Q belong to some Sylow basis .J

of G. By theorem 1.6 a? and 7' are conjugate in G

and so there exists g E G such that PX 2' Pg, Qy = Qg. Pl

Since P normalizes Q, Pg normalizes Qg and we are 7

done. [I]

We now examine the inheritance prOperties of N-groups.

 Lemmaiiit t

Let H be a subgroup of G. If P is a Sylow p-

subgroup of H, then P = H O'P for some Sylow p-subgroup

P of G.

Proof:

By theorem 1.1 P lies in some Sylow p-subgroup P

of G. Then P g H n ”p. Since H n p is a p-subgroup of

H which contains a Sylow p-Subgroup P of H, we must

have P = H n'E.

W

If G is an N-group and H.g G, then H is an N-group.

Proof:

Let P e Syl p(H), Q 6 Syl q(H) where p +q. By

lemma 2.# there exist subgroups P E Sy113(G) and

QGSy1q(G) such that P=HOP and Q=Hn§. Since

G is an N-group we may assume IQ normalizes P. Then

Q = H O Q normaliZeS P = H HIP. g
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E 'I' 2 5

The homomorphic image of an N-group G is again an

N-group.

Ihxmdh

Let a be a homomorphism of G onto Go. Let

P E Syl})(G°) and Q 6 Sy1<1(G°) where p # q. By

lemma 1.19 there exist Sylow p- and q-subgroups Gp and

G of G such that P = Gp“ and Q = sq“. Since G

q

is an N-group we may assume Gq normalizes Gp. Then

qu normalizes GpO and the assertion follows. C]

The next definition is crucial for the study of

direct products of N-groups.

D E' 'l' 2 2

The N-groups H and K are said to be similar if

for any pair of distinct primes p, q 6 c(H) n c(K), either

  

 

 

i) p > q and p > q

Syl(H) Syl(K)

or ii) q > p and q > p .

Syl(H) Syl(K)

The proofs of prOpositions 2.5 and 2.6 have established

the next results.

W

If H and K are any subgroups of an N-group, then

H and K are similar N-groups.

E 'I' 2 9

If H and K are any normal subgroups of an N-group

G, then 9/H and 9/K are Similar N-groups.
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The next theorem is the analogue of theorem 1.27 for

N-groups.

B 'I' 2 10

H x K is an N-group if, and only if H and K are

Similar N-groups.

Proof:

The sufficiency follows from PrOposition 2.8.

To Show the necessity, let H and K be Similar

N-groups. Let p and q be distinct primes and suppose

 
 

p >q and p >q. If P€Sylp(HxK) and

Syl(H) Syl(K)

Q E Sy1<1(H x K), then P = Hp x Kp and Q = Hq x Kq for

some HI) 6 Sy1p(H), HQ 6 Sy1q(H), Kp 6 Sy1p(K) and

Kq 6 Syl<1(K). Consequently P = Hp x Kp normalizes

Q = Hq x Kq and the assertion follows. C]

The groups SH and 83 x AH’ which were discussed in

the first chapter, Show that an N-group extended by a

cyclic group need not be an N-group and that a cyclic group

extended by an N-group need not be an N-group.

Using the same argument as for GSTG's [theorem 1.21],

we can prove that a group G is an N—group if, and only

if 9/Z(G) is an N-group. Consequently prOposition 2.10

can be extended to central products using the argument for

theorem 1.29. Similarly the proof of prOposition 1.31

carries over to the present case and establishes the next

result.
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E 'I' 2 J]

Let H and K be normal subgroups of G. If 9/H

and 9/K are similar N-groups, then Q/HITK is an N-group.

We are now in a position to see what collections of

N-groups are formations.

D E' 'I’ 2 12

Let * be a relation on the set of all primes. An

N-group G is ' * if p * q implies that

every Sylow p-subgroup of G normalizes every Sylow q-

Subgroup of G.

Since any two N-groups compatible with a relation *

are Similar, it follows from prOpositionS 2.6 and 2.11 that

the set of all N-groups compatible with a given relation

* is a formation. The next example shows these formations

are not necessarily saturated.

Example: Let S be the nonabelian group of order

73 and eXponent 7 defined by S = <x,y,z| x7 = y7 = Z7 = l,

y2 = yx, xZ = x, xy = x>. S is generated by y and z

and S' = <x>. Let D be the group of automorphisms of S

defined by D = <<i| d6 = 1, yd2 = y2, zd2 = z, yd3 = y,

3

zd = 26 >. Take G to be the Split extension of S by

D. Then Q(G) = <:x> = S' and

2 3
G _ <y d ,x> (Z d ,x> . G

/i(G) ‘ ’ /<x> x ’ /<x> ' Since /i(G)

is the direct product of similar N-groups, Q/Q(G) is an
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N-group. Yet G is not an N-group because

<d2>x.4 NG(<d3>) and <d3> i NG(<d2>x).

Huppert [10] has studied groups which satisfy (V):

every pair of Sylow subgroups of different orders permute

as subgroups. He proves the following result.

.Theorem_2113

If G satisfies (v), then 9/§(G) is isomorphic

to a subgroup of a direct product of groups of orders

a b

pi i qi 1, where pi and q1 are primes (not necessarily

distinct).

As a consequence of this we have the following.

luxuxmndfirulJLGUT

If G is an N-group, then L(G).S 2.

Taxman

Since an N-group clearly satisfies (V), theorem 2.13

shows /§(G) — H.§ ® izl Ti’ where ITiI — pi qi .

For each integer k, 1.3 k.$ n, define the projection

wk of H into Tk by wk (t1'°tk--tn) = tk, where

ti 61%.” Since H is isomorphic to a factor group

of G, H is an N-group. Consequently the homomorphic

image of H under ”k’ denoted Im(vk), is an N-group for

k = 1,---,n. Since Im(wk) S Tk’ at most two primes

divide IIm(nk)I and so £(Im(nk)).$ 2. Since

n

H.$ e 'r Im(wk) proposition 1.35 implies

k=1

3
.
-

.
u
!

__
.
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n

£(H).S £( ® v Im (Wk)) 3 max {L(Im(vk)} S 2. Conse-

k=l l$k$n

quently £(G).$ 2. C]

We now examine N-groups having nilpotent length exactly

 

2 more closely. .

.. : I
Let G be a group with normal subgroup H. We say t

KisapantialrdmillemenLQIZ—HJJ if G=HoK and L

K is a prOper subgroup of G. The subgroup H O K is E

normal in K, but is not necessarily the identity.

W [8]

If Q/H is any nilpotent factor of G, then some

system normalizer NG(-?) of G is a partial complement

Of H in G.

Let the hypercommutatgr_gf__fi_ be the intersection of

all normal subgroups K of G such that g/K is nilpotent.

Q/fi (G) is nilpotent and Hm(G) is the minimal (normal)

subgroup with this prOperty. If £(G) = 2 and G is an

A-group (i.e. all Sylow subgroups of G are abelian),

Taunt [1%] shows that any system normalizer of G is a

complement of Hm(G).

We can characterize N-groups as a Special product of

nilpotent groups.

.Iheglem_ZLlZ

Let G satisfy (v). Then G is an N-group if, and
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only if

(1) G is a partially complemented extension of a nil-

potent group H by a nilpotent group K

and (2) if p and q are distinct primes, then Hp norma-

lizes Kq or Hq normalizes Kp.

.EIQQ£=

Let G be an N-group of nilpotent length 2. By theorem

2.16, G = Hm(G) ~ NG(-!) for some system normalizer

NG(.J) of G. Since Z(G) = 2, Hm(G) is nilpotent and,

by theorem 1.10, NC( J) is always nilpotent. Consequently

(1) holds.

To verify (2), let p and q be any distinct prime

divisors of (IHm(G)I,IG/fim(G)|). Put H = Hm(G),

K = NG( 3 ) and consider the subgroup L1 = Hp(Kqu) of G.

L1 is an N-group of order paqb and consequently Kq

normalizes Hpr or H Kp normalizes Kq. In the latter

P

case Hp normalizes Kq. In the first case, we may assume

Kq.$ NG(Hpr) and Hpr.i NG(kq) - for otherwise we are

l
is Similar to G, H K must norma-done. Then, Since L q q

l' H K .lze p p

Now consider the subgroup L2 = Hq(Kqu) of G. L2

is an N-group of order paqb and so Kp normalizes

H K H K ' K .q q or q q normalizes p In the latter case,

Hq.S NG(Kp) and we are done. Otherwise we may assume Kp

normalizes HqKq and HqKq i NG(Kp). Since L2 is
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similar to G, we must have Hpr normalizes HqKq.

Therefore H K and H K normalize one another and,

P P q q

since they have relatively prime orders,

H K H K H K n H K = 1. Th' b ' h thI p p’ q q].S p p q q is esta lis es e

sufficiency.

We now show the necessity. Suppose G satisfies (V)

and conditions (1) and (2) hold. We proceed by induction

on w(G).

If G is a p-group, the theorem is trivial. Suppose

G=ab d G=H°K=HH KK.B 2I I p q an let ( p q)( p q) y ( ) we

may assume Hp normalizes K . Since K is nilpotent,

q

Kp normalizes Kq. And Since H is a nilpotent normal

subgroup of G, Hq 4 G. Then Hpr normalizes HqKq

and G is an N-group.

Suppose F(G) = k.2 3 and let p and q be any

distinct prime divisors of IGI. Let Gp and Gq be any

Sylow p- and q-subgroups of G (reSpectively). By Sylow

arguments we then have

G = (H K )x = H K x for some x E G

P P P P P

G: Ky=HKy G.q (Hq q) q q for some y 61

Since G satisfies (V), L = (Hpr)(HqKqyx ) is a sub-

group of G, for all x,y E G. L is a prOper subgroup of

G which satisfies the induction hypothesis and so L is

an N-group. Hence Hpr normalizes Hqqux or HqK yx

K. = KX HKy Gnormalizes Hp p Then Gp Hp p normalizes q q q
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or Gq = Hqqu normalizes HprX = Gp. Since Gp and Gq

were chosen to be arbitrary Sylow subgroups of G, we have

shown that G is an N-group. D

Owing to Taunt's result on A-groups, we see that con-

dition (l) of theorem 2.17 can be improved to complements

(in place of partial complements) for N-groups with abelian

Sylow subgroups. It is not known if this is generally true

for N-groups. The following examples Show the conditions

of theorem 2.17 cannot be relaxed.

Example—l.

Let G be the Split extension of C7 by

Aut (C7) 3 C6' We already know G is not an N-group.

G satisfies (1) and (2), but fails to satisfy (v).

Let W = e

_ X_ X_ V__

and let H — < x,v|ai - ai+l, b. - b., b. — b

a1v = ai, an = a1, b3 = bl >.g Aut (w). Put G = [W]-H,

the Split extension of W by H. G satisfies (V) and

condition (1) but is not an N-group - since F(G) = 2

and G has no normal Sylow subgroup.

In view of theorems 2.16 and 2.17, we try to describe

the system normalizers of an N-group.

E 'I' 2 13

Let G be an N-group. If .3 = {Sl,°°,Sk} isa

Sylow basis for G, then the system normalizer associated

’
M
‘
w
‘
w
u
n
i
-
fi
g
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n

withw3 isN(28)=®1rN,whereN=C
G k=1 k

for T1’ °° O’TL those members of .3 \.[Sk} which norma-

lize Sk'

Proof:

n

By theorem 1.10, NG(a8) = e 'H Li’ where

i=1

L. = S. n N (S.') S.‘ = W S..
G ’ . .l l 1 1 «Ph- J

_ I 000

Let x 6 Lk — Sk n NG(Sk ) and let y 6 T1 T1'

l— — 00

Then [y,x] E Sk n Sk — 1 and so x 6 NK — CSk(Tl T£)'

Conversely, let w 6 CSK(Tl°-T£) = Nk' Then w E Sk

and by our choice of T1’ ."T£’ w e NG(Sk') - since Sk

normalizes all members of :3‘\ {T1,---,TL}, D

The order of a system normalizer can also be computed

using theorem 1.9 : [G : NG(.3)] = the number of distinct

Sylow bases of G. Since the number of Sylow bases for an

N-group G is the number n of complete sets of Sylow

F(G)

subgroups of G, we see n = w [G :NG(Sk)] and

k=1

ING(v8)I = |G|/n.

Although we gave an example to show that G need not

be an N-group whenever Q/§(G) is an N-group, we can make

some progress in this direction.

.Erflnnsition_2119

_ a b G .
If IGI — p q and /i(G) is an N-group, then G

is an N-group.
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3225212:

‘We may assume that 9/§(G) has normal Sylow p-subgroup

G §(G) _ 3
p /,(G). Let W—NG(Gp). If w G, then Gpa G

and we are done. Otherwise W lies in some maximal sub-

Gpi(G) G PI

group S of G. Let x 6 G\(S. Since /§(G)‘¢ ’/§(G)’ ,11

G XMG) G 6(G) G MG) S

we have p /i(G) =< /t(G)>x z p /i(G)$ /i(G)°

Hence pr.3 pr§(G).3 S and there exists 5 6 S with I

x

 
s . xs”1

Gp = Gp . Since Gp = Gp, xs 6 W = NG(Gp) and

(xs-l)s = x 6 S - a contradiction. G

.Eropnsition_2120

If 9/§(G) is an N-group and all maximal (prOper)

subgroups of G are N-groups, then G is an N-group.

.Eroof:

Let Gp 6 Sy113(G) and Gq 6 Syl<1(G) for p t q.

G GqMG)

Since ‘/§(G) is an N-group, we may assume /§(G)

G MG)

' p : :normalizes /i(G)° Let W NG(Gp). If W G, then

G 4 G and we are done. Otherwise W lies in some maximal

P

G §(G)

subgroup S of G. Since q /§(G) normalizes

G 6(G) G XMG) G MG)

p /6(G)’Wesee p /t<G) = (p /i(G))x

GPMG) s x

_ /§(G) .3 /§(G)’ for all x 6 Gq. Hence Gp .3 S
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and there exists 8 6 S with Gp.X = Gps. Then

xs-1 6 W,3 S and x 6 S. Hence Gq_3 S. Since S is an

N-group by assumption and < Gp, G >.3 S, either Gp

q

normalizes Gq or Gq normalizes Gp. D

we mention a result of Rose [11] for classes of groups

closed under homomorphic images (i.e. Q-closed). a

W

Let (3 be any Q-closed class ofgroups. Suppose G

 
is a finite solvable but non-nilpotent group in which every

abnormal maximal subgroup is a e -group. Then G has a

normal subgroup W of prime power order such that 9/W

is a B -group.

Since N-groups form a Q-closed class, the theorem

applies if we let G = class of all N-groups.



Chapter III

The idea of a Sylow system is basic to P. Hall's in-

vestigation of solvable groups. In this section we consider

condition (N) for Sylow systems of a group. If some Sylow

system of G satisfies (N), we call G a strongly Sylow

towered group (SSTG). The inheritance prOperties of SSTG'S

are derived and we give a characterization of these groups.

'We begin with a formal definition.

.Definition_3il

Let G be a solvable group. If some Sylow system

.8 of G satisfies (N), G is calledastronalLsxlow

W (SSTG).

It follows immediately that a SSTG is necessarily a

GSTG. The next examples show that SSTG'S are unrelated to

N-groups.

Examples

Let G = [C7]°C6, the Split extension of C7 by its

automorphism group. Write Aut(C7) = C6 as the product

of its Sylow subgroups, C2 x C3. G is a SSTG since

3 = {l,C7,C3,C2,C7C2,C7C3,0203,G} is a Sylow system of

G which satisfies (N). By a previous remark, G is not

an N-group.

Example—2~

We will Show [PrOposition 3.H] that a SSTG is necessarily
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a STG. Therefore the example of an N-group which is not a

STG, given in chapter II, is an N-group which is not a SSTG.

E 'I' 3 2

If G is a SSTG, then every Sylow system of G satis-

fies (N).

Ifixxfl?

This follows at once from the fact that all Sylow sys-

tems of a group are conjugate [Theorem 1.6]. C]

If G is a SSTG, then every subgroup H of G is a

SSTG.

229.5212:

Since G is solvable, the subgroup H is solvable.

Let ll be any Sylow system of H. By theorem 1.7 there

is a Sylow system J of G such that 'H = {H nsls 6 '8 }.

Since :3 satisfies (N), ‘H satisfies (N). D

E 'I' 3 2

If G is a SSTG, then G is a STG.

,Ezggf: (Induction on F(G))

If r(G).3 2, then G has a normal subgroup and clearly

G is a STG. Suppose Tr(G) = n2 3 and let :3 be a

Sylow system of G. Let T and' W be complementary

(proper) subgroups of G belonging to :8 - i.e. G=T~W

and Tin W = 1. Since :3 satisfies (N), we may assume

T normalizes W. Then W 4 G = T -W.
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By induction, both T and W are STG'S. Let

14Tl4°° °°4Tk°'Tl=T

mm 214Wi4°- ” 4W -°W =W

be Sylow towers of T and W. Then

14W4 H 4W~W==W4TW4-° ~41?--TW=G
1 L 1 1 k l

is a Sylow tower of G and G is a STG. I]

W

Let G be a finite solvable group and o a homomor-

phism of G onto G°. Then L is a Hall w-subgroup of

GO if, and only if L = HO, for some Hall r-subgroup H

of G.

Proof:

Let V be any Hall r-subgroup of G. Then Va is

a Hall w-subgroup of Go, since [G9 :VO] [G :V] and

|V°| IIVI. Since G is solvable, GO is solvable and

theorem 1.1 implies Va and L are conjugate in GO.

Therefore L = (V0)Xo = (Vx)°, some x 6 G. I]

.Bchcslticn_3lfi

If G is a SSTG and o is a homomorphism of G onto

G“, then G“ is a SSTG.

EIQO£=

Let 23 be a Sylow system of G. Then 28° = {SOILS 6.3}

is, by the lemma, a Sylow system of G°. And So normali-

zes To whenever S normalizes T (S,T 6 :8). Therefore

3 0 satisfies (N) and G0 is a SSTG. I3
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In order to study direct products of SSTG'S, we need

to define similarity for SSTG's.

.Deflinition_312

Let H and K be SSTG'S with Sylow systems

34 = [Hnlv.sic(H)] and 7< = {Kw r.§1c(K)]. Let Z and

A be arbitrary disjoint sets of primes. If either

(1) Hz normalizes HA and K2 normalizes KA or

(ii) HA normalizes H2 and KA normalizes K2, we say

H and K are,similar_SSTGle

It is easy to check [PrOpositionS 3.3 and 3.6] that

all subgroups and factor groups of a SSTG are similar SSTG'S.

And by adapting the argument used for the direct product of

GSTG's [theorem 1.27] to the present situation, we have the

following.

E 'I' 3 8

HI x K is a SSTG if, and only if H and K are

similar SSTG'S.

SSTG'S can be characterized as follows.

W

G is a SSTG if, and only if G is a Split extension

of a nilpotent group A by a nilpotent group B with

(IAI,IBI) = l and either A or B a p—group.

.EIQQ£=

Let :3 be any Sylow system of G. Let S and T be

any distinct non-normal Sylow subgroups of a? and let S'

and T' be (reSpectively) the complements of S and T

I
t
:

-
.
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in .9 . Since .3 satisfies (N) and SéG, TflG,

we must have S'.s G and T';s G. Furthermore, we may

assume S normalizes T. Now 8.3 T'14 G implies

[S,T] S T' n T = l and hence, any distinct non-normal

Sylow subgroups of a? centralize one another. If we let

A be the product of all the normal Sylow subgroups of G

and B be the product of the non-normal Sylow subgroups

of G in A , then G: [AJ-B and (IA|,|BI) = 1.

We now show that either A or B is a p-group.

Assume this is not the case and suppose w(A) = k.2 2,

w(B) = £.2 2. Let Nl,'°',Nk denote the normal Sylow

subgroups of G and let S °°°,S£ denote the non-normal
l,

Sylow subgroups of G belonging to :8 . Without loss of

generality we may assume that Nl does not normalize 81'

If some normal Sylow subgroup Ni (i,2 2) fails to norm-

alize some Sj (j.2 2), consider the subgroups N183 and

N181. Now lej and N131 belong to 93 and

('NlSjI’INiSlI) = 1. Hence lej normalizes NiS1 or

NiS1 normalizes lej' Then [Nl’SlJ'S N1 n N131 = l or

[Ni’Sj]-S Ni n NlSj = l - a contradiction. Therefore we

see Ni normalizes Sj whenever i,j 2 2. Consequently

Nl must not normalize Sj for j = 2,°°°,£. In particu-

lar, Nl does not normalize S2.

Now suppose Ni normalizes S1 whenever i.2 2.

Then Ni normalizes every non-normal Sylow subgroup Sj
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k L

and H = v Ni ' w S. is a nilpotent subgroup of G.

i=2 j=l

Therefore G = [N1] . H - which is a contradiction. Hence,

we may assume that N2 fails to normalize Slo

Consider the subgroups lel and N282 of G. lel

and N282 belong to .3 and have relatively prime orders. I‘_‘

f ‘
Therefore lel normalizes N282 or N282 normalizes

lel. Then [N152] 5 N1 n N282 = or if .

[NZ’SlJ'S N2 0 N1 1 = l - which is a contradiction. This J

 
establishes the sufficiency.

Let G be the split extension of a p-group A by a

nilpotent group B where (p,|BI) = 1. Let B -°-,Bn1:

denote the Sylow subgroups of B. Then the Sylow system

of G generated by the Sylow basis {A,Bl,---,Bn} clearly

satisfies (N) and G is a SSTG.

Now let G be the Split extension of a nilpotent

group A by a p-group B with (|A|,p) = 1. Let

{Al,"',Ak} be the complete set of Sylow subgroups of A.

Then the Sylow system of G generated by the Sylow basis

{Al,'--,Ak,B} of G clearly satisfies (N) and G is

a SSTG. D

We now give an example of a supersolvable group which

is not a SSTG. Let G be the Split extension of C3 x Cll

by its automorphism group C2 x ClO‘ Then

1 4034 C3 x C11 4 C2 (C3 x Cu) 4 G is a cyclic invariant

series of G, and G is supersolvable. By the preceeding
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theorem, G iS not a SSTG.

The group G = C3 wr 02 is an example of a SSTG which

is not supersolvable.

The following diagram Shows the relative positions of

various classes of solvable groups. A line indicates the

class at the lower end lies in the class at the upper end.

All containments are prOper.

solvable

GJFG

STG

N-groups supersolvable SSTG

 
nilpotent

 



Chapter IV

If G is a solvable group, the Fitting length of G

is a measure of the nilpotency of G. We ask if there is

a measure of the deviation of a GSTG from an N-group. This

leads to an examination of invariant Series whose factor

groups are N-groups. Such Series will be called.in1aziani

N:Serieso

A GSTG G has a unique descending invariant N-series,

called the lower N-series for G. The length of the lower

N-serieS, denoted by m(G), iS the minimal length of an

invariant N-serieS of G. A GSTG G also has a unique

ascending invariant N-series, called the upper N-series

for G. The length of this ascending series is denoted by

e(G). The nilpotent length of G iS greater than or equal

to e(G).

An invariant N-series l 4 L14 . - . 4 Lk = G with

Li+1 G
/L a maximal normal N-subgroup of /L

i i

(0.3 i.$ k-l) is called a.maximai_inyaniant_n;aezies of

G. If k is the length of a maximal invariant N-serieS

of G, then m(G).: k.$ e(G). We Show by example that

k can be less than e(G), but it is not known if k

must equal m(G).

'We begin with the following observation.

Ifimmm_&nl

Let H and K be (N)-Similar GSTG's. If H and K
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are N-groups, they are Similar N-groups.

£2991:

Let p and q be distinct primes. Since H and

K are (N)-Similar GSTG's, we may assume that some Sylow

p-subgroup of H normalizes some Sylow q-subgroup of

H and, some Sylow p-subgroup of K normalizes some

Sylow q-subgroup of K. If H and K are N-groups,

prOposition 2.3 then implies that every Sylow p-Subgroup

of H normalizes every Sylow q-subgroup of H and,

every Sylow p-subgroup of K normalizes every Sylow

q-subgroup of K. [3

Our study of ascending invariant N-series of a GSTG

is motivated by Baer's work [1] on supersolubly immersed

subgroups.

D E' 'I’ 2 2

A subgroup H of a group G is N-embedded in G

if for every pair of distinct primes (p,q), either

cq g NG(Hp) or Hp g NG(Gq) for all Hp e Sy1p(H),

Gq € Syl<1(G).

A normal p-Subgroup of a group is an example of an

N-embedded subgroup. An N—embedded subgroup need not be

normal however. For example, a Sylow 2-subgroup of S3

is an N-embedded subgroup which is not a normal subgroup.

E 'I' 3 3

If H is N-embedded in G, then H is an N-group.

1
"

.
.
:
_
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moi:

Let HD and Hq be arbitrary Sylow subgroups of H

corresponding to distinct primes p and q. Let G be

q

a Sylow q-subgroup of G containing Hq. Then

Gq.S NG(Hp) or Hp.$ NG(Gq). Consequently we see Hq

normalizes H or H normalizes G n H = H . [3

p P q q

Renew p

If H and K are N-embedded in G, then H n K is N-

embedded in G.

£10212:

Let p and q be distinct primes and consider

 

(H n K)p 6 Syl;3(H n K) and Gq 6 Syl<1(G). By lemma

2.H (H n K)p = Hp n Kp for some Hp 6 Sy11)(H),

Kp e Syl p (K). Now if HI) 5 Nqu) or Kp s Nqu),

then (H n K) = H n K normalizes G . Otherwise G

P P P q q

normalizes both Hp and Kp. Then Gq normalizes

H n K = H n K .

P P ( )P C]

W

If K is N-embedded in G and H is a Hall sub-

group of K, then H is N-embedded in G.

Email:

This follows at once Since Sylow subgroups of H

are also Sylow subgroups of K.
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An arbitrary subgroup of an N-embedded subgroup is not

necessarily an N-embedded subgroup. For example, let G

be the Split extension of A x B by C, where

A = < aIa3 = l >, B = < bIb3 = l> and

C=<c|ac=b,bc=a>§Aut(AxB). Then AxB is _

N-embedded in G but neither A nor B is N-embedded in he

G.

W

If H is N-embedded in G and K3 H, Kg G, then EL . 
K is N-embedded in G.

hoof:

Let p and q be distinct primes and Kp E Syl}3(K),

G E Syl<1(G). Since K.$ H, Kp = K n HD for some

q

H S H.I H NG K=Knpe ylp() 1‘ pg G( q), then p Hp

normalizes Gq. Otherwise Gq $,ING(Hp) and, Since

K S.G, Gq normalizes K n Hp = Kp. D

W

If H is an N-embedded (normal) subgroup of G and

o is a homomorphism of G onto G°, then H0 is an

N-embedded (normal) subgroup of Go.

2292::

Let p i q and let P e Sylp(H°), Q e Squ(G°).

By [13, p.13h], P’= (Hp)° and Q = (Gq)° for some

Hp E Sylp(H), Gq

G, either Hpg Nqu) or Gq_<. NG(Hp). Then P

e Syl q(G). Since H is N-embedded in
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normalizes Q or Q normalizes P. C]

In particular, every conjugate of an N-embedded sub-

group is an N-embedded subgroup.

All the previous results hold for arbitrary finite

groups. From this point on, we restrict our attention to

GSTG' S . “1

E 'I' 3 8 P

Let G be a GSTG with N-embedded subgroup H. Then

 every Sylow p-subgroup of H normalizes every Sylow E‘s

q-subgroup of G or every Sylow q-subgroup of G norma-

lizes every Sylow p-subgroup of H, for p and q dis-

tinct primes.

.EIQQfl3

Let p ‘Jt q and consider Hp E Syl p(H), G E Syl q(G).

q

Since H is N-embedded in G, Hp qu is a subgroup of G,

for all x 6 G. Since G iS a GSTG, all the subgroups

Hqux are (N)-similar. Therefore, either qu normalizes

Hp or Hp normalizes qu, for all x E G. D

W

Let H be an N-embedded (normal) subgroup of G- and

let K be an N-embedded normal subgroup of G. Then the

product H - K is an N-embedded (normal) subgroup of G.

moi: *

Let p # q and consider (H-K)p e Syl;3(HK) and

Gq E Syl<1(G).
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We first Show (H°K)p = HpXKpX for some Hp 6 Sy113(H),

Kp E Syl p(K) and x E H-K. Let P be any Sylow p-subgroup

of H. Then P.$ G for some Gp 6 Sle)(G) and

P

P = H n Gp. Since Kl£_G, K n Gp = Kp is a Sylow p-Sub-

group of K and Kp 9 GP. Then PoKp is a p-subgroup of

H°K and IP-Kp| = |P| IKPI, the order of a Sylow subgroup D1
___,. , a

|P n K |

P

of HoK. Therefore (H-K)p = (P°Kp)x = PXKpX for some

 
x e H°K. g n

Since G is a GSTG, all subgroups of G are (N)-

Similar GSTG's and hence p‘:?> q or q':r> p, where .3

is a Sylow basis of any subgroup of G.

Suppose first that p':?> q. Since H iS N-embedded

in G, every conjugate Hx of H is N-embedded in G.

Then H quv is a subgroup of G and consequently pr

normalizes Gq (x 6 G). Likewise prGq is a subgroup

of G and pr normalizes G (x 6 G). Then

q

prpr = (HK)p normalizes Gq'

. x x
— . G

Now suppose q 18> p Slnce Hp Gq and Kp q are

subgroups of G, Gq normalizes both pr and pr

Cx e G). Then Gq normalizes prpr = (HK)p and the

theorem is proved. U

.Qorollanx_&ilQ

The product of all normal N-embedded subgroups of G

is a.characteristic N-embedded subgroup of G. We denote
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this maximal normal N-embedded subgroup of G by E(G).

QQIQllaI¥_&ill

The characteristic subgroup E(G) of G is the inter-

section of all maximal N-embedded subgroups of G.

2mm:

Let {MX}XEA be the set of maximal N-embedded sub- Imus

‘1

groups of G. By theorem h.h the intersection 0 MA

REA

is an N-embedded subgroup of G. And, by theorem h.7, I t

k, j. 
n MX is a characteristic subgroup of G. Consequently *‘h

ASA

n MX.S E(G).

xeA

By the preceding theorem we know Mx-E(G) is an

N-embedded subgroup of G, for each A GA. Since MA is

a maximal N-embedded subgroup, E(G) S Ml for each X EA

and E(G)_<. n Mk. [:1

MA

Using the maximal normal N-embedded subgroup E(G)

of G we can define a unique ascending invariant N-series

of the GSTG G. Before proceeding to this, we examine the

subgroup E(G) in more detail.

2 'I' 2 12

If G is a GSTG, then Fit(G) s E(G).

Emflnfit

The Sylow subgroups of Fit(G) are normal p-subgroups

of G. Since a normal p-subgroup is N-embedded,the asser-

tion is proved. C]
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Since S3 is an N-group which is not nilpotent,

Fit(S3).i S3 = E(S3). Therefore we cannot hOpe for

equality in proposition H.l2.

TL3:T h 13

Let K be a normal N-subgroup of G. If H is a E‘

normal N-embedded subgroup of G, then the product H °K 1‘1

is an N-group.

.EIQQf=

Let p # q and consider (HK)p E Sylp(HK) and  

(HK)q E Syl<1(HK). Let (HK)p.$ Gp and (HK)q.S Gq

where Gp 6 Sle)(G), G E Syl<1(G). Since H and K

q

are normal in G, we have the following relations:

H n G = = Hp Hp e Syl}3(H), H n Gq Hq e Syl<1( ),

K n G = K S K K n G = K S l K dp p E y1.p( ), q q E y <1( ) an

HK = HK n G = H K HK = HK G = H K .

()p p pp’()q nc1 qq

By lemma h.l we may assume that p':;> q for a Sylow

basis .8 of any N-subgroup of G. Since H is N-

embedded in G, Hqu is an N-subgroup of G and hence

Hp 5 NG(Gq). Since HKfl G, this implies that Hp norma-

lizes HK n Gq = (HK)q. Hqu is also an N-subgroup of

G and so Gp.$ HG(Hq). Therefore Kp = K n Gp normalizes

Hq. Since K is an N-subgroup of G, Kp also normalizes

' K = .Kq and hence Kp normalizes the product Hq q (HK)q

Therefore both Hp and Kp normalize (HK)q and the

assertion follows. E
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The following example Shows we cannot drOp the normality

of the subgroup K in theorem H.l3. G = [C7]°C6 is the

product of a normal N-embedded subgroup C7 and a (non-

normal) cyclic subgroup C6, but G is not an N-group.

W

A maximal normal N-subgroup of G contains every

normal N-embedded subgroup of G.

In particular, the subgroup E(G) lies in every

maximal normal N-subgroup of G. The next example shows

that E(G) is not necessarily the intersection of all

maximal normal N-subgroups of G.

Let S3 = <a,b|a3 = b2 = l, ab = a2), C5 = <d|d5 = 1) and

G = S3 wr C5. We Show that E(G) is the (normal) Sylow

C

3-subgroup of G and S3I 5| is the only maximal normal

N-subgroup of G.

(l) E(G) = G3, the Sylow 3-subgroup of G.

ICI
Since G is the Split extension of S3 5

ICSI
S3 is a maximal normal N-subgroup of G. Then

by 05’

ICI
E(G) 3 S3 5 and consequently 5,l')E(G)I° Furthermore,

G o G implies G g Fit(G) g E(G). we will show

3

21 |E(G)|.

Assume to the contrary that 2 ‘ [E(G)] and let

3
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t = (yl,y2,y3,yu,y5) be an element of order 2 in E(G).

Conjugating t by the apprOpriate element of G3 gives

an element w = (x1,x2,x3,xu,x5) # l in E(G), where each

xi is b or 1. Since all cyclic permutations of w and

all products of these cyclic permutations are elements of

E(G), we may assume without loss of generality that

w = (b,b,x3,xn,xs). By the normality of E(G) in G,

z = (ba,b,x3,xh,x5) é E(G). Let z belong to a Sylow

2-subgroup E2 of E(G). Since E2 does not normalize

d
C5, C5 must normalize E2. Consequently z 6 E2 and

zzd = (bax5,bba,x3b,xhx3,x5xu) E E2. But bba = a.1 is

a 3-element and hence zzd is not a 2-element - which

is nonsense. Therefore 2 l |E(G)|.

C

(2) S3| 5| is the only maximal normal N-subgroup of G.

Suppose to the contrary that M is a maximal normal

N- - '05) .
subgroup of G different from S3 . Slnce E(G) S M,

C

G3.$ M. Then M # S3 5 implies M contains a S—element

of G. Since M 4 G, M must then contain every S-element

of G. Let x = (b,l,l,l,l). Then dx 6 M and

l
d‘ dx = (b,b,l,l,l) e M. Since M 4 G, this implies

t = (ba,b,l,l,l) 63M and td = (l,ba,b,l,l) e_M. Let t

belong to the Sylow.2-subgroup M2 of M. Since M is

an N-group and S —-> 2, 05 ‘normalizes M2. Consequently

td 6 M2 and ttd = (ba,bba,b,l,l) e M ‘1

is a 3-element and ttd

a _
2. But bb — a

is therefore not a 2-element -
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which is nonsense.

E 'I' 3 15

If H and K are (N)-Similar GSTG's, then

E(H x K) = E(H) x E(K).

Elmer:

 

Since E(H) and E(K) are normal N-embedded subgroups h

of H x K, E(H) x E(K) S E(H x K). “)

Let E1 = {h e H|hk e E(H x K) for some k E K} and g _

E2 = [k E thk. E E(H x K) for some h E H}. By the :3

isomorphism theorems El 2 El/Ean g Elg/K = E(Hx K)°K/K. :m

Since E(HXK)‘K/K is a normal N-embedded subgroup of H)(K/K,

E1 is a normal N-embedded subgroup of H and so El,$ E(H).

Similarly E2 3 E(K). Therefore, E(HxK) s Elx E2 g

.S E(H) x E(K). U

Baer [I] has shown that a normal supersolvably immersed

subgroup K of a group G satisfies the following prOpertiesz

(I) If K g S _<. G and S/K is supersolvable, then S is

supersolvable.

(2) The elements of G induce a supersolvable group of

automorphisms on K.

The corresponding prOpertieS do not hold for normal

N-embedded subgroups of a group.

N
Z

(1) Let -G = [C7]°C6. E(G) = C7 and 9/0 C6 but

7

G .iS not an N-group.

(2) Let G = C5 wr 8% and let G; be the Sylow 5-subgroup
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of G. Since SM is not an N—group, the automorphism

group induced on G; by the elements of G is not an

N-group.

Consequently we expect the ascending invariant N-series

of a GSTG which arises in connection with the subgroup E(G)

to have some Shortcomings.

D E' 'l' 3 15

If G is a GSTG, the.nPPfiZ_N:§&£ififi_Q£__fi is the

invariant series of G defined inductively by E0 = l,

E

 

1+1/t. = E(Q/E.)° The length of this series, denoted

l l

by e(G), is the number of distinct nontrivial terms in

the series.

Since the Fitting subgroup of G lies in E(G), the

next result is clear.

2 'I' 2 12

If G iS a GSTG, then e(G) S Z(G), the nilpotent

length of G.

‘We now compare the upper N-series of a GSTG G with

the maximal invariant N-series of G.

W

Let t be the length of a maximal invariant N-series

of G. Then e(G).2 t.
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M:

Let I = Mo‘o Ml<1 °° 4 Mt = G be a maximal invar-

iant N-series of G and let

1:E04E14°°
AEnzG

be the upper N-series of G. Since M1 is a maximal normal

N-subgroup of G, E = E(G) g Ml° By the isomorphism

 

1 E
.2

theorems E2Ml/ 3 Eg/ : E1/ Then
M1 B2 an (E2 nHl)

E1

E2Ml G
/M is a normal N-embedded subgroup of /M and

l l

EZMl M2

/Ml .3 /M1 . So E2,$ M2. Inductively

E M

k k 1/M is a normal N-embedded subgroup of Q/M

k‘l k'l

and Ek.$ Mk' Therefore e(G) 2 t. I]

we Show by example that the length of the upper

N-series may be strictly greater than the length of some

maximal invariant N-series of a GSTG.

Example: Let G ? (S3 wr C5) wr C7.

By our previous remarks we know £(G) = h and it is

easy to see that G is a STG with Sylow tower

l <:G ‘4 ‘4 .4 .3 G2,3 G2,3’5 G Furthermore, l 4 G2’3.4 G

is a maximal invariant N-series of G having length 2.

We will Show that e(G) = 3. Since G2 3 is a maxi-
’

mal normal N-subgroup of G, E(G) 3 G2 3. We Showed
’
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10,1
previously that E(S3 wr CS) = C3 Hence, by'H.lS,

ICSI |C7I , ,
E( ) = (C3 ) = G3. Then,by'pr0pOSltlon H.6,

G2.3.5

E(G) = E(G) 0 G2 3 5.3 E(G2 3 S) = G3. And since

G3 4 G, G3.S E(G) and we have shown E(G) = G .3 Since #

G

2,3 ‘.

/E(G) -3 1
Q/E(G) has nilpotent length 3 and

g E(Q/E(G)), it follows that e(G) = 3.

 In our search for a unique invariant N-series of .vfi

minimal length we turn to a consideration of descending

invariant N-series.

E 'I' 2 19

Let M1 and M2 be normal subgroups of a GSTG G.

If Q/M and Q/M are N-groupS: then 9/M IiM is an
2 l 2l

N-group.

.Brdof:

By lemma h.l, 9/M and 9/M are Similar N-groups

l 2

and consequently 9/M x Q/M is an N-group. Since

1 2

G/ ~G G G

C/ X / : / ' —Ml n M2 M1 M2 M1 n M2 is an N group. [3

E 'I' 3 20

Let M be a normal subgroup of G and a a homomor-

phism of G onto Go. If 9/M is an N-group, then

0

1M°.£ GO and G / Mo iS an N-group.
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Emmi:

By the isomorphism theorems Mo 2 Go. Let P and Q

0

be arbitrary Sylow p- and q-subgroups of G /Mo° Then

G 0M0 G aMa

P = p / and Q = q / for some G E Syl;)(G),

M" M“ P

. . M )
Gq E Syl<1(G). Since /M is an N-group, p /M $'*

G M G M G M p i

normalizes q /M or q /M normalizes p /M' It r

follows that P normalizes Q or Q normalizes P. I]  

‘
r
,
L

I
;

For a GSTG G, let M(G) denote the intersection of

all normal subgroups K such that 9/K is an N-group.

We then have the following result.

W

The subgroup M(G) is the minimal normal subgroup

K of G' such that 9/K is an N-group. M(G) is a

characteristic subgroup of G.

.EIQQf3

The first statement follows at once from prOposition

h.l9. And prOposition H.2O Shows M(G)° = M(G) for every

automorphism a of G. C]

The subgroup M(G) will be used to define a unique

descending invariant N-series of G. First we develOp

some prOperties of this subgroup.

E 'l' 2 22

If G is a GSTG with subgroup K, M(K).$ M(G).
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Traci:

By the isomorphism theorems

K : K-M(G) G K .

/K nMCG) ‘ /M(G)'S /M(G)' The“ /K nM(G) 13

an N-group and M(K) 3 K n M(G) S M(G). G

Let G = [C7]°C6 and K = C7-C2fi G. Then M(K) = l

and K n M(G) = C7 = M(G). Therefore, we cannot hope for

equality in prOposition h.22.

E 'l' 2 23

Let G be a GSTG with normal subgroup K. If Kgg L,

L.S G, then M(LK/k) = M(L).K/K.

.BIQQEL .LK

By proposition L+.20 K/m is an N-group

K

and consequently M(LK/K),$ M(L)'K/K.

LK

Now let M(LK/K) = W/K. Hence Ic/u. g LK/w is an

K

LK/
N-group. Since K.g W.g LK, W = LW/w g L/LIWW is an

N-group. Then M(L) S L n W.g W and consequently

M(L)K W _ LK
/K.g /K — M( ,GK). :1

The next result is mentioned only for completeness.

A E 'I' 3 2!

Let A and B be (N)-similar GSTG's. Then

M(A x B) = M(A) x M(B).
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Proof:

. A B __ A B

Slnce x/M(A)xM(B) ‘ /M(A) X /M(B)’

M(A x B).$ M(A) x M(B).

~

By the isomorphism theorems, A/AnM(AXB)

2' M(AXB)-A/M(AxB), which is an N-group. Hence l”

M(A) g A n M(A x B) s M(A x B). Similarly M(B) s M(AXB)

and the assertion follows. C] (

D E' 'I' 3 25

 ‘fl
v
_
n
1

E
!

G

Let G be a GSTG. The,lgwer_steries_of;_G is the

invariant series of G defined inductively by M0 = G,

M. = M(Mil -l)' The length of this series, denoted by m(G),

is the number of distinct nontrivial terms in the series.

B 'I' 2 25

If K g G, then m(K) g m(G).

Proof:

PrOposition H.22. [3

E 'l' 2 22

G
If K 4 G, then m( /k).$ m(G).

£2991:

Let G=MO>M11> .. >M£=l be the lower N-

SerieS for G. Then, by PrOposition h.23,

M M K M K
G _ O b l D ooob‘ __K

/K— /K— /K— -— /,.-/K

is the lower N-series of Q/K. C]
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The next result Shows that the lower N-series of G

is an invariant N-series of G having minimal length.

.Thecrem_&iafi

Let G be a GSTG. Then any invariant N-series of G

has at least m(G) distinct nontrivial terms.

£19912:

Let G=LO|> le -~>Lk=l be any invariant

N-series of G and let G = MO > Mlb -- > MI. = 1 be

the lower N-series of G.

Since 9/L is an N-group, Ml.$ Ll' Next,

1

M1 ~ M1L2 Ll
/fi 0L = /L .S /L , which is an N-group. Hence

1 2 2 2

M1
/MlflL2 is an N-group and M2.g Ml n L2.$ L2. Proceedlng

M. ~ L.

inductively, 1/M CL c 1/L implies that

1 1+1 1+1

Mi+l'$ Mi n Li+l'S Li+l' It follows that k 2.1 = m(G).

C]

The preceding argument has established the following

relation between the terms of the lower N-series and the

terms of the upper N-series.

CQzQJJary 3.29

Let l=EO<3 E14 °° 4En=G be the upper N-

series of G and let G=MO> M19 .. >M£=l be
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the lower N-series of G. Then Lk.$ En-k’ 0.3 k.$ L.

We have Shown that the length t of any maximal

invariant N-series of a GSTG G satisfies the relation

m(G).$ t.$ e(G). An example was given to Show that t

need not be e(G). However, it is not known if t must

equal m(G).

There is a refinement theorem for N-series which

should be mentioned, although we have not been able to use

 

it.

W

Let l=HO< H14” dHL:G and

l = K04 K14 H 4 Kt = G be invariant N-series of G.

If L.2 t, then

' 4 4 o. ‘ 4o. f :l) l _ Hl n Kl._ _.Ht n Kt 42Ht+l_. Hz G

is an invariant N-series of G, and

.. b b .0 E .

ll) G — Kt-l n HL-l — Kl n HL-(t-l) l is an

invariant N-series of G.

: H

i) ‘We Show 1+1 1+1/H 0K is an N-group for

i i

H. 11K. K.(H. nK. )
. _ l+l 1+1 2 1 1+1 l+l

0‘5 1-5 L 1' /H. tiK. ' /K.-3
1+1 1 l

.3 1+l/K , which is an N-group. Similarly

i

. 0K. H.

1+1 1+1/ C 1+l/ , which is an N-group. Then
HinKi+l Hi
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Hi+ani+l/ Hi+ani+l/ . is an

HiflKi (Hi+ani) n (HinKi+l)

N-group.

ii) Consider consecutive terms Ka n Hb and

Ka+l n Hb+l of the series. By the isomorphism theorems

Ka+lng+l/ E Hb+l/ and
Ka+lng Hb

Ka+lng+1/ E Ka+l/ Then Ka+lng+l/

Kang+l Ka Ka+lng

K 0H

and a+l b+1/K flH are N-groups. Therefore

a b+l

0H

8+1 b+14%ng is an N-group. C]

Although I have not been able to Show that the length

of a maximal invariant N-series of a GSTG G is m(G), I

strongly suSpect that this is the case. If so, GSTG's

might be described in terms of their maximal invariant

N-series. This possibility will be considered in the near

future.
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INDEX OF NOTATIONS

IS a subset of

Is a subgroup of

Is not a subgroup of

Is a prOper subgroup of (i for emphasis)

IS a normal subgroup of

Is not a normal subgroup of

IS a prOper normal subgroup of

IS a characteristic subgroup of

IS an element of

IS not an element of

Set difference

Subgroup generated by

Direct product of groups

Gl X°°°xGn

< G °,G >
n

1,..

The number of elements in G

Set of prime divisors of |G|

The number of prime divisors of |G|

The Fitting (nilpotent) length of G

Defined on page 61
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III. .ch32:

Z(G)

Z.(G)

HmCG)

F(G)

71

Defined on page 66

Index of H in G

Factor group

X.1 G x

-l
x a x

x.1 y-1 x y

Subgroup generated by all [h,k]; h e H,

k E K

Center of G

Hypercenter of G

Hypercommutator of G

Fitting subgroup of G (also denoted

Fit(G))

Frattini subgroup of G

Derived group of G

Defined on page 56

Defined on page 6%

Automorphism group of G

Symmetric group of degree n

Alternating group of degree n

Set of all Sylow subgroups of G

Set of all Sylow p-subgroups of G.

Split extension of H by K

Wreath product of H by K
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