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ABSTRACT

STATISTICAL DATA ANALYSES OF TRACE CHEMICAL, BIOCHEMICAL, AND PHYSICAL
ANALYTICAL SIGNATURES

By

Ruth Norma Udey

Analytical and bioanalytical chemistry measurement results are most meaningful when
interpreted using rigorous statistical treatments of the data. The same data set may provide
many dimensions of information depending on the questions asked through the applied
statistical methods. Three principal projects illustrated the wealth of information gained
through the application of statistical data analyses to diverse problems.

Firstly, novel aerosol test particles containing DNA barcodes were developed for the
accurate assessment of aerosol transport and fate in populated locations. Aerosols are central
to human and environmental health, and understanding the properties of these aerosols that
are pervasive in our lives is essential. Test particles composed of FDA-approved saccharide food
additives were generated using both a modified inkjet printer and a commercial spray dryer.
Univariate statistical methods were used to evaluate generated particle size-distributions
during production optimization. Non-coding DNA templates were incorporated into the
particles as unique particle identifiers, which yielded customized test particles detectable using
highly specific quantitative real-time polymerase chain reaction (QRT-PCR) assays. These safe,
customizable, and specifically detected aerosol test particles will provide vital experimental
feedback for evaluating aerosol dispersion and transport models. The project culminated with a

successful demonstration of the aerosol test particles in an atmospheric release test.



Secondly, an original method for non-invasively analyzing the chemical profiles of latent
fingerprint residues was developed in order to gain a new level of information from the most
common type of forensic evidence. Passive solid-phase microextraction (SPME) headspace
sampling collects both endogenous and exogenous volatile and semi-volatile compounds
contained in the fingerprint residue while preserving the fingerprint for traditional analyses.
The information-rich chemical profiles obtained from gas chromatography-mass spectrometry
(GC-MS) analyses of the SPME samples were used to quantitatively compare fingerprint
compounds both between subjects and over a time course of 30 days using multivariate
statistical analyses.

Finally, endogenous metabolite profiles of cancer cells treated with anti-cancer agents
were analyzed using gas chromatography- and high performance liquid chromatography- mass
spectrometry (GC-MS and HPLC-MS), and the resulting complex data sets were interrogated
using univariate and multivariate statistical analyses (e.g. ANOVA, PCA, PLS-DA, OPLS-DA).
Possible modes of cytotoxicity of cisplatin and taxol, two commonly used cancer therapeutics,
in breast and lung cancer cells were elucidated using statistical methods for data reduction in
order to focus on the cellular biochemical processes most affected by drug treatment.
Understanding how successful therapeutics interact with cells leads to design of novel anti-
cancer agents that are more targeted and effective, minimizing dose-limiting side-effects and
saving more lives.

Although the areas of study are diverse, the commonality is the generation of highly

complex data tables that may be effectively analyzed and interpreted using statistical methods.
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on the right are shown at full scale for the higher abundance peaks. Peaks of
some of the metabolites of interest are indicated (abbreviations listed in

Table 4.3; IS indicates internal standard ribitol peak) ..........cccoeeeevvvrrrevrennnenn. 202
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Figure 4.12.

Figure 4.13.

Glutamate, glycine, and cysteine relative levels over time in taxol- and
cisplatin-treated and control A549 lung cancer cells and MCF7 breast cancer
cells. Levels of all three metabolites are increased after cisplatin-treatment
relative to taxol-treatment and control over time in A549 cells. The opposite is
true in MCF7 cells, as glutamate and glycine levels are decreased after
cisplatin-treatment compared to taxol-treated and control samples (cysteine
was not highlighted in OPLS-DA of MCF7 cells) (n = 3, error bars are standard
error; Student’s t-test and one-way ANOVA results: * indicates p < 0.05, **
indicates p < 0.01). Post-treatment differences in glutamate, glycine, and
cysteine levels in both A549 and MCF7 cells suggest that glutathione
metabolism is affected by anticancer drug treatment in a cell type-

dependent manner. ATP = adenosine triphosphate.........ccccovvveeveeeieiieeeeennnnn. 206

Ornithine and urea relative levels determined using GC-MS at various
post-dose times in taxol- and cisplatin-treated and control A549 lung cancer
cells and MCF7 breast cancer cells. Ornithine levels in taxol- and cisplatin-
treated cells decrease compared to control over time in A549 cells, while no
significant differences are observed over time in MCF7 cells. Urea levels in
treated A549 cells increased relative to control over time, though not
significantly (n = 3, error bars are standard error; one-way ANOVA results:

* indicates p < 0.05, ** indicates p < 0.01). The ornithine and urea levels in
A549 cells suggest that fluxes through the urea cycle and polyamine
metabolism shown are affected by anticancer drug treatment.

ODC = ornithine decarboXylase .......ccccvuvvveeeeiiiiieiiieiieeieeccceeeeee e 209

XVi



CHAPTER 1: INTRODUCTION
1.1 Motivations and Introduction

Modern instrumental analysis techniques generate torrents of data. At least 90% of all
current analytical chemistry work is performed using instrumental methods as opposed to
classical (“wet chemistry”) analysis techniques (Miller and Miller 2005). This is because many
modern instrumental methods are more sensitive, have a wider quantitative dynamic range,
and offer capability to measure multiple analytes in a single analysis. In addition, modern
analytical instruments are almost always interfaced with computers for sophisticated system
control and the storage, treatment, and reporting of data. Thus it is common for thousands of
data points to be collected during a single analysis. For example, methods combining
chromatographic separations with spectroscopic or mass spectrometric detection can identify
and quantify hundreds of components in a complex mixture within a few minutes. In addition,
the analytical chemistry field is expanding towards characterization of the spatial distributions
and time-dependence of abundances of multiple analytes, as well as automation of sample
analyses enabling the processing of more samples, yielding results with high information
content.

How do we deal with all of the data? The work presented in the following chapters
illustrates the large amount of data generated by contemporary trace chemical and physical
signature analyses and examines the statistical analyses required to interpret the data. One
example is size-distribution data for sugar aerosol particles generated using varying parameters
during the development of a novel aerosol test particle. After analyzing hundreds of thousands

of particles from several different generated particle populations, how do we determine that



varying particle production parameters resulted in particles that are significantly different in
size? Another example derives from analysis of all detectable endogenous and exogenous
compounds in latent fingerprint residues deposited by different human subjects that were
sampled at different times in order to discover subject habits and traits. Compound abundances
could be altered by three variables: the subject, the analysis time point, and random analytical
variance. How do we determine the magnitude of each variable’s contribution to the
differences in the results for each compound, and for each fingerprint chemical profile as a
whole? A final example arises during analysis of all detectable endogenous metabolites in
human lung and breast cancer cells both with and without treatment with the anticancer drugs
cisplatin and taxol over the course of seven days to examine metabolic responses to cancer
treatment. The cancer cell type, whether the cells were treated or not, what they were treated
with, and the time post-dose that the cells were collected are all variables that could explain
compound abundance differences in the analytical results. How do we determine which
variables are the dominating ones for affecting metabolic response? Which metabolite
abundances are varying significantly and are correlated with cell type and treatment variables?
The following sections discuss statistical data analysis approaches for answering these

guestions and interpreting information-rich analytical chemistry analyses.

1.2 Statistical Approaches for Evaluating and Interpreting Analytical Data
The key question in experiments across many disciplines focuses on whether varying an
experimental condition leads to differences in measurable outcomes. How do we evaluate

analytical results for statistically significant differences? The simplest case involves comparing



two measurements to determine the effect of varying an independent experimental variable
(e.g. fingerprint deposited by two different subjects, untreated and treated cancer cells). How
do we determine if the result depends on the independent variable, or if the results are simply
random? No measurement process is perfectly reproducible, and all analytical measurements
are subject to fluctuations that are random in magnitude. The precision of a measurement is
determined by repeating the measurement, and statistical significance can be derived from
measures of the spread in measurement outcomes using the standard deviation, variance,
and/or relative standard deviation (coefficient of variation) (Skoog et al. 1998). A major goal of
statistical analyses is to separate and determine the magnitude of the sources of experimental
variance (either random or controlled experimental variables) to establish the probability that
differences in outcomes can be attributed to random chance. When this probability is
sufficiently low, the investigator has greater confidence in assigning a relationship between
experimental conditions and outcomes. Statistical approaches for evaluating both univariate
(one variable) and multivariate (more than one variable) data for significant sample differences

that facilitate experimental interpretation are discussed below.

1.2.1 Univariate Methods

Univariate statistical approaches for evaluating and interpreting analytical data are
useful when there are more samples than analytes or properties being measured (e.g. mean
particle size results for several different particle populations), and usually focus on comparisons
of mean values for a single variable at a time (Trygg et al. 2006). The Student’s t-test compares

two experimental means and determines if they are significantly different using the standard



deviations and number of replicate measurements of the two experimental populations.
Comparing the calculated t statistic to a table of critical t values assesses the level of confidence
in the resulting decision that the experimental means are the same or different. When more
than two sets of experimental means need to be compared (e.g. mean particle size results from
six sugar particle populations generated using different sugar concentrations), analysis of
variance (ANOVA) is a powerful statistical procedure that can separate and estimate the
different sources of variation in a sample set. The ANOVA method is used to separate the
variation caused by changing the experimental variable (between-sample variation; e.g. sugar
concentration) from the variation due to random error (within-sample variation). The
calculated F test statistic is the ratio between the between-sample variation and the within-
sample variation, and the calculated F statistic is compared to a table of critical F values to
assess the level of confidence in the experimental means being the same or different. Larger F
values calculated from experimental results indicate higher confidence in the sample means
differing due to the purposely-varied experimental variable and not random variation (Miller
and Miller 2005).

In summary, the univariate Student’s t-test and ANOVA analyses test whether altering a
single experimental variable leads to statistically significant changes in analytical
measurements. When multiple experimental parameters are varied or multiple analytes or
properties are measured for each sample, multivariate statistical approaches are required to
examine the results of changing each parameter, as well as the interactions between

parameters or between analytes.



1.2.2 Multivariate Correlation Methods

Multivariate analytical data sets are more challenging to interpret compared to
univariate data due to the interactions between the multiple variables. Testing whether altering
one experimental variable significantly changes the results for many analytes or sample
properties requires more sophisticated statistical methods. Pair-wise sample correlation
analysis is one of the simplest approaches, where only two samples are compared using
measurements of multiple analytes in each sample (e.g. all compounds detected in the latent
fingerprint residues deposited by two different individuals). The goal of multivariate correlation
analysis is to test how similar, or correlated, the two samples are based on all measured analyte
signals (e.g. chromatogram peak heights resulting from gas chromatography-mass
spectrometry (GC-MS) analyses of the latent fingerprint residues). The two most common pair-
wise correlation coefficients are the Pearson product-moment correlation coefficient (PPMCC)
and Spearman’s rank correlation coefficient (SRCC). The coefficient calculations employ the
same algorithm (covariance of the two samples divided by the product of their standard
deviations), however, the inputs for PPMCC are the raw data (e.g. chromatographic peak
heights), and the inputs for SRCC are the ranked data (most abundant peak height is given a
rank of 1, the second most abundant peak height given a rank of 2, and so on in order of
decreasing peak height). Calculating coefficients using ranked data (SRCC) does not assume that
the data are normally distributed, and as a result reveals all monotonic correlations.
Conversely, PPMCC calculations assume normally distributed raw data sets with linear
correlations only, which is not always true of the data set being analyzed. Therefore, if the

distribution of the experimental data is unknown, the SRCC is a robust metric for the



correlation between two samples using multivariate data (i.e. all linear correlations are
monotonic, but not all monotonic correlations are linear) (Spearman 1904, Meier and Zund

2000, Miller and Miller 2005).

1.2.3 Multivariate Projection Methods

While multivariate correlation methods adequately describe relationships between two
samples, simultaneous comparisons of multivariate experimental results from more than two
samples require multivariate projection approaches to aid interpretation of complex data
profiles. The goal of multivariate projection methods is to visualize similarities among many
samples based on all measured analyte signals in a single presentation (e.g. metabolite
abundances resulting from GC-MS analyses of breast and lung cancer cell extracts after
treatment with either taxol or cisplatin) (Trygg et al. 2006, Trygg et al. 2007). Data containing
complex sample chemical profiles collected using hyphenated analytical techniques (e.g. GC-MS
and high-performance liquid chromatography-mass spectrometry (HPLC-MS)) require data
processing steps to convert three-dimensional data for each sample (chromatogram retention
time (RT), mass (m/z), and signal abundance data) into information that reflects abundances of
individual analytes. The resulting multivariate data matrix is made up of the signal abundances
(e.g. integrated peak areas) of all detected compound peaks, each identified using a unique RT-
m/z pair, for each sample in the study. The multivariate data matrix is then normalized, scaled,
and mean-centered as appropriate. Compound abundances within each sample may be
normalized to the sum of all peak areas in that sample, which is a set value (e.g. 10000) for all

samples to facilitate comparison. Scaling and mean-centering are performed by first calculating



the mean and standard deviation values for each variable (e.g. compound RT-m/z pair) in the
sample data matrix. Mean-centering shifts the compound abundances in the data matrix so
that the means are centered at the origin, which makes result visualization and interpretation
more straightforward because comparisons are made to mean values for the population.
Scaling is an important part of determining the weight, or importance, of each variable in fitting
a projection model to the data, and ensures that a collective measure of similarity will be less
likely to undervalue contributions by low abundance compounds with smaller standard
deviations and that abundant compounds will not dominate sample comparisons. The two most
common scaling methods are to unit variance and Pareto variance. Unit variance scales the
variable according to the inverse of the variable’s standard deviation, and Pareto variance
scales the variable using the inverse of the square root of the variable’s standard deviation.
Pareto scaling lies between no scaling and unit variance scaling and divides each variable by the
square root of its standard deviation, up-weighting features of medium abundance without
magnifying baseline noise. In contrast, unit variance scaling adjusts all variables to yield equal
variance and hence equal importance in fitting the projection model (Trygg et al. 2006, MKS
Umetrics 2012).

When analytical measurements generate data sets with high dimensionality, as is the
case with GC-MS and HPLC-MS analyses, recognition of the features that distinguish classes of
samples is enabled by visualization tools that simplify data interpretation. Multivariate
projection methods, including principal component analysis (PCA) and partial least squares
(PLS), convert the multi-dimensional data set into a low-dimensional (typically two to five

dimensions) model plane, which facilitates data visualization and interpretation (Figure 1.1).



Principal component analysis highlights covariance of different measured compound
abundances and is unbiased by prior knowledge of sample class (i.e. unsupervised) (Pearson
1901, Wold et al. 1987, Trygg et al. 2006). It also allows reduction of data dimensionality to two
dimensions that can be visualized on one plot. As described above, the multivariate data matrix
resulting from GC-MS analyses is often composed of the integrated peak areas of all
compounds (i.e. the variables) detected in all of the samples. A covariance matrix is then
calculated, which examines how all variables (measured compounds) change with respect to

one another, using Equation 1.1 for two variables, x and y:

im0 — Y)
cov(x,y) = — [1.1]

From the covariance values, linear combinations of variables that fluctuate similarly are
calculated. These linear combinations are called eigenvectors, and are the principal
components (PCs) of the analysis. Each eigenvector has an associated eigenvalue, which
describes the amount of information contained in the eigenvector. Therefore, higher
eigenvalues indicate more descriptive eigenvectors (PCs) for revealing the variance in the data
set. The same number of PCs is calculated as the original number of variables in the data set.
Each PCis calculated to be orthogonal to the preceding PC and describes the next greatest
amount of variance in the data set. Principal component 1 is calculated to correlate the highest
sources of variation in the data set, PC2 is orthogonal to PC1 and describes the next highest

sources of variation, and so on. The result of PCA is that the largest and most informative



sources of variance in the data set can now be examined using a smaller number of variables
(i.e. two or three PCs), instead of all of the original data variables. This also allows simple
visualization of sample similarity as two PCs (a model plane), such as PC1 and PC2, may be
plotted as the x- and y-axes of a single graph. For each individual sample, the loadings of the
measured variables on each PC yield a score, and the x,y coordinates for each sample are
displayed on this graph. This graph, called a scores plot, illustrates most of the variance in the
samples projected into two dimensions. Samples with similar chemical composition will cluster
together and away from chemically dissimilar samples on the scores plot, allowing conclusions
to be drawn about how samples relate to one another. The scores plot may reveal groupings of
chemically similar samples, sample relationships, and outliers (deviating samples). A
corresponding plot called a loadings plot displays the variables that are responsible for the
variance described by each PC. Variables that fluctuate similarly (i.e. have a high degree of
covariance) will be positioned in the same area of the loadings plot. Again, PC1 is the x-axis and
PC2 is the y-axis so that the position of a variable on the loadings plot corresponds to its
contributions to sample positioning on the scores plot, and provides a powerful tool for
understanding underlying patterns in the data (Miller and Miller 2005). In summary, PCA
distinguishes samples and the variables responsible for sample differences, though clustering in

PCA plots is usually dominated by signals from the most abundant analytes.



1. Data matrix 2. Projection method

Variables Glutamate
Samples Serine Glutamate Cysteine A Lung

lung cancer 1 147 357 367 A, cancer

lung cancer2 158 368 412 A ,

lung cancer3 169 349 359 » Cysteine
breast cancer 1 258 149 168 A A Breast
breast cancer 2 236 157 159 A cancer
breast cancer 3 214 168 163 ‘ Serine

4. Visualization 3. Model plane
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Figure 1.1. Overview of how multivariate projection methods work. (1) The data matrix
containing values for each variable (e.g. metabolite abundances) measured in each sample
observation (e.g. cancer cell samples) is projected into n-dimensional space (2), with an axis for
each variable (three in the illustrated example) and one point for each sample (six in the
example). Points (samples) positioned near one another are more similar than points that are
far apart. (3) Projection methods such as PCA and PLS-DA find representative low-dimensional
model planes that summarize the variation in the sample points for visualization (4). The scores
plot gives a visual overview of sample relationships (e.g. groupings, outliers), and the
corresponding loadings plot shows the contribution of the original variables to the sample
positioning on the scores plot for interpretation.

The partial least squares (PLS) multivariate projection model relies on a priori
knowledge of sample class (supervised) in order to extract information about measurements
that most strongly discriminates the sample classes (Wold et al. 2001). This additional

knowledge of sample class (e.g. cell type (breast cancer or lung cancer), dosing information
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(treated or untreated)) is tabulated in a Y matrix, with the same number of samples as the data
matrix, called the X matrix. The Y matrix can contain either quantitative information (e.g. serine
concentration) or qualitative information to describe sample class (e.g. treated or untreated
control). When the Y matrix is qualitative, each sample is assigned either a “1”, indicating the
sample is a member of that class, or a “0”, indicating that it is not. For example, if a data set is
made up of lung cancer cells and breast cancer cells, the Y matrix for lung cancer cells would
have a “1” for all lung cancer samples and a “0” for all breast cancer samples. When a
gualitative Y matrix is used to represent sample class, the method is called PLS discriminant
analysis (PLS-DA) to distinguish it from analyses when a quantitative Y matrix is employed.
Partial least squares is similar to PCA except there are two data matrices, X and Y. The PLS
model focuses the model plane to describe the Y-related variation in X, i.e. variation correlated
with different sample classes in the Y matrix, using a multivariate regression model. The results
of PLS analyses are scores plots and loadings plots that display clusters of similar samples and
the variables responsible for sample groupings, just like PCA models. Generally, the clustering
of samples from the same class defined by the Y matrix is more clearly defined in a supervised
PLS model compared to the unsupervised PCA model owing to the PLS model maximizing the
sources of variation correlated with sample class. In summary, the PLS model is useful for
finding correlations between the X and Y matrices in multivariate data sets with collinearity and
more variables (analyte measurements) than samples, which is often the case. The variables
highly correlated with sample class are distinguished from the background of weakly correlated
signals, which is a powerful tool for experimental evaluation and interpretation (Wold et al.

2001, Trygg et al. 2006).
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The interpretation of PLS models may be improved by using a slightly different model,
the orthogonal partial least squares (OPLS) model. The X and Y matrices are the same as in PLS
models (a qualitative Y matrix also makes it a discriminant analysis, OPLS-DA). The difference is
that in OPLS the systematic variation in the X matrix that is not correlated (orthogonal) to the Y
matrix is removed from the analysis. This reduces the complexity of the model while preserving
the interpretation of the variables correlated with sample class. In summary, discriminant
analysis approaches (PLS-DA and OPLS-DA) for analyzing multivariate data enhance
contributions by measurements of low abundance signals compared to PCA. However, PLS-DA
and OPLS-DA models are often confounded by the contributions of randomness in the
measured values. When sufficiently large numbers of measurements are made, the chance of
finding discrimination driven by randomness becomes substantial, and model validation must
be performed to assess the probability that discrimination arises from random variance (Trygg
and Wold 2002, Cloarec et al. 2005).

Finally, the PLS and OPLS methods can also be used to predict which class in the Y matrix
an unknown sample belongs to. Prediction models develop a proposed mathematical
relationship that is tested against a subset of samples to validate the results. The unknown
sample could be a new measurement that needs to be evaluated in the context of the
measurements already present in the data set, or it could be a subset of the original data set
used for model validation and evaluation of its predictive ability. A predictive analysis begins
with an X matrix (called the training set) of sample data and a Y matrix containing class
information. A PLS or OPLS model is then fit to the training data, optimizing the model

parameters to calculate the variance in the data set correlated with the Y variable. The
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independent, unknown sample X matrix (called the prediction set) from the same data
population as the training data set is then fit with the same PLS or OPLS model that was
calculated for the training set, and the class in the Y matrix that the unknown sample belongs to
is predicted. It is generally the case that the model does not fit the prediction set as well as it
fits the training set because the prediction set is a smaller X matrix. However, PLS or OPLS
models may have low predictive ability due to model overfitting. Overfitting arises when
statistical models discriminate based on random noise in the data instead of the informative
sample relationships superimposed on the noise. Overfitting is more likely to occur when the
model is complex and the number of variables in the X matrix is larger than the number of
samples (observations). Thus validating PLS and OPLS models by predicting the fit of the model
to a prediction set is essential to ensure that the methods are describing informative sample
variations and not the ever-present analytical variance. It is also important to note that the
predictive ability of OPLS models may be less robust than PLS models owing to the removal of
the information in the OPLS model orthogonal to the Y matrix. However, if the information
uncorrelated with the Y matrix was the analytical variance, removal of the noise in the data set
may yield an OPLS model with robust predictive ability that is valuable for interpreting
differences between samples in the experiment (Wold et al. 2001, Trygg and Wold 2002,

Cloarec et al. 2005, Trygg et al. 2006).

1.3 Overview of Projects
Chapter 2 discusses the development of a novel aerosol test particle containing DNA

barcodes for the accurate assessment of aerosol transport and fate in populated locations.

13



Aerosols play a central role in comprehending the effects we have on our environment and the
impacts of the environment on us. These aerosols both positively and negatively impact many
facets of our lives, including climate (e.g. cloud formation), visibility (e.g. pollution hazes), and
our health (e.g. pollen allergies, asthma inhalers). An understanding of the properties of
aerosols is essential, as aerosol properties govern the generation, transport, and fate of
airborne particulates, as well as efforts to control them. Test particles composed of FDA-
approved saccharide food additives were generated using both a modified inkjet printer and a
commercial spray dryer. Univariate statistical methods were used to evaluate particle size
measurements to answer questions such as: Are two particle size-distributions different? How
different? Does changing particle production parameters significantly change particle
characteristics? Non-coding DNA templates were incorporated into the particles as unique
particle identifiers, yielded customized test particles able to be specifically detected using
guantitative real-time polymerase chain reaction (QRT-PCR) assays. These safe, customizable,
and specifically detected aerosol test particles were generated with the same sizes as aerosols
commonly observed in the environment on the gram-scale for studying large locations. No
currently available simulant material meets all of these criteria for precisely studying
atmospheric transport in populated environments. The project culminated with a successful
demonstration of the aerosol test particles in an atmospheric release test.

Particle size is the principal parameter for characterizing the behavior of aerosols, as all
properties of aerosols, including transport, are dependent on particle size to some extent.
Aerodynamic diameter is used to describe aerosol particles instead of geometric diameter, as

many aerosols have irregular shapes. Aerodynamic diameter is the diameter of a unit density
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sphere that moves with the same velocity through a fluid as the aerosol particle. A particle’s
aerodynamic diameter is related to the Stokes’ diameter, which assumes a particle is spherical,

and its density by Equation 1.2:

dpa = dpsPp [1.2]

where dp 5 is the aerodynamic diameter of a particle, dp s is the Stokes’ diameter of the

particle, and pp is the density of the particle. The square of the aerodynamic diameter is also

proportional to the terminal velocity of particles larger than 0.5 um in diameter in still air

(gravitational settling) according to Equation 1.3:

_ Po dzza,ag

— 1.3
TS 181 [1.3]

where Vs is the terminal settling velocity of the particle, pg is the standard particle density

3
(1000 kg/m™), g is the acceleration due to gravity, and n is the viscosity of the gas (air) (Hinds

1999). Larger particles settle out of air more rapidly than smaller particles, which illustrates the
importance of creating aerosol test particles that are similar in size to environmental aerosols.

If the aerosol test particles are too large, they are deposited soon after release and are not
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transported as far as the smaller environmental aerosols, yielding misleading simulations of
transport of targeted aerosol types.

The motions of particles with diameters less than 0.5 um are more complex compared
to larger particles, as random Brownian motion is no longer negligible. The general case relating

random particle diffusion to particle mobility is described by Equations 1.4 and 1.5:

D = ukgT [1.4]

where D is the diffusion constant, kg is Boltzmann’s constant, T is the absolute temperature,

and p is particle mobility, defined as the ratio of the particle’s terminal drift velocity (vq) to an

applied force (F):

U= — [1.5]

When an external force is applied to the particle, it dominates particle motion. However, when
the particle is just drifting, diffusion due to random Brownian motion describes particle
transport. A special case of Equation 1.4 is the Stokes-Einstein Equation (Equation 1.6), which

relates the diffusion due to Brownian motion to particle size:

[1.6]



where D is the diffusion constant, kg is Boltzmann’s constant, T is the absolute temperature, n

is the viscosity of the gas (air), and r is the Stokes radius of the particle (assumed spherical). The
Stokes-Einstein equation predicts that smaller particles have larger diffusion constants
compared to larger particles, and that diffusion must be considered when describing small
particle transport (Dill and Bromberg 2003).

While predicting the transport of single particles using the relationships discussed above
is possible, applying these relationships to a more realistic population of aerosol particles is
challenging. Therefore there is a need for experimental feedback to inform and evaluate
aerosol transport and dispersion models in order to accurately predict aerosol transport and
fate in an environment. The novel aerosol test particles discussed in Chapter 2 were developed
for this purpose, as they accurately mimic the size of environmental aerosols and are safe to
use for atmospheric release tests in populated environments.

Chapter 3 presents the development of a novel method for non-invasively analyzing the
chemical profiles of latent fingerprint residues in order to gain a new level of information from
the most common type of forensic evidence. Passive solid-phase microextraction (SPME)
headspace sampling collects both endogenous and exogenous volatile and semi-volatile
compounds contained in the fingerprint residue while preserving the fingerprint for traditional
analyses. The information-rich chemical profiles obtained from GC-MS analyses of the SPME
samples were used to compare fingerprint compounds both between subjects and over a time
course of 30 days. Multivariate correlation methods were used to answer the questions: Are

two fingerprints different? How different? A multivariate projection method (PCA) was also
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used to answer: Can multiple subjects be associated and discriminated using latent fingerprint
residue chemical profiles? The changes in the fingerprint chemical profiles over 30 days are
discussed as well.

Solid-phase microextraction, developed in 1989 by Pawliszyn and coworkers (Belardi
and Pawliszyn 1989, Arthur and Pawliszyn 1990), revolutionized analytical sample preparation
prior to chromatographic analysis. All common steps of sample preparation (extraction,
enrichment, and introduction to the chromatograph) are rapidly achieved using a simple,
inexpensive device that is reusable and does not require the use of solvents. Analytes are
extracted and concentrated from a sample (either solid, liquid, or gas) onto the SPME fiber,
which is an approximately 1 cm fused silica fiber coated with an organic polymer. Various
polymer materials are used depending on the target compounds of the analysis. Analytes are
absorbed or adsorbed into the fiber from the sample, and the quantity of analyte extracted by
the fiber is proportional to the concentration in the sample. After extraction, the SPME fiber is
transferred to the injection port of a gas chromatography or high-performance liquid
chromatography system, where the analytes are desorbed from the fiber onto the column head
and the separation and analysis take place (Wercinski and Pawliszyn 1999, Ulrich 2000).

The SPME fiber may extract compounds either directly by immersion into a sample
solution or passively from the headspace above a sample. Headspace SPME sampling was
chosen to extract compounds from latent fingerprints, as the SPME fiber does not directly
contact the sample, leaving any friction ridge patterns unaltered for further analysis. Headspace
sampling requires the analytes to partition between three phases: the solid or liquid sample

(e.g. latent fingerprint residue), the gaseous phase above the sample, and the SPME fiber
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polymer coating. Equation 1.7 gives the amount of an analyte that partitions into a SPME fiber

during headspace sampling at equilibrium:

KfSanO
K/sVe + KV, + Vg

nf = [1.7]

where n¢is the amount of analyte extracted into the SPME fiber coating, K *is the distribution

equilibrium constant of the analyte between the SPME fiber coating and the fingerprint sample,

V¢ is the volume of the SPME fiber coating, ng is the number of analyte molecules in the

h
fingerprint residue prior to SPME, K s is the equilibrium constant of the analyte between the
sample headspace and the fingerprint sample, V}, is the volume of the sample headspace, and

Vs is the volume of the fingerprint residue sample. The kinetics of mass transport determine the

headspace SPME sampling time required to achieve equilibrium and relates to the diffusion
coefficients and concentrations of the analytes in the three phases (latent fingerprint residue,
headspace, SPME fiber), the volumes of the three phases, and the partition coefficients
(fingerprint to headspace, headspace to fiber) of the analytes. Extraction equilibrium is reached
when analyte concentrations are homogeneous in the three system phases. The affinity of the
analytes to the three phases, the temperature of the system, and whether the system is static
or agitated affects sampling time as well. While the transfer of volatile analytes from the

fingerprint sample to the headspace occurs quickly, transfer of semi-volatile compounds with
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relatively larger molecular mass and/or higher affinity for the fingerprint sample (“like dissolves
like”) occurs more slowly and increases SPME sampling time. Increasing the temperature
and/or agitating the system accelerates the diffusion of analytes from the sample to the
headspace and the SPME fiber, however, these methods are not amenable to sampling
evidentiary latent fingerprint residues (Zhang and Pawliszyn 1993, Wercinski and Pawliszyn
1999, Ulrich 2000). The work detailed in Chapter 3 applied passive headspace SPME sampling to
latent fingerprint residues as a new approach for chemically profiling forensic evidence to yield
suspect information that is currently inaccessible.

Chapter 4 discusses the combined use of GC-MS and HPLC-MS along with chemometric
procedures to profile the patterns of endogenous metabolites in taxol- and cisplatin-treated
human A549 lung cancer and MCF7 breast cancer cells. Such metabolite patterns revealed
metabolic networks altered by drug treatment, which in turn serve as guides for further
analyses and novel hypotheses regarding the biochemical mechanisms of taxol and cisplatin
anticancer action in two different cell types. Despite recent advances in both diagnostic and
therapeutic tools available, the mortality rate remains high and severe side effects are
associated with common chemotherapy treatments. It is of paramount importance to continue
the search for new chemotherapeutics with novel modes of cytotoxicity that offer higher and
more selective potency and have fewer side effects. The generated multivariate metabolomics
data sets were evaluated and interpreted using PLS-DA and OPLS-DA to discover: What are the
treatment-distinguishing metabolites indicative of anticancer drug mode(s) of action? This work
demonstrates a new way to elucidate the mode of cytotoxicity of potential cancer therapeutic

agents to rapidly screen drug candidates for further development.
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CHAPTER 2: AEROSOL TEST PARTICLES WITH DNA BARCODES
2.1 Motivations and Introduction

Airborne particles are present throughout our environment in many different forms,
including dust, smoke, smog, and fog. Microscopic particles in the air may originate naturally
(e.g. resuspended soil or sand, salt from ocean spray) or arise from man-made processes (e.g.
smoke from power generation, smog from automobile exhaust, hairspray). These are all
examples of aerosols, which are solid particles or liquid droplets suspended in a gas. These
aerosols both positively and negatively impact many facets of our lives including climate,
visibility, and our health and the health of all living things. Aerosols form clouds in the
atmosphere that are vital components in the hydrologic cycle of water movement on Earth,
while other atmospheric particles create hazes that adversely affect temperature and rainfall,
which impact global climate. Airborne particles that enter the human body cause a range of
adverse effects, including minor allergies to biological particles like pollen, diseases such as
cancer caused by tobacco smoke, and life-threatening viral and bacterial infections. Conversely,
aerosols may also be administered as therapeutic drugs (e.g. asthma inhalers), which is a
rapidly growing portion of the pharmaceutical industry. Aerosols play a central role in
understanding the effects we have on our environment and the impacts of the environment on
us (Hinds 1999).

An understanding of the properties of these aerosols that are pervasive in our lives is
essential. Aerosol properties govern the generation, transport, and fate of airborne particulates
as well as efforts to control them. Particle size is the principal parameter for characterizing the

behavior of aerosols, as all properties of aerosols are dependent on particle size to some
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extent. Aerosols exist in a broad range of sizes, from 0.002 um to more than 100 um in
diameter. It is common for an aerosol population to be rather polydisperse and contain
particles spanning two orders of magnitude in size. Particles larger than 10 um have limited
stability in the atmosphere as they quickly fall out due to their large mass. Respirable particles
range from 0.005-5 um in diameter and their toxicity depends on both the physical and
chemical properties of the aerosol, which are instrumental in evaluating airborne particulate
hazards. Particle shape is also important for characterizing aerosol properties, but to a lesser
extent than particle size, as typical variations in particle shape rarely produce more than a
twofold change in any aerosol property. Bulk properties of aerosols, such as density and
viscosity, differ imperceptibly from those of pure air as the particulate phase of an aerosol
typically represents less than 0.0001% of its total mass and volume (even a dense combustion
plume is still 99.999% pure air). While much is known about the properties of some aerosol
populations, uncertainty is introduced when more realistic and complex aerosols are studied.
More work is needed to understand the properties of an aerosol with multiple contributing
sources and concentrations and how the aerosol is transported in a complex environment, such
as an office building (Hinds 1999).

Aerosol transport monitoring is important for detecting the presence of airborne
contaminants and tracking their fate in populated environments where they may adversely
affect human health. The challenge is to selectively detect potentially hazardous aerosols within

the background aerosol matrix of the location. Typical aerosol background is in the range of

-5 -3 3 . . . .
10 " - 10 " g/m™ mass concentration (the mass of particulate matter in a unit volume of

aerosol) and is composed of both natural and urban aerosols. Most natural background aerosol
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originates from direct emissions from desserts (soil dust), the oceans (sea salt), and vegetation
(botanical debris) and varies by geographic location, altitude, and time of year. Urban aerosol is
more complex and dominated by anthropogenic emissions with local concentrations varying
greatly depending on proximity to sources and time of day (Hinds 1999). A building’s heating,
ventilation, and air conditioning (HVAC) air-handling system settings have substantial impacts
on the aerosol transport throughout the building and also vary by season and time of day.
Computational modeling studies are often used to evaluate the airflow in buildings under
different HVAC system settings. Optimized evacuation routes are also determined by evaluating
theoretical scenarios of fire or threat agent release at different points throughout the building.
While computational models are a good starting point, there is a need for experimental
feedback to inform and evaluate aerosol dispersion and transport models. The results of
atmospheric release tests can provide insight into some effects of building planning, design,
construction, and operation on the building’s airflow and airborne contaminant transport
performance (Underwood et al. 2007).

Materials not generally found in the building’s aerosol background are used to study

aerosol transport and fate to minimize background contamination and generate more accurate

measurements. The most commonly introduced tracer material is sulfur hexafluoride (SFg) gas,

which is detected and quantified at different points in the building with high sensitivity using

commercial fluorescence sensors (Underwood et al. 2007). However, SFg molecules are ~300

-4
pm (~*3 x 10 um) in diameter, which is an order of magnitude smaller than the lower bound of

the typical aerosol size range (0.002-100 um in diameter). As particle size is the principal
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characteristic governing aerosol transport, SFg does not accurately simulate the transport of

aerosols in an environment because the molecules are too small. Another test material option
is synthetic polymer microspheres with incorporated fluorophores. Particle transport and fate
are monitored using fluorescence measurements that are tunable by incorporating different
fluorophores into the plastic spheres. While these particles are the correct size for accurately

simulating aerosol transport properties, they are unsafe for human inhalation exposure and

therefore unsuitable for use in populated environments. Neither the SFg gas nor the

fluorescent polymer microspheres are capable of generating accurate test data for evaluation
of aerosol transport in areas where humans will be exposed, which are the areas of primary
interest.

The goals for this project were to create a novel aerosol test particle for use in atmospheric
release tests that accurately mimicked natural aerosols and had all of these desired
characteristics:

- Physical properties that mimic a broad range of environmental aerosol populations,
which are 1-5 um in diameter (middle of the typical aerosol size range) and have
generally spherical morphology

- Safe for human exposure, so they may be used to evaluate airflows in populated
environments

- Specific detection of the aerosol test particles within the environmental aerosol matrix

- Cost-effective production of grams of aerosol test particles to effectively simulate

aerosol transport over large areas and distances
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- Customizable test particle production so that the material properties may be tuned to

meet the needs of specific aerosol release tests

These new aerosol test particles were principally made of U.S. Food and Drug Administration
(FDA)-approved saccharide food additives, which ensured the material was safe, biodegradable,
and had a low burden to receive approval for atmospheric release tests (the particles met
environmental safety and health guidelines for human exposure). Sensitive and selective
detection of the particles was achieved by incorporating non-coding DNA templates into the
particles and detecting them using highly specific quantitative real-time polymerase chain
reaction (QRT-PCR) assays with no interference from the environmental background matrix.
Several different DNA barcodes were available for incorporation, allowing several different
types of aerosol test particles to be generated, which enabled simultaneous or sequential
multiple release tests in the same environment without concern for background contamination
from previous releases. Two different technologies, a modified commercial inkjet printer and a
commercial spray dryer, were evaluated for particle production. The inkjet printer offered low-
cost, rapid production of small quantities of particles for optimization studies, and the spray
dryer generated grams of particles appropriate for atmospheric release tests. Both particle
generation methods enabled tuning the particle properties, including size, size-distribution,
DNA template barcode, and number of DNA barcodes per particle, to create customized aerosol
test particles that were suitable for atmospheric release tests. These customizable aerosol test
particles will provide vital experimental feedback for evaluating aerosol transport models that

safeguard the occupants in an environment.
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2.1.1 Historic and Current Methods for Producing Microparticles

Microdroplets and microparticles find use in many diverse scientific applications
including investigation of solute atomization in flames for analytical spectroscopic analyses
(Hieftje and Malmstadt 1968; Seymour and Boss 1983; Childers and Hieftje 1986), spray
combustion and fuel injection (Sangiovanni and Labowsky 1982), agricultural spraying drift and
deposition (Threadgill et al. 1974), evaporation (Yang et al. 1997) and other physical properties
related to weather (Magarvey and Taylor 1956), and for assessing performance of particulate
control devices and the effects of particulate air pollutants (Berglund and Liu 1973). More
recently, aerosols have been tailored for use in drug delivery (Jain et al. 1998; Hauschild et al.
2005), Raman spectroscopy of levitated droplets (Trunk et al. 1994), maskless lithography for
microelectromechanical system (MEMS) fabrication (Wang et al. 2004), and as particle
standards containing trace levels of molecules for ion mobility spectroscopy (Fletcher et al.
2008) and trace levels of elements for X-ray fluorescence spectrometry and laser ablation
inductively coupled plasma mass spectrometry (Fittschen et al. 2006; Fittschen et al. 2008).

All droplet generation systems share similar performance metrics, such as compatibility
with liquid of interest, droplet size, frequency, and stability and reproducibility of operation. In
the past, acceptable aerosol production was achieved using complex, custom-built systems
designed for specific applications. While system components varied widely to meet the needs
of diverse applications of aerosols, all systems contained a reservoir of the liquid to be
aerosolized, an orifice or nozzle(s) for droplet release, and a link between the two, generally a
tube or series of tubes. In general, aerosol generation systems are also capable of microparticle

production by simply evaporating the solvent, creating solid particles composed of the solute
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material. Most early droplet generation schemes employed the division of a regularly disturbed
cylindrical jet as the mechanism. When mechanical disturbances are generated at a constant
frequency and with sufficient amplitude on a liquid jet moving at a constant velocity, the jet will
break up into droplets of equal size (Berglund and Liu 1973). These periodic vibrations
originated from devices such as a speaker (Magarvey and Taylor 1956; Stricker and Sofer 1991),
motor-driven plunger (Magarvey and Taylor 1956), magnetostrictive transducer (Sweet 1965;
Sangiovanni and Labowsky 1982), or, most commonly, a piezoelectric transducer (Hieftje and
Malmstadt 1968; Stemme and Larsson 1973; Threadgill et al. 1974; Buehner et al. 1977,
Seymour and Boss 1983; Maehara et al. 1984; Childers and Hieftje 1986; Switzer 1991; Warnica
et al. 1991; Trunk et al. 1994; Yang et al. 1997). These early studies all used custom-built
aerosol generation systems that were unique and elaborate, requiring considerable time and
effort to construct and patience and skill to operate. In addition, an attempt to duplicate or
improve upon an aerosol generator described in the literature proved difficult as often details
were oversimplified or not provided.

Currently there is a variety of commercially available aerosol generators designed to
alleviate some of the operational drawbacks of using individual custom-built systems. The
Vibrating Orifice Aerosol Generator (VOAG, TSI Inc., Shoreview, MN) uses a piezoelectric
cylinder to precisely control the breakup of a liquid jet into monodisperse microdroplets. The
diameters of the microdroplets are tunable by varying the liquid flow rate and the vibration
frequency of the nozzle. However, droplets are created one at a time using a single nozzle,
making the VOAG unsuitable for rapid, large-scale aerosol production (Berglund and Liu 1973).

The Sono-Tek ultrasonic atomizer (Sono-Tek Corp., Milton, NY, www.sono-tek.com) uses the
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piezoelectric transducer droplet production method as well, but produces a spray of
polydisperse microdroplets with an atomizing surface at the end of the liquid feed tube instead
of a nozzle. The resulting aerosol has a log-normal size-distribution, with the distribution
maximum being tunable by varying the operating frequency. The resulting polydisperse
microdroplets have the disadvantage of requiring sorting prior to use in some applications.
Finally, commercial emulsion solvent extraction piezoelectric printing systems can print
polymers such as poly(lactide-co-glycolide) (PLGA), which is a biocompatible polymer used for
drug delivery and other environmental testing applications (Jain et al. 1998; Fletcher et al.
2008). The commercial systems (e.g. Spherelet, MicroFab Technologies, Inc., Plano, TX) are
designed for oil/water emulsion solvent extraction microparticle production and are not
capable of generating aerosols. As was the case with the VOAG, single monodisperse particle
generation rates are not suitable for large-scale production. There are a range of other
commercially available comprehensive aerosol and particle production and characterization
systems based on inkjet printing technology that produce well-defined aerosols. However, most
systems are tailored to a specific purpose and are unable to transition effectively to new

applications.

2.1.2 Inkjet Printing

Reproducible, controlled-size aerosol production is typically achieved using commercial
systems tailored for very specific applications. There is a need for a more accessible and
universally applicable generation mechanism for controlled-size aerosols and microparticles

using equipment already present in most laboratories. For this work we demonstrated the
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successful use of a widely available commercial-off-the-shelf (COTS) inkjet printer to produce
tunable and well-characterized aerosol size-distributions in a rapid, easily controlled manner.

A process for generating uniform microdroplets of ink for data recording applications
was first developed by Sweet (1965). This first inkjet droplet production system, as well as the
several modified systems by others that followed, operated continuously and was successfully
applied to data recording and photocopying applications (Kamphoefner 1972). The next step for
the inkjet printing effort was impulse (drop-on-demand) printing, where a droplet was only
ejected when needed. This added functionality was more suited for printing characters than the
previous continuous operation systems, and photocopying performance was improved as
droplet frequency modulation enabled grayscale printing capability (Stemme and Larsson 1973;
Carnahan and Hou 1977). The impulse inkjet printing systems were further developed into the
early computer word processing output printers and formed the basis for the commercial inkjet
printing industry (Buehner et al. 1977).

Commercial inkjet printer systems (e.g. Hewlett-Packard Desklet series, Hewlett-
Packard Company, Palo Alto, CA) are low-cost, typically less than $100 USD for the entire
system (printer, cartridge, and operating software), are widely available, and are capable of
rapid, large-scale, consistent size-distribution microdroplet production (Buskirk et al. 1988;
Bohorquez et al. 1994; Shelley et al. 1997). Current COTS inkjet printers employ either a
piezoelectric mechanism (discussed above) or a thermal bubble mechanism for microdroplet
production. The basic components of a thermal inkjet printhead are resistors, ink channels, and
exit nozzles. When the resistor is electrically heated, the nearby ink is vaporized to create a

bubble, forcing an ink droplet out through the nozzle. The collapsing bubble and capillary force

32



then draw ink from the channel to refill the nozzle (Buskirk et al. 1988; Chen et al. 1998). High-
throughput, reproducible size-distribution microdroplet generation is achievable as some inkjet
cartridges contain approximately 300 identical nozzles with concurrent nozzle firing rates of
around 8 kHz (Bohorquez et al. 1994; Shelley et al. 1997). Compared to custom-built and
commercially available systems, minimal investment of time and money is needed to apply
these widely available COTS inkjet printer systems to aerosol and microparticle production
applications.

The U.S. Army’s Edgewood Chemical Biological Center first demonstrated the potential
for COTS inkjet-based aerosol generation from aqueous solutions (not conventional ink). The
Inkjet Aerosol Generator (IJAG) coupled a 12-nozzle thermal inkjet printhead from a desktop
inkjet printer to a heated desiccation tube to dry the aerosol into microparticles, and was
controlled using custom-built electronics and software. The uniformity of aerosols produced
over time was demonstrated, and particles with tunable sizes in the range of 1-10 um were
generated (Bottiger et al. 1998). The Digital Aerosol Generator (DAG) was the second
generation of the IJAG, utilizing COTS industrial-sized piezoelectric inkjet array printheads. The
printed droplets were rapidly dried using a flow of warm air in a custom-built droplet
conditioning module, and the system was controlled using custom software and electronics
(Dougherty et al. 2007). Sergeyev and Shaw (2006) also demonstrated the use of a COTS
thermal inkjet cartridge operated using custom-built electronics to produce droplets in a
constant size-distribution (17 um + 2 um). The system was reproducible over several hours and
the droplet generation rate was accurately controlled, however, no attempt was made to tune

the size-distribution of the generated droplets. All of these custom-built microdroplet and
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microparticle production systems incorporated COTS inkjet cartridges, leveraging decades of
droplet production technology to produce aerosols with desirable properties. However, the
other components of the aerosol generation systems (e.g. the control electronics and printhead
enclosures) and the software to control the cartridges were custom-built, making it difficult to
transition the technology in a cost-effective manner to other researchers and consumers.

This work employed widely available COTS inkjet printer systems, with the associated
commercial control software, for comprehensive aerosol and microparticle generation. Simple
modifications to the inkjet printers and cartridges were added, but with retained functionality
of the commercial software to easily control the printer and aerosol generation. Tunable and
well-characterized microparticle size-distributions were simply and reproducibly produced with

diverse properties suitable for many applications using this commonly accessible system.

2.1.3 Spray Drying

The successful generation of novel aerosol test particles using the modified inkjet
printer in test-scale batches led to production scale-up to grams of particles for atmospheric
release tests using a commercial spray dryer. Spray drying is a common method in the
pharmaceutical and food industries for producing a dry powder from a solution or slurry (BUCHI
Corporation 2002, Arpagaus et al. 2010b). Commercially available systems employ an atomizer
or spray nozzle to separate a liquid stream into a droplet spray. The droplets are quickly
evaporated in a heated gas (usually air) stream parallel to the droplet spray direction, resulting
in solid particles composed of the solutes in the spray dried solution. The particles are then

collected from the moving gas stream using a cyclone collector. The particles and gas are drawn
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into the top of the collector perpendicular to the cone-shaped cyclone, which initiates rotation
of the airstream. The rotation becomes more rapid as the airstream travels down the cyclone
until it reaches the bottom, where it then travels back up the center of the cyclone and out the
top to be further filtered and exhausted or re-circulated in the instrument. Particles are
deposited on the walls of the cyclone due to centrifugal force and fall down into the product
collection vessel beneath the cyclone. The final product is a fine, amorphous or crystalline
powder (Hinds 1999, BUCHI Corporation 2002). Particle size-distribution characteristics vary
greatly, from hundreds of nanometers to tens of micrometers in diameter, depending on the
droplet generation mechanism, gas and liquid flow rates, and solute concentrations in the spray
dried solution (Arpagaus et al. 2010a). Due to the particle size tuning abilities of the spray
dryer, it is capable of generating dispersible powders in the range of 1-5 um in diameter that
are desired by the pharmaceutical industry for delivery of inhalable drugs (Arpagaus et al.
2010b). Spray drying facilitates single step powder generation with particle size tunability,
making it attractive for many industrial processes.

A common spray nozzle employed in spray dryers is the two-fluid nozzle, where one
fluid is the liquid solution containing solutes to be dried into particles, and the other fluid is a
spray gas, usually nitrogen, used to disperse the liquid into droplets. These nozzles are
nebulizers, which are another commercially available aerosol production option. The aerosol
production mechanism involves a rapidly flowing gas stream interacting with a relatively slowly
moving liquid stream, where the turbulent gas flow breaks the liquid up into fine droplets of
random size. More sophisticated nebulizers, such as those used for solution sample

introduction in atomic spectroscopy, utilize impingement surfaces, such as beads or
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ultrasonically vibrating plates, to break up the larger droplets into smaller droplets, resulting in
a narrower size-distribution (Skoog et al. 1998, Rubinson and Rubinson 2000). The basic
nebulizer in the spray dryer nozzle produces a log-normal size-distribution with most particles
less than 10 um in diameter (Hinds 1999, Miller and Miller 2005). Droplet generation by
nebulization is also extremely rapid (milliliters of liquid dispersed into droplets per minute),
making it attractive for generating grams of microparticles for aerosol release tests (Raabe

1976).

2.1.4 Microparticle Morphology Analyses

The principal characteristics of natural aerosols to mimic in these novel aerosol test
particles were the size and shape of the microparticles. While aerosol populations can span
several orders of magnitude in size, particles useful for simulating aerosol transport must have
diameters less than 10 um, as larger particles will have masses too great to be transported
using normal air flows. Particle composition and morphology also play important roles in
aerosol transport, as different aerosols (e.g. biological, soot, dust) have different aerodynamic
properties in a moving air stream. The goals of this project included generation of spherical
aerosol test particles 1-5 um in diameter to simulate a broad range of natural aerosol
populations during atmospheric tests. The sizes of the generated particles were evaluated using
an Aerodynamic Particle Sizer (APS), which yields size-distribution information based on
aerodynamic transport measurements in real time. This information allowed the particle
generation process to be tuned to deliver the desired size by adjusting production parameters,

and particle morphology was determined using Scanning Electron Microscopy (SEM). These
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SEM analyses both confirmed the APS particle size results and added another dimension of
information regarding the morphology of the microparticles and how well they mimic the

shapes of natural aerosols.

2.1.4.1 Aerodynamic Particle Sizer

The sizes of generated aerosol test particles were characterized in order to determine if
they accurately mimicked natural aerosols that are transported using typical airflow rates.
Aerodynamic diameter is the physical diameter of a unit density sphere that settles through the
air with a velocity equal to that of the particle being analyzed. It is the most meaningful aerosol
size parameter because it allows prediction of a particle’s behavior while airborne. Particles
having the same airborne behavior due to physical properties such as size, shape, density, and
composition have the same aerodynamic diameter. The APS detects particles from 0.37-20 um
using light scattering (determining whether a particle is in the measurement area or not only).
The APS sizes particles in the range of 0.5-20 um using a time-of-flight technique, with particle
velocity providing a functional measure of aerodynamic diameter in real time. The time-of-flight
approach provides a more accurate assessment of aerodynamic properties compared to light
scattering as it accounts for particle shape and is unaffected by differences in refractive index.
The optical detection system for this time-of-flight particle size analyzer is composed of two
partially overlapping laser beams. As a particle moves through the measurement area in an
accelerating sheath airflow, it scatters the light from the two beams and generates one signal
with two crests. The presence of one or more crests during the measurement time window is

used to count the particle, and the peak-to-peak time between the two crests serves as a
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measure of particle velocity, which is related to the particle’s aerodynamic diameter. Larger
particles accelerate through the detection region more slowly compared to smaller particles
due to increased mass, inertia, and aerodynamic drag forces. Particle velocity data is stored in
1024 time-of-flight bins. A particle size calibration by the manufacturer using polystyrene latex
(PSL) spheres of known size is used to convert the time-of-flight measurements into
aerodynamic particle diameters. The aerodynamic particle sizes are binned into 52 channels on
a logarithmic scale, and the resulting size-distribution for a particle population is displayed as a
histogram, with aerodynamic diameter bins on the x-axis and the number of particles detected
in each size bin on the y-axis (Holm et al. 1997, Peters and Leith 2003, TSI Incorporated, 2004).
The APS was beneficial throughout this work as it gave real time aerodynamic size-
distributions of generated microparticles. These rapid analyses provided feedback for tuning
the microparticle generation parameters to yield desired size-distributions. The disadvantage of
using an APS alone for aerosol characterization is that it is a non-selective measurement,
meaning it measures all aerosols that enter into the instrument regardless of their origin.
Background samples of the environmental aerosols were always collected before the aerosol
test particles were introduced in order to get the most accurate results for the generated test
particles. Atmospheric release tests may be monitored using APS instruments, however, more
selective confirmatory testing is desired to separate the results from the aerosol test particles

from the background aerosol population of the testing environment.
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2.1.4.2 Scanning Electron Microscopy

The shapes and minute surface features of aerosols are informative for identification
and influence the transport properties of the microparticles. Scanning Electron Microscopy
(SEM) is commonly used to study the surface features and morphology of microorganisms and
other objects that require resolution of features smaller than 200 nm (diffraction limit for the
optical microscope). Electron microscopes use electrons instead of light beams and
electromagnets instead of lenses to examine prepared samples under high vacuum. Samples
are sputter coated with a thin layer of a heavy metal (e.g. gold) to make them conductive in
order to minimize artifacts caused by charge buildup and thermal degradation. The finely
focused electron beam travels in a raster pattern over the area of the sample being examined.
Secondary electrons are generated by the interactions between the high-energy beam
electrons (20 keV) and weakly bound conduction band electrons on the sample surface. The
incident beam provides sufficient energy to eject conduction band electrons from the surface
with < 50 eV of kinetic energy. These inelastic scattering interactions yield an exit beam of
secondary electrons only slightly larger in diameter than the incident beam, with a typical
resolution of 0.5 nm. Secondary electrons are most commonly detected using a scintillator-
photomultiplier combination detector. The secondary electrons are attracted and accelerated
toward a phosphor or scintillator, which is a doped glass or plastic target that emits visible
photons upon impact. The photons are conducted by a light pipe to a photomultiplier tube
outside of the high-vacuum region of the SEM, and the amplified signal is incorporated into an

analog or digital image. These detected electrons are used to produce an image of the surface
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features of the sample at magnifications from 10X to 100,000X (Flegler et al. 1993, Skoog et al.
1998, Madigan et al. 2000).

Aerosol test particle SEM analyses were used to confirm the sizes of the generated
particles first measured using the APS and to examine the morphology of the individual
particles. As SEM is capable of differentiating aerosol types (e.g. biological, soot, dust) and
sometimes the individual class members based on morphology, it is a more selective
characterization technique compared to data generated by the APS. However, SEM analyses
require time-consuming sample preparation and greater expertise to carry out. The results
obtained from SEM and APS analyses were complementary, and the combined information
generated from these two analysis techniques fully characterized the sizes and shapes of

generated aerosol test particles.

2.1.5 DNA Barcodes

Microparticle detection and characterization using APS and SEM are useful for particle
counting and morphology information, however, some applications (including monitoring
aerosol transport) require more specificity in determining the constituents of an aerosol

population. As discussed above, common aerosol background levels are on the order of 1

3 . . . .
mg/m~ mass concentration (mass of particles in a unit volume of aerosol) and are composed of
both natural and anthropogenic aerosols that vary greatly by location. Methods that specifically
and selectively detect aerosols of interest within the background aerosol matrix of the

environment are essential for accurate evaluation of aerosol transport and fate. One very

specific method for characterizing the biological constituents of an aerosol is analyzing the DNA
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of the microorganisms. A common method for detecting and quantifying DNA involves
application of the polymerase chain reaction (PCR), which amplifies a target DNA sequence
millions of times for detection. The PCR requires four principal reaction components: template
DNA containing the target DNA sequence to be amplified and detected, synthetic
oligonucleotide primers designed to anneal to the outside edges of the target DNA sequence to
initiate replication, a heat stable DNA polymerase to synthesize copies of the target sequence,
and deoxynucleoside triphosphates (dNTPs) as building blocks for synthesizing the target DNA
copies. The PCR is carried out in a thermal cycler, which heats and cools the reaction tubes for
the different stages of the amplification reaction. The first stage involves denaturation, where
the double-stranded DNA is heated so that the hydrogen bonds break, yielding two single-
stranded DNA molecules. The next stage is annealing, where the temperature is lowered so that
the oligonucleotide primers may anneal to the complementary sequence on the DNA molecule.
The final stage is elongation, where the temperature is held at the ideal level for optimal
polymerase activity to replicate the target DNA sequence by starting at the primers and adding
the appropriate dNTPs. This completes one thermal cycle, which has, in theory, doubled the
number of target DNA sequences that were initially present in the reaction. The PCR then
continues with another thermal cycle, up to approximately 40 cycles total, yielding millions of
copies of the target DNA sequence. After the PCR is completed, the resulting DNA copies may
be detected using agarose gel electrophoresis techniques (Sambrook and Russell 2001), though
with limitations in quantitative precision and accuracy arising from the non-specific DNA

staining protocols.
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Quantitative real-time PCR (QRT-PCR) provides a valuable alternative to gel
electrophoresis, and expands the capabilities of the PCR to include precise detection of the
number of target DNA copies in the sample in real time throughout the PCR. This simultaneous
amplification and quantification is achieved by adding a DNA-binding fluorophore to the PCR
reaction mixture and employing fluorescence-detecting thermal cyclers. One popular approach
to QRT-PCR is presented by TagMan assays, which employ an oligonucleotide probe designed
to anneal to an interior portion of the target DNA sequence. The probe is labeled with a
fluorophore on one end and a quencher on the other end. When the probe is intact,
fluorescence is quenched due to fluorescent resonance energy transfer (FRET). The probe
anneals to the target DNA sequence during the annealing stage of the PCR, similar to the
primers. During the elongation phase, the exonuclease activity of the polymerase cleaves the
fluorophore from the probe. As the fluorophore is no longer being quenched, it fluoresces,
which is detected by the thermal cycler. Since each target DNA replication releases a
fluorophore, the fluorescence intensity of the sample increases with each thermal cycle in
proportion to the amount of template DNA initially present in the sample. When a large
number of template copies are present in the initial sample, only a few cycles of PCR
amplification are necessary for the fluorescence in the solution to increase and cross a
detection threshold. When there are fewer template copies in the initial sample, more thermal
cycles of amplification are needed for the fluorescence to increase and cross the same

threshold value. The relationship between the number of template copies in the sample and

the number of PCR cycles it takes for the fluorescence to cross the threshold (called the Ct

value) is the basis for the real-time quantitation of DNA. A calibration curve is constructed by
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analyzing a series of ten-fold dilutions containing a known amount of template DNA. A plot of

Ct vs. log1o of DNA copies yields a straight line, and the template concentration in experimental

samples is determined by interpolation into the standard curve. Due to the low detection limits
afforded by fluorescence detection, QRT-PCR is capable of quantifying a target DNA sequence
over seven or eight orders of magnitude. The large dynamic range, low detection limits, high
specificity, and the capacity to process many samples concurrently during a single PCR run
make QRT-PCR a gold standard for detecting and quantitating DNA in a vast number of
applications, including biological aerosol characterization (Holland et al. 1992, Heid et al. 1996).
As bioaerosols are present in most environmental aerosol populations they can be used
as the release test material for aerosol transport studies and are especially advantageous when
PCR-based assays are used for detection and quantification. Some currently used bioaerosol
test particles are harmless bacterial spores such as Bacillus subtilis and Bacillus thuringiensis,
which are commonly used as a simulant for Bacillus anthracis, the causal agent of anthrax
(Madigan et al. 2000, Burton et al. 2005). These bacterial spores work well for particle counting
release tests and PCR confirmation as they mimic typical aerosol size (bacterial spores are ~0.5-
2 um in diameter) and contain DNA for specific detection and quantification of the number of
bioaerosols in a particular location. However, there is the possibility of inherent contamination
in the background aerosol matrix due to natural B. subtillis reservoirs in the soil and B.
thuringiensis use as a commercial biological insecticide (Madigan et al. 2000). Also, a simulant
bacterial spore may only be used for one release test in a location because afterwards the
environment is certainly contaminated with that spore. Background contamination

compromises the accuracy of PCR-based measurements of targeted microbes, which is
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undesirable. Another approach involves use of synthetic, non-virulent oligonucleotides or
plasmids to simulate either single or multiple virulent organisms for PCR-based detection
(Carrera and Sagripanti, 2009). The DNA sequences used for PCR detection of threat agents are
reproduced in vitro to validate positive PCR results without exposing an environment or
personnel to a pathogenic organism. While this approach is useful for PCR-based detection
tests, it is not suitable for aerosol release tests as the physical characteristics of nucleotides and
plasmids are not similar to most environmental aerosols. This limitation is resolved by
incorporating the DNA sequences into a particle material so that both aerosol transport and
PCR-based detection methods are challenged during an atmospheric release test.

Synthetic nucleotides were chosen as unique particle identifier molecules for these
novel aerosol test particles. However, instead of using DNA sequences from virulent organisms,

templates were chosen from the thermophilic bacterium Thermotoga maritima. T. maritima

exhibits optimal growth at 80 °C and is found in terrestrial hot springs and deep ocean

hydrothermal vents, so the potential for natural background contamination is low (Madigan et
al. 2000). The genome for T. maritima is sequenced due to its potential use in biotechnology
applications as a hyperthermophile with heat stable enzymes (Nelson et al. 1999). Four
templates approximately 100 base pairs (bp) long were chosen from the T. maritima genome
that were non-coding (do not code for a functional protein) and dissimilar from DNA sequences
of other common biological aerosol microorganisms. Corresponding oligonucleotide primers
and probes were also designed for highly specific QRT-PCR detection of the templates in
experimental samples. The incorporation of DNA barcodes into the aerosol test particles

enables PCR-based detection and quantification after atmospheric release tests. Multiple
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barcodes are available for incorporation into different batches of the test particles to alleviate
background contamination problems if several release tests are desired in the same area. The
customizable DNA barcodes in the aerosol test particles, along with QRT-PCR detection,

facilitate atmospheric release testing in most environments.

2.2 Materials and Methods
2.2.1 Inkjet Printers and Cartridges

Commercial-off-the-shelf inkjet printers and cartridges were purchased online from
Hewlett-Packard (HP, http://www.shopping.hp.com). This work utilized HP Deskjet D1660
Printers and HP 60 Black and Tricolor ink cartridges. Hewlett-Packard printer systems use the
thermal bubble mechanism of microdroplet production, which was better suited for this work
compared to piezoelectric systems, as it is more robust to experimentation and modification
due to the lack of moving mechanical parts in the printheads. The black ink cartridges contained
336 nozzles, 20 um in diameter, arranged in two columns of staggered nozzles (Figure 2.1).
Nozzles were spaced at 1/600 inch (600 dots per inch, or dpi, resolution), yielding a swath
height of 0.56 inches. The nozzles have a reported firing rate of 8 kHz and generate 13.8 pL ink

droplets, which equates to 30 um in diameter (Bohorquez et al. 1994; Shelley et al. 1997).
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1.5 mm

Figure 2.1. Scanning Electron Microscopy micrograph of the nozzle plate of a black inkjet
cartridge (20X magnification).

Both the printers and cartridges were modified to enable printing a variety of solutions
and collecting and analyzing the printed aerosol droplets. The top cover of the printer was
removed to allow access to the cartridge carriage assembly inside (Figure 2.2a). The cartridge
carriage was removed from a second printer, electrically connected to the carriage in the intact
printer, and stationary mounted over a large plastic collection chamber. This configuration
allowed the cartridge carriage within the intact printer to raster back and forth normally as if
printing an image on the paper, but the printed droplets issued from the stationary mounted
cartridge carriage for collection. This was necessary as the intact printer required cartridge
position feedback for operation. The inkjet cartridges were prepared for experiments by
removing the tops and flushing out the ink with distilled water. The solutions printed during
experiments were always printed through clean black cartridges as they were more simply

constructed compared to the tricolor cartridges. After the black cartridge was loaded with 500
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ul of the solution to be printed, the top was replaced. The black cartridge was then placed in
the stationary cartridge carriage over the initial collection chamber for production and

collection of aerosol droplets.

A. Paper in Ifeed tray
I

-‘ Black ink cartridge

Printing are\a [ Color ink cartridge

Cartridge carriage

Collection M Stationary mounted
chamber cartridge carriage

B.
Black ink cartridge
-/ }Stationary mounted
cartridge carriage
Inkjet "
plr']injteer - Printed droplets

“,1 L/min

=

Collection Desiccant Aerodynamic
chamber aerosol dryer Particle Sizer
(APS)

Figure 2.2. Schematic drawings of the experimental setup showing (A) the modified inkjet
printer and stationary mounted cartridge carriage (top view) and (B) the droplet collection,
dehydration, and microparticle characterization devices (side view).
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Instead of striking paper to form an image, the droplets generated by the modified
printer and stationary mounted black inkjet cartridge were collected in a five-gallon
polycarbonate container and immediately drawn through a desiccant aerosol dryer (built in-
house) to dehydrate them (Figure 2.2b). The desiccant aerosol dryer was constructed from 1.27
cm-thick anodized aluminum with a cover of 1.27 cm-thick glass (53.34 cm x 7.62 cm x 7.62 cm
with the cover). A wire mesh tube 1.27 cm in diameter traversed the dryer lengthwise and had
airtight couplings to the outside of the dryer for aerosol transport through the dryer. The dryer
was filled with fresh regenerated desiccant daily (desiccant mesh size larger than the wire mesh
tube to prevent the desiccant from entering the aerosol transport tube), covered with the glass
with an o-ring for an airtight seal, and secured with 10 allen screws. As the generated
microdroplets were drawn through the aerosol transport tube in the dryer, the surrounding
desiccant dehydrated the droplets, resulting in solid microparticles consisting of the non-
volatile dissolved substances from the printed aqueous solution. The microparticles (still
suspended in the moving air stream) were then characterized using an Aerodynamic Particle

Sizer (APS, TSI model 3321, Shoreview, MN) and Aerosol Instrument Manager Software (version

8.1, TSI). The APS drew air at a rate of 1 L/min (at room temperature, 20 °C) through the system

and was the means for transporting the generated microdroplets from the initial collection
chamber through the desiccant dryers to the APS to be analyzed. The APS counted the
microparticles and determined their aerodynamic diameters simultaneously, yielding size-
distribution results for the microparticles collected during each experiment.

The image file sent to the printer as the print job for all experiments was a solid black

rectangle, 20.2 cm x 7.6 cm, created on a slide in Microsoft Office PowerPoint (Microsoft,
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Redmond, WA). The slide was saved as a picture, and the picture was printed from the Preview
application of a Mac OS X computer (Apple, Inc., Cupertino, CA). The HP Deskjet D1660 printer
driver was downloaded from the HP website and installed on the same computer. When the
black rectangle image was printed from Preview to the HP Deskjet D1660 printer, there were
several customizable options available in the Paper Type/Quality portion of the Advanced print
menu that were expected to influence the generated aerosol. The customizable options
included: paper type, quality, color, photo fix, and grayscale mode. The most interesting paper
type and print quality option combinations available in the commercial software were
investigated (Table 2.1). The color option was always set to grayscale, as solution was only
loaded into the black inkjet cartridge to be printed. The photo fix option was always “off” to
simplify the results. The grayscale mode sub-options were high quality (both tricolor and black
cartridges used) and black print cartridge only. The black print cartridge only option was
employed at all times that it was available, however, for higher quality settings the high quality

grayscale mode was the only option available.

Table 2.1. Paper type and print quality settings investigated for effect on printed aerosol
characteristics (* indicates tested experimental condition, N/A indicates setting not available).

Print Quality
Paper Type Fast Draft Normal Best Maximum dpi
Plain * * * N/A
Photo N/A * * *
Inkjet N/A * * N/A
Transparency N/A * N/A N/A

The generated microparticles were composed of glucono-delta-lactone (GDL, Purac

America, Inc., Lincolnshire, IL), a naturally-occurring food additive (Figure 2.3). Glucono-delta-
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lactone was chosen as it is non-toxic and water soluble, making it amenable for use in the
thermal inkjet cartridges that are manufactured to print water-based black ink (Hall et al. 1994).
Solutions of varying GDL concentration (% w/v) in sterile water (Teknova, Inc., Hollister, CA)
were tested in order to examine the tunability of the resulting microparticle size-distribution
created using this inkjet printing method. Table 2.2 lists some physical properties, namely
density and viscosity, of the tested GDL solutions, as well as the values measured for the HP 60
black ink that was in the cartridges. The density of each solution was measured by weighing
1.000 mL of the solution using an analytical balance in triplicate. The kinematic viscosity of each
solution was determined using a Cannon-Fenske Opaque Viscometer (size 50, Cannon
Instrument Company, State College, PA) in triplicate. Kinematic viscosity was converted to
dynamic viscosity by multiplying by the density of the solution. Solution density and viscosity
affect nozzle re-filling speed and droplet break-off time within the inkjet cartridge and are

therefore expected to have an effect on expelled droplet size.

OH

Figure 2.3. Structure of glucono-delta-lactone (GDL).
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Table 2.2. Physical properties of aqueous GDL solutions used during experiments and HP 60

black ink for comparison (measured at 20 °C, n = 3, mean + one standard deviation).

Solution Density (g/mL)  Viscosity (cP)
1% GDL 1.005+0.001 1.026 +0.002
2.5% GDL 1.009 +0.002  1.051+0.008
5% GDL 1.018 +0.002  1.123 +0.005
7.5% GDL 1.029 + 0.003 1.214 + 0.004
10% GDL 1.035 +0.003 1.298 + 0.001
12.5% GDL  1.048 +0.003 1.403 £ 0.007
15% GDL 1.055 +£0.002 1.517 £ 0.004
17.5% GDL  1.067 £+0.002  1.647 +0.007
20% GDL 1.078 £0.002  1.794 + 0.006
Black Ink 1.043+0.012 2.918+0.003
2.2.2 Spray Dryer

A commercial spray dryer (Mini Spray Dryer B-290, BUCHI Corporation, Switzerland) was
used to scale-up microparticle production to grams. Literature for the spray dryer indicated it
was capable of producing highly dispersible, spherical particles 1 to 5 um in diameter with
narrow particle size-distributions, similar to the particles produced using the modified inkjet
printer (Arpagaus et al. 2010b). However, it was discovered that GDL was not compatible with
the spray drying process because it became sticky, causing product losses and agglomeration.

This is a common problem encountered when spray drying low molecular weight sugars, as the

glass transition temperature (Tg) is low compared to larger oligosaccharides. If the Tg is

exceeded during the spray drying process, the particles change state from solid to glass and
become sticky (Adhikari et al. 2005, Arpagaus et al. 2010a). Therefore, another naturally-
occurring food additive, maltodextrin, was selected to be the bulk particle material when the
spray dryer was used for generation (Figure 2.4). Organic Tapioca Maltodextrin DE 10 (Dextrose

Equivalent 8-12, Ciranda, Hudson, WI) is an oligosaccharide with 10-15 glucose units and has a
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Tg of 160 °C, which is sufficiently high to prevent stickiness during spray drying and caking

during storage (Bhandari, no date).

OH
10<n<20

Figure 2.4. Structure of maltodextrin.

The spray dryer was operated as an open-cycle system, with room air as the drying gas
(Figure 2.5). The air stream drawn into the spray dryer was electrically heated to the set inlet
temperature before being drawn into the drying chamber. The aqueous maltodextrin solution
(50-150 mL) was placed in a sterile beaker on a stir plate and was gently stirred throughout the
spray drying process to ensure homogeneity. A peristaltic pump was used to draw the solution

into the two-fluid spray nozzle, where it interacted with the ultra high purity compressed

nitrogen (N3) spray gas flow, controlled by a rotameter. The droplets were sprayed into the

drying chamber in the same direction as the hot air (co-current flow), and the solvent quickly
evaporated, resulting in solid microparticles. The microparticles were collected from the

moving air stream using a high-performance cyclone, where inertial forces impacted the
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particles on the walls of the cyclone and forced them down into the collector vial. Finally, the
air stream passed through another filter before being exhausted through the aspirator to
atmosphere. After all of the solution was spray dried, the system was allowed to cool before
shutting down and removing the collector vial from the end of the cyclone containing the
powder product. The free-flowing powder was transferred to an autoclaved scintillation vial
(VWR International, Radnor, PA) for characterization and storage. The generated microparticles

were re-aerosolized by shaking the vial for APS analyses and SEM sample preparation.

Peristaltic pump

flow rate
Spray gas
flow rate Solution
concentration Aspirator
Dry|ng gas q /\M NOZZIG - ﬂOW rate
Heater | '—rInlet temperature |
Droplets +—— t
Outlet
Drying temperature t l '
chamber L
Cyclone Filter
collector

Powder product

Figure 2.5. Schematic drawing of the spray dryer showing all gas and liquid flows, temperature
measurement points, and product collection vessel. For interpretation of the references to
color in this and all other figures, the reader is referred to the electronic version of this
dissertation.
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In order to optimize microparticle size and demonstrate particle size tunability, several
different maltodextrin concentrations in aqueous solution and several different spray gas flow
rates were tested, as those are the spray drying parameters that have the most effect on
generated particle size. The tested maltodextrin concentrations were 1%, 3%, 5%, 10%, 12.5%,
and 20% (w/v) in sterile water (Teknova). The tested spray gas flow rates were 30 mm (7.32
L/min), 40 mm (11.12 L/min), 45 mm (13.85 L/min), and 50 mm (17.53 L/min). The optimized
operational settings for the various spray drying parameters used during experiments are

shown in Table 2.3.

Table 2.3. Spray dryer operation settings for maltodextrin microparticle generation.
Operating Parameter Setting

Solution concentration 3% (w/v)

Inlet temperature 190 °C

Aspirator flow rate 70% (475 L/min)
Peristaltic pump flow rate 30% (9 mL/min)

N> spray gas flow rate 45 mm (13.85 L/min)
Nozzle cleaner interval 3

2.2.3 Microparticle Characterization
2.2.3.1 Aerodynamic Particle Sizer

Microparticles generated using both the modified inkjet printer and the commercial
spray dryer were characterized using the Aerodynamic Particle Sizer (APS). The GDL
microparticles generated using the modified inkjet printer were analyzed directly after they
were made, as the APS inlet airflow (1 L/min) was the means for transporting the microdroplets
through the desiccant dryers and into the APS to be analyzed (Figure 2.2). Conversely, the APS

was not directly integrated into the commercial spray dryer system. After the spray dried
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maltodextrin powder was produced and transferred to a small vial for storage, the particles
were re-aerosolized for APS analysis by shaking the vial with the tube leading to the APS inlet
positioned over the vial. Both APS analysis methods yielded size-distribution data for
characterizing the produced microparticles.

The microparticle APS size-distribution raw data collected during experiments were
gualitatively compared to determine the effects of varying the generation parameters on the
resulting microparticle size-distribution. The data sets were then treated more analytically by
truncating them to only include the principal size-distribution data points (histogram size-bins
with the number of particles detected in each bin) containing the majority of the collected
microparticles and applying standard chromatographic peak processing and analysis methods
(e.g. gas or liquid chromatography data analysis methods). The truncated size-distribution data
from all experiments were imported into MATLAB (version R2011b, MathWorks, Inc., Natick,
MA) and individually smoothed using the Savitzky-Golay algorithm with the best experimentally
determined parameters for these data (data point span of seven, polynomial degree of three)
(Savitzky and Golay 1964). The MATLAB Curve Fitting Toolbox was then used to fit a single

Gaussian function (Equation 2.1) to the smoothed data from each experiment:

[2.1]

where a is the peak amplitude, b is the peak maximum position, and c is the population
standard deviation, which is a measure of the peak width. The resulting Gaussian equations

that best fit the data were used to determine microparticle size-distribution maxima positions
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and full width at half maximum (FWHM) values in terms of aerodynamic diameter. Statistically
significant differences in the generated microparticle size-distribution characteristics resulting
from changing experimental conditions were evaluated using Student’s t-tests and one-way
analysis of variance (ANOVA) procedures using Microsoft Office Excel (null hypotheses were
that the experimental means were the same). The resolutions of relevant size-distributions
were also calculated using the conventional chromatographic theory equation (Equation 2.2)

using Excel:

_ 2[(tR)B j (tR)A]
> W+ W

[2.2]

As the microparticle size-distribution data were collected in terms of aerodynamic diameter on
the x-axis and particle counts on the y-axis, the resolution was calculated using measurements

in micrometers (um). The mean size-distribution standard deviations from the Gaussian best-fit
equations multiplied by four were used as the baseline peak width values, W, and the mean

size-distribution maximum positions were used in a manner analogous to chromatographic

retention times, tg, in order to determine the resolution, Rg, of two adjacent microparticle size-

distributions (Skoog et al. 1998; Rubinson and Rubinson 2000).

2.2.3.2 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) was used to confirm the size and examine the

morphology of the GDL microparticles produced using the modified inkjet printer and the

56



maltodextrin microparticles generated using the spray dryer. Microparticles were collected on
Teflon filter material (1.0 um pore size, Zeflour supported PTFE, Pall Corp., Ann Arbor, Ml) using
a four-stage Impactor Stack with a 9 L/min airflow rate (California Measurements, Inc., Sierra
Madre, CA). Samples were sputter coated with a thin layer of gold using a Hummer 6.2 Sputter
Coater (Anatech, Union City, CA) and were viewed using a Hitachi S-800 field emission scanning
electron microscope (Hitachi, South San Francisco, CA) and Quartz PCl imaging software
(version 6.0, Quartz Imaging Corporation, Vancouver, BC, Canada). Images from SEM analysis
were further analyzed using ImagelJ software (National Institutes of Health,

http://rsbweb.nih.gov/ij/) to measure particle sizes and count particles in the images.

2.2.4 DNA Barcodes and QRT-PCR Assays

Four ~100 bp DNA barcode templates from T. maritima were designed by a
bioinformaticist to be dissimilar from amplicons used to detect other biological aerosol
microorganisms and to have amplicons, primers, and probes that exhibited desirable
characteristics for successful QRT-PCR assays (GC content of 50-60%, not likely to form dimers
or secondary structures). The synthetic template oligonucleotides (Biosearch Technologies, Inc.,
Novato, CA) and the synthetic oligonucleotide primers and probes (Integrated DNA
Technologies, Inc., Coralville, IA) were obtained from different manufacturers to avoid

contamination and stored according to manufacturer’s instructions. Calibration curves of ten-

fold serial dilutions containing known DNA template concentrations (plotting the log1g of DNA

copies vs. mean Ct result) were analyzed in order to quantify the amount of DNA in
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experimental samples. Template solutions in Tris-EDTA buffer (TE buffer, 10 mM
tris(hydroxymethyl)aminomethane (Tris), 1 mM ethylenediaminetetraacetic acid (EDTA), pH
8.0, Teknova) were added to the aqueous solution of either GDL or maltodextrin (depending on
the particle generation method employed) just prior to particle production. The DNA barcodes
were detected in samples using real-time TagMan PCR assays, where cleavage of fluorescent
resonance energy transfer (FRET) quenched probes during amplification resulted in an
increased fluorescence signal (Holland et al. 1992, Heid et al. 1996). The probes were
synthesized with the fluorophore 6-carboxyfluorescein (6-FAM) on the 5’ end and the quencher
Black Hole Quencher 1 (BHQ-1) on the 3’ end. The excitation maximum wavelength for 6-FAM is
494 nm and the emission maximum wavelength is 525 nm. The BHQ-1 excitation maximum
wavelength is 534 nm, which overlaps with the emission spectrum for 6-FAM, enabling FRET
guenching as BHQ-1 returns to the ground state through non-radiative decay. The heat stable
DNA polymerase used for amplification was Platinum Taq (kits from Invitrogen, part of Life
Technologies Co., Carlsbad, CA), which incorporated dNTPs (New England Biolabs, Inc., Ipswich,
MA) to make copies of amplicon during thermal cycling. The thermal cyclers used to carry out
the QRT-PCR were Smart Cyclers (Cepheid, Sunnyvale, CA) with integrated fluorescence
detection optics. Smart Cycler optical channel 1 has a standard filter set optimized for the
detection of free FAM fluorophores in solution after cleavage from the probe, with excitation
from 450-495 nm and emission from 505-537 nm. The Smart Cycler software (version 2.0d) was
used to program the thermal cycling parameters optimized for the QRT-PCR reaction (Table 2.4)

and to analyze the results and export them into Microsoft Excel.
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Table 2.4. Thermal cycling parameters used during QRT-PCR assays to quantify the amount of
DNA barcode in samples.
Cycle Number  Number of Cycle Repeats Temperature (°C)  Time (min:sec)

1 1 50 2:00
2 1 95 10:00
3 40 Step 1: 95 0:15

Step 2: 55* 1:00

* Fluorescence measurement taken during this step

2.3 Inkjet Printer Production Method Results
2.3.1 Effect of Solute Concentration in Printed Solution on Microparticle Size-Distribution

The effect of varying the concentration of GDL in the printed solution on the resulting
microparticle size-distribution was investigated by printing aqueous solutions ranging from 1-
20% GDL in at least duplicate using the default inkjet printer software settings, namely plain
paper and normal quality (1%, 2.5%, 5%, 10%, 12.5%, 15%, and 20% GDL n=3; 7.5% GDLn = 5;
17.5% GDL n = 2). Aerosol generation took approximately 6.6 seconds using the default settings
and was the same for all GDL solutions. The printed aerosol was drawn through desiccant
dryers, and the resulting solid microparticles were characterized using an APS to yield both
microparticle size and number collected. Figure 2.6 displays a representative subset of the
mean microparticle APS size-distribution raw data results for the different GDL solutions. Very
few particles (< 0.1%) were collected with aerodynamic diameters above 8 um for all tested
solutions. The majority of microparticles (> 80%) collected from all solutions were in the range
of 1-5 um in aerodynamic diameter. The APS results for the lower concentration GDL solutions
displayed multimodal size-distributions, perhaps as a result of particle coalescence or abnormal
inkjet cartridge operation. The solutions containing greater than 7.5% GDL created single size-

distributions of microparticles as expected. This result may be due to the physical properties,
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such as density and viscosity, of the GDL solutions that influence droplet production from the
inkjet cartridges. The densities of the more concentrated GDL solutions (7.5-20% GDL, 1.029-
1.078 g/mL) were more similar to the aqueous black ink density (1.043 g/mL) that the cartridges
are designed to print compared to the lower concentration GDL solutions (1-5% GDL, 1.005-
1.018 g/mL) (Table 2.2). Due to the undesirable multimodal operation of the inkjet cartridge
when low concentration GDL solutions were printed, the data for the 1%, 2.5%, and 5% GDL
solutions were not examined further. Particle size-distributions created by the modified inkjet
printer approximated normal distributions, making them more similar to distributions
generated using a nebulizer (log-normal size-distribution) and dissimilar from monodisperse

droplets generated by the VOAG.
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Figure 2.6. Mean APS size-distribution results for microparticles created by printing aqueous
solutions with varying GDL concentrations demonstrate particle size tunability by varying solute
concentration (n = 2, error bars are one standard deviation).
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A trend in the microparticle size-distribution APS data indicated that as the GDL
concentration in the printed solution increased, the size-distribution shifted towards larger
microparticle aerodynamic diameters (Figure 2.6). This was the anticipated result, as the dry
microparticles measured by the APS were composed of the solute in the solution and should

display a dependence on solution concentration according to Equation 2.3:

D, = C/Dy [2.3]

where Dy is the dry particle diameter, Cis the volumetric concentration of the nonvolatile

solute in the volatile solvent, and Dy is the wet droplet diameter (Berglund and Liu 1973). A plot

of the relationship between GDL concentration in the printed aqueous solution and the
resulting mean microparticle aerodynamic diameter calculated from the APS results is displayed
in Figure 2.7, along with theoretical particle diameters resulting from droplets 30 um in
diameter containing the same concentrations of GDL (Bohorquez et al. 1994; Shelley et al.
1997). The expected power relationship according to the cube root of the solute concentration
is present in both the theoretical and experimental data sets, indicating consistent droplet
diameter generation despite modifications to the inkjet printer and cartridge. However, the
microparticles generated using the modified inkjet printer system and aqueous GDL solutions
were smaller than predicted (note the separate y-axes for the experimental and theoretical
results in Figure 2.7). The experimental droplet diameters were calculated using the tested GDL
concentrations, mean particle diameters measured using the APS, and Equation 2.3, which

yielded an average droplet diameter of approximately 5.3 um issuing from the cartridge when
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aqueous GDL solutions were printed. This difference between the reported 30 um ink droplet
diameter and the observed 5.3 um GDL solution droplet diameters is due to the lower
viscosities of the tested GDL aqueous solutions (1.026-1.794 cP, Table 2.2) compared to the
black ink (2.918 cP). Higher viscosity solutions have longer break-off times of the exiting droplet
from the solution remaining in the nozzle, resulting in more solution transferring to the droplet
and therefore making the droplet larger compared to droplets of less viscous solutions (Chen et

al. 1998).
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Figure 2.7. Mean microparticle aerodynamic diameters generated using various GDL

concentrations in the printed agueous solutions in comparison to theoretical particle diameters
from droplets 30 um in diameter produced using the same GDL solutions (n = 2, error bars are
one standard deviation). Note separate y-axes for the experimental and theoretical results.

The raw APS size-distribution data from the microparticles produced using the different

concentration GDL solutions were investigated further by applying the Savitzky-Golay

smoothing algorithm and then fitting the smoothed data to Gaussian functions. The coefficients
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p
of determination (R ) of the Gaussian best-fit equations to the data points were all above 0.97

. T . . 2
for this data set, indicating the Gaussian equations accurately represented the data (an R of 1

indicates a perfect fit to the data) and that the distributions were normal (Miller and Miller
2005). The resulting best-fit Gaussian equations, shown in Figure 2.8, were used to determine
mean microparticle size-distribution maximum positions and FWHM values for further analyses.
The mean particle counts for all samples were normalized to unity for more straightforward
comparison, which had no effect on the size-distribution positions or FWHM values. The
microparticle size-distribution maxima and FWHM values in terms of aerodynamic diameter
were compared to determine statistically significant differences and solution concentration
effects on the resulting microparticles. Mean size-distribution maximum values ranged from
2.35 um (7.5% GDL) to 2.93 um (20% GDL) aerodynamic diameter, demonstrating a 22%
relative change within the data set. One-way ANOVA determined that all GDL solution mean
size-distribution maximum values differed significantly at greater than 99% confidence (p <
0.01), meaning that the microparticle size-distribution significantly shifts to higher aerodynamic
diameters when the GDL concentration in the printed solution is increased. Student’s t-test
results from pairwise comparisons of the mean size-distribution maxima of adjacent
concentration GDL solutions (e.g. comparing 7.5% with 10%, 10% with 12.5%) showed that
almost all solutions produced microparticles that were significantly different in size at 99%
confidence (p < 0.01) from the microparticles produced using other GDL solutions. The only
exception was the 7.5% and 10% GDL size-distribution maxima comparison, which differed

significantly at 86% confidence (p = 0.137). These size-distribution results demonstrate
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microparticle size tunability using the commercial inkjet printer by simple adjustment of solute

concentration in the printed solution.
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Figure 2.8. Mean microparticle size-distribution Gaussian fit results showing increasing
distribution maximum positions with increasing GDL concentration and comparable size-
distribution width for all GDL solutions (n = 2). Particle size distribution maxima are normalized
to one to facilitate comparison.

Mean microparticle size-distribution FWHM values in terms of aerodynamic diameter
from the best-fit Gaussian equations to the data varied from 2.05 um wide (10% GDL) to 2.34
um wide (15% GDL), which corresponds to a 13% relative change in the data set. One-way
ANOVA of the microparticle size-distribution FWHM results for each tested GDL solution
determined that the means were not significantly different (p = 0.103) when solution

concentration was altered. There was no discernable relationship between the GDL

concentration in the printed solution and size-distribution FWHM results. The microparticle
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size-distribution resolutions (Rs) were calculated for all possible GDL solution comparisons using

Equation 2.2, and the results are listed in Table 2.5. As in chromatographic peak analysis, a
resolution value of 1.5 is considered complete separation, and a resolution of 1 indicates
approximately 4% overlap between the two size-distributions (Skoog et al. 1998). The size-
distributions in this data set were not appreciably resolved, with all comparisons showing
resolution values less than 0.16. This result was expected due to the large size-distribution
widths relative to the change in size-distribution maximum positions between microparticles
produced using different GDL solutions. The FWHM results showed that the microparticle size-
distribution widths remained relatively constant (13% relative change) despite significant
changes in microparticle size due to varying GDL concentration in the printed solution. This
suggested consistent printhead operation when different solutions were used for aerosol
generation, which is a desirable characteristic of a system for use in generating tunable and

diverse microdroplets and microparticles for a wide range of applications.

Table 2.5. Microparticle size-distribution resolutions from pair-wise comparisons of all tested
GDL solutions (smoothed, Gaussian fit data used in calculations). All values were less than one,
indicating considerable overlap among the different size-distributions.

10% GDL 12.5% GDL 15% GDL 17.5% GDL 20% GDL

7.5% GDL 0.0224 0.0710 0.0981 0.1311 0.1590
10% GDL 0.0503 0.0781 0.1104 0.1389
12.5% GDL 0.0275 0.0556 0.0835
15% GDL 0.0263 0.0541
17.5% GDL 0.0296
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2.3.2 Effect of Printer Software Settings on Microparticle Size-Distribution

Different print media require different ink droplet characteristics to produce the same
degree of optical density and image resolution. Therefore, the inkjet printer is programmed
with several different print modes selectable within the commercial software that yield
droplets with the desirable characteristics for the specified print media and image quality
(Bohorquez et al. 1994). The availability of different paper type and printing quality options
suggested that the printed droplet characteristics would be altered depending on which
settings were chosen. The paper type and print quality software settings investigated to
determine if tunable microparticle size-distributions could be produced are listed in Table 2.1.
The time and number of cartridge carriage passes used by the printer to execute the same print
job using the different software settings was measured (Table 2.6) in order to characterize this
novel aerosol generator. All printing times were less than four minutes, and most were less
than a minute, demonstrating the high-throughput capability of this aerosol generator. As
expected, the printing was executed most rapidly when the fast draft setting was employed,
and the highest quality print modes took the most time, with higher numbers of cartridge

passes and longer drying times between passes.
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Table 2.6. The number of cartridge carriage passes and time expended by the modified inkjet
printer to execute the same print job (solid black rectangle, 20.2 cm x 7.6 cm) to generate
aerosols using various paper type and print quality software settings (n = 3, mean * one
standard deviation).

. . . . Number of
Printer Software Setting  Printing Time (sec) Cartridge Passes
Plain, Fast Draft 25+0.5 6
Plain, Normal 6.6+0.1 20
Plain, Best 26.8+0.7 41
Photo, Normal 57.8+1.0 83
Photo, Best 104.7+0.4 123
Photo, Maximum dpi 223.1+0.3 174
Inkjet, Normal 32.3+0.2 62
Inkjet, Best 51.4+0.3 62
Transparency, Normal 51.4+0.4 62

The 15% GDL solution was printed with the different paper type and print quality
settings in at least triplicate (photo paper, normal quality n = 5; photo paper, best quality n = 4;
all other settings n = 3), and a summary of the APS size-distribution results for the generated
microparticles is shown in Figure 2.9. The microparticles produced when the plain and photo
paper settings were used displayed differences according to print quality setting. The plain
paper results showed that the lowest quality setting (fast draft) produced the fewest number
and smallest aerodynamic diameter microparticles, the moderate quality setting (normal)
generated more and larger microparticles, and the highest quality setting (best) produced the
most and largest microparticles. Similar results were observed when the photo paper setting
was tested. When the print quality was increased from normal (lowest quality) to maximum dpi
(highest quality), more and larger microparticles were produced. These results were expected,
as the main differences between the programmed print modes for the inkjet printer are the

number of cartridge carriage passes (Table 2.6) and the optical density of the black ink, where
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higher quality print modes require more passes that deposit more and larger droplets
compared to low quality print modes (Hall et al. 1994). The number of microparticles produced
was much lower overall when the photo paper setting was used compared to the plain paper
setting, which was expected as the glossy photo paper should require much less ink to achieve

the same optical density levels as on more porous plain paper when printing with black ink.
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Figure 2.9. Mean size-distribution results from APS measurements of microparticles generated
by printing 15% GDL solution using (A) plain paper, (B) photo paper, (C) inkjet paper, and (D)
transparency film settings along with the associated print quality settings available in the
commercial printer software (n > 3, error bars are one standard deviation).
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The microparticle size-distribution results for the remaining two paper settings tested,
inkjet paper and transparency film, were similar for both paper settings and both quality
settings (Figure 2.9). The lack of difference in the produced microparticle characteristics when
using the normal and best quality settings with inkjet paper was consistent with a common
printing mechanism for the two conditions. These results agree with the timing data in Table
2.6, where the same number of cartridge passes were employed to generate droplets for the
inkjet paper and transparency film, with the transparency film and best quality setting for the
inkjet paper just taking longer with more drying time between passes. The number and
aerodynamic diameter of the microparticles generated for inkjet paper and transparency film
were both comparable to the results obtained when the plain paper, best quality setting was
used, which was anticipated for the inkjet paper. It was expected that the size-distribution
results for microdroplets printed onto transparency film would resemble the results for the
photo paper setting. This was not observed, however, as the transparent media needs to be
made opaque by the dense application of ink during printing, which requires a larger droplet
number and size, similar to those generated for porous papers. In summary, the programmed
print modes in the commercial software executed by the inkjet printer appeared to achieve the
desired printed droplet features based on the time for aerosol production and the
characteristics of the generated microparticles. The number of particles generated using the
various software settings indicated that the photo paper option is unsuitable for high-
throughput applications, while all other print media options yield high-throughput aerosol

generation.
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The mean best-fit Gaussian equations to the smoothed data were used to determine
microparticle size-distribution maximum positions and FWHM values for statistical evaluations

of the effects of varying the commercial printer software settings. The Gaussian best-fit

2
equations for this data set all had R~ above 0.90, with most greater than 0.95, indicating the

equations were accurately representing the data (Miller and Miller 2005). Mean size-
distribution maximum values for this data set ranged from 2.57 um (plain paper, fast draft
quality) to 2.77 um (plain paper, best quality), which represents an 8% relative change in the
data set. One-way ANOVA showed that the mean size-distribution maxima values varied
significantly at 99% confidence (p < 0.01) when the printer settings were varied. This result was
due to small standard deviations within replicate analyses. Changing the printer settings had
less effect on the resulting microparticle size in comparison to the first data set where the GDL
concentration in printed solution was varied (22% relative change). When the experimental
printer settings were ranked according to mean size-distribution maximum value, no
meaningful relationship between the produced microparticle size and the printer settings was
observed. Microparticle size-distribution maximum results were also compared within the
individual paper types separately using one-way ANOVA. Significant differences were observed
only for the plain paper type, where the mean size-distribution maxima produced using the
different quality settings were significantly different at 99% confidence (p < 0.01). In summary,
these results indicate that while the produced microparticle size-distribution maxima may shift
slightly (8%) when different printer software settings are employed, the size is more
appreciably changed by modifying the solute concentration in the printed solution (22%), as

demonstrated in the previous section. Any undesirable change in the size of the microparticles
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as a result of changing the printer software settings to tune the size-distribution width could
easily be remedied by slight adjustment of the solute concentration.

Figure 2.10 shows the mean best-fit Gaussian equations to the smoothed APS size-
distribution data of microparticles generated using varying printer software settings. The size-
distribution maxima were normalized to unity and the size-distribution maximum positions are
all aligned at zero for more straightforward comparison, as the size-distribution maxima
remained comparatively constant (8% relative change) within this data set. Mean size-
distribution FWHM results spanned from 1.47 um wide (photo paper, maximum dpi quality) to
2.74 um wide (plain paper, fast draft quality), displaying a 68% relative change within the data
set. One-way ANOVA revealed significant differences in the mean FWHM values at 99%
confidence (p < 0.01) for the microparticles generated using varying printer software settings.
Changing the printing parameters had a much larger effect on the resulting microparticle size-
distribution width compared to changing the GDL concentration in the printed solution (13%
relative change). This result was reasonable, as aiming to generate images on different media
with varying degrees of perceived print quality requires changing the way the printhead
functions, while simply adjusting the solute concentration is not expected to have a large effect
on the way the droplets are generated. When the printer software settings were ranked
according to mean size-distribution FHWM values, a relationship was observed that was
consistent with expectations based on printhead operation. The microparticles produced using
the photo paper, maximum dpi quality setting had the narrowest size-distribution (smallest
FWHM), and the widest size-distribution (largest FWHM) was produced using the plain paper,

fast draft quality setting. Within each individual paper type, the higher quality settings
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produced narrower size-distributions, which was true for all paper types. Finally, the resolutions
of all microparticle size-distributions from this data set were calculated according to Equation
2.2. The resolution results listed in Table 2.7 show that the size-distributions were not
appreciably resolved, with resolution values less than 0.06. This was expected, as the size-
distribution maxima positions changed a relatively small amount within this data set, and some
of the printer settings produced relatively wide size-distributions. In summary, the ability to
tune the size-distribution width of a generated aerosol by varying the commercial printer
software settings was demonstrated. More monodisperse microparticle populations were
generated using the highest quality print settings, which is often desirable. However, some
applications require a more polydisperse but still controlled aerosol size-distribution, which is
also achievable using the lowest quality print settings available in the COTS inkjet printer

software.
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Figure 2.10. Mean microparticle size-distribution Gaussian fit results for 15% GDL solution
printed using different paper type and print quality settings (n > 3), arranged in ascending order
according to mean FWHM value. The mean particle counts for all samples are normalized to
one, and all size-distribution maxima are aligned to zero for comparison. These results
demonstrate the ability to tune the width of the generated microparticle size-distribution by
altering the commercial printer software settings used during production.
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Table 2.7. Microparticle size-distribution resolutions from pair-wise comparisons of all tested printer settings (smoothed, Gaussian
fit data used in calculations). All values were less than one, indicating substantial overlap among the different size-distributions.

Plain, Plain, Photo, Photo, Photo, Inkjet, Inkjet, Transparency,
Normal Best Normal Best Maximum dpi  Normal  Best Normal
Plain, Fast Draft 0.0374 0.0559 0.0469 0.0418 0.0392 0.0283 0.0390 0.0361
Plain, Normal 0.0124 0.0041 0.0028 0.0071 0.0152 0.0041 0.0074
Plain, Best 0.0099 0.0191 0.0251 0.0334 0.0199 0.0240
Photo, Normal 0.0085 0.0139 0.0229 0.0098 0.0137
Photo, Best 0.0053 0.0155 0.0018 0.0058
Photo, Maximum dpi 0.0111 0.0032 0.0010
Inkjet, Normal 0.0131 0.0094
Inkjet, Best 0.0038
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The experiments discussed above demonstrated tunability of microparticle sizes
produced using a commercial inkjet printer by varying the concentration of the solute in the
printed solution, as well as the size-distribution width by changing the printer software settings.
Changing these parameters usually altered the number of microparticles collected during each
experiment and the duration of microdroplet generation as well, which are also parameters of
interest when generating an aerosol or microparticle population for an application. The number
of microparticles generated during an experiment is easily managed by printing different
images from the computer. More microdroplets will be produced over a longer timespan when
a larger image is printed, as the printer needs to cover a larger area on the print media. Large-
scale, high-throughput production is also achievable by printing multiple pages covered almost
completely by large black rectangles as the printed image. The same image was printed for all
experiments during this study for experimental consistency, but changing the image printed is a
straightforward method to tune the number of microparticles produced and the duration of
production.

The microparticles generated during all experiments in this study were polydisperse to a
limited extent (+ ~0.7-1.4 um, FWHM values ranging from 1.47-2.74 um wide), which was likely
due to the mechanical capabilities of the COTS inkjet cartridges as well as the software
designed to operate them. Inkjet cartridges are manufactured to produce droplets that fall
within a specified volume range, so some variation is expected among the approximately 300
nozzles in the cartridge. For example, the volume of the refill channel for each nozzle may vary
slightly. Variability in microparticle size reportedly increases when continuous printing is

employed, as was the case in the present study where the goal was to create a large and
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representative microparticle population (Bohorquez et al. 1994). When droplets are ejected in
close succession, differences in the meniscus position over the exit nozzle due to rapid refilling
may cause slight volume differences in the microdroplets produced. The meniscus position
varies due to the viscosity of the printed solution, which prevents the cartridge channels from
completely refilling when droplets are printed in rapid succession. Also, as the printed solution
is depleted, the backpressure in the cartridge decreases, yielding droplets with smaller volumes
compared to the initially printed droplets, as the nozzles do not completely refill. Finally, as the
temperature of the cartridge increases during continuous printing, the resulting droplet
volumes also increase, an effect called thermal inkjet heating. The printhead is always heated
to a designated temperature set-point customized for each printing mode before printing
begins to correct for this effect, which is likely the source of the differing size-distribution
widths when different printer software settings are used (Bohorquez et al. 1994).

Apart from the effects of the inkjet cartridges, software control algorithms also create
the controlled polydispersity observed in the generated microparticles. The firmware- and
hardware-based algorithms for generating images using the inkjet printer can be used to
enhance edge smoothness and generate sharper-looking images by placing dots between the
basic grid points or by changing the dot size (Bohorquez et al. 1994). As the image printed for
this study’s experiments was a black rectangle, the edges may have been smoothed in this
manner, resulting in microparticles with different sizes. Also, the cartridge was directed to
deliver overlapping swaths of solid black to achieve the printed image, so it is possible that the
nozzles in the center of the printhead were programmed to produce more and larger droplets

compared to the nozzles at the edges of the printhead so that the overlapping swath areas
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would not become saturated. These design components of the inkjet cartridges and software
control algorithms led to controlled and reproducible polydispersities in the generated
microparticle populations. The degree of microparticle polydispersity observed in these

experiments using the COTS inkjet printhead is acceptable for many scientific applications.

2.3.3 Scanning Electron Microscopy of Generated Microparticles

Scanning Electron Microscopy was used to confirm the APS size-distribution results by
examining the morphology of the microparticles generated using the commercial inkjet printer.
Microparticles created by printing 15% GDL solution using plain paper, normal quality (default)
printer settings were collected on a filter using an impactor. Micrographs from SEM analysis are
displayed in Figure 2.11, along with a size-distribution comparison between the SEM and APS
data from Figure 2.6. The image on the left was obtained using relatively low magnification
(150X) in order to observe the characteristics of the collected microparticle population. The
large number of microparticles created and collected was expected and confirmed the high-
throughput capability of this aerosol and microparticle generating technique. There was an
observed uniform variability of size and shape in the microparticle population in the SEM
micrographs, which demonstrated the consistency of the inkjet printer production method.
There was also no evidence of particle aggregation (no observed fusion of two or more distinct
particles into one non-spherical particle), indicating that the solvent is sufficiently evaporated

before collection and analysis, resulting in dry microparticles composed of the solute material.
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Figure 2.11. Micrographs taken during SEM analysis showing (A) the large number and
representative characteristics of the GDL microparticle population produced using the inkjet
printer at 150X and (B) the size and morphology of individual microparticles at 1500X, which
agrees with the corresponding APS results (C).
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The image on the right in Figure 2.11 was obtained using increased magnification SEM
(1500X) to more precisely visualize the size and shape of the microparticles. The morphology of
the microparticles is generally spherical as anticipated, with some displaying slightly oval or
cubic features. Both the display features of the SEM Quartz PCl imaging software and Image)
software were used to measure particle sizes and count particles in the images. The collected
sample contained microparticles approximately 1-5.5 um in diameter, with the majority in the
range of 1.5-4 um in diameter. The size-distribution generated using the SEM images generally
agrees with the APS data, although three orders of magnitude less particles were analyzed
using the SEM method, leading to an exaggeration of the contribution of particles with
diameters greater than 5 um. Also, the SEM samples were made using an impactor with a stage
cutoff of 0.7 um, so no particles smaller than that were collected for imaging as they passed to
the next impactor stage. In summary, these SEM results indicated that spherical microparticles
were generated by dehydrating microdroplets produced using a commercial inkjet printer, and

that the microparticle size-distribution characteristics measured using the APS were accurate.

2.4 Spray Dryer Production Method Results

2.4.1 Effect of Solute Concentration in Spray Dried Solution on Microparticle Size-Distribution
The effects of varying the solute concentration and aerosol production parameters

during spray drying on the resulting microparticle size-distributions were investigated in a

manner analogous to the experiments described above for the modified inkjet printer. The

oligosaccharide maltodextrin was used as the solute for spray dried microparticles as it

produced a free-flowing, amorphous powder product with high yields, attributed to its high
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glass transition temperature (Tg) that prevented sticking to the components of the spray dryer.

The effect of varying the maltodextrin concentration in the spray dried solution on the resulting
microparticle size-distribution was investigated by spray drying aqueous solutions ranging from
1-20% maltodextrin and analyzing the generated powder using the APS. All other spray dryer
operating parameters remained constant and are listed in Table 2.3. The spray dried powders
were re-aerosolized into the inlet air flow of the APS by shaking the vial the powders were
stored in by hand and summing the particle results for a minute, generating representative
results for the bulk powder. A representative APS size-distribution result from the powder
generated by spray drying the 10% maltodextrin solution is presented in Figure 2.12. The
particle size-distribution appeared to be log-normal, displaying the characteristic tail on the
larger diameter side of the distribution (Figure 2.12a). The same data were plotted on a
logarithmic (base 10) size scale (Figure 2.12b), which yielded a symmetrical normal distribution
as expected for distributions that are truly log-normal in shape (Miller and Miller 2005). While
there is no fundamental theoretical reason for particle size data to approximate the log-normal
distribution, it has been found to apply to most single-source aerosols, including those
generated using nebulizers (Hinds 1999). This result is attributed to the spray dryer’s
nebulization droplet generation mechanism, which is different from the droplet generation
mechanism in the modified inkjet printer cartridges described above. As the size-distributions
generated by the spray dryer were not normal, it was not appropriate to fit them with Gaussian
functions for more rigorous comparison as was done with the size-distributions generated by

the inkjet printer. Comparisons of experimental results to theoretical particle diameters were
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also not possible due to the random spray generated by the nebulizer in the spray dryer as

opposed to the fixed nozzle diameter in the inkjet cartridges.
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Figure 2.12. The size-distribution of microparticles produced using the spray dryer and 10%
maltodextrin solution, analyzed using the APS. (A) Size-distribution data plotted on a linear
scale displays the characteristic long tail at large particle sizes indicative of a log-normal
distribution, which was verified by plotting the same data on a logarithmic scale (base 10),
transforming the distribution to the symmetrical normal distribution (B).
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Figure 2.13 displays APS size-distribution results from each powder generated from the
different maltodextrin solutions. A relationship was observed between the maltodextrin
concentration in the spray dried solution and the resulting size-distribution peak maximum
positions, which shifted to larger particle aerodynamic diameters as the maltodextrin
concentration in the spray dried solution was increased. This result was expected, as the higher
concentration solutions have more solute material in them to form into microparticles when
the water is evaporated. The size-distribution widths also increased as the maltodextrin
concentration was increased, which is somewhat undesirable for the application of simulating
environmental aerosols. The powder generated by spray drying the 1% maltodextrin solution
(Figure 2.13) displayed the size-distribution most similar to those generated by the inkjet
printer (Figure 2.6), with most of the microparticles in the range of 1-5 um in aerodynamic
diameter. However, the water was not completely evaporated from the generated powder
product due to the high percentage of it in the spray dried solution, leaving the powder
undesirably damp (observed during product transfer from the collector to the storage vial). A
3% maltodextrin solution was chosen as optimal for test particle generation as the powder
product was completely dry and the size-distribution was still relatively small in diameter and
narrow. As anticipated, the size of the microparticles generated by spray drying maltodextrin
solutions was tunable according to solute concentration. This tunability led to the generation of
a powder product with size-distribution characteristics similar to those generated using the

modified inkjet printer and those of some environmental aerosols.
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Figure 2.13. Size-distribution APS results of powders generated using the spray dryer and
varying concentrations of maltodextrin in solution display particle size tunability according to
solute concentration.
2.4.2 Effect of Spray Dryer Settings on Microparticle Size-Distribution

The effects of varying the spray gas flow rate during droplet generation on the resulting
microparticle size-distribution was examined by generating powders using flow rates from 30-
50 mm (rotameter values set on the spray dryer, which equate to 7.32-17.53 L/min) and
analyzing them using the APS. The spray dried solution was 5% maltodextrin for all flow rates,
and all other operating parameters remained constant and are listed in Table 2.3. The vials
containing the generated powders were shaken by hand to re-aerosolize the microparticles into
the inlet airflow of the APS for size-distribution analysis. Particle count and size results were

summed over a minute to yield data representative of the microparticle population. Figure 2.14

shows APS size-distribution results for each maltodextrin powder generated using a different
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spray gas flow rate in the nebulizer during droplet generation. The particle size-distributions
were log-normal for all tested flow rates, which is characteristic for droplets produced by a
nebulization mechanism. The slowest spray gas flow rate (7.32 L/min) generated the largest
microparticles in the widest size-distribution. The microparticles had smaller diameters and
narrower size-distributions as the spray gas flow rate was increased. This result was expected,
as a higher flow rate of spray gas means there is more energy for fluid dispersion, which breaks
up the liquid stream more vigorously into smaller droplets compared to a slower gas flow rate.
While the highest tested flow rate (17.53 L/min) generated the smallest particles and narrowest
size-distribution with most of the particles in the range of 1-5 um in diameter as desired, the
compressed nitrogen spray gas was being used too quickly. Therefore, the second highest flow
rate of 13.85 L/min (45 mm) was selected as the optimal spray gas flow rate for aerosol test
particle generation. The compromise of using the slightly lower flow rate to nebulize the less
concentrated 3% maltodextrin solution generated microparticles principally 1-5 um in
diameter, accurately simulating environmental aerosols. The particle size tuning capabilities of
the spray dryer facilitated generation of maltodextrin microparticles of the desired size, similar
to the GDL microparticles generated using the modified inkjet printer, but in gram-scale

guantities useful for atmospheric testing.
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Figure 2.14. Microparticle size-distribution APS results generated using the spray dryer and
varying spray gas flow rates demonstrates tunability of the particle size according to the spray
drying parameters.
2.4.3 Scanning Electron Microscopy of Generated Microparticles

The morphology of maltodextrin microparticles generated using the spray dryer with
optimal operating parameters (3% maltodextrin, 13.85 L/min spray gas flow rate, Table 2.3) was
examined using SEM. The particles were deposited onto a filter using an impactor and sputter
coated with a thin layer of gold to make them conductive for SEM analysis. Micrographs of the
maltodextrin microparticles are displayed in Figure 2.15. The image on the left was acquired
using relatively low magnification (250X) to observe the general microparticle population
characteristics, and the image on the right was obtained using higher magnification (1200X) to

examine individual particle morphology. The microparticle population generated using the

spray dryer was more polydisperse compared to the population produced using the modified
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inkjet printer. This result agrees with the APS results discussed above and is an effect of the
nebulization droplet generation mechanism in the spray dryer, which generates a log-normal
size-distribution that is wider compared to the normal size-distributions produced using the
modified inkjet printer. There is no evidence of particle aggregation, indicating that the water is
completely evaporated during spray drying as desired. The individual particles have precisely
spherical morphology owing to the optimized droplet drying within the spray dryer. This
contrasts with the results generated by the aerosol desiccant dryers used to dry the droplets
generated by the inkjet printer, which yielded more varied particle morphologies that were
generally spherical but with some oval and cubic features (Figure 2.11). The maltodextrin
microparticles in Figure 2.15b are approximately 1-4.5 um in diameter, and image analysis of
several micrographs yielded the size-distribution shown in Figure 2.15c. Two orders of
magnitude more particles were characterized when the same maltodextrin microparticle
sample was analyzed using the APS, however, the size-distribution in the SEM image agrees
with the APS results. Microparticle characterization using SEM confirmed particle sizes from 1-5
um in diameter and revealed strictly spherical particle morphology, both of which are suitable

for the aerosol test particles.
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Figure 2.15. Micrographs from SEM analyses of maltodextrin microparticles generated using the
spray dryer. (A) Displays the general characteristics of the microparticle population at 250X and
(B) shows the size and morphology of individual microparticles at 1200X. A comparison of the
microparticle size-distributions measured from the SEM image (A) and the APS is shown in (C).
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2.5 DNA Quantification in Particles

The number of DNA barcodes contained in each particle is an important metric for
evaluating how accurately the aerosol test particles simulate biological microorganisms.
Microbes contain only one copy of DNA unless they are dividing, so only one or two copies of
the DNA barcodes were desired per generated microparticle. Individual microbe populations,
e.g. bacteria, are also relatively monodisperse (approximately 0.5-2 um in diameter), whereas
microparticle populations generated using the spray dryer were more polydisperse
(approximately 1-10 um in diameter) and in a log-normal size-distribution. Therefore, the goal
was further refined to generating particle populations where the 1-2 um particles had 1-2 DNA
barcodes. As the number of DNA barcodes incorporated into each particle was assumed to be
proportional to the volume of the particle (cubic dependence), the larger particles had up to
two orders of magnitude more DNA barcodes, but the spray dryer produced fewer of them.
Hence, the number of DNA barcodes per particle on average in an aerosol test particle
population was determined first, and then the number of DNA barcodes within each particle
size (particle sizes binned according to the APS size binning) was calculated to determine
whether the particle population achieved the specified goal of 1-2 um particles with 1-2 DNA
barcodes.

In order to determine the average number of DNA barcodes per microparticle, both the
number of particles present and the number of DNA barcodes present in a particle population
must be known. A maltodextrin powder was generated using the spray dryer, with template

DNA added to the spray dried solution so that DNA barcodes were incorporated into the

. . . . . 5
generated microparticles. A small representative particle population (on the order of 10
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particles) was removed from the bulk powder and individually optically counted (proprietary
method) to quantify the number of microparticles. After the total was obtained, the particle
population was washed into solution and the number of DNA barcodes present in the sample
was quantified using QRT-PCR. It was previously verified that the QRT-PCR assay was not
adversely affected by the presence of maltodextrin in the reaction (up to 5% w/v) by testing

maltodextrin concentrations ranging from 0-5% (0%, 0.1%, 1%, 2%, 3%, 4%, and 5% tested) with

two different DNA barcode concentrations (9.6 x 103 and 9.6 x 105 copies) in the QRT-PCR
reaction (n = 3). One-way ANOVA of the C results at 95% confidence indicated that the means
did not significantly differ for both the samples containing 9.6 x 103 DNA barcodes (p =0.192)

5
and the samples containing 9.6 x 10 DNA barcodes (p = 0.062). Dividing the number of DNA

barcodes quantified by the QRT-PCR assay by the counted number of microparticles gave the
average number of DNA barcodes per microparticle. The same bulk powder was also
characterized using the APS to determine the size-distribution of the particle population. The
number of DNA barcodes in each particle size was then determined mathematically. It was
assumed that aerodynamic diameter measured by the APS could be treated as the diameter of
a sphere (good assumption from the SEM results (Figure 2.15) that the particles are spheres),
from which the volume of a single particle of each size was calculated. The particle size-
distribution results from the APS were then adjusted so that the total number of particles in the
distribution was the same as the number of particles in the population that was quantified. The
adjusted number of particles in each size bin was then multiplied by the particle volume to

determine the total particle volume in each size bin. The total particle population volume was
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then determined by summing all bins, and the volume fraction of the total in each size bin was
calculated. The volume fraction for each size bin was then multiplied by the total number of
DNA barcodes quantified in the particle population, yielding the total number of DNA barcodes
in the size bin. This assumed that the DNA was homogeneously distributed throughout the
particle volume, which is a good assumption as the spray dried maltodextrin solution containing
the DNA templates was stirred throughout the spray drying process. Finally, the number of DNA
barcodes in the size bin was divided by the number of particles in the size bin to yield the
number of DNA barcodes in each particle of that size. If the particles did not have enough DNA
barcodes, more template DNA was added to the initial spray dried solution. Likewise, if the
particles had an unrealistically high number of incorporated DNA barcodes, less DNA was added
to the spray dried solution. In this manner the optimal amount of template DNA to add to the
spray dried solution was empirically determined to yield an aerosol test particle population
where 1-2 um particles had 1-2 DNA barcodes per particle.

A representative DNA barcodes per microparticle quantitation result for a spray dried
microparticle population is illustrated in Figures 2.16 and 2.17. The powder was completely
analyzed twice (n = 2), with PCR samples for three sample dilution levels in triplicate (n = 9 for
each analysis, yielding n = 18 total) to ensure there was no observed PCR reaction inhibition (no
inhibition observed). The histogram of the microparticle size-distribution measured using the
APS is displayed in Figure 2.16, with the particle sizes binned according to aerodynamic
diameter on a logarithmic scale on the x-axis and the number of particles in each size bin on the
y-axis. Note that the logarithmic-scaled x-axis causes the log-normal particle size-distribution

generated by the spray dryer to appear normal. The same aerodynamic diameter size bins used
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by the APS software were used in the calculations to determine the number of DNA barcodes
per particle for each particle size bin. The numbers of particles in the characterized
microparticle sub-populations were 308164 and 410992, and the number of DNA barcodes
present in samples was quantified using QRT-PCR. The final result was 14.6 + 3.5 DNA barcodes
per particle on average, meaning that the particle size was not taken into account in this
calculation (n = 18, mean + one standard deviation). This value was used to calculate the
number of DNA barcodes incorporated into each particle size, which is a more useful metric for
evaluating the similarity of the aerosol test particles to microorganisms. The results of these
calculations, described above, are shown in Figure 2.17. Figure 2.17a shows the number of DNA
barcodes per particle for all of the size bins measured by the APS. The relationship is cubic
owing to the dependence of the number of DNA barcodes on the particle volume, resulting in a
three order of magnitude increase in the number of DNA barcodes per particle for particles
increasing one order of magnitude in aerodynamic diameter. Figure 2.17b focuses on the most
interesting portion of the graph displaying the number of DNA barcodes incorporated into
particles less than 2.5 um in aerodynamic diameter, the size of microorganisms. From these
results it was determined that particles in the 1.037 um aerodynamic diameter bin contain 0.53
+ 0.16 DNA barcodes per particle (mean + one standard deviation; approximately one particle
out of two has a DNA barcode). Particles in the 1.286 um size bin had 1.01 + 0.30 DNA barcodes
in each particle, and particles in the 1.981 um size bin had 3.68 + 1.08 DNA barcodes per
particle. Of the entire particle population, 87% + 3% (mean + one standard deviation) of the
particles contained at least one DNA barcode and 13% + 3% of the particles did not contain a

DNA barcode (some of the smallest particles did not have a DNA template molecule
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incorporated). These aerosol test particles achieved the goal of 1-2 um particles containing 1-2
DNA barcodes and therefore accurately mimic properties displayed by typical biological
aerosols. The tunability of the spray dryer particle production process was instrumental in
accomplishing the desired number of DNA barcodes per particle. It should be noted that similar
experiments were successfully carried out with GDL microparticles generated using the
modified inkjet printer as well, with tunability of the number of DNA barcodes per particle
demonstrated (data not shown). These novel aerosol test particle generation methods enabled
abundant flexibility to tune both particle size as well as the number of DNA barcodes
incorporated into the particles by straightforward adjustments to production parameters.
Microparticles accurately simulating biological aerosols both in terms of size and amount of
DNA available for PCR detection were created on the gram scale for use in atmospheric release
tests. The DNA barcodes themselves are also tunable by adding different templates to allow
multiple releases in the same environment, either simultaneously or sequentially, which may be
accurately characterized by PCR with minimal chance of errors due to background

contamination.
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Figure 2.17. Calculated number of DNA barcodes per particle as a function of particle
aerodynamic diameter for (A) the entire range of particle sizes measured by the APS and (B)
only the particles smaller than 2.5 um (decreased scale to focus on the region outlined by the
square in (A)).
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2.6 Atmospheric Release Test

A small-scale atmospheric release test was conducted using the aerosol test particles
described in the previous section (spray dried maltodextrin containing 14.6 DNA barcodes per
particle on average) to demonstrate their utility for this application. The particles were
aerosolized using a pesticide sprayer (Figure 2.18) in unused laboratory space towards a Dry
Filter Unit (DFU) aerosol collector (Lockheed Martin, Bethesda, MD) positioned 6.7 meters
away. The DFU draws 800 L/min of room air through two adjacent polyester felt filters (1.0 um
pore size, Lockheed Martin) which trap the aerosols for downstream analyses including QRT-
PCR for DNA content. Prior to the release, the room background air was sampled for 15
minutes. After the DFU filters were changed, 0.74 g of aerosol test particles was released using
the pesticide sprayer over approximately 3 seconds in the general direction of the DFU. There
were no obstructions between the release point and the DFU, and the normal room airflows
were operational. Particle fallout directly in front of the release point was not visually observed,
indicating that the majority of the aerosol test particles were small enough to remain airborne
and travel throughout the room. The room air was sampled using the DFU for 15 minutes post-
release. At the conclusion of the test, one DFU filter from the room background and one DFU
filter from the aerosol release were analyzed using QRT-PCR for the DNA barcodes incorporated
into the particles (the other DFU filter was archived in the freezer for follow-up testing if
necessary). A blank DFU filter was also processed as a negative control. The DFU filters were
placed in 50 mL conical tubes (Becton, Dickinson and Company, Franklin Lakes, NJ) containing
10 mL of PBS buffer (Phosphate Buffered Saline, pH 7.4, Amresco, Solon, OH) with 0.1% Triton

X-100 (Acros Organics, part of Thermo Fisher Scientific, Pittsburgh, PA) and shaken vigorously
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by hand for 2 minutes. The conical tubes were then vortexed for 30 seconds and a 1 mL aliquot
was removed for QRT-PCR analysis. The aliquot was serially diluted by factors of two with QRT-
PCR-grade water (Teknova) up to 1:10 to check for PCR reaction inhibition by any room
contaminants drawn into the filters. The undiluted, 1:2, 1:4, and 1:10 samples were analyzed by

QRT-PCR in triplicate along with a calibration curve for results interpretation.

1800 L/min

(O

6.7 meters @
mms——)

Pesticide sprayer Dry Filter Unit
disperses 0.74 g (DFU) collects
of particles particles

Figure 2.18. Schematic drawing of the equipment used to perform the atmospheric release test.

The QRT-PCR results for the blank DFU filter were negative, indicating no template
contamination in the PCR reaction. The aerosol release DFU filter was positive for the DNA
barcodes. The undiluted sample showed some PCR inhibition and was excluded from the

results. Factoring in the dilution factors and the 14.6 DNA barcodes per particle on average,

7 . - .
6.30 x 10 + 3% relative standard deviation (mean + RSD, n = 9) aerosol test particles were

collected on the DFU filter (100% recovery of the DNA barcodes from the filter was previously
experimentally verified (data not shown)). The room background DFU filter collected prior to

the aerosol release was weakly positive for the DNA barcodes as well, indicating the presence

of 9.92 x 103 + 53% RSD (n = 9) aerosol test particles. The magnitude of background
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contamination was 0.02% of the result after the release, which is trivial. The contamination
likely originated from preparing for the aerosol release in the room adjacent to the testing area
while the room background sample was being collected. A door separated the two laboratory
areas, but the airflow of the building could have carried the test particles from the staging area
to the testing area, which is an interesting result in itself. This preliminary atmospheric release
test demonstrated that the novel aerosol test particles travel in the airflows of an indoor
environment as expected. The carefully tuned particle size and number DNA barcodes per
particle enable the particles to travel in manner similar to natural aerosols and be detected and
guantified using selective QRT-PCR assays. The aerosol test particles show great promise for
large-scale atmospheric release testing to evaluate airflows in buildings and study aerosol drift

and dispersion in populated environments.

2.7 Conclusions and Future Directions

The developed aerosol test particles exhibited all of the target characteristics outlined at
the beginning of the project for accurate assessment of environmental aerosol transport and
fate in populated locations. Food additives approved by the FDA for human exposure were
suitable as bulk materials for the test particles using either the modified inkjet printer or the
commercial spray dryer for particle generation. The non-coding DNA templates added as
unique particle identifiers were also safe for human contact and yielded customized test
particles able to be specifically detected using QRT-PCR assays. These safe, customizable, and
specifically detected aerosol test particles were generated with the same sizes as aerosols

commonly observed in the environment on the gram-scale for studying large locations. No

98



currently available simulant material meets all of these criteria for precisely studying
atmospheric transport in populated environments. The project culminated with a successful
demonstration of the aerosol test particles in an atmospheric release test, which was their
desired end use.

The sizes and shapes of the generated particles were true to the general physical
properties of aerosols observed in the environment. The principal particle sizes (1-10 um) that
were created overlap with the sizes of many environmental aerosols of interest, including dust,
fog, mist, smog, spray, cloud droplets, cement dust, coal dust, flour, coal fly ash, machining
fluids, tobacco smoke, paint spray, bacteria, and fungal spores (Hinds 1999). Simple
modifications to the spray dryer parameters (e.g. higher concentration of solute in spray dried
solution, lower spray gas flow rate) would enable production of particles larger (up to 25 um)
than those that were generated for this work if larger environmental aerosol simulants were
required (e.g. pollen is 10-100 um). Generating sub-micrometer particles useful for simulating
aerosols including smoke, metal fumes, and viruses is more of a challenge. The cyclone collector
dictates the lower limit of particle sizes able to be generated by the spray dryer used in this
work as the cyclone collection efficiency markedly decreases for particles less than 1 um in
diameter. There is a different spray dryer model available (the BUCHI Nano Spray Dryer B-90)
that employs an electrostatic particle collector for particles 0.3-5 um in diameter that could be
used to generate smaller test particles. However, this is at the expense of not collecting the
particles larger than 5 um and working with smaller quantities (less than 1 g of product per run)
than what was possible using the spray dryer with the cyclone collector. It is possible that sub-

micrometer particles could be generated using the modified inkjet printer, however, a great
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deal more work would need to be dedicated to the formulation of the printed solution. Theory
dictates that smaller particles will be produced if either the droplets are smaller or there is less
solute material in the printed solution. The inkjet cartridges operated multi-modally when the
lowest concentration solutions were printed, indicating that they were not able to function
correctly when the printed solution had low viscosity. This could potentially be remedied by
incorporating highly viscous additives that are safe for human exposure. The cartridge nozzle
sizes are fixed, so altering droplet size would be challenging. An impingement surface could
possibly be employed that would break up the droplets further prior to desolvation. In addition,
a different particle analysis instrument would need to be employed to analyze the created
particles smaller than 0.5 um, such as the TSI Scanning Mobility Particle Sizer Spectrometer
3936 which generates size-distribution results for particles 2.5 nm — 1 um in diameter.
Generating sub-micrometer particles by building on the methods of this research has the
potential for creating aerosol test particles suitable for assessing the transport of hazardous
aerosols such as smoke and viruses, which has great potential to improve the safety and health
of people in the studied environments.

The test particle size-distributions observed during this work (~2-10 um wide) are
actually less polydisperse than most aerosols in the environment, where aerosols that span two
or three orders of magnitude in size are common. The narrower size-distributions that were
made were more easily characterized by the APS and SEM compared to polydisperse
environmental aerosols. The APS only characterized particles from 0.5-20 um in diameter, so
any particles outside of this range would have been inadvertently excluded from size-

distribution results. It was important to verify that there were no particles in the generated
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populations that were outside of the APS size range using a secondary method, which was SEM.
The SEM micrographs did not show any particles smaller than 0.5 um or larger than 20 um in
the examined samples, so the APS size-distribution results were accurate for the generated
aerosol test particles.

The primary particle sizes of 1-10 um generated throughout this work also permitted
realistic DNA barcode incorporation of 1-2 DNA molecules per 1-2 um particles, accurately
mimicking bioaerosols. Both the normal distributions generated using the modified inkjet
printer and the log-normal distributions created using the spray dryer for particle production
had their peak maxima between 1-3 um, allowing most of the particles (> 80%) to contain DNA
barcodes for detection after release tests. A more cost-effective source for the DNA barcode
oligonucleotides than commercial synthesis would permit the addition of more DNA template
to the droplet generation solution if desired. Some possibilities are to use plasmids during
commercial generation or to simply amplify the templates using PCR and add the purified
amplicon as the DNA barcode in the particles. Finally, developing a multiplexed PCR assay so
that multiple DNA barcodes may be detected simultaneously in samples will greatly accelerate
sample processing after synchronized release tests using different DNA barcodes in particles
released from different locations. The optical detection systems in the Smart Cycler thermal
cyclers used in this work can monitor four fluorescence emission channels simultaneously
during multiplexed assays. The requirements for successful multiplexed PCR assays are (1) no
fluorophore emission spectral overlap and (2) no primer cross-amplification. The four optical
channels in the Smart Cyclers are designed to detect certain classes of common fluorophores,

so the four probes need to be synthesized with one fluorophore picked from each list of
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detectable fluorophores in each optical channel. The fidelity of the primers and probes
designed for each DNA barcode also needs to be assessed to check for non-specific
amplification of the other templates in the reaction. The primers and probes should only anneal
to their designed target template to yield accurate quantitation of the amount of each template
in the sample.

One of the principal advantages of using these novel aerosol test particles to study
aerosol transport is that introducing unique DNA barcodes to an environment enables sensitive

and specific detection of the released particles. A final note about the 100 bp DNA barcodes is

. . . 60 . .
that even this relatively short template allows the creation of 10~ possible unique barcodes (4

100 60
different DNA bases, ATGC, in 100 different positions in the template, 4 =1.6x10 ). Even if

some templates do not have appropriate characteristics for successful PCR amplification (GC
content of 50-60%, not likely to form dimers or secondary structures) or are similar to
sequences detected in the background aerosol population, there is still a nearly unlimited
supply of DNA barcodes. Customized particles could be used to study aerosol transport and fate
in the same location over and over, with accurate results for every experiment, due to the

novel aerosol test particle generation methods developed during this project.
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CHAPTER 3: CHEMICAL PROFILING OF LATENT FINGERPRINT RESIDUES USING SOLID-PHASE
MICROEXTRACTION WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY ANALYSIS
3.1 Motivations and Introduction

Objects and locations connected with nearly every type of crime are routinely examined
for latent fingerprint evidence. However, fingerprints are often smudged or overlapping, and it
is not possible using current methods to determine how long a fingerprint has been on a
surface. Such information would aid in establishing a crime’s timeline and whether the
fingerprint is relevant to the investigation at hand. There is a need for a portable, non-
destructive method to gain information from latent fingerprint residue when the friction ridge
detail is obscured, yet remains compatible with traditional forensic analyses. Here we
demonstrate chemical profiling of latent fingerprint residues using solid-phase microextraction
(SPME) headspace sampling coupled to gas chromatography-mass spectrometry (GC-MS)
detection in order to determine subject traits and prior activities, as well as to determine the
time window since the fingerprint was deposited, while leaving the fingerprint intact for

traditional forensic examinations.

3.1.1 Fingerprint Compounds

Fingerprints are among the oldest and most important evidence categories in forensic
science (Gaensslen and Young 2003). They remain one of the most commonly gathered types of
forensic evidence today and are considered a fundamental tool for identifying people with
criminal histories in nearly every police agency worldwide. The friction ridge skin on the

fingertips has pores through which eccrine sweat glands secrete their contents, and typically
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sebaceous gland secretions from the face and scalp are present as well due to touching of the
face and hair. While human sweat is approximately 99% water, it also contains both inorganic
salts (from eccrine glands on the palms) and organic compounds (from sebaceous glands on the
face and scalp) including proteins, amino acids, nucleic acids, lipids, sugars, vitamins, and
organic acids (Mong et al. 1999, Ramotowski 2001, Bernier et al. 2000). While the composition
of human sweat is well understood, latent fingerprint residues are more complex due to the
presence of exogenous contaminants (e.g. personal care products, cosmetics, food residues,
etc.) (Mong et al. 1999; Ramotowski 2001). An almost unlimited variety of substances from the
environment, unique for every person’s recent exposure history, can be retained on the friction
ridge skin and be deposited into latent fingerprint residue when the fingers touch a surface.
Thus, a number of common endogenous constituents of most latent print residues are based on
the composition of sweat, however, many individualizing compounds and materials can be
present in a latent fingerprint as well (Mong et al. 1999, Gaensslen and Young 2003).

While the value of using the unique friction ridge patterns in the fingerprint for human
identification has been recognized for centuries (Gaensslen and Young 2003), the chemical
profile of the residue is just beginning to gain recognition for providing additional information
about an individual and/or the individual’s prior activities. For example, the chemical
composition of children’s latent fingerprint residue is markedly different compared to that of
adults as the lipid content in sweat increases after puberty, allowing determination of the age-
range of the subject (Noble 1995, Buchanan et al. 1996, Antoine et al. 2010). Differences
between individuals’ endogenous fingerprint compound levels have been observed, and it is

thought that these slight inter-personal variations in sebaceous fatty acid mixture yield unique
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individualizing scents, which is the basis for canine tracking (Nicolaides 1974, Knowles 1978,
Ramotowski 2001). As a result, several groups have demonstrated first steps toward using
human scent profiles as a biometric (Mong et al. 1999; Zhang et al. 2005, Curran et al. 2007,
Curran et al. 2010). Exogenous compounds from an individual’s environment are also present in
fingerprints, and the combination of exogenous and endogenous compounds detectable in a
latent fingerprint may give clues about personal traits, such as age, habits, activities, gender,
and disease state (Buchanan et al. 1996). The secretions and dead cells in a human fingerprint
also contain evidence of ingested substances and their metabolites (e.g. pharmaceuticals,
illegal drugs), demonstrating a non-invasive method for sampling the human body that is of
interest to law enforcement and forensic personnel (Johnson and Maibach 1971, Naitoh et al.
2000). Amphetamines and their metabolites are excreted in human sweat (Vree et al. 1972),
and nicotine has been detected in latent fingerprint residue (Buchanan et al. 1996). Antibody
tags have been used to detect individuals’ prior cigarette and marijuana smoking, as well as
methadone, heroin, and cocaine use in latent fingerprint residue as well (Leggett et al. 2007,
Hazarika et al. 2008, Hazarika et al. 2009, Hazarika et al. 2010). While useful for proof that
these substances may be detected in latent fingerprint residue, the disadvantage in these
approaches lies in their inability to profile many substances simultaneously in a non-targeted
manner. The changes in response over time were not examined as well. The possibility of
associating and discriminating individuals based on latent fingerprint residue chemical profiles
has also not been previously examined. These studies show a need for evaluating the full

chemical profiles of latent fingerprint residue for homeland security purposes.
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3.1.2 Solid-Phase Microextraction

Solid-phase microextraction (SPME) provides a powerful approach to collect and
concentrate volatile and semi-volatile organic compounds for subsequent analysis in a variety
of applications (Mills and Walker 2000, Martin et al. 2010). The collected chemicals are then
desorbed in the heated inlet of a gas chromatograph (GC), where a temperature program
separates the chemicals for detection using mass spectrometry (MS), which yields structural
information for chemical identification. The combination of SPME headspace sampling with GC-
MS analysis has not, to the authors’ knowledge, been previously applied to latent fingerprint
residue analysis, and is expected to yield information-rich chemical profiles of the volatile
components contained in latent fingerprint residues. In addition, SPME headspace sampling is
non-invasive, leaving the latent fingerprint intact for further processing with traditional forensic
methods such as powder dusting, photography, and even DNA profiling (Schulz and Reichert
2002). Chemical profiling using SPME-GC-MS also has potential to provide useful information
from smudged or partial latent fingerprints where individual identification using friction ridge

pattern analysis is not possible (Asano et al. 2002).

3.1.3 Fingerprint Changes Over Time

Fingerprints degrade over time due to exposure to light and heat, and the outgassing of
volatile components, most notably water (Wargacki et al. 2008, De Paoli et al. 2010). Mong and
coworkers (1999) observed substantial oxidative degradation of squalene and other
unsaturated compounds such as wax esters and fatty acids over time compared to their

saturated analogs. It has also been determined that the decrease in abundance of volatile fatty
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acids and other lipid compounds over time occurs at different rates in latent fingerprint
residues from children and adults, and different temperature and humidity storage conditions
affect degradation rates as well (Noble 1995, Buchanan et al. 1996, Antoine et al. 2010).
Weyermann and coworkers (2011) observed similar relationships, and normalized chemical
abundance to squalene and/or cholesterol in an effort to reduce the large degree of variability,
both inter- and intra-subject, observed in the collected latent residues. In addition to
outgassing, oxidative and bacterial degradation may take place in the deposited fingerprint
material over time as well, generating degradation products (Ramotowski 2001). A better
understanding of these alterations in latent fingerprint residues over time would aid the
development of improved visualization reagents and potentially lead to methods for
determining the age of the fingerprint. Knowing the time-window since the fingerprint was
deposited would help to determine the crime’s timeline and to assess the relevance of the
fingerprint evidence to the investigation.

This study fully examined the chemical profiles present in a latent fingerprint residue
using non-destructive SPME headspace sampling and GC-MS analysis. To the authors’
knowledge, this study is the first to apply SPME headspace sampling to latent fingerprint
residues. Multivariate statistical analyses associated and discriminated five subjects based on
their fingerprint residue chemical profiles up to three days post-deposition. A second latent
fingerprint sample collected from one of the subjects five months after the original study was
also strongly associated with the initial sample using principal component analysis (PCA). The

changes in the chemical profiles over 30 days also show promise for dating the fingerprints.
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3.2 Materials and Methods
3.2.1 Fingerprint Deposition for Headspace Sampling

Five adult subjects (3 males and 2 females) donated fingerprints in accordance with an
approved Lawrence Livermore National Laboratory Institutional Review Board human subjects
protocol. The subject’s activities prior to sample donation were not controlled. All subjects
donated five fingerprints, one from each finger of the right hand, by pressing each finger
individually on a different area of the glass surface inside of a wide-mouth septa jar (short
bottle style, 60 mL capacity, Thermo Fisher Scientific, I-Chem Brand, Rockwood, TN) for five
seconds (fingerprints not overlapping). Septa jars containing fingerprint samples, as well as one
blank jar with no fingerprints as a control, were stored at room temperature (~21 °C) and
humidity (~50% relative humidity) under continuous fluorescent lighting for the duration of the
study. The septa jar lids were sealed during SPME sampling time periods (fingerprint residues
sampled through the septum in the lid) and the lids were removed during degradation time
periods to expose the latent fingerprint residue samples to the ambient atmosphere. Five
months after the initial study, one subject donated a second latent fingerprint residue sample
in the same manner as the first. The fingerprint sample was stored, sampled, and analyzed
using identical procedures to determine whether the second fingerprint sample would be

associated with the first sample using data analyses.

3.2.2 Headspace SPME Sampling
Volatile and semi-volatile compounds inside the septa jars were passively sampled using

SPME Portable Field Samplers with 65 um polydimethylsiloxane/divinylbenzene (PDMS/DVB)
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fibers (Supelco, St. Louis, MO). The SPME fibers were thermally conditioned in the GC injection
port per manufacturer’s instructions prior to sample collection, and it was verified that the
method left the fibers free of carry-over from previous samples (data not shown). The
PDMS/DVB fiber was chosen for its ability to efficiently collect a broad range of compounds in
air, from volatile (general-purpose PDMS) to semi-volatile and larger volatiles (DVB), for
analysis. The SPME fibers were inserted through the septa in the lids of the closed septa jars
and were exposed to the headspace inside the septa jars for 16 h at room temperature. At the
end of the sampling time period the fibers were retracted and subsequently analyzed using GC-
MS. In most cases, the SPME fibers were analyzed directly after sample collection. However, if
analysis was delayed, the SPME fibers were stored individually in sealed containers at -20 °C
until GC-MS analysis. The SPME sampling time was not optimized for this work, and 16 h was
chosen after a review of the literature, for convenience, and to ensure the fiber was saturated
with volatile and semi-volatile chemical sample by diffusion at room temperature (Curran et al.
2007). An optimized SPME sampling method for latent fingerprint residues is the subject of
ongoing research.

As SPME headspace sampling is non-destructive, the same latent fingerprint residues
(and control sample with no fingerprints) were sampled and analyzed over 30 days to assess
chemical profile changes over time. The first SPME sample (Day 0) was collected directly after
fingerprint residue collection in the septa jars without exposure to ambient conditions. After
the 16 h SPME sample collection was completed, the lids of the septa jars were removed and
the latent fingerprint residues were exposed to ambient conditions for 4 h to simulate

evidentiary sample exposure and degradation. After the degradation time period was over, the
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lids to the septa jars were replaced and the next SPME sampling time point was collected.
During times when neither SPME sampling nor degradation exposure was taking place, the
septa jars remained sealed. The length of time that the latent fingerprint residue samples were
exposed to ambient conditions between SPME samplings increased as the degradation study
progressed, as chemical profile changes were occurring more gradually compared to the more
rapid changes observed during the first few days of the study. Table 3.1 lists a summary of
SPME sampling time points and the cumulative time that the latent fingerprint residue samples

were exposed to ambient conditions during the course of the 30-day study.

Table 3.1. Latent fingerprint residue SPME headspace sampling times during the 30-day study.

Day Cumulative Time Cumulative Exposure Time
Post-Deposition (h)  to Ambient Conditions (h)
0 0 0
1 24 4
2 48 8
3 72 12
5 120 40
7 168 72
10 240 128
13 312 184
17 408 264
21 504 344
24 576 406
30 720 528

3.2.3 GC-MS Analysis of Fingerprint Compounds
Volatile and semi-volatile chemicals adsorbed onto the SPME fiber were directly
analyzed using an Agilent 6890 GC with 5973 MSD system and ChemStation software (Agilent

Technologies, Inc., Santa Clara, CA) with manual injection and thermal desorption. The capillary
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column was 0.25 mm x 30 m coated with 0.25 um DB5-MS (5% phenyl methyl siloxane, Agilent
Technologies), and the following conditions were employed: helium flow rate of 1.2 mL/min,
inlet at 300 °C, column at 50 °C for 1 min, followed by a 10 °C/min ramp to 300 °C, held for 2
min, transfer line at 300 °C, 70 eV electron ionization, full scan acquisition from m/z 40 to 550,
and autotuning and mass calibration performed using perfluorotributylamine every day prior to
sample analyses. ChemStation GC-MS total ion chromatogram datafiles were exported as
comma-separated values (.csv) files for analyses in Microsoft Office Excel (Redmond, WA).
ChemStation datafiles were also converted to NetCDF format files and then to Waters
MassLynx file format (Milford, MA) for statistical analyses. Compounds were tentatively
identified by comparing the mass spectra with the NIST 2008 Standard Reference Database of
mass spectra (RMatch > 750, NIST MS Search 2.0, National Institute of Standards and

Technology, Gaithersburg, MD) as well as mass spectra published in the literature.

3.2.4 Chemical Profile Data Analyses

The latent fingerprint residue chemical profiles obtained from headspace SPME-GC-MS
analyses contained numerous compounds at varying abundances indicative of both subject and
time point, yielding a multivariate data set. This multivariate data set was examined using two
different statistical data analysis strategies: pairwise sample comparison using non-parametric
Spearman rank correlation coefficient analyses, and simultaneous comparison of all samples
using principal component analysis (PCA). The Spearman correlation coefficients were used to
evaluate the similarity between two samples, while PCA examined the differences among all

samples and provided graphical visualization tools that highlighted those differences to
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facilitate interpretation. Therefore, the two techniques are complementary (Miller and Miller
2005).

Spearman rank correlation coefficients were calculated between all five subjects’ latent
fingerprint residue samples and the blank sample collected on day 1 post-deposition. Each
sample total ion chromatogram resulting from GC-MS analysis was exported into Excel, where
the measured abundances (peak heights) at each retention time were numerically ranked in
descending order within the sample (i.e., the most abundant retention time given a rank of 1,
the second most abundant retention time given a rank of 2, and so on). Abundant siloxane
contaminant peaks from the septa in the septa jars were excluded. The rank given to each
retention time was then compared between the two samples being investigated in order to
yield the correlation coefficient describing the similarity of the samples. All possible
combinations of the six samples (five containing latent fingerprint residue and one blank) were
investigated, yielding 15 correlation coefficients describing the ability to associate and
discriminate the samples using the raw SPME-GC-MS data.

The SPME-GC-MS data sets were then pre-processed using Waters MarkerLynx software
(version 4.1) prior to additional univariate and multivariate statistical analyses. Again, the
siloxane contaminant peaks present in all samples were excluded from further analysis.
Chromatograms from each subject at each sampling time were pre-processed using peak
detection, integration, and retention time alighment with noise reduction. This process
generated a list of peak areas labeled using both retention time (RT) and m/z, known as an RT-
m/z pair or marker. Markers not detected or with peak areas below the set cutoff value in a

sample were assigned a value of zero in the matrix. The resulting peak area matrix was

118



exported into Excel and was used to examine abundance changes for individual fingerprint
compounds over the time course of the experiment (30 days). This data matrix was not
normalized, as chemical components generally decreased in abundance over time.

In order to compare the chemical profiles from all subjects using multivariate statistical
procedures, the aligned peak area matrix was further processed using the MarkerLynx
software. The peak areas within each sample were normalized to the sum of the peak areas in
that sample, which was arbitrarily set to 10000 for all samples. The normalized data matrix was
then exported into SIMCA (software version 13, Umetrics, San Jose, CA) for further pre-
treatment and multivariate statistical analyses. The data matrix exported from MarkerLynx was
mean-centered and scaled to Pareto variance to mitigate the high loading of abundant
compounds in the mathematical models. Finally, principal component analysis (PCA) was used
to assess the relationships between fingerprint samples donated by different subjects and blank
samples analyzed shortly after deposition (0-3 days post-deposition). Samples with similar
chemical composition were clustered together in the PCA scores plot, while dissimilar samples
were spatially distant. The association and discrimination of samples visualized in the PCA
scores plot were interpreted using the associated loadings plot of the individual chemical

components varying the most in the data set (Miller and Miller 2005).

3.3 Latent Fingerprint Residue Chemical Profiles from Five Subjects
Chemical profiles of latent fingerprint residue samples containing fingerprints from five
volunteers were passively collected using headspace SPME and analyzed using GC-MS over a

30-day time course. As headspace SPME sampling is non-destructive, the same five fingerprint
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samples (as well as a blank control) were re-analyzed throughout the study, eliminating intra-
subject fingerprint deposition variability effects that have plagued previous studies (e.g. Mong
et al. 1999). However, as subject activities prior to fingerprint sample donation were not
controlled as a part of this study, intra-subject differences were expected in the resulting
volatile and semi-volatile chemical profiles. Total ion chromatograms from GC-MS analysis of
the SPME samples collected one day after the latent fingerprint residue samples were
deposited are presented in Figure 3.1. Chemical profiles from each subject, as well as the blank
jar profile of the ambient environment and instrumental background, are plotted on the same
abundance scale for comparison. Numerous volatile and semi-volatile chemical species present
in latent fingerprint residues were successfully collected using SPME and desorbed and
analyzed using GC-MS. The number of peaks above background per sample ranged between
approximately 350 for Subject 36 to approximately 500 for Subject 16. Tentative compound
identifications by comparing the mass spectra to the NIST Mass Spectral Library are compiled in

Table 3.2.
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Figure 3.1. Total ion chromatograms from SPME-GC-MS analyses of latent fingerprint residues
donated by five subjects sampled one day after deposition (plotted on the same abundance
scale for comparison). The siloxane peaks resulting from the SPME fiber coating and septa jar
septum were removed.
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Also evident from Figure 3.1 are both similarities and differences in the SPME-GC-MS
chemical profiles from the five subjects’ latent fingerprints. Chromatogram abundances varied
over two orders of magnitude, from approximately 500,000 a.u. in Subject 36’s profile to
approximately 25,000,000 a.u. in Subject 16’s chemical profile. This was likely due to inter-
subject variability in the amount of latent fingerprint residue deposited, partially caused by
uncontrolled activity prior to fingerprint sample donation. It was observed that Subject 36
washed her hands just prior to donating fingerprints, so it follows that Subject 36’s chemical
profile contained fewer compounds and lower abundance compounds compared to the other
subjects that did not wash their hands right before fingerprint sample donation. Despite prior
activity variation, some compounds are present in all subject chemical profiles, such as nonanal
(8.57 min) and decanal (10.18 min). Compounds detected in all subjects’ latent fingerprint
residues are most likely endogenous compounds from the human body. Varying abundances of
endogenous compounds were deposited by each subject, which reflects inter-personal
variability in both the amount of fingerprint residue deposited and also the ratios of the
different compounds within the residue, consistent with previous observations by other groups
(Nicolaides 1974, Mong et al. 1999, Bernier et al. 2000). Confirming the presence of these
compounds in a questioned residue may be useful for determining that the residue is indeed a
latent fingerprint and should be examined more closely. Other compounds are only present in
one subject’s fingerprints, such as those eluting between 18 and 20 minutes in Subject 16’s
chemical profile. Individualizing compounds are useful for subject habit and prior activity

information. Certain chemicals may indicate subject age, gender, habits, and/or prior activities,
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providing more information from the latent fingerprint residue evidence than is accessible

using current non-destructive analysis methods.

Table 3.2. Annotated fingerprint compounds with corresponding GC retention times in SPME-
GC-MS analyses of latent fingerprint residues from five subjects, with the number of subjects
whose fingerprint chemical profiles contained the compounds indicated as well.

Peak Compound Chemical Class RT (min)  Number of
Subjects
1 Butanone Aliphatic ketone 4.75 4
2 6-Methyl-5-hepten-2-one Branched aliphatic 6.67 5
ketone
3 Octanal Aliphatic aldehyde 6.93 4
4 2-Ethylhexanol Branched aliphatic 7.35 1
alcohol
5 2,5-Dimethyl-2,5-hexanediol Alcohol 7.84 1
6 2-Nonen-1-ol Aliphatic alcohol 7.99 4
7 Unidentified compound 8.36 4
8 Nonanal Aliphatic aldehyde 8.57 5
9 2-Nonenal Aliphatic aldehyde 9.47 4
10 2-Decen-1-ol Aliphatic alcohol 9.62 4
11 Menthol Monoterpenoid 9.84 1
alcohol
12 Decanal Aliphatic aldehyde 10.18 5
13 Phenoxyethanol Aromatic alcohol 10.49 5
14 4-Methoxybenzaldehyde Aromatic aldehyde 11.06 3
15 2-Undecen-1-ol Aliphatic alcohol 11.3 5
16 Hydroxycitronellal Monoterpenoid 11.45 2
aldehyde
17 Undecanal Aliphatic aldehyde 11.73 5
18 Limonene diepoxide or unidentified Other 12.66 4
isomer
19 Dodecanal Aliphatic aldehyde 13.21 5
20 6,10-Dimethyl-5,9-undecadien-2-one  Branched aliphatic 13.75 5
(Geranylacetone) ketone
21 Methylparaben Aromatic ester 14.07 4
22 Dodecanol Aliphatic alcohol 14.14 2
23 Butylated hydroxytoluene Phenolic antioxidant 14.54 1
24 Tridecanal Aliphatic aldehyde 14.6 4
25 Phenoxyethyl isobutyrate Aromatic ester 14.7 4
26 Lilial Aldehyde 14.92 3
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Table 3.2. (cont’d)

Peak Compound Chemical Class RT (min)  Number of
Subjects
27 9-(3,3-Dimethyloxiran-2-yl)-2,7- Alcohol 15.19 4
dimethylnona-2,6-dien-1-ol
28 6-Undecalactone Aliphatic lactone 15.48 1
29 Tetradecanal Aliphatic aldehyde 15.93 4
30 Methyl dihydrojasmonate or Aliphatic ester 16.43 1
unidentified isomer
31 Vanillin isobutyrate Phenolic ester 16.59 1
32 Methyl dihydrojasmonate or Aliphatic ester 16.79 1
unidentified isomer
33 Hexyl salicylate Phenolic ester 16.83 2
34 Patchouli alcohol Alcohol 16.97 5
35 Hexyl cinnamaldehyde Aromatic aldehyde 17.64 4
36 Unidentified compound 17.73 1
37 Lilac alcohol Alcohol 17.78 3
38 Cubenol Alcohol 18 1
39 Octyl salicylate Phenolic ester 18.34 1
40 Isopropyl myristate Fatty acid ester 18.42 2
41 5,9,13-Trimethyl-4,8,12- Terpenoid aldehyde  18.58 4
tetradecatrienal
42 2-Hydroxycyclopentadecanone Macrocyclic keto- 18.75 1
alcohol
43 Musk 36A (CAS Number 88-29-9) Ketone 18.83 2
44 Homosalate or unidentified isomer Ester 19.06 1
45 Palmityl alcohol Aliphatic alcohol 19.15 1
46 Homosalate or unidentified isomer Ester 19.33 1
47 Musk ambrette Ketone 19.83 1
48 Isopropyl palmitate Fatty acid ester 20.56 1
49 Musk T (CAS Number 105-95-3) Ketone 20.7 1
50 Oxybenzone Ketone 20.9 1
51 N-Acetylserotonin Indole amide 21.93 1
52 Octinoxate or unidentified isomer Ester 22.04 1
53 Methyl podocarpa-8(14),9(11),12- Ester 22.32 1
trien-15-oate
54 Octinoxate or unidentified isomer Ester 23.53 1

Volatile and semi-volatile compounds from several chemical groups, including ketones,

aldehydes, alcohols, carboxylic acids, and esters, composed latent fingerprint residue chemical
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profiles detected using SPME-GC-MS (Table 3.2). The abundant peaks present in all subject

samples were aldehydes, with chain lengths of Cg-C14 detected as well as some unsaturated

and aromatic compounds. Nonanal, decanal, undecanal, and dodecanal were present in all five
subject’s profiles above background and have been previously reported as constituents of
human emanations (Bernier et al. 2000). Aldehydes are formed endogenously by peroxidation
of lipids that are abundant on the surface of human skin (O’Brien et al. 2005). Some more
complex aldehydes, such as hydroxycitronellal, lilial, and hexyl cinnamaldehyde are exogenous
scent compounds, and 5,9,13-trimethyl-4,8,12-tetradecatrienal is potentially derived from the
synthesis or degradation of squalene, the endogenous biosynthesic precursor to cholesterol
and steroids (Nicolaides 1974).

The majority of detected carboxylic acid derivatives were the more volatile esters
including isopropyl myristate and isopropyl palmitate. Free fatty acids are generated
endogenously and also result from bacterial hydrolysis of triglycerides on the skin (Puhvel et al.
1975). Hexyl salicylate, vanillin isobutyrate, and methyl dihydrojasmonate were exogenous
personal care product scent additives detected. The abundant peaks unique to Subject 16’s
chemical profile that eluted between 18 and 20 minutes in Figure 1 were identified as
homosalate and octyl salicylate, which are sunscreens. These compounds illustrate the
potential of SPME-GC-MS latent fingerprint residue chemical profiling to reveal information
about a subject’s habits and prior activities.

Detected alcohols included several short-chain, branched, and unsaturated compounds,

some with combinations of functional groups. Identified fatty alcohols included C12 and C14
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saturated alcohols as well as Cg-C11 fatty alcohols with unsaturations in the 2-position. As C1>-

C16 alcohols are common constituents of skin lotions, these were likely exogenous compounds.

Exogenous scent alcohols commonly added to personal care products, including menthol, lilac
alcohol, and patchouli alcohol, were present, as well as another possible precursor/degradation
product of squalene, putatively assigned as 9-(3,3-dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-
dien-1-ol.

A few ketones were observed, including butanone and 6-methyl-5-hepten-2-one, which
have been reported previously (Bernier et al. 2000). Geranylacetone, another likely squalene
oxidation product, was tentatively identified. Another sunscreen compound, oxybenzone, as
well as several musk scent additives and peach lactone were exogenous personal care product
additives detected as well from subject latent fingerprint residues using SPME-GC-MS.

The most probable origins (endogenous or exogenous) of the compounds detected in
the latent fingerprint residues should be interpreted with care, as some endogenous
compounds are also contained in exogenous sources, causing additive effects in compound
abundance that are difficult to discriminate (Bernier et al. 2000). As the diet and prior activities
of subjects in this study were uncontrolled, latent fingerprint residue chemical components of
both endogenous and exogenous origin were expected. Future work with more controlled
sample collection will aid the interpretation of sources of compounds detectable in latent
fingerprint residues using SPME sampling followed by GC-MS analysis.

In summary, these results show that non-destructive SPME sampling collects many

endogenous and exogenous volatile compounds that yield information-rich chemical profiles.
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These latent fingerprint residue chemical profiles provide a new level of information from the
most common type of forensic evidence while leaving the fingerprint undisturbed for
traditional forensic processing and interpretation. The methods used in this study simulate
discovering latent fingerprint residues using oblique lighting or other techniques that do not
modify the latent fingerprint to enhance visualization. Future work will examine whether
common fingerprint residue visualization methods, including powder dusting and cyanoacrylate

fuming, interfere with subsequent SPME headspace sampling.

3.4 Subject Discrimination Using Spearman Rank Correlation Analysis of Fingerprint Chemical
Profiles

The SPME-GC-MS chemical profiles from the blank sample and all five subjects’ latent
fingerprint residue samples were compared pair-wise to determine if they could be
differentiated using the numerous compounds detectable in fingerprints. Pair-wise
comparisons would be used to associate a suspect’s fingerprint residue to an evidentiary
fingerprint from a crime scene. The two most common pair-wise correlation coefficients are the
Pearson product-moment correlation coefficient (PPMCC) and Spearman’s rank correlation
coefficient (SRCC). The coefficient calculations are the same (covariance of the two samples
divided by the product of their standard deviations), however, the input for PPMCC is the raw
data (peak heights in this case), and the input for SRCC is the ranked data (most abundant peak
height is given a rank of 1, the second most abundant peak height given a rank of 2, and so on
in order of decreasing peak height). Calculating coefficients using ranked data (SRCC) does not

assume that the data are normally distributed, and as a result reveals all correlations that are
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monotonic and useful for data interpretation. Conversely, PPMCC calculations are limited to
normally distributed data sets and only consider linear correlations, which are too restrictive for
exploratory analyses. Therefore, the raw GC-MS total ion chromatograms from latent
fingerprint residue samples collected on day one post-deposition (truncated to the most
variable region eluting between 4 and 24 minutes as shown in Figure 3.1) were compared using
SRCC analyses (Miller and Miller 2005, Curran et al. 2007, Curran et al. 2010). Chromatogram
peak heights in each latent fingerprint sample at each measured retention time were ranked
numerically in order of abundance within the sample, and then the rank given to each retention
time was compared between the two samples being analyzed in order to yield the correlation
coefficient. Correlation coefficients may vary between -1 and 1, with values close to 1 indicating
a strong positive correlation, values close to 0 indicating minimal correlation, and values close
to -1 indicating a strong negative correlation (Miller and Miller 2005). All possible pair-wise
comparisons were examined, yielding 15 correlation coefficients from this data set that are
listed in Table 3.3. The correlation coefficients ranged from 0.521 to 0.913, indicating positive
linear correlations that increase in significance as the coefficients approach 1 (perfect linear
correlation). Correlation coefficient thresholds of 0.8 and 0.9 were tested for associating and
discriminating samples in this small data set (i.e., if the correlation coefficient is larger than 0.9,

the samples cannot be differentiated at the 0.9 correlation threshold level) (Curran et al. 2007).

128



Table 3.3. Summary of Spearman’s rank correlation coefficients comparing SPME-GC-MS
chemical profiles of the blank and subjects’ latent fingerprint residues on day one post-
deposition. Bold indicates samples not distinguished at a correlation threshold of 0.9. /talics
indicate samples not distinguished at a correlation threshold of 0.8.

Subject 11  Subject 16  Subject 23  Subject 36  Subject 57

Blank 0.685 0.603 0.775 0.906 0.832
Subject 11 0.762 0.899 0.691 0.839
Subject 16 0.809 0.521 0.780
Subject 23 0.741 0.913
Subject 36 0.765

The blank sample was compared with all five subjects’ latent fingerprint residue samples
and was successfully differentiated from Subjects 11, 16, and 23 (correlation coefficients less
than 0.8 in Table 3.3). The blank and Subject 36 could not be differentiated at the 0.9
correlation threshold, and the blank and Subject 57 could not be differentiated at the 0.8
correlation threshold. As observed from Figure 3.1, Subject 36 deposited a small amount of
fingerprint material due to washing her hands prior to sampling, so it follows that the chemical
profile is more correlated with the blank sample and successfully differentiated from all other
latent fingerprint residue samples. Considering only the correlations between the different
subjects (excluding comparisons with the blank sample), 90% of the pairs were distinguished at
a correlation threshold of 0.9, and 70% of the pairs were distinguished at the 0.8 correlation
threshold. Subject 16 was successfully differentiated from the blank and all subjects except for
Subject 23 at the 0.8 correlation threshold, owing to the presence of individualizing compounds
in the chromatogram. Subjects 11, 23, and 57 could not be differentiated from two of the other
subjects at the 0.8 correlation threshold owing to the presence of the same endogenous
fingerprint compounds present in each sample, but they could be differentiated from some

subjects due to differing abundance ratios and the absence of some compounds. In summary,
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these results illustrate the potential utility of comprehensive analysis of all compounds present
in an individual’s latent fingerprint residue chemical profile for subject association and

discrimination.

3.5 Subject Association and Discrimination Using PCA of Fingerprint Chemical Profiles

The informative headspace SPME-GC-MS volatile chemical profiles from the five
subjects’ latent fingerprint residues were compared to one another and the blank jar sample
using principal component analysis (PCA). The GC-MS chemical profiles from all subjects and
the blank at all time points were combined into a single data matrix for preprocessing (peak
integration, alignment, normalization, and scaling) followed by PCA to visualize sample
association and discrimination based on analysis of the entire chemical profile (Miller and Miller
2005). The resulting PCA scores plot is presented in Figure 3.2, where each data point on the
plot represents a sample at a certain time point. This PCA analysis only included samples
analyzed on days 0, 1, 2, and 3 after the latent fingerprint residue samples were deposited, as
later time points exhibited an appreciable level of degradation and resulting loss of chemical
signals above background. The x-axis represents principal component 1 (PC1) and is derived
from a combination of chemical signals in the data set that vary in a similar manner and explain
the largest contributions to the variation within the entire data set. In this analysis, 21% of the
total variance in the data set is explained by PC1. Similarly, the y-axis represents PC2, which
describes a second combination of chemical signals in the data set that vary similarly but are
unrelated to the signals in PC1 and describe the second-largest contributions to the variation

within the data set. The fingerprint chemical profile variance described by PC2 in this analysis
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was 15%, so the scores plot visualizes how all of the subject samples relate to one another with

36% of the total variance in the data set described by a single plot (Figure 3.2). Samples that are

positioned close together on the scores plot are chemically similar, while samples that are

spatially distant are chemically different. The individual chemical signals varying the most in the

data set are displayed in a corresponding loadings plot that facilitates the interpretation of the

scores plot (not shown). Subsets of highly loading compounds (chemical signals varying the

most in the data set) were identified, and representative examples are presented in Figure 3.3.
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Figure 3.2. Principal component analysis scores plot of all subject and blank headspace SPME-
GC-MS chemical profiles analyzed 0-3 days post-deposition. Samples positioned near one
another are chemically similar, while samples located far apart are chemically different.
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Figure 3.3. Compound abundances contributing to sample positions in the PCA scores plot (Figure 3.2). (A) Nonanal, decanal, and
isopropyl myristate levels make substantial contributions to a sample’s position on the PC1 x-axis, and (B) homosalate, octyl
salicylate, and oxybenzone abundances make important contributions to where a sample is positioned on the PC2 y-axis (mean peak
areas from days 1-3 (n = 3), error bars are one standard deviation).
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All samples from the blank control and Subject 36 are clustered together in the lower
right quadrant of the PCA scores plot (Figure 3.2), along with the sample from Subject 23’s
latent fingerprint residue analyzed on day zero. Subject 36 washed her hands just prior to
donating latent fingerprints (subject behavior not controlled as a part of this study) and had the
lowest abundance chemical profile components detected (Figure 3.1), so it follows that Subject
36 and the blank samples without any fingerprints would be associated together and
discriminated from all of the rest of the subject samples containing volatile fingerprint
components. The presence of the Subject 23 day zero sample in the cluster of blank samples
was unexpected, and further inspection of the scores plot shows that all subject day zero
samples containing fingerprint material are positioned to the right (more positive on the PC1 x-
axis) of the later time point samples. Inspection of the raw data chemical profiles revealed that
profiles collected and analyzed on day one generally had more peaks containing fingerprint
compounds and greater peak area abundances compared to profiles on day zero, the day the
fingerprints were deposited. This is principally due to the loss of the water in the fingerprint
over the first approximately 24-48 hours after deposition, after which the fingerprint becomes
“brittle” and the compounds that were initially held in the fingerprint by interactions with
water may more easily escape into the headspace to be sampled by SPME. These results
suggest that each sample’s position on the PC1 x-axis describes the relative amount of
fingerprint compounds present in the samples, which are similar for all subjects, i.e.
endogenous compounds. When chemical signals contributing the most to PC1 (x-axis) were
analyzed, several compounds were identified, including nonanal, decanal, and isopropyl

myristate (Figure 3.3a). Nonanal and decanal are present in all five subjects’ fingerprint
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chemical profiles, and isopropyl myristate was detected in three subjects. These identified
endogenous compounds are indicative of the presence of fingerprint material in an unknown
residue.

All samples from Subjects 11 and 16 were positioned in distinct clusters, most notably
Subject 16’s samples located most positively on the PC2 y-axis (Figure 3.2). The samples from
Subjects 23 and 57 collected 1-3 days post-deposition were all positioned closely together. One
striking feature of the profiles shows that Subjects 11, 23, and 57 group closely and are all
males, while Subjects 16 and 36 are females and their samples form distinct clusters separate
from the males and each other. These results suggest that a sample’s positioning on the PC2 y-
axis reflects the presence of exogenous compounds that serve as indicators of certain
individuals. Relative levels of these exogenous compounds from the surface of the skin
decrease in the first few days post-deposition, as the sample positions decrease on the PC2 y-
axis as the time-since-deposition increases. When chemical signals contributing the most to PC2
(y-axis) were investigated, the most prominent identified compounds were homosalate, octyl
salicylate, and oxybenzone (Figure 3.3b). These three compounds are sunscreens and were only
present in the latent fingerprint residues donated by Subject 16, who applied face lotion
containing sunscreen approximately six hours prior to donating her fingerprint sample. This
explains the grouping of Subject 16 samples relative to other subject samples. The presence of
individualizing compounds from cosmetics or other personal care items in fingerprint samples
donated by females has been previously observed (Mong et al. 1999). These results illustrate

the usefulness of chemically profiling latent fingerprint residues using headspace SPME-GC-MS
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in order to provide chemical information about an individual’s habits and recent history that is
inaccessible through friction ridge analysis alone.

Due to the presence of unique chemical compounds in the latent fingerprint residue of
Subject 16 that permitted discrimination from all other subjects, we took the study a step
further by asking Subject 16 to donate another latent fingerprint residue in an identical manner
five months after the original study had been conducted. The second fingerprint residue was
sampled and chemical profiles generated using the same protocol as the initial study, and the
resulting GC-MS chemical profiles from both data sets were processed and analyzed using PCA
to see if both sets of fingerprints from Subject 16 would be associated with each other. A
comparison of the GC-MS chromatogram results is presented in Figure 3.4a, and Figure 3.4b
shows the PCA scores plot with the samples from Subject 16’s latent fingerprints donated five
months after the initial study incorporated into the original data set. The chromatogram from
the sample donated five months after the initial sample contains all of the principal peaks
observed in the original results (same as in Figure 3.1). The chemical profiles sampled from
fingerprints donated five months apart contained many of the same compounds, with some
peak abundance variations in relation to one another observed. The cluster of compounds
eluting from 18-20 minutes, identified as sunscreens that distinguished Subject 16’s original
sample from the fingerprints donated from the other individuals, was also present in the
chemical profiles of fingerprints collected five months later. This suggests that the Subject 16
maintained a daily routine of applying sunscreen, which remained on the fingers or was
transferred from touching other parts of the body and was detected in the latent fingerprint

residue using headspace SPME-GC-MS. The presence of the sunscreen compounds in the
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fingerprint chemical profiles enabled the samples from the original study to be associated with
the samples collected five months later from the same individual in the PCA scores plot (Figure
3.4b). Both sets of chemical profiles collected from Subject 16 five months apart were clustered
together and away from both blank samples and fingerprint samples without sunscreens
detected in the chemical profiles. These results illustrate the value of knowing more
information from a latent fingerprint than just friction ridges, such as unique compounds
indicative of an individual’s habits and prior activities, as more points of similarity increase the
case for association.

Comparisons of chemical profiles collected from latent fingerprint residues using non-
destructive headspace SPME-GC-MS were successful in distinguishing fingerprint samples from
blanks and other subject’s fingerprint residues. Fingerprints were discriminated from blanks by
the presence of endogenous chemicals such as aldehydes and fatty acid esters, and fingerprint
samples were discriminated from fingerprints donated by other individuals in some cases by
the presence of unique exogenous chemical components. These latent fingerprint residue
samples were associated and discriminated at up to three days post-deposition, indicating a
substantial portion of the fingerprint material is still present for volatile and semi-volatile
chemical profiling using SPME-GC-MS when some traditional friction ridge analysis techniques

would fail due to the absence of water from the residues.
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Figure 3.4. Association of latent fingerprint residue chemical profiles donated by one individual,
Subject 16, five months apart and sampled 0-3 days after deposition. (A) Total ion
chromatogram comparison of SPME-GC-MS chemical profiles sampled one day after
fingerprints were deposited. (B) PCA scores plot including Subject 16 fingerprint samples from
five months later with the original fingerprint data set sampled daily 0-3 days post-deposition.
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3.6 Latent Fingerprint Chemical Changes Over Time

The latent fingerprint residue samples donated by five subjects were analyzed over the
course of 30 days to assess chemical profiles changes over time and if those changes could be
used to inform criminal investigations. As the outgassing fingerprint compounds were collected
passively using SPME, the same latent fingerprint residue samples were re-analyzed at each
point in the time course, minimizing intra-personal variation in the results. As expected, the GC-
MS chromatograms displayed an appreciable decrease in the abundance and number of
compounds detectable above background at later time points. This was anticipated, as fresh
latent fingerprint samples have a higher probability of containing volatile compounds, which
proceed to dissipate and degrade as the samples age (Curran et al. 2007). Similar observations
were also made by Mong and coworkers (1999), who noted that the most significant chemical
losses occurred within the first week after fingerprint deposition. However, some fingerprint
compounds were still detectable in some of the samples after 30 days of storage at ambient
conditions. The same data matrix that was used to perform PCA was used to examine how the
individual compound peak areas varied over the time course of the experiment. Peak area
changes over time were then further examined using linear (0 order), exponential (first-order),

and power law decay curve fitting, as well as second- and third-order reaction analyses (Atkins

. _ . 2 .
1994). The resulting coefficients of determination (R) for the least-squares fits to the
experimental data were finally evaluated to determine the function that most accurately
described the decreasing levels of compounds for interpretation.

The time-dependent abundances of decanal, an endogenous fingerprint compound that

was highlighted by PCA of the fingerprint results at the early time points (Figure 3.3), are shown
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for four of the subjects’ samples in Figure 3.5. Decanal was only detectable on days zero and
one in Subject 36’s latent fingerprint residue sample, preventing examination of abundance
changes over time for that sample. The results from Subjects 11, 16, 23, and 57 all show a low
abundance of decanal on day zero, which is likely due to the water-containing matrix of the
fingerprint residue still present soon after deposition. Moisture may also play important roles in
determining the kinetics of lipid oxidation in latent fingerprint residue, including via the action
of microbial enzymes. An increased abundance of decanal is sampled from the gas above the
fingerprint residues on day one post-deposition in all subjects’ latent fingerprint residue. The
level of decanal in the latent fingerprint residues donated by Subjects 23 and 57 decayed
steadily after day one until it was no longer detectable above background on day 17. However,
a different temporal relationship was observed for decanal in fingerprint samples from Subjects
11 and 16, where the abundance of decanal continued to increase after day one until day seven
for Subject 11 and day five for Subject 16. After decanal levels peaked several days post-
deposition, the decanal signal gradually decreased, but was still detectable in the day 30 sample
from both subjects. The different abundance kinetics displayed by Subjects 11 and 16 compared
to Subjects 23 and 57 is likely related to interpersonal variation in rates of lipid oxidation, as
well as the amount of latent fingerprint residue material deposited by each subject. Levels of
antioxidant compounds, including vitamins C and E, in each subject’s latent fingerprint residue
may delay lipid oxidation to varying extents. This may explain the increases in decanal
abundance observed for two of the subjects over the first few days of the study. Once the
antioxidants are consumed, the levels of decanal increase due to active enzymes in the absence

of antioxidants. The level of decanal detected in Subject 11’s sample was the largest of the four
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subjects, with a maximum peak area of 58712 at seven days post-deposition. Subject 16 had a
maximum decanal peak area of 39281 on day five, which was less than Subject 11 and peaked
sooner. Subjects 23 and 57 had the smallest abundances, with relative peak areas of 21244 and
15925, respectively, peaking on day one post-deposition. More latent fingerprint residue time
course analyses from more subjects are needed to more fully characterize these findings, but it
appears that the amount of fingerprint residue initially deposited, which is difficult to control,
has a substantial effect on the amounts of endogenous compounds outgassed from the latent

fingerprints for SPME-GC-MS detection.
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Figure 3.5. Decanal abundance over time in latent fingerprint residue samples from Subjects 11,
16, 23, and 57. Power (solid line) and exponential (dashed line) fits to the data are shown, as

well as the calculated half-life (t1/2) of decanal in each subject’s latent fingerprint residue.

The decay portion of the decanal abundance plot from each subject was best described

by a power law dependence (Figure 3.5), as the power function fits to the data resulted in the

. 2 . . . .
highest R values. Exponential functions (first-order decay kinetics) are also shown for

. 2 . . . .
comparison, however, the R values indicate that decanal decay is not as highly correlated with

an exponential function compared to the power function. This was generally true for the other

endogenous fingerprint compounds examined, including other aldehydes, which were present
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in the fingerprint chemical profiles for several days so that compound abundances over time

could be examined. The power law mathematical relationship is described by the function

y= cx” where cis a constant and a is the scaling exponent of the law (Clauset et al. 2009,

Stumpf and Porter 2012). The most interesting feature of power laws is they are scale invariant,
meaning the suspected differences in the amount of fingerprint residue deposited by each
subject has no effect on the shape of the decay curve as they’re simply scaled versions of the
same decay process. The scaling exponent is considered to be characteristic of a process, so
from the four scaling exponent values shown in the plots in Figure 3.5, the scaling exponents
for the decay of decanal vary by approximately 35% in this preliminary study of four subjects.
This is very promising, as scaling exponents for the degradation of endogenous fingerprint
compounds could lead to determining the age of an evidentiary fingerprint. However, power
laws need to be interpreted with care, as they routinely follow the trends in complex biological
processes, which may be decomposed to show trends of many individual overlapping
components that do not follow power law dependence (Stumpf and Porter 2012). More work
needs to be done to understand the mechanisms underlying fingerprint chemical degradation
in order to statistically validate the power law models for latent fingerprint residue compounds
(Clauset et al. 2009, Stumpf and Porter 2012). The endogenous fingerprint chemical
degradations may also be displaying second-order decay kinetics, as the half-lives increased as

the time post-deposition increased, and second-order reaction plots generally had the second

2
highest R values for fitting this small data set.
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Compound abundance changes over time for the exogenous sunscreen compounds
homosalate, octyl salicylate, and oxybenzone detected in Subject 16’s latent fingerprint residue
chemical profile were also examined (Figure 3.6). All three chemicals were present at maximum
abundance on day zero, after which levels steadily decreased until they were no longer
detectable above baseline on day five for octyl salicylate and day seven for homosalate and
oxybenzone. The same decay curve fitting methods applied to the endogenous compounds

described above were applied to these exogenous sunscreen compounds, and exponential

2
curves (first-order decay kinetics) yielded the highest R™ values for the least-squares fits to the

data (Figure 3.6). The exponential decay equations were used to calculate the chemical half-
lives of the compounds (Atkins 1994), which were just under one day for homosalate and octyl
salicylate (0.86 and 0.85 days, respectively) and 2.23 days for oxybenzone. Oxybenzone has a
higher boiling point temperature (224-227 °C) compared to homosalate and octyl salicylate
(161-165 °C and 189 °C, respectively), resulting in a longer half-life compared to the other two

(Budavari et al. 1996).
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Figure 3.6. Decay of the exogenous compounds homosalate, octyl salicylate, and oxybenzone over time in Subject 16’s latent
fingerprint residue sample. Exponential curve fits to the data are shown, as well as the calculated half-lives (t1/2) of the three

compounds.
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The observed exponential decays of exogenous sunscreen compounds in the latent
fingerprint residues (Figure 3.6) are similar to the power law decays of the endogenous
compounds (Figure 3.5) in that the half-lives are independent of the initial concentrations of
the compounds (Atkins 1994). These scale invariant mathematical relationships are promising,
as inherent heterogeneity in the amount of fingerprint residue deposited with each surface
contact is the principal reason quantitative comparisons between fingerprint samples are
difficult (Mong et al. 1999). It makes sense that exogenous compounds from the skin’s surface
would decay with a straightforward exponential dependence, as they are most concentrated at
the time of deposition and disperse over time. The presence of exogenous compounds from the
donor’s environment is useful for determining prior activities and habits. Endogenous latent
fingerprint residue compounds have far more complex mechanisms underlying their observed
levels over time, including both generation and degradation through human or microbial
enzymatic processes in addition to outgassing. The fact that endogenous compounds generally
remain present in the latent fingerprint residues for longer periods of time compared to the
exogenous compounds makes them more promising for universal fingerprint dating. The
approximately 35% variation in scaling exponents between the four subjects in this small proof-
of-principle study demonstrates the potential for determining the time since a fingerprint was
deposited regardless of who deposited it. A larger study of many more subjects and latent
fingerprint residue samples is the next step for examining the utility of endogenous chemical
decay rates for determining the time-window since a fingerprint was deposited. Such
information would greatly aid criminal investigations by helping to determine a crime’s timeline

and if fingerprint evidence is germane to the investigation at hand.
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3.7 Conclusions and Future Directions

Objects and locations connected with nearly every type of crime are routinely examined
for latent fingerprint evidence. A novel method for non-invasively analyzing the chemical
profiles of latent fingerprint residues has been developed in order to gain a new level of
information from the most common type of forensic evidence. Passive SPME headspace
sampling collects both endogenous and exogenous volatile and semi-volatile compounds
contained in the fingerprint residue while preserving the fingerprint for traditional analyses.
There is no additional sample preparation or cleanup following SPME sampling, making this
fingerprint sampling method field deployable and usable by relatively unskilled personnel.

The information-rich chemical profiles obtained from GC-MS analyses of the SPME samples
were used to quantitatively compare fingerprint compounds both between subjects and over a
time course of 30 days. Subjects were associated and discriminated from each other and blank
control samples using both pairwise Spearman rank correlation coefficient analyses and
principal component analysis of all subjects simultaneously. Both endogenous and exogenous
compounds were detectable and responsible for sample differentiation. Endogenous
compounds identify a residue as a latent fingerprint and were in some cases detectable 30 days
post-deposition. The decay rates of endogenous compounds over time were comparable in
different subjects and show promise for universal fingerprint dating methods. Knowledge of the
time since a fingerprint was deposited would greatly aid criminal investigators in establishing a
crime timeline and if fingerprint evidence is relevant to the investigation at hand. The
exogenous compounds that were detected were individualizing and degraded over a shorter

period of time compared to the endogenous compounds. Rare compounds may serve to link
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latent fingerprints and the individuals that deposited them to specific locations or activities
(e.g. explosives on the hands of a bomb maker). Other compounds may infer certain subject
traits or habits, such as a cigarette smoker or drug user, all of which is additional information
from a latent fingerprint residue that is currently inaccessible using traditional fingerprint
analysis methods.

In the future, studies will be expanded to include SPME-GC-MS chemical profiling of latent
fingerprint residues deposited on porous surfaces, as well as degradation studies under varying

storage conditions (e.g. light, temperature, humidity) to determine effects on decay rate.
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CHAPTER 4: ASSESSMENT OF /N VITRO TOXICITY OF CHEMOTHERAPEUTIC AGENTS IN CANCER
CELLS USING A METABOLOMIC APPROACH

4.1 Motivations and Introduction
4.1.1 Treatment of Cancers with Chemotherapeutic Agents

Cancer is a collection of diseases that are characterized by uncontrolled growth of
abnormal cells. Approximately 577,190 Americans were expected to die of cancer in 2012,
more than 1,500 people per day. Cancer accounts for nearly one of every four deaths in the U.S.
and is the second most common cause of death, exceeded only by heart disease. Lung cancer
and breast cancer are two of the most prevalent cancers in America (surpassed only by prostate
cancer), with estimates of 229,060 new cases of breast cancer and 226,160 new cases of lung
cancer diagnosed in 2012 (American Cancer Society 2012). The development and progression of
cancer are influenced by the combined effects of genetic factors (e.g. inherited mutations,
hormones, immune conditions) and environmental factors (e.g. exposures to tobacco,
mutagenic and tumor-promoting chemicals and radiation, infectious agents). Most cancer
treatments rely on selective removal or destruction of tumors with surgery, radiation, and/or a
variety of pharmaceutical therapies including chemotherapy, hormone therapy, biological
therapy, and targeted therapy (American Cancer Society 2012).

Anticancer drugs are a vital component of cancer treatment, however, severe side
effects limit the dose that patients receive. There is an urgent need for more targeted and
selective chemotherapeutics, and evaluation of new anticancer drugs is a critical step in
improving mortality rates for the disease. Despite recent advances in both diagnostic and
therapeutic tools available, the mortality rate remains high and severe side effects are

associated with common chemotherapy treatments. It is of paramount importance to continue
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the search for new chemotherapeutics with novel modes of cytotoxicity that offer higher and
more selective potency and have fewer side effects. In vitro screening of candidate
chemotherapeutic agents for their potency in altering metabolic phenotypes has potential to
provide multidimensional measures that reflect how these compounds act on a wide variety of

cellular processes.

4.1.2 The Role of Metabolism in Cancer Cell Proliferation

The rapid proliferation of cancer cells requires efficient biosynthesis of essential
biomolecules, particularly those that conduct biochemical energy to the processes of cell
growth and division. The transformation of normal cells to tumor cells involves a shift in
metabolic traits that allow them to proliferate with less dependence on extracellular signaling
mechanisms, yet many questions remain regarding the complex networks that regulate
metabolic processes in tumors (DeBerardinis 2008). Even less is known about metabolic
processes in cancer cells during chemotherapeutic treatments designed to either kill cancer
cells or arrest their growth and proliferation.

Chemotherapeutic treatments of a variety of cancers are accomplished through use of
an assortment of alkylating agents that cross-link DNA and prevent cell replication. One of the
more successful alkylating agents is cisplatin (Figure 4.1), which was developed by Barnett
Rosenberg at Michigan State University in the 1960s (Rosenberg et al. 1965, Rosenberg et al.
1969). Cisplatin acts both by alkylation of DNA and through imparting stress to the endoplasmic
reticulum (ER), and both of these events can trigger programmed cell death known as apoptosis

(Rabik and Dolan 2007). The effectiveness of cisplatin in cancer treatment is compromised by
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side effects including toxicity in noncancerous tissues, as well as development of cisplatin-
resistant cancers. Another of the most successful chemotherapeutic agents is the plant natural
product paclitaxel, also known by its trade name Taxol, which does not act through covalent
modification of DNA. Instead, its potency is based on interruption of mitosis of cancer cells by

stabilizing microtubules via non-covalent binding (Wani et al. 1971, Bayet-Robert et al. 2010a).

HaNs,  WNHg
o
c? g

Cisplatin OH

=

Taxol

Figure 4.1. Chemical structures of the cancer chemotherapeutic agents cisplatin and taxol.

Since many chemotherapeutic agents disrupt normal cellular processes involved in cell
division, they provide many opportunities for modification of fluxes through the various cellular
metabolic processes. Recognition of so-called non-target mechanisms offer the potential for

new understanding of how anticancer agents disrupt the generation of biochemical energy in
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cancer cells, and it is hoped that this knowledge will help guide future development of more

effective cancer chemotherapies.

4.1.3 Cellular Metabolism

Central cellular metabolism is composed of a few main pathways of interest: glycolysis,
the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, anaplerotic reactions
that replenish pools of key metabolic intermediates and thus allow intermediates to be
withdrawn to support other biosynthetic reactions, and the biosynthesis of non-essential amino
acids, fatty acids, and phospholipids (Griffin and Shockcor 2004, Yang et al. 2007, Yang et al.
2008, Oakman et al. 2011). These biochemical pathways form the central backbone of
metabolism, providing energy, cofactors, and building blocks for cell growth and replication.
Glycolysis and the PPP are the pathways for glucose catabolism and generation of biochemical
energy that drives many cellular processes, and these enzymatic reactions take place in the
cytosol. In contrast, the reactions of the TCA cycle occur in the mitochondrial matrix where
respiration takes place. The PPP supplies NADPH, needed for reducing intermediates in fatty
acid and other biosynthetic pathways, and ribose-5-phosphate, the precursor of nucleotides
(Becker et al. 2006, KEGG database http://www.genome.jp/kegg/).

The TCA cycle transfers electrons to the respiratory chain in the mitochondria of healthy
cells supplied with adequate oxygen. Hypoxic cells suppress metabolism through the TCA cycle
due to the lack of adequate oxygen to accept electrons at the end of the ATP-producing
respiratory chain. Cancer cells also characteristically rely on glycolysis rather than the TCA

cycle/respiratory chain for ATP production regardless of oxygen level (called the Warburg
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effect, discussed below). It is anticipated that fluxes through TCA cycle reactions are low in
cancer cells, which has potential to decrease cellular levels of TCA cycle intermediates to below
conventional detection limits. The anaplerotic reactions supply intermediates to the TCA cycle,
supplementing the levels produced through the conversion of acetyl-CoA entering the TCA
cycle from glycolysis. The most important reaction is the conversion of pyruvate to
oxaloacetate by pyruvate carboxylase. Aspartate can also be converted to oxaloacetate.
Glutamate is readily converted to a-ketoglutarate, and the B-oxidation of fatty acids yields
succinyl-CoA, another intermediate in the TCA cycle. Anaplerosis attempts to compensate for
the lack of TCA cycle activity characteristic of cancer cells (Becker et al. 2006, KEGG database
http://www.genome.jp/kegg/).

The non-essential amino acids are synthesized from glycolysis and TCA cycle
intermediates. Glycine and cysteine are formed from serine, which is derived from 3-
phosphoglycerate, a glycolytic intermediate. Alanine is synthesized from pyruvate, the end
product of glycolysis. Glutamine and proline are synthesized from glutamate, which is
generated from a-ketoglutarate, a TCA cycle intermediate. Aspartate is the precursor for
asparagine and is formed from the TCA cycle intermediate oxaloacetate. Fatty acid biosynthesis
starts with acetyl-Co-A (the starting point for the TCA cycle as well), which is synthesized in the
mitochondria, moves into the cytosol with citrate cleavage, and is used to generate malonly-
CoA. Palmitic acid (C16:0) is formed from acetyl-CoA and malonyl-CoA, and can be elongated to
form stearic acid (C18:0). Desaturation of palmitic and stearic acids yields palmitoleic (C16:1)
and oleic (C18:1) acids. Palmitic, stearic, and oleic acids are the main fatty acids in human cells.

These fatty acids are incorporated into glycerolipids and glycerophospholipids. The backbone of
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glycerophospholipids, glycerol phosphate, is derived from a glycolytic intermediate. The other
components are acetyl-CoA, two fatty acids, and a headgroup (choline, inositol, serine, glycerol,
or ethanolamine) that classifies the type of glycerophospholipid (Becker et al. 2006, KEGG

database http://www.genome.jp/kegg/).

4.1.4 The Warburg Effect

Normal cells with access to adequate oxygen create energy through mitochondrial oxidation

of pyruvate through the TCA cycle, yielding 36 molecules of ATP along with HoO and CO; per

glucose molecule metabolized. Glycolysis provides an anaerobic alternative energy production
mechanism, producing two molecules of ATP and lactate for every molecule of glucose
metabolized. When there is not enough oxygen, the pyruvate at the end of glycolysis remains in
the cytoplasm (instead of being transported into the mitochondria) and is converted to lactate,
which is then exported from the cell. The persistence of aerobic glycolysis is a trait of most
cancers, first reported by Warburg and is known as the Warburg effect (Warburg et al. 1927,
Warburg 1956). The high density of most malignant cells creates an anaerobic environment
that requires up-regulated glycolysis for energy generation. However, persistent glycolysis has

been observed in some cancer types despite the presence of adequate oxygen levels.

4.1.5 Metabolomics and Mass Spectrometry
One of the most informative methods for studying the global metabolism of a cell (or
other biological system) under a given set of conditions is metabolomics. Metabolomics is

defined as a comprehensive and quantitative analysis of all of the metabolites of the biological

157



system under study (Fiehn 2001). Metabolites are the intermediates and products of
metabolism, which are mostly small molecules less than 1000 Da (Asiago et al. 2010).
Metabolites result from the interaction of the system’s genome with its environment, so they
are not simply the end-products of gene expression, but part of the regulatory system for the
cell, tissue, or organism. The human genome contains approximately 40,000 genes encoding up
to one million proteins. The up- or down-regulation of metabolic enzymes results in the
synthesis or degradation of small molecule metabolites. At any given time in a cell thousands of
energy transformation processes are occurring, and these conversions are collectively referred
to as metabolism. In addition to anabolism and catabolism, cellular processes such as
absorption, distribution, and detoxification of endogenous and exogenous compounds are all
reflected in the metabolome as well (Claudino et al. 2007). The number of known endogenous
metabolites is still increasing, with approximately 3000 identified so far (Di Leo et al. 2007). The
metabolites are most closely related to the observed phenotype in the central dogma of biology
(genes in DNA transcribed into RNA, RNA translated into proteins, enzymes regulate levels of
metabolites), so they reflect the actual physiological conditions of the system (cell, tissue, or
organism) at the time of sampling. Disease states and drug treatments can alter the metabolic
phenotype of a cell, tissue, or human, making metabolic profiling relevant to clinical medicine
and the pharmaceutical industry (Yang et al. 2007, Yang et al. 2008).

Metabolite profiling first appeared in the scientific literature in the 1950s, but was
relatively slow to develop into a distinct research field (Di Leo et al. 2007). Early work involved
analyzing the metabolites of exogenous pharmaceutical products (e.g. synthetic estrogens)

(Williams et al. 1975). The field gradually shifted to profiling classes of endogenous compounds
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of interest, such as catecholamines, serotonin, and melanin precursors (Muskiet et al. 1981)
and prostanoids (Robinson et al. 1984). Researchers in the past only profiled certain compound
classes due to limitations in analytical detection capabilities. Technological advancements in the
1960s and 1970s enabled quantitative (as opposed to qualitative) measurements of metabolite
profiles. Horning and Horning (1971) and Pauling and coworkers (1971) pioneered the use of
GC-MS for quantitative metabolite profiling in human urine and tissue extracts. Around the
same time, Hoult and coworkers (1974) demonstrated NMR detection of metabolites in human
tissue. Today, analytical instrumentation has advanced to allow detection of greater numbers
of endogenous and exogenous metabolites at biologically relevant concentrations, and the field
of metabolomics applications has expanded as well. Metabolite profiling aims to rapidly analyze
a large number of compounds in a non-targeted manner. Often the goal is not quantitation but
relative comparisons of metabolite levels that characterize a given sample. Not all metabolites
must be identified and quantified for a metabolite profiling experiment to be successful.
Rather, the detection of a specific metabolite profile that is characteristic of a sample type is
useful for differentiating that sample from others (Claudino et al. 2007).

The analytical technologies that enable metabolomic analyses include separation
techniques and detection methods. Gas Chromatography (GC) and High Performance Liquid
Chromatography (HPLC) are the most commonly used separation techniques. Gas
chromatography generates very high chromatographic resolution but requires chemical
derivatization of polar metabolites to make them volatile for gas-phase separation. Even with
derivatization, some large, polar, or chemically reactive metabolites cannot be analyzed using

GC. Compared to GC, HPLC has lower chromatographic resolution, but it is capable of
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separating a much wider range of analytes without derivatization. The most common detection
method coupled to both GC and HPLC separations is mass spectrometry (MS), which is used to
identify and quantify metabolites. Mass spectrometry is both sensitive and can be very specific
by detecting the masses of analyte ions. The analyte ionization process in GC-MS creates mass
spectral fragmentation patterns that enable analyte identification by comparison to mass
spectral libraries of known compounds, which is highly advantageous. It is also possible to use
MS as a stand-alone metabolite detection method with direct sample infusion and MS
information to identify metabolites.

Another common metabolite detection method is nuclear magnetic resonance (NMR),
which does not rely on analyte separation prior to analysis and is non-destructive for
downstream analyses. A broad range of small molecule types may be quantitated
simultaneously with minimal sample preparation, high analytical reproducibility, and molecular
structure information for identification. Intact material, such as cell pellets or biopsies, may be
analyzed using NMR without extraction of metabolites, which is useful for clinical studies.
However, metabolite analyses are generally done on extracted materials, which are amenable
to high-throughput analyses using MS. The sensitivity of MS is a few orders of magnitude better
than NMR, allowing detection of more metabolites at biologically relevant concentrations.
However, MS is less specific than NMR for metabolite identification, as isomers cannot be
distinguished using MS alone (Bayet-Robert et al. 2010b). A further advantage of MS analysis is
automated data analysis options, which generate a larger number of resolvable metabolites
and aid in the identification of unknown metabolites (Claudino et al. 2007). Therefore, MS is the

more useful analytical platform for global metabolite profiling, but it should be noted that the
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majority of pharmacometabolomic studies published to date have gained useful knowledge

using NMR analysis techniques as well.

4.1.6 Chemometric Procedures

The major challenge of metabolomics is relating the vast amounts of measured
biochemical data to systems biology (Bayet-Robert et al. 2010b). All metabolomics studies yield
complex multivariate data sets that require data filtering using chemometric and bioinformatics
methods and visualization software for interpretation. The aim of these procedures is to
elucidate biochemical “fingerprints” that are characteristic of the phenotype or indicative of
changes to the phenotype as a result of altering the sample conditions. The ultimate goal is to
identify the metabolites causing the characteristic biochemical fingerprint, which yield
information about biochemical pathways involved and are potential biomarkers that define the
phenotype in a biological or clinical context (Griffin and Shockcor 2004, Claudino et al. 2007, Di
Leo et al. 2007).

Data reduction and chemometric approaches enable efficient data mining and
extraction of useful information from large, multivariate metabolomics data sets. Multivariate
pattern recognition methods can classify samples based on the identification of inherent
patterns in the measured metabolite profiles, and these patterns enable visualization of sample
relationships in the data set. There are two general approaches for multivariate pattern
recognition: unsupervised and supervised methods. Both approaches may be applied to the
same data set in order to extract different information. Unsupervised methods examine the

inherent sample relationships without knowledge of sample classification. Examples of
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unsupervised methods include principal component analysis (PCA) and clustering methods.
Supervised algorithms use class information to maximize the separation between different
sample classes. Examples of supervised methods include partial least squares discriminant
analysis (PLS-DA) and artificial neural networks. Supervised methods are more useful for
analyzing metabolite profile patterns associated with different sample conditions (e.g. normal
or cancerous cells, metabolic response to treatment with different drugs) (Claudino et al. 2007,
Trygg et al. 2007, Oakman et al. 2011).

A typical gas chromatography-mass spectrometry (GC-MS) or high-performance liquid
chromatography-mass spectrometry (HPLC-MS) metabolomics analysis generates thousands of
data points, of which only a small subset might be needed to distinguish different anticancer
drug treatments. Extracting the most meaningful features of these data is thus key to
generating useful new knowledge with mechanistic or explanatory power (Goodacre et al.
2004). Supervised multivariate statistical analysis methods are employed to process mass
spectrometry data collected during metabolomics experiments of differentially treated cancer
cells. This work utilized both PLS-DA and orthogonal partial least squares discriminant analyses
(OPLS-DA) to detect metabolite signals that differentiated samples. The goal of PLS-DA is to find
the metabolites (RT-m/z pairs; X variables) that describe the greatest variations in the spectra
while at the same time have maximal correlation with the class assignment (input Y variable).
The metabolite signals that display similar variation and correlation patterns in the data set are
then linearly combined to form principal components. The score plot, limited to the most
significant principal components, gives a visual image of sample variations from a global point

of view. The corresponding loadings plot allows the evaluation of the contribution that each
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metabolite makes to the total information of the metabolome (Boccard et al. 2007). Supervised
orthogonal partial least squares discriminant analyses (OPLS-DA) are complementary to PLS-DA
and are used to highlight interclass variance and provide associated confidence intervals (Trygg
et al. 2007). These statistical data analysis methods help to determine how endogenous
metabolism is affected by anticancer drug treatment by reducing the dimensionality of complex
data sets to facilitate recognition of outlier metabolites that differ in cytotoxic modes of action.
While the multivariate statistical analyses identify important molecules by mass, these
compounds still need to be identified. Mass spectra collected using GC-MS can be compared to
the National Institute of Standards and Technology (NIST) library of known compound mass
spectra in order to identify metabolites of interest in cancer cell samples. Metabolite
identification points to specific mechanisms of altered cellular biochemistry that result from

treatments with anticancer agents.

4.1.7 Application of Metabolomics to Studying Cancer

There is a growing interest in investigating the biochemical mechanisms of action of
drugs and identifying targeted enzymes and metabolic pathways using metabolomic analyses
(Chung and Griffiths 2008, Bayet-Robert et al. 2010c). Cancer phenotypes are especially suited
for study using metabolomics. While RNA and protein regulation and expression levels play a
definitive role in cancer initiation and progression, malignant cells undergo a range of changes
in metabolism as well (Yang et al. 2007). The most studied and well-known example of
metabolic alteration as a result of cancer is the Warburg effect, which is the shift to aerobic

glycolysis from normal cellular respiration in cancer cells (Warburg et al. 1927). The
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metabolome of a cancer cell is also likely to show changes in response to anticancer drug
treatment (Chung and Griffiths 2008). These metabolism changes can indicate if the drug is
working and the mechanism of action. Cellular toxicity of anticancer agents can also be studied
using metabolomics, with particular focus on rapid screening of potential chemotherapeutic
agents for lead compound selection (Kim et al. 2010).

Previous studies have primarily focused on three areas of cancer research with clinical
applications. The first is early detection and diagnosis of cancer (including stage, receptor
status, and metastasis) and recurrence using metabolomics techniques to differentiate normal
and cancerous cells and tissues (Ting et al. 1996, Yang et al. 2007, Yang et al. 2008,
Frickenschmidt et al. 2008, Asiago et al. 2010). The second is detection and prediction of drug
toxicity, with application to screening drug candidates for organ toxicity prior to clinical trials
(Lindon et al. 2005). The third area of prior research is monitoring and predicting response to
anticancer drug treatment and prognosis, with the field moving towards individualized
medicine based on an individual’s unique metabolism (Beloueche-Babari et al. 2005, Bathen et
al. 2007, Chung and Griffiths 2008).

The present work focuses on the application of metabolomics to elucidating the
cytotoxic mechanisms of action of both known and potential anticancer agents. Evaluating the
response of cancer cells to anticancer therapeutics by differential metabolite profiling gives
insights into drug cytotoxicity and tumor cell adaptive mechanisms (Bayet-Robert et al. 2010b).
As global metabolomics is not presumptive on the involvement of any subset of metabolism, it

is an optimal tool for discovering active metabolic pathways and biomarkers. In addition,
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tracking metabolite profiles has the potential to uncover vital enzymatic steps that could be
targeted in the drug discovery process (Yang et al. 2008).

Here we introduce the combined use of GC-MS and HPLC-MS along with chemometric
procedures to profile the patterns of various metabolites in taxol- and cisplatin-treated human
lung adenocarcinoma A549 and human breast adenocarcinoma MCF7 cells. Such metabolite
patterns revealed metabolic networks altered by drug treatment, which in turn serve as guides
for further analyses and novel hypotheses regarding the biochemical mechanisms of taxol and

cisplatin anticancer action in two different cell types.

4.2 Materials and Methods
4.2.1. Cell Culture and Anticancer Drug Treatments

A full factorial experimental design was used to analyze the effects of and the
interactions between three experimental factors: cancer cell type, anticancer drug treatment,
and time post-dose. Human lung carcinoma A549 cells (American Type Culture Collection CCL-
185, Manassas, VA) were grown in Professor Babak Borhan’s laboratory at Michigan State
University using F-12K Nutrient Mixture Kaighn’s Modification media (Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO), 61.4 ug/mL penicillin

G (Sigma-Aldrich), 100 ug/mL streptomycin (Sigma-Aldrich), 292 ug/mL L-glutamine (Sigma-
Aldrich), and 0.01 M HEPES buffer (pH 7.2) at 37 °Cand 5% CO; atmosphere. Human breast

adenocarcinoma MCF7 cells (American Type Culture Collection HTB-22) were grown in Eagle
Modified Minimum Essential Media (Invitrogen) supplemented with 10% fetal bovine serum,

61.4 ug/mL penicillin G, 100 ug/mL streptomycin, 292 ug/mL L-glutamine, 0.01 mg/mL bovine
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insulin (Sigma-Aldrich), and 0.01 M HEPES buffer (pH 7.2) at 37 °Cand 5% CO; atmosphere.

Both types of cells were grown to log-phase, trypsinized, and resuspended in the corresponding

. . . . 5 .
media at a final concentration of approximately 6 x 10™ cells/mL. Aliquots of these cultures (2
mL) were placed in 6-well plates, and the cells were incubated for 10 hours at 37 °Cand 5%

CO; atmosphere to allow for proper attachment to the plate prior to anticancer drug addition.

The A549 and MCF7 cell cultures were treated with two different concentrations of each

anticancer drug, one high concentration and one low concentration, based on experimentally
determined LD5q values. The high concentration dose of taxol (paclitaxel, Sigma-Aldrich) was 5
ug/mL (5.86 uM) and the low concentration dose was 0.1 ug/mL (0.12 uM). The high
concentration dose of cisplatin (Sigma-Aldrich) was 5 ug/mL (16.61 uM) and the low

concentration dose was 0.1 ug/mL (0.33 uM). Cells were exposed to 5.86 uM taxol, 0.12 uM

taxol, 16.61 uM cisplatin, 0.33 uM cisplatin, or the vehicle (dimethyl sulfoxide (DMSO)) in

triplicate and were incubated at 37 °Cand 5% CO; atmosphere for the desired period of time.

At various time points post-dose (14 hours, 2 days, 4 days, and 7 days for A549 cells; 1 day, 3
days, 5 days, and 7 days for MCF7 cells), the cells from the 2 mL cultures were washed with PBS
to remove detached and dead cells, trypsinized, harvested by centrifugation at 3000 x g for 30

seconds at room temperature, and washed with PBS buffer to remove medium components.

The final cell pellet was flash-frozen in liquid N7 and stored at -80 °C until extraction.
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4.2.2. Cell Extraction

In order to extract metabolites with a wide range of physical properties, 1 mL ice-cold
acetonitrile:isopropanol:water (3:3:2 v/v/v; HPLC-grade 2-propanol and acetonitrile from
Merck, Darmstadt, Germany; Milli-Q water, Milli-Q Academic, Millipore, Billerica, MA)
extraction solvent was added to the frozen cell pellet (Taylor et al. 2010). A 100 ulL aliquot of 1

mM adonitol (ribitol, Sigma-Aldrich) in Milli-Q water internal standard solution was also added,

and the cell pellet was extracted for 30 minutes at 0 °C. Finally, the cell pellet was vortexed,

centrifuged at 3000 x g for 30 seconds at room temperature (20 oC), and 100 ul aliquots of

supernatant were removed for GC-MS and HPLC-MS analyses.

4.2.3. Metabolite Analyses
4.2.3.1. GC-MS Analysis of Metabolites

Prior to GC-MS analysis, the polar metabolites were derivatized by removing a 100 uL
aliquot of cell extract solution and evaporating to dryness using a SpeedVac. Aldehyde and

ketone groups were methoximated by addition of 50 uL of 10 mg/mL methoxylamine
hydrochloride in pyridine (Sigma-Aldrich) for 12-16 hours at room temperature (20 OC). Acidic
groups were then trimethylsilylated with 50 uL of MSTFA (N-methyl-N-
(trimethylsilyl)trifluoroacetamide, Sigma-Aldrich) for 1.5 hours at 60 °C. The derivatized cell

extract was then transferred to a 2 mL autosampler vial containing a 100 uL low volume insert
and directly analyzed using an Agilent 6890 GC with 5973 MSD system and ChemStation

software (Agilent Technologies, Inc., Santa Clara, CA) with splitless injection of 1.0 uL using an
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autosampler. The capillary column was 0.25 mm i.d. x 30 m coated with 0.25 um HP-5MS (5%

phenyl methyl siloxane, Agilent Technologies), and the following conditions were employed:

helium flow rate of 1.2 mL/min, injector at 300 c>C, column at 80 °C for 2 min, followed by a 30
OC/min ramp to 140 c>C, then 15 oC/min to 310 °C held for 5 min (20.33 min total), transfer line

at 280 c>C, 70 eV electron ionization, full scan acquisition from m/z 50 to 700 at a rate of 2.28

scans/second, and mass calibration performed using perfluorotributylamine. ChemStation GC-
MS datafiles were converted to NetCDF format files and then to Waters MassLynx format using
the Waters DataBridge program (Milford, MA) for peak detection and integration and for
statistical analyses. Metabolites of interest were identified using the ChemStation software by
comparing the mass spectrum with the NIST 2008 mass spectral database (National Institute of
Standards and Technology, Gaithersburg, MD) as well as mass spectra published in the

literature.

4.2.3.2. HPLC-MS Analysis of Metabolites

Lipids in cell extracts were prepared for HPLC-MS analysis by removing a 100 uL aliquot
of cell extract solution to an autosampler vial and adding 10 uL of 100 mM ammonium acetate
and 10 ul of 0.12 mM propylparaben as an internal standard. Samples were analyzed using a
3.5 um particle 4.6 x 75 mm Waters Symmetry C18 Reversed Phase Column held at 35 °Cin a
Shimadzu column oven. Solvent gradients were delivered by ternary Prominence LC-20AD HPLC
pumps (Shimadzu, Columbia, MD) and a Shimadzu SIL-5000 LC-autosampler coupled to a

Waters LCT Premier time-of-flight mass spectrometer. Non-targeted lipid screening was
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performed using a 12-minute HPLC gradient using a flow of 0.4 mL/min. Solvent A (10 mM
ammonium formate), solvent B (2-propanol), and solvent C (acetone) were programmed using
linear gradients as follows: initial conditions 99% A/1% B for 0.5 minutes, linear to 10% A/90% B
at 2 minutes, then linear to 100% B at 6 minutes, holding at 100% B for 2 minutes, then 100% C
at 8 minutes, holding at 100% C for 2 minutes, then back to initial conditions at 10 minutes for
the remaining 2 minutes. Eluted molecules were ionized for MS analysis using electrospray
ionization in negative mode with a capillary voltage of -3 kV. Multiplexed non-selective
collision-induced dissociation was used to generate quasi-simultaneous spectra with varying
degrees of fragmentation by maintaining the cone voltage at 25 V and switching Aperture 1
voltages among 15, 30, 45, 60 and 75 V with a scan acquisition time of 0.2 seconds at each
voltage (Gu et al. 2010). Mass analysis was performed using V-mode ion optics at a mass
resolution (full width half-maximum) of approximately 5000, and full-mass scan data were
collected in centroid mode over m/z 100-1500 using the instrument’s dynamic range extension

feature. Data were acquired and analyzed using Waters MassLynx software (version 4.1).

4.2.4. Data Pre-Treatment and Chemometric Procedures

Waters MarkerLynx software (version 4.1) was used to pre-process both the GC-MS and
HPLC-MS data sets separately prior to multivariate statistical analyses. Internal standard and
contaminant retention time windows were excluded due to their presence in every sample.
Each sample chromatogram was processed using chromatographic peak detection, peak
integration, and retention time alignment, with thresholds set to eliminate low-level signals.

The resulting peak areas were organized using a combination of retention time (RT) and m/z
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ratio, known as an RT-m/z pair or marker. Markers not detected or with signal intensities
below the threshold value in a sample were assigned a value of zero in the matrix. The detected
peak areas within each sample were then normalized to the sum of all peak areas in that
sample, which was set to 10000 for all samples. The normalized data matrix was then exported
to SIMCA-P (software version 11.5, Umetrics, San Jose, CA) for further pre-treatment and
multivariate statistical analyses. The data matrix exported from MarkerLynx was mean-
centered and scaled to Pareto variance prior to supervised chemometric procedures. Partial
Least Squares or Projection on Latent Structures-Discriminant Analyses (PLS-DA) and
Orthogonal Partial Least Squares or Projection on Latent Structures-Discriminant Analyses
(OPLS-DA) were carried out using appropriate Y variables indicating which treatment group
each cancer cell sample belonged to, with the X variables being the markers (peak area for each
RT-m/z pair) in the data matrix. The PLS-DA models were used to visualize how several
treatment groups were similar to one another, and OPLS-DA was used to compare only two
treatment groups per model. The OPLS-DA models were validated using the Leave-One-Out
Cross-Validation method. Finally, Student’s t-test and one-way analysis of variance (ANOVA)
comparisons were made between metabolite levels of interest using Microsoft Excel
(Redmond, WA). Statistical tests were two-tailed and differences were considered statistically
significant for p < 0.05. Biologically relevant metabolic pathways involving the identified
metabolites were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

online database (http://www.genome.jp/kegg/).
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4.3 GC-MS and HPLC-MS Analyses of Untreated Lung Cancer and Breast Cancer Cells

The metabolites present in untreated A549 lung cancer and MCF7 breast cancer cell
extracts were analyzed using both GC-MS and HPLC-MS to investigate differences between the
two cell lines and for comparison after treatment with anticancer drugs. The cell extracts were
derivatized (methoximated and trimethylsilylated) before GC-MS analysis so that the less
volatile polar metabolites would be included in the results. Both the GC-MS and HPLC-MS
analyses were conducted using non-targeted methods to detect as many of the metabolites
present in the cell extracts as possible. Example total ion chromatogram results from GC-MS
analyses of the untreated A549 lung cancer and MCF7 breast cancer cell extracts collected on
day 0 of the study are displayed in Figure 4.2. The information-rich chromatograms were
comprised of approximately 300-500 peaks corresponding to detected compounds. The GC-MS
analyses were also rapid, with metabolite profiles collected during a sample analysis time of
only 20.33 minutes. Approximately 20 of the abundant peaks visible in Figure 4.2 are present in
both cell types, however, their levels were 10-60% higher in the lung cancer cell extract
compared to the breast cancer results. Differences in metabolite abundances between the two
cell types were expected, as lung tissue and breast tissue have very different functions in the
human body. The A549 lung cancer cells are derived from alveolar epithelial cells which have
normal functions of substance transport relevant to respiration, and are expected to exhibit
greater metabolic activity compared to breast cells, which are engaged in lipid metabolism and
hormone response, and are positive for estrogen receptor. The GC-MS results supported these
anticipated metabolic differences, as more peaks (~500 compared to ~300) and peaks with

greater abundances were observed in the lung cancer cell extracts compared to the breast
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cancer cell extracts. These baseline metabolomic analyses of the A459 lung cancer and MCF7
breast cancer cells at the beginning of the study were important for assessing significant

metabolism changes in response to anticancer drug treatment and changes over the time

course of the study.
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Figure 4.2. Example total ion chromatograms from GC-MS analyses of untreated A549 lung
cancer and MCF7 breast cancer cells on day 0 of the study. The chromatograms are plotted on

the same abundance (y-axis) scale for comparison.

Example total ion chromatogram results from HPLC-MS analyses of the untreated A549

lung cancer and MCF7 breast cancer cell extracts collected on day 0 of the study are displayed
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in Figure 4.3. The HPLC-MS data were generated using multiplexed non-selective collision-
induced dissociation to generate quasi-simultaneous spectra with varying degrees of
fragmentation to aid in metabolite identification. The reversed phase HPLC separation and
electrospray ionization in negative mode yielded non-targeted lipid screening results rapidly in
a 12-minute sample analysis. While the chromatographic peaks from HPLC-MS analysis are not
resolved as well as the GC-MS results, analyte separation and identification based on the mass
spectral information was still achieved. Since electrospray ionization is a gentle process when
low Aperture 1 potentials are employed, the mass spectra are simpler, usually lacking fragment
ions. As a result, overlapping LC-MS chromatographic peaks are more readily resolved using ion
masses than can be achieved with GC-MS, where spectra have a wide assortment of fragment
ions. Similar to the GC-MS results discussed above, some of the detected metabolites (e.g.
those eluting from 5.1-5.4 minutes) are approximately 50% more abundant in the A549 lung
cancer cells compared to the MCF7 breast cancer cells (Figure 4.3). Further data analyses
identifying metabolite peaks and comparing HPLC-MS results between the untreated A549 lung
cancer and MCF7 breast cancer cells and cells treated with anticancer agents over time post-

dosing are discussed below.
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Figure 4.3. Example total ion chromatograms from HPLC-MS analyses of untreated A549 lung
cancer and MCF7 breast cancer cells on day 0 of the study. The total ion abundances measured
guasi-simultaneously at the five Aperture 1 voltages were summed and plotted on the first
voltage’s retention time scale for straightforward chromatogram visualization and comparison.
The chromatograms are plotted on the same abundance (y-axis) scale for comparison as well.

These baseline metabolomic analyses of the untreated A459 lung cancer and MCF7

breast cancer cells at the outset of the study were essential for assessing significant metabolism

changes in response to treatment with anticancer drugs over the time course of the study.
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The similarities and differences between untreated lung and breast cancer cell metabolite
profiles shown in Figures 4.2 and 4.3 visualize only one dimension of metabolomic information
collected, the chromatography information. Including the underlying second dimension of
information, the mass spectra, in the assessment of sample similarity yields a dramatic increase
in information content that can be used to assess differences in metabolite profiles more
deeply. Defining metabolite peaks using both retention time and ions observed in the mass
spectra generates metabolite abundance values less subject to interference by co-eluting
substances. Due to the complexity of the GC-MS and HPLC-MS data, multivariate statistical data
analyses are required to assess significant differences between samples and relationships
between multiple metabolite levels. All of the information (peak areas organized by retention
time and ion m/z values) contained in the GC-MS and HPLC-MS metabolomics data was used to
differentiate metabolic response of A549 lung cancer and MCF7 breast cancer cells to
treatment with two anticancer drugs in order to gain knowledge about how these compounds

affect metabolic phenotypes.

4.4 Anticancer Drug-Induced Changes in Lung Cancer and Breast Cancer Metabolite Profiles
4.4.1 Partial Least Squares-Discriminant Analyses

The A549 lung cancer and MCF7 breast cancer cell lines were dosed with the anticancer
drugs taxol and cisplatin and cells were collected at time points up to seven days post-dose to
assess changes in cellular metabolism due to the dose of the therapeutic agent. Both high and
low doses of taxol and cisplatin were administered to the cells for comparison as well. After all

cell pellets were collected, they were extracted, derivatized (GC-MS analyses only), and
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analyzed using GC-MS and HPLC-MS. The vast amount of information contained in the GC-MS
and HPLC-MS metabolomic results for the differentially treated cancer cell samples was then
evaluated using partial least squares-discriminant analysis (PLS-DA). The PLS-DA method is a
supervised multivariate pattern recognition model, meaning that a Y variable is added to the
data matrix that informs the model of which class a sample belongs to (e.g. was the sample
treated with the high dose of taxol or not). The goal of PLS-DA is to find the metabolites (RT-
m/z pairs; X variables) whose abundances contribute most to discriminating samples based on
class assignment (input Y variable). The metabolite signals that display similar variation and
correlation patterns in the data set are then linearly combined to form principal components
(PCs). The first principal component describes the largest and most correlated sources of
variation, and the degree of variation and correlation decreases with the subsequent principal
components. The first two principal components are then plotted as the x- and y-axes of a
single chart (scores plot) to visualize sample relationships. Samples that are clustered together
on the scores plot have similar metabolite profiles, while samples that are spatially distant have
substantial differences in metabolite levels. A corresponding PLS-DA loadings plot is also
generated which displays the metabolites responsible for the positioning of the samples on the
scores plot. In this manner, the metabolite levels that are discriminating between treatment
groups are recognized so that they may be identified and used to interpret the effects of
anticancer drug treatment on the metabolism of cancer cells.

The PLS-DA models used to evaluate the metabolism changes in A549 lung cancer and
MCF7 breast cancer cells due to treatment with taxol and cisplatin were performed on only one

cancer cell type (breast or lung cancer) using metabolomics data from one analytical method
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(GC-MS or HPLC-MS) per model to decrease complexity in results interpretation. AY variable
indicating whether samples were treated with a drug (either taxol or cisplatin) or was an
untreated control was used in all PLS-DA models. This allowed comparisons between all three
treatments (taxol-treated, cisplatin-treated, and untreated control) to be visualized and
assessed in a single mathematical model. Results from A549 lung cancer and MCF7 breast
cancer cells treated with the low doses of taxol and cisplatin did not display appreciable
metabolite profile differences from the untreated cells over the course of the study (data not

shown) and were excluded from further analyses. This result was not surprising since the low

doses were substantially lower than the LDgg values. The cells treated with the high doses of

taxol and cisplatin and collected over the course of seven days displayed differential metabolite
profiles, both from untreated cells and between the two different treatments. The PLS-DA
scores plots illustrating the clustering of similar samples together and away from dissimilar
samples in the four data subsets (lung cancer GC-MS data, breast cancer GC-MS data, lung
cancer HPLC-MS data, and breast cancer HPLC-MS data) are displayed in Figures 4.4 — 4.7,
respectively.

The PLS-DA scores plot for the A549 lung cancer samples treated with the high dose of
taxol or cisplatin as well as the untreated control samples collected at various time points up to
seven days post-dose and analyzed using GC-MS is shown in Figure 4.4. Principal component 1
(x-axis) accounted for 45% of the variation in the data set, and PC2 (y-axis) explained 33% of the
data set variation, meaning that 78% of the variance in this sample set was visualized in one
plot. The cisplatin-treated, taxol-treated, and untreated control sample groups all clustered

together and away from differently treated samples, indicating substantial treatment-
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dependent metabolite profile changes. Anticancer drug treatment is therefore a more

dominant factor than the time post-dose for creating significant metabolome variations. This

PLS-DA scores plot indicated treatment-dependent changes were induced in A549 lung cancer

cells that were detectable using GC-MS metabolomics techniques. Identifying the metabolites

that contribute to the principal components from the corresponding loadings plot (not shown)

will likely reveal metabolic networks altered by taxol- and cisplatin-treatment in A549 lung

cancer cells.
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Figure 4.4. Scores plot resulting from PLS-DA showing the relationships between A549 lung
cancer samples treated with the high doses of taxol and cisplatin and untreated controls (all
time points included) analyzed using GC-MS. Samples with similar metabolic profiles group
together and away from dissimilar samples.
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The PLS-DA scores plot for the MCF7 breast cancer samples treated with the high dose
of taxol or cisplatin as well as the untreated control samples collected at various time points up
to seven days post-dose and analyzed using GC-MS is shown in Figure 4.5. Principal component
1 (x-axis) accounted for 32% of the variation in this data set, and PC2 (y-axis) explained 14% of
the data set variation, meaning that 46% of the variance in this sample set was visualized in one
plot, which was less than the corresponding plot from the A549 lung cancer sample set (Figure
4.4). The cisplatin-treated, taxol-treated, and untreated control sample groups also do not
cluster as clearly in the MCF7 results compared to the A549 results. The taxol-treated and
untreated samples substantially overlap, and an untreated sampled is also grouped with the
cisplatin-treated samples. This indicates that more principal components are necessary to
differentiate the treatment groups. Drug treatment-dependent changes were still observed in
the GC-MS data collected from MCF7 breast cancer cells which are more complex (fewer
metabolites correlated for combination into principal components) compared to the A549 lung
cancer cell results. Examining the metabolites responsible for sample clustering in the scores
plot may explain why some differentially-treated samples had similar metabolite profiles, and
would point to biochemical pathways perturbed by taxol- and cisplatin-treatment in MCF7

breast cancer cells.
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Figure 4.5. Scores plot resulting from PLS-DA showing the relationships between MCF7 breast
cancer samples treated with the high doses of taxol and cisplatin and untreated controls (all
time points included) analyzed using GC-MS. Samples with similar metabolic profiles group
together and away from dissimilar samples.

The PLS-DA scores plot calculated using HPLC-MS data from the same A549 lung cancer
cell samples analyzed using GC-MS data in Figure 4.4 is shown in Figure 4.6. Principal
component 1 (x-axis) accounted for 66% of the variation in the data set, and PC2 (y-axis)
explained 16% of the data set variation, meaning that 82% of the variance in this sample set is
visualized in one plot. Similar to the PLS-DA results using the GC-MS data, the cisplatin-treated,

taxol-treated, and untreated control sample groups all clustered together and away from

differently treated samples. This indicated substantial treatment-dependent metabolite profile
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changes, which were not as dependent on the time post-dose that the sample was collected.
Differential metabolite profiles were detected in A549 lung cancer cells using both GC-MS and
HPLC-MS analyses, and identification of the metabolites with changing levels after treatment

with taxol or cisplatin will point to biochemical pathways involved in the cytotoxic response.

A549 Lung Cancer HPLC-MS PLS-DA Scores Plot
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Figure 4.6. Scores plot resulting from PLS-DA showing the relationships between A549 lung
cancer samples treated with the high doses of taxol and cisplatin and untreated controls (all
time points included) analyzed using HPLC-MS. Samples with similar metabolic profiles group
together and away from dissimilar samples.

The PLS-DA scores plot from HPLC-MS analyses of the same MCF7 breast cancer samples

that were presented in Figure 4.5 after GC-MS analysis is shown in Figure 4.7. Principal
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component 1 (x-axis) accounted for 40% of the variation in this data set, and PC2 (y-axis)
explained 32% of the data set variation, meaning that 72% of the variance in this sample set
was visualized in one plot. Similar to the PLS-DA scores plot from GC-MS analysis, there was
some overlapping between the differentially treated sample groups. The untreated samples
clustered together and overlapped with a couple of the cisplatin-treated samples, as observed
in Figure 4.5 as well. The taxol-treated and cisplatin-treated samples also overlap substantially,
more so in the HPLC-MS results compared to the GC-MS results. The MCF7 breast cancer cells
may still have treatment-dependent metabolite profile changes, however, more focused
multivariate statistical comparisons (e.g. between taxol-treated and cisplatin-treated samples

only) are necessary to identify significantly changing metabolite levels in these samples.
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Figure 4.7. Scores plot resulting from PLS-DA showing the relationships between MCF7 breast
cancer samples treated with the high doses of taxol and cisplatin and untreated controls (all
time points included) analyzed using HPLC-MS. Samples with similar metabolic profiles group
together and away from dissimilar samples.

In summary, the PLS-DA scores plot results of metabolite profiles measured using both
GC-MS and HPLC-MS showed sample clusters that were treatment-dependent in A549 lung
cancer cells. Identifying metabolites contributing to sample positions may indicate the
biochemical pathways involved in cytotoxic response of lung cancer cells to taxol- and cisplatin-
treatment. The PLS-DA results for metabolomic analyses of MCF7 breast cancer cells treated

with taxol or cisplatin and untreated controls were not as clearly grouped as the A549 results.

More specific multivariate statistical data analyses, such as orthogonal partial least squares
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discriminant analyses (OPLS-DA) which remove all sources of variance in the data set that are
not correlated to the Y variable, may reveal treatment-distinguishing metabolites in the MCF7
samples. In addition, comparing the taxol-treated and cisplatin-treated samples only (excluding
the untreated control samples from the mathematical models) at each time point separately
may uncover more metabolites that distinguish the two treatments, rather than distinguishing
treated and untreated cell samples. Finally, supervised multivariate statistical models need to
be validated to ensure that they are describing significant metabolite level changes and not
spurious results in the underlying analytical variance in the data set. Therefore, the A549 lung
cancer and MCF7 breast cancer GC-MS and HPLC-MS data sets were statistically analyzed
further using OPLS-DA in order to isolate metabolite levels that differentiate taxol- and

cisplatin-treatment.

4.4.2 Orthogonal Partial Least Squares-Discriminant Analyses

The orthogonal partial least squares discriminant analysis (OPLS-DA) method is another
type of supervised multivariate pattern recognition model. The X and Y matrices are the same
as in PLS-DA models, and the goal is still to find the metabolites (RT-m/z pairs; X variables)
whose abundances contribute most to discriminating samples based on class assignment (input
Y variable). The difference is that in OPLS-DA the systematic variation in the X matrix that is not
correlated (orthogonal) to the Y matrix is removed from the analysis. This reduces the
complexity of the model while preserving the interpretation of the variables (metabolites)
correlated with sample class. As all sample variation in the data set is removed except for

metabolite peak area changes correlated with class assignment, only one principal component
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is calculated. This makes scores plots, like those discussed above resulting from PLS-DA, less
useful because the samples are perfectly grouped according to class. The loadings plot
displaying the metabolite signals correlated with sample class (i.e. taxol or cisplatin treatment)
is also different in OPLS-DA, and an example is presented in Figure 4.8. The principal
component is plotted on the x-axis, where metabolite position is primarily dictated by
abundance, as more abundant compounds have more influence on the mathematical model.
The degree of correlation of each variable with the class assignment, called p(corr), is the y-axis.
The OPLS-DA shown in the example used a discriminant Y variable where samples treated with
taxol were assigned a value of 1 and samples treated with cisplatin were assigned a value of 0.
Therefore, metabolites (variables) whose abundances were significantly increased in taxol-
treated samples compared to cisplatin-treated samples were linearly correlated with the Y
variable and therefore displayed positive values on the p(corr) y-axis. Conversely, metabolites
whose abundances were significantly increased in cisplatin-treated samples relative to taxol-
treated samples were inversely correlated with the Y variable and had negative positions on the
p(corr) y-axis. Note that metabolite abundance does not play a role in the evaluation of
correlation, only the significance of the difference in metabolite levels between the two sample
classes, which is a strength of the OPLS-DA approach. The resulting OPLS-DA loadings plot is
called an “S” plot due to the spatial distribution of the metabolites in the plot. Metabolites
highly linearly or inversely correlated with sample class are positioned at the upper and lower

limits of the y-axis and are chiefly responsible for discriminating sample class.
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Figure 4.8. An example OPLS-DA loadings “S” plot showing metabolites detected in GC-MS

spectra that differentiate A549 lung cancer cells seven days post-dosing with the high doses of
taxol and cisplatin.

An OPLS-DA model was calculated to compare taxol- and cisplatin-treatment at each
time point post-dose individually for each cancer cell type (A549 lung cancer and MCF7 breast
cancer) from both GC-MS and HPLC-MS data sets. The OPLS-DA models isolated the peaks most
responsible for differences between treatment effects for identification and association with
biochemical responses to anticancer drug treatment. However, as each OPLS-DA model
contained only six samples (e.g. A549 cells treated with the high dose of taxol or cisplatin in
biological triplicate, collected two days post-dose, analyzed using GC-MS), model validation was

essential to ensure the models were describing metabolite abundance variations and not

analytical variance in the data set.
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4.4.3 OPLS-DA Model Validation

While OPLS-DA is a powerful chemometric method for highlighting the metabolites
correlated with anticancer drug treatment, the models must be validated to ensure that the
correlations are not due to random analytical variance. Supervised statistical models for data
sets containing more variables (measured metabolite peak areas) than samples are susceptible
to overfitting, which occurs when statistical models describe the random noise in the data
instead of the interesting sample relationships superimposed on the noise, which is
undesirable. The OPLS-DA models comparing the metabolite profiles (measured using either
GC-MS or HPLC-MS) of A549 lung cancer cells or MCF7 breast cancer cells treated with taxol or
cisplatin were validated using the leave-one-out cross-validation method. The leave-one-out
cross-validation method leaves one sample out of the population as the testing sample (e.g.
one of the replicate A549 samples treated with cisplatin on day 2 post-dose is left out of the
analysis) and uses the rest of the samples as the training set (e.g. the other two replicate A549
samples treated with cisplatin on day 2 post-dose as well as all three replicate A549 samples
treated with taxol on day 2 post-dose) to fit an OPLS-DA model using a Y variable indicating
sample class (e.g. treated with taxol or cisplatin). The calculated OPLS-DA model is then used to
assign the testing sample to one of the sample classes. The model validation result is a root
mean squared error of prediction (RMSEP), which is the likelihood that the testing sample will
be mis-classified. The OPLS-DA model validation process is repeated using each sample in the
population as the testing sample once, and the RMSEP values for each validation model are
averaged to yield the mean RMSEP value for the OPLS-DA model. A value of 0.5 for the mean

RMSEP indicates a 50% chance of sample mis-classification using the model being validated,

188



which is equivalent to random chance. Lower RMSEP values signify more robust mathematical
models with higher predictive ability. Tables reporting the leave-one-out cross-validation
results for the OPLS-DA models of A549 lung cancer and MCF7 breast cancer cells treated with
the high dose of either taxol or cisplatin at various time points post-dose are displayed below.
Table 4.1 lists the mean RMSEP values for OPLS-DA models generated for GC-MS metabolite
profiles, and Table 4.2 shows the mean RMSEP results for models generated using the

metabolite profiles measured using HPLC-MS.

Table 4.1. Model validation results for OPLS-DA of GC-MS data at each time point post-dose
with taxol or cisplatin (RMSEP = root mean squared error of prediction).

A549 MCF7
Time Post-Dose  Mean RMSEP  Time Post-Dose  Mean RMSEP
14h 0.277 1d 0.139
2d 0.409 3d 0.179
4d 0.261 5d 0.403
7d 0.255 7d 0.221

Table 4.2. Model validation results for OPLS-DA of HPLC-MS data at each time point post-dose
with taxol or cisplatin (RMSEP = root mean squared error of prediction).

A549 MCF7
Time Post-Dose  Average RMISEP  Time Post-Dose  Average RMSEP
14h 0.383 1d 0.439
2d 0.407 3d 0.455
4d 0.423 5d 0.385
7d 0.382 7d 0.407

The OPLS-DA model validation results listed in Table 4.1 indicated that metabolite

profiles generated from GC-MS analyses of A549 lung cancer cells and MCF7 breast cancer cells
treated with the high dose of either taxol or cisplatin and analyzed at various time points post-

dose had varying levels of predictive ability. All mean RMSEP values were less than 0.5 (50%

189



chance an unknown sample will be mis-classified), indicating that all of the OPLS-DA models
were more accurate than random chance for classifying an unknown sample correctly. The
mean RMSEP values for A549 cells ranged from 0.255 (seven days post-dose) to 0.409 (two
days post-dose). An examination of the raw GC-MS data for the A549 samples collected two
days post-treatment with either taxol or cisplatin did not reveal a reason for the decreased
predictive ability of the OPLS-DA model for that data subset. The same was true for the MCF7
cell samples collected five days post-treatment with the high dose of either taxol or cisplatin,
which yielded a mean RMSEP value of 0.403, indicating a poor predictive ability for the OPLS-DA
model generated from that data subset. The lowest mean RMSEP value (highest predictive
ability) for an OPLS-DA model of GC-MS results comparing differentially treated MCF7 cells was
0.139, generated from samples collected one day post-dose. There was no meaningful
relationship between the mean RMSEP value and the time point that the samples were
collected. With the exceptions of the A549 cells sampled two days post-dose and the MCF7
cells collected five days-post dosing, all OPLS-DA models generated using GC-MS data displayed
< 28% chance of mis-classifying an unknown sample. This means that identifying the
metabolites contributing to the significant differences between taxol- and cisplatin-treated lung
and breast cancer cells highlighted by the robust OPLS-DA models will be useful for elucidating
the differential cytotoxic responses of cancer cells to anticancer drug treatment.

The mean RMSEP results from validating OPLS-DA models calculated using HPLC-MS
metabolomics data for A549 and MCF7 cells treated with the high dose of either taxol or
cisplatin in Table 4.2 are higher in comparison to the GC-MS results in Table 4.1. Mean RMSEP

values ranged from 0.382 (seven days post-dose) to 0.423 (four days post-dose) in the A549
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cells, and 0.385 (five days post-dose) to 0.455 (three days post-dose) in the MCF7 cells. All of
the OPLS-DA models calculated using the HPLC-MS data had a > 30% chance of mis-classifying
an unknown sample, indicating poor predictive ability using HPLC-MS data. Due to these OPLS-
DA model validation results, the HPLC-MS results were excluded from further consideration as
too few metabolites varied significantly between taxol- and cisplatin-treatment to draw
conclusions about metabolic phenotype measured using HPLC-MS. The leave-one-out cross-
validation results for metabolite profiles measured using GC-MS indicated that the OPLS-DA
models were robust, so efforts were undertaken to identify the metabolites and the associated

biochemical pathways disturbed by anticancer agents in lung and breast cancer cells.

4.5 Biochemical Pathways Perturbed by Chemotherapeutic Agents

Successful sample classifications visualized using multivariate statistical procedures are
generally associated with a complex pattern of many metabolite signals, all of which contribute
to the model in varying amounts. Nevertheless, some of the important metabolites can be
tentatively identified. The 200 highest correlated metabolites (RT-m/z pairs) in both the positive
and negative direction in the OPLS-DA of the GC-MS metabolite profiles were selected for
attempted identification, regardless of abundance. The high abundance metabolites were more
successfully annotated compared to the low abundance metabolites, as the low signal-to-noise
(S/N) ratios made mass spectral comparisons with the database difficult. Spectra for a handful
of the higher abundance metabolites did not match any reference spectra and remained
unidentified as well, as is frequently the case for such metabolomic analyses. Table 4.3 lists the

annotated metabolites determined by OPLS-DA to differentiate treatment types in A549 lung
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cancer and MCF7 breast cancer cells. The levels of the metabolites that were annotated were
examined over time and in all treatment types (untreated control, taxol-treated, and cisplatin-
treated) for relationships. Ability to differentiate treated from control and the two treatment
types in a manner that was consistent over time identified the most important metabolites with

which to assess the biochemical pathways affected by anticancer drug treatment.

Table 4.3. Annotations for metabolites that differentiate treatments according to OPLS-DA and
their retention times (RT) in the GC-MS spectra of A549 lung cancer and MCF7 breast cancer
cells. The slight shift in retention times between the A549 and MCF7 results is due to column
maintenance (e.g. clipping or replacement) between sample set analyses.

Metabolite Abbreviation  A549 RT (min)  MCF7 RT (min)
Lactate Lac 4.32 4.44
Alanine Ala 4.56 4.68

Hydroxylamine HA 4.65 - ¥

Valine Val 5.27 5.39
Urea Urea 5.42 -
Benzoic Acid BA 5.47 -

Glycerol Gol 5.64 5.75

Phosphate Pho 5.67 5.78
Proline Pro 5.83 5.95
Glycine Gly 5.89 6.01
Serine Ser 6.23 6.35

Threonine Thr 6.43 6.55

B-Alanine B-Ala 6.71 -
Malate Mal 7.14 -

Aspartate Asp 7.38 7.50

Glutamate Glu 7.43 7.56
Cysteine Cys 7.66 -

Creatinine Cr - 7.82

Phenylalanine Phe - 8.31
Glycerol Phosphate GP 9.16 9.27
Phosphorylethanolamine PE - 9.43

Ornithine Orn 9.52 9.63

Citrate Cit - 9.65
Tyrosine Tyr 10.34 10.45
Inositol Ino 11.40 11.49

k (0

indicates not identified by OPLS-DA to differentiate treatments in that cell type
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4.5.1 Global Metabolite Variations in MCF7 Breast Cancer Cells in Response to Taxol- and
Cisplatin-Treatment

Example GC-MS total ion chromatograms from MCF7 breast cancer cells treated with
the high dose of either taxol or cisplatin for seven days are shown in Figure 4.9 in comparison to
control, untreated cells (truncated to focus on retention time range of interest). As it was
challenging to interpret the raw data for significant changes over time with respect to
treatment, results from multivariate statistical OPLS-DA were used as the basis for
interpretation. Breast cancer drug-responsive metabolites tentatively identified from OPLS-DA
results included lactate, alanine, valine, glycerol, phosphate, proline, glycine, serine, threonine,
aspartate, glutamate, creatinine, phenylalanine, glycerol phosphate, phosphorylethanolamine,
ornithine, citrate, tyrosine, inositol, and inositol phosphate. The levels of these highlighted
metabolites were then examined further to determine the response of MCF7 breast cancer

cells to taxol- and cisplatin-treatment.

193



LacGol Pho IS GP

Lac Pro Gl Gl MCF7 Untreated Control
Y u PE .
\ Ala Val \/ Ser-/rhr Asp/ Cr Phe \Orn C|t Tyr Ino
' \[ 7 |/ | |

MCF7 Taxol-Treated

MCF7 Cisplatin-Treated

T
L

L
FL

-
>

C1 Y
Bd: l L ) L1 LL.
1d ﬂ.. S O W o P | W

WL_MJLMM A M [ . “ L._._L.._

4 5 6 7 8 9 10 1 12 4 6 8 10 12
Retention Time (min) Retention Time (min)
Figure 4.9. Example GC-MS total ion chromatograms of untreated control MCF7 cells as well as cells treated with taxol or cisplatin
and analyzed over seven days (normalized and off-set for comparison). Chromatograms on the left have decreased scale to display
lower abundance peaks, while the chromatograms on the right are shown at full scale for the higher abundance peaks. Peaks of
some of the metabolites of interest are indicated (abbreviations listed in Table 4.3; IS indicates internal standard ribitol peak).
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Most of the amino acids were present at relatively low levels, preventing significant
differences among treatments over time due to low S/N ratio. This observation was expected as
cancer cells characteristically have high translation activity to support replication, meaning that
they use the amino acids as soon as they are generated and maintain low quantities of free
amino acid pools (Yang et al. 2007). The same was true for the TCA cycle metabolites, with no
statistically significant differences that could be attributed to such low compound levels.
Previous work has shown that in many cases metabolite fluxes are high, resulting in unchanged
or only slightly altered metabolite pool levels as they are rapidly consumed as soon as they are
generated (Yang et al. 2007, Yang et al. 2008, Richardson et al. 2008). Fatty acid metabolism is
know to be of interest in breast cancer due to changes glycerophospholipid metabolism (Yang
et al. 2007, Richardson et al. 2008), however, some fatty acid contamination in the GC-MS
results was observed in blank samples and prevented drawing conclusions about the fatty acids
detected in this data set. Nevertheless, several of the metabolites of interest from the OPLS-DA
did have significant abundance changes over time, especially when base peak or high-
abundance fragment ions with high S/N ratios in the MS data were used for interpretation.
These metabolites were used to draw conclusions about the response of MCF7 breast cancer
cells to anticancer drug treatment.

Relative levels of creatinine (measured in enol form using characteristic fragment ion
m/z 115.2 of the trimethylsilyl (TMS) derivative) in MCF7 breast cancer cells decreased after
treatment with both taxol and cisplatin relative to untreated MCF7 cells in the GC-MS
metabolite profiles. Malignant breast cells have higher creatine levels compared to normal

breast tissue, and creatine and creatinine are directly metabolically linked in the creatine
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pathway (KEGG database (http://www.genome.jp/kegg/), Bathen et al. 2007, Yang et al. 2007,
Bayet-Robert et al. 2010b), with creatinine being a dehydrated version of creatine. Bayet-
Robert and coworkers (2010a, 2010b) also showed that treating MCF7 cells with docetaxel, an
analog of taxol, resulted in decreased levels of creatine compared to untreated cells. The
creatinine results in this study are consistent with what has been observed in the literature for
creatine and likely reflect general damage to the cells and/or repair mechanisms caused by
anticancer drug treatment. This response of MCF7 breast cancer cells to anticancer drug
treatment was not observed in A549 lung cancer cells, demonstrating the uniqueness of the
cellular response of different cancers to therapeutic agents.

Breast cancer cells characteristically have active glycolysis (similar to many different
cancers) and choline phospholipid metabolism relative to healthy breast tissue. Anticancer drug
treatment may disrupt these high-functioning pathways, among others (Oakman et al. 2011).
Previous studies of breast cancers have shown that alterations in glycerophospholipid
metabolism, reflected in levels of phosphatidylcholines, phosphatidylethanolamines, and their
derivatives, are some of the principal effects of the cancer phenotype and chemotherapeutic
treatment (Ting et al. 1996, Bathen et al. 2007, Yang et al. 2007, Yang et al. 2008, Bayet-Robert
et al. 2010b). Lipid components were also highlighted in the present study as responding to
anticancer drug treatment. Relative levels of glycerol (measured in the form of characteristic
fragment ion m/z 205.1 of the TMS derivative) in the MCF7 cells were significantly decreased
after cisplatin-treatment relative to untreated control and taxol-treated cells (Figure 4.10). Free
glycerol is a component in glycerolipid synthesis in cells and is also a possible (though rare)

glycerophospholipid headgroup. The glycerol backbones of glycerophospholipids are derived
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from a glycolysis intermediate in the form of glycerol phosphate instead of free glycerol. Also,
previous reports of alterations in glycerophosphocholine and glycerophosphoethanolamine
levels in breast cancer cells reflect catabolism of intact glycerophospholipids (i.e. lipase
activity). Glycerol levels in this study indicate that glycerolipid metabolism is altered as a result
of cisplatin treatment in MCF7 cells, possibly as a biosynthesis repair mechanism after cellular
damage resulting from treatment. To the authors’ knowledge this is the first time glycerolipid
metabolism has been reported to be involved in chemotherapeutic treatment response in
breast cancer cells, though it has been implicated in the evidence for glycerophospholipid

metabolism alterations studied extensively in the literature.
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Figure 4.10. Glycerol, inositol, serine, and phosphorylethanolamine relative levels over time in taxol- and cisplatin-treated and
control A549 lung cancer cells and MCF7 breast cancer cells detected in GC-MS metabolite profiles. Glycerol relative levels are
decreased after cisplatin-treatment relative to taxol-treatment and control over time in MCF7 cells, but only at the 14 h time point in
A549 cells. Inositol and phosphorylethanolamine levels decreased post-treatment with both taxol and cisplatin relative to control in
MCF7 cells over time, which was not observed in A549 cells (phosphorylethanolamine was not highlighted in OPLS-DA of A549 cells).
Serine relative levels are significantly increased in taxol-treated cells relative to cisplatin-treated and control MCF7 cells over time,
while no significantly different levels were observed in A549 cells (n = 3, error bars are standard error; one-way ANOVA and
Student’s t-test results: * indicates p < 0.05, ** indicates p < 0.01). Post-treatment differences in glycerol, inositol, serine, and
phosphorylethanolamine relative levels suggest that glycerolipid and glycerophospholipid metabolism is affected by anticancer drug
treatment in a cell type-dependent manner.
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Changes in glycerophospholipid metabolism as part of the cisplatin and taxol
mechanisms of action in MCF7 breast cancer cells were also observed in the GC-MS data.
Glycerophospholipid biosynthesis requires five components: glycerol phosphate (derived from a
glycolytic intermediate), acetyl-CoA, two fatty acids (acyl chains), and a headgroup (e.g. choline,
ethanolamine, serine, inositol, or glycerol). Inositol (measured in the form of characteristic
fragment ion m/z 305.2 of the TMS derivative), serine (measured in the form of characteristic
fragment ion m/z 204.1 of the TMS derivative), and phosphorylethanolamine (measured in the
form of characteristic fragment ion m/z 299.1 of the TMS derivative) were all highlighted as
significantly changing in MCF7 cells post-treatment (Figure 4.10). Phosphorylethanolamine,
which is the ethanolamine headgroup with a phosphate attached, showed significantly
decreased relative levels after both cisplatin- and taxol-treatment relative to control. This
finding is consistent with increased production of glycerophospholipids in the breast cancer
cells as a repair mechanism after treatment with anticancer agents. Inositol and serine are both
involved in several intracellular metabolic pathways, including those of glycerophospholipid
synthesis, making their levels in Figure 4.10 more challenging to interpret. Inositol relative
levels significantly decreased in both taxol- and cisplatin-treated cells relative to controls, and
levels were lower in cisplatin-treated compared to taxol-treated cells. Previous researchers
have observed that inositol levels are increased in breast cancer cells relative to healthy breast
tissue (Bathen et al. 2007, Yang et al. 2007), consistent with inositol playing an important role in
breast cancer metabolism that needs to be better understood. Serine relative levels are
significantly increased in taxol-treated cells relative to cisplatin-treated and control, which is

different from the responses of the other two headgroups of interest. As serine is a non-
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essential amino acid that is synthesized by cells for several functions, including conversion into
cysteine that goes into glutathione, a flux-based analysis using isotopic tracers may be
necessary to determine which metabolic pathways are most relevant to the anticancer drug
response. In summary, the levels of free inositol, serine, and phosphorylethanolamine pools in
the MCF7 cells are suggestive of sensitivity of glycerophospholipid metabolism to anticancer
drug treatment, and the results are distinct from those seen in A549 cells.

The metabolomics results for MCF7 breast cancer cells demonstrate anticancer drug
treatment effects on metabolite pools that suggest effects on both glycerolipid and
glycerophospholipid metabolism. These pathways are essential to the survival and replication
of cancer cells, and are perhaps even more important in breast cancer due to the high fat
content of breast tissue. The temporal dependence of metabolite levels suggests that the
treated MCF7 cells are repairing themselves and/or displaying adaptive mechanisms as a result
of anticancer drug treatment, as increases in biosynthesis are implied. It is worth noting that
most of the treatment-differentiating metabolites highlighted in MCF7 cells are specialized, i.e.
not directly in the main biochemical pathways of carbon metabolism and building block
synthesis, but are related. Similarly, complex lipids were not detectable using GC-MS, but
effects on cellular lipid biosynthesis can still be inferred through this global metabolomics
approach. These results highlight the advantages of global, rather than targeted, metabolomics
in leading to novel anticancer drug target and mechanism of action information that may have

gone overlooked if only the effects to central carbon metabolism were examined.
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4.5.2 Global Metabolite Variations in A549 Lung Cancer Cells in Response to Taxol- and
Cisplatin-Treatment

Example GC-MS chromatograms from A549 lung cancer cells treated with either taxol or
cisplatin for seven days as well as control, untreated cells are shown in Figure 4.11 (truncated
to focus on RT range of interest). Similar to the MCF7 breast cancer cells, results from OPLS-DA
were used to determine substantial changes over time due to the complexity of the raw data.
Lung cancer drug-responsive metabolites identified from OPLS-DA results included lactate,
alanine, hydroxylamine, valine, urea, benzoic acid, glycerol, phosphate, proline, glycine, serine,
threonine, B-alanine, malate, aspartate, glutamate, cysteine, serotonin, glycerol phosphate,
ornithine, tyrosine, inositol, and inositol phosphate. These findings were consistent with results
reported by Fan et al. (2009) where most of these metabolites were found to be present in all
lung tissue, so modulation due to cancer and anticancer drug treatment is expected. The
relative levels of these metabolites of interest were further examined to determine the

response of A549 cells to treatment with taxol and cisplatin.
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Figure 4.11. Example GC-MS total ion chromatograms of control A549 lung cancer cells as well as cells treated with taxol or cisplatin
and analyzed over seven days (normalized and off-set for comparison). Chromatograms on the left have decreased scale to display
lower abundance peaks, while the chromatograms on the right are shown at full scale for the higher abundance peaks. Peaks of
some of the metabolites of interest are indicated (abbreviations listed in Table 4.3; IS indicates internal standard ribitol peak).
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Similar to the results from the MCF7 breast cancer cells, most amino acids and TCA cycle
metabolites were present at relatively low levels due to high metabolic fluxes, preventing
significant differences among treatments over time in the A549 cells. However, several of the
metabolites of interest from the OPLS-DA did exhibit significant differences between taxol- and
cisplatin-treatment, and these metabolites were used to draw conclusions about the response
of A549 cells to anticancer drug treatment and comparisons to the observed responses in MCF7
cells, discussed below.

Relative levels of the non-essential amino acids cysteine, glutamate, and glycine all
displayed significant changes (ANOVA p < 0.01) over the time course of the study in both the
taxol- and cisplatin-treated A549 cells (Figure 4.12). Relative cysteine levels (measured in the
form of characteristic fragment ion m/z 220.1 of the TMS derivative) were significantly
increased (ANOVA p < 0.01) after cisplatin-treatment relative to taxol-treated and control on
days 4 and 7 post-dose (~¥1000% and ~1600% of control at day O, respectively). Glutamate
(characteristic fragment ion m/z 156.1 of the TMS derivative) relative levels were significantly
increased (ANOVA p < 0.05) to ~130% of control in cisplatin-treated A549 cells relative to the
other two treatment groups at 4 days post-dose. Glycine (characteristic fragment ion m/z 174.1
of the TMS derivative) relative levels were significantly increased after cisplatin-treatment to
~200% of control 14 hours after treatment (ANOVA p < 0.05), ~360% of control 4 days after
treatment ((ANOVA p < 0.01), and ~340% of control 7 days after treatment (t-test p < 0.01).
Cysteine is a reactive oxygen species (ROS) scavenger that helps control the redox state of the
cell, both on its own and as a component of glutathione (GSH). Glutathione (y-Glu-Cys-Gly) is a

tripeptide, synthesized from glutamate, cysteine, and glycine in the cellular cytoplasm, which
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plays a key role in maintaining the cellular redox potential (Griffith and Meister 1985). It is
notable that all three precursors of GSH increased upon cisplatin treatment. Glutathione levels
have been shown to be characteristically higher in cancer cells relative to normal cells. Bayet-
Robert and coworkers (2010b) observed higher GSH levels in MCF7 breast cancer, PC3 prostate
cancer, and 143B bone cancer cells compared to normal human fibroblasts. High GSH levels are
necessary to counteract the production of ROS due to the partial inhibition of mitochondrial
oxidative phosphorylation, which is also a characteristic trait of cancer cells (Wallace 2005).
While the chemistry and molecular biology of ROS and cellular redox regulation has been the
subject of extensive study, understanding of the biochemical disorders induced by oxidative
stress is far from complete (Bayet-Robert et al. 2010c). It has also been well established that
upregulation of GSH in cancer cells contributes to cisplatin resistance in that cisplatin is
inactivated by covalent GSH adduct formation, and subsequently removed from the cell
(Balendiran et al. 2004). Odenheimer and Wolf (1982) determined that cisplatin forms adducts
with both cysteine and GSH in vivo over several days post-dose. Hosking and coworkers (1990)
discovered that high levels of GSH positively correlate with cellular resistance to cytotoxic
effects of radiation and chemotherapy, including cisplatin, in many human cancers. Meijer and
coworkers (1990) demonstrated that continuous exposure to cisplatin leads to an increase in
GSH content in previously cisplatin-sensitive lung cancer cells, and this mechanism has been
implicated in tumor resistance to cisplatin. The GSH-cisplatin adduct retains electrophilic
characteristics that confer reactivity toward protein nucleophiles, and this mechanism has been
proposed to activate ROS generation, creating the need for higher levels of ROS scavengers

including cysteine and GSH, to maintain normal physiological functions (Olas and Wachowicz
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1996). In summary, these results suggest that cysteine and GSH are both functioning as ROS
scavengers and forming cisplatin adducts in A549 cells in response to cisplatin treatment. In

comparison, the MCF7 redox state is not perturbed as much in response to cisplatin treatment.
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Figure 4.12. Glutamate, glycine, and cysteine relative levels over time in taxol- and cisplatin-treated and control A549 lung cancer
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Relative levels of ornithine, a metabolite in the amino acid class and a central part of the
urea cycle, increased significantly (p < 0.01) over time in taxol-treated, cisplatin-treated, and
untreated control A549 lung cancer cells (Figure 4.13). Ornithine (measured in the form of
characteristic fragment ion m/z 142.1 of the TMS derivative) relative levels increased over time
in the untreated A549 cells up to ~700% of control by day seven. In contrast, cisplatin-treated
cells displayed relative increases in ornithine levels initially, up to ~450% of control through day
four, but showed a smaller increase up to only approximately ~500% of control at day seven.
The taxol-treated cells showed the lowest increases in ornithine over time compared to control,
with the maximum increase at ~¥350% on day four and staying the same on day seven. Results
from ANOVA indicated the three treatment groups varied significantly at two, four, and seven
days post-treatment (days two and four, p < 0.05; day seven, p < 0.01). In comparison, ornithine
was also highlighted by OPLS-DA in MCF7 cells, however, no statistically significant differences
over time or significant differences in levels in the three different treatment groups were
observed. Another urea cycle metabolite, urea (measured using the TMS derivative M-15 ion
m/z 189.1), was highlighted as treatment distinguishing in A549 cells. While differences in urea
levels were not statistically significant due to its low abundance and large variance of urea peak
area in the GC-MS results (Figure 4.13), relative urea levels were higher in A549 cells treated
with taxol compared to cisplatin-treated and control on days two through seven. These
ornithine and urea results point to urea cycle disruption upon anticancer drug treatment in
A549 cells. Post-urea cycle ornithine is converted into polyamines through the enzyme
ornithine decarboxylase (ODC), which is known to be up-regulated in cancer due to the use of

polyamines in cell cycle growth and repair (Gerner et al. 2004). Bayet-Robert and coworkers
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(2010b) observed increased levels of polyamines in several types of cancer cells relative to
normal human fibroblasts. After treatment with docetaxel (analog to taxol), the cancer cells
displayed a significantly decreased level of polyamines, suggesting their use to repair the cells
after injury by anticancer drug treatment. Fan and coworkers (2005) also observed evidence of
urea cycle and polyamine metabolism perturbations in A549 cells treated with the anticancer

drug selenite.
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Figure 4.13. Ornithine and urea relative levels determined using GC-MS at various post-dose
times in taxol- and cisplatin-treated and control A549 lung cancer cells and MCF7 breast cancer
cells. Ornithine levels in taxol- and cisplatin-treated cells decrease compared to control over
time in A549 cells, while no significant differences are observed over time in MCF7 cells. Urea
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0.01). The ornithine and urea levels in A549 cells suggest that fluxes through the urea cycle and
polyamine metabolism shown are affected by anticancer drug treatment. ODC = ornithine
decarboxylase

From the results shown in Figure 4.13, relative levels of urea increased after taxol-

treatment, consistent with increased activity of the urea cycle. Conversely, ornithine, the end-
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product of the urea cycle, displayed decreased relative levels after treatment with both taxol
and, to a lesser extent, cisplatin. This finding is consistent with ornithine being consumed
downstream of the urea cycle, as is the case for conversion of ornithine to polyamines. There
are at least two observations in the literature consistent with the depletion of ornithine to
make higher levels of polyamines in cancer cells after anticancer drug treatment. The first is
that the cancer cells need polyamines to help repair the damage caused by anticancer drug
treatment. Russell and coworkers (1968) determined that polyamines have important functions
in rapidly growing tissue, including tumors, and Luk and coworkers (1980) showed an increase
in ODC activity during the recovery of intestinal mucosa after chemotherapy injury, which took
longer if ODC was inhibited. Another explanation is that polyamines inhibit the apoptotic
process in cancer cells and help them survive anticancer drug treatment. Hsu and coworkers
(2008) found that overexpression of ODC caused leukemia cells to become resistant to taxol-
and cisplatin-induced apoptosis. Polyamines were not identified in the GC-MS data, perhaps
due to high metabolic fluxes or metabolite export to the media that resulted in low abundances
of free metabolite pools for detection. In summary, alterations of metabolites like ornithine and
urea suggest the urea cycle and associated polyamine metabolism were disrupted in A549 lung
cancer cells as a result of anticancer drug treatment, with the effect more pronounced after
taxol-treatment compared to treatment with cisplatin. These effects were not observed in the
MCF7 cells exposed to the same treatments. Metabolite profiling has identified the urea cycle
and polyamine metabolism as being affected by taxol and cisplatin treatment, which points us
toward potential target mechanisms for anticancer drug cytotoxicity and cellular responses that

may enhance cancer cell survival. As part of urea cycle takes place in the mitochondria, and
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mitochondria are the key to apoptosis and cell death, it is a promising target for anticancer

therapies or a novel way to monitor new anticancer drug efficacy.

4.6 Conclusions and Future Directions

The aim of this work was to use MS-based metabolomics to uncover biochemical
disorders induced by taxol and cisplatin in A549 lung cancer and MCF7 breast cancer cells to
help identify metabolic targets and mechanisms of cytotoxicity. The results revealed differential
metabolic alterations in response to anticancer drug treatment in the different cancer cell types
that may be assigned to molecular targets. These metabolic endpoints may serve the design of
novel anticancer drugs with the same targets but improved efficacy and selectivity.

In this study, lipid metabolism was perturbed in MCF7 breast cancer cells by treatment
with both taxol and cisplatin. Energy metabolism was affected in A549 lung cancer cells in
response to anticancer drug treatment. Taxol-treatment led to increased urea cycle activity,
while cisplatin attacked nucleophilic molecules such as cysteine and GSH, necessitating
increased production to maintain cellular redox balance. This work demonstrates a new way to
elucidate the mode of cytotoxicity of potential cancer therapeutic agents to screen drug
candidates for further development. Metabolomics techniques revealed metabolic networks
that are altered by drug treatment, which lead the way for novel hypotheses regarding the
biochemical mechanisms of action of taxol and cisplatin as well as promising new anticancer
drug targets for breast and lung cancer cells. The utility of high-throughput metabolomics for
screening cancer therapeutics for mode of action and activity information in order to select the

most promising lead compounds for further development was demonstrated as well.
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The systematic design of experiments (DOE) used for this work was a full factorial
experimental design that varied multiple experimental factors simultaneously in order to assess
interactions between the varied factors as well as individual factor effects. Three factors were
studied at various levels for effects on metabolic activity: cancer cell type (breast or lung),
anticancer drug treatment (taxol or cisplatin), and time post-dose (14 hours, 2 days, 4 days, and
7 days for A549 lung cancer cells; 1 day, 3 days, 5 days, and 7 days for MCF7 breast cancer
cells). The full factorial DOE permitted more efficient sample preparation and analysis
compared to the approach of varying one factor at a time (OFAT), as it required fewer
experimental conditions to be examined for metabolic effects. Examining the interactions
between the varied factors also answers the question: Which factors are the dominating ones
for affecting metabolic response? As the experimental results (GC-MS and HPLC-MS data) were
multivariate, projection analyses (PLS-DA and OPLS-DA) were required to interpret the results
of the study by visually grouping the samples into classes (Trygg et al. 2006). The most
dominant factor for distinguishing sample results was cell type, followed by drug treatment,
and the time post-dose had the smallest influence on sample differentiation. As lung tissue and
breast tissue have very different physiological functions, the inherent metabolism differences
were reflected in the measured metabolomics data and overwhelmed the other changing
sample factors (data not shown). Drug treatment also resulted in significant metabolic response
differences, which was the aim of this study. Treatment-dependent changes in cellular
biochemistry detected using a metabolomic approach enabled the assessment of in vitro

toxicity of chemotherapeutic agents in cancer cells.
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