

COGNITIVE AND MOTIVATIONAL IMPACTS OF LEARNING GAME DESIGN

ON MIDDLE SCHOOL CHILDREN

By

Mete Akcaoğlu

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Educational Psychology and Educational Technology – Doctor of Philosophy

2013

ABSTRACT

COGNITIVE AND MOTIVATIONAL IMPACTS OF LEARNING GAME DESIGN

ON MIDDLE SCHOOL CHILDREN

By

Mete Akcaoğlu

In today‘s complex and fast-evolving world, problem solving is an important skill to

possess. For young children to be successful at their future careers, they need to have the skill

and the will to solve complex problems that are beyond the well-defined problems that they learn

to solve at schools. One promising approach to teach complex problem solving skills is using

visual programming and game design software. Theoretically and anecdotally, extant research

enlightened us about the cognitive and motivational potential of these software. Due to lack of

empirical evidence, however, we are far from knowing if these claims are warranted. In this

quasi-experimental study, I investigated the cognitive (i.e., problem solving) and motivational

(i.e., interest and value) impacts of participating at the Game Design and Learning Courses

(GDL) on middle school children (n = 49), who designed games following a curriculum based

on problem solving skills. Compared to students in a control group (n =24), students who

attended the GDL courses showed significantly higher gains in general and specific (i.e., system

analysis and design, decision-making, troubleshooting) problem solving skills. Because the

survey data seriously violated statistical assumptions underlying the analyses, I could not study

the motivational impacts of the GDL courses further. Nevertheless, the GDL intervention bears

implications for educators and theory.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor Matthew J.

Koehler for his constant support and guidance throughout my time as a Ph.D. student at MSU

and during this dissertation research. I always felt lucky to rely on his good judgment before

taking any step regarding my research and teaching, and I will consider him as a role model

throughout my career.

I also would like to express my gratitude to Cary J. Roseth, who helped me grow as a

researcher and a teacher by always taking the time providing me with guidance, and reminding

me that I should ―keep at it!‖ I will always cherish his kind support and friendship.

I also would like to thank to Carrie Heeter and Christina Schwarz for their support

throughout this research. I always appreciated knowing that I can ask for help from them

whenever I needed, and they would do their best to help me out.

My thanks also go to the administrators, staff and the students who agreed to be a part of

the Game Design and Learning courses for the last two years. Especially, I would like to thank to

Faika Topal and Canan Okatan at Ayazaga Isik Ilkogretim School; Kirk Riley and Cathy Post at

ITEC, Lansing; and Gulsen Gumus and Goksel Kesim at Doga Schools.

 Needless to say, my thanks also go to my dear friends and colleagues who trusted to

come with me to another country and co-taught the GDL courses with me, Matthew Boyer,

Kristen and Tyler DeBruler, thank you!

Finally, I would like to express by ultimate gratitude to my family and friends, who

always made me feel loved. Thank you mother, father, brother, and the love of my life, my wife

Asli.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

CHAPTER 1

Introduction ... 1
Theoretical Perspectives ... 5
Research Context .. 8
Purpose of the Study ... 8

CHAPTER 2

Review of Theory and Research ... 10
Overview of Chapter 2 .. 12

Definition of Problem and Problem solving ... 12
Problem. .. 12
Problem types.. 12

The problem-solving process. ... 15
Teaching Problem Solving .. 16

Teaching basic skills. .. 17
Teaching for understanding. ... 18
Teaching by analogy. .. 22

Teaching thinking skills directly. .. 22

Research on Using Computers to Teach Problem Solving ... 24
Using programming. ... 24
Using game design. ... 27

Summary. .. 30
Motivational Constructs in Learning .. 30

Expectancy-value theory ... 31

Task values.. 32

Interest... 33
Interest development. .. 33
Research on developing interest and utility value. ... 35
Summary. .. 37

Overall Summary .. 38

CHAPTER 3

Game Design and Learning Intervention .. 40
Overview ... 40
Guiding Principles of the GDL Intervention .. 40

Constructionism. ... 40
Guided discovery learning. ... 41
―Clubhouse‖ atmosphere. ... 42

v

Course Software: Microsoft Kodu .. 43

GDL Curriculum Structure ... 45
GDL Activity Types ... 47

Game design activities. ... 49

Problem-solving activities. ... 54
Troubleshooting activities. .. 59
Free design activities... 60

Summary ... 60

CHAPTER 4
Methods... 62

Research Questions and Research Design .. 62
Research question 1 .. 62

Research question 2 .. 63
Research question 3-6 ... 63

Research question 7. ... 64
Participants .. 64

Participant Flow .. 65
Sampling Procedures .. 66
Research Sites ... 66

Ayazağa Işık Private School, Istanbul. ... 66
ITEC LCC Gifted and Talented Education (GATE) Saturday School, Lansing, MI. 67

Doğa Private School, Istanbul... 67
Control group. ... 68

Procedures ... 68

Independent Variables .. 69

GDL intervention. ... 69
Relevance intervention.. 71
Sites. .. 73

Dependent Variables ... 73
General and specific problem-solving skills. .. 73

Item and student response samples. .. 75
Motivation variables. .. 82

CHAPTER 5
Results ... 84

Changes in Problem-Solving Skills .. 84
Research question # 1. .. 84

Research question # 2. .. 87
Changes in Motivation .. 91

CHAPTER 6
Discussion ... 94

Changes in Problem Solving Skills .. 96
Discussion for general problem solving skills. ... 96
Discussion for specific problem-solving skills. .. 103

vi

Discussion for site differences. ... 104

Discussion summary for problem solving. ... 105
Motivational Impacts of the GDL Intervention .. 106
Limitations .. 107

Conclusions and Implications ... 108
Future Research .. 112

APPENDICES .. 115
Appendix A ... 116

Appendix B ... 118
Appendix C ... 121

REFERENCES ... 125

vii

LIST OF TABLES

Table 1. Student Behavior Based on Expectancy and Value Perspectives - Based on Brophy

(2010) and Hansen (1989) .. 32

Table 2. Progression of Activities and Specific Activity Types Offered at the GDL 47

Table 3. GDL Activity Types and Their Alignment with Course Goals and Problem Solving 48

Table 4. Instructional Sequence for a Sample Game Design Activity (Apple Hunter) 50

Table 5. GRASPS for Apple Hunter Game ... 51

Table 6. Instructional Sequence for a Sample Problem Solving Activity 54

Table 7. Instructional Sequence for a Sample Troubleshooting Activity...................................... 59

Table 8. Research Design for RQ 1 (based on Campbell & Stanley, 1963, p. 40) 62

Table 9. Research Design for RQ 2-6 (based on Campbell & Stanley, 1963, p. 8) 63

Table 10. Research Design for RQ 7 (based on Campbell & Stanley, 1963, p. 40) 64

Table 11. Summary of GDL Implementation Sites and Sample Sizes ... 65

Table 12. Participant Flow by Research Questions ... 66

Table 13. Summary of the Procedures Used ... 69

Table 14. Length of GDL Intervention by Site .. 69

Table 15. Activity Type Length by Site.. 70

Table 16. Alignment between the PISA Test and GDL Tasks ... 75

Table 17. Motivation Scale Reliabilities by Domain and Time .. 82

Table 18. Descriptive Statistics for General and Specific Problem Solving (Control vs.

Experimental) .. 86

Table 19. Descriptive Statistics for Problem Solving Tests for Each Site 89

Table 20. Normality Assumption Statistics for Motivation Factors ... 92

Table 21. Descriptive Statistics for Motivation Factors ... 93

viii

Table 22. GDL Activities and Their Alignment with Problem Solving Skills 99

ix

LIST OF FIGURES

Figure 1. The Components of Game Design and Learning Intervention - For interpretation of the

references to color in this and all other figures, the reader is referred to the electronic version of

this dissertation. .. 10

Figure 2. Interest Development (Based on Hidi and Renninger, 2006).. 34

Figure 3.Screenshots from Microsoft Kodu: Visual Programming - The text within the visual is

not meant to be readable, and is meant for reference only. ... 44

Figure 4. Two-step Structure of GDL Curriculum .. 46

Figure 5. Screenshots from Apple Hunter - The text within the visual is not meant to be readable,

and is meant for reference only. ... 50

Figure 6. Example Flowchart Provided by the Instructors for Apple Hunter Game 53

Figure 7. SimSchool Problem Scenario – Data Sources... 55

Figure 8. A Screenshot of SimSchool Simulation - The text within the visual is not meant to be

readable, and is meant for reference only. ... 57

Figure 9. An Example Classroom Setting Used During GDL Intervention 71

Figure 10. Sample System Analysis and Design Question (PISA) .. 76

Figure 11. Incorrect and Correct Student Answer (System Analysis and Design) 77

Figure 12. Sample Decision Making Question (PISA) - 1 .. 78

Figure 13. Sample Decision Making Question (PISA) - 2 .. 79

Figure 14. Sample Correct Student Response (Decision Making) .. 80

Figure 15. Sample Troubleshooting Question (PISA) ... 81

Figure 16. Problem Solving Abilities for Control and Experimental Groups at the Pretest 85

Figure 17. General and Specific Problem Solving Skill Changes for Control and the

Experimental Groups .. 87

Figure 18. Problem Solving Skill Differences at the Pretest for Different Sites 88

Figure 19. Gains in Problem Solving in Each Problem Solving Test for Each Site 91

x

Figure 20. Multi-faceted Structure of the GDL Intervention .. 94

Figure 21. Library System of Hobson High School (PISA Sample Item).................................... 116

Figure 22. Screenshots of a Sample Data-Matrix File (Top) and Item Parameter File (Bottom)

... 119

1

CHAPTER 1

Introduction

A problem can be defined as a situation where an active agent tries to reach a desired

goal state from a given state by overcoming obstacles in between. The act of problem solving,

therefore, is overcoming barriers to reach a certain desired goal state (Funke, 2010; Mayer,

1977). Problem solving processes involve using fundamental thinking skills and ―problem

solving‖ and ―thinking‖ are often used interchangeably for this reason (Mayer, 1977).

Due to the importance of problem solving skills in people‘s daily lives, educators

recognized the importance of the teaching of these skills (Resnick, 1987, 2010). Some

researchers have gone so as to far to state that the teaching of problem solving skills should be

the ―central objective within every country‘s school program‖ (OECD, 2003, p. 154).

Despite the importance of problem solving in our daily lives, schools often fail at

teaching these skills and triggering students‘ interest for these tasks. The heavy focus on the

teaching of content knowledge is one of the reasons why schools fail at teaching complex

problem solving skills. In many formal schooling contexts, this focus on content leaves students

with too few opportunities to practice these vital skills that play a key role in their future careers

and lives. Even when students are presented with problems, they are often simple problems, as

opposed to the complex problems of the real-life. These simple problems often fall short in

providing the students with engaging contexts that they can personally find worth tackling, and

eventually, students are bored and do not develop interest in careers involving solving complex

problems (Bennett & Monahan, 2013).

Educators and researchers acknowledged that schools do a poor job of teaching thinking

skills and these skills are vital for students; hence, they have attempted to teach thinking skills

2

through certain school subjects that are already embedded in school curricula: for example, Latin

in 1900s and technology for the last four decades. Starting in the ‗70s, the field of educational

technology became interested in how technologies could foster children‘s thinking skills.

Pioneering the field, Papert (1980) argued that by programming with LOGO, a simplified

programming language, children could develop thinking skills. According to Papert (1980), it is

during the process of programming with LOGO, students got the opportunity ―to think about

their own thinking, by expressing themselves in their programs and then debugging the programs

until they worked‖ (Guzdial, 2004, p. 2). Therefore, ―objects‖ like LOGO programming

language were called ―objects to think with‖ (Papert, 1980), and the process of tinkering has

received a lot of attention for its potential to foster thinking skills (M. Resnick & Rosenbaum,

2013).

Since the ‗90s, a plethora of new computer languages have been developed that take

advantage of new graphical user interfaces (GUI) while simultaneously connecting programming

to authentic and meaningful contexts (i.e., design). These new languages have promised to

enable even young children to program, by simply dragging and dropping graphical

programming commands on a computer screen. Some prominent examples of new generation

programming software include Alice (―Alice,‖ 2012; Pausch et al., 1995), Scratch (Maloney et

al., 1998; Resnick et al., 2009; ―Scratch,‖ 2012), Gamestar Mechanic (Games, 2009; ―Gamestar

Mechanic,‖ 2012; Torres, 2009), AgentSheets (Repenning, 1993, 2012), and Microsoft Kodu

(MacLaurin, 2011; ―Microsoft Kodu,‖ 2012). In addition to being visually attractive, these new

software tools have also moved the abstract notion of programming into more concrete,

inherently engaging, meaningful, and authentic contexts, such as game design, story-telling and

creation of animations (Peppler & Kafai, 2009).

3

One new context the new generation programming software has been embedded is game

design. Games are complex systems, made up of many interrelated variables and parameters

(Fullerton, 2008; Torres, 2009). Game design is, therefore, an involved and cognitively

demanding process that involves vital problem solving processes where designers are constantly

challenged to make decisions, design complex systems, and troubleshoot problems as they

emerge (Nelson, 2003). The digital game creation process also inherently involves knowledge of

computer programming. For these reasons, game design has especially been lauded for its

potential to promote children‘s interest in science; technology; engineering and mathematics

(STEM) careers; and thinking skills (Games & Kane, 2011; Torres, 2009). Designing games,

then, is also an inherently engaging task because both the creators and consumers enjoy the

resulting product.

In both the early research with textual programming languages (i.e., LOGO), and in the

last decade with the new generation software, some very important questions remain unanswered

about the effectiveness of these software or programming languages to teach problem solving

skills. Research findings from the 1990s are characterized by mixed results (Mayer & Wittrock,

1996), often fraught with methodological problems, and often with a focus outside of general

thinking skills, such as teaching of content knowledge. New generation programming software

has introduced more meaningful and engaging contexts for programming. Even less is known,

however, about the effectiveness of these new-generation software for teaching of problem

solving skills, because in the last decade researchers have not empirically studied the relationship

between using these software and cognitive and motivational gains in students, apart from

occasional reports of content knowledge gains or generic reports on motivational impacts of

after-school programs (e.g., Kafai, Peppler, & Chapman, 2009). Despite providing rich narratives

4

to herald conceptual and theoretical possibilities of using game design software as tools to

improve thinking skills and interest in STEM careers, recent research on new generation

software is akin to early LOGO research in that the findings often do not go beyond providing

anecdotal evidence.

Perhaps as much as leading to knowledge and cognitive skill gains, educators also desire

getting students interested in or helping them see the value of a task is a very important goal for

educators (Brophy, 2010), maybe as important as teaching cognitive skills. One of reasons for

the importance of increased motivation is that when students‘ interest and value perceptions for a

subject increase, it leads to increased competency perceptions and eventually success at school

subjects (Hulleman, Godes, Hendricks, & Harackiewicz, 2010). It is also believed that that value

perceptions are good predictors of future success and engagement in school (Hulleman et al.,

2010). It is, therefore, of significance to understand specific impacts of learning game design on

students‘ interests and value perceptions in game design, as well as in the integral components of

the game design process, such as programming and problem solving.

Although early research looking at the relationship between programming or game design

and problem solving has reported motivational outcomes, there are some questionable aspects

that need further scrutiny. First, studies conducted in this area report changes in motivation

qualitatively, or in the form of anecdotes (e.g., Harel, 1991). These qualitative reports often lack

generalizability, because they come from a very small sample of individual students, and unique

and personal accounts.

Second, in previous research on game design and problem solving, motivation is almost

never operationalized using theories of motivation, offering instead generic accounts of student

engagement and enjoyment. Such generic reports are not viable predictors for future task choice

5

and performance, because they are composed of multifaceted accounts of motivation (e.g.,

student interests, values, goal orientations). From this prior research, therefore, it is not possible

to identify the specific relationships between different motivational constructs and task success,

and this has little theoretical and practical value for researchers and educators alike.

Finally, we do not know if programming and game design tasks, despite being often

lauded as ―engaging,‖ cultivate student interest in domains that may inherently lack trigger

quality of computers or game design tasks. In other words, we do not know if game design can

trigger students‘ interest in other domains such as problem solving and programming that are

embedded in these processes. It is the collective wisdom that children enjoy working with

computers (Lepper, 1985), or designing games or animations with new generation software

(Utting, Maloney, & Resnick, 2010). It can be argued that some of this enjoyment is merely due

to exposure to computers, because working with computers can spark temporary interest

(―catch‖) for school subjects and motivate students (Mitchell, 1993). Although we know of the

catch features of computers and game design tasks, we do not know if the interest ―caught‖ with

computers, design or programming tasks is maintained (―held‖) and actually changed into deeper

interest and involvement in pursuing important thinking-skills, such as programming or problem

solving. Through measuring students‘ interest and value development in game design,

programming and problem solving, the change in students‘ motivation can be captured.

Theoretical Perspectives

This study draws on two main bodies of theory: one that conceptualizes problem-solving

skills, and a second that conceptualizes motivation.

In this study, problem solving is viewed as the process of overcoming the obstacles that

lay between the current problem state and the desired goal state (Funke & Frensch, 1995).

6

Success at problem solving requires possession of specific skills, metacognitive functions to call

for those necessary skills at the right time and place, and the problem solver‘s will, or desire, to

tackle the problem (Mayer, 1998). Problem solving is an important skill in many fields and areas

such as engineering, mathematics, teaching, and medicine; namely in any domain where there

are goals to reach that require cognitive effort (Funke, 2010).

Three most commonly encountered problem types that are within the scope of this study

are troubleshooting, system analysis and design, and decision-making. Troubleshooting requires

finding faulty parts of an otherwise operational system. It requires analyzing and understanding

systems. Similarly, system analysis and design problems requires an understanding of systems,

while designing systems requires one to consider multiple interrelated variables and the interplay

between them all at the same time. Decision-making requires analyzing a given problematic

situation, and giving the best decision by taking multiple variables (e.g., cost, time, etc.) into

consideration. These problem types are encountered frequently in real-life situations and

children‘s competence in these tasks is vital for their success in real-life as well as school

settings (Jonassen, 2000; OECD, 2004a). Although these three problem types have the same

underlying structure and goals, they vary slightly in terms of processes involved.

Motivational gains in this study are as important as the cognitive gains, and only when

based on existing theories of motivation, they can predict future choice and performance. In this

study, motivation is approached from a perceived utility value and interest development

perspective (Hidi & Renninger, 2006; Hulleman, Durik, Schweigert, & Harackiewicz, 2008;

Hulleman et al., 2010; Mitchell, 1993).

According to Eccles and her colleagues (Wigfield & Eccles, 2000, 2004), how much

people expect to be successful at a given task (expectancy) and how much they value the task

7

(value) contributes to their future success at the task, and if they would reengage with the task.

Expectancies for success and task value are believed to be positively correlated (Hulleman et al.,

2010). In other words, people who believe they can successfully complete a task (expectancy for

success) are more likely to be value more and persist in the task at hand, and more importantly

successfully complete it, in turn develop more value and competence.

A more situation-specific value, utility value is believed to be a strong predictor of future

interest and performance. Utility value is defined as the degree which a task is ―useful or relevant

for other tasks or aspects of an individual‘s life‖ (Hulleman et al., 2010, p. 881). Among the four

types of task values (Wigfield & Eccles, 2000), utility value is believed to be specifically

associated with performance and motivation, specifically with development of deeper interest

and performance gains in educational settings.

Interest is defined as ―the psychological state of engaging or the predisposition to

reengage with particular classes of objects, events, or ideas over time‖ (Hidi & Renninger, 2006,

p. 112). It is strongly tied with engagement decisions, performance outcomes and utility value

perceptions of a task. Interest is, however, composed of multiple stages and developing deeper

and more developed interest is needed for the aforementioned outcomes. Traditionally, interest is

divided into two general categories: short-term or situational interest, and long-term or personal

interest. According to Hidi and Renninger, interest develops in four stages, from an initial

temporary interest to a fully developed personal/individual interest.

Early research indicated that through manipulating students‘ perceived utility value of a

task, their interest for that task can be developed from early stages of interest to later stages

(Hulleman et al., 2010). For example, Hulleman et al. found that even a simple 30-minute

activity which helped students discover the relevance of a task to their lives had direct impact on

8

their interest and performance at the task. More importantly, the researchers found that this

intervention was especially more effective for students with low performing or students with low

expectancies for success.

Research Context

In this research, I implemented courses in Game Design and Learning (GDL) initiative to

teach middle school students game design, with an explicit purpose to teach them important

problem solving skills. GDL courses were also designed to lead students to have increased levels

of interest and value for game design, as well as programming and problem solving tasks. These

courses were offered to middle school students from various different backgrounds including

students from Turkey and the US. In Chapter 3, I will describe the content and structure of the

GDL courses in more detail, and, in Chapter 4, more information is provided about the student

demographics and the different sites where GDL courses offered.

Purpose of the Study

The purpose of this study was to examine the cognitive and motivational changes

students‘ show after attending GDL courses. More specifically, the purpose of this study was

twofold. The first purpose was to examine the cognitive impacts of learning how to design games

at the GDL courses. Specifically, capturing the changes in students‘ general and specific problem

solving skills (system analysis and design, decision-making, troubleshooting) was of primary

interest. It was hypothesized that the students attending the GDL courses would show

improvements in their general and specific problem solving skills.

Using the interest development framework of Hidi and Renninger (2006), the second

purpose was to examine the effects of learning game design on children‘s and interest

development in game design, problem solving and programming tasks, as well as the changes in

9

their perceived utility value of these tasks. I hypothesized increases in utility value and interest

perceptions in game design programming and problem solving.

In addition, a final research goal of this study was to examine the effects of a simple

intervention. The purpose of the intervention was to manipulate students‘ utility value

perceptions of problem solving through a relevance intervention (where the students‘ were asked

to relate problem solving skills they were learning at the camp to their school and real lives).

Based on previous research by Hulleman et al. (2010), I was hypothesized that through the

relevance intervention, students‘ perceived utility value and interest in game design, problem

solving, and programming tasks would increase.

10

CHAPTER 2

Review of Theory and Research

The main purpose of this study was to understand the cognitive and motivational impacts

of learning game design through a curriculum based on instructional methods of problem solving

on middle school students. In other words, the instructional intervention (i.e. the GDL

curriculum) was of central importance in this study. As it can be seen in Figure 1, however, the

GDL intervention, like most educational interventions, was composed of many different layers.

Figure 1. The Components of Game Design and Learning Intervention - For interpretation of the

references to color in this and all other figures, the reader is referred to the electronic version of

this dissertation.

Game Design and Learning Intervention

Theories

Problem solving

Teaching problem

solving

Constructionism

Guided discovery

learning

GDL Curriculum

Game

design

software

Instruction &

Course Activities

Students

11

The first layer includes the theories that informed the curriculum. The main focus of the

GDL intervention was to teach problem solving through game design, for this reason, the

curriculum (and the instructional activities) was designed based on theories of problem solving,

as well as theories regarding how to teach these skills. In addition, because during the GDL

intervention students constructed socially-meaningful artifacts, the intervention was also based

on Papert‘s constructionism (Ackermann, 2001; Papert & Harel, 1991; Papert, 1980). Finally,

during the intervention, the students were guided by the instructors in minimal ways to see the

connection between problem solving and game design tasks, so the intervention also was based

on guided discovery learning theory.

The second layer of the intervention is the daily activities that were used during the GDL

intervention and the instruction through which these activities were implemented. Specific

implications of each theory on the curriculum got actualized through daily activities at the GDL

courses. Inevitably, these activities were also shaped by the affordances and limitations of the

game design software used (i.e. Microsoft Kodu). The nature of the instruction (i.e., the amount

of lecture vs. individual activities, instructional support) was also an important part of this layer.

Finally, the last layer of the intervention reflects the characteristics of the students who

benefitted from the GDL courses. The backgrounds of the students naturally play an important

role in how much they benefit from such interventions. Especially in studies where data is

collected from intact or self-selected groups (i.e. quasi-experimental research), these existing

differences can play a significant role on the outcomes of the interventions.

The multi-faceted nature of the GDL intervention requires both an understanding of the

theories that guided this research and the instructional activities, and the specifics of the day-to-

day activities used during the GDL intervention. For this reason, this chapter (Chapter 2) focuses

12

on the underlying theories and early research that inform GDL courses and this research. In

Chapter 3, I have provided a detailed description of the GDL intervention (i.e., day-to-day

activities). Taken together, Chapters 2 and 3 connect the specific instructional activities and the

theories while also detailing the special role of the game design software. In this research I

consider the GDL intervention holistically, as looking at the impact of specific layers within the

intervention was beyond the scope of this research.

Overview of Chapter 2

In this chapter, I first define what a problem is; the types of problems; and describe

theories of problem solving. Then, I review effective methods of teaching problem solving skills

from extant literature. I continue with a review of studies using programming or game design as

an instructional method of teaching problem solving. Later in the chapter, I also explicate the

theories of motivation used to frame this research and the research questions, and review

previous research on motivation and learning.

Definition of Problem and Problem solving

Problem. One widely accepted definition of a problem is that ―[a] problem occurs when

a problem solver wants to transform a problem situation from the given state into the goal state

but lacks an obvious method for accomplishing the transformation‖ (Mayer and Wittrock, 1996,

p. 47). According to this definition, a problem is composed of a given state, a desired goal, and

obstacles in between (Funke, 2010; Mayer & Wittrock, 2006; Mayer, 1977; OECD, 2012).

Problem types. Problems can differ in terms of their content, form, or involved

processes (Jonassen, 2000). Out of many types of problems, in this study I picked three problem

types that find frequent use in our daily lives: a) decision-making, b) system analysis and design,

and c) troubleshooting (see Appendix1 for a detailed list of differences among these problem

13

types). These three problem types differ in their content, form, or process-related aspects, but

these problem types also share underlying cognitive processes inherent to problem solving.

Competence in solving these problems, therefore, depends on successful execution of general

problem solving skills (Mayer, 1999).

Decision-making is a complex problem solving process (Funke & Frensch, 1995; Huber,

1995), involving selecting the best option from many available others (Jonassen, 2000). The

complex process of decision-making involves ―understanding the given information, indentifying

relevant alternatives and constrains involved, constructing or applying external representations,

selecting best solution from a set of given alternatives and evaluating, [and] justifying or

communicating the decision‖ (OECD, 2003, p. 163). In decision-making tasks, the final decision

can be equated with reaching the goal state of a given problem, or solving it. This process

becomes difficult and complex due to the constraints in choosing each option. In real-life, we

constantly face difficult situations where we need to make choices (Jonassen, 2000). For

example, finding a flight that is cheap and also fast, eating a certain meal and still watching

calories, and taking a certain class to finish a degree are all examples of decision-making

situations that we often face. Decision-making skills are important skills to have, and success in

real-life often depends on making the best decision in given situations.

System analysis and design refers to analyzing and creating systems commonly found in

real-life settings. Systems are, by their nature, made up of components that are connected to each

other in multiple logical ways to create unified and meaningful entities. Designing a system is a

very complex task and success is dependent upon understanding the intricate relationship among

its components. It involves harmony of many interrelated variables and parameters. Due to the

complexity of variables involved, system design tasks are good examples of ill-defined

14

problems, where the goals are unclear (Jonassen, 2000; Nelson, 2003). Design problems are very

common in real-life settings, and ―despite their ill-structuredness, design problems may be the

most important type of problem to investigate because so many professionals get paid for

designing things (products, systems, etc.)‖ (Jonassen, 2000, p. 80). In our daily lives, to be

successful we are expected to understand the systems of the groups in which we live or belong.

For example, to be successful, a writer needs to understand what the systematic structure of

writing a good story involves; or a gamer needs to understand the patterns of ―enemies‖ in order

to beat the game. Depending on the domain, there may be multiple systems that work, and

competence in seeing patterns in these systems is often what makes individuals more successful

in their lives or careers.

Troubleshooting is perhaps the most common problem solving task people face in their

daily lives (Jonassen, 2000). A fact of modern life is encountering technological devices, such as

―smart phones‖ or computers that do not work: people are often faced with situations where they

have to understand how the machines work, find the inoperable part(s), and then devise and

execute a solution. Troubleshooting requires problem solvers ―to comprehend the main features

of a system and to diagnose a faulty, or under-performing, feature of the system or mechanism‖

to bring it back to its originally designed working state (OECD, 2003, p. 168). The essence of

successful troubleshooting is understanding how a designed system works (National Research

Council, 1999).

All of these types of problems share an important feature: they are each very common in

real-life and are complex problems. Success in these problems plays an essential role in young

children‘s future success in their lives and careers. Unfortunately, formal schooling does not give

students many chances to practice these vital skills.

15

The problem-solving process. From a cognitive perspective, the problem-solving

process involves successful execution of specific component cognitive processes: understanding,

representing, planning/monitoring, and executing (Mayer & Wittrock, 2006; Mayer, 1977;

OECD, 2003, 2012; Polya, 1957). According to this perspective, in order to successfully solve a

problem, one needs to understand the problem first. Understanding involves using the

background knowledge and making sense of the concepts of a given problem. After

understanding, the next step is representing the problem. Representing refers transforming

external representations of a problem into internal mental representations (Jonassen, 2000;

Mayer & Wittrock, 1996, 2006; OECD, 2003, 2012). This process involves generating

hypotheses based on interrelationships among variables of a given problem situation. After

understanding the problem and creating a mental representation of it, the final step is to plan a

solution for the problem by breaking it down its parts, and then executing solution (Jonassen,

2000; Mayer & Wittrock, 1996, 2006; Polya, 1957). This process involves metacognitive skills

(Mayer & Wittrock, 1996, 2006) or problem solver‘s awareness to know when and how to

execute these cognitive components successfully.

During problem solving, it is widely agreed that three cognitive components need to work

together: skill, metaskill, and will (Jonassen, 2000; Mayer, 1998; OECD, 2012). These

components lead to success in problem-solving tasks only when they are all present (Mayer,

1998). Skill refers to basic cognitive skills used to solve a particular problem. Knowing how to

add, for example, can be an important cognitive skill to solve a simple addition problem. Skill is

a very basic component needed for problem solving, but it cannot solely be enough for transfer

of the problem-solving competency to novel contexts, as the mastery of a specific skills is often

context-bound (Jonassen, 2000). Metaskill, or metacognitive skill, means ―knowledge of when to

16

use, how to coordinate, and how to monitor various skills in problem solving‖ (Mayer, 1998, p.

53). The knowledge of how to add numbers is a simple cognitive skill, but one cannot be

successful in solving a complex problem that involves addition, unless s/he knows that addition

is needed in a specific case and puts that skill into practice.

Skill and metaskill are important components for successful problem solving, but without

will, they, too, are not enough. Although motivation has not always been an integral part of

problem solving theories; according to Mayer (1998), it is important for someone to successfully

solve a problem, a) to be interested in the problem (i.e., will), b) have the belief that they have

the ability to solve the problem and attribute their success to effort rather than ability (Dweck,

1999; Weiner, 1985), and c) see solving the problem as an endeavor worth dealing with

(Jonassen, 2000). The presence of will, together with skill and meta-skill, makes successful

problem solving possible.

Based on these perspectives, the GDL intervention involved connecting the metaskills

and skills problem solving requires and the game design process. These activities will be

explained in more detail in Chapter 3.

Teaching Problem Solving

There are four main empirically-proven methods of teaching problem solving skills: a)

teaching basic skills, b) teaching for understanding, c) teaching by analogy, and d) teaching

skills directly (Mayer & Wittrock, 1996, 2006). Although these methods are effective ways of

teaching problem solving, they have varying degrees of success depending on the teaching

context, so this list should not be taken as a prescriptive one. During GDL courses, activities

were structured around these methods of teaching problem solving to varying degrees.

17

Teaching basic skills. This method encompasses teaching of specific low-level

component cognitive skills pertaining to a task, so that in the ensuing tasks more effort can be

placed upon executing higher-level cognitive skills (i.e., automaticity, cognitive load-reduction).

According to Mayer and Wittrock (1996), while teaching basic skills, the focus of instruction

should be on teaching the skills that will be required most in the later tasks. Early research

showed that successful acquisition of basic skills can help in the process of solving more

complex problems subsequently (Mayer & Wittrock, 1996).

Built on cognitive theories of learning, load-reduction methods removes the constraints

in the environment that make the process of selecting, organizing and integrating of new

knowledge difficult (the components of information-processing theory of meaningful learning)

and thus eases the process of problem solving. Often, the lack of basic skills, or the lack of

automation of them, is the biggest constraint for novice problem solvers. This lack prevents them

from reaching quick and successful solutions. Removing those constraints significantly improves

the problem-solving process. For example, giving calculators to students during a math test can

reduce the ―computational constraints‖ (Mayer & Wittrock, 2006). Methods that help reduce

cognitive load by either automating the necessary cognitive skills or outsourcing them are

effective methods of teaching problem solving.

Empirical support for teaching of basic skills on subsequent higher-level tasks comes

from Glynn, Britton, Muth, and Dogan (1982). In their study, the authors investigated the

impacts of whether removing structural constraints (e.g., mechanics) from students‘ writing tasks

led them to write more persuasive arguments in their writing tasks. The results of the study

showed that when such mechanical constraints are removed, students write better persuasive

arguments. To this end, the authors argued that ―when content and structure operations are

18

demanded simultaneously from writers, processing capacities are taxed severely‖ (p. 565). As

this research shows, when low-level cognitive tasks are removed (or automatized), problem

solvers have better chances to execute higher-level cognitive skills and can solve more complex

problems.

During the GDL intervention (see Chapter 3), the curriculum was purposefully designed

to make sure that the students master the usage of software, basic programming skills, and game

design before they were given scenarios of problems and asked to replicate them within the

software.

Teaching for understanding. In teaching for understanding, teaching of new cognitive

skills happens in such a way that the freshly learned skills can be applied to novel situations

(Mayer & Wittrock, 1996). This requires providing learners with opportunities to relate the

existing and new knowledge during the learning process. Learners, in this process, are

encouraged to actively construct their own learning outcomes (Bruner, 1961; Mayer & Wittrock,

1996), and through this construction process they form meaningful links between the new and

existing knowledge.

Structure-based methods are one way to ensure that teaching for understanding occurs. In

structure-based methods, learners are given concrete objects that can be manipulated. Through

the process of manipulation, the learner understands the underlying structure common to both the

object and the problem at hand. Using computer programming to teach problem-solving skills

can be considered as an example of structure-based methods. Similarly, the activities in the GDL

intervention made use of a game design context and software to give students a hands-on

experience in solving complex problems, and can be considered as an example of structure-based

methods.

19

Empirical support for the effectiveness of structure-based methods in teaching of problem

solving skills comes from a study by Moreno and Mayer (1999). In their study, the researchers

conducted a series of experiments to understand the role of concrete models in understanding

abstract mathematical concepts. In Experiment 1, the researchers tested the effectiveness of two

different instructional methods while teaching a simple math concept (adding and subtracting

using signed integers) to sixth graders (n = 60). The control group received single-representation

(SR) of the arithmetic procedure through only symbols (i.e., numbers). The experimental group,

on the other hand, received instruction through multiple-representations (MR), symbolic, verbal

and visual form. The results of the study showed that for difficult problems, the MR group did

better than the SR group, while for easy problems, due to ceiling effect, both groups scored

similarly. In Experiment 2, to test the interaction between cognitive-load theory (low-spatial

ability students cannot make use of visual aids due to reaching their cognitive limits sooner) and

MR methods, the authors looked at the performance difference between high and low-spatial

ability students. The results showed that high-spatial ability students produced a significantly

greater pre-test-to-post test gain than did the low-spatial ability students, confirming that

cognitive-load theory holds true and MR methods are most effective with high-spatial ability, or

higher-achieving students.

In addition to structure-based methods, generative methods are also effective in

promoting teaching for understanding by helping students ―generate relations between their

existing knowledge and information to be learned‖ (Mayer & Wittrock, 2006, p. 294). Prominent

examples of generative methods include elaborative methods, where the learners are asked

explicitly to make the connection between old and new material; note-taking methods where the

learners are asked to summarize new information, and make connections with existing

20

knowledge; self-explanation methods where the learners are asked to explain concepts while

learning; and questioning methods, where the problem solver is encouraged to ask questions

about the things they are learning. During the GDL intervention, students spent time analyzing

problem scenarios and recreating (i.e., generating) them within the game design software. Such a

process of reverse-engineering a problem scenario can be considered as an example of using

generative methods to teach problem solving.

In an early study by Linden and Wittrock (1981), the authors provided empirical evidence

for the effect of generative methods in fostering reading skills in children. According to the

generative teaching method designed by the researchers, they theorized that the students'

comprehension in reading could be boosted by ―inducing the readers to attend to the text, to

relate their knowledge and experience to it, and to build associations, abstractions, and inferences

from it‖ (p. 45). To test their hypotheses, the researchers conducted an experimental study. The

participants were 64 fifth-grade students and they were assigned to one of the following

conditions randomly: 1) Imaginal to Verbal Generations, 2) Verbal to Imaginal Generations, 3)

No Instructions to Generate, and 4) Classroom Teacher Taught Control Group. After the

treatment session, the researchers measured the students' factual knowledge of the texts and their

comprehension of them. The results of the study showed that the groups who received

―generation treatment‖ scored significantly better at fact retention and comprehension tests.

There was a positive correlation between generations and comprehension. This study clearly

shows the effect of generative activities in a context-specific problem-solving task, reading.

Finally, using discovery methods is another instructional approach that promotes teaching

of problem solving for understanding. During the discovery learning process, it is believed that

learners actively construct connections between existing and new information, which eventually

21

leads to meaningful learning. Nonetheless, one distinction should be made between pure and

guided discovery methods. In pure discovery methods, learners are left on their own to make the

connections, while in guided discovery learners are coached through the process to make sure

that they establish the necessary connections. Guided discovery methods are known to be

superior to pure discovery methods (for a review see: Kirschner et al., 2006; Mayer, 2004).

During the GDL intervention, as it will be explained in more detail in Chapter 3, students were

placed into a guided discovery setting: instructors provided guidance to get students started with

game design and problem-solving tasks, and provided them with chances to explore solutions

through discovery.

In a recent study, Moreno (2004) provided empirical evidence for the superiority of

guided discovery methods over pure discovery methods. In a series of experimental studies,

learning software was tweaked to create two versions, one which provided guidance

(Explanatory Feedback [EF]) and another which only provided ―Corrective Feedback‖ (CF) and

no guidance. During experiment 1, a group of college students (n = 49) learned how to ―design a

plant‖ using the two different versions of a learning software. Explanatory feedback in the

experimental group was provided in the form of guidance during the selection of plant parts.

When the students received EF, it explained why their choices of a certain part were suitable or

not. The students‘ retention of botany knowledge was the main measure of the study, while

transfer, motivation, interest, helpfulness, and difficulty of using the software were also

measured. Statistically significant differences between the EF and CF groups were found for all

measures. Specifically, groups that received EF retained significantly more knowledge than the

CF group. EF group also did significantly better in the transfer test.

22

Teaching by analogy. In this approach, ―learners solve a new problem by using what

they know about a related problem that they can [already] solve‖ (Mayer & Wittrock, 1996, p.

55). In teaching by analogy, the premise is that by analyzing two problems that have surface

similarity, the learners can abstract the underlying rules. Understanding the base problem,

learners are asked to generate a solution for the target problem that is similar to the base

problem. In empirical studies, researchers found that when not guided, the learners often fail to

make the connection between the base and target problems, even though the problems are fairly

similar (Mayer & Wittrock, 1996). Teaching by analogy was implemented throughout the GDL

intervention in the format of providing structurally similar scenarios to students and asking them

to explore the patterns among different cases. One instance of guidance was, for example, the

instructor‘s going through the problem-solving steps together with the students, showing them

what specific cognitive skills they need to adopt for each specific problem.

Gick and Holyoak (1983, 1980) conducted multiple experimental studies to understand

the impact of using analogies while teaching problem solving. The results of their comprehensive

set of studies indicated that subjects needed hints to be able to establish analogies between

analogous problems (1980). They also identified in another set of studies that (1983) people

positively benefit from seeing a pair of analogous problems first, identifying the analogy

between them, and then working on a third problem. The authors also argue that when an

analogy between two problems is established, any visual or verbal mechanisms that support the

analogy can significantly enhance the problem solving on the subsequent analgous problems.

Teaching thinking skills directly. Another method of teaching problem solving is

teaching them directly (Mayer & Wittrock, 1996, 2006). By teaching problem-solving skills

directly through after-school programs or courses, early research showed that it could be an

23

effective way of teaching problem solving. Based on the fact that transfer of skills is more likely

to occur within similar domains, it is argued that teaching domain-specific thinking skills is often

more successful than teaching domain-general skills. Within the GDL intervention, activities

also centered on showing students the importance of using basic skills to solve complex

problems. For example, students were taught the use of the problem solving steps by Polya

(1957): understand the problem, devise a plan, carry out the plan, and evaluate.

In a recent study, Quilici and Mayer (2002) provided empirical evidence for the

effectiveness of teaching a domain-specific problem solving skill in solving problems.

Specifically, the researchers investigated the effectiveness of directly teaching ―structural

awareness‖ in improving college students‘ statistical problem solving skills. The study

incorporated a within-subjects design, where a group of undergraduate students (n = 51) took a

problem-sorting test at the beginning and end of an introductory level statistics class. During the

class, the students learned about t-tests, chi-square analyses, and correlation; and these were the

topics covered in the pre and post-tests. The results showed that after learning the domain-

specific skill of analyzing statistical problems, the students were significantly better at

recognizing and sorting problems. Second, the students made use of word structures (a skill they

specifically learned) while sorting problems in the post-test significantly more than they did in

the pre-test. In a follow-up study, the researchers tested if even a short-term aid, instead of a full

semester course, could foster structural awareness in statistics word problems. The results

showed that the students who received example aids did significantly better in sorting problems

based on their structural features rather than their surface features, and it was seen that the

experimental groups did significantly better than the no aid group. The results of these studies

24

show that it is possible to teach domain-specific skills for an improvement in problem solving

skills in that specific domain.

Research on Using Computers to Teach Problem Solving

Using programming. With the increasing popularity of LOGO in 1980s, an interest in

the use of programming as a means to teach problem solving skills started. Researchers (Guzdial,

2004; Papert, 1980) argued that both the programming process and the embedded debugging

process were important factors that contributed to peoples‘ thinking skills. Despite this focus on

establishing the connection between problem-solving skills and programming, however, most

research did not provide detailed accounts of their teaching interventions. We are far from

knowing what theories they were based on and if they made use of the theories of teaching

problem solving (e.g., teaching by analogy, structure-based methods, etc.).

Choi and Repman (1993) conducted a study to find the difference between two

programming languages (Pascal or FORTRAN) on students‘ problem-solving skills. Data was

collected from 58 undergraduate students taking one of the three classes: programming with

Pascal (n = 18), FORTRAN (n = 19), and basic computer literacy (n = 21). In order to measure

the change in students‘ thinking skills, the subjects were given a 61-item cognitive skills test

before and after the semester. It was found that there were significant differences between the

control and experimental groups, and there was not a significant difference between Pascal and

FORTRAN groups. It was concluded that learning to program with Pascal or FORTRAN

improved students‘ problem-solving skills. Methods of teaching problem-solving skills,

however, were not reported in this study.

One of the rare studies reporting on an open connection between problem-solving

methods and programming is one that created a curriculum with an explicit focus on connecting

25

these tasks and was conducted by Palumbo (1990). In his study, Palumbo investigated the

relationship between programming and problem solving. The data came from two groups of high

school students: programming group (n = 11) and basic computer literacy group (n = 11). In

order to measure the change in the students‘ problem solving skills, a 61-item test was given to

the students before and after they completed their classes. The results showed that there was a

main effect of the treatment: the students in the Basic programming group outperformed the

control group on the post-test. The students‘ computer anxiety was also measured. Both groups

showed a decrease in their anxiety of computers, compared to before taking the computer

classes. For the programming group, there was also a positive relationship between computer

performance and problem solving. Being strictly grounded in problem-solving theory, the

curriculum used in this study provided a link between problem solving and programming tasks.

Nonetheless, the details of the curriculum were not reported in this research, so it is not possible

to identify the exact impact of the instructional methods on teaching problem solving.

In a follow-up study, in order to understand the effects of two computer-based

environments, Palumbo and Palumbo (1993) compared problem solving skills of a group of fifth-

grade students (n = 15) who were taking a computer literacy class to another class of students (n

= 15) who were learning programming with LEGO. Using a 51-item problem-solving test, the

researchers collected data on the change in students‘ problem-solving skills. The results showed

that, although there was not a significant difference between the LEGO group and the control

group, there was a significant change in the students‘ problem-solving skills in both groups.

Methods of teaching problem solving, however, were not reported in this study.

Nastasi, Clements, and Battista (1990) conducted a study to see the effect of LOGO

instruction on the students‘ (n = 40) mathematical problem-solving ability. The control group

26

students attended a computer class where they learned how to use various software without any

specific focus on problem solving. A paper-and-pencil problem-solving test (test of executive

level problem-solving processes) was given before and after the treatment to capture the change

in students‘ problem-solving skills. The results of the study showed the LOGO group did

significantly better than the computer-assisted instruction group on the problem-solving post-

test. This study provides support for the relationship between learning to program and thinking

skills. Methods of teaching problem solving skills, however, were not reported in this study.

In another study, Gallini (1987) compared the effects of learning to program with LOGO

with a regular computer literacy class in fostering problem-solving skills. Forty-four fourth-grade

students were randomly assigned to one of the two conditions. While the LOGO group learned

how to program using LOGO, the computer literacy group also received instruction on

flowcharting and fundamentals of programming with BASIC. A ten-item test measuring the

students‘ abilities in ―following the directions‖ and ―formulating directions‖ were given to the

subjects before and after the treatment. The authors found that LOGO group did better in the

problem-solving test than the students who attended a traditional computer literacy class. In

addition, it was seen that both groups showed improvement from pre to post test. It was

concluded that there was a positive relationship between learning to program in LOGO and

problem-solving skills. Methods of teaching problem-solving skills were not reported in this

study.

Finally, in two meta-analysis studies (Liao & Bright, 1991; Liao, 2000), it was seen that

the students taking computer programming classes outperformed the students who did not learn

programming, as measured by the cognitive skills tests used in the studies. In the first meta-

analysis, Liao and Bright (1991) collected effect sizes from 65 studies. The overall grand mean

27

of the study-weighted effect size was 0.41. This implies that students who learned how to

program in these studies outperformed the students who did. In the later and more recent meta-

analysis study, Liao (2000) compared data from 22 studies conducted between 1989 to 1999. The

overall grand mean of the study-weighted effect sizes were 0.76, indicating that the students who

learned programming in these studies showed greater performance improvements than the

students who did not. As a result of these two meta-analysis studies, Liao (2000) argued that ―the

outcomes of learning a computer language extend beyond the content of that specific computer

language. Students are able to acquire some cognitive skills such as reasoning skills, logical

thinking and planning skills, and general problem solving skills through computer programming

activities‖ (p. 568).

Using game design. Despite their potential to teach thinking skills and the popularity of

game and software design contexts for after-school or summer programs, empirical support

showing the impact of these activities on problem-solving has been lacking. Review of research

shows that there are not any empirical studies looking at the relationship between game design

and problem solving, while a review of research on software design mainly shows reports of

gains in content knowledge. In addition, similar to the research on programming and thinking

skills, researchers in this area also did not provide detailed accounts of their interventions, or

curricula, therefore it is hard to identify if they made use of theories of teaching problem solving.

In order to understand the effectiveness of creating multimedia software on thinking

skills and science knowledge, Kafai, Carter Ching, and Marshall (1997) conducted a quasi-

experimental study. During the study, using LOGO, 26 fifth and sixth grade students worked on

creating interactive multimedia software that would be used to teach about astronomy for

younger students. The students spent 46 hours on the project, twenty-three of which was

28

dedicated to programming activities. Data on the students‘ knowledge of astronomy and LOGO

programming was collected before and after the camp. The results showed that there was a

significant improvement in students‘ understanding of astronomy. Similarly, students‘ LOGO

knowledge also improved. This study provides empirical evidence for knowledge improvement

through design activities. It does not, however, provide evidence for students‘ improvement in

thinking and problem-solving skills. In addition, we do not know if there were also changes in

students‘ motivation to learn science or continue working on programming tasks in the future.

Methods of teaching problem-solving skills were not reported in this study.

In an earlier quasi-experimental study, Harel (1991) investigated the effectiveness of

creating software with specific purposes (i.e., teaching fractions) using LOGO on children‘s

basic concept of fractions. To test her hypothesis, 51 students were placed into three classrooms:

one experimental, and two control groups. The experimental group was composed of 17 fourth-

grade students. The students in the experimental group followed Instructional Software Design

Project (ISDP) curriculum, which integrated software design activities, LOGO programming,

and math concepts (i.e., fractions). Neither of the control groups had math embedded into their

curriculum, and learned fractions through regular math classes. The experimental group, in

addition to their regular math classes, also had a chance to put their math knowledge into

practice by creating interactive software that teaches young children about fractions using

LOGO. The change in students‘ knowledge of fractions was measured by a 65-item multiple-

choice pre- and post-test. There was a statistically significant difference between the groups on

the post-test, and the experimental group significantly outperformed the other two groups. These

results provided evidence for the importance of meaningful design projects using LOGO, as

opposed to ―just‖ learning how-to use LOGO. In an embedded curriculum, learning with LOGO

29

was effective in improving children‘s math knowledge. This study was one of the first to provide

empirical evidence for the potential of LOGO. It, however, did not provide evidence for the

change in children‘s motivation for math, or the changes in children‘s thinking skills. In this

study, the author did not make any specific references to any theories of teaching problem

solving, and we do not know how their intervention was structured.

In a recent qualitative study, Richards and Wu (2011; Wu & Richards, 2011) explored

whether game design activities were effective in teaching computational thinking skills, using

data from several sources (reflective short answer questionnaires, field notes, student game

design journals, and semi-structured interviews). Apart from providing a little anecdotal

evidence, this research, however, did not provide any empirical results. Despite the lack of

evidence, however, the authors argued that at the end of the research the children learned how to

design games and improved in their understanding and application of computational thinking

skills. Methods of teaching problem-solving skills were not reported in this study. Therefore, we

do not know if their intervention and activities were based on any theories of teaching problem

solving.

Games and Kane (2011) also looked at the relationship between game design activities

and the students thinking skills and STEM knowledge. The data for their research came from 36

middle-school students who were attending Science and Art of Game Design (SAGD) and

Globaloria after-school camps. During these camps, the students learned how to design games

using Microsoft Kodu, Gamestar Mechanic, and Adobe Flash. Based on interview data,

observations, and the games the students created, the researchers tried to find evidence of

improvement in students‘ thinking skills and STEM knowledge. No statistical analyses were

provided in this research, and only anecdotes from some students were provided as evidences of

30

improvement. Based on the evidence, the researchers argued that SAGD and Globaloria classes

provided learning environments that help youth develop ―habits of mind and practice that are

fundamental to the STEM disciplines‖ (p. 7). Although from anecdotal evidence we see that

there were instances of children learning how to design games, this research did not provide any

evidence for change in thinking skills and motivational changes in students. Similar to other

research in this domain, there were not any references to any connection to theories of teaching

problem solving in this study, and we cannot know the nature of their intervention.

Summary. Early research with simple textual programming languages found promising

evidence for the impact of using programming over simple computer-assisted teaching sessions.

Learning game design has been a popular method of teaching thinking skills (i.e., computational

thinking), but recent research on game design have given us little reason to believe that there is,

in fact, an empirical connection. Although there is some anecdotal evidence pointing to a

potential connection between game design and thinking skills, it is hard to know if learning to

design games using the new generation visual programming software causes improvements in

thinking skills. Especially, the connection between game design and problem solving skills needs

further scrutiny.

Motivational Constructs in Learning

Motivation can be defined as a theoretical construct to explain the initiation, direction,

intensity, persistence, and quality of behavior (Brophy, 2010; Maehr & Meyer, 1997). It is

believed that a person‘s choice, persistence, and performance in a given activity is affected by

certain motivational constructs (Wigfield & Eccles, 2000, 2004). It is, therefore, important to

measure changes in motivation to predict future behavior.

31

Expectancy-value theory. One theory of motivation that is a strong predictor of

students‘ future preferences and success in a given domain is expectancy-value theory (Wigfield

& Eccles, 2000, 2004; Wigfield, 1994). According to expectancy-value theory, students‘ self-

efficacies and value perceptions of school subjects are important predictors for their success in

these subjects in the future (Wigfield & Eccles, 2004). Expectancies and values directly

influence choice, performances, and persistence on a given task (Brophy, 2010; Wigfield,

Eccles, Roeser, & Schiefele, 2008; Wigfield & Eccles, 2000).

According to this theory, our willingness to start or the effort we put into an activity

depends on how much we value the activity (or the outcomes), and how much we expect to be

able to complete it successfully (Brophy, 2008, 2010; Wigfield et al., 2008; Wigfield & Eccles,

2000). In expectancy-value theory, effort we put into an activity is viewed ―as the product rather

than the sum of the expectancy and value factors because it is assumed that no effort at all will

be invested if either factor is missing entirely‖ (Brophy, 2010, p. 16). In other words, if people

believe that they lack the necessary skills or do not see the activity to be an important task, then

the effort they will put into completing this task equals to zero.

Two important components of the expectancy-value theory, as the name suggest, are self-

efficacy perceptions and value attributions. Self-efficacy can be defined as ―judgments of how

well one can execute courses of action required to deal with prospective situations‖ (Bandura,

1982, p. 122). Some researchers believe that self-efficacy alone can predict the amount of effort

people will expend and if people will persist in the face of difficulties at a given task (Bandura,

1982; Pajares, 1996).Value aspect of motivation explains how much worth people see in a given

task (Brophy, 2010). Despite having been understudied (Brophy, 1999, 2008), according to

Brophy (2010) and expectancy-value theorists, value is equally important in predicting effort.

32

Depending on a combination of the self-efficacy and value attributions on a given task,

the effort someone puts into a task changes significantly (see Table 1). For example, students

choose to be engaged in a given task when both value and self-efficacy is present, dissembled

when the value is seen but self-efficacy is missing, evade when have self-efficacy but do not

value the task, and finally, reject the task when both success and value are missing (Brophy,

2010; Hansen, 1989).

Table 1. Student Behavior Based on Expectancy and Value Perspectives - Based on Brophy

(2010) and Hansen (1989)

 - efficacy + efficacy

- value

Rejection:

Does not

Participate

Evading:

Does the

Minimum

+ value

Dissembling:

Protects image of

Competence

Engagement:

Seeks to learn

Task values. Values in expectancy-value theory are more situation-specific, and,

according to Wigfield and Eccles (2000), task value encompasses four different value types:

attainment value, intrinsic value, utility value, and cost. Although researchers have studied them

together and separately in different contexts, perceived utility value, or the extent that a task is

seen as relevant one‘s life or other tasks, has been seen as an important factor impacting future

performance and interest in school subjects (Hulleman & Harackiewicz, 2009). Recent research

have shown that increased utility value predicts increases in interest and performance, especially

for students with low self-efficacy or performance (Hulleman et al., 2010; Hulleman &

Harackiewicz, 2009).

33

Interest. As pointed out by Dewey (1913), interest is the key component of learning and

getting students interested in school subjects is the main goal of schools, a goal at which schools

almost always fail. Interest, according to Dewey (1913), ―is the sole guarantee of attention; if we

can secure interest in a given set of facts or ideas, we may be perfectly sure that the pupil will

direct his energies toward mastering them‖ (p. 1). Therefore, interest is at the heart of the efforts

to motivate students to learn (Brophy, 1999).

Interest can be defined as ―a psychological state that, in later phases of development, is

also a predisposition to reengage content that applies to in-school and out-of-school learning and

to young and old alike‖ (Hidi & Renninger, 2006, p. 111). Researchers have found that interest

influences the amount of attention people pay to tasks, people‘s goals, and levels of learning.

Traditionally, interest has been categorized into two types depending on how persistent it is.

Personal interest refers to a person‘s relatively enduring ―predisposition to reengage particular

content over time as well as to the immediate psychological state when this predisposition has

been activated‖ (Hidi & Renninger, 2006, p. 113). This is the type of interest students bring with

them to school and is relatively harder to change. Situational interest, on the other hand, is ―is

triggered in the moment by environmental stimuli, which may or may not last over time‖ (Hidi &

Renninger, 2006, p. 113).

Interest development. According to Hidi and Renninger (2006), interest development

follows a four-step path from early (triggered) situational interest to well-developed individual

interest (Figure 2). The first stage of interest, triggered situational interest, is usually ―sparked‖

by environmental factors, which then turns into maintained situational interest, a more focused

and persistent interest. At this stage finding meaning in the task help deepen interest, which then

becomes emerging individual interest. Finally, due more knowledge and value building due to

34

repeated exposure to the task, a well-developed individual interest emerges. It is believed that

external stimuli (i.e., instructional conditions and learning environment) can facilitate

development of interest. The crucial component in development of interest from early stages of

situational interest to later stages of individual interest is finding personal meaning and relevance

with a task (Hidi & Renninger, 2006; Hulleman et al., 2008; Hulleman & Harackiewicz, 2009).

―Perceiving a topic to be useful and relevant for other activities or life goals (i.e., utility value)

predicts both subsequent interest and performance‖ (Hulleman & Harackiewicz, 2009).

Figure 2. Interest Development (Based on Hidi and Renninger, 2006)

Students with a history of low-performance are likely to have low interest and self-

efficacy at school subjects. Recent research by Hulleman et al. (Hulleman et al., 2008, 2010;

Hulleman & Harackiewicz, 2009) showed that interventions that manipulate students‘ perceived

utility value in school subjects impacts their subsequent interest and performances at school,

especially for students with low performance or performance expectations. In a similar vein,

Brophy (1999) argued that students need to see the relevance of an activity to their lives and

identify themselves with them in order for the learning activities to retain their interest. If

students cannot perceive relevance and identify themselves with a task, it is the duty of the

triggered
situational

interest

maintained
situational

interest

emerging (less-
developed)

individual interest

well-developed
individual interest

35

teacher ―to mediate the learning in such a way that desired self-relevance perceptions are

developed‖ (Brophy, 1999, p. 79). Self-relevance, therefore, is important in fostering interest and

value in learning tasks.

Research on developing interest and utility value. According to researchers (Brophy,

1999; Hulleman et al., 2010), an effective way of ensuring that the students see the relevance of a

task for their lives is through giving students opportunities to self-generate relevance and identify

themselves with tasks in question. Through generating their own relevance and identification

with tasks, it is believed that students ―discover the connections between an activity and their

lives on their own may be a less threatening way to promote the perception of utility value, and it

may therefore be particularly beneficial for students with low performance expectations‖

(Hulleman et al., 2010, p. 881). Educational research, especially research on transfer, also shows

that self-reflection (i.e., reflective teaching), or self-generated connections (i.e., generative

methods of teaching problem solving, or meaningful learning) are effective methods of teaching

and learning (see ―Teaching of problem solving‖ section for a detailed description ―generative

methods‖ and ―meaningful learning‖).

In recent studies, students‘ utility value perceptions were manipulated to see its effects on

their perceived utility value, interest, and performances at school subjects. Hulleman et al.

conducted this series of studies (2010; Hulleman & Harackiewicz, 2009). In their first study,

Hulleman & Harackiewicz (2009) randomly assigned students taking a high-school science class

into one of the two conditions: relevance and no-relevance. In the relevance condition, the

students were asked to write an essay on how science could be useful in their lives, whereas the

control group wrote about wrote a summary of the material they were learning at the time. At the

end of the semester, low-expectancy students in the relevance condition reported more interest in

36

science and received higher grades at the end of the semester than the low-expectancy control

group students. Interest in science at the end of the semester was a significant predictor of future

tendencies to select science careers or classes.

In their follow up study (Hulleman et al., 2010), where a similar relevance intervention

was used in both a lab setting (study #1) and college classroom (study #2), the authors found

similar results. In study #1, students who received relevance intervention on using a simple math

technique showed increased interest in the technique than the other students. In addition,

participants in the relevance condition were more interested in using the technique in the future

than the control condition. In study #2, the authors replicated the study in an undergraduate

psychology classroom. The results were very similar to the first study, in that the students in the

relevance condition were more interested in the course at the end of the semester and were more

inclined to major in psychology. The students with initial low scores or interest in psychology

especially benefited from the intervention.

To understand the conditions to nurture interest in educational technology among pre-

service teachers, Phillips (2007) conducted a quasi-experimental study where he manipulated

meaningfulness and perceived involvement in educational technology lessons. Four classrooms

were assigned to one of the conditions: a meaningful lesson (ML-only), involvement (I-only),

meaningful lesson and involvement (I+ML) and control. The results of the study showed that the

students in ML-only, I-only, or ML+I conditions were found have greater increase on personal

interest of technology than the control group, and ML-only groups were better than I-only and

control. Similarly, experimental groups showed greater increase in perceived competence of

technology than the control group. I+ML group had higher perceived competence than the other

experimental groups. The I+ML group also showed greater increases in situational interest in

37

technology than both I-only, and ML-only. It was seen that meaningfulness of a lesson, and a

person‘s involvement in an activity was a strong predictor of personal and situational interest.

Another study looked at the relationship between relevance and interest was conducted

by Shin (2010). Shin conducted a mixed-methods study in order to understand the impact of

providing rationales to students, as well as to investigate whether the source of the rationale

made a difference on the potential impact. Undergraduate students taking an online introduction

to a class on teaching strategies were randomly assigned to one of the 3 conditions: student

rationale condition, instructor rationale condition, and a control group who did not receive any

rationales. The students in the rationale conditions listened to audio statements about the value of

the upcoming lesson at the beginning of each module. Students‘ self-report perceived value,

interests in the course, self-determination, regulation, and their learning of the course (assessed

through their final grades in the course) were examined to see the impact of the conditions. The

results showed that the students‘ perceived utility value of the course did not differ for groups.

Similar results were found for interest in the course. In terms of final grades, there was a

significant difference among the groups, favoring the student rational group over no rationale

and then instructor rationale groups.

Summary. Interest is one of the key factors that help predict future reengagement with

tasks and performance. Interest, however, has to be developed from early stages of triggered

situational interest into later stages of well-developed individual interest. It is also known that

utility value (a subcomponent of expectancy-value theory) is a strong predictor of interest

development and performance at tasks.

Research has shown that, by manipulating utility value, it is possible to improve value,

impact performance, and develop interest. There are not any studies in the domain of game

38

design that looked at the relationship between theoretical motivational constructs and these tasks.

In addition, there are not any studies that investigated the process of interest and value

development in a secondary, underlying task (i.e., problem solving and programming), through

exposure to a primary task (i.e., game design). Therefore, we do not know if game design tasks

are viable platforms to develop interest and value in domains beyond game design itself, namely

in programming and problem solving.

Overall Summary

Problem-solving skills are important for young children to develop and be successful in

their future careers, and unfortunately, they do not get the necessary opportunities to learn and

practice these skills at school settings. Programming, software design tasks, and game design are

viable platforms for fostering these thinking skills. Schools often do not provide students with

chances to experience hands-on design activities or to solve complex real-life problems. These

skills are very important for the future careers of young students, and they need to be provided

with chances to practice these skills.

Researchers have identified various methods of teaching problem solving, such as

teaching basic skills, teaching by using analogies, generative methods, structure-based methods

and teaching metacognitive skills directly. Game design is also a viable and engaging platform to

develop problem-solving skills, due to the inherent nature of the game design process.

Researchers also argue that game design tasks are promising venues to introduce students to

STEM careers and raise interest in STEM fields. Due to a lack of research, however, we do not

know if game design tasks are suitable to teach students problem-solving skills.

Students enjoy using computers in school settings, regardless of the context for those

tasks, and they especially like game design or programming activities. Although qualitative or

39

anecdotal reports of student engagement while working on software or game design tasks

abound, we do not know if the ―motivational‖ impacts of these tasks actually exist at an

empirical level, and if they do, it is unknown in what capacity they work. Considering the main

purpose of exposing students to these tasks is to actually ―trigger‖ interest in the underlying

thinking skills and programming, it is necessary for research to empirically establish the

connection between these tasks and important motivational constructs that predict future choice

and performance (i.e., utility value and interest). In this study I aim to provide an empirical test

of the cognitive benefits (i.e., problem solving skills) of learning game design, as well as to

investigate the extent to which these tasks influence students‘ interest and utility value in

underlying problem solving and programming skills.

40

CHAPTER 3

Game Design and Learning Intervention

Overview

In this chapter, I will first describe the guiding principles that inspired the structure of the

Game Design and Learning (GDL) intervention (i.e., constructionism and creating a

―Clubhouse‖ atmosphere). Then, I will talk about the practicalities of the game design software

used at the GDL intervention: Microsoft Kodu. In the remainder of the chapter, I will explain the

structure of the GDL curriculum, specific tasks offered during the intervention and rationale

behind these tasks in detail.

Guiding Principles of the GDL Intervention

Constructionism. GDL courses, through the process of helping students make games, is

a genuine example of Papert‘s constructionism. As a theory, Papert‘s constructionism is very

similar to constructivism in that they both see learning as an active process of building

knowledge (Ackermann, 2001; Papert & Harel, 1991; Papert, 1980, 1994; Suomala & Alajaaski,

2002). Maintaining the same basic principles, Papert‘s constructionism

adds the idea that this happens especially felicitously in a context where the learner is

consciously engaged in constructing a public entity whether it‘s sand castle on the beach

or a theory of the universe. (Papert & Harel, 1991, p. 1)

Constructivism distinguishes between rote and meaningful learning, and it is active

construction of learning which leads to meaningful learning. In meaningful learning, acquiring

general principles or patterns is the goal (Bruner, 1961; Mayer & Wittrock, 1996; Mayer, 1999),

while rote learning is a process of memorization of meaningless knowledge bits. It is argued that

41

learning is most effective when learners create meaningful and personal artifacts as outcomes of

the learning process (Kafai, 1995).

The GDL intervention in this study is an example of a ―constructionist‖ learning

environment. During the GDL intervention, students create products (i.e., games) that are

personal and meaningful for them. Through this active process of construction, students not only

create artifacts that are meaningful for themselves and their peers, but also show persistence in

the task due to high levels of interest and personal nature of the creation process.

Guided discovery learning. Research comparing guided versus pure discovery learning

methods has indicated that guided discovery learning can be superior to pure discovery learning

when teaching thinking skills (Clements, 1999; Kirschner et al., 2006; Mayer, 2004; Palumbo,

1990; Salomon & Perkins, 1987; Woodward, Carnine, & Gersten, 1988). For example, in studies

that compared the effectiveness of guided discovery methods to pure discovery methods, the

students in the guided discovery conditions performed significantly better on the given tasks in

comparison to their peers in pure discovery conditions (Kirschner et al., 2006; Littlefield,

Delclos, Bransford, Clayton, & Franks, 1989; Mayer, 2004).

Although in both guided discovery and pure discovery methods learners are expected to

construct their own learning, the main difference between the two methods is that in guided

discovery learners are guided through this process by getting ―hints, direction, coaching,

feedback, and/or modeling to keep the student on track‖ (Mayer, 2004, p. 15). According to

Mayer and Wittrock (1996), ―[i]n pure discovery, no guidance is provided, whereas in guided

discovery, the teacher provides enough guidance to ensure that the learner discovers the rule or

principle to be learned‖ (p. 54). In pure discovery, due to the lack of guidance, children fail to

make the underlying connections between concrete tasks (i.e., making games) and abstract

42

concepts (i.e., problem solving). Early research by Pea and Kurland (1984) also pointed to the

need for guidance while teaching students the connection between programming and thinking

skills, and pointed to the lack of guidance as one of the reasons why students failed to see the

connection between the two.

Overall, a substantial body of literature supports the effectiveness of guided discovery

methods over pure discovery methods (Kirschner et al., 2006; Mayer, 2004). Students understand

the connections between programming tasks and thinking skills more effectively through guided

learning activities are. GDL courses are, therefore, based on these principles of guided discovery

learning and daily activities are carefully constructed to scaffold students thinking.

 “Clubhouse” atmosphere. Connected tightly with LOGO research, Computer

Clubhouses (Kafai et al., 2009; M. Resnick & Rusk, 1996) have introduced underprivileged

children to computer technology since 1993. One of the main purposes of the clubhouses has

been to encourage ―youth creativity, in young people taking on the role of producing rather than

merely consuming technology‖ (Kafai et al., 2009, p. ix). This extra focus on creativity and

production through design activities is one of the main elements of these programs that make

them engaging for youth and this structure and atmosphere of these after-school programs was a

role model for the GDL courses.

Specifically, the GDL courses benefit from four foundational principles of early

Computer clubhouses: ―a) support learning through design experiences, b) help youth build on

their own interests, c) cultivate ‗emergent community‘, and d) create an environment of respect

and trust‖ (M. Resnick & Rusk, 1996, p. 453).

In the GDL, design is at the heart of the curriculum. The main activity of game design

gives learners chances to actively engage in problem solving tasks that are meaningful for them.

43

These design experiences foster students‘ own game design skills, and they also get chances to

practice their programming and problem-solving skills. In addition, students came to GDL with

high levels of interest in the course activities because they self-selected to participate. This

enables active participation and persistence, even when the tasks are hard. Moreover, learners

often collaborate with their peers during the game design process, and this allows for cultivation

of emergent communities. During GDL, it has been observed that students often group around

game genres and end up collaborating with each other, especially by providing troubleshooting

help. Finally, during the GDL courses, the course atmosphere is built around mutual respect and

students are given chances to express themselves. Just as it was the case with the clubhouses, at

GDL courses the purpose is not ―simply dole out praise to improve the "self esteem" of the

youth. [We] treat youth more like colleagues, giving them genuine feedback, and pushing them

to consider new possibilities‖ (Resnick & Rusk, 1996, p. 438). The unique structure of the GDL

courses gave students enough responsibility for their own actions, while offering support when

they needed it.

Built upon these core principles mentioned in this section, GDL courses were designed

with the hope to provide students with unique and engaging experiences within a collaborative

and respectful community where they can actively construct knowledge, work on personally

meaningful tasks, and develop their own thinking skills.

Course Software: Microsoft Kodu

 Kodu is a game design software that is specifically designed for children to provide an

early entry to computer programming (MacLaurin, 2011). As a game making platform, ―Kodu

allows users to create their own video games by designing the world, deciding which characters

will appear in it, and programming the characters using an easy-to-understand visual

44

programming language‖ (Stolee & Fristoe, 2011, p. 99). The software‘s main purpose is to ―help

users learn computer science concepts through game creation‖ (p. 100).

There are numerous reasons why Kodu was selected over other game design or animation

software. First, as opposed to other software, Kodu provides a three-dimensional environment

(3D), and it is visually more appealing for students (Figure 3). In addition, the created game

environments can be expanded to replicate big, endless worlds that can be found in most

commercial games, as opposed to two-dimensional and limited worlds provided by alternative

game design software.

Figure 3.Screenshots from Microsoft Kodu: Visual Programming - The text within the visual is

not meant to be readable, and is meant for reference only.

Secondly, Kodu uses a programming language structure that is core to most common

programming languages (Stolee & Fristoe, 2011). Due to this structure, it lets users to explore

some important basics of computer programming, such as variables, Boolean logic, objects, and

control flow. In Kodu,

[u]sers can program each character (e.g., a fish, cycle, apple, tree) individually, and the

programming defines how it interacts with the world, much like an intelligent agent. The

programming takes place on pages, which define different states for the character. A

character may contain up to 12 pages of programming, and can maintain its state and

45

control flow by switching between pages. Each page contains a set of rules, where a rule

is analogous to a statement in typical programming languages. Each rule is in the form of

a condition and an action, which form a WHEN + DO clause, that is, when condition, do

action. If the condition is satisfied, then the action is performed….There are over 500

tiles that can be used to compose rules in the Kodu Language. (Stolee & Fristoe, 2011, p.

100)

Third, Kodu‘s flexibility in its language is better for creating simulations, as opposed to

games, where the simulation is allowed to run by itself and count user-defined events. For

example, the students created a predator-prey relationship simulation and programmed Kodu to

count the populations of every type of character in the world. This adds a great amount of power

to Kodu‘s educational potential, especially considering the main purpose of teaching problem

solving skills and the analysis of systems and structures.

GDL Curriculum Structure

 The GDL curriculum is engineered to teach students how to design games using

commercially free software, Microsoft Kodu. The courses have two overarching goals: (a)

teaching students how to use the software, and (b) showing students the connections between

game design and problem solving (Figure 4).

The first goal was achieved through game design activities based on fostering students‘

Kodu knowledge. These teaching activities were followed by hands-on sessions in which

students learned to create familiar classic games, such as Pac Man, Super Mario Brothers, or

generic tower defense games.

The second goal was achieved by providing students with hands-on opportunities to solve

problem within assigned scenarios, and reverse engineering these scenarios to create games in

46

Kodu. During this process the instructors were available to answer questions from the students

about, for example, how to troubleshoot a certain line of code to fix their games or getting help

on aesthetics.

Figure 4. Two-step Structure of GDL Curriculum

This two-step approach to configuring GDL activities, namely offering problem solving

tasks only after students mastered game design and programming, is based on two theories:

teaching basic skills (i.e., automaticity and constraint-removal) (Mayer & Wittrock, 1996) and

chain of cognitive changes (Dalbey & Linn, 1985; Linn, 1985; Mayer & Fay, 1987).

According to theories of automaticity and constraint-removal, mastery of low-level

cognitive skills makes it easier for people to allocate more time and energy in solving problems

requiring high-level cognitive skills. The GDL curriculum focuses the early activities on

teaching students low-level skills necessary to master the game design software, the game design

process, and programming basics required to design games in Kodu.

Chain of cognitive changes model (Mayer & Fay, 1987) proposes that while learning a

programming language learners go through steps starting from low-level, basic components and

moving to higher-level, advanced components. For example, while learning LOGO, the model

predicts that learning of basic programming syntax will happen first, and it will be followed by

Basic skills:

Game Design,

Kodu

literacy, Progra

mming basics

Teaching of
problem solving

skills
GDL Intervention

47

semantics (i.e., learning to think within the domain of programming), and finally, transfer (i.e.,

learning to think outside programming). More importantly, students‘ success in later steps is

contingent upon their mastery of the prior steps. Similarly, in the GDL curriculum, the mastery

of the basics of the game design software and programming basics are given priority, in order to

make it possible for students to move to more advanced levels. In a similar vein, the activities

requiring advanced problem solving skills are introduced only after the students master basic

requirements so that they can think of outside the game design context and develop more

generalized skills.

GDL Activity Types

As mentioned in the previous sections, the activities used during GDL intervention are

created based on multiple different theories (i.e., theories of teaching problem solving), and also

are designed to teach students game design, programming basics, as well as to provide practice

in specific problem skills (Table 2). These activities usually take 3-4 hours to complete.

Depending on the time available, these activities take up the whole day, or if there is more time

available the students are given time to creating more complex designs, or work on their own

games.

Table 2. Progression of Activities and Specific Activity Types Offered at the GDL

Progression
Activity

name
Type Purpose

Problem solving

involved
Duration

Activity #1
Apple

hunter

Game

design

Teach basics of Kodu +

Programming
SYS, DM, TS

3-4

hours

Activity #2 PacKodu
Game

design

Teach basics of Kodu +

Programming
SYS, DM, TS

3-4

hours

48

Table 2. (Cont‘d)

Activity

#3

Kodu

Adventure
Game design

Teach basics of Kodu

+ Programming

SYS,

DM, TS

3-4

hours

Activity

#4
SimSchool

Problem solving

(simulation)

Teaching problem

solving

SYS,

DM, TS

3-4

hours

Activity

#5
Predator-Prey

Problem solving

(simulation)

Teaching problem

solving

SYS,

DM, TS

3-4

hours

Activity

#6

Fix a broken

game
Troubleshooting

Teaching problem

solving

SYS,

DM, TS

3-4

hours

Activity

#7

(optional)

Create your

own game
Free design

Teaching problem

solving

SYS,

DM, TS

3-4

hours

*SYS = System analysis and design, DM = Decision making, TS = Troubleshooting

In the remainder of this section, I will describe one example activity from each category

and the specific theories they are based on, and in which problem types they provided practice

(See Table 3). The specific activities that I will describe are (a) game design, (b) problem

solving, (b) troubleshooting, and (d) free design.

Table 3. GDL Activity Types and Their Alignment with Course Goals and Problem Solving

Category Purpose Subtasks Problem solving

Game Design

 Game design

 Programming

 Microsoft Kodu

 Reverse-engineer

game from given

GRASPS

 Create flowchart

 System analysis and

design

 Troubleshooting

 Decision making

49

Table 3. (Cont‘d)

Problem solving

 Problem solving

skills

 Familiarize with

complex

problems

 Programming

 Microsoft Kodu

 Analyze a given

problem scenario

 Find solution to the

given problem

 Understand problem

patterns from data

and graphs

 Create simulation of

the problem scenario

 Create flowchart of

the scenario

 Metaskills (plan,

devise solution,

execute, evaluate)

 Recognize patterns

 System analysis and

design

 Troubleshooting

 Decision making

Troubleshooting

 Troubleshooting

 Familiarize with

complex

problems

 Programming

 Microsoft Kodu

 Find inoperable

parts of a game and

fix them

 Create a flowchart

of the game

 Create GRASPS of

the game

 Troubleshooting

 System analysis and

design

 Recognize patterns

 Decision making

Free design

 Game design

 Programming

 Microsoft Kodu

 Create flowchart of

the game

 Create GRASPS of

the game

 Troubleshoot when

necessary

 Make decisions

based on software

limitations

 System analysis and

design

 Troubleshooting

 Decision making

Game design activities. The purpose of the game design activities is to help students

learn the basics of game design, programming, as well as basics of Microsoft Kodu. Therefore,

students are provided with many opportunities to create popular games using Kodu, while

learning about the intricacies of the game design and programming, and also master Kodu.

50

During game design activities students‘ knowledge of game design and programming is

scaffolded through three specific tasks: creation of games (from simple to more complex),

working on identifying elements of games, and creating flowcharts of games.

An example game design activity that the students do on the first GDL session is a game

called, ―Apple Hunter.‖ This activity is designed to teach students both the basics of Microsoft

Kodu, as well as the basics of game design (See Table 3). Apple Hunter is a very simple game

where the goal is to create a playable character, and the player wins the game when the character

eats five green apples and reaches five points (Figure 5).

Figure 5. Screenshots from Apple Hunter - The text within the visual is not meant to be readable,

and is meant for reference only.

The instructional sequence for a sample game design activity includes instructor-led

sections, as well as sections where students work individually (Table 4).

Table 4. Instructional Sequence for a Sample Game Design Activity (Apple Hunter)

Subtask Instruction Length Ideal Location

Introduce

GRASPS

Led by teacher, solicit students response for

popular games‘ GRASPS

30

minutes

Class with

projector

Introduce

Apple Hunter

Demo game creation by the instructor – Step

by Step: Instructor creates, students create

each step

1.5

hours

Class with

projector +

Computer Lab

Apple Hunter

Flowchart

Instructor-led session on: Analyzing

flowcharts, Analyze Apple Hunter flowchart

Student Activity: Improve AH Flowchart

1 hour
Class with

projector

51

The session begins with a focus on the basics elements common to most games, namely

Goals, Rules, Assests, Spaces, Play mechanics, Scoring (GRASPS) (Table 5). By generating the

GRASPS of popular games with the whole class‘s participation students get a chance to look

from a game designer‘s perspective to the games that they play for the first time. At this stage,

the instructor solicits answers from the students in order to raise their awareness as to what are

the necessary elements of games.

Table 5. GRASPS for Apple Hunter Game

Apple Hunter

Goals Eat 5 green apples

Rules

Do not eat red apples

(optional: character slows down after

eating red apples)

(optional: in 20 seconds)

Assets

Kodu

Apples

Tree

Scoring
Green apple = +1 green point

Red apple= -1 green point

Play

mechanics

Wander around, look for/avoid apples,

bump to eat

Spaces Walled open world

Next, students are provided with GRASPS of Apple Hunter and are asked to reverse

engineer to create this game. At this stage, the instructor gives out the worksheet, and quickly

goes over the GRASPS of the game with students to check for understanding. After this, since

this is the first class and students do not have prior experience with Kodu, the creation of Apple

Hunter is done as a whole class. The purpose here is to teach students the basics of Kodu, and

also the basics of programming and game design.

52

To create Apple Hunter, first a playable character is created and programmed to move

with the help of the keyboard, and then a tree that generates apples at random is created, finally

the character is programmed to eat green apples and score +1 point. This process teaches the

students the basics of the process. During the rest of the class, the students work on their own to

improve the game, or recreate it from scratch on their own. Instructors provide support (i.e.

programming, troubleshooting) if needed.

Activities in the game design category continue with creating flowcharts of games the

students will create. Flowcharts are representations of games depicted as systems. First the

students are given the flowchart of the game, Apple Hunter in this case, (Figure 6). After giving

students a couple of minutes to analyze the flowchart, the instructor asks the students questions

such as ―how many points do we need to win the game?‖ to check for students‘ understanding.

Finally, in order to give students chances to practice how flowcharts work, the instructor asks

them how they would change the flowchart if, for example, the red apples ended the game

immediately. This way they get a chance to practice reading flowcharts. In following lessons,

following a similar instructional sequence, students are scaffolded toward creating their own

flowcharts, by gradually giving them less complete charts, and finally giving them blank sheets

and asking them to create from scratch.

53

Figure 6. Example Flowchart Provided by the Instructors for Apple Hunter Game

During game design activities students the practice specific problem-solving skills that

are investigated in this study, as well: system analysis and design; decision-making skills; and

troubleshooting. For example, through creating or analyzing flowcharts of games or while

reverse-engineering a game from its given components, students practice system analysis and

design skills.

The game design process is also a natural context for student to practice troubleshooting

skills. For example, if a character won‘t work or a tree won‘t produce apples, the students will

need to carefully look at the codes of their games in order to find a line of code that requires

fixing in order to produce the desired outcome. Additional opportunities arise in the game design

tasks for student to practice their decision-making skills. For example, students need to decide

the specific elements to add to their games within the constraints of GRASPS (Table 5). A

student might have to choose among deciding to add red apples to the game, or to deduct points

Start

Kodu eats a

green apple

+1

green

point

Gained

+5 green

points?
WIN YES

NO

-1 green point

Red apple?

YES

NO

54

when his/her character eats them (as opposed to the green apples which are associated with

gaining points), or to create a countdown timer and turn the game into a time-based race, or even

to add another character into the game to compete against. All of these decisions significantly

change their games, and each choice presents the opportunity to practice decision-making.

Problem-solving activities. In the second half of the GDL intervention the focus is on

instructional activities centered on helping students to see the connection between the game

design and problem solving tasks. As stated earlier, this phase occurs after students have

mastered the game design software, the basics of game design, and programming. During this

second phase students not only get chances to practice their general and specific problem solving

skills, but also get acquainted with important metacognitive and basic skills underlying the

problem solving process (Table 6). More importantly, during this phase, the instructional

activities are based on theories of teaching problem-solving described in Chapter 2.

Table 6. Instructional Sequence for a Sample Problem Solving Activity

Subtask Instruction Length Ideal Location

Introduce

Problem

Scenario

Led by teacher

Present problem scenario

Solve with the class

45minutes
Class with

projector

Recreate

Scenario in

Kodu

Demo game creation by the instructor

– Step by Step: Instructor creates,

students create each step (first activity

only)

Individual student work to complete

the scenario in Kodu, improve

1.5 hours

Class with

projector +

Computer Lab

Create

Flowchart

Students work on creating the

flowchart for the problem scenario

based on their Kodu simulations

Instructors help as needed

1 hour
Class with

projector

An example activity that can explain general process of a problem solving activity is

called ―SimSchool.‖ The premise of this activity is to introduce students to the connection

55

between game design and problem solving. To do this, students are taken through a multistep

process by the instructor: (a) the students are first introduced to a complex problem, (b) are

guided in ways to solve this problem (using methods of teaching problem solving), and, finally,

(c) are asked to recreate the simulation in Kodu.

In SimSchool, students first receive the background of the problem-solving scenario:

―There is a trash problem at a school, and you need to understand the source of this problem and

devise a solution, and recreate your solution in Kodu.‖ During the first step, the students receive

data and graphs regarding the issue (Figure 7). It is at this first step, through instructor guidance,

that the students are introduced to basics skills underlying problem solving.

Figure 7. SimSchool Problem Scenario – Data Sources

During this activity specific methods of teaching problem solving got used: teaching

basic skills and teaching metacognitive skills directly (Mayer & Wittrock, 1996). Teaching of

0

2

4

6

8

10

12

1 2 3 4 5 6 7

A
m

o
u

n
ts

Years

Amount of Students

(hundreds)

Amount of Service

Staff (tens)

Amount of Trash (per

m2)

56

basic (i.e., low-level) skills involve teaching low-level cognitive skills to a degree where they are

automated so that while solving complex problem students‘ cognition gets less taxed. Learning

game design, programming and mastering Kodu during the first phase of the GDL can be an

example of this.

As for teaching of metacognitive skills during the first step of SimSchool, students learn

how to look at the data and the graph to understand the source of the problem. During this step

instructor provides guidance (i.e., guided discovery learning) without instructing students on the

right answer. During this step, also, the students receive instruction on some basic metacognitive

skills required to solve any complex problem. Specifically, the direct instruction focused on four

steps of solving problems identified by Polya (1957): (a) understand the problem, (b) devise a

plan, (c) carry out the plan, and (d) look back. Students are especially encouraged to take their

time, look at the patterns in the data to understand the source of the problem.

In the next step, they are asked to plan (i.e., create flowchart) their simulation in Kodu

(based on the problem scenario). Finally, they are asked to create the game and run and see if the

simulation replicates the original scenario. This SimSchool (Figure 8) process maps perfectly

onto both Polya‘s four steps, and the method of teaching metacognitive skills directly. The

SimSchool activity allows for student practice employing the metacognitive skills underlying

complex problems.

57

Figure 8. A Screenshot of SimSchool Simulation - The text within the visual is not meant to be

readable, and is meant for reference only.

It is also during the second phase of the GDL intervention that the use of analogies is

implemented, another effective method of teaching problem-solving (Gick & Holyoak, 1980;

Mayer & Wittrock, 2006). The purpose of using analogies is to help students understand to look

for patterns when they face with problems, and to recognize when they can use strategies they

already know to solve the novel problems.

The GDL used analogies by providing students with scenarios that are different on the

surface, but are essentially built on same underlying principles. Once students had solved the

SimSchool scenario, students were given another scenario called Kodu EcoSystem. In the

Ecosystem scenario, the relationship between objects in the system is similar to the relationship

in the SimSchool. In SimSchool, service staff clears out trash, and student number and service

staff number has an inverse relationship with the amount of trash (Figure 8). Similarly, in Kodu

EcoSystem, the three living organisms have a relationship that impacts the population numbers

of each other.

In the ecosystem scenario, just as with the SimSchool scenario, the students are guided by

the instructor to make sense of this problem, devise a solution, and replicate it in Kodu. By

58

working on analogous problems, the Ecosystem scenario activities provided students with

opportunities to work with analogies and to see patterns in seemingly complex problems. During

this process of solving the Ecosystem scenario, students master the game design software, while

also working on reverse engineering a very complex problem. Finally, the scenario provided a

context for hands-on practice with a fun activity to solve a complex problem.

Within the context of the SimSchool and Ecosystem scenarios, another very effective

method of solving problems, structure-based methods is also used. In structure-based methods

students work with concrete objects and hands-on tasks, which are considered to be effective

ways of teaching for understanding (Mayer & Wittrock, 1996; Moreno & Mayer, 1999). In

structure-based methods, teachers can, for example, use beads and sticks in mathematics

(concrete objects) to teach simple computation problems (abstract rules). In using Kodu to

recreate a problem scenario, the GDL intervention exemplified structure-based methods of

teaching problem solving. Designing games is already a hands-on activity, and can be considered

as a more contemporary example of structure-based methods.

Finally, during the process of recreating problem scenarios in Kodu, generative methods

of teaching problem solving was also implemented. Generative methods (Mayer & Wittrock,

1996) are designed to push students to generate relationships between their own experiences and

the target information during learning activities. The problem tasks used in the GDL intervention

gave students the opportunity to relate the problem scenarios to their own experiences in two

ways. First, the scenarios are selected from contexts that are similar to students‘ daily life

experiences (e.g., SimSchool). Second, during the recreation process, students design worlds that

they imagine. For example, students sometimes changed the student-staff problem into an

59

employee-boss problem. It is this process of personalization and generation that results from the

use generative methods of teaching problem solving.

Troubleshooting activities. Troubleshooting tasks are included placed in the GDL

intervention both to give students recurring chances to practice this vital skill, as well as to help

students understand the importance of troubleshooting during the game design process. The

troubleshooting tasks are offered in the second phase of the GDL intervention, after students

master the game design software, basic game design, and programming skills.

An example of a troubleshooting task is to provide students with a broken game, and then

ask them to analyze the game to find the wrong or missing codes (Table 7). In the next step, they

are asked to fix these problems in order to make it a working game again.

Table 7. Instructional Sequence for a Sample Troubleshooting Activity

Subtask Instruction Length
Ideal

Location

Introduce the

broken game

Teacher shows the broken

game

Solicit responses from class to

troubleshoot the game

30

minutes

Class with

projector

Fix the game

Students work individually to

work on fixing the game

Improve game after fixing

(make it your own)

1.5

hours

Computer

Lab

Flowchart
Create the flowchart of the

game
1 hour

Class with

projector

Finally, in the last step, the students are asked to create a flowchart and GRASPS of the

game, so that they also get a chance to practice system analysis and design skills.

Troubleshooting processes also inherently require students to make decisions: what to fix and

which problem has the priority. Due to the immediate feedback (i.e., the effect of the changes

made to the code can be seen by running the game instantly), students get to practice their

60

troubleshooting skills in a fast manner. Also, since the game design environment provides the

students with a safe sandbox-like environment, the students develop in their confidence in

troubleshooting.

Free design activities. During the final sections of the GDL intervention, students were

given chances to work on creating a game of their own. Having mastered the game design

software, game design in general, programming and problem-solving skills within the earlier

phases of the intervention, students got a final chance to create a personally and socially

meaningful artifact in the spirit of constructionism.

Free game design activities also provide an important way to check student

understanding, because the students get a chance both test the boundaries of their skills and the

game design software. The GDL intervention culminates with student presentations of the games

they have developed.

Summary

The GDL intervention was created and offered for the purpose of teaching young

children game design, programming and problem-solving. Having multiple goals, inevitably,

required engineering of a multi-faceted intervention, incorporating multiple instructional

techniques, and activities with different objectives.

The intervention was structured in two phases. During phase one, the goal was to teach

students how to Microsoft Kodu and how to design games. This was achieved through guided

sessions where students worked on analyzing, planning (i.e., flowcharts) and designing popular

games. During this phase, students also got chances to practice their system analysis and design,

troubleshooting and decision-making skills, because these skills were embedded in the game

design process and naturally emerged.

61

After teaching the students basics of the game design process, in the second phase, the

goal shifted more toward showing students the connection between game design and problem

solving. For this purpose, the students received instruction on metacognitive skills underlying

problem solving, worked on analogies, solved problems and recreated problem scenarios in

Microsoft Kodu. The final step where they recreated the simulations in Kodu especially gave

students the hands-on experience in solving complex problems. Within the scope of the GDL

intervention, through game design tasks students found many hands-on opportunities to practice

their system analysis and design, decision making, and troubleshooting skills.

62

CHAPTER 4

Methods

Research Questions and Research Design

Research question 1. Do students attending the GDL courses show significantly higher

gains in general and specific problem solving skills (i.e., decision-making, system analysis and

design and troubleshooting) compared to the control group?

In order to understand whether learning game design at the GDL intervention affect

students‘ problem solving skills, interest, and utility value perceptions, I ran a quasi-

experimental research (Table 8) where the problem-solving gains of students who attended the

GDL intervention were compared to a control group who did not participate in the intervention.

The inclusion of a control group was especially important to control for the effects of testing.

Testing refers to the probability that students who take a test twice would score higher in the

post-test by a simple function of familiarity with the test (Campbell & Stanley, 1963). Also,

reactivity, ―process of measuring may change that which is being measured‖ (p. 9), is a possible

cause of change in students‘ problem solving skills: the mere fact that students had received the

problem-solving test might benefit them differently. Therefore, I gave the test of problem solving

to a control group to account for these threats to internal validity. The study‘s design in assessing

problem solving skills was nonequivalent control group design (Campbell & Stanley, 1963).

Table 8. Research Design for RQ 1 (based on Campbell & Stanley, 1963, p. 40)

Selection Condition Pretest Intervention Posttest

Self-selected Experimental Yes Yes Yes

Self-selected Control Yes - Yes

63

Research question 2. Are there differences among the different experimental sites in

terms of the gains students show in general and specific problem solving skills?

Because GDL courses were offered at different sites, and students self-selected to

participate in the courses, I also looked at the differences between the experimental sites. The

reason for this research question is to understand if the intervention led to significant changes

regardless of difference between sites. The study design for this question was pretest-posttest

design (See Table 9).

Table 9. Research Design for RQ 2-6 (based on Campbell & Stanley, 1963, p. 8)

Selection Condition Pretest Intervention Posttest

Self-selected Site 1 Yes Yes Yes

Self-selected Site 2 Yes Yes Yes

Self-selected Site 3 Yes Yes Yes

Self-selected Site 4 Yes Yes Yes

Research question 3-6. Similarly, because only the experimental sites received the

motivation surveys, I used a similar design to RQ2 for research questions three, four, five, and

six.

RQ 3a. Are there changes in students’ perceived utility value in game design,

programming and problem solving activities due to participating in GDL courses?

RQ3b. Are the changes different for different sites?

RQ 4a. Are there changes in students’ situational interest in game design, programming

and problem solving activities due to participating in GDL courses?

RQ4b. Are the changes different for different sites?

RQ 5. What is the relationship between students’ perceived utility value of game design,

programming and problem solving and their emerging individual interests in these domains,

controlling for their perceived utility values at the pretest?

64

RQ 6. What is the relationship between students’ perceptions in motivation constructs

(i.e., situational interest, utility value, and emerging individual interest in game design,

programming and problem solving) and problem solving skills at the posttest, controlling for

their performances and perceptions at the pretest?

Research question 7. Does the relevance manipulation given in the middle of the GDL

courses have an impact on students’ problem solving skills, situational interest, perceived utility

value, and emerging individual interest in game design, programming, and problem solving?

For research question seven, I used a true experimental design. In true experimental

designs, the students are randomly placed into experimental and control conditions (Table 10).

The students who attended the GDL courses were randomly split into two groups to understand

the impacts of a simple writing task (relevance intervention) on their motivational outcomes

(more detail can be found in procedures).

Table 10. Research Design for RQ 7 (based on Campbell & Stanley, 1963, p. 40)

Selection Condition Pretest Intervention Posttest

Random Experimental Yes Yes Yes

Random Control Yes - Yes

Participants

Data for this study come from four different groups of middle school students (n = 73)

who attended the GDL courses that were offered during summers of 2011, 2012, and fall of

2012 at various sites in Lansing, Michigan and Istanbul, Turkey (See Table 11). Although within

each location the groups were homogenous in terms of student characteristics (i.e., SES, and

age), due to the self-selected nature of participation, potential differences between the groups are

expected.

65

Table 11. Summary of GDL Implementation Sites and Sample Sizes

GDL Site n Age

Işık Summer 2011 18 12.5

Işık Summer 2012 11 12.3

ITEC LCC GATE 7 11.6

Doğa Schools, Istanbul 13 12

Control Site, Istanbul 24 13.4

Participant Flow

For research questions one and two (i.e., the changes in problem solving skills), the

analyses were conducted using data from 73 students (out of a total of 76 students) who attended

the GDL courses.

For research questions three through seven (i.e., involving motivational constructs), data

was collected at only two (Doga, LCC) of the four experimental sites, yielding a possible sample

of 20 possible participants. Out of the 20 students, two participants were removed from further

analyses because both students selected the highest possible ratings for all pre- and post-survey

items. In addition, one student did not complete the post-survey, and removed from overall

analyses. One case was identified as an outlier through calculating the z scores for all variables,

and identifying the cases that had a z score greater than three, resulting in a final sample size for

these questions of n = 16.

Finally, for research question 7, data from four students could not be used because some

students were not present during the day of relevance intervention (missing at random). This

resulted in a final sample size for this analysis of n = 12 (Table 12).

66

Table 12. Participant Flow by Research Questions

Research Question n

1 & 2 73

3-6 16

7 12

Sampling Procedures

The students who participated in the GDL courses were self-selected. The students

learned about the courses through announcements made at their schools or at institutions where

they were attending other after-school courses. Interested students enrolled in the GDL course,

including the control group, which was composed of the students who wanted to participate in

the course at the future implementation. Among the enrolled students, data was not collected

from the students who did not want to participate in the research (i.e., take the problem solving

test and the motivation surveys). The students received small gifts (e.g., Michigan State

University bracelets, pens, etc.) as a compensation of their time for taking part in the research.

Research Sites

The research sites were selected because of the personal connections the lead researcher

had with the administrators of the sites, who also indicated interest in providing their students

with such an alternative extracurricular activity.

Ayazağa Işık Private School, Istanbul. The first implementation of GDL courses took

place in Istanbul, Turkey during the summer of 2011. During the first implementation, 19 middle

school students (6 female, 13 male, age average = 12.5) joined the course for nine days between

June 27 and July 8. Data from one student was removed from the data analysis after it was

identified as an outlier as a result of a z-score analysis.

67

The second iteration of GDL courses took place at the same school with a similar group

of students during the summer of 2012. In this iteration, 12 new students (11 male, 1 female, age

average = 12.3) attended GDL courses. One student from this cohort was removed from further

data analyses after it was identified as an outlier as a result of a z-score analysis.

All students at the Isik site came from middle or upper-middle class families living in

Istanbul, Turkey. The course at these sites lasted for approximately 40 hours (5 hours each day, 8

full days) in each iteration.

ITEC LCC Gifted and Talented Education (GATE) Saturday School, Lansing, MI.

Between October 20 and November 17 a GDL course offered through GATE Saturday School of

Lansing Community College. Although a total of 15 students joined in the GDL courses, only 7

students (1 female, 6 male, age average = 11.6) agreed to participate in the research.

The course lasted for 5 sessions (3 hours each) for a total of 15 hours. The students were

coming from upper middle class families living in Lansing, MI. Since the course length was

shorter than the Isik school courses, curriculum was adapted to keep key activities on problem

solving.

Doğa Private School, Istanbul. Between November 24 and December 15, 14 students

attended the GLD course offered. There were 11 male and 3 female students, and the course

lasted for 4 sessions (4 hours each) for a total of 16 hours. Since the course length was shorter

than the Isik school courses, curriculum was adapted to keep key activities on problem solving.

The students‘ age average was 12, and they were coming from upper middle class families living

in Istanbul, Turkey. One student‘s data at this site was identified as an outlier (z score analysis)

and removed from further analyses.

68

Control group. From the Doğa Private School a group of students who signed up for a

summer GDL course (n = 24) were recruited to be the control group, and were given the

problem-solving test twice, fifteen days apart. The students‘ age average was 13.4, and they were

coming from upper middle class families living in Istanbul, Turkey. There were 12 females and

12 males at this site, and the age average was 13.4.

Procedures

As indicated earlier in the chapter, in order to answer the research questions three

different designs were used: 1) nonequivalent control group design (RQ1), 2) pretest-posttest

design (RQ2-6), and true experimental design (RQ7).

One of the main purposes of this study was to measure the students‘ initial and final

problem-solving skill levels, as well as the overall progress they showed as indicated by the

difference between the two. For this reason, the students who participated in the study completed

the PISA problem-solving assessment at the beginning and end of the GDL courses.

In addition to the problem-solving assessment, the students who participated in the study

at the LCC and Doga sites also filled in the motivation survey (i.e., situational interest and

perceived utility value of game design, programming and problem solving) both at the beginning

and end of the course. These students also filled out an emerging individual interest survey for

game design, programming, and problem-solving tasks at the end of the last day of the course.

In order to test the effectiveness of a utility value manipulation (i.e., relevance

intervention), in the middle of the GDL courses (middle point varied depending on the overall

course length at each site) students were randomly assigned one of the two conditions: relevance

(relevance) and no-relevance (control) condition for a brief period of time. The summary of the

procedures can be seen in Table 13.

69

Table 13. Summary of the Procedures Used

Time Test Sites

First Day

PISA Problem solving test

Situational interest of game

design, programming, problem

solving

Utility value of game design,

programming, problem

solving

All

Doga and LCC

Doga and LCC

Mid-course Relevance intervention Doga and LCC

Final Day

PISA Problem solving test

Situational interest of game

design, programming, problem

solving

Utility value of game design,

programming, problem

solving

Emerging individual interest

of game design, programming,

problem solving

All

Doga and LCC

Doga and LCC

Doga and LCC sites

Independent Variables

GDL intervention. The main intervention of interest in this study was the GDL courses.

GDL courses, as described in Chapter 3, were designed to teach students game design and also

show the students the connection between game design and problem-solving tasks. As it can be

seen in Table 14, GDL was offered at different lengths at each site.

Table 14. Length of GDL Intervention by Site

70

Site
Sessions

(times)

Session Length

(hours)

Course Length

(hours)

Işık Summer 2011 8 5 40

Işık Summer 2012 8 5 40

LCC GATE 5 3 15

Doğa Schools, Istanbul 4 4 16

Control Site, Istanbul 0 0 N/A

Although offered at different lengths, the content of instruction at each GDL site was the

kept constant by only offering more free design activities at the sites where the course length was

longer. The main activities that were offered at each site were game design, problem solving,

troubleshooting and free design. The nature and purpose of these activities were discussed in

Chapter 3. A breakdown of tasks by each site can be seen in Table 15.

Table 15. Activity Type Length by Site

Site
Game Design

(hours)

Problem Solving

(hours)

Troubleshooting

(hours)

Free Design

(hours)

Işık Summer 2011 10 10 5 15

Işık Summer 2012 10 10 5 15

LCC GATE 6 6 0 3

Doğa Schools, Istanbul 6 6 0 4

Control Site, Istanbul 0 0 0 0

As is shown in Table 15, although the LCC and Doga sites did not receive specific tasks

for troubleshooting due to time constraints, the regular task of game design incorporates a

significant amount of troubleshooting and did not need further time devoted to them.

Instruction was given at the beginning of each task for a minimal amount of time, and

most of the class-time was devoted to students working on game design or problem-solving

activities. The researcher gave all instruction in order to keep instructor effect constant. After the

students were introduced to their tasks, the rest of the class time the students worked on creating

71

their games (according to the given tasks), and both the lead instructor and two other instructors

provided individual support when the students asked for help.

GDL classes were offered in computer labs at the research sites (Figure 10). The

computers were all Windows PCs with Microsoft Kodu installed. Since XBOX controllers can

be used on PCs to design Kodu games, students were given the option to bring their controllers if

they had one. The experience of game design, however, was not impacted by whether the

students designed with controllers or a standard keyboard-mouse set. During the intervention,

each student received one PC and worked individually, although students were not discouraged

from helping each other. All instructions were given in English at all sites.

Figure 9. An Example Classroom Setting Used During GDL Intervention

Relevance intervention. Similar to previous research by Hulleman et al. (2010;

Hulleman & Harackiewicz, 2009), in order to test whether manipulating perceived utility value

had an impact on students‘ performance and interest in problem solving, in this study students

were assigned into a utility value manipulation (i.e., relevance intervention) condition.

Specifically, at Doga and LCC sites, at the midpoint of the course the students were

randomly divided into two groups. The students were assigned to either the relevance

(experimental) or no-relevance (control) conditions. All students followed the same curriculum

72

and attend the same activities throughout the camp, apart from the relevance intervention on this

day.

The students in both conditions received a paper with instructions about the writing

assignment adapted from Hulleman et al. (2010), and they were provided with a blank space to

write their paragraphs at the bottom of the paper. For this intervention, the students were asked to

turn off their monitors, put away their keyboards, and use the desks in the computer lab. The

students in the relevance condition received instructions on writing a short essay relating the

problem solving skills they were learning at the GDL courses to their future school and real

lives:

…Think about all of the problem solving activities we have been doing in this camp. To

convince one of your friends to join the camp next year, write a short essay (1–3

paragraphs in length) briefly describing how the problem solving skills you are learning

here are useful to your own school and future work life. You can especially think about

how the system analysis and design, troubleshooting and decision-making skills that you

are learning at this camp through using Kodu and designing games will be helpful in

school, and maybe in your job in the future. Feel free to give examples.

During the same time period, participants in the control condition received instructions

on writing a paragraph describing their favorite digital game. The students were asked to keep

their work secret in order to prevent them from seeing the other writing task (i.e., relevance task).

The instructions for essay were:

…Think about your favorite game. Write a short essay (1–3 paragraphs in length)

describing it. You can especially think of what you like the best about this game (any

specific parts of the game).

73

After students finished writing their essays, the researchers collected the essays, and the

students in both groups continued following the same GDL curriculum until the end of the camp

without any other interventions or group-specific changes.

Sites. Another independent variable was the site effects. As mentioned previously in this

chapter, since the students self-selected to be part of this research, site was used as a between-

subjects independent variable in analyzing the research questions.

Dependent Variables

General and specific problem-solving skills. In this study, problem-solving skills were

measured by 2003 PISA (Programme for International Student Assessment) Problem Solving

Assessment. The test was originally developed collaboratively by OECD (Organisation for

Economic Co-operation and Development) member countries to assess and compare 15-year-old

students across the globe for their readiness for the challenges of the tomorrow‘s world (OECD,

2005a). The test-retests reliability of the test was acceptable (α = .645).

The student answers were graded as 0 (incorrect), 1 (partially correct) or 2 (fully correct),

if the question allowed partial answers, or 0 (incorrect) and 1 (correct) if the question was a

dichotomous item. Grading was done according to the answer key provided by OECD (2004b).

Example items can be found in Appendix A.

Students completed the test within an hour. The test was given in paper-pencil format.

Overall, the test included 19 items in three different formats: multiple choice, short answer, and

extended response. Multiple choice items were either standard 4-choice questions, or questions

that required students to identify given responses in terms of their accuracy (i.e., true/false or

correct/incorrect questions). In short answer items, students were asked to construct a short

answer either in the form of a numerical answer, or a word or short phrase. Extended response

74

items required ―more extensive writing, showing a calculation and frequently included some

explanation or justification‖ (OECD, 2005a).

The test assessed three specific problem types, which are context-free and commonly

encountered in real-life, and emphasize the process of problem solving rather than possession of

domain knowledge (OECD, 2003). These problem types were decision-making (assed with 7

items), system analysis and design (assed with 7 items), and troubleshooting (assed with 5

items). A combination of these skills indicates the general problem solving skill of each student.

As discussed previously, teaching these problem-solving skills were an important part of

the GDL intervention, and GDL tasks were aligned to provide practice with these skills. The

connection between GDL tasks and PISA problem solving tasks can be seen in Table 16. The

specific connection between each task and the problem solving skills involved is discussed in

Chapter 3.

75

Table 16. Alignment between the PISA Test and GDL Tasks

Task Category Subtasks Problem Solving Alignment

Game Design

 Reverse-engineer game from

given GRASPS

 Create flowchart

 System analysis and design

 Troubleshooting

 Decision making

Troubleshooting

 Find inoperable parts of a game

and fix them

 Create a flowchart of the game

 Create GRASPS of the game

 Troubleshooting

 System analysis and design

 Recognize patterns

 Decision making

Problem solving

 Analyze a given problem

scenario

 Find solution to the given

problem

 Understand problem patterns

from data and graphs

 Create simulation of the

problem scenario

 Create flowchart of the

scenario

 Metaskills (plan, devise solution,

execute, evaluate)

 Recognize patterns

 System analysis and design

 Troubleshooting

 Decision making

  

Free design

 Create flowchart of the game

 Create GRASPS of the game

 Troubleshoot when necessary

 Make decisions based on

software limitations

 System analysis and design

 Troubleshooting

 Decision making

Item and student response samples. System analysis and design questions ―require a

student to analyze a complex situation in order to understand its logic and/or to design a system

that works and achieves certain goals given information about the relationships among features

of the problem context‖ (OECD, 2003, p. 163). An example question that measured this in the

test was the library system question, where the students were asked to draw the library system of

an imaginary school using a flowchart. The first question (Figure 10) requires students to be able

76

to read the flowchart to understand the library system and give a simple answer by writing down

the number in the provided space.

Figure 10. Sample System Analysis and Design Question (PISA)

77

Based on the information given about the ―Greenwood High School,‖ the second

question requires students to create a flowchart for that schools‘ library system. Sample correct

and incorrect student responses can be seen in Figure 11. The first picture represents an incorrect

answer because it does not fully show the library system of the ―Greenwood High School,‖ it

represents an incorrect system. In the second picture, however, we see an answer that fully

depicts how the library system at the school works, covering every step of the process.

Figure 11. Incorrect and Correct Student Answer (System Analysis and Design)

(Correct response)

(Incorrect response)

78

Decision making problems ―require students to understand a situation involving a number

of alternatives and constraints and to make a decision that satisfies the constraints‖ (OECD,

2003, p. 160). An example question that measured this in the test was an item about energy

needs: students were asked to calculate and decide whether a meal would be enough to satisfy

the needs of a given person based on that person‘s daily energy needs. The first question (Figure

12) requires students to be able identify a person‘s energy needs by looking at data tables and

deciding to which category the person belongs.

Figure 12. Sample Decision Making Question (PISA) - 1

This problem is about selecting the suitable food to meet the energy needs of a person in
Zedland. The following table shows the recommended energy needs in kilojoules (kJ) for
different people.

 Men Women

Age
Activity
Level

Energy
Need (kJ)

Energy
Need (kJ)

18 to 29 Light
Moderate
High

10660
11080
14420

8360
8780
9820

30 to 59 Light
Moderate
High

10450
12120
14210

8570
8990
9790

60 and
above

Light
Moderate
High

8780
10240
11910

7500
7940
8780

Activity Level According to Occupation:

Light:
Indoors sales person
Office worker
Housewife

Moderate:
Teacher
Outdoor salesperson
Nurse

High:
Construction worker
Labourer
Sportsperson

Question 1: Energy Needs

Mr. David Edison is a 45-year old teacher. What is his recommended daily energy need in
kJ?

Answer:…………………………….kJ.

79

A more complicated decision making question is the follow-up question where they read

information about a person and need to go through correct calculations and make the right

decision as to whether the person should or should not eat a given menu (Figure 13). A sample

correct student answer can be seen in Figure 14.

Figure 13. Sample Decision Making Question (PISA) - 2

Jane Gibbs is a 19-year old high jumper. One evening, some of Jane’s friends invite her out

for dinner at a restaurant. Here is the menu:

MENU (Numbers refer to kilojoule [kJ])

Soups: Tomato Soup: 355, Cream of Mushroom Soup: 585

Main courses: Mexican Chicken: 960, Ginger Chicken: 795, Pork and Sage Kebabs: 920

Salads: Potato Salad: 750, Spinach and Apricot Salad: 335, Couscous Salad: 480

Desserts: Apple Crumble: 1380, Cheese Cake: 1005, Carrot Cake: 565,

Milk Shakes: Chocolate: 1590, Vanilla: 1470

Fixed Menu

Cost: 50 Zeds

Tomato Soup

Ginger Chicken

Carrot Cake

Question 2: Energy Needs

Jane keeps a record of what she eats each day. Before dinner on that day her total intake of
energy had been 7520 kJ.

Jane does not want her total energy intake to go below or above her recommended daily
amount by more than 500 kJ.

Decide whether the special “Fixed Menu” will allow Jane to stay within ±500 kJ of her
recommended energy needs. Show your work.

80

Figure 14. Sample Correct Student Response (Decision Making)

Finally, troubleshooting problems ―require a student to comprehend the main features of

a system and to diagnose a faulty or under-performing feature of the system or mechanism‖

(OECD, 2003, p. 168). An example question that measured this in the test was the irrigation

item: the students were asked to analyze an irrigation system and find a faulty gate that prevents

the water flow (Figure 15). Giving the correct answer requires students to attend the details of

the system, to understand it, and find out what is causing the system to fail.

81

Figure 15. Sample Troubleshooting Question (PISA)

PISA assessment was analyzed using item-response-theory based (IRT) methods. In IRT

analyses each individual item in the test has data on its difficulty level, which, in a further IRT

analyses is used to calculate each students‘ problem solving proficiency levels (See Appendix B

for details on calculating student proficiencies). Calculated according to IRT procedures, each

A

82

student‘s problem solving ability was calculated on a scale ranging from -4 to 4. This scale can

roughly be interpreted as a student‘s probability of answering all the items at a test correctly.

Specifically, a student with an ability level of 0 on a specific question has 50% answering the

question correctly.

Motivation variables. To measure students‘ situational and emerging individual interest

and utility value perceptions, self-report surveys was used (see Appendix C). Participants

responded to all motivation items on a 100-point scale from 0 (strongly disagree) to 100

(strongly agree). A summary of reliability statistics for each scale in both pre- and post-

implementations can be found in Table 17.

Table 17. Motivation Scale Reliabilities by Domain and Time

Domains Scales Item n Pre a Post a

Game design

Utility value 7 .95 .90

Situational interest 5 .83 .78

Emerging individual Interest 4 N/A .77

Programming

Utility value 7 .95 .91

Situational interest 5 .82 .84

Emerging individual Interest 4 N/A .79

Problem Solving

Utility value 7 .95 .95

Situational interest 5 .92 .94

Emerging individual Interest 4 N/A .85

Perceived utility value. Participants‘ perceptions of utility value (e.g., ―I believe

programming could be of some value to me.‖) of game design, programming, and problem-

solving activities was measured by a 21-item scale (7 items for each activity). The survey was

adapted from Hulleman et al. (2010), where the reliability of this scale was acceptable (ranging

from α=.78 to α=.88).

83

Situational interest. Participants‘ situational interest (e.g., ―I think learning programming

at this camp is interesting.‖) in the game design, programming, and problem-solving activities

was measured by a 15-item scale (5 items for each). The items were adapted from an early

research by Hulleman et al. (2010), where the reliability of this scale was high (α=.89).

Emerging individual interest. Participants‘ emerging individual interest in the game

design, programming, and problem-solving activities was measured by a 12-item scale (e.g.,

―My experience at this camp makes me want to take more programming classes,‖ ―I am not

really interested in using programming in my future career‖). The items were adapted from a

related study by Hulleman and Harackiewicz (2009), where the reliability of this scale was high

(α=.84).

84

CHAPTER 5

Results

Changes in Problem-Solving Skills

Research question # 1. To answer the first research question, namely to understand if

students attending the GDL courses showed significantly higher gains in general and specific

problem solving skills (i.e., decision-making, system analysis and design and troubleshooting)

compared to the control group, I used two tests.

First, to understand if the performances of the two groups were similar at the pre-test, I

ran a one-way multivariate analysis of variance (MANOVA), having two levels of group

(experimental vs. control) with general problem solving, decision-making, system analysis and

design, and troubleshooting skills at pre-test as dependent variables. This analysis is an important

first step to understand if the groups were similar at the pre-test. Because the groups were not

chosen randomly, i.e. a quasi-experimental research design, potential significant group

differences (e.g., history, maturation, testing) can confound the results and threat the internal

validity of the research. Understanding the difference of the groups in the pre-test can account

for these types of threats to the study‘s internal validity.

The multivariate between-subjects omnibus for group (i.e., experimental vs. control) was

significant (Wilks‘s Λ = .771), F (4, 68) = 5.057, p = .001, η² =.229. Specifically, there were

significant differences between the control and experimental groups at the pre-test on system

analysis and design, F (1, 71) = 9.139, p = .003, η² =.114; and troubleshooting, F (1, 71) =

4.591, p = .036, η²=.061, favoring the experimental group. Differences between the groups at the

pre-test was not statistically significant for the measures of general problem solving, F (1, 71) =

85

2.053, p = .156, η² =.028, and decision-making skills, F (1, 71) = .647, p = .424, η²=.009. The

results indicate that the two groups were not statistically different in terms of their general

problem-solving skills at the pre-test. As it can be seen in Figure 16, the students at the

experimental sites had higher initial levels of problem solving. In IRT, the scale from -4 to 4

indicates the students‘ ability level (i.e., theta) or the likelihood of getting a question correct. The

higher the student‘s theta, the more likely the student can get the question correct. Zero, in this

scale refers to 50% chance.

Figure 16. Problem Solving Abilities for Control and Experimental Groups at the Pretest

Next, in order to understand if the two groups differed in terms of gains they made in

general and specific problem solving skills over time, I ran a repeated-measures multivariate

analysis of variance test (RM-MANOVA), having two levels of time (pre vs. post) as within-

subjects factors, and two levels of group (control vs. experimental) as between-subjects factors.

The multivariate omnibus for group was significant (Wilks‘s Λ = .64), F (4, 68) = 9.564, p<.001,

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

General

problem solving

System analysis and

design*

Decision making Troubleshooting*

Control Experimental

86

η²=.36, as were within-subjects test for time (Wilks‘s Λ = .783), F (4, 68) = 4.722, p = .262,

η²p=.06, and Time X Group interaction (Wilks‘s Λ = .659), F (4, 68) = 8.793, p<.001, η²=.341.

Follow-up between-subjects tests indicated that experimental and control groups

significantly differed in general problem solving, F (1, 71) = 14.368, p<.001, η²=.17; system

analysis and design, F (1, 71) = 31.696, p<.001, η²=.31; and troubleshooting, F (1, 71) = 14.699,

p<.001, η²=.17, but not for decision making, F (1, 71) = 1.18, p =.281, η²=.015. Time x Group

interaction was significant for all tests: general problem solving, F(1, 71) = 35.131, p<.001,

η²=.29; system analysis and design, F(1, 71) = 18.781, p<.001, η²=.195; decision-making, F(1,

71) = 15.93, p = .281, η²=.161, and troubleshooting, F(1, 71) = 4.745, p = .033, η²=.051,

favoring the experimental group in all of the tests. This result indicates that experimental sites as

a whole, compared to the control group, showed statistically significant gains in general problem

solving, system analysis and design, and troubleshooting, while the changes for control group

were not statistically significant. Table 18 and Figure 17 summarize the results for each domain.

These results favor the experimental groups.

Table 18. Descriptive Statistics for General and Specific Problem Solving (Control vs.

Experimental)

General PS SYS DM TS

Pre Post Pre Post Pre Post Pre Post

Experimental
M -0.77 0.09 -0.67 0.17 -0.85 0.09 -0.74 -0.19

SD 1.08 0.91 1.17 1.04 1.34 1.06 1.21 1.06

Control
M -1.12 -1.24 -1.54 -1.77 -0.62 -0.69 -1.35 -1.4

SD 0.63 0.98 1.14 1.16 0.62 1.2 0.97 1.08

*General PS = General Problem Solving, SYS = System analysis and design, DM = Decision

making, TS = Troubleshooting

87

Figure 17. General and Specific Problem Solving Skill Changes for Control and the

Experimental Groups

Research question # 2. Next to answer whether there were differences between sites in

the gains that they showed in their problem-solving skills, I ran two tests. First, in order to see if

the sites had any differences at the pre-test in terms of general and specific problem-solving

skills, I conducted a MANOVA having five levels of site (Isik11, Isik12, Doga, LCC, and

control) as between-subjects factor with general problem-solving, decision-making, system

analysis and design, and troubleshooting skills at the pre-test as dependent variables. The

multivariate omnibus for site was significant (Wilks‘s Λ = .549), F (16, 199.216) = 2.699, p =

.001, η²p=.139, indicating that the groups differed in their initial skills in terms of general and

specific problem solving skills (Figure 18).

-4.00

-2.00

0.00

2.00

4.00

Pre Post

Control General problem solving Control System analysis and design

Control Decision making Control Troubleshooting

Experimental General problem solving Experimental System analysis and design

Experimental Decision making Experimental Troubleshooting

88

Figure 18. Problem Solving Skill Differences at the Pretest for Different Sites

*General PS = General Problem Solving, SYS = System analysis and design, DM = Decision

making, TS = Troubleshooting

Between-subjects tests indicated that there were significant group differences for all tests:

general problem solving, F(4, 68) = 5.027, p = .001, η²=.23; system analysis and design, F (4,

68) = 4.511, p = .003, η²=.21; decision making, F (4, 68) = 2.632, p = .042, η²=.134; and

troubleshooting, F (4, 68) = 6.017, p < .001, η²=.261.

To understand specific group differences I conducted follow-up tests with Bonferroni

adjustment. In terms of general problem solving skills, there were significant differences

between Isik11 group, and Doga (p = .003), Isik12 (p = .032), and the Control groups (p = .007),

where Isik11 group‘s initial performance was significantly higher than the others. In system

analysis and design, there was a significant difference between Isik11 and the control group (p =

-4.00

-2.00

0.00

2.00

4.00

Gen. PS SYS DM TS

LCC Doga Isik12 Isik11 Control

89

.002), favoring the Isik11 group. In decision-making, there were not any significant differences

among the groups. Finally, in terms of troubleshooting, there were significant differences

between Isik11 and Doga (p = .001) and Control sites (p = .001), again favoring the Isik11 site‘s

initial performance. A summary of the means and standard deviations can be found in Table 19.

Table 19. Descriptive Statistics for Problem Solving Tests for Each Site

Dependent

variables

LCC Doga Isik12 Isik11 Control

M SD M SD M SD M SD M SD

General problem

solving

Pretest -0.64 0.87 -1.37 0.87 -1.17 0.87 -0.15 0.87 -1.12 0.63

Posttest 0.20 0.88 -0.13 0.88 -0.51 0.88 0.57 0.88 -1.24 0.98

System analysis

and design

Pretest -0.42 1.12 -1.17 1.12 -1.08 1.12 -0.16 1.12 -1.54 1.14

Posttest 0.25 1.05 -0.12 1.05 -0.28 1.05 0.63 1.05 -1.77 1.16

Decision-making

Pretest -0.68 1.11 -1.29 1.11 -1.40 1.11 -0.27 1.11 -0.62 0.62

Posttest 0.23 1.08 0.04 1.08 -0.61 1.08 0.50 1.08 -0.69 1.20

Troubleshooting

Pretest -0.87 1.03 -1.59 1.03 -0.89 1.03 0.00 1.03 -1.35 0.97

Posttest -0.07 1.00 -0.47 1.00 -0.87 1.00 0.38 1.00 -1.40 1.08

 Next, to understand the differences in the sites in terms of the changes that they showed

in general and specific problem-solving skills, I conducted an RM-MANOVA, having two levels

of time (pre vs. post) and five levels of site (Isik11, Isik12, Doga, LCC and Control) as between-

subjects factor. The multivariate omnibus for site was significant, (Wilks‘s Λ = .467), F(16,

199.216) = 3.521, p < .001, η² =.537, so was the main effect of time (Wilks‘s Λ = .511), F(4, 65)

= 15.521, p<.001, η² =.489. The interaction between Time X Site was also significant (Wilks‘s Λ

90

= .57), F(16, 199.216) = 2.518, p = .002, η² =.43. This indicates that the there were differences

in the gains the sites showed.

Follow-up between-subjects tests for site indicated that for all problem-solving tests there

was a significant impact of the site: general problem solving, F(4, 68) = 8.224, p <.001, η² =.33;

system analysis and design, F(4, 68) = 10.933, p<.001, η² =.39; decision making, F(4, 65) =

2.912, p =.028, η² =.15, and finally for troubleshooting, F(4, 65) = 0.155, p <.001, η² =.35.

Post-hoc tests with Bonferroni adjustment indicated that for general problem-solving

skills, the gains that Isik11 showed was significantly larger than Doga (p = .018), Isik12 (p =

.012), and Control sites (p < .001). The gains for LCC and Isik11 groups did not significantly

differ. As for system analysis and design, there were significant differences between the Control

group and LCC (p = .003), and Isik11 (p < .001). Control group showed significantly smaller

gains than these two sites, but not Doga and Isik12 sites. In terms of decision-making, the only

significant difference was between Isik11 and Isik12 (p = .035), favoring the gains Isik11

showed. Finally, in troubleshooting, Isik11 group showed significantly larger gains than Doga (p

= .002), Isik12 (p = .018), and Control (p < .001), but not LCC site. Descriptive statistics can be

found in Table 16 (above). Pre-Post changes at each site by problem type can be seen in Figure

19.

91

Figure 19. Gains in Problem Solving in Each Problem Solving Test for Each Site

Changes in Motivation

Before going forward with the analyses in this section, I ran Kolmogorov-Smirnova and

Shapiro-Wilk tests to understand if the motivation data met the assumptions for inferential

statistical analyses. As it can be seen in Table 20, the results of both tests indicated that all

factors in both the pre- and the post-surveys were significantly non-normal and violated the

-4

-3

-2

-1

0

1

2

3

4

Pre Post

General Problem Solving

-4

-3

-2

-1

0

1

2

3

4

Pre Post

System Analysis and Design

-4

-3

-2

-1

0

1

2

3

4

Pre Post

Decision Making

-4

-3

-2

-1

0

1

2

3

4

Pre Post

Troubleshooting

92

assumption of normality. Q-Q plots also confirmed these results, indicating that observations

deviated substantially from the normality plot.

To understand the reasons for this non-normality, I also investigated descriptive statistics.

Descriptive statistics showed that there was a ceiling effect (i.e., very high medians) for all

factors, where the students picked very high initial and equally high post values (Table 21). In

other words, the assessments could not detect whether or not students‘ motivation was likely to

change because it was so high in the beginning and the assessments could not measure much

change.

Due to this violation and the ceiling effects, I could not conduct any further analyses and

answer research questions regarding changes in motivation, impact of the relevance intervention,

and the relationship between motivational and cognitive constructs.

Table 20. Normality Assumption Statistics for Motivation Factors

 Kolmogorov-Smirnova Shapiro-Wilk

 Pre Statistic df Sig. Statistic df Sig.

Pre

Utility

Value

Game design 0.248 16 0.009 0.850 16 0.013

Programming 0.252 16 0.008 0.798 16 0.003

Problem solving 0.229 16 0.025 0.770 16 0.001

Situational

Interest

Game design 0.235 16 0.018 0.817 16 0.005

Programming 0.289 16 0.001 0.668 16 0.000

Problem solving 0.230 16 0.023 0.838 16 0.009

Utility

Value

Game design 0.328 16 0.000 0.765 16 0.001

Post

Programming 0.319 16 0.000 0.673 16 0.000

Problem solving 0.299 16 0.000 0.715 16 0.000

Situational

Interest

Game design 0.378 16 0.000 0.670 16 0.000

Programming 0.312 16 0.000 0.666 16 0.000

Problem solving 0.304 16 0.000 0.666 16 0.000

Emerging

individual

interest

Game design 0.324 16 0.000 0.720 16 0.000

Programming 0.337 16 0.000 0.684 16 0.000

Problem solving 0.214 16 0.048 0.809 16 0.004

93

Table 21. Descriptive Statistics for Motivation Factors

 Percentiles

 M Mdn SD Range Min. Max. 25 50 75

Pre

Utility value

GD 85.1 91.5 15.5 45.4 54.6 100 68.8 91.5 98.5

Prog. 89.4 95.4 12.3 31.4 68.6 100 76.6 95.4 100

PS. 89.9 95.5 13.6 49.1 50.9 100 84.9 95.5 100

Situational

interest

GD 94.2 97.0 6.4 17.2 82.8 100 87.7 97.0 100

Prog. 95.5 99.7 7.4 21.6 78.4 100 91.5 99.7 100

PS. 90.5 95.5 10.5 30.0 70.0 100 83.6 95.5 99.8

Post

Utility value

GD 90.9 98.3 11.8 32.9 67.1 100 80.3 98.3 99.5

Prog. 92.3 98.2 12.8 41.6 58.4 100 87.8 98.2 100

PS. 90.6 98.4 14.5 46.4 53.6 100 86.1 98.4 100

Situational

interest

GD 95.7 98.5 7.2 24.0 76.0 100 92.5 98.5 100

Prog. 95.4 100 7.8 24.6 75.4 100 91.7 100.0 100

PS. 90.6 99.3 15.9 52.0 48.0 100 88.2 99.3 100

Emerging

individual

interest

GD 91.6 97.8 11.3 27.5 72.5 100 78.4 97.8 100

Prog. 93.7 99.3 9.9 27.8 72.3 100 86.6 99.3 100

PS. 85.7 93.8 17.3 50.0 50.0 100 68.7 93.8 100

GD = Game design, Prog. = Programming, PS = Problem solving

94

CHAPTER 6

Discussion

GDL intervention was composed of series of activities that offered young children a

chance to design games, learn computer programming, and practice their problem-solving skills.

Although the courses were offered at varying different lengths and at different sites, the results of

the study indicated that the students showed significant improvement in their problem-solving

skills as compared to a control group who did not attend the GDL courses. As described in

Chapter 3, the GDL intervention was multi-faceted (Figure 20), composed of different activity

types (informed by previous research and theory), and each aligned to teach students game

design, programming and problem solving skills.

Figure 20. Multi-faceted Structure of the GDL Intervention

Game Design and Learning Intervention

Theories

Problem solving

Teaching problem

solving

Constructionism

Guided discovery

learning

GDL Curriculum

Game

design

software

Instruction &

Course Activities

Students

95

The primary purpose of this study was to investigate the impact of learning game design

on middle school students‘ general and specific problem-solving skills (system analysis and

design, decision making, troubleshooting). The results indicated that the students who received

GDL intervention performed significantly better than the control group students who did not

attend the GDL courses. In other words, through the GDL intervention (i.e., tasks on game

design, troubleshooting and free design) students were able to show development in problem-

solving skills that are important for their future lives and careers.

In addition, in this study I also aimed to show the impact of learning game design on

students‘ utility value and interests in game design, programming, and problem solving. The

motivation data, however, severely violated the assumptions of normality, making it impossible

to answer the research questions regarding changes in students‘ motivation. Despite this,

however, motivation data pointed to two important aspects about the participants that can be

positively interpreted: (a) they were highly motivated for game design, programming, and

problem solving, (b) their post survey results point to the fact that they remained equally, if not

slightly more, motivated for these tasks. Given the limitations of quasi-experimental research,

this study‘s positive outcomes in problem solving should be interpreted with caution.

First the positive outcomes cannot solely be attributed to the GDL intervention, as there

can be external and internal threats to validity. One of the main threats to internal validity in such

a design as used in this study is the non-randomized selection of the participants. As it was

indicated in the results chapter, there were some significant differences in the initial levels (i.e.,

pre-test) among the sites (experimental vs. control), and within experimental sites. Also, there

were differences between the gains that different sites showed in general and specific problem

solving skills. The initial skill level differences might have led them to benefit differently from

96

the GDL intervention, or to show different levels of gain over time. This particular unintended

selection-bias, therefore, might have threatened the internal validity of the findings, and might be

responsible for some of the gains in the experimental sites (Campbell & Stanley, 1963).

Second, the students participating at the GDL courses were highly motivated in game

design, programming, and problem solving, as is reflected in the motivation survey results. My

casual observations as the lead instructor at the GDL courses also support this argument. For

example, after each GDL course a common question was when the next course would be and if

we could offer a higher-level course. In terms of motivation and interest, this potentially puts this

study‘s sample at a different level from the rest of the population. Therefore, results should be

interpreted within these limits. More detail about the limitations can be found in later in this

chapter, in the ―Limitations‖ section.

Changes in Problem Solving Skills

Discussion for general problem solving skills. The results of this study showed that,

compared to the control group, the students who attended the GDL courses showed significantly

higher gains in their general and specific problem-solving skills as measured by the 2003 PISA

Problem Solving Assessment. This indicates that the GDL curriculum helped students make

progress in their specific (i.e., system analysis and design, decision making, and troubleshooting)

and general problem-solving skills —as measured by the combination of the specific problem

solving skills— over time. To reiterate, system analysis and design refers to students‘ ability to

identify components of a system and build new systems, satisfying many interrelated variables.

Decision-making refers to making the best decision (i.e., cost-effective) based on the limitations

in a given case. Finally, troubleshooting tasks involve finding and fixing the inoperable part of a

system that is otherwise functional.

97

The results also indicated that, despite the differences in the initial levels of problem

solving, the students at the different experimental sites showed significant gains in their problem-

solving skills. This impact across sites indicates the robustness of the findings and the GDL

curriculum. In other words, students at all sites showed significant gains in all problem-solving

skills measured, although the results also pointed to significant gain differences among some

sites. Based on these results, GDL courses seem to be an effective way of teaching problem-

solving skills to middle school students.

One possible explanation for these positive outcomes of GDL courses can be the

effectiveness of the curriculum, more specifically the specific attention paid to establish game

design tasks as an effective method of teaching problem solving. As it was explained in the early

chapters, GDL curriculum was built on theories of teaching problem solving and these methods

were implemented throughout the intervention via various activities. These activities were great

platforms for students to learn game design and programming basics, but more importantly to

learn metacognitive skills underlying problem solving, in addition to gaining practice and

experience in system analysis and design, decision making, and troubleshooting tasks.

Research on teaching of problem solving provides us with a wide spectrum of methods,

and these methods vary in terms of their effectiveness. Interested readers can find an exhaustive

summary of the methods in the two comprehensive literature reviews by Mayer and Wittrock

(1996, 2006). The results of the current study showed that by carefully establishing the

connection between problem-solving processes and game design tasks, and embedding proven

methods of teaching problem solving into the game design curricula, game design can be put

forward as one of the newer methods of teaching problem solving.

98

The GDL curriculum was based on some well-established methods of teaching problem

solving: teaching basic skills (automaticity & constraint-removal), teaching skills directly,

structure-based methods, generative methods and teaching by analogy. These specific methods

were achieved through four specific tasks: (a) game design, (b) problem solving, (c)

troubleshooting, and (d) free design. The purpose of each task and their alignment with problem-

solving skills can be seen in Table 22.

Game design tasks were offered during the first half of the GDL courses with aim of

helping students master game design and programming basics as well as master the game design

software during this time. Underlying theory in this design was to implement automaticity and

constraint-removal methods. Through these methods, the aim was to lessen students‘ cognitive

load by automatizing basic tasks and leaving more room for tasks that require high-level skills

(Mayer & Wittrock, 1996). At GDL, during the first half of the course, students mastered the

game design process so that they were able to devote more thinking into working on problem

solving scenarios.

99

Table 22. GDL Activities and Their Alignment with Problem Solving Skills

Phase Category Purpose Subtasks Problem solving

#1
Game Design

(Guided)

 Game design

 Programming

 Microsoft Kodu

 Reverse-engineer game from given

GRASPS

 Create flowchart

 System analysis and design

 Troubleshooting

 Decision making

#2 Problem solving

 Problem solving

skills

 Familiarize with

complex

problems

 Programming

 Microsoft Kodu

 Analyze a given problem scenario

 Find solution to the given problem

 Understand problem patterns from

data and graphs

 Create simulation of the problem

scenario

 Create flowchart of the scenario

 Metaskills (plan, devise solution,

execute, evaluate)

 Recognize patterns

 System analysis and design

 Troubleshooting

 Decision making

#2 Troubleshooting

 Troubleshooting

 Familiarize with

complex

problems

 Programming

 Microsoft Kodu

 Find inoperable parts of a game

and fix them

 Create a flowchart of the game

 Create GRASPS of the game

 Troubleshooting

 System analysis and design

 Recognize patterns

 Decision making

#2 Free design

 Game design

 Programming

 Microsoft Kodu

 Create flowchart of the game

 Create GRASPS of the game

 Troubleshoot when necessary

 Make decisions based on software

limitations

 System analysis and design

 Troubleshooting

 Decision making

100

Game design activities were also ideal environments for students to practice their system

analysis and design, troubleshooting, and decision-making skills. More specifically, the

flowcharts the students created before and after they created their games can be considered one

of the ways that the students practice their system analysis and design skills. This can be because

the flowcharts provide students with a visual context to see games as a system and build

confidence in their system analysis and design skills.

Troubleshooting is naturally built in to the game design process and students practice

their troubleshooting skills during each and every game design task. For example, during the

courses it is very usual to see students who try to implement something they see in the games

they play (e.g., teleportation from one gate to another), and would like to implement it in Kodu.

Because Kodu does not offer direct ways to do this, students often need to be very creative in

repurposing lines of code. During this process, and many similar instances, students often

experience a roadblock. The students themselves often reveal the solutions to these roadblocks

by going back and analyzing each line of code until they find the one that is misplaced.

Similarly, during this process, students often face moments where they need to make a decision

in order to how to implement a certain element in their game. They need to evaluate constraints

(e.g., the computer processing power, limitations of the software, limitation of codes, limitations

posed by game structure) and make the best decision to create the best game that they can.

During the second phase of GDL, through problem-solving tasks, the students are offered

ways of practicing problem-solving skills by working on solving real-life problems, and then

recreating problem scenarios in Kodu. During these tasks, multiple methods of teaching problem

solving were used, and it can be speculated that these were important in helping students

improve their problem-solving skills. The method of teaching skills directly was used in the form

101

of showing students the important steps in tackling every problem: understand, plan, execute,

evaluate (Polya, 1957). Through guidance of the instructors, the students got chances to work on

seemingly complex problems, and practiced important metacognitive skills underlying problem

solving.

Another method that was used during problem solving tasks was use of analogies.

Through the use of analogies, instructors aimed to show students that, although problems might

differ on the surface, they also might share similarities. By providing analogous problems to

students during GDL, the students had a chance to practice important skills to solve analogies,

such as seeing patterns. The problem-solving tasks offered during the second phase of GDL were

also very good examples of structure-based methods and generative methods. Structure-based

methods involve usage of objects (physical or virtual) to help solve problems. At GDL, the re-

creation of games in Kodu can be considered as an example of this method, where simulations

created in Kodu can be considered as the ―objects‖ that students manipulate and think with.

Similarly, generative methods involves students relating students own experiences with the

problem, and re-creating problem scenarios in Kodu gave students chances to create problem

scenarios with the same underlying principle, but within their own imaginative worlds.

Troubleshooting activities, as the name suggests, were specifically designed and offered

to provide extra practice and guidance to students in their troubleshooting skills. By fixing a

broken game, and creating its flowchart after, students had a chance to practice both their

troubleshooting and system analysis and design skills. Decision making was also embedded in

this process, where students needed to make informed decisions about where to look for the

source of the problems, and which steps they needed to take in order to completely recover the

broken game.

102

Finally, free game design activities provided students with good context to both practice

their game design skills, and also use system analysis and design (i.e., create flowchart of their

games), decision-making, and troubleshooting skills. This task was also important because of the

personal attachment the students had with their products. Because of this personal attachment,

student engagement in these tasks was at high levels.

These instructional techniques are effective methods of teaching problem solving (Mayer

& Wittrock, 2006). From early research on programming, it is also known that instructional

methods used in teaching programming can lead to differences in learning outcomes. For

example, in their research, Lehrer et al. (1999) found that reflective methods of teaching LOGO

(e.g., students wrote summaries of their programming experiences) was more effective than

inquiry teaching (e.g., teacher-led questioning, predicting and assisting). In the current research,

multiple instructional techniques were used.

Although results indicated that the instructional intervention (GDL courses) worked as a

whole, it is very hard to know which instructional technique or teaching strategy contributed to

the results, and to what extent. At this point it is hard to understand the impact of specific

methods and their unique affordances. Important questions remain unanswered and need to be

scrutinized further in future research. More specifically, we do not know how the individual

instructional methods might have contributed individually, and if the methods or tasks are

additive, interactive, or independent. Similarly, we do not know if the instructional methods and

GDL tasks are all equally necessary or if some are more important than others. Equally relevant

here is the dosage and duration of the intervention. The specific impact of length was beyond the

scope of this research. The GDL courses were offered at different lengths (15-40 hours) and the

results indicated experimental groups showed significantly larger gains than the control group.

103

The activity structure was kept the same for each site, and at the sites where more time was

available, more free design tasks were offered to keep the activity structure comparable. It might

be speculated here that there might be minimal exposure length (i.e., the minimal length for

GDL), but more importantly the specific emphasis and impact of each different task needs

further scrutiny.

Discussion for specific problem-solving skills. Another important result of this research

was that, in addition to the general problem solving skills, the intervention resulted in significant

gains in specific problem-solving skills, system analysis and design, decision-making,

troubleshooting skills. These skills are considered to be very important problem-solving domains

that individuals face with in their everyday lives (Jonassen, 2000; OECD, 2004a, 2012). The

gains in these specific skills indicate that during game design process they can be practiced, and

game design can be a suitable context to teach these specific problem-solving skills.

System analysis and design involves understanding ―the complex relationships among a

number of interdependent variables, identify their crucial features, create or apply a given

representation, and design a system so that certain goals are achieved‖ (OECD, 2004, p. 39).

Problems of this kind, namely design problems, are considered to be the most complex and ill-

structured problem types (Jonassen, 2000). Games are systems, and design of these systems by

students could have contributed to the improvement they showed in system analysis and design.

The improvement in system analysis and design points out that game design can be a viable

platform for teaching students‘ system analysis and design skills. Especially through tasks such

as asking students create flowcharts of their games; this specific skill can be placed into a

meaningful and engaging context.

104

Decision-making problems require students to make the best choice out of existing rival

alternatives (Jonassen, 2000; OECD, 2004a). In the game design process, students are often

faced with situations where they need to make a choice to fit best into their design-in-progress.

These engaging decision-making situations come naturally out of the game design process, and

due to students‘ personal involvement with the projects, they spend a considerable amount of

time to make the best decision given the constraints of the game design software and the goals of

their games. The results of this study also indicate that this process is beneficial in developing

students‘ skills as good decision-makers.

Finally, troubleshooting is one of the most common types of problems people face in

their everyday lives, which involves diagnosing a faulty mechanism in an otherwise working

structure (Jonassen, 2000; OECD, 2004a). Throughout GDL courses, one of the activities that

came naturally out of engaging in game design and programming process was impromptu

troubleshooting by students (Guzdial, 2004). The results, again, support that through design and

opportunities to troubleshoot their own games, the students improve in their troubleshooting

skills. As mentioned before, representing systems through flow diagrams is very important both

problem representation and also identifying faulty systems for troubleshooting (Jonassen, 2000),

and the students attending GDL courses had plenty of opportunities to do so.

Discussion for site differences. Although the students at the experimental sites,

compared to the control group, showed significant gains in their problem solving skills over

time, statistical tests also indicated that there were site differences at the pre-test, and in terms of

the overall gains. This might indicate that different sites benefitted from the GDL courses at

different levels, although they each showed significant gains from pre to post. Early research

with LOGO (Mayer & Fay, 1987; Palumbo, 1990) showed that learning programming is

105

positively impacted by students‘ initial levels cognitive abilities and programming knowledge.

This can be a possible explanation for the differences in gains for different sites. In other words,

starting at different cognitive levels, the sites with higher initial levels had higher post-test

results.

Looking at student or site characteristics was beyond the scope of this study, and should

be studied further. Specifically, the prerequisites (e.g., programming knowledge, basic cognitive

skills, etc.) of game design and problem solving should be identified, as well as the specific

student characteristics which cause them to be more successful at these tasks should be answered

in future research.

Discussion summary for problem solving. Recent conceptual claims on the connection

between game design and thinking skills (i.e., computational thinking) have been, unfortunately,

far from providing empirical support for these arguments, pointing to a lack of both research and

conceptual agreement. Through early research on programming, we have reason to believe that

such a connection between game design and thinking skills is possible (Nastasi et al., 1990; Reed

& Palumbo, 1992; Suomala & Alajaaski, 2002; Ziegler & Terry, 1992). The current research,

therefore, is the first study in the recent literature to provide empirical support for the possible

connection between learning game design in a curriculum based on teaching problem solving

and problem-solving skills.

As stated previously, however, the results of this study need to be interpreted within the

context of GDL curriculum and activities offered within the GDL intervention, as early research

has established that simple exposure to computer software does not lead to improvement in

cognitive skills (Mayer & Fay, 1987; Pea & Kurland, 1984). As depicted in this study, successful

connection of game design and thinking skills involves specific attention in the creation of

106

curricula and activities to best make use of theories of problem solving instruction and theories

of learning. It is only through this careful attention that the connection between game design and

problem solving can be established and students‘ abilities in these domains can be scaffolded.

Motivational Impacts of the GDL Intervention

Another purpose of this study was to understand unique changes in students‘ interest and

value in game design, programming, and problem solving, and how these were affected by the

interventions in this study. Due to the problems with data, however, the analyses related to these

questions could not be conducted and left for future research.

To reiterate, the questions related to changes in motivation in this study were:

 changes in students‘ motivational perceptions (utility value, situational interest

and emerging individual interest) for game design, programming, and problem

solving.

 the relationship between utility value of game design, programming and problem

solving, and the emerging individual interest in these domains.

 impacts of a relevance intervention on both cognitive and motivational outcomes

 the relationship between motivational and cognitive components.

The survey results in motivation, in addition to severely violating normality, also suffered

from a ceiling effect. A ceiling effect occurs when ―a measure possesses a distinct upper limit for

potential responses and a large concentration of participants score at or near this limit‖ (Hessling,

Traxel, & Schmidt, 2004). One hypothesis regarding the ceiling effect is that the students, due to

self-selection, already had high interest and value of the domains in question. As opposed to a

random assignment, in self-selected quasi-experimental settings, the participants can possess

107

characteristics that can systematically confound the results, or in this case produce a ceiling

effect.

The results of the motivation surveys can also be interpreted from a positive perspective.

It is highly likely that, because the students self-selected to be a part of the GDL intervention,

they had initially high levels of interest and utility value for game design, programming, and

problem solving. In the post-survey, the students‘ interest and value levels either stayed the same

or went up to a small degree. This might indicate that GDL intervention was effective in keeping

students‘ motivations high. According to Hidi and Renninger (2006), students with high levels of

individual interest opt to re-engage with tasks they are interested in, they try to develop a fuller

understanding of the task by asking ―curiosity‖ questions, and they try to exceed task demands.

Although a systematic account of the participants cannot be provided in this study and it was

beyond its scope, anecdotally it is correct to argue that these characteristics were applicable to

the GDL participants in how they were interested in game design.

Limitations

First and foremost, this study was limited by its design as a quasi-experimental study.

The subjects attended at their own will and that might have caused some systematic selection

issues. Although the control group was also selected from a similar set of individuals (students

who opted to join a summer version of the GDL course), this aspect of the research should be

taken into consideration while generalizing the results to different populations.

Due to the small sample size and significant levels of non-normality in the data, I could

not answer the research questions regarding motivational changes in this research. They are,

however, important research questions to be tackled in future research.

108

In addition, the length of the motivation survey was considerably long for this age group

and they were taken from research with undergraduate students. For these reasons, the survey

items might have been difficult for the sample in this study to understand and the test-fatigue

might have impacted students‘ responses. Similarly, because the problem-solving test was

designed for 15-year-olds, the test might have been difficult for some of the younger students.

Because the sample for this study came from a young group of students, the repeated

implementation of surveys asking for their self-perceptions was problematic. Especially, in a

quasi-experimental study like this (i.e., self selected to be in the GDL courses), the students are

very likely to rate themselves very high in the motivational constructs at time 1, causing ceiling

effects and potential regression to the mean problems. Therefore, methods to overcome this

should be developed, possibly incorporating newer technologies such as personal tablet

computers.

Finally, another limitation of this study was that, due to the quantitative nature of the

research, individual differences and subtleties in learning might have been overlooked.

Therefore, studies that will look at these qualitative aspects of learning at GDL courses are also

needed.

Conclusions and Implications

Teaching students important cognitive skills using computers have received a lot

attention from researchers for the last three decades (Clements, 1999). Starting with the seminal

work of Seymour Papert (1980), educational researchers have looked at ways to use the learning

of computer programming as a gateway to more generalizable cognitive skills, especially for

children (Mayer & Wittrock, 1996). A plethora of programming software simplified for young

children (i.e., visual programming interfaces with drag and drop programming) and after-school

109

workshops have been developed and offered, with the promise of increased interest in STEM

(science, technology, engineering and math) and computer science, and increased cognitive skills

to help students to be successful in these domains. Early research efforts in understanding the

connection between programming (i.e., LOGO) and higher order thinking skills, however, was

often fraught with methodological limitations, often pointing to mixed findings (Mayer &

Wittrock, 1996; D. B. Palumbo, 1990).

Recently, game design has been championed as the replacement of programming, and

lauded as a way to scaffold computational thinking (Weintrop & Wilensky, 2012) and as a

method of encouraging STEM careers. This popularity has also received official recognition by

the U.S. Government when young game designers were invited to present their games created in

Kodu at the Whitehouse Science Fair (Microsoft Citizenship Team, 2013). Such initiatives point

to the increasing need for research to understand the actual impacts of learning game design and

significance of this study. Research in this domain, however, has been either purely qualitative

and anecdotal at best (e.g., Games & Kane, 2011; Richards & Wu, 2011; Wu & Richards, 2011)

or lacking entirely. Therefore, this study is the first in recent literature that establishes an

empirical link between game design and problem solving.

The results of this study have also important implications for theory and practice. First

and foremost, the results indicated that, through a curriculum and instruction using effective

methods of teaching problem solving, game design could foster complex problem-solving skills.

Specifically, it was seen in this research that game design tasks could be aligned with multiple

methods of teaching problem solving, such as structure-based methods, teaching by analogy, and

teaching skills directly. It was also seen that through game design process, teaching of multiple

types of problems is also possible. Most importantly, teaching system analysis and design,

110

decision-making and troubleshooting align very well with the underlying skills required for game

design. Therefore, based on the results of this research, by carefully establishing design and

problem solving as peer domains (Nelson, 2003), using game design is supported as a viable

approach for teaching problem solving.

Another implication of this study is that this engaging method of teaching problem

solving is suitable for different age groups, both males and females, and students‘ with differing

initial game design or problem-solving experience. Within the scope of GDL initiative, game

design courses were offered to students who were between 11 and 16, and all age groups equally

benefitted from the GDL courses. In addition, girls as well as boys also attended the courses and,

again, both groups enjoyed attending the courses and benefitted from the activities offered.

Finally, GDL courses were also offered to students from different socio-economic backgrounds

and different countries, and these groups also benefitted from being a part of the initiative. This,

however, does not mean that every individual benefitted from the courses to exactly the same

degree. There can be differences in how much different groups or individual students benefit

from the courses due to some inherent characteristics that they have. Looking at these specific

differences as independent variables was beyond the scope of this research. In order to adjust

courses for every student‘s specific needs, and therefore ensure everyone benefits from the

courses at comparable amounts, these factors should be investigated in future research.

Another practical implication of this study is that game design courses stand out as ideal

alternatives to replace computer literacy courses at schools. By expanding the GDL curriculum

to incorporate different thinking skills, these new courses introduce students to computers and

computer programming, as well as also learning thinking skills that can be used outside of the

game design context. Such initiative would also help trigger interest in students for STEM

111

degrees and careers, due to the tight connection between these technology-rich activities and

what most STEM degrees and careers involve.

The effectiveness of GDL curriculum in teaching problem-solving skills also suggests

that teaching of content knowledge can also be possible by putting a content layer into game

design and problem-solving tasks. For example, important real-life issues such as environmental

problems can be seamlessly integrated into the existing GDL curriculum, and game design

scenarios. This could possibly help increase environmental awareness in students and lead to

increased knowledge and interest in these issues in the future. Such an initiative could also

trigger interest for science degrees and careers.

In terms of implications specifically for similar future interventions, it can be put forward

that in GDL curriculum the aim was twofold: a) to first help students learn how to use the

software, and b) then move to embedding the targeted skills into game design activities. This

idea of skill building and the way of progression in the GDL curriculum can serve as a model for

future interventions seeking similar goals. Early research in programming also supported the idea

of starting with basics and guiding students into showing the connection between programming

and thinking skills (Dalbey & Linn, 1985; Linn, 1985; Mayer, 1979). This idea is also based on

―constraint-removal‖ methods of teaching problem solving, where mastery of basic skills enables

problem solvers to focus more on the problem and be more successful due to automatization

(Mayer & Wittrock, 1996). In the case of this study, after mastering the software, learners felt

more comfortable during the design process, and this helped them to more successfully create

problem scenarios in the game design environment. In addition, such a method helps learners

build confidence over time and prevents them from feeling overwhelmed.

112

Learning though design is a very powerful method of learning (Harel, 1991). Through

design, children get invaluable chances to play and tinker with objects and finally create

something they value. Through this process they learn about their own learning and thinking

(Papert, 1980). This research supported this ethos and established that game design can be a

good platform for the teaching of problem-solving skills, but only when the methods of teaching

are carefully designed to incorporate both theories of problem solving and effective methods of

teaching game design.

Future Research

First, since GDL curriculum incorporated various methods of teaching problem solving,

future studies are needed where each intervention benefits from a specific method. This would

allow identifying the specific impact of different methods.

Statistical analyses pointed to differences in the gains within the experimental sites in the

overall gains in problem solving and also gains in specific problem solving skills. As expected,

the groups who started high also ended up higher than the others. The groups starting low,

although having made significant gains compared to their pre-test scores, still finished at lower

levels than the others. Therefore, future research should look into understanding potential

independent variables such as socio-economic status, gender, and nationality to understand

whether there are differences due to these variables. In addition, the specific connection between

GDL tasks and specific problem-solving skills should also be studied.

At an individual level, there were students who did not make a lot of progress, and

similar to Mayer & Fay (1987), it can be argued that there is a chain of cognitive changes

promoted by learning to design games. It may be that certain student characteristics (e.g., self-

regulation) predispose them to make significant gains. These characteristics were not within the

113

scope of the current study, and should be investigated in the coming studies. Some potential

candidates for these characteristics (as independent variables) can be the students‘ self-regulation

perceptions, and their goal orientations. Jonassen (2000) also argues that individuals differ in

their problem-solving abilities due to possible differences in familiarity, domain and structural

knowledge, cognitive controls, metacognition, epistemological beliefs, and, affective and

conative (i.e., motivational and volitional). These domains can also be sources of individual

differences and should be investigated further as factor impacting how much the students are

benefiting from the GDL courses.

In order to better understand the specifics the learning process at GDL courses, other

types of data should be collected during the studies. For example, observations specifically

looking at certain student behaviors (i.e., asking for help, collaborative attitudes) can help

identify the intricacies of the learning progression at GDL courses.

The motivational data for this research did not produce significant outcomes and it

suffered from violating assumptions of normality and ceiling effects. One reason for the ceiling

effect can be that students did not know that there would be a post-survey, and overrated

themselves in the pre-survey. Methods should be developed to overcome such overestimations.

Also, since this was a quasi-experimental study, students might have indeed come from such

populations of highly motivated individuals. Therefore, true experiments can have the power to

produce significant results.

Another future research direction that naturally follows from this study is to analyze

student games to look for connections between gains in problem solving and level of complexity

in games. This line of work can potentially help researchers understand the specific connections

between game design and problem solving. Similarly, this line of work can lead to development

114

of interactive problem solving assessments that are built into the game design software and

implemented during the GDL courses seamlessly.

Finally, just as well as embedding of thinking skills, content knowledge can also be

embedded in GDL curriculum. For example, the scenarios given to students can also address

important environmental problems, and can teach students environmental literacy and raise

awareness. Future research can investigate this connection and evaluate the potential of such

tasks in teaching content skills, raise awareness, and teach thinking skills simultaneously. Such

research can possibly also look at the changes in students‘ interest and utility value of careers in

science (or STEM) fields.

115

APPENDICES

116

Appendix A

PISA 2003 Problem solving Test Sample Items

Figure 21. Library System of Hobson High School (PISA Sample Item)

117

118

Appendix B

Analysis of PISA Scores Using IRT Methods

There are two steps of analyzing the PISA assessment to calculate the students‘ pre and

post problem-solving scores: a) grading student tests based on instructions by PISA, and b)

running item-response-theory (IRT) analyses to calculate each student‘s pre and post problem-

solving proficiency.

First, grading was done using the answer key provided by PISA (OECD, 2004b). In

accordance with the information provided by PISA, the dichotomous questions, or the questions

with only one possible answer (i.e. multiple-choice questions), were coded as 0 when the given

answer is incorrect, and as 1 when it is correct. For the polytomous items, or the items with a

possible partial credit, scores were assigned as 0, 1, or 2, depending on if the question is wrong

(0), partially correct (1) or fully correct (2). Going through this process, a data-matrix file

containing each student‘s answers in numerical format was created (Figure 23).

119

Figure 22. Screenshots of a Sample Data-Matrix File (Top) and Item Parameter File (Bottom)

In the second step of calculating problem-solving scores for each student, the item-related

information from PISA 2003 Technical Report (OECD, 2005a)was used. By utilizing IRT

procedures (Rasch Partial Credit Model) the students‘ problem-solving proficiency at the

beginning and end of the camp is calculated.

IRT provides remedies for three important shortcomings of classical test theory (CTT)

(Hambleton, 1990). Firstly, in CTT, item parameters are estimated based on the sample at hand,

and are not valid for different samples. Secondly, in CTT, examinee ability estimates can be

compared to another sample only when the full test or a very similar test is applied to the second

sample, making it very difficult to create short tests that alternate items. Finally, in CTT,

information regarding what an examinee might do when confronted with a specific item is not

known, whereas in IRT ―[a]bility estimates obtained from different item samples for an

examinee will be the same except for measurement errors. This feature is obtained by

incorporating information about the items (i.e., their statistics) into the ability estimation

120

process‖ (Hambleton, 1990, p. 99). Hence, by using IRT, we get individual proficiency estimates

that are calculated based on well-established item difficulty parameters that were converged from

previous data. These scores can be compared to data collected and analyzed using the same

items. The Rasch model, the IRT model used by PISA and will be used for this study, uses only

the item difficulty parameter.

Acknowledging that persons and items differ in difficulty and proficiency, IRT models

―attempts to model the relationship between an unobserved variable, usually conceptualized as

an examinee's ability, and the probability of the examinee correctly responding to any particular

test item‖ (Harris, 1989, p. 157). Therefore, IRT models use a logistics function, turning

dichotomous variables into continuous variables (Harris, 1989; OECD, 2005b), hence, making it

possible to calculate a given student‘s probability of answering a question correctly. In addition,

as suggested by OECD (2005b) in order to decrease the bias in items‘ abilities in reporting

examinee proficiencies, a Weighted Likelihood Estimates (WLEs) will be applied.

After creating a student data matrix and an item-parameter file which has item-difficulty

information (prepared using PISA parameters), the students‘ individual pretest and posttest

problem-solving scores were calculated by an IRT software used and suggested by OECD

(2005a), Xcalibre 4.1.6.1 (Assessment Systems Corporation, 2012).

121

Appendix C

GDL Motivation Survey

Please indicate how much you agree with the following statements by putting a number from 0 to

100 in the provided boxes. Remember that 100 indicates a very high degree of agreement, while

0 means certain disagreement. 50 would refer to "neutral".

Feel free to use scores 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or scores like 78, 65, or 92.

For example, for an example statement of "I can play basketball well" we expect basketball

players like Michael Jordan to give a 100.

Course-Enjoyment

Your score of

agreement (0 to

100):

I had fun at this course.

Overall I am satisfied with this course.

I am disappointed with this course.

Instead of attending this course, I wish I had worked on my own.

Course was a good use of my time.

Computer and Technology Competence

Your score of

agreement (0 to

100):

Other people come to me for advice when they have questions about

technology and computers.

I am able to learn how to use new technologies rather quickly.

I consider myself to be a highly skilled computer user.

Compared to my peers, I am extremely skillful at using technology.

Thinking about learning a new technology (e.g., a new software, photo

editing, digital camera, etc.), it is likely I could teach myself how to

efficiently use it.

Compared to most other topics, technology is easy for me to learn.

122

Game Design

Your score of

agreement (0 to

100):

I believe learning game-design is of some value to me.

I think that learning game-design is useful for my future career.

I think learning game-design is important because it can help me find a

job in the future.

I am willing to come to a similar game-design course again because it

has some value to me.

I think learning game-design helps me to be successful in my life.

I believe learning game-design is beneficial to me.

I think learning game-design is an important activity.

I think game-design is an interesting subject.

I am not interested in game-design.

I like learning about game-design in this course.

I think learning game-design is interesting.

I've always wanted to learn more about game-design.

I'm certain I mastered the game-design skills taught at this camp.

I'm certain I figured out how to do the most difficult game-design tasks

at this camp.

I was able to do almost all the game-design tasks in class when I didn't

give up.

Even if game-design was hard, I was able to learn it.

I was able to create even the most complex game at this camp when I

tried.

My experience at this camp makes me want to learn more about game-

design.

I want to have a job that involves game-design some day.

I plan on learning more about game-design even when I don't have to.

I am not really interested in using game-design skills in my future

career.

Programming

Your score of

agreement (0 to

100):

I believe learning programming is of some value to me.

I think that learning programming is useful for my future career.

I think learning programming is important because it can help me find a

job in the future.

I am willing to come to a similar programming course again because it

has some value to me.

I think learning programming helps me to be successful in my life.

123

I believe learning programming is beneficial to me.

I think learning programming is an important activity.

I think programming is an interesting subject.

I am not interested in programming.

I think I liked learning about programming in this course.

I think learning programming is interesting.

I've always wanted to learn more about programming.

I'm certain I mastered the programming skills taught at this camp.

I'm certain I figured out how to do the most difficult programming tasks

at this camp.

I was able to do almost all the programming tasks in class when I didn't

give up.

Even if programming was hard, I was able to learn it.

I was able to code even the most complex program at this camp when I

tried.

My experience at this camp makes me want to learn more about

programming.

I want to have a job that involves programming some day.

I plan on learning more about programming even when I don't have to.

I am not really interested in using programming skills in my future

career.

Problem solving

Your score of

agreement (0 to

100):

I believe learning problem-solving is of some value to me.

I think that learning problem-solving is useful for my future career.

I think learning problem-solving is important because it can help me

find a job in the future.

I am willing to come to a similar problem-solving course again because

it has some value to me.

I think learning problem-solving helps me to be successful in my life.

I believe learning problem-solving was beneficial to me.

I think learning problem-solving is an important activity.

I think problem-solving is an interesting subject.

I am not interested in problem-solving.

I think I liked learning about problem-solving in this course.

I think learning problem-solving is interesting.

I've always wanted to learn more about problem-solving.

I'm certain I mastered the problem-solving skills taught at this camp.

I'm certain I figured out how to do the most difficult problem-solving

tasks at this camp.

I was able to do almost all the problem-solving tasks in class when I

didn't give up.

124

Even if problem-solving was hard, I was able to learn it.

I was able to solve even the most complex problems at this camp when I

tried.

My experience at this camp makes me want to learn more about

problem-solving.

I want to have a job that involves problem-solving some day.

I plan on learning more about problem-solving even when I don't have

to.

I am not really interested in using problem-solving skills in my future

career.

125

REFERENCES

126

REFERENCES

Ackermann, E. (2001). Piaget‘s constructivism , Papert‘s constructionism : What‘s the

difference? Future of Learning Group Publication, 5(3), 1–11. doi:10.1.1.132.4253

Alice. (2012). Retrieved from http://www.alice.org/index.php

Assessment Systems Corporation. (2012). Xcalibre 4.1.6.1. Retrieved from

http://www.assess.com/xcart/product.php?productid=569

Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2),

122–147.

Bennett, D., & Monahan, P. (2013). NYSCI Design Lab: No bored kids! In M. Honey & D. E.

Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.

34–49). New York: Routledge.

Brophy, J. (1999). Toward a model of the value aspects of motivation in education: Developing

appreciation for particular learning domains and activities. Educational Psychologist, 34(2),

75–85.

Brophy, J. (2008). Developing students‘ appreciation for what is taught in school. Educational

Psychologist, 43(3), 132–141. doi:10.1080/00461520701756511

Brophy, J. (2010). Motivating students to learn (3rd ed.). New York, NY: Routledge.

Bruner, J. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for

research. Boston: Houghton Mifflin Company.

Choi, W., & Repman, J. (1993). Effects of Pascal and FORTRAN programming on the problem-

solving abilities of college students. Journal of Research on Computing in Education, 25(3),

290–302.

Clements, D. H. (1999). The future of educational computing research : The case of computer

programming. Information Technology in Childhood Education Annual, (1), 147–179.

Dalbey, J., & Linn, M. (1985). The demands and requirements of computer programming: A

literature review. Journal of Educational Computing Research, 1(3), 253–274.

Dewey, J. (1913). Interest and effort in education. Boston, MA: Houghton Mifflin Company.

Dweck, C. S. (1999). Caution: Praise can be dangerous. American Educator, 1(23), 1–5.

127

Fullerton, T. (2008). Game design workshop. Boston, MA: Elsevier.

Funke, J. (2010). Complex problem solving: A case for complex cognition? Cognitive

Processing, 11(2), 133–142.

Funke, J., & Frensch, P. (1995). Complex problem solving research in North America and

Europe: An integrative review. Foreign Psychology, (5), 42–47.

Gallini, J. K. (1987). A comparison of the effects of LOGO and a CAI learning environment on

skills acquisition. Journal of Educational Computing Research, 3(4), 461–477.

Games, I. A. (2009). 21st century language and literacy in Gamestar Mechanic: Middle school

students’ appropriation through play of the discourse of computer game designers. (Order

No. AAI3384100, Dissertation Abstracts International Section A: Humanities and Social

Sciences, 3745).

Games, I. A., & Kane, L. P. (2011). Exploring adolescent‘s STEM learning through scaffolded

game design. Proceedings of the 6th International Conference on Foundations of Digital

Games (pp. 1–8). New York: ACM. doi:10.1145/2159365.2159366

Gamestar Mechanic. (2012). Retrieved from http://gamestarmechanic.com

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12,

306–355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive

Psychology, (15), 1–38.

Glynn, S. M., Britton, H. K., Muth, D., & Dogan, N. (1982). Writing and revising persuasive

documents: Cognitive demands. Journal of Educational Psychology, 74(4), 557–567.

Guzdial, M. (2004). Programming environments for novices. In S. Fincher & M. Petre (Eds.),

Computer science education research (pp. 1–16). The Netherlands, Lisse: Taylor & Francis.

Hambleton, R. K. (1990). Item response theory: Introduction and bibliography. Psicothema, 2(1),

97–107.

Hansen, D. A. (1989). Lesson evading and lesson dissembling: Ego strategies in the classroom.

American Journal of Education, 97, 184–208.

Harel, I. (1991). Children designers: Interdisciplinary constructions for learning and knowing

mathematics in a computer-rich school. Ablex Publishing Corporation.

Harris, D. (1989). Comparison of 1-, 2-, and 3-Parameter IRT Models. Educational

Measurement: Issues and Practice, 8(1), 35–41.

128

Hessling, R. M., Traxel, N. M., & Schmidt, T. J. (2004). Ceiling effect. In M. S. Lewis-Beck, A.

Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of social science research methods.

Sage Publications Inc. doi:10.4135/9781412950589

Hidi, S., & Renninger, K. (2006). The four-phase model of interest development. Educational

Psychologist, 41(2), 111–127. Retrieved from

Huber, O. (1995). Complex problem solving as multi stage decision making. In P. A. Frensch &

J. Funke (Eds.), Complex problem solving: The European perspective (pp. 151–173).

Hillsdale, NJ: Lawrence Erlbaum Associates.

Hulleman, C. S., Durik, A. M., Schweigert, S. B., & Harackiewicz, J. M. (2008). Task values,

achievement goals, and interest: An integrative analysis. Journal of Educational

Psychology, 100(2), 398–416. doi:10.1037/0022-0663.100.2.398

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest

and performance with a utility value intervention. Journal of Educational Psychology,

102(4), 880–895. doi:10.1037/a0019506

Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high

school science classes. Science, 326(5958), 1410–2. doi:10.1126/science.1177067

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology

Research and Development, 48(4), 63–85.

Kafai, Y. B. (1995). Minds in play: Computer game design as a context for children’s learning.

Lawrence Erlbaum.

Kafai, Y. B., Carter Ching, C., & Marshall, S. (1997). Children as designers of educational

multimedia software. Computers & Education, 29(2-3), 117–126. doi:10.1016/S0360-

1315(97)00036-5

Kafai, Y. B., Peppler, K. A., & Chapman, R. N. (2009). The computer clubhouse:

Constructionism and creativity in youth communities. New York: Teachers College Press.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction

does not work : An analysis of the failure of constructivist , discovery , problem-based ,

experiential , and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

Lehrer, R., Lee, M., & Jeong, A. (1999). Reflective teaching of LOGO. The Journal of the

Learning Sciences, 8(2), 245–289.

Lepper, M. (1985). Microcomputers in education: Motivational and social issues. American

Psychologist, 40(1), 1–18.

129

Liao, Y. C. (2000). A meta-analysis of computer programming on cognitive outcomes: An

updated synthesis. In J. Bourdeau & R. Heller (Eds.), Proceedings of world conference on

educational multimedia, hypermedia and telecommunications (pp. 598–604). Chesapeake,

VA: AACE.

Liao, Y. C., & Bright, G. W. (1991). Effects of computer programming on cognitive outcomes:

A meta-analysis. Journal of Educational Computing Research, 7(3), 251–266.

Linden, M., & Wittrock, M. C. (1981). The teaching of reading comprehension according to the

model of generative learning. Reading Research Quarterly, 17(1), 44–57.

Linn, M. (1985). The cognitive consequences of programming instruction in classrooms.

Educational Researcher, 14(5), 14–29.

Littlefield, J., Delclos, V. R., Bransford, J. D., Clayton, K. N., & Franks, J. (1989). Some

prerequisites for teaching thinking : Methodological issues in the study of LOGO

programming. Cognition and Instruction, 6(4), 331–366.

MacLaurin, M. B. (2011). The design of Kodu: A tiny visual programming language for children

on the Xbox 360. ACM SIGPLAN Notices, 46(1).

Maehr, M. L., & Meyer, H. A. (1997). Understanding motivation and schooling: Where we‘ve

been, where we are, and where we need to go. Educational Psychology Review, 9(4), 371–

409.

Maloney, J., Burd, L., Kafai, Y. B., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A

sneak preview. International conference on creating, connecting and collaborating through

computing (pp. 104–109). Ieee. doi:10.1109/C5.2004.1314376

Mayer, R. E. (1977). Thinking and problem solving: An introduction to human cognition and

learning. Scott, Foresman and Company.

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM, 22(11),

589–593. doi:10.1145/359168.359171

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving.

Instructional Science, 26(1), 49–63.

Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of

Educational Research, 31.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The

case for guided methods of instruction. The American Psychologist, 59(1), 14–9.

doi:10.1037/0003-066X.59.1.14

130

Mayer, R. E., & Fay, A. L. (1987). A chain of cognitive changes with learning to program in

Logo. Journal of Educational Psychology, 79(3), 269.

Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D. C. Berliner & R. C.

Calfee (Eds.), Handbook of educational psychology (pp. 47–62). New York, NY:

Macmillan Library Reference.

Mayer, R. E., & Wittrock, M. C. (2006). Problem Solving. In P. A. Alexander & P. H. Winne

(Eds.), Handbook of educational psychology (pp. 287–303). Mahwah, NJ: Lawrence

Erlbaum Associates.

Microsoft Citizenship Team. (2013). Young Kodu designer showcases at 2013 White House

Science Fair. blog.technet.com. Retrieved May 4, 2013, from

http://blogs.technet.com/b/microsoftupblog/archive/2013/04/24/2013-white-house-science-

fair.aspx

Microsoft Kodu. (2012). Microsoft Research. Retrieved from http://research.microsoft.com/en-

us/projects/kodu/

Mitchell, M. (1993). Situational interest: Its multifaceted structure in the secondary school

mathematics classroom. Journal of Educational Psychology, 85(3), 424–436.

doi:10.1037//0022-0663.85.3.424

Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus

corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.

Moreno, R., & Mayer, R. E. (1999). Multimedia-supported metaphors for meaning making in

mathematics. Cognition and Instruction, 17(3), 215–248.

Nastasi, B. K., Clements, D. H., & Battista, M. T. (1990). Social-cognitive interactions,

motivation, and cognitive growth in Logo programming and CAI problem-solving

environments. Journal of Educational Psychology, 82(1), 150.

National Research Council. (1999). Being fluent with information technology. Washington, DC:

National Academies Press.

Nelson, W. A. (2003). Problem solving through design. New Directions for Teaching and

Learning, 2003(95), 39–44. doi:10.1002/tl.111

OECD. (2003). PISA 2003 sssessment framework: Mathematics, reading, science and problem

solving knowledge and skills. Paris.

OECD. (2004a). Problem solving for tomorrow’s world: First measures of cross-curricular

competencies from PISA 2003. Paris: OECD Publishing.

131

OECD. (2004b). PISA 2003 problem solving answer key (Vol. 659). Paris: OECD Publishing.

Retrieved from

http://www.oecd.org/document/38/0,3746,en_32252351_32236173_34993126_1_1_1_1,00.

html

OECD. (2005a). PISA 2003 technical report. Paris: OECD Publishing.

OECD. (2005b). PISA 2003 data analysis manual: SPSS users. Paris. Retrieved from

http://www.oecd.org/dataoecd/35/51/35004299.pdf

OECD. (2012). PISA 2012 field trial problem solving framework. Paris. Retrieved from

http://www.oecd.org/dataoecd/8/42/46962005.pdf

Pajares, F. (1996). Self efficacy beliefs in academic settings. Review of Eduational Research,

66(4), 543–578.

Palumbo, D. B. (1990). Programming language / Problem-solving a review of relevant issues.

Review of Educational Research, 60(1), 65–89.

Palumbo, D. L., & Palumbo, D. B. (1993). A comparison of the effects of Lego TC Logo and

problem solving software on elementary students‘ problem solving skills. Journal of

Computing in Childhood Education.

Palumbo, David B. (1990). Programming language / Problem-solving a review of relevant issues.

Review of Educational Research, 60(1), 65–89.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic

Books, Inc.

Papert, S. (1994). The children’s machine: Rethinking school in the age of the computer. Basic

Books.

Papert, S., & Harel, I. (1991). Situating constructionism. In S Papert & I. Harel (Eds.),

Constructionism (Vol. 36, pp. 1–11). Norwood, NJ: Ablex Publishing Corporation.

doi:10.1111/1467-9752.00269

Pausch, R., Burnette, T., Capeheart, A. C., Conway, M., Cosgrove, D., DeLine, R., Durbin, J., et

al. (1995). Alice: Rapid prototyping system for virtual reality. IEEE Computer Graphics

and Applications, 15(3), 8–11.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New Ideas in Psychology, 2, 137–168.

Peppler, K. A., & Kafai, Y. B. (2009). Gaming fluencies: Pathways into participatory culture in a

community design studio. International Journal of Learning and Media, 1(4), 45–58.

132

Phillips, M. M. (2007). The influence of situational factors on the nurturance of personal interest

and perceived competence. (Order No. AAI3298099, Dissertation Abstracts International

Section A: Humanities and Social Sciences).

Polya, G. (1957). How to solve it. Garden City, NY: Doubleday/Anchor.

Quilici, J. L., & Mayer, R. E. (2002). Teaching students to recognize structural similarities

between statistics word problems. Applied Cognitive Psychology, 16(3), 325–342.

Reed, W. M., & Palumbo, D. B. (1992). The effect of BASIC instruction on problem solving

skills over an extended period of time. Journal of Educational Computing Research, 8(3),

311–325.

Repenning, A. (1993). Agentsheets: A tool for building domain-oriented dynamic, visual

environments. (Order No. 9423532, University of Colorado at Boulder). ProQuest

Dissertations and Theses.

Repenning, A. (2012). AgentSheets. AgentSheets, Inc. Retrieved from

http://www.agentsheets.com/

Resnick, L. B. (1987). Education and learning to think. National Academies Press.

Resnick, L. B. (2010). Nested learning systems for the thinking curriculum. Educational

Researcher, 39(3), 183–197. doi:10.3102/0013189X10364671

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner,

A., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–

67.

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D. Kanter

(Eds.), Design, make, play: Growning the next generation of STEM innovators (pp. 163–

181). New York: Routledge.

Resnick, M., & Rusk, N. (1996). The Computer Clubhouse: Preparing for life in a digital world.

IBM Systems Journal, 35(3.4), 431–439.

Richards, K., & Wu, M. L. (2011). Examining digital game-based learning through the lens of

21st century gamers. In M. J. Koehler & P. Mishra (Eds.), Proceedings of society for

information technology & teacher education international conference (pp. 45–52).

Chesapeake, VA: AACE.

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and

how? Journal of Educational Computing Research, 3(2), 149–169.

Scratch. (2012). Retrieved from http://scratch.mit.edu/

133

Shin, T. S. (2010). Effects of providing a rationale for learning a lesson on students’ motivation

and learning in online learning environments. Order No. 889930919, Michigan State

University). ProQuest Dissertations and Theses

Stolee, K. T., & Fristoe, T. (2011). Expressing computer science concepts through Kodu Game

Lab. Proceedings of the 42nd ACM technical symposium on computer science education

(pp. 99–104).

Suomala, J., & Alajaaski, J. (2002). Pupils‘ problem-solving processes in a complex

computerized learning environment. Journal of Educational Computing Research, 26(2),

155–176.

Torres, R. J. (2009). Learning on a 21st century platform: Gamestar mechanic as a means to

game design and systems-thinking skills within a nodal ecology. (Order No.

AAI3361988, Dissertation Abstracts International Section A: Humanities and Social

Sciences)

Utting, I. A. N., Maloney, J., & Resnick, M. (2010). Alice, Greenfoot, and Scratch – A

Discussion. ACM Transactions on Computing Education, 10(4), 1–11.

doi:10.1145/1868358.1868364

Weiner, B. (1985). An attributional theory of achievement motivation and emotion.

Psychological Review, 92(4), 548–573.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: Video game program-to-play

constructionist. Constructionism 2012 (pp. 1–5). Athens, Greece.

Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental

perspective. Educational Psychology Review, 6(1), 49–78.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation.

Contemporary Educational Psychology, 25(1), 68–81. doi:10.1006/ceps.1999.1015

Wigfield, A., & Eccles, J. S. (2004). Expectancy value theory in cross-cultural perspective. In D.

M. McInerney & S. Van Etten (Eds.), Big theories revisited (pp. 165–198). Information Age

Publishing.

Wigfield, A., Eccles, J. S., Roeser, R. W., & Schiefele, U. (2008). Development of achievement

motivation. In W. Damon & R. M. Lerner (Eds.), Child and adolescent development: An

advanced course (pp. 406–434). New Jersey: John Wiley and Sons.

Woodward, J., Carnine, D., & Gersten, R. (1988). Teaching problem solving through computer

simulations. American Educational Research Journal, 25(1), 72.

Wu, M. L., & Richards, K. (2011). Facilitating computational thinking through game design. In

M. Chang, W.-Y. Hwang, M.-P. Chen, & W. Müller (Eds.), Edutainment technologies,

134

educational games and virtual reality/augmented reality applications (pp. 220–227).

Heidelberg: Springer Berlin.

Ziegler, E. W., & Terry, M. S. (1992). Instructional methodology, computer literacy, and

problem solving among hifted and talented students. International Journal of Instructional

Media, 19(1), 45–51.

