
ABSTRACT

SOME MECHANICAL PROPERTIES

OF CHERRY BARK AND WOOD

by.Robert G. Diener

This study was initiated to study the mechanical

behavior of fruit tree bark to applied stresses. Since.

“the green wood is closely associated with the bark in

the tree limb green wood was also included. Also since,

during mechanical haryesting different frequencies of

Vibration are used, the frequency of the applied stress

was also considered. Tests were limited to a single variety

and species: Montmorency Cherry, Prunus Crasus.

All tests were conducted under controlled temperature

and humidity conditions in a testing chamber. Maximum

strength of bark specimens was determined from tensile

loading in a pneumatic testing machine. Elastic and

viscous properties of bark and green wood specimens were

measured using elastic and viscoelastic flexure theory.

Three loading techniques were used for the flexure tests.

TheSe tests were (1) loading at a slow constant strain

rate uSing a simple beam arrangement (2) free vibration

as a cantileyer beam and (3) forced vibration as a simple

beam. As a check on the theory and experimental technique
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several Specimens of aluminum, Plexiglas, and white pine

wood were included in these tests.

Approximate and exact equations for determining the

viscoelastic modulus from dynamic flexure were derived.

The accuracy of these equations was described graphically

in terms of measured variables. From this it was possible

to use the approximate equations with a negligible amount

of error.

From a transverse microsc0pic section of bark the

tissue appeared to be arranged in four major radial layers.

These layers consisted of a non functioning phloem, a

functioning phloem, and two periderms which made up about

10, 65, 12, and 12 per cent of the total thickness respec-

tively.

The strength of bark was very dependent on the

direction of the applied force. Maximum longitudinal and

tangential strengths for the three inner bark tissues were

about 6&0 and 70 pounds per square inch respectively. The

outer periderm strengths were about 980 and 3250 pounds

per square inch in these reSpective directions. Longitudinal

cambium shear strength was about 30 pounds per square inch.

The storage modulus of bark was very sensitive to

frequency of the applied stress and varied from about 10,000

,to'A0,000 pounds per square inch over a frequency range of
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about 10'".3 to 10-2 cycles per second. The storage modulus

of green wood varied a lesser amount from about 500,000 to

700,000 pounds per square inch over a slightly larger

frequency range. The loss tangents of bark and wood were

about .15 and .0“ respeCtively. .
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INTRODUCTION

Mechanization of harvest operations in recent years

has been a practical solution to the problem of the high

cost of hand labor facing the American fruit grower. In

many cases the cost of harvesting has amounted to as much

as half the total cost of production. AlSo, hand labor is

nOt always available When needed, and managing and housing

laborers requires additional time and expense.

' Several techniques have-been introduced to enable

the grower to'mechanize harveSt operations Such as uSe of

mobile platforms, picking tubes, picking spindles and tree

Vibration. However, the first three methods require

selectiVity in their use and do not cover a large area of

the tree in a single application. Among the various means

and principles Which have been tried for detaching the fruit,

vibration appears to be the simplest and most practical

methbd.

Although vibratory mechanical harvesting is less

expensive than hand harVesting, some resultant damage to

'the fruit and tree must be tolerated. Fruit damage occurs

in the detachment and collection phases when the fruit come



into contact with each other or collide with limbs during

the fall through the tree.- Haldersen (1963) categorized

the resultant tree damage into three parts; these pro-

duced on the limb, trunk, and root systems.' Heweverby

thefuse of an accelerometer-attached to the tree during.

shaking, he found all motion to cease a few inches below

ground level and concluded that root damage was negligible.

Injury to the.1imb.occurs by the breaking of fruit

bearing spurs, fracture of small limbs from whipping action

during shaking, and rupture of the bark tissue in the

shaker clamp area. Adrian and Fridley described bark

injury as occurring while locating the clamp on the limb,

clamping with excessive radial pressures, and improper

alignment of the shaker boom with the limb causing exces-

sive longitudinal stresses in the bark. Additional stresses

in the tangential direction may also be produced if the

shaking machine moves while vibrating the limb or if the

limb tries to assume a path of oscillation which is not

parallel with the applied shaking.force. However, as

reported by Adrian and Fridley, what bark damage occurred

could be tolerated in view of the savings resulting from

mechanical harvesting. Then it was discovered that a

Ceratocystis Canker was entering the bruised bark tissue.

Devey, S£_Elw (1962), described this canker as a fungus

disease which originates in bruised bark tissues and

rapidly Spreads to healthy tissues. In a relatively short



time the fungus would kill the diseased limb and in many'

cases cause the death of the entire tree.» Chaney (1964)

reported that orchards so infected may be expected to

die out completely within ten years. As a result of loss.

in production caused by this infection cooperative studies

were initiated by the United States Department of Agri-

culture and the University of California Department of

Agricultural Engineering to determine allowable shaker

clamp stress that could be applied without injuring the

bark tissue. From these studies an upper limit of safe

radial stress was found as well as general indications

of the relative magnitudes of maximum longitudinal and

tangential bark strengths.

Since mechanical properties of a material such as

strength and also elastic modulus and internal damping

determine the behavior to applied stresses, it was felt

that the study reported in this thesis Should cover these

additional properties. Also, since a wide range of fre-

quencies is used in mechanical harvesting, it was consid-=

ered-advisable that behavior be studied on the basis of

the frequencyuof the applied stress. Furthermore, since

the bark and green wood are closely associated in the tree,

it was felt that the study should be extended to cover green

wood as well.



Objective
 

The objective of this study was to investigate physi—

cal properties and mechanical response to applied stresses

in bark and green wood tissues. Specific objectives of

this study were:

1. Develop or adapt from existing equations the

necessary mathematical formulas for description of mechani-

cal behavior of bark and green wood under applied stresses.

2. DevelOp the necessary experimental procedures

and equipment-to measure and record the physical properties

and mechanical properties such as strength, elasticity, and

damping of the materials under study.

3. Develop a testing chamber having controlled

temperature and humidity conditions in which to have the

testing facilities and to conduct the experiments.



RELATED LITERATURE

Structural and Mechanical Pronertie;

of Plant Tissue
 

The smallest structural uni? »” p;wn1 LISSUS is the

cell. The cell is composed of a non-prULOplasmic rigid

wall and an inner cytoplasmic fluid. Roelofsen (1959)

described cell walls as having largely supportive and

protective functions and thus the walls determine the

shape of the cell and the texture. Two types of wall

structures are present in living plants, a primary wall

and a secondary wall. Usually living cells which carry

out life processes have only a primary wall whereas non-

living cells, whose function is primarily supportive, have

an additional secondary wall. Primary walls are composed

of a fine mesh network of cellulose fibrils which is filled

with pectic and hydrophilic compounds; in woody tissues

they are filled with lignin and in cutinited walls with

waxes and cutin. The pectic compounds constitute the

major portion of the middle lamella between adjacent walls

of the cells. In secondary walls most of the cellulose

present is crystalline cellulose. In the heavier secondary

wall, the cellulose fibrils are grouped into coarser

5



branching strands which are encrusted with pectins, hemi-

celluloses and lignins. In walls that are pure cellulose,

such as the secondary wall of cotton fibers, the spaces

are filled with water. Lignin is one of the most important

wall substances in woody tissues. This polymer encrusts

the wall providing a stiffening and protective function.

Mechanical Properties of Plant Cells.—-Plant cells

are classed as parenchyma, collenchyma or sclerenchyma

cells depending on their wall structure and function.

Parenchyma cells are living cells. They are soft, elastic

and are capable of large plastic deformations at certain

periods during growth (Heyn, 19A0). Collenchyma cells

are similar to parenchyma with the exception of some

thickening at the wall edges which contribute some strength

to the tissue. In sclerenchyma cells a large secondary

wall is present inside the primary wall. This secondary

wall may become so thick that the central cavity almost

disappears. Both primary and secondary walls in cells

exhibit elastic behavior, but primary walls are much more

flexible. Meyer et a1. (1963) described the tensile

strength of secondary walls as comparable to that of

spring steel. Frey—Wyssling (1952) reported that primary

walls were capable of up to 50 per cent extension as com-

pared to only about two per cent for the secondary walls

in fiber cells. Meyer (1950) thought the differences in

behavior between primary and secondary walls was due to



theVlarge~amounts of amorphous cellulose and pectic compounds

in primary walls as contrasted to the crystalline cellulose

and lignins in secondary-walls. He also stated that the

presence of lignin does not affect the tensile strength,

but increases the compression strength by preventing the .

cellulb e stran s in the walls from buckling under compres-

sive loadings. However, Frey—Wyssling (1952) suggested

that the encrusting substances in and between the cells_

and the-arrangement-of the fibrils accounted for the amount

of elasticity and strength and not the crystalline and

'amorphous regions in the fibrils themselves. He also

stated thatlthe pectins, hemicelluloses and amorphous

cellulose.are very sensible to swelling with water and '

that-as a result elasticity and plasticity in the fibers

depend markedly on moisture content. «Frey~Wyssling (1952)

foundnthat ultimate stress in cotton hairs could be related.

to the spiral angle of the fibrils in the cells. He found‘

that the ultimate strength'increased-as the fibrils became

orientatedrmore in the direction of pull.' Under high

.stressesncellulose fibers and other cells often Show slip

planes. 'Meyer (1950) explains failure under these condi-

tions as a slipping or fracture of the molecular chains.

In native fibers where the chains are long, failure occurs

by rupture offthe chain. In artificial fibers where the

chains are Shorter he suggests that failure occurs by

'slipping between chains and hence these fibers are subject

'to humidity content giving them a low "wet strength."



For the purposes of comparison of some of the mechani-

cal.pr0perties~of plant fiber cells and other materials

Table l is presented below from data presented by Meyer

(1950), Frey-Wyssling (1952), and Esau (1965).

TABLE l.--Mechanical properties of plant fibers and some

other materials.

 

Average property in psi x 10"3 and

strain in in/in.

 

Tensile Compression Elastic Ultimate

 

Material strength strength modulus strain

Collenchyma (fiber) lu.0 .02

Sclerenchyma (fiber) 28.A .01

Cotton (fiber) 60 7 1,100

Wool (fiber) 25 - 280

Nylon (fiber) 110 17 1,000

Concrete 190 - 2,800

Wood 1A 12 1,750

Aluminum 35 38 9,800

Steel 1A0 <1AO 28,000

 

In.woody tissues having thickened secondary walls,

Frey—Wyssling (1952) thought that the instability of the

cell shape determined the mechanical response of the cell

to applied stresses. He also thought this to be the reason

for anisotrOpy in wood. Wood also has definite isotropic

directions with respect to the principal fiber orientations.

For example, the average ratio of elastic moduli magnitudes



in wood in the tangential, radial and longitudinal directions

is about 1:2:20 respectively, (U.S.D.A. Wood Handbook,

1955).‘ Frey~Wyssling (1952) summarized and reported on

studies made by other investigators of the anisotrOpy in

Douglas fir and spruce. 'They found that the elastic

modulus measured between the principal orientations of the

fibers varies in a complicated pattern with changes in

angular location.' They also found that under compressive

loading, the large trachied cells failed by collapsing or

structural instability. The walls of the cells deformed

in an "S" shape and the edges of the walls remained at

right angles to each other.

Moisture content in wood is defined as the ratio of

water to dry matter (U.S.D.A. Wood Handbook, 1955). The

moisture present in wood is divided into two parts: (1)

free-water'in'cell cavities and in intercellular spaces

and (2) absorbed water in the capillaries of the walls.

The fiber saturation point is reached when all the free

water is absent at about 30 per cent moisture content.

Mechanical properties in wood are affected by moisture

content. 'Wood increases in strength as it drys. Longi—

tudinal compressive strengths for 12 and five per cent wood,

for example, are about two and three times the strength of

green wood respectively. The strength of green wood does

not begin to increase with drying, however, until the fiber

saturation point is reached. The change in strength has
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been associated with moisture content in the following

relation (U.S.D.A. Wood Handbook, 1955) as log S = log S
3 l

3/Ml—M2) log 82/81 where 81,82 and S3 are the

strengths at moisture contents M1,M2 and M3. Changes

in temperature have a slight effect on wood. Generally

+ (Ml-M

wood strength increases with decreasing temperature. The

opposite is also true. It is estimated this strength

variation is about one—half per cent per degree F. from a

base temperature of 77 degrees F. When wood is exposed to

temperatures above 150 degrees F. it is permanently weakened.

Structural and Rheological Properties

of Fruit Tree Bark

 

 

The nonatechnical term "bark" refers to the tissues

in the stem outside the vascular cambium. The bark is

composed of the phloem, an inner food conducting tissue,

and the periderm, an outer protective tissue.

Arrangement of Bark Tissues.-—The periderm consists
 

of three tissue layers. The outer cork*1ayer, a middle

single cell layer of cork cambium cells and an inner layer

of loosely packed parenchyma cells, which sometimes is not

present.

The phloem is generated from the vascular cambium

in an outward radial direction. The vascular cambium

also produces xylem or wood cells to the interior.

Generally, less phloem cells are produced than xylem and
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the crushing of the phloem annually by new growth makes it

much thinner than the woody part of the stem. Phloem is

composed of several specialized cells such as Sieve cells,

fibers, and parenchyma. The sieve cells are long, tubular

cells which form the food conducting tissues of the phloem.

Parenchyma cells are found both at random in phloem tissue

and in radial rays as ray parenchyma° Only a few layers

of phloem cells next to the vascular cambium actually

function in a given season. The rest are termed non-

functioning phloem (Esau, 1965).

Schneider (19A5) studied the seasonal changes of

peach and cherry phloem. He found sweet cherry produced

a new band of phloem each spring to function for the

summer. In the fall the new sieve tubes became plugged

and the tissue became non-functioning. During each growing

season fibers matured in the phloem of the previous year,

and fissures occurred along the rays. He also found that

less crushing of the old cherry phloem occurred than in

some other species with the result that cherry bark was

much thicker than peach bark, for example, where the old

phloem is completely crushed.

Mechanical Properties of Bark.e-Adrian and Fridley

(1963) studied bark injury in prune trees as related to

shaker clamp design. They reported that bark on the tree

could safely withstand a radial pressure of 250 pounds.
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per square inch without rupture of inner phloem cells.

Rupture was indicated by a hairline crack in the functioning

phloem thought to be caused by air oxidizing the tissues

in the injured cells. 'They found the tangential shear

strength of these barks to be about 100 pounds per square

inch. Longitudinal strength of bark was found to be about

four times the tangential strength.

Brown (1965) conducted tests on almond and olive

trees to find the effect of moisture content and normal

(radial) pressure on the shear strength of bark at the

cambium layer. He found that in general bark with high

moisture content had low shear strength and bark with low

moisture contents had high shear strengths. Shear

strength was also found to be affected by the normal

pressure depending on the moisture condition of the bark

and variety.' At moisture contents less than about 130 per

cent an increase in normal pressure caused an increase in

the cambium shear strength. These shear strengths were

in the order of 1A0 to 200 pounds per square inch for normal

pressures of 60 to 300 pounds per square inch. At moisture

contents above 160 per cent, increase in“normal pressure

did not produce a corresponding increase in the shear

strength of the bark, and for some varieties shear strength

decreased. He suggested that to reduce'injury during

shaking, it would be advisable to harvest when the moisture

content of the bark is at a lower level.
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Concepts in Viscoelasticity

and Materials
 

Owing to the tremendous importance of the mechanical

prOperties of synthetic high polymers, the science of

viscoelasticity has been developed largely in the last 25

years.‘ These-materials have remarkable properties which

permit-them to be used aS'rubbers, plastics, and fibers to.

replace materials of”plant and animal origin"and for new

uses which were impossible before. 'These organi “com—

poundsrare'formedwfrom*hydrocarbons and their derivatives

‘with*almost infinite variations in molecular structure and

resulting mechanical properties. Unsaturated hydrocarbons

undergo polymerization reactions in which molecules couple

together to form extended chains. The term high polymer

(Sienko and Plane, 1961) is any of these large molecules

containing recognizable repeatable units which form extended

chains.

Polymers are formed in leaf tissue of plants where

carbon.dioxideahd.water are combined to form the sugar, and

glucose. Thousands of g1uCose molecules unite to form large

molecules of cellulose and starch. ‘The cellulose conk-

stitutes the framework of the plant while starch serves as

a food material.

Viscoelastic Behavior of Materials.--The theory of
 

Viscoelasticity, developed to explain the behavior of high

p01ymers, allows mathematical representation of such
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phenomena as stress relaxation during loading, retarded

elasticity, creep and non-recoverable deformation. Even

metals and glass fibers show a slight degree of viscous

behavior under creep, relaxation, and sinusoidal testing.

While these materials-are-primarily elastic these tests

yield valuable information about the structure and behavior

of the material. 'Polymers, however, exhibit a high degree

of viscoelastic behavior in tests of the material. In

crystalline high polymers, the crystals are rigid for all

practical purposes while the amorphous regions are only

rigid and brittle at temperatures below the amorphous

"brittle point" (Alfrey, 19A8). At higher temperatures

these amorphous regions have a viscous and rubbery behavior.

Frey-Wyssling (1952) summarized and reported on

studies done by other investigators on the mechanical

behavior of cellulose fibers. 'These investigators found

the tensile strength and modulus of elasticity of native

cellulose fibers”to be as high as the finest steels. Their

highest experimental values approached the theoretical

strength of'a stretched rope of primary valence chains.

High values were found to occur with low moisture content,

low temperatures, and good orientation of the fiber. They

found the large plastic deformation to occur only through

consolidation and orientation of the amorphous regions.

When extensions reached this point of consolidation, the

fiber was rather completely crystallized, and failure

occurred.
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Techniques in Viscoelasticity.--It is common to
 

represent a viscoelastic material with a mechanical model

of springs, dashpots, and frictional elements in order to

write a-mathematical description of the behavior. These

models are useful in one—dimensional studies of strain

rate, creep, and stress relaxation.' The oneedimensional

model may be extended~by'use'of'the CorreSpondence

PrinCiple into a three dimensional stressestrain tensor

(Bland, 1960).‘ However, this leads to very complicated

expressions for higher parameter models having three or'

more elements, and is useful only for homogeneous materials

having simple shapes.

The behavior of viscoelastic materials may also be

studied by applying a sinusoidal stress to the material

and observing the resultant strain. *The behavior of a

specific viscoelastic model may also be studied in this

way by replacing the stress and strain components in the

constitutive equation With the corresponding sinusoi-

dally varying components of stress and strain. 'The

resulting equation may thenwbe solved directly for the

elastic modulus by obtaining the stressestrain ratio. The

elastic modulus obtained in this way is called the complex

modulus of elasticity. The complex modulus is usually

arranged in its real and imaginary parts of vectors which

represent the elastic and viscous elements respectively.
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o S i Stu ie in A 1 ur Pr d t .--

Viscoelastic theory has more recently been applied to

agricultural products in an attempt to describe their

behavior. Mohsenin (1962) e£_al. studied creep in apple

fruit using a Kelvin and a Maxwell model in series.

They*also recognized the importance of strain rate.

Zoerb and Hall (1960), and Finney and Hall (1964) used

Maxwell models in parallel arrangements to represent

stress relaxation in agricultural products. Zoerb used.

a two element model to represent pea beans and Finney

used a four element model for potatoes. Both studied

the effect of strain rate on the rate of stress relaxation

after loading ceased. 'They observed that at slower loading

rates less stress relaxation resulted in a given time

than that for higher rates. It is obvious here that the

material is relaxing in the loading phase. At high loading

rates, the material cannot relax as much in the loading

phase; therefore, this occurs in the relaxation phase. AS

a further step, Zoerb and Finney might have plotted the

relaxation time constants against‘loading'rate to determine

what relations existedu‘ Interestingly, Zoerb found no

relation between moisture*content of pea beans and relaxa-

tion time. However, he noted an increase in loading force

with an increase in moisture content which demonstrated a

viscous effect.
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Finney (1963) presented a comprehensive introduction‘

to use of models to represent viscoelastic behavior in his

Doctoral Thesis.

Testing of Hard Viscoelastic Materials

Relatively stiff materials such as wood fibers approach

the rigidity of the testing apparatus and as such are not

suitable for testing in sandwich or block geometry for

measurement of pure shear.' Rather, these materials are

more suitably tested as long, thin strips in tension, thin

rods in torsion or as beams in flexure.

Tension and torsion testing are sometimes not prac—

tical because of difficulties in gripping the specimen, due

to low strengths of the material in the radial direction

as compared'to the longitudinal direction. Also it is

often difficult to measure the relatively small displace-

ments resulting from the applied stresses by direct methods

such as the use of strain gages.- Indirect methods must

then be used by measuring the displacement of an element

strained~in'serieS'with'the'specimen“being'tested.'

Flexure'testing-iS'frequently-more-desirable‘since

this method permits large displacements without rupturing-

the material. -In addition this method permits moving of

the supportsto adjust the amount of force applied to the

specimen for a given displacement.

Dynamic testing techniques should be very helpful

in testing semi—rigid materials. These tests are usually
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fast, non-destructive, and give good results. By using

rapid loading rates these tests can provide information

about the material behavior for higher frequencies of

applied stresses. In addition, cyclic testing in flexure,

for example, bends the specimen in both forward and

reverse directions, thus averaging the properties across

the section. This often leads to more consistent results.

Theory of Flexure Testing for Rigid

Viscoelastic Materials

 

 

Static Testing. For a simply supported beam with a
 

center load P, the elementary elastic equation for average

bending stress 0 is

3PLG g.
(1)

ubhé

and for Young's modulus of elasticity, E, is

3

quh3

 

where E and o are in units of pounds per square inch, P is

the applied force in pounds, L is the distance between the

supports in inches, Y is the displacement at the center

of the beam in inches and b and h are the width and depth

of the beam respectively, in inches.

However if the material under test is viscoelastic

in behavior, then time must also be considered and the

resulting stress and modulus become o(t) and E(t)
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respectivelyi A generalized stress equation of this type

haS‘been prOposed by Ferry (1961) for a Maxwellian material

under a constant loading rate R as

o(e,t) = R/ITHEl—exp(-t/T)] d1 (3)

This equation represents a spectrum of Maxwell models

each contributing a stress E and a relaxation time between

T and d1. T is defined as the ratio of the dashpot constant

n to the spring constant E. The term H(§) is a function

of the relaxation time I and is generally called the

spectrum of relaxation time. This term replaces the E's

of the individual models. Thepvariables-H and T are deter-

mined experimentally by loading~the-material at different

strain rates and long term relaxations;' However, of more.

importance, the time derivatiVE'of‘the'ratio of the stress

to the loading rate R in equation (3) is equal to the

relaxation modulus E(t). The relaxation modulus is defined.

.as the ratio of the relaxation stress to the strain at which

relaxation is carried-out (Alfrey, l9u8). However, Chang

(1964) has shown that the relaxation modulus can also be

measured by taking the tangent modulus of the loading

curve at time t., This is a useful relation since E(t)

has already been related to the storage modulus, E'(m), by

Ferry (1961), in the relation

E’(w) z E'(l/t) _ (u)
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This relation is possible for low frequencies or short

relaxation times since the relaxation and storage moduli

curves are mirror images of each other in the time and

frequency axes respectively. Since both E(t) and H'(m)

are measures of stored elastic energy, a dynamic measure-

ment at frequency w is equivalent to a transient one at

t =‘1/w.

 

Nonresonant Dynamic Testing.--The storage modulus

E'(w) and the loss modulus E"(w) components of the visco-

elastic modulus E* are most simply written

E'(w) E“ cosé ’ (5)

E"(w)

‘E* sins i _ (6)

where 6 is the phase angle between the applied stress and

the resulting strain.' A convenientway to measure these

moduli would be to apply a sinusoidally varying force to

the material and observe the modulus E* and the-phase angle

6. If the material is purely viscous the displacement

will lag the applied stress by:a phase angle of 90 degrees”

For.pure elastic response the phase angle is zero. Visco-

elastic materials fall somewhere between these two extremes.

However, considerable-difficulty is usually encountered in

measuring the phase angle, 6, accurately.

KOppelmann (1858) tested Plexiglas in this way using

cantilever beam geometry. ~In this case the modulus, E*,

was replaced by IfI/h'lxl, where f and x were the peak
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values of applied force and resulting displacement at the

end of the beam respectively and h' was a form factor

depending on the geometry of the beam. In the case of a

cantilever beam

h' = bh3/uL3 . (7)

'where b, h, and L were the width, depth, and free length

of the beam respectively. The beam was driven bya rocker

arm. One end of the rocker arm was attached to‘the beam

by a wire and the other end of’the arm was driven by a

sinuSOidally varying force.' By the use of two small mirrors,

‘one at the rocker arm pivot and one attached to the

sinusOidal driver, Koppelmann was able to determine the

phase angle from the images traced on a high Speed, light

sensitive film strip.

Resonance Testing.--Resonance testing techniques.

use the frequency and relative amplitudes of the resonance

condition and as such are capable of measuring response

at much higher frequencies than either static or dynamic

techniques.' The use of resonance techniques in measuring

‘the behavior of materials at high frequencies are usually

referred to as sonic testing. Sonic testing techniques

are very suitable for testing beams in flexure.' This

method requires very small deflections and as such there

is no danger of exceeding the limits of linear behavior in
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. the material or the assumptions made in the.derivation of

the flexure equations.

The basic relation for flexural vibrations in beams

is given by Timoshenko (1921) in the equation

a 2

33’ JALX -
HI «I» —0 (8)

3X; g at2

where E is the elastic modulus, I is the inertia of the

cross section, 7 is the density of the material, g is

acceleration due to gravity and y and x are distances

measured in the depth and length directions of the beam

respectively. By assuming a solution of the form

y = D (A'sin wt + B'cos ut)

the well known expression for the natural frequency, fd’

for flexural vibrations in beams is expressed as

. 1
n .KE (9)

where E‘is the modulus of elasticity in pounds per square

inch, K is a beam constant and fh is the observed natural

frequency in cycles per second. The beam constant, K, is

given by the relation

K = (2n)2 ASLu/kmu lg (10)

where L is the length of the beam and km_is a modal cone~

1

stant based on the beam geometry and the particular mode-

of vibration. Modal constants listed by Timoshenko (1955)
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for the first three modes of vibration are: for a cantie‘

lever beam, 1.875, H.69M and 7.855 respectively and for a

free beam simply supported at its nodal points, 4.730,

7.835 and 10.996 respectively. The nodal points are

locations along the length of the beam which are stationary

.during flexural vibration of the beam at a particular mode.

Church-(1964) has given the nodal locations as a

non-dimensional ratio of the distance of the node from

the end of the beam to the total length of the beam. For

beams having different-boundary conditions at the ends of.

the beam, such as the cantilever, the particular end of

the beam from which measurement is to be made must be

specified; For a cantilever beam the nodal positions as.

measured from the free end are: first mode, 1.0, second

mode 0g226, third mode, 0.499 and 0.132. For a free beam

which is simply supported, the nodal locations are symmetrie

cal and may be~measured from either end of the beam. The

nodal positions are:' for the first mode, 0.22“ and 0.776,

for the second mode, 0.132, 0.500 and 0.868, for the third

mode,.0.094,.0.356, 0.6M“, and.0.906.

Timoshenko (1921, 1922) first recognized the-effect

of forces present in beams due to shear and rotation

inertia and-developed a new flexure equation to include

these terms.' Goens (1931) used the Timoshenko equation

to develop an approximate correction expression for shear

and rotation inertia. The Goens correction factor, T, was
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used to calculate a corrected resonance frequency fC from

the observed resonance frequency fn by the relation

f = f -V T ' (11)

However, in practice, the Goens equation was not easy to

calculate, since the solution for T involved an iterative

solution and a prior knowledge of the elastic modulus, E.

Picket (1995) developed a more usable equation for the

Goens correction factor T for flexural vibration of beams

 

and cylinders. This relation is

41'

2 ‘02n (r/l)
Tn = 1 + Cln (r/2)‘ ’ 2 (12)

l + C3n(r/£)

 

where the subscript, n, refers to the particular mode; Cl’

02, and C3 are constants, r is the radius of gyration and

2 is the length of the beam. In a rectangular beam the

ratio r/i is equal to the ratio of the depth squared to

twelve times the length and for a cylinder the ratio is

equal to the ratio of the diameter to four times the

length. The constants calculated by Picket, C C
In’ 2n’ and

C for the first three-modes are: for n = l, 88.12, 1572,

3n’

and 92.61 respectively; n = 2, 229.81, 9984, and 223.6

respectively; and n = 3, 446, 38,372, and “38.3 respectively.

It can be seen from equation (10) that the value of T is

always slightly larger than 1.00 and becomes larger when

the frequency is increased, but remains approximately equal

to one for values of r/2 less than 0.005.
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In recent years investigators have used various forms ‘

of equations (10),(ll) and (12) to measure the modulus of,

elasticity, E, in materialssusing resonant flexure testinga

Hearmon (1958), for example, measured Young's modulus in

wooden.beams, 18 to 20 inches long with nearly square

cross section,using forced resonant vibrationu 'In these

tests Hearmon supported the free beams at the nodal points

.by'two"thrEads; Hearmon used a coil, driven by a signal

generator,tb drive the beam through the use of a small

steel shim attached to the end of the beam. He used a shim

and cOil at the-other endiof the beam to measure the

reSulting amplitude which was displayed on an oscillOSCOpe

screen. The resonant frequency was determined as that

. frequency which resulted in the maximum amplitude of the‘

driven beam. HearmOn found very good agreement for calcu-

lated'valueS‘of E from different modes in hih“tests. At

higher mOdes the value ofiT became significantly large.

For'efample,~in a typical sample, with a first mode reson—

ance at 85 cycles per second the value of T was only 1.007,

however,~at'the 16th mode, at 5365 cycles per second, the

-va1ue of TTincreased to 1.682. Hearmon also corrected for.

moisture content variations'ifiVhislspecimens by using the

relation

fa = fb(l-0.004AM) (13)

where fb and fa were the resonant frequencies in cycles per
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second before and after a change in moisture content, AM,

in per cent.

I ‘Bair~(l96h) used-free vibration of hardboard using

cantilever beam geometry in an attempt to measure the

effect-of moisture content on Youngfs modulus of"elasti-

city, E, and the logarithmic decrement, A.* Vibrations

were caused by-lightly tapping the-beam. The resulting

motion was displayed-on an oscillosc0pe screen using a

method similar to that used by (Hearmon, 1958). From

the frequency and the rate of decay of the wave form, Bair

was able toscalculate Young's modulus and the logarithmic

decrement.respectively; The logarithmic decrement, A,

was calculated using the relation

t
> ll

S
i
l
l
—
J

1n xO/xn (1“)

where the ratio xO/xn was the initial amplitude to the

amplitude n cycles later. Bair.found that a linear rela—

tion existed between both E and the logarithmic decrement

with respect to the moisture contents from zero up to

20 per cent.‘ For spruce and oak, Kellmann (1960) found

that the logarithmic decrement generally increased with

an increase in moisture-content, but not in a linear

relation,up to moisture contents of 40 per cent. He

noted'a large-drop ‘in‘the logarithmic decrement at moisture

contents from about 6-to 10 per cent. In addition, the

logarithmic decrement did not increase for increases in ‘

meisture content above 40 per cent.
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f.In a study of rubber—like materials Nolle (19u8)

extended the flexure solution for the elastic modulus

equation (9), to the viscoelastic case. ~In his solution,

Nolle assumed the material could be represented by a

spring and.viscous element in parallel. By use of solu-

tion for a similar a.c. resonant circuit and assuming

small values of damping, he developed the two approximate

equations for the storage modulus, E'(w) and the loss

modulus,'E"(w).

These relations were

E'(w) K(VO2 +(AV)2/2) (15)

E"(a) = KVOAV (16)

where K was a constant involving the mass and dimensions

of the beam as well as other constants in equation (9),

V0 was the observed natural frequency, and AV was the

observed resonance frequency band-width at .707 Of the

resonance frequency amplitude;

Horio and Qnogi (1951) developed a solution similar

5.. .- 8

to that by Nolle by adding a damping term, n1 ——§¥—

0. 3x St

to the original flexure equation given by Timoshenko,

equation (8).»‘They also assumed only small values of

damping in deriving the approximate Solutions. These

solutions were identical with those by Nolle except that

the constant, 1/2, in the equation for the storage modulus

was replaced-by a smaller value, 1/8. This change is

insignificant for low values of damping.
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Bland and Lee (1955) developed an exact solution

using a completely general viscoelastic law rather than

the specific model used by Nolle for the determination of

the viscoelastic modulus, Their solution used the ampli—

tude and the stress-strain phase difference of the beam

at resonance.. A specific case of the general solution

was developed to cover the case of small damping and

. which required only the measurement of the beam resonances

for several-different lengths of the beam. Another

modification of the original solution allowed for solution-

with an end load on the beam. 'As a result of laboratory

tests they concluded that reasonable accuracy could be

obtained with Nolle's equations for small damping.



THEORETICAL ANALYSIS

DevelOpment of the Complex Modulus

of Elasticity Equations M

 

 

Before using the equations for forced beam vibration

developed by Nolle (1948), it was decided to (a) develop

these equations using theory of elementary vibrations and

beam mechanics for a two parameter viscoelastic model and

extend this solution to cover the case of free beam vibra—

tions;,(b) develop a second formulation of the same equa-

tions without making the usual assumptions for small damping;

and (c) derive error terms for the above two sets of

expressions for‘the storage and loss moduli in terms of the

.measured quantities;.the frequency bandwidth ratio Aw/wnd

-§nd}theqlogarithmicdecrementA. These error terms would

be of benefit since the investigator can immediately deter-

mine his error for higher damping when using the approximate

'eduations without actually calculating values of the complex

modulus.

Viscoelastic moduli for small damping.-—For this
 

derivation the two parameter model shown in Figure l is

proposed to represent the material.

29



 

E

.flge...
n

Figure l. A two parameter Kelvin viscoelastic model con-

taining elastic and viscous elements.

Under an applied tensile stress, 0, a material rep-

resented by this model would yield a constitutive equation

of the form

dc
= __ (o E e + n dt (17)

where E is the elastic modulus of the material in psi.,

n is the damping constant in units of pound seconds per

square inch, and e is the resultant strain in units of

inches per inch. If we assume the material to be excited

by a sinusoidal stress the resultant stress 0 and strain

6 may be represented by

iwt _ € ei(wt—6)
o = a e and e -

o o

where w is the frequency in radians per second, t is the

elapsed time in a cycle and 6 is the phase angle between

the stress 0 and the strain 8. If this stress is now

applied to a Kelvin material the resultant stress-

strain ratio mayébe shown to be

el.

0/8 = O = E -inw (18)
60

 

From the above expression the real and imaginary parts of

the elastic modulus may be written as the storage modulus
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E'(w) and the loss modulus E"(w) where

E'(w) = E and E"(w) = um (19)

In the solution obtained by Nolle (19A8) it was assumed

that

E'(w) = E + nw and E"(m) = 0w (20)

so that

E'(w) = E +.E"(w)

By using a different formulation of the complex

modulus as presented in equation 19, together with the

theory of vibrations and beam mechanics, one can derive a

similar set of expressions similar to equations 15 and 16

developed by Nolle (19MB). ‘In using an electrical analogy

Nolle (19A8) replaced mass with inductance, damping force

with resistance and the spring force with the reciprocal

of the capacitance.

The behavior of a spring mass system having a small

amount of damping which is driven by a sinusoidal force

has been studied in detail and is presented in numberous

vibration texts. This system as shown in Figure 2.

211/ ,/“ ./

M ——-—3 F = Fo sin wt

 

   

Figure 2.--Forced vibration of a damped spring-mass system.



32

It is represented by the equation

K1€ F081nwt
d2(e) Q dE __ _ .

——2_dt +MR+M - M (21)

where e is the displacement of the mass center at any

time, t, c is the damping constant in pound seconds

per inch, K1 is the Spring constant in pounds per inch, M

is the mass in pound (seconds)2 per inch and w is the

radian frequency. It has also been shown that for small

amounts of damping and using the maximum displacement as

a criteria of resonance the two following relations will

be true:

2 = 2 _ 12

(0nd wn (1 2U ) (22)

Aw/w 3 20' (23)

where Am is the frequency bandwidth at 0.707 of the

maximum amplitude, wnd is the damped natural frequency, wn

is the undamped natural frequency and n' is a dimensionless

term known as the damping ratio.

Equation 22 may now be easily rewritten in the form

of a series equation as

2=- 2 '12 Ivlo 18___ _'_. ,,1’l
wn “nd (1 + 2n + An + 8n + .t nn ) (2A)

If the usual assumptions for small damping are made,terms

of n! highethh n the second power are ignored and equations

23 and 2A are combined, the relation that results is

2

2 z A“) 2
mm (1 + Eaggy) wnd (25)

For this system wn may also be expressed by the

ratio Kl/M. A similar relation also exists resulting from
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beam theory as discussed by Timoshenko (1921, 1922, 1961),

where the natural frequency of a vibrating beam, on, in

radians per second, may be represented by the relation

“n2 = E/H where E is the Young's modulus of the beam in

flexure and H is the beam constant which is given by the

relation

H = KTr1 (26)

where the values of K andlklare given by equations 10 and

12, respectively.

Thus the constants for a spring-mass system and a

beam undergoing flexural vibration at the same frequency

may be related by the equation

n2 =Kfi = g
(27)(1)

Therefore from equation 25, the storage modulus E'(w)

may be represented by

< l + 3—3—27) (28)E'(w) = Hm

n nd

d

This is the same as equation 15 found by Nolle (19MB).

By an argument similar to that used for equation 27, a

relation may be written for the damping constant c in the

form

(29)

C
H
I
:

2

M

where n is also a damping constant, but in units of pound

seconds per square inch.
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From equations 19 and 29 the expression for the loss

modulus, E"(w), becomes

H _

E (w) — Cwnd

By use of the relations c/Cc = n', given by Thompson (196“),

where CC is the critical damping constant in units of pound

seconds per square inch, and the relations CC = 2Mcn and

M = H,

E"(m) = 2Hwnwnd0' (30)

If n' is small, equations 23 and 30 may be combined to

give the relation

 

Aw )n = 2
E (w) H wnd (w

nd

(31)

Equations 28 and 31 developed in this manner are identical

to equations 15 and 16 developed by Nolle (19A8).

For the case of free damped vibrations of a spring-

masssnmmxmlthe following two equations have been presented

by Thompson (1964), which are analogous to equations 21

and 23. The free vibration relationships are

wndz = wn2(l-2n'2) (32)

and A = 2fln'//T_W (33)

where A is the logarithmic decrement.

By a completely analogous method to that used in the

case for forced vibrations similar solutions for storage

and loss modulus may be derived for the case of free

vibrations to give the following equations:
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E'() H 2on“) (34)
w wnd 2??

E'(w)

A

H wndz (1?) (35)

Viscoelastic moduli for large damping.—-Equations
 

will now be derived for the determination of the visco-

elastic moduli in beams subjected to forced and free

vibration without the assumption thatn'>>1. However, owing

to the nature of equation 22 the restriction is imposed

that U':0.700.

Therefore, a new equation is now derived for the case

for high damping in a manner similar to that used by

Thompson (196“) for equation 23 where

Aw ,,

EH‘2n/l+a'2
(36)

and by letting A = Aw/wn equation 36 can easily be

arranged into the form

n'=(/_lfI—T7 -l)/2 (37)

If the expression for w' is then substituted in equation

22, ”n becomes

w = wnd , (38)

/ 2-

 

 

 

71 - A2

This equation cannot be solved directly for “n since A is

also a function of ”n' However, since this equation is

already in the form x = f(x), it can be easily solved for

mm by using iteration procedures to a specified interval
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of convergence such as 10-6, so that for all practical

purposes this becomes an exact solution.

Thus the storage modulus becomes

E'(w) = Hwnz (38)

where the value of mm is given by equation 38. The

storage modulus E"(w) may now be represented by use of

equations 30 and 37 as

E"(w) - H wn wnd(/—l:77_?l) (39)

where values of mm and A are known from equation 38 and

the value of Am.

For the case of free vibrations, equation 33 may be

rewritten in the form

1 (A0)

/hn2 A2 + l

11': 
 

From equation 32, wn can be written

wnd

w - 1.-

n Vl-'2/(Lln"‘/A2 + if (“1)

 

 

The storage modulus may now be written for free vibration

as 7 2

. Hm

, _ “a nd

E (w) ‘ (l -EV(DnZ/AZ + l) (“2)

 

and the loss modulus becomes

E'(w) = gHwnwnd (”3)

/sz7hz + l

 

 

Error terms for the approximate solutions. The error
 

resulting from using the approximate solutions may be
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calculated directly from the equations presented in the

preceding two sections. However, it was felt that a

graphical presentation of the measured variables A and

Aw/mnd versus per cent error would be of decided advantage

over this procedure. In order to keep the.same basis of

comparison between the forced and free vibration solutions,

values of A and Aw/cnd were generated from the same value

0f n'. Values of n' were varied from zero to 0.700 in

increments of .01. Values of A were calculated from

equation 33 and values of Aw/wnd were calculated from the

relation

2n1 1 +‘fi2

/1—2n2

 

Aw/wnd =

The previous solutions for the elastic moduli were redee

fined in terms of the measured variables A and Aw/wnd and

the damping ratio n'- . The results of these calculations

are presented graphically in Figures 3 and A.
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LABORATORY STUDIES

To initiate a study of the physical and rheological

prOperties of fresh bark and wood tissue, it was first

necessary to assemble suitable testing facilities to

measure these prOperTies. Also it was recognized from

preliminary tests that these tissues were viscoelastic in

behavior and as such would be considerably influenced-by

temperature and humidity conditions. In an effort to

reduce the effects of these variables a testing chamber

was constructed to provide environmental control and

house the instrumentation.

' Testing Chamber
 

After preliminary calculations it was decided that a

chamber six feet wide, eight feet long and seven feet

high would be large enough to conduct the tests in and yet

would not be too difficult in which to maintain controlled

conditions with the equipment available. The frame of the-

chamber was constructed of two by two inch studding covered

on both sides with one-eighth inch plywood. »F1berglas:n

was used as insulation in the walls, ceiling, and floor of

the chamber.

MO
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An air conditioner located in the lower front corner

of the chamber was used to control the temperature. A

deflection duct was fitted to the air conditioner to

direct the cool air toward the top of the chamber to

minimize temperature gradients and to reduce air movement

in the area where the samples were to be tested. Moisture

was introduced by releasing low pressure steam through a

horizontal 20 inch length of one-half inch pipe. The pipe

had small holes drilled at one inch spacings along the top.

A small piece of copper tubing was connected On the low

pressure end of the manifold to drain away the water

condensate. The manifold was located near the floor at

the rear of the chamber to allow the steam to rise and

diffuse through the air before entering the air conditioner.

The controls for the temperature and humidity systems

were located at the testing area in the chamber. Thus

when the specified conditions were set on the thermostat

and the humidistat it was assured that these conditions

would be met in the immediate area where the sample was to

be tested. A humidistat operated solenoid in the steam

line controlled the amount of steam entering the chamber.

During Operation the temperature was maintained at

72 :3 degrees F.and.the humidity was held at about 75 per

cent.
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Maximum Strength Tests

As a preliminary part of the study of the mechanical

properties of bark and green wood, bark specimens were

subjected to a series of strength tests; In these studies

‘the maximum tensile strength of bark in the longitudinal

and tangential directions and the maximum longitudinal

shear strength of the cambium layer were measured. Because

of its higher tensile strength, the rupture strength of

green wood was not measured in this study since the forces

required were beyond the capacity of the testing machine.

Maximum strength of wood is more easily determined by

obtaining the so called rupture modulus from a bending

test.

Measurement of the Maximum Tensile Strength.--For
 

these tests bark specimens, one inch wide and ten inches

long, were cut from the tree using a rectangular steel

cutting frame. Then the samples were cut into necked

Specimens, four inches long, using a specially prepared

cutter. The specimens were loaded in tension using the

Bellows Valvair pneumatic testing machine shown in

Figure 5. This machine is capable of producing forces in

tension and compression of about 300 pounds at constant

strain rates which may be varied from near zero to about

100 inches per minute. Specimens tested using this

machine were held by two specially designed vices shown
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Figure 5.--General view of testing apparatus.
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in Figure 6. Each vice had about one square inch of

clamping surface. The jaws were designed with horizontal

serrated surfaces to reduce slipping. Specimens were

loaded at a constant strain rate of about 1.5 inches per

minute and the resulting force was measured by a Baldwin-

Lima-Hamilton U-lB 50 pound capacity load cell and recorded

by a Mosley 135 X-Y recorder. Displacement was measured

using a dial gage indicator as shown in Figure 6. An

event marker on the X-Y recorder was used to record the

..observed displacement intervals.

Measurement of the Longitudinal Cambium Shear Strength.--

In this study the apparatus described in the preceding

section was also used to measure the cambium shear strength.

Specimens of bark and green wood tissue, with the cambium

intact, were cut from whole limb sections which had been

removed from the tree. The test specimens were about one-

half inch thick, one inch wide and 5 inches long. The

thickness of the woody part of the specimen was cut so as

to be about equal to the thickness of the bark. This was

done to prevent a moment from developing in the shear

plane when a tensile force was applied. A sample prepared

for testing is shown in Figure 7.

Measurement of Elasticity and Damping
 

In the measurement of elastic and damping properties

of bark and green wood, freshly collected sections were
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Figure 6.—-Necked bark specimen loaded in tension using the

pnuematic testing machine.
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Figure 7.——Sketch of the bark and wood specimen used to determine

maximum longitudinal cambium shear strength.

tested as beams using elastic and viscoelastic flexure

theory. These sections were about 0.2 inch deep, one inch

wide and ten inches long. The thickness of the bark sections

varied slightly depending on the age.

To measure the effect of frequency of the applied

stress, three separate testing techniques were used: static

loading, free vibrations, and forced vibrations. However,

before testing any bark or green wood specimens, several

check specimens of aluminum, Plexiglas, and white pine

wood were tested to check the accuracy Of the experimental

apparatus and to gain experience in testing techniques.

These check specimens were about the same size as the bark

and green wood beams, but were machined to very uniform

dimensions.

Static Tests.--Static tests were conducted by loading
 

the specimen as a simply supported beam as shown in Figure 8.

The force was applied at a constant loading rate of 0.05
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Figure 8.--Bark specimen supported as a simple beam

subjected to bending stresses.
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inches per minute. Owing to the low forces resulting from

this type of loading, additional amplification of the load

cell output was provided by using a Brush strain gage

bridge amplifier. The beam support frame as shown in

Figure 8 was constructed with one movable support for

force-displacement ratio. The beam rested on two steel

shafts which were force fitted through the supports. In

addition, the shaft of the movable support was held in a

ball bearing mount to prevent horizontal constraints from

occurring during bending of the beams.

Tests were conducted in tWO'parts:' (1) a constant

strain rate loading, and (2) followed by'a stress relaxa-

tion test while the Specimen was held at constant defor-

mation. The time base of the recorder was used for both

deformation and relaxation measurements. During the

loading phase displacements were measured using a dial gage

at the load cell. The observed displacements were recorded

using an event marker on the X-Y recorder.

Free Vibration TestS.--In the free vibration tests
 

the Specimen was clamped at one end while the other end

was free to vibrate as Shown in Figure 9. Free vibrations

were initiated by lightly tapping the beam; The resulting

vibrations were detected by positioning a magnetic coil

under a small steel Shim which was fastened to the bottom

of the beam. The resulting voltage from the coil was
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1 "

 
Figure 9.--Bark specimen rigidly fixed as a cantilever beam

for free vibration tests.
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amplified using a Tektronix preamplifier Shown in a rack

mounting thigure 5. The resulting wave was displayed on

an oscilloscope screen. The wave was photographed with an

oscilloscope camera. By knowing the sweep speed the

frequency of the vibration could later be calculated.

Forced Vibration TestS.-—In forced vibration tests
 

the beam was simply supported at the nodal points by two

aluminum knife edges as Shown in Figure 10. The beam

was excited by positioning an electromagnetic driver coil

under a small metal shim fastened on one end of the beam.

The resulting vibrations were detected at the opposite

end of the beam by using the same technique as for the

free vibration tests. 'Resonance was obtained by adjusting

the driver frequency to obtain maximum displacement of the

beam. 'At this time the resonance bandwidth frequency was

measured by adjusting the driving frequency until an

amplitude of about 0.707 of the resonance amplitude was

obtained. This occurred at two frequencies, one above

resonance, and one below resonance. The supports were

then repositioned and the second mode frequency was

obtained using the same procedure.
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Figure 10.——Bark Specimen supported at the nodal points for

forced vibration tests.



DISCUSSION OF RESULTS

Effectiveness of the Testing Chamber

Mechanical properties of fiberous and woody materials

usually vary more with changes in moisture content than

temperature. Decreases in either temperature or moisture

content tend to increase strength and elasticity, however,

changes with moisture content are much larger. For example,

wood changes in strength and elasticity about 5 per cent

for a one per cent change in moisture content. However,

these same prOperties only vary about one-half per cent

for a degree F. variation in temperature from a base

temperature of 70 degrees F. (Wood Handbook, 1955). Thus

to measure the mechanical properties of bark and green

wood effectively both the temperatures and moisture

contents that the specimen had while still on the tree

should be maintained. Thus the function of the chamber

was to maintain a constant normal room temperature and

keep humidity as high as possible.

During the tests the chamber temperature could be

regulated successfully between 69 to 73 degrees F. How-

ever, the humidity could not be raised over 75 per cent

52
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without causing frost formation on the air conditioner.

Under these conditions 10 to 15 per cent of the moisture

content in the bark Specimens was lost in a two hour period.

To reduce this effect to a minimum Specimens were tested

immediately upon being brought from the field. Testing

time for an individual Specimen was about one-half hour.

It is assumed that what moisture loss took place during

collection and testing increased the strength and elasticity

of the bark specimens, but it is not known to what extent.

Wood Specimens tested had moisture contents of about 38

per cent which is well above the fiber saturation POiNt Of

30 per cent. It has been reported (Wood Handbook, 1955)

that wood strength does not begin to increase until the

fiber saturation point is reached. On this basis what

moisture loss that occurred in the wood during testing was

probably not significant.

As a result of the above experience-it is evident

that humidity should be kept as high as possible to reduce

such moisture loss; Certainly rapid'testing'is necessary.

A better method may be to construct a small chamber of

Plexiglas around the test fixture. Then high humidities

could be maintained without adverse effects to the cooling

system and electronic equipment kept from high humidity. It

must be emphasized that bark tissue is primarily a living

tissue and life processes will stop soon after collection

unless additional moisture is supplied. Therefore an
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environment of 100 per cent humidity will not eliminate the

change in mechanical properties.

It may be profitable to study the effect of storage

in high humidity and water environments at various tempera-

tures on bark tissues for selected time intervals after

collection to see how mechanical properties change. The

use of the non-destructive vibration tests used in this

study would be very suitable for this purpose. This type

of information may also be of considerable use in esti-

mating the change in properties which takes place over

the time interval from collection until the test is com-

pleted.

Physical Structure of Bark Tissue

In an attempt to study the structure and composition

of bark tissues a transverse section was made of living

tissue using a freezing microtome. Because of the vast

difference in texture between the phloem and periderm it

was not possible to make a section less than 30 microns

without crushing the phloem tissue. The resulting section

did not Show as much detail as desired owing to low light

transmissivity. HoWever, with the aid of additional obser—

vations with a compound microscope and the use of some

standard references (Esau, 196“; and Schneider, 19“5) a

classification of the tissue on the basis of location and

probable structure was made.
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AS illustrated in Figure 11 the bark was divided into

four major radial layers of tissues for the purpose of this

study. Starting with the functioning phloem at the interior

and proceeding in an outward radial direction tissues

appear to gradually decrease in percentage of living cells.

The extreme outer tissue, the scale periderm, is almost

completely composed of non—living cells. Bark tissues

tested were found to have moisture contents of 110 to 1“5

per cent which is a general indication of a large percen—

tage of living cells in an average cross section. This is

because the living cells contribute a large amount of

free moisture to tissue in the form of the cytoplasmic

fluid which is about 95 per cent water.

The functioning phloem composed about 10 per cent

of the thickness of the section. It is shown at the top

of the figure as composed of alternating rows of ray

parenchyma as dark bands and sieve cells. The ray paren-

chyma rays were about six to eight cells wide and can be

seen to extend deep into the nonfunctioning phloem. The

browning of these cell walls was caused by exposure to

air after sectioning. The hollow sieve cells are the

fOOd conducting elements in the bark and are shown as

white dots between the ray parenchyma. The long axis of

the sieve cells is in the longitudinal direction and the

long axis of the ray parenchyma is in the radial direction.

All cells in functioning phloem are living and character-

istically have only primary walls.
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Figure ll.—-Transverse bark section showing location and

relative thickness of the major tissue regions.
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The major portion of the bark is composed of the non-

functioning phloem region. This tissue is accumulated

from layers of functioning phloem of preceding years which

ceases to function at the end of the growing season. A

considerable amount of consolidation and collapsing of

the old tissue takes place as evidenced by the increasing

slope of the ray parenchyma with respect to the radial

direction. For example in the nonfunctioning phloem,

the rays are oriented at an angle of about “5 degrees to

the radial axis. This indicates that deformation of at

least half the original. thickness has taken place over a

period of years. Under this loading many of the sieve

cells eventually collapse and parenchyma cells enlarge and

fill the void, (Esau, 1960). In a related study of Sweet

Cherry (Prunus arium) phloem, Schneider (19“5) found that

secondary fibers develop between the rays and intermingle

between the conducting tissue of the preceding year. He

observed the cells between the rays were a combination of

partially collapsed sieve cells, fibers, cavities and

parenchyma cells. This appears to be the case also with

the Specimen under study. Large fissures are also found

along the rays as observed by Schneider. Therefore it

is assumed that the living cells in this tissue are com—

posed of ray parenchyma between the rays. The Sieve cells

and fibers are essentially nonliving. The general appear—

ance of this tissue is soft and fibrous with a spongelike
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response when pressed in the radial direction. This helps

the bark cushion and protect the functioning phloem.

The outer 25 per cent of the bark is composed of two

periderm tissues, the new periderm and an outer scale

periderm. In general, the major function of this tissue

is to regulate the rate of gaseous exchange and to prevent

moisture loss. To form this type of moisture barrier

periderm cells are tightly packed and have walls formed

from layers of suberins and waxes. Under the light micro-

scope the tightly packed nature of these cells was observed.

This is shown in Figurelfl.by the dark areas. During

collection of the specimens, July 8, 1965, the outer

periderm was loosely attached to the bark section. Its

removal exposed a living periderm, green in color, under-

neath. In mature periderms, the walls become layered with

waxes and the cells become isolated from the living tissue

and die. It is assumed that this is the case for the

scale periderm in this section, with the exception of a

few layers of cells on the inner surface which may have

been living since they browned some after detachment.

After oven drying the scale periderm did not become stiff

and brittle as did the other bark tissues but retained much

of its original flexibility. This could be explained by

the waxy structure of the cell walls. The other tissues

having pectic and other compounds in the walls stiffened

with drying. However, in the periderm, the cellulose mesh
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of the primary cell walls is filled with wax and suberin.

Suberin and wax are both fatty substances. Because of their

chemical nature these substances did not become hardened

from the oven drying.

Under closer examination, it appeared that the peri-

derm cells had their long axis in the tangential direction.

In woody tissue maximum strength lies in the direction of

the long axes of the cells. Therefore it is probable that

the maximum strength of the periderm is in the tangential

direction.

Strength of Bark
 

AS a further step in the preliminary investigations

the maximum tensile strength and maximum cambium shear

strength of bark were studied. The purpose of these tests

was to obtain some initial information about the response

of the material under load and to compare this information

to data reported by Adrian and Fridley (1963) and Brown

(1965).

Mechanical strength of bark.--For the maximum strength
 

tests specimens were cut into necked sections as shown in

Figure 12 and subjected to tensile loadings at a constant

strain rate. In all tests performed failure occurred in

the necked section. Stresses were calculated on the basis

of the unloaded area of the necked cross section.

A typical failure curve for a longitudinal bark

section is shown in Figure 13. As loading is increased
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the curve becomes more non—linear until failure of the

specimen. The initial non-linear portion of the curve is

presumed to be due to some stress relaxation of the bark

under load. In the final stages of loading the 31Ope of

the curve decreases more rapidly. During this phase actual

failure is taking place by incremental failure of fibers

and tissues accompanied by sliding and continued failure

in the tissue. This is also evident from the jagged failure

surface as Shown in Figure 13. The new periderm failed in

a smooth surface presumably along the cell boundaries.

If an outer scale periderm was present it usually failed

about one—half the total elongation. The maximum displace—

ments at failure are not particularly meaningful for this

type of cross section except for comparison to failure of

tissues at other orientations or failures of the periderm

The displacements were corrected for deflections of the

load cell relief spring and an attempt was made to

determine if slip had occurred under load. It is

obvious that any Slip while loading could have a large

influence on any loading curve. Two visual observations

were made, one by observing movement of a line made on the

Specimen at the edge of the clamp before loading and

secondly by observing the condition of the clamped surface

after failure had occurred. Some slight movement with

respect to the lime on the specimen took place during loading.

However it is difficult to determine whether this was due
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Figure l3.—-Failure of a longitudinal bark specimen

subjected to tensile loading.
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to some Slight slip or non recoverable strain produced

during loading. Examination of the clamp surface

revealed distinct impressions of the serrated surface of

the clamp indicating Slip had not occurred. In the longi-

tudinal direction the strength of the periderm is about

1.5 times that of the bark. However, the periderm fails

before the bark. Thus the periderm contributes some

initial strength to the bark but soon fails and contri—

butes no strength when the bark reaches the rupture point.

Tangential sections loaded in the same manner failed

at much lower stresses. From the smooth failure surface

it is suspected that failure occurred mainly along the cell

boundaries as shown in Figure 1“. This is because in the

longitudinal sections cells had their long axis in the

longitudinal direction. However in tangential sections

the force was applied at a right angle to the long axis

of the cell. Further there is no known reason to suspect

that the cell wall strength is less in the direction of

its Short axis than in the direction of its long axis.

Therefore the difference in failure strength must be

attributed to failure of cell boundaries rather than the

cell wall itself. If the above argument is true the

strengths listed in Table 2 are comparisons of longitudinal

rupture strength to tangential cell boundary strength,

the former being about nine times greater.
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Figure l“.-—Failure of a tangential bark specimen subjected

to tensile loading.
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The failure curve for the tangential section was

initially curved upward. This type of response indicates

a material which increases in stiffness as deformation

increases. It is proposed that this is not the case and

the response can be explained on the basis of the physical

structure of the material. In the natural state tangential

sections are on an are about the tree limb. Therefore when

first loaded, the specimens first go through a period of

reorientation and realignment in the direction of the

applied force. When a higher level of stress is reached

the cells must also start to deform physically. Normally

deformation of the cellular tissue Should produce a stress

curve of decreasing Slope. It is thought that a combination

or reorientation and deformation accounts for the linear

appearance of the last part of the failure curve.

Failure stresses are in a ratio of about nine to

one. Adrian and Fridley (1963) reported a ratio of about

four to one for prune trees. However, there is little

basis of comparison owing to the difference of Species

and possibly moisture content.

Since the scale periderm was readily detachable it

was tested separately in longitudinal and tangential

directions. The directional strength properties of this

tissue were opposite to that of the bark tested in the

preceding section. In these tests clear specimens without

cracks or lenticels were selected. Longitudinal sections
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TABLE 2.-—U1timate stress and elongation for necked bark

sections under tensile loading. R = 1.5 inches per minute.

 

Tensile

Sample Stress Elongation Thickness

Number (psi.) (inches) (inches)

 

Longitudinal Section

L1 820 . —‘ .155

L2 678 .151 .158

L3 “9“ .1“6 .125

L“ 730 .212 .363

L5 563 .181 .358

Average stress 657 psi

Tangential Section

T1 12“ .120 .165

T2 82.7 .108 .150

T3 58.2 .10“ .125

T“ ““.6 .11“ .230

T5 “2.3 .113 .190

Average stress 70.“ psi
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failed soon after loading along smooth horizontal failure

planes. It is suggested that failure took place along the

cell boundaries. From a microscopic examination of the

section in FigurelJ.it appeared that the long axis of

the periderm cells was in the tangential direction. If

this is true, the highest strength of the periderm should

be in the tangential direction by a similar argument as

presented for the bark. In fact tensile strength in the

tangential direction was about three times that of the

longitudinal direction. The tangential sections had a

non—linear loading curve Similar to that for bark in

longitudinal sections. However the periderm tissue did

not fail upon reaching the maximum strength but was then

capable of large plastic deformations at the same level

of applied force. During crass extension of the area

the plastic section became considerably less. This means

that the true stress at rupture was much larger than that

calculated on the basis of the original area. From this

behavior under loading some theories of reaction at the

cellular level are advanced. The initial part of the

curve up to the plastic region is typically nonlinear

owing to stress relaxation under small deformation. When

the "yield stress" is reached plastic flow takes place

over larger deformations. These cells are dead with

thin walls encrusted with waxes which possibly act as a

lubricant and allow for some slipping between the cells

during large deformation of the cells.
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TABLE 3}--Ultimate stress of periderm sections under tensile

loading. R = 1.5 inches per minute.

 

  

 

Longitudinal Sections Tangential Sections

Sample" Stress Thickness Sample Stress Thickness

Number (psi) (inches) Number (psi) (inches)

L6 12“0 .023 T6 3520 .018

L7 1058 .0223 T7 3“30 .020

L8 1035 .020 rP8 2780 .020

L9 8“5 .020

L10 615 .021

Average 958.6 psi Average 32“3.3 psi

 

In general the periderm elongations were as much

as one inch or about “0 per cent of the original length.

Thus from Table 3 it is evident in the longitudinal

direction that the periderm is capable of extensions up

to 5 times greater than the bark extension before

rupturing.

If the elastic modulus of the periderm and the bark

were the same in the tangential direction, on the basis

of the relative thickness, the periderm would support

about 1/20 of the total force. They would of course have

the same stress. However, since the periderm is capable

of supporting at least 5 times as much stress as the bark,

the periderm may support one-fourth or more of the total
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load. In addition, Since the periderm is capable of greater

extensions, it serves to help resist rupture of the bark in

the tangential direction. Therefore, when the bark and

periderm are subjected to large tangential elongations,

such as produced in torsion, it would be possible for the

bark underneath the periderm to rupture, but give no

visible evidence of rupture, Since the outer periderm

would still be intact.

Longitudinal cambium Shear strength.--In these
 

tests the specimens of bark and green wood were prepared

and loaded as Shown in Figure 7. In preparing the samples

an attempt was made to minimize the effect of moments

acting at right angles to the shear plane by cutting the

wood to the same thickness as the bark. The effect of

a moment would lower the value of the calculated Shear

force. It must also be assumed that some misalignment

and prestressing occurred while clamping the Specimen.

The average Shear stress for Montmorency cherry bark as

determined by this test was the average of the stresses

listed in Table “. This test might be improved by

supporting the clamps by knife edges to correct alignment

during loading. This data could not be compared to that

of Brown (1965) since he used a normal (radial) pressure

on the section when measuring Shear stress.
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TABLE “.—-Maximum longitudinal cambium shear strength.

 

Shear Stress (psi.)

 

33-

27.

30.

31.

25.

35.

27.

27.

26. )
-
‘
\
O
)
—
‘
\
1
\
1
C
D
U
7
C
I
)
U
7

Average stress 29.6 psi

 

Elastic and Viscoelastic Response of Bark and Green

' Wood to Frequency of the Applied Stress

 

 

All Specimens tested including the aluminum showed

some viscoelastic behavior. All materials with the excep-

tion of aluminum exhibited a detectable stress relaxation

and all demonstrated a change in the complex modulus of

elasticity with changes in frequency of the applied stress.

Static Tests.——In these tests all materials tested
 

were supported as Simple beams and center loaded at a

constant rate of deformation. The bending stress-displace-

ment relation for all materials was visibly non—linear With

the exception of the aluminum. The amount of non-linearity

of the relation depended on the amount of damping in the ma-

terial. Bark for example, had the largest amount of curvature

and in later‘tests bark was also found to have the largest
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value of the dimensionless damping ratio n'. A typical

loading curve for bark is Shown in Figure 15. Values of

stress were calculated from experimental data using equation

1. An equation to represent this type of loading behavior

has been proposed previously by Ferry (1960) and was pre-

sented as equation 3 in this Thesis. In this equation the

amount of stress at any time t is reduced by an amount exp

(-tH(r)/n) where H(T) is related to the elasticity of

material and n is the damping constant in pound (second)2

per square inch. Thus for larger values of n the curvature

of the stress curve becomes more pronounced as time

increases. No attempt was made to determine values of

n from the loading curves. To do this would also require

determination of H(T) for various values of strain rates,

R. Experiments of this type are reserved for future

research. However, equation 1 was used indirectly in calcu-

lating the relaxation modulus E(t) and extending the loading

curve as shown in Figure 15 using equations 3 and “ as

proposed by Ferry (1960) and Chang (196“). By use of equa-

tion “ a frequency f was calculated for the storage modulus.

For example f for the tangent modulus (relaxation modulus,

E(t); storage modulus, E'(1/t))in Figure 15 was calculated

by the relation t = l/2nt cycles per second. Values of

the secant modulus (tangent modulus) were calculated using

equation 2. These moduli are listed later in this section

in Tables 5 and 7 and are discussed in comparison with
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moduli Obtained at higher frequencies Of applied stress.

By use of the equation (Ge) suggested
t =A =(C’e'c’r)t = to + A

by Chang (196“), the loading curve for bark shown in

Figure 15 was extended from the loading and relaxation

data. In this relation 0e and or are the loading and

relaxation stresses respectively at times A and to + A

respectively.

Stress relaxation curves for representative samples

of the materials tested in this section are shown in

Figure 16. Again the amount of non—linearity in these

curves depended on the amount of viscosity in the material

represented by the damping constant 0. The relation between

R and the relaxation stress, Or’ in a material loaded at

a constant rate of elongation R to time tO was proposed

by Chang (196“). This relation is

o = R/1H(-I) exp(-t/T-)[exp(tO/T:—1] (““)
r

where T is defined as the ratio of the damping constant

n to the elastic spectrum H(T). In this relation the term

exp (-t/r) again accounts for changes in stress depending

on the value of n and t.

This means that for the same amount of stress applied

in extension the bark has the ability to relax under load

at a higher rate than the wood. This is an indication

that the bark could undergo larger deformations than wood

before rupturing. In the actual bending of a tree limb for

example, both the outer wood fibers and the bark undergo
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essentially the same elongation. If both the bark and wood

had the same elastic modulus Similar stresses would be

produced in both tissues and the above argument would apply

to failure. However, since the elastic modulus of bark

is only about 1/50 of that of wood, it means that the bark

is stressed only 1/50 of the amount of wood for the same

elongation. Thus in all probability in Simple bending the

wood would fail first. Bark injury would occur as a result

of the clamp slipping in the longitudinal direction. This

is a result of the stiffness ratio between the bark and

wood. Failure in this case results from large elongations

being applied to the bark. The wood being much stiffer

resists being elongated and shear failure occurs at the

cambium layer.

Sonic tests.--0f the two testing techniques used,
 

the free vibration technique using cantilever beam geometry

was superior to the forced vibration method. The free

vibration method was Simpler, required the least amount

of instrumentation and produced the most consistent results.

The logarithmic decrement A and the damping ratio n' were

calculated from data obtained from the wave form in

Figure 17. The decay of successive amplitudes of this

wave as plotted in Figure 18 gives a curve whose Slope is

equal to the logarithmic decrement.
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Figure l7.——Damped oscillations at the free end of a canti—

lever bark specimen.
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Values of n' were calculated using the approximate

A

relation n' = 5?. It was not necessary to use equation “0

Since n' was small. The highest value of 0' was only

0.08“. From Figures 3 and “ and Table l in the Appendix

it is evident that the error resulting from using this

approximation is negligible. A least squares linear

curve fitting technique in fitting a straight line to the

data was not used since it was not felt this would add

significantly to the accuracy of the experiment. All bark

Specimens tested using this technique had nearly the same

values of A which is shown indirectly by the calculated

values of n' in Table 5. Of course the use of the logar—

ithmic decrement assumes an exponential decay of amplitude.

This is Shown to be a good approximation for most materials

tested. The green wood and to a greater extent the bark

Showed some curvature in the logarithmic decrement curve.

This error becomes serious for high values of damping and

requires the use of approximation procedures as described

in the Theoretical Analysis section of this Thesis.

Frequencies for these tests ranged from 7.6 to 117 cps

depending on-the material. Notice the curves for materials

in Figures 16 and 18 fall in the same order. Both these

sets of curves are measures of internal damping in the

material. Steeper slopes correspond to a relatively higher

energy loss per cycle in the material. For a meaningful

comparison the values in Figure 16 whould be compared only
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to initial Slope values in Figure 18, thus using a similar

value of experimental time. Notice after one second the

relaxation rate of Plexiglas has reduced sufficiently to

approach that of green wood.

The forced vibration tests were originally intended

as a check on the other methods, however, this test was

also useful in obtaining information at higher frequencies

of applied stress. In these tests a sub—harmonic resonance

of order “ of the first mode was found to exist in the

Specimens for a driving frequency of half the first mode

frequency. This was an aid in correctly determining the

first mode frequency since the period of the sub-harmonic

wave was easily recognized being twice that Of the driving

wave as Shown in Figures 19 and 20. The forced vibration

method has the added advantage of determining the behavior

of the material at still higher frequencies by using higher

modes, (Figure 21). However, in practice modes higher than

the third were difficult to detect since the resonance

amplitude decreased for each higher mode and resonance

could not be separated easily from the background noise

present in the system. The only satisfactory third

mode resonance Obtained for the materials tested was for

one of the white pine specimens at 1357 cycles per second

as shown in Figure 21. This was also the only case in
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Figure l9.-—Forced vibration of a simply supported specimen

showing: top, driving wave at half the first mode frequency;

bottom, resulting oscillation of the beam (fourth order sub—

harmonic of the first mode frequency).
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Figure 21.--Forced vibration resonance for the third mode

showing: top, driving wage; bottom, resultant vibration

of beam.
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which it was necessary to apply the Goens' correction factor

Tn‘ In this case the value of E was adjusted by multipli—

cation with a value of T of 1.015“ calculated from equation

12. It is also possible to change resonance frequencies

for the same Specimen in both free vibration and forced

vibration tests by altering the physical dimensions of the

beam.

Some difficulty was encountered in using the forced

vibration method with Specimens of low stiffness such as

bark and specimens of high stiffness such as aluminum.

Except for two bark specimens, B3 and B“, which were thicker

than the others and consequently had a higher resonance

frequency the first mode of the bark specimens was below

the lower frequency limit of the oscillator. This was not

realized at the time of testing and erroneous values of

the elastic modulus were calculated which were about

twice the correct value. However, since all modal fre-

quencies are related by fixed constants which may be cal-

culated from elastic theory by assuming a more probable

value of E the first two modal frequencies were calculated.

Upon comparison with the erroneous data it was apparent

that the sub-harmonics of the second mode was mistakenly

used for the first mode frequency. This points out a

serious danger in this type of testing of incorrectly

selecting the wrong mode or a sub-harmonic for the correct
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modal frequency. Since the modulus is a function of the

square of the frequency this can lead to large errors. If

the approximate value of the elastic modulus is known, the

approximate value of the modal frequency can be calculated

before testing.

However if the modulus changes rapidly over a few

decades Of frequency such as in the bark tissue, this

technique is not as helpful. With the aluminum samples a

difficulty of a different nature was encountered. Due to

the high stiffness of these beams the power required to

excite resonance was near the power limitations of the

driver. However, this method was very suitable for the

other materials tested which were in the intermediate

stiffness range such as green wood, white pine, and Plexi-

glas specimens.

Values of the damping ratio n' were calculated using

the frequency bandwidth of the resonance curve and

equation 23. This method was not found to be highly

accurate Since measurements must be made by visual refer«

ence on an oscilloscope screen. Also it was somewhat

difficult to adjust the oscillator to the exact frequency

to determine the sideband resonance points. Materials

having relatively high damping such as the bark had a

wide bandwidth extending over 10 to 15 cps. Materials with

lower damping such as the white pine had a narrow bandwidth

of two to three cps. Since n' is directly prOportional
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to the square of the bandwidth, the chance for error

increases greatly for materials having a narrow band width.

Therefore values of n' listed in Table 5 for forced vibra-

tions are not to be considered highly accurate for

aluminum and white pine.

Some of the common engineering constants determined

as a result of this investigation for the materials tested

are listed in Table 5. Notice that the values of Young's

modulus of elasticity are not constant but become larger

with increases in frequency of the applied stress. Values

of the elastic modulus for some engineering materials such

as concrete and wood were Obtained previously, but only

for a fixed frequency. In these references the value

Obtained was called the sonic modulus. However, these

authors apparently did not recognize that due to the

presence of some viscoelastic effect in all these

materials that the modulus actually varies with frequency

as Shown in Table 5. Values of elastic modulus in

this table are in fact only estimates of the true complex

modulus E* which is equal to El + iE2. Thus only

in cases of wood and aluminum where E2 is small are these

values approximately correct. The modulus of elasticity

for bark found in these tests was very low compared to

green wood and ranged from about 10,000 to “0,000 psi.

over the frequency range used. Modulus of elasticity

of green wood ranged from about 500,000 to 700,000 psi.
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over a similar range of frequencies. However, as a

result of the large increase of the elastic modulus for

bark as compared to the green wood in this frequency range

the stiffness ratio between bark and wood decreases from

about 50 to one at quasi-static conditions to about 15 to

one at frequencies between 100 to 200 cycles per second.

The behavior of these materials is discussed in detail in

the next section using the more applicable theories of

viscoelasticity. However, it is apparent that owing to

the much higher stiffness of wood as compared to the

bark that the properties of the wood largely determine

the response of the limb to applied stresses. When a

shaker clamp is attached to the limb the bark is compressed

between two media which are much stiffer than the bark.

Reduction in bruising would of course result from using a

shaker pad which has less stiffness than the bark. The

internal damping of bark was about five times higher

than that of green wood. This ratio remained at about

the same value for the two comparisons made at different

frequencies for the free and the forced vibration tests.

Thus in free vibration the bark has a damping effect on

free vibrations of the limb. Since the bark is at the

maximum distance from the neutral axis a thin layer of bark

is in a position where it can produce the maximum possible

damping effect.
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The elastic parameters discussed above for bark and

green wood can not be compared to existing values since

they are not available in literature. However, comparisons

may be made for the secant modulus (Youngs' modulus) of

the other materials to existing published values. These

values are averages and dependent on the exact structure

and composition of the individual material. Values used

for this comparison were Plexiglas- “00,000 to 600,000

pounds per square inch (Hodgman, 1952), white pine -

1,170,000 pounds per square inch (USDA Wood Handbook,

1955), and aluminum - 9.3 - 10.6 x 10.6 pounds per square

inch, (Baumeister, 1958). Values of Plexiglas are given

as a range of values since the slope of the stress—strain

curve changes during loading;va1ues of aluminum are variable

depending on the per cent of alloys present. These values

compare very well with those obtained in Table 5 with the

exception of the aluminum for which a value of about

9,200,000 was obtained for Youngs' modulus. Since the

composition of these aluminum Specimens was unknown, an

additional beam of 6061—T6 aluminum was tested. Using

the test equipment a value for the elastic modulus of

10,0“0,000 was obtained which is the correct value for

this material. As a result of this it was suspected that

the low value for the other aluminum beams was due to

differences in composition and residual stresses resulting

from machining.
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The density of bark was quite high and showed a large

variation from 68 to 78 pounds per cubic foot. Bark was

about twice as heavy as green wood. However, after

drying several weeks in an oven bark densities stabilized

at 31 to 32 pounds per cubic foot based on the original

dimensions. The close agreement in dry densities suggests

that the variation in wet densities was due to differences

in moisture content and not differences in structural

density of the bark. It is of interest to find the same

structural density in these bark specimens since they

were collected at random from several different cherry

trees. The thickness of bark ranged from .098 to .161

inches. Since in cherry bark the old phloem from the

preceding year is not severely crushed but becomes part of

the non functioning phloem and the outer periderm scales

off yearly, increases in thickness are directly related

to the age of the bark. The resulting indication is that

mechanical properties of cherry bark would not be expected

to have much dependence on age. In fact no effect of

thickness was apparent on values of Youngs’modulus for

bark. Dry weight density of the green cherry wood stabilized

at about 26 pounds per cubic foot. The differences of dry

weight densities in bark and wood is explained on the

basis of the large amount of hollow conducting cells in

wood as compared to a high percentage of smaller living

cells in the bark having cellular conclusions.
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Viscoelastic considerations.--At best theory of

elasticity can only be used to calculate general trends in

material constants but cannot be used effectively to explain

behavior of materials which are highly viscoelastic. For

this reason the data in Table 5 is recalculated in terms

of viscoelastic components and presented in Table 7 and

Figure 22. In this manner it was possible to separate and

examine separately elastic and viscous effects by the use

of the components of the complex modulus; E'(w), the storage

modulus and E"(w), the loss modulus. From the use of the

relation E'(w) = E(l/t) described earlier, values of

the storage modulus were calculated for very low frequen-

cies using the "static" loading data. These values are

listed in the third column of Table 7 and shown in Figure 22.

These values are significantly lower than values obtained

at higher frequencies particularly for bark.

Plexiglas was the only one of the three check

materials used in this test whose viscoelastic properties

over a wide range of frequencies was known. For this

reason a detailed comparison of results of this study are

made before discussing the behavior of the other materials.

Mechanically, Plexiglas is classed as an uncross-linked

amorphous polymer. Physically this means that Plexiglas

does not display instantaneous elasticity on loading and

that E(t) tends to zero for large values of time. Ferry

(1960) describes this material as responding to external
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stress by local adjustments at the molecular level through

entanglement connections between the molecules. As shown

in Figure 22 the storage modulus for Plexiglas increases

gradually an amount about 50 per cent of its original

value over about five decades of frequency. Since E(t)

is nearly the mirror image of the storage modulus one

would therefore expect the relaxation modulus to decrease

slowly over several decades of time. This is in fact

shown to be the case in relaxation curves presented by

Ferry for Plexiglas. Fortunately a rather complete set

of dynamic data by KOppelmann (1958) was available to

compare to data obtained in this study. KOppelmann used

a non-resonant technique of testing in obtaining this

data as described in the Related Literature section of

this Thesis. Values of E'(w) for Plexiglas as shown in

Figure 22 are in very good agreement with those by

KOppelmann. Note that this material has a distinct

inflection point in the storage modulus curve near 10

cycles per second. KOppelmann found that the loss tangent

of this material increases gradually from low values of

about .O“5 at both ends of the frequency spectrum to a

maximum value of about .10 at “5 cycles per second. These

values are compared with those found in this experiment in

Table 6.
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TABLE 6.--Comparison of experimental values of loss tangent

for Plexiglas with those by Koppelmann (1958).

 

frequency (cps)

 

10‘3 “5 200 103

Koppelmann .038 .10 .065 .0“8

Experimental - .077—.O82 .O60-.O68

Values

 

Ferry (1960) commented on these values of loss tangent

as being very good with the exception of the maximum value.

He felt that on the basis of more recent studies the

actual peak value may be about .08 to .09.

Experimental values of storage modulus and loss

tangent of Plexiglas for several different frequencies

were identical to published values within the limits of

experimental error. This also served as an additional

check on the theory used since the published values were

found using a non-resonant technique.

In general, Young's modulus and the storage modulus

were very similar in numerical value. The storage modulus

was slightly larger, however, depending on the amount of

damping present in the system. The storage modulus was

more sensitive to changes in the frequency of the applied

stress than other viscoelastic parameters measured for all

materials tested. The storage modulus increased with

increases in frequency. In addition, the storage modulus
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increased much faster over a given frequency range for

materials having higher loss tangents such as bark. For

example, the storage modulus of bark having a loss tangent

of about .15, increased from about 10,000 pounds per square

inch at 10'3 cycles per second to over “0,000 pounds per

square inch at about 30 cycles per second. The storage

modulus for green wood with a loss tangent of about 0.0“

only increased from about 500,000 pounds per square inch

to 700,000 pounds per square inch over a slightly larger

frequency range. The loss tangent is a ratio of the loss

modulus to the storage modulus. Thus the loss tangent is

directly proportional to the energy loss owing to heat

and internal friction at a given frequency. This is a

direct non-dimensional ratio of the amount of damping

in the material. At medium frequencies, in the free

vibration range, this ratio for the bark is about four times

larger than that for the green wood. The amount of energy

lost in a cycle may also be compared on the basis of

the loss tangent 6 by the relations

All

w

where W is the work done on the specimen. Therefore for

Energy Loss Factor = = 2n Tan<5= 20 = “fin'

bark the energy recovered and lost in a half cycle was

about 55 and “5 per cent respectively and about 88 and 12

per cent respectively for green wood. Thus for a given

stress level bark absorbs about four times as much energy

as wood. However, in actual bending of a tree limb the
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stress levels of the bark and wood are not the same, but

are directly dependent on the respective moduli of elasti—

city and the distance from the neutral bending axis. At

the outer fibers of the wood the elongations for the wood

and bark would be about the same. In this case stresses

produced in the bark and wood would be directly proportional

to the vector sum of the loss and storage moduli.

In actual values the storage modulus of the bark is

quite small being only 1/50 to 1/15 of that of wood.

 However, owing to the large difference in the loss tangents ;

the loss modulus of bark is almost 1/3 that of wood

depending on the frequency as shown in Table 7. The loss

tangent and the storage modulus were also found to be

somewhat sensitive to frequency. However, the direction

of the change did not depend on the direction of change

frequency, but was apparently dependent on the type of

material being tested. For example, for an increase in

frequency the storage modulus in green wood and white pine

increased while in bark it remained constant and in Plexi-

gglas it actually decreased. However, Koppelmann (1958)

:found that for frequencies below “5 cycleS‘per second the

:storage modulus and the loss tangent increase with

zincreases in frequency.

Therefore, it is apparent that changes in storage

Inodulus in general depend on the direction of the frequency

Change, the material and the relative position in the

frequency bandwidth.
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In terms of models Plexiglas below 10 cycles per

second behaves like a Kelvin material (spring and dashpot

in parallel) where the loss tangent equals Tm and a Maxwell

model above 10 cycles per second where the loss tangent

equals l/Tw. The response of these two models could be

replaced by a Standard Solid model consisting of a spring

and Maxwell element in parallel. By adjusting the constants

of this model to have a peak value for loss tangent of

about .10 at “5 cycles per second, a better approximation

for this material may be made. The loss tangent could be

even better by making I = 1(0) in the Standard Solid. In

the data available for the green wood the loss modulus

increases with frequency. This gives the impression that

the viscous mechanism is forced to undergo displacement

which produces a correspondingly large dissipation energy.

This behavior is similar to that of the Kelvin model.

Behavior of this type is also somewhat similar to that of

cross linked polymers. In these cases the loss tangent

reaches peak values at frequencies of about 105 cycles

per second.

The behavior of the bark was in-direct contrast to

that of the green wood. The loss modulus of the bark was

relatively flat over the frequency range and was relatively

large compared to the storage modulus. The low elasticity

and high loss modulus of bark is in keeping with one of its

main functions which is acting as a shock absorbing protective



98

tissue for the tree. However, as shown in Figure 22 the

storage modulus of bark increases spectacularly over the

values at low frequencies. Therefore the bark becomes

much stiffer and more subject to damage from forces applied

at higher frequencies. This characteristic large increase

in storage modulus with lesser increases in loss modulus,

in bark tissue is similar to the behavior of polyvinyl

acetate. Ferry (1961) describes this polymer as an

amorphous polymer of high molecular weight. Over a similar

frequency range the storage modulus for this material

follows an "S" shaped curve such as suggested in this case

for bark in Figure 22.

Surprisingly the storage modulus was most affected

by changes in moisture content of the bark Specimens.

Ideally in aviscoelastic system represented by springs

and dashpots one would expect little change in the storage

modulus and an increase in the storage modulus for a

decrease in moisture content. Actually the behavior is

equivalent to the stiffening of the spring in the model

with decreasing moisture content. In this respect the

storage modulus appears to be a better indicator of

moisture change than the loss tangent or the loss modulus.

This points out the validity of studies which have been

conducted in the past attempting to relate moisture content

in biological materials such as wood and plant fibers to

Young's modulus of elasticity.
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Significance of Results

The results in this Thesis have defined some of the

more important physical constants necessary to mathematically

describe the behavior of bark and greed wood to applied

stresses. To determine these constants, viscoelastic models

were proposed to represent the material. The time dependent

model constants were determined from experimental results.

Variability in the constants between samples resulted from

experimental error and variations between samples. Tests

were conducted over a range of three fixed frequencies for

each specimen tested.

As a next step in this investigation a complete con-

stitutive equation which considers frequency (strain rate)

and moisture content should be stated. Actually with the

constants known for a particular frequency this equation has

already been stated in this Thesis by the expressions for

the complex modulus. It remains, however, to adjust this

expression to fit a range of frequencies and moisture contents.

A further step in this investigation, of course,

would be finally to apply these equations to a two dimen-

sional study of a vibrating limb. This problem must be

formulated to include the taper of the limb and satisfy the

boundry conditions at the wood-bark interface. This would

provide a direct experimental check on the original con-

stants, the constitutive equations and the stress analysis

solution for the limb.



SUMMARY

This study was initiated to study the mechanical

behavior of fruit tree bark to applied stresses. Since

the green wood is closely associated with the bark in the

tree limb green wood was also included. Also since,

during mechanical harvesting different frequencies of

Vibration are used, the frequency of the applied stress

was also considered. Tests were limited to a single

variety and species; Montmorency Cherry: FFUHUS CfdsuS-

All tests were conducted under controlled tempera-

ture and humidity conditions in a testing chamber.

Maximum strength of bark specimens was determined from

tensile loading in a pneumatic testing machine. Elastic

and viscous properties of bark and green wood Specimens

were measured using elastic and viscoelastic flexure

theory. Three loading techniques were used for the

flexure tests. These tests were (1) loading at a Slow,

constant strain rate using a Simple beam arrangement; (2)

free vibration as a cantilever beam and (3) forced

vibration as a simple beam. As a check on the theory and

experimental technique several Specimens of aluminum,

Plexiglas, and white pine wood were included in these

tests.

100
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Approximate and exact equations for determining the

viscoelastic modulus from dynamic flexure were derived.

The accuracy of these equations was described graphically

in terms of measured variables. From this it was possible

to use the approximate equations with a negligible amount

of error.

.
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From a transverse microscopic section of bark the

tissue appeared to be arranged in four major radial

layers. These layers consisted of a functioning, and a

spongy,non-functioning phloem, and two periderms which  
made up about 10, 65, 12, and 12 per cent of the total

thickness respectively.

The strength of bark was very dependent on the

direction of the applied force. Maximum longitudinal and

tangential strengths for the three inner bark tissues

were about 6“0 and 70 pounds per square inch respectively.

The outer periderm strengths were about 980 and 3250 pounds

per square inch in these respective directions. Longitudinal

cambium shear strength was about 30 pounds per square inch.

The storage modulus of bark was very sensitive to

frequency of the applied stress and varies from about

10,000 to “0,000 pounds per square inch over a frequency

range of about 10-3 to 10‘2 cycles per second. The storage

modulus of green wood varied a lesser amount from about

500,000 to 700,000 pounds per square inch over a slightly

larger frequency range. The loss tangents of bark and wood

were about .15 and .0“ respectively.



CONCLUSIONS

Both bark and green wood exhibit common viscoelastic

effects such as non—linear loading curves, stress

relaxation under load and high internal damping. Ema

For the purpose of mechanical study bark may be

divided into four major radial layers; a cambium, a

nonfunctioning phloem and two periderms. a

 
Strength properties of bark tissues are directional.

Maximum strength for the inner bark tissues are about

6“0 and 70 pounds per second in the longitudinal and

tangential directions respectively. The outer periderm

strength is about 980 and 3250 pounds per square inch

respectively, in the same direction.

Average longitudinal Shear strength was about 30

pounds per square inch as measured on July 8, 1965.

However, it is suspected that this property is subject

to large changes owing to moisture content and seasonal

activity of the tree.

Viscoelastic flexure theory and testing techniques can

be successfully applied to measure the behavior of bark

and green wood.

The storage modulus of bark was quite low compared to

green wood and increased quite rapidly with increases

102
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in frequency of the applied stress from about 10,000

to “0,000 pounds per square inch. Over a Similar

frequency range the storage modulus varied from about

500,000 to 700,000 pounds per square inch.

It is desirable to have controlled temperature condi-

tions in a testing chamber. The most effective method Tm*

of preventing moisture loss is rapid testing after

collection.
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Equations for Error Using the

Approximate Solutions

 

 

The per cent error for storage and loss moduli can

be calculated by the equation

per cent Error = 100 (l-EA/EE) (“6)

where EA is the approximate value of the loss or storage

modulus and EE is the exact value. Since a loss and

storage modulus may be calculated for both forced and free

vibration, four error terms will be possible. These

equations may be easily derived from equations 28, 31, 3“,

35, 38, 39, “2, and “3. As a first step wn in the exact

equations was replaced by wnd using equation 38. As a

typical example of this equation 39 would become

E"(w) = Hwnd2(ii::7;l)

/2- V 1—12

 

 

By using equation “6 the per cent error may be represented

by; for forced vibration,

Per Cent ,

Error [E (w)]
100 [1-(1 + 82/2)(2- /l-A2)l (“7)

 

 

 

Per Cent
—

-
Error [E"(w)] - 100 [1-93/2 JVl—Az ] (“811

/T-:’IT?-1
i)

and for free vibration:

Per Cent
—

2
Error [E'(w)] — 100 [1 - (l + a /2) J (”9)

(1 — 2/(1 + “/62)
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Eiiogent [E"(w)] = 100 [l—o' /1-2/(1+“/az)' 78/92+1J

(50)

where B = w/wnd , A = w/wn and a = A/n.

However, these error terms are somewhat involved and the

error must be recalculated each time when the value of B

or 0 increases. In addition, equations “7 and “8 require

values of wn which are unknown. Therefore it was decided

that graphical presentation of error for a range of B and

A would be more useful. In order to compare the accuracy

of the approximate equations in forced and free vibrations

values of B and A were generated using the same values of

the damping ratio, n'. Values were generated for n' in

increments of .01 as n' varied from zero to 0.700. The

error equations for these calculations were: for forced

vibrations,

Eggogent [E'(w)] = 100 (1- (1 + Rg/g) 52) (51)

Eggogent [E"<w)] = 100 (1 - A) (52)

and for free vibrations,

gggogent [E'(w)l = 100(1- (1 + D§/2)BZ) (53)

Per cent [E"(w)] = 100(1- B/D) (5“)
Error
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where

B=/'l——-_2T'_7

A = l + n'

D = /l - 0'2

_ l —

R2 — 2 A A/B — Aw/mnd

D = 2 ' D = A3 n /

These error terms as well as the true and approximate

values of the damping ratio, n', are presented in Table A1.
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