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ABSTRACT

STRONGLY POINTLIKE MAPS AND COLLAPSIBLE COMPLEXES

by Paul Francis Dierker

Let [ai]i =1,2,...,s} be the set of barycenters of
the simplexes in the simplicial complex L. If f£:[K] onto,
|L| is a simplicial map with the property that f;l(ai)
is collapsible for all i =1, ..., s, we call f a
strongly pointlike map.

In this thesis we examine the relation that exists be-
tween a complex and its image under a strongly pointlike
map. In particular, in Section I we find that a complex
and its image under such a map must be of the same simple
homotopy type.

Next, collapsible polyhedra are characterized as those
polyhedra having a strongly pointlike map onto a l-simplex.
This characterization is then used to derive a few properties
of collapsible polyhedra. 1In Section V the characterization

is used to find a class of non-collapsible polyhedra whose

product with the unit interval is collapsible.
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SECTION I
INTRODUCTION

Throughout this thesis we will be considering both
simplicial complexes and convex linear cell complexes. All
complexes (simplicial or convex linear cell) are to be fin-
ite and embedded in some Euclidean space.

If K 1is a complex,lKl will be used to denote the
underlying point set of K, that is, the union of all convex
linear cells of K. If K is a convex linear cell complex
and T a simplicial complex with |[T| = |K|, T will be called

a simplicial division of |K

B" will be called a polyhedral n-cell if there is a
piecewise linear homeomorphism from the standard n-simplex
onto Bn.

If K; and K, are complexes with K; D K, we say that
there is an elementary simplicial collapse from K; to K,
if

Ky =Ky U (a x o) and

Kg N (a* o) =ax o,
K, simplicially collapses to K, (written |K;| aw |Kz| if
there is a‘séquence of elementary simplicial collapses from
K; to Kz. If Ky consists of a single vertex, K, is said to
be simplicially collapsible (written |[K;| 3 0). It is
well known [3] that if |K;| "3« 0,then K; may be collapsed

to any of its vertices.
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If |Ky| D |Ky| we say that there is an elementary col-

n-1

lapse from |K;| to |[Ky| if there exist B" and B , polyhedral

1

n and n-1 balls respectively, with B"~! c B”, such that

|Ky| = |Kg| U B" and
k| n B™ = 8777
|Ky| collapses to |Kp| (written |Kj|\ |Kz|) if there is
a sequence of elementary collapses from |K;| to |Kp|. If
K| is a point, |Ky| is said to be collapsible (written
|K1[\\\.0). The following well known theorem [5] gives the
connection between collapsible and simplicially collapsible
polyhedra. If |K|\\\~O then there is a simplicial division
T of K such that |T| \EQ.O.

Let K and L be complexes. We say that K and L have
the same simple homotopy type if there exists a coﬁplex P
such that |P| \ |K| and [P|\ |L]-

Let L be a subcomplex of the simplicial complex K. The
star of L in K is defined as

stK(L) =U (L ek| N |L| # ¢}

and the 1link of L in K as

1k, (L)

If o is a simplex of K the reduced star of ¢ in K is defined

u(t e K| ¢ & stK(L): ¢n Ll =9¢}

as

EZK(Q) = U (L ¢ K]c < t)

A subcomplex L of a simpilicial complex K is full in K
if any simplex of K whose vertices belong to L is in L.
In addition we will consistently use A to denote the

boundary of A and int A to denote the interior of A.



SECTION II

STRONGLY POINTLIKE MAPS AND SIMPLE HOMOTOPY TYPE

Definition 2.1: Let f£:|K| > |L| be a simplicial

map of the complex K onto the complex L, and let
.{aili =1,2,...,8) be the set of barycenters of the
simplexes of L. 1If f-l(ai) is collapsible for all i
the map £f 1is said to be strongly pointlike.

In this section we will show that the existence of a
strongly pointlike map between two polyhedra ‘implies that
the polyhedra are of . the same simple homotopy type. This

result will follow quickly from [1].

Definition 2.2: If M 1is a subcomplex of the complex
K c E" C En+1 and V 1is a point of En+1 - E" we define
the quotient complex of K with respect to M as

K/M = [K - K[st, (M)]U[V « K|1lk, (M)].

Lemma 2.1: Let M be a collapsible subcomplex of K
and suppose that [KlstK(M)l \;Q\M. Then |K/M| is of the

same simple homotopy type as |K|.

Proof: Since a cone collapses simplicially to any

subcone, [§] we have that
[V » K[st, (M) | o Vo K[le(M)].
Thus [V * K|st (M) U [K - K[st, (M)]]| 3 [K/M]|.

Moreover |K[stK(M)[ S M| ™0 so |K|stK(M)[.\\\ 0.

Thus by lemma 3 of [3]
3
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[V » K[st (M) U [K - K[st,M)]]| X [K|

and so |K/M| and |K| are of the same simple homotopy type.

Definition 2.3: A subcomplex L of a complex K is

locally collapsible if for any simplex o of K, gtK(o)ﬂlLl

is collapsible.

The following lemma is the second portion of proposition

2.1 of [1].

Lemma 2.2: Let M be a subcomplex of K such that
(i) M is full in K
(ii) M 1is locally collapsible in K,

then [K[st, M) [ 3 [M]-

Definition 2.4: The simplicial mapping TwT:K —> K/M

defined by
m| [K| - stp(M) = id and
T(|M|) =V

is called the projection of K onto K/M.

onto) l

Theorem 2.3: If f: K| L| is a strongly point-

like map, then |K| and |L| have the same simple homotopy

type.

Proof: Order the simplexes of L. in the order of in-
creasing dimension, cl,cz,...,cs and let ay denote the
barycenter of Ci' Construct the sequence of quotient com-

plexes
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m - m - m
K' —> Ko/ £ 1(31) -2 Ki/mf T(ap) = ...

where L' 1is the first barycentric subdivision of L and

K' 1is a first derived complex of K chosen so that

f:K' > L' 1is simplicial [1].

From [1] we have that K is isomorphic to L', and

that J; = K;_ |m;_ ...mf (a;) is both full and locally

i-1l i-1

collapsible in K, ;- Thus by Lemma 2.2

lKi_1|StKi_1(Ji)l :?\IJii .
In addition, since f is strongly pointlike
f-l(ai)\\m\O for all i.. It is an easy calculation to show
-1 -1 -1 . .
that f (ai) n stK(f (aj)) C 1k, (f (aj)) for all j # i.

AR

. : -1
Thus w,__.m,_,+--.,m1 are all the identity on f£ (ai)

-1
and so [Ji| = Ty_y Ty_p ---Taf ﬂai)\\n\o.
Now we may apply Lemma 2.1 to see that [Ki[ = [Ki_l/Ji[

is of the same simple homotopy type as lKi_1

Thus [Ksl is of the same simple homotopy type as
|x* [, and so |K*| and |L'| are of the same simple homo-

topy type.



SECTION III

STRONGLY POINTLIKE MAPS ONTO COLLAPSIBLE COMPLEXES
A CHARACTERIZATION OF COLLAPSIBLE COMPLEXES

In this section we will establiéh that the preimage
of a collapsible polyhedron under a strongly pointlike map
is collapsible. 1In order to establish this it is helpful
to prove first that the preimage of a one simplex under a
strongly pointlike map is collapsible. Both the more
general result and a characterization of collapsible com-
plexes will follow from the consideration of this special
case.

The idea for the proof of the special case is quite
simple and is indicated schematically below. Let

£: IKl onto

{Vo.,Vy> be strongly pointlike, b denote the
barycenter of <Vq,Vy), and b e <{bg,b;> C intlVy,Vy).

Then |K| may be represented pictorially as ih Figure 1.
By following the path of collapsing f ‘(b) to p we
will show that K may be collapsed to the complex repre-
sented pictorially in Figure 2. This in turn will be col-
lapsed to the one cell <Ugy,U;) which is collapsible.
Remark: Let f:g" 280, {Vo.,Vy> Dbe a simplicial map.
Further let b denote the barycenter of <V,,V;> and
{b;1.,by) a one cell contained in <V0,V1>; Then since f£
is a linear map we have

n-1

f-l(b) = B , a convex linear (n-1)-cell

f-1<bo,b1> = B", a convex linear n-cell

6



f—1<b0'b1>

Figure 1.

Figure 2.

(o)



-1 . -1 -1 -1 o
(£77<bo.b1>) = [£ "(bg) U £ (by)] U [£ <bo,by>nd"].
We shall use these facts throughout the proofs of the fol-

lowing lemmas.

onto
—

Lemma 3.1: Let f: {Ve,Vy) Dbe a simplicial

K|
map, b the barycenter of <(Vq,Vy), and <b0,b1>cint<V0,V1>.

There is a piecewise-linear homeomorphism

h:f '(b) x T XV, £ py,b,>  such that
h(£f 1 (b) x (0)) = £ ' (bg),
h(f™ @) x (1)) = £ (by), and

h((£ ()no) x I) = £ bg,by> N 0, 0 € K.

Proof: The proof will be by induction on k , the
number of simplexes ¢ € K with o N f_l(b) 6. If k =1
and o N f—l(b) # ¢ then o must be a one simplex. Other-
wise o N f_l(b) #Z ¢ implies- & N f-l(b) # ¢. Then there
is another simplex ¢ C & such that (¢ N £ (b) # ¢ and
so k#1. Thus if k = 1, f "(b) is a point and £ '(b) x I
a polyhedral one-cell. f_1<b0,b1> is also a polyhedral one-
cell with boundary f_l(bo) U f_l(bl). The conclusion of
the theorem is then obvious for k = 1.

Now suppose that the lemma is true for k and let K
have k + 1 simplexes with o n £ ' (b) # ¢. Let ( be a

principal simplex of K with (¢ n f_l(b) # 6. Then K - ¢
onto

is a simplicial complex and f:|K - (| > Vg,V a

simplicial map. By the induction hypothesis there is a
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piecewise linear homeomorphism

g:[£1m) n |K-t]] x T2 £ Xpo,b,> 0 [K - L]
with

GLET® n |k -] x (0)) = £ (by) N |K = C]

g(I£77 () N [K-¢]] x (1)) =£ *(by) N |[K - | and

gUE o) Nol xI)=¢£bg,by> No, oc€K
Note that ¢ c |[K - {| so g is defined on (f-l(b) ne) xI.

Moreover,

GL(E m) n &) x 1] = £ <bg.by> N & so
GU(E ®) n &) x (0)] = £ mg) N ¢ and
gl m) né) x (1)1 = £y nt.

(£ ®) n &) x (0} and (£ ') n¢) x {1} are the boundaries
of the polyhedral balls (f '(b) n t) x {0} and

! (b) N ) x (1} respectively. 1In addition, f-l(bo)n é

(£
f_l(bl) n é are the boundaries of the polyhedral balls

£ (o) Nt and £ '(b;) N ¢ respectively. By [5] any
piecewise linear homeomorphism between the boundaries of

two polyhedral balls can be extended to the interiors. Thus
we may extend g to g, a piecewise linear homeomorphism
with

£ (be) N L and

SL(E m) n ) x (0))
gl(E m) n o) x (1)

Now g is defined on

£ by) N

L)) x (1)Ul (£ ) nE)xa]

s = [(£1()ng)x(0}IU[ (£
the boundary of the polyhedral ball (£ ' (b) N £) x I,
and g(S) = (£ (bg) N L) U (£ 1 (by) N &) U (£ bg.by> NE),

the boundary of the polyhedral ball f-1<bo,b1> n t. Thus,
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as before, we can extend g to a piecewise linear homeo-
morphism h with
n{(£ () N &) xI] = £ Xbg,by> N L.

Note that since h 1is an extension of g

h[ (£ ®m) n &) x {0)] = £ (by) N ¢ and
h{ (£ (M) nt) x (1)] = £ (by) 0 C.
onto

h:[£ 1 () n [K[] x I 25 £ Xpy,b,> 0 K]

so h 1is the desired homeomorphism.

Lemma 3.2: Let f:K — (Vy,V;> be a simplicial map
and <b0 ,b1> C lnt<V0 ,V1> ’ then f_1<vo ,b0> \ f-l (Vo) and

£73¢by, V> N £ (vy)

Proof: We will show that f-1<vo,bo>\\\\f—1(vo) by
induction on Xk , the number of simplexes of K with
£l (o) N o # 0.

If k =1, then as in the previous lemma ¢ 1is a one
simplex and £ '(Vg.be> N o a polyhedral one cell with a
free vertex f '(bg). Thus

f'1<v0,bo>\ f71<vo,bo>-[int(f"1<v0,b0>u o) U f-l(bo)],
and since k =1, . '

£71¢Vg , bod>-[int (£ 7V, bo> N o) U £ (bo)] = £ 1 (Vo).

Now assume that the lemma is true for k and suppose
that there are k+1 simplexes in K with o n f-l(bo) £ 0.
Let (" be a principal simplex of K with t" n f_l(bo) # 0.
£7¢Ve,bo> N " is a convex linear n-cell with a face

Kffl(bo) n t”. We now show that we can collapse f_¥<vo,bo>ﬂcn

across £ Y(bg) n to.
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Since t" is a principal simplex of K , [K-Cn[ncn = ¢n
so
(£7%Vo by N [K-L"[) 0 (£75Vg.,bo> N %) = £77¢Vg.bop n £V .

Moreover f-1<vo,bo> n én is a polyhedral (n-1) cell since

£ Vg boPNER=[ (£71Vg b NEM)U(£7 (bo) NE™)] = (£ (bo) NE™)

= (£7%Ve.bo> N ™) = (£ o) n ™)

the closed complement of a polyhedral (n-1) cell in a poly-
hedral (n-1) sphere.

Thus we may collapse as follows
£72(Vo . bo> N £ Vg, bo> N K - £|

and employ the induction hypothesis to find
£71(Vg,boY N |K = £ £ T (Vo) -

The proof that £ (b;,V;> > £ '(Vy) is analogous.

Lemma 3.3: If P 0 then PxI \ (Px{0})U(pxI)U(Px({1]})

where p € P.

Proof: Let P = Py N Pi> .-+ PP N NN

be a sequence of elementary collapses. That is,

_n
Pi = Pi+1 U Bi and
n _ ,nh-1 n n-1
Bi n Pi+1 = Bi where Bi and Bi

are polyhedral n and n-1 balls respectively with

B?-l (i é?. Thus B? X I 1is a polyhedral (n+l1l) ball and
by [5], (B} x 1) U (8] x (0) U (B x (1)) < B8] x 1)’
is a polyhedral n-ball since B?-l x I, B? x {0}, and
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1

B? x {1} are all polyhedral n-balls and (B? x {0}) n (Bg- X I)

and (B? x {1}) n (BP—L X I) are polyhedral (n-1) balls.

1

Moreover

- n n n
P, X I = [(Pi+1 X I) U (B; X (0)) u (B, X {11)1 U (B] X I)

and
[(P;,, X I) U (B? x {0}) U (B? X {1hH1 n (B? X I)
= 17 x1) U (B x (0}) U (B] x (1])
SO

P, X INN(P,,, X I) U (B? x {0)) U (B? x {1)) for
all i. Then
PXxIN(Py XI) U (Bgx (0)) U (Bg x (1))
™N(P; X I) U [(By UB;p) X {0}] U [(Bg UBy) x (1)]
\\\(Pk x I) U ﬂ;b-l

' k-1
J=1 Bj x {0} U uvg_ B. X {1]]

13
N (p xI) U (Px (0)) U (P x (1))

Theorem 3.4: If f£:|K| onto, {Vg,Vy) is a strongly

pointlike map, then |K|\\\ 0.

Proof: If <bgy,b;> C int {Vqy,Vy>, then

|K| = £7%Vo,bo> U £ C(bg,by> U £ by, V).

By Lemma 3.1 there is'a piecewise linear homeomorphism
h:f " (b) X I onto_ £ %bg,b;> such that h(f ' (b) x {0))
= £ () and h(£ () x (1)) = £ (by;). By Lemma 3.3
and the hypothesis that £ (b) N0 we have

1

£ B) XIS (£ (B)x{0)) U(pXI) U(£™ @) x(1}), p € £ (B).



13
Let
THEIXINPIN - N PN (7 (B)x (03) U (pxx) U (£ " () x(1))
be a sequence of elementary collapses. Then since h is

a piecewise linear homeomorphism

£73¢by.b;> W h (P1) s - - - h (Py) \f-l (bg) Uh (pXI) UE™t (by)

is also a sequence of elementary collapses. Thus
-1
£ by, b 1>\f (bg) Uh(p X I) U £ (by). Since

£ Vg, bo, f_1<b0,b1> and f-1<b1,vl> intersect only on

£7" (bg) and £ ' (by), we have

-1 -1
K N f <Vg.,bo> Uh(p X I) U £ <by,Vy). Note also
that h(p x I) N f—1<vo,b0> = h(p X {0}) and

h(p Xx I) N f;1<b1,V1> = h(p X {1}). From Lemma 3.2 we

have f {Vg.,beo N £ Vo> and by hypothesis £ VoD 0

so £ 3Vy,be> 0. . By [5] there is a simplicial subdivision
T of £ Vg,bg>  such that T a0 and h(p x (0}) is a
vertex of T. (Star from h(p x {0}) if necessarye) Then
we may collapse T simplicially to h(p x {0}). Similarly

£ 3¢b;, V1> N\ h(p x{1}). Thus

K W f <Vo:bo> Uh(p x I) U £ 1<b1,vl>\~\h(p X 1) 0
and the theorem is proved.

In order to prove a similar theorem in the general case
where the range is collapsible, and not necessarily a one

simplex, we need the following two trivial lemmas.
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Lemma 3.5: Let €,; and €, be n-dimensional convex
linear cell complexes. Suppose there exists a map

g: G, OI;E(;> € 5, such that

(a) g@nNB) = g(A) N g(B) for all A,B e €,

(b) dim g(A) = dim A for all A € € ;-
onto>

Then there is a piecewise linear homeomorphism h:| G|

onto

| €2| such that h:

Al > |g(A)| for all A ¢ € ;.

Proof: The proof will be by induction on k , the
cardinality of €;. If k =1 the result is clear. (In
this case |€ ;| and |€,| are single points.) Now sup-
pose that the result is true for k and let € ; have
cardinality k+1. Let B" be a convex linear n-cell in
€,. Then €, - B" is a convex linear cell complex
since B" is principal in & ;. Cz - g(Bn) is also a
cell complex since by (b) dim g(Bn) = dim B" = n, and so
g(Bn) is a principal cell in G 2. By the induction hypo-

thesis there is a piecewise linear homeomorphism

h:| €, - B"| ento, |€2 - gB")| so that if A e €4 - B"
h:g @) 2L 5,

We will now extend h to int B". Note that since €,

is a cell complex 8" |Cl - Bnl and B" =U n (c n B™).
C€€1-B

Thus g [B"] g( U n €N B™))

Ce g 1""B

U L g n B")
Ce CI_B

U [g(c) n g@BM]
ce 8 ,-B" -

(gB™)) " .
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Thus h: B" 92£9>

(g(Bn))' and we may extend h "“cone-
wise" [5] to a piecewise linear homeomorphism of B" onto

g(Bn). This is the desired homeomorphism.

n . A
> 0 be a simplicial map.

Lemma 3.6: Let f:

K|

If b denotes the barycenter of o and x € int (on),

-1

then f-l(x) is piecewise linearly homeomorphic to f = (b).

-1

Proof: f_l(x) and f “(b) can be considered as convex

linear cell complexes, the convex linear cells being given by
f'x) Nt and £ () Nt for ¢ e K. We will show that

there is a one to one map g from the convex linear cells

-1

of £ '(b) onto those of £}

(x) such that

g(A N B) g(A) n g(B) and
dim g(A) = dim A.
The desired result will then follow from the previous lemma.
Let o0 ¢ K and suppose that o N £71 (p) # ¢. Since f
is a simplicial map we must have f£f(g) = o¢ and so
o N ful(x) # ¢. In the same way o N £ (x) # ¢ implies

oN £ M) #06. Thus if £ 1®) no~ £0e, £1®) n o< = <™

and f_l(x) n ck - Ck_n where Bk_n and Ck-n are convex
linear cells of dimension k-n.
Now define the mapping g as follows:
gl m) n o = £ x) n & .
From the above discussion we have

dim g [£Y®) n o = aim (£ ) n ).

Moreover,
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gLE® n o) n (£ ®) n F2)] = gl ) n (Kt n o52)]
= f-l(x) N (0k1 n okz)
= (£ x) n 1) n (Frx) n o=2)

gl ®) n okl] n gl tm n 0k2

].
g 1is clearly one to one and onto, and so the proof is com-
plete.

We now have immediately

onto> i

Corollary 3.7: Let f£:|K]| L| be a simplicial

map. f 1is strongly pointlike if and only if x € L implies

£7'(x) is collapsible.

Definition 3.1: Let [K| \(|Ki| be an elementary

simplicial collapse, (i.e. K = K; U (a * ") and

KyN(a x» o) =ax &), and let K' be the subdivision of
K obtained by starring from b, the barycenter of o. The
simplicial map f:|K"'| onto |Ky| defined by

f(b) = a and

f(V) = VvV for all vertices V ¢ K', V#b

will be called the simplicial map associated with the col-

lapse |K| ‘3 |K1]-

onto

Theorem 3.8: If f:|K| > |L| is a strongly point-

like map and |L| >N 0, then |K| > 0.

Proof: Since |L|\\\ 0 there is a triangulation L*
of |L| such that |L*| ‘;§_0. The proof will be by in-

duction on p , the number of simplexes in L*.
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If p =1 the result is trivial for then L* consists
of a single vertex.
Now suppose that the theorem is true for all p < k
and let L* be a simplicial complex with cardinality k.
By hypothesis [L¥ | \g\~0 so there is a sequence of ele-

mentary simplicial collapses

|lL*|= [Lo| S |Li] Sw --- a0 where L* =
L; U (a » o) and L; N (a = ') = ax & . Note that

[Ly | ‘;\;0 and L; has cardinality k-2. Let

g: [L§ | > |Ly| Dbe the simplicial map associated with the
simplicial collapse |Lg| 3w |Li|. Subdivide K to K' so

that the map f:|K'| — |Lo| is simplicial. We will now

show that the composition gf:|K'| > |Ly| is strongly

pointlike and use the induction hypothesis to conclude that

X[ =[x 0.

(i) If x € |Ly| - a » &/ then g '(x) = x so
£7'g" (x) = £7'(x) which is collapsible by hypothesis.

(ii) If x e a* &, g”'(x) is a line segment in
a » 0. Triangulate £ '(g”'(x)) so that f:f-l(g_l(x))

onto -1 -
(x)

onto, 4 = gl

is a simplicial map. Then since f 1is
strongly pointlike we may apply Theorem 3.4 to find that
-1 -1
£ (g7 (%)) 0.
.| onto . . .

Thus gf:|K'| = L; is strongly pointlike and the
conclusion follows from the induction hypothesis.

The following corollary and lemma will aid in the char-

acterization of collapsible complexes.
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Corollary 3.9: If the simplicial maps f and g are

strongly pointlike where f£: |K| onto, L] and g:lL|92£9> IPI,

then the composition gf 1is strongly pointlike.

-1

Proof: Let x € |P|. g (x) is collapsible since g
- - -1 -
is strongly pointlike. Moreover f:f 1g (x) onto_ g 1(x)
-1 -1
so by the above theorem f 'g (x) 0 and gf is a

strongly pointlike map.

Lemma 3.10: If |K| 3 |Ki1| is an elementary sim-

plicial collapse,the associated simplicial map f:[K'[ onto,

K; 1is strongly pointlike.

Proof: If x € |Ky| - (a * "), £ (x) = x. If

. -1 . .
x € ax " 1 £ (x) 1is a polyhedral one cell. Thus in any

case f_l(x)\\§~0.

Theorem 3.11: If |K| o |L|, there is a strongly

onto
——

pointlike map £: |K*| |L| where K* 1is a subdivision

of K.

Proof: Since |K| 3a |L| there is a sequence of

elementary simplicial collapses from K to L.

K[ = (Kol S [Kal Jeer WKL 3T

1| onto . .
Let fi:lKil |Ki+1| be the simplicial map as-

sociated with the elementary simplicial collapse

|Ki[ ’;$\|K1+1|. fp:|K;| ento, [Ll is a strongly point-
like map by Lemma 3.10. Now subdivide K;_l to K;_l so

that the map £ | onto

p—1:|K;—1 > |K;| is simplicial.
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Continue in this manner to arrive at the sequence of strongly

pointlike maps

e = T 2 R e kT — o
- K| R 2| B k] R o).
p-2 p-1 P
By Corollary 3.9 f = fpfp—1-'°' f,fo is a strongly point-

like map.
We are now able to state as a corollary the converse

to Theorem 3.4.

corollary 3.12: 1If lK]\\\O, then there exists a

onto>

1

strongly pointlike map f: |K* | ol where K* is a

subdivision of K.

Proof: Just note that if K 1is collapsible to a
point the second last collapse takes K to a one-simplex.
Remark: 1In view of Theorem 3.4 and Corollary 3.12 we
have characterized col;apsible polyhedra as those having a

strongly pointlike map onto a one-simplex.



SECTION IV

FURTHER RESULTS CONCERNING COLLAPSIBLE COMPLEXES

In this section we will use the results of section III
to obtain necessary and sufficient conditions for a complex
to be collapsible. Further, we will drive some properties
of a collapsible complex embedded in a combinatorial manifold.

The following two lemmas, along with the characteriza-
tion of collapsible complexes of the previous section, will
lead quickly to necessary and sufficient conditions that a

complex be collapsible.

onto

Lemma 4.1: If f£:|K| > {(Vo.Vy) is a simplicial

map and b is the barycenter of ‘<V0,V1>, then there is a
subdivision K' of K such that‘
(i) K* is a first derived complex of K,
(ii) £:|k'| 222 (v,,b)> U (b,V;> is a simplicial map,

1

and (iii) if o ¢ K'|f ~(b), then f(EEK.(o))=<V0,b> U <b, V).

Proof: We will star the simplexes of K in the order

of decreasing dimension, 01:02s+4:0g- If f:0, —> Vj for

j = 0,1, we will star o4 from bi’ the barycenter of o, -

If f:i0, — > {Vo.,Vy), we will star o; from a point

-l(b) N int o,. Such a process yields a first derived

complex of K. Call this K'.
By [2] o0 € K' if an only if o is of the form

o = <bio' bil,...,bin> where bik is the point from

which ©. is starred and o. > oO. > veoe > 0. .
ix ig iq inp

20
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We first show that f:|K'| — <Vg,bp U<b,V;p is a

simplicial map. If f(o. =vV., J 0,1, th . f(o. = v,
p p (05,) V5. 3 =0 en f(og ) = vy
for k=0,1,...,n, and f(bi ) = Vj for all k. Thus
k
£ = V..
(o) = v,
If f(o,

) = <Vg.Vy), then either f£f(o, ) = <Vy,Vy)
1o . lk' )

for all k =0,1,...,n, or there is a least integer N < n

such that f£(o, ) = v, for a fixed j = 0,1 and all
k
k > N.

In the first case f(b, ) = b for all k so £f(o) = b,
k

In the second case f(o, ) = {Vo.,Vy) for all %k =N,
k

and f(o, ) = v, for k > N. Then £(b, ) =v. for all
1k J 1x J

k >N, and f(b, ) =b for all k = N. Thus £(0) = <b,Vj>a
k A

In any case f maps simplexes onto simplexes and f 1is a
simplicial map.
We now verify conclusion (iii). If £(o) = b, then

o=<b, , «..,b, >, b, € o, and 0, > 0, >..e> O, &
i i i i i i
Y n 1x k o 1 n

By definition f(oik) = (Vy,Vy) for all k. 1In particular

f(oi ) = <V0,V1>, so oi has vertices ug and wu; with
n n

f(ug) = Vg, £(uy) = V;. Then by [2] the sequences

O, > 0. > ... > 0, > Uy and

determine simplexes (o, and (; of K',

co - <bio'bill o o oy binlu0> and

by Wby 4 ee., by oup.
. n

€1

19 14
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Note that £(to) = {Vo.b) and £(¢;) =<b,v,>. Then, since
0 <fo and o < {;, we have that (o U £, C gtK.(o) and

£(Sty. (0)) = Vo B> U B,V

Lemma 4.2: If f£f: |K| onto, {Vog,Vy> 1is a simplicial

map and b is the barycenter of <Vq,,V;), then f_l(b) =
ikK,(f_l(Vo)) where K' is the first derived subdivision

of K described in Lemma 4.1.

Proof: If o ¢ K'lf—l(b), then f(o) = b so
on £ Ve) = ¢. By conclusion (iii) of Lemma 4.1

£(st(o)) = {Vg.,b> U<b,V;>. Thus o < { where £(¢) =
1

(Vo))

On the other hand, if o ¢ K'Ile,(f_l(Vo)), then

{Vg.b) so £ n f-l(vo) #¢ , and o € K']le,(f"

o N £YVe) =¢ and o < L € K' where ( N £ Y (vy) # ¢.
Since £ N £ Y(vg) # ¢, £(f) = (Vo.b) and £(0) C {Vy.bD.
Moreover, o N £ (Vo) = & so £(o) N<Ve> = ¢ and

£f(0) =b. Thus o e £ *(b).

Remark: Clearly it follows in the same way that

£77(b) = 1k, (€77 (V1))

Theorem 4.3: Let ]KI\\\O. Then there is a simplicial

subdivision K* of |K| and subcomplexes A,B of K* with
(i) A,B full in K*, A # 6, B £ ¢,
(ii) A NB = ¢, ‘
(iii) A U B D (K*)? (the zero skeleton of K*),
(iv) |A|\0, |B|\0, and
(v) 1k, @) = le.(B)\\Q_O where K' 1is the first

derived subdivision of K¥*.
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Proof: Since lKI\\\\O we may employ Corollary 3.12
to find a simplicial subdivision K¥* of |K| and a strongly

pointlike map f: |K* | onto, Vg,V

Let A = f '(Vg), B=f '(V;). Since f is a simplicial
map, we note A and B are full in K¥ and since f 1is
onto, A # ¢, B # ¢. Conclusions (ii) and (iii) are immedi-
ate, and (i&) follows from the fact that £ is strongly
pointlike. Finally, by Lemma 4.2,

kg, (A) = 1k, (B) = £71 () 0.

Thus conclusion (v) follows.
We will now prove a type of converse to Theorem 4.3.

Theorem 4.4: Let K Dbe a simplicial complex and A,B-

subcomplexes of K with
(i) A,B full in K,
(ii) A NB =9,
(iii) A U B D K9, (the zero skeleton of K),
(iv) IAI\O, |B|\0, and
(v) le,(A)\\§ 0 where K' 1is a first derived sub-

division of K.

Then |K| ™ 0.

onto
—_—

Proof: Let f:|K| {Vg.Vy) Dbe the simplicial

Vo, £(B) = V;. Since A and B

map defined by £f(Aa)
are full in K, £ 1(Vp) = |A| and £ '(v;) = [B|. Thus,
by hypothesis, £ (Vo) ™ 0 and £ 1 (v;) > 0.

By Lemma 4.2 £ ' (b) = lky, (B)  so £ (1) 0,

and f 1is a strongly pointlike map. Then by Theorem 3.4

K| S 0.
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Remark: Clearly, by symmetry, condition (iii) above
can be replaced by le.(B)\\§,0.
The next application of the results of Section III in-

volves collapsible polyhedra embedded in a combinatorial

manifold.

Theorem 4.5: Let |K| be a polyhedral n-complex in

M|, a combinatorial m-manifold. If |K| is collapsible,
there exist two polyhedral m-cells Ny, and N; in [M[
such that

(i) if x € |K| we can choose Ny and N; so

that x € int Ng,
(ii) No UN; D |K]|,
(iii) No n |K| # ¢, Ny N [K| # o,
(iv) No N [K|™a 0, Ny N [K| 0,
(v) No N |K[|™0, Ny N [K| >0, and

(vi) dim (N, n |K|) £n-1, i =0,1.

Proof: We will suppose that K is a subcomplex of M.
If not, there exist subdivisions K; and M; of K and M
respectively such that K; C My. Further, since lel\\\ 0
there exists a subdivision Kz of K; such that [KZ[ ‘;r\ 0.
Extend the subdivision K; of K; to a subdivision M, of
M;. Moreover, if x e |Kp|, we will assume that x is a
vertex of Ky;. If not, we simply star M, from x and
call the resultihg triangulations Mz and Kj. Note that
since we arrived at Kz by starring K, and (K| \;n\o,

|[Ks| 5« 0, see [5]. In addition we will suppose that Kg
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is full in M. If not, we have only to let Mj' denote
the first derived subdivision of Mz and Kj' the cor-
responding subdivision of Kz. Then [K3'| 3o 0 since
it was obtained from Kz by starring. In order to save
notation we will call Kz', K and Mg', M. In summation we
now have
) K CM,
b) x 1is a vertex of K,

) K is full in M, and
da) |k| 3=0.

Since |K| 3« 0, there exists a strongly pointlike

map f:|K]| onto, {Vg,Vy). Since x is a vertex of K,
either f(x) = Vd or f(x) = Vv;. Assume that f£(x) = V,.
Star <(Vq,V,> from its barycenter, b, and subdivide K to

P |
Kf so that

£: K.' OnEO, (vy.bp U (b, VD
is a éimplicial map, and. Kf' is.a first derived complex
of K (see Lemma 4.1). Extend .Kf' to a first derived
subdivision of M, say M'.
Now consider the first derived neighborhood of f-l(Vi),

N(ETT (V) M) = sty (£

(Vi))' , 1 =20,1.

By [5] these neighborhoods are regular neighborhoods, (i.e.
-1 . . . -1

N (f (yi),M') is an m-manifold such that N (f (Vi),M')\\§

£77(v;)), since £ (v,) is full in M (£ '(V,) full in K,

K full in AM) and M' 1is a first derived subdivision of M.
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Thus since f_l(Vi) \;\ 0, N(f_l(vi),M') is an m-ball,
and ﬁ(f-l(vi),M') = lkM,(f_l(Vi)) is an m-1 sphere for
i =0,1, (see [5]). Let N, denote N(f-l(vi),M‘).

We next note that

N, n [K|] =£*®) , i=0,1. (1)

We will prove this for i = 0. (The proof for i =1 |is
analogous.)

First suppose that y € No N |K|. Then y ¢ int o
where ¢ € K.' and 0 ¢ No. Since o € Ng, o N £ 1 (Vg) = 6.

Thus we must have one of the following three possibilities,

f (o) b, £f(o) =vy, or £f(o) =<b,V,>. Suppose that

f (0) Vi, or f(o) =<b;,Vyy, and o < t. Then since f
is a simplicial map, f£(f) =Vv; or £(¢) =<b,Vy>. 1In
(Vo) = ¢ so t ¢ stM,(f_l(Vo)) and
o ¢ 1k ,(f-l(vo)). That is, o ¢ No, a contradiction. Thus
(b).

On the other hand, if vy ¢ f_l(b) then y € 0 € K.'
and f(o) = b. Since f(o) = b,. o N £ (V) = 0. But

either case (¢ N £t

we must have f(g) = b so f(y) =b and y ¢ f

0 Cf e K where f£(f) =<Vqy,Vy) so o is the face of some

o' € K.' where £(0') = (Vg,b>. Thus £ (Vo) N o' # ¢, and

£
-1
o C lkM.<f (Vo)).
Finally we will show that No N |K| = £ ' ((Vo,b>) and
-1
Ny 0 [R| = £ (b, VD). (2)

Let y € Ng N |K|. Then y € No implies y ¢ int o0, 0 € K%
where o N f-l(vo) #Z 6. Thus f(o) =<Ve> or £f(o) = {(Vg,by.
In either cése y € 0 C £ 1({Ve,b>). On the other hand, if

y € £ 1({Vg,bp) then y ¢ o ¢ Ke' and either f(o) = Vo)
f£(o) = <Vg,b) , or f(o) = b. 1In the
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1(vo) # ¢. Thus GCstM,(f—l(Vo))

first two cases o N f
and ¢ CNog. If £(0) =b, o c £ (b) and, by (1),
0 C Nog. The proof that N, N |K| = £7%¢p,v,> is analogous.
We are now in a position to verify that conclusions
(i) through (vi) follow.
(i) follows immediately from the construction since
X € f_l(Vo) C int Ng.
(ii) follows since |K| € £77 KVo.,bp) U £7 Kb, V;D)

-No UN]_.

(iii) follows since f£:|K]| > {Vog,Vy)> was onto.

(iv) follows from (1) above. That is, ﬁi n [K| = f_l(b),
and £ ' (b) is collapsible since f is strongly
pointlike.

(v) follows from (2). That is, No N [K| = f"1(<v0,b>)
and N; N |K| = £ (b,v,>), and the fact that £
is strongly pointlike.

(vi) follows from the fact that £f is a simplicial
map  £:|K| 22O, {vo,v1>° Thus if dim £ ' (b) =
dim K, some o' € K would be mapped to b in ccn-

tradiction to the fact that f is a simplicial

map with range <Vq,Vy).



SECTION V

CONTRACTIBLE COMPLEXES WHOSE PRODUCT WITH
THE UNIT INTERVAL IS COLLAPSIBLE

The dunce hat D is obtained from the 2-simplex
{a,b,c) by identifying all three sides {a,b) = {a,c) =
<b,c>. D 1is of interest since it is one of the simplest
contractible polyhedra which is not collapsible (there is
no free face from which to start the collapsing). How-
ever, it is well known, see [4], that D X I N 0. This

fact leads to the following conjecture.

Conjecture 1l: If K is a contractible 2-complex,

then K XI\O.
This conjecture is of particular interest since it

implies the three dimensional Poincare' Conjecture [4].

Definition 5.1: Let M be a compact polyhedral mani-

fold with boundary. Define a spine K of M to be a sub-
polyhedron 'such that M N K.

By [4] we may assume that if K is a spine of M,
then

(i) K C int M, and

(ii) dim K < dim M.

The proof that Conjecture 1 implies the Poincare'
Conjecture depends upon the following proposition (see,

for example, [4]).

Proposition 5.1: Let M3 be a 3-manifold with a 2-

sphere boundary and spine K2.28Then if K2 x I N0, M3
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is a 3-ball.

In this section we will apply the results of Section IIT

to find a class of complexes

]K X Il\\\O.

K with the property that

Lemma 5.2: Let K be a complex with a subcomplex L.

Then [K X I| > |(K x {0}) U (L x I)].

Proof: Order the simplexes ¢ with int { C [K| - [L|

in the order of decreasing dimension, Cl,Cz,uuc,cs. First,

[K x I| K x (0)] UL (|K|-int £;) X I]

by collapsing the polyhedral ball {; X I across its free

face ¢, x (1}.

In general,
j-1

[k x{(0} Ul (|K|-U int Qi)xi] N |Kx{0]}] U

1=1
, o '
[(|K|-U int ;) x 1]
i=1
by collapsing cj X I across Cj x {1}. Note tha*
Qj x {1} is a free face of Cj X I since if Cj x (1)
<4 XTI, for 3 #k, then £ x (1) < x (1] and so
cj < Ck. Since the simplexes were ordered in the crder of
decreasing dimension, k < j; so
j-1 :
L x (1} ¢ [k x {0)] v [(|K|—iL=J1 int £,) X I].

Thus

| RXT [ N |Kx {0} | UI (|K|-i§)1 int g;)x1]=[kx(0}[U]LxT] .
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Theorem 5.3: Let K be a complex with a subcomplex L

such that
(1) L[N0,
(ii) |L| separates |K|, |K| - |L| = A U B, and

(iii) A U [L|™ 0, B U [L| ™\ 0,

then [K X II\\\ 0.

Proof: On applying the previous lemma twice we see
that
|K x 1| = (A VU |L]) xI) U ((B U |L|) x I)
@ X {0}) U (L] xI) U ((BU [L]) xI)
(A Xx (0) U (L] xI) U (Bx (1)) =M.

Now trianguléte M by starring the convex linear cells
of L x1I, { xI, from vertices of (A U |L|) x (0] and
(B U |L|) x (1}.

Note that

(i) (A U |L|) x {0} is full in M,

(ii) (B v |L]|) x {1} is full in M, and

(iii) [@ U |L])x (0})] v [(B U |L]) x {1}] D M°, the

"zero skeleton of M.

Now define a simplicial map f: M —> <{Vq,Vy)

by £((A U |L|) x (0}) = Vo,

£((B U |L|) x (1)) = vy,
and linearly on |L| X I.
Note that sihce (A U lL[) x {0} and (B U lL[) x {1}

are full in M,

£ (Vo) = (A U |L|) x (0}, and
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£ (vy) = (B U |L|)x (1).

Then since by hypothesis A U |[L| >0 and B U |L|\0,
we have f-l(vo)\O and f! (Vl)\O. Moreover, since
f(|u] x (0}) = Ve and £(|L| X (1)) =vV,, and f is de-
fined linearly on |[L| X I, we have

f'l(-;- Vo +%V1) = |L| x {%]“

Since |L| X [—;-] is piecewise linearly homeomorphic to

L], f-l(% Vo + % Vi) 0.

Thus f is a strongly pointlike map, and so M N\ 0.
Therefore, K X I N M N\0.

Example 1: 1In Figure 3 we picture a 2-dimensional

polyhedron, K, (the house with two rooms), due to R. H. Bing.

Figure 3.
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Although K 1is not collapsible, since it has no free
faces, an application of Theorem 5.3 will show that
K X I 0. Pass a plane P through K so that P con-
tains therectangular disks D; and D, of Figure 3. This

plane separates K into two components A and B. Figure 4

pictures A U (P NK). B U (P NK) is similar.

Figure 4.

Clearly L =P NK 0, A ULNO0, and B U LN\ 0.

Thus, by Theorem 5.3, K X I 0.

Example 2: Let <(Vqg,Vy,Vy) be a 2-simplex and let
V,' and V,' be two interior points of <Vg,V;,Vy) not
‘co-linear with Vg. Let K, i=1,2, indicate two copies
of- the space obtained by identifying the intervals

Vo, Vy) = <Vg.,V1'D, <V0,V2> = {Vg,Vz'), and let L;
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denote the image of {V,;,V,) in K; . The polyhedron K;
is pictured in Figure 5.

Vo

Ve’ vy

Figure 5.

Let K = K; U K; where the union identifies corre-
sponding points of L; and L,.

Note that although K is not collapsible, L; a0
and L, separates K. If we let K - L; = A U B, then
AUL; =K; N0 and B UL; = Kz\O. Thus, by Theorem
5.3, K X I 0.

Using the usual terminology we will call a counter-
example to the 3-dimensional Poincare' Conjecture a fake
3-sphere (if such exists). If we triangulate this fake
sphere and remove the interior of a 3-simplex, the result-
ing manifold with boundary will be called a fake 3-ball.
Note that a fake 3-ball has a 2-sphere bgundary. We may

now prove the following theorem.

Theorem 5.4: If K 1is a spine of a fake 3-ball, and

T a tree in K which separates K into components S,

and S,, then either S; UT or S; UT is not collapsible.
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Proof: Let M3 be a fake 3-ball with K as a spine.
We may assume that T 1is a subcomplex in a triangulation
of K. If S; UT and S; UT are collapsible we may
apply Theorem 5.3 to find that K X I\\\O° Then by Propo-
sition 5.1 M3 is a 3-ball.

In the remainder of this section we will consider an
additional method of collapsing K X I where K 1is a

contractible polyhedron.

Theorem 5.5: If Kl\\§.0 and Kl\\\ K Dby an elemen-

tary collapse, then K X I N\0.

Proof: Let

Ky =K WU Bn, and
B nK = B" ' cB"
where B" and B"7! are polyhedral n and n-1 balls

respectively.
By Lemma 5.2

K X I\ (K x {0)) u """

X I).
But (K x (0}) U (Bn_1 X I) 1is piecewise linearly homec-

morphic to K;. Let h denote the natural piecewise linear

homeomorphism h:K x {0} > K. Then h is defined on
the n-1 cell B" ' x (0} c (Bn"1 x 1)° onto B ' c 8",
Thus by [5] h can be extended to a piecewise linear
homeomorphism

onto_ g u B™ = k,.

-1
g: (K x {0}) u B x 1)
Thus, since K; N0, (K x {(0}) U ™" x 1) ™\ 0, and we

have
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K x INQ (K x (0)) U B x 1)\ 0.

Example 3: Consider the dunce hat D. It is well
known that D X I Nq O, [4]. However, the following ap~-
plication of Theorem 5.5 seems to be a somewhat easier way
to prove that D X I N O.

In Figure 6 we picture a two simplex, two of whose
sides have been identified. The identification of a gen-
erator of the cone with its base, as indicated by the num-

bering of vertices in Figure 6, yields the dunce hat.

Figure 6.

Now expand D to the complex K indicated in
Figure 7. K is simply D U B3 where B3 is the tetra-
hedron with vertices Vg,,V;,V3,V4. Note that K D
since we may collapse B3 across the 2-simplex <V;,V3.,Vs).

Moreover K M 0 as is indicated in Figure 8. The first



Figure 7.

collapse pictured in Figure 8 is the collapse of B3 across
the 2-simplex <Vg,V;,V3>. In the second we collapse the
2-cell <V0,V1,V4> U <Vg.,V3.,Vy> across the 1l-cell {Vqy,V3).
The third collapse coilapses the 2-cell with verticés ﬂ
Vo:V3,V4,V; across the one cell <V,,V,)>. Finally we col-
lapse the 2-cell with vertices vl}vz,v4,v3 across the

one cell <(V4,Vy) U<Vy,Vy). The resultant complex pic-
tured in Figure 8 ié a disk which is clearly collapsikle.

Thus by Theorem 5.5 D X I\\\O°

corollary 5.6: If K 0 and K\\§~L, then there

exists an integer p such that L X 1P > 0.

Proof: Let K K1 N Kz y:-- \Kp =L bea
sequence of elementary collapses. The proof will be by

induction on p.
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Figure 8.
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If p =1 this is just Theorem 5.5.

-1
Now suppose K K and K X Ip 0.
PP po1 N Kp p-1 ~

Let Kp_1 = Kp UB and
Kp n Bn = Bn_1 C én where Bn and Bn_1 are
olvhedral balls. Then since
poly
p-1 _ p-1 n p-1
K X I = (K. X1I U B XTI and
oe1 (K, ) U )
-1 -1 - -1 -
(K, 1P n 8" x 1P7Y) = 8"t x 1P7t ¢ 8" x 1Py
we have

-1 -1
Kp_1 x 1P \\\Kp x 1P by an elementary collapse.

Now apply Theorem 5.5 and we find that Kp x IP ™\ 0.

Corollary 5.7: If K 1is a homotopically trivial poly-

hedron, then there is an integer p such that K X P \\\Da

Proof: By [3] K 1is of the same simple homotopy type
as a point. Thus there exists a complex L such that
L'\\\O and L\\m~K. We may now apply Corollary 5.6 to get

the desired result.
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