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ABSTRACT

STRONGLY POINTLIKE MAPS AND COLLAPSIBLE COMPLEXES

by Paul Francis Dierker

Let [aiii = 1,2,...,s} be the set of barycenters of

the simplexes in the simplicial complex L. If leKI 9E£2>

[Li is a simplicial map with the property that f;1(ai)

is collapsible for all i = 1, o.., s, we call f a

strongly pointlike map.

In this thesis we examine the relation that exists be-

tween a complex and its image under a strongly pointlike

map. In particular, in Section I we find that a complex

and its image under such a map must be of the same simple

homotopy type.

Next, collapsible polyhedra are characterized as those

polyhedra having a strongly pointlike map onto a 1-simplex.

This characterization is then used to derive a few prOperties

of collapsible polyhedra. In Section V the characterization

is used to find a class of non-collapsible polyhedra whose

product with the unit interval is collapsible.
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SECTION I

INTRODUCTION

Throughout this thesis we will be considering both

simplicial complexes and convex linear cell complexes. All

complexes (simplicial or convex linear cell) are to be fin-

ite and embedded in some Euclidean space.

If K is a complex,[K| will be used to denote the

underlying point set of K, that is, the union of all convex

linear cells of K. If K is a convex linear cell complex

and T a simplicial complex with [TI = |K[, T will be called

a simplicial division of |K|.

Bn will be called a polyhedral n-cell if there is a

piecewise linear homeomorphism from the standard n-simplex

onto Bn.

If K1 and K2 are complexes with K1 Z>K2 we say that

there is an elementary simplicial collapse from K1 to K2

if

-K1 = K2 U (a * on) and

K2 0 (a * on) = a * 5n.

K1 simplicially collapses to K2 (written [K11 \§§~[K2D if

there is a sequence of elementary simplicial collapses from

K1 to K2. If K2 consists of a single vertex,K1 is said to

be simplicially collapsible (written [K1| ‘;\\O). It is

well known [3] that if |K1| ‘§m\0,then K1 may be collapsed

to any of its vertices.
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If [K1] :>[K2[ we say that there is an elementary col-

lapse from [K1| to [Kzl if there exist Bn and Bn-l, polyhedral

1

n and n-1 balls respectively, with Em” C fin, such that

|K1| = |K2| U Bn and

[KZI n B“ = Bi‘l

[K1] collapses to [K2] (written [K1|‘\§~[K2|) if there is

a sequence of elementary collapses from [Kll to 1K2}. If

[K2] is a point,|K1| is said to be collapsible (written

[K1[\\\.0). The following well known theorem [S] gives the

connection between collapsible and simplicially collapsible

polyhedra. If [K|‘\§.O then there is a simplicial division

T of K such that |T| \;§.0.

Let K and L be complexes. We say that K and L have

the same simple homotopy type if there exists a complex P

such that [PI \ [K| and [P[ \ |L

Let L be a subcomplex of the simplicial complex K. The

 

star of L in K is defined as

u[ceK|cn[L|#¢}l'
." I

and the link of L in K as

1km)

If 0 is a simplex of K the reduced star of o in K is defined

um e Kl CEstK(L); cm [L[ = e}

as

;;K(o) - U [C e KlO < C}

A subcomplex L of a simplicial complex K is full in K

if any simplex of K whose vertices belong to L is in L.

In addition we will consistently use A to denote the

boundary ova and int A to denote the interior of A.



SECTION II

STRONGLY POINTLIKE MAPS AND SIMPLE HOMOTOPY TYPE

 Definition 2.1: Let Vf:|K| > [Ll be a simplicial

map of the complex K onto the complex L, and let

.[aili = 1,2,...,S} be the set of 'barycenters of the

simplexes of L. If f-1(ai) is collapsible for all i

the map f is said to be strongly pointlike.

In this section we will show that the existence of a

strongly pointlike map between two polyhedra implies that

the polyhedra are of,the same simple hOmotopy type. This

result will follow quickly from [1].

 

Definition 2.2: If M is a subcomplex of the complex

1 . . +1 .

K C En CEn+ and V 15 a pOint of En - En we define

the quotient complex of K with respect to M as

K/M = [K - K|stK(M)]U[v * Klle(M)].

Lemma 2.1: Let M be a collapsible subcomplex of K
 

and suppose that |K|stK(M)| \;n\M. Then.[K/M[ is of the

same Simple homotoPy type as [Kl.

Proof: Since a cone collapses simplicially to any

subcone,[5] we have that

[v * KlstK(M)[ ‘;\\[v * Klle(M)(.

Thus [v * KlstK(M) U [K - KlstK(M)][ ';\\[K/M[.

Moreover [K[stK(M)[ ';\\[M[ \\§ 0 so [KlstK(M)[‘\\\ 0.

Thus by lemma 3 of [3]

3
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[v u» KlstK(M) U [K - KlstK(M)]l \ lKl

and so lK/Ml and lKl are of the same simple homotopy type.

Definition 2.3: A subcomplex L of a complex K is
 

locally collapsible if for any simplex o of K, stK(o)fllLl

is collapsible.

The following lemma is the second portion of proposition

2.1 of [1].

Lemma 2.2: Let M be a subcomplex of K such that
 

(i) M is full in K

(ii) M is locally collapsible in K,

then lKlstK(M)l ‘gmklMl.

Definition 2.4: The simplicial mapping sz -—> K/M

 

defined by

Fl lKl - stK(M) = id and

w(lMl) = V

is called the projection of -K onto K/M.

onto) l

Theorem 2.3: If leKl Ll is a strongly point-

like map,then [Kl and lLl have the same simple homotopy

type.

.Proof: Order thesimplexes of L. in the order of in-

creasing dimension, §1,C2,...,CS and let ai denote the

barycenter of Ci. Construct the sequence of quotient com-

plexes



n u H

K0 K1 K2

W -1
_i

N

Ks

where L' is the first barycentric subdivision of L and

K' is a first derived complex of K chosen so that

 

f:K' > L' is simplicial [1].

From [1] we have that KS is isomorphic to L', and

-1 .

that Ji - Ki_1lwi_1...w1f (ai) is both full and locally

collapsible in Ki-1' Thus by Lemma 2.2

lKi-ilStKi_1(Ji)l ‘;‘\lJil °

In addition, since f is strongly pointlike

-1 . . .
f (ai)\\§\0 for all 1.. It 18 an easy calculation to show

-1 -1 -1 . .
that f (ai) fl stK(f (aj)) C le(f (aj)) for all j # l.

o"

. . -1
Thus wi-1’Fi-2"'°’W1 are all the identity on f (ai)

and so [Jil = Wi_1 Vi-2 ...w1f-{(ai)\\m\0.

Now we may apply Lemma 2.1 to see that lKil =

is of the same simple homotopy type as Ki_1l.

Thus [Ksl is of the same simple homotopy type as

lK'l, and so [K'l and lLfl are of the same.simple homo-

tOpy type.



SECTION III

STRONGLY POINTLIKE MAPS ONTO COLLAPSIBLE COMPLEXES

A CHARACTERIZATION OF COLLAPSIBLE COMPLEXES

In this section we will establish that the preimage

of a collapsible polyhedron under a strongly pointlike map

is collapsible. In order to establish this it is helpful

to prove first that the preimage of a one simplex under a

strongly pointlike map is collapsible. Both the more

general result and a characterization of collapsible com—

plexes will follow from the consideration of this special

case.

The idea for the proof of the special case is quite

simple and is indicated schematically below. Let

f: lKl onto

(V0,V1> be strongly pointlike, b denote the

barycenter of (V0,V1>, and b e (bo,b1> C int<Vo,V1>.

Then lKl may be represented pictorially as in Figure 1.

By following the path of collapsing f-1(b) to p we

will show that K may be collapsed to the complex repre-

sented pictorially in Figure 2. This in turn will be col-

lapsed to the one cell (U0,U1> which is collapsible.

Remark: Let f:on 92E2> (V0,V1> be a simplicial map.

Further let b denote the barycenter of (V0,V1> and

(b1,b2> a one cell contained in (V0,V1>. Then since f

is a linear map we have

n-1

f-1(b) = B , a convex linear (n-1)-cell

f-1<bo,b1> = Bn, a convex linear n-cell

6



Figure 1.

 

Figure 2.



—1

(f‘1<bo.b1>f = [f’1(bo) U f (b1)1 u [f‘1<bo.b1>né“1.

We shall use these facts throughout the proofs of the fol-

lowing lemmas.

onto

Lemma 3.1: Let f: Kl -———> (V0,V1> be a simplicial

 

 

map, b the barycenter of (VO,V1>, and (bo,b1>cint<vo,vl>.

There is a piecewise-linear homeomorphism

h:f-1(b) x I 93E9> f'1<bo,b1> such that

h(f-1(b) x {0}) = f-1(bo),

h(f-1(b) x {1}) = f-1(b1), and

h((f’1(b)no) x I) = f’1<bo,b1> n o, o e K.

Egggg: The proof will be by induction on k , the

number of simplexes o e K with o n f—1(b) # ¢. If k = 1

and o n f-1(b) # ¢ then 0 must be a one simplex. Other-

wise 0 fl f-1(b) # ¢ implies. 6 fl f-1(b) # ¢. Then there

is another simplex C C 6 such that C O f-1(b) # ¢ and

so k # 1. Thus if k = 1 ,f-1(b) is a point and f_1(b) x I

a polyhedral one-cell. f-1<bo,b1> is also a polyhedral one—

cell with boundary f_1(bo) U f_1(b1). The conclusion of

the theorem is then obvious for k = 1.

Now suppose that the lemma is true for k and let K

have k + 1 simplexes with o n f_1(b) # ¢. Let C be a

principal simplex of K with C 0 f-1(b) # ¢. Then K - C

onto

is a simplicial complex and leK — Cl > (VO,V1> a

simplicial map. By the induction hypothesis there is a
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piecewise linear homeomorphism

onto

g:[f-1(b) n lK - all x I > f_1<bo,b1> n lK - Cl

with

9([f'1(b) n [K - all x {0}) f-1(bo) n lK — cl

g<[f'1<b) n [K -c|1 x {1})

9([f-1(b) n O] X I) = f-1<bo.b1> n O. o e K

f-1(b1) n lK - cl and

Note that i c lK - Cl so g is defined on (f-1(b) n i) x I.

Moreover,

'g[(f_1(b) 0 i) x I] = f'1<bo,b1> n i so

guf‘lao) n i) x (on

g[(f’1(b) n 2:) x {1}]

(f-1(b) n i) x {0] and (f_1(b) H i) x {1] are the boundaries

f-1(bo) n i * and

f-1(b1) n i.

of the polyhedral balls (f_1(b) n c) x [0} and

(fm1 (b) H C) X {1] respectively. In addition, f-1(bo)n &

f-1

(b1) 0 é are the boundaries of the polyhedral balls

f-1(b0) n c and f-1(b1) n g respectively. By [5] any

piecewise linear homeomorphism between the boundaries of

two polyhedral balls can be extended to the interiors. Thus

we may extend g to g) a piecewise linear homeomorphism

with

'g'Hf‘lao) n C) x {0}]

3[ (f‘1(b> n C) x {1}]

Now 5' is defined on

f-1(bo) n c and

f-1(b1) n c .

s = t(f‘1<b)nc>x{01JUI(f‘laommxmwl(f‘1(b)n5:)x11 .

the boundary of the polyhedral ball (f-1(b) n C) x I,

and 615) = (f_1(b0) n c) u (f_1(b1) n g) u (f‘1<bo,b1> mi),

—1
the boundary of the polyhedral ball f (bo,b1> n C. Thus,
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as before, we can extend 6' to a piecewise linear homeo-

morphism h with

h[<f’1(b) n a) x I] = f‘1<bo.bi> n c.

Note that since h is an extension of '3

1(b0) n c and

Ian) 0 c.

:[f-1(b) n lKl] x I 9359> f'1<bo,b1> n [Kl

h[(f'1(b) n C) x {0}]

h[(f-1(b) n C) x [1)]

so h is the desired homeomorphism.

Lemma 3.2: Let f:K ——> (V0,V1> be a simplicial map

and <bo ,b1> C int<V0 ,V1> I then f-1<VO , bo>\ f-1(Vo) and

f‘1<b1,v1>‘\s.f'1(v1).

 

Egggg: 'We will show that f‘1<vo,ho>‘\s\f‘1(vo) by

induction on k , the number of simplexes of K with

1(b0) n o # e.

If k = 1, then as in the previous lemma 0 is a one

simplex and f-1<Vo,bo> n o a polyhedral one cell with a

free vertex f_1(bo). Thus

f'1<vo,bo)\ f71<vo,bo>-[int(f"1<v0,bo>u 0) U f"1(b0)],

and since k = 1, . .

f-1<Vo,bo>-[int(f_1<Vo,bo> n o) u f-1(bo)] = f‘1(vo).

Now assume that the lemma is true for k and suppose

that there are k+1 simplexes in K with o n f-1(b0) # ¢.

Let fin be a principal simplex of K‘ with fin n f-1(bo) # ¢.

f-1<V0,bo> n fin is a convex linear n-cell with a face

{F71(bo) n fin. We now show that we can collapse f1<Vo,bo>nCn

across f—1(bo) n Cn
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Since fin is a principal simplex of K , lK-CnlflCn = in

so

(f‘1<vo,bo> n lK-Cnl) n (f‘1<vo,bo> n g“) = f'1<vo,bo> n in .

Moreover f-1<Vo,bo> n in is a polyhedral (n-1) cell since

 

f‘1<vo,bo>n&n=[(f‘1<vo,bo>nén)u<f‘1(bo)nc“)1 -<f‘1(bo)ncn)

 

= <f"<vo.bo> n c“)' - <f‘1(bo) n C“) .

the closed complement of a polyhedral (n—l) cell in a poly—

hedral (n-1) sphere.

Thus we may collapse as follows

-1 -1
f (Vo,bo>\\\ f (Vo,bo> n [K - cl

and employ the induction hypothesis to find

f1<Volbo> n lK " Cl\f1)(Vo

The proof that f1<b1IVV1>\\\ f1(V1) is analogous.

Lemma 3.3: If P\\§.O then PXI \\\(PX[O})U(pxI)U(Px[1])

where p e P.

Proof: Let P = Po\\\.Pf\\x °-°\\\.Pi\‘xpi+:\\ ..>\\P£\\p

be a sequence of elementary collapses. That is,

.n

B? 0 P. = Bp-l where B? and BP-1
1 1+1 1 l 1

are polyhedral n and n-1 balls respectively with

Bg—l C DE. Thus B? X I is a polyhedral (n+1) ball and

-1 .

by [51,(32 x I) U (B? x {0}) U (B? x {1}) CI(BE x I)

is a polyhedral n-ball since BE-l x I, B? x [0], and
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B? x [1) are all polyhedral n—balls and (B? x {0}) U (BE-1 X 1»

n—L

and (B? x [1}) 0 (Bi x I)' are polyhedral. (n-l) balls.

Moreover

Pi x I = [(1>i+1 x I) U (B? x {0}) U (B? x {1})] U (B? x I)

and

[(Pi+1 x I) U (B? x {0}) U (B? x {1))] n (B? x I)

= (1312"1 x I) U (B? x [0]) U (B? x {1})

SO

Pi x I\\(Pi+1 x I) U (B? x {0}) U (B? x [1]) for

all i. Then

P x I \\\(P1 x I) U (B0 x [0]) U (Bo x (If)

\wz x I) U [(8. U8.) ><{0}1 UHBO‘ UB1)>< {111

-1 ' k-I
\(pk x I) U U]; Bj x {0}] u [ujd Bj x (1)]

\(pXI) U (Px {01) U (Px {1})

Theorem 3.4: If .f:|K| 22329 (V0,V1> is a strongly
 

pointlike map,then |K|\\\_O.

Proof: If <bO,b1> C int (V0,V1>, then

-1 -1 -1

IKI f <V0vbo> U f <boib1> U f <b1:V1>-

By Lemma 3.1 there is a piecewise linear homeomorphism

-1 ' _ _,

h:f (b) x I 9939> f 1<b0,b1> such that h(f 1(b) x {0})

._ .... 7 -1 -

= f 1(b0) and h(f 1(b) x {1}) = f (b1). By Lemma 3.3

and the hypothesis that f-1(b)\\\.0 we have

f_1(b)XI\\\(f-1(b)x[0])U4pXI)U(f-1(b)x{1}). p e f‘1(b).
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Let

1(b)xr\xtP;\e...?\e.Pk\\t(f‘1<b)x{0})U(px1>U(f'1(b)x[1})

be a sequence of elementary collapses. Then since h is

a piecewise linear homeomorphism ‘

f_1<bo.b1§\\\h(P1)\\\--:\\\h(Pk)\\\f-1(bo)Uh(PXI)Uf-1(b1)

is also a sequence of elementary collapses. Thus

_1

f1<lz>0,b1>\\:=\f"1 (b0) U h(p x I) U f (b1). Since

f-1<Vo,bo>, f_1<bo,b1> and f-1<b1,V1> intersect only on

1 _

f (be) and f 1(b1), we have

_1 -1

K \\\f' <V0,bo> U h(p X I) U f (b1,V1>. Note also

that h(p x I) n f‘1<vo,bo> = h(p x {0}) and

h(p x I) n f;1<b1,V1> - h(p x {1}). From Lemma 3.2 we

have f-1<Vo,bo§\\\f-1<Vo> and by hypothesis _f-1<Vo>\\\0‘

so f-1<Vo,bo>\\\0. -By [5] there is a simplicial subdivision

T of f—1<Vb,bo>- such that T ‘;\\0 and h(p x [0]) is a

vertex of T. (Star from h(p x {0}) if necessary.) Then

we may collapse T simplicially to h(p x {0}). Similarly

f-1<b1,V1> \h(p ><[1}) . Thus

K \f<Vo:bo> U h(p x I) U f<b1IV1>_\h(p x I)\0

and the theorem is proved.

In order to prove a similar theorem in the general case

where the range is collapsible, and not necessarily a one

simplex, we need the following two trivial lemmas.
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Lemma 3.5: Let C 1 and 52 be n-dimensional convex
 

linear cell complexes. Suppose there exists a map

9: C1 2%E%> € 2 such that

(a) g(AnB) = g(A) fl g(B) for all A,B 6 Cl

(b) dim g(A) = dim A for all A e C 1.

onto

 

Then there is a piecewise linear homeomorphism h: I C1| >-

onto

[CZI such that h: A] > |g(A)| for all A661.
 

Proof: The proof will be by induction on k , the

cardinality of C1. If k = 1 the result is clear. (In

this case I51] and [C 2| are single points.) Now sup-

pose that the result is true for k and let C 1 have

cardinality k+1. Let Bn be a convex linear n-cell in

(2’1. Then {31 - Bn is a convex linear cell complex

since Bn is principal in Cl. :2 - g(Bn) is also a

cell complex since by (b) dim g(Bn) = dim Bn = n, and so

g(Bn) is a principal cell in C 2. By the induction hypo—

thesis there is a piecewise linear homeomorphism

 

h: Cl-Bn|29-E2> [CZ-g(BnH sothat if AECl-‘Bn

h:g(A) 2EE2> A.

We will now extend h to int Bn. Note that since C 1

is a cell complex én C |C1 — Bnl and En =U n (C 0 En).

CEQI'B

Thus g[l§n] g( U n (C n Bn))

C€ g 1-B

U n g(C 0 En)

CE Cl-B

U n [gm n g(Bnn
C€Cl-B -

(g(Bn))' .
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Thus h: 6“ 9239s (g(Bn))' and we may extend h "cone-

wise" [5] to a piecewise linear homeomorphism of Bn onto

g(Bn). This is the desired homeomorphism.

> on be a simplicial map.
 

Lemma 3.6: Let f:|K[

If b denotes the barycenter of on and x 6 int (on),

then f_1(x) is piecewise linearly homeomorphic to f-1(b).

Proof: f_1(x) and f-1 (b) can be considered as convex

linear cell complexes, the convex linear cells being given by

f‘1(x) n c and f_1(b) n c for c e K. We will show that

there is a one to one map g from the convex linear cells

of f-1(b) onto those of f-1(x) such that

g(AUB) =9(A) “g(B) and

dim g(A) = dim A.

The desired result will then follow from the previous lemma°

Let 0 e K and suppose that o n f-1(b) # ¢. Since f

is a simplicial map we must have f(0) = on and so

0 n f"1(x) # ¢. In the same way 0 fl f-1(x) # ¢ implies

o n f_1(b) ¢ ¢. Thus if f_1(b) n ok ¢ ¢, f-1(b) n ok = Bk—n

and f-1(x) 0 0k - Ck-n where Bk—n and Ck-n are convex

linear cells of dimension k-n.

Now define the mapping 9 as follows:

g[f-1(b) 0 0k] = f-1(x) 0 0k .

From the above discussion we have

dim g [f-1(b) n ok] = dim [f_1(b) n 0k].

Moreover,
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_1(

guf'lao) n okl) n (f b) n okzn = gtf’Hb) n (ski n 0km

k2)

) n (f-1(x) n o

= f‘1(x) n (ok1 n o

k1
<f‘1(x) n 0 k2)

k2
glf'1(b) n ski] n gtf‘1(b) n o 1.

g is clearly one to one and onto, and so the proof is com-

plete.

We now have immediately

onto
—-——-> ICorollary 3.7: Let f:|K{ L] be a simplicial

 

map. f is strongly pointlike if and only if x e L implies

f_1(x) is collapsible.

Definition 3.1: Let |K| ‘E\\|K1| be an elementary

simplicial collapse, (i.e. .K = K1 U (a * on) and

Klfl(a * on) = a * on), and let K' be the subdivision of

K obtained by starring from b, the barycenter of on. The

simplicial map f:|K'| QE£2> |K1| defined by

f(b) = a and

f(V) = V for all vertices V e K', V # b

will be called the simplicial map associated with the col-

lapse |Ki ‘§\\|K1|.

f; |K| onto

Theorem 3.8: If > |L| is a strongly point—

like map and |L|\\\_O, then [Ki‘\\\0.

Proof: Since |L|\\§.O there is a triangulation L*

of |L| such that |L*| \;\_O. The proof will be by in-

duction on p , the number of simplexes in L*.
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If p = 1 the result is trivial for then L* consists

of a single vertex.

Now suppose that the theorem is true for all p < k

and let L* be a simplicial complex with cardinality k.

By hypothesis IL*| \§§.O so there is a sequence of ele-

mentary simplicial collapses

‘L*‘= lLol S\|L1| S\... b0 where L-)(- 2

_ .n

L1 U (a * on) and L1 n (a * on) a * o . Note that

[Lll ‘ENuO and L1 has cardinality k-2. Let

 

9=|L6I > [Lll be the simplicial map associated with the

simplicial collapse [Lo] ';§\|Iq}. Subdivide -K to K' so

that the map f:|K'| -—-> |L3| is simplicial. We will now

 show that the composition gf:|K'| > [L1| is strongly

pointlike and use the induction hypothesis to conclude that

IKI = IK'|\0-

(i) If x e |L1| - a * 6n: then g-1(x) = x so

f_lg-1(x) = f-1(x) which is collapsible by hypothesis.

(ii) If x e a * 6n, g-1(x) is a line segment in

a * on. Triangulate f-1(g-1(x)) so that f:f-1(g-1(xj)

onto -1(x)'= 01 is a simplicial map. Then since f is

strongly pointlike we may apply Theorem 3.4 to find that

-1 —1

f (g (X))\0.

, onto . . .

Thus gf:|K | -—-—> L1 is strongly pOIntlike and the

conclusion follows from the induction hypothesis.

The following corollary and lemma will aid in the char-

acterization of collapsible complexes.
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Corollary 3.9: If the simplicial maps f and g are

onto

strongly pointlike where f:|K|'————> [LI and <3=l1‘|'(22't'9"> ‘
Pl,

then the composition gf is strongly pointlike.

Proof: Let x 6 (Pl. g (x) is collapsible since g

..
._ .31 —

is strongly pointlike. Moreover f:f 1g (x) 22E2> g 1(x)

_ -1

so by the above theorem f 1g (x)\\\_0 and gf is a

strongly pointlike map.

Lemma 3.10: If {R} ‘;\\]K1| is an elementary sim-

onto>

 

plicial collapse,the associated simplicial map f:[K'[

K1 is strongly pointlike.

Proof: If x e 1K1} - (a * on) , f_1(x) - x. If

x e a * on I f_1(x) is a polyhedral one cell. Thus in any

case f-1(x)\\§.0.

Theorem 3.11: If {Kl ‘;\\|L|, there is a strongly

pointlike
map f:|K*l onto

[Ll where K* is a subdivision

of K.

Proof: Since IK] \;§_|L| there is a sequence of

elementary simplicial collapses from K to L.

IKI=IKol>s|K11>sm aslxplasm-

Let fi:lKil onto IK.1+1] be the simplicial map as"

sociated with the elementary simplicial collapse

|Ki| ”;$\|K1+1|. fp:|K;| 22£2> [L] is a strongly point~

like map by Lemma 3.10- Now subdivide K;_1 to K;_1 so

that the map f : {K2_1{ O—M-Qp-1 > IK;| is simplicial.
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Continue in this manner to arrive at the sequence of strongly

pointlike maps

 

 

f _
IK‘X-i = IKE+1I £L> 1K? __]'_> 1K5?) 1| >. 000

f f

> [K Iii). |K2 |_.P;]:.> [Kl‘ _.E_.> IL|°

p-2 p-l

By Corollary 3.9 f = fpfp-1-'°' flfo is a strongly point~

like map.

We are now able to state as a corollary the converse

to Theorem 3.4.

Corollary 3.12: If |K[\\\O, then there exists a

onto>

 

1
strongly pointlike map f:|K*‘ o where K* is a

subdivision of K.

2322;; Just note that if K is collapsible to a

point the second last collapse takes K to a one-simplex.

Remark: In view of Theorem 3.4 and Corollary 3.12 we

have characterized collapsible polyhedra as those having a

strongly pointlike map onto a one-simplex.



SECTION IV

FURTHER RESULTS CONCERNING COLLAPSIBLE COMPLEXES

In this section we will use the results of section III

to obtain necessary and sufficient conditions for a complex

to be collapsible. Further, we will drive some properties

of a collapsible complex embedded in a combinatorial manifold.

The following two lemmas, along with the characteriza—

tion of collapsible complexes of the previous section, will

lead quickly to necessary and sufficient conditions that a

complex be collapsible.

onto
 Lemma 4.1: If f:|K| > (V0,V1> is a simplicial

map and b is the barycenter of (V0,V1>, then there is a

subdivision K' of K such that

(i) K' is a first derived complex of K,

onto
(ii) f:|K'| -———e (V0,b> U <b,V1> is a simplicial map,

and (iii) if o e K'|f‘1(b), then f(stK.(o))=<vo,b> U (b,v1>.

Proof: We will star the simplexes of K in the order

of decreasing dimension, ol,oz,...,os. If f:oi -—> Vj for

j - 0,1, we will star oi from bi’ the barycenter of oi.

If f:oi 2£E2> (V0,V1>, we will star Oi from a point

b1 6 f_1(b) n int oi. Such a process yields a first derived

complex of K. Call this K'.

By [2] o e K' if an only if c is of the form

0 = <bi0’ bi1'°°°’bin> where bik is the pOInt from

which 0. is starred and o. > o. > ... > o. .

20
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We first show that f:{K'| -—> (Vo,b> U <b,V1> is a

sim licial ma . If f o. = V., ' = 0,1, th I f . = .p p ( lo) 3 3 en (01k) V3

for k = 0,1,...,n, and f(bi ) = Vj for all k. Thus

k

f o = V..< > 3

If f(oio) = (vo,v1>, then either f(oi ) = (vo,v1>

. k- .

for all k = 0,1,...,n, or there is a least integer N < n

such that f(oi ) = vj for a fixed j = 0,1 and all

k

k > N.

In the first case f(bi ) 3 b for all k so f(0) = b.

k

In the second case f(oi ) = (V0,V1> for all k j_N,

k .

and f(o. ) = v. for k > N. Then f(b. ) = v. for all

1k 3 1k 3

k > N, and f(bi ) = b for all k i.N. Thus f(0) = <b,Vj>.

k .

In any case f maps simplexes onto simplexes and f is a

simplicial map.

We now verify conclusion (iii). If f(0) = b, then

G = <bi , '°"bi >, bi e oi and Oi > oi >...> oi .

n k k 0 1 n

By definition f(oi ) = (V0,V1> for all k. In particular

k

f(oi ) = (V0,V1>, so Oi has vertices uo and ul with

n

f(uo) = V0, f(ul) V1. Then by [2] the sequences

0. > o > ... > o. > uo and

determine simplexes Co and C1 of K',

. ' 000’ b0 IuO> and

11 1n

C1 <b' Ib- I 0001 b- ,u1>.

10 1.1 1n
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Note that f(Co) = (Vo,b> and f(Cl) = <b,V1>. Then, since

0 < Co and o < C1, we have that Co U :1 C stK,(o) and

f(stK,(o)) = (v0,b> U <b,V1>.

Lemma 4.2: If f:{K| 9339+ <v0,v1> is a simplicial

map and b is the barycenter of (V0,V1>, then f-1(b) =

le.(f-1(Vo)) where K' is the first derived subdivision

of K described in Lemma 4.1.

Proof: If 0 e K'|f-1(b), then f(o) - b so

0 fl f-1(V0) - ¢. By conclusion (iii) of Lemma 4.1

f(§t(o}) : (V0,b> U <b,V1>. Thus 0 < C where f(C) =

1

(Vo))°

oh the other hand, if c e K'|le.(f‘1(vo)), then

(V0,b> so C n f-1(Vo) # ¢ , and o e K']le.(f"

0 fl f-1(Vo) = ¢ and o < C e K' where fl 0 f"1(V0) # ¢.

Since C n f_1(V¢) # ¢, f(C) = <Vo,b> and f(o) C <V©,b>.

Moreover, o n f-1(Vo) = ¢ so f(o) 0 (V0) = ¢ and

f(0) = b. Thus 0 e f-1(b).

Remark: Clearly it follows in the same way that

f‘1(b) = 1k f‘1(v1)).
K'(

Theorem 4.3: Let |K|\\s0. Then there is a simplicial
 

subdivision K* of |K| and subcomplexes A,B of K* with

'(i) A,B full in K*, A # ¢, B # ¢,

(ii) A n B = ¢, '

(iii) A U B :>(K*)0 (the zero skeleton of K*),

(iv) |A|\O, |B|\O, and

(v) 1kK.(A) = le.(B)\\§.O where K' is the first

derived subdivision of K*.



23

Egggf: Since [K|\\e.0 we may employ Corollary 3.12

to find a simplicial subdivision K* of [KI and a strongly

pointlike map f:|K*| 92£9> (VO,V1>.

Let A = f-1(Vo), B = f_1(V1). Since f is a simplicial

map, we note A and B are full in K? and since f is

onto, A # ¢, B # ¢. Conclusions (ii) and (iii) are immedi-

ate, and (iv) follows from the fact that f is strongly

pointlike. Finally, by Lemma 4.2,

le, (A) = le, (B) = f‘1(b)\o.

Thus conclusion (v) follows.

We will now prove a type of converse to Theorem 4.3.

Theorem 4.4: Let K be a simplicial complex and A,B~
 

subcomplexes of K with

(i) A,B full in K,

(ii) A 0 B = ¢,

(iii) A U B :)K0, (the zero skeleton of K),

(iv) |A|\O, |B|\O, and

(V) le,(A)\\§ 0 where K' is a first derived sub~

division of K.

Then |K| \0.

22£2> (V0,V1> be the simplicialm: Let f: |K|

map defined by f(A) = V0, f(B) = V1. Since A and B

are full in K, f_1(Vo) = |A| and f-1(V1) = [B[. Thus,

by hypothesis, f-1(Vo)\\§.0 and f_1(V1)\\§_0.

By Lemma 4.2 f_1(b) = le,(A) so f-1(b)‘\ns0,

and f is a strongly pointlike map. Then by Theorem 3.4

|K|\0.
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Remark: Clearly, by symmetry, condition (iii) above

can be replaced by le,(B)\\§~0.

The next application of the results of Section III in-

volves collapsible polyhedra embedded in a combinatorial

manifold.

Theorem 4.5: Let [Kl be a polyhedral n-complex in

[m|, a combinatorial m-manifold. If [x] is collapsible,

there exist two polyhedral m-cells N0 and N1 in [MI

such that

(i) if x e |K| we can choose N0 and N1 so

that x e int N0,

(ii) N0 U N1 3 |K|,

(iii) No n [KI # ¢, N1 n [K[ # ¢,

(iv) No n |K|\o, $11 n |K|\O,

(v) N0 n |K|\0, N1 n |K[\0, and

(vi) dim (hi n |K|)_<_n-1, i = 0,1.

Proof: We will Suppose that K is a subcomplex of M.

If not, there exist subdivisions .K1 and M1 of K and M

respectively such that K1 C M1. Further, since )K1[\\§{0

there exists a subdivision .K2 of K1 such that [Kzl ‘;r\ 0.

Extend the subdivision K2 of K1 to a subdivision M2 of

M1. Moreover, if x e )K2|, we will assume that x is a

vertex of K2. If not, we simply star .Mz from x and

call the resulting triangulations M3 and K3. Note that

since we arrived at »K3 by starring K2 and [K2] \;§~0I

|K3| \§§.0, see [5]. In addition we will suppose that K3
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is full in M3. If not, we have only to let M3' denote

the first derived subdivision of M3 and K3' the cor-

responding subdivision of K3. Then |K3'| \§§‘0 since

it was obtained from K3 by starring. In order to save

notation we will call K3', K and M3', M. In summation we

now have

) KCM,

b) x is a vertex of K,

) 'K is full in M, and

d) [K] \s\0°

Since |K| \;§~0, there exists a strongly pointlike

map f:|K) 22£2> (V0,V1>. Since x is a vertex of K,

either, f(x) = V0 or f(x) = V1. Assume that f(x) = V0.

Star (V0,V1> from its barycenter, b, and subdivide K to

Kf' SO that

f: Kf' 22E2§ <V°,b> U <b,V1>

is a simplicial map, and Kf' is a first derived complex

of K (see Lemma 4.1). Extend .Kf' to a first derived

subdivision of M, say M'.

_ 1 .

Now consider the first derived neighborhood of f (Vi),

-1 I ' Z -1 . ' =N<f (vi).M) stM.(f (Vin , 1 0.1.

By [5] these neighborhoods are regular neighborhoods, (i.e.

—1 " . _ . "1 l

N(f (vi),M ) is an m manifold such that N(f (Vi),M )\\§

f'1(vi)), since f‘1(vi) is full in M (f‘1(vi) full in K,

K full in ‘M) and M' is a first derived subdivision of M.
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Thus since f_1(Vi) \;\.O, N(f-1(Vi),M') is an m—ball,

and N(f-1(Vi),M') = lkM,(f-1(Vi)) is an m-l sphere for

i = 0,1, (see [5]). Let Ni denote N(f-1(Vi),M').

We next note that

hi 0 [Kl = f'1(b) , i - 0,1° (1)

We will prove this for i = 0. (The proof for i = 1 is

analogous.)

First suppose that y 6 N0 0 [K[. Then y 6 int 0

where o e K ' and o e No. Since 0 e N0, 0 fl f_1(vo) a 0.
f

Thus we must have one of the following three possibilities,

f(o) b, f(0) = V1, or f(o) = <b,V1>. Suppose that

f(0) = V1, or f(0) = (b1,V1>, and o < C. Then since f

is a simplicial map, f(C) 3 V1 or f(C) = <b,V1>. In

either case C n f-1

o ¢ lkM,(f'

we must have f(0) = b so f(y) = b and y e f-1(b).

(V0) = 0 so C ¢ stM,(f_1(Vo)) and

1(Vo)). That is, 0 C No, a contradiction. Thus

On the other hand, if y e f-1(b) then y e 0 e Kf'

and f(o) = b. Since f(0) = b,‘ o n f-1(Vo) = ¢. But

0 C C e K where f(C) = (V0,V1> so 0 is the face of some

0' e Kf' Where f(o') = (Vo,b>. Thus f-1(VO) fl 0' # ¢. and

o c lkM.(f‘1(vo)).

Finally we will show that N0 0 |K| = f-1(<Vo,b>) and

N1 0 [Kl = f‘1(<b.v1>). (2)

Let y e No 0 |K[. Then y e No implies y 6 int 0, o e K;

where o n f-1(Vo) # ¢. Thus f(0) = (V0) or f(o) - (V0,b>.

In either case y e o C f-1(<Vo,b>). On the other hand, if

y e f_1(<Vo,b>),then y e 0 e Kf' and either f(0) = (V0),

f(0) = (Vo,b> , or f(o) - b. In the
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first two cases 0 n f”1 (V0) # ¢. Thus 0 C stM,(f-1(Vo))

and o C No. If f(0) = b, o C f-1(b) and, by (1),

o C No. The proof that N1 0 [K[ = f-1<b,V1> is analogous.

We are now in a position to verify that conclusions

(i) through (vi) follow.

(i) follows immediately from the construction since

x e f-1(Vo) C int N0.

(ii) follows since [K[ c f‘1(<v0,b>) U f‘1(<b,v1>)

-N0 UNl.

 

(iii) follows since f:[K[ > (V0,V1> was onto.

_ . _1

(iv) follows from (1) above. That is, Ni 0 [K[ = f (b),

-1

and f (b) is collapsible since f is strongly

pointlike.

“1
(v) follows from (2). That is, No 0 [K[ = f (<V0,b>)

and N1 0 [K[ = f-1(<b,V1>), and the fact that f

is strongly pointlike.

(vi) follows from the fact that f is a simplicial

. . -1 __
map f: [K [ onto <V0 ' V1) 0 Thus lf (111“ f (b)

dim K, some on e K would be mapped to b in cone

tradiction to the fact that f is a simplicial

map with range (V0,V1>.



SECTION V

CONTRACTIBLE COMPLEXES WHOSE PRODUCT WITH

THE UNIT INTERVAL IS COLLAPSIBLE

The dunce hat D is obtained from the 2-simplex

<a,b,c> by identifying all three sides <a,b> = <a,c> =

<b,c>. D is of interest since it is one of the simplest

contractible polyhedra which is not collapsible (there is

no free face from which to start the collapsing). How-

ever, it is well known, see [4], that D x I‘\§\0. This

fact leads to the following conjecture.

Conjecture 1: If K is a contractible 2-complex,

then K x I \0.

This conjecture is of particular interest since it

implies the three dimensional Poincare' Conjecture [4].

Definition 5.1: Let M be a compact polyhedral mani—

fold with boundary. Define a spine K of M to be a sub~

polyhedron 'such that M\K.

By [4] we may assume that if K is a spine of M,

then

(i) K c int M, and

(ii) dim K < dim M.

The proof that Conjecture 1 implies the Poincare'

Conjecture depends upon the following proposition (see,

for example, [4]).

PrOposition 5.1: Let M3 be a 3-manifold with a 2-

sphere boundary and spine K2.28Then if K2 x I‘\§[0, M3
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is a 3-ball.

In this section we will apply the results of Section III

to find a class of complexes K with the property that

[K x I[\\§[O.

Lemma 5.2: Let K be a complex with a subcomplex L.

Then Kx1[\[(Kx {0}) U (L XI)[.

Proof: Order the simplexes C with int C CZ[K[ _ [L[

in the order of decreasing dimension, Q1,C2,...,CS. First,

[K x I|\[K x {0}[ U[([K[-int C1) x I]

by collapsing the polyhedral ball C1 X I across its free

face Q1 x [1].

In general,

j-l' -.

[K x{0}[U[ ([K[-'U int Ci)XI] \ [Kx{0}[ U

1-1

“[K[-,6 int Ci) x I]
i=1

by collapsing Cj X I across Cj X [1). NOte that

Cj X {1} is a free face of Cj X I 'since if Cj X [1]

Ck

Cj < Ck. Since the simplexes were ordered in the order of

decreasing dimension, k < j, so

X I, for j # k, then Cj X [1] < Ck X [1] and so

j-l '

Ck x {1} ct [K x {0}[ U [([K[-U int Ci) x I].

i=1

Thus

S

[K><I[\[Kx{0}[U[ ([K[-1511 int §i)XI]=[KX[0}[U[LXI[ .
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Theorem 5.3: Let K be a complex with a subcomplex L

such that

m [L[\o.

(ii) [L[ separates [K[, [K[ - [L[ = A U B, and

(iii) A U [L[\\\ 0, B U [L[\\s,0.

then [K x I[\\s 0.

uggggf; On applying the previous lemma twice we see

that

[K x I[ = ((A U [L[) x I) U ((B U [L[) x I)

\\§(A x'{0}) U ([L[ x I) U ((B U [L[) x I)

\(A x {0}) U ([L[ x I) U (B x {1}) =M.

Now triangulate M by starring the convex linear cells

of L X I, C X I, from vertices of (A U [L[) X [0) and

(B U [L[) x {1}.

Note that

(i) (A U [L[) x {0} is full in M,

(ii) (B U [L[) x {1} is full in M, and

(iii) [(A U [L[)X:{0)] U [(B U [L[) x {1}] 3.M0, the

‘zero skeleton of M.

Now define a simplicial map f: M.——> (V0,V1>

by f((A U [L[) x {0}) v0,

f((B U [L[) x {1}) V1,

and linearly on [L[ X I.

Note that since (A U [L[) X [0} and (B U [L[) X [1]

are full in M,

f‘1(v0) = (A U [L[) x {0}, and
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f"1(v1) - (B U [L[)X {1}.

Then since by hypothesis A U [L[\\§,0 and B U [L[\\§_O,

we have f_1(Vo)\0 and f-1(V1)\0. Moreover, since

f([L[ X [0]) = V0 and f([L[ X {1}) = V1, and f is de—

fined linearly on [L[ X I, we have

far;- V0 +%V1) = [L[ x [it-L

Since [L[ X {%J is piecewise linearly homeomorphic to

[L[, f-1(%' V0 +%V1)\ 0.

Thus f is a strongly pointlike map, and so M‘\Q\0°

Therefore, .K X I\M\0.

Example 1: In Figure 3 we picture a 2—dimensional

polyhedron, K, (the house with two rooms), due to R. H. Bing.

  
 

  

Figure 3.
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Although K is not collapsible, since it has no free

faces, an application of Theorem 5.3 will show that

K X I \\\0. Pass a plane P through K so that P con-

tains therectangular disks D1 and D2 of Figure 3. This

plane separates K into two components A and B. Figure 4

pictures A U (P‘fl K). B U (P n K) is similar.

 

 
 

   

Figure 4.

Clearly L = P nK\0, (A U L\0, and B U L\0.

Thus, by Theorem 5.3, K XII\\\().

Example 2: Let (V0,V1,V2> be a 2-simplex and let

V1' and V2' be two interior points of (V0,V1,V2> not

'co-linear with V0. Let Ki’ i - 1,2, indicate two c0pies

ofi-the Space obtained by identifying the interVals

<VOIV1> = (V0,V1'>, (V0,V2> = <V0:V2'>: and let Li
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denote the image of (V1,V2> in Ki° The polyhedron Ki

is pictured in Figure 5.

V0

 

 

Figure 5.

Let K = K1 U K2 where the union identifies corre-

sponding points of L1 and L2.

Note that although .K is not collapsible, L1‘\§.0

and L1 separates K. If we let .K - L1 = A U B, then

A U L1 = K1\0 and B U L1 = K2\0. Thus, by Theorem

5.3, K x I\0.

Using the usual terminology we will call a counter-

example to the 3-dimensional Poincare' Conjecture a fake

3-sphere (if such exists). If we triangulate this fake

Sphere and remove the interior of a 3-simp1ex,the result-

ing manifold with boundary will be called a fake 3-ball.

Note that a fake 3-ball has a 2—sphere boundary. We may

now prove the following theorem.

Theorem 5.4: If K is a spine of a fake 3-ball, and
 

T a tree in K which separates K into components 51

and 82, then either 81 U T or 52 U T is not collapsible.
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2522:: Let M3 be a fake 3-ball with K as a spine.

We may assume that T is a subcomplex in a triangulation

of K. If 51 U T and 82 U T are collapsible we may

apply Theorem 5.3 to find that K XII‘\m\0. Then by Propo-

sition 5.1 M3 is a 3-ball.

In the remainder of this section we will consider an

'additional method of collapsing K X I where K is a

contractible polyhedron.

Theorem 5.5: If K1\\§_0 and K1\\§[K by an elemen-

tary collapse, then K X I\\§~0.

2522:; Let

K1 = K U Bn, and

Bn n K - Bn c B

where Bn and B 1 are polyhedral n and n—1 balls

reSpectively.

By Lemma 5.2

K x I\(K x {0}) U (Bn'

But (K X [0]) U (En—1 X I) is piecewise linearly homeo—

1

X I).

morphic to K1. Let h denote the natural piecewise linear

 homeomorphism h:K X [0} > K. Then h is defined on

-1 .. -1 . -1 .

the n-1 cell Bn X [0] C (Bn X I) onto Bn CZBn.

Thus by [5] h can be extended to a piecewise linear

homeomorphism

onto

 

—-1

g:(K x {0}) U (Bn _x I) K U Bn 2 K1.

-1

Thus, since K1\0, (K x {0}) U (Bn x I)\0, and we

have
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K x I\(Kx {0}) U (En-1 x I)\0.

Example 3: Consider the dunce hat D. It is well
 

known that D X I‘\§.0, [4]. However, the following ap—

plication of Theorem 5.5 seems to be a somewhat easier way

to prove that D X I\\\().

In Figure 6 we picture a two simplex, two of whose

sides have been identified. The identification of a gen-

erator of the cone with its base, as indicated by the num—

bering of vertices in Figure 6, yields the dunce hat.

  
Figure 6.

Now expand D to the complex K indicated in

Figure 7. K is simply D U B3 where B3 is the tetra-

hedron with vertices v0,v1,v3,v4. Note that K\D

since we may collapse B3 across the 2-simplex (V1,V3,V4>.

Moreover K\\§.O as is indicated in Figure 8. The first
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collapse pictured in Figure 8 is the collapse of B3 across

the 2-simplex (V0,V1,V3>. In the second we collapse the

2-cell (V0,V1,V4> U (VO,V3,V4> across the 1-cell (V0,V3>.

The third collapse collapses the 2-cell with vertices «

V0,V2,V4,V1 across the one cell (V0,V2>. Finally we cole

lapse the 2-cell with vertices V¥,V2,V4,V3 across the

one cell (V4,V2> U (V2,V1>. The resultant complex pic~

tured in Figure 8 is‘a disk which is clearly collapsible.

Thus by Theorem 5.5 D X I \nto.

Corollary 5.6: If K\0 and K\L, then there

exists an integer p such that L X Ip\\\u0.

Proof: Let K\K1 \K2\... \Kp = L be a

sequence of elementary collapses. The proof will be by

induction on p.
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If p = 1 this is just Theorem 5.5.

p—l

Now su ose K K and K X I 0.

pp p-1\\‘ .p p-1 ‘\\‘

Let K = K U B and

P“1 P

-1 . -1

Kp fl Bn = Bn C Bn where Bn and Bn are

polyhedral balls. Then since

_1 _ _.

Kp_1 x Ip = (Kp x Ip 1) U (Bn x Ip 1) and

-1 _1 m1 .
n X Ip C(Bn x Ip )

-1 —1

(Kp x Ip ) n (Bn x Ip ) = B

we have

p—l p—l

Kp_1 X I ‘\‘\Kp X I by an elementary collapse.

Now apply Theorem 5.5 and we find that Kp X Ip\\m\0.

Corollary 5.7: If K is a homotopically trivial poly~

hedron, then there is an integer p such that K X Ip‘\\\0.

Proof: By [3] K is of the same simple homotopy type

as a point. Thus there exists a complex L such that

L \nsO and L\\apK. [We may now apply Corollary 5.6 to get

the desired result.
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