1966 LLBRARY Michigan State University THdblS v ../. / /. ../ / d / ,x. / A. / / x. ,_ / ... ABSTRACT A STUDY OF CORIOLIS RESONANCE IN POLYATOMIC MOLECULES WITH SYMMETRY C3V by Roger L. Dilling A theoretical analysis of Coriolis interaction be— tween a parallel vibration-rotation band and a perpendicular vibration—rotation band in polyatomic molecules with symme— try C3V is given° Since the results are to be applied to molecules of the general type XYBZ, the study is restricted to cases in which antisymmetric nondegenerate Vibrations are excluded. Computer techniques are used to explore the effects of varying the molecular parameters. The character and magnitude of the energy shifts are given for several physi— cally interesting caseso As an application of this study, a perturbation in the v3 + VA band of CH3F is investigated. It is assumed that the perturbation results from Coriolis interaction between the perpendicular band v3 + v“ and a nearby parallel band. The parallel band is taken to be Vl + v3 so that the general accidental resonance case p = 2, pt = l of the Tarrago—Amat classification is being considered. Since the general features of the experimental data are reproduced by i \. K \; ‘. \ K . i \ \ X ‘h 2 t EX \. \ a | 3‘ "K y'x. \ __ - \\ '\ \ ‘\ _‘ \ ‘ _ _ - Roger L. Dilling the theoretical curves, it is possible to conclude that the perturbations in v3 + vu do indeed result from interactions which include Coriolis interaction. A STUDY OF CORIOLIS RESONANCE IN POLYATOMIC MOLECULES WITH SYMMETRY C3V By Roger Lfifibilling A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics and Astronomy 1966 To my wife ACKNOWLEDGMENTS It is a privilege to acknowledge the help of Dr. Paul M. Parker throughout the course of this work. His encouragement and direction were greatly appreciated. My special thanks are extended to Professor T. Harvey Edwards for many discussions regarding the appli- cation of the results to experimental data. I wish to thank Professor Gilbert Amat, Faculté des Sciences de Paris, for several consultations related to this project. For many valuable services, I wish to thank the staff of the Computer Laboratory at Michigan State University. I wish to express my gratitude to the National Science Foundation for their financial support in the form of Co- operative Graduate Fellowships throughout my entire graduate program. It is a pleasure to express my indebtedness to Dr. Charles S. Morris, Professor Emeritus of Physics, Manchester College, North Manchester, Indiana, for his significant role in the development of my interest in physics. Finally, but foremost, I thank my wife, Carole, for her inspiration and understanding during my graduate studies and research. TABLE OF CONTENTS Page ACKNOWLEDGMENTS . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . vi LIST OF APPENDICES . . . . . . . . . . . ix Chapter I. INTRODUCTION . . . . . . . . . . 1 II. THE VIBRATION-ROTATION HAMILTONIAN . . . A ‘III. ACCIDENTAL RESONANCES IN THE SPECTRA OF POLYATOMIC MOLECULES WITH SYMMETRY C3v . 19 IV. CORIOLIS RESONANCE . . . . . . . . 36 V. RESULTS AND DISCUSSION OF COMPUTER ANALYSIS . . . . . . . . . 56 VI. ANALYSIS OF A PERTURBATION IN THE v3 + VA BAND OF CH3F. . . . . . . . 87 VII. CONCLUSION . . . . . . . . . . . 113 REFERENCES. . . . . . . . . . . 115 APPENDICES. . . . . . . . . . . . . . 117 LIST OF TABLES Table Page 2.1 Matrix Elements of the Fundamental Operators . 15 3.1 Perturbation Coupling Case a. p a 3, pt = 1 . 23 3.2 Perturbation Coupling Case b. p a 2, pt = 1 . 2A 3. Perturbation Coupling Case 0. p 2, pt = 2 . 2A 3.A Perturbation Coupling Case d. p 2, pt = O . 25 3.5 Terms in the Hamiltonian. . . . . . . 27 3.6 Types of Accidental Resonance Coupling . . . 28 3.7 Possible Accidental Resonance Cases from r3P . 32 6.1 Two—parameter Fits of Analysis II. . . . . 101 6.2 Summary Table of Molecular Parameters for CH3F 103 LIST OF FIGURES Figure 4.1 Energy Matrix for J = 2 . . . . . . . 4.2 Energy Matrix for J = 2 in Block Diagonal Form. . . . . . . . . . . . 4.3 Summary Matrix for the Submatrices . . . 5.1 Typical Unperturbed Perpendicular Band of a Molecule with Symmetry C3v' . . . 5.2 Energy Level Diagram for Coriolis Resonance in the Kth Positive Subband . . . . 5.3 Energy Level Diagram for Coriolis Resonance in the Kth Negative Subband . . . . . 5.4 Energy Shifts due to Coriolis Resonance, Cross— —over Case, AaB = O . . . . . . 5.5 Variation of Energy Shifts with Cy, AaB = 0.. . . . . . . 5.6 Variation of Energy Shifts with gy, AaB = .075 . . . . . . 5.7 Variation of Energy Shifts with AaB, C = l o a o n o o o u 0 o o q 5.8 Energy Shifts for "Quasi—vibrational” Perturbation . . . . . . . . . . 5.9 Comparison of Energy Shifts in RQ0 for Ad = O and AaB = .075 . . . . . . 5.10 Comparison of Energy Shifts in RQl for Ad = o and AdB = .075 . . . . . 5.11 Comparison of Energy Shifts in RQ2 for Au = o and AaB = .075 . . . . . Vi Page 44 46 54. 59 61 63 66 68 7O 72 75 77 78 79 Figure Page 5.12 Comparison of Energy Shifts in RQ3 for Ad = 0 and AdB = .075 . . . . . 80 5.13 Comparison of Energy Shifts in HQ“ for Ad = 0 and AaB = .075 . . . . . . 81 5.14 Comparison of Energy Shifts in RQ5 for Ad = 0 and A08 = .075 . . . . . . . 82 5.15 Comparison of Energy Shifts in RQ6 for Au = 0 and AaB = .075 . . . . . . . 83 5.16 Comparison of Energy Shifts in RQ7 for Ad = 0 and AaB = .075 . . . . . . . 84 5.17 Comparison of Energy Shifts in RQ8 for Ad = 0 and AaB = .075 . . . . . . . 85 5.18 Comparison of Energy Shifts in RQ9 for Au = 0 and AaB = .075 . . . . . . 86 6.1 Experimental Energy Shifts in the RQl Branch as Determined by Blass . . . . 89 6.2 Experimental Energy Shifts in the RQO Branch as Determined by Blass . . . . 93 6.3 Energy Shifts for RQl and PQl Branches, Analysis I. . . . . . . . . . . 95 6.4 Energy Shifts for RQO Branch, Analysis I . 96 6.5 Energy Shifts for RQl and PQl Branches, Analysis II . . . . . . . . . . 98 6.6 Energy Shifts for R00 Branch, Analysis II . 99 6.7 Energy Shifts for R00 Branch, Analysis III. 100 R 6.8 Energy Shifts for Q1 and PQl Branches, Analysis III . . . . . . . . . . 102 6.9 Energy Shifts for RQ2 and PQ2 Branches, Analysis I. . . . . . . . . . . 105 6.10 Energy Shifts for R03 and P03 Branches, Analysis I. . . . . . . . . . . 106 Figure 6.11 6.12 Energy Shifts Analysis I. Energy Shifts Analysis I. Energy Shifts Analysis I. Energy Shifts Analysis I. Energy Shifts Analysis I. Energy Shifts Analysis I. for for for for for R Q5 RQ7 and P RQ8 and P R P Q9 and viii RQu and P and P RQ6 and P Page Branches, . . . . . 107 Branches, O O O C O 108 Branches, . . . . . 109 Branches, O O U 0 D 110 Branches, . . . . . 111 Branches, . . . . . 112 LIST OF APPENDICES Appendix Page I. Computer Program . . . . . . . . . 117 II. Printout of Analysis I . . . . . . . 123 ix CHAPTER I INTRODUCTION Analysis of complicated physical systems requires that both an experimental and a theoretical study be made. Many times these studies complement each other. Experi— mental results may suggest physical models in terms of which detailed calculations can be made. Conversely, the theoretical results may suggest additional predictions which can be checked experimentally. Physical systems on the atomic level must be treated from the quantum mechanical point of View. Small molecules provide an excellent example for the testing of the quantum mechanical formulation. They are sufficiently simple so as to allow for an explicit treat- ment of their motions, yet are complicated to a degree that makes the problem interesting from a theoretical View point. Historically, the analysis and interpretation of the infrared spectra of polyatomic molecules followed that of diatomic molecules. For the diatomic molecule the infrared spectrum suggests that in many cases, at least to a first approximation, a very simple molecular model can be chosen. As a consequence of the simplicity of the model, exact expressions are obtained for the energy eigenvalues. To lowest order, the Hamiltonian of a diatomic molecule is the sum of the simple one-dimensional harmonic oscillator Hamiltonian and the rigid rotator Hamiltonian. For a poly— atomic molecule the corresponding Hamiltonian is the sum of the Hamiltonian of a set of uncoupled harmonic oscillators and the rigid rotator Hamiltonian. In the expansion of a more accurate molecular model, it is desirable that the lowest~order terms be, in fact, the Hamiltonian mentioned above, thus giving consistency with the gross features of the experimentally observed data. As experimental methods are refined, it is necessary to consider higher~order expressions for the energies. More— over, as more experiments are carried out, it becomes neces- sary to consider in detail many of the special cases of the general theory since these are likely to occur repeatedly as more molecules are studied. When deviations from the lowest- order expressions occur, it is possible in an ad hog manner to add higher-order expressions to obtain results more con— sistent with experiment. However, it is necessary to justify these added terms by showing that they result from terms of higher order in the expansion of the Hamiltonian of the mo- lecular model. As a result, it is necessary to include any other terms which occupy positions of equal importance in the expansion as those which are used to obtain a better fit to the experimental data. The treatment of problems in molecular infrared spec— troscopy is carried out to best advantage if the problems are formulated for a general polyatomic molecule rather than ¥ for individual molecules, each considered as a special case. Such an approach was first given, to the second order of approximation, by Nielsen (l, 2). In the next chapter we give a brief review of his formulation. CHAPTER II THE VIBRATION—ROTATION HAMILTONIAN A molecule containing N nuclei and n electrons has 3(N+n) degrees of freedom, if the intrinsic spins are neg- lected. To reduce the complexity of the problem several approximations, which have been found to be valid to a high degree of accuracy, must be made. With the exception of certain cases, the electronic motion of the molecule can be considered as uncoupled from the motions associated with the other degrees of freedom. The validity of this approxi- mation was established by Born and Oppenheimer (3). They 1/4 used a power series expansion in (m/M) of the terms in- volving the coordinates of both the nuclei and the electrons, where m and M are the mass of the electron and the average nuclear mass, respectively. Thus in a calculation of the vibration—rotation energy levels of a polyatomic molecule one need consider only the 3N degrees of freedom of the N nuclei. These 3N coordinates are the three coordinates of each of the N nuclei in an inertial coordinate system. For an isolated system it is always possible to separate out three degrees of freedom corresponding to the three Cartesian coordinates of the center—of—mass of the system. These are the translational degrees of freedom. They are not of immediate spectroscopic interest. Hence, exclusive of translation, we must consider 3N—3 degrees of freedom for the molecule. In general, it is not possible to separate these 3N—3 degrees of freedom into rotational and vibrational parts because there are interactions between vibration and rotation. However, it is found experimentally, at least to a first approximation, that a molecule may be considered to be acting simultaneously as a rigid rotator and as a set of uncoupled harmonic oscillators. In this approximation the 3N—3 degrees of freedom can be separated into three rotational degrees of freedom and 3N—6 vibrational degrees of freedom. For a linear molecule there is a separation into two ro— tational degrees of freedom and 3N—5 vibrational degrees of freedom since in this case two angles completely describe the orientation of the system. Consider first the rotation. It has been found to be convenient to choose a coordinate system which takes ad- vantage of the fact that the molecule is, at least to some approximation, a semi—rigid body rotating in space. Since the molecule is not a completely rigid body, it is not possible to have a "body—fixed" coordinate system. Instead, the moving coordinate system is attached to the equilibrium configuration of the molecule. The non—linear molecule as a rigid body requires three angular coordinates to completely describe its orientation; the Euler angles may be used for this description. Another choice would be the rotations about the three coordinate axes of the Cartesian coordinate system attached to the rigid molecule. In this latter description the conjugate momentum components are the total angular momentum components along the x, y, and z axes of P the molecule—fixed coordinate system, P and Pz’ re- X, y) spectively. These are denoted collectively as Pa‘ The angular momentum P and the angular velocity g are not, in general, in the same direction: 2: H =‘fl. I is the inertia tensor of the rigid body, and the mole- cule—fixed axes x, y, and z are, for convenience, chosen such that they are the principal directions of ; evaluated at equilibrium. Next, let us consider the vibration. The molecule considered as a set of uncoupled harmonic oscillators re— quires 3N—6 vibrational degrees of freedom. The 3N Cartesian components of the N nuclei cannot be used as coordinates since they are not independent of each other. By taking into consideration the six non-vibrational degrees of freedom, a transformation is made from the 3N mass—adjusted Cartesian components of the displacements from the equilibrium positions of the N nuclei, Ali/mi, to the 3N—6 normal coordinates of the problem, QSO: a —1 - §=x y z<£iso> (/MiAai) 3 3 or /MiAOti = 2 .9, SC The 13h nucleus has displacement Adi in the a direction. The normal coordinates are labeled with two subscripts; s 181/2/2nc, denotes the sth normal mode having frequency “5 = and o enumerates the degree of degeneracy of mode 3. If mode s is nondegenerate, 0 = 1 only, and consequently a is omitted. If mode 5 is doubly degenerate, o = 1 and 2. If mode s is triply degenerate, o = l, 2, and 3. The momentum conjugate to the normal coordinate Qso is the linear momentum p*, 80' 3 p * = -ih so BQSO Associated with the Vibrational motion is an internal angular momentum p. The components of p are given by 0L p=ZE C I'vav*a a 805,0, sos 0 so s 0 (I where CSOS'O' is the Coriolis coupling constant connecting Vibrations so and s'o' with rotations about the a—axis of the molecule-fixed coordinate system. These constants are defined as a N B Y Y B Csos'o' = §=l(£iso£is'o' _ £isogis'o')’ With a, B, and y taking one of the three cyclic permutations of x, y, and 2. Since P is the total angular momentum and p is the angular momentum associated with vibration, P - p is the angular momentum of the rotation of the molecule. This angular momentum is related linearly to the angular velocity of the molecule 3, a = E' and wV = | V1 > IVS, > IVS is > . The quantum numbers J, K, and is are angular momentum quantum numbers, and vS is a vibrational energy quantum number. In Table 2.1 the matrix elements of the rotational l4 and.vibrational operators are given in this representation. We have that P2|J K> =J(J+:uh% JK m PZI J K > = Khl J K >, vav’ @ssz = ZsfiwV' It should be noted that 6:2 is an angular momentum operator in normal coordinate space so that téh must be transformed into real space to obtain the actual angular momentum. Since = * _ * 622 ps1 Q32 ps2 Qs1 and p _ U. a _ gasls2agz’ the 2 component of the angular momentum in real space due to vibrations of the sth mode which is two—fold degenerate is z _ z ILs/ficsls2 _ ILs/fits' It should be noted that in molecules with symmetry C all 3v two—fold degenerate vibrations are in a plane perpendicular 15 TABLE 2.1——Matrix elements of the fundamental operatorsl (11). < K I Px I K+1 > = < K+1 I Px I K > = %h/(J_K)(J+K+l) < K | Py | K+1 > = _< K+1 I Py I K > = —%ih/——T(J_K)(J+K+l < K I PZ | K > = Kn < vr1 I qn I Vn+l > = < Vn+l I qn I vn > = /(vn+1)/2 < vn I pn I Vn+l > = —< vn+1 I pn I Vn > = —ihV(Vn+1)/2 < vt 2t I qtl I vt+l, ttil > = < vt+l, tttl | qt1 I vt 2t > = ll/(v it +2)/2 2 t t < vt 1t | qt2 | vt+l, ltil > = _< vt+1, tttl I qt2 I vt 2t > = _li/Zv rt ¥25/2 2 t t < Vt 2t I ptl I Vt+l’ itil > = -< Vt+l’ itil I ptl I Vt it > _ +1 /(V t+ - ——2-l’h( 5?, t'I'2)/2 < Vt 2t I pt2 I Vt+l’ itil > = < Vt+l’ ttil I pt2 I vt it > = —l"if/_(——rv *9. +2 /2 2 t t 1The vibrational operators are given in dimensionless form q = (A S/h MM” and p = (412 As )l/up *. SO SO SO SO" 16 to the three—fold rotational symmetry axis. No three-fold degenerate vibrations occur in molecules with symmetry C3v° In the treatment of this problem where results accu- rate to an approximation higher than first order are desired, the method of the contact transformation (12) can be used. The energy correct to first order is given by 1 0 Eé)=E£)+, 1 whereas to second order it is given by 2 Eé2) = Eél) + < n I H2 I n > + Z'|< n IHl I n1 >I ‘ v 1'1 n This expression can be simplified by performing a similarity transformation on H. This transformation will not change the zero—order energy or the first—order matrix elements Which are diagonal in the principal vibrational quantum numbers {VS}. However, it will cause all the first—order matrix elements not diagonal in the Vs’ here denoted by n and n', of the transformed first—order part to vanish: Let this transformation be denoted by T, and -1 ' = = ' ' ' H THT HO + H1 + H2 + 17 where HO' = HO, < n I Hl' I n > = < n I Hl I n >, and < n I Hl' I n' > = 0 Under these circumstances Eé2) = Eél) + < n I H2' I n >. Thus, at least formally, by use of the contact transfor— mation, results accurate to second order are obtained with no more difficulty than a first—order calculation, provided such a transformation T can be found. For the calculation of third— and fourth—order energies a second contact transformation can be sought. This procedure of performing contact transformations to simplify the problem to a given order of approximation is valid as long as the case of accidental near—degeneracies does not occur. Such an accidental degeneracy will occur when the physical parameters in the Hamiltonian take on numerical values such that certain interacting energy levels fortuitously have nearly equal values. This degeneracy is in contrast to one which occurs because of basic symmetry considerations only. In the case of an accidental near— degeneracy in polyatomic molecules, Nielsen (13) has found it possible to modify the contact transformation in such a 18 way that the terms not participating in the accidental near—degeneracy can be removed. Of course, the degenerate part still remains and must be treated by other methods. CHAPTER III ACCIDENTAL RESONANCES IN THE SPECTRA OF POLYATOMIC MOLECULES WITH SYMMETRY C3V The validity of the perturbation theory approach to the calculation of vibration—rotation energies depends upon the relationship between the diagonal and off—diagonal matrix elements. To produce sufficiently rapid convergence, the off—diagonal matrix elements must be small compared to the diagonal matrix elements; in fact, for proper treatment of the problem by conventional nondegenerate perturbation theory, the off—diagonal matrix elements must be small compared to the differences between the diagonal matrix elements. When the experimental data agree with the theoretically predicted spectrum over a wide range of energies but deviate in certain regions, it is natural to assume that the devi— ations result from the assumptions in the theory not being valid in that region. Thus when pronounced perturbations occur in a high resolution infrared spectrum of a molecule, it is useful to explore the various possibilities which could invalidate ordinary perturbation theory in order to explain the deviations in the data. In such cases there first must be a non—zero off— diagonal matrix element coupling two states. Regardless of 19 20 the closeness to degeneracy of two levels, no deviation from the results of ordinary perturbation theory can be expected if the levels are not coupled through a non—zero matrix ele- ment. Hence, it is necessary to tabulate the various matrix elements which can be non—zero in order to investigate the cause of possible perturbed states. Secondly, for those levels which are coupled through a non—zero matrix element, it is necessary to investigate the conditions under which their energies are sufficiently close so that their energy difference is so small as to preclude satisfactory con— vergence in ordinary perturbation theory. By assuming the existence of a non—zero matrix element coupling two levels it is possible to define two types of resonance, essential and accidental. Essential resonance occurs when the interacting levels have the same set of principal vibrational quantum numbers {VS}. Thus, this type of resonance occurs between levels within the same vi— brational state. The levels differ only in their secondary Quantum numbers K and ts. The remaining two quantum numbers, J and M, do not enter the discussion since all matrix ele— ments of the Hamiltonian are diagonal in these quantum numbers. This result occurs because the system is isolated; thUS J cannot change, and there is no preferred direction in inertial space, so M cannot change. Accidental resonance occurs when the interacting levels are in different vi- brational states, characterized by different sets of the principal quantum numbers {vs}. The secondary quantum 21 numbers may or may not differ for these levels. Essential resonance is due to inherent symmetry properties of the molecule under discussion and may occur in any molecule with the appropriate symmetry. On the other hand, accidental resonance occurs when the numerical values of molecular con— stants are such as to fortuitously produce near—coincidence of two vibrational energy levels. In fact, if the pertur— bation is localized within a small range, it is possible to conclude that the vibrational energies alone will not coin— cide. Rather it is the Vibration—rotation energy levels which nearly coincide for a limited number of levels. This work is concerned with accidental resonances. Consider two vibrational states a and b. Each state is characterized by a certain set of vibrational quantum numbers {vs}. Since accidental resonance is assumed to be present, the condition vsa # VSb must be satisfied for at least two normal modes s. Let Avs = vsa — vsb. If s is a two—fold degenerate mode the subscript t will be used in place of s; similarly, the subscript n may be used for nondegenerate modes. Mme. Tarrago and Amat (14) have developed a classi— fication scheme to enumerate the various types of accidental resonance. This classification is based on two quantities p and pt' These quantities are defined as p = XIAVSI: S p = ZIAV I. t t t 22 Thus, since molecules with symmetry C3v have only non- degenerate and two—fold degenerate modes of vibration, p = pt + ZIAVnI- n p denotes the number of quanta involved in the interaction, pt is the number of degenerate quanta. As a simple example, consider the interaction between Vn and Vt. In this example Vsa = 0 for s # n, Vna = 1. Also va = 0 for s # t, vt = 1. Therefore, Avn = +1 and Avt = -1, all other AvS = 0; hence p = 2, pt = 1. For accidental resonances p > 1 since there must be at least two quanta involved; one to increase the energy of one mode by one quantum; the other to decrease the energy of another mode by one quantum. The matrix element coupling the two states a and b has the general form rkPg, where r is used to denote a vibrational coordinate QSO or pso*. All SUbscripts are suppressed in this condensed notation. Now, r has only first off—diagonal non—zero matrix elements. Thus rk has kph, (k—2)th, (k—4)th, ... diagonal or first off-diagonal matrix elements. Hence for accidental resonance k > 1. Note k z p since possibly p = k — 2m, m being a posi- tive integer. The Tarrago—Amat tables, Tables 3.1, 3.2, 3.3, and 3.4, list results according to the above classification. The tables are constructed with the aid of Amat's Rule (15). This rule may be stated as follows: For a molecule with a 23 .E 3.l--Perturbation coupling case a: p a 3, pt # 1, Order of Magnitude Matrix Elements AK EARt Z Att, Cplg. t t' p=3 p=LI p=5 (1,2,3) 0 0* 0 I l 2 3 '(3’u)/J(J+l)-K(Kil) il +2 0 II 2, 3, (3) 0 :2 +2 I 3 '(5)/J(J+l)-K(Kil) x/JIJ+l)-(Kr13(Kt2) :2 i2 0 IV 3, (1.2.3) 0 i3 0 I 1 2 3 (3’u)/J(J+l)—K(Kil) i1 i1 0 II 2,3 3, (3)K 0 :3 0 III 2 (3) 0 i1 i2 I 3 (5)/J(J+l)—K(Kil) x/J(J+l)-(Ki1)(Ki2) 12 ll 0 IV 3, 9(- (2’3) 0 0 0 I 2 3 (u)/J(J+l)—K(Kil) i1 :4 0 II 3, 0 i3 0 I 3 (3) 24 E 3.2——Perturbation coupling case b: p a 2, pt = l. Order of Magnitude Matrix Elements AK Alt 2 Att, Cplg. t' p=3 p=4 p=5 /J(J4i3—KZKtl) il il 0 II 1,2 2,3 3, ’3’“) 0 i3 0 ’3) { 0 i .2 } I 2 3 —‘———7:—7—:'— ,5)/J(J+l K K 1) /J(J+l)—(Kil)(Ki2) :2 ll 0 IV 2, 3. E 3.3-—Perturbation coupling case c: p = 2, pt = 2. Order of Matrix Elements AK ZAzt Z Azt' Cplg. Magnitude t t' p=2 )/J(J+l)-K(Kil) 11 $2 0 II 1,2 K 0 0* 0 III 1,2 , ) x/ 0 0* 0 ,f ) { _ } I 2 ./ 0 i2 +2 .6 ./ )/J J+l —K Kil) i// fix"; /J(J+1)-(K11)(Ki2) :2 :2 0 IV 2 I -———————————— ~,/ )/J(J+l)—K(Kil) - . J(J+l)-(Kil)(Ki2) “A J J+ -— i i t * O V 3 ( l) (K 2IIK 3) 3 0 “fl/ .4 25 IBLEEL4-—Perturbation coupling case d: p = 2, pt = O Order of Matrix Elements AK 2 Att, Cplg. Magn1tude t p=2 '(2) . 2 . (M)J(J+l) + W (4)K { 0 O } I 2 (u)/J(J+l)—K(Kil) $1 $2 II 3, (6)/J(J+l)-K(Kil) x/J(J+l)—(Ki1)(Ki2) X/J(J+l)—(Ki2)(Ki3) i3 0 V 3, ._1 :ation or rotation-reflection axis of order N, the matrix ement of a term in the Hamiltonian < Vn’Vn"V .J,K,M t’gt“. vn+Avn,vn,+Avn,,v +Av 2 +A£ ..J,K+AK,M > t t’ t t’° don—zero only if . 1 AAK + ZatAtt + ENZ'Avn, = 0,iN,i2N,... t n —1. if N is a rotation axis, A = %N-l if N is a rotation— .ecnsion axis; a = l, 2, 3, ... according as the t-th t dixnensional irreducible representation is E E 1’ 2’ E3: 26 denotes those nondegenerate Vibrations which are anti— 'mmetric with respect to the operation correSponding to tations of 2n/N about the symmetry axis. This formula y be specialized for the case we are considering. For e group C3v’ N = 3, A = -1, all two-dimensional repre- ntations are of type E1, so at = l for all t. There are B type nondegenerate vibrations for C so the last 3V’ rm on the left side of the equation is identically zero. erefore, in this case, -AK + EN, = O. .3, t6. .9, t so, all terms in the Hamiltonian must be totally symmetric, e., the product of the symmetry species must contain the irreducible representation. If T(rk) = E, then F(P£) st also be of type E since E x A = E, E x A2 = E, and E x E A + A + E. The terms can be grouped in the orders of expansion of e Hamiltonian as given in Table 3.5. Mme. Tarrago and Amat have considered only terms rough third order so k < 6. Hence for l < p < 6, and since < p+l, the following possibilities arise: p = 5 pt = 5, 4, 3, 2, l. O p = 4 pt = 4, 3, 2, l, 0 p = 3 pt - 3, 2, l, 0 p = 2 pt — 2, 1, 0 27 ABLE 3.5--Terms in the Hamiltonian. I |___ Order Terms 0 r2 P2 1 r3 r2P rP2 2 rLl r3P r2P2 rP3 PLI 3 r5 ruP r3P2 r2P3 rPLI r 4 r6 r5P ruP2 r3P3 r2Pu P6 r2 Le of these cases can be eliminated immediately: If pt = l, Len F(r2) = E. In order to have p = 5, pt = 1 would require term of the form rSP. This term is not found among terms .rough third order. The remaining seventeen cases can be ouped as follows: Case a. p a 3 pt # 1 Case b. p a 2 pt = 1 Case 0. p = 2 pt = 2 Case d. p = 2 pt = 0 There are six types of coupling, classified according the dependence of the off—diagonal matrix element W on e rotational quantum numbers. These types are listed in ble 3.6. (W0 is independent of the rotational quantum nbers.) 28 ABLE 3.6—-Types of accidental resonance coupling. Type Matrix Element W I WO 1' WOJ(J+1) + wO'K2 + wo" II WO/J(J+l) — K(Kil) 'II WOK IV WO/J(J+l) — K(Kil)/J(J+l) - (Kil)(Ki2) V WO/J(J+l)-K(Kil)/J(J+l)-(Kil)(Ki2)/J(J(J+l)—(Ki2)(Ki3) the Tarrago-Amat tables the column labeled {Alt gives e sum of the changes of the quantum numbers it for those generate modes t satisfying Avt # 0. These modes t are id to participate in the resonance. The column I Att, ’0' ves the corresponding sum for those degenerate modes t' ving Av 0. The modes t' do not participate in the t! sonance. If [At = 0 but {IAttI # 0, the appropriate t ?O is labeled 0*. The matrix elements W are given sub- ?ipts W ). These subscripts denote the corre- (a,b,c,.. >nding order of magnitude of the term in the case J = K s 1. a order of magnitude column applies to the case where =I< 2 30. 29 In order to look more closely at the construction of le Tarrago—Amat tables, consider the term r3P which occurs 1 H2. Since k = 3, the only possible value for p is p = 3. ane k = 3 and p = 3, it follows that E'Att, = 0. Now with = 3, the possibilities are the following: Lth pt = 3 Attl = i1, A£t2 = t1, A2t3 = i1 Altl = i1, A£t2 = t2 Alt = i3 Amt = 11 th pt = 2 Attl = i1, A£t2 = i1 Alt = 12 all Alt = 0 th pt = 1 Alt = i1 th pt = 0 all degenerate modes are of type t' nSider the rotational part: If P = PZ then AK = 0 and ere is Type—III coupling; if P = PX or Py then AK = il 1 there is Type—II coupling. Amat's Rule must be satisfied: —AK + EAzt = 0, i3, i6, i9, ... 30 .nce IXAztI < 4, the above is restricted to t —AK + {Mt = 0, 23. t Consider Type-III coupling, AK = 0, so t t gAzt = 0, we have = 2 Attl = —A2t2 = i1, and all Alt = 0 = 0: all degenerate modes are of type t' XAit = :3, all pt = 3 cases except the Afit = i1 case t cur, subject to the condition that all Al's are of the us sign. Consider Type—II coupling, AK = 11, so . = 3 Altl Alt2 — 'Mt3 — :1 Altl = -2A2t2 = i2 Allt = 11 I = 1: Alt = 1l T ZAlt = 12, we have t 5 = 2: Aztl = A1132 = t1. Alt = 1'2 1e r3P term thus gives the possible cases listed in Table .7. Not all these possibilities occur in the Tarrago—Amat ables. Consider the case p = 3, p1; = O in the list of assibilities. Since pt = 0, only nondegenerate quanta are lvolved. If only nondegenerate vibrations of type A1 are )nsidered, F(r3) = A1. Now because AK = 0, then the P in 3 P must be PZ but F(PZ) = A2. Hence 3)xp(P)=A xA =A “1“ l 2 2’ 1d this case must be excluded. Furthermore, any of the ises which have matrix elements with the same quantum number Bpendence and quantum number changes as a lower—order term ?e not included in the tables. Consider p = 3, pt = 2, < = 0 in the list of possibilities. This term has a matrix I :I I ”I /: .2 .x‘ w” .../1 ‘x ‘3 _ 4 u i— ii. i . K I. .. Li. 32 TABLE 3.7-—Possible accidental resonance cases from r3P. ) pt Case Matrix Element AK XAtt Z'Az Coupling Order t t t' 3 2 a W(3)K 0 0(*) 0 III 3 0 a W(3)K 0 0 0 III 3 3 a W(3)K 0 i3 0 III 2 3 3 a w(3)/m il 11 0 II 2,3 3 1 b Mam :1 il 0 II 2,3 3 2 a w(3)/WKTKTII :1 $2 0 II 2,3 element of the form W(3)K with changes AK = 0, ZARt = 0(*), t Akt. = 0 and Type—III coupling. The matrix element W(2)K I KI LVJ in p = 2, pt = 2 has the same changes in the quantum numbers and Type—III coupling. This term arises from r2P in the ?irst—order Hamiltonian. This lower—order term takes prece— 1ence over the p = 3, pt = 2, AK = O possibility. This )mitted term from r3P would correspond to a first correction 20 the Coriolis term r2P due to vibration. Now, the rules, which we have just discussed, for the :oupling of levels through a non—zero matrix element should >e applied to levels with nearly the same energy. If a )erturbation in the spectrum results from transitions in— rolving a particular set of levels, it is necessary to con- sider nearby levels and their possible coupling schemes. Thus, we see that in determining which level has the greatest 33 nmabflity of causing the resonance, it is necessary to wmida=both factors simultaneously: coupling, as well sunpmmurbed energy difference. Lazm be the order of magnitude of the coupling term. picalxflbration-rotation energies in zero order are ;, first order ~30 cm’l, second order ml cm_l, etc. 000 cm” t the energy difference between two interacting levels be - En'; we use the following formula to express it in terms order of magnitude: 2 - alog (E — E ) 3 10 n n' ' ng the perturbation formula y.lI2 ‘ E-E' n n' n . guide, we define the order of magnitude of the term con— uting to the energy as 2m — [2 — -2—log (E — E )J 3 10 n n' ' Holenl arises in determining this energy difference. tlyr speaking, it is necessary to use the zero—order rhic .frequencies in determining the energy difference. inlerrbally, even for fundamental levels, the quantity lend :is not a harmonic frequency but the fundamental fitted. by all the measurable anharmonic contributions. 91‘, Since only orders of magnitude are considered, it 34 is possible to use experimentally obtained frequencies in combinations to form the various overtone and combination level energies. Following this procedure, one can obtain an order of magnitude, in general not an integer, of the possible contribution to the resonance. Since the loga— fithmic function is slowly varying, it is only natural that the order of magnitude is most dependent on the value of m. We have made a survey, in the manner described above, )f some of the perturbations in the high resolution infrared spectra of the methyl halide and deuterated methane molecules with symmetry C3V obtained by the infrared spectroscopy group it Michigan State University. For each case of a perturbation ;t is possible to give in decreasing order of likelihood the >ossibilities of the cause of the perturbation. In this way .t has been found that the case p = 2, pt = 1 is a likely :andidate for several of the perturbations. However, p = 2, 't = 1 does not uniquely specify a case, unless one restricts Limself to the case of a dyad interaction. In this case, let -t be the mode giving pt = 1, then the change in v must be t 'rom zero to one and vice versa. Also if vn is the non— egenerate mode participating, then vn changes from one to ero and vice versa. If Vt > 1 or vn > 1, then in general pOlyad would occur. If Vt = 2, then the interaction would e between the triad levels (vt = 2, vn = 0), (vt = 1, Vn = 1), nd (Vt = O, Vn = 2). Thus, restricting ourselves to the dyad 35 se, we see that the most general type of interaction we sh to consider is between the two bands v + Z v ,v , n , n n n #n d Vt + 2' Vn'vn“ n sen CHAPTER IV CORIOLIS RESONANCE In this chapter we wish to give a detailed description the calculation of vibration-rotation energies of mole— ,les with first—order Coriolis interaction. This topic has en studied extensively (2, 16—21). Special cases have len considered, and approximation methods have been employed. Iwever, the problem has not been subjected to an analysis :ilizing numerical methods. The molecules to be considered have point—group symme— ‘y 03v plus the added restriction that all nondegenerate ;brations are of species Al. This class of molecules in- Ludes the methyl halides, CH3X, as well as molecules of the “/ eneral type XY3Z’ XY3ZW, XYBZWV. In considering first—order “/f >riolis resonance there are two questions to be answered: I 1) What diagonal elements shall be included in the Hamilton— “// in matrix? (b) What off—diagonal elements shall be included? '"/' iturally, if an off—diagonal matrix element of a given order “/j 3 to be included, then it is certainly necessary to include Ll diagonal and off—diagonal matrix elements of the same and ”/1 lwer orders. 'M/ It is convenient to work in dimensionless quantities. “”5 3r this reason qSo and pSO are defined as '/( D/ 36 SO 80' A <—§>1/“0 41 1e Coriolis operator to be considered has the form A s' 1/4 F) q S'C'}POL 1 a H . . = — -—{ Coriolis gla 20;,O,Csos'o'( sop lich is part of H1. Thus, a strictly first—order theory >uld be developed by considering the Hamiltonian to be >wever, if Coriolis resonance is to be considered, the 3 :her terms in H namely rP2 and r need not necessarily l, a considered. These terms have matrix elements off— iagonal in vS only. They are important in cases other than 3 2 Driolis resonance: r causes Fermi resonance, while rP ever causes an accidental resonance. Nielsen (13) has iven a modified contact transformation TR* which removes 1e terms rP2 and r3 from Hl'. Thus, in a first—order theory Or the case of Coriolis resonance the Hamiltonian can be aken as H0 + HCoriolis' f we further restrict ourselves to the case described at he end of Chapter III, viz., Coriolis resonance between ands vn + 2 V n'#n onsider the entire Coriolis term H v v + v n we need no n' n' and t g'#nvn, n" the t . . . R ther we c Cor1011s a an 38 estrict ourselves to that part of H which involves Coriolis 0th participating modes n and t. The relevant operator hen is H0 + (Hl)nt here (H ) = -2-£{z 2 Cu (ii: l/4 }P 1 nt I , , sos'o' A qsops'o' c' a a sos o s [n;tl,t2] he diagonal elements of (H1)nt are the usual first—order egenerate Coriolis contribution -2CK£tc:lt2, which is resent in all symmetric top molecules. The diagonal ele— ents of HO are the zero—order energies. Including these arms thus allows one to treat the problem to first order a the case of Coriolis resonance between a parallel band ad a perpendicular band. Within this general framework a iestion arises: How much more can be included to allow or a better fit to the experimental data? The answer is hat nothing can be added if a rigorous treatment is de— ired. However, it will be noted that the inclusion of iditional terms in the diagonal matrix elements does not Abstantially complicate the problem. Additional off— iagonal elements, however, greatly alter the character f the secular determinants obtained. Thus, in this work e consider the case of the exact first-order theory of ccidental Coriolis resonance, and we also consider cases 0 which one additional parameter is added to allow for a 39 tter fit of the experimental data. Possible additional rms that could be included in second order are variation the rotational constants with vibration, and centrifugal stortion. The other possibilities come from terms which e either off—diagonal in second order, such as essential sonances, or from terms in the third— or fourth-order miltonians, which require an additional contact transfor— tion. The obvious choice is a diagonal term from second der. It is true that for most molecules which this study uld include the rotational constants do vary considerably th the state of vibration, while at the same time centrifu— ,l distortion could be neglected. Therefore, we have in— ,uded in an empirical way the a terms of second order which .low for variation of the rotational constants with vibration. Le point should be made clear. To be consistent with an :act second-order treatment, the added terms must all come ’om second order and not from higher orders. The term r2P2 1 second order will give a variation with vibration of the >tational constants in the diagonal matrix elements. How- rer, it will not correct rotational constants which appear 1 off—diagonal positions. Thus, one cannot simply replace and C, B , .1 . B + Be + ;“s(vs + 228) c l c + 0e + gas(vs + Egg) / LA 40 1roughout the purely first-order program. Rather, ad- -tional terms EGS(VS + égs) should be added only in the ;agonal elemenis. These terms can then be grouped with the niilibrium rotational constants to give a vibrationally >rrected rotational constant. To reduce the number of irameters, an effective a is introduced which corresponds > the difference between the total effect of the d terms 1 the two interacting bands. Thus, a AuB and a Aac are lcluded in the diagonal elements of the 2t = 0 states; this irresponds to a difference in the variation of the ro— ational constants in the two levels being considered. For v one has + Z :V 1 1 3 gaS(VS + Egs) = 5“ + at + I at! + I or Vt + I Vn'vn' one has n'#n 1 1 gas(vs + 2gs) = 2am + 2dt + E at, + E a ,(V , + —). n'#n n n 2 I¢t B hese terms are coefficients of [J(J+l)—K2]—terms for a , nd coefficients of K2—terms for do. Since all matrix ele— .ents are diagonal in J, the value of J in the it = i1 levels ust be identical with that in the it = 0 levels. To further implify the problem the approximation Adc = O was used be— ause the effect of interest on the energy levels comes from the variation with B rather than C with vibration. Thus, "\\ 41 3e AdB which is included in the 2t = 0 levels corresponds to B _ B B B 2 B 2 a J(J+1) - (an - at)J(J+1) - (dnKn - ath ) l B B B B l 2 2 + {—d + d + 2 a , + 2 a ,(V ,+—)}(K - K ). 2 n t t'#t t n'fin n n 2 t n ince Kt = Kn i l and K is small for the cases we are con- idering, the dependence on K is dropped. We see then that here is no simple exact interpretation for AaB, but ef- ectively it corresponds to the difference in the rotational onstant B for the two interacting bands. We have calculated the energy eigenvalues and the ssociated eigenvectors of the Schroedinger equation using he Hamiltonian H = H + (Hl)nt’ O = sp2 + (c B)P 2 - 2—l{2 Z “ <1§l>1/“ }p - z I , ,Csos'o' A qsops'o' a d a sos o s [n;tl,t2] onsider the Coriolis term (Hl)nt° The summation over n;tl,t2] gives nine terms. Since by definition a _ a C Cs'o'so sos'o' ’or all a; the ; "matrix" is antisymmetric. Thus only three 0L ntl’ is non-zero .ndependent C's are to be considered for a given a: c G. a a nt2’ and g tlt2‘ Whether or not a given Csos'o' s determined by the symmetry species of qsop . For P s'o' d 42 *os'o' to be non-zero, it is required that P(qso) X F I V v t a n . here vn = 0 or 1 only. If Vt = 0 then it = 0; if v = l hen it = :1. We see from this energy matrix for J = 2 that all the on—zero off-diagonal matrix elements satisfy the condition K = Azt. Thus, the change in K-zt is zero for the non—zero ff—diagonal matrix elements. This condition is also satis— ied for the diagonal matrix elements, By defining a new uantum number R as R = K - it, we have for non—zero matrix lements AR = 0. As a consequence of this fact, the rows nd columns of the energy matrix can be ordered in such a ay that the non—zero matrix elements are arranged in block iagonal form. Each submatrix is characterized by a par- icular value of R. Thus R is a "good" quantum number for he Hamiltonian we are considering: H = H + (H O l)nt' If ‘E/ ./ ¢/ ./ _/, .../I /, ./’.‘ 44 FIGURE 4.l——Energy matrix for J = 2. -/2ABzy E(1,o) dingy —/3Ach Jinan” E(l,l) -IIAch -/2AB;y E(2,—1) ‘fiABCy A AA: \ 4x it} .32 AAA 2 45 r a fixed value of J we may abbreviate the notation for e eigenfunctions as follows. Since it completely charac— rizes the vibrational state, we may use I K, A >. The t = l, vt = 0, it = 0; the - 0 state corresponds to vn = 11 states correspond to vn = 0, V1; = 1, it = *1. The ergy matrix for J = 2 written in the block diagonal form shown in Figure 4.2. We see that for J = 2 the IRI = 3 bmatrices have dimension one; the IRI = 2 submatrices have mension two; and the IRI = l and R = O submatrices have mension three. In addition, the submatrices characterized R and -R are identical if the diagonal elements satisfy .e condition E(K,tt) = E(—K,—tt). lis condition is satisfied for all cases which we will con— .der. The K2 degeneracy thus remains. The perturbation t a are considering does not remove this first—order de— aneracy except in one case. The submatrix for R = 0 con— acts I l, l >, | 0, 0 >, and | —l, —1 >. Thus the Kt t Bgeneracy for I 1, l > and I —l, -l > is removed by the >riolis term. We may generalize the results for J = 2 given above 5 follows. For a given J the energy matrix has dimension :2J+l). This matrix can be written in block diagonal form 1th 2J+3 submatrices along the diagonal. The submatrices 1th IRI = J+l have dimension one; the two submatrices with 46 AH.Nuvm Ao.muvm somMmUmgram to solve for the eigenvectors and eigenvalues of the Imatrices of dimension three. Using the computer program, ch is described later in this chapter, we have been able obtain the eigenvalues and eigenvectors of the Hamiltonian the case of Coriolis resonance of the type we are con— ering. In zero order the ”good" quantum numbers are: itional—-J, K, M; vibrational——{vs}, {2t}. When’we in- ie the first—order Coriolis term, the vibrations and itions interact so that some of the "good" quantum numbers must be combinations of rotational and vibrational quantum ers. Previously we have seen that one such quantum number , defined as R = K — 2t. Care must be taken in giving an rpretation to R. K is the angular momentum quantum number 3 gives the projection of the total angular momentum along synnnetry axis of the molecule K6. it gives an internal Lar’lnomentum, Eth, but this angular momentum is in normal liruate space. To obtain the equivalent angular momentum >a1. space, one must transform by the usual orthogonal x. The angular momentum is cgtth along the c-axis. c: rr—zerm>only for a = z so the internal angular momentum a1. space due to vibrations is citfih. Thus (K — tilt)h 48 5 the projection of the angular momentum due to pure rotation f the molecule. R = K — it has no easily apparent physical eaning since it is a combination of quantities in different paces. We have lost both K and it as ”good" quantum numbers; a have R as a "good" quantum number. There must exist an— ther "good" quantum number for this Hamiltonian. It takes he form of an index. This index I is used to order the nergy levels for a given value of J and R. For IRI = J+l here is only One level, T = 1. For IRI = J there are two evels, T = l and 2. iFor IRI < J there are three levels, =51, 2, and 3. The ET notation is used such that The eigenvectors of the Hamiltonian HO + (H1)nt are enoted by I J R r >. These eigenvectors are linear combi— ations of the zero—order eigenvectors.” I J R r > = Z ciETI J K it >. K t t ’ t he coefficients CEET are obtained in the computer solution t f the eigenvalue—eigenvector problem. CiET = 0 unless t -= K — it; it is also zero unless —J—l 5 R 5 J+l. The eigenvalue equations are HI J R T > = E | J R T >, T P2I J R T > = J(J + l)h2I J R T >, 49 (PZ - Gtz)| J R T > = EhI J R r >. 12 is an angular momentum operator in normal coordinate pace: 6tz = (qtlpt2 ' qt2ptl) > C hus G2 v 2 > = tthl vt z zI t t t Subtracting the same constant from all the diagonal elements does not change the eigenvectors but does shift all Lhe eigenvalues by this same constant. Hence, it is not Lecessary to know the purely vibrational energies for the ;wo interacting levels; only their difference is important. l1or this reason we have introduced a quantity Av which corre- ;ponds to this difference between the vibrational levels :haracterized by 2t = 0 and those for it = 1l: E (Vn=0’ Vt: , lt=*l) = constant E (vn=1, v = , 2 =0) = constant + Av. [n the calculation this constant is set equal to zero. Since :he discussion of the energy levels will center around their shifts from the unperturbed positions, the procedure of set— :ing the constant equal to zero is valid. Therefore, the :otal energy for the 2t = *1 levels is the pure rotational :erm plus the vibration—rotation term; for the 2t = 0 levels :he total energy is the rotational term plus the Av term. 50 ereis no vibration—rotation interaction term in it = 0 velssince the term is proportional to at. Hm one—dimensional submatrices occur when IRI = J+l. lsapmntly, K = iJ and 2t = 11 with the restriction _= -J. Due to the previously mentioned Kit degeneracy, 4 ediagonal matrix element for R = J+l is equal to the one 'R = —J—l. The diagonal element is E(IRI=J+1) = CJ(J + 2;:) + BJ. eigenvectors are I J=J, R=+J+l, I=1 > = 1' J=J, K=+J, £t=-l >, I J=J, R=—Jsl, T=1 > = 1- J=J, K=-J, £t=+l >. (D levels are not shifted by the Coriolis interaction Therefore, if lines corresponding to transitions to 3 levels occur, they will not be shifted. For the two—dimensional submatrices, IRI = J. When I the levels are K = J, 2t = 0 and K = J—l, it = —l. 2 = —J the levels are K = —J, it = O and K = —J+1, l. The diagonal elements are given by E(IRI=J,2t=0) = {B + AaB}J(J+l) + (c + Aac - {B + AuB})J2 + Av, RI=J-1,I2tI=l) = BJ(J+1) + (c — B)(J—l)2 — 2Cc:(—J+l). .4 2 ./ v/ a/ ‘\ \. K 51 3e off-diagonal matrix element coupling theSe two levels is At 1/4 An 1/4 y — -{<;—) + <;—> 1B; /J. n t 1e vibrational factor occurs frequently. It is denoted by A, A A A = {(;E>l/“ + (;E>l/“l. n t 1e eigenfunctions are | J, J, l > and | J, J, 2 > for R = +J, | J, -J, 1 > and I J, —J, 2 > for R = -J. For IRI < J there are three levels interacting. For given R, the levels are K = R+l, 2t = 1; K = R, 2t = 0; {d K = R—l, 2t = —1. The respective diagonal matrix ele— ‘nts are E(R=K,t =+l) = C(R+l)(R + 1 — 2;:) + B[J(J+l) — (R+l)2], ./ c 2 ”A E(R=K,£t=0) = {C + Ad }R .,/ ., 1" +{B + AaB}[J(J+l) - R2] + Av, . at Z “J E(R=K,tt=—l) = C(R-l)(R - 1 + 2Ct) I «% M + B[J(J+l) _ (R—1)2]. 52 e off-diagonal matrix elements are = -BA§y/(J—R)(J+R+l /2. < 2 :0 I 2 =—1 > = < £t=—l I £t=0 > = —BA;y/(3:E7T3:§:i77§s e eigenfunctions are I J R l >, I J R 2 >, and I J R 3 >. One special case must be considered. When R = O the vels to be considered are K = l, 2t = l; K = O, 2t = 0; d K = -l, 2t = —1. Because of the Kit degeneracy the rst and third levels are degenerate. These levels are upled, indirectly, through off—diagonal matrix elements that the K2 degeneracy is removed by the first—order t riolis interaction. Since R = O, tt=l I tt=0 > = < tt=0 | £t=-l > = —BAcy/J(J+l)/2 = w is we may write the matrix for R = 0 as E(R=0,t =+1) w 0 w E(R=0,£t=0) w 0 w E(R=0,2 =—l) t 53 Fhis three—dimensional matrix gives a characteristic {quation whose solutions are easily obtained analytically: _ l _ _. _ _ .i / 2 2 El - §{E(R—0,£t——1) + E(R—0,£t—0)} +,2A I + 8w /A , D7] ll E(R=0,2t=il), [‘11 II I _ _ _ _ ;_ / 2 2 3 §{E(R-O,£t—il) + E(R-0,tt—0)} - 2A 1 + 8w /A , here A = E(R=0,tt=il) — E(R=0,£t=0); e have assumed A > 0. The possibility of obtaining ana— vtic solutions results directly from E(R=0,£t=—l) = E(R=0,£t=+l) )th being in the same three by three submatrix. It is not result of all the non—zero off—diagonal matrix elements sing equal. One eigenvector for this case is of particular tterest, viz., | J 0 2 > = eél J l l > --%:| J -l —l >. /2 /2 te that this eigenfunction does not mix it = 0 with it # 0. We may summarize these results schematically by writing Single six—dimensional matrix, Figure 4.3. We have programmed the Control Data 3600 computer at e Michigan State University Computer Laboratory to obtain - a x A, \ \_ \. \ xxx-«.- 514 .II a ..J J J. J. J. Jr mmafilmvlaa+hkum + ANUN + H-mvxa-moo mxwa+mue~nx+ewxso< + mmmlfia+hvhuflma< + mv+ mmfioo< + 0* mmwa+x+e~nmne~xso< + hfims<+mv + mwfloo<+ov H n .o a_ .Hne u _e_ e u _m1 A u N am + um+hvho 55 eigenvalues and eigenvectors associated with the energy rices. In principle the energy levels could be obtained all J values. In practice experimentally it is found .t J values through thirty are usually adequate to identify lines, at least for the cases which we shall consider. .s in the program Jmax = 30. The program which was written used is given in unformatted form in Appendix I. The routine used to obtain the eigenvalues and eigenvectors ‘ the three—dimensional submatrices was obtained from the ' Computer Library, Co—op identification number F4 UCSD 1 EN. This subroutine was written to obtain the eigenvalues . eigenvectors of a real symmetric matrix with dimension ater than one and less than or equal twenty. CHAPTER V RESULTS AND DISCUSSION OF COMPUTER ANALYSIS We now give some results which have been obtained ith the method discussed in the previous chapter. Since he problem is solved numerically, it is necessary to choose numerical value for each parameter which appears in the leory. In the general case there are nine parameters. lese parameters are the equilibrium rotational constants and C, the constants denoting variation of the rotational )nstants with vibration AdB and Adc, the degenerate Coriolis >upling constant IE, the vibrational energy difference Av, {e harmonic frequencies on and wt in cm_1 which are used in Le forms An = (2ncwn)2 and At = (2fith)2, and the accidental riolis resonance coupling constant cy. A and At always and only appear in combination as a n ctor A A A = Iq—t—W” + (YEW/”l. n t P an accidental resonance IAt — AnI << An, expanding the ctor gives A A _ 1 t - n 2 A _ 2 + R'( A ) + OI. n 56 , grim». 57 first order this factor is a constant, and thus two of : parameters are eliminated from consideration. The constants B, C, and I: for a given molecule are lally known, at least to a good approximation, from an Alysis of the unperturbed portions of the spectrum. These cameters are thus fixed for the discussion of a given lecule. Four parameters Av, AdB, Adc, and cy remain. In inciple, if the analysis has been performed on an unper— rbed band, Av and the Ad's are known, and also Cy = 0. r a band perturbed by an accidental Coriolis interaction # 0. In our analyses that follow, the four parameters ven above are chosen in such a way as to fit certain Irtions of a perturbed spectrum. The cases of interest will 2 those in which a resonance occurs in a particular subband. lis condition places a constraint on the four parameters. Av a chosen so that for given values of the other parameters le energy levels which are to interact strongly have nearly ientical energies. Since we will focus our attention on the ffect of the perturbation in a given subband, it is possible 0 set Aac = 0 because for a given K value the term which orresponds to Aac is a constant and may be combined with Av. km accidental Coriolis coupling constant Ey plays no role rlthe choice of where the accidental resonance will occur; .tis important in determining the character and magnitude fl Um energy shifts for a given resonant case. We see then :hm:the parameters B, 0, ti, AdB, and Av determine the nu _\ \ \X‘vé": I 58 position of the resonance, and Cy determines the energy shifts for a given resonance. To make a systematic study among all the possible cases that can occur, it is necessary to determine reasonable numerical ranges for the parameters. In general, for a Coriolis coupling constant ICI 5 1. Inspection of Figure 4.3 shows that the eigenvalues are independent of the sign of gy. In the expansion of the determinants, Cy appears in the form (cy)2. We, therefore, may limit the variation of ;y to the range 0 5 cy'5 1. In writing cy = Ey = ic. Our method does not provide for a determination of c, we imply the sign of :y. The physically interesting cases occur when dB < B; we will limit ourselves to cases where AcB < B. In Figure 5.1 we show a typical unperturbed perpen— dicular band of a molecule with symmetry O The Q branches, 3V‘ which correspond to transitions in which there is no change in the total angular momentum quantum number J, are not re— solved. If the molecule had a greater variation of the rotational constant with vibration, the individual transitions for the various J values would be resolved. The pre—super— scripts P and R denote respectively negative and positive subbands, i.e. P denotes AK = —l and R denotes AK = +1. A subscript is added to denote the K value in the lower level. ./ An as example, RQl denotes transitions AJ = 0 and K = l + K = 2, .3/ When dB is sufficiently large, it is possible to resolve the lei individual lines for various values of J. For example, RQ1(J) «’I corresponds to transitions K = 1 + K = 2 and AJ = 0, i.e. J + J° 4/ 7/. /’ FIGURE 5.1--Typica1 unperturbed perpendicular band of _/’ a molecule with symmetry C3v' ,J’ /J 60 The quantity of interest for our discussion is the shift in the unperturbed line due to Coriolis interaction. To obtain the spectral appearance in the presence of pertur- bations, the shifts must be added to the corresponding un— perturbed positions. Once all the parameters except Av and cy have been chosen, it is necessary to determine exactly what resonance is to be considered. One selection rule for transitions is AK = Azt. Transitions from the ground state (it = 0) to the levels vt + Z v ,v . (At = :1) give a perpendicular n'#n n n band. The change in this case is Att = i1. If Att = +1, then AK = +1 giving a positive subband. If, on the other hand, Azt = —1 so that AK = —l, a negative subband is being considered. When the strong resonance occurs in a positive subband, Av is chosen in such a way that the following equality between diagonal matrix elements is satisfied: E0 T K—l I I T=2 — — _ —| —I— —'— _ _— I__ — — _ — .- | I I I l K—l I | I K—2 I ' I (K—2)£f<0 | | 1. _‘_____T=3________ I I l l ' l I I i I ,, I . PQ RQ --/ K-l K—l ,, I I I I ,- SPECTRUM: I l I ./ l I I 62 positive subband. In this and the next figure all levels have the same J value. If the strong Coriolis resonance is to occur in a negative subband, the energy level diagram appears as in Figure 5.3. In these two figures the dotted lines denote the positions of the perturbed levels and transitions. The intensities of the lines in the perturbed spectrum will depend upon the expansion coefficients of the perturbed eigenfunctions for the appropriate levels. We have seen that no more than three levels are coupled together through off—diagonal matrix elements. For cases of interest, Av will be chosen so that two of the levels are nearly if not exactly degenerate. The third level, if present, will interact to a lesser degree. Consider three interacting levels: Ki = K+1, it = +1; K” = K, 2t = 0; and Ki = K—l, 2t = —1. Assume Av has been chosen so that E(KL) = E(K”) or IE(KL) — E(K”)I << IE(Ki) - E(KI)I. In addition we require E(KL) > E(K“) > E(Ki). Hence, we are considering a prolate rotator (C — B > 0), The perturbed energies and associated eigenvectors are: 3’ L? .l/ V, ,2 ./ ,J/ (I 63 ./ .J/ FIGURE 5.3—-Energy level diagram for Coriolis Resonance ‘ J” in the Kfl negative subband. V/ Perpendicular Band (it = 11) Parallel Band (at = 0) ‘1’.- // K+1 .// __ __ __ __ T=1 (K+l)tt>o —"I I I l I | l | l fl \ SPECTRUM: _— __-_ E1: | J, R=K, l > = cifi+l| Kl, +l > + CKFIOI N, 0 > + 0%E1_1| Ki, —1 >, E2: | J, R=K, 2 > = CKf5+ll KL, +l > + CKE50I K“, 0 > +(%f,lIKL—l>, E3: I J, R=K, 3 > = Giff+ll KL, +l > + Giffol ", 0 > + cif§_1| K', —1 >. If ;y = 0, then CKfi+l = CKEIO = CKff—l = +1' All other C's are zero. If Cy # 0, then in general all the C's are non—zero. For the resonant case being described J C $3 = 1; all the other C and CJK3 are small. The KL’—l Ki,—l energy shift for the level Ki = K—l, “t = —l is also small- We Shall not consider it explicitly; however, the energy shift of the third level is always implicitly given as the negative of the algebraic sum of the shifts of the two Strongly interacting levels with the same J and R values. This is a consequence of the trace of the submatrix being invariant under a similarity transformation. The curves giving the energy shifts of interacting perturbed levels —/ 65 will be labeled by KI and K". K_L denotes the state for wh1ch ICKL,+1| > ICK",O|' K” denotes the state for wh1ch ICK”,0| > ICK1’+1I. In the event that both strongly 1nter— acting levels are denoted by K1 or K“, we change K, to Kll (or K” to KL) for the state with the smaller ICK (or ,,.II ICKu,0I)- It may happen that even though E(KL) > E(K“), the perturbed levels have KH above KL: These difficulties, stated in the two previous sentences, arise because we wish to describe our results using perturbation theory language; however, perturbation theory is not strictly applicable for these exceptions. Let us first consider the consequences of a variation of Av. For a given set of parameters, let Av(XR) denote that value of Av for which the two strongly interacting levels are exactly degenerate. We wish to consider cases where Av = Av(XR) + v'. If v' < 0, then E(£t=0) is less than E(£t=il); whereas if v' > 0, then E(£t=0) is greater than E(£t=il). When v' = 0, the two degenerate levels are split by the accidental Coriolis coupling terms. No problem arises in this case because no crossing of levels can occur. If v' m —{E(Kl) - E(Ki)}/50 and AdB = 0, then Eczt=0) is N{E(KL) — E(Ki)}/50 cm‘1 below E(£t=tl) for all J values. For small values of J the levels K1 have positive energy shifts as expected due to "repulsion" of the two levels; however, for larger J values there is a cross—over and the K1 levels have negative energy shifts. This case is shown in Figure 5.4. This behavior can be explained by Energy Shift in units of .883 cm—1 66 FIGURE 5.4—-Energy shifts due to Coriolis Resonance, B _ cross—over case, Ad — 0. I\ \ '\.. \. \ \' "I +1OI— I/J . _ / V,x’ _- KL - 6 /// // J_ __ _... K” 5 // / / v' +5- I L. I Ln I / \ 67 observing that the effect of the off—diagonal matrix ele— ments is more important than the order of the energy levels. For this case AuB = 0, so the energy difference is constant and independent of J. However, the off—diagonal matrix ele- ments are J—dependent. This case corresponds to a split Q- branch. Neither the K1. nor the Ku level corresponds to a single K value. There occur extra lines in the region of the cross—over because each level results from a linear combination of the K+1 and K states. If v' is still small compared to the energy level spacing but larger than for the case just described, the general consequence is a decrease in the overall effect of the perturbation as one may well expect. This situation, therefore, becomes a less interesting case. An arbitrary choice of v' might cause the resonance to appear in a differ— ent subband. The general effect on the spectrum is not a sensitive function of v'. Av cannot be determined precisely, and hence the A's cannot be determined from this work. Now we consider the effects of varying cy. The value I" Cy is not important in determining the position of the esonance. We consider the case where Av = Av(XR). Figure ,5 shows the variation of the energy shifts for two values 2; y in the case where AdB = 0. Note that the energy ifts scale is adjusted so that the energy shift per unit is a constant. The energy levels are shifted; thus, the r-responding spectrum lines are shifted. This shift is >roximately linear in J. Hence the Q—branch is spread FIMME5.5-—Variation +10 68 of energy shifts with gy, AaB \ \. \ K \S "‘I 69 outdueto the Coriolis resonance. The Q—branch is also smmadout due to the dB term occurring in second order. Asa mmsequence, qualitatively the dB term of second order andtheaccidental Coriolis term of first order enter into thesmm effect. However, the Coriolis term gives a shift Inwarin J, whereas the shift due to c3 is quadratic in J. Whmiboth factors are present, the usual interpretation of B mum:be modified to include the effect of the Cy term. a y are 0 case no pronounced variations with c In the AoB = The ty = 1 obtained; however, two results should be noted. case has a stronger interaction with the third level, which in this case lies below the two strongly interacting levels. The effect of the repulsion is to push both of the cy = 1 levels upward. For Cy = .01 case the magnitudes of the positive and negative energy shifts are approximately equal. The implication here is that the third level is less important and 11:8 effect could be more nearly neglected. .A more interesting situation is obtained when AdB # 0. In IfiigLure 5.6 the results for AuB = +.075 are given. Here, A\)(XR) with the two strongly interacting levels being both with J = 10. Note b V = = 5, it = +1 and K = 4, it = 0, iai: jJ1 ‘these cases the curves have a completely different Iadraxztexr as cy is varied. The scales have been adjusted tliafl: 'the shift per unit Cy is constant for the four cases. 5 L18 c<>nsider these results using the perturbation Dression -.fi \.\'\.\"\" i \.‘ a? J J J J J J J .J... 70 FIGURE 5.6--Variation of energy shifts with cy, AdB = +.075. +l +5 lO I| is approximately proportional to cy/J. Both the numerator and the denominator are J-dependent; however, Cy is, in general, a first—order quantity whereas AaB is of second order. Thus, the /J would dominate and cause the divergence as in the previous AaB = 0 case. As Cy is reduced by an order of magnitude, the J(J+l) factor dominates for large J and the asymptotic form is obtained. An important contrast between the AdB = O and the AoB # 0 cases is that the former case leads to curves which are concave toward the J—axis, whereas the curves are convex in the latter case. This provides a useful criterion in data analysis. Now we consider the case when the parameter AdB is varied with all other parameters except Av fixed. Av is chosen so that in each case Av = Av(XR) for the same J value (J = 10) in the fifth positive subband. Figure 5.7 shows the results. These curves are similar to those for a vari— ation of Cy. As would be expected, increasing AcB has the same effect as decreasing Cy. However, the variation of AdB has a much greater effect on the adjacent subbands. If B . . . . IAd I 15 large, a resonance in one subband 1mp11es a resonance in the adjacent subband (at a different value of J, of course). .,/’ “/1 «,f \ \\ \ .meum IJ..J IJIIwII/ .J .J - 72 FIGURE 5.7-—Variation of energy shifts with AcB, ty +10- 1 J so Hes.a so noses on chasm smsoem “ 5 _ 73 Thus, if experimentally the resonance occurs in only gag subband, it is necessary that the theoretically predicted resonance in the adjacent subband must occur at a J value which is greater than can be experimentally observed. In fact, this prediction might suggest that a search for such a second resonance in adjacent subbands be undertaken. This constraint as to the localization of the resonance to a given subband or subbands thus allows an upper bound to be put on the possible value of IAaBI in particular cases. The methyl halide molecules are prolate symmetric rotators, i.e., C > B. In this case, the term (C — B)K2 is positive, and in a particular band the level (K+1) lies above the (K—1) level for a given value of J. For the perturbation to occur in the positive subband, it is the (K+1) level which interacts strongly with the 2t = 0 level. If AdB is positive and the resonance occurs for a particular J value, no other resonance can occur in the RQK or PQK subbands since the K, it = 0 level lies above the K+1 level for larger J values. However, if AuB is negative, the K, 2t = 0 level lies below the K+1 level for larger J values, and for some larger J value there will be a resonance in the PQK subband. Thus, a resonance in a positive subband with AdB negative implies the existence of another resonance in the corresponding neSative subband. Similarly, a resonance in a negative sub— band with AdB positive implies the existence of another resonance in the corresponding pOSitive Subband_ If only one resonance is observed experimentally, aCCOrding to this "‘I \ \.. \ \ \ \\-I\.- \ \, A I ._/ 74 theory bounds may be placed on AdB so that any other implied resonances occur in regions not observed in the particular experiment. For these and another reason we have chosen to investigate the case of AoB positive and primary resonances in positive subbands. The other reason is that for positive subbands the upper levels never occur in the one—dimen- sional matrices. All the levels may be shifted. We are thus not restricted to cases for which unshifted levels must be fit into the description. In conjunction with this last point an interesting situation presents itself. It is obvious that a purely vibrational operator in the Hamiltonian cannot cause a rotational perturbation. However, one may ask whether a vibration—rotation operator, such as r2P, could cause a "quasi—vibrational" perturbation, i.e., cause shifts which are independent of the quantum number J, for one particular subband. As an example, consider the following case: Av is taken to be Av(XR) for the levels J = 5, K = 5, 2t = +1 and J = 5, K = 4, it = 0. The results for the subband of interest is given in Figure 5.8. Of course, the adjacent subbands must be investigated. The shifts for the "flat" case are —.75 cm—l. For the next lower subband the shifts for K1 = 4 are 1 for J < 9. For J = 4 the shift is .01 cm‘l. For KL = 6 the shifts are less than .1 cm_1 also for J < 9. less than .1 cm— However, a resonance occurs in KL = 6 at J = 21. If the lines are unresolved, the R0, branch is shifted in total by .75cm‘l while for the adjacent subbands, at least for low J values, I.III 1 . ... J. J / J. IJIIJIJIm ,, r If M J J a/ ./ ./ 2O 5 7 10 FIGURE 5.8—-Energy shifts for "quasi-vibrational" perturbation. +11— +5-- IEo me. so when: on peach sateen 76 the shifts are smaller by a factor of at least seven. Of course, the adjacent subbands will show a spreading, indi- cating that it is in fact a rotational perturbation which is being observed. Finally, we wish to present a set of graphs for the behavior of the various subbands under the influence of Coriolis resonance. Both the purely first—order theory (AoIB = 0) and AdB = +.O75 are included. These two cases can be directly compared in a meaningful way since 4y = .2, and the molecular parameters B, C, and CZ are the same in both cases. Av was chosen for the AaB = +.O75 case so that Av=Av(XR) forJ=lO,K=5,£t=+1andJ=lO,K=4, 2t = 0. The first—order case has Av = Av(XR) for the same subband. These graphs are presented in Figures 5.9 - 5.18. :\ x. \ \._ \ \ \. xxx-3 77 FIGURE 5.9-—Comparison of energy shifts in RQO for Ad = 0 and AaB = .075. +10 AdB = .075 ---°-----Ac = 0 + U1 i Energy Shift in units of .587 cm—1 I U1 I l —10 “ If a/ J/ v; J/ a/ .J" “/, / 78 FIGURE 5.10——Comparison of energy shifts in RQl for B AOL = 0 and Ad = .075. +10Io ~~ —————— ME = .075 T “"—““‘ A0 = 0 +53— Energy Shift in units of .587 cm—1 \ \. \. \'\"‘I K \‘. V/ /I 79 FIGURE 5.ll——Comparison of energy shifts in RQ2 for Ad = 0 and AaB = .075. \ \. \. \ \J' N +10? J- —————————— AaB = .075 _ ———————— A0. = 0 —l + U1 _ \ Energy Shift in units of .587 cm ..I a_ v// , —I— ’1' '1, I J -I ax / .. -// x ...5 _.I— i// a , .. ’1 ,x —10“ 80 FIGURE 5.12—-Comparison of energy shifts in RQ3 for .075. 0 and AcB = Ad .075 AaB = +101I -t = 0 ——-----Aa +5-. J. J J J J J JIJ/I J11? a 1 lI; .TI:-+II I I--TIIITIII+;IIrIII+III+IIIIIIIIIIIITII1 5 0 _ —1 HIEo sum. so none: on chasm swatch 81 FIGURE 5.13—-Comparison of energy shifts in RQM for Au = O and AcB = .075. +1 —————AcB = .075 I _. __- __ _. Au = 0 If / // / Kn = 4 _F I I +54. / I _I I Energy Shift in units of .587 cm-1 I \ —— \ \ _ 4~ \ 5 \ \ __ \ \ \ \ —_ \ \ \ \ K = __ \ 1 5 \ \ \ ._ \ \ \ ~10J— \ é; ./ V; «x / «1” V/ n/' 2 82 FIGURE 5.1M-—Comparison of energy shifts in RQ5 for Au = o and AaB = .075. +10T Energy Shift in units of .587 cm‘1 83 FIGURE 5.15——Comparison of energy shifts in RQ6 for AOL = O and AaB = .075, +lGr- 7 j/ J J j ./ +5— :—I I E _ o L\ co __ Ln CH _ o w -— . JJ / ~r—i C1 . :3 -r/ E 4.) (H . .,..| __ r/ g . m .. ,/ is I " $4 I a) __ ._/ CI LL] ’. -5— -_ /, 8” Q7 for R FIGURE 5,16—-Comparison of energy shifts in .075. O and AuB = Au +10?- .075 Ad —-——--—Aa H _ — _ _ _ _ _ _ d _ A _ :50 same ho mung: cs phflem swsmcm “ R, _ 85 FIGURE 5.17-—Comparison of energy shifts in RQ8 for Au = 0 and AaB = .075. +10 AOLB = .075 ...... —Aa = O U‘l l . I Energy Shift in units of .587 cm.1 + U7 1 l 86 Q9 for R FIGURE 5.18-—Comparison of energy shifts in .075. Ad = O and AaB = AaB = .075 “"‘"“Aoc _ _ _ . . . p . .. +10] _ _ 5 + H _ _ _ _ _ q _ _ use smm. so muses 2H phflgm smmosm _ _ 5 _ CHAPTER VI ANALYSIS OF A PERTURBATION IN THE v3 + V4 BAND OF CH3F The infrared spectroscopy group at Michigan State University, directed by Professor T. H. Edwards, has studied the methyl halide molecules for a number of years (23—26). One study has particular relevance to the present work. Blass (27) has obtained and studied localized perturbations in the spectra of some axially symmetric molecules. In this chapter we propose to give a quantitative explanation of a particular perturbation in the v3 + v“ band of CH3F by as— suming it to result from Coriolis resonance between the perpendicular band v3 + VA and the parallel band v + v 1 3. Thus, using the notation of the previous chapters, t = A , n = l, and n'#n is 3. The fundamental frequencies of CH3F as tabulated by Herzberg (28) were used in conjunction with the order of magnitude equation to obtain an estimate of the expected order of magnitude for the various terms in H1, H2('), and H3('). The orders of magnitude 0.8, 0.9, 1.0 were obtained respectively for v1 + v3, v3 + 2v5, and v2 + v3 + v5. According to the Tarrago—Amat classification, these 87 if Q; 4] ./ pf / p/ x" / -/. 88 correspond to p = 2, pt = l; p = 3, pt = 3; and p = 3, pt = 2- The latter two possibilities are Case a. For this case the purely Vibrational operators are the most likely candidates. Since the data clearly show rotational perturbations, we may disregard these possibilities. The remaining possibility is p = 2, pt = l, i.e., the situation which was studied in detail in the previous chapters. Blass has tabulated the energy shifts in the transitions for the various subbands as a function of J. These shifts, however, cannot be compared directly with those theoretically predicted. The experimental data and the theoretically pre— dicted curves must be in compatible forms before they can be compared. Blass' plot of the energy shifts for the RQl branch is given in Figure 6.1. Note particularly that for three J values (J = 10, II, and 12), two energy shifts are shown for each J. Both shifts were measured from the same 2t = +1 level. The two levels for the same J giving the two shifts are here assumed to be the two strongly interacting levels in the Coriolis interaction. One of the energy shifts should then be measured from the 2 = +1 level and the other must be t measured from the corresponding it = 0 level. If we require that the energy shifts for J values in the region of the resonance be nearly equal in magnitude, the positive energy shift for J = 10 must be reduced, and the negative energy Shifts for J = II and J = 12 must be increased. Therefore, we conclude that the it = 0 levels cross the 2t = +1 levels between J = 10 and J = II, and that AaB < O. The decrease ./’ /’ ./ v/x Xi \ A ll I ‘ 89 FIGURE 6.l--Experimental energy shifts in the RQl branch as determined by Blass. +lO‘r v’ - A _ / _ ./" +5- A H I E _ O .:r w -- H I. . A O A A U) _ A A AA rs A A I. . I —I+ J C ADAQAAAAio A 20 30 .,—| - .. 33 A A. -:—I ..— fl _ m / >3 _ . £10 £4 (1) LE ‘ A -5- / ~ A ./I I I -10 A 90 in the magnitudes of the energy shifts for J = 10, J = 11, and J = 12 must be made consistent with the choice of AaB. Let us consider AaB in more detail. Under the as— sumptions of Chapter IV AOLBJ(J + l) = (dnB — dtB)J(J + 1). If Av = Av(XR:K,J), then the energy difference between the two levels interacting strongly through Coriolis resonance (J, K, £t=+lg and J, K—l, £t=0) is AaBJ(J + l) + g where E is chosen so that the entire expression vanishes for the desired J value. If AaB < O, and we consider J values below the resonant J, J(XR); then E(£t=0) > E(2t=+l). Thus the energy shift for the E(2t=0) level is The shift for the E(£t=+l) level is E2 - E(2t=1). Above J(XR), where E(2t=+i) > E(2t=o) the shifts are El - E(2t=l), E2 - E(2t=o). 91 These are the predicted energy shifts. However, using this notation, the energy shifts given by Blass are El - E 11; Png and RQO, can be reduced if the magnitude of AaB is reduced. The parameter gy must be readjusted in each case. \ \ cu \ \ .\ \ X.- .‘ V I ,- 3 3 \. \ 1 '\__\__ FIGURE +lOr ‘— I .5. —l + U1 I ‘I‘ ~I -~+-I I Energy Shift in units of 0.11 cm T I U1 -101- 95 6.3—_Energy shifts for RQl and PQl branches, Analysis I. [X - RQl (experimental) :7 - PQl (experimental) K \ \. V. \ K" 'V \‘. ‘J “iii .__.a ' R “(I FIGURE 6.A-—Energy shifts for Q0 branch, Analysis I. J I a”; +lO-- . ‘1 J _. A - RQO (experimental) -/ J1 / v; 30 I+ J Energy Shift in units of 0.11 cm 97 In the second analysis we consider the non-self— consistent case for which the curves are fit to all the data points in the overlap region, J = 10, J = 11, and J = 12. The value of AdB to fit the above three points is —.O2692. The energy shift curves for RQl and PQl, and RQO are shown in Figures 6.5 and 6.6, respectively. We may compare these curves with those of Analysis I to see the effect of the de— crease in the magnitude of AaB. The Kl = 2, J > 11 curve is raised slightly, however still not enough to give a good "average” fit. The curve for the PQl branch gives a much better fit. Similarly, the curve for the RQO branch is closer to a correct fit than Analysis I. The principal diffi— culties of Analysis I still remain, however, all the dis— crepancies have been reduced. There is an important reason for considering Analysis II. The equation for transforming the J = 10 and J = 11 data points contains two parameters, AaB and 5. Since it is always possible to fit an equation «’ containing two parameters to two points, it would be de— ex’ sirable to have more points to check the consistency of the «” two—parameter fits. Here this check can be made since three points are available. In Table 6.1 we give the results of the three possible two—parameter fits. In Analysis III the molecular parameters are not chosen to fit the perturbation in RQl but rather the ROD shifts. Of course, we still require a resonant cross—over at J = 10 in the RQl branch. Figure 6.7 shows the fit to the experimental BQO branch. The two constants in this case 98 FIGURE 6.5—-Energy shifts for RQl and Pol branches, +1qe " Y7-— PQl (experimental) Analysis II. [X - RQl (experimental) +5. Energy Shift in units Of 0.11 cm'1 I Lpi -lg_ \, \ 99 FIGURE 6.6——Energy shifts for RQO branch, Analysis II. +101— -- Z: — RQO (experimental) + U'I I I Energy Shift in units of 0.11 cm"1 100 FIGURE 6.7—-Energy shifts for RQO branch, Analysis III. +1 [X — RQO (experimental) + U1 I -l ‘39-) J Energy Shift in units of 0.11 cm I 5 U7 I I -10 _I.._ 101 TABLE 6.l—-Two—parameter fits of Analysis II. Data Points Used AaB J = 10, 11 —.0512 J = 11, 12 -.0493 J = 10, 12 _.0502 are AdB = _.021 and ty = .o3u1. It should be noted that for the range 7 < J < 18 there is a systematic difference between the data points and the curve. This difference could be re— duced by a greater localization of the resonance. However, if IAaBI is increased to localize the perturbation, the curve will reach its maximum at a smaller J value, as in Analysis I. We conclude that both the absence of the syste- matic difference and a close fit near the maximum shift can— not be obtained simultaneously in this theory if a resonance is required in RQl at J = 10. Figure 6.8 shows the RQl and PQl branch shifts for this case. The PQl fit is not quanti— tatively satisfactory. Surprisingly, however, the RQl shifts for J > J(XR) seem to give the best "average" fit of the three analyses. Below J(XR) the agreement is not as grafifying. The results obtained for the three analyses considered are summarized in Table 6.2. The appropriateness of this theory in explaining the perturbation observed by Blass can be judged from the parameters in the table. Since the \ \.. \ \. '\ \ \. K ‘\ ‘IV 102 FIGURE 6.8—-Energy shifts for RQl and PQl branches, Analysis III. —1 +10?- R . __ [3* Q1 (experimental) -' - PQ (experimental) K' V 1 L +5- E —-— O H Ax 3 K1. = 2 ~— A E K — 1 ‘_le> H A 3 I A H 20 g V v.4" 'VA'A!_VNAVAV v.- _ + ‘ ‘ A‘A" “ _WV-V-VA' ‘ ‘ O Q A. V‘— 3 .... ~1- A v a: _ VV '3 ‘* KI ' 2 K ,, l m A >, __ m a a) —-r— 53‘ a ...5 —— ' = K; O 1_ KM 1101- 103 TABLE 6e2——Summary table of molecular parameters for CH3F1. n n _ -1 B — 0.8518 cm 0 = 5.081 cm“1 Z _ ct - 0.08 , 13= B_ B y=y AnalySis Au (an at ) ; Qntl I —0.0513 .0401“ II —0.02692 .033U9 III —0.021 .0341 lThe unperturbed values of B, C, and a: are those given by Blass (27). general features of the experimental data are reproduced by the theoretical curves, we conclude that the perturbation in v3 + v“, a perpendicular band of CH F, is indeed due to 3 Coriolis interaction with a nearby parallel band, assumed to by v1 + v3. Of course, the agreement is not complete but it appears that Coriolis resonance is the dominant factor. Better agreement could possibly be obtained if other higher order terms were included. In any case, the agreement appears to be sufficiently good that this method could be used in conjunction with a reanalysis of the data to determine the aSSignments of the transitions with greater confidence. \_ \ \'\ \‘Kt‘fi? x 4X li‘igcxa a: 444‘; R 10“ In conclusion we display the theoretical predictions of Analysis I for all the transitions RQK, PQK, 3 < K < 10, in Figures 6.9 — 6.16. Only K = l and K = 2 were plotted when Analysis I was first discussed. Analysis I is the self—consistent case. The energy shifts in these subbands have been given by Blass. His data points are included. The predicted and experimental values are in good qualitative agreement for K < 5, at least for J < mlS. In some cases this agreement holds for all values of J observed experi— mentally. We note that for PQK (A < K < 10), which we have not been able to fit, there is a systematic trend in the experimentally obtained energy shifts. This character indi— cates the likely presence of another perturbation since the predicted energy shifts due to Coriolis resonance are small in these cases. The differences between the predicted and experimental values in the branches for K < 5 may be due to assumptions we have made. In this connection, it may be re— called that we set Aac = O and neglected the K dependence in the expression for the energy difference between the 2t = O and the lit! = 1 levels. These assumptions are completely valid only for the study of the RQl and PQl branches. The assumptions become increasingly less accurate for the QK branches with increasing K. The complete printout of the energy levels and transformation coefficients for Analysis I are given as Appendix II. .__¢- \. \ \ \ \\”=“ 105 -..- elf-12% (f ./ J V/ / // FIGURE 6.9——Energy shifts for RQ2 and PQ2 branches, Analysis I° +19— _h Z§- RQ2 (experimental) .1 :7- PQ2 (experimental) —1 Energy Shift in units of 0.11 cm FIGURE 6.10--Energy shifts for RQ3 and PQ3 branches, ”1 + d‘ L I | l 106 Analysis I. [E - RQ3 (experimental) :7 - PQ3 (experimental) l I l I I l Energy Shift in units of 0.11 cm—1 I k? 1 l —1O-L _ Ki = 2 v&3A&/\/<7§Z:7 ,+ J V VV Vvvv u = 3 ./ vr’ J, / /, asses 107 , . R P t-t‘,‘ .E 6.ll——Energy shifts for QA and Q4 branches, y Analysis I. V! I" . _ A- RQu (experimental) V/ P V/ ._ v_ QM (experimental) V}. / // 108 .E 6.12—-Energy shifts for RQ5 and PQ5 branches, Analysis I. ZX' RQ5 (experimental) . \. \. \. ‘; VJ'V ‘ §7- PQ5 (experimental) .-'-‘-_"1d .- 109 E 6.13—-Energy shifts for RQ6 and PQ6 branches, 3% Analysis I. J - J _ [3- RQ6 (experimental) ‘7 v; " V- PQ6 (experimental) V / _ J _ v ,‘ v/ i— v J __ V .3 v .. V WV 110 :Gmm 6.lu—-Energy shifts for RQ7 and PQ7 branches, Analysis I. R [ [3 ‘ Q7 (experimental) " V7 ' PQ7 (experimental) F54]. " V __ VV V " W VVK = K" = 7 A /\ AA‘L RA___AiA/\ jd ..- K;- = 6 5.. \. \. K K \ \ K K Kmfiifi 111 , GURE 6.15--Energy shifts for RQ8 and PQ8 branches Analysis I. [3— RQ8 (experimental) §7- PQ8 (experimental) vV V V _ V K" 8 .’ A K, = 9 ’ VV A AAAA A I J / K — 7 / ./’ 112 NEURE 6.16—-Energy shifts for RQg and PQ9 branches, Analysis I. K K K K KKK l _. é]_ ZK— RQ9 (experimental) ..J/" —“ :7- PQ9 (experimental) v/ _ V /.. __ V A . W +5—- V ' . V 5 I v H V t: " O _- V m A o V K 0 AA f/ w ~- = i if EXZKZ: Kn = 9 x/ C: V A A AA AA AA—zfi:+ J 5 A tr we / C = ... ,_ K1 8 ,. .p V q_‘ I H —- ./ S -r m a -~ y// w h u (D ’/ c a- m -5— ax” 4- .- hfl/ _lOJ_ I” CHAPTER VII CONCLUSION After briefly reviewing the development and expansion ‘ the Hamiltonian which describes the vibration—rotation tion of polyatomic molecules, we surveyed, in a general .nner, accidental resonances in molecules with symmetry ‘V. The case of Coriolis interaction between a parallel .nd and a perpendicular band was studied in detail. The .gnitude and character of the energy shifts were examined Len the molecular parameters varied within physically Lteresting limits. This type of analysis is an example of .tuations which allow determination of certain parameters 1possible or difficult to evaluate in the absence of rsonance effects. This theory was then used in an attempt to explain me perturbation observed by Blass in the v + v” band of 3 [3F. The analysis allowed us to conclude that Coriolis Lteraction is very likely a dominant factor in this case, .though it is clear that other interactions are also present. Many anomalies are not observed in high resolution lfrared spectra. Some of these are ascribed to accidental esonances. Since accidental Coriolis resonance is the 113 \.. \ K '\ \ -\ KKK- 11“ west order accidental resonance giving rotational per— .rbations, it is the most likely candidate when the spectrum .ows such perturbations. This study is also of importance th regard to compound resonances. If a good understanding ' Coriolis resonance is obtained, it should ultimately be issible to understand the effect on the spectrum of the ,multaneous presence of Coriolis resonance and some other ,gher—order resonance. i7 .5/ J .../r / -/ «f / ¢/ «* REFERENCES H. H. Nielsen, Revs. Mod. Phys. 2;, 90 (1951). H. H. Nielsen, The Vibration-rotation Energies of Molecules and their Spectra in the Infra-red, Handbuch der Physik, Vol. XXXVII/l (Springer-Verlag, Berlin, 1959). M. Born and R. Oppenheimer, Ann. Physik 83, 457 (1927). B. T. Darling and D. M. Dennison, Phys. Rev. 51, 128 (1940). M. Goldsmith, G. Amat, and H. H. Nielsen, J g3, 1178 (1956). Chem. Phys. 0 G. Amat, M. Goldsmith, and H. H. Nielsen, J. Chem. Phys. El, 838 (1957). G. Amat and H. H. Nielsen, J. Chem. Phys. 8A5 (1957). 665 (1958). Amat and H. H. Nielsen, J. Chem. Phys. 6, 1859 (1962). __ 31, G. Amat and H. H. Nielsen, J. Chem. Phys. 22, G. G. Tarrago, Cahiers Phys. 19, 1A9 (1965). W. Shaffer, Revs. Mod. Phys. :L_6_, 245 (191414). R. C. Herman and W. H. Shaffer, J. Chem. Phys. 16, 453 (1948). H. H. Nielsen, Phys. Rev. 68, 181 (19H5). G. Amat, Symposium on Molecular Structure and Spec— troscopy, Columbus, Ohio, Invited paper (1962). G. Amat, Compt. Rend. Acad. Sci. 250, 1M39 (1960). H. H. Nielsen, Disc. Faraday Soc. 9, 85 (1950). . S. Garing and H. H. Nielsen, Proc. Nat. Acad. Sci. S. u_u, M67 (1958). 115 a.-- ‘_‘__' . KiK K K '- .L\.. K K. 116 H. II. Nielsen, J. Chem. Phys. 22, 142 (1953). J. S. Garing, H. H. Nielsen, and K. N. Rao, J. Mol. Spectroscopy 3, 496 (1959). J. M. Hoffman, H. H. Nielsen, and K. N. Rao, Zeitschrift fur Elektrochemie. Berichte der Bunsengesellschaft fur physicalische Chemie g, 606 (1960). G. Amat and H. H. Nielsen, Rotational Structure of the Fundamental Band v of Methyl Cyanide, Molecular Orbitals in Chemistry, Physics, and Biology Academic Press, New York, 1964). L. Henry and G. Amat, Cahiers Phys. 24, 230 (1960). R. G. Brown and T. H. Edwards, J. Chem. Phys. 31, 1029 (1962). R. G. Brown and T. H. Edwards, J. Chem. Phys. 37, 1035 (1962). R. G. Brown and T. H Edwards, J. Chem. Phys. 28, 384 (1958) T. H. Edwards, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, Invited paper (1962). W. E. Blass, Thesis, Michigan State University, 1963. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polvatomic Molecules (D. Van Nostrand, New York, 1945). “Ki .2 -/3 w/ w; L/ Vx’ V/T M 2' APPENDIX I COMPUTER PROGRAM In this appendix we give the computer program used 1 this study. It is written in Fortran for the 3600 antrol Data computer at the Michigan State University amputing Laboratory. We have omitted the format state— ants. The following substitutions have been used: A = AMBDAN h At = AMBDAT Av = DELTANU Z Ct = ZETAZTT y = ‘ntI ZETAYNT AdB = DELALPB 0 Ad = DELALPC R = IRR PROGRAM CRLSRS DIMENSION A(20,3), VALU(3) READ AMBDAN, AMBDAT, DELTANU, B, c, ZETAZTT, "/ 1 ZETAYNT, DELALPB, DELALPC DO 107 J=l, 30 IBM = 2*J+3 , DO 106 IR = 1, IBM W11 = B*J+C*J*(J+2*ZETAZTT) ./ W21 = (B+DELALPB)*J+(C+DELALPC)*J**2 " 1 +DELTANU W22 = B*(3*J—1)+C*(J—l)*(J+2*ZETAZTT-1) 117 ...z .K 118 W212 = B*((AMBDAT/AMBDAN)**(1/4)+(AMBDAN/AMBDAT) l **(1/4))*SQRTF(FLOATE(J))*ZETAYNT EGVll = W11 C11 = 1 EGV21 = (W21+W22)/2+SQRTF((W21—W22)*(W21—W22)/4 1 +W212*W212) EGV22 = (W21+W22)/2—SQRTF((W21—W22)*(W21=W22)/4 1 +W212*W212) C211 = ((W21—W22)/2+SQRTF((W21—W22)*(W21—W22)/4 K KKK—KKK l +W212*W212))/SQRTF((W21—W22)*(W21—W22)/2 2 +2*W212*W212+(W21—W22)*SQRTF((W21—W22) 3 *(W21—W22)/4+W212*W212)) C212 = W212/SQRTF((W21—W22)*(W21—W22)/2+2*W212* v5 1 W212+(W21—W22)*SQRTF((W21—W22)*(W21—W22)/4+ 2 W212*W212)) C221 = ~C212 C222 = C211 ITAUl = 1 ITAU2 = 2 ITAU3 = 3 IRR = IR—J—2 KlP = J KlN = —J K2Pl = J K2P2 = J—l K2Nl = —J K2N2 = —J+1 LTP = l LTO = 0 LTN = —1 IF(IR—2) 100, 101, 102 100 PRINT W11, KIN, LTP, J, IRR, ITAUl, EGVll, 011 GO T0 106 101 PRINT W21, K2N1, LTO, J, IRR, ITAU1,EGV21, 0211, 1 0212 PRINT W22, K2N2, LTP, J, IRR, ITAU2,EGV22, c221, 102 JAM = 2*J+2 .,~ IF(IR~JAM) 105,103, 104 103 PRINT W21, K2P1, LTO, J, IRR, ITAUl, EGV21, 0211, 12 1 0212 PRINT W22, K2P2, LTN, J, IRR, ITAU2, EGV22, 0221, ex 1 0222 1 00 TO 106 .-i 104 PRINT W11, KlP, LTN, J, IRR, ITAUl, EGVll, 011 ' 00 T0 106 «2 105 A(1,l) = C*(IR—J—1)*(IR—J—1-2*ZETAZTT)+B* 1 (J*(J+1)—(IR—J—1)**2) A(2,1) = B*((AMBDAT/AMBDAN)**(1/4)+(AMBDAN/AMBDAT) 1 **(l/4))*ZETAYNT*SQRTF(FLOATF((2*J+2—IR-l))/2.) .21 ()0 106 107 119 A(3,l) 0 A(1,2) A(2,1) A(2,2) (C+DELALPC)*(IR—J—2)*(IR—J—2)+ 1 (B+DELALPB)*(J*(J+l)-(IR-J—2)*(IR—J—2)) 2 +DELTANU A(3,2) = B*((AMBDAT/AMBDAN)**(1/4)+(AMBDAN/AMBDAT) 1 **(1/4))*ZETAYNT* SQRTF(FLOATF((IR—2)* 2 *(2*J—IR+3))/2.) 0 > A [\J \o LA.) v H H H A(3,2) C*(IR—J—3)*(IR—J—3+2*ZETAZTT)+B*(J*(J+l) l -(IR—J—3)*(IR-J-3)) A(1,1) A(2,2) A(3,3) IRR+I IRR IRR-1 CALL EIGEN (A, VALU, 3, 1) PRINT W31, K31, LTP, J, IRR, ITAUl, VALU(l), E: u) U) u) II II II II II ll 1 A(1,1), A(2.1), A<3.1) PRINT W32, K32, LTO, J, IRR, ITAU2, VALU(2), 1 A(1,2), A(2,2), A(3,2) PRINT W33, K33, LTN, J, IRR, ITAU3, VALU(3), 1 A(1,3), A(2,3), A(3,3) CONTINUE CONTINUE END SUBROUTINE EIGEN(A,VALU,N,M) F4 UCSD EIGEN EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX DIMENSION A(20,20), B(20,20), VALU(20), DIAG(20), x SUPERD(19), 0(19), VALL(20), s(19), C(19), x D(20), IND(20), U(20) CALCULATE NORM OF MATRIX ANORM2=0.0 D0 6 I=1,N DO 6 J=1,N ANORM2=ANORM2+A(I,J)**2 ANORM=SQRTF(ANORM2) GENERATE IDENTITY MATRIX IF (M) 10, 45, 10 DO 40, I=1,N DO 40, J=1,N IF(I-J) 35, 25, 35 B(I,J)=l.0 GO TO no B(I,J)=0.0 CONTINUE PERFORM ROTATIONS To REDUCE MATRIX TO JACOBI FORM IEXIT=1 OO 170 120 NN=N—2 IF (NN) 890, 170, 55 DO 160 I = 1,NN II=I+2 D0 160 J =II,N T1=A(I,I+l) T2=A(I,J) GO TO 900 DO 105 K=I,N T2=COS*A(K,I+1)+SIN*A(K,J) A(K,J)=COS*A(K,J)-SIN*A(K,I+1) A(K,I+1)=T2 DO 125 K=I,N T2=COS*A(I+1,K)+SIN*A(J,K) A(J,K)=COS*A(J,K)—SIN*A(I+1,K) A(I+1,K)=T2 IF (M) 130, 160, 130 D0 150 K=I,N T2=COS*B(K,I+1)+SIN*B(K,J) B(K,J)=COS*B(K,J)—SIN*B(K,I+1) B(K,I+1)=T2 CONTINUE MOVE JACOBI FORM ELEMENTS AND INITIALIZE EIGENVALUE BOUNDS DO 200, I=1,N DIAG(I)=A(I,I) VALU(I)=ANORM VALL(I)=—ANORM DO 230 I=2,N SUPERD(I—l)=A(I—1,I) Q(I—1)=(SUPERD(I—l))**2 DETERMINE SIGNS OF PRINCIPAL MINORS TAU=0.0 I=1 MATCH=O T2=0.0 T1 =1.0 DO A50 J=1,N P=DIAG(J)—TAU IF(T2) 300, 330, 300 IF(T1) 310, 370, 310 T=P*Tl-Q(J—1)*T2 GO TO 410 IF(Tl) 335. 350, 350 T1=-1.0 T=-P GO TO 410 T1=1.0 T=P GO TO 410 IF(Q(J-l)) 380. 350. 380 3’7 M .17 g/ ,2 ./' 1/ ./ J, «’1 380 390 400 410 121 IF(T2) A00, 390, 390 =— .0 GO TO A10 T=1.0 COUNT AGREEMENTS IN SIGN IF(Tl) A25, A20, A20 IF(T) AAO, A30, A30 IF(T) A30, 440, AAO MATCH=MATCH+1 T2=T1 T1=T ESTABLISH TIGHTER BOUNDS ON EIGEN VALUES DO 530 K = 1,N IF (K—MATCH) A70, A70, 520 IF(TAU~VALL(K)) 530, 530, A80 VALL(K)=TAU GO TO 530 IF(TAU—VALU(K)) 525, 530, 530 VALU(K)=TAU CONTINUE IF(VLAU(I)—VALL(I)—5.0E-8) 570, 570, 550 IF(VALU(I)) 560, 580, 560 IF(ABSF(VALL(I)/VALU(I)-1.0)—5.0E-8) 570, 570, 580 I=I+l IF(I-N) 5A0, 5A0, 590 TAU=(VALL(I)+VALU(I))/2.0 GO TO 260 JACOBI EIGENVECTORS BY ROTATIONAL TRIANGULARIZATION IF (M) 593, 890, 593 IEXIT=2 DO 610 I=1,N DO 610 J=1,N A(I,J)=0.0 DO 850 I=1,N IF (I—l) 625, 625, 621 IF (VALU(I-1)—VALU(I)-5.0E—7) 730, 730, 622 IF (VALU(I—l)) 623, 625, 623 IF (ABSF(VALU(I)/VALU(I—1)—l.0)—5.0E—7) 730, 730, 625 COS=1.0 SIN=0.0 DO 700 J=1,N IF(J—I) 780, 780, 6A0 GO TO 900 S(J—1)=SIN C(J-I)=COS D(J—1)=T1*COS+T2*SIN T1=(DIAG(J)—VALU(I))*COS—BETA*SIN T2=SUPERD(J) BETA=SUPERD(J)*COS D(N)=T1 DO 725 J=1,N J\ \K K. A. K '\ ‘K‘ K*:K'"Ki 122 IND(J)=O SMALLD=ANORM DO 780 J=1,N IF (IND(J)-1) 750, 780, IF (ABSF(SMALLD)— ABSF(D(J)))780, 780, 760 SMALLD= D(J) NN=J CONTINUE IND(NN)=1 PRODS=1.0 IF (NN—l) 810, 850, 810 D0 8A0 K=2,NN II=NN+1—K A(II+1,I)=C(II)*PRODS PRODS=—PRODS*S(II) A(I,I)=PRODS FORM MATRIX PRODUCT 0F ROTATION MATRIX WITH JACOBI VECTOR MATRIX DO 885 J=1,N DO 865 K=I,N U(K)=A(K,J) DO 885 1:1, N §7SAA(I, ,J)= 0. 0 DO 885 K=1 ,N A(I, J)= B(I ,K)*U(K)+A(I,J) RETURN CALCULATE SINE AND COSINE OF ANGLE 0F ROTATION IF (T2) 910, 9A0, 910 T=SQRTF(T1**2+T2**2) COS=T1/T SIN=T2/T GO TO (90,650), IEXIT GO TO (160,910), IEXIT END .2: ..F/ .2 w; .2’ ,2" 2" 22’ .3/ APPENDIX II PRINTOUT OF ANALYSIS I This appendix contains the output of one computer run. The self—consistent Analysis I discussed in the text is used. The numerical values of the molecular parameters are those given in Table 6.2 for Analysis I. The energies in cm_1 are given in exponential form; for example, 1.234567+OO2 = 123.4567. 123 7 7 120 "I " N I. ’7 7" ' P . 1 11, “11111—11111 ,_ , 1 , ,__ _, 1 K/ E(J.KoLT) K LT J R TAU E(J.R.TAU) C(+1) C(0) C(31) 11 , 1 1 1 ,711111K_1#.1/’. 6.745760'0'000 £1 1 1 '2 1 607457609000 1.000 1 1 ,1 1 111 1111 1 1_11-./"‘ 2.3153350001 91 0 1. ’1 1 2031535752001 10000 090.03 1.7030000000 131111 1 2112,10?O§§82*000 -0.003 1.000 ‘32 50119840*000 1 1 1 0 1 19587353*001 0.0105, 1.00.0 0.0051 1 /’ 108872850001 0 0 1, 0 2 501198401'000 0.707 0.000 00,707 5.119050¢000 :1 21 1 0 3 5.1191690000 0.707 70.007, 0,707 ,2 ,2,§;5335+001 1 0 1 11,1 2.315357+001 1.000 0.003 12 1.703600+000 0 *1 1 1 2 19703338201000 ”0,003 1.000 '6.745700¥000' 1’21 1 2 0.74570000007"12000W'V "WWWW' ’7 7 ' p 2.305352$001” .2 i 2 -3 1 2.365352-001 1.000 3.919005+001 .2 ”0"”?’ 12 1 3.9197172001 1.000 0.003 1.015290+001 21 1 2 ~2 2 1.0152600001 ~0.0007 1.000 5.110500+000 0 1 2 ~1 1 2.035750.00; 0.000 1.000110.01011111 2.035535+001 .1 0 2 21 2 2.0400110001 0.000 0.016 -1.000 12304919212911122171 2. 11 3 511!Ql592999 1.000 -0.006 v0.000 8.527040+000 i 1 2 0 1 2.2070920001 0.009 1.000.10.009, 1 3 ,,2 2,207.35.001 0 0 2 0 2 6.5270402000 0.707 0.000 ”0:707 8.527040+000 .1 21 2 o 3 0.524970«000 0.707 -0,012 0.707 1111_11/ 1,12,..9‘110119021MLL 2 11 2 .1 11 2.1.6.3152258201011119 .016111 . 00 0 0 . 0 06 / 2.6355350001 1 0 2 1 2 2.0400110001 1.000 ~0.016 v0.000 5.110000+000 .1 1 3 5.1101400000 0.000 ~0.006, 1.000 7,474,,» 3.919685*001 2 0 2 2 1 3.919717o001 1.000 0.003 1 1 11 _ / 1.0152962001 1 -1 2 2 2 1.0152040001 «0.003 1.000 2.3053522001 2 -1 2 3 1 2.3053520001 1.000 5.072328+001 .3 i 3 ~4 1 5.0723200001 1.000 ’5 7 A 7’” 6.540235+001 a3 0 s as 1 6.540273+001 1.000 0.003 ’ 11.?1§Z§fi§3109;,102 1 ,3 7.3 2122976399099},3Q19931101200111111111111___1,/ 1.5203700001 .1 1 3 .2 1 4.5053090001 0.000 0.004 0,990 ,7, 4.399985+001 .2 0 3 .2 2 4,399309+001 0.005 0.998 90.064 ’ 4.5045522001 .3 :1 3 -2 a 1.520295¢001 1.000 -0.005 00.000 111-022116108001. 11 £1 ,11 3 '1 1 3a11163832001111010091 1.00.01 11010211W_1 .2“ 3.115035c001 .1 0 3 e1 2 2.550034«001 0.000 0.0 7-u1.000 '* 2.5512480001 .2 01 3 -1 3 1.0220200001 1.000 ~0.0oa 00.000 E‘JIKILT’ K 1.3037040001 1 1 21682185+001 0 0 19363784‘001 E1 '91 2.551240+001 2 50115835*001 1 1.022160~001 0 . 0 504562.001 3 1 4 3999§§10011112 0, 1. 5263760001 1 .1 6,5402350001 3 0 2.076432«001 2 .1 5.0723201001 10 91 0.7955040001 .4 1 1.017099.002 .4 0 5.7537680001 .3 1 3.557572.001 ’02’ 1 7.180635900l .3 0 0.1451301001 .4 .1 2.207a1e+001 .1 1 5.0403859001. :21 0 5.205992+001 .3 ~1 1.7035000001 0 1 3.756235+001 =1 0 3.232080+001 .2 .1 2.045224+0017 1 1 3.3281859001 0 0 2.045224o001 .1 .1 3.232000o001 2 1 3.75623590017771 ,0 1.703600*001 0 «1 5.205992+001 0 1 5.0403850001 2 0 2.207016+001 1 .1 8.1451300001W' 4 1 7.100035+001 3 0 3.557072+001 2 .1 &‘ bb ‘9 A «th bib. 55 Ah DOD 0 H+‘H§ 95 a4 '4 93 '3 '3 .2 927 '2 «1 "1 —1 Ht‘# 0:: MMM {AMH 1.000 1.25 ’ " *0 ”l“ 1111 11111 ___ 11w/ R TAU ECJvflaTAU’ C(‘X’ 6‘03 C‘Nl) I 216882090001 0.013 1.000 0.013 ‘ 1.3637049001 10.207 0.000:90.20711 110/ 103633609001 0.707 «0.018 0.707 V/ 3.110300»001 0.027 1.000 0.000 , 295508349001 1.000 70.027.10.00111111111.E 1.022020o001 0.000 -0.005 1.000 , 4.5053091001 0.990 01004 0.000 1111990099001 0.064 —0.990 s0.005 ./’ 1.5202959001 0.000 ~0.005 1.000 6.5402731001 1.000 0.0007 7 (VAiW’ 7’7 . 2,375394.001 «0.0031 1.000 11111112/ 5,0120200001, 1.000 a.795500.001 1.000 1.017700+002 1. 000 0.003 111111111 5.7507209001»-0.0031.000 0.1493303001 00.000‘“0.014 1.000 7.1805329001 0.005 ,1.000~e0.010 1,,11111 / 3.5577020001 1.000 =0.005-so.002 , / 5.2674559001 0.001 0.079 0.997 5.0090911001,101007 0.997 ~0.079 ~// 202076679001 1.000 «0.007-s0.000 3.757265¢001 0.011 0.9997 0.009 7‘47i_7 . 3.2310009001 0.001 0.039 20,999, 11111./ 1.7033720001 1.000 .0, 011 —0.000 ,2 3.02091090017 0.017 1. 000 0. 017 . 2.0452249001 0.707 0. 000 ~0.707 1 771:1“ 2.0444951001 0.707 -0. 024 0.707 3.7572659001 0.039 0.999 0.011 . 3.2318660001 10,9991101033110100111 _11/ 1.7033720001 0.000 -0.011 1.000 50267435‘001 00997 01079 00001 77* 5.0390910001 0.079 20.997 20.007 11111 2.207607o001 0.000 -0. 007 1. 000 0.145330.901' 1.000 0. 014 0.000 ‘ 7.1805320001 0.014 .1, 000 -0.005 11 111-~ 3.5577021001 0.000 -0.005 ‘ thiiif??mm” 100176990002 5,7537ae+001 8.7955051iaim\0 19353488+002 1.4829930002 90647304+601 6.6066663001W 1.097749+002 192721920D02 4.4096720001 ¥Z+9811353001fl, 8.996936'001 39059616‘001 5.8408850001 6.1177929001 2.555400*001 4.5567350001 4.084488o001 2.897024+001 411285859301“ 2.8970249001 4.084486tn01 4.5567350001 2,555400‘001 6.117792¢001 5.840885¢001 3.059016.go1 6.9969360001 7.9811350091 4.4096720001 1.272192*002 6.6055680001 1.482003+002 9.647304‘001 LT 4 0 3 91 4 11 a5 1 95 0 m4 1 43'W1 :4 0 95 $1 a? 1 :3,,0N 94 :51 a1 1 l2 0 93 91 D 1 91 0 :2 81 1 1 ,0 0 31 91 2 1 1 0 U '1 7 s 1 2 O 1 ‘1 4 1 3 0 2 *1 5 1 4 0 3 '1 s 0 4 e1 5 91 UYU'IUI 4 4 mm JIUI 4 4 5 '6 £5 ll'55 .0' I4 '4 =3 '3 ”3 —2 ~2 .2 '1 '1 91 D D O H+Aw (41010! NNM bbh UIUI 1 2 1 (“NH 63M“ “NH CAM“ “NI-i GIN” NH 126 7 7 Ag-V , A. , , ,V,Wfinflm,fl-m#fi ##Jx/ J R TAU E(J.RaTAU) C(+1) etc) 0001) , ,, ,,UW W,,H,,,‘“_Vig__iv/ 1.0177030002 1.000 0.003 , 5.75372600fl1”90.0037 1.000 ,,,,,,,, __4#w/ ,,0.7055000001 1.000 ”2’ 10353488’002 10000 , 7 7). _i'.’ J 1.4629980002 1.000 0.003W , 4,fi_4fi,gv/' 9,647259‘001 «0.003 1.000 , _. wu_m,-- . v/ 1.2722050002 0.000 0.009 1.000 . 1.0977450002 00.005- 1.0uangg,oogA44¥m___w/ 6.6054720001 91.000 0.005 0.000 ! 8.997350*001 0.000 70.020 Ni.000 “7‘7 ,7 ,. 9 8.0 a 70000 1 7, ,0. 00144400400020- 4.409515.901 1.000 -0.007 ~0.001 0.1190050001 0.001 0.005 0.096 iginhg‘ 59839107¢001 0.009 0.996 £00585 WW,, 3.0593010001 1.000 -0.009 0.000 740536465066i 70.013H‘0.990 0.054 . 0.0031070001 0.001 0.054 .o.999 —/ 2.5550500001 1.000 ~0.o13 0.000 . 4.129023+001 0.021 1.000 0.021 7_h“ , 2.8970200001H-0.]070.0.000M10+101__m_____v/ 2,8958860001 00.707 -0.030 0.707 ‘ 4,550407«001 0.054 0.990 0.013 "'7 Wk*' J 4.0031070001 0.999 —0.054 00.001W, r 7000/ 2.5550500001 0.000 ~0.013 1,000 4 , 7, ,Nr, , ,7,“WH,-_+W_- ,g/ 6.1198050001 0.996 0.005 0.001 _ 5.0391070001 0.085 -U.996 no.0qu ,,, A.' 3.0593010001 0.000 -0.009 1.000 8.9973500001 1.000 0.020 0.001 ‘ 7 I 98 08 7 B ’9 0 U1 0 a 020 '11.. 00.0 j,m_u 9,0. 01,~__5_../ 4.4095150001 0.000 -0.007 1.000 1.2722050002 1.000 0.009 0.002 ‘ 1.0977450002 0.009 -1.000 ~0.005 0 696054720001 0.000 —0.005 1,000 ‘ . , ,,, , 7 7. n .m» .m ,"‘____m___:./’ 1.4829980002 1.000 0.003 906472590001 -0.003 1.000 ,0‘ 1.3534000002 1.000 ... “"EIJTETC?TWNAVRW"LT 1.929040+002 .6 1 2,049908+aoz .0 19455704’002 25 1,066946+002 .4 1 1.579054+002 .5 0 ,1v831490*00?, '0 .1 7.627ZZQt00;W.:$., 1.1933090002 .4 1.3744089002 .5 . 5.4310329001 92 1 8.9417350001 .3 0 1.0019l03003, :4 91 4.0817769001 .1 1 6.8014850001 .2 0 7.139952ooo1 .3 e1 3.5775000001. .0 1 5.5173350001 .1 0 5.106648*001 .2 .1 3.9191849001 1 ,1 590892859001 0 0 3.919184.001 -21 :1 5.1066480001 2 1 5.5173350001 1 0 3.5775000001 0 .1 7.139952+001 3 .1 6.8014650001 2 0 4.081776t001 1 .1 1.0019109002 4 1 8.941735.oo1 3 0 5.4310320001 77777 2 :17 193744089002 5 1 1.1930090002 4 0 7.6277289001 3 e1 1.8314909002,,767-1 1.5790540002 5 0 1.0669469002 4 .1 2.0499080002 6 0 1.4557040002 5 91 out?» J 00:) oop- ooo» 030 000 (300 000 090 000 00 95 85 75 11 .4 .4 '3 H3 '3 «2 ~2 .2 vi -1 -1 bbb aura MMM PHP‘ 00 “mm @009 “50-2- {EMF GNP (AMP MN“ GIMP ‘UMH GIMP (NMH {AMP (AMP / 127 . 7 . --Frrw,hmwflw1,,u-AMWM_m 10/ R 100 EthRaTAU) c¢+1> 0(0) 0001) ~ , , , , ,, ,1m11_v/ .7 1 1.929046‘002 1.000 , ,7 i 7177/" *6 1 20049913‘002 10000 09003 1. 4556999002 90.003 1.000 ,/ 1.831502‘002 0.00,0 090,07 1,. 000777777111_2."/ 1.5790529002 0.004 1.000-90.007 1.000930300gWe1.000 70.004 0.000 .x" ,123791321002 01000 02°13 14000 // 10193796‘002 00006 9000 ‘09013 7.6275650001 1.000 -0.00§ ’0100111, NW, fiVK" 1.0019750002 0.000 0.025" 1.00011,,1111./fi 8.9413249001 0.008 1.000 90.025 ‘ 5.4015310001flfl1.000 -0.008 «0.000 104 7.1424250001 0.001 0.005 0.996 _..J‘ 60799358‘0Q1 00011 01996 309065 :0 4.0814320001 1.0007-0.01; a0.000 4N_j ‘ 505201000001 ”0.010. 0.997 0.074 I! 5 1043821001 0.002 0.074‘eo,997 3.5770540001 1.000 ”0.010 .00000,., 71-111/ 5.0909619001 0.02? 0.999. 0.0277,,,, -11-? 3.919184*001 0.707 0.000 90,707 3.9175089001410.707710.038 0.707 ,/ 5.5201039001 0.074 0.997. 0.01577,,1,,_1x” 5.1043870001 0.997 90.074 90.002 3.5770540001 70.000 -0.016 1.000 , 1.1-,V/’ 7.1424250001, 0.996,10-0&§M_0.001-_~_____.// 6.7993589001 0.085 -0.996 50,011 4.0814320001 0.000 ~0.011 1.000 ,, 1.001975*002 1.000 0.025 0.001 8.9413240001 0.025 -1.000 “0.008 .51451593‘001,109000 '0-008 1.000 _____1// 1.3744379002 1.000 0.013 :0.001 7,,11,WM.“ 1.1937969002 0.013 -1.000 ”0.006 79627565‘001 00000 "09006 11000 .108315322092 “1.000..01000w10+0flflh¥___m__fi./ 1.5790526002 0.007 ~1.000 00.004 1.0669360002 0.000 ~0.004 1.000 7 -H_“‘..‘ 2.0499130002 1.000 0.003 1 _‘ 194556990002 -0.003 1.000 00 NH .W , i 128 .i , , W LAW , ... _-____._______-_.h~-,_ ... -.- . ,. ..., , , ;// E‘JoKpLT) K LT J R TAU E‘JaflnTAU) C(+1) C(O) C(nl) . ,fl. . .- . .- . W fl_im_g__,4AM/ 1.929046‘002 6 91 6 7 1 1.929046i002 1,000 ,. , W ,H.- .444,WWM// 2.606223*002 2? 1 7 58 1 2.6062239002 .1.000 _ ”MM__.,W.. -fl HWLLJM_W. ,/ 2. 718443200 2 97 0 7 '7 1 2.718448‘002 1.000 0.003 2.048298o002 .6 1 7 .7 2 2.0482939002 -0.005 1.000 W W--. W, 1.5749509002 n5 1 7 n6 1 2.4924190002 0.000 0.005nfi1,000__1._ L.,/ 2.161979*002 :6 0 7 -6 2 2.1619799002 0.004 1.000 £0,005 20122.10.230l1_7-’__ 31.31. ,7... '6 ,§,,L~§Z§9fié:fl?_ 11.1000 0.004 0, 000 ,/ L.;86198¢002 .4 1 7 .5 1 1.9502660002._0.000 0.009, 1, L00 “_.L‘_g, 1.6911249002 55 0 7 *5 2 1.691117fi002 0.006 1.000 "0:009 1.9507429002 96 51 7 95 3 111861829002 1 000 "99906w'00901W.WW,___ L-A_, 8.820248*ODL s3 - W 2 ,05.1 145201059002 0.000 0.015 1.000 1.305879+002 s4 0 7 '4 2 1.305858fi002 0.008 1.000 50.015 1.493660+002 :5 s1 7 '4 3 8.8200050001 1.000 -0.0087!0.0007W,_ 6.624352*001 =2 1 7 03 1 1.12125$¢002 0.000 0.028, 1.000 1.006244+002 a3 0 7 '3 2 1.006188fi002 0.010 1.000 30.028 ...... - 0.2.12.1__1.§Z!0.QZ.. 39.3.1”, 7...!3 3_,_6_26210.1,2909;_.__!...0_,.0__0 -0.010 90.001 5.2742969001 91 1 7 92 1 8.3353059001 0.001 0.083 ,0.997 . W,,L_//' 7.9221850001 92 0 7 '2 2 7.919830‘001 0.013 0.996 90.083 8.3324720001 :3 =1 7 a2 3 5.273819i001 1.000 "0'013.500000..1-,m1Lw/' ,1.??00§01001WLW0 H1. 7 v1.1 6.0424131001._0.0191,0.995- 0.103 #/ 6.638035¢001 I1 0 7 '1'2 6.295492‘001 0.002 0.103 60,995 6.2991680001 «2 91 7 .1 3 4.7693790001 1.000 -0.0197 0,0007finfi_fi74// 5.1117040001 1 1 7 0 1 6.2123640001 0.033 0.999fl,0.033.,, ,,_W,/ 6.2099850001 0 0 7 0 2 5.111704t001 0.707 0.000 '0.707 5o111704t001 .51 91 7 0 3 5.109325000LWW02706-:03016_-01100____ 1// 6.2991680001 2 1 7 1 1 6.6424139001 0.103 0.995. 0,019WW,WVWWWKF 6.6380350001 1 0 7 1 2 6.295492t001 0.995 90.103 90.002 4.7700800001 0 =1 7 1 3 4.7693790001 0.000 90.019 1.000 .043324229001 . 3 .1 7 .2.1 0.3353059001 _0.992. 0.053. 0. 001 1. ____1// 7.922185¢001 2 0 7 2 2 7.9198309001 0.083 '0.996 '0. 013 1.121162*002 4 7 3 1 101202510002 1.000 0.028 0,000 1.006244i002 3 7 3 2 1.006188fi002 0.028 ‘1.000 ”0.010 6.6243520001. 2 7 3,3 6.6240129001. 0-000 '01010-¢1+000M___WW__W,/ 1.4936600002 5 1 7 4 1 1.493705‘002 1.000 0.015 '0.001 , w. ‘-.” 1.3058790002 4 0 7 4 2 1.305856+002 0.015 ‘1.000'ao.008 8.8202480001 3 e1 7 4 3 8.820005t001 0.000 90.008 1.000 1."..w‘w'“ ~E(J.K.LT) LT 1.950742.002 a 1 1.691124.002. 5 0 10186198¢002 4 91 2.4924099002 7 2.161979.002 5 1.5749560002 5 . 2.71844300027 7 o 2.04829010021L10-21. 2.6062230002 7 .1 0.305021.002 .0 1 3.4aas9a.002um.0 0. 2.742511.002 .7 1 2.1845860002 .6 1 2.046523.002 .7 0 3.254947.002 -.a .1 1.711244+00é”.5771 292900590002 96 D 296286976002 E7 91 1.3224860502 .4 1 1.019204.002.-.5 0 2.0870300002 .6 .1 1.018313.002 .3 1 1.433050.ooz .4 0 1.6299480002 .5 .1 7.907232.001 .2 1 10134324‘002 :3 0 1.25745000OZ n4 '1 6.637176.001 .1 1 9.202905.001.-.2..0 9.095352.001 .3 -1 6.132960.001 0 1 7.910035.001 .1 0 7.6620480001 .2 .1 6.47458400017 1 1 7.490705.001 0 0 5.474504.001 .1 .1 L l qu§ any WV‘ ’3! -3 “D I 000; 01070! he hyu -9 .HQ -0 .7 -7 .6 -6 es -5 .95 '5 '4 a4 Id “'3 '3 .2 I27 -2 -1 «1 “Mi-5 “NH H “NH (AMP CAN!” ’ ’* ’W*fi 129 i R 00010701§.¥}00 C(91) 0(0) C(11) '1 . , . 1 . ,_LW,_WJ/ 1.9507660002 1.000 0.009 0.000 1.0911170002 0.009 -1.000 ~0.0051 “LLLLVa 1.1001020002 0.000 ~0.006 1.000 ;/ 2.492419.002 1.000 0.005 0.001 2.151979.002 0.005 -1.000 .0.004w , 1_,1- 1,57494o.002 0.000 -0.004 1.000 2.71044e.0027 1.000770I00047 7 m ’ ,210402930002,:0.003.141000_. ,/ 29606223‘002 1.000 ,LW‘JW’ 3.305021.002 1.000 7 147 0 3.480604.002w_1-0001H0+003“m1_-.4_.~‘ , 2.7425060002 90.003 1.000 :4 3.254956.002 0.000 0.005 1.000 ..1_1,§ 2.040525.002 0.004 1.000 =0.005 -.WW_#; 2.1845750002 -1.000 0.004 0.000 . 1 . W W ., W._ ... _W__.,,W, A 2.6287180002 0.000 0.008 1.000 2.290055.002 0.005 1.000 90.000 .,1,» 1.711227.002 1.000 -0.005 no.002 2.0870670002 0.000 0.012 1.000 7 47" 1.819.193.0002 "0.007.. 1.000 «.01019 / 1.322402.002 1.000 -0.007 ~0.002 1.630010.002 0.000 0.010 71.000 "7' 1.433930.002 0.009 1.000 -0.010 1 , 1.018279.002 1.000 ~0.009 -0.001 7. . .n. . _. -...1 _.11 -,.-_._., WA,_ / 1.257564.002 0.000 0.030 1.000 1.1342560002 0.012 0.999 .0.030 1 » 7.9867720001 1.000 -0.012 0.000 9.690470.001 0.001 0.079 0,997 9.200505.001 ”0.010_~0.091w.o,020_~__ ,/ 6.6365380001 1.000 -0.016 a0.000 7.925975.001 0.023 0.988 0.151 7 7777 7.055851o001 0.004 0.151 no.985 , 6.132017.0o1 1.000 -0.023 0.001 7.404000.0017 01000 70:030m73:0337__- ' 6,4745840001 0.707 0.000 no.7o7 , 6.4712820001 0.706 «0.057 0.700 ODD GIMP , n I O V O u I o u C O O ' I ‘ ' . u u 1 . . . . _ . . _ . . . . . . . . . . u . _ . _ _ _ _ _ _ _ _ . w _ _ _ . _ . _ _ . . . . . . . . . . . . . . . . . . . . . _ a . V . 1 C 5 . O : 'EtJIETE?3”“ 7.6020409001 7.9185559001 6.1829009001 9. 395359? 001“; 9. 20298590Q§ 6. 6371760001 .8299409002 1,4339503002 1.0183139002 _EIOS7HSBIEHE" 1.8192049002 193224869602 2. 6286976002 2, 2900599902 1:7112430002 2.846523¢002 2.184586t302 3.4885969002 207425119O02 3.3850219002 4.2654389002 4.3603739002 3.5383459002 2. 8950359002 .31 6326889002 0.1191089002 293379109002 2.990613*002 394082719002 1.8645680002 2.4341493002 2.7820219002 0 #310031 50! Axno’ 0V0 uni '9 a9 '8 a7 99 :6 H7 98 7,5 «7 wk“ (“EMA 01.0“ VLT‘V 9:3» PD '1 HCDH '1 mcnar J 8 8 8 O‘OO '30! man» man: ,3! 000 ‘000 5000 130”"7“” , , 1 1... . _,111,1 1/ R 710 514.0.1002 01+1) 0(0) 01:1) , 9,, 1 ,,9 ,1, , ,_n,,,1, , .111_1,/’ 1 1 7.9259759001 0.151 0.900 0,023 1 2 796558519001 0 998 "Q9159,?Qa§9£ 11.1,? 1 3 3.1320179001 0. 001 90.023 1.000 . ,,,,_ 1/ 2 1 9.6984709001 0.997 0.079 0.001 2 2 9.2005059001, 0.079 90.997 ~0.013 _,,, 3 1 1.2575349002 1.000' 0.030’”0.001'_ _V ,-§12 1.1342509002 0.030 ~0.999 90.012 g/ 3 :5 7g9867’2‘001 0.000 ”09012 1.000 4 1 1.0300109002 1.000 “0.010 ’0.001W _— 'X 4 2 1.4339303002 0.010 91.000.90.009 1,1 4 a 1.0102798002 0.000 90.009 1.000 . 5 1 210090372002 1.000 0.012 0.001 ':1 5 2 10819191‘002 0.012'-;900Q -0.002 __fl)‘ 5 3 1.3224829002 0.000 -0.007 1.000 .0 7 , ,,,i 4* _.1fiyi e 1 2.1207103002 1.000 0.008 0.000 0 2 2.2900559002, 10.008 91.000 -0.005 ,x a 3 1.7112279002 0.000 -0.005 1.000 7 1 3.2549509002 .000 0.000 0.000 7 7’ 7 2 20846525‘002 00005 “10000 'QLQO4 41‘,/ 7 3 2.1045751002 0.000 90.004 1.000 . 1---_ .11_W211_- ,/ 0 1 3.4886048002 1.000 0.003 0 2 2.7425069002 -0.003 1.000 , , .-I 9 1 3.3050213002 1.000 , ,11-/ '10 1 4.26545309021119030 1 1,11w_._______fi// '9 1 423603799002 10000 02002 1 “11*; .9 2 3.5303409002 70.002 1.000 -0 1 4 1191149002 0.000 0.004 1.000 '8 2 3:632691‘002 VQaQD4 1.090fl1fliflgfi¢ ‘______// «0 3 2.0950249002 -1.000 0.004 0.000 ' -7 1 3.4082909002 0.000 0.007 1.0007 7 1m 97 2 2.9905129002 0.005 1.000 50.007 9 _9 -7 3 2.3370929002 1.000 -0.005 90.001 .0 1 2.7820539002 ”0.000” 0. 010 1.000 ; 91 2 2.4341419002 0.007 1. 000 -0. 010 __7 -1 3 1.034543.002 1.000 ~0. 007 90. 001 E‘JchLT’ .4750109002 9632940002 .1716370002 .57804§*002 7 O 1 1 , . 2. 2403549002 1 1 1 832729002 ’9.52047é9001 .1 . 2 7 811990021- 194107740002 8.1704189001 1.0643899002 1.1228598002 7.6662009001W 9.3597350001 9.1952889001 800078249001 8.931685*00L 690078249001 951952889001 9.3597359001 7.6662009001 1.1220599002 1.0643899002 8.1704189001 1.4107748002 192784143002 9.5204729001 197832729002 195780489002 191716379002 2.2403549005”" 1.9632949002 194758100002 297820219002 2.4341499002 198645680002 3.4082719002 2.9908139002 20337910‘002 Di—‘M uro~w A\noi cuaxn OVO whim; Mina HCDH HCDP 0’00 000 0390 OO‘O 000 0'00 000 000 6%0 000 «5 95 95 u;‘w 94 -4 «3 !1 -3 52 .2 '2 ‘1 -1 91 95‘” 0010 «mm LAO 010i“ POM” \‘l‘J‘J 0 0- 0 MAMA‘ an)» (AMP “NH HMO-D “NH “NH GIMP U‘MH GNP 0.000 '0-005 131 12.1 * 4’442'7milv #9"fzu 514.9.7107 0(+1) 0107 00:1) V ,, , , , , . 11 12,4gfiggfix/ 2.2904059002 0.000 0.014 1.000 1.9832769002 0.000 1.000,:0.01A 1,911__1/r 1.4757779002 1.000 —o.008 «0.000 "115333529002 0.000 0.020 1.000 V 1.5700149002, 0.011, 1.000.90.020 11,11 __, 1.1715923002 1.000 -0.011 90.000 1.4109119005 0.000 70.032 0.999 , . 112203399002 0.014 0.999 .0.032 , 9.5190709001 1.000 90.014 0.000 1.1231949002’ 0.001 0.0757 0.9977'7W’W flfi” 19064137‘002 09018 09997 '01075,, 0.1695049001 1.000 ~o.016 0.000 9.370590300ifl 0.026 0.938 0,248 9.1836929001 0.007 0.249 '0.969, 7.66‘958‘001 19000 "09°27 00°01 0.9302183001 0.049 0.999 0.049 4 ,5.0070299001.10.702,-0.000 -0.707 8.0032919001 0.705 —0.070 0.705 9.3725743001 0.240 0.989 0.023 7’ i‘ 9.185692‘001 00969 "09248 999098 W; , *1, 7.8649599001 0.001 «0.027 1.000 ,, . ,, --- ,.,N.U,1,m- ,/ 1.1231949002 0.997 0.075 0.001 1.0641379002 0.075 ~0.997 -0.010, , .7 5 0.109504.001 0.000 -0.018 1.000 1.4109119002 0.999 0.032 0.000 4’ ‘ 1.27033690021,9.992.:0392913040191. , 9.5190709001 0.000 -0.014 1.000 197833529002 1.000 0.020 0.001 f 1.5700193002 0.020 -1.000 -0.011 1.1715929002 0.000 90.011 1.000 2.2904059000 1.000” "0‘.”0'1IW‘0VIOWEY— h” 1.963276‘002 09014 '19000 80.005 7 _ 1.4757779002 0.000 -0.000 1.000 2.7020539002 1.000 0.010 0.003 ‘2 2.4341419002,,0.010.91.000fis01001_ __ , 1.0845439002 0.000 -0.007 1.000 3.4002903002 1.000 0.007 0.003 4‘ 2.9906129002 0.007 91.000 90,005 .1 2.337392.002 132 _1___m“,11 1 , 7 7,4mur,1-m_, ;/ EtJaKgLT! K LT J a 100 E 010: 01-1) , , , , ,, , , ,1 wufiwgg__fi/r 4.1191060002 9 1 9 0 1 4.1191140002 1.000 0.000. 0.000 3.6326680002 0 0 o 0 2 3.6326910002 0.004 91.0001-0,004,1,1.1111/‘ 2.895835+002 7 .1 0 a 0 2.095524¢002 0.000 a0.004 1.000 1 _1111111. . 7 ,7. ., “11111 11111‘_ #/ 4.3003730002 9 0 9 9 1 4.3003790002 1.000 0.002 3.5303450002 a -1 9 9 2 3.5303400002 -0.002 _11000 , 4M, 1x! 4.205430o002 9 -1 9 10 1 4.2654380002 1.000, , , , 7, W111,1__,/ 5125211010021110111 10 011117512124700002 1.000 ,/ 5.333700+002 :10 10 a10 1 5.333774¢002 1.000 70.002 , . ,H71_441»* 0 4.4357960002 a9 1 10 I10 2 40435793fi002 I'0.002 1.000 3.7007050002 .0 1 10 -0 1 5.0040920002 0.000 o§004 1.000 ,11520175:0021139 0,10 -9 2 4.520970200211010011 1,000 an,004 5.004304.002 :10 .1 10 .9 3 0.7036900002 ~1.000 0.004 0.000 3.0661950002 .7 1 10 .0 1 4.2894340002 0.000 0.006 1.000 7 » _‘—‘ 3.7927ss«002 .0 0 10 -s 2 3.7927eao002 0.005 1.000 -0.000 W ,,_,11t1 4.2894660002 .0 .1 10 «0 a 3.0661780002 a1.000 0.005 0.000 0 ,_W 1,1",,,1 ,7 1 ,.0 1",._ m_ #2 2.500270¢002 .6 1 10 -7 1 3.570601o002 0.000 0.000 1.000 ‘ 3.150713+002 .7 0 10 -7 2 3.1507090002 0,006 1.000 ~0,0on N 7,” 3.573031.002 ,8 .1 10 .7 0 2.500245.002 1.000 *0.006 ~0.001 2.0349230002 .5 1 10 -0 1 2.9524250002 0.000 0.011 1,000 2.59424900027 =0 0 10 n6 2 2.5942380002,10.0081M1.000130+014m_______M/’ 2.9523810002 :7 91 10 -e a 200348950002 1.000 -0.0087'0.002 1.646170t002 :4 1 10 95 1 204107806002 0.000 0.015 1.000 _ 2.1253940002 a5 0 10 '5 2 201233730002 0.010 1.000 '09015 , .gmx’ 2.410714‘002 n6 '1 10 -5 3 10646126‘002 1.000 '0.010 .00000 , 7, 7 , , .1. m “WWW“1WV___1___flJ/ 1.3419970002 IS 1 10 '4 1 11953730‘002 0.000 0.021 19000 ‘ 1.7381480002 I4 0 10 -4.2 1.7381090002 0.012 1.0007'0.021 w ,wr” 1,953632‘002 I5 91 10 04 3 1.341939i002 1.000 “0.012 '00000 1.1224070002 :2 1 10 .3 1 1.581294d002 0.000 0.034 0,999 V1.4385150002 :3 0 10 -3 2-1.4384309002 0.016 0.99941010341__ M/' 1.5811340002 H4 '1 10 v3 3 10122330‘002 10000 90.015 '0.000 908740160001 I1 1 10 '2 1 102935720002 0.001 0.071 00997 1.2244690002 :2 0 10 -2 2 1.224243t002 0.021 0.997 90,071 1.293219*002 I3 I'1 10 '2 3 9oB72951¢001 1.000 “0.021 0.000 9.369000‘00i 0 1 10 .1 1.0960730002 a1 0 10 .1 10089389t002 :2 I1 10 '1 190990030002 0;027 0,005 70}003“" 100871210002 0.010 0.402 20.876 11 9.368184¢001 0.999 -0.032 0.001 HMO-5 , 2 2, ,-2 -2 22.24/ 135 _mw mm _ -, 7, ,Vfl,wfiqupfi 22___ #x 5(J.K.LT) K LT J R 710 210.0.1100 c<+1> 010; 00.1: , 9.7114240001 1 1 10 0 1 1.0530909002 0.061 0.996 0,061 1.0502089002 0 0 10 0 2 9.7114249001 0.707 0.000 00.207 , .J» 9.7114249001 .1 .1 10 0 a 9.7052000001 0.704 ~0.0ao 0.704 122 g/ 1.0a9aa9o002 2 1 10 1 1 1.0990009002 0.403 0.075 0.027 1.0960739002 1 0 10 1 2 1.0871210002 0.870,~0.402,00.0102,2222__,/ 9.3090009001 0 .1 10 1 a 9.360104.001 0.001 .0,032 0.999 '1.293219.002 ' 0 1 10 2 1 1.293372;002'”02033”W0.071 0.001 ’ 1.221102200221121 0.10 2222.1.221250100212010112:01221,- 9.8740160001 1 .1 10 2 3 9.8729510001 0.000 -0.021 1. 000 1.5811349002 4 1 10 s 1 1.501294.002 -0.999 70.0307 0. 000' 1.438514o002 3 0 10 3 2 1.4304309002 0.004 ~0.992 :0. 010”. 1.1224070002 2 -1 10 0 0 1.1223309002 0.000 ~0.016 1.000 1.953632000077750 1 10 0 1 1.9537309002'“1.0009M0.021 0.000 1.738148¢002 4 0 10 4 2 1.7301090002 0.021 -1.000 .01012 1.341997+002 3 a1 10 4 3 1.3419390002 0.000 -0.012 1.000 2. 410714.002 0 1 10 5 1 2.410700+002 1.000 0.015 7 .000 2.123394.002 775 ,0 10. s 272,1233730002 0.015 -1.000 -0.010 1. 6461700002 4 .1 10 5 3 1.6461269002 0.000 20.010 1.000 2.952001+002 7 1 10 a 1 2.9524259002 1.000 0.0117 0.000 07" 00’ 2,5942490002 0 0 10 6 2 2.5942380002 0.011 —1.000 00.000. 22,,_2,/ 2.034920+002 5 -1 10 0 a 2.034099o002 0.000 ~0.000 1.000 ,., ._ ,mfl-. 1-1222221,_22 ,/ 3.5786310002 a 1 10 7 1 315786610002 1.000 0.008 .002 3.1507130002 7 0 10 7 2 3.1507099002 0.008 ~1.000 10.000, ,2 n2_ , 2.508270+002 0 e1 10 7 0 2.5002450002 0.000 -0.006 1.000 4.2894669002 9 1 10 0 1 4.2094001002 1. 000 0.000 0.000 ‘7 4L0! 3.7927880002W” 07 0,10 0_2 3.2227069002 10.000 -1.000 -0.005 _,/ 3.066195+002 7 s1 10 0 0 3.0601709002 .000 -0.005 1.000 5.004004.002 10 1 1n 9 1 5.0045920002 1.000 0.000 0.0000 7‘77“ 4.520474+002 9 0 10 9 2 4.5204709002 0.004 '1.000 e0.004 7 3.7087050002 a -1 10 9 a 0.7006949002 0.000 ~0.004 1.000 ,, ,, 7 7 7 7 . 7 fl _ 2- ,, 7 2,1 //‘ 5.3337680002 10 0 10 10 1 5.3337740002 1.000 0.002 ‘ 4.43579e+002 9 .1 10 10 2 4.4357930002 r0 002 1.000 , 222 _ 5.2474709002 10 .1 10 11 1 502474760002 1.000 ,,, 6.3311049002 1110.1 11 :12 1 0.3311090002121.000,1_12_7 _,22___ ,2 6.4087846002 =11 0 11 911 1 6.4007099002 1.000 0.002 , 2_2 5.4340729002 .10 1 11 911 2 5.4346079002 «0.002 1.000 LT' ' E 1 J .‘ifoT‘W‘k “ 4.6231944002 .9 1 5.5090795002 .10 0 6.1522624002 .11 .1 3. 8961013002”"i0 i 4. 696584.002 .9 0 5. 272280.002 .10 .1 3.253591.002 .7 1 3.96809e.002 .0 0 073768623002””;§’31 2.695666.002 .6 1 3.3268234002 .7 0 3.766027.002 .0 .1 2.2223244002 .5 2.7703594002 .3 39139777‘002 97 I 10833 566*”02 I4 1 €o€2i§9§tflfl?22'§110 2.59 1104002 96 -1 1.5293934002 .3 1 1.9142594002 .4 0 2.1410284002 .5 .1 '1}3090034002#”§2“ 1 1.6146244002 .3 0 1.7605304002 .4 .1 1.174790.002 .1 1 1. 400599.002,7.2 0 1. 400615.002 .3 91 1.124376.002 0 1 1.2721034002 .1 0 1.2772054002 .2 .1 '1.150530.002 "1 1 1.229379.002 0 0 1.1585304002 .1 -1 1.277205.002 2 1 1.272103.002 1 ,0 1.124376.002 0 .1 1.4806154002 3 1 1.4005994002 2 0 1.1747903002 1 .1 134'”' ” ” ”"’ ””"“**‘*7""”’ , _, ,,1, 11, 12 J R TAU EtJ.R.TAUi c<+1 0100 01-1) , 2 , ,,,,,,, /’ 11 610 1 0.1522914002 0.000 0.004 1.000 11 510 2 5.5090024002 0.005 1.090 30.003 _ 5» 11 410 3 4.423103ooazv 1.000 0.004 0.000 ‘ ,_,, , 1, ,,_MH 1,,, 1x 11 -9 1 5.2722974002 0.000 0.005 1,000 11 -9 2 4.6965049002 0.005 1.05073025052 ,___ , 11 -9 3 3.0960034002 1.000 ~0.005--0.002 11 .3 1 4.4760094002"0.000 01007 1.000 ’ 71177.0_2 3.960896.002 0.006 1.000 90.00 ,/ 11 -0 3 3.253566.002 1.000 ~0.006 -0.003 ' 11 .7 1 3.7660006002 0.000 0.010 1I000 ; 11 -7 2 3.3268160002 0.007 1.000 -0.010,~__2 ,x 11 .7 3 2.6956324002 1.000 -0.007 -0.001 ,1 11 =0'1’321390344002 0.000 0. 012 1.000 ‘0 11 -6 2 217703454002 0.009 1.000 90.012, 22_. 11 -6 3 2.2222814002 1.000 «0. 009140.001 ,2 11 .5 1 2.5981904002 0.000 0.016 1.000 1 11 “-5 272.2994004002 0.011 1.000--0.016 ,2 11 -5 3 1.0335104002 1.000 90.011 90.000 ' 11 .4 1 2.1411434002 0.000 0.023 1.000 11 -4 2 1.9142164002 0.014 1. 000 -0.023 ,,1,,_2 5 11 ~4 3 1.5293204002 1.000 -0. 014 -0.000 , 2 ,, 1,,..,,,,____2 _,,1_,_ , ,,/ 11 -3 1 1.7687124002 0.000 0.034 0.999 11 -3 2 1.6145304002 0.010 0.299 -0.034 7 _2,. 11 .3 3 1.3097074002 1.000 ~0.010 -0.000 11 -2 1 1. 4809024002 0.001 0.067 0.990 0 711 -2 2 1. 4003664002 0.024 0.997 90.067 ,/ 11 .2 3 1.1746634002 1.000 -0.024 0.000 ‘ 11 .1 1 1.2808679002 0.019’ 0.545 0.630 ‘7‘ 11 -1 2 1.2600104002 0.032 0.030 «0,545 11 .1 3 1.1241674002 0.999 —0.030 0.001 ,, ,, , ,, ,.1,,__2,,,,,, -___h__,/ 11 0 1 1,230239.002 0.077 0.994 0,077 11 0 2 1.150530.002 0.707 0.000 90,707,, 2_ 11 0 3 1.157670.002 0.703 -0.109 0.703 11 1 1.200067.002 0.230 0.545 0,019 " 11 1 2 1.2680104002H_01545,~01§§§12010§2 , 11 3 11124167i0°2 00001 ”00038 0.999 11 2 1 1.4009024002 0.990 0.067 0.001 " 11 2 2 1.400366.002 0.067 -0,997 .0.024 ,4, ,n_ 11 2 3 1.174663.002 0.000 «0.024 1.000 , , , 1 1-____, /‘ ”1 , , 1 _ fliiriiy’ 135 , ,_,,_7 Md '4’" ECJoKaLT) K LT 0 R 100 E 145 _61fifiL05121002_n10*_0_1éfiAlfl_2_. . 7.344802+002 :11 e1 16 310 5 . o a 8‘6 214 90-2 -138. U 1 14 5.8172844302 119 _o,11_ 6.4648004002 410 -1 14 "4.4431114302 17 1 13" 5.0a959343021,.3 0 14 5.6693825002 19 .1 13 3.88818640029946 1 13 4 Q 4 4 7 EutO—Ovzmw.l 7 _.o..__1 é 0...”... 4.9585474002 98 91 15 3.414344100215 114 3.89105340022 :5 -0914 4.3322974002 s7 .1 13 3.0260539902ww149m1914" 3.4202031002 :5 0 14 3.7903304302 13 .1 13 2.7219134402 '13 1 13 3.03495312321H14H_3113. 3.3335434502 15 11 13 2.5023234002 12 1 13 2.7353231002" as -0_16 2.951050+002 .4 .1 15 2.3373153002W”11 w1wlé“ 2.5212994002 .2 0 13 2.673135+002 13 51 13 2.3163934302' o 1 14 21.3 92.13.520-911? .21 _0__. 1.15 , 2.4698054002 .2 .1 13 2.351053+402 1 1 14 2.3500733302 0 o 14 213510585002 91 91 16 0.009 1.000 K 17MEJHWEW3XUWEYJ.R.TAU) c<+11 010) 04:11 7.523954990291119 1 14 «12199.3595924002 0.000 0.004. 1.000 98151329913021-112 0 14 =12 12181.5140005222-__n+005_1_113301131011-..—fl f, _, 9 9.3535594302 .13 -1 13 112 3 7,523621‘002 1.000 -0.005 no.001 6.6273924102 :10 1 14 a11 1 5.3094314002 0.000 0.007 1.000 ~2152945455021511 _0 14 511 2 7.5294344002_10.001__1133o_13133211 1_”-1 3.3093394402 .112 .1 14 1.11 3 3.3273504002 1.000 ~0.007 ~0.001 5.81 57144102 49—1 ‘14 11719917544351.1002 0,000 2’ f 3 5.8156324002 1.000 -0.003 no.001 49 14.4649339992 0.000 0.010 1.000 19 2 5.31720210321 1211311113131.1131111_ -9 3 5.0035574002 1.000 -0.039 ~0.002 948 1 5.3394324002 0.000 0.012 1.000 19 2 5.0395931112 10.011_n1.0301.123111_. a. -4 3 4.4440334002 1.000 -0.011=so.001 17 1 4.9535434002_u9.0009‘09014 1.000 9 W712- ‘ 2 - ' 111___MV '7 3 39883090‘002 10000 904013 90.001 1314.33241940020.000—”0.017 1.000 13 2.3.391056400211010191y113311m311121 "6 15 55 55 n4 54_ '4 a3 53 «3 -3? 12 s2 .1 1'1 -1 0 0 n 3 3.4147254002 1.000 ”0.016"0.000 m1m3.7907334002 21344202004002111 3 310259372002 0.000 0.030 14000 01019u—L10004£0+023w~ 1.000 “09019"O.°°0 1 3.3337454002 0.000‘"0.936 1.000 .21313349551312 0.125 g.999~1n2326 3 2.7217194002 1.000 ~0.025 0.000 1 2.9613194002 0.001 01034967999“ 2.217353219002 _09034 -§29995901Q341 3 2.5020564002 0.999 ~0.034 0.000 '1 2.3735444002 0.001 0.052 0.999 ‘“h“ 212152129990921101021” 0121?_!Q102211 3 2:366908‘002 00999 ”09°51 00001 1 2.4706214002 '0.o05 0.10296.999m 2 2.3923994002 0.104 0.939 59.1032 2 3 2.3150644002 0.995 «0.104 9.005 1 21361857‘002 04511 0.65290.§11— 221351058*002.-01702_101030-2311311 3 23339280‘002 09489 ”04722 09‘89 i 7 77 77-7fi / 133 _m, ,_1_______1__1 _m A ,,,, 3,1. ,1 1_,/ EtJ-KQLT) K LT 3 R 730 310.2.110) c<+1) 0(0) 0191) , ,, , ,, _, whiwr, /" 2.469805+002 2 1 13 1 1 2.4703219002 0 995 0 102 0.005 2.3928839002 1 0 13 1 2 2.392899+002 0.102 «0. 939 30.1957 // 2.3133933002 0 e1 13 1 3 2.3130343002 0. 005 -0;104 0.9 5 7,“ _“u_11_117 , 7.1_,111111_11 ,/ 2.673135*002 3 1 16 2 1 29672554411002 0.999 0,052 0.002 2.5212993002 2 0 13 2 2 2.5212993002 0.052 ~0.99z 30,051,, 5" 2.3373133002 1 a1 13 2 3 2.3339083002 0.001 ~0.051 0. 999 2.9310503002 4 1 13 3 1 2.9313193002 0.9 99 0.035 n 001 2. 7353233002 3 o 13 73 27917353213002 0.0 357:0_999 034 ‘2. 5023232002 9 11“13”‘ 353 2.5020569002 0.001‘- .031‘“0: 999““‘_—”“ 3.333543+no2 5 1 13 ‘4 1 3.3337453002 1.000’ 0:023 0 001 3.033953+002 4 0 13 3 2 3.0349553002 0. 023 -0 999730;02§777777 ,3 2.7219133002 3 -1 13 4 3 2.7217193002 0. 000 -0 025 1.000 2.22 ,,,, 1,5 ,,,fi,111-_11 19¢ 3.7903303002 3 1 13 5 1 3.7907333002 1.000 0. 020 0.001 1 3.4202033002 5 0 13 5 2 3.4202003002 0.020 -1. 000 ~0.019,11 3.023003+002 4 -1 13 5 3 3.0259373002 0.000 -0 019 1.000 gr _ ,0 ,,,,,,1,. 1.1177 __ (J 4.332297+002 7 1 13 3 1 4.3324193002 1.000 0.017 0.001 §38910§5120§,1761 0 11 0,2 3.091053.002 193017 ~1.000 n0.013 ,/ 3.4143443302 5 e1 13 3 3 3.4147253002 0.000 a0.013 1.000 4.9585479n02 3 1 13 7 1 3.9533433002 1.000 70.013 '6.002’ W A 4.447523+002 7 0 13 9 2 4.4475213002 0.014 -1.000 -0,013 777777, 3.8881869002 3 31 13 7 3 3.8880903002 0.000 90.013 1.000 _111_1W~%11,m_,1 . 3 ,.,,,_fl1_ fi__,/ 5.3393s2+noz 9 1 13 3 1 5,3394323002 1.000 0.012 0.001 5.0895989002 8 0 16 8 2 590895969002 0.012 51.000 "03011_777777 4.446111+002 7 .1 13 3 3 4.4430333002 0.000 -0.011 1.000 6.434300+002 10 1 13 9 1 3.4340333002 1.000 0.010470.001 A 4‘_" 5.8179843002 9 0 13 9 2 5.01720230027703010 ~1.030 ~n.009 ___ / 5.080321+002 3 -1 13 9 3 5.0035573002 0.000 -0.009 1.000 7.3443023002 11 1 13 10 1 7.3443531002 1.000 0.009 0.003 3.3305793002 10 0 13 10 2 3.3305733002 0.009 -1.000 20.003 7 5.8157149002 9 s1 13 10 3 5.0153323002 0.000 -0.008 1.000 73.3693893362 V127 1 13 11 178.3699311002‘01.000 H0:000”M03000 __/ 7.5294043002 11 0 13 11 2 7.5294343002 0.007 v1.000 90.007 7 77_7 3.3273923002 10 .1 13 11 3 3.3273503002 0.000 -0.007 1.000 9. 358559+002 13 1 13 12 19.3535929002 1.000 0.000 0.000 8. 5139993002 12 70 137 12 2 6.5130003092770.0037:1.030 301003 7. 5233543302 11 .1 13 12 3 7. 5233213002 0.000 ~0.003 1.003 1.0492313003 14 1 13 13 1 1.0492343003 1.000 0.000 0.000 9.5341233002 13 0 13 13 2 9.5331233002 0,005 ~1.000 90.005 7 7777, 0.504499+302 12 .1 13 13 3 3.5044743002 0.000 ~0.005 1.000 7 7777 # 7__777 77 / E(J0K0LT) 1.171065o003 1,073986+003 90569929‘002 “71—. 3013—5700037 ,1.198120*D03 1.071994¢003 1.330013}0087 101954§fiifl1§. 1.327372+003 1.496710+003 1.499289gflfléd 1.356333+003 1.224415+003 1.358033‘003 1.469069+003 1.100955+003 1.225337+003 1.330319+003 9.859641+n02 1.101?030003. 1.200026+003 8.794111+002 9.856?93+002 1.078193+003 7.813?66+002 8.7861090002 9.0481710002 6.917004+002 7.801654+0020 8.599001+002 6.105326+002 6.902749+002 7.634414+002 5.378233+n0é7 6.089454+002 6.754412*fi02 K 15 14 13 _013.. ,15 14 107 015W“ 16 :17 317“ :16 315 316 917 :14 '15 316 r013 :14” 315 212 :13 :14 7011 :12 E13 B10 :1? a9 :10 211 29 0110 718” 1177 10 10 18 16 16 M15 16 17 ,17 17 17 17 17 if 17 17 17 17 17 ,17 17 17 17 117 17 17 17 17 17 17 17 i 7 ,7 7 7_* ‘ ,1 ’J’ 7 , 14, ,4,,4, AJ,__,,41_11,/’ 147 _,1,1 ,/ R TAU E(J0R.TAU) c1+1) 0(0) 01.1; 7 7 7 , A 1, ,1, Vi7_i______#/ 14 1 1.171067‘003 1.000 0.000 0. 000 _ 14 2 1.0739000000 0.001 ~11000 -0.004_1_1_1__J/ 14 3 99569911‘002 09000 "00004 1:000 ,. _ "111. 44,/ 15 1 1.301358t003 1.000 0.000 0.000 , 15 2 1.1901210000, 0.003 ~1. 000 -0.0031_-__FV_1x 15 0 1.0719930003 0. 000 an. 003 1.000 ‘ 10 171.3308160000 717000 70g002 ,10 2 1.1954530003 20.002 1.000 ,/ 17 1 1.3273720000, 1.000 I? ~10 1 1,4907100003 1.000 1,,7, 1_"_1_1/1 017 1 111922905003,1110001101002111___.n_______14 217 2 103563339003 90.002 1.000 7g a10 1 1.469070o003 0.000 0;003 1. 00077777777 ;; 216 2 1.35803600037 0.003 1.000 .g:0031111_11_/4 '16 0 1.224414+003 ”1.000 0,003 0.000 ,3 .15 17110303200003 0.000 0.004 1,000 ,15 2 112253380003 70.004 1.000 .01004.,111.414/ H15 0 1.100954.003 ’1.000 0.004 0. 000 ‘ 914 1 1.200029+003 0. 000 0. 005 1 000 :14 2 1.1012030003110,0051_11000—101005________// .14 a 9,0595160002 ,1 000 0. 005 0. 000 913 1 1.0701900003 0.000 0.006 1. 000 77—7 1 013 2 9.0502951002 0. 000 1.000 50. 000 7111/ .13 3 0.7940700002 .1, 000 0.006 0.000 .12717910002104001 70.000 0.007 1.000 .12 2 0.7301700002 0.007 1.000 -0,007147 ,_11 012 3 7.0132240002 1.000 —0.007 00,000 .11 1 0.5990520002 0.000 0.008 1.000 .11 277.0010511002110,00011110001101000_ ,2 «11 s 0.910952o002 91.000 0.008 0,000 ~10 1 7,6344770002 01000 0.009 1.000 7 77777 s10 2 0.9027490002 0.009 1.000 no.009771 71,- 010 a 0.105263o002 1.000 —0.009 -0, 002 «9 1 0.754100000é 0.000 0 011 1.000 «9 2 6.0894550002 0. 010 1. 000 30,011,, ,, _1‘ .0 0 503781560002 1.000 ~0.010 IWHOM. 148 EAJ.12[ASAHA KMMLTA J R TAU EAAJ.R. TAU) c<+1> Accaa 01.1) 4. 7357233002 27 A1 17 -a 523317393002 2.3 20217 552 5.9509943002 59 .1 17 «a 5. 9590853002 0. 000 0 012 1. 000 5.32612705002 2202012_ _12000220201222222222 4.7356309002 1. 000 90. 012 '0. 001 GINA-ti M....—..._ . .. ,,.__...._.._._ AAA1977SEIAH2 .0 1 1A7AA57 521Li§ilfiflfl22 972 D 17 E72 5.2481595002 50 .1 17 a7 5. 2482709002 0 000 0 014~ 1. 000 W4111969Z:D_QZ_2Q2fl1LL2flflfl2gn+fiilm.22 L2 4.1776849002 1.000 -0. 014 '0 000 GIMP! 3. 7044533002 55A 1A17AW43A1HAAS220439002 0.000 0.017 1.000 133mu2flmz252_141_m3JL233ma52m2202u2242mm2u20uL222_22= 4 321909.002 .7 .1 17 -6 3 3.7043153002 1.000 ~0.017~so.001 3 3153953002 24 1A17A~5A1i.o§04093002 o. 000 0. 021 ~1. 000 31592313200222 5m2o217 235 2 3.59233550022202022221 00022020212 2- 4.0002423002 .3 .1 17 .5 3 3.3155219002 1. 000 no. 022 0. 000 3.0115255002 .3 1 17 .4 1 3. 3233723002 0. 000 0 026 1. 000 3.30712350022 a4 20 172 «4 2 3.30711930022.01025__01959 .0,025__222_W_,r 3.6231600002 .5 .1 17 54 3 3. 0112925002 1. 000 no. 020 0,000 2.7919353002 .2 1 17 .3 1 3. 2509443002 0.001 0.034 0,999 .0200112320022223.20317.2-3222320015302002__01032__01211_2¢+03¢2222__h_2x 3.2506323002 .4 .1 17 .3 3 2. 7916100002 0.999 50.039 0.001 2.6569303002A 31’1 17 -2 1 2. 9631313002 0.001AU0A049 0.999 2.7931393002 .2 .0 17 52 2 2. 7935213002 20.032_202997_502019_H2 2.9327473002 23 51 17 -9 3 2. 3534103002 0.990 ~0.031 0.002 2.6065003002AA 0AH1A17AA41A1m2.7001383002 0.005 0.009 0.993 2.0650535002 .1 20 17 21 2 2.3355093002220.1112202925220205922 222 2.7594173002 .2 21 17 51 3 2.3053013002 0.990 «0.141 0.000 A 17 22152221950022._0 22 17 2.6403703002 1 1 2.5405573002 AOAASAHA0AAAZ 0.334.AA .22. i a DC) -—-—-—-- ._._-___ . ‘ 1 D 2 2.6403703002 51 51 17 0 3 2. 6163620002 0.312 «0.097 0.312 2.7593171002 2 1 17 1 1 2. 7001061002A0.996"0.039A'0.005 A 2.6650532002 1 L0 17 1 2 2. 665509‘002 203089M104$l§2gfl41412 2.6065003002 0 .1 17 1 3 2.6093019002 0.008 «0.141 0.990 '2. 9027473002A"A3 1A17' 2 1 2.9631513002 0.999 0.049 0.002 AAAAAA 2 2934695002 2 O 17 2 2 21793579990222919192:0222221010222 2. 6569303002 1 a1 17 2 3 2.6534105002 0.002 -0.061 0.990 3.2500325002 4 117 3 1 3.25094430020.9990.03Z 0 061 3. 0074933002 ___3 wg_;7 .3 2 _3. 0075365002 0.034 «0.999 00. 039 _ 2 _fi 2. 7919353002 2 s1 17 3 3 2. 7916100002 0.001 ~0.039 0.999 3 6231609002 5 1 17 4 1 3 6233729002A1.000A0.026"0"000H 3. 307128+002 4 0 17 4 2 3. 3071495002_30m026 go. 999 an. 023 3. 011528+002 3 51 17 4 3 3 0112920002 0. 000 70 028 1. 000 ' EtJ.R. LTS ’"k"wLfi_“3 4 .303E424002 6 1 17 3 6?Z§Z§:Q_Q2 , 5 0 17 3 3156934002 4 21 17 4. 6219094002 7“ 1' 4.16322810021 6 19 17 3. 7044564002 5 .1 17 '5. 2451331332 0 '1'19' 196719693*00211121 0112 4.1777980002 6 e1 17 5.9589533302 9 1 17 543617622662 8 10 17 447357232602 7 91 17 6.7544124002M"10 3;“17“ 6.0894544002 9 0317 5.3782334002 8 .1 17 7.6344143302"11 1 17 6.9027521flfl§1_161_n 12” 6.105326+002 9 .1 17 0.5990014002 '12 1 17 7.80165QFOQ?_111 _O 17 6.9170044002 10 a1 17 9.648171:362WW13'_I“17 0. 7861693002” 12 0 17 7. 8132664002 11 ~1 17 1.0701934003 14 1 17 9-85629511221 1§__1.1ZW 8.7941114002 12 -1 17 1.2000264003 15 17 1.10120340031 14 ,0 171 9.0595414002 13 s1 17 1.3303133303m'16 “I 17 11225337*003 15 Q 17 1.1009553003 14 a1 17 1.469069+003' 17 117 1.356933166311161_Q11Z1 1.2244154003 15 .1 17 1.499289400317 0 17 143563§§2003 16 .1 17 6 6 6 149 R "1‘1‘0‘"‘é‘2'3'."4".mn— ‘Vpflfl h(+1) 0101 01:1) 5 1 4.0364094032 1.000 0.021 0.000 5 2 316923859002 10.021 41.000--0.022 _ 5 3 3.3155214002 0.000 ~0.022 1.000 '1 4.6220434002 1.000 0.017 0.001 2 411632352992 .017U'1.0004-0.01§_1 _ 3 3.7043153002 0.000 s0.010» 1.000 1 5.2432704002 1.000 0.014 0.002 2 1.7196973002 0.014 ~1.019'-0.014 3 4.1776844002 0.000 90.014 1.000 1 5.659005:6023¥1:330 012 0.001 A ,2 5.341177131111112 11.012 «LIME—11112....m1 1 3 4.7356304002 0. 000 so. 012 1.000 3293 o~oo= 10 110 10 11 .11 11 “:2 12 1? 13 ..13 13 14 14 14 15 15 16 116 16 17 17 1 6.754488‘002 1.000 0.011 0.002 2 6168945569921"QLQ111:11flflfl;lfl1filfl1w _ 3 5.378156000Z 0.000 “09010 1.000 1 7.634477400213030 0:000 0.000—""“4 3 611052633002 0.000 ”0.069 1. 000 1 0.5990523002" 1:600335”335_33—0oom 2_71691654¢QQZM 91696“111161__611611 3 60916952‘002 00000 ”09008 110001 1 9.648212‘002 10000 09007 .008 2 81766179€992.101362_'14060 '3 ”60 3 798132246002 00000 ”0900, 1:000 1 1.0701964003 31:056 61663""3"63§m 2 908562956002 01006 911990 ”0:606 _ wi5_ -__._w.h_, - 3 0.7940704002 0.000 no.006 1.000 1 1. 200029.003' 1.6003 3:000 “0.000 _ 2 1.1012031003 0.0321511011110.1151 3 9.8595160002 0.000 ~0.005 1.000 1 1. 3303204003 1.000 0.00 o 0.000 2 10225338!003_ Q123111113110_1616Qfi1_ 3 1.1009543003 0.000 0. 004 1 000 1 1. 469070300312003 5‘060 3:353 .2 1.3500334003 0.003 ~1. 000 a01003 3 1. 2244144003 0.000 40 003 1.000 1 1.4992904003 ‘1.000 6306§_“ 2 1.3563331093 ”0.002 11,000 'E(J{E:C?Tmmm” 150 ‘flLllifllfigfifl2_mll_mlwlfl.~12_1_ * 9 074349*002 :12 0 18 H12 2 9.074351¢002 0.007 1.000 B01007 R‘ LT‘ J R TAU seq;n;110; C(11) 0(0) 01:1) 1.3535101003 17 e1 17 10 1 1}i§6?10:003' 1:000 N‘_ _ — _* “MW _ 1.6965103003‘118 '1 10 ~19 1 1 676210;003”"1;000’ ‘ _ _— 1.677925*003 :18 0 10 610 1 196779251003 1.000 0.002 .11§ZZ§Z§3Q9§13121.1.19191§_? 11§§Z§73+003 90.002 1.000 _____ ___ 1.§§§99e¢nos 616 _1 10 _61711 1m§469440003 0.000 0.002 1.000 _____ 1,528107+003 .17 0 1a .17 2 1 5201001003 0.003 1.000 no.002 “1.6469431003 :18 21-1g a1? 3 1. 3869970003 «1.000 0.003 0,000 .1flg§§101+goshg1§1 1 101.16_1w111037366003 0,000 0.004~ 11000 1 386851+003 :16 0 18 '16 2 1.3868511003 0.004 1.000 '03004 111221§1199§ 112 3;,1§11161§111§§§9781003va1.000 0.004 0.000 _1.131620+003 :14 1 18 a15 1 11360986¢003 01000 0.005 1.000 192541551003 015 0 18 915 2 1.254156t003 0.005 1.000 o0,005 11§692§31103,016791,18 :15131111;1Q1Qegflém1iigflgnznLQn§_gnLnni_V11 1_ 11916é19fflfl§ §1§1 1718 014,11112§06959903 0.000 0,006 11000 1 _ 1.130021+003 :14 0 18 :14 2 1.1300211003 0.005 1.000 «0.006 _ 1.2306910003 .15 :1 1a 614 0 110166160003 11000 -o.005-a0.001 911007§91002 1121,1 10 613 1 1.100061909éuhQ1000_"01016_1110001”1 19014447+fl03 '13 U 18 E13 2 19014448Q003 .03006 19000 30.006 111Q§§§Z:QQ§,§14 91 10e1339.10011§¢01gfia11000u_01016__111111in 1 ___—___... __.__ __— o‘ 9. 9515191302 :131n1.18 012 310,1190621002121100111010011_1+10111...1,m 26223652&302 110 8.0898346002 all 1012056121002“ 7.190929t002 010 .112_ 11110 111 1na.90520910021_0+000- 0 009__11000_. . 0 18 I11 2 8. 089836¢002 0.009 1. 000 80. 009 .81 15 _nll .3 -Z122150210121114000__0400£__0+n00.1_11__11a .1 1a_a107111.91113510021_04000+M0+010A11+n00u.m_.- h. 0 1B 910 2 711909320002 ~0901D 1o000"01010 249410621fl321111131118 210.3 61411899$002 51533381100211:amm1_1a\m-91 6.377634«002 69 0 18 .9 2406106010027610711.10 510423111002 .7 1 18 596499480002 .8 0 1A ”a 1012¢5fi121002111211111311 ,4.4844466102, .6 ,1 1a 5.0073731002 e7 0 10 .7 5.556807é002 28 01 18 ,1_1+ 2 6 377638*002 2 51649956‘002 2 51007885¢002 -7 a 414113121002111.0001101010; ,. 14 D 0.01 330001,. 07 ”—0 1.002;.- 0.011 1;000--0.011 MB 1.6.26574410026”0.0006101010111.000m 00013 10000 ‘0.013 0.016 1.000 90.015 -——_._m,.___ 09 3 5.6067901002_.11000110101111110111_ v..8.1.._3__§1fl322£11fl12__14_fl_fl_0__04_0.1l4fl+fl_0.1_* . * “1-1.11.1- a7 1 5.5549001onze10,000.101015u_1,0nnm AOAHLL. — M A _.~._.— K L1” 5(J2K0 LT) 4 1111;5002 as 1 10 1:4511fl32102miaé 0315 4.928557I002 .7 .1 1a 3.6223469002 .4 1 1e _BJQfiOEEfiJflflZM .52 0 13 4.386890‘002 26 :1 18 “3:3181735302W3-3 '1 10 3..- 53 5101121102-... .2. 4- _1_11.J,B___ 3.929303I002 .5 .1 10 3. 098533I302.21213 3. 2956731fl02,,93 +0.13 3.557310+002 .4 .1 10 2 9333221332 “#1 _1I18” 3. 0513403002 ..2 0 13 3.269395+002 .3 .1 10 2.913153I002 0 1 1a 2.95323112021.112L0 3.0660659002 .2 .1 19 2.94731e+002 1 1 10 2.910423.002 0 0 1a 2.947313.002 -1 .1 13 3.066035I302 “2 1 10 2.95323330023 1 .0 12 2.913153+002 0 s1 13 3.239395I002 3 1 1a 3.0313A31002 . 2 wnfl1a 2.963578+002 1 91 18 3.557310+002 4 1 13 3.2953733002 3 *0 1a 3. 0985633002 2 .1 13 3 929300I002U—I5 M1U13 3. 595303.002 4 20 1a 3.318173*002 3 .1 1a 4.3868909002 6 1 13 3.90055A2002,_25.-0.13 3.622343.002 4 .1 10 4.928557I002 7 1 13 4.4514031002 3 0 1a 5 «1 12 18-. J. 151 12 TAU 213.9 TAUi—I_E(+1) 010) 01.1) .3 149207044002 0.000 0.010 1.000 — 563224. 5514279002 __n42192_1+nnn_gg+n12_mn__ __ 50 3 4.0109389002 1.000 «0.019 -0.000 ”“15 1 4.3070704002 0.000 0.021 1.000 «5 2 ,3. 9_&0589:0702__.-Lfl242_fl49_19_41&,.&24r_”___-.-“____ .5 3 3.3221333002 1.000 «0.024. 0.000 "#4 1 3. 9300333002 0.000 0.026~ 1.000 _.:_4A ’ .4 3 3. 3170953002 0.999 -0.032 0.000~ —3 1 3.557304I002 0.001 0. 034 0. 999 . 3 32 23 .29 321230022 LnAsfiLtJAmLuA. __ _ .3 3 3.0951853002 0.999 ~0. 046 0. 001 e2 1 3.2698135002 0.001 0.047 0.999 -2 23.081901joazA.0.015m_0.993250+04122 M 3‘_»* .2 3 2. 9629070002 0. 997 90.075 0.002 -1 1 3.0307353002I3.005_ 0.079 0.997 _ -122 2195AA511022__0 - «1 3 2.9112294002 0. 977 -0. 211 0.012 0 1 2.9512373002 0:375 0. 293 0.375 n 212.947313Aa322232207 QLDQQWLQflqlm 0 3 2.9035105002 0.209 ~0.955 0.209 1 1'3.0337339002 0.997 0.079 0.005 1 2 2.9544573002-20,0122Aa+214_.412112 1 3 2.911229I002 0.012 *0. 211 0.977 2 1 3.2693135662-“6I;;é_ 0.047 '0.001 2.2 B4fl£13fl1£flfi2__ . ___AA.__ 7 3 29962907‘002 09002 :00 075 Oj¢97 3 1 3.5576095002 10.999" 0:039 0.001 _nw _ 3 213.29577710021,0. 034 no. 995 20.045m‘ 3 3 3.0901353002 0.001 «0.045 0.999 4M1 3.930033.002 1.000 0.020 0.001 IIIIIIII 4 2 3.59533250021201025220.999w:0.1322.0* 4 3 3.3170953002 0.000 .0.032 0.999 5 1 4.33707030021.000 0.021 0.001 .522L2um a . ' -22_2M. 5 3 3.3221333002 0.000 ~0.024 1. 000 3 1 4.9207045002‘ 1.06010.01b 0:032m 6 2 9 0 45142 7,1,0 [12. 704 fllflf ’11 40—02097. E O 1 0,19% - 3 3 4.010935.002 0.000 e0.019 10°00 E(J:§:E17“““J 5"5546u7;3h2" 5. 0078739002 4. 4844469002 6.2656426 '"“m 602 25;§9925§3902 59042371*002 7.6619666602“ 6.3776346002 -§16848816002W” 7. 94106290027 7.1909296002 ”4119746n02’ 8. 905649* 002 8. 0898346002 7 2236529002 9.9548194602 ".99074349tfl02 8.1199146062”“ 1.1088576603' 10014447¢003 9.1067596602 .1 230691*023W1 1 1300216083 1 0166196003 1.360 98839631 igg§4155*033 1 16209003 1.499734+0“3 19386851¢033 1;255666¥603 1. 646943.603”” 1. 52810760 03 1. 386998+003 1£6779§5+663 1962§210*003 1 5273759003 0‘40 M13 17 7 16 15 18H“ 717 16 13 .12_ 1a 1.865871+003 :19 ‘JGD‘O: ”6LTWAJ’ 1 1e o_16 18 1 16 HQ 18 18 0 18 791 18 6 16 11,192 '1 18 1 1° I'lhm” 7 7 7 D CD in 10 L10 10 11 11 5 12 212 12 13 13 13 i4 14 14 15 “15. 16 16 16 ,17 17 18 19 152 {in 17W 18. R-fiwnWMwwww-«mm_mmn TAU EtJ.R.TAU) 966179””c K LT 0 R TAU Et0.R.Tn0) C(+1) 0(0) ctu1) , , 7 , ,7, H i,n,_wm!i __,¢/ 1.866722+oos :19 0 19 519 1 1.8667239003 1.000 0.002 ,0 1,20057sy005 :18 1 19 219 2 19708578*003 ~01002 lsoigm,,,0 #-#__0 f» _____-1¢li§221§:flflfiflllz«h1_19h11§Jl_15834980*003 0.000 0.002 1.000 ,/ 1.708344+003 :18 0 19 218 2 1.705344+003 0.003 1.000 -0.002 ,,, ,326309792003 =19 ‘1 19 915 3 19559242‘00§ ”11009, 9900;”,01090M44744fi40/ W ,,1.419361200§,=16 1 19 «17 1 136793139003 70.000_,0.003 1,000 ,; 1.556526+003 .17 0 19 E17 2 1.5585279003 0.004 1.000 ~0.003 1.679§;g:00§_a;§d§1m;99:;ZW§,141093659003 n1.ooo 0.004 0.000 , 1.28744a+003 :15 1° 216 1.53210530037 1+000,, / 1 1 000007 09005 , 1,417270+003 a16 0 19 616 2 1.4172700005 0.004 1.000 902004 1.532102+003 :17 «1 19 ~16 3 1,287446‘003 ’19000 0.004 _M_0 1.1639899000,314,,1719 :15 1,284574+003 :15 0 19 515 1.393352+003 316 21 19 915 .1 . 319 3,3 5510 0:5. , _04_fl_0<0.__--0_._005_- 01+rum_____/ 1.2845759003 0.005 1,000 90.005 19163985*003 '14000 0000:,700000, {AMP 1.fl48987+fl03 :13 1 19 914 192160440000:5 314 0 19 314 1-2630§Q*00§ 9:5 :1 19 944 1.2630644003 04000 0.005 _, 101604400003 09006 19000 ”09006 1annp 9.424443*002 612 1 19 *13 1 191412319003 0.000 0.007 1.000 W ,.,_ 1.044866+003 313 0 19 913 2 1.0448679003 0.007 1.000 13,007 1.1419269003 :14 *1 19 913 3 9.424592’002 ”£10007 0.007W 09000 ,uhw .2 8-443598+002 piiwhl 19.212 9.378539+002 :12 0 19 :12 1.027350+003 :13 a1 19 ~12 1:02?859#00§4WQ;QQ0fim0L00§MH10000~___~___,/ 913785429002 0.008 1.000 '09008 394435369002 l3000 *QLDOB 901002q_4”i,¥, »* 7.547336+002 :10 1 19 511 1 9.2294059002 0.000 0.009 ”1.000.79W7,_*/? 8.394024+002 311 o 19 a11 2 8.3940299002 0.009 1.000 90,009 9.229333+0020112 21.19 :11 377.55220190020,14000,~0.009 90,000 ,2 6.735658+002 59 1 19 810 1 8.2648299002 0.000 0.010 1y0007«7977fi4\.” 79495119‘9002 '10 0 1,9 ”10 2 7|495126‘002 00011 10000 '0,010 3.264746*002 511 ’1 1° I10 3 6.735569&002 1.000 ”09011 0.00077 6.008565+0020v.a 7L-19 ,9 6.681824+002 .9 o 19 -Q 7.384744+002 =10 51 19 a9 7038484140029#0.000--000;2_«41000~________,/ 6.6818349002 0.013 1.000 e0.012 6.0084589002 1.000 -0.013 -0.00197A~7»‘00.' “Mb-l 5.3660559002 .7 1 19 a8 5.9541389002 .8 o 19 as 6.589326+002.7;9 517197 :8 6o589439t002 0.000 0.013 1.000 , “wa' 5.9541549002 0.015 1.000 90,013 5,3559221002m"1.000_:0.0&5m10.00;—__.____w/' (ANN 5.6081309002 as 1 19 a7 5.3120639002 .7 o 19 ‘7 5.878491+002 .a 91 19 -7 59878625¢002 0.000 0.015 1.000 7 -fi7~_fi‘ 5e312087¢002 0.018 1.000 00.015 4.807973*002 1.000 '0.018 80,001~~7770h_,n” (AMP J154 Je= 010) 01:11 1 5.9796259002 1.000 0. 015 0. 001 JJ“ JJ 2 5.31203790_02_ 0.015 _.11050-201015_ 3 4.0079739002 0. 000 -o. 010 1. 000 1 615894399002 1.000 0.010 0.002 2 51955154!QQZ-W§505§_: I, -_W ___ 3 5.365927A002 0.000 -0.015 1.000 1 7.3848419002 1.000 .012 0. 001 _2 616818349002 0. 012 91. 000 -0.013 3 3.0004589002 0. 000 so. 013 1. 000 1 8.26A8291052_717000J 0.010 0.004 JJ 2.719951259052_W01010Wz11000W101011WW_ 3 63735569‘002 0.000 ”09°11 10°00 Iw9.229403.002 1.000 0.000 0.000 2 5.3990291002__0.009-211000W201009- 3 7.5472319002 0.000 «0.009 1.000 1 1.0273559003 1.000JJ0T009uJ0.009'J g 9.3705429002 0. 008 ~1.000 90.008 WK 3 814435369002 0.000 ~0.000 1.000 1 1.1412311003 J1.000J 0. 007 0. 002JJ J 2 1.0915019005W 0 002 W~110001501002-. .- 3 9.4243929002 0.000 «0.007 1.000 112630649003 1.000 0.000 0.000 11190949‘99§__QLEQéWzi5flfiflWgfl5fiflfiw. W 10048983¢003 09000 ”09006 19000 1.3933551003 1.000J0J000 a0.000 -;12§fi§759 03 0 5 . _ _WWW 111639859003 0.000 ~0.005 J1. 000 1 1. 5321059003' 1.000J 0 000JJ0J050 2 114172700093 7000Q4_’.LLQQD.EQLQQiL 3 1. 287446.003 0.000 50 004 >1.000 J1J1.679313¢003 1.000 0.000 0.000 JJJJJ7JJ 3 115535Z7*90§ WQLQQQ IL1QQQWEQLQQ¢W 3 1.419365‘003 09 000 “09004 19000 1.8349803003 J1.000 J0.000 J0J900 1.7003449003 0.002 v1.000;-0. 003 “Hm“ 19559742¢003 0 000 ~0.003 1.000 1 1.5557233003 1.0M 0.002J 2 1170557850Q§-59 0021 1.000 .1 1.8658711003 .1.000 -_-_.W.,__ 156 ‘EA0.‘RTE?3“ k’ LJTJJ 1 5' 'T'Au”513111.110?“ "07(115 cm 0151) 2.0653955003 520 1 20 521 1 2. 0356955093J 1.000 J' J JJJJJ 2.0652922923 52B 0 20 520 1 2.0653325903 1.000J 0.002 J 1.0999435003 .19 1 gn 520 2 1.3999435003 0.002 1.000 1529259050091513 1 20 519 1,25033122599§1_01300.W_95nnafi_11100_ 1.8987429003 .19 o 20 519 2 1.8907435003 o. 003 1.000 -0.002 2.0331121903W5291-1 201519 3 15742959509; 1.000 0.003 0.000 __ ,1 1. 5933155003 517 1W20M_.15m171.8690525003 0.000 0.003 11000 1. 740364+503 .15 0 2n .18 2 1.7403645003 0.004 1.000~50.003 129999911903W519 91 20-918 3 15593913999§WW15999__0o0951535999_ _ 1 4534399003 515 1 20 517 1 151133365003W _0_.000 W050051.15105 1. 5905435003 517 0 20 517 2 1. 5905475003 0.004 1.000 50.004 _1.713334+003 518 51120 517m; 1.4534365003 51.000 0.004 0.000 1.321520+003 :15 1 20 510 1 1.5551295005W19.0001W05002WW150001 1.4492905003 .16 o 20 .13 2 1.4492905003 0.005 1.000-~0.005 195961251003 512 -1 20 516 3 1.3215179093131.000__9501§__31995_ 1.19806150099515_51 201W515 1 15121129599§W905991_ ____1_1 1.3165945003 515 0 20 515 2 1.3165955003 0.006 1.000-50,006 1.4274245003 516 -1 20 515 3 1.1980579003;°1.000_595909WW15909- 1.0330595003..13 .1 20W514 1 1.2971365003 0.000_10 002 1111031 1.1924605003 514 0 20 514 2 151924600003 0. 007 1. 000 50. 007 1.2971325103 515,31120 .14 3 1.0830505003 51.000 0 007 11000 9.7051535002 512 1 20 513 1 1.1253035003110.000150.0051_1+000m. 1. 0763335003 .13 0 20 513 2 1.0768875003 0.003 1.000 50.000 1.175298+003 514 .1 20 513 3 9.7651025002W 1500052050005504003. 5119131310029511W 1 20_51291.1.1319295003 0.000 0.009 11001 9.6937395002 .12 0 20 512 2 9.0907455002 0.009 1.000 50.009 1.0619225003 518 «1 20W512 3 957892495002 W1.000_531039,5011019 7.8880565002 510 1 20 511 1 9.51013250921 0.000 .0.010 11.090. 3.714224+002 511 0 20 511 2 3.7142335002 0.010 .1.000=50.010 9521999350029512551 29W51198 758879689002 W1LQQQWLQLQLQWWQ+QQAW11WW511. 7.0793785002 59 1 20 510 1 856055585092 W0.000 ”0.011'W15990, 7.8153195002 510 0 20 510 2 7.3153315002 0.012 1.000 50.011 8.6054669002 511 51 20 510 3 7.0732745002, 1.000 50.012 50.000. 61119235510291531W1 20 _59311152255115012_101000510+01 _.31 1_ 7.0020245002 59 0 20 59 2 7.0020425002 0. 014 1. 000 50. 012 7.7254345502 510 51 20 59 3 3.3491605002 1.000 -0 014 505001 319823775002 "EIJ.K.111"W K [1" J 5.700;;E1002 17 1 20 W642243335O£2 .58 0n20 69930046¢002 99 91 20 5.1488501n02 .0— 1 20' 356322635002 57 0 20 6.2192119002 58 51 20 4.6755085002 .5 1 20 .souzslgfliflflsz36HWQWZQW 5.592961+002 97 '1 20 4.2867505002 54 1 20 4.0049445002 .6 20 20 5.0512941002 56 51 20 3.902%??YEBé ”.3'_1 20 4.2196991002 14 -o.2o 4.594212‘00? 55 '1 20 3.7029071002 12 1 20 3.9200015002m 53-50.20 4.2217145002 -4 91 20 3.627982*002 51 1 20 317060395002 52 50 20 3.933799t002 93 '1 20 3.5775005002 '0'm1'20 3.5776235002 51 0 20 3.7304695002 52 *1 20 3.611722+002 1 1 2n 3.5348135002 0 ”a 2n 3.6117225002 51 51 2n 5.7304691002 2 1 20 3.5776235002 1 20 20 3.5775605002 0 81 20 3.9337031002' 3 ‘1‘20 3.7060391002 2 0 20 31627982+002 1 I1 20 4.2217141102 4 1 20 319200635002 -3 —0~20 3.7629875002 9 ”1 20 4.5942121002 5 1 20 49219699$302 4 0 2” 3 51 20 0'110"E?31011103"__E<+1) ”8 98 98 -7 57 -7 96 1&6 '6 -5 55 55 v4 04 '4 53 93 -3 -2 52 52 51 51 51 ODD 30¢“ NINE) *‘HW‘ 538‘ 197 1 0.9301101002’ C(0) C(31) 0.000“ 0.014 10000~ 2 612143665002 “0401021110405501114W1 WWWWW 3 51706625‘002 100°0'”00016‘903000 '1 0.2193565002 01000 05015 19000 .2m11120- 3 3.7023731002 . 1 3.9342241002 2 30706551¢002 3 3.6207441002 09998 "00052 0.001 2 5.13230110025501019~5110005501015»- - 5 5.148667‘002 10000 ”09°19 0.000 1 5.5931325002 0.000 0.018 1.000 _0m4.0752001002 1.000 -0.024 0.000 1 5.0514991002 0.000 0.021 1.000 2 4.0050331002 —0+0305501999_5011215 0 4.2064575002 1.000 ~0.030 0.000 1 4.5944021002 0.000 0.020 1.000 2 4.219851fi002—~0+041 -099§9_39rfi26" — 3 3.9021751002 0.999 50.041 0.000 1 4.22203010020.001 0.032 0.999 01001 0.0431 0.999 01124120.991u5011435 0.992 1'05124 0.004 1W3.7311031002 2 3.587165t002 3 3.5673791002 1 3.0141971002 21555111221012110510 0.123 90.985 0.123 3 305323440002 1 39731108*002 2 30587165‘00? 3 30567379‘002 0.004 0.065 0.097 50.716 0.043 0.696 0.998 0.990 20 .1112 015555501040-“ 0.174 0.696 1 3.9342245002 2 3.7068519002 3 396267440002 1 402220306002 2W3+32056- 3 3.762373fi002 1 40594462‘002 09065 0.004 0.0‘5 ‘096fi5~10,717 0.043 ”0.716 0.697 0.999 0.043 0.002 0.043 ’009g1~Q0+124~ 0.004 ’00124 0.992 0.999 0.002-‘0.001‘ 0.001 50.062 0.990% 1.000 0.020 01001 2 4.2190511002 7050264-01999:50,0411 3 309821755002 09501 ”09041 0.999 158 _ E(J{§7£?T“ K LT“ J R 700W500.0{T[07_W”60115 C(0) C(41) 5.0312931002 6 1 20 515.0514994002 1.000 0.021 0.001 4.6049456Q02 Q 5 _0 20 5 2 4.6050334002 0.021 40.999 70:0301_,1 Q 4.2857506002 4 .1 20 5 3 4.2864576002 0.000 40.030 1.000 ”915929614002"'7'“I”20 6'1 5.5931324002 1.000 0.018 0.001 549752227992 6 9_20 6 2 5_0258523993119~0184:11900r-n.024 mu____ 4.6755086002 5 41 20 6 3 4.6752606002 o. 000 40.024! 1.000 6.219211100? a 1920 7 1 6.2193932002 1.000 0.016. 0.002 “ ‘ h596322633£gz__“7 “Q 20 7 2&5.632301¢002 0.016 ~1.ooo .a,o;g '571100500002 6 61‘20 7 3 5.1486676002 0.000 40.019 1.0 0 6.9300336002 9 ”1 20 a 1 6.9301709002 1.000 0.014 0.001 —_ _“_ 94274592795? 8 0fi20 8 2 6.2743644002_ $0.014 11.000.40.016MWH44Q__ 5.7067756002 7 .1 20 a 3 5.70662 25.002 0.000 ~0.016 1.000 ‘7, 725464.002""10“”1 20 9”1 7.7255710002 1.000 0.012 0.001 7. 002024*002 9 40 20 9 2 7.0020426002 0.012n41.000 40.014 a 6. 349286.002 a .1 20 9 3 6;3491600002 0.000 40.014 1.000 826054666002 11 20 10 18.6055586005w‘1.000 0. 011 0. 001 1 _7. 81531960Q2 W;pnmg 2011 Q 21713153317002 0.011 41 000 -0 013 7 0763786002 9 41 20 10 3 7.0762746002 0.000 40.012 1.000 9. 5700534002 12 1 20 11 1 9.8701326002 1.000 0. 010 0 002 8 714224790? 11 _0 29 11 2 8171425§79921_01019 ,711909;7 0 L1_0 7. 6880564002 10 e1 20 11 3 7.6879686002 0. 000 0. 010 1.000 1.1619224003 13 1 20 12 1 1.0619294003 1.000 0 009 0.002 9.698739+002 12 0 20 12 2 99998745499§_ 0.099; 1. QQ¢1___.Q,Q¢16__~ Q 8.7843181602 11 .1 20 12 3 0.7842446002 0.000 0.009 1 000 1.1752954003 14 1 20 13 1 1.1753036003 0.008 0:001 1 1_g766864003 13 9-29.“;3 2 1.0768076003 0 9. 7651636002 12 .1 20 13 3 9.?65102‘002 0 000 4 008 41.000~-0.000 000 -0.008 1.000 1.2971326003 15 1 20 14 1 1.297136.003 1. 0 0 000 0.000 1-1924604003,214 0 20 14 2 1.1924604003220. 07_~1.009_ _40.0012 10083059¢003 13 .1 20 14 3 1.033054.003 0.000 40.007 1.000 '1. 427424+003 16 ”I 1. 427428.003 1.000 0.000 0. 000 1. 316594.003 15 0 20 15 2 1. 3165954003_“0,006'711900;4Q_ 006 3 1.1.00 1:1900614003” 14 41 20 15 ~ 199057.003 0.000 ~0.006 0 1.966174+003 17 1 20 16 11. 5661786003010000 "0.000 ‘0.000 _1.4492906oo3 16 0 20__16m2 1. 4492904003 0.005 41.000~-0.005 1.321520.003 15 -1 20 16 3 1. 3215174003 0.000 40.005 1.000 1.7133846003 1a 1 1 1. 7133064003 1.000_ 00000 “0:000W 1.5905461Q03 17 _0 204 17 2 1. 5905476003 0.004m~1._0_00 -0.004 1.453439¢003 16 .1 7 19453436¢003 0.000 ~0.004 1.000 159 E(J.K.LI) K LI J R TAU E ”'cco) 01611 1 332907 03 151 21 14 131.3339333003“_3_000 0.000 0.000 if 1. 226021: 0922216 20 21 2142 _2 19226_Qa_1¢003 0.007 91.000>906000 _1 11 1.11063 003 13 a1 21 14 3 1.1100296003 0.000 90.008 1.000 "1. 4631996003 13 "I 21 15 1 1. 4632046003 1.000 0.000 0.000 -1635Q1152903 915*,9 21- 15‘2111§512191Q03 0.006 91.000 90.007 _ 1 1 1. 2330336003 14 61 21 15 3 1. 2330316003 0.000 ~0.007 1.000 1.6016333003”“17’ 1 21 16'1 1.6019546093 1.000 0.000 0.000 33 .111933116003 16 0,21 16 2 1. 4029116003 0.006 =1.oooa.aloog 1.3572966003 15 .1 21 16 3 1. 3572926003 0 000 ~0.006 1.000 1.5191536303 10 '1 21 17 1 1.7451326003 1.000 0.000 0 000 3 21.624216761121115 222217222229 22122 1,722 211622321§§6003 0.005 -2 1- 5 _ _ 1. 4892146003 16 -1 21 17 3 1.4892116003 0.000 v0.005 1.000 1.904327+003 m15‘_1_21m 10‘1 1.9060296003 1.000 0.000 0.000 1.]739859003 .18 19 21, 18,2_117739859003 111391131.000r901004 _ "_ 1.6295916003 17 61 21 1a 3 1. 6295006003 0.000 -0.004 1.000 2.0639526003 20 1 21 19 1 2.0609366333'1.330m 31000 06000 i 3 _1.9323636003 “19.12.21 19 2 1.9323696003 0.003 .1, 000 60.004 1.7704266003 10 61 21 19 3 1.7704246003 0.000 60. 003 1.000 2. 2415376003 21 1 21 20 1 2.2415376093 1.030 '0I000 0.000 f 2 _92?§§3_6_003 120 0 21 _20_2 2__ 0993036003,"9.002 -1.ooor.g;ooa 1. 9357196003 19 -1 21 20 3 1. 9357186003 0.000 ~0.003 1.000 2.2760036003MW21 0 21 21'Zm2.274004600 03 1.000 0.002 ‘ 26101121190§ 29,91 21 21,2 21191329299é'291292 116002_ 1 2.275681+003 21 .1 21 22 1 212756311003” 11000 2192§9221993_922 1 22 123 1 21195829*003 110§D_- _ .m_____1_hmm__ 2.4950879003 :22 0 22 622 1 214250571093, 1.0001191112_ 2.3131606003 621 1 22 622 2 2.3131606003 10,002 1.000 2.130696.663 620 1 22 621 1 2.6600596003 0.0000.662 1.000 2.3100256003 621 19 224521 2m213100266003 0.003 1.000 -0.002 _ 2 2 2.6600536003 622 .1 22 621 3 2.1309496003-n1.000 0.003 0.000 *1;9731906003 619 1 22’.20 1 2 279017600301006 Afiléiimijiifi 2.1365251003 .20 0 222.20 2 2.1365256903120.003211,900266,0ggfl 2. 2790166003 621 61 22 620 3 1. 9731966003 91.000 0.003 0.000 ‘i.0159056no3 .10 1 22 .19 1 2.1064346003 0. 000 0.006 1.000 3 ”‘ 1.9679056003_-19 -0322 619 2 1.96758699°§1,° 004 119091111991“ 26106432¢003 320 01 22 919 3 1.8159026003 916000 0100“ 0.000 166 1.145729t003_811m*0 ZZ—IIWS 2 1. 2485539003 314 a1 22 9. 5168669002 H11 1. 0387176003 912 161351779003 013 91 22 ._.._.._-_.— ___-.— __h ..- 8. 6206049002 9.4026546002 :10 :11 1 22 'Ill 1 10 0 22 811 2 94402615‘0021431312~~¥1900449rfi¥57— 7 613 3 110497639003 1 2? 0 2? 812 1 1.1351860003 612 3 96516765¢002 513.2 LT) K _ 33_”33 0 710 210.0. 7101 c<+17 0(0) 0171) 1. 6670706603 617 1 22 616 1 1. 9423096003 0.000 0.005 1.000 ‘3— 4160092016603_110 0422 610 2 1. 00920760034_401005__110601l6166511111 1.9423066003 619 .1 22 616 3 1.6670676003 -1.000 0.005 0.000 1.5266936003 616 1 27 617 1 1.7066426003 0.000 0.005 1.000 1163930910031612410 22 617 2 1.GEESQDQDDSWUD6flflbm_1+000710+005.hwu 1.7066306603 610 .1 22-617 3 1.5266096003 61.000 0.006 0.000 13967706003 .10 122-16 1 333394346003 0.000 0.006 1.000 33 _115101336603_116110H22_616_21 A ~ 1.6394296003 .17 61 22 616 3 1. 3947706003 *1. 000 ~0.006-ao.001 1. 2713137303 616 1 22 .19 1 1. 5006043033'30:90030.007 1.000 1. 3054376003.61s4 0 22 .15 2 1. 3054306003_ 003°1—~4+3504J01431m~—u _ 1.500679+003 616 .1 22 .10 3 1.2713096003 61.000 0.007 0.000 1.1563146603 .13 1 22 .16 1 1.3703936003 0.000 0. 000 1. 000 1.26130360031614 0 22 61442 1.26130460034 0. 000 11009463r336 — 1.3703066003 619 -1 22 614 3 1.1563076003 1. 000 70.000 -0. 002 1 0497716003 :12 1 22 613 1 1.2405604003 0.000 0. 000 1.000 1.000 706009 006000 06000 0.009 11 10000 '09011"09°°1 000 612.2 1.03071060031401011—1110001601009_.4w 0302700003 160302609003 01? *1 2? H11 3 366204869002 7. 8089269002 8. 50374960026210“ ”0 22m110 H2 5+503118t0fl2_6 9. 3380149002 790818330002 79690454*002 8. 458012*002 ___—n .-...." 6. 439323+002 6. 962768¢fiDZ 7.6625946002 5.8813989002 6.320693600244 60951759*002 59403056*002 567642294002 60325509¢002 69 311 68 1194 010 ,7 08 99 :6 a7 98 :5 c6 s7 1 22 210 1 9. 3381260002 91 22 610 8 7. 8087869002 1 22 0 221 ‘1 2? 1 22 0 22 ”1 22 1 22 -_g 29. *1 22 1 22 *0 2? 91 2? '9 1 814581399002 0.000 06010 1.000 1.000 ~0.012~60.000 0. 000 0.012 1. 000 1.000 ~06 014 90 000 _.— _ ___- -67421663237746002 67 3 5.881151*002 66 1 6.325702¢002 66 2 50764348‘002m *6 3 564077440002 1 000 90. 024 '0. 000 0.000 06 019 1: 000 1.000 “04030 90.000 0. 000 0 013 1. 000 69 2 7. 6904946002 4 0.017 1.000 70.313 .9 3 7.0016666002 1.000 70.017-70.000 60 1 7.6627396002 0.000 0.014 1.000 .3 2 6.96202560024 0+020~ 1.000460.0141. .6 3 6.4391226002 1.000 -0.020--0. 000 67 1 6.9519266002 0. 000 0. 016 1. 000 40.030 01999 60.0194— E‘JnK LT) 5. (i6929g6002 5. 2933241202 5:7838429002 6.7151256002 .4 4 9 0 8 12842 M 244, 2, 4. 695535.002“ 4.6084939002 4.9542629002 4. 3605309002 ,4639546220022 4.6663479002 4.310108*0022_2 fl. 2 6 60 523120 0-2 4.4630179002 '4.344270¢002 432232489002W__ 4.3442709002 4.4630176002 4. 2660539002 4. 3101089002 4.666347.002"m 4.3944689002 4.360530*002 6 9542626002 _4. 6084936002 4. 4955356002 5.3267606002 4.9081282002 497151256002 15.7838429002" 5. 2933749002 5. 0199989002 6.3255096002 5. 7642299092 5. 4080569002 6.951759+002 6. 3206936002 5. 8813989002 '61 07' 0' K_ 64 1 22 25440 22 96 91 22 '63'UI 22m =4 0 22 35 ’1 22 ‘22 61 22 a3mwfl‘22mmm E4 ’1 22 6627 .92 _D 22 93 '1 22 0 WI_22” 21 U 22 a? '1 2? 1 1 2? Q _Q_ 22 91 91 2? 2 i 22 1 0 22 0 91 22 3 WI 22 2 0 22 1 '1 22 4 1 22 ,3 _0_ 2?_| 2 91 2? 5 ’1 22k 4 _0 22 3 E'1 22 '6 ”Iméé" 5 70 22 4 91 22 7 1 22 .6 _0 22. 5 91 22 8 1 22 7 0 2? 6 !’1 2? 164 R 7A0 ECJ. R. 7A0: C(+1) 0:0) 06:1) -5 1W5.7840699002 0. 000 0. 022 1. 000 65, 2 5. 29356160024442064039_06959_162624_-._ -22 65 6 5. 0160046002 0. 999 «0. 039 0. 000 M94_1-5.327031¢002 0.000 0.025 1.000 .426.9004546002M20.05522069962662626._M_U_ .4 a 4 714526.002 0.996 60.055 0.001 .3 i 4.9545966002 0. 001 o. 001 1. 000 2_ 2 ~6- 63 3 4. 494507.002 0. 996 «0. 095 0. 002 62": 6.666777.002 0.001 0.040 0.999 __ —' ,92 2 423912ifigflQZM_Q;22322fl2££fi_gn+03922u , «2 3 4.35732..002 0.959 70.260 0.010 .1“. 4.4636164002 0.004 0.055 0.996 71 2,5.212602600222069722_06226“20.0162 61 3 4.2629556002 0.224 «0.973 0.050- 0 14.366i956062” 0:70270.123_ 0.702m6_ _0 2 4.6442706002 0.707 0. 000 a0.707 0 0 4.2213244002 0.088 «0.992 0.088 1 1 4.4636162002"'0.996 0.055 0.004 “'"”"M 1 2 4.31_26076902Q“0.0162:D.224 -0.974 1 a 4.2629554002 0.053 o0.973 0.224 2 i 4 6667776002 0. 999 0. 040 0. 002 2 2 4. 397244.002_ 0.039 _;_0_. _95_a 10:260__ 2 3 4.0573246002 o. 010 -0. 20; 0. 959 3 1 4.9545966002 _0T000" 06031 0.001“ 3 2 4.6091876002 0. 031 «0.995 .g.095 .2 3 3 4.494507.002 0.002 ~0.095 0.996 4 1 5.02703160021.000 6060294 0. 001 4 2 4.9004549002, 0.025 70. 9_9§ -0. 05 4 a 4.714528.002 0.001 —0. 055 0. 990 5 1 5.7640694002 1.000 0 022 .001 'm"_“* 5 2 5.293561}9027”0._021 ~0.999_ a0.039 5 3 5.0160046002 0.001 ~0. 009 0. 999 6 1 6.3257029002 1.000 0.019 0.002 6 2 5.2643466002 0.0;: -0.999 60.000 6 0 5.407744.002 0.0 0 -0.030 1.000 7 1 6.95192690021.000_06016 66.0066 7 2 603207746002 929192212929W3§29352 7 a 5.661150.002 0.000 -0.024 1.000 --~. ”___... ___ _ 165 EWJ.R.LT1W"“RMWL7"‘0 R 7A0 E 0107 01:19 11.2333444003 0.000 0.009 1.000 “m .213422111825541093 ..... 0101024110304:31309._-umunu 12.22Oflfifiijflz_n11——Om23_111_2_ 1.000 «0.013-90.001 1.287735+003 :14 «1 23 n13 3 1.0889449003 1.000 ~0.0109901001 9.9083944002 .11 1 23 ~12 1 1.1743694003 0.000 0.010 1.000 ,11112552121111.1,1L,,a,1,231.12.123.-31.1ufi12.111131_n+0,12_1+110_111111__ _ 22 1.1343604103 .13 a1 23 .12 3 9. 9035784002 1.000 -0.o12 -0.001 12_8124324002 .10 1 23a11 1 1. 0694549003 0.000 0.01; _1.000 1 0694439003 :12 '1 23 311 3 9. 0122969002 8. 200753}112.91 23.11 1 9.3299634002 0.000 0.012 1.000 8. 8719781902.310 20 23 «1028.3120lfiiflnlm—&rfl1§——1r090+t3r&%Z——wA 9.7298424002 .11 .1 23 a10 3 8.2005944002 1.000 «0.015«90.001 314333014oozmm;3 1 23 ~9M1M8.8499774002 0.000 0.013 1.000 8.05868323027 ,9_ 0.23 999 28.0532392002220+0182_120002199913wu , _ 8.8493404002 :10 .1 23 -9 3 7. 4734694002 1.000 «0.018 0.000 0.8311514002 '-7 123 -3 1 3. 0315331692—W3'.860 0.015 1.000 _11 7.33099220321_g2_._n_231m—812_ 4 ' -_ 111_2 590544229002 99 01 23 '8 3 6. 830919*0°2 10000 '09022"00000 6.273226400296 "1 23 .7 1 3. 343704400201800 _0.016 1.000 *1 6.888924+002fl_e7_ 0 23. «7.210.8890331092_101923_“110002231913fi 7.3435874002 .9 91 23 -7 3 6.2729394002 1.000 10.026'-0.0ooA 5.7993231332 '45"”1123_21411 0.7175414002 0. 000 0.019 1.000 6.13245_99002 «4. 0 23 96-21911529211922 _010§§_1012221gn1212____wa_ 0.7173374002 .7 -1 23 as 3 5.7995173002 0. 999 -0 033 0. 000 5.411128+102'a4 1223 45 1 6.1799089002__61590 80.021 1.000 596616Qfiififlgmfl'§.mfl_3§wwfi512 516613622002 0.044 0.999 '01921 6.1753704002 96 a1 23 .5 3 5.4106319002 0.999 «0.044 0.001 5.1069531002"-3 ”1 23 .4 1 547188692902__8.8801_8_82§_'1.000~~ 5.2763599002 baa _0 23 1«4,215.27482092921_9.0§03101228 hflsflifi 5.7185884302 e5 .1 23 a4 3 5.1082104002 0.998 -0.066 0.001 4.8873834302 22 1 23'";3"1 5. 3404324002 0. 001 0.030 1.000 __1111‘1 4.9767231032m s3 19,23f -3-2 4. 9777921292___Q112111fl_992;gn19§§m 5.3460904302 a4 51 23 .3 3 4. 8859534002 0. 992 ~0.124 ~0.003 4.7523584102 -1 1123~2 1 5.05060740026.00140038 0.999“ 4. 7626934002 _n2fim__g§_w92"gw417696802002 0.547 0.836 -0.033 _‘ 510581752002 23 £1 23 92 5 497449442002 0.837 ’09547 0,020 4.7019384032 0 ‘1 23 «1 1 4.85812940020.004 6281131933— 4. 6342§§1gpz 91 Q 23 31 2.91795Z7iiflgg ”912élflafl1129 1010121_. 4 354345.002 ,2 91 23 91 3 4.6318659002 0.160 90.986 0. 050 E 01.1) 0.000'70.030’”0.00I""*0‘—__/ 900Z9 '09959 ”01125“_111 0.004 -0.174 0.905 1.000‘”0.025 0.001 00025 '9999913009501 11111! 0.002 —0.080 0.997 1.000 0.021770I002“’”"‘___’ 010211e0.998 40.051 0.001 «0.051 0.999 1.000 0.019 0i00§wflhuA 0.019 -0.999140.0§J1111111__r 0.000 '09037 “.999 ‘ ./ 1.000 0.017 0.001 0.017 ~0.999 a0.029. 11111 0.000 ~0.029 1.000 1.000 0.015 0.001VW'JU7 0.0151211000 40,024 _/ 09000 ‘09024 1900” 1.000 0.013 0.0017fi 7 ‘ 0.013 —1.000 40.020 1111111. 0.000 -0.020 1.000 1.000 “0:012_ 0.000 0.012 -1.000 =0,0171 -11111,r 0.000 -0.017 1.000 1.000 0.011 0.0027007 77‘, 0.011141.000440.01&~__22__2/ 0.000 20.015 1.000 1.000 0.010 0.000h4fi077hh 00010 “19000 80.013 0.000 “09013 1.000 1.000 0.009 1b;33;11__1_1_ 09009 ”19000 909011 77.._‘U 0.000 -0.011 1.000 1.000 0.000 0.000 0 0.008 —1.0001:0.0101111.1 1_ 00000 ‘09010 1.000 1.000 0.000 0.001 0 04008 914000 '0400977». _ ’09009 1.000 175 "EEFJTQIE?T” K ' R 1107210.0.01017 C(*1) 0:01 cwWW——_7 —__~ 3.261538+005 25 a1 26 26 2 3.2615376003 «0.002 1.000 2 3.478n409003 26 s1 26 27 1 364780400003 1.000 3.7409939003 =27 1227 .26 1 3.7469906003 1.000- 2222222222222222222_. 3.7429349003 «27 0 27 627 1 3.742935.003 1.000 0.002 2 3.524037*003 :26 1 27 .27 2 3.524036o003 181 00.002 1.000 77‘7720JHFHTFT777 1;— 7L7 3.307535+0037625 1 27 3.5160669003 :26 0 27 3.70509e+003 .27 61 27 3.099691+0037;§£7 1727 3.297762+003 625 0 27 3.431763+003 =26 -1 27 2.0999069003 .23 1 27 222008010200§2125_20222 3.2668879003 =25 ,1 27 2.7087793003 .22 1 27 2.8065346003 623 0 27 3.060469+003 524 E1 27 222 2 22221§ 1015209200 252222212 2 20 227 2 2.673008+003 222 91 27 2.1861480003 919 1 27 2.3346509003 :20 0 27 2.52611090037121 71727 2.694212t003 H22 0 27 2.8625100003 :23 '1 27 2.351900*003 I20 1 27 2.491966fi003 :21 E1 27 72T026055I003mlfé7 1 27 2.1677109003 :19 0 27 2.319382+003 220 '1 27 1.880020‘003 :17 1 27 260093320003 218220 27 2.155256+003 :19 .1 27 16739643+003 616 1 27 1.859514+003 :17 0 27 1.999580+003 :18 .1 27 71.607725+003 115 1 27 1.710250+003 616 0 27 168523799003 917 91 27 1.4842650003 :14 1 27 21.585562200322152 0 27 1.713629+003 016 *1 27 1.3692640003 =13 1 27 1.4614280003 214 0 27 1.583336+003 015 91 27 J7 182 113692500003 1.000 '06013 00.001 7077007Ei0707710) cc+1) 0:0) 01.1) ~26 1 3.7050966003 0.000 0.002771:0007 626 2 3.51606090032 0.002 21.000260.002222222222 526 3 3.307534+003 «1.000 0.002 0.000 76257173;4017649003 0.000 0.003 1.000 -25 2 3.297763*003 0.003 21.000290100322222222_g 625 3 39099489¢003 21,000 0.003 0.000 224 1 3.2666693003 0.0007 0.003771.00077 777 2126 2131000010100322010012 22222 11000220 '24 3 2.899903‘003 Fioooo 0.004 0900” .23 1 3.0604720003 0.0007 0.006771I000 77 223 2 268866359003 20.004221.0002502004222222222 ~23 3 2.7007756003 1.000 -0.004 50.002 222222 2222222222222 22 f 922 1 218625130003 0.000 0.005 1.000 :22 2 216942129003 0.005 1.000 60.0052 221,222! «22 3 295261069003 -1.000 0.005 0.000 .21 1 2.6730139003 0.000 7010057 1.000777777777 -212222.51015110032202006_2120001- , .21 3 ?.3518959003 1.000 -0.006 a0.000 620 1 2.4919716003 0.000 0.006 1,0007H77 7777777 120 2 2.3346511003 0,006 21.0002no,00622222_222 “’20 3 261861429003 '10000 00006 00°00 61971 27310307I003770.000770100677§.000 119 2 2.1677129003 0,007 1.000 66,006 2 21222 I19 3 20028848‘003 '10000 00007 06000 .16 1 2.1552621003 0.000 0.007 711000777777777 218 222.0093330003220.008-21+0002202007 018 3 1.0000126003 1.000 ~0.000 ~0.000 «17 1 119995969003 0.000 0.007 1.000 7 7777 :17 2 1.0595166003 0.009 1.000 90,007 617 3 1.7396349003 1.000 _0.009 e0.000 616 1 1.8523084003770.000770.000771:000 7 H16 2 1.7182606003 0.010 1.000 «0.000 2 2 2222 -16 3 116077149003 1.000 —0.010 10,003 ,15 1 1.7136389003 0,000 0.009 1,000 7 :15 2 1.5055666003220.0112 1-000210,000 22222 115 3 1.4842539003 1.000 ~0.011 -0.001 .14 1 10583347+003 0.000 0.009 1.000 7 77 614 2 1.4614321003 0.013 1.000 90.000222, 1 «14 3 ‘ETUTFTC77“" _RW‘ 4’ 1.262721+003 :12 2- 1.3458544003 s13 1.461503+003 :14 1.164637+003 =11“ _, 1.2388429005 =12 1.348127+003 213 ’7 1.0750101003 «10 ,1.140§221flfl§21L122 1.243210*003 212 9.9384260002 .9 1.0505009003 610 1.146751+003 911 —' 9.2113331562 .27 9.691703+002 .9 1.058751+003 :10 8.568823+002 -7 2 8.9640182*0022,!& 8.0102986002 .6 8.3210446002 67 9.0012594002 .a 7 7.537556+002" Jé' 8.455009+002 .7 7.148798+002 -4 7.294624+0022225 7.9133424002 .6 6.5446254002 .3 6.909379+002 .4 7.4562606002 .5 6.625035+002’J-2" 6.6097446002 .3 7.0837626002 .4 6.4900309002 .1 6.3957196092 _,2_7 6.7950474002 .3 6.439608+002 0 6.267303*002 .1 6.5925174002 .2 186 '0.996 0,040 2172"Jm“2 710 210.0.7007 C(+1) 010) 01.1; 1 27 ~13 1 1.4615144003 0.000 0.010 1,600U7fi2 4‘ 0 27 .13 2 1.3458604003 0.014 1.000 v0.0102 2 .1 27 ~13 3 1.262704¢003 1.000 —0.014 ~0.000 1 27 .12 1 113401404003 0.000 0.011 1.000 0 27 .12 2 1.230349.003 0.016 1.000 a0.0112,2 2 2_1 e1 27 -12 3 1.1646179003 1.000 -0.016 10.001 1 27 -11 1 1.243221o003 “7.000 0.312771j0324u7VU‘__ 0 2726112221.1403996003 0.019 1.000 .0.012 -1 27 -11 3 1.0749870003 1.000 -0.019 10.001 1 27 .10 1 1.1467676003 0.000 0.013 1.0007777 V 2 0 27 .10 2 1.0505124003 0.022 1.000 70,013,22 2,2» -1 27 .10 3 9.9381524002 1.000 ~0.o22-s0.001 1 27 +9 1 1.050769+0037”07000 7070132217030 0 27 -9 2 916918629002 0.026 1.000 90.01422 .1 .1 27 .9 3 9.2110004002 1.000 ~0.026 -0.000 1 27 -0 1 9.7922871002 0.000 0.015 1.00077 7—7 20 27 -e 228.90623920022202052220.222-104015 .1 27 —a 3 8.5684094002 0.999 -0.032 0.000 1 27 .7 1 9.0814754002 0.000 0.017 1.0007 _ 0 27 .7 2 8.3222644002 0.041 0.999 10.0172 2 .1 27 .7 3 0.010362o002 0.999 -0.041 0.000 1 27 L6 1 6045525146627 0(000 23:323771.333_— 0 27 -6 2 717659799002 0.057 0.998 s0.019222 22 .1 27 -6 3 7.5368134002 0.99s ~0.057 0.001 1 27 -5 1 7.913617¢002 0.000 0.021 1.000” 7 -0227 25 2 7.29552210022 0.0822201220.10.02122222 .1 27 -5 3 7.1476264002 0.996 «0.039 0.001 1 27 .4 1 7.456575.002 0.001 0.024 1.000W 0 27 -4 2 6.911650.002 0.193 0.931 .a,024 .1 27 .4 3 6.842031t002 0.981 -0.193 0.004 1 27 .3 1 7.0841296002 0.001 0.025221.0BE—W72_m“— 0 27 .3 2 6.632505.002 0.869 0.495 -0.o14 .1 27 .3 3 6.6010273002 0.495 -0.a60 0.024 1 27 -2 1 6.7962066002 0.001 0.033 0.9997 20 Z7 7222 61491§5§fi9022 019912 021§§_'QLQQ£222%__h_ -1 27 ~2 3 6.3934576002 0.136 -0.990 0.033 1 27 .1 1 6.593060t002 0.004 0.041 0.997 0 27 -1 2 6.440621¢002 0.997 0.076 -0.0072 «1 27 -1 3 6.265747t002 0.076 184 777 E c .J IIW7777K77 1.1646374003 '00016 7177 3'70 740 213.0.71072 "01+1) 010) 01.1) 6.74737704002 1 1 27 0 1 6.4751814002 07770757 07.707775777707770? _ 7 6..224499+002 0 0 27 0 2 6.4737709002 0. 707 0. 000 «0.7077 - 7 6.14737709002 .1 91 27 0 3 6.2230004002 0. 053 -0, 997 0.053 ' 6.592517}5527772” 1 27 12176.59Sh60l002770.999 707041 0.004 6.2673034002 1 0 27 1 2 6.4406214002 02002 70.070 20.327 222 6.439603+002 0 .1 27 1 3 6.2657479002 0.040 —0.996 0.076 6. 795047.002 3 1 27 2 1 6.796286*002 0.999 0.033 0.002 77 §2§2524£B£932223 -0227 ,2 226.4910534002 0.006 —0.136 ~0.991 . .490030+002 1 .1 27 2 3 6.3934574002 0.033 90.990 0.136 7.083762+002 4 1 27 3 1 7.0041294002 1.000 70.0287 0.031 7 77 6.6097949002 3 0 27 3 2 6.6325354002 0.014 ~0.495 90.069 22 6.625n359002 2 .1 27 3 3 6.6013274002 0.024 20.033 0, 495 _2H22—_2__22 222 2,- 2222 2 ,2, 2 2222,. 22 22 2.22.2222‘ 2,,2222.2.2222222222222, 2 .1" 7.4562604002 5 1 27 4 1 7.4565754002 1.000 0.024 0.001 6.9093794002 4 0 27 4 2 6.9116584002 0.024 «0.931 90.123, , , 9 6.8446259002 3 .1 27 4 3 6.3420311002 0 004 -0.193 0.931 7. 9133424002 6 1 27 5 1 7.9136179002 1.000 0.0217 0.001 77777 721222959232992 2 22,52 20222 37 ,5 ,2,7212325233025822291 021 '0 .996 '01 089 , 7.1487984002 4 .1 27 5 3 7.1476269002 0.002 -0.069 0.996 3.455009.002 7' 1 27 6 1 3.4552514002 1.000 0.019 0.000 777 7 7.7654799002 6 0 27 6 2 7.7659799002 0.019 -0.990 .0.0572 7; 7.5375569002 5 .1 27 6 3 7.5368134002 0.001 -0.057 0.998 79.051239J062777é771 27 7 1 9.0014751602“ 1.000 70.017770753277 77777 8.3219441002 7 0 27 7 2 8.3222649002 0.017 -0.999 e0.041 2 ,7 8.0108984002 6 .1 27 7 3 8,0103620002 0.000 -0.041 0.999 9.7920944002 9 1 27 a 1 9.7922374002 1.000 0.015 0.052 7 777 3°96501§f9Q2 ,23 20227 322 892652399002 202 015 "Dc 29299 EQ1Q§222222___2 8.563023+002 7 .1 27 a 3 8.568409+002 0. 000 -0 032 0.999 1.0587519003 10 1 27 9 1 1.0537694003 1.000 0.014 0.001 7 7 9.691703+002 9 0 27 9 2 9.6918629002 0.014 91.000 90.026 9.2113334002 a .1 27 9 3 9.2110004002 0.000 ~0.026 1.000 '1.146751.003"11' 1 27 10 1 1.1467674003 "1.000' 0.013 0. W063 “— 1.0505004003 10 0 27 10 2 1.0505124003 0.013 v1.000 -0. 022 7 9.9384264002 9 .1 27 10 3 9.9331520002 0.000 —0.022 1.000 1.2432104003 12 1 27 11 1 1.2432244003 1.000 0.012 0.001 21.1403901003 211 0 27 1122 1.1403994003 20.012251.000210.119222_ . 1.075010+003 10 .1 27 11 3 1.074967.003 0.000 -0.019 1.000 1.3481279003 13 1 27 12 1 1.3431404003 1.000 0.011 0.0047 1.2333424003 12 0 27 12 2 1.2300494003 0.011 -1.000 s0. 016 , 11 -1 27 12 3 1.1646174003 0.000 1. 000 185 R7730m313:3.740) E(J:K1LT) K LT 3 C(+1) 040) 04-1) 1.461503+003 14 1 27 13 1 104615149003 1.000 0.000 0.000 7 1.3450544003 13 0 27 13 2 1.3453604003 0.010 ~1.000-=0.0142 _~ 272 1.262721+003 12 e1 27 13 3 1.2627044003 0.000 -0.014 1.000 1.5833364003 15 1 277 14 171.5833479003 1.000 0.009 0.002 1.4614204003 14 0 27 14 2 1.461432¢003 0.009 -1.000 no.01322222 2- 1.369?64+003 13 .1 27 14 3 1.3692504003 0.000 -0.013 1.000 1.7136294003 16 1 27 15 1 14713638¢003 1.000 0.000 0.000 __.»221.58553243032215220127221522,1.535566400322040092212010 1.4847659003 14 -1 27 15 3 1.4342534003 0.000 -0.011 1.000 1.8523794003 17 1 27 16 1 1.3523083003 1.000 0.000 0.000 1.7132504003 16 0 27 16 2 1,718260‘003 0.008 -1.000 -0.010w~n— ,2, 1.6077254003 15 e1 27 16 3 1.6077144003 0.000 ~0.010 1.000 1.999588+003 1e 1 27 17 1 1.9995964003 1.000 0.000 0.000 1.8595144003 17 0 27 17 2 1.8595164003 0.007 «1.000 no.0097 _»7 ..... 22 1.739643+003 16 .1 27 17 3 1.7396344003 0.000 -0.009 1.000 2.1552564003 19 1 27 10 1 2.1552624003 1.000 0.000 0.000 2.0093324003, 10,20 27 1a 2 2.00933320032.0.001"=14000—:01003_———____x 1.3300204003 17 41 27 1e 3 1.3800124003 0.000 -o.000 1.000 2.319382+003 20 1 27 19 1 2.3193374003 1.000 0.000 0.000 2.1677104003 19 0 27 19 2 2.1677124003 0.006 v1.0007-0.007. 7 , 2 2.0203554003 15 .1 27 19 3 2.0203484003 0.000 ~0.007 1.000 2.491966+0037 217 1 27 20 1 2.4919714003 1.000 0.000 0,000 2.334650*003 20 0 27 20 2 2.3346514003 0.003 -1.000 20.003- 222 22 2.186148+003 19 .1 27 20 3 2.1861424003 0.000 .0.000 1.000 246730089003 22 1 27 21 1 2.673013+003 1.000 0.000 0.000 2.5101504003 21 "o 27 21 2 2.5101514003 20.005~m1ro00—-0.003— 2.3519004003 20 21 27 21 3 2.3518953003 0.000 —0.006 1.000 2.3625104003 23 1 27 22 1 2.0625134003 1.000 0.000 0.000 2.6942124003 22 0 27 22 2 2.6942124003 0.005 —1.000 -0.005 2.526110+003 21 .1 27 22 3 2.5261064003 0.000 —0.005 1.000 3.0604694003 24 1 27 23 1 3.0604724003 1.000 0.000 0.000 2.886834+003 23 0 27 23 2 2.8060354003 0.004 ~1.000 -0.004 2”,, 22 2.7007794003 22 .1 27 23 3 2.7037754003 0.000 e0.004 1.000 30266887+603 25 1 27 24 1 3.266889*003 19000 0.000 0.000 3.0330134003 224220 27 24 223.0000104003 0.003241.0002-0.004___2222_ 2.899906+003 23 .1 27 24 3 2.8999034003 0.000 v0.004 1.000 3.4817634003 26 1 27 25 1 3.4017644003 1.000 0.000 0.000 7 3.2977624003 25 0 27 25 2 3.2977634003 0.003 21.000 30,00322 25 3 3 3.0994919fl03 24 .0994899003 0.000 ”0.003 14000 186 776(J.K.LT)7 K7HLf7 37 R 710 21010.7107 C(+1) 6(0) 0(a1) 3.705093+0o3 727 1 27 20 1 3170509890037 1.0007 0.0007 0.1ifi7 3.5160031003 726 0 27 20 2 3.5100681003, 01002 51,000 p0.003 3.307535+0o3 25 e1 27 23 3 3.3075343003 0.000 -0.002 1.000 773574263330037727770727 727 1 3.74293El003"71.000 0.002 3.5240373003 23 a1 27 27 2 3.524030~003 :0.002 1.000 3.7439931003 27 21 27 20 1 3.7489986003 1.000 §2§111,?8 229_11910§0L17t903 1:000 23190+003 320 0 20 320 1 4 .0231901003 1. 000 0.0027,, 111n111_111, 900933003 .27 1 20 323 2 3 7966980003 -0. 002 1.000 3.571738+003 323 1 20 ~27 3. 9345923003 0;000 0.002 3.7877629003 327 0 28 327 1.000 ,3 7077331003 0. 002 1.000 a0.002 3. 571737+003 Q1. 000 0.002 0.000 ufin‘ 3.984592+003 :28 ‘1 28 :27 3.355236fino3 :25 1 28 u26 3.560996+003 226 0 28 I26 3.752798+003 ’27 $1 28 926 3.752300¢003 0.000 0.003 177 3.5608965003 0.003 1.0001a0 3.3552343003 e1.000 0.003 0 (Ah‘i—fi 773734715230037Q2477172a 125 1 3.5290661003770.000770:003 1.000 3.342590+003 325 0 23 «25 2 3.3425911003 0.004 1.000 no.003- 3.5294341003 .23 .1 20 125 3 3.147139.003 w1.000 0.004 0.000 2.947303+003 .23 1 20 .24 1 3. 3145903003 0.000 0.004 1.000 7 7 7 _ 911§Zfi421093 ”24 0 29 724,2.3 132546‘0_°§ ,Paflgflu3l1QQQUEQJEO4 __.2 3. 3145 88+003 :25 -1 2a .24 3 2. 947603*003 1.000 -0.004 no.001 2.753430+003 .22 1 28 =23 1 3.100173~003 0.000 0.004 1.000 77 7 77 2.931002+003 u23 0 2a -23 2 ?.931663*003 0.005 1.000 ~0.00411 7 3.108170+003 924 .1 22 323 3 2.7534751003 ~1.000 0.005 0.000 2.573311;003 321 71 23 .22 1 2.9102151003770.000 0.065"71.000 7“ 2.739040+003 322 0 22 .22 2 2.7390411003 0.005 1.000 m0,00572277 _ 2.910210+003 323 .1 23 322 3 2.5730001003 1.000 ~0 005 =0 001 2.3993011003 320 1 28 .21 1 2.7207141003 0.000 0.005 1,000 ,_2. 554970+003 ~21, 0 20 .21 272 554979.003 0.006 1.000_ 0,005 , 2. 720709.003 =22 e1 20 ~21 3 2 399595+003 ~1.000 0.006 0,000 “ 2.233849+003 719 1 28 520 1 205396726003 0.000 0.006 1.000 2.3794701003 a20 0 20 520 2 2.3794791003 0.007 1.000 -0.006 2.539337+003 321 .1 22 .20 3 2.2330421003 a1.000 0.007 0.000 ’ 2.073556#00373187 1 20 .19'1 2.3670393003770.000 0.007 71. 000 “— 2.212530+003 «19 0 20 «19 2 2.2125401003 0.000 1,000 50:003 2.307002+003 320 '1 20 ~19 3 2.0765489003 1.000 -0.000 .0. 003 5‘ 137 , E(J.K0LT) R LT 37727?[U“E(372.1107 0(+1> c102 0<.1) 77 1.9277211003 :17 1 20 010 1 2.2029341003 0.0007 0.007771{3607777 777 ,1 2.054100+003,s10 0 20 110 2 2.0541021003 0.009, 1.000 1010071,,111111 2.202957+003 .19 .1 20 .15 3 1.9277113003 11.000 0.009 0.000 1.787344+003 .10 1725 517 1 2.047297«003 0.000 0.008 1.000 ,1, 119043921003 =17 0 23 e17 2 1.9043451003 0.010 ,11000 30.003U1 11.,1 2.047209.003 310 .1 23 317 3 1.7073333003 1.000 -o.010 10.004 777 1.0554233003 .15 1 20 .10 171.70000530037707000 70133377173307 777 _1_M,,1.7630§2:00§_3101,0,2§.21012_1.763089¢003 0.011 1.000 30.008 1.900080+003 :17 .1 20 .13 3 1.3554140003 1.000 90.011 =0,003 7 1.531933+003 =14 1 23 .15 1 1.701340.0037 0.000 0.009 1.00377 777 1.030390+003 215 0 20 ~15 2 1.3303943003 ,0.012 1.000210.009r,1,fl,1_ 1.701329+003 :16 ,1 20 .15 3 1.5319523003 1.000 ~0.012 -0.002 777 1.4109031363 Q13 71 20 .14 1 110310393003770.000 7070137717000 1.506250+003 =14 0 20 214 2 1.500201+003 0.014 1.000 90.009 1,, m_, 1.031037+003 115 .1 20 .14 3 1.4109400003 1.000 ~0,014 .0,101 1.310422«003 .12 1 20 :13 1 1.5092161003 0.000 0.010 1.0007 77777 ., 1.390082100§,e13,,o 20 113,2,1.320039109§,,01012, 1.000 «0.010 1.509203+003 :14 -1 20 ~13 3 1.3104033003 1.000 ~0.015 -0.000 1.212337+003 .11 1 20 .12 1 1.395342.003 0.000 0.011 1.000 7 7 1.2033703003 112 0 20 ~12 2 1.203370o003 0.010 1.000,uo.011 2 1_ 1.3950201003 :13 .1 20 .12 3 1.2123153003 1.000 -0.018 30.000 1.1227113303 110771 20 2117171.290920£BB37 52300 0.012 1.000 1.185218+003 :11 0 20 .11 2 1.135230.003 0.020 1.000 -0.012, 1.290911+003 .12 .1 20 .11 3 1.1220351003 1.000 -0.020 «0.000 1.0415431003 .9 1 20 ~10 1 1.1944093003 0.000 013 1.000 77 1.0953201003 110, 0.20 010,2 1.0223151003,,0.0211111000_10L013_____2__, 1.194452+003 :11 a1 20 010 3 1.0415123003 1.000 ~0.02 a0.001 9.000341+002 10 1 20 -9 1 1.1004703003 0.000 0.014 1.000 7 7 1.0139901003 .9 0 20 -9 2 1.0140183003 0.029 0.999 e0.014 1.100452+003 .10 -1 20 ~9 3 9.3079533002 1.000 -0.029 ~0.000 9.045031+002 7177 1720 10 1 1.0239303003770.000 73701577175337 9.412299+002 ,0 0 2a ~a 2 9.412579»002 0.030 0.999 e0.015, 1.020910+003 .9 .1 20 .3 3 9.0453493002 0.999 —0.030 0.000 0.407903+002 .3 1 20 '7 1 9.550492.002 0.000 0.017 1.000 6.7702231002,,-7 ,0.28 -7 2 0.7700301002, 0.002 ,0.222110.0121,__1____ 9.5502073002 .0 31 20 -7 3 0.4072091002 0.999 ~0.047 0.001 0.0145341002 .5 1 20 -3 1 0.9322333002 0.000 0.019 1.000 7 s.213759+002 :0 0 20 we 2 8.2144233002 0.007 0.990 -0.019 0.9320170002 .7 ,1 2a -3 0.990 3 800136492002 10.017 0.001 7 7 EtJJETC777777 7.6258069002 7.742904.002 s,390350+002 7.3216330002 7.357059o002. 7.933268+002 7.102043+002 7.05802120021 7.5607700002 6.967038+002 6.843999+002 7.272855+002 6.9166169002 6.715583o002 7,069525+002 6.950778+002 6.672779t002 6.950778+002 7.069525+002 6.715583+002 6.916616+002 77.222050.0027 6.843999+002 6.967038#002 7.5607706002 7.058024+002 7.102043+002 7.933268+002 7.3576599002 7.321633+002 70.390350+002 7.742904.002 7.625806+002 8.9320179002 8.213759+002 8.014564+002 9.558?67*002 8.7702239002 8.487906t002 I4 l5 I6 .3 95 '2 nSVV .4 H1 :2 93 21 $2 DP H30Cfl DDJTU xna'q bknO- oabxn mt»; \lm KW” 188 R 0.0 eéJ.0.TAuI n5 '5 *5 94 *4 V4 *3 «3 *3 v2 12 "2 '1 61 '1 0 0 0 oc>o~ snuxm h.b£s acne n3mn37 Hysp fl‘d OUWP‘ “500‘ OIME‘ (AR)H {dhlu (Ahifl (dfi)H OJM)‘: UJMF‘ Uch‘ MIDF‘ (flhiH GRIP 8.390633‘002 707441859002 70624243t002 0.933590.0027 7.3619719002 7.3169986002 7.5611429002 7.10594290021, 7.0537529002 7.273295%002 699685519002 6.842046‘002 70070061*002 609175509002 6.714113¢002 6.9521380002 6.950779t002 6.6714199002 7.0700619002 6.9175509002 6.7141130002 7.273295.002 6.968551%002 3.342040.002 7.561142*002 7.105942t002 7.0537529002 7.93359090027 7.3619710002 7.316998+002 8.3906330002 7.7441850002 7.6242430002 8.9322689002 8.214423‘002. 8.013649t002 9.558492‘002 8.7706366002 8.4872690002 C(+1) 0.000 0.114 0.993 01001 0.321 0.947 0.001 0.962. 0.273 0.001 0.994 0.109 70h03 0.998 0.068 09705 ,0.702, 0.049 0.999 0.006 0.039 0.999 0.005 0.032 1.000 0.008. 0.026 1.000 0.023 0.007 71.000 0.021 0.002 1.000 0.019 0.001 1.000 0.017 0.001 CCU) C(91) 0.021 71.000 0.993 '0.021 WW ”0011‘ 0.002 0.02.77;.000 , 0,947 s0.0231,11,,111~ ”09321 ”.007 0.027771.0007 _2012131301003 0.027 0.002 f -0.932 0.025 0.032770.999777 7777 0.109 20.005 ,,,,, 7 112 ’09993 0,032 0.039 0.999 0.008120.0007_,, ,2_ ”09997 0.039 0.070 0.703 7 7777 1, 0.. 0001 moan—W '09998 0.049 0.039 0.00.7 7 ’00068 309998 7 ”09997 0.068 0.0327 0.002 7777 '09109 309994 ~0.993 0,109 —.0 .293 :0 . 96.2—*‘_.~— ”09962 0.273 0.024 0.001 30.947 90.321 '09321 0,947 70.0217 0.001 ”09993 90.114 “00114 0.993 00019 03002 '0.9.9.8 *0.067 0.998 0.017 0.001 '0.999 no.047 ”00047 0.999 80.06&"_mmwfi E(JTK.LT) 19026910‘003 9.412299+002 9.045831‘002 K 1.106452+no$ ,1.013998+003 9.6883419002 1.1944521003 1.095520100QM, 1.041543+003 1.2909119003 1.1852189003 1.1227119003 1.395320;003 1.2836709003 1.2123379003 1. 509203+003 1. 390682+603 1. 310422+603 10631037+003 1.506256t003 1.416965+003 1.701329.003" 1.630390+003 1.531966+003 00080+005 1.9 1.76308690037 1.6 55426+003 2.0472899005 1.904342+003 1.787344+003 2.202957.003 2.054160+003 1.927721.003 2.337082.003 2.212530.003 2.0765569003 2.539667+ngs 2.379478+gos 20233849*003 28 28 28 28 28 28 72é7 28 28 28 28 28 28 28 28 28 28 28 2B 28 28 ZR 20 23 23 2R 20 23 20 20 22 7R 00 8 1 8 2 8 3 N D (AMA 169 07E1370701057 c<+1) cco: 01.1) 1.020930.003 1.000 0.019 0.001 7 7 9.412579.002 0.015 -0.999 no.033 9.045349*002 00000 ”09036 0.999 771.103.70.003 1.000 0.014 0.003 1.0140189003 0.01. v0.999 20,029 A 99687958‘002 0.000 ”0.029 10000 1.194409.003 1.000 0.013 0. 00377 77777 ,1.095343.003 _0.013 -1.000 -0. 024 1.041512‘003 0.000 "00024 1.000 1.290926.003 1.000 0.012 0.001 7 1.185230.003 0.012 —1.000 s0.021 1_ 19122685‘003 00000 "09°20 10°00 1.395842o003 1.000770.o11 0.0037 777777 1.2836789003 0.011 ”19000 209018 44 1.212315.003 0.000 -0.010 1.000 1.509210.003 1.000 0.010 0.002 77777 1.390609.003 0.010 11.000 «0.015 1.310403.003 0.000 -0.015 1.000 1.631049.003 1.000 0.010 0.00. 7 1.500261o003 0.010 —1.000 10.014 1.410940.003 0.000 -0.014 1.000 1.761340.003771.0007707005770.00§777 1.630394.003 0.009 ~1.000 «0.012 1 1.531952.003 0.000 -0.012 1.000 1.900089.003 1.000 0.000 0.003 7 1.7630899093, 9.000 31.000130101111 1.355414.003 0.000 -0.011 1.000 2.047297.003 1 000 0.000 0.000 7 109043459003 09008 '19000 QOIOIU 1.7073333003 0 000 .0,010 1.000 2.202964.003 1.000 70.007 0.001 7777 77 2.054102.003 0.007 v1.000 -0.009 1.927711.003 0.000 -0.009 1.000 2.367089.003 1.000 0.000 0.000 2.212540.003 0.007 ~1.000 ~0.0oe _1 11h_1 2.07054s.003 0. 000 -0.000 1.000 2.5396729003 1.000 0.000 0.000 29379479*003 09006 “19000 '09007 2.233342.003 0.000 —0.007 1.000 7773:325133133377 2. 2207093103 2. 5540783003 2. 3993011003 772Q9102131133777 237390406003 29573811+003 3 100170+003 72 _973133230073 2. 756480+n03 3,314588+003 73.132046+003 2.947606t003 3.3425902003 3.147192+003 3. 7527952003 7 3. 56009330037” 3 355?36*003 3.984592+003 3.787762+003 3.5717382003 71:123195306377 3.796698+003 40030117*003 4.321399+003, 4.3136070003 - 4.079522*003 3, 8461032003 4 0696193003 274247+003 3,621142+003 3.8341912003 4.033996+003 3.404640+no3 3.607325+003 3.802203+003 7E(JI§TC?T77777— 926 :28 73257 526 :27 190 ’727?IU7E(JI211302 c<+11 0102 01:1) 21 1 2.720714o0037 1}0017 0.0057701112 77 777 21 2 2.5549791003 01005 ~19000,10.000 , 1,, _ 21 3 2.3995953003 0.000 ~0.006 1.000 7722 1 21910213366377126167 0.005 0,000 22 2 2.7390413003 0.005 11.090 101002 ,,,n, 22 3 2.5738069003 0.000 10.005- 1.000 23 1 3 1001733003 1;000 70;063 0}660 23 212 931663‘9992 9 004 «1.009 '0.005 23 3 2 753475.003 0. 000 -0.005 1.000 24 1 3.3105903003 1.000 0.000 01000 77 24 2 3,1328469093 0.004 '1o009,904096 , 7 _ 24 3 2.9476030003 0.000 10.004 1,000 25717315291334063 713000 0.000 0.000 25 2 3.3425911003 0.003 11.000 s0.004 , _14 25 3 3.1471893003 0.000 10.004 1.000 23 1 3.7528000003 1.000 0.000 1.300 7 777 26 2 3056999fifi99§,-91993 '10000 90.003 11_J 23 3 3.3552343003 0.000 -0.003 1.000 27 1 3.984592—003 1.000 0.000 0.000 7 77 27 2 3.7377333003 0.002 -1.000 20.002 27 3 3.5717373003 0.000 10.002 1.000 20 1 4(623190J6637 1:0607707612 7 7777777777777 28 2 3,796698‘003 .0900? 110001 1* 29 1 4.030117w003 1.000 , H30 1 41521399*9931,19990,W712022 ______Hh_1___ '29 1 40313608*003 10000 09022 0 i 929 2 40079521‘003 ”00002 19000 .20 1 4 ,2742483003 0. 000 0.002 1.000 .2072 4 0696199903 0. 002 71.000 -01002" __1 .20 3 3 8461620003 -1. 000 0.002 0.000 .27 1 4.0339971003 0.000 0.003 1.000 827 2 3.0341923003 0.003 1,000 30,002 :27 3 3.3211403003 11.000 0.003 0.000 «23 1 3.0022050003 olhbo 1.065 711610 .26 2 3.6073250003 0.00 1.000 10.00 7 123 3 3.4046379003 «1.000 0.003 0.000 191 -ElJchLT) K LT 3.193990+003 :24 1 3.309019+003 .25 0 3.578868+003 :26 '1 2.9970111003 -23 1 3.1792253003 :24 0 3.3639929003 .25 .1 2.505034+0033a22 1 2.97819110331223m20 3.1575743003 324 .1 2.3232153003 921 1 2.7854694-003 E22 0 2.959315+003 .23 ,1 2.4490051003 :20 1 2.001407+003 :21 0 2.770114+003 :22 a1 2.2a3253+003 .19 1 2.425907310375201 o 2.5090713003 321 -1 2.125960+303 .18 1 2.2589679003 .19 0 2.416487+003 :20 ,1 1.977125+003 E17 71 2.1005899003 .13 0 2.2523319003 .19 .1 1.8367499003 313 1 1.9507719003fia17, 0 2.096694+003 .13 .1 1.7040303003 .15 1 1.009515+003 :13 0 1.949484+003 117 :1 1.5a1371+003 919771” 1.676819+003 .15 0 1.810734¢003 310 .1 1.466369+003 .13 1 115526853003 .14" o 1.6804423003 .15 .1 1.359826+003 .12 1 1.437111+003 a13 0 .1 1.558608+003 I14 ‘29 11359805‘003 19000 '09017 ”09001 3339 TAU 510.2.1102 0(+11 010) 01.11 29 -25 1 3.578871*0937 0.0007 0.033731203147437743 29 525 2 3.3090203003 20.004 11100 ag,oo4__ .1 - 29 ~25 3 3.1905939003-91.000 0.004 0.000 29_:2§"1 313639969003 0.000 0.000 1.000 29 .24 2 3.1792769003 0.005771.000-=0.0044, ,2 3 29 «24 3 2.9970073003 -1.000 0.005 0.000 29 923 1 3.15757030037 0:900“30.932m31:933447 ___ 729 12312,2,92111211111111115__11111. 1 29 :23 3 218058799003 -1.000 0.005 0.000 29 E22 1 2.9596209003 0.000 0.005 1.030 47 2723 29 -22 2 2.7854709003770.006 1.000»-0.005777 “222 29 :22 3 2.623210+003 «1.000 0.003 0.000 29 :21 1 2.7701199003 0.000 0.006 1.000 29 121 2 2.3014093003 0.007 1.000 no.0osfl ‘7 7 24 29 921 3 2.4429931003 -1.000 0.007 0.000 29 -20 1 215890782093 0.000 0.006 1.000 29 .2072 2.4259081003 ,n1013,11,1101.g1112________4 29 .20 3 2.2832453003 -1.000 0.007 0,000 29 «19 1 2,4134943003 0.000 0.007 1,000 '37 29 :19 2 212589699003 0.008 1.000 -0.0077227 41 29 919 3 2.1259519003 -1.000 0.008 0.000 29 .13'1 2925233990333703950 0.007 1.000 29 =10 2 2.1005919003 0.009 1.000 20.00727,m,1 11 29 :18 3 1.9771149003 1.000 no.009 -0.000 29 .17 1 2.0907039003 0.000 0,006 1,000 77777 3 ”29,31722 199507751093 79.010”713909_nn+&&&__~_____ 29 s17 3 1.836736t003 1.000 -o.010 s0.0o3 29 913 1 1.9494959003 0.000 0.008 1.000 7 2 29 .13 2 1.0095193003 0.012 1.000 -0,003 29 210 3 1.7048169003 1.000 -0.012 -0.003 29 ~15 1 1;810745.003720.00072630393711330333 —3 29 915 2 1.676825t003 0.0137 1.000 -0,009 , 29 :15 3 1.5013543003 1.000 .0,013 ~0.001 29 -14 1 1.0004543003 0.000 0.010 1.000 -14 2 1.5523913003 1,015,11,1111.1111111_1____ 29 E14 3 1Q466351‘003 10000 “00015 ”0,001 29 .13 1 1.5503211003 0.000 0.010 1.000 29 :13 2 1.4371209003 0.017 1.000 -0.010 29 «13 3 1.2017429003 1.3300991003 1.445232+003 71.112110:00§7 ,1.231047+003 193403159003 1.090948+003 11415175210011 112438579003 1.0102301003 1.0004279003 19155856*003 973390753002777 90876568*002 190763159003 8.981950‘002 _191234514t002, 110052310003 89508606*002 8.678049+002 9.426061*002 50l0027”7 8.1198 8.207194+002 8.884394+002 7.8156779002 7.0219499002 8.4273129002"” 7.5960879002 795223149002 390548149002 77.4610629002 7.308289*002 7,7668999002 7, 410660‘002 7.1798740Q02 7.444822t002 7.4448220002 K 77E c<0) 0091) 1 1 7.5040999002 0.999 0.007’flo.604fl” W"W 7“ 1 2 79411533*002 00006 “09061 “09998, _ 1 3 7.1754709002 0.037 90.997 0.001 2 1 7.767340*002 1.000 0.031 0.002 2 2 704623939002 0.004 —0.092 90.996,“ 11 2 3 7.3005379002 0.031 -0.995 0.092 3 1 8.0591919002 1.000 0.027 ”0:002_Mv~¥ifl_ _3,2 7.5?g216109Z_10.006 90.162-90.983 3 3 7.5193039002 0.026 90.903 0.182 4 1 0.4270409002 1.000 0.023 0.001 7 4 2 7.0331179002 0.01s «0.7701-0.130,9 .- 4 3 7.8041809002 0.014 -0.630 0.775 9 1 8.0016059002 1.000 '0.021'H0.001Wfl 5 2 0.2091299002 0.020 ~0.9ae 90.190 11 5 3 8.1176259002 0.003 -0.156 0.988 e 1 9.4203209002 1. 000 0. 019 0. 001 VAH‘J 96 2 6.6709439003 09019 —0, 999 9_1:0 a: 0 3 8.5074559002 0. 001 «0. 002 0. 997 7 1 1.0092549003 1.000 0.017 0.002 7 2 9.2350469002 0.017 90.990 90.055, 1 7 3 8.9811859002 0.001 -0.055 0.993 a 1 1.0?03361003 1.000wm01013”"0.301 ——~4 a 2 9.0759439002 0.015 ~0.999 -0.0911, s 3 9.5393119002 0.000 90.041 0.999 9 1 1.1558769003 1.000 0.010 0.002 9 2 1.0909529003 ,910;51r0-22212Q1Q§2_1 9 3 1.0101949003 0.000 90.032 0.999 10 1 1.2430749003 1. 000 .013 0. 000 10 2 1.1417759003 0. 013 —1.000 90,027 10 3 1.0909129003 0. 000 -0.027 1. 000 11 1 1.3403319003 ”1.000HA0.012W"0.00: __- 11 2 1.2310619003 0.012 91.000 -0.022 11 3 1.1720869003 0.000 -0.022 1.000 12 1 1.445247.003 1.000 0. 011 0. 001 1? 2 1'330l1Q‘003, oyflil '1 059 9&1912_1111_1_ 12 3 1.2017179003 0.000 -0. 019 1. 000 13 1 1.558621*003 1.000 0.010 0.002 13 2 1.4371203003 0.010 -1.000 90.017 13 3 1.3593051003 0.000 -0.017 1.000 3 E(30K0LT) _‘ 1.6804429003 1.5526859003 1.4603099003 1.8107349003 1.6768199u03 1.5813710003 1.9494849003 11302515100511 1.7048309003 2.0900943053 1.9507719003 1.8367490003 272323011003 2.1005599003 1.9771259003 2.4164879003 1,202589672003 2.1259600003 2.589071+003 2.4259079003 2.283253i003 297701149003 206014079003 2.4490059003 2.9596159003 2.7854699003 2.6239159003 3.1575749003 2.9780919003 29805884+003 3.3039929003 3.1799753003 2,997011+003 3.5788689003 3.3890199003 3.1965969003 3.8022039003 3.6073259003 3.404640*003 K 15 14 13 1i61 15 14 17 ,16 1 19 1e 17 13 '19 18 17 20 919 18 21 20 19 "22 20 _1Lf1 R ¥AU'E(JI§{fZUT“J3 14 14 14 15 15 15 16 16, 16 17 17 17 18 18 18 19 19, 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 1 2 3 “NH “NP (AMP 194 116804549003 195526919003 10466351‘003 1.810705900333 10676825‘003 105813540003 109494959003 .1380951210031 107048160003 2.096703‘003 109507759003 108367360003 212523699003 2.100591‘003 109771149003 204164940003 ,2125896990031 201259519003 295890789003 204259089003 2.2832459003 2.7701199003 2.6014090003 2.4409989003 2.9596200003 297854709003 296232109003 391575789003 2.9780929003 298058799003 3.3039909003 301792760003 2.9970073003 395788710003 303890209003 301965939003 398022059003 396073259003 304046379003 0.000 '0.004 0C1?~ 0(0) 01-11 1.000 0.010'701000 7‘ A 0.010 -1.000 90.015, 1 0.000 -0.015 1.000 1.000"‘0.009 0.004 0.009 -1.000 90.013 0.000 90.013 1.000 1.000 0.000 "0.0047 A 7 090001’1nnflo .09012 0.000 ”09012 1.00“ 1.000 0.000 0.000477 34“ 09008 “10000 £0,010 1 1 00000 E’09010 12000 "1.000uw0.000 0.000 09007 ”19000 'OQflog _4 0.000 -00009 1.00” 1.000 0.000 0.000 74 0.007,vl.000190.00£_1_ 00000 ”02008 1.000 1.000 0.000 0.000 7 00006 '19000 ”0.008 00000 -09008 19000 1.000. 0.000770:0003U~3__mfi 0.006 -1.000 90.007 00000 -00007 19000 1.000 0.000 0.0007 7 00005"VitoooanT306u______u4 0.000 -0.003 1.000 1.000 0.000 0.000 0.005 -1.000 90.005 0.000 -0.005 1.000 1.000 0.000 0.000 _‘3— 0.004 -1.000 90.005 0.000 90.005 1.000 1.000 0.000 0.000 0.004 91.000 90.004 99999 999911 0.000 -0.004 1.000 1.000 0.000 0.000 0.003 -1.000 90.004 E 1.000 0(0) C(21) 0.000 00000 4 0696190003 308341920003 0.003 —1.000»20,003777iw 7 3.0211400003 0.000 -0.003 1.000 74. 271510.003 1.000 0.000 0.000 0. 002 —1. 000 20.0024,,,W,,11 3, 0481140003 392086876003 30026122¢003 208569860003 9 37010728000377 2 2. 033500+003 2.6743170003 1.000 —0.005 90,002 0.007 ”10000 0§0007 oQ006 L 000 10000 '09 006 3.8461020003 0. 000 —0. 002 1 000 4.31360800037 1. 000 0. 000777 777 7 0.0795211003 -0 009 1 000 4.3213990003 1.000 7 7 406228430003 1.000 7 4.6141870003701.0007 0 002 _.11__. 493725060003 -0.002 1. 000 4.5740660003 0.000 0.002 1.000 4.3616380003 0.002 1.000 20,002 7 7771 401306290003 -1.000 0.002 0.000 4;325357;003770:000770.003 1,000 4.1170490003 0.003 1.000 20.002 W 308972092003 ’10000 00003 O!000 4.0851060003 0.000 0.003 1,0007 7 7 3288222200031_0100311100001504003______m~_ 3.072248+003 .1,000 0.003 0.000 3.8533140003 0.000 0.004 1.0007 7 7 3.6553550003 0.004 1,000 90.004 , 3.4557450003 «1.000 0.004 0.000 3.62998070037 0.000770}003771.000 77 3.4370500003 0.005 1.000 =0.0040 0.2477000003 «1.000 0.005 0 000 3 4151040003 0.000 0.005 1.000 3 2273060003, 0,00501100000;10100§w 77EtJIinTT777 2.500113+003 2.6494376003 2.821222+003 2.330361}003 2.473037+003 2.640179+003 2.1770680003 2.3069970003 72:46759536037 2.0282330003 2.148619*003 2.303469+003 7771.3376570003 1.998801*003 2.147802*003 1. 755938+003 1. 8575450003 7 2. 7000592+603 1.6324790003 1.724849+003 3 1.831042+003 1.517477;033 1.6007150003 1.731550+003 1. 410934+003 1. 485141+003 1. 609716+003 1.312850+003 1.378129+003 194963400003 1.223224.003 1.279e77+003 1.391423+003 1.1420560003 1.189787.gos 1. 294965+003 1.069346fi003 1.108457+003 1.206964+003 7k77 220 :21 9:22 :15” 920 :21 :18 :19 752077 :17 :18 319 e16 =17 :18 216 .137 914 P15 312 :13 914 311 :12 :13 :10 :11 212 .9 P107 1"11 '8 99 210 017 1 0 91 30 196 R 3AU72130R0TA057770071) 0(0) cc.1) .21 1 2.321226.003 0.0007 0.006 1.0007777 .21 2 2.6494390003 0.007 1.000 20. 006 7 .21 3 2.5001050003 n1.000 0.007 0. 000 .20 1 2.340103.0037"0.000770.007 1.000 77 .20 2 2.473939.003 0.000 1.000 20.0077 7 020 3 2.3343520003 ~1.000 0.008 0.000 .19 1 2. 467603.003 0.000 0.0077 1.00 7-19 2 2.307_000.003 0.009 1.000 20.007 .19 3 2.177058o003 -1. 000 0.009 0.000 .10 1 293034780003 0.0007 0.008 1.0007777 777 .10 2 2.1486220003 0.010 1.000 90.000 77 7 .10 3 2.0202210003 1.000 —o.010 20.004 .17 1 2.1470116003 70.000 0.008 1.000 .17 2 1.9900051003 0.011 1.000 90.000 77 .17 3 1.8878430003 1.000 -0.o11 -0.001 .13 1 2. 000303.003 0.000 0.009 1.000 7 516 2 1. 8575500093,-0.012, 1.9021201002__ .13 3 1.755923o003 1. 000 -0.012 90.002 .15 1 1.8618540003 0.000 0.009 1.0007777 .15 2 1.7248560003 0.014 1.000 00.0097 7 .15 3 1.332460.003 1.000 .0,014 00.001 .14 1 1.7315030003 70.0007 05010 7170007 777 .14 2 1.0007233003 0.013 1.000 20.010 7 .14 3 1.517453.003 1.000 -0.010 90.001 .13 1 1. 609730.003 0.000 0.011 1.000 .13 2 1. 405152.003 0.018 1.009.:0.011_. ._1_ .13 3 1.4109103003 1.000 00.018 «0.000 .12 1 1.493353.003 0.000 0.011 1.000 ~12 2 370142.003 0.021 1.000 .0,011 .12 3 1.3128210003 1.000 -0.021 20.001 .11 1 1.39144o.003 0.000 0. 012 1.00077_“” .11 2 1.270395o003 0.025 1.000 -0.012 n11 3 1.2231900003 1.000 -0. 024 90.000 e10 1 1. 294903.003 0. 000 0. 013 1.000 .10 2 1 189010.003 0. 029 0. 999 s0.013-11.W1__ .10 3 1.142015.003 1. 000 -o. 029 0.000 -9 1 1.2039043003 0.000 0.014 1.000 «9 2 1.100409.003 0.033 0.999 .0.014 -9 3 100692950003 0.999 -0.036 0.000 197 CF” 8.3267579002 E