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ABSTRACT

AN APPLICATION OF THE PROCESS OF REGULARIZATION

TO THE ANALYSIS OF DISTRIBUTIONS

BY

Charles Richard Diminnie

This work represents an attempt to apply certain

classical techniques of real analysis to the study of dis-

tributions. Historically, mathematicians such as Denjoy and

Clarkson have employed the sets EaB g {X1 0 < f(x) < B} to

study the behavior of derivatives of functions. In the pre-

sent case, a similar approach is used to analyze distributions.

Let .D and 3' denote the Spaces of test functions

and distributions, respectively, as defined by L. Schwartz.

Choose ¢ 6.9 satisfying the following conditions:

1. ¢(x) 2 O on R; 2. IR¢(x)dx = 1; 3. ¢(x) = ¢(-x) for

all x; 4. the support of ¢ = [-1,1]; and 5. ¢'(x) > 0

on ]-1,0[, while ¢'(x) < O on ]O,1[. Next, define

¢A(x) = A ¢(xx) for all x 6 R. Then, the net {¢A} con-

verges to the Dirac measure 5 in .D', which implies that

the net {T*¢A} converges to T in .D' for each distribu-

tion T. Hence, each distribution T may be represented by

the net of regularizations {T*¢A}. Further, it is demonstrated

in Chapter II that the function FT[(x,x)] = T*¢A(X) is con-

“ +

tinuous on the Space R2 ‘ {(X,A)3 A 2 ll'
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These considerations indicate that it might be possible

to examine each distribution T by means of the sets

T,N

«B

N. In Chapter IV, it is shown that these sets satisfy the

E ‘ {(x,l): a < T*¢A(X) < B, A 2 N} for large values of

following conditions.

Theorem 4.10. For all real numbers 0:8 such that a < a,

exactly one of the following cases occurs:

1. TSQI or T23.

2. For all N, m (ET’N) > 0 but m (ET’N) 4 0 as N 2.”,
2 as 2 GB

T,N

a6

Theorem 4.10 leads to the definition of a series of

3. For all N, m2(E ) = a.

classes of distributions.

Definition 5A. A distribution T is in Class 0-8 if for all

a and B: exactly one of the following is satisfied:

1. T s a or T 2 a.

2. There is a set E c R and a number N' such that

T,N

m1(E) > 0 and (E X [N,m[) G E08 for all N 2 N'.

Definition SB. T is in Class O-W if for all a and B,
 

exactly one of the following is satisfied:

1. T s a or T 2 a.

2. m2(E:éN) = a for all N.

Definition 5c. T is in Class 9 for e > 0, if for all a

and B: exactly one of the following is satisfied:

1. T s a or T 2 B-

T N 9
2. There exist numbers N', M such that m2(Eaé ) 2 M(1/N)

for N 2 N'.
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It is easily proven that Class 0-8 C Class O-W : Class 9, for

e > 0. Also, for 91 < 62, Class 91 c Class 92.

The major results concerning these classes are given

in Chapter V. If f is an ordinary derivative, then f may

be used to define a distribution Tf in this way:

<Tf,¢> 3 P fRf(x)¢(x)dx for all it E .D, where the notation

"Rf" denotes Perron integration. Theorem 5.2 states that

all distributions Tf, where f is an ordinary derivative,

are included in Class 0-8. The main result for the remaining

(n)Tclasses is given by Theorem 5.7. The notation D is used

to denote the nth distributional derivative of T.

Theorem 5.7. If T = D(n)g, where g is locally bounded,

then T 6 01833 n, (Class O-W if n = 0); if T = D(n)g,

where g is a locally Lp function for p 2 1, then

T G Class (n + 1/p); if T = D(n)p for some measure u, then

T E Class (n + 1).

Finally, Chapter VI gives examples to illustrate the

following distinctions between the e-classes:

1. Class 0-8? Class O-W.

2.1 Class O-WE Class 9, for any a > O.

3. For any“ v satisfying 0 < v < 2,

U Class 9i: Class v.

9<v
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CHAPTER I

INTRODUCTION

In the past, there has been a considerable amount of

research devoted to the problem of studying functions by means

of the sets = {x: a'< f(x) < a}. One of the notable re-E

018

sults in this area was originally formulated by Denjoy in [2]

and later refined by Clarkson in [1]. It reads as follows:

Theorem I. If f is the derivative of a continuous function,

then for all numbers a and 5 such that a < 3, we have

) > 0, where m denotes one-either E ‘ Q ’or

a 1a ml(EaB

dimensional Lebesgue measure.

Since distributions are usually considered to be "generalized

functions", it is only natural to ask whether they can be

studied by means of a similar approach. It was in the course

of developing this problem that the results of this paper

were formulated.

Since it is impossible to define a set similar to EGB

for a distribution, we use an alternate approach. For any

distribution T, there is a family of infinitely differentiable

functions {ix} such that VA d T in the sense of distribu-

tions. With this in mind, we study T using the sets

{x: a.< ¢x(x) < a} for large values of x. More specifically,

we consider the relationship of the two-dimensional Lebesgue



measure of the sets {(x,x): a.< fixix) < e, A 2 N} to powers

of (1/N) as the criterion for defining classes of distribu-

tions. The major result obtained by using these classes is

that for most distributions, membership in the appropriate

class is dependent solely on the character of the primitives

of these distributions. Thus, a result which is somewhat

analogous to that of Denjoy and Clarkson may be obtained by

our method.

In Chapter II, we give a further justification for the

approach described above and we discuss the type of family

{wk} that we will choose to "represent" the distribution T.

Chapter III is devoted to the development of a certain collec-

tion of distributions which are not usually discussed in the

literature. A thorough analysis of the nature of the sets

{(x,x): a < ¢x(x) < B, A 2‘N} is given in Chapter IV.

Chapter V describes the classes of distributions defined by

means of these sets and gives the main results concerning

these classes. Chapter VI consists of examples which lend

more weight to the results of Chapter V. Finally, a short

discussion of conclusions and open questions is found in

Chapter VII.

Before we proceed to the work at hand, it might be

advisable to include a brief discussion of the space of dis-

tributions and a statement of some of the results which are

used in this paper. The development described here is

basically that of Laurent Schwartz, with minor adjustments to



meet the requirements of our problem. The reader is referred

to either [3], [9], or [11] for a more detailed account of the

theory of distributions.

We begin by considering CC(R), the Space of continuous,

real-valued functions with compact support. Since the usual

topology assigned to CC(R) is somewhat complicated, we will

not Specify it completely. Instead, we will make note of the

definition of convergence in CC(R).

Vn'fi 0 in CC(R) if

1. there is a compact set R such that the support of in

is contained in K for all n;

2. ¢n(x) A 0 uniformly.

If .H is a continuous, real-valued, linear functional

on CC(R), then u is called a measure. (The relationship

between these measures and the usual notion of set functions

is given by the famous Reisz representation theorem.) The

following are Specific examples of measures:

1. The Dirac delta measure 5 is defined by

<59W> = ¢(0) for all W E CC(R).

2. If f is a function which is Lebesgue integrable on each

finite interval, then f may be used to define a measure

in this way:

<f,¢> - IRf(x)v(x)dx for all w E CC(R).

Note that it is conventional to identify the function f with

the functional it defines and to use f to denote both concepts.



The Space of measures forms a first generalization to

the notion of function. It includes most functions as well as

certain other objects, such as the Dirac measure, which have

been (incorrectly) used as functions in classical physics and

mathematics. However, for the needs of differential equations

and certain other aSpects of mathematics, it becomes necessary

to enlarge the space of measures. This is accomplished by

reducing the set of objects on which the functionals are to

be applied. The following reduction of the Space CC(R) leads

us to the expansion of the space of measures to the Space of

distributions.

Let C:(R) denote the space of infinitely differentiable,

real-valued functions with compact support. We use the symbol

.9 to describe C:(R) endowed with the topology which has the

following definition of convergence:

tin-.0 in .8 if

1. there is a compact set R such that the support of in

is contained in K for all n;

2. for each integer k 2 0, ¢:R)(x) a O uniformly, where

wik) denotes the kth ordinary derivative of -¢n.

We will frequently refer to the elements of ,D as "test

functions".

Next, we define the Space of distributions,.&', to

be the space of continuous, real-valued, linear functionals

on 3. Since ,0 forms a topological vector Subspace of

CC(R), it is clear that .D' is an enlargement of the Space



of measures. The usual topology given to .3' is such that

Tn-a0 in .9' if <Tn,~|;>-oO for all i6).

A11 measures and locally Lebesgue integrable functions

may now be considered as distributions. Again, we will not

distinguish between the measure p and the distribution H

or between the function f and the distribution f.

The concept of distributions has an immediate advantage

over that of measures since there is a convenient method for

defining differentiation in .fi'. We define the nth distribu-

tional derivative of a distribution T, D(n)T, to be that dis-

tribution satisfying:

(1.1) <D(n)'r,¢> = (-1) (n)<r,¢(n)> for all ‘I E .9.

It is clear from the definition of convergence in .3, that

the linear functional D(n)T is continuous on .3 and hence

defines a distribution. Further, under the above definition

of differentiation, every distribution has derivatives of

all orders. If f is a function which is n-times continuously

differentiable, then for all V 6.3, we have

<D(n)f,\y> = (-1)“<£,¢(“)> = (-1)“ij(x)¢(“)(x)dx.

Using integration by parts n-times, we obtain

<D(n)f,¢> = IRf(n)(x)¢(x)dx =‘<f(n)’¢> for all T 6.8.

(n)f is the same as the functional
Thus, the functional D

defined by f(n). According to our convention, we identify

D(n)f and f(n) and say that the nth distributional



derivative of f is the same as the nth ordinary derivative

of f.

A distribution T is said to be positive, denoted

T 2 0, if for every t 6.5 such that ¢(x) 2 0 on R, we

have I<T,¢> 2 0. For two distributions S and T, S 2 T

if (S-T) 2 O. The following result relates positive dis-

tributions to the subSpace of measures (c.f. [9], Chapter I,

Theorem.V.).

Theorem II. If T is a positive distribution, then T is
 

a positive measure.

If it 6.8, then we may also consider t as an element

of 3'. For any T E 3', we define the convolution product

T*¢ to be the distribution given by the function

T*¢(x) = <Tt,¢(x-t)>, where the subscript t on T is used

to indicate that the functional T is operating on ¢(x-t)

considered as a function of t. It is easily seen that in

the case where T is a locally Lebesgue integrable function

f, the above notion of convolution agrees with the classical

definition. It can be shown that T*¢(x) is an infinitely

differentiable function of x, whose derivatives are given by

_ (n)
(1.2) '(‘r*¢>(“)<x> = (D‘n’nwa) - w (x).

The convolution product T*¢ is also called the regularization

Of T by i. The concept of convolution can be generalized

to certain other distributions, but the conditions on the

distributions involved are somewhat complicated. Since we

will make little use of this notion, we will not consider it



further.

In [8], Schwartz gives examples of families of test

functions {¢A} which converge to 6 in .3'. Further, he

gives sufficient conditions for a family of test functions to

converge to 6 in .D' (c.f. [8], Chapter II, Theorem 13).

If {¢A} is a family of test functions which converges to 5

in .D', it can be Shown that for any distribution T, the

family {T*¢A} converges to T in .D' (c.f. [8], Chapter

III, Theorem 7). This justifies our earlier statement that

every distribution T is the limit in .D' of a family of

infinitely differentiable functions.



CHAPTER II

DISTRIBUTIONS AS IlMITS 0F INFINITELY

DIFFERENTIABLE FUNCTIONS

As mentioned in Chapter I, we are going to study each

distribution T by means of a net of infinitely differentiable

functions {WA} which converges to T in .D' as A a m.

We will demonstrate that this is an appropriate method by

briefly relating the approach used by Mikusinski in [6] and

Temple in [10] to arrive at an alternate definition of the

Space 3'.

Basically, they define the Space of distributions as

a completion of the set of infinitely differentiable functions.

The approach is essentially the same as that used by Cantor

in the construction of the real number system from the

rationals. To begin, we define a sequence of functions

{in} to be regular if

1. each in is infinitely differentiable;

2. for each n 6.9, IR¢n(x)N(x)dx converges to a limit,

which we will denote by <L,fi>;

3. this limit I<L,fl> is continuous on .D, i.e., <L,nn>-« 0

whenever 'nn-oO in .9.

Two regular sequences {an} and {on} are said to be £333:

valent if for each ‘n E .6, we have

IRC¢n(x) - °n(x)lR(X)dx
a 0 as n «.m.

8



Since this notion is obviously an equivalence relation,

it partitions the set of regular sequences into equivalence

classes which are designated as_ggneralized functions. Thus,

each of these generalized functions may be specified by any

of the regular sequences in its class. In particular, the

Space of generalized functions is a completion of the set of

infinitely differentiable functions. Each such function i

may be considered as the generalized function represented by

the sequence {in}, where in - i for all n. Operations on

generalized functions are defined by means of the correspond-

ing operations on the regular sequences which represent these

functions. For example, if g denotes the generalized func-

tion represented by the regular sequence {nu}, then the mth

(m) g
derivative of g, D , is defined to be the generalized

(“0}
function represented by the sequence {in

The preceding paragraphs present a basic description

of the construction of these generalized functions. Rather

than complete the development of this theory, we will now

address ourselves to the work of reconciling these concepts

to the distributions of Schwartz and ultimately to the task

of applying these ideas to the problem before us. First of

all, it is easy to see that if the generalized function g

is represented by the regular sequence {in}, it may be

associated with the functional T on .8 defined by

.<T,fi> - lim‘IR*n(x)N(x)dx. The continuity of T then follows

nqw

directly from condition 3 of the definition of regular
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sequence. Thus, the generalized functions of Mikusinski and

Temple are included in the Space of Schwartzian distributions.

To Show the correspondence in the other direction, we

will require the services of an auxiliary function ¢ 6.3

having the following properties:

1. ¢(x) 2 0 for all x E R;

2. IR¢(x)dx = l;

3. the support of ¢(x) = [-l,l];

(2.1) 4. ¢(x) = ¢(-x) for all x;

5. ¢'(x) > 0 for x 6 ]-l,0[ and ¢'(x) < 0 for

x E ]O,1[;

6. max ¢(x) = 05(0).

xER

(Actually, 2.1.6 follows from 2.1.3 and 2.1.5, but it will be

used so often in this work that we will list it as a separate

prOperty.) A particular example of such a function is the

approximating function ¢* defined by:

* O for |x\ 2 l

¢(X)={ 2

C exp[-1/(1-x )] for \x‘ < 1,

where .C is chosen so that IR¢*(x)dx = 1.

For ¢ satisfying conditions (2.1), we will make the

following definitions:

(2.2) 1. For A > 0, ¢A(t) = k¢(kt)-

2. For A 2 O and x E R, ¢x,x(t) = mxix‘t) ' X¢EX(X‘C)]-

It can be Shown that the net {¢R} converges to 6 in .3'

as x.» m and hence, for any distribution T, the net
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{T*¢A} converges to T in .3' as A a o (c.f. [8],

Chapter 11, Theorem 13 and Chapter III, Theorem 7). In

particular, since each of the regularizations T*¢A is an

infinitely differentiable function, we see that the sequence

{T*¢n}, where ¢n(t) = n¢(nt), is an appropriate regular

sequence to represent T as a generalized function.

Thus, the theory of generalized functions of

Mikusinski and Temple is in complete accord with Schwartz'

theory of distributions. For our purposes, it is even more

important to notice that their theory illustrates that it is

entirely natural to study a distribution T by means of the

sequence of regularizations [T*¢n(x)}, since they are

essentially the same object. Also, we note that all of the

methods of Mikusinski and Temple may be applied through the

use of regular nets instead of regular sequences. The reasons

why we choose to use the regular net {T*¢A} to represent T

will be made more apparent later in this chapter.

The remainder of this chapter will be devoted to dis-

playing the continuity properties of the regularizations

T*¢x(x) considered as a function of both x and A- We begin

with the following two lemmas.

Lemma 2.1. If (xn,>.n) .. (mi) in I?»2 (two dimensional

Euclidean space) and A as well as all the kn are positive,

then ¢x converges to ¢x A in .9-

,

n’xn

Proof: Since the numbers ‘xn-x‘ and ‘1/(xn)-1/x‘ are

bounded independent of n and the support of each ¢x ,x
n n
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[xn-l/(xn), xn+l/(An)], it is clear that there is a compact

set R such that the support of each 9x A is contained in

K.

The compactness of K implies that there is a constant

C Such that max ‘t-x‘ s C. Then, for any t E K, we obtain

t€K

Iln(Xn-t)->.(x-t)| S inlxn-xl + Iin-in-q s xn‘xn-xl + \xn-Mc.

Therefore, xn(xn-t) a X(x-t) uniformly on K since xn « x

and )‘n --o A'

Let a > 0 be given. By the uniform continuity of

¢, there is a number A depending only on e such that

ltl-tzl < A implies ‘¢(t1)-¢(t2)| < e/(Zk)- If we denote

max ‘¢(t)| by M, our next Step is to choose N large enough

that for n 2 N, we obtain both [An-kl < e/(ZM) and

max ll (x -t)-x(x-t)‘ < A. Then, for t E K and n 2 N,

tEK n n

|¢x ’An(t)-¢X:A(t)' Ixnalin(xn-t)] - i¢[i(x-t)]I

n

S Ixn-XII¢Exn<xn-t>ll

+ il¢lin(xn=t)] - ¢[i(x-t)]I

s lin-iIM + iI¢£in(xn-t>] - ¢[i(x-t)]\

< e/Z'l'e/Z = 3.

Since xn(xn-t) a x(x-t) uniformly on K, and A was de-

pendent only on as our choice of N is uniform for all

t 6 K. ‘Thus, ¢x :R « ¢x,x uniformly on K which implies

n n

that ¢ 4 ¢x,x uniformly on R.

x
n’xn
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By noting that the only properties of ¢ used in the above

argument were its uniform continuity and its boundedness, we

see that a similar proof yields that ¢:k)k a ¢éki uniformly

n’ n ’

on R for all positive integers k. Hence ¢x :l a ¢Xal

n n

in .3. Q.E.D.

Lemma 2.2. If ¢x A a y in .3 and there is a positive
-__—_- 3

n n

number 10 such that An 2 A0 for all n, then there is an

element (x,x) E R2 such that (xn’xn) a (x,x) in R2 and

further, ¢ = ¢x A.

3

Proof: Since ¢ 4 W in .3, we have that ¢x l a W

n’xn n’ n

uniformly on R. Hence, |max Rx ,A (t) - max ¢x A (t)‘ a O

t€R n n tER m’ m

as m,n a m which implies that lin¢(0)-xm¢(0)| a 0 as

m,n as, by (2.1.6) and (2.2.2). Thus, ‘ln'lml -. o as

m,n a 0 Since ¢(0) >»O. Therefore, {An} is a Cauchy

sequence in R and there is a A 6 R Such that An a l-

Further, since each kn 2 No, we have A 2 A0 > 0.

Again, using the fact that ¢x a w uniformly on

n’xn

R, we obtain that max A (t) a max ¢(t). However, Since

tER n’ n t€R 1

a = 0 for each n and a A: we a so
“an“ ing“) in
tER n n

have that max ¢x A (t) a l¢(0) which implies that

3

nt6R n .

max ¢(t) = A¢(0)- Thus, the fact that y 6.3 yields the

tER

existence of an x 6 R such that x¢(0) = max ¢(t) - ¢(x).

tER

We will Show that xn a x and hence that (anln) * (Xal)

in R2.

Since (t) » ¢(t) pointwise on R, then in

¢xn"‘n

particular, ¢Xn’xn(x) « ¢(x) 8 l¢(0)- Thus,
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in¢lxn(xn-x)] —~ i¢(0) as n -. a which implies that

(*) $[xn(xn-x)] a ¢(0) as n a m

since Kn a A and each An 2 A0 > 0.

Now, suppose rxn A x. Then, there is an e > 0 and

a subsequence {xnk} of {xn} such that ‘xn -x\ 2 e for all

k. Thus, for all k, xnk‘Xnk-x‘ 2 Take 2 x05. Also, by-

(2.1.5) and (2.1.6), we obtain both ¢(xoe) < ¢(O) and

¢[xn (xn -x)] S ¢(xoe) for all k. Therefore,

k k

lim sup ¢[x (x -x)] s ¢(l e) < ¢(0), which is impossible by

n n o
k—aco k k

* -v -o ' ,( ). Hence, xn x and (xn’xn) (x,x) in R2

Since A as well as all the Rn are positive, we

may apply Lemma 2.1 to obtain that ¢ ~ ¢ in .3.

xnahn xsh

Thus, V = ¢ A and the proof is completed. Q.E.D.

X,

Note that the proof of these lemmas relied heavily

on the restriction of A to values which were bounded away

from zero. Since we will be primarily interested in working

with the functions ¢x X when A is a large positive number,

3

we will impose a lower bound on the values of l for all

that follows. With this in mind, we will use the symbol

+

R2 to designate the Space {(x,x): x 6 R and A 2 1}.

By combining the previous lemmas, we obtain the follow-

ing theorem:

+ .
Theorem 2.3. The map p: R2 —9 fi deflned by p[ (XSX)] = ¢x’x

is a homeomorphism from R: into .3.

Using the definition of the functions ¢x A, we may

3

express each of the regularizations T*¢X(x) as follows:
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(2.3) T*¢x(x) =‘<Tt’ ¢x(x-t)> -‘<T, ¢X:k>'

Thus, by Theorem 2.3, we may associate each T 6.3' with a

. . + . .
unique continuous map FT from R2 to R in this way:

(2-4) FT[(X,>.)] = T o p[(x,).)] = <T, p[(x,).)]> =

= <1" Rx»)? g T*¢>.(x)'

It is this continuity of the expression T*¢x(x) with

respect to both x and A which leads us to consider the

net {T*¢A}’ rather than the sequence {T*¢n], as the suit-

able representation for T.



CHAPTER III

DISTRIBUTIONS DEFINED BY PERRON INTEGRALS

In this chapter, we digress briefly to consider a

certain collection of distributions which are not usually

mentioned in the standard references. This family, which

includes the subspace of locally Lebesgue integrable func-

tions, will furnish us with a number of explicit examples of

distributions other than the obvious Specimens ordinarily

cited. Moreover, we will utilize them to generalize a well

known property of the regularizations of Lebesgue integrable

functions.

We will base our approach on the generalized integral

developed by Perron. Due to the complicated nature of this

theory, we will not enter into a complete discussion of the

Perron integral, except to mention that it is loosely founded

on the notion of defining integration as the inverse Operation

of differentiation. The reader is referred to [5], Chapter

VIII, for a full development of Perron integration.

Instead, we will state some of the main reSults con-

cerning the Perron integral. For the most part, these theorems

are in slightly weaker form than the versions given in the

above source. We will use the notation "PI" to denote

Perron integration, while if" will pertain to Lebesgue

integration.

16
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Theorem A. If f1 and f2 are Perron integrable on the

interval [a, b] and k1, k2 are constants, then k1f1+k2t2

is Perron integrable on [a, b] and PI: [k1f1(x) + k2f2(x)]dx

-= kIPJ”: f1(x)dx + kZPJ”: f2(x)dx.

Theorem B. If the function F is continuous on [a, b] and

F' is defined and finite on ]a, b[, then F' is Perron

integrable on [a, b] and Pr: F'(t)dt = F(x)-F(a) for all

x 6 [a, b].

Theorem C. If f is Lebesgue integrable on [a, b], then f

is also Perron integrable on [a, b] and PI: f(x)dx =

= I: f(x)dx.

Theorem D. If f is Perron integrable on [a, b] and F(x) =

PT: f(t)dt, then F is continuous.

Theorem E. If f is Perron integrable on [a, b] and F(x) =

Pf: f(t)dt, then F'(x) = f(x) a.e. on [a, b]. (The notation

"a.e.” denotes "almost everywhere", i.e., except for a set of

Lebesgue measure 0).

Theorem F. (Integration by Parts). If f is Perron integrable

on [a, b] and y is of bounded variation on [a, b], then

ft is Perron integrable on [a, b] and Pf: f(x)¢(x)dx =

F(b)¢(b) - I: F(x)d¢, where F(x) = Br: f(t)dt and

f: F(x)d¢ is a Stieltjes integral.

With these preliminaries over, we now proceed to use

Perron integrals to define distributions. Let f be a func-

tion which is Perron integrable over every finite interval.

By Theorem B, finite derivatives of continuous functions provide
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examples of Such functions. For any test function y 6.3,

Theorem F tells us that ft is also Perron integrable over

every finite interval. Further, since fl has compact support,

we may use the symbol ITRhf(x)$(x)dx without confusion.

Using Theorem A, we see that the functional Tf defined by

df,¢> = FIR f(x)¢(x)dx is linear on .3. To prove that Tf

is also continuous on .3, we make use of the function

G(x) - If; f(t)dt. Since Theorem D states that G is a con-

tinuous function, we may also consider G as a distribution.

Therefore, we use Theorem F to obtain the following:

<Tf,¢> = PPR f(x)w(x)dx = -IR [G(x)+C]¢'(x)dx, where C is a

constant. However, since W 6.3 implies that IR¢'(x)dx = 0,

we may write

(3,1) <Tf,,> = 'i3 G(x)¢'(x)dx = <DG,¢>.

Hence, the continuity of the functional DC on .3 insures

the continuity of Tf. Further, (3.1) tells us that the dis-

tribution Tr is the distributional derivative of G, i.e.,

f

(3.2) T = DG.

Let us consider the case where g is a continuous

function having a finite derivative g' everywhere on R.

Then, the above arguments may be combined with Theorem B to

obtain the following:

(3.3) T3 - Dg.

In this way, we observe that for a continuous function g

with a finite derivative g', the notions of distributional
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derivative and ordinary derivative are basically the same

even though g' is not necessarily locally Lebesgue integrable.

We now address ourselves to the consideration of the

net {Tf*¢l} of regularizations of Tf by the family {¢A: A 2 1}

described in Chapter II. Recalling the definition of convolu-

tion product given in Chapter I, we see that

(3.4) Tf‘k (x) =<Tf, o (x-t)> = pf f(t)¢ (x-t)dt.
Cb. t i R K

It is a well known classical result for the case where f is

locally Lebesgue integrable that f*¢x(x) 4 f(x) a.e. on R.

These next two results will show that the same statement is

true when f is locally Perron integrable.

Lemma 3.1. Let F be locally Lebesgue integrable. If F is

differentiable at x0, then F*¢i(xo) a F'(xo) as A «>0.

Proof: If we set v(t) = F(xO)-F(xo-t)-tF'(xo), then

|v(t)/t| d 0 as t a 0. Hence, if e > O is given, there

is a A > 0 such that ‘v(t)| { eltl whenever ‘t‘ < A.

Using (2.1.2), integration by parts, and the fact that

11l/y ¢x(t)dt ‘ 0 we obtain the following:

1/). .

fix1/, v(t)o,'\(t)dt= F(x01)f 1/). ¢x(t)dt -.j_1/A F(xO-t)¢)\(t)dt

-F' (xfi)fl/l t¢i(t)dt

xo+1lx

g PIX 'l/X

o

= F'(xo) - F*¢'(xo ).

1/

F(t)¢i(xo-t)dt + F'(xo)j_l>x ¢A(t)dt

Thus, for all i. IF*¢'(xo)-F' (x o)| sfl"1/). [v(t)H¢;‘(t)‘dt.

In particular, for A > l/A,
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I I 1/ , 1
|F*¢x(xo)-F (xo)| < 3I_1>x|t||¢ mm = -c‘[_]/.>xt¢;\(t)dt by (2.1.5)

.1 I

Therefore, F*¢i(xo) a F'(xo) as A 41m. Q.E.D.

Theorem 3.2. If f is locally Perron integrable on R, then

1im Tf*¢k(x) 8 f(x) a.e. on R. In particular, this result

X—m

is true for all x such that F'(x) = f(x), where F(x) 3

9]"; f (t )dt.

Proof: By Lemma 3.1, F*¢i(x) a F'(x) whenever F'(x) exists.

Using (1.2) and (3.2), we obtain that F*¢i(x) = DF*¢X(X) =

Tf*¢x(x) for all x. Therefore, Tf*¢x(x) a F'(x) whenever

F'(x) exists, which implies that Tf*¢x(x) a f(x) a.e. on R

by Theorem E. Q.E.D.

We conclude this chapter by noting that an analogous

result is also possible in the case of a measure u, in that

the net {u*¢x(x)} converges a.e. to a function which is

closely related to u. Although this result is not useful to

us here, the reader may find it instructive to refer to the

discussion of the Poisson integral given in [7], Chapter 11.

The methods used there may be adapted to prove Theorem 3.2 if

we use ¢x(x-t) in place of the Poisson kernel and Substitute

integration by parts for the use of Fubini's Theorem in

(Rudin's) Lemma 11.9.



CHAPTER IV

THE SETS ET AND ET’N
as as

We are now ready to set up the machinery for our

analysis of individual distributions by means of their reg-

ularizations by the net {¢A’ K 2 1]. As was indicated in

Chapter I, we will attempt to apply a Denjoy-type approach

to each T 6.3' by examining the sets {x: a < T*¢k(x) < B}

for large values of x. However, in order to make the

maximum use of the continuity of the expression T*¢X(X)

with reapect to both x and A, we will find it more advan-

tageous to consider the sets {(x,x): a < T*¢K(X) < B: A 2 N}

+

in R2, as N becomes large.

With this in mind, we begin with the following

definitions:

Definition 4A. If T 6.3' and oz< B, then

T , * 1
1. E018 -= {(x,).). a< T ¢l(x) < B, I. 2 }

2. 152:1 = {(x,l): at < my) < a, i 2 N}-

T -1 . . .

Note that according to (2.4), EaB = FT (]a,e[), which implies

that E28 is an open set in R:. Further, it is clear that

ET’N+1 : ET’N : ET for all N 2 1.

a8 dB «8

The first series of results will deal with the essen-

tials of the set ET . The symbol m2 will be used throughout

as

21
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to denote two-dimensional Lebesgue measure. This first lemma

follows directly from the fact that each Egg is an open set

in R3.

Lemma 4.1. For all real numbers a,5 such that a < B, we

have either E26 3 Q or m2(E:B) > 0.

A similar argument, using the properties of PT restricted

to {(x,x): A 2 N}, yields this corollary:

Corollary 4.2. If N 2 1, then for all 0:5 such that a < a,

we have either EZSN ' Q or m2(E:éN) > 0.

This next lemma, originally given by S. Lojasiewicz

in [4], serves to Show the relationship between a positive

distribution T and the point functions T*¢A(X) which re-

present T. More specifically, it demonstrates that if a dis-

tribution is not positive, it fails because eventually the

regularizations T*¢x(x) take on negative values. Although

this result is used only Sparingly in this chapter, we will

find it to be crucial for many of the results of Chapter V.

Lemma 4.3. If there is a test function y 6.3 such that

¢(x) 2 0 on R but <T,¢>-< 0, then there is a number A

such that correSponding to each A 2 A, there is an xx in

the support of V for which T*¢A(xl) < 0-

Proof: Since T*¢A 4T in .3' as A a m, we observe that

<T*¢A’V> .‘IR[T*¢A(X)]W(x)dx ~1<T,¢> as A d 9- Thus,

<T,¢>'< 0 implies that there is a A such that

.IR[T*¢x(X)]¢(X)dx < 0 for all A 2 A. The conclusion then

follows from the fact that ¢(x) 2 0 on R. Q.E.D.
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We now produce two lemmas which will enable us to

establish an interesting correspondence between the sets 5:3

and the statements ”T s a", "T 2 B"- Note that these state-

ments make sense in that any constant y may be considered as

both the constant function y(t) a y and the constant dis-

tribution defined by <y,¢> - yJ'Rtht for all y e .9.

T +
Lemma 4.4. EaB = 6 iff either FT 2 B on R2 or FT 5 a

on R:.

Proof: The sufficiency is obvious, since E35 = F£1(]a38[).

+ -1 -1 -1

Necessity: sz‘ FT (]-w,a]) U FT (1a,B[) U FT ([B>“[)-

-l T

Therefore, if FT (]a,B[) 2 E08 = 6, we have

+ - - . .
R2 = PT1(]-w,a]) U FT1([B,Q[). The continuity of FT and

+ -1

the connectedness of R then imply that either FT (]-,a]) = a
2

or T;1([B,m[) = Q from which the conclusion follows. Q.E.D.

Lemma 4.5. E28 = 6 iff T s a or T 2 a.

T
+

Proof: By Lemma 4.4, Ea = 6 iff T S a on p(R2) or

B

T 2 B on 9(R3), (see Theorem 2.3 and the relation (2.4)).

+

Now, assume T s a on .3. Then, for each (x,x) 6 R2,

' ' t , >s° tdt,
¢X2A(t) 2 O on R which implies the <T ¢X9A QJR¢X,X( )

or T s a on p(R:). Similarly, T 2 B on .3 implies that

T 2 B on p(R:). Thus, either of the statements T S a or

T 2 fi implies that ETB = a. To prove the converse, we note

0’

+ .

that Lemma 4.3 assures us that (a-T) 2 0 on p(R2) implies

+

that (a-T) 2 O on .3 and that (T-B) 2 0 on p(R2)

implies that (T-B) 2 0 on .3. Q.E.D.
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We combine Lemma 4.1 with Lemma 4.5 to obtain our

first theorem of this chapter.

Theorem 4.6. For all numbers 0:8 such that a1< a, exactly

one of the following cases occurs:

1. m2(E:B) > 0.

2. T S a.

3. T23.

The remainder of this chapter will be devoted to prov-

ing that the properties of E: are essentially determined by

B

the sets Ei’N, N 2 1.

T . . T,N*
Lemma 4.7. E B = 6 iff there is an N* such that Ed - Q.

"“"“" a

Proof: The necessity is true for all N 2 1 since each

T N T

E ’ c E .

as 018

T ,N* = 9
Sufficiency: Suppose there is an N* such that Ea

Then, since FT restricted to {(x,A): A 2 N*} is still a

continuous function, we may use a proof similar to that of

Lemma 4.4 to obtain that T s a on p({(x,A): A 2 N*}) or

T 2 B on p([(x,A): A 2 N*]). Again, Lemma 4.3 tells us that

this is enough to insure that T s a or T 2 B~ The con-

clusion follows from Lemma 4.5. Q.E.D.

By applying Lemma 4.1, Corollary 4.2, and Lemma 4.7, we obtain

the following corollary:

T,N .

Corollary 4.8. m2(E:B) > 0 iff m2(EmB ) > 0 for all N 2 l.

 

Before presenting the main result of Chapter IV, we

will need some notational conventions and an additional lemma

+

concerning subsets of R2.
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Definition 43. If G is a measurable subset of R;, then

a“ = {(x,A) e c: y. en}.

Definition 4C. For all N 2 1, we define HN = {(x,A): N s A1< N+l}.

Lemma 4.9. If G is a measurable subset of R:, then either

m2(GN) = a for all N or m2(GN) a 0 as N a a.

Proof: It is clear from Definition 4C that for each N, we

Q Q

have a“ = u (c n "1) and m2(GN) .. z m2(G n HK). Thus, if

K=N N* KFN ¢

there is an N* such that m (G ) < a, then 2 m (G n H ) < w

2 KFN* 2 K

fl

which implies that lim m (GN) = 1im [ 2 m (G n HR)] = 0. Q.E.D.

2 2

New Nam KFN

Finally, we present the result which will form the

foundation for the definition of the classes to be studied in

Chapter V. This theorem follows directly from Theorem 4.6,

Corollary 4.8, and Lemma 4.9.

Theorem 4.10. For all real numbers 0:8 such that a < e,
 

exactly one of the following cases occurs:

T

l. E = Q, i.e., T s a or T 2 6.

QB

T N T,N a d

2. For all N, m2(Eaé ) > 0, but m2(Ea8 ) O as N m.

,N

B

)=«:.
T

3. For all N, m2(Ea



CHAPTER V

THE e-CIASSES

It is obvious that condition 1 of Theorem 4.10 cannot

occur for all a and 5- Further, there are numerous dis-

tributions for which this case never occurs. In particular,

Theorem II of Chapter I tells us that any distribution which

is not a measure can never satisfy this condition. For these

reasons, we will rely on conditions 2 and 3 of Theorem 4.10

for our analysis of distributions. With this in mind, we

make the following definitions:

Definition 5A. A distribution T is said to be in Class 0-8
 

if for all a,B such that a < a, exactly one of the follow-

ing occurs:

1. T S a or T 2 B.

2. There is a measurable set E<: R and a number N' such

that m1(E) > 0 and (E X [N,m[) G E:;N for all N 2 N'.

Definition SB. A distribution T is in Class 04W if for all

 

a,8 such that a.< B, exactly one of the following occurs:

1. T s a or T-2 e.

3

8

Definition 5C. A distribution T is in Class E for e > 0,

)=-.
T

2. For each N, m2(Ea

 

if for all 0:3 such that a < a, exactly one of the follow-

ing occurs:

1. Tsa or T25.

26
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,N

B

2. There exist numbers N' and K such that m2(E: ) 2

K(l/N)e for all N 2 u'.

We may make some immediate observations about the

above definitions.

Remark 1. Suppose T 6 Class 0-8 and condition 2 of Defini-

tion 5A is satisfied. Then, there is a set E G R and a

T,N

GB

for all N 2 N'. In particular, for N 2 N', we apply Fubini's

number N' > 0 such that m1(E) > 0 and E X [N,m[ C E

3N g G a

a > 2 mm x £N.~[> jN m1<E>dx e.

l

since m1(E) > 0. Further, since EE’N G ET”N

6 0:8

N sN', we have that m2(E:éN) = on for all N. Thus, every

Theorem to obtain m2(E:

for all

T in Class 0-8 is also in Class 04W, i.e., Class O-S : Class O-W.

.Remark II. Clearly, Class O-W C Class 9 for all e > 0.

Remark III. Suppose that O < 91 < 92. If T 6 Class 91
 

and condition 2 of Definition SC is satisfied, then there

6
T,N I

exist numbers N', K such that m2(EdB ) 2 K(1/N) for

9 92

all N 2 N'. However, since (l/N) 1 z (l/N) , we have

that m2(E:éN) 2 K(1/N)62 also for N 2 N'. Thus,

T 6 Class 92 which implies that Class 91 C Class 92 when-

ever 0 < 91 < 92.

The remainder of this chapter will be devoted to the

establishment of significant sufficient conditions for member-

ship in the various classes. We begin by proving a result

based on Theorem 3.2 of Chapter III.

Lemma 5.1. Let h be a locally Perron integrable function

and a < B. If m1({x: a.< h(x) < 3}) > 0, then there is a
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set E C R and a number N' such that m1(E) > O and

h,N

(E X [N,co[) C EO’B

denote the distribution Th as well as the point function

for all N 2 N'. (Here, we use h to

h(x) in order to alleviate the notational problem).

Proof: Since {x: a < h(x) < a} = ,G'Hi’ where Hi =

[x: a + l/i s h(x) s B-l/i}, there isla set H and a number

n > 0 such that O < m1(H) < m and a + n s h(x) S B-fl for

all x E H. To simplify matters, let hx(x) = h*¢x(x). Then,

since hk(X) a h(x) a.e. on H and m1(H) < a, we apply

Egoroff's Theorem to find a subset L of H such that

m1(L) < [m1(H)]/2 and hx(x) a h(x) uniformly on H\L,

(the complement of L in H). The conclusion follows if we

set E = H\l and choose N' large enough that

max ‘hx(x)-h(x)‘ < M2 for all x 2N'. Q.E.D.

xEE

Definition 5D. A locally Perron integrable function h will
 

be called admissible if for all numbers a,B such that a < B,
 

we have m1({x: a < h(x) < 5}) = 0 iff either h(x) s a a.e.

or h(x) 2 B a.e.

If h is a finite derivative, then h satisfies the Darboux

condition, i.e. h(C) is a connected set whenever C is con-

nected. This condition, together with Theorem B of Chapter III

and Theorem I of Chapter I, tells us that finite derivatives

furnish examples of admissible functions.

Definition 5D provides us with a family of distributions

which belong to Class 0-8.
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Theorem 5.2. If h is an admissible function, then the dis-

tribution Th is in Class 0-8.

Proof: If h(x) s a a.e., then it is a well-known result

that h is locally Lebesgue integrable, (c.f. [5], Chapter

VIII, Theorem 62.1). Thus, for any test function W 6.5 such

that ¢(x) 2 0 on R, we have <Th,¢> = RTRh(x)W(x)dx =

IRh(x)¢(x)dx S qIR¢(x)dx, or Th 5 a. Similarly, if h(x) 2 B

a.e., then Th 2 5. Finally, if neither of these cases occurs,

we have m1({x: a < h(x) < 5}) > 0 which implies condition 2

of Definition 5A by Lemma 5.1. Q.E.D.

In particular, Theorem 5.2 tells us that all continuous

functions and finite derivatives are included in Class 0-8.

To bring out our main result, we will depend on a series of

lemmas which concern the local properties of the regulariza-

tions of T. For the rest of the chapter, we will use fx(x)

to denote T*¢A(X). Recall also, that we are assuming that

X 2 l in each case.

Lemma 5.3. Suppose I = D(n)g, where g is a locally bounded

function. Then, for each finite interval [a, b], there is a

+1

constant K such that ‘fi(x)‘ s Kin for all x 6 [a, b].

Proof: By (1.2), we have fi(x) = T*¢i(x) = D(n)g*¢i(x) =

g*¢§é+l)(x) for all x 6 R. In particular, if ‘g(x)‘ S M

a.e. on [a-l, b+l], we obtain the following for all

x 6 [a, b].

1
+1 ’. ( +1)

‘fi(x)‘ S I:ti;;\g(t)||¢in+l)(x-
t)‘dt s ”I:-1;:‘¢xn (x-t)‘dt

+1

-- Mxn+1J'}i[¢(n+1)(u)|du = 10,“ . Q.E.D.
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lemma 5.4. Suppose T = D(n)g, where g is a locally Lp

function for p > 1. Then, for each finite interval [a, b],

+ +1

there is a constant K such that \fi(x)‘ s Kin 1 /p for

all x E [a, b].

(n+1)

k

Now, if q is the number for which 1/p+l/q - l, we apply

Proof: As in Lemma 5.3, fi(x) = g*¢ (x) for all x E R.

Holder's Inequality to derive the following for all x E [a, b].

\f;<x>\ s.IZTi§§|s<t>\I¢{“*1’<x-t>ldt

.+1/ 1/ +1/x ( +1) q l/q

s {J:-1,§1s<t>|pdti p{5:-1,,\¢,“ <x-t>\ dc}

[
A

- 1 1 1{Igfii8(t)ipdt}1/pkn+2 1/q{f_1‘¢(n+ )(u)‘qdu} /q

n+l+l/p Q E D

(n)
Lemma 5.5. Suppose T = D p, where p is a measure. Then

=Kx

for each finite interval [a, b], there is a constant K such

+

that ‘fi(x)‘ s Kxn 2 for all x 6 [a, b].

_ (n+l)

Proof: As in the previous lemmas, fi(x) - u*¢x (x) for

(n+1)

all x E R. Then, if M = max ‘¢ (x)‘ and \p‘ denotes

xéR

the total variation of the measure n, we have the folloW1ng

for all x e [a, b].

n+2.x+l/x
‘fi(x)‘ s I:t:;:‘¢;n+l)(x-t)‘d\u(t)| 5 MI Jx_1/xd\u(t)‘

.2

s mlu\([a-1, b+1])xn+2 = xxn+ . Q.E.D.

Lemma 5.6. Suppose that T is not a constant distribution.

If T ¢ a and T i a, then there is a finite interval [a, b]

and numbers a', 5', and N' such that:
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1. a<oz'<B'<B;

2. for each X 2 N', there is an interval I c:[a, b] Such

k

that fl takes on the values a' and 3' at the endpoints

of IX while a' < fx(x) < e' on the interior of IX.

Proof: Since T i a, there is a $1 6.9 such that ¢1(x) 2 0

for all x 6 R,_IR¢1(x)dx 8 l, and <T,¢1> > a- Also, T 2 5

implies that there is a $2 E.D such that ¢2(x) 2 O on R,

IR¢2(x)dx = l, and <T,¢2>'< 3. Further, since T is not con-

stant, $1 and $2 may be chosen so that <T’¢1>’* <T,¢2>.

Now, choose a' and 3' in such a way that

max[a, min(<T,¢1>, <T,\y2>)] < 01' < B. < min[B: max(<1‘,¢1>, d3¢2>)]°

Since either <T,¢1> < a' or <T,¢2>’< a', we apply Lemma 4.3

to find a A1 Such that for each X 2 A1 there is an XX 6

(support of $1) U (support of $2) for which fk(xk) < a'.

Using similar reasoning for 5', we obtain a A2 such that for

each X 2 A2, there is an x)\ 6 (support of $1) U (support of

$2) for which fk(xk) > 5'. Choose N' z max(A1,A2) and a

and b such that (support of $1) U (support of $2) C [a, b].

1 2

Then, for each X 2 N', there exist two elements xk’xk 6 [a,b]

2 . .

such that fk(x:) < a' while fk(xk) > 3'. Finally, Since

fx(x) is continuous in x, for all X 2 N' there is an

interval 1 c [a, b] such that fk(x) takes on the values

A

a' and B' at the endpoints of 11 while a' < fk(x) < B'

on the interior of I . Q.E.D.

A
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Now, we use these last four lemmas to prove the main

result of this work.

Theorem 5.7. If T = D(n)g, where g is locally bounded, then

T 6 Class n, (Class O-W if n = 0); if T - D(n)g, where g is

a locally Lp function for p 2 1, then T 6 Class (n+1/p);

if T = D(n)u for some measure u, then T 6 Class (n+1).

Proof: If T is a constant distribution, then T 6 Class 0-8

by Theorem 5.2. Therefore, we will Suppose that T is not

constant. If T t a and T i B, we apply Lemma 5.6 to obtain

a finite interval [a, b] and numbers a', 3', and N' Such

that: 1) a < a' < B' < B3 and 2) for each A 2 N', there is

an interval 11‘: [a, b] such that fk(x) takes on the values

a' and B' at the endpoints of 11 While a' < fk(x) < 6'

on the interior of 1%. Therefore, for N 2 N',

T N T N -m u u

. ’ ’ = : < f x < d(5 1) m2(E,B > 2 m2<Ea'B') JNm1<{x a x( ) a 1) 1

.oo

2 jN m1(1x)d),.

Further, for all k 2 N', we use the mean value theorem for

derivatives to obtain an element th 6 IX such that

‘._. l-l
= '_l/flt

.

(5.2) ‘fi(ti)‘ — (e a >/m1(1x> or m1(11) (e a > | )\< 1"

We complete the proof of this theorem by considering each of

the hypotheses separately.

Case 1. If T = D(n)g, where g is locally bounded, then

since I C [a, b] for all X 2 N', we apply Lemma 5.3 to (5.2)

A
- n+1

above to obtain that ml(Ix) 2 M'x ( ) for X 2 N', Where
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M' = (B'na')/K. For all N 2 N', (5.1) implies that

+1
n - M(1/N)“, where

T,N .oo ,

m2(EaB ) 2 JN m1(1,‘)d1 2 M I; dx/x

M = M'/n. Therefore, if T £ a and T 2 8, condition 2 of

Definition 50 is satisfied for e = n, which implies that

T 6 Class n.

Note: If n = 0, the application of Lemma 5.3 yields that

T,N

GB

I °° I .
M IN dk/h = m for N 2 N . Hence, when T is a locally

m1(Ix) 2 M'(l/x) for K 2 N' which implies that m2(E ) 2

bounded function, T 6 Class O-W.

_ (n) - P f 1

Case 2. If T - D g, where g is locally L or P > a

then we use Lemma 5.4 and arguments similar to those of case

+'+

l to obtain that m1(Ix) 2 M'(1/),n 1 l/p) for 1 2 N'. iHence,

+1+1/ n+l/

for all N 2 N', m2(E:éN) 2 MKI; dx/xn p ‘ M(1/N) p:

where M = M'/(n+1/p). Again, this implies that T 6 Class (n+1/p).

Case 3. If' T = D(n)u, Lemma 5.5 tells us that m1(1l) 2

T,N

n+2) for A 2 N'. Thus, for N 2 N', m2(EaB ) 2
M'(l/‘),

Mdf; dX/xn+2 = M(1/N)n+l, where M = M'/(n+l). This is enough

to insure that T E Class (n+1). Finally, the case where

T = D(n)g, where g is locally L1, may be handled as part of

Case 3. Q.E.D.

As a result of'TheoremSS.2 and 5.7, we can place a

large segment of the Space of distributions in the appropriate

9-Classes. In particular, continuous functions and finite

derivatives belong in Class O-S; locally bounded functions

fit into Class 04W; locally Lp functions, with p 2 1, are

-settled into Class (l/p); and measures are located in Class 1.
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Further, if T is any distribution covered by the above cases

and T 6 Class 9', we see that D(n)T is in Class (e'+n). In

Chapter VI, we will discuss some examples to show that these

results are significant. We will also include some comments

and conjectures in Chapter VII.



CHAPTER VI

EXAMPLES

In this chapter, we give some examples to illustrate

that our previous results were not trivial. For instance,

Theorem 5.7 would be completely useless if there were no

distinctions between the various e-classes. At present, we

are able to give examples to show that the e-classes are dis-

tinct for e < 2. It seems likely that similar examples

exist for the higher classes also, but we are unable to

exhibit them at this time. Some discussion of these cases

is included at the end of the chapter.

We begin with an example to show that Class O-S is a

proper subset of Class O-W.

Example 6.1. Consider the Heaviside function defined as

 

follows:

0 for x s 0,

H(X) =

l for x > 0.

If we set HX(X) = H*¢x(x), then

Ix+1/l (x-t)dt = l for x 2 1/k3

x-l/x ¢x

HX(X) 3 I:+l/x ¢X(x-t)dt = $5? ¢(u)du for -1/k < x < l/X;

0 for x s -1/x.

35
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Our next step is to define F(x) = If1¢(u)du for all x 6 [-1,1].

Then, F is strictly increasing, F(-1) . 0, and F(l) a 1.

Further: Hx(X) = F(XX) for all x E ]-1/1, 1/x[. If we

choose a and B such that 0 < a < B < 1, then

[x: a < Hx(x) < a} : ]-1/x, 1/x[ for all x 2 1. For A 2 1,

we have a < Hk(x) < B iff a.< F(xx) < 3 iff (l/x)F-1(a) <

xi< (l/x)F-1(B). Therefore, for l 2 l, {x: a < Hl(x) < B} 2

Jl/xp'1(a), l/xF-1(B)[ which implies that m1({x: a < Hk(x) < 5}) a

l/XEF-1(B) - F-1(a)]. Since m1({x: a < HX(X) < 6}) a 0 as

K d a, we see that H cannot satisfy condition 2 of Definition

5A when a and B satisfy 0 < a < B < 1. Further, H can-

not satisfy condition 1 for these values of a and B because

each H1 takes on all values between 0 and 1. Hence, we have

exhibited values of a and B for which H satisfies neither

of the conditions of Definition 5A. We complete the example

by noting that since H is locally bounded, H 6 Class O-W by

Theorem 5.7.

Up to this time, the only conditions we have placed on

the function ¢ were those listed in (2.1). Unfortunately,

in order to perform the computations required for these next

examples, we are forced to add an additional restriction on ¢.

(6.1) There is an element a E ]0, 1[ such that ¢m(x) = 0

for all x 6 [-a, a], and ¢m has exactly one zero in 1a, 1[.

Combining (6.1) with the properties of ¢ listed in (2.1),

we see that the first three derivatives of ¢ may be pictured

as in the illustrations on the following page.
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We will use the information Shown in these figures to

prove a series of lemmas which are necessary for the remaining

examples.

Lemma 6.2. For 0 < v < l, the following are true:

1. '3 t-v¢(t)dt > 0.

2. .IS t-v¢'(t)dt < O.

3. I; t'v¢"(t)dt < 0.

4. I; t-V¢(n)(t)dt > O for n 2 3.

Proof: 1 and 2 follow easily from the properties of ¢ and

¢ .

1 - 'b ' u 1 " n
[0 t V¢"(t)dt = JO t V¢ (t)dt +'lb t V¢ (t)dt

- - 1

< b YIB ¢”(t)dt + b vjb ¢"(t)dt

= 0 since ¢'(1) = ¢'(O) = 0.

1 -v
Therefore, f0 t ¢"(t)dt < O.

- 1 - m13 t W = y, t v. e...
- .1 _

= I: t v¢’”(t)dt +-JC t v¢'"(t)dt

> °-Yl: ¢m(t)dt + c-VI: ¢m(t)dt

= C‘V[-¢"(a)]

>0.

Therefore, I; t-V¢m(t)dt > O.

For n > 3, we use integration by parts (n-3) times to obtain

I; t-\)Q3(n)(l’-)dt =,f: t-V¢(n)(t)dt

1 - - -3 III

= v(v + 1)‘°°(v + n - 4)J'a t V (n )¢ (t)dt.
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Now, for any number m > 0, we have

.1 t“m MI (1 _ C -m III d 1 -m III

la ¢ (t) t - la t ¢ (t) t +DIc t ¢ (t)dt

> C-mJo:¢/Il(t)dt + C-mJO: ¢lfl(t)dt

= c'm[-¢"(a)]

> 0.

Therefore, for n >13, Iét-v¢(n)(t)dt > O. Q.E.D.

We will omit the proof for this next lemma since it

is almost identical to that of Lemma 6.2.

Lemma 6.3. The following inequalities hold:

1. I; In t ¢(t)dt < O.

2. I; In t ¢'(t)dt > O.

3. .I3 In t ¢"(t)dt > 0.

4. I; In t ¢(n)(t)dt < O for n 2 3.

Lemma 6.4. Suppose h is locally Lebesgue integrable and

1 6.3. Then, if one of these functions is odd, while the

other is even, the convolution product h*¢(x) is an odd

function.

Proof: Choose n large enough that the support of ¢ is

contained in [-n, n]. Then, for all x, we have that

h*w(x) = j:f: h(t)¢(x-t)dt. Now, if we assume that h is

odd and W is even, we obtain the following:

h*¢(x) = ::f: h(-t)¢(x + t)dt = -I::T: h(t)¢(-x-t)dt

3 -h*¢(~x).
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Thus, when h is odd and V is even, h*¢(x) is an odd func-

tion. The case where h is even and W is odd is proven

similarly. Q.E.D.

Our second example of this chapter will serve to

illustrate that 01: Class 9 EClass v, when v satisfies

v

0 < v < 1.

Example 6.5. We begin by introducing an auxiliary function
 

g defined as follows:

-(~x)-v for x < O;

g(x) ={
-v

x for x > 0.

Note that g is locally Lp for l s p < l/v. We will prove

a number of properties concerning g and then proceed to

apply these to a second distribution related to g. It is

this second distribution which will provide the desired

example.

, .x+l d

First of all, we let G(x) = g*¢(x) = Jx-l g(t)¢(x-t) t.

In particular, for x E j-l,l[, we have:

(6.2) G(x) j‘o -(-t)-v¢(x-t)dt +I3+1t-v¢(x-t)dt

x-l

‘y: (U-X)-v¢(u)
du +-If1 (x-u)-V¢(u)d

u.

Now for x 2 l, G(x) > 0 since g(t) > O on ]x - l, x + l[.

a - .+1-

For x 6 10, 1[, G(x) = -I:_1(-t) v¢(x-t)dt +-Jg t V¢(x-t)dt

- _ +1 -v

= I0x+1t V[¢(x-t)-¢(x+t)]dt +Djfx+1t ¢(X't)dt

- +1

2 I: (u-x) V[¢(2x-u)-¢(u)]du + Ifx+lt-v¢(x-t)dt.
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Since x > O, we have |2x - u‘ < u for all u E jx, 1[

which implies that ¢(2x - u) 2 ¢(u) for u E ]x, l[.

Therefore, for x 6 10, l[, G(x) > 0 which assures us that

G(x) > O for all x > 0. By Lemma 6.4, G is an odd function

since g is odd and ¢ is even. Thus, using the previous

information on G and its continuity, we obtain the following:

> 0 for x > O,

0 for x =0,(6.3) G(x)

< 0 for x < 0.

Next, we consider the behavior of G'(x) for x

near 0. Note that ¢' is an odd function and g¢' is even.

c'<0> = g*¢'<0> j}, g(t)¢'(-t)dt ejll g(t>¢'(t)dt

-2fé g(t)¢'(t)dt -2j; t'V¢'(t)dt

> 0 by condition 2 of Lemma 6.2.

Since G'(x) is continuous, there is an h > 0 Such that

(6.4) G'(x) > O on ]-h, b[, i.e., G is strictly increasing

on J-h, h[.

Now, using the fact that g¢" is an odd function, we

obtain:

1 ..

G“(0) = g*¢"(0) =JE1 g(t)¢”(-t)dt = L1 g(t)¢ (t)dt = 0-

Further, using condition 4 of Lemma 6.2 and an argument

similar to that used for G'(0), we have that Gm(0) < 0.

By the continuity of Gm, there is a k > 0 such that

Gm(x) < 0 on ]-k, k[. Combining this with the fact that
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G"(O) = 0, we see that

(6.5) G"(x) < O on ]O, k[, i.e., G' is strictly decreasing

on 10, k[.

We will make one final observation about G. If we let

(6.6) w = min(h, k) and v = min G(x), then by (6.3), we

x€]w,l[

have v > 0.

With all the preliminaries completed, we are now pre-

pared to describe the desired distribution. Let f be the

function defined as follows:

(6.7) f(x) = (

 Ll for x 2 1.

By Theorem 5.7, the fact that f is locally Lp for

1 S pi< l/v implies that f 6 Class (l/p) for v < 1/p S 1.

We will demonstrate that the distribution f is in Class v,

but f é Class 9 for any 9 < v.

Following our earlier convention, we will set

fx(X) = f*¢x(x). Then, for l 2 2, we have

1X - l/k, x + llkl G ]-1, 1[ whenever x E 1-1/x, l/Kl: and

1
o -

fk(x) = l:il;§ f<t>¢x(x‘t)dt
= lx-l/x-('t)

v¢x(x-t)dt

cx+1/x -v _
+-JO t ¢x(x t)dt

= -f;x[(u-xx)/x]-v¢(u)du
+-j§:[(XX-u)/x]-v¢(u)du

1 _
.-

= 1"H)x (“‘1") V0301)“ + it‘l‘l“) WWW]-
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(6.8) Therefore, by (6.2), we obtain that fx(x) = xVG(xx)

whenever k 2 2 and x E j-l/x, 1/x[;

Henceforth, we will assume that X 2 2. Then, for

+1/;, .x+1/),
'l/X f(t)¢x(x-t)dt 2 Jx'l/X ¢l

since f(t) 2 l on ]x-l/x, x+1/x[. Further, for x E ]0, l/lL,

x 2 1/;,, we have f)‘(x) = 1‘: (x-t)dt = 1,

we use (6.3) and (6.8) to obtain that fx(x) > 0. Using this

information, Lemma 6.4, and the continuity of f, we may write

the following statement:

2 1 for x 2 l/x,

_> O for O < x < 1/l,

(6.9) fx(x) = 0 for x = 0,

< 0 for -l/x < x < 0,

S -l for x s -1/x.

Let 0 < a < B < 1. It is obvious by (6.9) that f

does not satisfy condition 1 of Definition SC for these values

of a and 5. Also, (6.9) tells us that when a < fx(x) < B,

we must have x 6 ]O, 1/k[- Now, choose N* greater than

max {[B/G(k)]1/", (e/v)1/V, 2}. Then, for 1, 2 N*,

a < fx(x) < 8 iff an," < G(xx) < an," and x 610, 1/;,[.

Using (6.6), we see that when x 2 N*, and G(xx) < B/kv.

we have that 0.< XX < h. Therefore, a.< fx(x) < 5 iff

(l/l)G-1(a/Av) < x < (l/x)G-1(B/xv). Hence, for k 2 N*,

{xz a < fx<x> 6's} = unmade/1"). (Meade/1M which

- -1

implies that Ifilm: a < fk(x) < 5}) .. 1mg 1(s/m-c (st/Tm.
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f
For N 2 N*, m2(EaéN) ='I; m1([x: a < fx(x) < 8})dk

=J'§£G'1<e/1")- c'1(e/i">1d1/1.

(6.10) Further, when T 2 N*, we have 0 < G-1(a/xv) <

c-1(a/iv) < k.

By the mean value theorem for derivatives, there is a

tK E JG-1(a/xv), G-1(e/xv)[ such that

G'(tx) = [(B-a)/1V]/[G'1(e/i”) - G'1(a/1V)], or

c'l(e/1“> - G-1(a/1v) = (e-o>/[1”c'(t,)]. Using (6.10) and

(6.5), we obtain that G'[G-1(B/xv)] s G'(tx)'s G'[G-1(a/xv)].

Therefore, for all k 2 N*,

(6 11) (e-o)/{1”G'[G'1<a/1V>3} s G'1<e/1V> - G'1(a/1”)

s (e-a)/{1”G'[G'1(e/xv)]}.

In particular, for N 2 N*,

m -1

m2(E:éN) s (e-aofN 1/{1vc'ic (3/1”)]}d1/1.

If we make the change of variables u = 6-1(B/xv), then

G(u) = 53/),v and G'(u)du = (avg/Av+l)dx. Hence, for N 2 N*,

f N G-1(e/N”) '

m2(Eaé ) s [(a-o)/vs]j0 l/G'(u) G (u)du

= [(B-a)/vejc'1(e/NV)
.

To complete the proof that f é Class 9 for any

9 < v, we must Show that for any 9 < v and for any M > 0,

we have G-1(B/NV) < M,(l/N)e as N becomes large. Since

9 < v, we may write 9 = yv for some y E ]0, 1[. Then, we

consider the function n defined as follows:
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n(y) = c'lm - (14/5th for y e [0, G(w)[. By (6.3),

n(O) = 0. Further, for y 6 J0, G(w)[, we have

n'(y) = 1/G'[6-1(y)] - (vM)/(BYy1-¥) by the inverse function

theorem. Since G'(O) > 0 and G-1(O) = 0, we obtain that

iig G'[G-l(y)]/y1-Y = c. Therefore, there is a j > 0 such

that G'[<:.'1(y)]/y1'Y > BY/(YM) for all y e )0, j[, i.e.,

n'(y) < O on 10, j[. Combining this with the fact that

n(O) e 0, we see that n(y) < O for all y E ]0, j[, or

G-l(y) < (M/BY)yY for y 6 10, j[.

l

/v, we have B/NV < j which impliesThus, for N > (B/j)

that c'1(e/N") < (M/BY)(B/NV)Y -= 1~i(1/N)W -= M(1/N)e. In

summation, we have demonstrated values of a and B such

that for any M > 0 and any 9 < v, we have m2(E:éN) < M(1/N)e

for large N. Together with our previous remarks, this shows

that f é Class 9 for any 9 < v.

To complete the example, we must show that f 6 Class v.

It is clear that f fails to satisfy condition 1 of Definition

SC for any a and 5' Hence, we must show that f satisfies

condition 2 of Definition 5C for all a and B-

If 0 < a < B < 1, then by the left side of (6.11) and

a series of steps similar to those used directly after (6.11),

we obtain that for N 2 N*, m2(E:éN) 2 [(B-a)/av]G-1(a/Nv).

Choose Mi< 1/G'(0) and consider the function q(y) = G-1(y)-My

for y E [0, G(w)[. Using the same methods as needed for the

function n(y), we see that there is an s > 0 such that

q(y) > 0 for y E 10, s[, i.e., G-1(y) > My for y E 10, s[.
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Hence, for large values of N, we obtain the following:

m2 (EiéN) 2 [(B-a) /o!]G-1(a/NV) > [(8-01) /oz]M(a/NV)=(B-a)M(1/N)v-

Thus, for 0 < a < 5 < l, f satisfies condition 2 of Defini-

tion 5C.

When 1 s a < 5 < a, we have that m1({x: a < f(x) < 5}) > 0.

By using local versions of Theorem 3.2 and Lemma 5.1, it can

,N

B

be shown that this is sufficient to insure that m2(E: ) - o

for all N.

Any of the other possible cases for O s a < 5 < a may

be handled as subcases of the two mentioned above. Finally,

since fx(x) is an odd function for all X, we see that

symmetric results are obtained when -m < a4< 5 s 0. There-

fore, when -l s a < 5 s 1, there are numbers N* and M

2(EiéN) 2 M(1/N)V for N 2 N*. For all other

f,N

possible cases, we have m2(EmB

f E C1638 v and the example is completed.

Such that m

) = a for all N. Thus,

The next example illustrates that U Class 5 is a

5<1

proper subset of Class 1. Since the actual details of the

example are as intricate as those of the previous example,

we will give a brief outline of the steps involved. Where

possible, we will refer back to similar procedures used in

Example 6.5.

Example 6.6. In this case, we begin by defining an auxiliary

 

distribution 8. Let g(x) = In ‘x‘ for all x # 0. Then,

since g is locally Lebesgue integrable, we may consider the
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distribution S = Dg. (Note: this distribution is usually

referred to as "Pv(1/x)" and is defined by 1<pv(1/x), ¢> -

pNIR¢(X)/x dx, where "pv denotes Cauchy principal value.

For our purposes, it is more convenient to consider S in

the above form, A more thorough discussion of this distribu-

tion is given in [8], pp. 84-85.).

The next Step is to define G(x) = S*¢(x) and to Show

that G satisfies conditions similar to (6.3), (6.4), and

(6.5). In these steps, we have to make use of Lemmas 6.3

and 6.4. With this accomplished, we define a function f(x)

as follows:

ln x for 0 < x s l,

f(X) =

In (-x) for -1 s x < 0,

-x - l for x s -1.

Finally, we prove that the distribution T ‘ Df provides the

desired example. To do so, we set fx(x) = T*¢X(X) and Show

that f satisfies conditions similar to those listed in

(6.9). Further, it is easily shown that fx(x) = xC(xx)

when x 6 1-1/x, 1/x[. The remainder of the steps are

exactly the same as those of the preceding example. In the

end, it can be shown that for 0 < a1< B < 1, we have T é a,

T 2 5, and for any a < 1 and any constant M,

m2(ET’N) < M(1/N)e for large values of N. This demonstrates

06

that T é U Class 5. Also, following the same procedure as

5<l

used in Example 6.5, we can Show that for -1 s a < B s 1,
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there are numbers N*, M such that m2(E:éN) 2 M(1/N) for

N 2 N*. For all other cases for a and 5, m2(E:éN) . a

for all N. Hence, T 6 Class 1 and the example is completed.

Using exactly the same procedures as above, we may

also exhibit an example to show that U Class 5 SEClass v

9<v

when l < v < 2. In this case, we will list only the per-

tinent distributions.

Example 6.7. Let s = v - 1 and define f(x) as follows:

-x - (e + 1),/e for x s -1,

-[e(-x)‘]'1 for -1 s x < 0,

f(x) =

-[exe]-1 for O < x s l,

X- (3+l)/e for X21.

Since 0 < e < 1, f(x) is locally Lebesgue integrable. The

distribution T = Df provides the example for this case.

From the previous examples, it would seem that similar

examples can be obtained for the higher classes using appro-

priate derivatives of adaptations of the functions In ‘x‘

and 1x1-v. Unfortunately, this process fails for derivatives

of order higher than 1. In these cases, it is impossible to

adapt the above functions in such a way as to obtain results

similar to (6.9). Since these conditions were crucial in

the demonstration of the previous examples, it would appear

that the approach used there will be ineffective in these

cases. At present, the question of whether straightforward

examples exist for the higher classes must remain open.



CHAPTER VII

CONCLUSIONS, COMMENTS AND CONJECTURES

As indicated in Chapter I, the purpose of this work was

to study distributions by analyzing nets of infinitely differ-

entiable functions which ”represent" the various distributions.

Following the example of Mikusinski and Temple, we saw that the

natural representation to consider for a distribution T was

the net {T*¢k}, where {$1} is the family defined by (2.1)

and (2.2). We then showed that it is possible to define

classes of distributions based on a Denjoy-type analysis of

the net {T*¢A}' The examples of Chapter VII serve to illus-

trate that these classes were actually distinct in at least

certain important cases. The major result of this work was

that a large number of distributions may be placed in the

appropriate class solely on the basis of their primitives.

In essence, this paper represents an attempt to use a

relatively new approach for the classification of distribu-

tions. Therefore, it is not unusual that the questions

raised by this research far outnumber the answers found.

With this in mind, we will discuss some of these questions

and attempt to indicate their importance to the study. Where

feasible, we will try to make known some possible approaches

to solve these problems.
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First of all, it is somewhat natural to question the

dependence of this theory on the test function ¢. For

instance, if we used two different test functions satisfying

(2.1),would we necessarily obtain the same classes in both

cases? This question takes on added importance when we take

into account the fact that we placed the additional condition

(6.1) on ¢ in order to work the examples of the last chapter.

If different 5's give us different classes, then it is

possible that the distinctions between classes indicated by

the examples of Chapter VI are still unsettled in the case

where ¢ does not satisfy (6.1).

As far as we can tell, this problem cannot be answered

at present. Although it is true that all the theory can be

formulated for any test function ¢ satisfying (2.1), we can

see nothing to guarantee that the individual classes will be

the same in each case. However, it is certain that the re-

sults of Theorem 5.7 are valid independent of ¢. The

situation may well be analogous to that of the spaces Lp(5),

the Lp Spaces defined by the measure 5. If u is changed,

it is possible that the Lp classes are changed. In any

circumstance however, there are always some functions which

are in a fixed Lp class regardless of the measure 5.

Thus, a partial answer to this question is that while

a different theory may result from different choices of ¢,

we are sure that Theorem 5.7 holds for any ¢ satisfying

(2.1). Further, there are at least some choices of ¢ for
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which the lower classes can be proven to be distinct. Hence,

the approach does provide results which are consistent with

our original aims.

A second question that arises refers back to the basic

description of the methods used in this work. Essentially,

the family {¢X}’ which was chosen for the regularizations,

consists of extremely well behaved functions. In addition,

the fact that all the ¢x's were obtained by a change of

variables from the single function ¢ was crucial to much

of our work. A possible generalization of this approach

would be to see how much of the theory can be retrieved if

we begin with an arbitrary net {¢K} for which T*¢k w T

in ,D' as X A m for each distribution T. The major

problems encountered with this change are the following:

+

l. The continuity of the function FT on R is no longer

2

obvious; 2. Lemmas 5.3, 5.4, and 5.5 become doubtful, and

hence, Theorem 5.7 is in danger. This is not to say that such

a theory is impossible. However, this slightly different

approach will require new proofs for some of the crucial re-

sults demonstrated in our work.

Next, we turn to some more Specific questions concerning

the classes defined in our theory. For one thing, the trend

of our results leans heavily on sufficient conditions for

the various classes. It is unknown at present whether nec-

essary conditions exist. Along the same lines, it is not

apparent that the e-classes are all-inclusive. On the basis
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of the research done up to now, it is entirely possible that

there may exist a distribution which belongs to none of these

classes. However, we are assured by Theorem 5.7 that every

distribution which has a measure as one of its primitives

may be placed in one of the e-classes.

While we are on the subject, Theorem 5.7 suggests an

obvious conjecture. The theorem tells us that if T is a

measure or a function, then T satisfies the following state-

ment:

(7.1) If T 6 Class 9, then D(n)T 6 Class (9 + n).

Whether (7.1) is true for an arbitrary distribution is still

an Open question.

Our final considerations pertain to the examples given

in Chapter VI. Example 6.5 shows that for 0 < u < 1, there

is a continuous function h such that Dh is in Class v,

but Dh é U Class 9. (The function h is the indefinite

6<v

Lebesgue integral of the function f defined in (6.7).) Now,

Theorem 5.7 tells us that all first derivatives of continuous

functions lie in Class 1. Example 6.6 is based on the deriv-

ative of a locally L1 function. Hence, it is natural to

ask whether there is a continuous function p(x) such that

DP 6 Class 1 but Dp G U Class 9. We conjecture that such

9<1

an example might be fashioned from the function

1/1n |X‘ for x i 0,

p(X) =

0 for x = O.
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Unfortunately, for this function, the details of Example 6.6

are not readily accomplished. Thus, for the present, this

remains as another unanswered question.
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