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ABSTRACT

STOCHASTIC REPRESENTATION OF SURFACE

ROUGHNESS AND ITS RELATION TO MANNING

"n" FRICTION COEFFICIENT

BY

Gurol Dinc

For steady state fully rough turbulent flow, the

Manning equation, which relates the average velocity of

flow to hydraulic radius of the conveyance system and the

slope of the energy grade line, is widely used. One of

the parameters of the Manning equation, the "n" friction

coefficient, is related to the boundary characteristics of

conveying surfaces. A concise way of relating the "n"

values to a particular boundary configuration has not been

available up to the present.

The current investigation proposes an approach to

defining the relationship between the friction coefficient

and the surface boundary. Spatial distribution of surface

boundary protrusions is related to the resistance to flow.

The surface protrusions are assumed to be a realization of

a stochastic process with respect to distance. The tech-

niques of autocorrelation and power spectrum analysis were

used to describe the process.
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The power spectrum functions of various surfaces

with known "n" values, used in previous investigations,

were analyzed. For each surface, a parameter, K, expo-

nential decay coefficient, related to the spectrum

function, was determined. A parabolic relationship is

hypothesized between the decay coefficient and the cor-

responding Manning friction coefficient.

The power spectrum functions of several conveying

surfaces commonly encountered in practice were experimen-

tally determined in thelaboratory. From their spectrum

decay coefficients, corresponding Manning "n" friction

coefficients were predicted by using the parabolic rela-

tionship. The predicted values of "n" agree well with the

approximate "n" values given in the literature.

The methodology proposed appears to provide a

good estimate of the Manning "n" for surfaces having high

or medium roughness concentrations. The accuracy of the

estimates is less for surfaces of low roughness concen-

trations.
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1. INTRODUCTION

Three classical formulas have been widely used in

engineering practice to model the average velocity of

turbulent steady state fluid flow at a cross section of a

Water conveying system. The three formulas are: the

Darcy-Weisbach equation, the Chezy equation, and the Manning

equation. The Darcy-Weisbach equation is mainly used for

flow in closed conduits whereas the latter two are used for

open channel flow.

One of the variables involved in defining the

average velocity in all three formulas is attributed to

the boundary roughness characteristics of the conveying

surfaces and is known as resistance or friction factor.

Initially, with the acceptance of these formulas by

engineers and scientists early in this century, it was

thought that the friction coefficients were constant for

a particular surface boundary regardless of the type of

flow condition. Later, however, it was shown by many

investigators that the friction coefficients would vary as

much as 50 percent from their designated constant values,

depending upon the nature of the flow. It thus became

necessary to understand the hydraulic mechanism relating



a type of boundary roughness and the nature of flow

occurring over the roughness.

The first rational formulas for hydraulic rough-

ness were established by Nikuradse (1933) who utilized the

boundary layer theory concepts of Prandtl and VonKarman,

in his experimental work in pipe flow. He discovered

that the friction coefficients are not functions of

surface boundary characteristics alone, but are also

functions of Reynolds numbers for partly rough turbulent

flow while the friction factors remain constant only for

fully rough turbulent flow. His definition for relative

roughness in terms of sand grain height and validity

ranges of the friction coefficients, as well as his pro-

posed formulas, have been universally accepted and have

led many researchers to determine an artificial standard

for roughness in open channels.

Probably due to impracticality involved in regen—

erating Nikuradse's sand grain roughness in open channels,

the investigators in this field have attempted to determine

an artificial standard for roughness by using idealized

geometric configurations as roughness elements in either

one-dimensional form (strip roughness), or two-dimensional

form (patterned roughness). For both cases, the data

obtained were so scattered that the resultant derivations

were either unreliable or too complex for any practical

usage. Some researchers (Herbich and Shulits, 1964)



pointed out correctly that the magnitude of artificial

roughness elements used in previous investigations were

greater than the laminar boundary layer thickness. Because

of this, the use of Nikuradse's assumptions, as discussed

in Section 2.2, to correlate the roughness elements to

the resistance was erroneous. Many different ways of cor-

relation were offered instead, such as roughness concentra-

tion, projected roughness area, drag coefficient, etc.

However, for each case, the results presented were beyond

the simplicity that practical applications deem necessary.

There is no doubt that previous investigations on

this subject contributed much toward understanding the

mechanism involved between surface roughness elements and

flow resistance. The previous work has been sufficient

to describe friction factors in practice provided that the

surface is the same form as the investigated surface from

which the experimental data were obtained. Since a general

and concise way of defining roughness has not been devel-

oped, difficulty arises especially when new surfaces are

encountered:h1practice. Inisuch a case, the engineer either

determines the friction factor in the field or in the

laboratory, using experiments, a practice which has been

proven to be costly, or he estimates the roughness, a

practice requiring a high degree of engineering judgment

and one which is often risky.



A concise way of explaining a functional rela—

tionship between the concentration of roughness elements

and the resistance caused by those elements can be proposed

if one visualizes certain quantitative aspects of the

roughness. .It is fairly evident that increasing roughness

element concentration increases resistance up to a maximum

point, beyond which an increase in concentration decreases

resistance. A quantitative way of evaluating this physical

phenomenon would be to consider the contribution to the

variance resulting from specific special frequencies since

the distribution of the frequencies is a measure of the

concentration of the roughness elements.

The method used in this study is to obtain frequency

decompositions of the variance for particular surfaces for

which Manning "n" friction coefficients have already been

known, and to correlate the decomposition to corresponding

friction factors.



2. REVIEW OF LITERATURE

For three-dimensional incompressible fluid motion,

the flow field is described by the pressure P, and by the

velocity vector

V = In + jv + Kw' (2.0.1)

where

u, vy'w'are the three orthogonal components of

the velocity vector in x, y, and 2 directions

of cartesian coordinates, and

+ + . .

1, j, k are the unit vectors in x, y, and 2

directions.

To determine the four quantities there exist four

equations; namely, three equations of motion, and the

continuity equation.

The equation of continuity states that the mass of

a unit volume is constant and equal to summation of the

mass entering and leaving the unit volume per unit time.

The equations of motion are directly derived from

Newton's Second Law which states that the sum of the

external forces acting on a body equals the product of the

body's mass and its acceleration. There are two types of

forces encountered in fluid motion; namely, gravitational

5



forces, acting throughout the mass of the body, and the

pressure and friction forces acting on the boundaries of

the body.

If the condition of equilibrium is assumed in

fluid motion such that for each particle there exists

equilibrium between body, surface forces and friction

forces, then the equations of motion for incompressible

fluids can be written,

 

2 2 2

3w Bu Bu , Bu _ 3P 8 u §_2_ 8 u
pa—t—+u§;{-+v5§;+ E—x-fi...“ 2+ 2+ 2

3x By 32

2 2 2

8v 8v 8v 3v 3P 8 v 8 v 3 v
p-——+-u-—-+ v-—-+ ' —— =‘!--—-u-———+-———+-——-
[3t 3x 3y 32 3y [sz 3y2 822]

psi]; a121,, 3_w_'_+.§1'_ _Z-§3_ 82w'+32w'+82w'
at 8x By 82 32 3x2 8y2 822

(2.0.2. a, b, c)

where

p = density of the fluid,

t = time,

X = body forces in x-direction,

Y = body forces in y-direction,

Z = body forces in z-direction, and

u = viscosity.



These are the well-known differential equations of

the fluid mechanics, namely, Navier-Stokes equations. The

continuity equation

3U 3V 3W' _

'a—x'I'é-y'FW-O (2.0.3)

along with the Navier-Stokes equations with known body

forces consist of a set of four equations for the four

unknowns u, v, w, and p. The solutions to these equa-

tions should satisfy the boundary and initial conditions

for a particular physical flow phenomenon. For viscous

fluids, the condition of no slip on solid boundaries must

be satisfied, i.e., tangential and normal components of

the velocity must be equal to zero.

There exists no general technique for the inte-

gration of the Navier-Stokes equations due to the complex

mathematical difficulties encountered in the process

(Schlichting, 1968). However, for some special cases such

as Covette flow between two parallel walls, Poiseville

flow through a circular pipe, etc., the exact solutions of

the differential equations are known.

In the general sense, the approach to a solution

of the Navier—Stokes equations has been to first consider

the two limiting cases of viscosity, namely, very large and

very small viscosities. In this manner the required mathe-

matics are considerably simplified.



For motions with very large viscosity, or with

very small Reynolds number, the viscous forces are far

greater than the inertia forces. Inertia terms in the

Navier-Stokes equations can therefore be neglected and

only the terms containing the viscous forces must be

retained. This results in a considerable mathematical

simplification and solutions to these equations for certain

cases exist.

For motions with very large Reynolds number, or

with very small viscosities, viscous terms in the Navier—

Stokes equations cannot be omitted, since such an assump-

tion implies the elimination of the essential boundary

condition (no slip at the wall). The resultant simplified

Navier-Stokes equations have no physical meaning. In order

to retain the boundary condition, Prandtl (1904) introduced

the concept that the viscous effect for this type of

motion is confined in a thin layer adjacent to the wall

and the rest of the motion field is free from the effects

of viscous forces. In the first region, which is known

as the boundary layer, the motion satisfies the Navier-

Stokes equations whereas in the external region the motion

is defined by the equations of potential flow theory.

The division of the flow field into two distinct flow

regimes considerably reduces the mathematical complexities

and increases the applicability of the equations to a

wide Spectrum of flow cases. This concept contains the



essence of the boundary layer theory approach. Pertinent

portions of this theory will be reviewed in the forthcoming

sections.

For very large Reynolds numbers at which turbulent

fluid motion exists, the velocity and pressure components

of the fluid motion do not remain constant at a fixed

point with time in the flow domain. Rather, they exhibit

irregular fluctuations with respect to time. Consequently,

the velocity and pressure variables of the motion are

described in mathematical terms as consisting of two com-

ponents; namely, the average component and the fluctuating

component.

The same Navier-Stokes equations (2.0.2) are used

to describe fluid motion for turbulent flow, except that

the velocity and pressure terms are interchanged with their

time averaged components and additional stress terms, caused

by the velocity fluctuation component, are introduced in

the right-hand side of the equations. The "turbulent"

Navier-Stokes equations, in addition to being extremely

complex, cannot be solved rationally, since the relation

between the mean and the fluctuation components are not

known mathematically (Schlichting, 1968). .Such relations

are obtained only empirically and are actually the basis

of turbulent boundary layer theory.

As will be discussed in the following sections,

boundary layer theory is not valid for certain types of
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turbulent flow (i.e., fully rough) conditions. For such

flows, the relationship between the pressure gradient and

the velocity can only be determined empirically (Schlicht-

ing, 1968).

For this reason, numerous empirical formulas were

developed to describe fluid flow through closed or open

conveying systems in the late 19th century. Among these

only three have been recognized and widely used by the

modern engineer. The head loss or slope of the energy

grade line for a length L for fully developed uniform flow

in open channels and smooth flow and partly rough flow in

closed conduits has been expressed by the Darcy-Weisbach

formula:

N

(2.0.4)m u H.
‘

El
i-

I

N
<

«I
I

where

H = total head loss, change in elevation of the

energy grade line over the length L,

f' = Darcy-Weisbach friction factor,

L = length of the conveying system,

V = velocity,

R = hydraulic radius, and

g = acceleration of gravitY~

For closed conduits, 4R in equation (2.0.4) is

replaced by the diameter of the conduit.
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Another widely used equation for uniform flow in

open channels is the Chezy formula:

V = C/R , (2.0.5)

where

C = Chezy friction coefficient, and

S = slope of the energy grade line.

Perhaps the most well-known and used formula for

relating the average velocity of flowing water to the

hydraulic radius and slope of the energy grade line for

uniform flow in open channels and for rough flow in closed

conduits is the Manning equation which is wrongly credited

to Robert Manning (1891). The relation is

v = 1'386 R2/3 51/2 (2.0.6) 

where

Manning friction coefficient.:
3 II

The origin, development, and evolution of these

formulas, as well as others, will not be reviewed in this

study. Comprehensive studies on this subject were done

by Houk (1918), and especially on Manning by Chow (1955),

Powell (1968), and Williams (1970).

With the appearance of these formulas in hydraulics,

an eagerness developed among scientists to understand the
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physical interpretation of the relationships between the

variables involved. This was motivated by a lack of con-

fidence in these formulas because no one knew the flow

conditions for which the equations were valid in the

early part of this century. Once the ranges of application

of the equations were determined, scientists and engineers

began to wonder about the mathematical relationships

between the friction coefficients and the surface over

which flow occurred. Although numerous studies have been

conducted, a concise mathematical description of the

resistance coefficients has yet to be developed.

Most of the research on resistance coefficients to

date has been carried out by creating artificial roughness

elements and determining the behavior of coefficients

under controlled conditions, or by attempting to determine

behavior of the coefficients through application of boundary

layer theory, or through a combination of both of these

approaches. Selected, important papers will be reviewed

in the pertinent sections of this chapter, and the

resistance coefficients C, f, and n will be referred to

as they appear in the original papers.

2.1. Experimental Studies on Roughness

of Deterministic Surfaces

 

 

The concept of relative roughness was initiated by

the famous work of Nikuradse (1933) who determined values

of f over the range of laminar flow to fully turbulent flow
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with Reynolds numbers exceeding 100,000 for three differ-

ent sizes of pipes. Sand of uniform diameter was used as

a roughness element. The mean diameter ks of sand was

chosen such that kS/r was the same for the three different

pipes, where r is the radius of the pipe. He defined the

relative roughness as kS/r. From a logarithmic plot of

each r/ks, the reciprocal of the relative roughness,

versus the Reynolds number and friction coefficients f',

he identified three stages of flow: the first stage cov—

ered the laminar flow region and that part of the turbulent

flow region in which the relative roughness has no effect

on the resistance. For the laminar flow region, the

friction coefficient was defined by the following relation:

.41
f — Re (2.1.1)

where

Re = the Reynolds number.

For the part of the turbulent flow unaffected by

relative roughness, the Blasius (1913) law of resistance

applies:

. = 0.316f 17?
(2.1.2)

In the second range, termed the transitory range,

where a comparatively abrupt transition takes place from
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smooth flow to rough flow, the effect of relative roughness

on resistance is noticeable in that the friction coeffi-

cient increases with increasing Reynolds numbers.

In the third range, the roughness coefficient is

independent of the Reynolds number. In this range the

friction factor is expressed by the following relationship

given by Nikuradse (1933):

l _ r

-——-- 1.74 + 2 log10 E—" (2.1.3)

/ET 3

The equivalent sand-grain roughness, ks, suggested

by Nikuradse as a relative measure of surface roughness,

has served as a reference for numerous subsequent inves-

tigations of frictional resistance in closed conduits and

open channels for partly rough and fully rough flow con-

ditions.

The transition zone between smooth and rough flow,

where the resistance depends on both the Reynolds number

and the relative roughness, was not conclusively explained

by Nikuradse and was the subject of studies done by Cole-

brook and White (1937) and Colebrook (1939). It was

experimentally determined that the transition process is

gradual rather than abrupt. Colebrook suggested as a

transition formula for pipes:

k

l s 2 51



15

where

D = the diameter of the pipe.

Streeter (1936) used several roughness elements

consisting of grooves cut spirally into pipes, to deter-

mine the effect of the shape of roughness elements on the

frictional resistance. Converting the roughness elements

to their equivalent sand-grain roughness by the law of

similitude, Streeter concluded that the shape of the

roughness elements have as much effect on the resistance

as the depth of the roughness elements. Working with the

Streeter type artificial roughness element on rectangular

channels, Skoglund (1936) confirmed the applicability of

a Nikuradse type equation (2.1.3) for predicting the fric-

tion factors for fully developed turbulent flow under the

range of conditions used in his tests.

Adopting Nikuradse's methodology for pipes and

using Bazin's (1865) experimental data on open channel

flow, Keulegan (1938) derived a formula for fully developed

turbulent channel flow. He confirmed that the resistance

to flow in a rough channel having a defined degree of

roughness is equivalent to the resistance to flow in a

pipe having the same degree of roughness and hydraulic

radius. Keulegan's formula is:

6.25 + 5.75 loglo (R/ks). (2.1.5)

(
c
h
i
n
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Using square steel strips across the sides and

bottom of a channel as roughness elements, Powell (1946,

1950) conducted a series of experiments on eleven types

of roughness configurations. From his experimental find-

ings he concluded that the resistance to flow in a channel

is not the same as that in a pipe because of the effect

of the free surface and of the angles between the walls

and the bottom of the channel, and between the side walls

and the free surface. Considering these facts along with

(2.1.5), Powell developed an expression for fully devel-

oped rough flow in open channels:

C = 42 log10 (R/E) (2.1.6)

where

E = measure of roughness.

Although the roughness parameter E was assumed as

the same as Nikuradse's ks’ it was speculated that it would

be 4 to 10 times greater than Nikuradse's ks, depending upon

the nature of the channel. For the transition zone between

smooth and rough channels where the resistance depends both

on Reynolds number and the relative roughness, Powell

(1950) proposed the formula

C = -42 loglo (C/Re + E/R). (2.1.7)
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Similar experiments were performed by Johnson

(1944) using rectangular sills as roughness elements. He

found that the spacing and the height of the elements had

a considerable effect on resistance. The maximum resist-

ance was obtained when the longitudinal spacing-to-height

ratio was between 2 and 10. Robinson and Albertson (1952),

keeping this ratio at 10, experimented on various sizes of

geometrically similar roughness baffles in open channels.

For a particular roughness, they demonstrated that Chezy's

resistance coefficient C depends only on the ratio of flow

depth to baffle height assuming the presence of fully

developed turbulent flow conditions. A resistance formula

for this particular flow type was proposed with

C = 26.65 log10 (1.891 d/a) (2.1.8)

where

d = mean depth of flow, and

a = height of artificial roughness elements.

For natural channels, in which resistance to flow

is caused by more than one type of roughness element,

Nikuradse's grain-type roughness definition has been found

inadequate. The relative size and the arrangement of the

roughness elements play an important role in the boundary

characteristics of the channel. Investigations on this

type of roughness started as early as the late 19405.

Einstein and Banks (1950), using concrete blocks and metal
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pegs as roughness elements in a flume, found that the

total resistance exerted by combined types of roughness is

equal to the sum of the resistance forces exerted by each

type individually. A series of equations was developed

for resistance exerted by the bed of the channel in terms

of the density of roughness elements and the square of the

average velocity of the flow.

Flow conditions for both the submerged and protrud-

ing cubical roughness elements with various arrangements

were considered by Herbich and Shulits (1964). It was

found that systematic relationships exist among Manning's n,

Reynolds number, Froude number, and a special quantitative

parameter of the roughness pattern. This parameter was

said to be the ratio of the projected area of the roughness

elements in the direction of mean flow to the horizontal

area of the channel. The relationship is given in graphical

form.

Rouse (1965) and Koleseus and Davidian (1966)

emphasized the nature of the concentration of roughness

elements as a factor influencing surface resistance.

Koleseus and Davidian concluded from the result of an

extensive investigation on previous definite roughness

studies that the ratio of projected roughness areas to

the total floor area is, within some range of density, a

satisfactory measure of roughness concentration. Fur-

thermore, it was claimed that a simple relationship,
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independent of roughness shape, exists between the rough-

ness coefficient and the concentration which is applicable

to both turbulent open and closed conduit flow. For

various values of roughness concentration, Roberson and

Chen (1970) obtained plots of the functions

l/Vf' -2 log (R/a) versus Re/f' (R/a). (2.1.9)

For sand-bedded channels in which the roughness is

principally related to the formation of ripples, Vanoni

and Hwang (1967) introduced the areal concentration of

ripples as an important variable in computing the total

resistance. They expressed the friction factor f' in

terms of the height of the ripples, the hydraulic radius,

and the areal concentration of ripples. Chang (1970),

assuming the same principles, divided the total resistance

into two parts, a portion due to grain-roughness and a

portion due to form-roughness. He suggested that grain-

roughness may be determined directly by using Nikuradse's

formula (2.1.3) while form-roughness could be calculated

by procedure similar to that proposed by Vanoni and Hwang.

Resistance to flow in corrugated pipes produces a

different type of friction factor-Reynolds number relation-

ship. This phenomenon was first demonstrated by Neil

(1962) who found that the magnitude of f' was proportional

to the number of square feet of the relative corrugation

depth. WOrking with corrugated plastic tubing, Dinc et a1.
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(1971) demonstrated that depth, spacing, and shape of cor-

rugations affect the resistance, and even in fully developed

turbulent flow they observed that the Manning n varied to

some extent, contrary to the common belief that the fric-

tion factor is constant at that region.

2.2. Roughness Studies Based on Concepts

From Boundary Layer Theory

 

 

Prandtl (1904) discovered that for most applications

of fluid flow, the influence of viscosity is confined to

an extremely thin region adjacent to the rigid boundary

surface. This region is known as the boundary layer.

The fundamental assumption of the boundary layer approxi-

mation is that the fluid particles next to the rigid

boundary are at rest. Hydrodynamically, the velocity

boundary layer is defined as that region within which the

flow velocity ranges from zero, at the rigid boundary, to

a Constant value, the free stream velocity. Boundary layers

may be either laminar or turbulent. The laminar boundary

layer is always present over a rigid body when the

Reynolds number in a pipe flow situation is less than 2000

and this type of flow is termed laminar flow. At Reynolds

numbers greater than 2000, the laminar boundary tends to

become unstable and a new type of boundary layer develops

Simultaneously with a transition to turbulent flow. This

layer is called the turbulent boundary layer. Since most

flows in engineering practice are turbulent, no attempts
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will be made to discuss the concept of the laminar boundary

layer theory in this review. The turbulent boundary layer

theory is not completely formulated in the mathematical

sense. The theory is based on semi-empirical relationships

derived from correlating experimental observations.

Researchers have observed that the turbulent boundary

layer consists of two principal regions: an inner and an

outer region. In the inner region, the characteristics of

the rigid surface are important factors in determining the

form of the velocity profile, whereas in the outer region

the velocity profile surface and the history of the layer

are important. The velocity distribution in the boundary

layer may be expressed in either a logarithmic or a power

law form. In the inner boundary layer, the logarithmic

law takes the general form given by the ASCE Task Force

Report (1963),

%'_+ b (2.2.1)

0

whereas the logarithmic law for the outer layer is

 

V - v _ _ 1 Z;

V* — F loge 6 + c (2.2.2)

.where

v = y component of the velocity,

k = Von Karman constant,

vertical distance from the rigid boundary,

‘
< ll
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V = free stream velocity,

b, c = constants,

6 = boundary layer thickness,

V* = friction velocity = 7? ,

T = shear stress at the wall,

0 = density of the fluid, and

Y0 = roughness parameter.

The constants k and b are believed to be universal con-

stants. Von Karman's constant is usually assumed to be 0.4

while b is assigned the value 5.5. However, Vononi (1953)

and Sayre and Albertson (1961) found evidence that k is

not a constant, but is influenced by such factors as

suspended-sediment concentration and boundary roughness.

The constant c varies with the nature of the flow and

frequently with the characteristics of the surface boundary.

The power law (ASCE Task Force Report, 1963),

when the Reynolds number is less than 100,000 for the

inner and outer regions, takes the form, for the inner

region

(2.2.3)

<
'
<

 

*

V

in which v is kinematic viscosity. For the outer region

. 1/7
= (1ng . (2.2.4)

<
:
I
<
:
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In an examination and reinterpretation of the

extensive measurements of Nikuradse, Martinelli (1947)

discovered three distinct regions associated with the

logarithmic representations of the boundary layer. For

v/V, < 5, he found that the data showed a linear dependence

between v/V* and YVYo and he termed this region the laminar

sublayer. For 5 < v/V* < 30 and v/V* > 30 the general

logarithmic laws for the inner and outer regions appeared

to hold and these regions were termed the buffer layer

and the turbulent core, respectively. Martinell's inter-

pretation of the boundary layer is widely accepted.

The term Yo in (2.2.1) is attributed to the

roughness parameter of the rigid boundary. It is fre-

quently defined:

. (2.2.5) 

 

From his experiments with sand grains as roughness

elements, Nikuradse (1933) discovered that for fully rough

turbulent flow f(kS V*/v) in (2.2.1) can be written in

the more general form:

v 1 23.
‘7; - '1? loglo ks + B (2.2.6)

where

w

ll

constant.
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From his experimental data Nikuradse found that

B is 8.5 for the flow condition used.

Nikuradse's sand grain definition of roughness and

his proposed equation, (2.2.6) , have been widely accepted

by scientists and engineers and have been used to determine

the friction coefficient of the rigid boundary for the

particular flow under consideration.

Some scientists have argued, however, that since

the surface resistance is related to the development of

the boundary layer, the equations, derived on the assumption

that the boundary layer is fully developed, could not be

applied to types of flow for which developing boundary

layers exist. These types of flow commonly occur in

practice when the properties of bed materials change

drastically; i.e., for joints on concrete-lined channels,

changes from concrete to natural channels, changes in

surface materials on natural channel beds, etc. Another

type of problem arises from the application of universal

boundary layer equations when the surface protrusions are

the same or are of greater magnitude than the laminar

sublayer thickness. Here the protrusions tend to disturb

or break up the laminar sublayer and consequently increase

the shear stress on the wall. It has been experimentally

demonstrated (Herbich and Shulits, 1964) that for suffi-

ciently rough surfaces no predominantly viscous region

exists. The apparent shear forces are transmitted to the
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wall in the form of pressure drag on the protrusions.

Hence the basic assumptions of the boundary layer theory

collapse for this type of surface.

Realizing the fundamental fact that the main

source of friction loss in a fluid flowing over a suffi-

ciently rough surface comes from the generation, separa-

tion, and subsequent dissipation of vortices from the wake

and separation zones behind each roughness element,

Morris (1955) concluded that the longitudinal frequency of

each element is a significant parameter in the definition

of the turbulence structure and energy dissipation phe-

nomena. Morris suggested that kS can be determined in a I

more fundamental way than that given by (2.2.6). To

define the surface geometry, two new parameters were

introduced: the roughness index, defined as A/a, the

ratio of the roughness element spacing to the height of

the projections; and the relative roughness spacing,

defined as r/l, the ratio of radius to the spacing of the

roughness elements. Based on these parameters, he

classified three types of roughness:

(1) Isolated roughness, where the surface pro-

trusions are far apart, as are the joints in concrete-

lined channels. The friction factor results from the form

drag on the roughness elements plus the friction drag on

the surface between elements. Thus, the roughness index
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l/a is a significant correlating factor for this type of

flow.

(2) Wake-interference roughness, where the rough-

ness elements are close enough to each other so that the

zones of separation and vortex generation and dissipation

associated with each element are intermingled. The fric-

tion drag on the wall does not contribute to the total

friction. Therefore the height, a, of the elements is

unimportant but the spacing A is of major importance, making

the relative roughness spacing r/l an important friction

correlating factor.

(3) Quasi-smooth roughness, where the roughness

elements are so close together that between the elements,

regions of dead water containing stable vortices exist.

The energy loss for this type of flow is largely due to

the width or depth of the elements. Hence, the roughness

index expressed either by A/a or A/w (w is the width of

the elements) is an important factor influencing the

apparent friction. Morris presented different formulas

for each type of flow.

Raju and Garde (1970), using the data collected

from their investigation along with those of Sayre and

Albertson (1961), and Basha (1961), checked the reli-

ability of the method suggested by Morris. They found

that the agreement of the experimental data with Morris'

approach is valid for certain types of flow although in
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some cases it may either over- or under-predict the

resistance. It was therefore concluded that the method

was not sufficiently reliable. Rather, Raju and Garde

proposed a more general form of flow equation on the

assumption that the total resistance is equal to the form

drag resistance of the roughness elements. Their empirical

relation is

E:— = cl log :— + c2, (2.2.7)

where

CD = drag coefficient based on free stream

velocity,

C1, C2 = constants, and

a = height of roughness elements.

The coefficients Cl and C2 were independently determined

for each roughness index, A/a.

For hydrodynamically rough surface boundaries where

roughness elements are protruding above the laminar sub-

layer, Sayre and Albertson (1961) introduced a new

roughness parameter x, which is considered a function of

both the relative size and the relative spacing of the

roughness elements. It was experimentally found that for

open channels, a logarithmic relationship exists between

the Chezy coefficient C, and the general roughness

parameter x. The relationship is



28

Y

_..C._. = 6.06 10910 _l'_l_,
(2.2.8)

/§ X

where

Yn = normal depth; i.e., depth of flow occurring

when the slopes of the energy gradient, the

water surface, and the bed are equal.

It was found that (2.2.8) gave more accurate results than

the Manning formula for the range of roughness and flow

conditions of the experiment. Sayre and Albertson's

(1961) approach was extended to study the natural roughness

effects in open channels by Mirajgaoker and Charlu (1963).

Using 2.5-3 in. average diameter stones as roughness

elements, they obtained a logarithmic expression similar

to (2.2.8) for their particular flow conditions. The

relationship found was

Y

= 5.72 log {1 + 1.72. (2.2.9)

A
l
a

2.3. Statistical and Stochastic

Roughness Studies

 

 

In considering the irregularity of natural channel

beds and their variation with respect to time and space,

some investigators (Limerinos, 1970; Nordin and Algert,

1966) have reasoned that the application of the results of

roughness studies based on geometrically deterministic

surfaces to stochastic surfaces would be erroneous; hence,
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the correct way to analyze nondeterministic roughnesses

would be to utilize the methods of statistics. The con-

cept of statistical analysis in roughness studies is rela-

tively new and consequently only a limited number of

works are available in the literature.

Statistical parameters for roughness studies were

first used by Leopold and WOlman (1957) who described the

Darcy-Weisbach friction factor, f', as a function of a

parameter, percentile size, which is defined as an inter-

mediate diameter of particle size that equals or exceeds

that of an arbitrarily chosen percentage of the stream

bed particles. Am empirical equation for the friction fac-

tor, f', was developed in the form

—$— = 1.00 + 2.0 log 5R— (2.3.1)

Jf' 84

where

d84 = the particle size, that equals or exceeds

the diameter of 84 percent of the stream

bed particles.

Similar equations were derived by Limerinos (1970) using

d16’ d50' and d84 as particle Size parameters. In addi-

tion, Limerinos introduced a weighing parameter, dw'

which was defined by assigning a weight of 0.1 to d16’ a

weight of 0.3 to d50’ and a weight of 0.6 to d84° The
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~relations best fitting the experimental data were obtained

by using either d84 or dw'

Stochastic processes in roughness studies in

hydraulics were first used by Nordin and Algert (1966).

They assumed that the elevations of a dune bed along an

alluvial channel are random variables which are realiza-

tions ofa stochastic process with respect to distance.

The techniques of autocovariance and spectral density

analysis were used to describe the properties of the

process. ,Based on the experimental observations, it was

reasoned that the velocity near the bed is influenced only

by the properties of the bed profile in the adjacent

upstream area. Therefore, the stochastic process was

represented by a Markov second-order linear model. The

first three values of the covariance function were used to

model the process. It was experimentally found that the

significant wave height for the dunes was related to the

variance by the following model:

3(02)l/2 (2.3.2)
H1/3

where

H1/3 = average amplitude of the highest one-

third of the waves, and

variance of the dune elevation.q (I
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-It was concluded that H1/3 values, obtained from the first

three values of the covariance function for several dis-

charges, correlate well with the flow parameter of unit

discharge. However, Squarer (1970) demonstrated that a

second-order Markov model did not fit the bed configura-

tions in.his investigation. Instead, parameters of

roughness elements, height, and length were obtained

directly from the autocorrelation and spectral density

function. .The height parameter was given in terms of the

standard deviation of the bed elevation and the length

was given in terms of the moments of the spectrum.

The concept of using moments of the spectra to

define the roughness parameters was also introduced by

Burney and Higgins (1973). From their experimental

results a general model was developed to describe average

runoff depth from a watershed in the form

a1 = .004 /6 spx, (2.3.3)

where

d = average flow depth,

Q = discharge,

S = slope per unit length, and

roughness parameter.

X

II

The roughness parameter )( was postulated to be a function

of grain and form roughness and was obtained from the area
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spectrum of the watershed. It was suggested that x

could be described by the expression,

Momé/z

X = -—-—-w (2.3.4)

Ln

in which Lh is the average wave length perpendicular to

both the flow direction and flow depth, and Momo is the

first moment of the spectra. In terms of roughness con-

figurations the Momé/2 value reflects a parameter of grain

roughness whereas 1h describes a parameter for the dis-

tribution of the roughness elements..

Assuming bed elevations of an irregular channel

are random variables, Chiu (1968) claimed that the Brownian

motion process is a suitable stochastic model to stimulate

roughness elements satisfying the following diffusion

type equation:

“313(2):“ = Ex ————32P(h"2", (2.3.5)

3h

where

‘P(h,x) = the probability of the elevation of the

channel bed being :_h at x,

x = lateral distance,

h = bed elevation, and

E = diffusion coefficient.
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The diffusion coefficient, Ex’ was claimed to be a parame-

ter defining channel roughness. Furthermore, it was .

concluded that the probability P(h,x) could be obtained

by a Monte Carlo simulation without actually solving

equation (2.3.5).

2.4. Roughness StudiescniAirport Runways
 

Another extensive type of surface roughness study,

unrelated to fluid mechanics, has been completed by aero-

nautical scientists. The studies are conceived with

runway roughness problems encountered by aircraft during

taxiing operations. In all the studies mentioned here, the

height of surface roughness elements along longitudinal

cross-sections of runways were assumed to be a random

variable and the techniques of autocorrelation and spectral

density analysis were used to describe the contribution to

the variance of the roughness elements as a function of the

spatial frequencies.

The use of power spectrum techniques in roughness

analysis was pioneered by Walls et_al. (1954) who selected

two runways which were known to possess very different

degrees of roughness. The spectrum of the runways showed

that the rougher runway had 10 times the power of the

smooth runway at the longer wave lengths and about twice

the power at the shorter wave lengths. From this observa-

tion it was concluded that the behavior of the power

spectrum provided an important guide toward the establishment
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of criteria for runway roughnesses. In order to increase

the amount of data available for studies of this nature,

additional contributions were made by Potter (1957) and

Thompson (1958) who obtained the power spectrums of

several different runways.

Reviewing previous investigations on runway rough-

ness, Houbolt et_al. (1955) concluded three significant

points: (1) The power spectrum is a very concise way of

presenting runway characteristics. (2) A means is sug-

gested for establishing a criterion for judging the

severity of runway roughness. By holding the spectra of

satisfactory runways as references, a spectrum criterion

may be established for the construction of future runways

or for maintenance of existing runways in order to insure

satisfactory operations. (3) A "design spectrum" might

also conceivably be established which provides the basis

for solving taxiing problems.

Houbolt (1961) assumed a general model to represent

the power spectrum function

C
_ 3

GX(Q) — —5; (2.4.1)

0

where

GX(Q) = roughness spectrum (ftz/radian/ft),

C3, m1 = constants, and

Q = reduced frequency (radians/ft).



35

Integrating (2.4.1) produces an expression for the variance

of roughness elements present in a wave length Lh and yields

an expression for standard deviation

[gg] . (2.4.2)

The maximum deviations of the roughness elements about a

mean line in length x' were assumed to be of 5 times 3 and

the resulting equation was regarded as a criterion of

smoothness,

cl = /2 [57:11} [g—I . (2.4.3)

By using a very good commercial runway as a criterion,

values of K1 and p' in (2. 4 . 3) were obtained. After

arithmetical simplifications, (2.4.3) was converted to

the form

G1 = 0.00146 /§T. (2.4.4)

It was concluded that good, acceptable runways should

meet this criterion.



3. THEORY

A hydrodynamically rough or fully turbulent flow

condition over a surface occurs either if the Reynolds

number is large causing the laminar sublayer to shrink,

causing the roughness elements to protrude through the

laminar sublayer, or if the roughness elements are

initially large enough so that they already protrude

through the sublayer regardless of the Reynolds number.

For this type of flow, for which Manning's formula or

Chezy's formula are mainly used as models, the friction

factors are independent of the Reynolds number. The inde-

pendence of the friction factors for the first type of

fully turbulent flow mentioned above was discovered by

Nikuradse (1933), and that for the latter type has been

accepted by most researchers after Nikuradse. The inde-

pendence of the friction factors on the Reynolds number

plays an important role in defining the relationship

between the roughness characteristics of a surface and the

corresponding flow resistance. The independence hypothesis

implies that the only variable affecting the resistance to

flow is the roughness makeup of the surface; i.e., the

concentration of the roughness elements constituting a

surface. One possible way to correlate the friction factor

36
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to the surface configuration would be to first describe

the surface realistically, then analyze the frequency

distribution of the concentration of the surface elements.

The Review of Literature stated that some

researchers have concluded that the roughness of a water

conveying surface is made of local elevation of surfaces

which are, in nature, nondeterministic. For this reason,

a mathematical description of the roughness cannot be

achieved with artificial deterministic surfaces. Sta-

tistical methods, which have been employed in the past in

the analysis of various nondeterministic phenomena, can

be more properly adOpted to analyze and characterize

surface roughness than can deterministic methods.

Standard tools for describing and analyzing the charac-

teristics of nondeterministic phenomena are the autocor-

relation and spectral density functions. Herein, the

definitions, assumption, and mathematical background related

to autocorrelation and power spectrum functions are briefly

outlined and the application of these techniques to

surface roughness is described. More detailed theoretical

background and information on the application of these

techniques to other fields can be found in Blackman and

Tukey (1958), Jenkins and Watts (1969), Taub and Schilling

(1971), Lee (1960), and Bendat and Piersol (1966).
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3.1. Theoretical Deve10pment

If the longitudinal or transverse cross-section

of any water conveying surface is sampled, one can conclude

that the height of the surface protrusions are random.

All profile samples of the cross-section will be differ-

ent. In other words, each observation will be only one

of many possible results which might have occurred.

Thus, if the surface protrusion height, x, is considered

to be a function of length, 2, along any cross-section,

then at any given distance, lj, the quantity X(£j) is

considered to be a random variable. A set of values for

the random variables spaced along the distance parameter

defines a realization of a stochastic process. The set

of all random functions of length form the class of all

possible processes and is known as an ensemble. Any

water conveying surface encounted in practice defines its

own distinct realization from the ensemble.

The process X(£j) can be characterized by any one

of four main types of statistical functions depending

upon the objectives of the study. These are (l) the

variance, (2) the probability density function, (3) the

autocorrelation function, and (4) the power spectral

density function. The variance or the mean square value

furnishes information on the intensity of the process.

The probability density function defines the amplitude

domain of the process, while the autocorrelation function
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and the power spectral density function define distribu—

tion of "power" in the space domain and frequency domain,

respectively. For a stationary process, the power spec-

tral density function provides the same information as

the autocorrelation function since the two functions are

Fourier transforms of each other. However, the two

functions display the information in different formats.

One format may be more suitable for a specific applica-

tion than the other. It is especially convenient to

use the power spectral density function when raw data

occurs periodically.

The process X(£j) must be stationary and ergodic

in order to utilize the standard techniques of autocor-

relation and power spectrum analysis. The stationary

property means that the joint distribution of any two

random variables in the process depends on the difference

between the two distances rather than on the distances

themselves. For example, the mean value (first moment),

ux(£), of the random process is the same for all 2. An

ergodic process is stationary. In addition, £x(k) and

the autocorrelation function can be computed from any

sample functions of the ensemble. Consequently, if the

process is stationary and ergodic, one sample function

Xk(2j) defines the whole process.

The stationary and ergodic prOperties of the

process could not be verified for the ensemble which
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was analyzed in this study because of the time involved

in accomplishing such an undertaking. However, Squarer

(1970) working on bed forms in fluvial channels and

Hutchinson (1965) whose studies concerned the pavement

roughness of highways verified that the random processes

which they studied were indeed stationary and ergodic.

Throughout this study the process is assumed to be sta-

tionary and ergodic as was assumed by Nordin and Algert

(1966), Houbolt (1961), and by Burney and Higgins (1973).

3.2. Autocorrelation and Power

Spectrum Functions

 

 

If the sample function Xk(£) is normally dis-

tributed, the function itself is completely characterized

in the statistical sense by its mean and autocovariance

functions. These two functions are:

1 L?2

u (k) = lim — X (2) d2 (3.2.1)
x L+°°L-L/2 k

and

l sz

C (T) = lim — X (£)X (2 + 1) d2 (3.2.2)
x L-mL -L/2 k k

where

L = the profile length under consideration,

T = a lag distance, and

ux(k) mean value of the sample function.
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When I = 0, (3.2.2) gives the mean square or

variance of the sample function. The autocovariance

function is commonly normalized when several autocovariance

functions are to be compared with each other. This

normalization process is accomplished by dividing the

autocovariance function by the variance R(O). The

resulting function is called the autocorrelation func-

tion, and is frequently denoted symbolically as Rx(T).

The autocorrelation function describes the gen-

eral dependence of the roughness at one point on that

at another point separated by a distance T. Therefore,

if the roughness amplitudes of a surface profile are

represented as positive and negative deviations about a

zero mean value, the roughness profile can be charac-

terized by the autocorrelation function provided that

roughness amplitudes are normally distributed and the

process is ergodic. The autocovariance or autocorrelation

function defined in (3.2.2) can be written in a form as

given by Blackman and Tukey (1958):

R (T) = f G (f)e’12"fdf (3.2.3)
x _m 1:

and

2
L/2 _.

me = lim% 1 xme 12'”de (3.2.4)
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where

f = spatial frequency (cycles per inch),

e = the base of the natural logarithms, and

i.= /:I.

The function Gx(f) is known as the power spectral

density function. The spectral density function and the

autocorrelation functions form a Fourier transform pair.

Hence, (3.2.4) is equivalent to

(X)

Gx(f) = f Rx(r)e‘iz"der. (3.2.5).

Since the functions Gx(f) and RX(I) are real and

even functions, the relationships between them can be put

into a simpler form:»

00

Rx(r) = 2 g Gx(r) Cos antdf (3.2.6)

and

G (f) = Z‘IR (T) Cos 2nftdt. (3.2.7)
X 0 X

The power spectral density function for random

surface expresses the frequency composition of the surface

roughness elements. Thus, the value of Gx(f)df indicates

the roughness power present between frequencies f and

f + df.

The above expressions for autocorrelation and

power spectrum functions are approximated in practice.
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One set of digital approximations are given by Blackman

and Tukey (1958):

 

1 ”'9
Rx(p) z N _ ) x(q) X(q + p) (3.2.8)

P _
q—l

and

m-l nf
Gx(f) z Rx(O) + 2 2 Rx(q) Cos Lm

q=1

+ Rx(m) Cos nf (3.2.9)

where

N = number of data points,

p = lag index “3 = l, 2, ... m), and

maximum lag value.3 II

The spectral density function can be computed by

first computing the autocorrelation function Rx(p)

because the autocorrelation function is generally a rapidly

converging function.

In practice, Rx(p) and Gx(f) are derived from

finite length of records. Special attention must there-

fore be given to the expected statistical errors in the

experimental estimates.



4. EXPERIMENTAL SETUP AND PROCEDURE

The main objective of the experimental phases of

this investigation was carried out in two parts. In the

first part, the goal was to obtain Manning's "n' friction

coefficients for several one-dimensional deterministic

surfaces. This was accomplished by using results from

previous investigations in which resistance to flow was

studied by using deterministic artificial roughness ele-

ments. More than 30 different types of surfaces, along

with corresponding friction coefficients, were obtained

in this manner. Details of the surfaces, their origins,

and a descriptive analysis of these will be given in the

next chapter.

The chief objective of the second part was to

measure magnitudes of surface roughness elements along

longitudinal profiles of several rough water conveying

surfaces which are commonly encountered in practice. The

conveying surfaces selected for this investigation were

11 different types of corrugated plastic tubing, with their

inside diameters ranging between 4 and 8 inches, one

6‘ in. diameter corrugated metal tube, one rough open

channel surface and two gravel beds, one having coarse

gravel, and another fine gravel as surface materials. A

44



45

section of a length of 40 inches for each conveying surface

was sampled and the profiles of each were recorded for

future analysis.

4.1. Experimental Setup
 

The instrumentation used for surface profile

measurement consisted of four main components: (a) a

sensitive measuring device which produces an output

signal voltage proportional to the mechanical displace-

ment of a sensing probe, (b) a voltage carrier amplifying

system, (c) an analog-to-digital converter, and (d) a

table with precise horizontal movement.

The measuring mechanism selected was a nominal

t l in. linear displacement transducer. This instrument

consists of a primary coil and two secondary coils which

are symmetrically arranged to form a hollow cylinder.

Within the cylinder, a small magnetic core attached to a

supportive nonmagnetic rod is constructed so as to be able

to move axially in response to the mechanical input to

the probe. When the primary coil is excited by an alter-

nating current, a current is induced in the secondary coils.

The output current which results from the phase differences

between the outputs of the two secondary coils is linearly

related to the position of magnetic core and, therefore,

to the position of the probe. The original diameter of

the probe was too large to measure the heights of the

surface elements at the required sampling intervals for
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this experiment. Hence, a much narrower extension to the

probe (less than .05 in.) was constructed. A 4-48 type

carbon steel tap was used. The shank portion of the tap

was ground with a lathe grinder to form a .03 in. diameter

proble with a 60° needle point.

A carrier amplifier instrument with a precision

transducer indicator was used to amplify the signals from

the linear displacement transducer. A differential trans-

former input module provided the "front end" circuitry and

adjustments on the amplifier for calibrating the amplifier

indicator with respect to output signals from the trans-

ducer. An output module with an adjustable (5 to 55 mv)

recorder output unit was used for the amplifier.

A six channel analog-to-digital converter was used

to convert the analog signal from the output module of

the amplifier to digital data, which was punched on paper

tape with ASKII binary code. All six channels were con-

nected to the input source (amplifier); i.e., the same

input exitation voltage was recorded simultaneously by

each channel.

A level plane with horizontal movement was needed

to obtain the required sampling displacements of the con-

veying surfaces. The feed table of a milling machine was

used for this purpose. The table had a maximum 40 in.

horizontal travel as well as vertical and cross travel.
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The handwheel had 250 graduations, each corresponding to

.001 in. of travel on the horizontal table.

Since the probe could not be moved across the

rough profiles, the linear displacement transducer was

fixed at a reference point above the level plane by

building a special housing mechanism for the transducer.

A 4 x 3 x 1.5 in. aluminum block was drilled with a 7/8 in.

drill to obtain a 4 in. long hollow cylinder inside the

block. A thin aluminum sleeve was placed at the approxi-

mate midpoint of the cylinder. The side of the block was

threaded with a 10-32 tap at the same level as the sleeve

for a hexagonal head screw as a tightening mechanism for

the sleeve. The transducer was inserted in the cylinder

and was held in place by tightening the sleeve via the

hexagonal head screw. Then the block was bolted on one

end of a 17 in. long, 1/4 in. thick and 4 in. wide metal

piece, and the other end of the metal piece was bolted

into the arbor arm of the milling machine. This type of

flexible fastening mechanism provided tremendous conveni—

ence for the calibration of the system. Figure 4.1.1 shows

the overall view of the experimental setup.

Calibration of the system was achieved by the

following steps. The table was first lifted by the

vertical lifting mechanism on the milling machine until

the surface elevation of the table touched the tip of the

transducer probe. A 3/4 in. square metal bar was laid
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Figure 4.1.1.--Overall view of the experimental

setup.

 
Figure 4.1.2.--Corrugated plastic tubing.



49

under the probe. The height of the bar was used as the

zero elevation reference point for all measurements.

The mechanical zero output of the transducer, while the

probe was still on the metal reference bar, was obtained

by sliding the transducer up and down in the housing to

the point at which the output from the transducer equaled

zero millivolts on the amplifier indicator. The position

of the transducer was fixed by tightening the sleeve.

After the position of the transducer was set with respect

to the zero elevation reference point, micrometer calibra-

tion blocks ranging from 0.1 to 1.0 in. were used as known

mechanical inputs to the transducer to calibrate the

amplifier output. This was accomplished by assigning a

millivolt value to the known mechanical input by adjusting

the "front end" circuitry of the input module of the

amplifier. The output from the amplifier was also coupled

to the analog—to-digital converter by calibrating the

converted over a working range of from 0 to 50 millivolts.

As previously mentioned, the table of the milling

machine had a maximum horizontal travel distance of 40

inches. Therefore, the maximum length of the profile

measurements of each sample was about 40 inches. A

12 x 40 in. base plate for the samples, made from 3/4 in.

plywood, was built to provide a stationary support. This

base plate was bolted down on the sides to the plate of the

milling machine to prevent lateral movement of the sample.
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The corrugated tubing had inside diameters of

6 inches or less. The tubing was divided into two equal

parts. One-half was set upon the base plate with its

bottom parallel to the sides of the base plate and was

nailed in that position. The corrugated tubing with

inside diameters greater than 6 inches was divided into

four pieces. One piece was placed upon the base plate in

the same manner as the smaller diameters, as illustrated

in Figure 4.1.2 (on page 48).

To simulate gravel beds of a stream, two different

types of gravel surfaces were constructed. One surface,

made of coarse gravel, had an average diameter ranging

between 1/2 to l in., as shown in Figure 4.1.3. The

second surface was made from fine gravel as illustrated

in Figure 4.1.4, with an average diameter which varied

between 1/4 and 3/8 in. The gravel was fixed on the plate

with a thin coat of industrial glue.

It was impossible to obtain a representative

sample of the rough Open channel. Instead, it was assumed

that a foundation brick having a rough surface would have

the same surface properties as a rough channel.

4.2. Experimental Procedure
 

For the first step in the profile measurements of

the samples, the table of the milling machine was moved

to the end point. This end point was assumed to be the

zero starting point. The base plate containing the sample
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Figure 4.1.3.--Coarse gravel.

  

Figure 4.1.4.--Fine gravel.
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was placed on the milling machine table. The probe was

brought into contact with the sample. The signal from

the transducer was recorded on a paper tape through six

channels of the analog-to-digital converter. The probe

was then lifted and the surface was moved .05 in. The

process was repeated, continually maintaining the .05 in.

interval as the sampling interval, until the profile

measurements of the 40 in. sample were completed.

Originally, the converter was set to scan the

data from the transducer through six channels at once.

During the experiments, it was discovered that two of the

channels were malfunctioning. The malfunctioning channels

were taken out of the system and the rest of the experiments

were continued using the remaining four channels. The

data, punched onto paper in ASKII code, was interpreted

by using a library FORTRAN IV computer program. The

interpreted data was recorded on a permanent file for

future analysis.



5. COMPUTATIONAL PROCEDURE AND RESULTS

The surface roughness profiles and the correspond-

ing Manning "n" friction coefficients were obtained from

two sources. The first group of surface profiles was

obtained from previous investigations on one-dimensional

strip roughnesses by C. A. Smith, Jr., and C. warren,

J. W. Johnson, and E. A. LeRoux as reported by Johnson

(1944) and R. W. Powell (1946). An attempt was also

made to analyze an artificial roughness by Streeter (1936).

The dimensionality involved in representing the surface

and excessive computer space required made it impossible

to perform a meaningful analysis on the surfaces. There-

fore, Streeter's investigation was not included. All of

the artificial surfaces in the first category were con-

structed from rectangular sills with different dimensions

and different periodic arrangements. The corresponding

friction coefficients were defihed experimentally.

The second group of surface profiles was obtained

from laboratory measurements as explained in Chapter 4.

In this category of surfaces, actual Manning "n" friction

coefficients were known only for those surfaces investi-

gated previously by this author and reported by Ding: e_t_:_a_l;.

(1971). For the remaining surfaces, friction coefficients

53
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"as cited in textbooks for design purposes were used.

These surfaces were investigated to verify the methodology

developed in this study.

A total of 47 surfaces were analyzed. The identi-

fication numbers of the surfaces and the corresponding

identifications of these surfaces as they appear in the

original papers along with their Manning "n” coefficients

are given in Appendix A, Tables A-l through A-S.

5.1. Preliminary Investigations

on Spectral Estimation.

 

 

.Estimating the spectral density of random data

requires a pilot analysis in order to optimize the degree '

of accuracy and to reduce the labor and cost involved.

This process requires converting continuous data into

discrete values at some sampling interval. The sampling

frequency must be large enough to prOperly describe sig-

nificant high frequencies. The Optimum sampling interval

is assumed in practice to be the largest sampling interval

which will avoid aliasing errors. Once the sample inter-

val is established, the length of the sample record is

determined in accordance with the number of values

required to obtain a meaningful estimate of the spectrum.

If the sampled data points are too far apart, the

points could represent either false low or false high

frequencies not in the original data. This phenomenon

is known as aliasing. The sample frequency below which
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--aliasing problems occur is termed the "folding frequency"

or Nyquist frequency (cycles/in.) and defined as:

33124 2 f0 (5.1.1)

where

fo = the highest frequency in the sample, and

dx = the sampling interval.

In order to overcome aliasing problems, the original data

should not contain information above the folding fre-

quency. In practice, two methods exist for handling this

problem. The first method is to filter the original data

prior to sampling so that information above the folding

frequency does not exist in the filtered data. Such a

technique requires some initial knowledge of the desired

frequency range. The second method is to choose the

sampling interval, dx, sufficiently small so that Gx(f)

is zero for fo > 1/2 dx. This technique requires an ini-

tial knowledge of the spectrum.

The second method was chosen for this study.

Initially, nothing was known of the spectrum

functions of the surfaces' roughness and corresponding

folding frequencies. To gain insight into the rough

shape of spectrum functions and consequently of the

anticipated folding frequencies, various rectangular

surface roughnesses representing low, high, and inter-

mediate roughness concentrations were selected for
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apreliminary analysis. A pilot‘FORTRAN IV computer program

was developed by utilizing (3.2.8) and (3.2.9) to estimate

the autocorrelation and power spectrum functions of the

particular surfaces.

The height of the roughness elements were repre—

sented as positive and negative deviations from their mean

values. Several values of sampling intervals, dx, maxi-

mum lag values, m, the number of data points, N, and their

various combinations were analyzed in this manner. The

sampling intervals choSen were 0.03125 in., 0.05 in.,

0.0625 in., and 0.1 in. The maximum lag values were 50,

.100, 200, and 400, and the number of data points were

500, 1000, 2000, 4000, and 8000.

From plots of the spectrum functions, it was

visually determined that optimum sampling intervals were

0.3125 in. and 0.05 in. depending upon the surface rough-

ness type. Corresponding folding frequencies for these

two sample intervals were generally about 10 cycles per

inch. Beyond this frequency no power was observed on

the spectrum functions. Therefore, for final power

spectrum estimations, 0.03125 and 0.05 in. were used as

sampling intervals for the appropriate surfaces and 10

cycles per inch was used as the folding frequency.

5.2. "Smoothing" Process
 

The preliminary spectrum function obtained by

the procedure explained in Section 5.1 were raw estimates
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~ of the true spectrum and are inefficient estimates. A

general property of spectral estimates is that their vari-

ability does not decrease with increased record length.

Smoothing or weighting the correlation function nonuni-

formly is used to obtain better estimates. A commonly

used weighting function is called the "Hanning lag window”

and is given by Bendat and Piersol (1958):

_ 1
Go - 0.5 G0 + 0.5 G (5.2.1a)

Gk = 0.25 Gk-l + 0.5 Gk + 0.25 Gk+1 (5.2.1b)

Gm = 0.5 Gm-l + 0.5 Gm (5.2.1c)

where

The Hanning lag window was used to obtain final

power spectral density estimates in this study.

5.3. Final Spectrum Estimations
 

The FORTRAN IV computer program used to calculate

the final spectral density estimates is given in Appendix B,

along with a sample output.

Approximately 40 inches of the surfaces which were

constructed in the laboratory were used to estimate the

power spectral density functions while for rectangular

surfaces, 200 inch sections were analyzed. The latter
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-were generated in the main computer program to provide

data for the spectral analysis.

The sampling interval, the number of data points,

and the maximum lag values used in the computations for

each surface along with the resultant spectral parameters

are given in Tables 5.3.1 and 5.3.2. Table 5.3.1 summa—

rizes the surface profile data obtained in the experimental

procedure. Table 5.3.2 summarizes the data for rectangular

surfaces.

Results of the autocorrelation and spectral esti-

mates are given in Figures 5.3.1 through 5.3.26. Because

of the similar estimates obtained from similar surfaces,

only distinct representative samples of estimates are

included in the figures.

The value of the autocorrelation function at zero

displacement, l, was not included in the original output

of the autocorrelation estimates. This was later added

during the plotting of figures.

Although extremely small, some negative values

were obtained in some of the power spectral estimations.

This was due to the window function used. Whenever

negative data points were encountered they were assumed

to have zero values during the plotting of power

spectrum.
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Figure 5.3.1.-~Roughness type, estimated autocor-

relation, and power spectral density functions of surface 34.
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lation, and power spectral density functions of surface 30.
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lation, and power spectral density functions of surface 32.
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Figure 5.3.12.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 39.
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lation, and power spectral density functions of surface 44.
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lation, and power spectral density functions of surface 40.
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lation, and power spectral density functions of surface 45.
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Figure 5.3.21.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 10.
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Figure 5.3.22.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 12.
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Figure 5.3.23.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 6.
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Figure 5.3.24.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 5.
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lation, and power spectral density functions of surface 4.
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lation, and power spectral density functions of surface 1.
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5.4.1Confidence Intervals on

§pectra1 Estimates

 

 

As was mentioned in Section 5.3, only 40-inch sec-

tions or, equivalently, 720 data points were used to obtain

spectral estimates of the surfaces whose profiles were

determined in the laboratory. Ninety-five percent confi-

dence intervals at 10 cpi on the spectral estimates of

these surfaces along with those of rectangular surfaces

are given in Table 5.4.1.

TABLE 5.4.1.--Confidence intervals on spectral estimates.

 

 

Number of Data Points Associated 95% Confidence

N Degrees of Freedom Intervals

720 14 O.S4-2.4

4000 40 0.67-1.65

 

5.5. Parameters Defining

Spectral Estimates

 

 

One-dimensional strip roughnesses are uniquely

represented by their spectral estimates as seen in Figures

5.3.1 through 5.3.26. However, a single parameter defining

the behavior of an individual spectral estimate was needed

to correlate a particular estimate to its corresponding

Manning "n" friction coefficient.

Various quantitative values within the spectral

estimates were examined for this purpose. Among the vari-

ables considered were: the frequency at which the maximum
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peak occurs, the magnitude of the maximum peak, the fre—

quency of the third occurrences of a significant peak, and

the frequency at which 90 percent of the power occurs

under the spectral density curve. The latter frequency

was called the cutoff frequency in this study and is

given in Tables 5.3.1 and 5.3.2 for each estimate. When

these parameters were plotted against corresponding Manning

"n" friction coefficients, the graphs were so scattered

that no linear functional relationships could be drawn

between the variables involved. An example of this

behavior is illustrated in Figure 5.5.1 which shows the

"graphical relationship between the Manning "n" friction

coefficient and the cutoff frequency, fc.

Since a particular parameter for spectral estimates

could not be obtained directly from the spectrum functions,

an indirect method was used to obtain it. A close inspec-

tion of the figures reveals that the peaks of power spectral

density function decay exponentially with respect to fre-

quency. A model defining this phenomena was assumed to be:

G(f) = Koe . (5.5.1)

where

K K constants.
0'

The constant, K, is termed the decay coefficient. The

constants Ko and K were determined by a regression analysis.

The peaks with magnitudes of less than 0.02 were not used
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in the regression. A FORTRAN IV computer program was

developed to obtain Ko and K. The program and a sample

output are given in Appendix C.

The calculated decay coefficients for each spectrum

are given in Tables 5.3.1 and 5.3.2.

The decay coefficient, K, is assumed to represent

the behavior of the spectral estimates. Figure 5.5.2

shows the behavior of the decay coefficients with respect

to their Manning "n" friction coefficients. A parabolic

relationship is hypothesized to exist between the variables

involved. A FORTRAN IV library program was used to obtain

the best-fitted curve through the data points. The

resultant functional relationship between n and K is:

2
n = 0.0044 + 0.045 K - 0.024K (5.5.2)

The Manning "n" friction coefficient can be estimated from

(5.5.2) once the decay coefficient of a given surface is

determined.

5.6. Predicted Manning "n" Values
 

Equation (5.5.2) was used to predict the Manning

”n" friction coefficients for surfaces whose actual fric-

tion coefficients were not known. Table 5.6.1 compares

these values to the corresponding approximate values of

"n” found in literature.

For gravel, the predicted "n" was obtained by

averaging the K values of surfaces 1 and 2. For brick,
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TABLE 5.6.l.--Comparison betWeen predicted and literature

values of Manning "n" friction coefficients.

 

 

 

Predicted In Literature

Plastic tubing 0.0213-0.0253 0.014

Gravel 0.0222 0.029

Fine gravel 0.0157 0.0162*

Corrugated metal tubing 0.020 0.022

Brick 0.0128 0.012-0.016

l/o
*Calculated from the relationship, n = 0.031 d1 ,

d1 = particle size; average diameter of the gravel

was 0.25 inches.

the K value obtained for surface 15 was used to get the

predicted "n".

5.7. TheoreticaliSpectrum Functions for

Surfaces With Rectangular Rouaness

Elements and Their Comparison with

Estimated Spectrum Functibns
 

In the preceding sections, spectrum functions of

surfaces with rectangular roughness elements were obtained

by a digital approximation method. The true spectrum

functions of this type of surface can also be obtained from

theoretical considerations.

The fixed sampling interval L of the sample func-

tion Xk(£) can be generalized as having n rectangular

wave forms of width w and amplitude a, with spacing A

between the wave forms. We investigate only the case where

A is always greater than w. The general shape of function

Xk(£) is illustrated in Figure 5.7.1.
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The correlation function, C(T), of the function

Xk(2) is defined by the relationship

C(T) = -£>xk(2) xk(I + 1) 02 (5.7.1)

where Xk(£) is defined only on the interval 0 < 2 < n(w + A).

For n rectangular wave forms, the correlation func-

tion (5.7.1) becomes the piecewise function

C(T)

C(T) =

C(T)

C(T)

a2n(w-TI

0

a2(n-l)(T-A)

a2(n-15(A+2w-T)

O

a22[T - (II-2)). - (n-3)w]

a22[(n-2)A + (n-l)w-T]

o

aztt - (n-1)A - (n-2)w]

a2[(n-1)A + nw - T]

0

O 5.1 < w

w.§.T < A

A f,T < A + w

A + w.§.T < A + 2w

A + 2w.:.I < 2A + w

(n-2)A + (n-3)w.§.T

(n-2)A + (n-2)w.fi,T

(n-2)A + (n-l)w.§.T

(n-l)A + (n-2)w.fi,T

(n-1)A + (n-1)w.fi.r

+

A

(n-1)A nw_'l’

A
A

A
A

.
A

(n-2)A

(n-2)A

(n-1)A

(n-l)A

(n-l)A

(5.7.2)

+ (n-2)w

+ (n-l)w

+ (n-2)w

+ (n-1)w

The general shape of the correlation function C(T)

is shown in Figure 5.7.2 (on page 93).
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The energy spectrum of the sample function xk(2)

is defined by

0(0) = f C(TIe‘det (5.7.3.15)

or

= 2 [cm Cos (11th (5.7.3.0)

where

w = angular frequency.

The spectrum, 11(4)) of the first wave form h(t), in

Figure 5.7.2 can be derived directly from (5.7.3, b) by

using C(T) when T is between 0 and 0 (5.7.2). 3(0) takes

the form

na2

H(0I) = —-2— (l - Cos (02w) (5.7.4, a)

w w

or

2 Sin ww 2

= 2 na W [T] , (5.7.4, I),

Then the energy spectrum of the function becomes

0(0) = I C(t)e‘3‘°tdr (5.7.5,a)

or, summing over all values of i,

[h(t - ti)e'3‘”tdt. (5.7.5, b)
0 —oo
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Let us define a dummy variable x — t - ti' We

introduce this variable in (5.7.5, b) to obtain the form

°° -ijX+t.)

G(w) = X f h(x)e 1 dx (5.7.6,an

or,

n-l 0° -j0)t. 0° _.

= X I e1 1 If.(x)e wadx (5.7.6,b)

i=0 .... ~00

which becomes, through the use of the steps leading from

(5.7.3, b)tx>(5.7.4, b),

n-l -jwt.

= X e 1H0») (5.7.6,c)

1=O

Equation (5.7.6, o) is the general transformation

-function for true spectrum function, G(w).

Consider the basic wave form h(t) in Figure 5.7.2:

the amplitudes of the waves are nazw, (n-l)a2w, . . . .

[n - (n-2)]a2w, [n - (n-l)]a2w and the peaks occur at

values of t1_ = i(A+w), i = l, 2, ..., (n-l). By using

the transformation function (5.7.6, 0) the spectrum func-

tion G(w) becomes

. 2
. ' .

G(w) = 2w[§igwflfl] [Eazw + (n_1)a2w[e'3w(A+w) + ejw(A-Fw)]

+ . . . . . + [n _ (n_2)]a2w[e-jw[(n-2)A+(n-2)w]
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ejw[(n-2)A+(n-2)w]]

+ [n - (n-l)]a2w[e-jw[(n-l)x+(n-l)w]

eij (n-1)A+(n-l)w}] (5.7.7, a)

or,

_ 2 a2w2[:51_n__w«>ij [31+ 2(n-1) Cos [w(A+w)]

+ 2(n-2) Cos [20(A+w)] + - - - - - - -

+ 2[n - (n—2)] Cos [(n-2)w(A+w)]

+ 2[n - (II-1)] COS [(n-l)u)(A+w)]:]. (5.7.7, b)

In order to compare the theoretical spectrum and

the estimated spectrum functions of the surfaces, a nor-

malization process for the theoretical spectrums was

used, since the estimated power spectrum functions were

obtained directly from the autocorrelation of the sample

functions. The normalization is achieved by the following

relationships:

CX(T) = C(T) - 0x2 (5.7.0)

where

CX(I) = autocovariance function, and

u = expected value of the sample function.
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The autocorrelation of the covariance function is

therefore defined by

_ C(T) - uxz

R(T) — . (5.7.9)

c (o) - 0x2

 

By substituting “x and C(O), and dividing C(0) and

C(T) by the sampling length to obtain functional terms

having correct dimensions, (5.7.9) becomes

C(T) _ ( aw)2

= n(X+w) ATE-
R(T) (5.7.10, a) 

2
na w _ (aw)2

n(A+w) T3;

 

or

= C(T)§*+W) - 0 . (5.7.10, b)

na Aw

Hence, the normalized power spectrum function G'(w)

becomes

(w+A)

azwAn

 G'(w) 0(0) - ¥-6(0) . (5.7.11)

The last term in (5.7.11) is a delta function and

affects the value of the spectrum only at w = 0. Since we

seek the exponential decay function for the spectral peaks

for w > 0, this term does not enter into the computations

and hence can be disregarded.
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Substituting the value of G(w) from (5.7.7, b)

allows (5.7.11) to become

. 2

G'(w) = ££¥%AL[§i%fi9!] [n + 2(n-l) Cos [w(A+w)]

+ 2(n-2) Cos [20(A+w)] + - - - - . - -

+ 2[n - (n-2)] Cos [(n-2)w(A+w)]

+ 2[n - (n-l)] Cos [(n-1)w(A+w)]]. (5.7.12)

Equation (5.7.12) was programed for the computer

to obtain the spectrum functions of the rectangular surfaces

for comparison with the functions obtained by digital

approximation. The program and a sample output is given

in Appendix D.

The theoretical and estimated spectrums of several

surfaces representing high and low concentration roughness

are plotted in Figures 5.7.3 through 5.7.6. The actual

magnitude of the theoretical spectrum values shown in the

figures was some constant multiple times greater than the

estimated spectrum values. A different constant was

obtained for the spectrums of each surface. The plotted

theoretical spectrums were obtained by dividing the cal-

culated values by the appropriate constant. The source of

the constant appears to be in the normalized process of

the theoretical spectrum.
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Generally, the theoretical and estimated spectrum

values agree well for high roughness concentrated surfaces.

The agreement lessens for low roughness concentrated

surfaces reflecting the need for an appropriate change on

the coefficients of the window function (Hanning window)

used in this study.



6. DISCUSSION

As was pointed out in the literature review, many

researchers have shown that for completely turbulent flow,

the resistance to flow is dependent only upon the charac-

teristic of the rough surface boundary. The surface

roughness effect is attributed to the concentration of

the elements which constitute such a surface. It is a

postulate of this research that the concentration of the

roughness elements may be defined functionally by con-

sidering the frequency decomposition of the variance of

the roughness elements, as reflected in the autocorrela-

tion function and power spectral density.

The roughness makeup of the surfaces is uniquely

represented by the power spectral density functions as

demonstrated in Figures 5.3.1 through 5.3.261 The spectrum

contains most of its power at high frequencies when the

surface roughness elements are close to each other; i.e.,

when the concentration of the elements is high. In

particular, the peaks in the spectrum are dispersed toward

higher frequencies, with increasing concentration. With

decreasing c0ncentration the peaks move slightly to the

lower frequencies. At low roughness concentrations, almost

all power is contained at low frequencies.
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At very low roughness concentrations, however,

information on the roughness makeup of the surfaces is

lost. This is illustrated in Figures 5.3.12 and 5.3.15.

When roughness elements are placed at lO-inch intervals

no significant peak appears on the spectral estimate as

demonstrated in Figure 5.3.15. When the size of the

roughness elements is decreased but the elements are loca-

ted at the same intervals (Figure 5.3.12), the peaks are

nonexistent on the spectral estimate and the estimate

itself shows a very smooth decay. A similar behavior of

the estimate was obtained for roughness type 47. The

erroneous behavior of the spectral estimates for surfaces

of low roughness concentration is due to the unsuit-

ability of the window function used in the program for

spectral estimates. It is felt that different weighting

constants should be used to bring the estimated spectrums

closer in agreement with the theoretically derived spec-

trum functions. This is illustrated in Figures 5.7.5 and

5.7.6 where the estimates for surfaces of high concentra-

tion of roughness agree well with the theoretical predic-

tions, while in Figures 5.7.3 and 5.7.4 the estimates for

surfaces of low roughness concentration contain considerably

more power at high frequencies than do the theoretical

spectrum functions.

The decay coefficient for surface 47, a surface

with low roughness concentration, appeared to be so
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erroneous that the value from this surface was not used to

estimate the curve in Figure 5.5.2.

A parabolic relationship was fitted to the decay

coefficients and corresponding friction coefficients

with a correlation of 0.6 as seen in Figure 5.5.2. This

behavior is thought to accurately describe the mechanism

involved between a rough surface and the Manning ”n"

friction factor associated with such a surface. It is a

fundamental fact (Morris, 1955; Koleseus and Davidian,

1966; Robertson and Chen, 1970) that the main source of

friction losses, in a fluid flowing over a rough surface,

is the generation, spreading, and subsequent dissipation

of vortices behind each roughness element. Each element

is a source of vorticity and consequently the longi-

tudinal spatial frequency of roughness elements is closely

related to the creation of such vortices. If the roughness

elements are highly concentrated, the flow skims the peaks

of the roughness elements leaving some dead water regions

between the elements. The relatively still water trapped

in these spaces results in a lesser degree of vortex

generation and consequently such a surface exhibits some-

what smaller friction factors. For this type of surface,

the lower friction factors are defined by the lower left-

hand side of the parabola in Figure 5.5.2.

If the spacing between roughness elements is

increased the dead water regions between the elements no
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longer exist and new vortices begin to develop between

the elements. Vortex generation and dissipation associ-

ated with each element are not completed before the next

element is encountered by the moving fluid particle. The

result is additional perturbation and greater friction

losses. Increasing distance between the elements is thus

associated with increasing friction losses up to a maximum

intensity. Increasing the distance after a certain point

results in decreasing friction losses since the elements

are so far apart that individual elements act as isolated

bodies. The intensity of vortex generation and associated

dissipation is greatly reduced, thus resulting in less

friction loss. For this reason the curve in Figure 5.5.2

makes a downward trend after it reaches a maximum value.

The lower right side of the parabola reflects the lessened

friction coefficients of such surfaces with low roughness

concentrations.

The equation obtained for the parabola (5.5.2)

would probably not prove to be a good estimator for sur-

faces with very low and high roughness concentrations,

since the method used to obtain spectral estimates for

these surfaces do not provide accurate spectral data

points for very low or high roughness concentrations.

Limits on roughness concentration for these surfaces is

presently unknown. However, most surfaces encountered in

practice fall within the validity range of (5.5.2).
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As is seen in Figure 5.2.2, two data points behave

erratically. These data points correspond to surface 5

(K = .88, n = 0.0178) and surface 7 (K = 0.93, n = 0.0150).

Close inspection of surface 5 (Figure 5.3.24) indicates

that it has almost the same surface configuration and

spectral estimates, as well as equivalent Manning "n"

friction coefficients. It is suspected that the erratic

behavior of this data point resulted from the regression

process of (5.5.1) since peaks on spectral estimates with

magnitudes less than 0.02 were observed. Since the cutoff

value for the peaks included in the regression analysis was

0.02, these peaks were not used.

Surface 7 could not be compared with any other

surface because of its uniqueness. However, this surface

was regenerated in the computer. The resulting K was 0.33,

a value which falls on the appropriate section of the

parabola. It is suspected that the number of data points

used to describe the surface during the measurement

process was insufficient, a property which yielded an

erroneous spectral estimate. An unexpected result was

also obtained for surface 6 but the cause is unknown to

the author.

The comparison between predicted values of

Manning's ”n" and values obtained from the literature

(Table 5.6.1) indicates that predicted "n" values differ

from literature values only for plastic tubing. This





110

result is not unexpected since the wide variety of the

corrugated plastic tubing, having different corrugation

configurations, should not be expected to be accurately

described with only one Manning "n" friction coefficient.

It is worthwhile to mention that corrugated tubing with

narrow corrugations was found to have "n" values as high

as point 0.0178 (Dinc et a1., 1971).



7. CONCLUSIONS

The following conclusions may be drawn from this

investigation. .

l. The one-dimensional roughness composition of

a surface can be concisely defined by its estimated spec-

tral density function.

2. For surfaces with low and high roughness con-

centrations, the technique developed and reported on in

this investigation is not adequate to obtain an accurate

spectral density estimate.

3. Spectral density estimates of a surface can

be characterized by a single parameter, decay coefficient K,

defined by an exponential curve fit through the peak values

of the spectral density estimates beginning with the

largest values at the lowest frequency and fit through

data points defined by spectral density estimates whose

values are greater than 0.02.

4. A parabolic relationship can be used to relate

the Manning "n" coefficient and the decay coefficient K

in the equation n = 0.0044 + 0.045K - 0.024K2.

5. The proposed equation (5.5.2) can be used to

predict the Manning "n" friction coefficients of most sur-

faces encountered in practice for which Manning's equation

can be used to model flow.
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8. RECOMMENDATIONS FOR FUTURE WORK

Specific recommendations for future research

are:

l. Additidnal one-dimensional artificial rough-

nesses should be investigated in order to increase the

degree of accuracy of the proposed equation (5.5.2).

2. This work should be extended to two-dimensional

roughness by utilizing multivariate spectral techniques.

3. Hydraulic measurements should be collected

for each surface analyzed to add further validity to the

method.

4. The coefficients of the window function should

be adjusted to obtain more accurate estimates of spectrum

functions for surfaces with low roughness concentrations.
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APPENDIX A

IDENTIFICATION OF SURFACES OBTAINED

FROM PREVIOUS INVESTIGATIONS
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APPENDIX A

IDENTIFICATION OF SURFACES OBTAINED

FROM PREVIOUS INVESTIGATIONS

TABLE A-l.--The surfaces and their corresponding Manning

"n" coefficients obtained from the investiga-

tions of Ding et a1. (1971).

 

Surface Identification

 

as Used in the Surface Identification Manning "n”

. . as Used in This Study Coefficient

Original Paper

Michigan Vitrified Tile 17

CO. S-ino IQDS 5 0.0 8

Advance Drainage Sys-

tems, Inc., 8-in. ID 7 0.0150

(Set I)

Springfield Plastics,

Inc. 5.7-in. ID 8 0'0159

Michigan Vitrified Tile

Co. 4-in. ID 9 0'0178

Advance Drainage Sys-

tems, Inc., 4-in. ID 10 0'0151

Advance Drainage Sys- 12 0 0150

tems, Inc., 6-in. ID '

Advance Drainage Sys- 8

tems, Inc., 8-in. ID 13 0°01 0

(Set II)

Canada Dominion Sugar l4 0 0169

C00, Ltd. 4-in. ID
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TABLE A-2.--The surfaces and their corresponding Manning

"n" coefficients obtained from the investiga-

tions of Johnson (1944).

 

Surface Identification

 

as Used in the Surface Identification Manning ”n"

Original Paper as Used in This Study Coefficient

A
18 0.0163

B
19 0.0244

C
20 0.0208

D
21 0.0194

E
22 0.0236

F
23 0.0229

G
24 0.0223

H
25 0.0240

I
26 0.0240

 

Table A-3.--The surfaces and their corresponding Manning

"n" coefficients obtained from the investiga-

tions of E. A. LeRoux, reported by Johnson.(1944).

 

Surface Identification

 

- Surface Identification Manning "n"

3:13:::llga::: as Used in This Study Coefficient

J 27 0.0158

K 28 0.0222

L 29 0.0198

M 30 0.0204

N 31 0.0219

0 32 0.0177

P 33 0.0222
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TABLE A-4.--The surfaces and their corresponding Manning ”n"

coefficients obtained from the investigations of

C. A. Smith and C. Warren, reported by Johnson

(1944).

 

Surface Identification

 

as Used in the Surface Identification Manning "n”

' '
as Used in This Study Coefficient

Original Paper

‘A
34 0.0112

B
35 0.0185

C
36 0.0200

D
37 0.0170

E
38 0.0149

 

TABLE A-5.--The surfaces and their corresponding Manning

"n" coefficients obtained from the investiga-

tions of Powell (1946).

 

Surface Identification

 

. Surface Identification Manning "n"

3:13;:2113aEZ: as Used in This Study Coefficient

I 39 0.0185

II 40 0.0231

III 41 0.0264

IV 42 0.0264

V 43 0.0217

VI 44 0.0238

VII 45 0.0217

VIII 46 0.0186

IX 47 0.0156
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APPENDIX B

FORTRAN IV PROGRAM FOR ESTIMATION

OF AUTOCORRELATION AND POWER

SPECTRUM DENSITY FUNCTIONS

The following FORTRAN IV program is for the calcu-

lation of autocorrelation and power spectrum estimates.

The total program consists of the main program, MAIN, and

subroutines, AUTO and POWER.

The main program, MAIN, defines the number of

data points, N, and the maximum lag values, M. After the

subroutines are called, it determines the cutoff frequency

at which 90 percent of the power occurs under the spectral

density curve.

Subroutine AUTO calculates the expected values, AV,

and the variance, R0, of the data. It then normalizes the

initial data, Y(I). Finally, it determines the autocorre-

lation estimates R(J). R(J) is obtained by dividing

autocovariance estimates, R(J), by the variance, RO.

Subroutine POWER defines the sampling interval,

DELX; calculates the frequency, FR(J); the raw spectral

estimates, S(J); and smoothed spectral estimates, U(J).

119



1
0

1
5

2
0

3
0

3
%

4
0

G
S

5
0

P
R
O
G
R
A
M

S
U
R
R
O
-

1

"
A
I
M

1
C

5
0

2
3

1
&
0

6
0

6
5
5

7
5
0

0
4
c

s
fl
n

7
8
5

7
9
3

C
D
C

6
5
0
0

F
Y
H

V
3
.
0
’
P
J
T
O

O
P
T
-
1

P
k
fl
n
P
A
H

v
a
i
n

t
I
1
P
0
1
,
c
J
Y
O
J
Y
.
T
A
°
E
4
o
t
A
P
E
o
o
I
I
N
P
U
T
.
7
1
9
6
6
1
1
0
U
Y
P
U
T
)

a
l
v
f
u
fi
x
“
u

P
t
2
L
1
)

C
H
M
H
n
u
/
A
/
Y
(
4
5
9
1
)
.
4
(
4
C
I
)
0
X
(
4
;

1
)
.
H
.
N
.
R
0

C
H
H
N
O
H
1
9
/
b
(
?
c
l
)
6
0
(
2
¢
1
l
o
r
R
I
Z
L
I
’

9
0
:
4
,

h
=
4
3
0
6

H
3
2
u
0

D
O

1
6

1
3
1
.
1
2
9

R
E
A
D
(
h
:
a
1
0
0
3

V
(
l
)

K
=
1
J
fl

D
“

2
0

J
t
z
a
4
L

3
'

3
0

1
3
1
0
1
3
fi

K
=
K
O
1

V
(
K
)
I
Y
(
I
)

C
-
W
J
H
J
U
F

F
O
R
M
A
Y
(
7
1
0
.
3
)

C
A
L
L

A
U
Y
u

C
A
L
L

P
O
d
E
H

H
1
8
H
-
1

D
u

b
fl

1
3
1
0
1
3
9

P
(
l
)
:
n
(
l
)

1
r
(
P
‘
1
)
o
L
*
o
d
o
,

P
‘
l
’
l
c
.

C
O
N
Y
L
J
U
F

S
U
M
-
o
.

D
O

5
0
.

1
3
1
0
1
9
”

s
u
n
z
s
u
n
o
p
t

I
)

S
H
H
9
0
8
D
.
O
C
O
S
U
"

P
O
I
N
T

6
‘
5
.
S
J
t
-
S
U
H
°
O
.
R
3

r
u
R
n
A
T
(
1
a
x
.
3
6
1
5
.
5
.
/
)

T
H
P
I
O
.

9
H

5
‘
.

l
l
l
o
l
9
9

T
H
P
'
T
H
P
O
P
‘
l
)

1
r
(
!
0
‘
)
o
L
E
o
l
e
i
v
r
)

0
0

T
o

7
5
'
}

G
M

'
0

7
‘
5

P
u
l
~
7

6
.
3
'
I
D
I
U
P
0
P
(
I
)

K
a
l
’
l

r
fl
p
"
‘
7
(
0

.
3
1
5
‘
1
1
5
0
2
6
1
5
0
5
’

C
H
L
I
I
I
H
‘

P
u
l
h
'

7
,
9
.
K
.
l
(
(
)

F
H
R
V
A
T
(
/
,
I
O
Y
6
1
5
.
5
1
5
.
5
)

H
U
I
Y
E
(
6
1
.
3
Q
J
)

H
v
1
1
£
(
6
1
.
3
5
2
3

:
1
1
!

‘
0
3

l
:
1
.
H
l

H
‘
I
'
E
“
:
Z
?
O
)

I
n
fl
‘
l

H
H
I
Y
E
(
6
!
.
?
G
L
J

!
.
k
(

F
V
R
P
A
T
t
l
b
-
5
:
1
5
.
b
)

r
:
"
’
”
A
T
(
O

.
.
1
"
o
l
‘
.
'
0
5
r
1
5
0
"
)

)
-

I
)

V
'
F
"
‘
I
(
1
f
'
o
’
l
'
o
l
.
'
o
.
A
J
Y
'

I
U
C
R
.
0
.
1
1
X
.
O
P
I
H
.
.
3
3
X
.
.
r
l
L
'

*
°
'
-
'
I
f

0
.
1
}
‘
A
o
fi
z
l
‘
l

(
2
.
.
.
,

~
r
~
4
7
c
v
:
)
.
-
c
u
a
r
r
.
-
.
1
1
x
.
-
s
r
z
c
.

3
8
0
.
0
.
7
I
.
-
<
”
‘
c
.

"
a

.
o
)

S
v
t
‘
.
n

F
T

Q.

C
D
C

:
5
0
?

7
'
"

V
'
.
;
'
"
3
’
9

V
"

.
9
.
.
.
.
\
.
'
I
I
.

L
l

|
’

'
f
.
'
|
-
‘
-
/
‘
/
'
(
4
n
-
'
1
’
l
*
“
:
1
)
t
l
“
_

1
)
.
H
.
.
4
.
R
f
:

W'Jst

. U
3

L
l
u
:
l

I
1
f

1
:
0
,
?

:
1
o
\
'
(
’
,

. T .
‘
.
v
-
:
‘
|

[
#
0

3
7
/
3
0
/
7
4

.
1
3
6
4
4
6
3
1
.

P
A
G
E

P
l
u
‘

1

120



121

I
3
9
1
6

°
¥
£
°
b
9
‘
£
1
‘

9
1
/
0
9
/
4
0

1
:
1
8
0

9
L
2
d
-
9
°
9
A

N
1
3

0
0
5
9

3
0
3

0
:
3

i
l
n
l
l
H

(
|
)
S
'
D
S
'
3
¢
(
Z
H
)
S
¢
9
9
"
=
(
H
)
H

(
t
o
r
)
3
o
9
2
'
”
+
(
r
)
5
o
v
9
'
n
o
(
r
-
r
)
3
-
£
:
"
=
(
r
)
n

é
u
‘
8
=
r

L
9

u
u

(
I
)
S
'
b

'
P
o
t
a
)
s
u
9
v
‘
“
=
(
t
)
n

'
Z
‘
X
1
3
0
0
(
(
Z
d
o
t
d
)
5
0
3
¢
(
T
H
)
N
*
h
n
$
+
'
I
)
=
(
F
)
S

(
x
1
3
0
0
k
v
v
‘
8
)
/
I
d
=
(
r
)
d
d

t
r
a
u
e
)
s
n
o
¢
(
1
1
I
o
c
'
Z
o
w
n
s
=
u
n
s

I
’
t
d
3
d

T
—
r
:
T
d

Z
H
‘
I
=
I

C
Z

D
E

C
'
0
=
H
H
S

Z
H
‘
I
=
P

G
I

U
H

I
+
w
=
9
H

I
-
H
=
8
H

1
4
:
1
1
!

n
V
/
z
d
=
“
d

5
“
P
=
x
1
3
6

l
e
S
I
r
I
‘
£
=
¢
d

H
=
k
V

(
I
‘
Z
)
B
J
‘
(
T
?
Z
)
n
'
(
I
U
Z
)
S
/
8
/
N
O
H
H
H
3

O
U
‘
N
‘
H
‘
(
I
T
‘
t
)
X
'
(
I
fl
t
)
a
'
(
t
fi
u
v
)
A
/
v
/
N
o
u
u
n
o

U
E
H
U
c

a
H
l
l
n
o
a
a
u
s

0
L
3

H
d
n
l
a
fl

L
8
/
(
F
)
H
=
(
P
)
H

a
C
/
r
J
=
(
r
)
H

3
8
:
2
0

(
r
l
)
A
o
(
I
)
A
+
P
3
=
F
O

l
f
r
=
r
l

z
u
'
t
=
1

9
5

0
6

r
-
u
=
Z
N

”
"
=
r
3

u
'
T
=
r

0
9

n
u

A
v
-
(
I
)
A
=
(
I
)
A

H
‘
T
=
I

0
2

c
u

N
V
/
H
fl
s
=
u
d

(
3
#
0
(
A
V
-
(
X
)
A
)
)
°
H
H
S
=
H
D
S

u
‘
t
=
l

S
t

o
n

C
Z

U
Q
M
U
d

a
v

0
5

J
N
I
I
I
O
E
G
H
S

0
8

U
T

0
3

U
I



S
l
N
C
O
S
E

3
3
7
1
0
6

o
b
o
c
c
o
c
n
o
t
e
u
n

o
r

"
A
P
-
-
-
-
-
-
-
-
.
-

.
1
9
9
2
9
5
0
0
2

£
1
7
9
3
6
E
O
C
Z

.
3
3
2
9
7
E
'
L
2

l
.
3
6
7
4
5
5
-
0
2

6
3
6
,
4
5
5
-
8
2

’
.
8
0
1
3
Z
E
'
L
2

6
4
3
6
8
7
5
’
0
2

‘
.
1
3
0
‘
C
E
'
L
1

o
5
0
d
7
1
6
'
0
2

‘
.
2
3
0
5
4
5
0
0
0

.
2
1
I
5
0
6
0
0
0

5
.
7
2
5
7
2
F
0
0
0

0
‘
9
5
1
8
5
9
0
J

’
.
9
3
3
5
7
5
0
9
0

.
2
0
’
5
5
6
'
0
0

’
0
9
3
4
3
1
5
0
6
0

0
7
‘
0
‘
3
E
-
0
3

‘
.
1
0
4
6
4
F
o
s
1

.
7
1
2
1
3
5
0
0
0

’
.
3
3
0
9
9
E
0
3
1

6
1
0
5
3
5
5
9
0
1

1
.

o
‘
U
l
e
E
‘
U
1

.
7
3
5
5
9
5
0
0
0

1
1

6
‘
0
1
5
5
F
‘
u
1

0
.

1
’

.
‘
2
1
‘
3
F
0
.
1

.
1
9
U
G
U
E
’
0
0

1
‘

0
‘
3
7
7
1
F
°
5
1

O
‘
O
Z
S
I
E
‘
O
J

1
*

.
4
3
7
2
2
C
0
0
1

6
1
9
9
1
6
5
9
0
0

‘
0
‘
3
7
2
2
F
0
4
1

L
o

‘
.
5
5
1
9
9
F
O
C
I

.
6
4
/
7
5
E
0
0
0

'
.
7
u
5
9
3
E
0
.
1

.
1
5
1
9
9
E
0
0
1

.
7
6
8
6
5
r
o
;
1

.
6
4
0
7
3
6
0
3
0

.
7
6
5
6
8
E
0
L
1

.
2
5
‘
1
7
E
'
C
3

.
7
5
5
1
9
6
0
5
1

.
1
7
9
1
1
5
‘
0
0

.
8
2
0
9
4
F
0
.
1

.
‘
0
’
5
5
5
0
0
0

.
6
‘
4
0
9
6
9
5
1

0
1
7
1
4
8
5
’
0
3

.
6
4
4
0
9
5
0
9
1

C
o

.
8
9
9
5
4
E
0
u
1

6
5
5
.
4
9
5
9
0
0

.
1
U
2
9
9
F
.
;
2

6
1
3
0
3
0
5
°
0
1

0
1
L
3
5
5
5
‘
5
2

0
5
5
,
7
1
5
.
0
0

0
1
.
8
5
6
f
o
t
z

.
7
2
0
4
5
E
‘
0
3

.
1
1
0
0
0
F
v
u
2

0
1
“
3
1
5
‘
3
0

.
1
1
3
3
5
F
9
5
2

.
3
3
9
'
7
E
’
C
0

0
1
1
4
7
6
1
9
~
2

.
1
4
0
5
8
t
'
0
0

0
1
1
‘
7
6
f
.
~
2

“
a

.
1
1
9
1
9
F
0
4
2

.
“
J
1
4
E
°
0
0

.
1
7
9
0
2
C
0
3
2

.
1
3
‘
3
5
6
'
5
1

.
1
3
‘
U
G
F
O
L
Z

.
‘
4
5
4
1
E
’
0
0

,
1
3
4
0
9
1
0
.
2

.
3
7
1
2
3
E
‘
0
3

.
1
3
5
1
9
F
0
.
2

.
I
I
U
S
S
E
O
O
J

.
1
3
7
7
‘
F
‘
.
2

.
?
5
9
2
9
L
’
9
0

.
1
3
8
H
1
t
°
.
2

.
1
0
0
7
1
t
o
c
u

.
1
3
6
5
1
F
0
,
2

U
.

6
1
‘
2
0
8
F
¢
.
2

o
3
Z
I
W
9
E
°
C
U

.
1
‘
0
6
:
F
°
u
2

0
7
7
1
6
9
5
°
0
0

.
1
S
J
U
Q
F
.
'
2

o
2
V
B
O
E
.
0
0

0
1
5
3
1
1
7
.
»
?

.
1
6
2
6
4
E
'
0
2

.
1
5
3
5
8
E
0
5
2

.
7
7
4
7
1
5
-
0
1

0
1
5
5
6
6
F
’
o
2

0
1
7
H
‘
O
E
°
°
§

.
1
5
6
4
1
L
0
2
2

.
7
4
2
Q
5
E
‘
0
1

.
1
5
6
4
1
F
°
0
2

L
.

.
1
5
8
0
3
F
°
.
2

.
2
1
9
6
9
E
*
0
0

0
1
6
3
5
:
F
°
~
2

o
’
1
v
3
1
5
.
6
0

.
1
6
6
0
2
'
°
.
2

.
?
2
2
3
4
E
°
6
3

.
1
6
0
U
3
c
‘
t
2

6
9
1
’
l
5
t
'
0
3

0
1
0
6
5
2
C
°
J
2

0
‘
9
“
O
E
'
0
1

0
1
6
7
6
6
r
.
5
2

.
I
I
J
J
S
E
O
O
O

.
1
6
6
1
3
C
0
.
?

0
‘
0
”
5
‘
t
°
°
1

.
1
9
8
1
3
F
0
9
2

c
o

,
1
6
9
‘
4
F
0
6
2

.
1
3
0
9
U
E
O
C
O

.-~..an-ofP\m‘c.—l' vu- 0K—&
1 o-. ' of - I fl " fI n- v'— r

flflHHNNNNNCV‘NNNNNnnnnnmnnnP31'V‘V'CV'VU‘U‘U‘U‘nnfi

122



5s.- w. -a— 1 (h. r W!

UHBU\O1D<>O~O(’O!O<)Of~hl\ n

.‘n"-

h

(FB"“'o-!?‘"""’ 'K‘v- .‘o. .. , f. .. .o
0 r” h “‘ ‘l I"

1"..-

Hvidvifllaw.dvideNf‘flHMFUN(VOIN'075MF9Pin'0P5nlfl.’C

l‘o‘

.
1
7
?
5
‘
F
o
.
2

.
1
7
3
H
7
F
o
‘
2

6
1
7
3
6
3
5
‘
5
2

.
1
7
‘
1
0
F
o
‘
2

.
1
7
‘
h
?
f
°
.
2

.
1
7
5
0
0
F
0
t
2

.
1
7
b
o
o
e
o
.
2

0
1
7
5
7
6
;
.
.
2

.
1
7
7
3
‘
r
o
.
2

.
1
7
F
C
?
5
0
.
2

0
1
7
6
0
3
F
°
5
2

,
1
7
L
1
9
f
o
.
2

,
1
7
b
h
b
‘
0
.
?

0
1
7
0
;
1
{
.
.
2

.
1
?
é
7
1
7
¢
_
2

.
1
7
6
9
0
7
0
.
2

.
o
o
k
5
1
f
-
f
!

o
'
-
"
Y
H

C
A
P
P
.

C
1
1
‘
y
o

.
7
n
s
n
s
»
.
,
r

.
5
3
1
5
7
r
.
_
n

.
Z
u
7
1
6
r
0
.
fl

.
1
3
9
b
5
1
;
0
.
fl

-
.
i
7
9
7
7
7
-
-
1

-
.
7
3
3
1
6
[
-
.
1

-
.
*
”
:
5
6
r
-
.
z

-
.
7
8
n
0
5
r
.
.
1

c
.
1
6
1
5
5
€
-
.
1

-
.
7
0
1
7
4
¢
-
.
;

-
.
7
4
2
L
4
3
-
.
1

-
.
7
4
2
5
3
F
-
.
1

-
.
7
n
J
°
3
r
-
.
1

-
,
7
8
3
3
2
r
-
:
i

-
.
7
L
3
7
2
c
-
.
1

-
.
7
a
¢
1
1
=
-
.
1

'
0
7
4
‘
5
1
5
.
-
1

0
.
7
H
‘
q
c
r
-
.
1

'
n
l
u
‘
3
:
F
’
~
1

-
.
7
N
5
7
j
r
o
;
1

n
.
7
8
6
0
9
7
0
;
1

-
,
7
“
o
c
o
g
.
'
1

0
.
7
3
0
5
9
‘
-
;
1

0
.
7
n
7
c
9
fl
-
v
1

-
,
7
H
7
0
6
F
-
.
;

-
,
7
~
u
g
a
l
-
,
i

-
.
7
8
8
4
6
fl
-
.
i

.
7
fi
d
e
E
-
U
1

.
7
s
o
z
a
c
-
.
1

.
7
8
9
6
7
r
.
;
1

.
7
°
O
U
’
F
'
.
1

.
0
1
0
3
‘
7
L
.
u
‘

-
.
7
°
:
o
7
i
-
.
1

'
g
7
°
1
2
7
c
'
.
1

.
0
7
0
1
5
7
F
'
L
x

.
.
7
9
2
0
7
F
o
e
l

.
.
7
9
2
‘
7
F
0
‘
x

.
.
7
0
2
4
7
F
-
.
1

.
0
7
0
3
8
7
r
.
J
1

-
0
7
0
3
6
7
E
.
c
1

‘
0
7
0
‘
0
7
F
-
J
1

0% I

.
S
I
U
J
S
E
O
O
O

o
I
J
J
I
X
E
°
0
0

6
‘
9
1
7
3
t
'
3
3

.
2
6
l
3
7
E
’
0
1

.
6
5
4
9
1
L
-
C
1

o
?
o
V
1
6
E
'
C
1

o 6
5
0
,
4
3
E
'
3
1

.
I
E
F
O
Z
E
O
O
U

0
6
3
1
5
3
6
'
0
1

.
‘
C
H
B
Q
E
-
O
J

.
l
o
d
5
9
t
'
0
1

.
3
7
3
7
1
h
'
0
1

6
1
9
/
3
9
5
‘
0
1

.
7
7
V
6
3
E
'
0
1

N
A
N

5
1
h
r
.

D
E
M
.

.
?
F
£
‘
6
L
'
9
3

.
7
2
2
5
2
5
'
0
2

.
2
4
9
4
9
5
'
0
3

.
1
4
2
‘
6
t
'
0
1

6
’
1
l
5
3
5
‘
0
0

.
3
7
6
9
7
E
’
0
2

.
5
2
2
6
3
6
°
0
4

.
7
3
6
T
7
5
'
0
2

5
2
/
?
6
E
’
0
1

0
5
3
.
7
3
5
'
0
2

.
1
5
4
9
2
E
'
0
4

0
:
6
"
5
2
E
-
3
2

.
“
5
/
5
‘
5
‘
0
0

.
.
‘
0
‘
7
1
5
'
0
2

.
3
3
5
8
8
5
'
0
4

.
5
2
2
5
2
5
'
0
3

.
2
8
1
5
2
E
0
0
1

'
6
1
3
'
9
3
5
'
0
2

°
o
5
2
0
5
5
5
'
0
5

.
2
5
1
3
7
6
-
0
2

.
7
5
9
4
5
h
0
0
3

-
.
‘
2
2
7
4
E
-
0
2

.
4
9
3
7
7
E
°
0
4

“
.
1
7
"
3
I
E
-
O
2

.
?
4
1
5
:
E
°
o
1

.
5
n
6
6
9
E
-
0
3

'
.
?
5
’
l
Z
E
'
O
4

6
2
6
/
9
4
E
'
0
2

0
5
2
1
A
O
E
O
O
J

0
‘
2

'
3
5
'
0
2

.
0
2
6
0
5
1
6
'
0
2

.
1
9
J
Z
9
E
°
0
2

.
I
S
I
Z
S
E
'
O
Z

'
o
3
5
°
”
5
6
'
0
4

.
2
7
5
“
1
E
°
0
2

.
C
7
5
3
1
5
0
0
0

.
.
‘
0
1
2
6
5
'
0
2

.
6
9
5
1
‘
5
'
0
4

‘
.
3
1
9
3
9
5
'
0
2

.
1
4
2
9
0
6
0
0
1

F
I
L
T
E
F

S
’
E
C
.

D
E
N
.

.
3
6
7
‘
5
E
.
;
2

0
‘
3
3
5
7
F
.
9
2

0
5
-
2
7
1
r
-
3
2

.
2
1
7
5
1
k
0
0
0

o
‘
G
S
A
B
E
O
U
n

0
2
,
7
9
5
E
.
U
"

0
7
4

4
3
5
'
0
3

6
7
1
2
1
3
5
‘
0
0

.
1
6
6
3
5
E
‘
0
1

.
7
.
5
5
9
E
°
d
fl

0
‘
6
8
9
2
5
'
0
3

0
1
9
8
3
0
5
‘
0
0

.
‘
6
2
5
1
5
0
0
3

6
1
9
5
0
6
5
0
9
0

.
7
9
2
5
1
E
'
9
3

.
6
4
7
7
5
6
0
9
1

.
1
5
1
9
9
C
'
u
1

.
6
4
6
7
0
E
°
0
0

0
2
5
‘
1
7
E
.
O
J

.
1
7
5
1
1
5
°
0
0

o
‘
g
’
S
’
E
’
fl
O

o
l
’
l
‘
O
E
’
fi
”

c
1
3
5
1
7
E
‘
0
2

0
5
5
“
9
E
.
0
9

6
1
3
-
3
B
E
’
0
1

0
5
5
,
7
1
6
.
3
0

0
7
2

.
S
E
-
U
J

.
1
4
4
S
I
E
'
u
fl

.
3
3
5
3
7
6
0
0
0

0
1
4
1
5
3
E
.
0
3

o
l
b
u
I
J
E
'
O
Z

.
4
4
3
0
‘
6
’
0
0

o
1
.
‘
3
5
£
°
0
1

6
‘
4
5
4
1
5
‘
0
5

0
9
7
t
2
9
6
.
0
3

o
I
I
U
S
J
E
O
O
O

.
2
5
5
2
9
E
°
0
0

.
3
5
6
7
I
E
°
0
”

.
1
6
1
9
8
E
'
9
2

0
3
2
7
3
9
£
.
°
”

0
7
7
1
.
9
E
.
U
.

.
5
0
5
0
3
E
‘
0
1

0
1
0
0
0
0
5
0
0
0

o
1
5
0
0
5
£
°
0
0

1
2
0
6
0
0
5
0
0
0

o
?
5
0
0
J
E
’
0
0

0
3
0
°
0
0
E
’
J
O

0
3
5
0
0
0
5
9
0
0

o
‘
O
O
O
O
E
‘
O
O

.
4
5
0
0
0
E
‘
0
0

.
5
0
0
0
0
5
0
0
0

0
5
5
0
0
0
5
‘
0
0

0
6
0
0
0
9
6
0
0
5

.
6
5
0
0
0
E
O
U
O

0
7
°
0
0
0
E
°
0
0

0
7
5
0
3
0
E
°
c
0

C
H
O
O
U
C
E
.
0
0

6
0
5
0
0
0
5
‘
0
9

0
9
0
0
0
5
5
‘
0
0

0
9
5
0
0
5
£
°
c
0

0
1
0
°
0
0
E
’
0
1

.
1
0
‘
0
0
6
0
0
1

o
1
1
0
0
0
5
°
0
1

0
1
1
,
0
5
E
.
0
1

0
1
2
0
3
0
E
°
0
1

O
R
Z
~
O
S
E
.
.
1

0
1
5
0
0
0
5
’
0
1

0
2
3
5
0
0
5
.
0
1

n
I
Q
O
O
U
G
‘
O
X

.
1
9
5
0
0
I
0
8
1

.
1
5
0
0
0
E
°
.
1

0
1
,
5
0
0
£
°
¢
1

0
1
6
0
0
0
5
°
0
1

0
1
.
5
0
0
E
°
°
1

0
1
7
0
0
0
E
¢
0
1

.
1
7
5
0
0
I
0
0
1

O
A
O
O
O
C
E
O
O
I

0
1
,
5
0
0
‘
0
0
1

I
1
9
0
0
0
"
0
1

.
1
9
Q
O
O
I
O
C
I

0
2
°
0
0
0
£
°
O
I

F
R
E
)
.

.
3
6
7
‘
b
F
-
9
2

6
4
3
3
8
7
P
-
9
2

.
5
0
2
7
1
F
0
0
2

.
2
1
7
5
C
E
0
0
0

0
4
9
5
1
5
E
0
0
0

0
2
0
7
6
5
5
0
0
0

.
7
4
0
‘
3
5
0
0
3

o
7
1
2
1
3
£
9
3
°

.
1
6
6
3
5
E
0
0
1

.
7
0
5
5
9
6
0
0
0

0
. 4
1
°
6
8
L
F
0
0
0

.
‘
6
2
8
1
F
0
0
0

.
1
9
5
0
6
F
0
0
0

0
. 0
6
‘
7
7
5
5
9
0
0

.
1
5
1
9
9
E
0
0
1

0
6
4
6
7
0
E
0
0
0

9
2
5
4
1
7
5
0
0
3

0
1
7
5
1
1
5
0
0
0

.
1
7
1
‘
P
C
0
0
0

0
. .
5
5
‘
4
9
5
0
8
0

6
1
3
0
3
8
5
0
0
1

6
5
5
5
7
1
€
0
0
0

0
7
2
0
‘
5
E
'
0
3

0
1
“
3
1
r
'
0
0

.
3
3
5
0
7
F
O
C
O

0
1
‘
0
5
5
F
0
0
0

I
. .
“
3
0
‘
E
.
9
o

6
1
0
.
3
5
F
0
0
1

0
4
‘
5
4
1
F
o
o
c

.
9
7
1
2
9
F
-
0
3

.
1
1
0
3
3
E
0
0
0

.
2
5
5
2
9
F
0
0
0

0
1
0
6
7
1
6
0
0
.

.
0 0
3
2
7
0
9
F
0
0
0

6
7
7
1
6
9
5
0
0
0

14213



f v
'.' H

'O. U I 0. ,_ _.. o . . a o n- .. .. - . . . . . . . a

C'V'C'1'U\J\Wummmlflmmm000000COVOBBNBSNI‘I\BN‘=~L C'Otb-D-l. DQ0300000000 O

1
0
‘

1
0
'

1
0
'

.
.
7
9
4
4
7
F
-
s
i

-
.
7
°
4
6
7
F
-
G
1

.
.
7
O
S
Z
B
E
C
u
1

0
.
7
0
5
6
8
F
-
c
1

.
1
5
3
3
7
E
'
3
1

0
1
1
0
2
9
F
‘
;
o

6
2
°
6
0
6
F
°
9
0

6
3
0
0
9
1
5
9
J
0

.
4
5
3
8
1
a
n
c

.
3
5
9
0
0
F
0
.
0

.
2
°
‘
1
5
E
0
&
fl

.
1
8
6
5
1
F
0
.
l

.
1
3
7
5
6
v
-
g
i

-
.
7
v
:
4
3
r
-
;
1

'
0
7
9
3
0
3
f
'
5
1

-
0
7
0
1
2
3
5
-
¢
1

-
.
7
0
1
0
3
F
0
J
1

'
.
7
°
2
0
3
p
'
2
1

‘
.
7
°
2
Q
‘
F
-
,
z

'
0
7
0
2
5
4
F
’
;
1

-
.
7
~
3
2
4
+
-
.
1

.
.
7
0
3
6
4
I
-
.
1

-
.
7
°
4
0
5
r
-
.
1

-
0
7
0
“
5
‘
-
o
1

0
'
7
0
‘
0
5
1
3
0
'
1

-
.
7
”
5
?
6
r
-
.
1

-
.
7
°
5
0
6
E
-
;
1

-
.
7
V
O
U
7
F
O
;

-
.
7
°
h
4
7
F
-
.
1

.
.
7
9
6
3
7
r
.
,
i

o
'
7
c
r
f
‘
fl
5
-
o
‘
1

-
.
7
9
7
6
3
r
.
,
1

-
.
7
0
0
0
9
r
-
.
1

.
.
7
q
b
4
9
3
0
-
‘

-
.
7
3
f
"
:
u
.
.
1

o
.
7
‘
0
9
_
§
1
l
'
.
.
1

-
.
7
'
3
'
1
7
1
[
-
_
1

'
0
0
J
L
I
?
"
.
1

'
.
6
.
6
3
Z
l
‘
_
1

‘
6
0
.
?
V
3
r
—
.
1

'
I
"
.
'
.
.
"
’
“
-
-
|
.
1

'
.
h
.
.
1
"
I
;
.
.
1

.
l
l
,
v
2
;
5
i
-
.
1

-
.
o
;
Z
H
h
r
-
.
1

-
.
n
"
‘
-
‘
I
D
T
L
‘
-
-
1

-
.
6
'
.
\
.
1
A
I
-
o
-
1

‘
.
n
.
5
7
8
f
.
.
1

0
.
6
.
4
1
9
F
0
_
1

-
.
5
C
‘
0
3
r
’
.
1

'
o
d
e
5
6
1
7
’
5
1

-
,
d
_
5
4
2
F
-
.
1

‘
0
3
3
5
‘
3
(
°
.
1

.
0
0
-
6
2
‘
r
-
0
1

'
.
0
L
O
b
5
F
-
.
1

.
1
0
7
1
2
r
.
.
°

0
2
0
9
0
3
1
.
.
c

.
5
7
0
8
6
F
0
J
fl

.
7
5
‘
0
6
F
0
3
0

a
l
d
O
U
J
F
‘
a
1

.
7
5
5
5
6
F
.
L
°

0
5
3
1
‘
)
9
r
.
.
g
n

.
2
0
1
3
5
5
'
0
2

'
6
3
6
’
1
3
5
'
0
4

.
2
5
6
5
4
5
'
0
2

6
3
3
0
9
2
5
0
0
0

'
6
3
4
5
2
2
5
’
0
2

.
6
2
‘
6
3
5
‘
0
4

-
0
2
9
5
3
6
8
.
0
2

6
7
6
3
1
1
5
°
0
0

«
1
9
0
4
8
C
'
0
2

-
.
S
é
u
7
5
e
'
0
4

.
2
1
0
?
§
E
'
8
2

.
2
1
0
’
9
5
0
0
0

.
6
2
7
6
9
J
E
‘
0
2

.
Q
Q
C
S
S
C
'
E
Q

’
6
3
4
1
1
3
h
’
C
Z

0
5
7
3
.
8
6
.
0
0

.
1
5
0
7
5
5
'
0
2

-
0
2
4
’
6
8
5
'
0
‘

0
1
‘
“
8
1
E
-
°
2

.
1
2
1
‘
5
5
’
0
0

-
6
1
8
9
4
6
5
'
0
2

.
3
4
6
4
3
t
-
0
4

.
0
1
0
4
9
8
£
-
°
2

.
2
9
4
‘
3
E
‘
c
c

6
3
7
0
9
9
8
'
0
3

’
o
l
4
u
5
Q
E
'
C
4

o
‘
J
J
S
O
E
'
O
J

.
5
6
’
5
C
b
'
0
1

'
0
1
:
”
;
9
6
'
0
2

0
1
9
5
4
1
5
'
0
‘

‘
-
.
’
o
r
a
4
e
-
0
3

.
1
2
3
4
7
E
°
0
J

0
3
4
,
6
7
.
-
.
0
3

.
O
S
Z
J
O
Z
E
'
C
S

.
?
1
0
4
n
L
-
C
3

6
.
9
1
4
7
L
’
C
1

-
.
‘
7
1
‘
7
L
'
0
3

0
(
7
9
1
‘
S
L
.
1
5

.
.
1
9
’
7
1
5
’
1
3

o
‘
9
1
"
L
'
¢
1

‘
n
3
9
V
1
‘
3
t
°
3
5

.
5
7
5
2
1
i
‘
5
5

'
.
?
7
(
3
5
t
‘
f
3

.
5
4
1
1
0
C
'
C
1

o
1
3
?
1
0
(
’
0
3

-
.
?
3
‘
6
5
[
°
9
5

.
2
7
2
5
5
L
'
C
3

0
‘
3
I
O
9
L
°
:
1

.
5
7
6
6
3
L
‘
0
3

.
1
1
’
1
C
C
'
0
4

0
5
7
0
‘
7
5
-
0
3

0
,
2
F
e
7
t
-
0
1

0
‘
1
1
6
‘
C
’
0
3

’
o
'
l
V
S
G
C
'
O
S

0
‘
1
5
1
3
E
'
3
3

.
7
4
5
6
4
E
'
0
1

'
.
"
"
4
h
°
0
3

0
1
4
2
'
Q
C
'
0
4

.
O
O
O
U
1
S
E
‘
0
3

0
:
3
“
5
6
5
-
0
1

0
.
5
9
6
1
6
.
°
3

o
J
Z
O
O
I
E
°
J
C

.
1
0
2
6
4
6
-
0
2

6
7
7
4
7
1
5
‘
0
1

0
1
7
0
.
3
6
.
0
0

.
7
4
2
4
5
E
'
0
1

0
1
‘
5
3
‘
£
°
0
2

.
2
1
9
6
9
E
‘
0
0

6
5
1
9
3
1
E
°
0
0

.
2
2
2
3
‘
E
°
0
0

0
9
1
7
1
5
E
-
0
3

.
4
9
4
4
8
6
'
g
l

.
1
1
3
3
0
5
’
0
3

0
‘
6
8
5
4
6
'
9
1

.
1
1
5
7
5
F
'
L
2

6
1
3
3
9
0
6
9
g
fl

6
3
1
.
3
5
E
9
0
0

0
1
3
3
1
1
E
.
U
(

0
6
9
1
7
3
E
'
0
3

0
2
8
7
3
7
E
-
0
1

6
6
5
4
9
1
5
'
9
1

.
2
6
9
1
3
5
‘
0
1

.
7
9
6
5
4
L
‘
1
3

0
6
6
7
‘
3
f
.
0
1

.
1
5
8
6
2
E
0
6
0

6
6
8
1
5
3
5
°
0
1

o
‘
,
8
8
‘
£
’
”
3

0
1
6
2
5
9
£
-
U
t

0
3
7
'
7
1
5
.
1
1

.
1
5
2
3
9
E
-
0
1

o
‘
S
S
G
S
h
‘
O
J

0
2
7
9
3
3
E
'
U
1

6
6
6
5
5
1
E
°
0
1

.
2
6
5
5
5
5
'
L
1

6
1
2
7
.
5
1
‘
0
3

.
1
1
3
9
6
5
'
1
1

.
2
c
4
a
n
e
-
c
t

0
1
1
5
2
"
0
1

o
1
I
7
u
‘
C
'
b
3

.
1
1
1
;
9
l
'
¢
1

.
2
6
‘
4
8
F
-
0
1

.
1
1
1
9
6
1
‘
0
1

0
1
.
5
5
‘
L
.
U
J

6
1
2
3
.
1
F
°
b
1

c
2
°
1
°
”
E
'
C
1

0
1
:
5
1
8
5
’
J
1

0
9
1
‘
9
1
5
'
0
.

o
1
.
2
4
°
€
‘
.
1

.
2
3
5
9
5
6
'
0
1

.
9
7
5
5
3
L
.
0
2

0
2
5
6
2
0
[
.
0
3

0
1
5
4
4
2
E
’
1
1

0
3
°
2
9
9
€
°
u
1

0
1
€
9
7
1
E
'
0
1

.
Z
e
fl
a
n
E
-
u
S

0
1
7
.
3
fl
6
'
0
1

o
‘
.
2
2
2
£
'
¢
1

.
1
6
7
5
5
5
'
0
1

6
3
2
2
5
1
5
‘
0
3

0
2
1
2
1
7
E
’
J
1

6
5
.
6
5
5
5
'
0
1

0
2
1
5
‘
7
6
‘
1
1

0
2
0
5
0
0
5
0
0
1

0
2
1
0
0
0
5
‘
0
1

.
2
1
5
0
0
5
3
0
1

.
2
3
0
0
0
E
0
0
1

0
2
2
5
0
0
5
0
c
1

0
2
3
9
0
3
‘
0
0
1

0
2
3
5
0
0
E
‘
C
1

0
2
S
O
O
U
E
‘
0
1

0
2
‘
5
0
0
5
0
0
1

0
2
5
0
0
6
E
°
0
1

O
Z
S
S
O
O
E
’
O
1

0
2
6
3
0
0
6
9
0
1

0
2
6
5
0
0
E
°
0
1

0
2
7
0
0
0
5
0
0
1

0
2
7
S
O
C
E
°
0
1

.
2
8
0
0
0
E
0
C
1

6
2
5
5
0
0
E
°
C
1

0
2
9
3
0
0
5
0
0
1

.
2
9
‘
0
3
5
0
0
1

.
3
0
3
0
0
5
‘
0
1

0
3
0
5
0
3
5
9
0
1

0
3
1
3
0
0
E
‘
c
1

.
3
1
5
0
3
5
‘
0
1

I
S
Z
O
O
O
E
°
C
1

6
3
2
5
0
0
5
0
0
1

0
3
5
3
0
3
E
9
C
1

I
3
J
‘
O
L
E
O
C
1

O
3
Q
0
°
9
E
°
c
1

0
3
4
5
0
1
E
’
0
1

l
3
5
3
0
0
E
.
c
1

0
3
5
R
O
O
E
°
C
1

0
3
6
0
0
0
£
°
0
1

0
3
0
‘
0
3
£
°
b
1

.
3
7
O
C
U
E
0
0
1

.
3
7
‘
0
t
E
0
C
1

0
3
5
3
0
3
£
.
0
1

.
3
6
‘
0
0
k
0
f
1

6
3
9
3
0
5
5
°
C
1

0
3
9
‘
0
0
E
9
T
1

.
4
9
3
0
5
t
o
fl
1

.
¢
0
§
n
u
k
o
r
1

0
‘
1
8
0
4
E
0
9
1

.
4
1
‘
0
3
£
°
E
!

o
‘
Z
U
O
L
E
’
n
1

.
4
2
5
0
u
t
0
6
1

0
‘
3
3
0
4
E
9
{
1

.
4
3
‘
2
9
E
0
9
1

0
‘
4
J
U
U
E
.
P
1

0
4
4
9
0
3
L
°
C
1

l
‘
5
3
c
0
£
°
’
1

0
‘
5
‘
O
D
E
°
C
1

.
4
0
3
0
0
k
9
'
1

o
‘
O
s
O
J
E
O
E
1

0
4
7
3
0
0
5
0
0
1

.
4
7
‘
C
a
E
9
0
1

.
4
U
C
O
U
E
9
0
1

0
4
5
5
0
0
E
°
0
1

0
4
9
3
0
5
6
9
0
1

I
‘
9
s
0
3
5
9
0
1

.
5
0
0
0
0
5
’
9
1

.
S
O
P
O
O
E
‘
O
l

 

0
3
2
9
.
8
5
.
0
0

.
1
0
2
6
‘
E
-
0
2

.
7
7
4
7
1
E
0
0
1

.
1
7
6
4
8
E
0
0
0

o
7
‘
2
‘
5
E
'
0
1

0
. .
2
1
9
6
9
t
0
3
c

0
5
1
°
3
1
E
0
3
°

6
2
2
2
3
4
5
0
3
6

.
9
1
7
1
S
E
.
9
3

.
4
0
4
C
8
F
0
9
1

0
1
1
3
3
3
5
0
0
0

.
4
6
8
5
‘
5
-
0
1

0
.

.
1
3
0
9
é
f
o
fl
l

.
3
1
0
3
5
E
0
3
0

0
1
3
3
1
1
5
0
3
"

0
6
°
1
7
3
r
’
9
3

.
2
8
7
3
7
P
-
0
1

0
6
5
4
9
1
E
.
,
1

.
2
6
9
1
6
E
-
9
1

P
. .
6
6
7
4
3
F
-
"
1

.
1
5
8
6
2
F
0
J
0

.
6
8
1
5
0
£
~
0
1

6
4
0
6
0
4
6
-
3
3

.
1
6
2
5
9
F
-
0
1

6
3
7
3
7
1
7
-
3
1

.
1
5
2
3
9
E
-
0
1

U

.
8
7
9
3
3
E
-
0
1

.
6
6
5
5
1
F
-
3
1

.
Z
F
S
O
S
F
-
3
1

0
1
2
7
9
5
F
’
3
3

.
1
1
5
°
¢
E
-
D
1

.
2
5
‘
5
6
7
0
3
1

.
1
1
I
B
Z
F
-
J
1

0
1
1
1
°
°
*
-
P
1

0
2
6
“
P
F
'
9
1

0
1
1
1
9
§
F
O
J
1

U

0
1
2
3
1
1
V
-
0
1

6
(
9
1
9
4
;
-
9
1

o
1
2
5
1
b
F
-
C
1

0
9
1
1
0
1
r
'
3
4

o
1
U
Z
u
V
E
’
9
1

0
2
3
5
5
5
;
.
J
1

.
9
7
5
5
3
F
-
0
2

0
1
0
4
‘
2
1
'
9
1

.
3
°
£
6
9
E
-
5
1

0
1
6
°
7
1
E
'
5
1

0
2
9
0
8
7
1
0
3
3

.
1
7
‘
3
c
F
-
3
1

.
4
h
t
2
2
F
-
J
1

.
1
6
7
5
5
F
-
0
1

0
-

0
2
1
2
1
7
5
-
3
1

0
5
0
6
3
5
F
-
O
1

.
2
1
‘
4
7
5
-
0
1

11124
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OF DECAY COEFFICIENTS
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APPENDIX C

FORTRAN IV PROGRAM FOR ESTIMATION

OF DECAY COEFFICIENTS

The following FORTRAN IV program is for deter-

mining the decay coefficient of the estimated power

 spectral function. The program is composed of the main

program, MAIN, and subroutines PEAK and LEASTSQ.

The main program, MAIN, defines only the number

of different sets, N.

Subroutine PEAK searches the peaks in the spec-

trum function whose magnitudes are greater than FTLN

(FTLN was assumed to be 0.02 in this study) after the

highest peak in the data was found. First, the data is

scanned and the highest peak is determined and stored.

At this point, the following peaks, A(I), whose magni-

tudes are greater than 0.02 are found and stored along

with the corresponding frequencies, B(I).

Subroutine LEASTSQ determines the standard devi-

ation, STAND, of A(I), and then calculates the decay

coefficient, S, and K0, BE, in (5.5.1) by using the least

square regression method.
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APPENDIX D

FORTRAN IV PROGRAM FOR CALCULATION

OF THEORETICAL POWER SPECTRUM

DENSITY FUNCTIONS

The following FORTRAN IV program is for the cal-

culation of theoretical power spectrum density functions.

The program MAIN first defines the width W and

the height A of a rectangular surface element.

D is defined as the distance between two rectan-

gular elements.

CF is the constant which is used to correlate

theoretical spectrum with estimated spectrum values.

S(M) is the theoretical spectrum values calcula-

ted from equation (5.7.7, b).

SN(M) is the normalized theoretical spectrum

values [equation (5.7.12)].
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