STOCHASTIC REPRESENTATION OF SURFACE
ROUGHNESS AND TS RELATION TO MANNING
“n" FRICTION COEFFICIENT

Dissertation for the Degrse of Ph. D.
MICHIGAN STATE UNIVERSITY
GUROL DINC
1875



This is to certify that the

thesis entitled

STOCHASTIC REPRESENTATION OF SURFACE
ROUGHNESS AND ITS RELATION TO MANNING
'']n'" FRICTION COEFFICIENT

presented by

Gurol Dinc

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Agricultural Engineering

/%ﬂ% 9 g 112
ajor professor

Date_éLﬁg‘_Qa_z /9_/‘5/

07639






ABSTRACT
STOCHASTIC REPRESENTATION OF SURFACE

ROUGHNESS AND ITS RELATION TO MANNING
"n" FRICTION COEFFICIENT

By

Gurol Ding

For steady state fully rough turbulent flow, the
Manning equation, which relates the average velocity of
flow to hydraulic radius of the conveyance system and the
slope of the energy grade line, is widely used. One of
the parameters of the Manning equation, the "n" friction
coefficient, is related to the boundary characteristics of
conveying surfaces. A concise way of relating the "n"
values to a particular boundary configuration has not been
available up to the present.

The current investigation proposes an approach to
defining the relationship between the friction coefficient
and the surface boundary. Spatial distribution of surface
boundary protrusions is related to the resistance to flow.
The surface protrusions are assumed to be a realization of
a stochastic process with respect to distance. The tech-
niques of autocorrelation and power spectrum analysis were

used to describe the process.



Gurol Ding

The power spectrum functions of various surfaces
with known "n" values, used in previous investigations,
were analyzed. For each surface, a parameter, K, expo-
nential decay coefficient, related to the spectrum
function, was determined. A parabolic relationship is
hypothesized between the decay coefficient and the cor-
responding Manning friction coefficient.

The power spectrum functions of several conveying
surfaces commonly encountered in practice were experimen-
tally determined in the laboratory. From their spectrum
decay coefficients, corresponding Manning "n" friction
coefficients were predicted by using the parabolic rela-
tionship. The predicted values of "n" agree well with the
approximate "n" values given in the literature.

The methodology proposed appears to provide a
good estimate of the Manning "n" for surfaces having high
or medium roughness concentrations. The accuracy of the
estimates is less for surfaces of low roughness concen-

trations.
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1. INTRODUCTION

Three classical formulas have been widely used in
engineering practice to model the average velocity of
turbulent steady state fluid flow at a cross section of a
water conveying system. The three formulas are: the
Darcy-Weisbach equation, the Chezy equation, and the Manning
equation. The Darcy-Weisbach equation is mainly used for
flow in closed conduits yhereas the latter two are used for
open channel flow.

One of the variables involved in defining the
average velocity in all three formulas is attributed to
the boundary roughness characteristics of the conveying
surfaces and is known as resistance or friction factor.
Initially, with the acceptance of these formulas by
engineers and scientists early in this century, it was
thought that the friction coefficients were constant for
a particular surface boundary regardless of the type of
flow condition. Later, however, it was shown by many
investigators that the friction coefficients would vary as
much as 50 percent from their designated constant values,
depending upon the nature of the flow. It thus became

necessary to understand the hydraulic mechanism relating



a type of boundary roughness and the nature of flow
occurring over the roughness.

The first rational formulas for hydraulic rough-
ness were established by Nikuradse (1933) who utilized the
boundary layer theory concepts of Prandtl and VonKarman,
in his experimental work in pipe flow. He discovered
that the friction coefficients are not functions of
surface boundary characteristics alone, but are also
functions of Reynolds numbers for partly rough turbulent
flow while the friction factors remain constant only for
fully rough turbulent flow. His definition for relative
roughness in terms of sand grain height and validity
ranges of the friction coefficients, as well as his pro-
posed formulas, have been universally accepted and have
led many researchers to determine an artificial standard
for roughness in open channels.

Probably due to impracticality involved in regen-
erating Nikuradse's sand grain roughness in open channels,
the investigators in this field have attempted to determine
an artificial standard for roughness by using idealized
geometric configurations as roughness elements in either
one-dimensional form (strip roughness), or two-dimensional
form (patterned roughness). For both cases, the data
obtained were so scattered that the resultant derivations
were either unreliable or too complex for any practical

usage. Some researchers (Herbich and Shulits, 1964)



pointed out correctly that the magnitude of artificial
roughness elements used in previous investigations were
greater than the laminar boundary layer thickness. Because
of this, the use of Nikuradse's assumptions, as discussed
in Section 2.2, to correlate the roughness elements to
the resistance was erroneous. Many different ways of cor-
relation were offered instead, such as roughness concentra-
tion, projected roughness area, drag coefficient, etc.
However, for each case, the results presented were beyond
the simplicity that practical applications deem necessary.
There is no doubt that previous investigations on
this subject contributed much toward understanding the
mechanism involved between surface roughness elements and
flow resistance. The previous work has been sufficient
to describe friction factors in practice provided that the
surface is the same form as the investigated surface from
which the experimental data were obtained. Since a general
and concise way of defining roughness has not been devel-
oped, difficulty arises especially when new surfaces are
encountered in practice. Insuch a case, the engineer either
determines the friction factor in the field or in the
laboratory, using experiments, a practice which has been
proven to be costly, or he estimates the roughness, a
practice requiring a high degree of engineering judgment

and one which is often risky.



A concise way of explaining a functional rela-
tionship between the concentration of roughness elements
and the resistance caused by those elements can be proposed
if one visualizes certain quantitative aspects of the
roughness. It is fairly evident that increasing roughness
element concentration increases resistance up to a maximum
point, beyond which an increase in concentration decreases
resistance. A quantitative way of evaluating this physical
phenomenon would be to consider the contribution to the
variance resulting from specific special frequencies since
the distribution of the frequencies is a measure of the
concentration of the roughness elements.

The method used in this study is to obtain frequency
decompositions of the variance for particular surfaces for
which Manning "n" friction coefficients have already been
known, and to correlate the decomposition to corresponding

friction factors.



2. REVIEW OF LITERATURE

For three-dimensional incompressible fluid motion,
the flow field is described by the pressure P, and by the
velocity vector
Tu + Jv + kw' (2.0.1)

-
V=1 +

where
u, v, w'are the three orthogonal components of
the velocity vector in x, y, and z directions
of cartesian coordinates, and
+ > . .
1, J, k are the unit vectors in x, y, and z

directions.

To determine the four quantities there exist four
equations; namely, three equations of motion, and the
continuity equation.

The equation of continuity states that the mass of
a unit volume is constant and equal to summation of the
mass entering and leaving the unit volume per unit time.

The equations of motion are directly derived from
Newton's Second Law which states that the sum of the
external forces acting on a body equals the product of the
body's mass and its acceleration. There are two types of
forces encountered in fluid motion; namely, gravitational

5



forces, acting throughout the mass of the body, and the
pressure and friction forces acting on the boundaries of
the body.

If the condition of equilibrium is assumed in
fluid motion such that for each particle there exists
equilibrium between body, surface forces and friction
forces, then the equations of motion for incompressible

fluids can be written,

2 2 2

ow du du , dul _ opP 3%u ., 3%u . 3%u)
Plae Y uax Y Vay YW 5| "X x*t¥ 2t 2t 2
9x dy 9z

2 2 2
v dv dv dv 3p 3% , 3°v |, 3%)
Platus—+vea—+w | =Y=-5—-H + +
[at 9x ) 32] y [axz 3y2 az2J
2 2 2
dw' dw' dw' L, 9w'] _ ap %' . 3%w' | 3w
"[at tusk tVs3 *"’azJ'Z‘az‘“{az* 2 ! 2 |
X oy 0z
(2.0.2. a, b, c)
where
p = density of the fluid,
t = time,
X = body forces in x-direction,
Y = body forces in y-direction,
Z = body forces in z-direction, and

U = viscosity.



These are the well-known differential equations of
the fluid mechanics, namely, Navier-Stokes equations. The

continuity equation

ou v ow' _
=t 3y + == =0 (2.0.3)

along with the Navier-Stokes equations with known body
forces consist of a set of four equations for the four
unknowns u, v, w, and p. The solutions to these equa-
tions should satisfy the boundary and initial conditions
for a particular physical flow phenomenon. For viscous
fluids, the condition of no slip on solid boundaries must
be satisfied, i.e., tangential and normal components of
the velocity must be equal to zero.

There exists no general technique for the inte-
gration of the Navier-Stokes equations due to the complex
mathematical difficulties encountered in the process
(Schlichting, 1968). However, for some special cases such
as Covette flow between two parallel walls, Poiseville
flow through a circular pipe, etc., the exact solutions of
the differential equations are known.

In the general sense, the approach to a solution
of the Navier-Stokes equations has been to first consider
the two limiting cases of viscosity, namely, very large and
very small viscosities. In this manner the required mathe-

matics are considerably simplified.



For motions with very large viscosity, or with
very small Reynolds number, the viscous forces are far
greater than the inertia forces. 1Inertia terms in the
Navier-Stokes equations can therefore be neglected and
only the terms containing the viscous forces must be
retained. This results in a considerable mathematical
simplification and solutions to these equations for certain
cases exist.

For motions with very large Reynolds number, or
with very small viscosities, viscous terms in the Navier-
Stokes equations cannot be omitted, since such an assump-
tion implies the elimination of the essential boundary
condition (no slip at the wall). The resultant simplified
Navier-Stokes equations have no physical meaning. In order
to retain the boundary condition, Prandtl (1904) introduced
the concept that the viscous effect for this type of
motion is confined in a thin layer adjacent to the wall
and the rest of the motion field is free from the effects
of viscous forces. 1In the first region, which is known
as the boundary layer, the motion satisfies the Navier-
Stokes equations whereas in the external region the motion
is defined by the equations of potential flow theory.

The division of the flow field into two distinct flow
regimes considerably reduces the mathematical complexities
and increases the applicability of the equations to a

wide spectrum of flow cases. This concept contains the



essence of the boundary layer theory approach. Pertinent
portions of this theory will be reviewed in the forthcoming
sections.

For very large Reynolds numbers at which turbulent
fluid motion exists, the velocity and pressure components
of the fluid motion do not remain constant at a fixed
point with time in the flow domain. Rather, they exhibit
irregular fluctuations with respect to time. Consequently,
the velocity and pressure variables of the motion are
described in mathematical terms as consisting of two com-
ponents; namely, the average component and the fluctuating
component.

The same Navier-Stokes equations (2.0.2) are used
to describe fluid motion for turbulent flow, except that
the velocity and pressure terms are interchanged with their
time averaged components and additional stress terms, caused
by the velocity fluctuation component, are introduced in
the right-hand side of the equations. The "turbulent"
Navier-Stokes equations, in addition to being extremely
complex, cannot be solved rationally, since the relation
between the mean and the fluctuation components are not
known mathematically (Schlichting, 1968). Such relations
are obtained only empirically and are actually the basis
of turbulent boundary layer theory.

As will be discussed in the following sections,

boundary layer theory is not valid for certain types of
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turbulent flow (i.e., fully rough) conditions. For such
flows,‘the relationship between the pressure gradient and
the velocity can only be determined empirically (Schlicht-
ing, 1968).

For this reason, numerous empirical formulas were
developed to describe fluid flow through closed or open
conveying systems in the late 19th century. Among these
only three have been recognized and widely used by the
modern engineer. The head loss or slope of the energy
grade line for a length L for fully developed uniform flow
in open channels and smooth flow and partly rough flow in
closed conduits has been expressed by the Darcy-Weisbach

formula:

o]

I

H-\
]

2
%g— (2.0.4)

where
H = total head loss, change in elevation of the
energy grade line over the length L,

fl

Darcy-Weisbach friction factor,
L = length of the conveying system,
vV = veloéity,

R = hydraulic radius, and

g = acceleration of gravity.

For closed conduits, 4R in equation (2.0.4) is

replaced by the diameter of the conduit.
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Another widely used equation for uniform flow in

open channels is the Chezy formula:

V = CV/RS, (2.0.5)
where

C = Chezy friction coefficient, and

S = slope of the energy grade line.

Perhaps the most well-known and used formula for
relating the average velocity of flowing water to the
hydraulic radius and slope of the energy grade line for
uniform flow in open channels and for rough flow in closed
conduits is the Manning equation which is wrongly credited

to Robert Manning (1891). The relation is

vV = 1'386 r%/3 gl/2 (2.0.6)
where
n = Manning friction coefficient.

The origin, development, and evolution of these
formulas, as well as others, will not be reviewed in this
study. Compfehensive studies on this subject were done
by Houk (1918), and especially on Manning by Chow (1955),
Powell (1968), and Williams (1970).

With the appearance of these formulas in hydraulics,

an eagerness developed among scientists to understand the
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physical interpretation of the relationships between the
variables involved. This was motivated by a lack of con-
fidence in these formulas because no one knew the flow
conditions for which the equations were valid in the

early part of this century. Once the ranges of application
of the equations were determined, scientists and engineers
began to wonder about the mathematical relationships
between the friction coefficients and the surface over
which flow occurred. Although numerous studies have been
conducted, a concise mathematical description of the
resistance coefficients has yet to be developed.

Most of the research on resistance coefficients to
date has been carried out by creating artificial roughness
elements and determining the behavior of coefficients
under controlled conditions, or by attempting to determine
behavior of the coefficients through application of boundary
layer theory, or through a combination of both of these
approaches. Selected, important papers will be reviewed
in the pertinent sections of this chapter, and the
resistance coefficients C, £, and n will be referred to
as they appear in the original papers.

2.1. Experimental Studies on Roughness
of Deterministic Surfaces

The concept of relative roughness was initiated by
the famous work of Nikuradse (1933) who determined values

of f over the range of laminar flow to fully turbulent flow
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with Reynolds numbers exceeding 100,000 for three differ-
ent sizes of pipes. Sand of uniform diameter was used as
a roughness element. The mean diameter ks of sand was
chosen such that ks/r was the same for the three different
pipes, where r is the radius of the pipe. He defined the
relative roughness as ks/r. From a logarithmic plot of
each r/ks, the reciprocal of the relative roughness,
versus the Reynolds number and friction coefficients f',
he identified three stages of flow: the first stage cov-
ered the laminar flow region and that part of the turbulent
flow region in which the relative roughness has no effect
on the resistance. For the laminar flow region, the

friction coefficient was defined by the following relation:

_ 64
f' - ﬁ (2.1.1)
where
Re = the Reynolds number.

For the part of the turbulent flow unaffected by
relative roughness, the Blasius (1913) law of resistance

applies:

g1 = 9.316 (2.1.2)

In the second range, termed the transitory range,

where a comparatively abrupt transition takes place from
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smooth flow to rough flow, the effect of relative roughness
on resistance is noticeable in that the friction coeffi-
cient increases with increasing Reynolds numbers.

In the third range, the roughness coefficient is
independent of the Reynolds number. In this range the
friction factor is expressed by the following relationship

given by Nikuradse (1933):

1 _ r
—_—=1.74 + 2 loglo E; . (2.1.3)

VET

The equivalent sand-grain roughness, ks' suggested
by Nikuradse as a relative measure of surface roughness,
has served as a reference for numerous subsequent inves-
tigations of frictional resistance in closed conduits and
open channels for partly rough and fully rough flow con-
ditions.

The transition zone between smooth and rough flow,
where the resistance depends on both the Reynolds number
and the relative roughness, was not conclusively explained
by Nikuradse and was the subject of studies done by Cole-
brook and White (1937) and Colebrook (1939). It was
experimentally determined that the transition process is
gradual rather than abrupt. Colebrook suggested as a

transition formula for pipes:

k
1 s 2.51
- - = -2 log + —_— (20104)
VE 10 l?.JD Re /f']
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where

D = the diameter of the pipe.

Streeter (1936) used several roughness elements
consisting of grooves cut spirally into pipes, to deter-
mine the effect of the shape of roughness elements on the
frictional resistance. Converting the roughness elements
to their equivalent sand-grain roughness by the law of
similitude, Streeter concluded that the shape of the
roughness elements have as much effect on the resistance
as the depth of the roughness elements. Working with the
Streeter type artificial roughness element on rectangular
channels, Skoglund (1936) confirmed the applicability of
a Nikuradse type equation (2.1.3) for predicting the fric-
tion factors for fully developed turbulent flow under the
range of conditions used in his tests.

Adopting Nikuradse's methodology for pipes and
using Bazin's (1865) experimental data on open channel
flow, Keulegan (1938) derived a formula for fully developed
turbulent channel flow. He confirmed that the resistance
to flow in a rough channel having a defined degree of
roughness is equivalent to the resistance to flow in a
pipe having the same degree of roughness and hydraulic

radius. Keulegan's formula is:

6.25 + 5.75 loglo (R/kg) . (2.1.5)

Qlla
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Using square steel strips across the sides and

bottom of a channel as roughness elements, Powell (1946,
1950) conducted a series of experiments on eleven types

of roughness configurations. From his experimental find-
ings he concluded that the resistance to flow in a channel
is not the same as that in a pipe because of the effect
of the free surface and of the angles between the walls
and the bottom of the channel, and between the side walls
and the free surface. Considering these facts along with
(2.1.5), Powell developed an expression for fully devel-

oped rough flow in open channels:
C = 42 1og10 (R/E) (2.1.6)

where

E = measure of roughness.

Although the roughness parameter E was assumed as
the same as Nikuradse's ks, it was speculated that it would
be 4 to 10 times greater than Nikuradse's ks' depending upon
the nature of the channel. For the transition zone between
smooth and rough channels where the resistance depends both
on Reynolds number and the relative roughness, Powell

(1950) proposed the formula

C = -42 log10 (C/Re + E/R). (2.1.7)
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Similar experiments were performed by Johnson
(1944) using rectangular sills as roughness elements. He
found that the spacing and the height of the elements had
a considerable effect on resistance. The maximum resist-
ance was obtained when the longitudinal spacing-to-height
ratio was between 2 and 10. Robinson and Albertson (1952),
keeping this ratio at 10, experimented on various sizes of
geometrically similar roughness baffles in open channels.
For a particular roughness, they demonstrated that Chezy's
resistance coefficient C depends only on the ratio of flow
depth to baffle height assuming the presence of fully
developed turbulent flow conditions. A resistance formula

for this particular flow type was proposed with

C = 26.65 log10 (1.891 d/a) (2.1.8)
where

d = mean depth of flow, and

a = height of artificial roughness elements.

For natural channels, in which resistance to flow
is caused by more than one type of roughness element,
Nikuradse's grain-type roughness definition has been found
inadequate. The relative size and the arrangement of the
roughness elements play an important role in the boundary
characteristics of the channel. Investigations on this
type of roughness started as early as the late 1940s.

Einstein and Banks (1950), using concrete blocks and metal
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pegs as roughness elements in a flume, found that the
total resistance exerted by combined types of roughness is
equal to the sum of the resistance forces exerted by each
type individually. A series of equations was developed
for resistance exerted by the bed of the channel in terms
of the density of roughness elements and the square of the
average velocity of the flow.

Flow conditions for both the submerged and protrud-
ing cubical roughness elements with various arrangements
were considered by Herbich and Shulits (1964). It was
found that systematic relationships exist among Manning's n,
Reynolds number, Froude number, and a special quantitative
parameter of the roughness pattern. This parameter was
said to be the ratio of the projected area of the roughness
elements in the direction of mean flow to the horizontal
area of the channel. The relationship is given in graphical
form.

Rouse (1965) and Koleseus and Davidian (1966)
emphasized the nature of the concentration of roughness
elements as a factor influencing surface resistance.
Koleseus and Davidian concluded from the result of an
extensive investigation on previous definite roughness
studies that the ratio of projected roughness areas to
the total floor area is, within some range of density, a
satisfactory measure of roughness concentration. Fur-

thermore, it was claimed that a simple relationship,
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independent of roughness shape, exists between the rough-
ness‘coefficient and the concentration which is applicable
to both turbulent open and closed conduit flow. For
various values of roughness concentration, Roberson and

Chen (1970) obtained plots of the functions
1//£" -2 log (R/a) versus Re/f' (R/a). (2.1.9)

For sand-bedded channels in which the roughness is
principally related to the formation of ripples, Vanoni
and Hwang (1967) introduced the areal concentration of
ripples as an important variable in computing the total
resistance. They expressed the friction factor f' in
terms of the height of the ripples, the hydraulic radius,
and the areal concentration of ripples. Chang (1970),
assuming the same principles, divided the total resistance
into two parts, a portion due to grain-roughness and a
portion due to form-roughness. He suggested that grain-
roughness may be determined directly by using Nikuradse's
formula (2.1.3) while form-roughness could be calculated
by procedure similar to that proposed by Vanoni and Hwang.

Resistance to flow in corrugated pipes produces a
different type of friction factor-Reynolds number relation-
ship. This phenomenon was first demonstrated by Neil
(1962) who found that the magnitude of f' was proportional
to the number of square feet of the relative corrugation

depth. Working with corrugated plastic tubing, Dinc et al.
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(1971) demonstrated that depth, spacing, and shape of cor-
rugations affect the resistance, and even in fully developed
turbulent flow they observed that the Manning n varied to
some extent, contrary to the common belief that the fric-
tion factor is constant at that region.

2.2. Roughness Studies Based on Concepts
From Boundary Layer Theory

Prandtl (1904) discovered that for most applications
of fluid flow, the influence of viscosity is confined to
an extremely thin region adjacent to the rigid boundary
surface. This region is known as the boundary layer.
The fundamental assumption of the boundary layer approxi-
mation is that the fluid particles next to the rigid
boundary are at rest. Hydrodynamically} the velocity
boundary layer is defined as that region within which the
flow velocity ranges from zero, at the rigid boundary, to
a constant value, the free stream velocity. Boundary layers
may be either laminar or turbulent. The laminar boundary
layer is always present over a rigid body when the
Reynolds nﬁmber in a pipe flow situation is less than 2000
and this type of flow is termed laminar flow. At Reynolds
numbers greater than 2000, the laminar boundary tends to
become unstable and a new type of boundary layer develops
simultaneously with a transition to turbulent flow. This
layer is called the turbulent boundary layer. Since most

flows in engineering practice are turbulent, no attempts
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will be made to discuss the concept of the laminar boundary
layer theory in this review. The turbulent boundary layer
theory is not completely formulated in the mathematical
sense. The theory is based on semi-empirical relationships
derived from correlating experimental observations.
Researchers have observed that the turbulent boundary

layer consists of two principal regions: an inner and an
outer region. In the inner region, the characteristics of
the rigid surface are important factors in determining the
form of the velocity profile, whereas in the outer region
the velocity profile surface and the history of the layer
are important. The velocity distribution in the boundary
layer may be expressed in either a logarithmic or a power
law form. In the inner boundary layer, the logarithmic

law takes the general form given by the ASCE Task Force
Report (1963),

1

=31 ' 4+ p 2.2.1
- =} Yo ( )

whereas the logarithmic law for the outer layer is

v-ov__1 y'
v, - % loge 3 + c (2.2.2)
there
v = y component of the velocity,
k = Von Karman constant,

vertical distance from the rigid boundary,

9]
]
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<
]

free stream velocity,
b, ¢ = constants,

§ = boundary layer thickness,

/T
V, = friction velocity = 7? '

T = shear stress at the wall,
p = density of the fluid, and

Yo = roughness parameter.

The constants k and b are believed to be universal con-

stants. Von Karman's constant is usually assumed to be 0.4

while b is assigned the value 5.5. However, Vononi (1953)

and Sayre and Albertson (1961) found evidence that k is

not a constant, but is influenced by such factors as

suspended-sediment concentration and boundary roughness.

The constant c¢ varies with the nature of the flow and

frequently with the characteristics of the surface boundary.
The power law (ASCE Task Force Report, 1963),

when the Reynolds number is less than 100,000 for the

inner and outer regions, takes the form, for the inner

region

v 177

*
Vv

v
v: (2.2.3)

in which v is kinematic viscosity. For the outer region

1/7
= (%‘] . (2.2.4)

<<
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In an examination and reinterpretation of the
extensive measurements of Nikuradse, Martinelli (1947)
discovered three distinct regions associated with the
logarithmic representations of the boundary layer. For
v/V, < 5, he found that the data showed a linear dependence
between v/V, andy'Y o and he termed this region the laminar
sublayer. For 5 < v/V, < 30 and v/V, > 30 the general
logarithmic laws for the inner and outer regions appeared
to hold and these regions were termed the buffer layer
and the turbulent core, respectively. Martinell's inter-
pretation of the boundary layer is widely accepted.

The term Yo in (2.2.1) is attributed to the
roughness parameter of the rigid boundary. It is fre-

quently defined:

S . (2.2.5)

Yo = ks f(

From his experiments with sand grains as roughness
elements, Nikuradse (1933) discovered that for fully rough
turbulent flow f(kS V,/V) in (2.2.1) can be written in

the more general form:

v 1 y'
\7: = K loglo ks + B (2.2.6)
where
B = constant.
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From his experimental data Nikuradse found that
B is 8.5 for the flow condition used.

Nikuradse's sand grain definition of roughness and
his proposed equation, (2.2.6), have been widely accepted
by scientists and engineers and have been used to determine
the friction coefficient of the rigid boundary for the
particular flow under consideration.

Some scientists have argued, however, that since
the surface resistance is related to the development of
the boundary layer, the equations, derived on the assumption
that the boundary layer is fully developed, could not be
applied to types of flow for which developing boundary
layers exist. These types of flow commonly occur in
pracfice when the properties of bed materials change
drastically; i.e., for joints on concrete-lined channels,
changes from concrete to natural channels, changes in
surface materials on natural channel beds, etc. Another
type of problem arises from the application of universal
boundary layer equations when the surface protrusions are
the same or are of greater magnitude than the laminar
sublayer thickness. Here the protrusions tend to disturb
or break up the laminar sublayer and consequently increase
the shear stress on the wall. It has been experimentally
demonstrated (Herbich and Shulits, 1964) that for suffi-
ciently rough surfaces no predominantly viscous region

exists. The apparent shear forces are transmitted to the
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wall in the form of pressure drag on the protrusions.
Hence the basic assumptions of the boundary layer theory
collapse for this type of surface.

Realizing the fundamental fact that the main
source of friction loss in a fluid flowing over a suffi-
ciently rough surface comes from the generation, separa-
tion, and subsequent dissipation of vortices from the wake
and separation zones behind each roughness element,

Morris (1955) concluded that the longitudinal frequency of
each element is a significant parameter in the definition
of the turbulence structure and energy dissipation phe-
nomena. Morris suggested that ks can be determined in a
more fundamental way than that given by (2.2.6). To
define the surface geometry, two new parameters were
introduced: the roughness index, defined as A/a, the
ratio of the roughness element spacing to the height of
the projections; and the relative roughness spacing,
defined as r/A, the ratio of radius to the spacing of the
roughness elements. Based on these parameters, he
classified three types of roughness:

(1) Isolated roughness, where the surface pro-
trusions are far apart, as are the joints in concrete-
lined channels. The friction factor results from the form
drag on the roughness elements plus the friction drag on

the surface between elements. Thus, the roughness index
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A/a is a significant correlating factor for this type of
flow.

(2) Wake-interference roughness, where the rough-
ness elements are close enough to each other so that the
zones of separation and vortex generation and dissipation
associated with each element are intermingled. The fric-
tion drag on the wall does not contribute to the total
friction. Therefore the height, a, of the elements is
unimportant but the spacing A is of major importance, making
the relative roughness spacing r/A an important friction
correlating factor.

(3) Quasi-smooth roughness, where the roughness
elements are so close together that between the elements,
regions of dead water containing stable vortices exist.
The energy loss for this type of flow is largely due to
the width or depth of the elements. Hence, the roughness
index expressed either by A/a or A/w (w is the width of
the elements) is an important factor influencing the
apparent friction. Morris presented different formulas
for each type of flow.

Raju and Garde (1970), using the data collected
from their investigation along with those of Sayre and
Albertson (1961), and Basha (1961), checked the reli-
ability of the method suggested by Morris. They found
that the agreement of the experimental data with Morris'

approach is valid for certain types of flow although in
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some cases it may either over- or under-predict the
resistance. It was therefore concluded that the method

was not sufficiently reliable. Rather, Raju and Garde
proposed a more general form of flow equation on the
assumption that the total resistance is equal to the form
drag resistance of the roughness elements. Their empirical

relation is

1 _ d

C—’g = Cl lOg 3 + CZ, (2-2'7)

where
CD = drag coefficient based on free stream
velocity,
Cc C, = constants, and
l' 2

a = height of roughness elements.

The coefficients Cl and C2 were independently determined
for each roughness index, A/a.

For hydrodynamically rough surface boundaries where
roughness elements are protruding above the laminar sub-
layer, Sayre and Albertson (1961) introduced a new
roughness parameter ¥, which is considered a function of
both the relative size and the relative spacing of the
roughness elements. It was experimentally found that for
open channels, a logarithmic relationship exists between
the Chezy coefficient C, and the general roughness

parameter X. The relationship is
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C Yn
— SR 6.06 log - (2.208)
'/6 10 X
where
Yn = normal depth; i.e., depth of flow occurring

when the slopes of the energy gradient, the

water surface, and the bed are equal.

It was found that (2.2.8) gave more accurate results than
the Manning formula for the range of roughness and flow
conditions of the experiment. Sayre and Albertson's

(1961) approach was extended to study the natural roughness
effects in open channels by Mirajgaoker and Charlu (1963).
Using 2.5-3 in. average diameter stones as roughness
elements, they obtained a logarithmic expression similar

to (2.2.8) for their particular flow conditions. The

relationship found was

Y
= 5.72 log 5(-’—‘ + 1.72. (2.2.9)

Ql|a

2.3. Statistical and Stochastic
Roughness Studies

In considering the irregularity of natural channel
beds and their variation with respect to time and space,
some investigators (Limerinos, 1970; Nordin and Algert,
1966) have reasoned that the application of the results of
roughness studies based on geometrically deterministic

surfaces to stochastic surfaces would be erroneous; hence,
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the correct way to analyze nondeterministic roughnesses
would be to utilize the methods of statistics. The con-
cept of statistical analysis in roughness studies is rela-
tively new and consequently only a limited number of

works are available in the literature.

Statistical parameters for roughness studies were
first used by Leopold and Wolman (1957) who described the
Darcy-Weisbach friction factor, f', as a function of a
parameter, percentile size, which is defined as an inter-
mediate diameter of particle size that equals or exceeds
that of an arbitrarily chosen percentage of the stream
bed particles. Am empirical equation for the friction fac-

tor, £', was developed in the form

—L = 1.00 + 2.0 log & (2.3.1)
VET 84

where
d84 = the particle size, that equals or exceeds

the diameter of 84 percent of the stream

bed particles.

Similar equations were derived by Limerinos (1970) using
d16' dSO' and d84 as particle size parameters. In addi-
tion, Limerinos introduced a weighing parameter, dw,

which was defined by assigning a weight of 0.1 to le, a

weight of 0.3 to d50' and a weight of 0.6 to d84’ The
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-relations best fitting the experimental data were obtained
by using either d84 or 4.

Stochastic processes in roughness studies in
hydraulics were first used by Nordin and Algert (1966).
They assumed that the elevations of a dune bed along an
alluvial channel are random variables which are realiza-
tions of a stochastic process with respect to distance.
The techniques of autocovariance and spectral density
analysis were used to describe the properties of the
process. Based on the experimental observations, it was
reasoned that the velocity near the bed is influenced only
by the properties of the bed profile in the adjacent
upstream area. Therefore, the stochastic process was
represented by a Markov second-order linear model. The
first three values of the covariance function were used to
model the process. It was experimentally found that the
significant wave height for the dunes was related to the

variance by the following model:

H, . = 3(c2)1/2 (2.3.2)

1/3
where
H1/3 = average amplitude of the highest one-
third of the waves, and

variance of the dune elevation.

Q
"
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It was concluded that Hl/3 values, obtained from the first
three values of the covariance function for several dis-
charges, correlate well with the flow parameter of unit
discharge. However, Squarer (1970) demonstrated that a
second-order Markov model did not fit the bed configura-
tions in his investigation. Instead, parameters of
roughness elements, height, and length were obtained
directly from the autocorrelation and spectral density
function. The height parameter was given in terms of the
standard deviation of the bed elevation and the length
was given in terms of the moments of the spectrum.

The concept of using moments of the spectra to
define the roughness parameters was also introduced by
Burney and Higgins (1973). From their experimental
results a general model was developed to describe average

runoff depth from a watershed in the form

al = .o04 /@ R (2.3.3)

where
d™ = average flow depth,
Q = discharge,
S_ = slope per unit length, and

X = roughness parameter.

The roughness parameter X was postulated to be a function

of grain and form roughness and was obtained from the area
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spectrum of the watershed. It was suggested that X

could be described by the expression,

Mom;'/z
x = _— (2.3'4)
Ln

in which Ly is the average wave length perpendicular to
both the flow direction and flow depth, and Momo is the
first moment of the spectra. 1In terms of roughness con-

figurations the Mom;/2

value reflects a parameter of grain
roughness whereas Lh describes a parameter for the dis-
tribution of the roughness elements.

Assuming bed elevations of an irregular channel
are random variables, Chiu (1968) claimed that the Brownian
motion process is a suitable stochastic model to stimulate

roughness elements satisfying the following diffusion

type equation:

3_1.’_9_3;‘_*)_= E, m;ﬂ, (2.3.5)
oh
where
P(h,x) = the probability of the elevation of the
channel bed being < h at x,

x = lateral distance,
h = bed elevation, and
E_, = diffusion coefficient.
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The diffusion coefficient, Ex' was claimed to be a parame-
ter defining channel roughness. Furthermore, it was .
concluded that the probability P(h,x) could be obtained

by a Monte Carlo simulation without actually solving

equation (2.3.5).

2.4. Roughness Studies on Airport Runways

Another extensive type of surface roughness study,
unrelated to fluid mechanics, has been completed by aero-
nautical scientists. The studies are conceived with
runway roughness problems encountered by aircraft during
taxiing operations. 1In all the studies mentioned here, the
height of surface roughness elements along longitudinal
cross-sections of runways were assumed to be a random
variable and the techniques of autocorrelation and spectral
density analysis were used to describe the contribution to
the variance of the roughness elements as a function of the
spatial frequencies.

The use of power spectrum techniques in roughness
analysis was pioneered by Walls et al. (1954) who selected
two runways which were known to possess very different
degrees of roughness. The spectrum of the runways showed
that the rougher runway had 10 times the power of the
smooth runway at the longer wave lengths and about twice
the power at the shorter wave lengths. From this observa-
tion it was concluded that the behavior of the power

spectrum provided an important guide toward the establishment
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of criteria for runway roughnesses. In order to increase
the amount of data aQailable for studies of this nature,
additional contributions were made by Potter (1957) and
Thompson (1958) who obtained the power spectrums of
several different runways.

Reviewing previous investigations on runway rough-
ness, Houbolt et al. (1955) concluded three significant
points: (1) The power spectrum is a very concise way of
presenting runway characteristics. (2) A means is sug-
gested for establishing a criterion for judging the
severity of runway roughness. By holding the spectra of
satisfactory runways as references, a spectrum criterion
may be established for the construction of future runways
or for maintenance of existing runways in order to insure
satisfactory operations. (3) A "design spectrum” might
also conceivably be established which provides the basis
for solving taxiing problems.

Houbolt (1961) assumed a general model to represent

the power spectrum function

C

_ 3
Gx(Q) = —ﬁI (2.4.1)
Q
where
Gx(ﬂ) = roughness spectrum (ftz/radian/ft),
C3, m, = constants, and
2 = reduced frequency (radians/ft).
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Integrating (2.4.1) produces an expression for the variance
of roughness elements present in a wave length Lh and yields

an expression for standard deviation

{K—J . (2.4.2)

The maximum deviations of the roughness elements about a
mean line in length x' were assumed to be of V2 times s and
the resulting equation was regarded as a criterion of

smoothness,

K .
el = /2 [ETZETJ [g-J . (2.4.3)

By using a very good commercial runway as a criterion,
values oflﬁ_andpﬂ in (2.4.3) were obtained. After
arithmetical simplifications, (2.4.3) was converted to

the form
¢l = 0.00146 vx . (2.4.4)

It was concluded that good, acceptable runways should

meet this criterion.



3. THEORY

A hydrodynamically rough or fully turbulent flow
condition over a surface occurs either if the Reynolds
number is large causing the laminar sublayer to shrink,
causing the roughness elements to protrude through the
laminar sublayer, or if the roughness elements are
initially large enough so that they already protrude
through the sublayer regardless of the Reynolds number.
For this type of flow, for which Manning's formula or
Chezy's formula are mainly used as models, the friction
factors are independent of the Reynolds number. The inde-
pendence of the friction factors for the first type of
fully turbulent flow mentioned above was discovered by
Nikuradse (1933), and that for the latter type has been
accepted by most researchers after Nikuradse. The inde-
pendence of the friction factors on the Reynolds number
plays an important role in defining the relationship
between the roughness characteristics of a surface and the
corresponding flow resistance. The independence hypothesis
implies that the only variable affecting the resistance to
flow is the roughness makeup of the surface; i.e., the
concentration of the roughness elements constituting a

surface. One possible way to correlate the friction factor

36
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to the surface configuration would be to first describe
the surface realistically, then analyze the frequency
distribution of the concentration of the surface elements.
The Review of Literature stated that some
researchers have concluded that the roughness of a water
conveying surface is made of local elevation of surfaces
which are, in nature, nondeterministic. For this reason,
a mathematical description of the roughness cannot be
achieved with artificial deterministic surfaces. Sta-
tistical methods, which have been employed in the past in
the analysis of various nondeterministic phenomena, can
be more properly adopted to analyze and characterize
surface roughness than can deterministic methods.
Standard tools for describing and analyzing the charac-
teristics of nondeterministic phenomena are the autocor-
relation and spectral density functions. Herein, the
definitions, assumption, and mathematical background related
to autocorrelation and power spectrum functions are briefly
outlined and the application of these techniques to
surface roughness is described. More detailed theoretical
background and information on the application of these
techniques to other fields can be found in Blackman and
Tukey (1958), Jenkins and Watts (1969), Taub and Schilling
(1971), Lee (1960), and Bendat and Piersol (1966).



38

3.1. Theoretical Development

If the longitudinal or transverse cross-section
of any water conveying surface is sampled, one can conclude
that the height of the surface protrusions are random.
All profile samples of the cross-section will be differ-
ent. In other words, each observation will be only one
of many possible results which might have occurred.

Thus, if the surface protrusion height, X, is considered
to be a function of length, %2, along any cross-section,
then at any given distance, zj, the quantity x(lj) is
considered to be a random variable. A set of values for
the random variables spaced along the distance parameter
defines a realization of a stochastic process. The set
of all random functions of length form the class of all
possible processes and is known as an ensemble. Any
water conveying surface encounted in practice defines its
own distinct realization from the ensemble.

The process x(lj) can be characterized by any one
of four main types of statistical functions depending
upon the objectives of the study. These are (1) the
variance, (2) the probability density function, (3) the
autocorrelation function, and (4) the power spectral
density function. The variance or the mean square value
furnishes information on the intensity of the process.
The probability density function defines the amplitude

domain of the process, while the autocorrelation function
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and the power spectral density function define distribu-
tion of "power" in the space domain and frequency domain,
respectively. For a stationary process, the power spec-
tral density function provides the same information as
the autocorrelation function since the two functions are
Fourier transforms of each other. However, the two
functions display thelinformation in different formats.
One format may be more suitable for a specific applica-
tion than the other. It is especially convenient to

use the power spectral density function when raw data
occurs periodically.

The process x(lj) must be stationary and ergodic
in order to utilize the standard techniques of autocor-
relation and power spectrum analysis. The stationary
property means that the joint distribution of any two
random variables in the process depends on the difference
between the two distances rather than on the distances
themselves. For example, the mean value (first moment),
ux(z), of the random process is the same for all 2. An
ergodic process is stationary. In addition, 2x(k) and
the autocorrelation function can be computed from any
sample functions of the ensemble. Consequently, if the
process is stationary and ergodic, one sample function
Xk(zj) defines the whole process.

The stationary and ergodic properties of the

process could not be verified for the ensemble which
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was analyzed in this study because of the time involved
in accomplishing such an undertaking. However, Squarer
(1970) working on bed forms in fluvial channels and
Hutchinson (1965) whose studies concerned the pavement
roughness of highways verified that the random processes
which they studied were indeed stationary and ergodic.
Throughout this study the process is assumed to be sta-
tionary and ergodic as was assumed by Nordin and Algert
(1966), Houbolt (1961), and by Burney and Higgins (1973).

3.2. Autocorrelation and Power
Spectrum Functions

If the sample function xk(z) is normally dis-
tributed, the function itself is completely characterized
in the statistical sense by its mean and autocovariance

functions. These two functions are:

by (k) = Lim %_Lf/zxk(z) an (3.2.1)
and
.1 L2
C (1) = %‘12 £ _Lf/zxk(z)xk(z + 1) dg (3.2.2)
where

L = the profile length under consideration,

T = a lag distance, and

ux(k) mean value of the sample function.
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When T = 0, (3.2.2) gives the mean square or
variance of the'sample function. The autocovariance
function is commonly normalized when several autocovariance
functions are to be compared with each other. This
normalization process is accomplished by dividing the
autocovariance function by the variance R(0). The
resulting function is called the autocorrelation func-
tion, and is frequently denoted symbolically as RX(T).

The autocorrelation function describes the gen-
eral dependence of the roughness at one point on that
at another point separated by a distance t. Therefore,
if the roughness amplitudes of a surface profile are
represented as positive and negative deviations about a
zero mean value, the roughness profile can be charac-
terized by the autocorrelation function provided that
roughness amplitudes are normally distributed and the
process is ergodic. The autocovariance or autocorrelation
function defined in (3.2.2) can be written in a form as

given by Blackman and Tukey (1958):

R (1) =_fme(f)e°12nfdf (3.2.3)
and
2
L/2 .
G (£) = lim ¢ | [ x(ne t2 Mgy (3.2.4)

L+ -L/2
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where
f = spatial frequency (cycles per inch),
e = the base of the natural logarithms, and
i = /1.

The function Gx(f) is known as the power spectral
density function. The spectral density function and the
autocorrelation functions form a Fourier transform pair.

Hence, (3.2.4) is equivalent to
. i2nfT
G (f) = _i R (T)e dr. (3.2.5).

Since the functions Gx(f) and Rx(T) are real and
even functions, the relationships between them can be put

into a simpler form:

oo

R (1) = 2 g G, (1) Cos 2mftdf (3.2.6)
and

G_(f) = 2 [R_ (1) Cos 2mfrdr. (3.2.7)

X 0 X

The power spectral density function for random
surface expresses the frequency composition of the surface
roughness elements. Thus, the value of Gx(f)df indicates
the roughness power present between frequencies f and
f + df.

The above expressions for autocorrelation and

power spectrum functions are approximated in practice.
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One set of digital approximations are given by Blackman

and Tukey (1958):

1 NIP
R (P) * g—= I X(q) x(q + p) (3.2.8)
p =
g=1
and
m-1 Tf
G, (£) = R _(0) + 2 ) R, (q) Cos Lm
q=1
+ Rx(m) Cos 1f (3.2.9)
where
N = number of data points,

p = lag index (p =1, 2, ... m), and

maximum lag value.

E]
]

The spectral density function can be computed by
first computing the autocorrelation function Rx(p)
because the autocorrelation function is generally a rapidly
converging function.

In practice, Rx(p) and Gx(f) are derived from
finite length of records. Special attention must there-
fore be given to the expected statistical errors in the

experimental estimates.



4. EXPERIMENTAL SETUP AND PROCEDURE

The main objective of the experimental phases of
this investigation was carried out in two parts. In the
first part, the goal was to obtain Manning's "n" friction
coefficients for several one-dimensional deterministic
surfaces. This was accomplished by using results from
previous investigations in which resistance to flow was
studied by using deterministic artificial roughness ele-
ments. More than 30 different types of surfaces, along
with corresponding friction coefficients, were obtained
in this manner. Details of the surfaces, their origins,
and a descriptive analysis of these will be given in the
next chapter.

The chief objective of the second part was to
measure magnitudes of surface roughness elements along
longitudinal profiles of several rough water conveying
surfaces which are commonly encountered in practice. The
conveying surfaces selected for this investigation were
11 different types of corrugated plastic tubing, with their
inside diameters ranging between 4 and 8 inches, one
6 in. diameter corrugated metal tube, one rough open
channel surface and two gravel beds, one having coarse

gravel, and another fine gravel as surface materials. A
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- section of a length of 40 inches for each conveying surface
was sampled and the profiles of each were recorded for

future analysis.

4.1. Experimental Setup

The instrumentation used for surface profile
measurement consisted of four main components: (a) a
sensitive measuring device which produces an output
signal voltage proportional to the mechanical displace-
ment of a sensing probe, (b) a voltage carrier amplifying
system, (c) an analog-to-digital converter, and (d) a
table with precise horizontal movement.

The measuring mechanism selected was a nominal
t 1 in. linear displacement transducer. This instrument
consists of a primary coil and two secondary coils which
are symmetrically arranged to form a hollow cylinder.
Within the cylinder, a small magnetic core attached to a
supportive nonmagnetic rod is constructed so as to be able
to move axially in response to the mechanical input to
the probe. When the primary coil is excited by an alter-
nating current, a current is induced in the secondary coils.
The output current which results from the phase differences
between the outputs of the two secondary coils is linearly
related to the position of magnetic core and, therefore,
to the position of the probe. The original diameter of
the probe was too large to measure the heights of the

surface elements at the required sampling intervals for
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this experiment. Hence, a much narrower extension to the
probe (less than .05 in.) was constructed. A 4-48 type
carbon steel tap was used. The shank portion of the tap
was ground with a lathe grinder to form a .03 in. diameter
proble with a 60° needle point.

A carrier amplifier instrument with a precision
transducer indicator was used to amplify the signals from
the linear displacement transducer. A differential trans-
former input module provided the "front end" circuitry and
adjustments on the amplifier for calibrating the amplifier
indicator with respect to output signals from the trans-
ducer. An output module with an adjustable (5 to 55 mv)
recorder output unit was used for the amplifier.

A six channel analog-to-digital converter was used
to convert the analog signal from the output module of
the amplifier to digital data, which was punched on paper
tape with ASKII binary code. All six channels were con-
nected to the input source (amplifier); i.e., the same
input exitation voltage was recorded simultaneously by
each channel.

A level plane with horizontal movement was needed
to obtain the required sampling displacements of the con-
veying surfaces. The feed table of a milling machine was
used for this purpose. The table had a maximum 40 in.

horizontal travel as well as vertical and cross travel.
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The handwheel had 250 graduations, each corresponding to
.001 in. of travel on the horizontal table.

Since the probe could not be moved across the
rough profiles, the linear displacement transducer was
fixed at a reference point above the level plane by
building a special housing mechanism for the transducer.
A4 x 3 x 1,5 in. aluminum block was drilled with a 7/8 in.
drill to obtain a 4 in. long hollow cylinder inside the
block. A thin aluminum sleeve was placed at the approxi-
mate midpoint of the cylinder. The side of the block was
threaded with a 10-32 tap at the same level as the sleeve
for a hexagonal head screw as a tightening mechanism for
the sleeve. The transducer was inserted in the cylinder
and was held in place by tightening the sleeve via the
hexagonal head screw. Then the block was bolted on one
end of a 17 in. long, 1/4 in. thick and 4 in. wide metal
piece, and the other end of the metal piece was bolted
into the arbor arm of the milling machine. This type of
flexible fastening mechanism provided tremendous conveni-
ence for the calibration of the system. Figure 4.1.1 shows
the overall view of the experimental setup.

Calibration of the system was achieved by the
following steps. The table was first lifted by the
vertical lifting mechanism on the milling machine until
the surface elevation of the table touched the tip of the

transducer probe. A 3/4 in. square metal bar was laid
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Figure 4.1.1.--Overall view of the experimental
setup.

Figure 4.1.2.--Corrugated plastic tubing.
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under the probe. The height of the bar was used as the
zero elevation reference point for all measurements.
The mechanical zero output of the transducer, while the
probe was still on the metal reference bar, was obtained
by sliding the transducer up and down in the housing to
the point at which the output from the transducer equaled
zero millivolts on the amplifier indicator. The position
of the transducer was fixed by tightening the sleeve.
After the position of the transducer was set with respect
to the zero elevation reference point, micrometer calibra-
tion blocks ranging from 0.1 to 1.0 in. were used as known
mechanical inputs to the transducer to calibrate the
amplifier output. This was accomplished by assigning a
millivolt value to the known mechanical input by adjusting
the "front end” circuitry of the input module of the
amplifier. The output from the amplifier was also coupled
to the analog-to-digital converter by calibrating the
converted over a working range of from 0 to 50 millivolts.
As previously mentioned, the table of the milling
machine had a maximum horizontal travel distance of 40
inches. Therefore, the maximum length of the profile
measurements of each sample was about 40 inches. A
12 x 40 in. base plate for the samples, made from 3/4 in.
plywood, was built to provide a stationary support. This
base plate was bolted down on the sides to the plate of the

milling machine to prevent lateral movement of the sample.
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The corrugated tubing had inside diameters of
6 inches or less. The tubing was divided into two equal
parts. One-half was set upon the base plate with its
bottom parallel to the sides of the base plate and was
nailed in that position. The corrugated tubing with
inside diameters greater than 6 inches was divided into
four pieces. One piece was placed upon the base plate in
the same manner as the smaller diameters, as illustrated
in Figure 4.1.2 (on page 48).

To simulatg gravel beds of a stream, two different
types of gravel surfaces were constructed. One surface,
made of coarse gravel, had an average diameter ranging
between 1/2 to 1 in., as shown in Figure 4.1.3. The
second surface was made from fine gravel as illustrated
in Figure 4.1.4, with an average diameter which varied
between 1/4 and 3/8 in. The gravel was fixed on the plate
with a thin coat of industrial glue.

It was impossible to obtain a representative
sample of the rough open channel. Instead, it was assumed
that a foundation brick having a rough surface would have

the same surface properties as a rough channel.

4.2. Experimental Procedure

For the first step in the profile measurements of
the samples, the table of the milling machine was moved
to the end point. This end point was assumed to be the

zero starting point. The base plate containing the sample
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Figure 4.1.3.--Coarse gravel.

Figure 4.1.4.--Fine gravel.
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was placed on the milling machine table. The probe was
brought into contact with the sample. The signal from
the transducer was recorded on a paper tape through six
channels of the analog-to-digital converter. The probe
was then lifted and the surface was moved .05 in. The
process was repeated, continually maintaining the .05 in.
interval as the sampling interval, until the profile
measurements of the 40 in. sample were completed.
Originally, the converter was set to scan the
data from the transducer through six channels at once.
During the experiments, it was discovered that two of the
channels were malfunctioning. The malfunctioning channels
were taken out of the system and the rest of the experiments
were continued using the remaining four channels. The
data, punched onto paper in ASKII code, was interpreted
by using a library FORTRAN IV computer program. The
interpreted data was recorded on a permanent file for

future analysis.



5. COMPUTATIONAL PROCEDURE AND RESULTS

The surface roughness profiles and the correspond-
ing Manning "n" friction coefficients were obtained from
two sources. The first group of surface profiles was
obtained from previous investigations on one-dimensional
strip roughnesses by C. A. Smith, Jr., and C. Warren,

J. W. Johnson, and E. A. LeRoux as reported by Johnson
(1944) and R. W. Powell (1946). An attempt was also
made to analyze an artificial roughness by Streeter (1936).
The dimensionality involved in representing the surface
and excessive computer space required made it impossibie
to perform a meaningful analysis on the surfaces. There-
fore, Streeter's investigation was not included. All of
the artificial surfaces in the first category were con-
structed from rectangular sills with different dimensions
and different periodic arrangements. The corresponding
ffiction coefficients were defghgd experimentally.

The second group of surface profiles was obtained
from laboratory measurements as explained in Chapter 4.

In this category of surfaces, actual Manning "n" friction
coefficients were known only for those surfaces investi-
gated previously by this author and reported by Ding et al.

(1971). For the remaining surfaces, friction coefficients
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-as cited in textbooks for design purposes were used.
These surfaces were investigated to verify the methodology
developed in this study.

A total of 47 surfaces were analyzed. The identi-
fication numbers of the surfaces and the corresponding
identifications of these surfaces as they appear in the
original papers along with their Manning "n" coefficients
are given in Appendix A, Tables A-1 through A-5.

5.1. Preliminary Investigations
on Spectral Estimation

Estimating the spectral density of random data
requires a pilot analysis in order to optimize the degree
of accuracy and to reduce the labor and cost involved.
This process requires converting'continuous data into
discrete values at some sampling interval. The sampling
frequency must be large enough to properly describe sig-
nificant high frequencies. The optimum sampling interval
is assumed in practice to be the largest sampling interval
which will avoid aliasing errors. Once the sample inter-
val is established, the length of the sample record is
determined in accordance with the number of values
required to obtain a meaningful estimate of the spectrum.

If the sampled data points are too far apart, the
points could represent either false low or false high
frequencies not in the original data. This phenomenon

is known as aliasing. The sample frequency below which
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- aliasing problems occur is termed the "folding frequency"”

or Nyquist frequency (cycles/in.).and defined as:

1

Ix = 2 fo (5.1.1)
where

fo = the highest frequency in the sample, and

dx = the sampling interval.

In order to overcome aliasing problems, the original data
should not contain information above the folding fre-
quency. In practice, two methods exist for handling this
problem. The first method is to filter the original data
prior to sampling so that information above the folding
frequency does not exist in the filtered data. Such a
technique requires some initial knowledge of the desired
frequency range. The second method is to choose the
sampling interval, dx, sufficiently small so that Gx(f)
is zero for fo > 1/2 dx. This technique requires an ini-
tial knowledge of the spectrum.

The second method was chosen for this study.

Initially, nothing was known of the spectrum
functions of the surfaces' roughness and corresponding
folding frequencies. To gain insight into the rough
shape of spectrum functions and consequently of the
anticipated folding frequencies, various rectangular
surface roughnesses representing low, high, and inter-

mediate roughness concentrations were selected for
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- preliminary analysis. A pilot’FORTRAN IV computer program
was developed by utilizing (3.2.8) and (3.2.9) to estimate
the autocorrelation and power spectrum functions of the
particular surfaces.

The height of the roughness elements were repre-
sented as positive and negative deviations from their mean
values. Several values of sampling intervals, dx, maxi-
mum lag values, m, the number of data points, N, and their
various combinations were analyzed in this manner. The
sampling intervals chosen were 0.03125 in., 0.05 in.,
0.0625 in., and 0.1 in. The maximum lag values were 50,
.100, 200, and 400, and the number of data points were
500, 1000, 2000, 4000, and 8000.

From plots of the spectrum functions, it was
visually determined that optimum sampling intervals were
0.3125 in. and 0.05 in. depending upon the surface rough-
ness type. Corresponding folding frequencies for these
two sample intervals were generally about 10 cycles per
inch. Beyond this frequency no power was observed on
the spectrum functions. Therefore, for final power
spectrum estimations, 0.03125 and 0.05 in. were used as
sampling intervals for the appropriate surfaces and 10

cycles per inch was used as the folding frequency.

5.2. "Smoothing" Process

The preliminary spectrum function obtained by

the procedure explained in Section 5.1 were raw estimates
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- of the true spectrum and are inefficient estimates. A
general property of spectral estimates is that their vari-
ability does not decrease with increased record length.
Smoothing or weighting the correlation function nonuni-
formly is used to obtain better estimates. A commonly
used weighting function is called the "Hanning lag window”

and is given by Bendat and Piersol (1958):

1

G, = 0.5 G, + 0.56G (5.2.1a)
G = 0.25 G _, + 0.5 G, + 0.25 G, (5.2.1b)
G, = 0.5 G _; + 0.5G (5.2.1c)

where

k = 1' 2’ o e o m-l.

The Hanning lag window was used to obtain final

power spectral density estimates in this study.

5.3. Final Spectrum Estimations

The FORTRAN IV computer program used to calculate
the final spectral density estimates is given in Appendix B,
along with a sample output.

Approximately 40 inches of the surfaces which were
constructed in the laboratory were used to estimate the
power spectral density functions while for rectangular

surfaces, 200 inch sections were analyzed. The latter
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-were generated in the main computer program to provide
data for the spectral analysis.

The sampling interval, the number of data points,
and the maximum lag values used in the computations for
each surface along with the resultant spectral parameters
are given in Tables 5.3.1 and 5.3.2. Table 5.3.1 summa-
rizes the surface profile data obtained in the experimental
procedure. Table 5.3.2 summarizes the data for rectangular
surfaces.

Results of the autocorrelation and spectral esti-
mates are given in Figures 5.3.1 through 5.3.26. Because
of the similar estimates obtained from similar surfaces,
only distinct representative samples of estimates are
included in the figures.

The value of the autocorrelation function at zero
displacement, 1, was not included in the original output
of the autocorrelation estimates. This was later added
during the plotting of figures.

Although extremely small, some negative values
were obtained in some of the power spectral estimations.
This was due to the window function used. Whenever
negative data points were encountered they were assumed
to have zero values during the plotting of power

spectrum.
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Figure 5.3.1l.--Roughness type, estimated autocor-

relation, and power spectral density functions of surface 34.
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Figure 5.3.2.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 36.
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Figure 5.3.3.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 37.
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Figure 5.3.4.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 18.
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Figure 5.3.5.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 21.
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Figure 5.3.6.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 23.



67

ROUGHNESS TYPE

0.40

|

HEIOHT (IN.)

(=]

9

.00 2.00 4.00 6.00 8.00 10.00
DISTANCE (IN.)

] AUTOBCORRELATION FUNCTION

FUNCTION R(Y)/R(0)
J-50

NORMALIZED RUTOCORRELATION
-0.30

.00 Xb.oo 40.00 60.00 80.00 100.00

4 LAC VALUE

.00 1

Figure 5.3.7.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 24.

.00

POWER SPECTRUM FUNCTION

POWER SPECTRAL DENSITY
C(IN.SQ/CYCLE/IN.)
2.00

.00

X T T T B |
.00 2.00 3.00 4.00 5.00
FREQUENCY (CYCLES/IN.)



68

ROUGHNESS TYPE

0.40

HEIBGHT (IN.)

.00

.00 2.00 4.00 6.00 8.00 10.00
DISTANCE (IN.)

AUTOCORRELATION FUNCTION

1.40

20.00 40.00 60.00 80.00 100.00

FUNCTION R(Y)/R(O)
.60
o
o

NORMALIZED AUTOCORRELATION
'0-20

LU vILUL

POWER SPECTRUM FUNCTION

4.00

-

2.00

POWER SPECTRAL DENSITY
(IN.SQ/CYCLE/IN.)

P V. .

LB T R T 1
.00 1.00 2.00 3.00 4.00 5.00
FREQUENCY (CYCLES/IN.)

.00

Figure 5.3.8.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 20.
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Figure 5.3.9.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 27.
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Figure 5.3.10.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 30.
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Figure 5.3.11.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 32.
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Figure 5.3.12.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 39.
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Figure 5.3.13.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 44.
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Figure 5.3.14.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 41.
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Figure 5.3.16.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 42.
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Figure 5.3.17.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 45.
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Figure 5.3.18.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 9.
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Figure 5.3.19.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 17.
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Figure 5.3.20.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 15.
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Figure 5.3.21.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 10.
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Figure 5.3.22.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 12.
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Figure 5.3.23.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 6.
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Figure 5.3.24.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 5.
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Figure 5.3.25.--Roughness type, estimated autocorre-
lation, and power spectral density functions of surface 4.
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Figure 5.3.26.--Roughness type, estimated autocorre-

lation, and power spectral density functions of surface 1.
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5.4. _Confidenge Intervals on
Spectral Estimates

As was mentioned in Section 5.3, only 40-inch sec-
tions or, equivalently, 720 data points were used to obtain
spectral estimates of the surfaces whose profiles were
determined in the laboratory. Ninety-five percent confi-
dence intervals at 10 cpi on the spectral estimates of
these surfaces along with those of rectangular surfaces

are given in Table 5.4.1.

TABLE 5.4.1.--Confidence intervals on spectral estimates.

Number of Data Points Associated 95% Confidence
N Degrees of Freedom Intervals
720 14 0.54-2.4
4000 40 0.67-1.65

5.5. Parameters Defining
Spectral Estimates

One-dimensional strip roughnesses are uniquely
represented by their spectral estimates as seen in Figures
5.3.1 through 5.3.26. However, a single parameter defining
the behavior of an individual spectral estimate was needed
to correlate a particular estimate to its corresponding
Manning "n" friction coefficient.

Various quantitative values within the spectral
estimates were examined for this purpose. Among the vari-

ables considered were: the frequency at which the maximum
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peak occurs, the magnitude of the maximum peak, the fre-
quency of the third occurrences of a significant peak, and
the frequency at which 90 percent of the power occurs
under the spectral density curve. The latter frequency
was called the cutoff frequency in this study and is

given in Tables 5.3.1 and 5.3.2 for each estimate. When
these parameters were plotted against corresponding Manning
"n" friction coefficients, the graphs were so scattered
that no linear functional relationships could be drawn
between the variables involved. An example of this
behavior is illustrated in Figure 5.5.1 which shows the

- graphical relationship between the Manning "n" friction
coefficient and the cutoff frequency, fc.

Since a particular parameter for spectral estimates
could not be obtained directly from the spectrum functions,
an indirect method was used to obtain it. A close inspec-
tion of the figures reveals that the peaks of power spectral
density function decay exponentially with respect to fre-

quency. A model defining this phenomena was assumed to be:

Kk e Kf (5.5.1)
(o]

G(f)

where

K K constants.

o'

The constant, K, is termed the decay coefficient. The
constants Ko and K were determined by a regression analysis.

The peaks with magnitudes of less than 0.02 were not used



89

r~
o
o
41 0 ®42
w
o
O-
19
26ap25 -
. ® 22
N
ia 2 %0
T
o 24033 4, 28
" o3 ®43 s
N
o] 020
= 030
L
= 29 ©36
—P (L)
o 21
Lo’ 6
gg o 39 350 Gﬁ
) ®13
S 032 © %0
= o14 ® 37
=
— 018
% 270 o8
CI:ID
=" 10
o 7® 380 @2
m
O’-
: ¥
1 1 T 1
S .00 2.00 4.00 6.00 8.00

CUTOFF FREQUENCY (CYCLES/IN.)

Figure 5.5.1.--Behavior of the Manning "n" friction

coefficient with respect to the cutoff frequency.



90

in the regression. A FORTRAN IV computer program was
developed to obtain Ko and K. The program and a sample
output are given in Appendix C.

The calculated decay coefficients for each spectrum
are given in Tables 5.3.1 and 5.3.2.

The decay coefficient, K, is assumed to represent
the behavior of the spectral estimates. Figure 5.5.2
shows the behavior of the decay coefficients with respect
to their Manning "n" friction coefficients. A parabolic
relationship is hypothesized to -exist between the variables
involved. A FORTRAN IV library program was used to obtain
the best-fitted curve through the data points. The

resultant functional relationship between n and K is:
n = 0.0044 + 0.045 K - 0.024K> (5.5.2)

The Manning "n" friction coefficient can be estimated from
(5.5.2) once the decay coefficient of a given surface is

determined.

5.6. Predicted Manning "n" Values

Equation (5.5.2) was used to predict the Manning
"n" friction coefficients for surfaces whose actual fric-
tion coefficients were not known. Table 5.6.1 compares
these values to the corresponding approximate values of
"n" found in literature.

For gravel, the predicted "n" was obtained by

averaging the K values of surfaces 1 and 2. For brick,
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TABLE 5.6.1.--Comparison between predicted and literature
values of Manning "n" friction coefficients.

Predicted In Literature
Plastic tubing 0.0213-0.0253 0.014
Gravel 0.0222 0.029
Fine gravel 0.0157 0.0162*
Corrugated metal tubing 0.020 0.022
Brick 0.0128 0.012-0.016
1/0

*Calculated from the relationship, n = 0.031 dl ’
d] = particle size; average diameter of the gravel
was 0.25 inches.

the K value obtained for surface 15 was used to get the

predicted "n".

5.7. Theoretical Spectrum Functions for
Surfaces With Rectangular Roughness
Elements and Thelr Comparison With

Estimated Spectrum Functions

In the preceding sections, spectrum functions of
surfaces with rectangular roughness elements were obtained
by a digital approximation method. The true spectrum
functions of this type of surface can also be obtained from
theoretical considerations.

The fixed sampling interval L of the sample func-
tion Xk(l) can be generalized as having n rectangular
wave forms of width w and amplitude a, with spacing A
between the wave forms. We investigate only the case where
A is always greater than w. The general shape of function

xk(z) is illustrated in Figure 5.7.1.
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The correlation function, C(t), of the function

xk(z) is defined by the relationship

c(t) = [ X, (2) X, (& + 1) as (5.7.1)

- 00

where Xk(l) is defined only on the interval 0 < £ < n(w + A).

For n rectangular wave forms, the correlation func-

tion (5.7.1) becomes the piecewise function

c(t) = azn(w-‘l‘) 0lT<w
=0 wiTt<2
c(t) = az(n-l)(‘r-k) A T< A +w
= a2 (n-1) (A4+2w-T) A+ wilT<A+ 2w
=0 A+ 2w ST <2X + w
(5.7.2)
c(t) = a22[1.' - (n=2)A - (n-3)w] (n=2)A + =-3)w X T < (n-2)A + (n-2)w

A

a22[(n-2))\ + (n-1)w=-1] n-2)A + (n-2)w < T (n-2)A + (n-1)w

A

=0 n-2)A + (n-1)w £ T < (n-1)X + (n-2)w

A

C(T) = a%[T - (m-1)A = (n=2)w] (n-1)A + (n-2)w < T < (n-1)A + (n-1)w

al[(n-1)A + nw - T) (n-1)A + (n-1)w < T < (n-1)A + nw

- A

=0 (n-1)X + nw < T

The general shape of the correlation function C(Tt)

is shown in Figure 5.7.2 (on page 93).
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The energy spectrum of the sample function xk(l)

is defined by

Gw) = [ c(r)e I¥at (5.7.3, a)
- 00
or
=2 [ C(t) Cos wrtdr (5.7.3, b)
- 00
where
w = angular frequency.

The spectrum, H(w) of the first wave form h(t), in
Figure 5.7.2 can be derived directly from (5.7.3, b) by

using C(t) when T is between 0 and w (5.7.2). H(w) takes

the form
na2
H(w) = —— (1 - Cos w2w) (5.7.4, a)
ww
or
2 Sin ww 2
= 2 na‘w [T] . (5.7.4, b)

Then the energy spectrum of the function becomes
Glw) = [ C(t)e I¥tar (5.7.5, a)
or, summing over all values of i,

1 e .
[ ht - t)e ¢, (5.7.5, b)
0 - 00
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Let us define a dummy variable x - t - ti. We

introduce this variable in (5.7.5, b) to obtain the form

i -jw (x+t,)
Gw) =) [ h(x)e 1 ax (5.7.6, a)
or,
n-1 <« =-jwt, @ s
=7 Je  t [ fgmeI"*ax (5.7.6, b)
i=Q - -0

which becomes, through the use of the steps leading from
(5.7.3, b) to (507.4' b)l
i=o
Equation (5.7.6, c) is the general transformation
- function for true spectrum.function, G(w).
Consider the basic wave form h(t) in Figure 5.7.2:

the amplitudes of the waves are nazw, (n-l)azw, .« .+ e s

[n - (n-2)]a2w, [n - (n-l)]azw and the peaks occur at
values of 'ti =i(\+w), i=1, 2, ..., (n-1). By using
the transformation function (5.7.6, c¢) the spectrum func-
tion G(w) becomes

. 2 . 3
G(w) = 2w(§i%w2£] E%azw + (n-l)azw[e‘lw(l+w) + er(A-ﬁw)]

4« « « « o + [n - (n_z)]azw[e-jw[(n-2)A+(n—2)w]
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oJul(n-2)2+ (n-2)w]]

+ [0 - (-1)]ale[eIul (7D A+ (-1)v]

e:iw[(n-1)>\+(n-l)w]] (5.7.7, a)
or,

= 2 I:Sln wvil Ex + 2(n-1) Cos [w(A+w)]

+ 2(n-2) Cos [2w(A4+w)] + =+ ¢ =« « « « =
+ 2[n - (n-2)] Cos [(n=-2)w (A+w)]

+ 2[n - (n-1)] Cos [(n-l)w(A+w){]. (5.7.7, b)

In order to compare the theoretical spectrum and
the estimated spectrum functions of the surfaces, a nor-
malization process for the theoretical spectrums was
used, since the estimated power spectrum functions were
obtained directly from the autocorrelation of the sample
functions. The normalization is achieved by the following

relationships:

Cx(r) = C(t) - My (5.7.8)
where
Cx(r) = autocovariance function, and
u, = expected value of the sample function.
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The autocorrelation of the covariance function is

therefore defined by

R(T) = Cc(t) - ux2 5.7.9)

c(o) - u?

By substituting My and C(0), and dividing C(0) and
C(t) by the sampling length to obtain functional terms

having correct dimensions, (5.7.9) becomes

c(t) _ ( aW)2
R(T) = “(’(“2‘“ X+ (5.7.10, a)
na‘w _ ( aw)
n (A +w) A+w
or
= SO Atw) v (5.7.10, b)
na“Aw
Hence, the normalized power spectrum function G' (w)
becomes

(w+X)

azwkn

Gl (U)) —

G(w) - ; §(w) . (5.7.11)

The last term in (5.7.11]) is a delta function and
affects the value of the spectrum only at w = 0. Since we
seek the exponential decay function for the spectral peaks
for w > 0, this term does not enter into the computations

and hence can be disregarded.
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Substituting the value of G(w) from (5.7.7, b)

allows (5.7.11) to become

. 2
G'(w) = 2‘;’;“[“&“’“] [n + 2(n-1) Cos [w(A+w)]

+ 2(n-2) Cos [2w(A+W)] + <« * + o o o
+ 2[n - (n=-2)] Cos [(n=2)w (A+w)]

+ 2[n - (n-1)] Cos [(n-l)w(A+w)]]. (5.7.12)

Equation (5.7.12) was programed for the computer
to obtain the spéctrum functions of the rectangular surfaces
for comparison with the functions obtained by digital
approximation. The program and a sample output is given
in Appendix D.

The theoretical and estimated spectrums of several
surfaces representing high and low concentration roughness
are plotted in Figures 5.7.3 through 5.7.6. The actual
magnitude of the theoretical spectrum values shown in the
figures was some constant multiple times greater than the
estimated spectrum values. A different constant was
obtained for the spectrums of each surface. The plotted
theoretical spectrums were obtained by dividing the cal-
culated values by the appropriate constant. The source of
the constant appears to be in the normalized process of

the theoretical spectrum.
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Generally, the theoretical and estimated spectrum
values agree well for high roughness concentrated surfaces.
The agreement lessens for low roughness concentrated
surfaces reflecting the need for an appropriate change on
the coefficients of the window function (Hanning window)

used in this study.



6. DISCUSSION

As was pointed out in the literature review, many
researchers have shown that for completely turbulent flow,
the resistance to flow is dependent only upon the charac-
teristic of the rough surface boundary. The surface
roughness effect is attributed to the concentration of
the elements which constitute such a surface. It is a
postulate of this research that the concentration of the
roughness elements may be defined functionally by con-
sidering the frequency decomposition of the variance of
the roughness elements, as reflected in the autocorrela-
tion function and power spectral density.

The roughness makeup of the surfaces is uniquely
represented by the power spectral density functions as
demonstrated in Figures 5.3.1 through 5.3.26. The spectrum
contains most of its power at high frequencies when the
surface roughness elements are close to each other; i.e.,
when the conéentration of the elements is high. 1In
particular, the peaks in the spectrum are dispersed toward
higher frequencies, with increasing concentration. With
decreasing concentration the peaks move slightly to the
lower frequencies. At low roughness concentrations, almost

all power is contained at low frequencies.
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At very low roughness concentrations, however,
information on the roughness makeup of the surfaces is
lost. This is illustrated in Figures 5.3.12 and 5.3.15.
When roughness elements are placed at 10-inch intervals
no significant peak appears on the spectral estimate as
demonstrated in Figure 5.3.15. When the size of the
roughness elements is decreased but the elements are loca-
ted at the same intervals (Figure 5.3.12), the peaks are
nonexistent on the spectral estimate and the estimate
itself shows a very smooth decay. A similar behavior of
the estimate was obtained for roughness type 47. The
erroneous behavior of the spectral estimates for surfaces
of low roughness concentration is due to the unsuit-
ability of the window function used in the program for
spectral estimates. It is felt that different weighting
constants should be used to bring the estimated spectrums
closer in agreement with the theoretically derived spec-
trum functions. This is illustrated in Figures 5.7.5 and
5.7.6 where the estimates for surfaces of high concentra-
tion of roughness agree well with the theoretical predic-
tions, while in Figures 5.7.3 and 5.7.4 the estimates for
surfaces of low roughness concentration contain considerably
more power at high frequencies than do the theoretical
spectrum functions.

The decay coefficient for surface 47, a surface

with low roughness concentration, appeared to be so



107

erroneous that the value from this surface was not used to
estimate the curve in Figure 5.5.2.

A parabolic relationship was fitted to the decay
coefficients and corresponding friction coefficients
with a correlation of 0.6 as seen in Figure 5.5.2. This
behavior is thought to accurately describe the mechanism
involved between a rough surface and the Manning "n"
friction factor associated with such a surface. It is a
fundamental fact (Morris, 1955; Koleseus and Davidian,
1966; Robertson and Chen, 1970) that the main source of
friction losses, in a fluid flowing over a rough surface,
is the generation, spreading, and subsequent dissipation
of vortices behind each roughness element. Each element
is a source of vorticity and consequently the longi-
tudinal spatial frequency of roughness elements is closely
related to the creation of such vortices. If the roughness
elements are highly concentrated, the flow skims the peaks
of the roughness elements leaving some dead water regions
between the elements. The relatively still water trapped
in these spaces results in a lesser degree of vortex
generation and consequently such a surface exhibits some-
what smaller friction factors. For this type of surface,
the lower friction factors are defined by the lower left-
hand side of the parabola in Figure 5.5.2.

If the spacing between roughness elements is

increased the dead water regions between the elements no
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longer exist and new vortices begin to develop between

the elements. Vortex generation and dissipation associ-
ated with each element are not completed before the next
element is encountered by the moving fluid particle. The
result is additional perturbation and greater friction
losses. 1Increasing distance between the elements is thus
associated with increasing friction losses up to a maximum
intensity. Increasing the distance after a certain point
results in decreasing friction losses since the elements
are so far apart that individual elements act as isolated
bodies. The intensity of vortex generation and associated
dissipation is greatly reduced, thus resulting in less
friction loss. For this reason the curve in Figure 5.5.2
makes a downward trend after it reaches a maximum value.
The lower right side of the parabola reflects the lessened
friction coefficients of such surfaces with low roughness
concentrations.

The equation obtained for the parabola (5.5.2)
would probably not prove to be a good estimator for sur-
faces with very low and high roughness concentrations,
since the method used to obtain spectral estimates for
these surfaces do not provide accurate spectral data
points for very low or high roughness concentrations.
Limits on roughness concentration for these surfaces is
presently unknown. However, most surfaces encountered in

practice fall within the validity range of (5.5.2).
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As is seen in Figure 5.2.2, two data points behave
erratically. These data points correspond to surface 5
(K= .88, n = 0.0178) and surface 7 (K = 0.93, n = 0.0150).
Close inspection of surface 5 (Figure 5.3.24) indicates
that it has almost the same surface configuration and
spectral estimates, as well as equivalent Manning "n"
friction coefficients. It is suspected that the erratic
behavior of this data point resulted from the regression
process of (5.5.1) since peaks on spectral estimates with
magnitudes less than 0.02 were observed. Since the cutoff
value for the peaks inclﬁded in the regression analysis was
0.02, these peaks were not used.

Surface 7 could not be compared with any other
surface because of its uniqueness. However, this surface
was regenerated in the computer. The resulting K was 0.33,
a value which falls on the appropriate section of the
parabola. It is suspected that the number of data points
used to describe the surface during the measurement
process was insufficient, a property which yielded an
erroneous spectral estimate. An unexpected result was
also obtained for surface 6 but the cause is unknown to
the author.

The comparison between predicted values of
Manning's "n" and values obtained from the literature
(Table 5.6.1) indicates that predicted "n" values differ

from literature values only for plastic tubing. This
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result is not unexpected since the wide variety of the
corrugated plastic tubing, having different corrugation
configurations, should not be expected to be accurately
described with only one Manning "n" friction coefficient.
It is worthwhile to mention that corrugated tubing with
narrow corrugations was found to have "n" values as high

as point 0.0178 (Ding et al., 1971).



7. CONCLUSIONS

The following conclusions may be drawn from this
investigation. .

1. The one-dimensional roughness composition.of
a surface can be concisely defined by its estimated spec-
tral density function.

2. For surfaces with low and high roughness con-
centrations, the technique developed and reported on in
this investigation is not adequate to obtain an accurate
spectral density estimate.

3. Spectral density estimates of a surface can
be characterized by a single parameter, decay coefficient K,
defined by an exponential curve fit through the peak values
of the spectral density estimates beginning with the
largest values at the lowest frequency and fit through
data points defined by spectral density estimates whose
values are greater than 0.02.

4. A parabolic relationship can be used to relate
the Manning "n" coefficient and the decay coefficient K
in the equation n = 0.0044 + 0.045K - 0.024K°.

5. The proposed equation (5.5.2) can be used to
predict the Manning "n" friction coefficients of most sur-

faces encountered in practice for which Manning's equation

can be used to model flow.
111
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8. RECOMMENDATIONS FOR FUTURE WORK

Specific recommendations for future research
are:

1. Additiénal one-dimensional artificial rough-
nesses should be investigated in order to increase the
degree of accuracy of the proposed equation (5.5.2).

2. This work should be extended to two-dimensional
roughness by utilizing multivariate spectral techniques.

3. Hydraulic measurements should be collected
for each surface analyzed to add further validity to the
method.

4. The coefficients of the window function should
be adjusted to obtain more accurate estimates of spectrum

functions for surfaces with low roughness concentrations.
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APPENDIX A

IDENTIFICATION OF SURFACES OBTAINED

FROM PREVIOUS INVESTIGATIONS
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APPENDIX A

IDENTIFICATION OF SURFACES OBTAINED

FROM PREVIOUS INVESTIGATIONS

TABLE A-l.--The surfaces and their corresponding Manning
"'n" coefficients obtained from the investiga-
tions of Ding et al. (1971).

Surface Identification

as Used in the Surface Identification Manning "n"
. as Used in This Study Coefficient
Original Paper
Michigan Vvitrified Tile
Co. 5-in. I.D. 3 0.0178
Advance Drainage Sys-
tems, Inc., 8-in. ID 7 0.0150
(Set I)
Springfield Plastics,
Inc. 5.7-in. ID 8 0.0159
Michigan vitrified Tile
Co. 4-in. ID 9 0.0178
Advance Drainage Sys-
tems, Inc., 4-in. ID 10 0.0151
Advance Drainage Sys- 12 0.0150
tems, Inc., 6-in. ID ‘
Advance Drainage Sys-
tems, Inc., 8-in. ID 13 0.0180
(set II)
Canada Dominion Sugar 14 0.0169

CO., Ltdo 4-in. ID
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TABLE A-2.--The surfaces and their corresponding Manning
"n" coefficients obtained from the investiga-
tions of Johnson (1944).

Surface Identification

as Used in the Surface Identification Manning "n"
Original Paper as Used in This Study Coefficient

A 18 0.0163

B 19 0.0244

¢ 20 0.0208

P 21 0.0194

E 22 0.0236

F 23 0.0229

¢ 24 0.0223

H 25 0.0240

I 26 0.0240

Table A-3.--The surfaces and their corresponding Manning
"n" coefficients obtained from the investiga-
tions of E. A. LeRoux, reported by Johnson (1944).

Surface Identification

. Surface Identification Manning "n"
g:igisgllga;Zi as Used in This Study Coefficient

J 27 0.0158

K 28 0.0222

L 29 0.0198

M 30 0.0204

N 31 0.0219

o 32 0.0177

P 33 0.0222
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TABLE A-4.--The surfaces and their corresponding Manning "n"
coefficients obtained from the investigations of
C. A. Smith and C. Warren, reported by Johnson
(1944).

Surface Identification

20 Used in the 2o Used in This Seudy  Coofficient
A 34 0.0112
B 35 0.0185
Cc 36 0.0200
D 37 0.0170
E 38 0.0149

TABLE A-5.--The surfaces and their corresponding Manning
"n" coefficients obtained from the investiga-
tions of Powell (1946).

Surface Identification

s Used in the Surface Identification Manning "n"
griginal Paper as Used in This Study Coefficient
I 39 0.0185
II 40 0.0231
III 41 0.0264
Iv 42 0.0264
v 43 0.0217
\"A s 44 0.0238
VII 45 0.0217
VIII 46 0.0186

IX 47 0.0156
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APPENDIX B

FORTRAN IV PROGRAM FOR ESTIMATION
OF AUTOCORRELATION AND POWER

SPECTRUM DENSITY FUNCTIONS

The following FORTRAN IV program is for the calcu-
lation of autocorrelation and power spectrum estimates.
The total program consists of the main program, MAIN, and
subroutines, AUTO and POWER.

The main program, MAIN, defines the number of
data points, N, and the maximum lag values, M. After the
subroutines are called, it determines the cutoff frequency
at which 90 percent of the power occurs under the spectral
density curve.

Subroutine AUTO calculates the expected values, AV,
and the variance, RO, of the data. It then normalizes the
initial data, ¥Y(I). Finally, it determines the autocorre-
lation estimates R(J). R(J) is obtained by dividing
autocovariance estimates, R(J), by the variance, RO.

Subroutine POWER defines the sampling interval,
DELX; calculates the frequency, FR(J); the raw spectral

estimates, S(J); and smoothed spectral estimates, U(J).
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APPENDIX C

FORTRAN IV PROGRAM FOR ESTIMATION

OF DECAY COEFFICIENTS
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APPENDIX C

FORTRAN IV PROGRAM FOR ESTIMATION

OF DECAY COEFFICIENTS

The following FORTRAN IV program is for deter-
mining the decay coefficient of the estimated power
spectral function. The program is composed of the main
program, MAIN, and subroutines PEAK and LEASTSQ.

The main program, MAIN, defines only the number
of different sets, N.

Subroutine PEAK searches the peaks in the spec-
trum function whose magnitudes are greater than FTLN
(FTLN was assumed to be 0.02 in this study) after the
highest peak in the data was found. First, the data is
scanned and the highest peak is determined and stored.
At this point, the following peaks, A(I), whose magni-
tudes are greater than 0.02 are found and stored along
with the corresponding frequencies, B(I).

Subroutine LEASTSQ determines the standard devi-
ation, STAND, of A(I), and then calculates the decay
coefficient, S, and Ko’ BE, in (5.5.1) by using the least

square regression method.
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FORTRAN IV PROGRAM FOR CALCULATION
OF THEORETICAL POWER SPECTRUM

DENSITY FUNCTIONS
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APPENDIX D

FORTRAN IV PROGRAM FOR CALCULATION
OF THEORETICAL POWER SPECTRUM

DENSITY FUNCTIONS

The following FORTRAN IV program is for the cal-
culation of theoretical power spectrum density functions.

The program MAIN first defines the width W and
the height A of a rectangular surface element.

D is defined as the distance between two rectan-
gular elements.

CF is the constant which is used to correlate
theoretical spectrum with estimated spectrum values.

S(M) is the theoretical spectrum values calcula-
ted from equation (5.7.7, b).

SN(M) is the normalized theoretical spectrum

values [equation (5.7.12)].

131




132

Q“ .Q..Qﬂ@«‘.'l.q.

«Kvveowy aaa

Tl-zgubutb®
-zfgft2*

2P-29¢"64L"°
AT YEYA

2h=dfygor* 7ieylzeel®
29-32294¢ N ETAX TN
elesgyTL” § ey 19"
c0-45p7€"~" Coen® €y*-*

gC=dggnrse £ mAbLpys”

£0.3

Tutge IO TP AR
£h=39uTee " C_=3epict”’
ﬁ- Nv L[]
ﬁn.n~Uq“u.w.¢wu
(D3¢ (o

~ [ ]
Goeern s TtaShe b

4
»A,c:ovnsnc-:v~\».otu

::m..n....x.ﬂ.\AAv.ﬂv;n.v~v.ﬁc..;v.gm.m

((irel ) ﬁcuvrhuvcﬁ-

(o0 )ES(LPL)SS (T (C2U)I SO (LEE,S
(A TAFESUIYOUAS T & Bt

Cerfenvi el vean

L e,

LA SF S5 T

e S

<«
c
nn

..\
- - -
[

Je

.



133

ALETTIR ¥ &
MPezpeti2®
90e=Yy,pul’
Thecep9ig”
T0--0/Fp*

22¢e°

2Cez-9yb665"

29-:%6806"

2023y 5u3"

Tleruy8L2t
yl-z5g9c2e"
2V-32¢%9°"
20-20u206"
L-z6p626°
Tdezf028L"

Ule39gBPT®

20-3923vT°
10-39C6s2°
T0-dfyge2*
20e3£924¢°
20-3GpcLT’
20-3gC211"°
£0-3433vy°
£0-3Tevhs*
£0-360 9"
£0-3¥pG64°
£0e3290u653°
£0-39G¢gT3°
£0-32¢997°
£0-3T9Ty,"
£0=3TTvcn’
20-30¢3e<"
20<3p0ucT”
20-4G5g/1¢°
20=3Ugvea’
10e4T2¢12°

Thedgers’

~

20e38pTL"
£0-32269:°
¥0-37065°
vN=363213"
£0-3d6,912°
20383,
B0e3dLpotiy®
t0e3fgony:*

S0-36v6LT’

T YA
27=361,T6°
2ue3io2cC0"
2 =3920gT”
©la3e7g29°
fieldoe 2Ty’
19e3i2pes
Li=3uvpgl®
£ =5£5922%°

C.=3r plC°

ERELIYA S

Foedyeedt

CE TN T

Sreqppel”

[REELTY IS

LI A
Soeq9T97?°
Jie3LTe1T
ACETT T S
Tle376909L"
Zo=3u05¢7"
y._=3e6019°
fle3cc28%"°
ERC R IVE T R
[TELTTAS A
v e36696L "
£C=3C 120"
22=309022°
(0e309g18"°

20=3Le599°

Ve
T e Tal
- S -

-e -
T .

Slegullty’
Cleayuf ey,
Lleldnze
Giedstiuy®

k4



LIST OF REFERENCES

134




LIST OF REFERENCES

Basha, M. A. (1961). Resistance Characteristics of Arti-
ficially Roughened Open Channels in Relation to
those of Alluvial Channels, Thesis submitted to
the University of Roorkee in partial fulfillment
of the requirements for the degree of Master of
Engineering.

Bazin, H. E. (1865). Recherches Hydrauliques, Memoires
presentes par divers savants, Science, Mathematiques
et Physiques, Series 2, Vol. 19. '

Bendat, J. S., and Piersol, A. G. (1966). Measurements
and Analysis of Random Data, Wiley and Sons, New

York. -

Blackman, R. B., and Tukey, J. W. (1958). The Measure-
ments of Power Spectra from the Point of View of
Communications Engineering, Dover Publications,
Inc., New York.

Blasius, H. (1913). Das Ahnlichkeitsgesetz bei Reibung-
svorgangen in Flussigkeiten, Forsch-Arb., Ing.-Wes.
Heft 131, Berlin.

Burney, J. R., and Higgins, L. F. (1973). Hydraulics of
Shallow Flows Over Stable Eroded Sand Surfaces
Defined by Aerial Spectra, Technical Report No. 36,
Purdue University Water Resources Center, Lafayette,

Indiana.

Chang, F. F. M. (1970). Ripple Concentration and Friction
Factor, Journal of the Hydraulics Division, ASCE,
Volo 96, HY2' pp. 417-4290

Chiu, C. (1968). Stochastic Open Channel Flow, Journal of
the Engineering Mechanics Division, ASCE, Vol. 94,
EM3, pp. 811-822.

Chow, Ven-Te (1955). Open Channel Hydraulics, McGraw-Hill
Book Co., New York.

135



136

Colebrook, C. F. (1939). Turbulent Flow in Pipes with
Particular Reference to the Transition Region
Between the Smooth and Rough Pipe Laws, Journal,
Ins. of Civ. Engrs., Vol. 11, pp. 133-156.

Colebrook, C. F., and White, C. M. (1937). Experiments
with Fluid Friction in Roughened Pipes, Proceed-
ings, Royal Soc. of London, Series A, Vol. 161,
pp. 367-381.

Dinc, G., Merva, G. E., and Kidder, E. H. (1971).
Hydraulic Roughness of Corrugated Plastic Drain
Tubing, National Drainage Symposium Proceedings, y
ASAE. -

Einstein, H. A., and Banks, R. D. (1950). Fluid Resistance
of Composite Roughness, Transactions, Amer. Geoph.
Union' VOl. 31' No. 4' pp' 603-6100 _7‘

Herbich, J. B., and Shulits, S. (1964). Large-Scale
Roughness in Open-Channel Flow, Journal of the
Hydraulics Division, ASCE, Vol. 90, No. HY6,
pp. 203-230.

Houbolt, J. C. (1961). Runway Roughness Studies in the
Aeronautics Field, Journal of the Air Transport
Division, ASCE, Vol. 87, No. ATl1l, pp. 11-31.

Houbolt, J. C., Walls, J. A., and Smiley, R. F. (1955).
On Spectral Analysis of Runway Roughness and Loads
Developed During Taxiing, NACA TN 3484.

Houk, I. E. (1918). Calculation of Flow in Open Channels,
Miami Conservancy District Technical Reports,
Part IV.

Hutchinson, G. B. (1965). Analysis of Road Roughness
Records by Power Spectral Density Techniques,
Report No. 101, Dept. of Highways, Ontario, Canada.

Jenkins, G. M., and Watts, D. G. (1969). Spectral Analysis
and Its Applications, Holden-Day, San Francisco.

Johnson, J. W. (1944). Rectangular Artificial Roughness
in Open Channels, Trans. Amer. Geophys. Union,
pp. 906-914.

Keulegan, G. H. (1938). Laws of Turbulent Flow in Open
Channels, Journal, Nat'l. Bureau of Standards,
Washington, D.C., Research Paper 1151, Vol. 21,
pp. 707-741.




137

Koleseus, H. J., and Davidian, J. (1966). Free Surface
Instability Correlations and Roughness-Concentration
Effects on Flow Over Hydrodynamically Rough
Surfaces, Geological Survey Water-Supply Paper
1592-C.D., U.S. Gov't. Printing Office.

Lee, Y. W. (1960). Statistical Theory of Communication,
John Wiley & Sons, Inc., New York.

Leopold, L. B., and Wolman, M. G. (1957). River Channel
Patterns: Braided, Meandering and Straight,
Geological Survey Prof. Paper 282-B, U.S. Gov't.
Printing Office.

Limerinos, J. T. (1970). Determination of the Manning
Coefficient From Measured Bed Roughness in Natural
Channels, Geological Survey Water-Supply Paper
1898-B, U.S. Gov't. Printing Office.

Manning, R. (1891). On the Flow of Water in Open Channels
and Pipe, Transaction, Inst. of Civ. Engr., Ire-

Martinelli, R. C. (1947). Trans. ASME, Vol. 69.

Mirajgauker, A. G., and Charlu, K. L. N. (1963). Natural
Roughness Effects in Rigid Open Channels, Journal
of the Hydraulics Division, ASCE, Vol. 89, No. HYS,
Pp. 29-44.

Morris, H. M. (1955). A New Concept of Flow in Rough Con-
duits, Transactions, ASCE, Vol. 120, pp. 373-410.

Neil, C. R. (1962). Hydraulic Roughness of Corrugated
Pipes, Journal of the Hydraulics Division, ASCE,
Vol. 88, No. HY3, pp. 23-44.

Nikuradse, J. (1933). Stromungsgezetze in Rahhen Rohren,
Vein Deutscher Ingenieure, Forschumagasheft 361
(English translation: Laws of Fluid Flow in
Rough Pipes, The Petroleum Engineer), Part 1,
March 1940, pp. 164-166; Part 2, May 1940, pp.
75-82; Part 3, June 1940, pp. 124-130; Part 4,
July 1940, pp. 38-42; Part 5, August 1940, pp.
83-87.

Nordin, C. F., and Algert, J. H. (1966). Spectral Analysis
of Sand WAves, Journal of the Hydraulics Division,
ASCE, Vol. 92, No. HYS5, Proc. Paper 4910, pp. 95-
114.

racam.



138

Potter, D. M. (1957). Measurements of Runway Roughness of
Four Commercial Airports, NACA RM L56126.

Powell, Ralph W. (1946). Flow in a Channel of Definite
Roughness, Transactions, ASCE, Vol. 111, pp. 531-
566.

Powell, Ralph W. (1950). Resistance to Flow in Rough
Channels, Transactions, Amer. Geophys. Union,
VOl. 31' ppo 575-5820

Powell, Ralph W. (1968). The Origin of Manning's Formula,
Journal of the Hydraulics Division, ASCE, Vol. 94,
No. HY4, pp. 1179-1181.

Prandtl, L. (1904). Heber Flussigheit, Shewegung bei sehr
kleiner Reibung, Verhandlungen, 3rd Internat'l.
Mathematiker Kongresses, Heidelberg.

Raju, K. G. R., and Garde, J. G. (1970). Resistance to
Flow Over Two-Dimensional Strip Roughness, Journal
of the Hydraulics Division, ASCE, Vol. 96, No. HY3,
pp. 815-833.

Roberson, J. A., and Chen, C. K. (1970). Flow in Conduits
with Low Roughness Concentration, Journal of the
Hydraulics Division, Vol. 96, No. HY4, pp. 941-
957.

Robinson, A. R., and Albertson, M. L. (1952). Artificial
Roughness Standard for Open Channels, Trans. Amer.
Geophys. Union, Vol. 33, No. 6, pp. 881-888.

Rouse, H., and Ince, S. (1957). History of Hydraulics,
Iowa Inst. of Hydraulic Research.

Rouse, Hunter (1965). Critical Analysis of Open-Channel
Resistance, Journal of the Hydraulic Division,
ASCE, Vol. 91, No. HY4, Proc. Paper 4387, pp. 1-25.

Sayre, W. W., and Albertson, M. L. (1961). Roughness
Spacing in Rigid Open Channels, Journal of the
Hydraulics Division, Vol. 87, No. HY3, May, 1961,
pp. 121-149.

Schlichting, H. (1968). Boundary Layer Theory. McGraw-
Hill Book Co., Inc., New York. 6th Edition.

Skoglund, V. S. (1936). Effect of Roughness on the Fric-
tion Coefficient of a Closed Channel, Journal of
the Aeronautical Sciences, pp. 28-29.




139

Squarer, D. (1970). Friction Factors and Bed Forms in
Fluvial Channels, Journal of the Hydraulic Divi-
sion, ASCE, Vol. 96, No. HY4, pp. 995-1017.

Streeter, V. L. (1936). Friction Resistance in Arti-
ficially Roughened Pipes, Transactions, ASCE,
Vol. 101, 1936, pp. 681-713.

Task Force Report (1963). Friction Factors in Open Chan-
nels, Progress Report, Journal of the Hydraulics

Taub, H., and Schilling, D. L. (1971). Princfples of a
Communication Systems, McGraw-Hill Book Co., New
York. ‘

Thompson, W. E. (1958). Measurements and Power Spectra
of Runway Roughness at Airports in Countries of
the North Atlantic Treaty Organization, NACA TN S
4303. ‘ ‘

Vanoni, V. A. (1953). Some Effects of Suspended Sediment
on Flow Characteristics, Proceedings, 5th Hydraulics
Conf., Iowa State University, Iowa City, Iowa,
PP. 137-158.

Vanoni, V. A., and Hwang, L. (1967). Relation Between
Bed Forms and Friction in Streams, Journal of the
Hydraulic Division, ASCE, Vol. 93, No. HY3,
pPp. 417-429, Proc. Paper 5243, pp. 121-144.

Walls, J. H., Houbolt, J. C., and Press, H. (1954). Some
Measurements and Power Spectra of Runway Roughness,
NACA TN 3305.

Williams, G. P. (1970). Manning Formula - A Misnomer?
Journal of the Hydraulics Division, ASCE, Vol. 96,
NO.' HY]-' pp. 193-200.







