THE DESIGN OF A BUS TERMINAL FOR LANSING, MICHIGAN THESIS FOR THE DEGREE OF M. S. W. B. Edwards 1932 SUPPLEMEiTARY MATERiAL 3N BACK OF BQOK The Design of a Bus Terminal for Lansing, Michigan . A Thesis submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE :”By‘: W. a; (Egan candidate for the Degree of Master of science. June 1932. Acknowledgement. The author of this thesis wishes to acknowledge the valuable assistance of Professor C. L. Allen in the preparation of the material presented. W.B.E. 95049 Table of contents. Introduction I Description of the building and the materials used. II Design Roof beams 3rd floor beams and floor beams 1st floor beams a sbutments miscellaneous III Drawings conclusion. Bibliography Structural Engineers Handbook - Ketchum Architectural construction -. voss Structural Aluminum Handbook A. I. S. C. Handbook Building code - city of Lansing Articles on welding - mngr. news - necord Reinforced concrete construction - Hool Theory of structures - apofford unit Prices - nngr. News Record Handbook of cost Data - Gillette Estimating Building costs - Dingman Estimating Building costs - sarnes Introduction The thesis herewith presented was chosen for two reasons. rirstly, it presents two features of civil Engineering construction; namely a building and a bridge, and secondly, it offers a structure which has long been needed in the city of Lansing. Part One A Description of the building and the materials used. The structure, the design of which is presented in this thesis, is to be used as a bus terminal and office building. The lower floor will serve as a bus garage and loading station and as a waiting room for the bus passengers. The upper two floors may be used as offices for the various bus companies occupying the building, club rooms for the bus drivers or offices for companies other than the bus operating concerns. The building is situated on a bridge spanning the crand niver at the foot of mast Ottawa Street. It is one hundred and eighty feet long, seventy feet wide and three stories high. The design was undertaken with the intention of securing a light weight, fire-proof structure. The roof of the building is composed of tar and asbestos built up roofing on corrugated aluminum sheets supported on lightweight steel trusses which are in turn supported on steel 1 beams. The side panels are fifteen feet by fifteen feet with the trusses spaced at five foot intervals. The center panels are ten feet by fifteen feet with trusses fixed at the middle of the ten foot dis- tance. A plaster ceiling supported on metal lath is hung from the underside of the roof frame to provide a dead air space for insulation and to provide fire protection for the roof itself. The floors are of the American Institute of Steel construction Battledeck floor construction "T" sections, composed of steel plates welded to small I beams spaced twenty-four inches center to center. These r,‘ sections are welded to the floor frame and are protected from fire on the under side by patented fireproof blocks which are applied after the floor is laid. The surfaces of the upper floors and of the waiting room are covered with linoleum, laid directly upon the steel plates. The floor in the garage sectidn of the first floor is covered with two inches of asphalt which serves as a cushion for the heavy loads and also deadens the noise. The exterior walls of the building are of hollow- tile faced with limestone with steel sash windows and aluminum spandrels. The interior walls are of hollow gypsum.block, plastered on one or both sides as necessary. The columns, like the rest of the frame, are of rolled steel sections being fastened by means of welded Joints. The piers, footings and abutments are of rein- forced concrets, the west abutment having two Openings through it to allow for outlets for storm sewers which are laid down Ottawa Street. The elevator is a one thousand pound steel cab type with an overhead drive using a one to one wrap traction system. The machinery and cab are supported by means of steel columns, and the shaft is of six inch terra cotta tile blocks. The stairs are of steel with tile covered treads. While a heating system for the building has not been designed, the use of aluminum spandrels provides con- venient space for the new convector type heaters in the offices and waiting room, while unit heaters would probably be the most satisfactory in the garage section. Since the building has no basement, the most desirable method of heating would be to purchase heat. This could be conven- iently done, as the city heating plant which supplies steam to downtown buildings is on the adjoining property. Part Two Design Roof beams The first step in the actual design of the build- ing is the design of the roof system. The roof itself is composed of tar and asbestos roofing on corrigated aluminum sheets. The panels are 15 feet by 15 feet with light steel trusses 5 feet 0. to c. The load on the roof is as follows: Weight of roofing - 2 pounds per sq. ft. Weight of sheet aluminum - 1 pound " ” " Live load (Lansing Bldg. code) ~_§2;Pounda n u w The total load is 35 pounds per sq. ft. The weight of the suspended ceiling is 10 pounds per square foot making a total load upon the roof system of 43 pounds per square foot. The allowable load on s a S 16 gage corrugated aluminum supported at 5 foot intervals is 39 pounds per square foot which makes this type of roof safe to use. The framing plan and the design of the roof beams follows. note: The number of inches of 3/8" fillet weld required for any Joint equals the reaction divided by 3000. kflN kON DESIGN OF BEAM TYPE R.B.N. Load a each truss point 15 x 5 x 33 z 2475# 15 x 5 x 10 : 750? ungx : 3225 x 5 x 12 a 193,500 from a to b Assume wt. of beam 2 6# /ft. Mb 2 6 x 15 x 15 x 12 - 2025"# ‘8 Total M - 195,525 3 = 195E525 = 10.9 use 7" 17.5? std. I s - 11.11 DESIGN OF BEAM TXPE R.B.E. Ceiling = 10 x 5 =‘ 50 Load = 33 x 5 a 165? per lin. ft. Assume wt. of beam 5? per lin. ft. Total load -220f per lin. ft. 1&8 3 M = i x 15 x 15 x 12 - 74,500"# I 8 = 74 500 = 4.15 use 5", 10? std. I mime s = 4.84 ‘ DESIGN OF BEAM TXPE R.B.M. 15 x 5 x 10 “ ‘750 0 con Load = 15 x 5 x 33: 2975 Mnax - 3225 x 10 x 12 = 96,750 1" Mb = 5 x 10 x 10 x 12 a 750 use 6" 12.5? Std. I """'5‘ 577555 a = 7.27 s - 97 500 - 5.42 ‘ mimic DESIGN OF BEAM TYPE 3.3.5. assume wt. = 4% Load - 47 x 2.5 - 117.5; /ft. M’ 117.5 x 11 x 11 x 12 - 21,3oo"# *s 3.: §5fggg - 1.19 use 3", 5.7“ std. I. s - 1.67 DESIGN OF BEAM TYPE 3.3.1. ass. wt. - 4" Load a 47 x 5 - 235 r /ft M - 235 x 158x 15 x 12 - 79,300 3 - 79,300 I 441 use 5", 10% std. 1. s = 4.84 DESIGN OF BEAM TYPE R.B.J. assume wt. I 5% Load - 45 x 5 - 240; /ft. M = 240 x 11 x 11 x 12 - 43,500 "# = 1:388 = 2.42 use 4" - 7.7 std. I. s - 3.0 DESIGN OF BEAM TYPE R.B.Q. assume wt. 5" /ft Load - 45 x 5%.: 254 f /ft. m = 254 x 11 x 11 x 12 - 4sooo"# use 4"x m7§ std. I. s 8.5e0 s - 45,000 - 2.57 DESIGN or BEAM TXPE R.B.V. Assume wt. = 5% /ft Load - 48 x 5 - 2405 /ft. M 240 x 11 x 11 x 12 8 43,500 use 4", 7.7f std. I. B . s - 3. i (0 II 43500 n 2.42 18000 DESIGN OF BEAM TYPE R.B.R. assume wt. 3 6# 195,525 5 = 10.9 use 8" - 18.4? ltd. I. Gone Load M..: B ' 4.22 DESIGN OF BEAM TYPE R.B.T. cone Loads I 3225 wt. of beam = 8? moons I 3225 x 2 x 12 = 387,000 Mb I 8 x 208x 20 x 12 I 4,800 Mmax ' 391,800 use 10" 25.4? std. I. S - 391500 = 21.7 s = 24.42 “15000 DESIGN OF BEAM TYPE 5.3.3. assume wt. of beam 55 /ft cone Loads I (assume 2' supp. by beam) -43 x 2 x 5 = 430? MC: 430 x 5 x 12 - 25,800 Mb I 5x16 x 16 x 12 = 1 920 s """' "max I 27,720 use 3" 5.7f std. I. s - 27720 . 1.54 s . 1.57 15050 ' DESIGN OF BEAM TYPE E.B.U. ass. wt. . 5# /ft cone Load (assume 6' supported by beam) - 43 x 5 x 5 - 1,290 M = 1290 x 5 x 12 - 77,400 Mb I 5 x 16 g 16 x 12 : 1,920 . Mug; 3 79,320 use 5", 10? std. I. S I 79320 I 4.42 s I 4.84 10000 DESIGN OF BEAN TYPE R.B.F. assume wt. of beam - 5# /ft Uniform Load 33 x 2.54-10 x 2.54-5 - 112.5? /ft M I 112.5 x 15 x 15 x 12,= 38,100 8 S I 38 100 I 2.12 use 4", 7.7? std. I ‘Isfooc' 8-3.0 DESIGN OF BEAN TYPE R.B.w.' assume wt. of beam 7? /ft Cone. Loads I (10x7.5x5)+(33x7.5x5)+(10x915)+33(9x5) I 3543 Moon I 3545 x 5 x 12 I 212,700"# Mb 4 7 x 15 x 15 x 12 - 2,351"# 8 “max I 215,081 "# 3 3 215,081 : 12.0 use 8”, 18.4? std. I ’ s I 14.22 ' DESIGN OF BEAM TYPE R.B.K. assume wt. of beam 5? per ft. cone. loads I (10 33) (5) (9) I 1935 Moon I 1935'x 5 x 12 = 116,100 Mb 8 5 x 15 x 15 3,12 8 1,690 Ev Nmax - 117,790 3 I 117 790 I 6.55 “IstUU use 5", 12.5? std. I s I 7.27 DESIGN OF BEAM TYPE R.B.L. assume wt. of beam 53 /ft conc. loads 43 x 6.5 x 5 I 1400 Moon = 1400 x 5 x 12 I 84,000 Nb‘= 5 x 15 x 15 x 12 - 1,590 N = 85,690 3 I 85 690 I 4.76 use 5f, 10? std. I Isfooo ' - 4e84 DESIGN or BEAM TIPE N.B.p. assume wt. of been I 6f /ft. Gone. loads = 43 x 6.5 x 5 I 1400 n,on,= (2100 x 10 - 1400 x 5112 = 155,000 "r Nib-6x20120xl2I 8 “max 8 = 171500'a 9.55 ‘18000 3,600 171,600 “I use 7“ 15.3? std. 1. s = 10.34 DESIGN OF 52AM TIPE H.B.A. assume wt. of been I 5? /ft uniform load I43 x 2.5 I 108 wt. of beam I 5 M = 113 x 18 x 18 x 12 = 55,000 use 4" 8.5f std. i s S = 55000 I 5.05 10000 DESIGN 0r BEAM TxPE N.B.B. Uniform load I 43 x 5 I 215f wt. of beam ' 5f 220 M I 220 x 18 x 18 x 12 I 107,000 8 3 = 107 000 I 6.5 “rel-005 988100 or BEAN TIER 8.5.0. uniform load I 43 x 25 = 108 wt. of beam = 5? m = 113 x 13 x 13 x 12 = 50,700 8 S I 50700 I 2.82 10000 B 8 3.15 assume wt. 5% /ft. use 6", 12.5? std. I. s = 7.27 assume wt. 5f /ft use 4", 7.7? std. 1 a = 3.0 DESIGN OF BEAM TXPE h.s.0. assume wt. = 10# suitors load = 220s ‘M = 220 x 13 x 15 x 12 I 89,600 use 5", 12.75 std. 1 1T 8 I .9600 = 4.97 8 I 5.40 18000 DESIGN OF BEAM’TYPE R.B.Y. assume wt. = 5? /ft Assume beam supports 10' Cone. load = 43 x 5 x 10 I 2150 Moon . 2150 x 5 x 12 = 129,000 "# Mb I 5 x 15 x 15 x 12 I 1,690 B. mmax = 130,690 Use 6", 12.5w std. I S = 150 590 = 7.14 s . 7.27 ~15655- DESIGN OF BEAN TYPE 2.5.2. assume wt. =-5# /ft Assume Beam supports 13' Cone. load I 43 x 5 x 13 I 2800 'Mcon = 2800 x 12 x 5 I 168,000"# Mb I 6 x 15 x 15 x 12 = 2,025"# 1T mmax 170,025 086 7", 15e3# Btde I S . 170025 - 9.5 s = 10.54 '10000 DESIGN OF BEAN TIPE 3.2.1. assume wt. - 5} /ft Assume beam supports 7' Con. load = 43 x 7 x 5 = 1510 Econ, - 1510 x 5 x 12 - 90500 my a 5 x 11 x 11 x 12 I 910 s um.x 91510 use 5", 12.255 std. I S I 91510 3 5.1 DESIGN or BEAN TYPE R.B.G. Load = 5 (45) a 240 9 /ft M’ 240 x 5.5 x 5.5 x 12 I S a 10900 I .61 ‘18000 DESIGN OF BEAM TYPE RB.0. 8 I 5.40 assume wt I 5% /ft 10900"# use 3" 5.7# std. I. B 8 1e67 assume wt. I 5% /ft , P,P , R . 40 x 5 x 7.5 = 15002 4- M 5 I 1 . P I 43 x 6.5 x 5 I 1400# Q 5, R, = 1500'2 4 x 1400 - 1310 2 10 M I 1310 x 5 x 12 I 78,600 Md.“ 5 x 10 x 10 x 12- 750 F M ., 79,350 S I 79350 = 4.41 15000 use 5", 10.0# Std. b B .4e84. Third floor beams The next step to be considered in the design is that of the third floor system. The type floor used is the A.I.S.c. Battledeck floor with linoleum covering and patented fireproof ceiling. There are two types of floor required, one a 3 inch beam with 3/16 inch plate where the Span is fifteen feet and the other a 4 inch beam with 3/16 inch plate where the span is eighteen feet. span. span The load upon the section having the fifteen foot is as follows: weight of floor 10.5 pounds per square foot Weight of fireproofing 13.0 " " " 7 Live load (Lane. Bldg. Code)_§Q;_’ " 7 I " Total load 73.5 pounds per square foot Tabulate safe load 85.0 " " N N The load upon the section having the eighteen foot is as follows: weight of floor 11.5 pounds per square foot weight of fireproofing 13.0 " " " N Live load 50 u n u n Total load 74.5 pounds per square foot Tabulated safe load 100 " " " I A check upon the safety of the 3 inch floor follows, the section used being one “T" section 24 inches wide Max. and 3 3/16 inches deep. L.L. = 100# /lineal foot L.L. moment :IE'I 100 x 15 x 15 x 12 I 22,500"# Mix. D.L. moment I l x 23.5 x 15 x 15 x 12 I 5,300"# '12 Max. Total moment : 27,800")? IQ of plate - 1 x 24 x ( 3)3 = .00152 eBe I! (IE) A 01 plate 3 24 x 3/16 I 4.5 square inches Ic.g. Of'I beam = 2.5 A : 1.54 n n '1? of plate = 3.09375 .Y. of I been I 1.5 4.5 x 3.094 1.64 x 1.5 I 6.14 x c 2.668 0 .425 A I = .00132 4.5 (.425)2 2.5 1.54 (1.168)2 I = 5.55 E, = 27 800 x 2.668 = 13,480 r /sq. in. fins—— Allowable :, = 18,000 The framing plan and the design of the third floor beams follows. Note: The number of inches of 3/8" fillet weld re- .quired for any Joint equals the reaction divided by 3000. Floor Beam Type N.B.3N. Total load /ft I 73.5? on floor load /ft on frame - 73.5 x 15 = lloop assume wt. of beam I 20? /ft wt. of wall (4" hollow Gypswm 12' high with pégg7;{)s use; much much scum was» meet and. .I : Qmukl (WIJJdJriw ) [ (7 ,.J(|l I, JEEIET \ “ ‘11 (I A e w .,. N ~ N n .N [m ..u .5 5 d J fl oN. . ..U.Iil P]. b 5 lb .0, e. r . I . I I F f I 9 some Beams beams momma sedan scan. scams JJruNr {I'd-mi. \E‘ 1‘. i T“ . i -1 ‘\ \ I 111] t . ‘ A W N W m M M e. e B 1 is B .11 .. I J ,f r F Dams scum wmcm mean was» scam poem . no . aw m m ,M m .2. . A. A m a ... such :1 AI nmdn ,/ one» x palm / team I name I swam m V. W I e w. w ‘1 L n J 7 (J l 1 . e 41 A). I / 5 a . . I l / F / i v . n .1 A»; $35.... 4 . 1 21K .hUUMQ WUON~ 1 v N 4 n. w; 7., 1 W. W; .. _, n m s u / I r . Viz... 3.1.1, o .t 5.1.: but: bump 3:5; If}. r: .21.... 3 1,5,1: FBJN llunnuv 1.9: beN momma 51,: I acct .N. a F 505nm. M F bccm . - (2M 3 b when I N 5 F 42.51 V H :13. I ‘f'h'j N IU‘N . rbsN Pb ‘N . awry.» 3 _ FBSN 4.3.11 1... , 47.1.. Y m7: I 73.) Z J / I .100 C [Q +8.3. Ibcr I/‘ai .- 1...... “W in I ma 3'5. L M = 1 x 1460 x 15 x 15 x 12 I 328,500"# 1.3.2 '12 :3 = 328,500 x 1%,: 27.4 ~ use 10" 35# std. I been ' ~s = 29.15 Floor Beam Type F331! Total load /ft on floor - 73.54 load on frame - 1100f Assume wt. of beam = 151' /ft ' Total load 11155 /ft. s 3 1115 x 10 x 10 x 12 I 6.2 x 12 I 9.3 12 x 18000 ‘1! use 7, 15.3? std. I beams = 10-34 Floor Beam Type FB3W Floor load /ft. on frame = (74.5 x 9) (73.5 x 7.5) = 1230 Assume wt. of beams = 25? [ft Wt. of wall = 3354 /ft M = l 1590 x 15 x 15 x 12 = 358000"? I 1218 12s 3 358 000 x 12 2 28.4 use 10' 35 std. I beam Term—5 8 : 29e16 rloor Beam Type NB3E1 3" been as reqd. by floor Floor Beam Type NB3G 3" beam as reqd. by floor (see also FB3Gl) Floor beam Type rB3D 3" Beam as reqd. by floor Floor beam Type FB3B 4" Beam as reqd. by floor Floor Beam Type F832 assume wt. 10f /ft. wall load I 336? /ft 1M =1; x 350 x 15 x 15 x 12 I 74,200"# x 12/8 use 6" 12.57 std. I beam 3 2 74200 I 4.12-x 12 = 6.17 s I 7.27 10000 '8' Floor Beam Type rB3N Floor load /ft ‘ (73.5 x 6.5) (74.5 x 9) I ll48f/' Assume wt. of beam = 25% Wt. of wall I 336 f/' Total load 1510 f/' S I 1510 x 15 x 15 x 12 x,1§ I 28.4 use 10" 35#/' std. beam 12 x 18000 a = 29.16 Floor Beam Type NB3Q assume wt. of beam = 1011:t /' wall load = 335#/' > A S 2 350 x 11 x 11 x 12 = 3.52 use 5", 10% std. I beam 8 x 18000 a I 4.84 Floor Beam Type NB3I same as £332 6" 12.5% std. I beam Floor Beam Type PB3! Assume wt. of beam 3 15% /ft Assume 12' of floor'carried by beam (max) s I 900 x 12 x 12 x 12 I 10.8 use 7" 17.5? std. I beam Tm .00 s 3 11.11 Computations for load on wall supporting beam wt. of wall 6_x 10 x 32 I 1920f wt. of windows 3 10 x 9 x 5.5 = 495# Wt. of spandrel 9 x 3.5 x'1 x 170 = 450g 12 a; wt. or stone facing .31? x 6 x 10 x 2 x 160 I 400193 ' 12 'Wt. of plaster = 6 x 10 x 5 I 300? d i 9' 3. t. . 437 / 76555 1‘437/4 R 3 1785 M I (1785 x 7.5 - 437 x 3 x 6 - 105 x 4.5 x 4.5) 12 K . F.B.3F. M 3 53,800 5 8 531800 3 3 use 4", 8.5? ltd. I ' s = 3.45 F33A o’ 9' 5, .437 ’/' fl 1051/. J 4371/. 31 I 2680# R, - 2200 MBA! 3 (2680 x 6.57 - 437) x 6 x 3.57) 12 3 99,500 S I 99 500 I 5.53 use 6%, 12.5f'std. I m s I 7.27 FBSC load = 437? /ft ' M I 437 x 13 x 13 x 12 I 74,000"#xl%§ ‘12 S I 74 000 I 6.15 use 7" 12.5# std. I mimo- s I 6.88 Load on FB3L Assume wt. of beam I 15? /ft. Same as FB3F‘r73.5 x 5.5? /ft I M 3 53,800+_% x 405 x 15 x 15 x 12 = 188,800"# M I 188,000"# use 7" 17.5? std. I 8 I 10.4 s I 11.11 NB3J Use 10%, 15.3# std. channel for stairs a . 13.38 FB3G1 Use 10" 15.3? std. channel for stairs s I 13.38 r333“ wall load I 437f /tt. assume wt. = 15? /ft M I 452 x 11 x ll'x 12 I 54600"# x 12/8 3 I 54600 x 12 I 4.59 use 5", 10# std. I 10000" ‘0' s I 4.84 pm ' assume wt. = 15? /£t. Wall load I same as E83! assume wt. 15# /ft. M W811 108d I 53,800 m I (7.5 x 89.5) x 15 x 15 x 12 = 151,500 x‘lg - 227,500"# ‘12 Mmax I 281300"# use 9" 21.8f std. I S = 281 500 . 1506 B ' 18087 151000 FB3x . . 3 5. 3 1 437’” 10:51". ‘43747. assume wt. of beam I 155I /ft M I (15 +(7.5 x 73.6)) x 11 x 11 x 12 I 66,600 "# floor 12 M wall I (1574 x 5.5 - 1311 x 4.0 - 263 x 1.25)12 I 37,000“# 'M I 103,600 "# use 6" 12.5? I S I 103 000 I 5.75 s I 7.27 151000 F335 assume wt I 15? /ft. Wall 1oad I 437? /£t. Floor load assume 220% /ft M - 682 x 15 x 15 x 12 - 172,000 "# x 12 . 12 ‘8 use 8" 2005? Std. I S I 172000 x 12 I 14.35 8 I 15.05 '10000' '0' F330 assume wt I 15f /ft Wall load I 437 # /£t Floor load 588% /ft M I 746 x 16 x 16 x 12 I 191,000"? x %_2_ use 8" 23? std. I 12 S I 191000 x 12 I 15.9 s I 16.05 “10000' ”0' FB3Z assume wt. 15% /ft Floor 1oad I 73.5 x 11.5 I 845 # /ft m = 860 x 15 x 15 x 12 I 194,ooo"# x‘lg 12 S I 194000 x 12 I 16.2 use 9" 21.87 std. I '10000__—-0' s I 18.87 XBSA assume wt. I 10? fit. wt. of wall 280* /ft M I 1 x 290 x 13 x 13 x 12 3 49000" /ft x 12 '12 "0 3 I 49000 x 12 I 4.18 use 5", 10? I 10000 0— B = 4.84 wt. of wall 2802 /ft assume wt. 10? /ft M - 1 290 x 5 x 5 x 12 = 10500 "I x 12 IE '8 ' use 3", 507? Std. I S 3 10 500 3 .6 x 12 I .9 s I 1.67 F33? * 82w». a au- ?! 6' _ 7' efldii‘ 3% Eh I 1595 ' R stair - 2950 assume 30" /ft Rxb3a RI. -.-.- 8700 +13 1: 1595+ 7 x 2950 I 10770 20' 20 .8, I 11,175 .Max moment occurs 10.54' from ”I M‘I (10,770 x 10.54 - 1595 x 3.54 - 870 x 10.54 x 5.27)12 I 718,200“? 3 I 718 200 = 40.5 "IEfUUU use 12" std. 1 beam 40.8? /ft. 8 I 44.82 FB3'1‘ 153mm» , 2950 floor load left or]: 1148f/i’t 7 1 ‘7 l 7' w .. .. - 145077 . . loom“ right of 1 - 670#/ft 5 “wall load I 280 #/ft ‘1 . 'fiH . r. Vt. of beam I 50% /ft RL I 13.5 x 13 x 1480+ 13 x 5985.. 7 x 2950+ 3.5 x 7000 I 18.850 20 '20 '20 20 233Ai-XB3B I 5985? R, = 15325 Max Moment occurs 8.68' from “L M I (18,850 x 8.68 - 5985 x 1.68 - 1480 x 8.68 x 4.34)12 I 1,282,000"? S I 1 282 000 I 71.4 “18060" use 14" - 58" 0 Beam s I 78.25 eno' ;xasc length 13' [ Assume wt. I 15? /ft 1 , 5' 6” 25055 .5566” KL : 4954 13' a, I 5806 8, . 5/13 x 870+ 9 (280 x 8)+ 13 x 503 = 5805 1'3 ““2"" L I 5806 I 6.7' from rt. end Mmax (5805 x 5.7 - 858 x 5.7 x 5.7112 I 232,500"# use 8" 18.4? std. I S I 232500 I.12.9 "10000 e I 14.22 1338 length 18' assume wt. I 20? /ft 5506 12' 250% 6 5 RL I 4390 18' R, = 5170 KL . 180+%(5806)+§(12 x 280) = I (5170 x 5 - 120 x 3)12= 357,92074 Mmax‘ s I 20.4 use 9" 25# std I s I 20.31 1083!! assume wt. I 1073* /:ft I 4254 .1 5' x e 1 1 R1. = 2755 r Rr I 2315! 33 I 5.5 x 10.1; x 4954 . 2755 R, = 5.5 x 10%; x 4954 = 2315 FBBV’ (cont.) M . (2755 x 5 - 50 x 2.5)12 = 155,000 s I 155000 I 9.15 use 7" 15.35 std I '18000 a I 10.34 5530 2315 9. Assume wt I 205 /ft - .- I ‘7 I 770% ' 9551/. RL 2 5 x 5 x 770..1 ; 955 x 5..1 (2315) I 5250 100 - 535 1’ ‘Z '2 8,. I § x 5 x 955.; x 5 x 770+%(2315) - 5710 100 = 5810 mm.‘ = (5350 x 5 - 790 x 5 x 2.5)12 = 203,000"? S I 203 000"# I 11.3 use 7" -20§ std. I 151055 a I 11.97 5IlO 58351 I , : 1060“ [3'25 / assume wt 25?} /l't ‘BL = 11500 Br I 13425 BL I 7 x 5710+.3.5 x 7 x 1525+.11 x 8 x 1080 I 11,600 15' 15 15' M I [11600 x 8 - 8640 x 4) 12 I 700.000"# 8 I 700 000 I 38.8 use 12" 40.87 std. I 183555 a I 44.82 Second floor beams The loading and type of floor used on the second floor is the same as on the third floor with the exception of the concentrated load at the midpoint of the transverse beams caused by the column loads applied at these points. This load is taken as 50,000 pounds, computations for which are shown in the section on columns. The framing plan and design of the second floor beams follows: Note: The number of inches of 3/8" fillet weld required for any Joint equals the reaction divided by 3000. wou<>Eu.fl.2 54919202623 - , i), . p 7.. «x 7 “O... ..so\m macaw 542.355 330 20.23 523 07 2 m: , ‘7 m8: 028% 7 It I 7‘ 7 1 l llulunln... .. to 514' J . 13m mums. mwnm dual +1.: 13.1 ,3 :3 :3 mod 5.9 .33 7 m x . 7 7 7 1... J.— J .17 .17 u, 11.7 I. y .1 t n)" . Km 5 m m m 5 m m z m, ,- , 7 9...... M W N N N N N N7 N7 N m m . a 1 7, e 7 m. omox in: 7 7 7 7 W - _ _ a an. a. , r 1 z ,. r . a , x 7 7 a, _. 555.321 .3311 “mom 1 atom a 03.1 1 IE 1 mm“: 17 ml: .7 menu a ,1 03d 1“ (75.33, 7 7 _ 54», Q m M m m m N, N7 9:. m. ,... >81 .. {I _ , g . m w w w w w w 4 ”7.5.5.0, .. ,r 7 .am 037 mum: mums. mum... 88 2,8 7 NE 7 IE menu 02: 7 \ \_ 7 7 1 3 7 a, m ._ 1 1 1 - a .. m 5 a d -. 7 27,... z m e m m m m m7 mg. i ,2 , \ z N N M N H N N N7 C A70 M )u v ,\ .A 7, 73. In _ * ,\, , 7 , 7,,7 7 , 7 1,, 7 a 77 Thain 1N0». uwflu LNG... Luau mun: 1ND.» mNOu awn; mwflu uNi . «Sen; 7 7 FLOOR BEAMS FBZN length 30' . 2ND FLOOR assume wt 150? /ft Floor load I 15; 73.5? /ft wall load I 280 5 /ft Wt. of beam I 150? /ft Cone. load 57 Mid pt. I 50.00051 030% “mg: (86.000 x 15+ 1 x 1530 x 50 x song =5.555,5oo 3' , SI 6 865 500 I 381 "lHddd" use 0 27 "C" I beam 145# /ft R I 47,950 s I 408.05 5322 length 30' wt. 1507 /ft Floor load I 9 x 74.5 I 670,5f /ft wt. of beam 150.05 /ft Wall load , . 3' . . 6 . » 3 . w 9 1— _ . . ‘ cone. load I 2 x 7850 (5833) . 157207 2 x 1990 (883) I 39801 Hoof column 1385 1 x 1440 (F533) I 1440f 1 x 1980 (EBB) I 1980? 3rd floor column 588 Ilse 25,000 as design load .EBZK (cont.) 3 a 5 1: 437+ 9 x 105 +15 1: 820+; x 25,000 a 28,367? "max 3 (28,367 x 15 - (437 x'6't105 x 9+'820 x 15) 7.5) x 12 = 3,680,000"# S 3 3680 000 = 204.2 I8,UUU use 21" 987 0 Beam 3 = 209.24 FBZL Length 55' wt. 150»v /1’t 2 ol‘ 4f50’ ’ 15' GPT 13' 7' I [066' "/’ l Location of windows uncertain-whole beam designed to carry full well load. RL = 20 x 25000,. 1065 x 35" '7); 2950 = 33,515 35 2 ‘35 Hr = 51711 Mmax - (33513 x 15 - 1065 x 15 x 7.5) 12 = 4,500c000 S 3 4 500 000 = 250 use 27" - 101$ 0 Beam W s = 264.72 FBZR Length 35' 6%“; . 1505‘ /ft 21:50: % L 1586”! 4 HI. = 20 x 50000. 7 x 2950135 1: 1586 = 55,910 3'5 . 35 2 R, - 51540 3 - _¢_55910 x 15 - 1585 x 15 x 7.5) 12 = 449.9 18060 use 27” - 160? 0 Beam 8 = 450.13 F523 25000# AS' 25 667‘? wt . 1002t /ft floor load 350# /ft I M = (25000 1 32,1 x 880 x 32 x 52) 12 = 3,752,400 "a? 1" 8’ ' S 3 3752400 = 209.0 use 24” - 945 0 Beam ‘IUUUU' s 2 225.02 R = 26,580# FBZY' use a concentrated load of 37,500#=@ mid point wall load 3 280? /£t. assume wt = 100$ let floor load a 735% /ft (10 sq. ft. of floor) M = (37500 I 32.4%11115 x 30 x 30) 12 II 4, 878,000 8 = 4878000 3 271 use 24,110fi 0 Beam 'IFUUU' 8 8 276.83 19132111 wt. 1501i /1’t span 30' Cone. load 8 50,000 d mid point . 57103t 8' from Rr 8’ I I5, 1 7 [will Laooi% .RL 2 25,000+ 4 x 8 x 16504.19 x 22 x 1200 = 43840 30 30 M max = (43840 x 15 - 18000 x 7.5) 12 = 6,271,200 S I 6 271 200 = 348 use 27" 137$ 0 Beam 157000- 8 - 358.73 1821 F828 F820 F82D F828 F828 F820 F828 8821 F82J EBZMC F820 FBZGL FBav Same as I! '3 883A F838 10380 5335 F833 may use. FB3H beI 255.: F83M F830 1:550 FBSV 11821 ;X82A 11328 .XBZU 1828 Same as 883x 183A X838 1830 X83D First floor beams ' (including girders) The design of the first floor system varies some- ‘Ihat from that of the other floors in that the live loads are greater, and the longitudinal members are girders which trans- mit the stress to the abutments and the pier. The loads on the north section are as follows: 15 foot span. L. L. 2" Asphalt Fireproofing Weight of floor Total load using 5', 10f I's with 240 pounds per square foot. . 18 Load 150 pounds per square foot. 20 I! I! II N 1 5 u n n It 15 u u n n 300 n n n n 1/4" plate the safe load is foot span 200 pounds per square foot. Using 5" 14.75? 15 with 1/4~ plate the safe load 1: 220 pounds per square foot. The loads on the south and middle sections are as fiallows: 15 .L. L. Fireproofing Weight of floor Total load foot span 100 pounds per square foot 15 W a u u 15 7' 5' IV 7' 130 pounds per square foot Using 4" 7.77 1'8 with 3/16 plate the safe load is 150 pounds per square foot. 18 foot span Load 130 pounds per square foot Using 4" 10.5? 1'8 with 3/16 plate the safe load is 135 pounds per square foot. The framing plan with the design of the members follows. Note: The number of inches of 3/8" fillet weld "Wired for any Joint equals the reaction divided by 3000. AP‘UTNIEN T g g or P452 4* AEU rMENT QIV! b. wiiN’Vi, 379°, p.71 A 193 " F" “"0 ; . Lina 2,95,117# ngt-l N/QJ w, I my NIQJ NIHJ’ N/g I N / 9.1 e 47 k. S? ‘ "I. ‘70:):1 ’ { W/ng i .1 , ”1%,, _ W/QJ fi‘l’fli 87,, 7 \ '1 ‘ r. , .3 v a y 0 AU? 1 [Olfi/v 1...“: !‘/!,'I /.’ 1_ u? y -, if 51‘ k1. 1m 3’ WW m . .r I ' v10! ‘3 . f ‘49.] )/9J ~09; . O 219:! _, Wm hog/a " , L \ 7 7719.: ] 1 71/94 7 4 r‘ ‘1 1‘ WHJ J 9 . ’ 1 0 w ‘3 ‘ 7/9: 4 H ‘1 *7/94 J 11 1 \ H 710 I 7 q i . \ l/t/ I IIWJ 1.1 hi ’. w.‘ ' F ‘9 ,x I I J “.1 . m1 J] F lPSF ride)? 1 / SCALE J/gs' ' \05 EDWAQ 175 5U: T? QMINAI Mk HIGAN . HMSINU UNION Brid1 Load Loa iBridge floor beams (North side) 8518 Span 30' -wt. 1005 /ft Load = (15 x 200)+-100 a 51005 /ft M 2% 5100 x 50 x 50 x 12 . 4,185,000 8 = 4 185 000 8 232 4157050- use 21" 0 Beam wt 104? /ft e = 235.74 neaotion = 3100 x,15 = 46,500# 881W span 50' wt. 1505 /ft Load = (15.5 x 200)+ 150 = 54504 /ft m - 115 x 5450 x 50 x 50 x 12 = 4,555,000!»' S - 4 655 000 = 259 use 21" 0 Beam wt. 120% [ft 8 t 2.72" Reaction 2 3450 x 15 8 51.750? 251! Span 50' wt. 1002 /ft Load =-(15 x 200)+ 100 = moon/rt m - '5 x 2700 x 50 x 50 x 12 = 5,550,000? S = 3 650 000 3 203 150015—— Use 21" 98? 0 Beam 8 209.24 neaotion '-' 2700 x 15 a. 40,500? \.....(r 3.. Bridge floor beams 8'le Span 30 ' 5! ’2' r 0; ’00?” [6’6 /’ (North side cont.) wt. 150% /ft , (5 Floor load 8 9% x 200 = 1900 7? /ft Bead load = 1501? Total uniform load = 20504 /ft 8}; 8 3 x 1618 x 28.5+12 30100 x 21+ 15 x 1618 x 7.5 +2050x30x15 8L 3 138,500 + 25200 + 182,000 + 920,000 1T 8L 3 42,190 Mmax': Hr' : 49,650 (49650 x 15 - 182,000) 12 = 6,753,000”;t ,s = 6 753 000 = 375 W use 24" 150? "0" Beam 5 - 384.94 8813 Span 52' wt. 1504 /ft 12’ r max floor load 1' 5.5 x 200? / ft 0 R and I7 I (N) since this beam rests directly on the abutment the area need only be large enough to withstand the compressive stress. Max load /ft = 1100 150 1618 = 286875: whish load would require only a fraction of an inch of web thickness to Provide for joints and floor connections. "I”. use 8" - 18.4% std. Bloor Beams (middle). palm Span 10' wt. 25? /ft. L. L. a 1005 /eq. ft. Load 3 (130 x 15)+ 25 = 1975? /ft Partition load - (15' high) 5.4.22? /ft motel load 2395 u = % x 2395 x 10 x 10 x 12 = 360,000"f 3 3 360000 : 20 ‘18000 use 9" 257 std. “I" s = 20.31 neaction = 2395 x 5 = 12,000f rBlv Span 11' wt. 107 /ft Load = 4207 /ft 8 = 1 x 430 x 11 x 11 x 12 = 4.35 8 18000 use 5" 10? std. 1 s = 5.84 neaction = 420 x 5.5 8 23103 1810 span 10' wt. 50% Load = (150 x 15; 5o - 2150 420 = 25507; /ft m = 2510 x 5 x 12. % x 2550 x 10 x 10 x 12 - 525.100"; 5 = 526 100 = 29.3 wiped use 12" 31.8" std. I s = 35.97 8811 See F818 Use 8" 18.4? Std. "I" Bridge floor beams (Middle) F810 Span 15' Wt. 504' /ft wall load = 1918? /ft ‘wt. __591 /ft Total load = 1968# /ft S a 1968 x 13 x 13 x 12 = 27.8 use 10" 30# C Beam 851—18000— s 3 31.91 1315 Span 4' Wt. 205 /ft wall load = 1918# /ft _Floor load 4 6.5 x 130 = 845 Total load 3 {/ft s = 2778 x 4 x 4 x 12 = 5.71 use 8" 18.45 std. 1* 5 x 13000 s = 14.22 * for floor connections (South Side) BRIDGE FLOOR BEAMS RBlL It. 100* /ft partition load - 450# /ft Floor load - 150 x 15 = 19507 /ft Wt. of beam . - _1291 /ft Total load 2500# /ft M = % x 2500 x 30 x 30 x 12 3 3,375,000 "# S 3 3 375 000 = 187.5 use - 27"0" beam "TB-.300" . 85? /ft 8 = 215.20 Reactions = 2500 x 15 = 37,500? F812 Span 30' Wt. 100# /ft rloor load = 15 x 150 = 1590; /ft Partition load = 4505 /ft Wt. = 1005 /ft 22404 /ft m = % x 2240 x 50 x 50 x 12 : 5024,000 S = 5024 = 158.5 use 21" 80# "0" Beam Reactions = 15 x 2240 a 33,600# a = 170.9 F818 See F818 8" - 18.4# Std "I" 5518 Span 50' Wt. 120# /ft Floor load = 17 x 130 = 2210 Partition load = 450 w ht 38 eig 1 /ft s : 27800 x 50 x 50 x 12 a 208.5 nos 27" - 85% "e" Beam ”58000 8 x 1 Reactions = 15 x 2780 = 41,700# a - 215.20 FBlT Length 50' Wt. 100% /ft ‘ Floor load = 150 x 15 = 19505 /ft Partition load = 450# /ft st. of team = _199fi /ft Total load = 25004 /ft M = 5,575,000"# s = 187.5 use 18" - 100# 0 Beam s = 19557 Reactions I 37,500# 5515 Length 50' Wt. 150* /ft Floor load a 150 x 5.5 - 7155 / ft Wt. 15gf / ft Total uniform load = 5554 / ft 6‘ Io' ’4' I (007/: ’6’5’fl’ ] 'VALL 107405 (’4’ 7 5L = 1518 x 5 x 27-«10 x 100 x 19 +14 x 1518 x 7-+555 x 50 x 15 5L ' 24,520 5r - 28,690 514. from rt = 12(28.59o x 14 - 2285 x 7): 452,500"# 3 = 462 500 3 25.7 use 10" "0" Beam "15500- Wt. 255 /ft s = 27.55 .8563 .. 263% 4 0853 58.381.33.65 35.3 . mm 322» u an lobl .2. K onbnmc +89" M oom.0m.C +:.om N oora. + “2.0m. N wow. H mm a: 2:.an . 2.5.3.35: 0862 - 3.01:. +5 +3 +3 5.: 3 a Sod . 3.2. +23 2.3+ 5.223123; 2 ans. - Hm om 000.0! ooh 0! 00.0.0: BR 8 I III GIRDER 0N1 (Cont.) Mix shear 2 355,581# a right egg The max moment will occur 0 pt. 48' from the left end M (48' from rt. end) 12 (322891 x 48 - 29,124 x 30 - 127,760 x 30 - 120,500 x 15 - 231 x 27 x 22.5 - 1618 x 3 x 1.5) = 106,050,816"# D = 1 span I 1 x 90 x 12 = 90" use 96" IE I! use 96 x %" Web A = 48 sq. in. Using iob atlrrners {_mny - 10,000 A = 355 581 = 35.56" m Assume wt. 2 370* /It Dead M (48- from L end) = (16,650 x 48 - 48 x 570 x 24)12 - - 4.470.ooo"# A - 110 520 800 - % x 96 x % - 65.3" - 6.00 sq. in. = 59.5 sq." W94 Use 1 channel 15" - 55f = 16.11 sq. in. 1 P1 16" x 1" a 16.00 sq. in. 1 P1 17 x 1" = 17.00 sq. in. 1 P1 18 x 1/2" = 9.00 sq. intoomp. flange only) 1 P1 19 x 1/2" - 9.50 :3. 1n. 68011 'q. in. Allowable comp. = 18,000 - 170 x 180 - 15,2oo# /Iq. In. H 3 96 2 (1.63 - .82) = 97.62 Ac I 110 520 800 - 6.00 2 64.0 sq. in. arm AT - 110 520 800 - 6.00 = 57 sq. in. mm 4'; Han.oon . mm «He.nn¢ - oomdaa..oam.me..nmn.oa..oon.moo H mm IJBJI «He.nne . mam «no on . am in.” .Hm ooo.¢en.a .noeqon..nnnqeam..om> oop.m.+oon.m¢n.¢n u «H x oom.¢aa .n.e.ama x mama. .em..mp..bm..«¢..>~. o x mama .m.mh+m.#oon.md¢n.¢ne0.9573” M 3+ a§o+m§+bn+wv+rmw 8m.omH u AM Do GIRDER GN 2 1— L.— 3 a m s 093.: 83 00.0 a! en... 00.». ea cube! _ 3.0 3‘ .5“. a?“ GIRDER 0N2 Mont.) Mex shear 3 433.7141} 0 left and Max moment will occur 0 e pt. 48' from the left end. D = 1 x 90 x 12 - 90" use 96" web TE Using web stiffners %’t 10,000 Req'd Ares - 433714 = 43.3714 sq. In. use 96"x§"'web IU'UUU 9 Assume wt. - 400# /£t x 30 - 231 x 27 x 22.5 - 3 x 1618 x 1.6)12“ (460 x 45 x 48 - 400 x 48 x 24)12 = 105,424,854. 4,502,000 - 110,925,854"# 110 926 864 ’.% x 96 x'% - 59.7 sq. in. Approx. A = 15,000 x 94 use 1 channel 15" - 66" 16.11 sq. in. 1 P1 16" x 1" 16.00 1 P1. 17" x 1" 17.00 1 P1 18" x i” 9.00 (comp. flange only) 1 P1 19 11% _g;§g 68.11 sq. in. Allowable comp. = 15,000 - 170 x 150 = 15200 f /sq. in. u a 93.35 A0 = 110 925 854 - 5.00 . 54.1 sq. in. EVth‘i‘IETeee AT = 1100926 824 - 6000 3 57e9 BQO ine 977521413000 Illul : I I'll! lll'll: . 1 . .. . . . . . . . . .. . . . . . ' I . . . . . ' . . . . . . n . . . . . s . A . a . . . : : I - I . . . . . O p I —. ~ I n . . «.3 «0.0 \ .- g- “g \gqqo Snug 1N: «000$. 3.8.x \N B . \ \ Q \ .— x 3. t1 \ U1 \ q‘ 1W9 me u a. a pm u oooo. as u www.mmo._qw u uo.moo. mo 9 Huo.smo. so. uo..wu u Hum.ooo dd dd. dd dd .Illaxwlll. + <¢.u N a H\m H cmo+ mm H ouo N qo m\o Iddl «a me u mom.omo mm aoo.wmo GM 1 (Cont.) M31. shear - 606,060? 0 left end Max. moment is 0 middle Web Area = 506 060 - 50.606 sq. in. 107600- use 96" x 9" web assume wt. - 400? /ft. M (max.) = (405,120 x 45 - 530 x 45 x 22.5 - 255000x22.5)12 M = 139,750,300"# use 1 channel 16"-65f 16.11 sq. in. 1 P1. 15 x 1 - 15.00 1 P1. 17 x l - 17.00 1 P1. 15 x 1 - 15.00 1 P1. 19 x 11/15 13.05* 80.17 sq. in. Allowable compression 2 18,000 - 170 x 180 = 16,200 Required Area A (Comp.) = 139 750 300 -1% x 54 8 79.45 sq. in. 1572007100" A. (Ten) 139 750 300 - 6.75 = 70.76 sq. in. We * use 19"x t" on tensile flange making tensile area = 76.61 sq. in. v a I- 93., hr: 317, le GIRDER 6M2 03.3.» n 38.2: 2m. 3 u 89 u mm ... Ax . .5 2 a . .0. a . .2 . 00602 on“ .NQ 00.9.»? .n..\ .-O gnr GM 2 Wont.) Max Shear = 540,160 0 end Max Moment is 0 middle Heq'd. area = 340 150 I 34.016 sq. in. “£01000 use 96" x 3/8" web assume wt. a 40015 /ft M max. = (198,750 x 45+% 1820 x 90 x 90) 12 = 117,288,000"# 117 288 000 - 4.5 3 63.6 sq. in. Approx. A '-" 95 X 18,000 Use 1 channel 16" - 66f - 16.11 sq. in. 1 P1 16 x 1" ' 16.00 sq. in. 1 P1 17 x 1" = 17.00 sq. in. 1 P1 18 x :11" 8 15.60 sq. in. 1 P1 19 x i” - 9_.52 " (comp.) 72.11 sq. in. Allowable comp. = 18,000 - 170 180 = 16,200 A0 = 117 288 000 - 4.5 S 69,00 sq. in 991151-200 AT = 117 288 000 - 4.5 - 51.30 sq. in. x . m GIRDER G M 3 . 005.000 u xx 005.009 . 0: . 0m + . pm. . Db. Db. 000 00H x HH:.00_.H¢ 005 00H x 00_.005 00 u so +000 u 00 u 00 . obs. . haw. Iohl.u A +02. 00H N 3. con #9 N >0 000m N n N 0 mm m 06.0. «.3 , 1 $ OMV ,, ‘0‘ l0§~ ‘Nzlvfi ms & . .10 . 005.0! 02.00. 02.0! 000...» 8.0. fine 00% an. GM 3 Mont.) Max. shear = 404.7603I 0 left end nsxu moment is e A point 49' from the left end. web area 2 404 760 I 40.476 square inches 101-000 use 96" x i" web Assume weight = 400? /ft M (max) = (386,730 x 41 - 125,500 I 45 - 830 x 41 x 20.5)12 m = 103,217,150"; use 1 channel 15" - 55? 15.11 sq. in 1 P1 15": 1" 15.00 1 P1 17" x 1" 17.00 1 P1 15 x 3/4“ 13.50 62.61 sq. in Allowable compression = 16,100? /sq. in Required flange areas A (oomp.) = 103 217 160 - 6.0 = 68.9 sq. in 98.76 x 16,100 A (Tens) 2 103 217 160 - 6.0 = 62.0 sq. in mtg-.000 000.00» u 02 GIRDER G M 4 00H.0He u 0: AHH. 000m0HH.2100..H0..00. He. 00. 000unma..0ne 2 me u an _ V... 8% . 1. bx \ \ \\ s s b \ .mv \W\ \.W\ a \\ on» a“ 20th 09.002 one»! so... .0! 3.35 0 ll 4 (cont.) Max shear '-’ 418,140 6 left and Hex Moment is o 49' from left and web area = 418 140 2 41.814 sq. in. 107000- use 96 x 1/2" web assume wt. = 400 :5 /ft I! (max) = (357600 x 41 - 123,500 x 15 - 119,600 x 30 - 430 x 41 x 20.6) +(400 x 45 use 1 channel 15“ 1 P1 1 P1 1 Pl allowsole comp. = 16,100 15" 177 15" x 41 - 400 x 41 x 20.5) 12 a 103,368 , 730"? 55:»' 16 .11 1" 16 .00 1“ 17 .00 3321220 52.51 sq. in. As 3 103 368 780 - 6.0 it 59.2 sq. in. 957757615300 At - 103 368 780 - 6.0 3 52.2 sq. in Mo 03.000 n m m 0.3. Bus n Am 00 ..0e 2 000.00 ed M 02.6.3“... Anoton +0.: 0005:”... 32: n N 0.34.1431. on+mH. o N mama .10.00+0.s0+0.m~+ 0.: 0 x 2.0+ 0.5 s 0H u 33.. 00 s «A s 0000 u 02 svnxusl +\ VKQ\W\ 0s - ‘ Elf-F— ( s at“. 3‘ GIRDER GS]. 00.0w» GB 1 (Cont.) M x shear = 319,415 0 left end Max. moment is @ the middle V 3 10,000 I Req'd. area - 319416 3 31.9416 sq. in. use 96 x 3/8" web assume wt. = 400# /ft M : (292,725 x 45 - 223,000 x 22.5 - 273 x 27 x 22.5 - 1618 x 18 x 22.5) 124-% x 400 x 90 x 90 x 12 3 92,486,500 "f 92 486 500 - 1 x 96 x 3 I 49.5 sq. in. x 8 8 Approx. A 3 5 , use 1 channel 15" 66# 16.11 sq. in. 1 P1 16" x 1" 16.00 sq. in. 1 P1 17" x 1" 17.00 sq. in 1 P1 18 x 1/2" 9.00 sq. in 58e11 sq. in. Allowable comp. = 18,000 - 170 x 150 - 15,100? /sq. in. A0 3 92455500 - 4.5 = 54.5 sq. in. . x 5100 A T 3 92 486 500 - 405 = 5707 sq. in. mug-.050 00H.¢Hn u 250.45 K m.m.+.nnm K but 93." N 0.: u mm .0. HM G82 G 3 8 (Cent. Max. sheer =- 314,105? 0 right and Max mement is @ the middle D = 1 x 90 x 12 - 90" use 96" web 12’ using web etifi’nere % - 10,000 heq'd. Area = 314 106 - 31.4105 sq. in. use 96" x 3/8" web Assume wt. 3 400 f/ft M = (569,855 x 22.5 +% x 400 x 90 x 90) 12 3 88,260,000 "1? Approx. A = 88 260 000 - 1 x 96 x 3 = 46.5 sq. in. mime-#93 e a use 1 channel 15" 66% 16.11 sq. in. 1 P1 16" x 1" 16.00 1 P1 17" x 1" 17.00 1" P1 18" x ‘1‘" 4.50 63.61 sq. in (comp.) Allmweble comp. : 18,000 - 170 x 180 = 16,100f/oq. in. A0 = 88 260 000 - 405 . 5200 HQ. in. 9506 x 16.156 AT 2 88 260 000 - 4.5 - 45.5 sq. in. 93f0‘i‘18000 columns we provide equal resistant!0 to ‘'11!!! ltreaaes in gmels, all columns on each floor are designed to ex}. “9.901% the maximum load oocuring on any column on that floor 0 These computations with the size of columns chosen £011 ow: , .' I ' e L?“ . ,1 1; '6! .1 9 ,:. k! e ,‘o. u' '0’._.'l.).u-c '. b- ' Anew-o-fll-JQ‘J ROOF COLUMNS max Lead on Roof Column REE = 7.6 x 220 = 1660 1980 BBB 3 9 x 220 2 RBI 8 2 (3545,4'15 x 20 3 7390 110205 which would require an area 1 sq. in,.Iut for Joints a larger beam must be used. use 6" 12.6% std. "I" Total load transmitted to column below a 11,020 11 x 12.5 = 11,155# for design load use 11,600 Check stress for partial loading RBE 3 (75 2.5 x 30) 7.5 1125 1373 355 a (77.5 2.5 x 30) 9 RBWL,D = 5545 7.5 x 20 = 3595 snub - 18 x 75 225 = 1575 s = 4455,,2120 x 5 x 5 = 2115# /sq. in. “3751 . RBB = 1950 555 = 75 x 7.5 = 5405 e - 5515 1340 x .115 x .115 = 1770f/aq. in. *7 1.1 2 555% a 5595 a “‘1 interior oolumnfor 3 rd floor. 39:; 2 (FB3W) = 1690 x 16 8 23,860 533E1 = 73.6 x 2 x 7.6= 1,100 F3313 = 74.5 x 2 x 9 a 1,330 load from roof . 11,600 47,780 Assume 8" 18.4% A = 6.34 sq. in. check for eccentric load a = 15075 ,10775 x? 4 x 4. = 5050 '6'31' _-"'66—§"" Use cone. load of 60,000# -1 ? so an! 1.0 EX (£3215) :: 25,000 22,900 = 47.9007; '23 (332]?) I 2(1786) '8 3,670 RE. (FBSN) - 11,000 ZR (FBZF) - 2 (1786) = 3,670 RI. (BEN) = 3,367 25 (REF) = __1_,_7_25_ 71,1225 Wt. of Roof column 8 1385 " " 3rd Floor Column = 388i Lead on Column 8 71,648 Assume an 8" Bath. 8 001. 14' long 275 s = 71,545+47,900 x 4 x 4 - 9,120 5,540 = 17,6601: /sq. in. Total conc. load on bridge) = 71,848 27 x 14 = 72,240? from above . use 74,000; Uniform load Wt. of windows = 10 x 5.5 - 555: /ft Wt. of well - 445# /ft wt. of 5' of wall : 52 x 5: 961‘ /ft wt. of 14' of facing-37,01/ft. wt. of facing = git/rt {-wt. of zo'or tacingfiggt/tt. 251;: /ft 15159/rt. Piers and Abutments Design of Pier 5 Abutmenta. According to a survey made by 11. J. Olver and m: flYgant for a thesis on flood control, the elevation of Ottawa street is 123.12. This corresponds with 93.0 on the map included in this thesis. High water is at 121.0 or 90.9. This would necessitate the bottoms of the girders being at an elevation of 92.0 giving a clearance of approximately 12 feet over the flow as of December 1, 1931 which is also the present condition (April 1932). The heights of the girders are 8 feet 8 inches making the elevation of the first floor 100.67 feet or 7.67 feet above the present level of Ottawa street and 13.32 feet above the road step the east bank. The only available data as to bearing conditions as obtained from the city sanitary engineer shows a stratum of blue clay at a depth of twelve feet below the center of the road on the east bank. It is assumed that this soil extends down for several feet so that the base of the pier and the abutments will bear upon it. West Abutment. The loads upon the west abutment are as follows, from north to south; 410,640#, 624,060#, 422,760#, and 337,416#. If six inch rollers are used on this end of each girder, and each roller is 24 inches long the number of - rollers required is as follows: Under northermost girder (0N1) 410 640 . 4.8 use 6 rollers 555-7572: \hndlcur (0M1) -- 624 060 .-. 6.06 use 6 rollers E950 x 6 x 21 \hnler (Gl3) 4.9 use 6 rollers 422,750 Under (931) 337 415 = 3.9 use 4 rollers 5571-55— The allowable bearing stress for steel on con- crete is 600 pounds per square inch. The required area under the maximum load would be 624 060 - 873.4 square '15:)" inches or at 24 inches wide, this would be 36.4 inches , long which is the minimum width at the tOp of the abutment. The allowable bearing stress on blue clay is four tons per square foot. The total load on the abutment is 1,694,766 pounds. This would require a base area of 1 694 7663 "5555‘- 222 square feet. If the abutment is equal in length to the - building (70ffeet) the required width is 222 or 3.17 feet, but since the required tcp width is 36.4 inches the base area must be larger than required. Since all the buildings along the west bank have retaining walls along the river's edge, there will be little danger of the water washing behind the abutment; therefore, a straight type abutment will be satisfactory. The height of the abutment from the base to the seat of the girders is taken as twenty feet. With such a large load being produced by the bridge, the weight of the abutment itself and the earth Pressure against the back of the abutment will be of minor -.I'1'.. 'I—‘l' ' -.....--' ortance, therefore if the resultant of the girder loads ass? ‘9‘6593 ‘through the center of the base the abutment will Qto‘bfibly be safe. A check of this is shown in the accompany- ing data and drawing. Bast Abutment. The concentrated loads on the east abutment are, from north to south, 414,700?, 419,400#, 436,400? and 387,866#. There is also a wall load which is a distributed load along the t0p of the abutment. The maximum wall load is 1618 pounds per foot. Using six inch rollers 24 inches wide under each girder, the number of rollers required is as follows: Under (0N2) 414 700 = 4.8 use 6 rollers m Under (GM2) 419 400 s 4.9 use 6 rollers ‘3 Under (0M4) 436 400 : 6.03 use 6 rollers 3 Under (032) 387 866 a 4.6 use 6 rollers '3 The required area under the maximum load is 436 400- 156—“ 726 square inches or at 24 inches wide, 30.26 inches which is the length of the bearing surface which will be required. r5. required area of the base is 1 770 515 = 225.5 ”"5555— square feet. The required width at 70 feet long is 3.22 ft. To provide against any danger of the dirt being ’, e . \ i i ' v ' \ \ I - 5 x p ! i x \ t washed away from behind the abutment, wings will be extended back on both sides of the abutment. The design of the abutment is shown on the abutment drawings, . Middle Pier. The pier at the center of the bridge supports the 1'1de ends of all the girders. The maximum sum of the loads on the pier at any Point is 898,770? at the reaction of 0111 and (.112. If a bear- ing plate 24 inches wide is used, the width of the top of the Pier, as determined by this load is 595 770 ; 52.5 inches. 566 x 21 The total load on the pier is 3,304,266 pounds. The baae are required is 3304266 . 41303 square feet or at 70 feet 10113 this would require a width of 5.9 feet. The design of the pier is shown on the drawing of the pier and abutments. m“ 1;. has: -. Elevator DESiGm 0F ELEVATOR Since the building is very low, the smallest elevator will be large enough. The floor area used will be 26 square feet.fbr an area of 26 square feet: width - 6‘ - 0“ Depth - 4' - 3“ G - gate Opening = 3' - 9" The design load for this size elevator - 76f / square foot. Live load ' 76 x 26 I 1876 use 2000# Assume wt. of frame = 1000? Wt. of cab = 16? /sq. ft. of floor - 400% Wt. of platform 3 12f / sq. ft. - 300f Total wt. of car 1700? counter weight‘: 170041.40 x 2000 - 2600f Assumef wt. of cables = 160? Max. live load I 1700 +2000+ 2600+160 I 836% L.L.+ 1007. impact = 5550 5550 = 15,700# Max "Rope Pull" (load on cables) = 3,860? Lead on supports =~16,700f Assumef wt. of machine - 3,000? Total load on supports - 19,700? (This checks very closely with the load of 19200? specified by westinghouse K a n elevators.) ‘ counterweight a wt. of car 40% live load f Assumptions made after following similar design in “Architec- ural construction" by voss a varhey- 1 (I!) I P J fl , _ I | (CMV‘NW \ {\J )r - Ill 1) 7 J u I _ U‘( 3 1 L 47]. I) I, e |)4|_ [/1 1 ,1 5 A 1 1 _ _ ave Lea/n , H1 ‘ 1“ in T . like i 7. AV 5 my X heaggégam V Y, : \V .\\ 9: ,4 1V 1 :L11 _ TL =5 l , is , _ :l: - esom¢,m.(mw:>\ H 1*. (J I 1 . - he. kb N i 3, :.I,, . ,1 W _*£0>s=\\\c ‘ a J: h (\(p- - h:\ 41.. ;,‘x 7 f — T 5V. 2. heads 0 A, B, a o are proportioned as follows: A = 10,900 B = 6,100 0 = 2,700 A s c = 19,700 which is the total load. Assume distance from L of supporting beams to edge of hatchway = 3" Length of sheave beams 2 car widtht-front clearance'firear clearsnce+ 6" Length = 4' - 3'+ 6&"4 9&'-06" = 6' - 0' Beam R - R. g : 12 (10900 i 4.084 x 1.916) : 14.20 Use 9" 21.83? I S = 18.87 Beam 8 - 8. M a 12 x 6100 x 4.08 x 1.916 a 7.95 3 6 x 12,000 Use 9" 13.4# S = 10.61 Beam T - T. M a 12 x 2700 x 4.084 x 1.916 2 3.52 3 6'x31250 Use 9" 13.4# 3 3 10.51 R 3 10 900 x 4.084 = 7,430 —J___6.____ 51 = 10 900 x 1.915 = 5,470 .—l___6.___ s = 5,100 x 4,054 - 4,150 51 = 5,100 x 1,915 = 1.950 T : 2 700 x 4 054 = 1,540 _l—_TJ___ T1 = 2 700 x 1 915 : 550 __l____6___L__. Front supporting beam eflo ma>aw i, (5:24151 I 7,-du j 7.16 RL = 3126 RR = 2166 due to elevator and machinery RL = RR 273 x 3 x 7.16 = 2936# due to floor load Total reaction 3 EL = 5050, RR - 5100 s . (2955 x 7.15.,5125 x 5.555 - 5470 x .557)12 - 14.14 ‘4" 12000 Use 9" - 21.8#I s = 18.87 Rear supporting beams. Load due to machinery. RL - 6660 RR : 4610 KL 3 RR = 2936 due to floor load Total reactions Rn = 9595 RR = 7545 3 = 5.25918.90 = 24.15 use 10" 85s“ I B . 24e42 Penthouse Design. Floor area 7' - 2" x 11' - 0" Live load I 260# /eq. ft. Wt. of floor) 23# /sq. ft and fireproofing ' total 273# /sq. ft. Span 7' - 2" Use 3" beams with 3/16" plate. Supporting beams Leads 980 = 3.68 x 273 #/ft from floors 224 3 7 x 32? /ft from wall 187 9.1%: 7 x 1601)t /ft from stone facing 126 = 3.68 x 35? /ft from roof 1616# /ft total load assume wt. 44# /ft 1476 a 7(32*.% x 160) x 3.68 a each end from walls —I 1.550% I 5507/ I /560 YAJ 216” T 6’ T 2,6” RI. = RR 3 2.5 x 1560+ 14754-3 x 580 = 7,115 M (center) = 7115 x 3.00 - 1560 x 5.5 x 2.75 -1476 x 5.5 M (+) = None M (-) I 1475 x 2.5 *1560 x 2.5 x 1.25 M (-) 3 103,756"# 8 = M 8 103 756"# 5.76 ‘ 1570557152500— ‘~ max 7 a 7,116? A 6" 12.6# I Beam having an S of 7.27 and an allowable shear of 16,600 will be used. Elevator columns N. W. Column Leads 1. From rear supporting beam - 9695 2. From pent house beam 7116 3. From roof beam HBK 2100 4. From floor beam 533K 6816 6. From floor beam FB£K 28367 63992 Total load on tap = 18,810# The distance between supports is not greater‘ than 12' Choose an 8" Bethlehem Girder Beam 29.5? /ft 3 = 15 810 + 9595 x .145 x .145 . 2,1755 / sq. ft. ‘8969' 28.4 s a first floor a 55 992,_25557 x 5.94 x 5.94 - 10,500 "5f59' 100.7 s allowable = 12,000 5" Col. OK Approx. wt. of column 3 40 x 29.6 = 1180? Total lead on bridge = 66,172 66,000? ‘* Supports for guide rails must occur at least every 12 :feet. Maul-l Elevator Columns (Continued) N. E. Column Leads 1. From Rear Supporting Beam - 7646 2. " Penthouse Beam - 7116 " Roof Beam BBQ - 1300 4 " Floor Beam E330 1760 6 " Floor Beam rB2Q 1760 19460 The smallest column allowable for an unsupported length of 12' is a 6" B.S. section, 16.65 /ft. The greatest possible bending stress would occur if the elevator load were applied without any loads on the other side of the column. s = 14660, 7545 x .12 x..12 I 3172f /sq. in. 1‘61—-TT9—_ Full Load stress 3 = 19450, 2745 x .12 x .12 a 4254i / sq. In. 4.51 9.19 Allowable stress 3 12000? /sq. in. Approx. wt. of column - 40 x 16.6 = 620# Total load on bridge - 20,080 use 21.000# Elevator Columns (Cont inued) S. E. Column Leads 1. From Front Supporting Beam - 2166 2. 3. 4. 5. Use 5" 5.3. Section 15.55: /ft '1 fl Penthouse Beam - Roof Beam RBV - Floor Beam B837 - Floor Beam 532V - Total Total load on bridge - 16,730? use 18,000# 8. W. Column Leads 1. 2. 3. 4. 5. e. 7. 8. from Front Supporting Beam - ll '7 Penthouse Beam - Roof Beam BBT 4 Roof Beam BBC - Floor Beam 833T - Floor Beam 8830 Floor Beam EBZR Floor Beam F820 Total 7115 1300 2765 2765 16110 3125 7115 3725 750 16325 2840 51540 2840 88260 Elevator columns {Cont inued .) S. ‘7. Column (Cont.) Choose A 35# 8" B. H. Section Max stress 2 88 260 51 540 x 4 x 4 a 14,420 man-W .kpprdx. wt. of Column = 40 x 35 I 1400? Total load on bridge 3 89,660 use 90,000¥ ~. ~\. o...\. M— w - v-0 V“ . .N an. ’ -~\V., {- ‘ it} ". .5‘ . , D a .‘ . ‘ G , a . '0, ‘ - . L‘.’ b . “"h‘ O"§. .q-a ‘, w" . 5-:9 .. . . ,‘V'., "A as M“; amp,” I‘m", ‘5‘.-.’ fin» .V- e .. ‘5.- .‘Q c ‘ ..§. m- '.' 'D' ~ 0 a. ' O . a ‘o Hatchway enclosure. For the hatchway enclosure 6" hollow tile as allowed by the Lansing Building code will be used. Wt. of 1' or 6 " hollow tile 40' high £ 24 x 40 - 950% Enris wt. is carried to support beams by a beam having 3 - 950 x 7 x 7 x 12 - 51.3 "‘1nr1xnr““-" . use a 12" 31.8? std. I s = 35.97 Support Beams West Beam (331;) Length - 10' cone. Load 4' from RL 1. from column 90,000 2. from front of hatchway - 960 x 3% - 3.360 3. from F310 3 1968 x 6.5 12.700 106.060? Uniform Load (Rt. 6 Ft.) 1 from well = 1968? /:t Uniform Load (left 4 ft.) 1 from floor = 2500? /ft (see 331T) RL 3 6 x 106,060. 8 x 4 x 25001-3 x 6 x 1968 16 IU 15 RL 3 75,176 RR ' 52,692 (Wt. not included) 8 :(75,176 x 4 - 10,000 x 2) 12 = 280,704 412,000 Use 27" 112# "c" Beam s = 293.17 Support Beams (cont.) East Beam (EBlB) Length 10 ft. Assume wt. = 100# Loads cone. load 4' from BL 1. Column load - 18000? 2. Front of hatchway - 3360 3. Front FBlV - 2310 23670 Uniform load (Right 6 ft.) 1. Floor - (130 x 9) - 1170? /ft. 2. Hatchway - 960? /ft 2130? /ft Uniform load (left 4 ft) 1. Floor (130 x 5) 3 650? /ft R '6123,670 814x750+316x2230* 1‘ 1‘6 ‘ro 10' BL - 20,622 KB - 19,428 8 = (20622 x 4 - 750 x 4 x 2) 12 = 74,488 “F’ 12000 use a 16", 50? "C" Beam 3 = 81.95 *Weight included Wind Stresses, Although the building is low, and wind bracing is unnecessary; to comply with the Lansing Building code the stress produced by the wind stress must be checked. Accord- ing to the building made, the sum of the dead plus live plus wind stresses must not exceed the allowable stress (18000 pounds per square inch) by more than one-third. If the dead plus live stress were 18000 pounds per square inch, the allowable wind stress would be 6000 pounds per square inch. Using a panel length of fifteen feet and a height of three feet on the parapet wall, ten feet on each of the upper stories and fourteen feet on the first floor, the wind panel loads, at twenty pounds per square foot, are 2400 pounds on the roof, 3000 pounds at the third floor and 3600 pounds at the second floor. The maximum total windstress in a column support- ing'the second floor, assuming the point of contraflexure at the mid-point of the column is equal to twice the stress in an exterior column on the same floor. The stress in an ex- terior column is found by dividing the moment of the wind panel loads by the width of the building. This gives a ,maximum stress of 2010 pounds over the entire section. The maximum stress in an interior column would be 4020 pounds or 4020 e 7.89 3 5.10 pounds per square inch. since the maximum possible windstresa on an en- tire section is less than the allowable stress per square inch, it is evident that wind bracing is unnecessary. All plans'are included in the pocket in the back cover. conclusion \ Conclusion. An accurate estimate of the cost of this structure is impossible with the rapidly changing costs of construction and the uncertainty of the footing conditions of the location. To complete this project, however, an approximation of the cost has been made using a combination of several methods of estimating. The cost as estimated is : Steel frame 280,620# 0 $0.03 $ 8,418.60 Steel erection - 2,348.85 Roof - Aluminum sheets 12,600? 0 30.43 5,418.00 Roofing surface 25,200? a 30.024 604.80 Installation 12,600 sq. ft. @ 80.0125 157.50 Floors - in place 37,800 sq. ft 0 $0.75 28,350.00 (Covering and fireproofing included) Walls - Limestone 5080 Cu. Ft. 0 $1.60 8,128.00 Laying limestone 5080 cu. Ft. @ $0.71 3,606.80 8" Hollow tile 30480 0 20.14 4,267.20 6" " n 1040 0 $0.11 ' 114.40 Laying tile 31,520 0 $0.065 2,048.80 Windows (garage) 918 sq. ft. 0 $0.76 697.68 " (ventilating) 11,260 sq. ft 0 $1.14 12,836.40 Aluminum spandrels 17,000 f @ $0650 8,750.00 Plaster 7758 sq. yds. @ $0.25 1,939.50 Ceiling (Third floor)* Metal lath 1400 sq. yds. @ $0.114 159.60 Partitions - Gypsum blocks 24240 sq. ft. 0 $0.17 4,120.80 Elevator - Installed 9 5,000.00 Piers and Abutmentsi’ 24,000.00 Heating, Plumbing 6. Lighting 500,0000.F.e60.06 26,000.00 145,964.13 Add 10% for ommissions, profit, etc. ~#14,596.4‘1 Estimated cost 3 160,560.54 note: All items not followed by a charge for in- stellation are given in place. Although the above cost does not seem high as com- pared with the cost of other office buildings of equal volume, it must be remembered that prices are now (1932) approximately 1/3 to 1/4 lower than a few years ago, and since there is no present need for more office space in the City of Lansing, and since the bus companies of the city, since the starting of this thesis, have remodeled an existing building to suit their needs for several years in the future, the undertaking from a commercial standpoint would be unwise. * Plaster for third story ceiling included under plaster. # Estimated from data in "Gillette” with preportionate prices. ~r—Jf. Iain _ ' “errv-mmznms's}, MITIWIWIWIWITHWI WWII ((1111le 3 1293 030711901