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ABSTRACT

AN EVALUATION OF THE INTERACTIVE SIMILARITY ORDERING METHOD

OF COLLECTING DATA FOR MULTIDIMENSIONAL SCALING ANALYSIS

BY

David Edward Ehresman

One drawback to multidimensional scaling techniques is the large

number of judgments that are usually needed. One method of reducing

the number and difficulty of these judgments is the Interactive

Similarity Ordering (ISO) system.

Experiment I used Monte Carlo procedures to investigate the

robustness of ALSCAL, a nonmetric multidimensional scaling program,

with respect to incomplete row conditional data of the type produced

by 150. This study used configurations of 32 points in two dimensions

and varied the amount of error added, the percentage of data analyzed,

and the number of partitions of the proximity matrices. The results

indicate that with one partition, as few as 402 of the data produce

good solutions when the input has moderate error. With two partitions,

602 of the data is needed to produce comparable solutions.

In Experiment II, the ISO method is compared directly with the

paired comparison method of collecting data. Ten subjects made

judgments about the distances between 16 0.8. cities using both

methods. The results were scaled using ALSCAL and the resulting

cognitive maps were compared. The mean correlation between the

distances of the two cognitive maps produced by a subject was 0.90
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indicating that one gets similar results whether one uses the 150

method or the paired comparison method.
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INTRODUCTION

The large number of published applications in recent years at-

tests to the wide spread use of nonmetric multidimensional scaling

techniques in the social sciences. These techniques (e.g. Kruskal,

19643, b; Takane, Young, and deLeeuw, 1977) construct a configuration

of points in a metric space using only the ordinal or rank order

information from a similarity of dissimilarity (proximity) matrix.

Typically, a proximity matrix is formed by having a subject

judge the similarity or dissimilarity of all the C(n,2) 8 n * (n-l) / 2

pairs of n stimuli. As an illustration, consider Henley's (1969)

Experiment 11. She had subjects judge the dissimilarity of 30

animals. Each of the 435 (C(n,30)) pairs of animal names were

presented one at a time and subjects were asked to rate them on a

scale of 0 (no difference) to 10. These judgments were scaled and the

three dimensional solution was chosen as the appropiate representa-

tion. The first dimension was interpretated in terms of the size of

the animal: the elephant, camel, and giraffe were at one end of the

continuum while the rat, mouse, and chipmunk were at the other

extreme. The second dimension, with animals like the lion, tiger,

and bear at one extreme and the cow, sheep, and deer at the other, was

interpreted as a ferocity versus mildness continuum. The third

dimension was more difficult to label. It was loosely interpreted as

a "resemblance or relatedness to man or something similar" (p. 180).



2

Unfortunately, the number of pairs that must be rated goes up

rapidly with the number of stimuli, n. For example, with n = 16, 120

pairwise judgments are necessary; with n = 32, 496 judgments must be

collected to fill the triangular matrix; and with n = 48, there are

1128 pairs of stimuli. This large number of judgments has been a

serious impediment to eXperimental designs that call for relatively

large numbers of stimuli.

Several methods have been proposed for forming proximity

matrices for large data sets. Young and Cliff (1972) developed a

computer program which collects a subset of the C(n,2) pairwise

comparisons. The subset of pairs is determined interactively on the

basis of the subject's previous responses. Girrard and Cliff (1976)

demonstrated by way of a Monte Carlo study that this program works

quite well. However, from the point of view of many users, it has

one insurmountable deficiency; it is a metric rather than a nonmetric

procedure. That is, it assumes that the judgments are Euclidean

distances, not merely proximities.

Another way to lower the number of judgments required involves

sorting or grouping tasks of various kinds (e.g. Romney, Shepard, and

Nerlove, 1972; Rao and Katz, 1971). After the sorting task is

complete, a proximity matrix is derived, and the complete matrix is

scaled. However, as Spence (in press) points out, it is questionable

whether such a matrix really represents a subject's perception of the

pairwise interstimulus proximities. Spence indicates that some highly

experienced users of these sorting techniques urge that the results

be used with the greatest of caution.
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Yet another way of reducing the number of judgments a subject

must make is to present a subset of all pairwise comparisons that has

been chosen a priori. Spence and Domoney (1974), Graef and Spence

(1979), and Spence (in press) have suggested several ways of selecting

the subset which is to be presented. Among the methods they have

discussed and evaluated are cyclic designs, random selection, and

selection based on knowledge of the distances in the configuration

that is to be obtained. Their Monte Carlo studies indicate that if

enough judgments are collected, these partial proximity matrices yield

solutions that are very nearly identical to those obtained by scaling

the full matrix.

Young, Null, and Sarle (1978) recently developed an interactive

computer program for collecting rank order data which can be scaled

by the ALSCAL program (Takane, Young, and de Leeuw, 1977). The

authors claim that this Interactive Similarity Ordering (150) system

can collect data for a given stimulus set in a time comparable to

that needed to collect enough data using an incomplete pairwise

comparison design. In addition, the authors feel that the judgments

in the rank ordering task are simpler than those in a pairwise

comparison task.

The first part of this study will be a Monte Carlo study to

evaluate ALSCAL's ability to analyze data of the type produced by ISO.

The second part will compare the solutions obtained from a pairwise

comparison task to those obtained from the ISO task.

£253 £5512 Studies

There have been a number of attempts to gain a better under-

standing of nonmetric multidimensional scaling techniques by means of
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Monte Carlo investigations. One line of studies (Klahr, 1969;

Stenson and Knoll, 1969; Levine, 1978) investigated the statistical

significance of stress. (Stress is a "goodness-of-fit" measure

between the input proximity matrix and the recovered distance matrix.

See Appendix A and Kruskal (1964b) for a more detailed explanation.)

These researchers scaled random data varying a number of parameters

and summarized the data to provide a null hypothesis with which to

compare stress values obtained in real studies. However, as Levine

(1978) notes, Ling (1973) criticized these types of studies on the

grounds that most sets of data which are to be scaled have enough

structure a priori to reject a null hypothesis of randomness. Ling

also notes that not all random permutations are equally probable as

is the case in these types of Monte Carlo studies.

The majority of Monte Carlo studies have been concerned with

"metric determinancy." The question these investigations have

addressed is: Given the (possibly noisy) ordinal relation between

points (stimuli), how well can a scaling algorithm recover a known

configuration?

The basic methodology of these studies was (1) to generate a

random configuration, (2) generate a proximity matrix by adding noise

to the interpoint distances and possibly subjecting the noisy

distances to a monotonic transformation, (3) scale the proximity

matrix thus derived to generate a configuration, and (4) compute the

correlation (or squared correlation) between the "true" and the

recovered configurations to determine how well the algorithm recovered

the orginal configuration.
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Three different ways of adding error to the distances have been

reported in the literature. Hagenaar and Padmos (1971) and Graef and

Spence (1979) multiplied the distances by a random normal deviate.

The normal error distribution had a mean of one and the variance was a

parameter that was varied. Any negative deviates that were generated

were discarded and a replacement was chosen.

Girrard and Cliff (1976) added error in a way that they argue

yields proximities with a distribution similar to the distribution of

similarity judgments made by subjects. They added a random normal

deviate to the distances, linearly transformed them so most values

were between -l.0 and +1.0, took the inverse Fisher 2 transform, and

then linearly transformed the proximities back to a scale of 1.0 to

9.0.

The most widely used method of adding random error has been the

Ramsay method, so named because Ramsay (1969) noted that it is

equivalent to sampling the square of a proximity from a non-central

chi squared distribution. Error is introduced by adding a random

normal deviate to each coordinate before the distance between points

is computed. Ramsay (1969) and Young (1970) note that this is a

multidimensional analogue of Thurstone's (1927) discriminal process.

Of the Monte Carlo investigations that have used the Ramsay

model, there have been three different ways of specifying the variance

of the normal distribution that is sampled to obtain the error

deviates. Young (1970) specified the error variance, 0:, relative to

variance of the distances of the configuration, as. such that

a: a E3 0:, where E was an error level parameter. Sherman (1972) and

Young and Null (1978) specified the error variance, 0:, relative to
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the variance of the coordinates of the configuration, 0:. i.e.

a: I E2 0:. In the Young and Null study, ac was standardized to .333

for each dimension of all configurations. The final way of specifying

a: is as an arbitrary error level, a: 8 8*. This is the procedure

used by Spence (1972), Spence and Domoney (1974), Graef and Spence

(1979), and Spence (in press).

The ISO System
 

The Interactive Similarity Ordering (ISO) system (Young, Null,

and Sarle, 1978) can collect several types of data. The type that is

of interest in this study is called asymmetric or row conditional.

The data are called row conditional because each judgment in the ith

row is relative to the ith stimulus; this gives rise to a square

asymmetric matrix.

In order to produce a row conditional matrix, the subject's task

is as follows: Given a "standard" (one of the stimuli) and a list

of the remaining stimuli, choose the stimulus from the list which is

most similar to the standard. This task is repeated until all nvl

stimuli have been rank ordered relative to the standard, thus filling

one row of the data matrix.

If the number of stimuli, n, is relatively large, it will take

a subject a considerable amount of time to choose his or her response

from the complete list of remaining stimuli. Therefore, ISO allows

the experimenter to choose the maximum list length, i.e. the maximum

number of alternatives presented to a subject at one time. ISO then

uses a sorting algorithm called a merge sort (Knuth, 1973) to inter-

actively minimize the number of judgments required by using the

transitive relationship,
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(1)(rij < r1k and r1k < til) =>rij < r11,

where rij’ rik’ and r11 are the rank order of the jth, kth, and 1th

stimulus with respect to the standard, stimulus i. Note that this

technique uses only the ordinal information of the response, thus

making it a nonmetric technique.

By setting the maximum list length to less than the number of

stimuli, one increases the number of judgments that must be made with

respect to a given standard. Because not all the stimuli are

presented at once, additional judgments are necessary to determine the

relative order of stimuli that do not initially appear on the same

sublist. However, the judgments are simpler because there are fewer

alternatives to choose from, and can therefore be made more quickly.

Young, Null, and Sarle (1978) indicate that by partitioning the

stimuli into two sublists, one increases the number of standards a

subject can order in an hour. This increase is larger for medium list

length than for small list length.

The experimenter can also shorten the time it takes to complete

an experiment by using only a random subset of the stimuli as

standards. This is analogous to the method of presenting a random

subset of pairwise comparisons as described by Spence and Domoney

(1974).

The user of the ISO system thus has a range of options in

deciding how much data to collect and how to collect it. It is the

purpose of this study to help the experimenter make an intelligent

choice when using ISO as a data collection tool.



EXPERIMENT I: MONTE CARLO STUDY

The general procedure used to evaluate ALSCAL's ability to

analyze data of the type produced by ISO (rank order, row conditional

data) is as follows: (1) generate a number of random configurations,

(2) from each configuration, produce a proximity matrix by adding a

random error component to the coordinates before calculating the

Euclidean distance between pairs of points, (3) from each proximity

matrix, produce a row conditional, rank order matrix by rank ordering

each row ( or partition of a row) in the proximity matrix, (4) scale

the row conditional rank order matrix using the ALSCAL program, and

(5) compare the configuration produced by ALSCAL with the "true"

configuration.

Procedure

The "true" configurations were generated by using the method

described by Spence (1972). Coordinates were obtained by randomly

sampling from the uniform distribution on the interval (-l.0, +1.0)

with the added constraint that all points be within a hypersphere of

radius 1. Following a trend in the literature, five configurations,

each consisting of 32 points in two dimensions, were generated in

this manner. These served as the true or population configurations

in this study, thus giving five replications.

This study consisted of a complete factoral design of 2 x 2 x a

with five replications, where the factors were (1) the amount of

error added to the coordinates, (2) the number of partitions or

8
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sublists, and (3) the number (percentage) of standards which were

ordered. The levels of each of these factors is described in detail

below.

Error was added to the coordinates using the Ramsay model.

Perturbed distances, d', were computed as,

d;. = E 2 vi. - xgama (2)
J a=l

where xia = x1a + eria’ x1a is the true configuration coordinate for

point i on dimension a, and eria : N(O, 0:). Equivalently,

' %
x.a + erija)2] , (3)

' m

dijgtzuia- J
a=l

where erija : N(0, 20:). Fresh error deviates were used each time a

distance was calculated as implied by the subscripts on e. The error

level, r, took on two levels: r = 1 had a = 0.0 and r = 2 had

a = 0.15. Spence and Domoney (1974) refer to these error levels as

yielding errorless and moderately perturbed distances.

The variance of the error distribution used in this study was

fixed, i.e. it was not relative to the variance of the coordinates

or the distances. This is the method that has been used by Spence

and his coworkers (e.g. Spence and Domoney, 1974). Since the mean

variance of the interpoint distances was 0.4293, an error level of

0.15 would be approximately equivalent to an error level of 0.35 if

the error variance was proportional to the variance of the distances

as in Young (1970). The mean variance of the coordinates was 0.5069

so the 0.15 error level would be approximately equal to an error

level of 0.30 if the error variance was proportional to the variance

of the coordinates as in Sherman (1972).
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For each perturbed distance matrix, a row conditional proximity

matrix was formed by rank ordering the distances in each row using

the values 1 to n. This yields the full matrix which ISO would

produce if the distance matrix represented the subject's perception

of the interstimulus proximities, if all the stimuli were used as

standards, and if one sublist was used (containing all of the stimuli

except the standard).

The number of partitions factor took on two levels, one and

two. The partition of one is the matrix described in the previous

paragraph. For a partition of two sublists, one needs two incomplete

matrices. These two proximity matrices (to be scaled as replica-

tions of one subject) were formed by randomly assigning each element

of a row to one of the two partitions, thus halving each row of the

perturbed distance matrix into two submatrices. The elements in each

row of the first submatrix were converted to ranks and placed into

one matrix and similarly the second submatrix was converted to ranks

to obtain the second matrix.

Finally for each full and partitioned matrix, 402, 602, 802,

and 1002 of the rows were randomly choosen to remain in the matrix

to be submitted to ALSCAL. This represents the ISO option of

choosing the number of standards to be ordered.

This 2 x 2 x 4 design with five replications thus gives rise to

80 data matrices. These were submitted to ALSCAL (version 2.03) as

implemented on the University of Michigan's Amdahl computer running

the MTS operating system and was accessed via the Merit network. The

ALSCAL parameters were set as shown in Table 1. Note particularly
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that the nonmetric (ordinal), asymmetric matrix, and row conditional

options were used.

Results

ALSCAL's ability to recover the known configuration was measured

by calculating the product-moment correlation between the distances

of the true configuration and the distances of the recovered configu-

ration. This correlation, rTR’ or its square, is commonly used as

the dependent measure in multidimensional scaling Monte Carlo studies.

These Currelatinis (averaged across replications) are plotted in

Figure l as a function of error level, number of partitions, and

percentage of standards (rows) analyzed. The raw correlations were

converted to approximate normals using the Fisher 2 transformation,

averaged, and then converted back to correlations before plotting.

Note that although r decreases as the percentage of standards

TR

analyzed gets smaller and as the error level and number of partitions

increase, all of the correlations are quite large. The lowest

correlation is 0.86. An analysis of variance was performed using the

correlations between the true and recovered configurations, converted

to approximate normals, as the dependent measure. The cell means,

‘plotted as Fisher 25, are shown in Figure 2; the results of the

analysis are shown in Table 2. The only effect that was not

significant at the 0.05 level is the interaction between the number

of partitions and the number of standards analyzed. Note that the

data plotted in Figure 1 and in Figure 2 are the same data. Figure 2

uses the scale units that were used in the analysis of variance while

Figure 1 uses the more familar correlation scale.
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Figure 3 plots the SSTRESS, the stress-like "goodness-of-fit"

measure that ALSCAL minimizes (See Appendix A). SSTRESS for errorless

proximities is lower than for the proximities with error added. For

the error free proximities, SSTRESS is higher for partitions of two

than for partitions of one, and higher for low percentages of

standards analyzed than for high percentages of rows analyzed. For

the proximities with error added, the situation is reversed. SSTRESS

is lower for a partition of two than for a partition of one and it

gets smaller as the percentage of rows analyzed decreases.

Discussion
 

Although the three way interaction confounds any statistical

interpretation of the main effects, much can be learned from the data

plotted in Figure 1. These results indicate that when using the row

conditional option of ALSCAL, one need not rank all the stimuli. This

is in agreement with the work done by Spence and his coworkers

(Spence and Domoney, 1974; Graef and Spence, 1979; Spence, in press)

with pair comparison judgments.

For error free input and a stimulus set of 32, one could safely

use as few as 40% of the stimuli as standards. This is true

regardless of whether one chooses to use one or two partitions of the

input matrix. Given the time savings reported by Young, Null, and

Sarle (1978) for a partition of two, this would be the preferred

method when using the ISO system.

For two dimensional data containing moderate error and a

stimulus set of 32, one could again use as few as 402 of the stimuli

as standards when using a partition of one. When using a partition

of two, the recovery correlation drops to 0.86 when 402 of the data
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is analyzed. While this is by no means a poor fit, it differs fairly

sharply from the correlation of 0.93 for 602 of the standards

analyzed. Thus, one might well prefer to use 601 of the stimuli as

standards. This is still a sizeable reduction in the task demanded of

the subject.

Spence and Domoney (1974) suggest collecting a minimum of 502

and 55% of the pairwise judgments for data with zero and moderate

error when analyzing a three dimensional configuration of 32 points.

This corresponds very well to the data in Figure 1 although their

recommendation is based only on analysis of 1/3, 2/3, and complete

data. They also present more complete data for 40 and 48 points.

Not surprisingly, the larger the stimulus set, the lower the

percentage of data that must be analyzed. This should also hold for

row conditional data although it has not been tested. Graef and

Spence (1979) obtained similar results for 31 points in two dimensions

in a study that compared cyclic deletions and deletion based on

a priori knowledge of the size of the distances between stimuli.

Figure 3, which displays SSTRESS as a function of the parameters

of this study, should serve as another warning against using stress

measures to evaluate the quality of a scaling solution. For the

errorless data, SSTRESS is inversely monotonically related to the

recovery correlation with a partition of two having the higher

SSTRESS. For the data with moderate error, SSTRESS is directly

monotonically related to the recovery correlation with the partition

of two having the lower SSTRESS.



EXPERIMENT II: ISO VERSUS PAIRED COMPARISONS

The purpose of this study is to compare the solutions one gets

from an actual paired comparison task with the solutions one gets

from a rank order ISO task using the same stimuli. It is desirable

to separate this question from the question of the robustness of

ALSCAL with respect to missing data which was discussed in the first

study. Therefore, all paired comparisons and rank orders were

obtained; this meant that a relatively small number of stimuli were

used in this study.

Procedure

Sixteen U.S. cities were choosen to serve as stimuli. They are

listed in Table 3. Ten subjects were recruited from undergraduate

and graduate level psychology students at Michigan State University.

Subjects were paid $5.00 to participate in the study.

Each subject performed two tasks: (1) judging the distances

between all pairs of cities, and (2) rank ordering the distances of

all 15 cities to the remaining one for all 16 cities. The paired

comparison stimuli were presented in random order on a computer CRT

screen. The subject had to rate the distance between each pair of

cities on a scale of one to nine by typing in the appropriate number.

One represented a judgment of "very close together" and nine

represented a judgment of "very far apart.“ The rank order stimuli

were presented in random order by the 130 system using all stimuli as

standards and one partition. Young, Null, and Sarle (1978) indicate

19
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Table 3. The 16 cities used in Experiment 11.

Boston

New Ybrk

Washington, D.C.

Miami

Atlanta

Cincinnati

Detroit

Chicago

St. Louis

New Orleans

Dallas

Salt Lake City

Denver

Los Angeles

San Francisco

Seattle
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that the maximum list length does not affect the time it takes to

order a standard when only one partition is used, but that standards

are ordered more quickly for longer list lengths when the stimuli are

partitioned into two sublists. On the other hand, one of the

advantages of the rank order task is that the judgments are simpler

than the paired comparison judgments, and the shorter the maximum

list length, the simpler the judgment should be to make. Since it is

expected that most researchers using ISO will choose to partition

their stimuli into sublists, it was decided not to use the shortest

maximum list length of two. However, to keep the judgments quite

simple, the maximum list length was set to four. Each subject

produced two data matrices which were submitted to ALSCAL using the

parameters listed in Table 4.

Results

The two configurations obtained for each subject were compared

to each other using the correlation between the interpoint distances

as the measure of correspondence. The mean correlation between the

rank order cognitive map and the pairwise comparison cognitive map

was 0.90. This was obtained by converting the correlation coef-

ficients to approximate normals using the Fisher 2 transformation,

averaging, then converting back to correlations. If one drops the

lowest correlation (0.57), the average increases to 0.92. There is

some justification for dropping the low correlation. It was an

obvious outlier, being the only one below 0.82. In addition, the

subject was averaging 2 to 3 seconds per judgment towards the end of

the rank order task. This was much quicker than her earlier response

times and much quicker than the average response time of other
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subjects. This suggests that the subject was just trying to get

finished and was not being particularly careful about her responses.

Six of the ten subjects had correlations of 0.90 or higher; the three

others had correlations greater than 0.80.

Correlations were also computed between the distances as

measured from a U.S. map and the recovered distances from the two

cognitive maps. The average correlation fer the rank order task was

0.90; the average correlation for the paired comparison task was

0.86. Within subjects the rank order correlation was never less than

the paired comparison correlation. Informally, a few subjects

indicated that the rank order map was a better representation of

their perception than was the paired comparison map.

Discussion
 

Based on the high correlation between the distances from the

rank order cognitive maps and the distances from the paired comparison

cognitive maps, one can conclude that one gets very similar solutions

regardless of which task a subject performs. The correlations

between the cognitive maps and the actual U.S. map hint that the rank

order task may produce slightly better solutions than the paired

comparison task. (See Appendix B for an example of a cognitive map.)

Young, Null, and Sarle (1978) indicate that one advantage of

the ISO system is that the judgments are simpler to make than paired

comparison judgments. Subjects informally reported that although the

rank order task was more tedious than the paired comparison task

because there were many more judgments, the rank order judgments were

indeed simpler. The tedium of the rank order task should be greatly

reduced by partitioning the stimuli and using only a subset of them
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as standards as discussed in the Monte Carlo study. Young, Null, and

Sarle (1978) suggest that an ISO task with partitioned stimuli should

take no longer than a paired comparison task to collect equal amounts

of data.



GENERAL DISCUSSION

The results of the Monte Carlo experiment presented earlier

indicate that in the case studied, one can reduce the number of

stimuli used as standards without sacrificing the quality of the

solution. One can also greatly reduce the number of judgments by

partitioning the stimuli into two sublists and rank ordering each

subset to the standard. The Monte Carlo study also indicates that

this partitioning can be done without sacrificing the quality of the

solution. Thus using these two methods one can greatly reduce the

number of judgments needed.

The second experiment indicates the results one obtains from the

rank order task are equivalent to the results one gets from the paired

comparison task. Since the judgments required in the rank order task

tend to be simpler than those of the paired comparison task,

researchers who do multidimensional scaling studies with large stimulus

set may well want to consider using the rank order task.

There are a number of obvious ways that this study could be

extended. One could explore other dimensions, error levels, number of

points, number of partitions, and so on. Perhaps even more useful

would be a direct comparison of the cyclic and random deletion paired

comparison tasks with the ISO task using the same randomly generated

configurations as the basis for the input matrices. Another useful

avenue of study would be a more thorough exploration of the trade

offs of the various ISO options. In particular, it would be helpful

25
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to have data as to the length of time it takes subjects to complete

an experiment when the number of stimuli, number of standards, number

of partitions, and the maximum list length are varied.
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APPENDIX A

THE ALSCAL ALGORITHM

The general ALSCAL model (Takane, Young, and de Leeuw, 1977) is

2 m a

dijk g 2 via wka (xia - xja) ’ (4)
aIl

where dijk is the squared distance between points i and j for replica-

tion k, v1a is a weight for point i on dimension a, wka is a weight

for replication k on dimension a, and xia and xja are the coordinates

for points i and j on dimension a. With via a wk8 I 1, this general

model simplifies to the simple Euclidean model that was used in this

study.

The (unnormalized) objective function that ALSCAL minimizes is

N N n

¢= 2d - z ztd’ -f (o3 )1”. (5)
kIl k kIl ijk ijk ik ijk

where OIjk is the squared value of the observed dissimilarity between

stimulus i and j on the kth replication, and fik is the transformation

between observations and Euclidean distances. Note that a unique

transfbrmation function may be used for each row in each replication

of the input (dissimilarity) matrix. This permits the row conditional

scaling that was done in this study.

In nonmetric multidimensional scaling, the transfbrmation

function, fik' is a monotonic one. In ALSCAL the regression equation

is

*

diajk " ‘11:“:jk) ' (6)
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subject to the linear inequalities which define monotonicity. This

is a problem in isotonic regression for which solutions are available

(Kruskal, 1964b).

In equation (5), if the function of the dissimilarity is

replaced by the best fitting estimate of the squared distance, d:3k,

and if d:§kis also used to normalize the equation, the result is the

ALSCAL goodness-of-fit measure, SSTRESS, for the unconditional

Euclidean model,

 

" d?. - di? 2
E 3 E’( ijk ijk)

2

=‘ a (7)

‘u 222d“

ijk ijk

This is quite similar to Kruskal's (1964b) STRESS goodness-of-fit

measure, S, defined as

e

z 2 (d.. - d )2
i j ij ij

32 = . (8)

2 z d2

i j 13

 

For the ALSCAL row conditional model, a normalized SSTRESS is

computed for each row and then an average is computed over all these

SSTRESSs as in equation (9),

a _ *a a
E (d dljk)

  

1 N n j 15“

d: . z z . (9)

Nn k i 2 d*4

ijk
j

The basic steps of the ALSCAL algorithm as used in this study

are quite simple, although the implementation is rather complex.

First an initial configuration of points is computed from the dissimi-

larities. The point and replication weights are set equal to one.

Next the interpoint squared distances are computed from the
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configuration of points and the best fitting transformation between

the squared dissimilarities and these squared distances are found for

*

each row. New estimates of the squared distances, d Sk, are calculated

13

using the transformations just found and the squared dissimilarities.

SSTRESS is then computed and if it is small enough, the process is

finished. Otherwise, a new configuration is found using the new best

estimates of the squared distances. This process is repeated by

finding a new transformation as described above.
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ONE SUBJECT'S COGNITIVE MAPS

Figures 4 and S are an example of the cognitive maps generated

in the second study. The map in Figure 4 was generated with data

collected with the rank order (ISO) task; the map in Figure 5 was

generated with data collected with the paired comparison task.

Note that three cities, Cincinnati, Boston, and Dallas, are in

noticably different locations on the two maps. In general, the rank

order map (Figure 4) appears to be a better representation of an

actual map.

Table 5 shows the correlations between the interpoint distances

in the two cognitive maps and an actual U.S. map. The correlation

between the two cognitive maps is 0.91 which is quite close to the

group average of 0.90 ( or 0.92 if one subject is dropped from the

analysis). Also note that the correlation between the rank order

cognitive map and the U.S. map is higher than the correlation between

the paired comparison cognitive map and the U.S. map. This is

representative of the other subjects.
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Rank Order

Distances

Pairwise

Distances

Actual

Distances

33

Table 5. The correlations between cognitive maps.

Rank Order Pairwise Actual

Distances Distances Distances

1.00

0.91 1.00

0.94 0.88 1.00
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