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ABSTRACT

THE PREDICTION AND CORRELATION OF MODULI OF
POLYMER SOLUTIONS SUBJECTED TO LARGE AMPLITUDE
SHEAR OSCILLATIONS
By
Ekong A. Ekong

A non-linear constitutive equation of Acierno et al.
(1a) is tested on data of MacDonald et al. (1b), of stress
generated in a 2% polyisobutylene solution in Primol 355,
and subjected to a uniaxial oscillatory shear with finite
amplitude. In fitting the data of MacDonald et al., the
correct correlation of model results is strongly dependent
on the adjustable parameter 'a'. The model quantitatively
predicts a larger decrease (30%) of the dynamic storage
modulus than of the dynamic viscosity (5%) up to a strain
amplitude of 1.28 units, as observed by MacDonald. The
model predicts only a slight dependence of both moduli on
the frequency of oscillation in contrast to the Bird-Carreau
model. At higher strain amplitudes, the undestroyed frac-
tion of entanglement types corresponding to large relaxa-
tion times tend to the same value as in steady shear with
equivalent shear rate. A qualitative agreement results
in model prediction and shear stress growth data at large
shear rates.

la) D. Acierno et al., J. NonNewtonian Fluid Mech.,



Ekong A. Ekong
1, 125-146 (1976).
1b) 1I.F. MacDonald et al., Chem. Eng. Sci., 24,

1615-1625 (1969).
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INTRODUCTION

A number of useful properties and behavior of visco-
elastic materials have been borne out of the classic small
amplitude oscillatory shear experiments conducted by
Ferry (1). Recently the Weissenberg Rheogonometer fitted
with small angle cone and plate geometry as shown below
has further enhanced the study of this flow regime on
various classes of polymeric liquids.

First the polymeric solution is placed between the
cone and plate. A sinusoidal motion of amplitude ygq
is imposed on the cone while the plate is held steady and
the gap between the platen and cone maintained constant.

The sinuso dal strain imput can be expressed as

Yoo = v© sin wt (1)

The torque on the plate and the axial
for constant gap between plate and cone are related to
the tangential shear stress and first normal stress dif-

ference respectively

3T

TO =
¢ T T3 (2)




-

Figure la. Swmall angle cone-and-plate viscometer
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The determination of t¢¢ and t¢¢- 1606 after the
initial transients have died out through the equations
above are obtained with the assumption that a linear velo-
city profile prevails within the gap. This assumption has
been shown to be valid for small amplitude and small fre-
quency motions (1b,2). The output stresses, 19¢, Tt -
166 are observed to oscillate sinusoidally with frequency
w and 2w of the input strain rate respectively (3). Also
a phase shift is observed in the response functions. The
input strain rate function and the stress responses can be

represented as

v6¢6 = Re { ;Oelot} (4)
o i
166 = Re | re¢e1wt} (5)
o .
166 - 168 = Re {(d¢¢-dee)+(r¢¢-ree)e2‘“t} (6)

Using the theory of linear viscoelasticity (1) we define
the material functions, the complex viscosity, n*, the
first normal stress difference displacement coefficient,
ed, and the complex first normal stress-difference oscil-

lation coefficient 6*, as



0 0 0

96 = - n*y8¢ = -(n'-in")y09

dgo - doo = - edlyg¢|2

RTIR T IC C1 TO R  CR I LR A

These material functions often represent oscillatory flow
properties of viscoelastic fluids and in the linear region
are experimentally observed to be functions of the frequency
of oscillation only.

It has been experimentally observed that if the
amplitude y9 is increased, n*, ed, g* become functions of
the frequency as well as amplitude and linear viscoelastic
theory no longer applies (1b). We therefore proceed to

redefine large amplitude material functions as follows

o

n*(w,y0) = %U = ' (w,72) (7)
ed(w,yo) = - (d¢¢ - dee)/ “;'OIZ (8)
0*(w,y %) = - (T2¢ -'189)/(?0)2 = 0'(w,y?) -

- 8" (w,v0) (9)

Several constitutive equations have been proposed
by rheologists (4) to appropriately relate the stress
tensor through material functions to large deformation
rates. These models centrally recognize the presence of
nonlinear effects in the equation of motion and introduce

a number of parameters to correctly predict the nonlinear



responses when large strain rates are imposed on polymeric
fluids. Recently Acierno et al. (la) proposed nonlinear
constitutive equations based on the network molecular
entanglement theory presented in detail by Lodge (5).

This model was presented by the authors for polymeric
melts and concentrated solutions with only a single adjus-
table parameter. It has also been used on polymeric
solutions by Graessley et al. (6) for start-up and relaxa-
tion experiments.

The objective of this work is to test the predictive
capability of the Acierno model in obtaining the material
functions n'(w,v9), G"(w,vy©2), ed(m,yo) and 6*(w,vy?) that
are to be determined experimentally by fellow workers (7)
on the NBS fluid polyisobutylene in cetane. These experi-
mental measurements are forthcoming and we turn to the
literature data of McDonalds et al. (1b), who use 2%
polyisobutylene in Primol 355. They collected G'(w,vy°)/
6'(w) and n'(w,v9Y /' (w) with 0.15y0%<71.2 at w = 0.188,

1.88 and 18.8 sec~!. Also all data were taken at 25.0 *
0.1%.

Our interest in this model stem from a) its successes
in correctly predict various transient data reported by
its authors (8) and Graessley et al. (6), b) the fewness
of parameters and constants as compared with other models
and c¢) the universality of the adjustable parameter in
terms of flow regime and type of polymeric fluid as pro-

claimed by its authors.



Since the adjustable parameter 'a' is to be obtained
through the guidance of dynamic shear data as opposed to
steady shear as earlier suggested (8), we further evaluate
'a' by predicting the fluids start-up data of Huppler et al.
(12). The Acierno model relates uniquely the relaxation
times of the fluid to the existing entanglement density of
network functions. By comparing the concentrations ob-
tained through steady shear and averaged concentrations of
the oscillatory data using the same 'a' value, we hope to
ascertain some relationship between the shear rate y and
wYO that has pervaded much of the literature.

Finally a brief comparison between the Bird-Carreau
model and the Acierno model in their ability to predict
n'(w,vy®) and G'(w,y°) as a function of amplitude on the

fluid under test will be presented.

Background

Many experimental rheologists have characterized the
Non-Newtonian behavior of a number of polymeric fluids
through steady shear experiments over two to three decades
of shear rates. However the applicability of a constitu-
tive equation to describe stress responses of Non-Newtonian
fluids will depend on its ability to correlate other flow
regimes as well. These flow regimes include start up and
cessation of steady shear flow studied by Chen et al. (9)
and Graessley (6), elongational flow experiments of Meissner

(10), superposed steady and parallel/transverase oscillatory



shearing of Schowalter (11) and oscillatory shearing of
McDonalds et al. (1b), and others (3,12). This list is by
no means complete, each experimental set-up enabling the
determination of the material function specific to the
flow situation. In studying oscillatory shear flows it
is necessary to review experimental and theoretical devel-
opments of small and large amplitude shearing as well as
start-up experiments.

a. Small Amplitude Experiments

In the introductory paragraph, it was shown that
small amplitude experiments enable the use of the theory
of linear viscoelasticity and thus the characterization of
fluids in terms of the material functions n*, 69 and o*.
Furthermore the theory defines the linear viscoelastic
functions listed above to be governed by the relaxation

spectrum H(A) unique for each fluid (1) such that

. H(2)rd1na
H(2)w222d1n)
G' = J. 1+w2x2 (11)
Also for small amplitude shear flow g*, and 8d can be
obtained directly from the following relations (4).
jw * = p*(w) - o* (2w) (12)

wed = "(w) (13)



which has been derived by a variety of viscoelastic models
including Oldroyd three constant model (13).

Analogies have been presented both theoretically and
experimentally between steady shear data and small amplitude

oscillatory shear data and the most accepted is (14).

ng = n(¥)l,,o = (@)l = H(X)adIn (14)
31§l| = Eléﬂll = H(x)22d1na (15)
2yc y-»o W w0

In determining non-linear material functions, the small
amplitude experiments will be useful if the non-linear
viscoelastic model employed demands the dynamic linear
properties of the fluid. 1In the Acierno model a relaxa-
tion spectrum is required and this can be obtained from
the n'(w) or n"(w) vs w data in the linear region through
an inversion procedure (1).

b. Large Amplitude Experiments

Harris and Bogie (15) carried out finite amplitude
oscillatory experiments on the Weissenberg Rheogonometer
with a clear check that harmonics in the input signal were
minimal. They observed for their different solutions,
third and fifth harmonics in the stress amplitude as a
function of frequency. Their polymer solution showed only
a third harmonic in stress amplitude slightly sensitive
to frequency while the fundamental harmonic was predomi-

nant.



Philippoff (16) using a rotational viscometer (coni-
cylindrical arrangement) studied the effects of large
amplitude up to 700% shear amplitude units on the material
functions n' and G' of polymeric solutions. He noted that
the largest third harmonic recorded in the recording system
within the range of strain amplitude was not more than 5%
of the amplitude of first harmonic in stress. He further
observed decrease of G' and n' at higher strain amplitudes,
G' decreasing considerably.

This experimental observations are consistent with
linear viscoelasticity which recognizes a limiting ampli-
tude beyond which the theory does not hold. So these data
are in the realm of the non-linear models and along with
other transient experiment can test the validity of the
several proposed rheological equations of state. McDonalds
et al. (16) working on three polymeric solutions of different
composition and a melt studied the effect of large amplitude
oscillatory shear on n' and G'. They obtained results
similar to Phillipoff's and furthermore noted the effects
were slightly dependent on the fluid and frequency of oscil-
lation. They chose frequencies well within the power-law
region of their four fluids. McDonalds data lends itself
to comparative analysis with predictions of nonlinear
models since they maintained a linear velocity profile in
the input deformation. Tee and Dealy (17) also found from

large amplitude oscillatory shear in a small gap concentric
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cylinder rheometer that the extent of nonlinearity in the
stress response is primarily a function of strain amplitude
and independent of frequency. Strain amplitudes up to 10
and frequencies between 0.5 to 30 sec'] were employed. In
most of these studies inertial effects are neglected or
compensated for. Dodge and Krieger (18) have argued that
due to secondary flow, conventional analysis on oscillatory
cone and plate geometry are not valid if fluid density is
not considered. They thus elected to work with parallel
plates or coaxial cylinders in their experiments (18).
However Walters (22) noted that for relatively high visco-
sity liquids (low frequencies) little error is incurred
due to inertial effects in using any of the available
geometries.

c. Stress Growth Experiments

This experiments more popularly known as start-up
experiments involve a sudden initiation of simple shearing
at a certain shear rate on a fluid at rest. It has been
experimentally observed (2,6,12) that the response shear
stress, 8(v,t) and the normal stress difference ﬁ](?,t)
are functions of the input steady shear rate as well as
time. At low steady shear rate, q and ﬂ1 increase mono-
tonically to their steady state value. In this limit g
and ﬂ] are said to be governed by linear viscoelastic
properties and are obtainable through the relaxation spec-

trum for the fluid (6). As the shear rate is increased
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the functions 6|and ﬂ] overshoot their steady state value;
then in some cases an undershoot follows. The magnitude
and time of overshoot has also been shown experimentally

to be a function of shear rate. Huppler et al (12) working
on three nonlinear models, OWFS, WJFLMB and the Spriggs 4-
constant models showed these models to give varying results
on stress growth prediction while agreeing closely in pre-
dicting steady shear and stress relaxation data. Graessley
et al. (6) reviewed various models, the strain rate, rela-
tive strain, averaged rate and structural dependent models
on their ability to predict start-up as well as cessation
after steady shear data collected with a modified (stif-
fened) Weissenberg Rheogonometer R-17. They reported funda-
mental inconsistencies between both the strain rate and
relative strain models with their data. For the structural
model (Acierno's) they obtained a reasonable fit with their
data only when they adjusted the structural parameter 'a'
at each shear rate where 'a' also fits fairly the steady
shear and normal stress data. All these studies point to
the importance of stress growth experiments in evaluating
rheological models. We intend to use 'a' obtained from
large-amplitude shear data to predict start-up data espe-
cially at large shear rates. Such tests may reveal whether
'‘a' obtained through oscillatory shearing can portray a

wide range of viscoelastic behavior.
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The Constitutive Equation
The non-linear constitutive equation proposed by
Acierno et al (la) will be considered in this study.
Acierno et al. report that their model adquately correlates
data on tangential and normal stress growth in shear,
stress growth in elongation and normal stresses in shear
creep. The Bird-Carreau model (19) an integral nonlinear
model studied by McDonald et al. (l1a) will be presented on
a comparative basis in the study of large amplitude dynamic
complex functions. The Bird-Carreau model has received
wide attention and interest as it correctly predicts complex
viscocity, non-Newtonian viscosity in steady shear primary
normal stress difference and stress relaxation data (19,20).
a. The Acierno Model

The model is given by

o =41‘:T1- (16)

(17)

Ti s _ =
gy st ({;%) = 234D
. 18
dxi = (1-xiy - axi /Ei (18)
dt " Ai VoG,
1 1
Gi = Goixj Ay = Aggxj h (19)
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and St

V.‘lT'i - T1:Vv
§t

The Gy and Ay in equation (19) are the linear
elastic moduli and relaxation times of the fluid respec-
tively. These are obtained by the construction of the
fluid relaxation spectrum H(A). The H(A)'s are calculated
from experimental curves of one of the three functions
G(t), G'(w) or G"(w) by an inversion procedure to be shown
in section C. The H(x) vs A plot is plotted on a log-log
séa]e, then the log A axis is subdivided into equal inter-
vals A 1og A. The mid-point of each sub-interval represent
a set of discrete relaxation times Agj and the corresponding

values of the ordinates Hoi gives
Goi = HoiA]nA (20)

Equation (19) relates elastic module G; and the
relaxation times 1, to the existing structure through the
structural variable xj. Acierno et al. claim the set of x;
represent "the degree of connectivity of the macromolecu-
lar network with respect to that of equilibrium" (9). The
rate of change of the variable x; is given in equation (18)
and is equal to the rate reformation of type i functions
due to thermal motion minus the rate of destruction due to
the existing stress. The destructive term is conceptively

formulated by considering steady shear flow. In the absence
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of thermal motion, N;, the number of junctions of the ith
type which on the average exist on the given molecule at
any instant of time would be destroyed in a time of order
1/y. Thus the rate of loss due to the imposed flow would

be anjy, where 'a' represents the ratio of a proper average
contact time (attributed to thermal motions, entanglement
property and other intrinsic properties) and its rough
estimate 1/y. Then the rate of junction loss relative to
equilibrium junction concentration is given by ax;Y

In order to relate this term to the stress level y is
arbitrarily expressed in terms of the second invariant of
the stress tensor during steady shear. This concept is
further generalized to all flow histories. Equation (16)
assumes that the total stress development of the fluid on
a strain input is obtained by the superposition of all
stresses induced by network junctions corresponding to
relaxation times that contribute significantly at the time
of consideration.

The model predicts zero second normal stress dif-
ference in shearing flows.

If unsteady oscillatory shear flows is considered,
equation (11) predicts that except for 12 and <11 an
other components of the extra stress remain zero.

Suppose

int
D =y = Re Yoe
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Then 12 12

By defining

05 = t/2gis a5 = ar ;v (v

12 2 1

a .
T, = T N' = a Ti R B: = WAz

eqns. (15) - (17) along with egn. (13) become

Ti + Xi].4 gli = aiXi]'4COSBiei
dei
N'i + X.i]'4 :—':::— = a.iT-iX,i]°4COSB-iB]'
1.4 dx§ _
x-i —dei =1 - Xi - X.I /N.i
12 11

The stresses o and ¢

time and can be represented by the sum of odd and even

harmonics respectively by a Fourier expansion.

(+*]

e 7yl? - %[A' (2n+1)wt
& one12i€0s(2n+1)w

+ B'2n+]’isin(2n+1)mt]

(21)

(22)

(23)

(23a)

(23b)

(24)

(25)

(26)

are continuous functions of

(27)
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rill - C;i . ;S;[D.Z"+2»iCOS(2n+2)wt + (28)
E'?"f?’iSin(2n+2)wJ

Also

;%;i = Ez%k2n+1,ic°5(2"+])“t + (29)
52n+1,1sin(2n+])wt]

f:l] = Coit 2§H§2n+2,iCos(2n+2)wt + (30)

E2n+2,isin(+2) ot
From eqns. (7), (8), and (9) -

k

' 0 = .

1 (wy®) = 2y A (31)

k

" 0 = ' =

n"(wsv%) = 6'(w,v%)/w = 1;B1i (32)
k

ed(w!Yo) = ;Coi’ e'(waYo) = t0'|1 (33)

i=1

and 0" (w,y%) = :E]i (34)
1:

Solving the coupled equations (24), (25) and (26), T;(t)
Ni(t) for several values of t can be found. If 'a' has
been predetermined, the sets
12
(T__(()_t_)' st)
-Y
and

11
(1——(£l~,t)

-YO
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can be used to obtain the constants App4 , Bon+1 » Co,

Dop+2 and Eppy2. At this point the predicted values of

the amplitude of the various harmonics as well as the

large amplitude material functions can be established.
b. The Bird-Carreau Model

The model is given by (28)

: - -f'u[t-t', n(e ]S HsE Fat (35)

with the memory function u given by

wlt-t',m(t*)] = z] "n_exp[-(t-t')/22n] (36)
U agnZDe1/2 e (t)ag,2

where

2%J

=N A - A .
n, Iy, sl j=1,2 (37)
_ 2P (n+1)J

The terms ng, X1, A2, a7 and a, are the model parameters
determined from small amplitude oscillatory shear and
steady shear experiments. The empirical constant € allows
for nonzero secondary normal stress difference. Further
details of the model will not be presented here as they
have been published elsewhere (1b,4,19,20).

In oscillatory shear motion McDonald et al. have

derived n*(w,y°) for this model as

n*(w,y%) = jz;{nnA 1-iui2n [1+ jz;( B" 2m ] -
n= ]+m2A n



18

( (- -)
n= (]+w2k2 )(]+4w Az ) m m- 1 (37a)
1
An = 3
n (1+]/2A%n|70|2 (37b)
Bn = 17225 |v°| %A, (37¢)

This result assumes that no higher harmonics are
observed in the stress response; n'(w,v%) and G'(w,y°) can
be obtained from eqn. (37a).

¢c. Determination of the Relaxation Spectrum

The elastic moduli G,; and relaxation times i, 44
encountered in the Acierno model can be determined through
the construction of the relaxation spectrum H(A) which is
obtained from the G"(w) data. For 2% polyisobutylene in
Primol 355 we used the n'(G"/w) data of Huppler et al (28).

An initial approximation of H(A) is made using Tschoegl's

second approximation formula (1)

Ho(h) = 2 (6" (w) - as3 Gped + (38)
dZG“
1/3 d(]nmS% )|m= 5/

N

To obtain
dGll‘w!
dinw
and
dZGll w

d(1nw)
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values, we fit the G"(w) vs In w data with a cubic spline,
using the subroutine ICSVKU of the IMSL collection. ICSVKU
starts with a given set of knots and shifts them among
data points one by one in order to determine the knot
locations that minimize the least square error. It then
calculates the derivatives at the data points. More
points were generated in the main program LSQSF within
data limits for better precision in the next stage of H(2a)
determination.

Next, an iteration scheme was set up by comparing
calculated values of G"(w) and its observed values. From

linear viscoelasticity,

G"(w = > wA 11
(w) -/;Ho(x) e I (1)

Then
Hy(x) = Hq(x)[ G"(w) obs/ G"(w) calc]w=1/2 (39)

We failed to achieve convergence with the relationship

w= v5/1 as presented in equation (38). This relationship
according to it's author (21) represents a shift factor

in the time scale at some point of the spectrum and was

not fully understood. However on using the more conven-
tional 4w = 1/A relationship, convergence was obtained after

nine iterations. Then the ability of Hl(x) to reproduce
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Fiqure 1. The relaxation spectrum calculated from G" ()
(data of Huppler et al. (28)) for 2%
polyisobutylene in Primol 355.
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linear data was further tested for the zero shear viscosity

U =LH.I(>\))\C”HA (40)

The spectrum was then modified by successively remo-

ving the long relaxation times until an ny = 10,350 poise

was obtained being a 4% error of the reported value (19).
Using the procedure outlined in section A, fifteen G,

and corresponding rg values were obtained from the final

Spectrum shown in Figure 1. The longest relaxation time

was 160 sec. The solid lines drawn through n'(w) and
G'(y,) data in figure 2 were calculated from this spectrum
using the fifteen discrete Gp's and xg's mentioned earlier,

using equations (10) and (11).

Unsteady Shear Flow with Large Deformation

In this section, we attempt to obtain the adjustment
parameter 'a' of the Acierno model using a non-linear,

transient flow experiment and evaluate its utility in

terms of its ability to predict other characteristic beha-

vior especially at large deformation rates.

a. Nonlinear Effects without Harmonics in Stress

Signal
In large-amplitude oscillatory shearing experiments,
using the cone and plate set-up we imply here that the

imposed amplitude range is restricted such that only a
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sinusoidal wave is recorded in the output torque measuring
system. It can be assumed that in the Acierno model only
the 1st harmonic of the dimensionless shear stress, T; and
the 2nd harmonic of the dimensionless Normal stress, N
and the average term of the structural measure xj are signi-
ficant.

Referring to egqns. (24) - (26)

Suppose

Ti = agRe { 7% 4t} (41)
Ny = ajlRe {ng .+ NgzieZi“t} (42)
Xj = Xj0(#1) (43)

Xjomay be obtained from Eqn. (26)

1 - Xio - aixio/Nzoi = 0

_ ..0
where aj = awlgjy

1

i.e. X_ioz -————7--————I‘*.0“i N2°1 (433)
1.4 aTi - . .
Now (1+ai/N20i) T, + 40; ®jCOSB;0; (43b)
. dN;
(1 + ai/Nzoi)] 4 Nyt 1 = a; T cosgipi (43c)
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T, = “iT]1C°S(Biei - 511); Ni = G%(Nzoi +

szicos(ZBiGi-d 24) (43d)

1.4
aj(l1 + ai/Nzoi) T]iCOS(Siei-qi)

-aiBT145in(B04-877) = ajcospjo;

or
Ty; B]+ai/Nzoi)]‘4coséli + g4sin ]i]cossiei
= COSBj04
1
Ty = (]+“1/N201)1'4C°56]i t Bjsinédy; (44)
But

1.4_. =
(1 + aj/Np o) "*sinsyy - Bycoseqy = 0

. 81
i.e. tanéy; = 172 (45)
(1+a1/N201)

From eqn. (43c)
2 . 1.4 2
a5 (]+aivftoi) [N201+N22ic°5(23161'521‘)]'zaiBiN221
. i) = 2 ) ..
X sin(28464-655) aiT]icos(siei 511)c0581e1

27

= iy, cos(ZBiei-Gli) + COS &
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From the time independent term

)1.4

(1 + ajVN24; Nzoi = 1/2T1c056;

0.5
Nzoi N ]+“1/N201)]'4+Bita"511
0.5
i.e. Np . = (1+a1@20_)2-8+812 (46)
1

From the time dependent term

Nazg = 1/2Tq;5c086875 ' (47)
(]+ai/N201)]‘4C05621+26151n621
where tan 2;° 31[2(]+ui/N201)]'4+]] (48)

(T+ai/N2g4)1-4-28.2

With finite v°
12 = (n'(0,v%)cosut + n"{w,y%)sinut)wy®

From model

1-]2 - ZG~|Ti - E GoiXiT]i(COSwt-G]i)
i 1

a

Therefore

0.4
n',y°) = ZGOixoi(Hai N2o¢) (49)

' (1+ai/N201)2-8+w2A012




26

6'(w,Y%) = n"(0,y0)w =

Gojwligi? (50)
1 (]+ai/N20.i)3'8+(]+ai/N201)w2)\0i2
Also
r]] - 1:22 = [Od(w,yo) + 0'(w,y%)cos2ut +6"(w,y0)sin2wt)]w2'y°2
From Model
2G:N.
TT]' 122 = Z 179
T a2
; zz:eoix,-aizmzoimzzi(coszwt-szi)
i.e.
0d(u v0y) - z( Goiloi , (51)
and
e'(msYo) = (52)
_ GoitoiXi | , |
i 2. 211 1.4
i E]+ai/N2°i) 8+31 ,Il(]+ai/Nzoi) +281tan621]
0" (w,y0) = (53)

Goijroj X jtans2;
] B]*“i/N2°1)2'8+8i2] [(]+°1/N201)1'4+281ta"GZﬂ
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From Eqns. (50) & (51)
09(w,y?) = G'(wnYo)/wz (54)

i. Determination of the adjustment parameter

The determination of n'(wsvy%)s n"(wsv®)s 69 (w,vy°)
6*(w,y°) as given in the preceding equations can be obtained
only if 'a' is known. Since 'a' is a non-linear characteris-
tic of the model we elected to correlate these material
functions with experimental data and thus obtain an 'a' that
gives the best fit. If an 'a' can simultaneously fit four
non-linear material functions data, then its suitability for
application to other flow histories over that obtained from
steady shear data is justified. Unfortunately the Normal
stress data for polyisobutylene are unavailable, and we
use n'(w,v°%) and G'(w,vy°®) data of McDonalds et al. (1b) for
correlation.

The material functions n'(w,y°) and G'(w,y°) as
functions of y° are calculated using equations (49) and
(50). The dimensionless Normal stress, Nzoi’ present in
these equations is determined using equation (46), by a
successive approximation procedure using its linear value
as an initial estimate at all the relaxation times. The
program LAMVIS presented in the Appendix reads in an arbi-
trary 'a' value and outputs the normalized n'(w,vy°) and

G'(w,Y®) values as shown in Figures 3a - 5.
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In figures 3a and 3b the smooth curves are model pre-
dictions obtained for three values of 'a'. 1In contrast to
Acierno results on steady shear data (8) the model slopes
exhibits a strong sensitivity on the choice of 'a'. In the
1ight of the scatter of experimental data it seems that an
0.1 £ a £ 0.15 reproduce data well. Figure 5 shows a slight
dependence of n'(w,Y°%)/n' (w) predicted by the model on the
frequency within the range of y° studied. This seems to be
supported well by the data and the same phenomenon has been
reported by Philippoff (16). The dashed lines of Figure 5
are predicted values of the Bird-Carreau model and they
exhibit a strong dependency on the frequency.

In figures 4a and 4b more drastic decrease of G'(w,
v°)/6'(w) as functions of y®and 'a' is observed. Once again
the model predictions show a strong dependence on the para-
meter 'a'. From Figure 6 the curve with a = 0.3 gives the
best prediction of the data at both frequencies. Since
6'(w,v°)/G' (w) data shows more reproducibility and more non-
linearity, the 'a' obtained here has been chosen as more
representative of nonlinear character of the fluid over that
obtained from the n'(w,Yo)/n'(w) data.

This approximated form of Acierno model gives a rela-
tion between the first normal stress displacement and the
dynamic storage modulus similar to the rheological relations
of linear viscoelasticity. Walters (14) analyzing the
effect of nonlinearity on dynamic normal stress behavior,

however neglecting the fourth harmonic came up with a
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Figure 6. Large amplitude storage modulus data for
2.7 wt % PIB MD-237 in Primol
Acierno model
----- Bird-Carrea¥ model
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similar conclusion for both e'(w,yo) and ed(m.Yo). Chris-
tiansen and Leppard (3) also report a fair agreement on
both the rheological relations when using y° = 0.743 on
their fluids. However this author feels that there is
still merit in collecting data for oscillatory normal
stress functions since it may serve as a critical test for
correlating oscillatory nonlinearities. The Acierno model
proposed the rate of destruction of the network junctions
as a functional of the invariant of the normal stress
which also carries the adjustment factor. Thus the cor-
relation of this argument especially at high y° in the
oscillatory mode would be very significant.
ii. Spectral analysis

In Table 1 we categorize the relaxation spectrum into
three broad spectral zones in the contribution of the
n'(w) and G'(w) values. Much of the n'(w) value is con-
tributed by the wAr1 region, the wA>>1 region giving the
least confribution. In the G'(w) data the wAn1 region
contributes significantly but the greatest contribution
comes from the wA>>1 region. In Table 2 the network con-
centrations, Xj, of the different spectral zones are pre-
sented due to the imposition of the strain amplitude of
y° = 0.41 on the fluid. We observe the maximum effect of
this large strain amplitude at the large relaxation times
as x;s in the wA>>1 region deviate more from unity than

those of smaller relaxation times. In other words the model
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predicts that the effect of non-linearity is restricted
to larger relaxation times in the oscillatory flow regime.

Since n'(w) is principally susceptible to the changes
up to wAnl region, the model predicts that the effect of
nonlinearity is oscillatory shear will be least apparent
through this material function. On the other hand the model
predicts a drastic effect on the G'(w) value since the zone
wA>>1 which gives the greatest contribution has been mostly
affected. These two observations are correctly supported by
McDonalds data.

Furthermore, we notice that in Table 2 in the wA>>]
region there is a percent increase in n;(m,v°) spectral
contribution. This seems to be borne out of equation (49).
If 'a' is chosen such that the nonlinear term 1 + aYosi/Nzoi
is close to unity then the decrease of each spectral unit
will be moderate. However if wA>>1 then the denominator

becomes

(1 + ayosi/N201%°8+wzkoizé(wkoi)2

and
ny (wayo)

T 21 ' (55)

But no significant increases was incurred as shown in

Table 2. In sum the model verifies McDonald's assertion
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that in nonlinear oscillatory shearing experiments, more
emphasis should be given to G'(w,y®) data rather than the
n'(w,v°) counterparts.

In Acierno's paper (8) it was shown that there was
a drastic truncation of the relaxation spectrum during
steady shearing experiments when shear rate as low as
vy = 0.01 was imposed. Also an a = 0.4 gave the best fit
of their viscosity and first normal stress coefficient
results. In Table 2 truncation of the right part of the
relaxation spectrum was less drastic as the greatest change
in Agf to Aj occured at A ; = 160 sec. to ry = 151 sec. at
Y0 = 0.41. This would have an obvious advantage in terms
of computer time, since we will not need to reconstruct the
relaxation spectrum at this moderate shear rates. In this
approximated form of the model equal intervals of Alogx is
assumed even though large 15i's are affected by relatively
large ¥°. Thus serious error may be encountered for large
Y% as constant Alogx will be inconsistent with the model
formulation. The effect on Gi needs a little study.

From the model

Gyy = Hialnay = HidInXi

oi

At a strain input y°

Xi = ]/(]+ a5 /NZOi)
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- 1.4
Hyalna, = Hy8In(agy xi ")

Goj = Goi - 1.4H;81nayvNp (56)

However this error term is found to be negligibly
small at large A, ; where the problem is centralized.

ii. The structural character in oscillatory
and steady shear

Having obtained an 'a' from the preceding section,
an attempt is made here to at least study qualitatively
the model's nonlinear responses of the stresses and more
especially the structural parameter x; at higher shear
amplitudes. It must be pointed out also that this analysis
suffers from the severe limitations we impose on the velo-
city gradient D and the assumption that the contrvariant
convected derivative, &8/6t 1is equivalent to the total time
derivative, d/dt.

We resort to the study of spectral responses bearing
in mind that the total response is the arithmetical combi-
nation of all the spectral regions that contribute signifi-
cantly.

The IMSL subroutine DVOGER has been employed to
solve the system of ordinary nonlinear first order dif-
ferential equations of eqns. 24-26. Initial values of
T; = 0.0, N;j = 0.0 and x; = 1.0 and an allowable set error

of 10-4 along with a range of the step size serves as the
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input and DVOGER selects a suitable stepsize to calculate
the next step which meets the error criteria. An amplitude
range of 0.2 - 10.67 with relaxation times of 0.17 to 160
sec. was successfully tested. At higher ranges of relaxa-
tion times 60 sec. to 160 sec. and large amplitudes, 5.0 -
10.67, the error criteria was not met. The program is
presented in the Appendix and sample computer plots are
shown in Figures 7 - 11.

In Figure 7 with an input shear amplitude, x; devi-
ates slightly from unity and remains steady confirming the
model to degenerate in a proper manner to linear visco-
elasticity. The dimensionless normal stress have the
expected frequency, 2w and a pronounced displacement that
has already been reported (3). In Figure 8 we notice that
a 10-fold increase in the input amplitude, leads to little
less than a 100-fold increase in the normal stress dis-
placement. Christiansen and Leppard reported a correspon-
dence of the slope equal to 2 for their solutions between
the normal force displacement and the input amplitude (on
a log-l1og scale) working however within the linear range
(YL? = 1). The X; is seen to‘geviate pronoucely from unity
and exhibit a sinusoidal-like motion with a frequency of
2w approximately. There is also a lag between X; and Nj
noting that N; is directly the forcing function. The
spectral behavior of large relaxation times e.g. Agj =

37 sec of Figure 9 is intriguing at best. The x; curve



ro
(53]
.

20.
15.

10.

bl

-15.

-10.

-20.

-25.

41

T

|

o-
. , . T(sec) N )
.6 9.2 13.8 18.4 23.0
Y Increment B Plot 1.60 E-04
A Plot 4.00 E-03 € Plot 4.00 E--2
Fiqure 7. Spectral diagram of finite amplitude oscillatory

shear.
(A) Dimensionless shear stress, Ti

(B) Dimensionless normal stress, Ni

(C) Structural parameter, X re1a¥ation time,
\oj = 1.2 sec  w = 1.88 sec”!, ¥0 = 0.2



25.

15.

10.

-10.

-15.

-20.

-25.

42

VUV

1 1 1 1 1
3.0 6.0 9.0 12.0 5.0
T(sec)

Y Increment B Plot 1.600 £-02

A Plot 4.00 E-02 o

Figure 8.

C Plot 4.000 E-02

Spectral diagram of finite amplitude oscillatory

shear

(A)
(B)
(c)

Dimensionless shear stress, T;
Dimensionless normal stress, N;j

Structural parameter, X4 relaxation time,
‘oi = 1.2 sec. w = 1.88 sec”!, 0 = 2.0



43

99°2 = ot “[-295 88°L = ™ 235 (g = 10y Ix <u3jaweded (eanioanays (2)
LN “SS943S |ewaou ssajuotsuaulg (9)
'] “ssauls 4eays ssajuorsuauwl( (v)
4e3Yys Aaoje(|Ldso apnitidue ajLury jo weuaberp (eua3d8ds ‘g 3unbLy4
¢0-3 00°¢% 301d 2 10-30°S 30ld V
10-381°0 30id 9 Jjudwauadul A
G°¢ 0°¢ 5 ¢ 0°¢ S°1 et S°0 .
T T T T T T T 0°02-
(23s)1
40°G1L-
40°0L-
v
40°6G-
0°0
0°S
10°01L
10°61
10°0¢

0°S¢




44

rapidly drops during the transient period and dwells much
longer at this low point except for sudden peaks regularly
interspersed. The stress functions also lose their sinu-
soidal nature and only one broad peak is present in the
normal stress function. These curves can be approximated
by means of a Fourier analysis recognizing higher order
harmonics in the shear stress and normal stress. The
presence of these harmonics odd harmonics for torsion and
even ones for normal force have been shown experimentally
(15) and predicted by other models (e.g. the WBC & Carreau-B
models) as well. This further portrays the importance of
spectral studies since correlation of harmonics with
experimental data may aid in choosing the correct defor-
mation rate invariant and thus help ascertain the physical
meaning of the adjustment factor, 'a'.

In Figures 10 and 11 we compare the structural para-
meter subjected to steady shear with that subjected to
oscillatory shear. At an equivalent strain input Figure 10
shows that at the larger relaxation times more destruction
of entanglements is achieved with steady shear than oscil-
latory shear. This is when we judge the destruction in
oscillatory shear in terms of 1he averaged structural con-
centration occuring during a period of revolution. However
when Figure 9 is considered it is found that the x; function

of oscillatory shear at large relaxation times behaves as

though it was subjected to steady shear. We next superimpose
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the averaged Xx; functions of oscillatory shear on their
steady counterpart subjected to the same degree of strain
rates as shown in Figure 11. We notice a correspondence
between steady xj and an averaged oscillatory xj subjected
to twice the strain rate of the latter. If we recognize
the statement earlier made on averaged x; at large relaxa-
tion time this correspondence is viewed with some skepticism,
on the other hand such correspondence to some degree may
infer that the truncated relaxation spectra of the two
modes of flow are interchangable. This further add credence
to the study of large amplitude shear oscillations and it's
ability to generate 'a' that can describe non-linear
behavior.
iii. Shear stress growth prediction

The generalized curves of Acierno et al. (la) for
dimensionless tangential and normal stress growth in shear
were utilized to obtain the shear stress and normal stress
growth functions using an 'a' obtained in the preceding
analysis. Since the relaxation times of polyisobutylene
were used much interpolation was done to obtain the
suitable parametric avX,; curve. However because of the
regularity and smoothness of these parametric curves we
feel that the associated error due to interpolation was
minimal. Then 4,(t) and ﬁ(t) were obtained by simply
adding up all the contributions of each relaxation time at

each time increment. The model results are presented
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along with experimental data of Huppler et al. (12).

The model does a good job in predicting the magnitude
of the shear stress magnitude and the time at which it
occurs at a shear rate of 1.67. However at Y = 16.7 the
performance of the model is at best qualitative. For the
shear stress growth function it predicts a much faster
overshoot time and a larger magnitude of overshoot. It
is also unable to predict the shear stress undershoot, a
problem common to many acclaimed rheological models. For
the normal stress growth there is a qualitative agreement
between model results and data as the model tends to predict
a larger overshoot than the data shows. However no con-
clusive judgement can be arrived at for the normal stress
growth as the reliability of the data has been questioned.
The reason as to why the model is unable to do a good job
at high shear rates is subject to speculation, certainly we
cannot blame it on the 'a' factors as the authors as well
as Graessley have reported this failure even when using 'a'

obtained from steady shear.



DISCUSSION

Acierno et al. evaluated the adjustable parameter 'a’,
from steady shear and normal stress data. With the single
value of a, they obtained a good fit of data over a shear

4 to 1x103 sec”! on 1low density poly-

rate range of 1x10°
ethylene melts. On the other hand Graessley et al.
working on 8% and 12% polystyrene solutions could predict
steady shear stress data only by choosing several values
of 'a'. For the 8% solution the values required ranged

from 0.2 at ¥ = 0.1 sec”) to 0.5 at ¢ = 100 sec”!.

For the
12% solution from 0.4 to 0.9 in same range of shear rates.
They were then able to predict stress growth data by
choosing an a which gave the best fit with steady shear
data at the particular shear rate. From Figure 2 we found
that 'a' obtained from finite amplitude oscillatory

shear data successfully fit data with a shear rate range of
0.001 sec”! 1,

to 0.3 sec Also with this 'a' quantitative

prediction of stress growth data at y = 1.67 sec'] was
obtained. This perhaps indicate the usefulness of non-
linear oscillatory data as far as the determination of 'a'
is concerned.

Another severe test of the Acierno model is met when

predicting stress growth data at large shear rates. In

50
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comparing the model predictions with the Carreau-B model
(22) predictions on the same fluid, there is a striking
resemblance between both model results at a shear rate of
16.7 for shear stress growth. Both quantitatively disagree
with data predicting too early a time for overshoot, much
larger magnitude and a complete absence of undershoot. The
Carreau-B model, a modification of the Bird-Carreau model
is similarly based on network theory however differs
strategically from Acierno's as it relates the destruction
of network junctions to the second invariant of the rate

of strain. In the Acierno model it is noticed that at

very small times after the onset of shear, the shear

stress contributions of much of the spectral regions (except
larger relaxation zones) arise close to the overshoot of
the stress curve associated to this unit. This conceptu-
ally appears as if destruction of the network junctions on
each spectral zone is instantaneous. By choosing a dif-
ferent 'a' say, these spectral curves are only shifted
vertically and even though the total result may correctly
predict the maximum observable overshoot it will still
incorrectly determine overshoot time.

We thus speculéte that the invariant used in the
generalization of vy in the destruction term of the struc-
tural variable equation is much too severe and suggest a
combination of the invariant of the extra stress and of the

strain rate be used. This similar conclusion has been
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arrived at by Carreau (22). In this work the predictive
capability of Acierno model with the parameter obtained
from oscillatory shear ot the normal stress functions is
only seen in the normal stress growth prediction. The fact
that same qualitative agreement is met adds credence to

the 'a' evaluation. Claims made in this study for 'a' is

restricted to 2% polyisobutylene solution in Primol 355.



CONCLUSION

It has been shown in the preceding pages that the
adjustment parameter 'a' of the Acierno rheological equa-
tion of state can be obtained reliably and uniquely from
large amplitude shearing experiments. The computed results
further show in agreement with McDonald's observation that
G'(w,y®) should be the choice correlation function as it
expresses more nonlinear characteristics of the viscoelastic
fluid in oscillatory shearing. However the 'a' obtained
from G'(w,yo) correlation unsuccessfully predicted n'(w,yo)
between v = 0.1 to 1.28. For the n'(wsy?) prediction an
‘a' of 0.1 and 0.2 were required to fit data at w = 0.188
and 1.88 sec”! respectively.

A method of numerical solution of the Acierno model
in large amplitude oscillatory shearing where harmonics
becomes significant has been outlined. Due to the lack of
data in this region, no numerical predictions have been
given, however we noted a simitar behavior between junc-
tion concentrations of the large relaxation zones to similar
concentrations subjected to steady shear. With a single
'a' value the model is quantitatively unable to predict
shear growth data at high shear rates. For polyisobutylene

solution at high shear rates the model predicts an earlier
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and larger overshoot and no undershoot in the stress growth
function. In view of these failings much more tests at
larger shear rates and amplitudes and different flow
regimes with different polymeric fluids will be needed to

establish the singularity of 'a'.



NOMENCLATURE



Def. by

NOMENCLATURE

eqn. 38a

Adjustment (Acierno model) parameter

Fourier
Fourier

def. by

Cauchy Tensor

Finger Tensor

Fourier
Fourier
Primary
Fourier

Elastic

Total axial force,

Storage

Loss modulus, dynes/cm

27 & 29
27 & 29

coefficients def. by eqn.

coefficients def. by eqn.

eqn. 38b

Im, 1IN

§Xx §x [
8x TEX " grn(x*)
§6X  6X

sx} 8xd
Gx]mdx]n

g""(x")

coeffs. def.

by eqns. 28 & 30

def.

coeff. 28 & 30

by eqns.

normal stress displacement, dynes/cm2

coeff. def. by eqns. 28 & 30

energy, (erg/cm3)

dynes

modulus, dynes/cm2

2

Components of the metric tensor

Spectrum density,

V-1

Dimensionless normal stress, eqn.

Primary

growth, dynes/cm

dynes/cm2

23b

normal stress component following shear

2
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R Radius of cone and plate, cm

Re Real part of a complex number

t Current time

t' Past time

T Torgue transmitted through the fluid, dynes/cm
v Velocity tensor, cm/sec

X Structural parameter (Acierno model)

xi,xj Coordinates of a fluid particle at time t
x]m’x1n Coordinates of a fluid particle at time t'

Greek symbols

oy Def. by eqn. 23a

@ Bird-Carreau model parameter

B Dimensionless frequency

€ Bird-Carreau model parameter

Yoo pg-component of finite strain tensor

v3, s¢-component of the strain rate tensor, sec” !

Y0 Strain amplitude

7° Strain rate amplitude, sec”!

Y Shear rate, sec” !

61 Phase shift between strain rate and shear
stress, rad. “

Aoi Equilibrium relaxation time, sec

Ai Bird Carreau and Acierno model relaxation
times, sec

A Bird-Carreau model parameters, sec

mn
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G(t)
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Bird-Carreau model memory function

Viscosity, poise

Dynamic viscosity, real part of complex viscosity

Imaginary part of complex viscosity, poise

Zero shear rate limiting value of viscosity,
poise

Angle of cone (<4°%), degrees

Complex primary normal-stress-difference coeffi-

cient dynes secz/cm2

Real part of e*, dynes secz/cm2

Imaginary part of o*, dynes secz/cm2

Primary-normal-stress-difference-displacement

coefficient, dynes secz/cm2

Dimensionless time, def. by eqn. 23a

2

Shear stress tensor, dynes/cm

2

Component of shear stress tensor, dynes/cm

Frequency of strain oscillation, rad/sec

(1: 1)

Second flow invariant =

Steady elastic modulus, dynes/cm2

Dynamic nonlinear elastic modulus, dynes/cm2

Dynamic equilibrium elastic modulus, dynes/cm2

Steady first normal stress, dynes/cm2

Shear stress component following shear growth,
dynes/cm2
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PROGRAM LSQSF
List of Principal Variables

ALAM Relaxation time, at inserted points

AWC log we

C Spline coefficient (output). C is an NXK-1
by 3 matrix

DS, DDS First and 2nd derivative respectively of the

spline function at the data points
DZ, DDZ First and 2nd derivative respectively of the

spline function at the inserted points.

F The dynamic l1oss modulus (or function values)
G® = wn'

G The dynamic viscosity, n'(Input)

HO The unrefined relaxation density at data points

HA The unrefined relaxation density at inserted
points

IC - Row dimension of matrix C in the calling program
(input)

I,J,K i,j,k, counters

NX Number of data points

NXK Number of knot locations

RL = Y5/w, equilibrium time constants at data points

S Spline function at data points

XK Knot location

XL The frequency of oscillation (data for inserted

points), abscissa



WC

WK

60

= log X3

Vector of length NXK-1 (output)

Frequency of oscillation (data for inserted
points), abscissa

Work area

Spline function at inserted points
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PROGRAM CUFIT AND LINV
List of Principal Variables

ALAM Relaxation times obtained from program LSQSF
(input)

DIFF Absolute difference between H ( ) and H ( )

GC The calculated storage modulus obtained from H

H Unrefined relaxation density obtained from

program LSQSF (input)

H Final relaxation density, (output)

RLAM Recorded relaxation times used by CUFIT
S Observed storage modulus

WC The frequency calculated from RLAM

PROGRAM LINV

ALO Final and refined relaxation times (input)

ETAP The calculated dynamic viscosity at data points
(output)

ETAPO The observed dynamic viscosity at data points
(input)

GDP The calculated dynamic storage modulus at data

points (output)

GDPO The observed dynamic storage modulus at data
points (input)

GO Final and refined elastic modulus (input)

W The frequency of oscillation at data points

(input)
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PROGRAM LAMVIS
List of Principal Variables

A The adjustment parameter

ALO The equilibrium relaxation times

ANO The linear dimensionless normal stress function
ANNO Nonlinear dimensionless normal stress function
B Dimensionless frequency

DIFF Percent difference

EPL Linear dynamic viscosity

EPN Nonlinear dynamic viscosity

GO EqQuilibrium elastic modulus

GPL Linear dynamic storage modulus

GPN Nonlinear dynamic storage modulus

I,J,K,L i,j,k,1, counters

REPN Normalized nonlinear dynamic viscosity

RGN Normalized nonlinear storage modulus

RGNO Normalized observed nonlinear storage modulus

W The frequency of oscillation
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PROGRAM SONODE

List of Principal Variables

ALO

B

DFUN
DVOGER

DY

EPS
ERROR

HMAX

HMIN

I

J
JSTART
MAXDER
M

MTH

WK

Ratio of strafn amplitude supplied by input
The relaxation time

The dimensionless frequency

External supplied subroutine required by DVOGER
IMSL subroutine, first order differential
equation solver

The differential function for input system of
differential equation required by DFUN
Specification of the maximum error criterion
Contains the estimated one step error in each
component on output

On input, suggests the step size to be attempted
on the next step

On input, the largest step size allowable in
this integration

On input, the smallest step size allowable in
this integration

Counter for A

Number of time steps in DVOGER

Initializes the integration

Maximum order to be used in the approximation
Number of ordinary differential equations
Method indicator

Work area



YMAX
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On input contains the initial time, on output

contains the updated value of time using H as

the increment

Y is two dimensional array (8 by M) containing
the dependent variables

Set in input is the suggested maximum absolute
value of each component of the dependent

variable calculated so far
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