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ABSTRACT

THE PREDICTION AND CORRELATION OF MODULI 0F

POLYMER SOLUTIONS SUBJECTED TO LARGE AMPLITUDE

SHEAR OSCILLATIONS

By

Ekong A. Ekong

A non-linear constitutive equation of Acierno et al.

(la) is tested on data of MacDonald et al. (lb), of stress

generated in a 2% polyisobutylene solution in Primol 355,

and subjected to a uniaxial oscillatory shear with finite

amplitude. In fitting the data of MacDonald et al., the

correct correlation of model results is strongly dependent

on the adjustable parameter 'a'. The model quantitatively

predicts a larger decrease (30%) of the dynamic storage

modulus than of the dynamic viscosity (5%) up to a strain

amplitude of 1.28 units, as observed by MacDonald. The

model predicts only a slight dependence of both moduli on

the frequency of oscillation in contrast to the Bird-Carreau

model. At higher strain amplitudes, the undestroyed frac-

tion of entanglement types corresponding to large relaxa-

tion times tend to the same value as in steady shear with

equivalent shear rate. A qualitative agreement results

in model prediction and shear stress growth data at large

shear rates.

la) D. Acierno et al., J. NonNewtonian Fluid Mech.,



Ekong A. Ekong

l» l25-l46 (l976).

lb) I.F. MacDonald et al., Chem. Eng. Sci., 24,

1615-1625 (1969).
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INTRODUCTION

A number of useful properties and behavior of visco-

elastic materials have been borne out of the classic small

amplitude oscillatory shear experiments conducted by

Ferry (1). Recently the Weissenberg Rheogonometer fitted

with small angle cone and plate geometry as shown below

has further enhanced the study of this flow regime on

various classes of polymeric liquids.

First the polymeric solution is placed between the

cone and plate. A sinusoidal motion of amplitude yo

is imposed on the cone while the plate is held steady and

the gap between the platen and cone maintained constant.

The sinuso dal strain imput can be expressed as

70¢ = yo sin wt (1)

The torque on the plate and the axial

for constant gap between plate and cone are related to

the tangential shear stress and first normal stress dif-

ference respectively

3T
16 =

¢ ZWR3 (2)
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Figure 1a. Small angle cone-and~plate viscometer
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N] = r¢¢ ' TOB = $32 (3)

The determination of T¢¢ and r¢¢-TBB after the

initial transients have died out through the equations

above are obtained with the assumption that a linear velo-

city profile prevails within the gap. This assumption has

been shown to be valid for small amplitude and small fre-

quency motions (1b,2). The output stresses, T9¢, 16¢ -

T99 are observed to oscillate sinusoidally with frequency

w and 2m of the input strain rate respectively (3). Also

a phase shift is observed in the response functions. The

input strain rate function and the stress responses can be

represented as

ie¢ = Re i 1°e‘“t1 (4)

o ‘ t

16¢ = Re I re¢e1m I (5)

o .

r¢¢ - 100 = Re i(d¢¢-d88)+(r¢¢-T88)e21“t} (6)

Using the theory of linear viscoelasticity (l) we define

the material functions, the complex viscosity, n*, the

first normal stress difference displacement coefficient,

ed, and the complex first normal stress-difference oscil—

lation coefficient 6*, as



0 0 0

16¢ = - n*ie¢ = -(n'-ln")19¢

- 0
d¢¢ deg = _ ed|76¢|2

O 0 _ ”O 2 _ I ° N .0 2

T¢¢ ' Tee ' 6*(le¢) _ ' (9 ’ 19 )\9¢

These material functions often represent oscillatory flow

properties of viscoelastic fluids and in the linear region

are experimentally observed to be functions of the frequency

of oscillation only.

It has been experimentally observed that if the

amplitude Y0 is increased, n*, 8d, 8* become functions of

the frequency as well as amplitude and linear viscoelastic

theory no longer applies (lb). We therefore proceed to

redefine large amplitude material functions as follows

0

n*(w910) = $8 = n'(w,i0) (7)

ed(8.y°) = - (d¢, - 8691/1101? (8)

e*(...°> = - (13¢ -'Tge)/(+°)2 = e'(w.y°) -

i8"(wsYo) (9)

Several constitutive equations have been proposed

by rheologists (4) to appropriately relate the stress

tensor through material functions to large deformation

rates. These models centrally recognize the presence of

nonlinear effects in the equation of motion and introduce

a number of parameters to correctly predict the nonlinear



responses when large strain rates are imposed on polymeric

fluids. Recently Acierno et al. (1a) proposed nonlinear

constitutive equations based on the network molecular

entanglement theory presented in detail by Lodge (5).

This model was presented by the authors for polymeric

melts and concentrated solutions with only a single adjus-

table parameter. It has also been used on polymeric

solutions by Graessley et al. (6) for start-up and relaxa-

tion experiments.

The objective of this work is to test the predictive

capability of the Acierno model in obtaining the material

functions n'(w,70), G"(w,y°), 8d(m,y°) and 9*(w,y°) that

are to be determined experimentally by fellow workers (7)

on the NBS fluid polyisobutylene in cetane. These experi-

mental measurements are forthcoming and we turn to the

literature data of McDonalds et al. (1b), who use 2%

polyisobutylene in Primol 355. They collected G'(u,y°)/

G'(w) and n'(w,y%/h'(m) with 0.1Sy°$l.2 at w = 0.188,

1.88 and 18.8 sec". Also all data were taken at 25.0 i

0.1%.

Our interest in this model stem from a) its successes

in correctly predict various transient data reported by

its authors (8) and Graessley et al. (6), b) the fewness

of parameters and constants as compared with other models

and c) the universality of the adjustable parameter in

terms of flow regime and type of polymeric fluid as pro-

claimed by its authors.



Since the adjustable parameter 'a' is to be obtained

through the guidance of dynamic shear data as opposed to

steady shear as earlier suggested (8), we further evaluate

'a' by predicting the fluids start-up data of Huppler et al.

(12). The Acierno model relates uniquely the relaxation

times of the fluid to the existing entanglement density of

network functions. By comparing the concentrations ob-

tained through steady shear and averaged concentrations of

the oscillatory data using the same 'a' value, we h0pe to

ascertain some relationship between the shear rate 7 and

”Y0 that has pervaded much of the literature.

Finally a brief comparison between the Bird-Carreau

model and the Acierno model in their ability to predict

n'(w,y°) and G'(w,yo) as a function of amplitude on the

fluid under test will be presented.

Background

Many experimental rheologists have characterized the

Non—Newtonian behavior of a number of polymeric fluids

through steady shear experiments over two to three decades

of shear rates. However the applicability of a constitu-

tive equation to describe stress responses of Non—Newtonian

fluids will depend on its ability to correlate other flow

regimes as well. These flow regimes include start up and

cessation of steady shear flow studied by Chen et al. (9)

and Graessley (6), elongational flow experiments of Meissner

(10), superposed steady and parallel/transverase oscillatory



shearing of Schowalter (11) and oscillatory shearing of

McDonalds et all (lb), and others (3,12). This list is by

no means complete, each experimental set-up enabling the

determination of the material function specific to the

flow situation. In studying oscillatory shear flows it

is necessary to review experimental and theoretical devel-

opments of small and large amplitude shearing as well as

start-up experiments.

a. Small Amplitude Experiments

In the introductory paragraph, it was shown that

small amplitude experiments enable the use of the theory

of linear viscoelasticity and thus the characterization of

fluids in terms of the material functions n*, 8d and 8*.

Furthermore the theory defines the linear viscoelastic

functions listed above to be governed by the relaxation

spectrum H(A) unique for each fluid (1) such that

 

 

, _ H(A)Ad1nx

n — (1+w2A2) (10)

‘R(A)uzx2dlnx

G' = _‘ l+u2A2 (1])

Also for small amplitude shear flow 8*, and 8d can be

obtained directly from the following relations (4).

1w * = ”*(w) - n* (28) (12)

wed = n"(w) (l3)



which has been derived by a variety of viscoelastic models

including Oldroyd three constant model (13).

Analogies have been presented both theoretically and

experimentally between steady shear data and small amplitude

oscillatory shear data and the most accepted is (14).

”o = ”(Y)ly+o = n (w)|w+o = H(A)AdlnA (14)

8 ' .
_l%ll = §_éflll = H(A)x2dlnx (15)
27 7+0 w w+0

In determining non—linear material functions, the small

amplitude experiments will be useful if the non-linear

viscoelastic model employed demands the dynamic linear

properties of the fluid. In the Acierno model a relaxa-

tion spectrum is required and this can be obtained from

the n'(w) or n"(w) vs w data in the linear region through

an inversion procedure (1).

b. Large Amplitude Experiments

Harris and Bogie (15) carried out finite amplitude

oscillatory experiments on the Neissenberg Rheogonometer

with a clear check that harmonics in the input signal were

minimal. They observed for their different solutions,

third and fifth harmonics in the stress amplitude as a

function of frequency. Their polymer solution showed only

a third harmonic in stress amplitude slightly sensitive

to frequency while the fundamental harmonic was predomi-

nant.



Philippoff (16) using a rotational viscometer (coni-

cylindrical arrangement) studied the effects of large

amplitude up to 700% shear amplitude units on the material

functions n' and G' of polymeric solutions. He noted that

the largest third harmonic recorded in the recording system

within the range of strain amplitude was not more than 5%

of the amplitude of first harmonic in stress. He further

observed decrease of G' and n' at higher strain amplitudes,

G' decreasing considerably.

This experimental observations are consistent with

linear viscoelasticity which recognizes a limiting ampli-

tude beyond which the theory does not hold. So these data

are in the realm of the non-linear models and along with

other transient experiment can test the validity of the

several proposed rheological equations of state. McDonalds

et a1. (16) working on three polymeric solutions of different

composition and a melt studied the effect of large amplitude

oscillatory shear on n' and G'. They obtained results

similar to Phillipoff's and furthermore noted the effects

were slightly dependent on the fluid and frequency of oscil-

lation. They chose frequencies well within the power-law

region of their four fluids. McDonalds data lends itself

to comparative analysis with predictions of nonlinear

models since they maintained a linear velocity profile in

the input deformation. Tee and Dealy (17) also found from

large amplitude oscillatory shear in a small gap concentric
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cylinder rheometer that the extent of nonlinearity in the

stress response is primarily a function of strain amplitude

and independent of frequency. Strain amplitudes up to 10

and frequencies between 0.5 to 30 sec.1 were employed. In

most of these studies inertial effects are neglected or

compensated for. Dodge and Krieger (18) have argued that

due to secondary flow, conventional analysis on oscillatory

cone and plate geometry are not valid if fluid density is

not considered. They thus elected to work with parallel

plates or coaxial cylinders in their experiments (18).

However Walters (22) noted that for relatively high visco-

sity liquids (low frequencies) little error is incurred

due to inertial effects in using any of the available

geometries.

c. Stress Growth Experiments

This experiments more popularly known as start-up

experiments involve a sudden initiation of simple shearing

at a certain shear rate on a fluid at rest. It has been

experimentally observed (2,6,12) that the response shear

stress, 6K7,t) and the normal stress difference N](i,t)

are functions of the input steady shear rate as well as

time. At low steady shear rate, Q and N1 increase mono-

tonically to their steady state value. In this limit 3

and N] are said to be governed by linear viscoelastic

properties and are obtainable through the relaxation spec-

trum for the fluid (6). As the shear rate is increased
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the functions Gland N] overshoot their steady state value;

then in some cases an undershoot follows. The magnitude

and time of overshoot has also been shown experimentally

to be a function of shear rate. Huppler et a1 (12) working

on three nonlinear models, ONFS, NJFLMB and the Spriggs 4-

constant models showed these models to give varying results

on stress growth prediction while agreeing closely in pre-

dicting steady shear and stress relaxation data. Graessley

et al. (6) reviewed various models, the strain rate, rela-

tive strain, averaged rate and structural dependent models

on their ability to predict start-up as well as cessation

after steady shear data collected with a modified (stif-

fened) Neissenberg Rheogonometer R-17. They reported funda-

mental inconsistencies between both the strain rate and

relative strain models with their data. For the structural

model (Acierno's) they obtained a reasonable fit with their

data only when they adjusted the structural parameter 'a'

at each shear rate where 'a' also fits fairly the steady

shear and normal stress data. All these studies point to

the importance of stress growth experiments in evaluating

rheological models. We intend to use 'a' obtained from

large-amplitude shear data to predict start-up data espe-

cially at large shear rates. Such tests may reveal whether

'a' obtained through oscillatory shearing can portray a

wide range of viscoelastic behavior.
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The Constitutive Equation

The non-linear constitutive equation proposed by

Acierno et a1 (la) will be considered in this study.

Acierno et al. report that their model adquately correlates

data on tangential and normal stress growth in shear,

stress growth in elongation and normal stresses in shear

creep. The Bird-Carreau model (19) an integral nonlinear

model studied by McDonald et al. (la) will be presented on

a comparative basis in the study of large amplitude dynamic

complex functions. The Bird-Carreau model has received

wide attention and interest as it correctly predicts complex

viscocity, non-Newtonian viscosity in steady shear primary

normal stress difference and stress relaxation data (19,20).

a. The Acierno Model

The model is given by

 

T = Ti
(16)

1

(17)
T1 9_ ' _

13‘1— + A181; ((1%) ‘ 211'9-

. 18

93:1 = (I-Xi) _. 3X]. /_E_1_ ( )

dt )1]- Ai 81-

. - _ 1.4
61 - Goixi xi - Aoixi (19)
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and 5T1 _ drl eri - r-VvT
 

 

The Goi and Aoi in equation (19) are the linear

elastic moduli and relaxation times of the fluid respec-

tively. These are obtained by the construction of the

fluid relaxation spectrum H(A). The H(A)'s are calculated

from experimental curves of one of the three functions

G(t), G'(w) or G"(w) by an inversion procedure to be shown

in section C. The H(A) vs A plot is plotted on a log-log

scale, then the log A axis is subdivided into equal inter-

vals A log A. The mid-point of each sub-interval represent

a set of discrete relaxation times Aoi and the corresponding

values of the ordinates H01 gives

GOT = HoiAIUA
(20)

Equation (19) relates elastic module Bi and the

relaxation times A| to the existing structure through the

structural variable x1. Acierno et al. claim the set of xi

represent "the degree of connectivity of the macromolecu-

lar network with respect to that of equilibrium" (9). The

rate of change of the variable xi is given in equation (18)

and is equal to the rate reformation of type 1 functions

due to thermal motion minus the rate of destruction due to

the existing stress. The destructive term is conceptively

formulated by considering steady shear flow. In the absence
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of thermal motion, "i, the number of junctions of the ith

type which on the average exist on the given molecule at

any instant of time would be destroyed in a time of order

l/y. Thus the rate of loss due to the imposed flow would

be aniy, where 'a' represents the ratio of a proper average

contact time (attributed to thermal motions, entanglement

property and other intrinsic properties) and its rough

estimate 1/7. Then the rate of junction loss relative to

equilibrium junction concentration is given by axii

In order to relate this term to the stress level Y is

arbitrarily expressed in terms of the second invariant of

the stress tensor during steady shear. This concept is

further generalized to all flow histories. Equation (16)

assumes that the total stress development of the fluid on

a strain input is obtained by the superposition of all

stresses induced by network junctions corresponding to

relaxation times that contribute significantly at the time

of consideration.

The model predicts zero second normal stress dif-

ference in shearing flows.

If unsteady oscillatory shear flows is considered,

equation (11) predicts that except for 112 and 1]] all

other components of the extra stress remain zero.

Suppose

lwt

I
I

x (
D

.
<
. O

(
D

D i 7
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Then I 12 d 1 12

l 1 : lwt

61 + ‘1 a? ( a.) ‘iRelYO e I (21)

11 d 111 12 t
T __ = .08 1w
—GT Aldt T) 2A(_.g:_QRey{11

(22)

9.51 =(1'Xi) _ 6X1 /"in (23)

dt A1 A1 261.

By defining

6i = t/Aoi, ai = aAoiyO (yo assumed real) (23a)

12

= aTi 2 '1] :
Ti 61 , N1 = a T; , 81 ”A01 (23b)

eqns. (15) - (17) along with eqn. (13) become

1.1+ xi1°4 51.11 = aixi1'4COSB-ie1-
(24)

dOi

1.4 dN' _ 1.4
N1 + Xi 33%»- “iTixi COSBiOi (25)

1.4 dXi _
x. m -1 - x, - .1 /N1- (26)

The stresses 012 and 011 are continuous functions of

time and can be represented by the sum of odd and even

harmonics respectively by a Fourier expansion.

on

1.6. T- = [ .
1 5;; A 2n+1,icos(2n+l)wt

.sin(2n+l)ut]

1

(27)

+ B|2n+1,
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Till = cg”, , }'_;[D-2n+2 .cos(2n+2)wt + (28)

n= ’1

E'2n+_-2’isin(2n+2)mt]

 

Also

;$;E_= 2:%k2n+1’iCos(2n+l)wt + (29)

B2n+1,1sin(2n+1)wt]

:8] = Coi+ fizmzqcc’smmz)“ + (30)

£2n+2 ,isin(2h+2)wt

From eqns. (7), (8), and (9) -

k

n'(w,Y°) = 12:; A1,. (31)

k

u 0 _ I -

n (“’87 ) " G (wsYo)/w ' 12311 (32)

k

6d(way'o) = gcois 6'(N9YO) = $011, (33)

i=1

and 8"(u,y°) = 12E“. (34)

Solving the coupled equations (24), (25) and (26), Ti(t)

Ni(t) for several values of t can be found. If 'a' has

been predetermined, the sets

(ljéé—fl ,t)

and

 

11

(T Lil-n)
-YO
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can be used to obtain the constants A2n+1 , 32n+l , Co,

02n+2 and E2n+2. At this point the predicted values of

the amplitude of the various harmonics as well as the

large amplitude material functions can be established.

b. The Bird-Carreau Model

The model is given by (28)

I? -LuLt-t', u(t‘)]{(1+§)£']+;£ ldt' (35)

with the memory function u given by

u[t-t',ll(t')] = j:% "n eXPL-(t-t'llAZn] (36)

"‘ A2n2[1+1/2 u (t')A]n2]

where

= Tl A _ A' .

rIn 1” 9 Aj" ' .__\1__.__.,. 3:1,2 (37)

RIP (n+11a3

The terms no, A], A2, a] and 02 are the model parameters

determined from small amplitude oscillatory shear and

steady shear experiments. The empirical constant 8 allows

for nonzero secondary normal stress difference. Further

details of the model will not be presented here as they

have been published elsewhere (lb,4,19,20).

In oscillatory shear motion McDonald et al. have

derived n*(w,y°) for this model as

* w o = A l- iwAZn Bn 2m

n ( d1 ifgfinnnn1+w2——-)-3—n [1+ "12:!an m2) :1‘
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2 2 -
Z nnAn(1-2m Azn-BlwAZn) I 2111-1 Bn 2111-1]

n= )(—?J

 

( m-l 37a
(1+m2Agn)(l+4w2Agn) m= ( 1

1

A" = (1+1/211n11012) (37b)

Bn = 1/2A§n|+°|2An (37c)

This result assumes that no higher harmonics are

observed in the stress response; n'(w,y°) and G'(w,y°) can

be obtained from eqn. (378).

c. Determination of the Relaxation Spectrum

The elastic moduli Goi and relaxation times Aoi's

encountered in the Acierno model can be determined through

the construction of the relaxation spectrum H(A) which is

obtained from the G"(w) data. For 2% polyisobutylene in

Primol 355 we used the n'(G"/w) data of Huppler et a1 (28).

An initial approximation of H(A) is made using Tschoegl's

second approximation formula (1)

2 n ' w

HO(A) = ; (e (m) - 4/3 d—Sjfil + (38)

To obtain

denim!

d1nw

and

dZGu m

d(1nw)
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values, we fit the G"(w) vs ln w data with a cubic spline,

using the subroutine ICSVKU of the IMSL collection. ICSVKU

starts with a given set of knots and shifts them among

data points one by one in order to determine the knot

locations that minimize the least square error. It then

calculates the derivatives at the data points. More

points were generated in the main program LSQSF within

data limits for better precision in the next stage of H(A)

determination.

Next, an iteration scheme was set up by comparing

calculated values of G"(w) and its observed values. From

linear viscoelasticity,

G" m = °° __‘£A__ 11( ) [mHO(A)1+w2A2 dlnA ( )

Then

H](A) = H@(A)[:G"(w) obs/ G"(w) calc]h=l/A (39)

He failed to achieve convergence with the relationship

w= /5/A as presented in equation (38). This relationship

according to it's author (21) represents a shift factor

in the time scale at some point of the spectrum and was

not fully understood. However on using the more conven-

tional m = l/A relationship, convergence was obtained after

nine iterations. Then the ability of H1(A) to reproduce



20

 

 
 

1000

£:100 *

0 1 J J

0.1 1.0 10 100

A(sec)

Figure 1. The relaxation spectrum calculated from G"(m)

(data of Huppler et a1. (28)) for 2%

polyisobutylene in Primol 355.
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lineaar data was further tested for the zero shear viscosity

"0 = 11:1(A)AdlnA (40)

The spectrum was then modified by successively remo-

Vilig the long relaxation times until an “o = 10,350 poise

was obtained being a 4% error of the reported value (19).

leing the procedure outlined in section A, fifteen Go

land correSponding A0 values were obtained from the final

spectrum shown in Figure l. The longest relaxation time

'was 160 sec. The solid lines drawn through n'(w) and

G'(w) data in figure 2 were calculated from this spectrum

using the fifteen discrete Go's and 10's mentioned earlier,

using equations (10) and (11).

Unsteady Shear Flow with Large Deformation

In this section, we attempt to obtain the adjustment

parameter 'a' of the Acierno model using a non-linear,

transient flow experiment and evaluate its utility in

terms of its ability to predict other characteristic beha-

vior especially at large deformation rates.

a. Nonlinear Effects without Harmonics in Stress

Signal

In large-amplitude oscillatory shearing experiments,

using the cone and plate set-up we imply here that the

imposed amplitude range is restricted such that only a



23

sinusoidal wave is recorded in the output torque measuring

System. It can be assumed that in the Acierno model only

the lst harmonic of the dimensionless shear stress, Ti and

the* 2nd harmonic of the dimensionless Normal stress, Ni,

ancl the average term of the structural measure Xi are signi-

fl cant.

Referring to eqns. (24) - (26)

Suppose

T,- = aiReITh-Oemt} (41)

"‘1 = a12Re {N3 _ + "82.6321th (42)

01 1

xi = xio(f1) (43)

xjonmy be obtained from Eqn. (26)

 

1-X- - .X. /N :0

1o “1 1o 201

where ai = aoniyo

1

1.e. x10: l+ain201 (43a)

1.4 de = . ..
Now (1+a1/N201) Ti + do; a,cosB1e1 (43b)

' . dN' . .
(1 + ai/N20111 4 Ni+ __%.= aiTiCOSBlBT (43C)
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.. . - 2
To - aiTITCOS(BTei ‘ 611), N1 ‘ 01(N20i +

N221C°S(28i°i'5 20 (43d)

1.4

01(1 + ai/Nzoi) Tlicos(8i8i-fii)

-aiBiT]1$ln(BiGi-5]i) = “iCOSBiei

 

0T

T11 [(1+a.iv/N20i)1'4COSO‘Ii ‘1' BiSTIl 11-]c0581-0i

= £05816;

1

T11 = (1+ai/N201)1-4cosali + Bisin61i (44)

But

1.4 - _
(1+ div/N201) S'Il'lO‘li - BTCOSGIT - 0

, Bi
1.e. tanéli = if} (45)

(1+a1/N201)

 

From eqn. (43c)

e2 ‘ 104 2Q1 (1+aiy»oi) [N20i+N22iCOS(ZB-iei’52i)]'zaiBiszi

. ._ . = 2 - . .
X Sln(28161 621) aiTTTCOS(8161 51i)C°SB‘91

_ 2
— aiTli C05<23iei'511) + c056 li
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From the time independent term

(1 + aT/NZOT

1.4 _

1 N201 - 1/2T1icosai

O 5
 

N201 = 1+ai/N20i)1.4+81tan6]i

0.5
 

= (1+a1/ )2.8

N201‘ i

From the time dependent term

1/2111C0561i

 "221 =
(1+ai/N20i)1'4cosazi+28151"621

where tan 21: Bi[2(1+ai/N201)1'4+1]

 

Nith finite 7°

1

From model

T12 = :E:GiTi

i a

 

Therefore

n'(w,1r°)

(1+ai/N201)1°4-23i2

T 2 = (n'(w,yo)COSmt + n"(w,yo)slnwt)wyo

: 2?? GOiXiT1i(C05wt-O]i)

1

(46)

(47)

(48)

(49)
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G'(w.Y°) = n"(w,Y°)w =

 

 

 

‘ Goiwzxoi2 (50)

1 3.8 2

Also

1,11 - 122 = [Bd(w,yo) + B'(w,y0)C052wt +B"(w,yo)sln2wt)]w2'y02

From Model

T11- T22 = 2261-111.

1 —;2_

= 21ZGo1-xia1-2IN201+N221(c0528t-52i)

1.e.

d Goi‘oi (51)

6 (111,70) = 2; 3 8 2i 1+0i/Nzoi) . +(1+ai/N20ix,A012

and

8'( . °) =

“’ I (52)

_ Goi‘oixi . , .

- . 2,3 ,2 ' 1.4 ’
1 El+a1lN20i) +81 ]lj(1+ai/Nzoi) +281tan62;]

en(m’Y0) =
(53)

, GOiAoix itanazi
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From Eqns. (50) & (51)

6d(wavo) = G'(w,YO)/w2 (54)

1. Determination of the adjustment parameter

The determination of n'(w,y°), n"(w,yo), 9d(m,yo)

6*(w,yo) as given in the preceding equations can be obtained

only if 'a' is known. Since 'a' is a non-linear characteris-

tic of the model we elected to correlate these material

functions with experimental data and thus obtain an 'a' that

gives the best fit. If an 'a' can simultaneously fit four

non-linear material functions data, then its suitability for

application to other flow histories over that obtained from

steady shear data is justified. Unfortunately the Normal

stress data for polyisobutylene are unavailable, and we

use n'(u,y°) and G'(w,y°) data of McDonalds et al. (1b) for

correlation.

The material functions n'(w,y°) and G'(m,y°) as

functions of yo are calculated using equations (49) and

(50). The dimensionless Normal stress, N201, present in

these equations is determined using equation (46), by a

successive approximation procedure using its linear value

as an initial estimate at all the relaxation times. The

program LAMVIS presented in the Appendix reads in an arbi-

trary 'a' value and outputs the normalized n'(w,y°) and

G'(u,y°) values as shown in Figures 3a - 5.
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In figures 3a and 3b the smooth curves are model pre-

dictions obtained for three values of 'a'. In contrast to

Acierno results on steady shear data (8) the model slopes

exhibits a strong sensitivity on the choice of 'a'. In the

light of the scatter of experimental data it seems that an

0.1 s a s 0.15 reproduce data well. Figure 5 shows a slight

dependence of n'(w,Y°)/n'(m) predicted by the model on the

frequency within the range of yo studied. This seems to be

supported well by the data and the same phenomenon has been

reported by Philippoff (16). The dashed lines of Figure 5

are predicted values of the Bird-Carreau model and they

exhibit a strong dependency on the frequency.

In figures 4a and 4b more drastic decrease of G'(w,

y°)/G'(w) as functions of yoand 'a' is observed. Once again

the model predictions show a strong dependence on the para-

meter 'a'. From Figure 6 the curve with a = 0.3 gives the

best prediction of the data at both frequencies. Since

G'(w,y°)/G'(w) data shows more reproducibility and more non-

linearity, the 'a' obtained here has been chosen as more

representative of nonlinear character of the fluid over that

obtained from the n'(w,Yo)/0'(w) data.

This approximated form of Acierno model gives a rela-

tion between the first normal stress displacement and the

dynamic storage modulus similar to the rheological relations

of linear viscoelasticity. Walters (l4) analyzing the

effect of nonlinearity on dynamic normal stress behavior,

however neglecting the fourth harmonic came up with a
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similar conclusion for both 9'(w,yo) and 8d(w,y°). Chris-

tiansen and Leppard (3) also report a fair agreement on

both the rheological relations when using y° = 0.743 on

their fluids. However this author feels that there is

still merit in collecting data for oscillatory normal

stress functions since it may serve as a critical test for

correlating oscillatory nonlinearities. The Acierno model

proposed the rate of destruction of the network junctions

as a functional of the invariant of the normal stress

which also carries the adjustment factor. Thus the cor-

relation of this argument especially at high yo in the

oscillatory mode would be very significant.

ii. Spectral analysis

In Table l we categorize the relaxation spectrum into

three broad spectral zones in the contribution of the

n'(w) and G'(w) values. Much of the n'(m) value is con-

tributed by the wAml region, the wA>>l region giving the

least contribution. In the G'(w) data the wAml region

contributes significantly but the greatest contribution

comes from the wA>>l region. In Table 2 the network con-

centrations, xi, of the different spectral zones are pre-

sented due to the imposition of the strain amplitude of

Y0 = 0.41 on the fluid. We observe the maximum effect of

this large strain amplitude at the large relaxation times

as xis in the wA>>l region deviate more from unity than

those of smaller relaxation times. In other words the model
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predicts that the effect of non-linearity is restricted

to larger relaxation times in the oscillatory flow regime.

Since n'(w) is principally susceptible to the changes

up to mAml region, the model predicts that the effect of

nonlinearity is oscillatory shear will be least apparent

through this material function. 0n the other hand the model

predicts a drastic effect on the G'(w) value since the zone

wA>>l which gives the greatest contribution has been mostly

affected. These two observations are correctly supported by

McDonalds data.

Furthermore, we notice that in Table 2 in the wA>>l

region there is a percent increase in n;(w,Y°) Spectral

contribution. This seems to be borne out of equation (49).

If 'a' is chosen such that the nonlinear term 1 + aiosi/Nzoi

is close to unity then the decrease of each spectral unit

will be moderate. However if wA>>l then the denominator

becomes

.8 . 2

(l + a1°8i/”2013 +w240i2=(940i)

and

"i (wsyo)

ni'(“)

 2 1 ' (55)

But no significant increases was incurred as shown in

Table 2. In sum the model verifies McDonald's assertion
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that in nonlinear oscillatory shearing experiments, more

emphasis should be given to G'(m.v°) data rather than the

n'(u,y°) counterparts.

In Acierno's paper (8) it was shown that there was

a drastic truncation of the relaxation spectrum during

steady shearing experiments when shear rate as low as

i = 0.01 was imposed. Also an a = 0.4 gave the best fit

of their viscosity and first normal stress coefficient

results. In Table 2 truncation of the right part of the

relaxation spectrum was less drastic as the greatest change

in A01 to A. occured at A01 = 160 sec. to A1 = 151 sec. at

Y0 = 0.41. This would have an obvious advantage in terms

of computer time, since we will not need to reconstruct the

relaxation spectrum at this moderate shear rates. In this

approximated form of the model equal intervals of AlogA is

assumed even though large Aoi's are affected by relatively

large 7°. Thus serious error may be encountered for large

1° as constant AlogA will be inconsistent with the model

formulation. The effect on Gi needs a little study.

From the model

G = HiAlnAi = HiGlnAi
oi

At a strain input yo

X1. =1/(1+ oi /N201)
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_ .1.4
HialnAi - H16ln(AoiX1 1

C
) ll01- G0,- -1.4Hi61nai/Nzoi (56)

However this error term is found to be negligibly

small at large Aoi where the problem is centralized.

ii. The structural character in oscillatory

and steady shear

Having obtained an 'a' from the preceding section,

an attempt is made here to at least study qualitatively

the model's nonlinear responses of the stresses and more

especially the structural parameter xi at higher shear

amplitudes. It must be pointed out.also that this analysis

suffers from the severe limitations we impose on the velo-

city gradient Iland the assumption that the contrvariant

convected derivative, 6/6t is equivalent to the total time

derivative, d/dt.

We resort to the study of spectral responses bearing

in mind that the total response is the arithmetical combi-

nation of all the spectral regions that contribute signifi-

cantly.

The IMSL subroutine [NOGER has been employed to

solve the system of ordinary nonlinear first order dif-

ferential equations of eqns. 24-26. Initial values of

Ti = 0.0, Ni = 0.0 and xi = 1.0 and an allowable set error

of 10‘4 along with a range of the step size serves as the
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input and DVOGER selects a suitable stepsize to calculate

the next step which meets the error criteria. An amplitude

range of 0.2 - 10.67 with relaxation times of 0.17 to 160

sec. was successfully tested. At higher ranges of relaxa-

tion times 60 sec. to 160 sec. and large amplitudes, 5.0 -

10.67, the error criteria was not met. The program is

presented in the Appendix and sample computer plots are

shown in Figures 7 - 11.

In Figure 7 with an input shear amplitude, Xi devi-

ates slightly from unity and remains steady confirming the

model to degenerate in a proper manner to linear visco-

elasticity. The dimensionless normal stress have the

expected frequency, 2m and a pronounced displacement that

has already been reported (3). In Figure 8 we notice that

a lO-fold increase in the input amplitude, leads to little

less than a lOO-fold increase in the normal stress dis-

placement. Christiansen and Leppard reported a correspon-

dence of the slope equal to 2 for their solutions between

the normal force displacement and the input amplitude (on

a log-log scale) working however within the linear range

(7L? = l). The xi is seen to deviate pronoucely from unity

and exhibit a sinusoidal-like motion with a frequency of

2m approximately. There is also a lag between x1. and Ni

noting that "1 is directly the forcing function. The

Spectral behavior of large relaxation times 8.9. A01

37 sec of Figure 9 is intriguing at best. The xi curve
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Figure 7. Spectral diagram of finite amplitude oscillatory

shear.

(A) Dimensionless shear stress, Ti

(8) Dimensionless normal stress, Ni

(C) Structural parameter, x- relaxation time,

101 = 1.2 sec w = 1.8 sec” , 1° = 0.2
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rapidly drops during the transient period and dwells much

longer at this low point except for sudden peaks regularly

interspersed. The stress functions also lose their sinu-

soidal nature and only one broad peak is present in the

normal stress function. These curves can be approximated

by means of a Fourier analysis recognizing higher order

harmonics in the shear stress and normal stress. The

presence of these harmonics odd harmonics for torsion and

even ones for normal force have been shown experimentally

(15) and predicted by other models (e.g. the NBC & Carreau-B

models) as well. This further portrays the importance of

spectral studies since correlation of harmonics with

experimental data may aid in choosing the correct defor-

mation rate invariant and thus help ascertain the physical

meaning of the adjustment factor, 'a'.

In Figures 10 and 11 we compare the structural para-

meter subjected to steady shear with that subjected to

oscillatory shear. At an equivalent strain input Figure 10

shows that at the larger relaxation times more destruction

of entanglements is achieved with steady shear than oscil-

latory shear. This is when we judge the destruction in

oscillatory shear in terms of the averaged structural con-

centration occuring during a period of revolution. However

when Figure 9 is considered it is found that the x, function

of oscillatory shear at large relaxation times behaves as

though it was subjected to steady shear. We next superimpose
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the averaged xi functions of oscillatory shear on their

steady counterpart subjected to the same degree of strain

rates as shown in Figure 11. We notice a correspondence

between steady x1 and an averaged oscillatory xi subjected

to twice the strain rate of the latter. If we recognize

the statement earlier made on averaged xi at large relaxa-

tion time this correspondence is viewed with some skepticism,

on the other hand such correspondence to some degree may

infer that the truncated relaxation spectra of the two

modes of flow are interchangable. This further add credence

to the study of large amplitude shear oscillations and it's

ability to generate 'a' that can describe non-linear

behavior.

iii. Shear stress growth prediction

The generalized curves of Acierno et al. (la) for

dimensionless tangential and normal stress growth in shear

were utilized to obtain the shear stress and normal stress

growth functions using an 'a' obtained in the preceding

analysis. Since the relaxation times of polyisobutylene

were used much interpolation was done to obtain the

suitable parametric aikoi curve. However because of the

regularity and smoothness of these parametric curves we

feel that the associated error due to interpolation was

minimal. Then 61(t) and N(t) were obtained by simply

adding up all the contributions of each relaxation time at

each time increment. The model results are presented
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along with experimental data of Huppler et al. (12).

The model does a good job in predicting the magnitude

of the shear stress magnitude and the time at which it

occurs at a shear rate of 1.67. However at i = 16.7 the

performance of the model is at best qualitative. For the

shear stress growth function it predicts a much faster

overshoot time and a larger magnitude of overshoot. It

is also unable to predict the shear stress undershoot, a

problem common to many acclaimed rheological models. For

the normal stress growth there is a qualitative agreement

between model results and data as the model tends to predict

a larger overshoot than the data shows. However no con-

clusive judgement can be arrived at for the normal stress

growth as the reliability of the data has been questioned.

The reason as to why the model is unable to do a good job

at high shear rates is subject to speculation, certainly we

cannot blame it on the 'a' factors as the authors as well

as Graessley have reported this failure even when using 'a'

obtained from steady shear.



DISCUSSION

Acierno et al. evaluated the adjustable parameter 'a',

from steady shear and normal stress data. With the single

value of a, they obtained a good fit of data over a shear

4 to 1x103 sec'1 on low density poly-rate range of 1x10—

ethylene melts. 0n the other hand Graessley et al.

working on 8% and 12% polystyrene solutions could predict

steady shear stress data only by choosing several values

of 'a'. For the 8% solution the values required ranged

from 0.2 at 1 = 0.1 sec'1 to 0.5 at 4 = 100 sec-1. For the

12% solution from 0.4 to 0.9 in same range of shear rates.

They were then able to predict stress growth data by

choosing an a which gave the best fit with steady shear

data at the particular shear rate. From Figure 2 we found

that 'a' obtained from finite amplitude oscillatory

shear data successfully fit data with a shear rate range of

1
0.001 sec'1 to 0.3 sec' Also with this 'a' quantitative

prediction of stress growth data at y = 1.67 see”1 was

obtained. This perhaps indicate the usefulness of non-

linear oscillatory data as far as the determination of 'a'

is concerned.

Another severe test of the Acierno model is met when

predicting stress growth data at large shear rates. In
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comparing the model predictions with the Carreau-B model

(22) predictions on the same fluid, there is a striking

resemblance between both model results at a shear rate of

16.7 for shear stress growth. Both quantitatively disagree

with data predicting too early a time for overshoot, much

larger magnitude and a complete absence of undershoot. The

Carreau-B model, a modification of the Bird-Carreau model

is similarly based on network theory however differs

strategically from Acierno's as it relates the destruction

of network junctions to the second invariant of the rate

of strain. In the Acierno model it is noticed that at

very small times after the onset of shear, the shear

stress contributions of much of the spectral regions (except

larger relaxation zones) arise close to the overshoot of

the stress curve associated to this unit. This conceptu-

ally appears as if destruction of the network junctions on

each spectral zone is instantaneous. By choosing a dif-

ferent 'a' say, these spectral curves are only shifted

vertically and even though the total result may correctly

predict the maximum observable overshoot it will still

incorrectly determine overshoot time.

We thus speculate that the invariant used in the

generalization of i in the destruction term of the struc-

tural variable equation is much too severe and suggest a

combination of the invariant of the extra stress and of the

strain rate be used. This similar conclusion has been



52

arrived at by Carreau (22). In this work the predictive

capability of Acierno model with the parameter obtained

from oscillatory shear ot the normal stress functions is

only seen in the normal stress growth prediction. The fact

that same qualitative agreement is met adds credence to

the 'a' evaluation. Claims made in this study for 'a' is

restricted to 2% polyisobutylene solution in Primol 355.



CONCLUSION

It has been shown in the preceding pages that the

adjustment parameter 'a' of the Acierno rheological equa-

tion of state can be obtained reliably and uniquely from

large amplitude shearing experiments. The computed results

further show in agreement with McDonald's observation that

G'(w.yo) should be the choice correlation function as it

expresses more nonlinear characteristics of the viscoelastic

fluid in oscillatory shearing. However the 'a' obtained

from G'(w,y°) correlation unsuccessfully predicted n'(u,y°)

between yo = 0.1 to 1.28. For the n'(w.y°) prediction an

a' of 0.1 and 0.2 were required to fit data at w = 0.188

and 1.88 sec-1 respectively.

A method of numerical solution of the Acierno model

in large amplitude oscillatory shearing where harmonics

becomes significant has been outlined. Due to the lack of

data in this region, no numerical predictions have been

given, however we noted a similar behavior between junc-

tion concentrations of the large relaxation zones to similar

concentrations subjected to steady shear. With a single

'a' value the model is quantitatively unable to predict

shear growth data at high shear rates. For polyisobutylene

solution at high shear rates the model predicts an earlier
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and larger overshoot and no undershoot in the stress growth

function. In view of these failings much more tests at

larger shear rates and amplitudes and different flow

regimes with different polymeric fluids will be needed to

establish the singularity of 'a'.



NOMENCLATURE



A11

A1, An,1

Bi’ Bn,1

Bn

E

-1

C03, Con,1

Di’ Dn,1

dii

Ei’ En,i

E

F

GI

Gil

, mn

gmn’g

H

NOMENCLATURE

Def. by eqn. 38a

Adjustment (Acierno model) parameter

Fourier coefficients def. by eqn. 27 8 29

Fourier coefficients def. by eqn. 27 & 29

def. by eqn. 38b

Cauchy Tensor = oxmox1n .
_1' —° gmn(x )

5x 6xJ

. _ _6__)Si ij 11111 X'

F1nger Tensor - 6x1m6x10 9 ( 1

Fourier coeffs. def. by eqns. 28 8 30

Fourier coeff. def. by eqns. 28 & 30

Primary normal stress displacement, dynes/cm2

Fourier coeff. def. by eqns. 28 & 30

Elastic energy, (erg/cm3)

Total axial force, dynes

Storage modulus. dynes/cm2

Loss modulus, dynes/cm2

Components of the metric tensor

Spectrum density, dynes/cm2

/-l

Dimensionless normal stress, eqn. 23b

Primary normal stress component following shear

growth. dynes/cm2
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R Radius of cone and plate, cm

Re Real partcfi'a complex number

t Current time

t' Past time

T Torgue transmitted through the fluid, dynes/cm

3 Velocity tensor, cm/sec

x Structural parameter (Acierno model)

xi,xj Coordinates of a fluid particle at time t

xlm,xln Coordinates of a fluid particle at time t'

Greek symbols

“i Def. by eqn. 23a

aj Bird-Carreau model parameter

Bi Dimensionless frequency

a Bird-Carreau model parameter

y9¢ 9¢-component of finite strain tensor

73¢ e¢-component of the strain rate tensor, sec-1

Y° Strain amplitude

to Strain rate amplitude, sec-1

1 Shear rate, sec"1

6i Phase shift between strain rate and shear

stress, rad. o

Aoi Equilibrium relaxation time, sec

A. Bird Carreau and Acierno model relaxation

times, sec

A1" Bird-Carreau model parameters. sec



Errata

G(t)

57

Bird-Carreau model memory function

Viscosity, poise

Dynamic viscosity, real part of complex viscosity

Imaginary part of complex viscosity, poise

Zero shear rate limiting value of viscosity,

poise

Angle of cone (<40), degrees

Complex primary normal-stress-difference coeffi-

cient dynes secZ/cm2

Real part of 8*. dynes secz/cm2

Imaginary part of 8*. dynes sec2/cm2

Primary-normal-stress-difference-displacement

coefficient, dynes sec2/cm2

Dimensionless time, def. by eqn. 23a

Shear stress tensor, dynes/cm2

Component of shear stress tensor, dynes/cm2

Frequency of strain oscillation, rad/sec

Second flow invariant = (1:1)

Steady elastic modulus, dynes/cm2

Dynamic nonlinear elastic modulus, dynes/cm2

Dynamic equilibrium elastic modulus, dynes/cm2

Steady first normal stress, dynes/cm2

Shear stress component.following shear growth,

dynes/cm2
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List of Principal Variables

ALAM

ANC

C

05. DDS

DZ. DDZ

HO

HA

IC

I,J.K

NX

NXK

RL

XK

XL

Relaxation time, at inserted points

109 we

Spline coefficient (output). C is an NXK-l

by 3 matrix

First and 2nd derivative respectively of the

spline function at the data points

First and 2nd derivative respectively of the

spline function at the inserted points.

The dynamic loss modulus (or function values)

6‘ = wn'

The dynamic viscosity, n'(Input)

The unrefined relaxation density at data points

The unrefined relaxation density at inserted

points

.Row dimension of matrix C in the calling program

(input)

i,j,k, counters

Number of data points

Number of knot locations

= l5/w, equilibrium time constants at data points

Spline function at data points

Knot location

The frequency of oscillation (data for inserted

points), abscissa



NC

HK

60

= log x1

Vector of length NXK-l (output)

Frequency of oscillation (data for inserted

points), abscissa

Nork area

Spline function at inserted points
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PROGRAM CUFIT AND LINV

List of Principal Variables

ALAM

DIFF

GC

RLAM

NC

PROGRAM LINV

ALO

ETAP

ETAPO

GDP

GDPO

GO

Relaxation times obtained from program LSQSF

(input)

Absolute difference between H ( ) and H ( )

The calculated storage modulus obtained from H

Unrefined relaxation density obtained from

program LSQSF (input)

Final relaxation density, (output)

Recorded relaxation times used by CUFIT

Observed storage modulus

The frequency calculated from RLAM

Final and refined relaxation times (input)

The calculated dynamic viscosity at data points

(output)

The observed dynamic viscosity at data points

(input)

The calculated dynamic storage modulus at data

points (output)

The observed dynamic storage modulus at data

points (input)

Final and refined elastic modulus (input)

The frequency of oscillation at data points

(input)
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PROGRAM LAMVIS

List of Principal Variables

ALO

ANO

ANNO

DIFF

EPL

EPN

GO

GPL

GPN

I,J.K.L

REPN

RGN

RGNO

The adjustment parameter

The equilibrium relaxation times

The linear dimensionless normal stress function

Nonlinear dimensionless normal stress function

Dimensionless frequency

Percent difference

Linear dynamic viscosity

Nonlinear dynamic viscosity

Equilibrium elastic modulus

Linear dynamic storage modulus

Nonlinear dynamic storage modulus

l.J.k,l. counters

Normalized nonlinear dynamic viscosity

Normalized nonlinear storage modulus

Normalized observed nonlinear storage modulus

The frequency of oscillation
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PROGRAM SONODE

List of Principal Variables

ALO

B

DFUN

DVOGER

DY

EPS

ERROR

HMAX

HMIN

I

J

JSTART

MAXDER

M

MTH

WK

Ratio of strain amplitude supplied by input

The relaxation time

The dimensionless frequency

External supplied subroutine required by DVOGER

IMSL subroutine, first order differential

equation solver

The differential function for input system of

differential equation required by DFUN

Specification of the maximum error criterion

Contains the estimated one step error in each

component on output

0n input, suggests the step size to be attempted

on the next step

On input, the largest step size allowable in

this integration

On input, the smallest step size allowable in

this integration

Counter for A

Number of time steps in DVOGER

Initializes the integration

Maximum order to be used in the approximation

Number of ordinary differential equations

Method indicator

Nork area



YMAX
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On input contains the initial time, on output

contains the updated value of time using H as

the increment

Y is two dimensional array (8 by M) containing

the dependent variables

Set in input is the suggested maximum absolute

value of each component of the dependent

variable calculated so far
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