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ABSTRACT

THE MELT RHEOLOGY OF A-B BLOCK COPOLYMERS WITH

SPHERICAL MICRODOMAINS

By

Ekong A. Ekong

A kinetic network model for polymeric melts that contain

spherical microdomains is presented and compared with experimental

results of poly(styrene-b-butadiene), (Mn = 232,000-10,000, % wt

PS = 94.1). A novel form for the segment distribution in the matrix

with a constraint at the point of attachment to the domains is

developed. Consistent expressions are developed for the rate of

creation and destruction as a function of deformation in flows. A

key parameter in this development is the degree of repulsion between

segments in the interfacial region.

Transient and steady stresses are derived for uniaxial

extensional flows and compared with an ABS melt data in the litera-

ture. At low Hencky strain rates (made dimensionless with a character-

istic relaxation time) an apparent yield stress is predicted dependent

on the range of repulsion parameter which correlates with the com-

position of the rubbery component.

Computations were done with this model also to obtain steady

and transient stresses in uniaxial shear flows. These predictions

were compared with melt rheology data gathered in this work over a



Ekong A. Ekong

temperature range of 120°C to 175°C. The shear viscosity data above

150°C indicate homopolymer-like behavior; the data at 130°C indicate

the presence of a two-phase structure. The dynamic shear viscosity

as well as the steady shear viscosity data show trends similar to

those reported by Ghijsels and Raadsen (1980) with triblock copolymer

melts at low strain rates. The observed stress growth curves show a

1 with a strainstress overshoot at strain rates as low as 0.01 sec-

at peak stress of about 0.5. Estimation of parameters in the theory

and the sensitivity of predicted stress behavior to different para-

meters is discussed. While the theory is able to predict observed

low strain rate behavior in steady and dynamic testing, it does not

predict an overshoot in stress growth curves at such low strain rates.
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CHAPTER I

INTRODUCTION

1.1 Material Background
 

In recent years there has been an increasing attention to

formulation of composite polymeric materials which combine desirable

properties of their components. However, it is often difficult to

blend polymers because of the incompatibility of polymeric chains of

different polymeric molecular structure. This problem has been over-

come by sequentially polymerizing different constituents to obtain

block or graft copolymers. Since its first theoretical conception by

Mark (1953), and its first commercial production by Shell in 1965

(Holden et al., 1969), the possible practical applications of block

copolymers have been many and varied. Block copolymers such as poly

(styrene-butadiene-styrene), SBS undergo a phase separation consist-

ing of the thermoplastic polystyrene block linked by its ends to an

elastomeric butadiene block to generate a polymeric network structure

in which the endblocks serve as physical reversible multifunctional

crosslink sites.

These systems, without vulcanization have rubber-like proper-

ties akin to rubber vulcanizates, but are moldable at temperatures

above the glass transition of the thermoplastic component (Van Breen

and Vlig, 1966; Bishop and Davison, 1969). High resilience, high





tensile strength, highly reversible elongation and abrasion resistance

may be obtained in triblock copolymer solids with careful choice of

monomers and block length. Diblock copolymers are finding increas-

ing use as a ternary component to mix highly incompatible homopolymers

of low molecular weight, by emulsification (Ramos and Cohen, 1977).

They may be used also for recovery and reuse of polymeric waste

products such as polyolefin mixtures.

Styrene block polymers can be manufactured by anionic poly-

merization reaction. Styrene-butadiene, SB, diblock, Styrene-

butadiene-styrene, SBS and butadiene-styrene-butadiene, BSB, triblocks

are produced by the reaction of styrene molecules in the presence of

a lithium catalyst to form polystyrene-lithium complex which disinte-

grates on further addition of the component butadiene to form a

diblock of 8—8 or a triblock S-B-S if more styrene is added into the

mixture. Phase separation occurs between the blocks leading to

the formation of microdomains that are responsible for the specific

properties of the block copolymer. As illustrated by Matsuo et al.

(1968), (see Figure 1.1) with SBS samples, the molecular weights of

the different blocks determines the overall morphology of this

polymeric system. Uniform spherical domains are formed when the

low M.W. component is 20 wt% or less. As the amount of this component

increases, the spheres do not grow in diameter beyond a certain

size, but instead, are transformed to uniform cylinders. At a still

higher fraction of elastomer, the cylinders become platelets, while

at midrange compositions (40-60 wt%) of each component, the material



Fig

1968.

(60%B).

black and the polystyrene phase is white (Matsuo et al.,

(a) SBS-1 (20%8); (b,c) SBS

ure 1.1.-—Variation of block copolymer morphology with composition

Polymers cast from toluene solution, and

-3 (40%B); (d,e) SBS-5

stained with 0504, so that the polybutadiene phase is
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consists of alternate lamallar of styrene and butadiene. As the per-

centage of elastomer is increased still further (not shown in the

figure), the phase structure goes through the same changes in reverse

--with the elastomer now constituting the continuous phase.

Theories based on statistical thermodynamics of microphase

separation have been proposed to predict the effect of molecular

parameters such as block length and thickness of interphase between

the blocks, on copolymer structure; these have been reviewed by

Folkes and Keller (1973). The present study deals with the mobility

of segments in block copolymer melts. To data no rheological theories

have been advanced to predict highly non-linear behavior observed in

block copolymer melts. Such studies are essential in establishing

processing conditions for these materials.

A number of rheological characterization studies have been

done on block copolymeric systems (Arnold and Meier, 1970; Kraus and

Gruver, 1967; Holden et al., 1969; Chung and Gale, 1976; and Ghijels

and Raadsen, 1980). The major results of these works are: (1) block

copolymer melts, especially triblocks with glassy domains, show an

apparent yield stress at shear rates, 9 << 1; (2) at low shear rates

or stresses, the viscosity of block copolymers is greater than that

of either homopolymer; (3) the Cox-Merz rule does not hold, in

general, for block, copolymer melts. In general, it is observed

that the complex viscosity, |n*l is higher than the steady shear

viscosity at w = v; (4) at large deformation rates, the dynamic shear

moduli, steady shear viscosity, and first normal stress difference



values approach those of their homopolymeric counterparts with com—

parable overall Mn. This complex rheological behavior is mainly

attributed to the persistence of the two-phase structure of block

copolymers into the melt state.

In this study we seek to extend the transient network theory

framework described in the following section, to block copolymers by

regarding regions of the dispersed phase as temporary junction sites

that impart a three-dimensional structure to block copolymers. This

allows us to develop a constitutive equation for Viscoelastic flow

properties of block copolymers. Despite an inherent weakness of

failing to use all available structural information obtainable from

non-rheological techniques of characterization (e.g., MW and MWD),

network theories are useful phenomenological models taking into

account the evolution of the microstructure. It is in describing

this evolution of microstructure that most of the available network

models differ; we proceed to discuss the description of microstruc-

ture.

1.2 Evolution of the Microstructure
 

1.1.1 Gaussian Network Theory
 

Following the theoretical formulation of constant connectiv-

ity of network models for elastomeric materials by Green and Tobolsky

(1946), Lodge (1954, 1956, 1968) and Yamamoto (1956, 1957, 1958)

extended the network theory to include polymer melts and concentrated

solutions visualizing them as a temporary network formed by transient

 



junctions or entanglements. All the Gaussian network theories stem

from the following two equations.

Stress Tensor:

P(t) = ZanZi<BB>in (1 1)

Strand distribution function fin:

 

.n (at) - fin/mm (1.2)

The distribution function, fin(B’t) is defined such that f}n(R,t) dR

if the concentration at time t of strands of complexity i and com-

posed of n equivalent random links (of length 1) with ensemble-

averaged end-to-end vectors with the range R to B + dB. The term

Hn = 3KT/nl2 is the effective Hookean spring constant of an n-link

strand, such that HnR can be interpreted as a force on the strand.

The terms Lin are the strand creation rates and fi/Ain denote strand

destruction rates, with a strand destruction coefficient given as

Aih‘ Angular brackets indicate an average value calculated with

respect to fin‘ The success of rheological constitutive equations

have been mainly based on how well the terms B, Lin and l/Ain approxi—

mate the true microstructure dynamics occurring in the polymeric

medium. The original ideas on how these terms may be modelled were

laid down by Lodge (1954), in deriving the Lodge rubber-like model.

In this review it will be useful to state them, in general, and focus

on how several researchers have modified these assumptions to achieve

useful constitutive equations.



 



Assumption 1: Ensemble-average positions of junctions move

affinely and can be identified with particles of the

equivalent macroscopic continuum. In particular, if

the melt is given a time-dependent homogeneous deforma-

tion, we have

3:13 - W (1.3)

where 3 denotes an ensemble-average strand end-to-end

vector, and V(x,t) denotes the polymer velocity at the

place of the position vector x and time, t. The superior

dot denotes a time derivative.

Assumption 2: At any instant t, the set of network strands

in a unit volume may be regarded as mutually exclusive,

mutually independent subsets. The probability per unit

time that any strand shall leave the network is a function

1/Ain(t) say at t, i, and n.

Assumption 3: (i,n) strands are created with spherically

symmetric distribution of R vectors, i.e., at a rate

which can be expressed as a function Lin(Bat) of i,

n,t and the magnitude B alone. Furthermore, at the

instant of creation,all (in,) strands have the same

distribution as that of a set of free n-Gaussian

strands.

Using equations (1.1) to (1.3), the constant volume condition

(V - V = 0) and Lin(B) expression based on the Gaussian chain assump-

tion, a general constitutive equation may be written of the form:

t

P(t) = im(t,t')B(tt')dt‘ (1.4)

~

~

-CX)

where the memory function m(t,t') is given by

A ll

m(t,t') = kltzLin(t') exp(-(t.dt"|iin(t")) (1.5)

1n

and





Here B(t,t') is the Finger strain tensor for the kinematic deforma—

tion from past time t' to the present time t.

If all the creation and loss rates are constant, i.e., all

strands have the same complexity, Lodge's "rubberlike liquid model”

results. This model predicts a frequency dependent dynamic shear

moduli, but fails to show the dependence of steady shear viscosity

on the shear rate or a non-zero second normal stress difference.

In order to correct these imperfections, several workers,

as will be shown in this section, have proposed empirically different

choices of the creation and loss rates, but leave intact the assump—

tion that the microstructure flows affinely.

If creation and loss rates are functions of instantaneous

values of strain rate invariants, various equations including those
 

of Meister (1971) and Careau (1972) are obtained. If the creation

and loss rates are functions of the instantaneous values 0f.§££§§§

invariants, we obtain the equation of Kaye (1966). These and other

related equations have been tabulated elsewhere in a common notation

(Lodge, 1974). Most of these equations, usually characterized by

many adjustable parameters, predict steady shear viscosity dependency

on the shear rate and show a second normal stress difference. How-

ever, they fail to reduce to the appropriate constitutive equation

of linear Viscoelasticity at low deformation rates.



The next integral constitutive equations are the strain-

dependent (K-BKZ type) equations in which the memory function

includes a scalar function of strain depending on the elapsed time,

t' + t as a factor. Recent step-strain data have given compelling

evidence for such a "strain/time" factorization (at least in the

terminal zone of the relaxation spectrum) (Osaki et al., 1971;

Laun, 1978). Out of this class of equations is the Wagner model

(Wagner, 1979a; Wagner and Stephenson, 1979b) with a memory function

of the form

A

m(t,t') = KtZLjh(I. t',t), 12(t',tDexp(t'-t)/A. (1.6)

J

1( J

where E is written as an abbreviation for E2.

J 1n

In this model,assumption (2) is replaced by two independent mechan-

isms for strand loss, one due to thermal motion with constant loss

probabilities l/Ag and the other the survivability of strand at the

elasped time of deformation denoted by l/Td(t',t).

Since thermal motions determine Aj and not td(t',t), then

A? and E. would depend on the microstructure of the material, but the

J

Td would be structure independent. The loss process is thus given by

1 -1 1
73-(tist) - 49 + Td(t'at) (17)

J

Equation (1.6) is obtained by combining equation (1.7) and (1.5)

and by taking
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tl

h(I ,I ) = exp dtlu

1 2 m (1.8)

’1'.

The damping function h is chosen empirically to fit stress relaxation

data for single-step strain experiments and stress growth data in

step-function elongation rate experiments. The resulting h—expression

with two adjustable parameters gave a good description of data from

a variety of experiments in shear and elongation. A functional of

the h-factor was further proposed by Wagner and Stephenson in order

to better predict recovery following elongation at constant rates.

One major drawback as to the use of two times in A(t',t) in

the Wagner model is that it is not in general possible to find an

equivalent differential form for the constitutive equation. For

some applications, it appears helpful to have a differential equation

for the stress tensor.

A fairly successful constitutive equation for polymer melts

and concentrated polymer solutions proposed by Acierno et al. (1976)

expressed the creation and loss processes as functions of structural

variables that describe how far the microstructure deviated from

equilibrium. This structural variable is governed by an independent

kinetic equation of the form

d'. %

T°——3= —‘.-". P. ’. 1.9j dt 1 xJ axJ(tr:J/2GJ) ( )

where P5 is the non-equilibrium part of the jth contribution to the

extra stress tensor, g given by
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t

Pi = Ej - J m.(t,t')dt'I
(1 10)

gj is computed from a Maxwellian-type constitutive equation

g./G. + T. §%-(= ) = 2T.y (1 11)

Interconnection between this model and the fundamental balance law

was made clear by Jongschaap (1981) who noted that the segment

loss probability function l/Aj in this network model is given by

1.1fi/Nfi -1.” 1
A. T- 25- R. ('12)

J J J J

Both sides of Equation (1.12) are multiplied by xj. The result is

combined with Equation (1.9), xj is replaced by Nj/Njo and the

result multiplied by'Njo to obtain

dN. N. N.

Bil=ii’7i (1-13)
J J

Here Nj = ij(R,t)d3R is the total concentration of j- segments at

time t, and Njo is the equilibrium value of Nj‘ If in Equation (1.13)

Nj/Tj is identified with the creation rate Lj(t) = JLj(R,t)d3R, then
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dNJ. .. N.

—=L.-?} (1.14)

1
dt 3

which is the integral of Equation (1.2) over all configuration

space. Thus the differential equations forthe structural variable

of Acierno et al. are directly related to the fundamental balance

law of the Network theory. The Acierno model is seen to allow for

the segment creation and loss rates to depend on the deformation

through the trace of the non-equilibrium part of the stress tensor.

In the context of the Network theory, it is not evident why the

particular form of the destruction process was chosen and why it is

successful.

1.2.2 Non-Affine Motion Assumption
 

The Network model of Phan-Thien and Tanner (1977) and Phan-

Thien (1978) also allow the function creation and loss rates to

depend on trgj', but in a more logical manner. More importantly,

the Thien and Tanner model altered affine motion assumption of Network

theory (see Assumption 1) allowing the network junction to "slip"

with respect to an equivalent continuum specified by the macroscopic

velocity gradient VV. In so doing, Phan Thien and Tanner introduced

an empirical "slip tensor" to describe non-affine motion of the net-

work functions and postulated it to be a linear function of the

T).
rate of deformation tensor 0 E %(VV + VV Consequently, Equation

(1.3) is reformulated as

R= (W - :2) -B (1.15)
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in which the parameter E is the slip coefficient.

At the same time, Johnson and Segalman (1977) developed a

continuum theory of viscoelasticity which allows non-affine deforma-

tion. Two deformation histories were defined. One was the deforma—

tion history g(t) observed at macroscopic level; the other, E(t), a

history of microstructure deformation was allowed to be non-affine

with the macroscopic motion. A relationship between these two motions,

Xi and E1 at the present time t, in Cartesian coordinates was given

by

D
J
?

‘1)' (1.16)
+ (‘2‘ xj,i‘1.1

where a is a constant. They then defined a strain measure E(t,t')

governed by

GE . _ .

5em: ) - {youm ) (1.17)
KI

~

EU'J') =1

and substituted this measure of strain into the Lodge network expres-

sion to obtain

~

~

t

P(t') = { m(t,t') g(t,t') §(t,t')Tdt' (1.18)

00

As with the Thien and Tanner model, the Johnson and Segalman model

predicts a variety of non-linear rheological behavior well, particu-

larly, the viscosity is found to decrease with the shear rate. The
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Phan Thien and Tanner model contains two dimensionless constants e

and E that are determined through elongational flow and viscometric

flow experiments respectively. For shear flows, Phan Thien showed

that the Thien and Tanner model was identical to Johnson and Segal-

man's if E = 1-5.

The choice of the range of "a (0 < a < 1) as reported by the

authors through comparison with experiment was not easily perceived

until the work of Lau and Schowalter (1980). They explained the

fundamental basis of both models by pointing out that these were

objective constitutive equations that can be formulated with a strain

measure derived from appropriate linear combinations of the rate of

change of material coordinates in the material fixed (corotational)

reference and the space—fixed reference (code formational) frames.

They chose e1 strain measure related to the combination ¢ expressed

in component form as

Vj,i

e
_
l

11

A

H

1

o
n
v

<

1

m
i
n

"
1
'
7
1

2

Then a strain tensor (x, t, t') was defined by

3ij (5’ t9t') = 9(59t) E()_(9 tat.)

u
r
n

I

and E(x,t',t') ll

I
I
H

If c = (1 - a), the Johnson and Segalman model is obtained while the

Thien and Tanner's model results when c = E. Such a rate of deforma-

tion measure can also be used to construct anisotropic fluid models
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associated with dilute solutions (Gordon and Showalter, 1972). A

weakness in both models is that they predict damped oscillations

in shear stress at large deformation rates.

1.2.3 The Yamamoto Network Theory
 

Yamamoto (1956, 1957, 1959) presented a more fundamental

network theory (cf. Lodge's theory) for concentrated polymer solu-

tions and melts. The general form of the microstructure dynamics

equation (Equation [1.2]) was originally proposed in the first of

three papers in which the creation rate function and chain breakage

coefficient are functions of the end-to-end distance and orientation

of the segments in the flow field. Unlike Lodge's theory, the net-

work is considered as non-Gaussian with the result that the free

energy of the network segment is a function of the end-to-end dis-

tance. Thus Equation (1.1) can be written as

E = Z {HN(R)BB 1‘ (B.t)dB (1.19)

It is to be noted that the spring modulus HN(R) is allowed to depend

on the deformation of the segment so that non-linear springs may be

conceived. Yamamoto has shown that physically plausible assumptions

about the segment creation rates and loss probabilities lead to vis-

cosity that decrease with shear rate, a negative second normal stress

coefficient, and an elongational viscosity that first increases with

the elongational rate, goes through 11 maximum and then decreases at

higher elongation rates. If the destruction coefficient is made
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independent of the segment extension, the ensuing strain measure in

steady elongational experiments is an exponential that increases

with time in the orientation of the chains. At a critical rate of

strain, the chains are elongated infinitely without breakage leading

to an infinite elongational viscosity. Yamamoto then argued that in

actual systems, the chains will break down at finite elongations and

the destruction coefficient should be a function of the segmental

extension. In this lies the germ of ideas behind recent network

models which avoid an infinite elongational viscosity by assuming

deformation dependent destruction coefficients.

Further studies on the Yamamoto theory, especially the non-

Gaussian aspect, have been minimal with regard to modelling visco-

elastic fluids. Generally, the theory does not give constitutive

equations in an explicit form devoid of summations and integrations

over molecular variables. However, non-Gaussian network models are

receiving increasing attention in the study of rubber elasticity

(Chompff, 1977). Recently, Fuller and Leal (1981) have evaluated a

form of non-Gaussian distribution function obtained by a Kuth and

GrUhn type perturbation of the Gaussian distribution function. They

reported no trend in their results different from those of a Gaussian

network model. In the present work, a non-Gaussian distribution

function will be presented that yields strikingly different predic-

tions.

The Yamamoto network theory offers clearly a direction in

formulating Viscoelastic models of various polymeric systems if an

accurate description of its segment distribution function is found.
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In the Lodgean theory one has no choice but to assume that the

Gaussian distribution of the chains prevails. This has been success-

ful for homopolymeric melts especially at small deformation rates,

confirming the theory that homopolymeric entanglements are a result

of weak secondary forces between primary chains, and occupy a length

scale of the order of a statistical subunit. This distribution does

not represent the microphase structure that determines copolymer melt

properties at small deformations.

1.2.4 The Reptation Theory
 

Failure to incorporate molecular variables into the network

theory still stands out as one of the major weaknesses of the several

versions of the model posed above. Recently, the entanglement con-

cept has been viewed in quite a different light by Doi and Edwards

(1978a, 1978b, 1978c). The idea that entangled chains rearrange

their conformations by reptation, i.e., curvilinear diffusion along

their own contours was first introduced by DeGennes (1971). Doi and

Edwards have formulated a theory (DE), relating the dynamics of

reptating chains to mechanical properties in concentrated polymer

liquids. They assumed that reptation would be the dominant motion

in a medium of linear long chains. Employing equations from the

theory of rubber elasticity, they calculated the contribution of

individual chains to the stress following a step strain and related

the subsequent relaxation of stress to conformational rearrangement

via reptation (1978b). Without further assumptions, notably the

”independent alignment approximation." 1AA, they arrived at a
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constitutive equation of the BKZ type good for aribtrary deformation

histories. Irlparticular, they showed that for monodisperse entangled

linear chain polymer liquids, the plateau modulus, zero-shear viscos—

ity and steady state recoverable compliance were functions of chain

properties as

O O

GN a M

03

no a M

a: a M° (1.20)

where M0 is the molecular weight of the primitive chain. These rela-

tions agree fairly well with observed data (Graessley, 1980). The

only parameters present in this theory are the reptation tube

diameter ”a" and a monemeric friction coefficient. Due to the con-

straining nature of domains in the block copolymer systems, it is

not very evident how the reptation theory can be applied to block

copolymer rheology.



 



CHAPTER II

BLOCK COPOLYMER MELT PROPERTIES AND THEORIES

2.1 Previous Rheological Studies
 

In this chapter we wish to examine in detail data collected on

the melt rehological properties of block copolymers and rubber modi-

fied polymers to identify molecular variables affecting their behav-

ior.

TABLE 2.1.—-Viscosity of block copolymersa vs. homopolymers

 

 

Polymerb Percent S ViscosityC

80B 0 3.2

65-818-65 13 13

103-538-105 27.5 29

165-528-163 39 118

19S-3lB-193 53 36.5

243-258-245 65 31

33S-18B-33S 8O 28

838 100 5.5

 

aNote that at 175°C a lot of the domains have been destroyed

(Chung and Gale, 1976).

bMolecular weights of blocks in thousands

CAt shear stress of 2 x 105 dynes/cm2 and a temperature of

175°C (Holden et al., 1969).
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Table 2.1 summarizes the steady shear melt viscosity data at

a constant stree, reported by Holden et al. for several different

samples of S-B-S triblock copolymer as well as the homopolymers,

polystyrene, and polybutadiene with the same order of overall mole-

cular weight. It is readily seen that the styrene content affects

the melt viscosities of the triblocks. 0n the other hand, it has

been shown by Matsuo that the M.W. of the individual blocks affects

the morphology of the block copolymer system. Holden explained the

large viscosities exhibited by the block copolymers as due to the

two phase structure persisting into the melt. Looking at Figure 1.1

we note that randomly distributed cylinders of polystyrene domains in

a polybutadiene matrix is the morphological structure of SBS with

39%S content which has an anamolously large viscosity.. Again cylin-

drical domains of polybutadiene is the projected morphology for the

SBS with 65%5 content, but has a lower viscosity. It can, there—

fore, be concluded using Holden's data that viscosity of block

copolymer melts is strongly dependent on the morphology of the

respective blocks, block length (M.W.) of the thermoplastic block

and chemical nature of the center block.

Arnold and Meier (1970) presented the dynamic Viscoelastic

data for various samples of SBS melts at low frequencies as shown

in Table 2.2. We note that the 22-50 sample has an S content of

about 35% by weight while the 14-50 sample has about 31%S. They

deduced that the difference of the slope d log n'/d log w between

the two samples was due to the presence of semicontinous domain phase



 

 

 



21

TABLE 2.2.--SBS Samples

 

 

SBS Nominal block Slope of log n'

Sample mol. wt.a vs log w

10-50 10-50-10 -O.36

14-50 14—50-14 -0.40

22-50 22-50-22 -0.66

14-60 14-60-14 -O.36

14-70 14-70-14 -O.36

MOPS/97b 97 0

 

aIn thousands

bMonodispersed polystyrene, M.W. = 97,000

of polystyrene in the former sample as opposed to "dispersed poly-

styrene domains" in the latter case. They further proposed a quali-

tative rheological theory for block copolymers system, stating that

at very low deformation rates, the molecular network is essentially

intact. At intermediate deformation rates, the three-dimensional

network will be disrupted and the system behaves as large star-

shaped aggregates. Finally, at high deformation rates, these aggre-

gates will, in turn, be disrupted and the system will behave as an

assemblage of individual non-aggregated molecules.

While Arnold and Meier's dynamic data agree fairly with

those of Holden et al., it is to be noted that method of sample

preparation used in their study, crumbs may have affected the

results. Ghijsels and Raadsen have found that the use of crumbs leads

to less reproducible results, especially at low deformation rates than

the use of compression moulded samples.
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They also observed that |n*(w)| > n(i)|?=w for all these

block copolymers the disparity being greater for block copolymers

terminating in polystyrene. They attributed these to the disruption

of the domain network structure which must occur in steady flow, but

not necessarily in small amplitude oscillations. A further explana-

tion of the phenomenon observed above is that the presence of domains

in block copolymers disallows some conformation, which would have

deen available to chains through entanglement slippage. This, then,

tends to increase the elastic free energy of the chains as well as

the resulting modulus.

The two phase structure can also be manifested in block

copolymer solutions depending on the choice of the solvent (Kotaka

and White, 1973). When a good solvent for both components is used,

triblock and diblock copolymers solutions behave as homopolymeric

solutions. When a poor solvent for one component is used, 9.9.,

SBS or SB in decane, a two-phase structure of insoluble PS in a

solution of PB in decane results. The observed rheological behavior

is, however, different for triblock and diblock copolymers. In SBS,

the PB component dissolved is connected at both ends to the insoluble

PS component thus creating a three-dimensional network structure even

at a low concentration of the copolymer. In the diblock, there is

no formation of a three-dimensional network, but rather a micelle

structure in which the PS segments form a rigid core. Upon increas-

ing the polymer concentration, the number of such micelles increases

and eventually they would be arranged in a regular three-dimensional



 



23

array. The morphology of such mesormophic structures have been

revealed by electron microscopy studies of Gallot (1978). From

Kotaka and White's findings, these mesomorphic structures can be

classified as elastic gels that can undergo a complete breakdown in

structure by continuous shearing.

Another strong influence on Viscoelastic properties of block

copolymers is the interphase region existing at domain boundaries

containing segments of both blocks. Statistical thermodynamic theor-

ies of Meier (1974) and Leary and Williams (1973) indicate that the

volume fraction occupied by the interphase and, therefore, the degree

of compatibility increase with decreasing molecular weight. With

increasing temperature, a continuous increase in miscibility would

also be anticipated involving growth of the interphase at the expense

of the two pure phases, subsequent complete disappearance of the

domain phase and then the continuous phase and, ultimately, complete

homogeneity. Such predictions have been confirmed experimentally by

Chung and Gale (1976) through rheological studies. Using moderate

M.W. samples of SBS with spherical polystyrene domains, they noted

that at high temperatures, the melt experiences a transition from a

multiphase structure to a homogeneous structure. The flow behavior

above this temperature is characterized by a Newtonian viscosity

at low deformation rates and by low elasticity. Such behavior has

been observed also by Kraus (even with high M.W. diblocks and

Holden et al. using triblocks).

Kraus and Rollman (1976) have predicted the volume fraction

of the mixed interlayer for various M.W. triblock copolymer samples,
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using the theory of Meier. They then correlated dynamical mechani-

cal moduli as a function of temperature with the results of Meier.

The composition, a of the domain phase segments changes continuously

from zero to unity within the range of the interlayer. It was

assumed by Meier that the volume fraction of domain phase segments

follows a symmetric profile over the interlayer, thus fixing an

average composition of the interlayer by domain phase segments at 0.5.

This enables one to compute the normalized volume distribution func-

tion, V(¢) of domain phase content in the interlayer. The planar

*

E

obtained by applying the principle of volume additivity as:

complex moduli, E of the composite for lamellar morphology was

* ‘k * 1* _.

EE(t) = v8 58(1) + vSES(T) + 61L J 58(1') V(¢)d¢ (2.1)

0

Where VB, Vs and VIL are the volume fractions of pure PB, pure PS,

and mixed interlayer respectively; EE, E: are the complex moduli for

pure PB and pure PS respectively. Kraus and Rollman, on the other

hand, assumed the mole fraction of domain phase segments follows a

symmetric profile over the interlayer. They were able to correlate

the dynamical mechanical moduli better. Both of these arguments have

no factual basis and were formulated for the sake of mathematical

convenience. Thus a complete understanding of block c0polymer mechani-

cal and rheological behavior will be dependent on the development of

a statistical thermodynamic theory for the precise mathematical form

of the interlayer composition profile.
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Gouinlock and Porter (1977) working with SBS samples identical

with that of Chung and Gale generated master curves of linear visco-

elastic functions using the frequency-temperature superposition prin-

ciple as shown in Figure 2.1. Each curve (reduced dynamic viscosity,

né and reduced dynamic storage modulus, Gp) has two branches at

certain reduced critical frequencies. The low temperature data fall

on the upper branches and signify the prevalence of the two phase

structure. The high temperature results occur on the lower branch

suggesting a homogeneous structure. It is further observed that the

critical reduced frequency where branching occurs in G6 data are

larger than the critical frequency for UP. It is to be noted,

therefore, that modification of the elastic property by domain struc-

ture is considerably more pronounced than the effect on dynamic

viscosity. Moreover, experiments indicate in contrast to the deforma-

tion theory of Meier presented earlier, that domain disruption

increases with decreasing frequency. In 'Lufiit of this, the extrac-

tion of segments from the domains would be expected to involve long—

range configurational rearrangements accompanied by long relaxation

times. They then concluded that domain disruption in dynamics measure-

ments as in steady state deformation should depend principally on

the strain, i.e., strain amplitude, not on frequency, and that it

should occur preferentially, if at all, at lower reduced frequencies,

where an effect on the dynamic properties attributable to the domain

structures as such is alone inferred to exist. Another significance

of the results of Gouinlock and Porter is that the relaxation time
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associated with long-range motion of the chains of these block copoly-

mers is not characterized by the peak of the loss modulus G"(w) but

at a lower critical frequency where domain phase behavior dominates.

Perhaps the most detailed account of rheological study per-

formed on block copolymers is the IUPAC commission study of SBS melt

compiled by Ghijsels and Raadsen. Steady, dynamic, creep and elonga-

tional flows were conducted. The SBS specimen under study consisted

of cylindrical polystyrene domains (18% wt) dispersed in the poly—

butadiene matrix. The effects of pressure, temperature, and time

between measurements on material properties were also tested. Their

results can be summarized as follows.

1. The melt viscosity of the triblock copolymer is much

higher than that of otherwise similar random copolymers

of same composition and molecular weight.

2. The viscosity at low shear is very sensitive to shear

history.

3. In the low shear region, the complex viscosity is as

much as three times higher than the steady-shear

viscosity at equal values of frequency and shear

rate.

4. A residual shear stress depending on previous shear

conditions is observed in shear stress relaxation

experiments.

Similar flow behavior, especially at low shear rates has been

reported by Cogswell and Hansen (1975) with ethylene polypropylene
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copolymer melt and Mundstedt (1981) with ABS graft copolymer

melt.

2.2 Optical Studies
 

Electron microscopy and x-ray difraction have become invalu-

able tools in structure elucidation of block copolymer systems. Since

the method of sample preparation is known to affect rheological

results, a brief review will be outlined on how various workers have

utilized the above techniques to identify factors affecting the mor-

phology property relationships of block copolymers.

Pedemonte et al. (1975a and b) have performed a detailed

study of the dependence of their morphology and stress properties

on the preparation of samples. For Kraton 1101 (SBS with 33%S), they

have compared the original copolymer with films cast from toluene

solution at two different evaporation rates (ca. 20 and 0.5 cm3/h),

compression moulded films, and extruded and extruded-annealed speci—

mens. From annealing studies, it has been concluded that the original

material contains rod-like polystyrene domains. From the comparison

of the electron micrographs and stress-strain curves of both extruded

and extruded-annealed samples, the following conclusions have been

drawn. The high values of the Young modulus are caused by a high

degree of orientation of the polystyrene rods along the extrusion

axis; the yield point is explained by the presence of many disloca-

tions and thin ties which link consecutive cylinders. In the case of

solution cast films, the morphology of samples prepared at a high

evaporation rate does not show any regular arrangement of the
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polystyrene which seem to have a rod-like shape, while for low rates,

a morphology similar to that of'Uwaoriginal annealed samples is

observed. In moulded films, the polystyrene chains form rod—like

domains in a rubber matrix, but no particular orientation of the

cylinders exists. But Lewis and Price used X-ray diffraction and

electron microscopy to compare two Kraton 1101 samples--one, prepared

by compression-moulding and another, a film cast from dilute benzene

solution. They observed an anisotropy of mechanical properties with

the former samples and an isotropy for the latter samples.

Kawai et al. (1968, 1969) have studied films of SI copolymer

of different composition obtained by evaporation of about 5% toluene

solution. Electron micrographs of sections perpendicular to the

film surface have revealed five types of morphology: (1) spheres of

PI randomly distributed in a PS matrix for a PS content of 73 wt%;

(2) cylinders of PI randomly distributed in a PS matrix for a PS

content of 65%; (3) a rather disordered lamellar structure for PS

content of 49% and 43%; (4) cylinders of PS randomly distributed in

a PI matrix for a ps content of 33%; and (5) spheres of PS randomly

distributed in a PI matrix for the PS content of 18%. The authors

have also studied the effect of the nature of the solvent using one

good solvent for polystyrene (MEK) and four good solvents of poly-

isoprene (cyclohexane, CCl3, n-hexane and iso-octane). With the

copolymer in such solvents, electron microscopy has revealed dis-

ordered structures. These results contradict those obtained by slow

evaporation of the solvent (MEK, dimethyl ketone and toluene) from
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mesophase of SI and SIS copolymers (Gallot et al., 1969) of both

lamellar and cylindrical type. A possible explanation of the dis-

ordered structure observed by Kawai would be a too high evaporation

rate fixing the disordered structure in the dilute solution.

Kawai et al. (1968) have also tried to relate the composition

of SIS copolymers to their morphology and mechanical properties.

Polystyrene spheres were found dispersed in a polyisoprene matrix

for a polystyrene content of 9.5%, slightly curved PS rods arranged

nearly parallel in the PI matrix for an S content of 23%, a rather

disordered lamellar structure for a PS content of 47%, PI domains of

various shapes and orientations in a PS matrix for a PS content of

72%. Kawai et al. have also observed a systematic change in the

stress-strain behavior with the copolymer composition, a change rang-

ing from the behavior of a soft rubber vulcanizate to that of a

carbon-filled rubber vulcanizate and finally to that of a hard, but

toughened, plastic exhibiting a well defined yield phenomenon when

the PI content of the copolymer increases.

To explain the existence of three types of domain structures

(spherical, rodlike, and lamellar) in SI, SIS, and 131 block copoly-

mers cast from dilute solution, Kawai et al. (1969, 1977) have assumed

the formation of micellar structures at a critical concentration

during solvent casting. They have proposed an analysis of forma-

tion of three types of domain structure and the size of the domains

taking into account thermodynamic and molecular parameters such as

incompatibility between the PS and PI blocks, total chain length and
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weight fraction composition of the copolymer, solvation of the blocks

and temperature. They conclude that the block segments are preferen-

tially oriented along the direction perpendicular to the interface

between the two phases and they postulate that the micelles formed

at a rather low concentration maintain their structure in the solid

state without reorganization. During evaporation, the micelles

shrink in the direction perpendicular to the interface between the

domains. Spherical micelles shrink isotropically while rodlike and

lamellae micelles shrink anisotropically. In rheological eXperiments

increasing attention to sample preparation and morphological char-

acterization are being given as attested by the works of Kraus and

Rollman, Gouinlock and Porter and Ghijsels and Raadsen.

All these studies tend to illustrate the basic feature of

block copolymers, i.e., the additional complication that arises from

the constraints that restrict the components to separate regions in

space. A more complex picture is further introduced by the geometry

of these domains which may contribute to anisotropic deformation. We

avoid the latter difficulty by choosing a block copolymer with

spherical domains and treat them as elastic barriers.





CHAPTER III

A TRANSIENT NETWORK MODEL FOR POLYMERIC MATERIALS

WITH SPHERICAL MICRODOMAINS

3.1 Objectives
 

0n the basis of rheological experimental observations presented

in the previous chapter, we undertook to formulate and test a kinetic

network model based on network theory for block copolymer melts with

spherical microdomains, incorporating realistic and tractable rate

terms for attachment, and detachment of segments (flexible sub—chain)

and domains. The resulting segment distribution is non-Gaussian so

that a general expression proposed by Yamamoto is required to calcu-

late the macroscopic stress. In the following chapters, this model

will be tested fortufiaxial extensional, simple shear, and oscillatory

flows in both steady and unsteady conditions. Next rheometric data

shall be presented on a well characterized diblock copolymer sample

--poly(styrene-b-butadiene) whose morphological structure is known

and the material functions will be compared with model results.

3.2 The Rate Terms
 

Figure 3.1 depicts spherical, rubbery domains uniformly dis—

tributed in a soft, continuous phase. The position p-is referred to

a fixed origin while the position_r is referred to the end of a seg-

ment which may or may not be at a domain; R_denotes the nondimensional

32
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Figure 3.1.--A polymer network with rubbery domains.
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position r/Nl where Nl is the extended length of the segment with N

subunits. An active network segment in this representation is a

flexible strand bridging rubbery domains and/or entanglement junctions

in the soft phase. A segment distribution function f(R,N,t) may be

defined such that fdiR is the number of elastic segments in the

network with an end to end vector in the range R toIR + dB at time

t and composed of N subunits. This function obeys the evolution

equation of Yamamoto

31;— + v - (_R_f) = 6(3.N) - B(B..N)f (3.1)

where G(R,N) and B(R, N) denote the rate of creation and the coeffi-

cient of destruction of segments with N subunits; R_denotes the

velocity of such segments which may be expressed following Phan-Thien

and Tanner as

B=( I
l
l
"
—

- a9) '5 (3.2)

where E is the velocity gradient and Q the deformation rate tensor in

the fluid; E is a slip coefficient.

A flexible segment in this representation may be constrained by

impenetrable barriers at one or both of its ends, as in a diblock or

triblock copolymer melt. Hesselink (1971), Napper et al. (1975), and

Edwards and Dolan (1975) have derived one dimensional equilibrium dis-

tribution functions for such segments, taking the presence of these

barriers into account by imposing the boundary condition
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r = 0,11) = o (3.3)

at the domain boundary. With spherical domains, the spherically

symmetric form satisfying Equation (3.3) proposed by Chompff may be

used.

T-- a2 —- 3 r2
fe (r,N) m exp exp - §-——— (3-4)

~ rZ/Nt2 N22

This distribution is originally attributed to Reiss (1967) and

 

Yamakawa (1968) who proposed a general expression for the total

potential energy, E, of the configuration of a free polymer chain as

N 1

E = 2 u

v=1

1
. . +-—Z V (r..) (3.5)

1,1+1 21¢j 13

Here the monomers constituting the chain are treated as hard spheres

distinguishable by their positions in the sequence constituting the

polymer and are held 1n place by ass1gned potentials ui,i+1(ri,i+1)‘

The spherically symmetric interaction potential between monomer i

and monomer j is represented by V(rij) where rij is the distance

between the centers of monomers i and j and N represents the number

of monomers in the polymer. The configurational partition function

for a polymer molecule whose first monomer (segment) is fixed with

its center at the origin assumes the form

Z = J . . . J exp (- E/kT)dtzdt3 . . . dtN (3.6)
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where (he, dT3, etc. are the volume elements for the second and third

segments, etc. The integrals extend over all space. The configura-

tional partition function for a polymer molecule whose Nth segment

has its center fixed a distance r away from the fixed first segment

assumes the form

Z(R) = J . . . J exp (~E/kT) die, dT3 . . . dTN_1 (3.7)

where in the integration it is understood that the first and last

segments are a distance r apart.

The authors then calculated for the configuration probability

of a free chain in which one end is fixed and is constrained so as

to decouple the many body problems. This can be represented as

 

2
- <1

P ~ eXP ( 23:2) 9(1) (Jig-l) (3.8)

Here the function ¢N(r) represents a spherically symmetric external

field (centered on the first segment to which the Nth segment is

subject and clearly depends on rN' The spherically symmetric form of

¢N(r) of Equation (3.4) adopted by Chompff predicted very well the

stress-strain relationship of rubber vulcanizates at high extensions.

For block copolymer systems, the parameter "a" in Equation (3.4)

describes the range of repulsion between continuous elastic segments

and the domain to which they are attached. If the number of segments

attached to a domain is small so that the range of repulsion between

segments is less than the maximum end-to-end distance of the segment,
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a < 1. The creation rate expression G chosen in this study is pat-

terned on Equation (3.4) and written as

 

23 3/2 2 2

e (13,11) = c Egg—(3%) exp[- i}; - 3N2R] (3.5)

where C is a constant rate coefficient. The symbols r and R denote

magnitudes of the vectors 3 and 3 respectively. The shape of the

distribution in Equation (3.5) is shown for several values of a in

Figure 3.2. With increasing a, the peak shifts to higher values of

R, i.e., the end-to-end distance of most probable segment is

increased. From the previous discussions, the repulsion coefficient

"a" is an inverse function of temperature. The applicable region

of temperature for G is T < T f-Tt where T and Tt are the block

9 . 9

copolymer glass transition temperature and transition temperature to

a single phase respectively. Here "a" has a range of 1 < a_: 0.

A consistent expression for the rate coefficient of destruc-

tion 8 is obtained from the relation

8 (R,N) = Bo[1+€(A(R,N) - A(O’N))/kT] (3 6)
N

where the leading term is the contribution from Browian motion and

the second term is associated with the change in entropic free energy

A of a segment in the network by flow and repulsive interaction.

(Acierno et al., 1976). Writing the configurational partition func-

tion Z in accord with Equation (3.4) as

r'

Z (R,N) = K0 exp L:-% NR2-a2/NR{] (3.7)
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and using

A = -kT an (3.8)

where kT is the Boltzmann's temperature, we obtain

2 2

B(R.N) = 3.0 +13%— + EL) (3.9)
NR2

The rate of destruction is Bf so that at R = 0, Bf = 0, since f is

an exponential function of 1/R2 while B is a polynonnal of l/RZ.

Thus the rate expression is well behaved. The initial distribution

of segments is given by

f(B.N,t=0) = G(R,N)/B(BJN) (3.10)

The moment integrals are considerably simplified if it is assumed

following Fuller and Leal. that 8 << 1 so that

f(B,N,t=0) 3 G(R,N)/Bo (3.10a)

with e << 1 and a < I, the third term in equation (3.9) is clearly much

smaller than the other terms.

The rate expressions outlined here should be appropriate for a

block copolymer or a filled polymer melt containing spherical domains

or particles with low surface denSity of segments and high interpene-

tration in the continuous polymer phase. The elastic free energy of

the network is largely in the flexible segments of the continuous

phase.



 



40

3.3 The Macroscopic Stress Tensor
 

As already mentioned in the preceding section, the rate

expressions chosen here will lead to a non-Gaussian segment distribu-

tion f; so a general equation of Yamamoto is used to find the macro-

scopic stress S in the network

_ 1 91: (BM
2 - 'p dR .BBf(B)N9t)dR (3-11)

OY‘

_ 1 51/1 (BMBB.
é - < R dR , (3.11a)

Combining (3.7), (3.8), and (3.11a) yields

§ = 3NKT <.BB.- 2a.BB. > (3.12)

3N2R“

The validity of this model is examined in the following two chapters

with detailed stress calculations for uniaxial extensional, simple

steady shear and oscillatory shear flows.

 





CHAPTER IV

PREDICTED STRESS BEHAVIOR IN EXTENSIONAL FLOWS

4.1 Uniaxial Steady Extensional Flow

The kinematics of this flow are described by

V1=TxaV2=-%y:V3=-%Z (4.1)

where F is the magnitude of the strain rate. The steady deformational

rate tensor ;* is given by

g=r 0 -% 0' (4.2)

0 0 -._J

where T is the magnitude of the effective strain rate experienced by

the network I = T (I-E). Since L* is a diagonal tensor independent of

R, segment evolution equation of (3.1) becomes

A

.81“: .211.at ia: 2
3y 2 32

+Fx
_ __i.
at 8x 2

G(R,N) - B(E,N)f (4.3)

This hyperbolic first order partial differential equation has three

characteristic lines as shown:

x = x0 exp (It)

_ i
y - yo eXD (- 2t) (4 4)

_ I:
z - 20 exp (- 2 t)

41
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Using the macroscopic equation of stress, (3.12), the primary normal

stress difference N1 in uniaxial extension then turns out to be

: _ _ 2 - 2&2 2 2a2 .

N1 ‘ Sxx Syy ' 3N“ L< X (13N2R‘*)>’ < y (1' ‘31??er (4'5)

The two moment integrals in (4.5) may be evaluated using transforma-

tions described in Appendix A, similar to those employed by Fuller and

Leal. Defining non-dimensional time, strain rate and elapsed time

T = Bot; T = T/Bo t'==BO(t-t') (4.6)

we may write

n kT T 1

N.(T’ = 132a 1 [11(1) - I.<r>1e'T + ) e‘T [11(1') - 12(1')]d1'} (4.7)

 

where no E C/Bo; and 11, 12 are integrals over space in spherical polar

coordinates as noted in Appendix A. The integration over one of the

angular coordinates, w is carried out numerically, avoiding a singu-

larity at p = n/Z with a generalized Gauss-Legendre quadrature formula

of Krylov (1962), for 12.

4.2 Results
 

4.2.1 Steady State Stress
 

At steady state equation (4.7) reduces to

nokT .

N1 = TIE—a— emT (Il-Iz)dT' (4.8)
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Both 11 and 12 depend on the two parameters a and e. If both a and e

are set to zero, Lodge's rubber like liquid model is recovered. With

a alone set to zero, equation (4.8) may be written with a damping

function h(I,T)and a strain measure B(T,t) in the form proposed by

Wagner (1979a)

N1 = noKT [de' e-Tl h(T,t) B(i,t') (a=0) (4.9)

0

with

h(I,T'_)3 (1 +5; (1-e'."T'))‘2 (1+ f1: (e2fT|-1))-3/2 (4.10)

and

B(I,t')E erT' - e-fT| +-§: (2e2le + e'fT' - 3) (4.11)

Such a factorization is not possible for the case where both a and

e are nonzero, and the distribution is non-Gaussian.

The normal stress difference N1 may be scaled with nokT--a

shear modulus--t0 compute a dimensionless elongational viscosity at

steady state

* Nl/nokT N1/?

=
(4.12) 

fit: I 00

Figure (4.1) presents a comparison of elongational viscosity plots

againststrain rate calculated with a fixed value of e = .01 and several
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values of “a." With a = 0, the elongational viscosity levels off

around a dimensionless strain rate of 0.1 to a value of 3--the Trouton

ratio between the low strain rate values of extensional and shear vis-

cosities. As the value of a is increased, an upturn in viscosity is

noted in the lower range of strain rates; an apparent yield stress

may be identified at the lower strain rates on each of the plots with

a f 0. It is worthwhile to point out here that in the limit of zero

strain rate, N1 is zero and the elongational viscosity is finite; this

must be true of kinetic network models such as the one discussed in

this work. An analytical expression may be obtained for the apparent

yield stress at low strain rates by simplifying equation (4.8) for

 

i << 1.

Ny 4 a 5 ° '

nokT = §1+2a (1+ 2 8) (F << 1,1” 1' 0) (4.13)

It is readily seen from equation (4.13) that with 6 << I, the apparent

yield stress is much more sensitive to the parameter a. Recalling

that the value of a is directly related to the range of expulsion

between segments attached to a domain, this relationship between the

apparent yield stress and the parameter a is reasonable. The signifi-

cance of this parameter is further illustrated with the elongational

viscosity data reported by Munstedt (1981) on ABS block copolymers at

190°C with various concentrations of butadiene, the rubbery component.

The apparent yield stress NY from the data is tabulated against rubber

concentration in Table 4.1 along with the non-dimensional yield stress
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Table 4.1.--Model parameter ”a" from data of Munstedt

 

 

% Butadiene Observed Yield Stress N /G*- Estimated

in ABS NY (Pa) Y 0 a

20 2.0 x 103 .004 .005

30 5.0 x 103 .010 .013

43 1.5 x 104 .030 .038

 

*G0 Plateau Storage Modulus of 0% Butadiene in ABS.

and the corresponding values of the parameter storage modulus obtained

5 Pa. This table showsfrom Figure 20 of Munstedt's paper as 5 x 10

that increasing rubber concentration in the copolymer is described

by increasing values of a in the present model, so that the segment

distribution is increasingly non-Gaussian with higher concentrations

of the rubbery domains.

The effect of the other parameter e is more noticeable in the

peak elongational viscosity attained at dimensionless strain rates of

order 1. This peak is lowered and moved to lower strain rates with

increasing values of e, as shown in Figure 4.2, where plots of elonga-

tional viscosity are presented with a fixed at 0.05, but with several

values of c. This trend is understandable since 6 is a measure of the

dependencecfi function destruction cu) the deformation. Data are not

available on peak elongational viscosities for block copolymers to

verify this trend or allow a quantitative comparison. The effect of

a on the peak value is only slight; increasing a leads to a small reduc-

tion in this value as seen in Figure 4.1.
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4.2.2 Stress Transients
 

The development of stress in experiments with a sudden step

in elongational strain rate, T may be predicted with the help of

equation (407') at several values of F.. The results are plotted in

a ratio N1(T)/nokTT against T in Figures 4.3—4.5. In Figure 4.3

a is set to zero and at I = 1 and i = 10, increasing 8 leads to reduced

overshoot. Figure 4.4 presents the transient elongational viscosity

at F = 0.1 with e = 0.01 and several values of a. As a is increased,

the trnasient viscosity is increased at all times. At T = 1, however,

as shown in Figure 4.5, the transient elongational viscosity curve

changes only slightly as a is increased. The data of Lobe and White

(1979) on carbon black filled polystyrene melts at 170°C (see Figures

5-7 of their paper) show similar trends with concentration of filler

at low elongation rates of 0.0063 sec-1 and 0.02 sec-1, increasing

carbon black content leads to higher transient elongational viscosity

at all times. Once again, the value of a in the present model corre-

lates directly with the concentration of filler in the material.





49

 

100 I

c =.005

E =.OOS

'01 .01

10 ~

0’”

  .1 1

.1 1 8

T

 

Figure 4.3.--Normalized transient extensional viscosity vs.

dimensionless time as a function of strain

rate. Effect of the destruction parameter

c with a = 0.
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Figure 4.4.--Normalized transient viscosity vs. dimensionless time

as a function of strain rate. Effect of the repul-
sion parameter "a," with F = 0.l and e = 0.01.
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Figure 4.5.--Normalized transient viscosity vs. dimension—

less time. Effect of the repulsion parameter

"a" with F = 1 and e = 0.1.



 



CHAPTER V

PREDICTED STRESS BEHAVIOR IN SIMPLE SHEAR FLOWS

5.1 Simple Steady Shear
 

In uniaxial steady shear flows, the effective deformation rate

tensor is given by

 

0 2.:

g = 324 «a 0 0 (51)

_0 0 0) 

where y is the magnitude of steady shear rate. For convenience, this

1
tensor is diagonalized‘ by introducing a tensor T such that T- L*T = V

Where V is a diagonal and

1— . é. . _% .—

-1(2-E) 1(2-5) O

.1

: /7TT:§T

O O O

L _  

Next a coordinate transformation leads to a new frame 5 = p(p,n,z)

such that R = T - p. The diagonalized tensor V is composed of the
~

eigen values of the tensor L* and expressed as

52
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r1 0 0—

v = 12"1 0 -1 0 (5.3)

0 0 OJ

where

~ ° 4 .

m = Y[g(2'€)] s 1 : H0

The evolution equation for segment distribution becomes

.81 ~ at _ ~ .31 = " _ A3t+'mqg- min—8.71 GWJU BQJHf (54)

where

6(9):) = (sq-9,11) (s 5)

B (p,N) = B(I-Q,N) (5 6)

In terms of the transformed coordinates

T

“=0 I'I'B (57)

R = x + y + z = p2 - 2an + n2 + 22
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The characteristic lines for Equation 5.4 in terms of p(p,n,z)

coordinates are

= poe1mt/2

-imt/2
n hoe

z = 20 (5.8)

Applying the macroscopic equation of stress given in (3.12) for

a non—Gaussian segment distribution function f, tangential and first

normal stress difference relations can be generated in terms of

moments in cartesian coordinates as

S = 3NKT < (1 - Z§E__ ) x > (5 9)
xy 3N2R4 y '

I _ = 2 _ 2 _ 22 2 4
N1 _ Sxx Syy 3NkT [<(x y ) (1 Za/3N R )>] (5.10)

Necessary cartesian components of the stress tensor can be evaluated

from the transformed coordinates f(p, n, 2) using the expression

xx = 9 . IT(1 . 9) (5.11)

The cartesian moments are related to the moments of the transformed

frame by the multiplicative factor, det(T) and these are expressed

as:

fil__§ ‘E 2_. 2
<xy> -§§ 2 (p n > (5.12)

(1-5)

 



 



<X - y > ='——-——;§ <0 - 2(1-€)on + 02 > (5-13)

Moment integrals in transformed coordinates are solved in Appendix B,

first by evaluating Equation (5.4) through the use of transformations

prescribed by Fuller and Leal.

5.2 Results
 

Results of steady state dimensionless viscosity (gxy/i) and

first dimensionless normal stress difference, N1 obtainable from

Equations (5.9) and (5.10) can best be discussed with and without

"8" equal to zero.

With "a" equal to zero, a case where the initial distribu-

tion of segments is Gaussian the steady shear viscosity and the

first normal stress difference are obtainable from Equations (5.19)

and (5.10) as:

oo

 

 

 

s _. _ -T' dT'(Slan' - E(cosmt' - 1))

5(1) = J 2 2 e m 2 1 3 2 (5.13)
- _ +
Y (1 g) 0 (1+2—rE-fis'inm'f' - 2%— (COSTllT'-1) ' (1%)2) /

m

~ A 2 GD_T. dT'(-§(2-€))%(1+ET' - cosmt' - e/m Sin mt')

”1(i) = 1-g e 28 252 1+5t' 2 3/2 (5'14)
(1+_fi sin mt' - 2 (cosmt'-1) - (szf—) )

o m

Here n and N1 are defined as
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- 5x /1
n5

NOkT/B0

1 N1
N :

1 ‘ nokT

where 5 E y/eo is the dimensionless shear rate, n0 is the initial

concentration of network segments and 1' denotes the dimensionless

elasped time, 80(t-t').

Further, if e is set to zero in Equations (5.14 and 5.15),

viscometric material functions similar to those of the Phan-Thien

and Tanner model, [see Equations (30) and (31) of Phan-Thien and

Tanner, 1978] result

 

 

a = (1'5) ~7~ (5.16)

1 + €(2-€)Y

NI = 311‘5)i s,_. (5.17)

1 + 5(2-€)i

The non-linear dependence of shear viscosity on shear rate in most

polymeric systems is accounted for in this model through the slip

mechanism, E. In Figure 5.1, the effect of the destruction coeffi-

cient c on dimensionless viscosity is presented as a result of com-

puting (5.13) using a 40-point Simpson's composite formula. This

result shows that "5" does not affect the trends in viscosity vs.

shear rate, but merely changes the scaling factor, nOkT/BO. Similar
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conclusions have been arrived at by Phan-Thien and Tanner as well

as Fuller and Leal. Since the value of e affects only the scaling

factor, subsequent curves of viscosity are plotted only for e < 0.01

so that nokT/B0 coincides with the zero shear rate viscosity.

For the non-Gaussian model (a f 0), steady shear viscosity

and first normal stress difference expressions are derived from

Equations (5.9) and (5.10) as

 

 

 

~(i) = (eza ))(-g(2- i e-T'(-h(: ') B (7 ")I) Y 1+Za L (1-€)2'? YsT 10 YsT

0

66:62 7 T
+'*_—_2hl(Y’T') 811(y,t'))dt'} (5.18)

m(l-E)

where

118,10 . (82-5)): 3/2

(1 + 2 E-s'n ' - 282 (cosm '-l) - (1+ETRZ)' m l 1111' -—m—2' T 1‘15 )

810(i,t') = sinmt' --% (cosmt'-1)

811(i,t') = 1 -E(2-E) cosmt' - (1—E)2coszmt' - mt'sinmt'

~ 1

l 2 1~l

(1+2fi'5ian' - 2E(cosmt'-1) - (ifETY32C(y,T')

 

 

3
»
)



 



  

 

 

  

41(1) (£3 )Tiit) dt'e- (14%,. ) 3208,. ) + a. a2

O

x (1-5)h1(i.w)821(i.r')) (5.19)

where

B20(i,1') = 1 - cosmt' --% (sinmt' + mr')

B21(i,t') = E:f:?§ -t' - sinmt'( (I-E)3 + (COSTEé-ll - 1)

The second term in (5.19) is an additional contribution to the

stress level of newly formed chains with respect to the degree of

their repulsion from the domains. Again using a 40-point Simpson's

composite formula Equations (5.18) and (5.19) are computed. In

Figures 5.2 and 5.3, the viscosity and first normal stress difference

are presented with e = 0.005 and various values of "a." For a i 0

Figure 5.2 shows an apparent yield stress and a quick decay of

viscosity to a "plateau" at dimensionless shear rates of order

.01. At large shear rates the model then yields the power law

behavior. The general shape of the curves in Figure 5.2
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are in good agreement with flow curves of block copolymer melts and

even with those of triblock melts. There is sharper upturn of shear

viscosity at low 5 with increasing "a” and experimentally a sharp

upturn of shear viscosity is also noted at higher fractions of the

domain phase. Thus "a" correlates directly with the concentration

of the domain phase. The upturn in shear viscosity results is not

as drastic as those shown in the extensional flows. This is

FT forattributed to functions controlling their strain measure e

extensional flows and sin mt' for shear flows. The effect of the

slip factor as shown in Figure 5.3 is to change the power law

behavior of the material that occurs at large deformation rates. The

model does not predict any new trend in first normal stress differ-

ence except a slight increase in magnitude at all shear rates, as

compared with the Gaussian model. The large difference with high

slip ratios at large shear rates (see Figure 5.3) are predicted even

with a = 0. The trend in normal stress-shear rate relationship pre-

dicted by the model awaits further evaluation by experimental data.

However, literature is devoid of such data for block copolymers

mainly due to general difficulty in collecting reliable normal

stress data in conventional rheometers. The normal stresses of all

melts of high M.W. is difficult to measure due to the compliance of

the instrument at high shear rates. Such problems encountered also

in this study will be discussed in the experimental section. From

the results of extensional and shear flows, the contribution of the

non-Gaussian nature of chains occurs at small chain extensions. It
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Figure 5.4.—-Normalized transient viscosity function. Effect

of the repulsion parameter a, e = 0.005, E = 0.05.
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Figure 5.6.--Normalized transient first normal stress difference

function a = 0.0, e = 0.005, E = 0.05.



 



66

is worthwhile to emphasize here that the ensuing newtwork model is

mainly applicable to the low deformation region.

Transient stresses are computed by using time dependent

moments as developed in Equation (B.9) in the stress expressions of

equations (5.9) and (5.10). The results are plotted as fi+ (T) and

N1+ (T) vs. dimensionless time T in Figure 5.4 to 5.6. Figure 5.4

shows the shear growth viscosity at low shear rate as a function of

time. The magnitude of this material function increases strongly as

the parameter “a" increases, growing monotonically with time until

it reaches the steady state value. In contrast to the IUPAC data

on SBS melts, no stress overshoot is predicted by the model until

shear rates of the order 1 as shown in Figure 5.6. In these data

1
stress overshoot was noticed at shear rates as low as 0.01 s' . The

strain at stress peak, it has average value of 3 at i ~ 0(1) and
max

increases linearily to 6 for instance at y = 30. As E approaches

0.2, itmax stays fairly constant at 3. Many workers, Osaki et al.

(1967), Graessley et al. (1977) have correlated this data to the

total strain on the material. An experimental value of ytmax = 3

have been reported by the former researchers on homopolymeric melts.

Regardless of the value of a, the stress growth curve predicted is

oscillatory when the slip ratio E > 0.1. More recent experiments

(Osaki et al.) have discountenanced the presence of the undershoot

after an initial overshoot.
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5.3 Oscillatory Shear Flow
 

In oscillatory shearing, L* is given by

 

F 0 2-.: 0"
Y

L* = EQ'COSwt -E 0 0 (5.20)

L 0 0 OJ
 

vmerey = wyo

and w is the frequency of oscillation and yois the strain amplitude.

Exactly the same coordinate transformation used for steady

shear flows is applied here to obtain the specific evolution equation

as

3f 170 3f 1m ST A A-5— +-—§— (coswt)(p 56) - —§9-(coswt) (n 55) = G(R,N) - 8(83N) (5~21)

where

m0 = wyO/EiZ-E)

We next make a domain transformation in the independent variable t to

u such that u = sinwt to obtain the characteristic lines as shown in

(5.21) . This simplifies the computation of f as described in

Appendix C.

p = p e1mOu/w

0

4m u/w
- o

n oe

z = z (5.22)
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An oscillatory shear stress can be obtained through the macroscopic

stress equation of (3.12) in terms of moments in the cartesian

coordinate as

S = 3NKT < (1 --—g§E——) x > (5 23)
xy 3N2R4 y '

We note the velocity gradient is varying sinusoidally with time;

hence, the shear stress varies sinusoidally after transients have

died down and may be represented as

_ iwt
SXy — Re (Soe } (5.24)

where S0 is in general a complex functionoFOr small strain amplitudes

a strain independent complex viscosity n*(w) may be defined as the

limit

Tim In* (w,y )1= lim S /wv =|n*(w)! (5'25)+0 0 +0 0 0

YO YO

where

0*(w) = n'(w) - 10"(0)

The real part of the complex viscosity, n' (the dynamic viscosity) is

associated with energy dissipation and the imaginary part n",

wn" = G' is associated with energy storage; these are the so-called

linear Viscoelastic moduli and are related to the oscillatory

shear stress by
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Sxy = n ygoswt + n Yo $1nwt (5.26)

Upon computing the moment integrals encountered in

equation (5.22) as shown in Appendix C, we obtain the following

 

expressions.

~ 26.
_ 1

n'(O,YO) = 1+2a (:-:) dT'e T [00(03T')BO(O.T')

o

+ 6a2h1(&,vo.t') 81(@.t')] (5.27)

n“(' ) = 92a 12:§l_. dt'e'T' h (a t') B (O t') +
“’Yo 1+2a (1_€)2 __o ’ 2 ’

O

6a2h1(03,y0,t') 83(J1,t'):) (5.28)

where

0 = 41/80 0 =Bon /nOKT n =Bon /n0kT

1-(Hanflutfi
2 2 . ~ . 2

1 _ (1+ET'22 + 482 (DT'(1-%?) +‘%?'S1an )

2 2~

(I-E) mowz

C (0?) ,YO’TI):
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BO(&,1') = I-cosfit' +-§—(Dt' - sinBT')

w

_1_

h1(61,Y :1") = (‘512-§))2 2

0 C(0,1')%(l + 01'(2-m0) + mg sin 01')

Bl (&,t') = (Qt' cosot' - Sinmt')(1+ gELL—2)

(l-E)

82(&,t') = Sinmt' +-% (1 - cosot')

0
0

U
.
) A 8
2

v ,
_
1

1
3

I
I

(l-(BT'SinLTHf' - cosoi')(1+ Ell—2)

(1—5)

Equations (5.26 and 5.27) involve m0 = yo/ET2:E) in their

second term making fi' and fi" dependent on the strain amplitude.

However, numerical analysis of these function at Yo < 0.1 showed no

significant difference from the linear results. In this region

then, it is assumed the linear response applies and thus compute the

complex viscosity function as

|fi*(0.io)|§lfi*(0)l = (5'<a)2 + 5"<5)2)

Figure 5.7 shows the result of numerical integration for the

dimensionless dynamic viscosity. 0‘ and dimensionless complex vis-

cosity, |n*| as functions of dimensionless frequency. For the sake

of comparison, this figure also shows the normalized steady shear

viscosity which was calculated in Section 5.2 using the same para-

meters, 8, E, and a. This is to see how well the empirical Cox—Merz
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rule(which states that m(y) is equal to |n*(w))&»§)works in this

constitutive equation. At low dimensionless frequencies, i.e.,

a < .001, the complex viscosity is a constant and decays slowly with

the shear rate. However, beyond this value the complex viscosity

curve is higher than the steady viscosity curve. This deviation

from the Cox-Merz rule is consistent with the data on the SBS block

copolymer melt (Ghijsels and Raadsen). However, the SBS data did

now show clearly a zero frequency limit or a crossover point both of

which are seen in Figure 5.7,, but this trend appears to be the case

if more data were collected at the lower shear rate end. In the

diblock copolymer data of this study, the leveling off of |n*| is

inferred at about 9 = 10'3sec'1. The experimental results, as well

as the model (extension-dependent type) calculations portray the

junction density (including segments) as being more responsive to

£9331 strain in copolymers than to strain rate. In homopolymers, the

response in both oscillatory and steady shear modes is dependent on

the rate of strain and thus occurs over a larger range. These results

yield |n*|/(n) ~ 2 as compared with a value of 4 for the SBS data

(Ghijsels and Raadsen), pointing out model applicability with weaker

block copolymer networks such as diblocks. Comparison of model

results with data of an SB diblock shall be deferred to the Discussion

chapter.

The model results for stress relaxation after cessation

in shear are not given because they are not substantially different

from those of linear viscoelasticity. In any case since there is no
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flow (i.e., y = 0). this can easily be computed with the explicit

distribution function given as

e‘8(psnaz:N)t

f(p.n.z.t) = f0(0.n.z)

A _B(Dan,Z:N)t

+ 9(030525N) (1'9 ) (5.29)
 

B(p.n.z.N)



 



CHAPTER VI

SAMPLE CHARACTERIZATION AND EXPERIMENTAL TECHNIQUES

6.1 Material and Sample Preparation
 

The block copolymer employed in this investigation was a

research grade poly(styrene-b-butadiene), C0326-9 (containing a small

amount of an antioxidant, Ionox)generously provided to us by Dr. Lu

Ho Tung of the Dow Chemical Company. Characterization information

for this copolymer is provided in Tables 6.1 and 6.2.

Approximately 0.2 cm thick copolymer films were prepared for

both rheological and morphological studies by the solvent casting

technique (Hashimoto et al., 1977). Thin films of the copolymer

were made by dissolving 20 gms of copolymer in 100 ml of toluene and

the solution transferred to 10 cm Petri dishes. These solutions were

then placed in a vacuum oven kept at 30°C with all port outlets

closed except one connected through a valve regulator to a hood

chamber to insure slow evaporation. The oven was periodically flushed

with nitrogen to prevent the oxidation of unsaturated bonds in the

butadiene phase. After the films were visibly dry a procedure requir-

ing five days, they were further vacuum dried at 80°C. It was

assumed that adequate drying was achieved when the decrease in weight

of the sample varied by no more than 0.005 gm. Again to prevent

sample degradation during weighing, the vacuum oven temperature was

74
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TABLE 6.1.--Block copolymer characterization

 

 

 

 

 

 

 

 

Specimen T B 81°Ck 5 Block

Code ype -fi -fi -fi Wt. Percent — -— -—

N w/ N B Block “N Mw/MN

C0326'9 (S'B)1 10,000 -1.1 5.9 232,000 ~l.7

TABLE 6.2.--Property of glassy continuous phase

Molecular Weight SolubilitybParameter Glass
1 . .

Structure Between Entanglement (Cal/cm3)2 nggzigion

C ture °C

Polystyrene 33,000 (8.1) .05C 1008

aValue derived from Newtonian Viscosity data of linear polymer

(Berry and Fox, 1968).

bHashimoto. et al., (1974).

CSolubility parameter difference between PS and PB.

dKraus and Rollman.

Note: Polybutadiene Tg ~ -90°C

Block copolymer - liquid above 100°C.
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decreased to 25°C and the sample allowed to cool in vacuum. There-

after, the oven was brought to atmospheric pressure with the nitrogen

flush. This procedure was repeated until the constant weight was

achieved. The sample was further annealed at 110°C for 24 hours. The

film samples were then placed in a vacuum dessicator and a representa—

tive sample was used for structure elucidation by electron micro-

scopy.

6.2 Electron Microscopy
 

The domain structure of the film specimen was investigated

by transmission microscopy in a Philips 201 electron microscope

operated by K. Baker of Pesticide Research Center, M.S.U. After

embedding in a Spurr resin, the film was presectioned, stained, and

fixed with Osmium tetroxide, 0s04. The specimens placed on a support

were allowed to stand forabout half an hour at room temperature over

a 2% aqueous solution ofOsO4 stabilized with a Sorensen phosphate

buffer, in a small, tightly closed glass vessel. The stained films

were then cooled with liquid nitrogen to approximately -150°C and

cut on a Sorvall Porter-Blum, MT-2 Ultramicrotome with a diamond

knife. Ultra thin sections of about 800% thick were cut normal to

the film surface by the Ultramicrotome. FigurestL1.and 2 show some

of the typical electron micrographs of the butadiene-styrene block

copolymer at different magnifications.

6.3 Morphology
 

The dark areas of Figure 6.1 are the polybutadiene phase

selectivity stained by 0504 while the white portion is the polystyrene
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Figure 6.1.--Typical EM micrograph of ultra-thin section of

poly(styrene-b-butadiene)
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Figure 6.2.--Typica1 EM micrograph of ultra-thin sections of

poly(styrene-b-butadiene) specimen at x 150,000.
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phase. The absence of spherical bundles or lamellae structure indi-

cates only spherical microdomain structure of polybutadiene uniformly

dispersed in a matrix of polystyrene blocks present in the copolymer

specimen. The spherical domains have an average diameter of 3503

and an average interdomain distance of 500;. The thickness of the

domain boundary interphase, AR directly related to the degree of

compatibility of the blocks is indeterminable by electron microscopy,

but are known to be significant for low to moderate M.W. copolymers

such as this specimen (Leary and Williams, 1970; Krauss and Rollman,

1976). Hashimoto et al. using SAXS studies have reported AR values

for S—I samples showing an overall independence of AR on M.W. of

their samples. On the basis of a fair agreement of micrograph of

Figure (5.1 with those of Hashimoto's (1977) and a similar order of

rubber block weight fraction it is inferred that a thick domain-

boundary interphase exists in this sample.

It can be concluded, therefore, that the structure of this

particular block copolymer conforms to assumptions in theory of

spherically symmetric rubbery domains wiflilow surface coverage

uniformly dispersed in a thermoplastic matrix.

6.4 The Modified Weissenberg Rheogoniometer

The steady, dynamic, and transient material functions such

as shear viscosity, transient, and relaxation stresses and dynamic

Viscoelastic functions were measured over a range of shear rates,

frequencies, and time with a modified Weissenberg Rheogoniometer, NRG

(Model R-16). The modification involved the removal of the axial
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force servo system and the LVDT transducers and replaced by a dynamic

piezoelectric load cell and a charge amplifier. This, along with the

utilization of a stiff torsion bar (KT = 5.8492 x 105 dyn cm/.001“

deflection)similar to those employed by Meissner (1972) were made to

increase axial and torsional stiffness and thereby diminish unwanted

motion in the platen assembly especially during dynamic and Stress

growth measurements.

Figure 6.3 is a schematic of the internal structure of the NRG.

A detailed description and operating procedure will not be given here

as they have been reported by various authors and more recently by

Cross (1983) on the MRG used in this study. A torque in the torque

bar is measured with a linear variable displacement transducer, LVDT.

The output voltage is sent through an amplification and low frequency

filter units and is recorded on the torsion transducer meter. In

event that stress histories are required, the filtered output voltage

are recorded with a Honeywell Visicorder that records transient events

on photographic paper. An additional clam-shell electric oven was

constructed for this equipment to accommodate a Mooney platen of

Diameter, D = 10 cm

Two types of plate arrangements were utilized in this study

are shown in Figure 6.4.

1. The cone—and-plate platen with cone angles of

60 = .552° and 1.982° and D = 7.5 cm and 5 cm

respectively.

2. Combined cylindrical and cone and plate platen (Mooney)

with 60 - 0.933 Outer Cylinder diameter, 00 = 10.0l cm,
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Figure 6.3.--weissenberg Rheogoniometer internal
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inner cylinder diameter Di = 9.8195 cm. and cylinder

height = 2.533cm.

Here, the inner cylinder is formed of a conical platen at the bottom

and cylindrical side, the diameter of which is accurately machined to

allow a radial gap equal to the gap at the edge of the cone and plate

of the platen. This ensures a uniform rate of shear throughout the

sample.

Values for steady and transient shear stresses can be calcu-

lated from the torque in this arrangement by noting that for

"Couette" cylindrical platens, the tangential shear stresses arising

in the gap is given by

For coneJand-plate

3.9:
xy 2N8

 S (6.2)

where R is the platen radius, h the cylindrical height, and 82 and 9a

are the torques developed in "Couette" cylindrical and cone-and—plate

platens respectively. Since the shear rate is uniform throughout the

gap

The total torque = 2(1 + 6h/D) (6.3)

The cone-and-plate platens were utilized to collect steady shear and

transient shear stress data with a steady shear rate range of 0.005
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sec'1 to 0.1 sec—1 at 130°C or lower. At 150°C the range improved to

i :_0.3 sec-1. Beyond these shear rates ranges shear instabilities

were noticed and this will be discussed fully in the experimental

section. The Mooney platen was useful in extending shear viscosity

data up to y = 3 sec-1. Beyond this an associated error of 9-12%

was noted in the viscosity of the calibration fluid (ASTM standard) of

n(T = 25°C) = 742.1 poise. This error is attributed to inertial

effects and non-uniform shear regime in the gap commonly associated

to large size platens performing at large shear rates (Walters, 1970).

Due to the limitation of the amount of sample tested with the Mooney

platen were limited to the range 0.1 < i < 3 sec-1.

The transient and steady first normal stress difference are

important material functions normally collected with the MRG. The

transient normal stress data of various polymeric melts manifests

strong overshoots and sometimes double peaks (Huang, 1976) before

attaining a steady state with time. Unfortunately, at the time of

this study, the WRG was equipped with a dynamic piezoelectric load

cell that registers transient events, but returns to the null state

when the steady state is attained. In the light of these no reliable

normal force data were collected for the sample. In this work signals

from the piezoelectric load cell were displayed on an oscilloscope and

utilized in attaining the exact required gap separation distance beween

the platens. This was especially useful when using the Mooney platen

since it is impossible to see the inner cylinder just touching the

outer cup for gap setting purposes.
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6.5 Sample Loading and Temperature Control

In measuring the material functions of SB block copolymer melt,

the residence time of the material should be kept very short in order

to minimize oxidative reaction in'Uuapolybutadiene phase. On the

other hand, due to the long relaxation times of polymer melts, rather

long waiting periods are required to attain the gap setting and

equilibration of the sample to a stress-free initial state.

To shorten this period and insure an initial equilibrated

uniform distribution of the domains, premolded samples by way of

solvent cast films are helpful, with dimensions which fit the cone-

and-plate geometry of the test gap. Since the melt temperature is

known to strongly affect sample morphology care was taken not to

introduce temperature inversions by using the procedure described

below. Without setting the gap, the platens are heated to a temperature

of 5°C below the desired temperature in about 1% hours. At this point

a nitrogen purge of % to 1 lb. pressure is bled into the heated chamber

until the desired temperature is attained. It was predetermined that

an N2 pressure less than l.5lb. does not affect gap separation nor the

torsion readings. After 5 minutescxiattaining desired temperature,

the gap between the platens was then set, primarily by the use of the

normal force measuring system. Then the oven was opened and the sam-

ple is quickly transferred from the evacuated dessicator used in

storing'Uwa sample to the plate making sure that no air bubbles were

trapped between. The head was then brought down and excess melt

cleaned off with a blade and the thermal chamber closed again.
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The sample was then allowed to heat up to the desired temperature,

a procedure that took 45 to 60 minutes. The temperature controller

maintained the plate temperature to within i 2°C.

6.6 Rheometric Testing
 

6.6.1 OscillatorygShear Experiments
 

The measurements of visoelastic properties of poly(styrene-b-

butadiene) block copolymer melt were carried out with the cone-and-

plate platens at T = 130°C, 150°C, and 175°C. The strain applied

to the sample by the oscillation of the bottom plate, causes the

oscillation of the top cone. Oscillatory displacements are transformed

intoeulelectrical potential by the LVDT. It is then amplified and

recorded on the Visicorder. The strain sinusoidal input wave is also

recorded on the Visicorder. A phase shift and the amplitude ratio are

determined from these two waveforms to obtain the linear Viscoelastic

functions as

O

n'(u>)= —’f=Y—— sin (1)

YO

So

G'(w)=-—5x‘ cos ¢

YO

where o and sgyi/io anathe phase shift and the amplitude ratio

respectively.
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An applied strain amplitude range of 0.1 - 0.2 gave no dis-

trotions of sinusirdal waveforms in data and this was taken as the

linear Viscoelastic range. For high sensitivity and small sample

size, the cone-and-plate platen of D = 5 cm was mainly used in

oscillatory testing. Testing was carried out with the same sample

giving from low to high frequency of oscillation. A waiting time

of 30-45 minutes between testings was implemented.

Oscillatory testing at 124°C with strain amplitude maintained

at 0.15 resulted in nonsinusoidal torsion waveforms as shown in

Figure 6.5. Such highly non-linear oscillatory behavior have been

reported by Ghijsels and Raadsen and a triblock sample and is a peculiar

feature with structurizing dispersed systems.

6.6.2 Steady Simple Shear Experiments
 

Low drifts were noted in the torsion head transducer meter

range of 0.25 x 10.3 in and 1 x 10‘3 in the gap. Therefore, a shift

torsion bar (KT = 5.8492 x 105 dynes cm/.001 in.) is utilized as it

gives the highest sensitivity at the transducer range setting of 2.5 x

10'3in. Such choice was made to restrict the movement of the torsion

head to a minimum aiding transient measurement with the chosen platen

diameter and the anticipated value of the steady viscosity of the

sample.

A steady shear rate range of 0.005 to 3 sec-1 was attainable

with the instrument using both the cone and plate and the Mooney

1
platens. Data were obtained in the range 0.005 to 0.l sec- with a

waiting time between measurements of 30 minutes and next with one hour.
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No appreciable difference in data was noted and thus the former waiting

period was implemented. An associated error of 7-10% in the material

functions occurred in this range. Beyond this range and at a tempera-

ture of 130°C or less a variation of 12-20% was noted in the stress

readings for different runs under the same conditions. Upon closer

studies it was observed that shear instabilities, e.g., stress frac-

ture developed in the material as can be determined in Figure 6.6a and

6.6b. Figure 6.6a illustrates the situation where the material is

extruded out of the gap after a shearing time of 8 minutes. In

1 andFigure 6.6b the appearance of the material at y = 0.096 sec-

0.43 sec'1 are compared for quenched samples which experienced similar

shearing times. Non-uniform shear profile is likely to develOp in

the sample at y = 0.43 sec"1 resulting in faulty stress readings.

The Mooney platens have a potential range of 0.1 < 7 < 10 sec'1 as

seen in Holden's data. The major advantage of this platen is that the

sample is prevented from leaving the shearing gap by the guard ring.

Also very little area of the material is exposed to the air minimizing

errors due to oxidative degradation. However, the bulk (D = 10 cm)

of this platen tends to increase the inertia head leading to inacuracies

mainly in transient and oscillatory measurements. As can be seen in

the viscosity flow curves (presented in Chapter 7) no appreciable error

is incurred using this platen at the shear rates prescribed as data

extends smoothly iflxmi low to moderate shear region, i.e.,

(0.1 < v < 0.4). The effect of inertia is, however, seen in

transient measurements as will be shown shortly. For steady shear
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 Figure 6.6a.--Picture showing test material extruding from gap after

a shearing for 8 mins; 7 = 0. 3 sec'l. Shear insta-

bility is due to stress fracture. T = 130°C.

 

\

~
“
'
3
1

(

i

 

Figure 6.6b.--Quenched sheared materials after a shearing time of

Left hand specimen sheared at Y = 0.0968 min.

Right hand specimen sheared at 9 = 0.43sec-1.

sec-1. T = 130°C.
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viscosity results an associated error of 5-7% was noted using the

Mooney platen.

Using fresh samples, stress growth experiments were con-

ducted with the two platens. After the temperature of the material

has stabilized in the gap, the clutch system was quickly engaged after

the motor has been running for at least 5 minutes. Stress transients

were recorded on the Visicorder that was calibrated with the steady

state stress value obtained from the torsion head transducer meter.

The time dependent stress is normalized with the steady state value.

Using the Mooney platen the effect of inertia on transient measurements

can be seen in Figure 6.7. An overshoot in the stress build up does

not occur until at y = 0.914 sec'l. This is in sharp contrast with

results using the cone-and-plate platen at the same temperature,

which shows an overshoot at shear rates as low as 0.027 sec-1. It is

generally observed that overshoot occurs in stress-growth at high shear

rates. It denotes the point at which the material experiences a

maximum strain.

Transient measurements are also affected by the cone angle of

the cone-and-plate arrangement. Theoretically, the assumption the

cone angle, 60 is to be chosen such that the assumption tan 90 ~ 00

is valid. This insures the existence of a constant shear rate

throughout the melt. Meissner and Huang noted systematic differences

in transient shear stress and normal stress measurements as a func—

tion of cone angle used. However, Graessley et al. (1977) found

no difference in stress growth measurements for 1°, 2°, and 4° cone.
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In this study on comparing measurements as a function of the cone

angle of 0.552° and 1.982° gave a variation of data of 1.8% which is

well within the experimental error. It is thus presumed that the

choice of 90 : 2° introduces no significant error in the transient

measurements. The stress relaxation after cessation of shear was also

collected using the Visicorder on samples used in stress growth

tests. The results of these experiments will be presented and analyzed

in the following chapter.





CHAPTER VII

RESULTS AND DISCUSSION

7.1 .Introduction
 

The material functions, dynamic viscosity, storage modulus,

steady shear viscosity, shear stress growth, and relaxation stress

after cessation of shear of a poly(styrene-b-butadiene) with 94.1

wt. % S have been collected as functions of the deformation rate and

temperature. These results suggest that there exists a melt transi-

tion temperature demarcating the prevalence of two types of block

copolymer microstructure. The occurrence of such transition tem-

perature or region will be discussed in Section 7.2, using evidence

in the experimental results. We will not use the time-temperature

superposition principle in reducing data since such two-phase struc-

ture in block copolymer melt have been established (Chung and Gale,

1976; Gounlock and Porter, 1977). In Section 7.3 the rheological

results showing the effect of deformation on the microstructure above

transition temperature shall be presented and discussed with the

view to understanding the underlying microstructure. Next, the

rheological results below transition temperature is presented and

discussed again with a view to verifying the block copolymer

microstructure. In order to test the transient network model

developed in Chapter III, two material constants are estimated using

94
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the linear Viscoelastic data. Other model parameters shall be com-

puted by fitting model predictions with these functions. The model

then will be used to predict the steady and stress growth flow

behavior of the block copolymer at T below the transition. It is

necessary to restate here that our major focus is on the rheologi-

cal behavior of the block c0polymer at low deformations. This region

yields the most differentiating features of block copolymers with

respect to their homopolymer and random block copolymer counterparts;

it also plays a crucial role in evaluating a network model based on

a more realistic chain statistic.

7.2 Phase Transition Temperature
 

The dynamic Viscoelastic properties of the block copolymer

sample are shown in Figure 7.1 at T of 130°C to 175°C. The repro—

ducibility of these results is good, 5.2% at w < 0.6 sec'1 and fair,

1 with 2° cone angle and the stiff torsion7-9% over 0.8 < w < 3 sec-

bar. As usual, increase in temperature tends to decrease the moduli.

At 150°C the dynamic viscosity levels off at about 0.1 see”1 but stor-

age modulus as a function of the frequency shows a slope of 1.3 on the

log-log scale. 0n the whole, such behavior is similar to those

exhibited by homopolymers where a single phase microstructure is known

to exist. At 130°C or lower, the dynamic viscosity does not level off

at the lowest frequency tested and a larger deviation of the slope of

the dynamic storage modulus vs. frequency from 2 is noted. Next, we

evaluate the two temperature regimes for homopolymeric character by

applying the Cox-Merz rule defined earlier on the Viscoelastic
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properties. These results are shown in Figures 7.2, 7.3, and 7.3a.

At 150°C as given in Figure 7.2, the complex viscosity is found to be

greater than the steady shear viscosity especially at v > 0.1 sec-1.

1
However, at v < .1 sec- both functions not only level off, but appear

to be approaching each other. The steady shear results show a limit-

5P. This compares with a homo-ing zero shear viscosity of 1.4 x 10

polymeric PS having MW = 259,000 Mw/MN = 2.35 at T = 200°C with

no = 4.25 x 105 P (Mendelson, 1980). On the whole the deviation from

Cox-Merz rule follow a similar trend often shown by homopolymers and

random copolymers. A dissimilar deviation from the Cox-Merz rule is

found when the complex viscosity, the dynamic viscosity and steady

shear viscosity results at 130°C are compared as reported in Figure 7.4

and 7.3a. In Figure 7.3 the largest deviation of the two functions

appear at I < 0.1 sec-1. Both functions are sensitive to the deforma-

tion rate at the low deformation rate region suggesting a more complex

microstructure controlling the Viscoelastic response. At w ~ 0.01

sec—1, the complex viscosity appears to be levelling off even though

more data (at w ~ 10'3 sec-1) are needed to confirm this assertion.

If this is the case, these results suggest the occurrence of a network

structure sensitive to the imposed strain history of the material.

Figure 7.3a shows the dynamic viscosity, n' to be significantly sen-

sitive to the frequency equivalent to the shear rate range 0.05 < Y

< 0.3 sec'1 where a so-called "equilibrium" shear viscosity is

attained. At w < 1.5 sec-1, n' values are higher than those of n by

18% or less. The strong dependence of n' on w seems to lessen at
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'1. Further data at w < 10'2 sec'1 will be very helpfulw - 10'2 sec

in establishing whether n' levels off and how this frequency at which

this occurs compares with that suggested for |n*|.

Since the zero shear limit for 150°C is seen at shear rates

comparable to that at which homopolymer n levels off, a single phase

microstructure is suggested. For two phase structure, such a limit

may be observed only at deformation rates that are 0rder(s) of magni-

tude lower. Attainment of Newtonian viscosity at such low shear rates

implies the prevalence of a network structure sensitive to the applied

strain history, that have been attributed to diblock copolymers

(Krauss et al., 1971). The transition temperature region for

this diblock sample occurs at 130°C < T < 150°C. This is attributed

to a weakening and/or loss of the two-phase structure due to sharp

increase in phase miscibility and/or the attainment at or above the

transition temperature of an easily disruptible dispersed phase not

controlling Viscoelastic response and, therefore, leading to NeWtonian

behavior at low deformation rates. The narrowness of the transition

suggests that chain miscibility is at least the major factor since,

in the absence of suchaaphase change, the property changes would be

expected to be more gradual.

7.3 Viscoelastic Behavior Above the

Transition Temperature

 

 

Figure 7.4 shows the effect of shear rate on the steady shear

viscosity at 150°C. We note here the quick decay of viscosity from

Newtonian behavior at higher shear rate. Such behavior is often
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associated with high M.W. polydisperse homopolymeric melts. The

polydispersity of the continuous PS chains in the sample under study

is 1.7. In Figure 7.5 the shear stress growth results are portrayed

as normalized values using the constant stress value S as the

1

xy/ss

shows pointsnormalization constant. The curve of v = 0.0108 sec-

of inflection at 8 mins. and 16 mins. that are not found in the other

curves. The associated error observed for this shear rate between

forward and backward rotation was 3-5% at t < 2 min, 12-18% at

2 < t < 12 min. and about 5% at larger times. It is judged that this

error may be caused by incomplete relaxation of the test sample in

the gap. The other results reported in Figure 7.5, as well as the

shear stress growth curves at 130°C had associated errors at 5-8%.

0n the whole, the trends in result resemble those of homopolymers.

We note, however, the occurrance of significant overshoots at much

smaller shear rates in contrast to homopolymeric melts (Graessley

et al., 1977). Furthermore, these curves depart from linear visco-

elastic behavior even at small times. The extent of this departure

may be determined by evaluating a relaxation modulus G0 at different

strain rates from the slopes of the normalized growth curves at small

times.

+/S

S
G0 = lim xy xy,ss

t->0 t

The values computed for GO ranged from 0.28 to 0.52 over the range

of shear rates studied. Figure 7.6 shows normalized stress relaxation

functions at 150°C.
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These results showed a decay of stress relaxation to zero similar

to those of homopolymers. It is concluded that an entanglement

microstructure of the continuous PS chains appears to influence the

block copolymer melt at 150°C or higher; however, these results do not

exclude the existence of domains above this transition temperature

since easily disruptable domains not controlling the viscous response

might yield similar results.

The range of temperatures where a two-phase structure mani-

fests in the material has been established at T < 150°C. In keeping

with the objective of this study, Viscoelastic results of 150°C will

not be compared with the transient network model. In the next sec-

tion, the material functions of 130°C shall be presented and compared

with the model having a nonzero "a." In this analysis the tangential

shear stress shall be normalized by the constant G0 = nokT, the modu-

lus of rubber elasticity, while the shear rate, v and present time, t

are normalized by a single relaxation time 10 ( = l/BO). It is worth

emphasizing here that our interest lies in the low deformation rate

region and we seek to predict the material Viscoelastic behavior at

such a range. Since linear dynamic functions were not obtained at

124°C, it is not possible to predict other material functions at

this temperature using our procedure. In this model evaluation we

will deal mostly with normalized quantities, i.e., the normalized

viscosity, normalized shear rate, in line with definitions given in

Chapter V.
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7.4 Viscoelastic Behavior Below the

Transition Temperature
 

The complex viscosity as a function of frequency, shown in

Figure 7.3 has a slope, d log |n*|/dlogw(at w < 0.1 sec71) equal to

-0.26 as compared to a value of -0.5 obtained by Ghijsels and

Raadson for SBS triblocks. Table 7.1 further illustrates the results

of the slopes of n and n' vs. V and m respectively, (see Figure 7.3a).

Table 7.1.--Phase separated block copolymer melt properties

 

Sample MN(x10'3) TOC dlogn'ldlogwl)<1 dlogn/dlogi/Y<1

 

535° 11-56-11 150 -0.61 -0.68

SBSb 22-50-22 170 -0.66 -0.66

SBSb ' 14-70-14 170 -0.36 --

SBC 232-10 130 -0.43 -0.38

 

aData of Ghijsels and Raadsen (1980).

bData of Arnold and Meier (1970).

cThis work.

These slopes indicate that the triblocks have more strength than the

diblocks (even at higher melt temperatures). Even though the SB

diblock has an M11 an order of magnitude higher than the SBS triblock,

from these slopes the network structure of the triblocks are stronger.

The results of steady shear viscosity of S-B melt sample as

a function of shear rate at 130°C and 124°C are reported in Figures

7.7 and 7.8, respectively. The upturn in viscosity occurs at about
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1 at both temperatures similar to an SBS melt at 150°C0.1 sec-

(Ghijsels and Raadsen). About shear rates of 0(1) the viscosity is

no longer strongly dependent on the shear rate, but thereafter the

material seems to approach the power law region. Upon comparing

these curves with the high temperature curves (T > 150°C) we see that

the low shear rate response is that of a weak three dimensional micel-

lar network in which the polybutadiene domains acting as junction sites

solely influences the Viscoelastic response.

Further evidence of the effect of two-phase microstructure

can be seen in the shear stress growth curve5(fiiFigures 7.9 and 7.10

collected at 130°C. At small times, these curves exhibit higher

transient shear stress with lower shear rates, than the corresponding

curves at 150°C. It is further observed that the magnitude of the

overshoot from the steady state level is higher (0.18) at y = 0.0272

sec"1 than at v = 0.043 sec'1 (0.12)--a feature also present in the

SBS data. On comparing these curves with the high temperature counter-

part (Figure 7.5), it is clearly evident that a more detailed micro-

structure behavior is found in such transient flows and more effort

should be applied in this area for a better understanding of the

microstructure mobility than at steady state conditions. No stress

growth responses were obtained at 124°C due to the limitation of_the

amount of sample. The next curves (Figures 7.11 to 7.13) shows the

stress relaxation functions at 130°C and 124°C. Here in contrast to

the findings on SBS data which manifests residual stresses, these
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functions at all shear rates decay to zero, but at a much slower

rate than those of 150°C.

At higher shear rates (i > 1 sec-1), polydispersity of the

continuous phase in our sample makes it difficult to determine.whether

domain flow or entanglement disruption in the continuous phase con-

trol the Viscoelastic response. Whether domains are completely dis-

rupted by shear deformation and the point to which this occurs may

be difficult to establish with rheometry alone. This may be made

possible by utilizing electron microscopy with deformed samples as

was performed in solid elasticity (Aggarwal et al., 1969). This is

outside the scope of this study.

7.4.1 Estimation of Model

Parameters

 

 

The non-Gaussian transient network model presented in Chapter

III assumes that the continuous soft phase of the block copolymer is

composed of the "most probable" network segment with N sub-units.

This demands the knowledge of a single relaxation time A0, that

is associated with the rate coefficient, 80, (A0 = 1/80) of the

destruction rate process and the modulus of rubber elasticity, 60’

(G = nokT). In reality, in any polymer matrix, there is a distribution

of N and thus multiple relaxation times obtainable from the fluid

relaxation spectrum which is often constructed from functions of

linear viscoelasticity, G'(w), G"(w), and G°(t). It is worthwhile

to emphasize that G0 and A0 are not to be considered as adjustable

parameters in the model.
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Even in homopolymer rheology the use of a single relaxation

time in Viscoelastic models can only predict data in a restricted

range. Generally, a large relaxation time characterizes long time

behavior and is applicable with low deformation rates predictions

while a small relaxation time predicts higher order deformation rate

range. Typical dynamic shear moduli of narrow M.W. distribution

samples display two sets of relaxation times corresponding to two

relaxation mechanisms separated in the time scale. One set of relaxa-

tion times associated with the transition in the high frequency

region; another set associated with the entangelment slippage in the

low frequency region which appear as a peak of G"(w). A character-

istic relaxation time associated with long-range motions of homopoly-

mers is estimated by the inverse of the frequency at which the

peak of the loss modulus, G"(w) occurs (Onogi et al., 1970). How-

ever, in polydisperse samples there is often an overlap between these

sets of relaxations so that the peak in G" appears as a plateau.

Further, the slope of G" vs. w is close to unity on a logarithmic

scale for homopolymers. Gouinlock and Porter have identified that

the departure from 1 of this slope in block copolymer melts is due to

the domain morphology. Ghijsels and Raadsen also found the presence

of maximum in the loss factor tan 6 (= G"/G') and related this

with domain activity. These points were considered as one of the

criteria in determining GO and 10. The other criterion is based on



h
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the point where the upturn of viscosity occurs in the experimental

steady shear viscosity. Such an upturn also occurs in the predicted

curves based on the former criteria, but they were plotted as a

function of 10?. By comparing these points 10 can be evaluated.

Figure 7.14 shows the results of G"(w) and loss factor as a

function of frequency. The deviation of the slope of G" vs w from

1 is not very discernible but the loss factor shows a pronounced

transition at 0.25 sec-1. From this we obtained the material con-

stants shown in Table 7.2. Also using the refining criteria a

second set of relaxation times are evaluated and listed in Table 7.2.

Table 7.2.--Material constants from experimental data

 

 

 

Method 1 Method 2

10(sec) 4 1.25

d nes 4b 5

G (—L—) 6.8 x 10 2.16 x 10
o 2

cm

a _
A0 — 1/00t

b :
Go - |G*(wt)|

Values of the segment repulsion range parameter "a," the

destruction rate coefficient "a" and the slip factor a for Method 1

are determined by fitting the data of complex viscosity with Equa-

tions (5.26 and 5.27). The result of the best fit with data is given

in Figure 7.15. In Method 2 it was necessary to refit the data with
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Figure 7.15.--Evaluation of model parameters using linear visco-
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o = data, ——-—- = model fit Equations (5.26) and
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the new set of constants and the results are shown in Figure 7.16.

These results are least sensitive tO'Uweparameter "e", the range

0.001 < e < 0.007 gave practically the same results. This parameter

is best ascertained with strong flows, e.g., in uniaxial transient

extensional flows.

7.4.2 Experimental Evaluation of

the Transient Network Model

 

 

Without any further adjustments in the parameters, steady and

transient shear results are predicted by using Equation (5.17) and

portrayed on the accompanying plots as a normalized viscosity

(fi (n/G010)) as a function of normalized shear rate, (10?) and

normalized transient shear stress (s:y/s ) as a function of

xy/ss

normalized time (t/AO), respectively.

7.4.3 Steady State Predictions

The model predicts correctly the overall trends of the steady

shear data as shown in Figure 7.17 and 7.18. In Figure 7.17 the

quantitative agreement between experimental results and theory is

poor to fair in the range 0.02 < i < 0.18 where a 40 - 0% deviation

is noted. The theoretical prediction of the range 0.18 < i < 12

is satisfactory with about 5% derivation.

0n the other hand, using Method 2 having the same order of

magnitude of the relaxation time as in 1 improved results signifi-

cantly at the range of interest (see Figure 7.18). In the range

0.006 < i < 0.1, the theoretical prediction of results is excellent

having under 3% deviation. At moderate dimensionless shear rates of
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0.1 to 1, the prediction is fair to poor with 3-36% deviation and

unsatisfactory at i > 1 with 40% deviation. The slope of viscosity

as a function of shear rate at y < 0.1 sec"1 is predicted very

accurately. It is concluded that the loss factor cannot serve as a

guide in obtaining a characteristic relaxation time. At the large

shear rate range, it is unreasonable to expect a good fit in the light

of the polydispersity of the PS phase (MW/Mn = 1.7).

7.4.4 Transient Predictions
 

Comparison of the model predictions with the data for stress

growth are given in Figures 7.19 to 7.24 at low shear rates using

the two procedures. Here the agreement between data and theory is

rather fair, especially if we remember that all the parameters were

determined from data of small amplitude oscillatory shear flow only.

On the whole, the model prediction with 10 = 125 sec is good at the

lowest shear rates (0 - 15% deviation) and excellent at strains

less than 9.001 (under 3% deviation). 0n the other hand, the high

relaxation time model appears superior at higher shear rates for

all models significant deviations occur at intermediate times. A

weakness in the model is its failure to show an overshoot at low

shear rates. Such overshoots are shown at higher shear rates,

as illustrated in Figure 7.25 on page 132. The positions of the

overshoot, tC can be correlated most directly with the total

strain as many workers have noted previously. Figure 7.25 shows

the strain at stress peak as a function of shear rate for both

data and model predictions. Overshoots are predicted by the model only
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Figure 7.20.--Comparison of stress growth at 130°C with

model A = 1.25; a = 0.55, g = 0.05

0 = dat8;____ model.
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Figure 7.23.--Comparison of stress growth at 130°C with

model of 10 = 4 sec.
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at i > 0.25 sec-1. The predicted peaks occur at strains insensitive

to the shear rate and are determined by the slip factor a.

A constant value for this strain of about three has been

reported experimentally for a homopolymeric melt (Osaki et al., 1976).

Graessley et al. (1977) have studied this quantity at low shear rates

with homopolymer samples and indicated that insensitivity of strain

at stress peak, to shear rate is associated with materials that

possess a broad relaxation spectrum.

It is noted that the foregoing feature and the fact that the

magnitudes of the overshoot for transient stresses at smaller shear

rates are larger than those at large shear rates (which is not pre-

dicted by this model) presents a severe test for viscoelastic models.

This will have to be addressed with only £33; relaxation time if the

exact physics of two—phase microstructure mobility is to be compre-

hended.





CHAPTER VIII

CONCLUSION AND RECOMMENDATION

8.1 Conclusion
 

A new kinetic network model has been developed and evaluated

for the rheology of block copolymer melts and polymer composites with

spherical microdomains. This model involves in addition to the

readily determined relaxation time A and modulus GO, three parameters:

”a" describes the range of repuslion between segments of matrix

attached to spherical domains, "e" describes the dependence of junc-

tion destruction rate on the conformation of the continuous random

phase and (g) accounts for a slip between the fluid and the network

junctions. The m0del‘hsused to compute the material functions in

uniaxial extension, simple shear and small-amplitude oscillatory

shear flows. Experimental data on elongation are obtained from the

literature while datacxrshear flows are obtained in this work.

In uniaxial extension, the model predicts the Trouton viscos-

ity at normalized strain rates, P of 0(1) if spherical domains are

absent (a = 0). This is in good accord with data of Mundstedt and

Laun (1978). If spherical domains are present (i.e., a f o), the

model predicts a non-constant elongational viscosity at the low strain

rates, but a smaller maximum viscosity at higher strain rates. Com-

parison of these calculations with data of ABS melt (Mundstédt)

134
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reveals that the repulsion measure ”a” determines the apparent yield

stress observed at low elongation rates. The destruction rate para-

meter "8" determines the level of the maximum elongational viscosity

at steady state as well as the stress overshoot observed at higher

rates in stress growth experiments. However, no data for elongational

flows at large strain rates are available to evaluate the model suit-

ability in this region.

The viscoelastic properties of a diblock copolymer, poly-

(styrene-b-butadiene) of high thermoplastic content have been studied

experimentally in this work. Theinaterial is composed of uniform

spherical domains of polybutadiene randomly dispersed in a poly-

styrene matrix as confirmed by electron microscopy on solvent cast

samples. The melt for rheological study was obtained from carefully

annealed solvent cast samples (toluene as solvent) leading to an

associated error of 7 to 10% in material functions at low shear rates.

An associated error of 12—20% have been reported by Ghijsels and

Raadsen in melts starting from crumbs in this region.

Microphase separations appear to start as the temperature is

lowered from 150°C. At 150°C or above the material exhibits Newtonian

behavior in the steady shear viscosity andtimrcomplex viscosity at

low deformation rates and appears to obey the Cox-Merz rule. At 130°C

or below the complex viscosity is higher than the corresponding steady

viscosity, except at very low strain rates (i < 0.05).

At 130°C and 124°C a significant upturn of steady viscosity

occurs for shear rates lower than 0.1 sec-1, similar to the SBS melt;
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however, the slope d log nld log y

 

1+0 is much less for the present

SB melt. In contrast with homopolymers and random copolymers, a

significant transient stress overshoot is observed in the shear

growth experiments at shear rates as low as 0.02 sec-1. It is further

noted that the height of this overshoot diminishes with increasing

shear rates. Contrary to the SBS data, no residual shear stresses

are observed in the SB data in shear stress relaxation experiments

confirming the assertion that only apparent yield stresses are

exhibited by the SB melt.

All model parameters have been found by fitting data of

oscillatory shear experiments, using two procedures to obtain the

characteristic relaxation time. The overall trends in the data have

been predicted very well, in the range of interest. Quantitatively,

the predicted shear viscosity is very sensitive to the choice of the

single relaxation time at the low shear rate range. The model also

fails to show an overshoot in stress growth at shear rates less

than 0.1 sec-1. These deficiencies are largely due to assuming that

only a single relaxation time controls the entire material viscoelastic

behavior.

8.2 Recommendations forFUrther Study
 

The stress constitutive equation presented in equation (3.12)

is written for a single relaxation time. To take into account the

distribution in N, especially in polydisperse samples, we must allow

for multiple relaxation times. Since in the network theory no inter-

chain correlation is taken into account, each active network segment
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therefore contributes to the stress additively. The overall stress

then becomes:

N
M

(9.1)

where Sireplaces S, N becomes Ni’ and f becomes f1 in equation 3.12.

The consequence of this in the specific stress relations is that Go

and AO(- l/BO) are replaced by Gi and A1 respectively obtainable

using the material relaxation spectrum H(Ai) through these relations

(Phan Thien and Tanner, 1978).

( H(x)xdx

A. = (9.2)

‘ Hmdx

H(A)dx

G1 = A (9.3)

Here the relaxation spectrum is subdivided into intervals, such that

each interval is a wedge spectrum to facilitate the numerical proce-

dure. The relaxation spectrum can be computed from the linear vis—

coelastic data G'(w), G"(w) and G(t) by the standard method (Ferry,

1961). The long-time behavior of block copolymers is of utmost

significance in gaining the Optimum relaxation spectrum, thus it is

necessary to collect G'(w) and G"(w) data at frequencies as low as

10'4 $71. Such ranges are achievable by using the cone-and-plate

platen with several cone angles, which were unavailable at the time

of experimentation.
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For a complete knowledge of melt rheological behavior of

block c0polymers, steady and transient normal stress data is highly

needed. Chung and Gale and Kraus and coworkers (1971) have

associated the material exuding from the shearing gap at low deforma-

tion rates with high elasticity developed in the material, but did

not report any normal stress data. In the WRG the shearing gap is

significantly influenced by the lack of vertical stiffness of the

apparatus. This lack of stiffness affects both steady and transient

normal stress response measurements of molten polymers (Huang, 1976).

Modifications to correct for this problem were given by Hansen (1974)

and is recommended for this equipment. The use of Mooney platens

of D<:5 cm along with a steady piezoelectric load cell is further

suggested.

Curtis and Bird (1981) have presented a reptation theory for

melts starting from the general phase space formalism (Bird et al.,

1977). They modeled the macromolecules as Kramers freely chain (with

N beads and N-l rods of length a) used a nonisotropic version of

Stokes law to describe the drag force on a bead as it moves through

the melt. The model contains four parameters, the number of beads,

N, a drag coefficient c, a link tension coefficient EB and a chain

constraint exponent Bc' They report that the model yields no ~ M3'fec.

6+28C

and 1p1,0“M which cmpares well with homopolymeric data if

BC~ 0.3 - 0.5.

Modelling of polymer molecules as beads joined by elastic

or rigid, connectors is attractive for block copolymeric systems
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with spherical domains. However, the Curtiss-Bird theory does not

allow us to compute the relevant chain segment distribution function.

A recommended route would be the concept of configuration-dependent

molecular mobility tailored by Giesekus (1982). He associated a

tensorial drag coefficient E1 with the force, fi’ experienced by an

ith bead. This drag tensor-does not depend on the actual configura-

tion of the molecule, but only on the average configuration of all

the molecules. After some manipulations with the excess stress

relation, a configuration tensor 9i can be defined which maps the

actual molecular configuration from the equilibrium configuration as

o o
1

0 0

.r. > = l 3 < r.- r.> b.

—
J

This tensor may be understood to be a measure of deformation

of an elastic continuum, note in a strict sense of a material con-

tinuum, but in a statistical sense represents only the configurational

states of a polymer chain.

With this assumption one may no longer assign individual bi

and g to every position vector r1. Instead the whole set of beads

(i a 1 . . .; N) can be classified into classes (K = 1, . . . K) with

"K beads per unit volume with a common configuration tensor 2K and a

drag tensor 5k for each class. The class K = 1 leads to various

Lodgean type models with appropriate assumptions on b, but classifi-

cation of the total number of structure elements into K classes may
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encompass systems such as block or graft copolymers. Here only

detailed modelling of 9K is required to generate the constitutive

equation.

In this study the major focus was on spherical domain block

copolymer systems, but as shown in Table 2.1 cylindrical and lamellar

type systems possess superior rheological properties. 0dani et al.

(1977) have studied diffusion, solution, and permeation behavior for

a series of inert gases in block copolymer films having these morpho-

logies Ihinted that they were excellent models for understanding the i

7

relationship between the morphology and transport properties hetero-

geneous polymeric media. The preparative methods of these block

copolymers have been much refined by the Dow Chemical Company, Mid-

land). It is recommended that rheological and transport studies

of block copolymers of higher block composition be undertaken.
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APPENDIX A

UNIAXIAL EXTENSIONAL FLOW--TRANSFORMATIONS

AND CALCULATIONS

The solution of (4-3) using the method of characteristics is

given by:

t a A 4

f(x ,y , 2,t) = f(xo,yo,zo)expE-]B (xoexp(1‘t’),yoexp(-I‘t'/2), zoexp(-I‘ t'/2))dt'J

O

t

I

o I

A+ .LG(XOe(part),yoexp(‘TtI/2),Zoexpc-IQLI/Z).N)€Xp[— at”

ti

X B (Xoexpfi‘ tfl)’YoeXp (-?g//2))Zoe@(‘?t”/Z))Jdti (l-A)

A two-step change of variables similar to that of Fuller and

Leal (1981), but for uniaxial extension is performed on (1-A) to intro-

duce definite limits on the integrals. First t' and t" are changed

to x' = xoexp(§t') and x” = xoexp(§t") respectively; then x' to 2

using x' = Tx + xexp(-Pt) where T = 1-exp(-§t). Further, y = y(x/x')%,

2 = z(x/x')%, 8' = x"/x to obtain a final expression for f(x,y,z,t)

as

_
A

Af(x’y’ z’t) _ f0 (xexp(-I‘t), yexp([‘t/2), zexp(?t/Z))

exp [’If8([CH 99"-P (’Ft))X»YiZJdG]

(T+6exp(-ft))
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fiJdGGKT-Wexpértnmy,z
I

6(T+0exp(-I‘t))

 expEJrfeG'EGXJ BéexpiTQM(T+°°:P(‘”))]de’61 (2-A)

rT+9exp(~l‘t)e

11 and 12 of equation (4n’7) may be written in spherical polay

coordinates as

1 " '
1 = I F (w,F,T) coszw sinw dw

TI

2 =( F (12.1.31) 510% dd»

0

where

F(U’0f‘9T‘T§.—I‘[\rl&f_“+

1+2a (
3‘3Afcos V! + A 1,_S1nzg+tb)/2 (A,Cos m + Alsin V») (Agcosiiw Aisin’m )'/Z

2a2

+(A’;cosup + Azsin’wfi A;COSZVJ+ Aisin(P)

l/2a2 -

(A’toszV» + A2sin(”3‘qusinzw + AisinMZJY
(5 A)

2

Y = eXP-Zafl COS’W + A‘sin1 1/2
W]

A1 5 [e-ZFT
+ (l-ePZFTH15
L

I. 21".-

*2 = [e T +5 (e11T -1)J'”“
1‘

A3 : e-1‘T, A“ : EFT/2

T = Bot, T, = 80(t-t’) and f = F/Bo
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By substituting w = tan 0 in the above equations, we obtain

,’

1~ :‘I = fng-w) 2
I . 2 ;q31%r_jfw .

0 Q + 2w 2 {23+ 2le “3+ 3E9”) + 0‘!" i” 23+ kw)”

 - U452 exp-2a A‘ + A’ w 1/2 (7-A)
021+ A5020? 8887. W]

Then letting

_ 1+(A /A )Zw

Vz ’ Hui/AIM ’ (M)

we obtain with integration by parts,

 

1A5 -
I = l -2a/<S 2 '/2 2 (9-A)

I T157; [8 +(T-62) 72 l (v -1) (1‘63i + 2a(l/v2-l/2))e-2<3Vdv]

I; = T e.2a/6 a F'/§2av 3 2 2

-a(1 ~262-52V2~2/v2)dv] (lo-A)

where 5 ; Aa/Ai : [1 + §__(82Pt

111“?
2%

The integrand in (B-A) has a singularity at v - 1; setting r - v + 1

allows us to evaluate the integral.
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APPENDIX B

SIMPLE STEADY SHEAR FLOWS--TRANSFORMATIONS

AND CALCULATIONS

The solution of eg. (5.4) by the method of characteristics,

in p (p,n,z) coordinates is given by:

~t .

_ _ lA 1m |

f(p.n,z.t) - io(oo.noz.t)epr dt B(oOeXP(—2t ).

O

DOEXP('lMt'/2)s ZSN)]

t a~ o~ t

1A 1m 1 _1m l _ 11
+ J dt G(poexp(jrt ),noexp( 7ft ),z,N)exp [:Aodt

o

x 8(DOGXP(j§@ t' '),noexp(-12,@t"). 2)] (B-l)

An identical change of variable scheme as in Appendix A is next

undertaken except that these are in the transformed coordinates

9(o,n,z), i.e., t' and t" are changed to p' = poexp(imt') and

p" = poexp(imt") respectively; then p' to 5 using 0' = Tp +

pexp(-imt) where T = 1-exp(-imt). Also fi==n(0/o') 2 = z, 0 = 0/6

and e'= p"/6 to obtain a generalized moment expression as
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<g(o,n,2)> = det(l)[”( dpdndzg(o,n,2)fo( eXp(-17mt) nexp(l—-"21t,z)

—oo

-2T A [:(T + Bexp (-J§1t) )5,fi,%]de

0(T+0exp(-% t))

 

 

00 00 + -m' - -

+ % [I] dpdndzg(p,n,z) deG((T eeXp( Upsnsz)

-w 1 0(T+0exp(-lfllt))

 

0 im

A _ (T+eexp(--—-t)) ,

'-J 8(9 D, ll 2 2 9 Z: N) 99-61] (8'2)

1+eexp(—‘—'g— t)   

All moments <p2>, <n2>, <pn>, <p2/R”>,<n2/R“> and <pn/R“> are gen-

erated by eq.(B-2). Since in uniaxial shear flows no deformation

occurs in z-direction, z is arbitrarily set to zero, then these

moment integrals are evaluated as exemplified by <p2> integral

<02> = d6t(T) ‘89-“ 03%) 9.1: J! dpdnpzexplg 3_2N(}\2102_2wpnq+>\:n2)

0

-oo

2a2/3N

AipZ-2W0n+A:vz
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T

_ I I 2

J di'e T J[ dednEXP[3%¥(A1 oZ-ZWQ'on+A:nZ)

o

-oo

 

2
2a /3N :] (B_3)

A5202 - 2won + Aiznz

Where

= -imt .3; _ -mT %
A1 (e + im (1 e ))

. ' 1 2
A2 _ (elmT + % (eImT_-I))2, A“ : elmT (B_4)

It is noted here that A's in 2nd term of eq(B-2) are defined as in

eq.(B-4), however, they are functions of elapsed time, T'.

Next the p(p,n) frame is transformed into cylindrical polar

coordinates h(d,o). 0n intergrating out the radical component d, eq..

(B-4) becomes

<QZ> = det(I)(§—)(§;) { e"T I I (A,w) sinzwdw

T,-T' .2! _

+ d1 e I(A,m)51n udmf (B 5)
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where

K2(U)

 

2

(32_
10,41) =

9N2 (AisinZw-Zquinwcosm+Aécoszm)(A:sinzw—2 sinwcosm+AEcoszw)

K2(u) is a 2nd order Bessel function, and

2a(A§sinm—Zquinmcosw+A%coszw )%

A§sinm - 2Wsinmcosw + Ajcoszw

Since a <0(1), u is small from the A expressions. Then the series

for the Bessel function of integral order and 0f the 3rd kind is util—

ized in order to completely integrate out the coordinate variable,i.e.,

 

K ( ) = 1n§1(_1)k Afllkllli___ + ( 1)n+1% (U/2)n+2k[InU/2-%W(k+1)

n U 2 = I n-2k — = I l
K o k.(u/2) k 0 k.(n+k).

-%v(n+k+1)] (B-6)

where V(.) is the Euler's psi function.

Thus applying eq. (B—6) to eq.. (5—1) we obtain

2n

I(0,T) =-% Jd¢SIPV (

O

l

Aisinzm-Zquinwcos¢+A:coszw)2

a2

(AEsinzm-quinmcosw + A§coszw)(Afisian-ZWsinwcosm + AEcosE)

+ 0(a4) (B—7)
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The first term in Eq (B-7) is analytically integrable, but the

second term is integrated by the method of partial fraction to

yield a final expression of I(A) as

A; 2a2(BlA§ - Alwq)

(B-8)I(A)=———g—-'————r-z

(1212 - quZI/Z A1 (AIAI - wqu) /
12

where

A1 = ~2W(AIA%- Afiq)/C

and

c = 4112063 - «1313+ AIAE) + qi) — (ems - (1312+ 111.1)

Thus the moment integral <pZ> is obtained as
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APPENDIX C

OSCILLATORY SHEAR FLOWS-~TRANSFORMATIONS

AND CALCULATIONS

The transformation to the sinusoidal domain with u = sinmt

after the characteristics of eq. (5.21) have been defined gives a

slightly different o.d.e. of the form

A

df + Bf _ 0 (H)

dU (1-U2)% (1-U2)%

 

The solution of this by method of characteristics is

 

 

u du'B 1m u' -m u'

f(psnazsu) = f0(po’wo’zo)eXp_ w(1_ul2 % (DOeXP(jf——)SDEXP( 2 ),20

o

- -1
Sln u A .~ . .1 .

du'G imou. -1mou

+ ———_ (0 eXp( ),n exp(———),z )
J (1_u|2)éw O 2 O 2 0

o

u A imu" -m0uK\
x exp - du"B(pOeXp(—25——), nOeXp( -§5——), 20) (C-2)

l

u

Using transformations identical to Appendix B, except the

independent variable is u' instead of t'. The moment integral is

obtained as
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~

  
~
~

w -imou -im u

<9(o,n-Z)> = d8t(T) dedndzg(o,n,2)fo [EeXp( w ),neXP( : ),21

 

 

 

 

 

 

 

 

1' 00A 1111 U _ _

T 8[(T+eexp(- g )o,n,2)d9

x exp - . ~ .

(lmow -imou 2 wln (T+eexp(lmgfl) 2 2

J -' ——‘ ———__——1 0(T+0exp( w )) 1+u imo ( 0 )

w m A i~ou)_ _

doG((T+eexp(- 0,0,2)

+ l%— dodnd29(p,n12) w .

1m M08
0 _m 1 imou l+u2_glfl ((T+ °Xp( w

G(T+0expG-—73-)) mo 0

e ( >T+0ex — o
.1 A ,- ( ———7—J3 ),z,N)de'

x exp TASS B(e 0,n 9 .~ (C-3)

.- . 62 . ‘mo“ 2 e
Imou 0 (1+ 57— (Ine./e- ) )

T+eexp(- 0 w

In oscillatory shear flows, the transients areallowed to die out

consequently the first term in the moment expressions damps out.

Pertinent moments can be derived from eq. (C-3) from the specific of

choice G and B. The moment <02> will serve as an example.
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2 = 1L .EU _ -
<0 > dEt(l) 80 (Zn) [di'e T dpdnp2

o -00

2
exp _ 3—2N(p2>\'2 _‘ qu'pn‘l’Aznz)" ‘_.l§-_/3_I‘1'_. ((3-4)

1 2 A202_2w9n+)\:n2

' 3

where

u im

2 1m e-L—J2 (u—u")]du"

A1 — exp - ——9 (U'U') + 21m w 1
(I) 0 (1_ulI2)2

uI

u'im

_0 _ II

imo J8. (””71 du"

= ———— - ' + ———7—
A EXP (u u ) 21m (1-u"2)%

u

2 11110 (U‘U') 2 "110

A3 — exp-TI— A, — exp _ZT'(U'U )

q'= 1+8T’ m = m /B I' = 80(t-t')

Utilizing transformation procedures and integration techniques

identical to those used to obtain eq. (B—9), we obtain the ocillatory

shear function as

<5 " E I

kidet(f)(%1—~—) e'T 1(1) ch! (05)

~ -a

e23

1+2a

 
Sxy = é;

O
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where

A2 - A2

m) = 1 2 _ 513?; (xi + Aimee - mi)

1 2 2 3/2 8

(AIA ' qzwz)

.2 2 2 2 2 2- 2Ai[(A1 - A2)W + w (A, - A,)] (C-6)

C = 042093-0038 + AM + 02) - M288 - (131; + min

In the first term

 

A§ _ A3 = -2i[6in m0(SIn(Ut - sin(t— t'/BO))

u
E Sinffio<U‘u..) dull

+-——— _
(C-7)me (1_ull2)2

ul

In small-amplitude oscillatory shear flows,

~

< 1 m m << 1
Yo ’ 0’ 0

and thus

sinm0(sinwt - sin(t-T'/BO)) ; m (SIOPP’SinuXt‘T'/Bo))o

and

sinmo(u-u") ; mo(u-u") (C-8)

also
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sinw(t-T‘/BO) = sinwtcosit' - cosmtsinlt'

where D = w/BO

Upon integration of 2nd term in equation (C-4) we obtain

A§ - A3 = -2im0 { [l-cosfii + g-(Ji' - sinD T')] sinwt

+ [ —sinDI + %-(1-c0501')] COSwt}

(L)

(C-9).

All the other terms in equation (C-6) were analyzed with the above

approximationS‘ and higher order quantities of sin wt and COSmt were

discarded. From these, then, the final viscoelastic function expres-

sions of equation 5.26 and 5.27 were calculated.
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