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ABSTRACT

RESIDUAL GAIN SCORES As A CRITERION FOR CHANGE:

INFERENTIAL PROBLEMS

by

Khalil Elaian

To determine the effect of teacher behaviors, W, in process-product

research, residual gain scores, Z, are often used as the criterion. Significant

correlations between class means of residualized gain scores and teacher

behaviors, riw's, are taken as evidence of teacher effects. The purposes of the

study were to determine the conditions under which testing Ho: 02w = O is, in

fact, equivalent to testing for no teacher behavior effect, and also to investigate

the appropriateness Of using different definitions of residual gain scores in

testing the null hypothesis. Five different forms Of residualized gains were

considered based on the total, 21, between, 22, and within regression coefficient,

Z3, a newly derived estimate of the regression of posttest class effects on

pretest class effects, Z4, and finally the parameter for the class effects

regression coefficient, Z5.

A linear structural model was built to determine the conditions under

which testing 02w = O is equivalent to testing no teacher behavior effect on

student achievement. The analytic results showed that the two null hypotheses

are equivalent if either of the following conditions are met: (a) there is no

initial confounding of teacher behavior and class composition or (b) the SIOpe of

posttest class effect on pretest class effect, 31,15 equal to the slope Of
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posttest on pretest for within classes, 82 and a perfectly reliable pretest. When

the conditions are not met; however, the two null hypotheses are equivalent only

for 24 and Z5.

A Monte Carlo approach was taken to investigate the apprOpriateness of

using different rzw's in testing the hypothesis of no teacher behavior effect.

Three criteria were considered: (a) the mean estimates of Riw's, (b) empirical

Type I error rates, aand (c) empirical power. Parameters varied in the study

were the degree of initial confounding, the reliability of the pretest, the number

of classrooms, and the number of students in a classroom.

The results of the study showed that when there was a substantial amount

of initial confounding, the test statistics using rilw: rizw: and r23“, were only

valid in a few situations. These tests, particularly the tests using rilw and ri3w,

tended to be too liberal in situations where B 1 = 82 or 81>82 and too conservative

when 813%. Parallel results for the tests using r21“, and rz-3W were Obtained with

increasing sample size. However, the test statistics using r24“, and rz-5W were

the only tests which remained valid as initial confounding, sample, and class size

increased and in the presence Of errors of measurement. Also, the results

indicated that increasing sample and class size increased the empirical power of

both rig“, and r25“, in situations where 81 = 32 or 81) 82.

It was concluded that procedures used by process-product researchers in

forming residual gain scores typically provide misleading results. Sometimes the

test statistics used are too liberal and other times they are too conservative.

Therefore, it is recommended that process-product researchers who wish to test

for no teacher behavior effect use 24. In addition to yielding valid Type I error

rates across all conditions investigated, the procedure had reasonable power and
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does not have the unrealistic requirement of knowing the value of a parameter a

priori.
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CHAPTER 1

STATEMENT OF THE PROBLEM

Residual gain scores (RGS) are Often used as a criterion for measuring

change in educational research. For example, in reference to evaluating teacher

effectiveness, Veldman and BrOphy (1974) state "it is generally accepted that

residual gain scores are superior to simple pretest-posttest difference scores as

measures of teacher influence" (p. 321). Process/product research on teaching

can be used to illustrate the practice of setting residual gain scores as a

criterion for study (Gage, 1977). Process refers to teaching behavior and product

refers to student learning. Residual gain scores are used as a product variable

which is meant to control for initial differences among classrooms in their

compositions of students. The residual gain scores are typically constructed

from student pre— and post-instruction achievement test scores.

BrOphy and Evertson's (1974) two year replicated study conducted at the

University of Texas provides a specific example of using residualized gain scores

as the criterion in process/product research. Thirty teachers were included in

the first year, and 28 in the second year. Classroom Observations were made to

assess teacher behavior. Scores on five subtests of the Metropolitan

Achievement Test (MAT) were available for each student. The MAT obtained on

the first year was used as the pretest and the MAT for the second year as

posttest. For each student, predicted values of the posttest scores were

determined from the pretest scores based on the total sample regression line.

Residual gain scores were computed by subtracting predicted posttest scores

from the actual posttest scores.



To determine the effects of teacher behaviors, Pearson's product-moment

correlation coefficients between process variables and average residual gain

scores, aggregated by teacher, were Obtained. The sample correlations were

tested for significance by t-tests, with c - 2 degrees of freedom, where c refers

to the number of teachers. The null hypothesis that BrOphy and Evertson

intended to test was that teacher behavior had no effect on student

achievement. The aim of the present study is to investigate the appropriateness

of using residualized gain scores in order to determine the process product

relationship.

Definition of Residual Gain Scores
 

Consider the model used in forming residual gain scores:

(1)2 : Y (t) - K Y (0) where Y (0) is the measure at time 0,

Y (t) is the measure at time t, and

K is an adjustment coefficient.

As described previously, 2, the constructed residual gain score aggregated by

teacher, is correlated with a measure of teacher behavior, W. Let r2.” denote

the sample correlation coefficient between 2 and W, and 02w be the

corresponding parameter. For a test of H0: 02w : 0 to be apprOpriate, not only

must the variables, Z and W, be linearly related but, in addition, 02w must be

only a function Of change in achievement caused by W. If either one Of the

above conditions is false, a test of ”0‘ 92w = 0 Will lead to spurious conclusmns.

As Z is constructed from equation I, the apprOpriateness of 02w = 0 for a

null hypothesis depends upon the choice of K, the adjustment coefficient. While

K is assumed to be a known constant, in practice, this is seldom the case.

Usually K is estim ated from the relationship between Y (0) and Y (t), in terms of

a regression coefficient. Because the nature of the data on student performance



is hierarchical (i.e., students are nested within classrooms) three regression

coefficients are available: the between classroom regression coefficient, the

within classrooms regression coefficient, and the total regression coefficient.

For most educational data, these three regression coefficients are not

interchangeable. Further, it will be shown that in some situations, none Of the

three coefficients estimate an appropriate correction parameter.

To further complicate matters, the sampling distribution of riw will be a

function of the estimator for K. Unfortunately, the nature of the sampling

distribution of r2“, is unknown (at least for most situations), and the use of the t-

distribution to test Ho : 92w = 0 as in BrOphy and Evertson's study, may not be

valid even when the sample regression coefficient estimates an appropriate

correction parameter (Draper 6c Smith, 1981).

Research Questions
 

The intent of the present study was to investigate the appropriateness of

using a t-test to test 02w = 0 as evidence for no teacher behavior effect on

student achievement. More Specifically, the following research questions were

investigated.

1. What are the conditions under which testing Oiw : 0 is

equivalent to testing no teacher behavior effect for different

methods of defining Z?

2. Given no teacher behavior effect, how well does the distribution

of the "t" statistic based on each of several different methods of

defining z approximate the theoretical t-distribution for varying

amounts of (a) initial confounding, (b) presence of errors of

measurement in the premeasure, (c) number of classrooms, and

(d) class size?





The investigation was conducted in two steps. First, the conditions under

which pr = 0, if and only if there is no effect of teacher behavior on student

achievement, were determined analytically. Second, a simulation study was

conducted to investigate empirically the distribution of "t" statistics using

different methods of testing [Ew-

In Chapter II, relevant literature will be reviewed. In order to examine the

situation thoroughly, a structual model is introduced in Chapter 111. Chapter IV

presents the design of the simulation study. The results obtained from the

empirical study and the conclusions reached are presented in Chapters V and VI.



CHAPTER 11

REVIEW OF THE LITERATURE

In experimental research the experimenter manipulates variables of

interest and observes the manner in which the manipulation affects the variation

of the dependent variables. In order to be reasonably sure that the observed

variation in the dependent variable is indeed due to the manipulated variables,

the experimenter must control all possible confounding variables. Porter 6c

Chibucos (1974) suggested two catergories for these possible confounding

variables in the context of program evaluation:

1. Systematic differences in the dependent variable dimensions that

are present in the units Of analysis at the outset of program

participation.

2. Systematic differences that occur in the dependent variable

dimensions during program participation which are not a function of

program participation. (p. #40).

While randomization is one of the most powerful methods to control

confounding variables of the first category it does not insure controlling

confounding variables of the second category. To the extent both categories of

possible confounding variables are controlled, arguments for causal relationships

between independent and dependent variables are strengthened.

Studies of natural variation are also used to investigate the possibility of

causal relationships among independent and dependent variables. As was the



case for experimental research the investigator must be concerned about both

types of confounding variables. In studies of natural variation, however,

randomization is by definition not a part of the design and so other methods must

be employed to guard against confounding. One general method, which has

enjoyed considerable use, involves the formulation of an index of response of

which residualized gain scores, the focus Of this study, represented a specific

type.

Alternative Indices of Responses
 

The index of reSponse is defined by Zij = Y(thj - K y(0)ij where Y(0), Y(t)

are pre and post measures for the 1th individual in the jth group, K is some known

constant. In addition to requiring scores on the measure of interest at two points

in time to formulate Z, K has to be set to an apriori known value. However, the

value K should take depends on knowledge regarding the natural growth model

which adequately describes the data if there were no effects of the independent

variable.

The most commonly used index of reSponse is raw gain scores, where K is

set to unity,

Dij :-. Y(t)” — y(0)ij where Dij is the raw gain for the ith individual in the jth

group.

In other words, raw gain scores are created by taking the difference Of the post

measure and premeasure scores on the dependent variable dimension.

Raw gain scores as a measure of individual change have been criticized in

the literature for having low reliability and for correlating negatively with

premeasure scores (Cronbach 6r Furby, I970, Linn 6c Slinde, 1977; Lord, 1963).

Cronbach and Furby, have also questioned the use of raw gain as a strategy to

measure group Change in studies of natural variation, agreeing with Lord (1967)

that gain scores are an inappropriate strategy to control for confounding



variables in natural variation studies of causal relationships. In contrast, Porter

(1973) has suggested that under certain assumptions gain scores may provide the

best technique for natural variation studies. Porter argued that given treatment

effects are additive the pre and posttest measure the same variable in a common

metric and there is no change in variances from pretest to posttest; it can be

shown that the gain score strategy does provide a reasonable approach to data

analysis in natual variation studies. Bryk and Weisberg (1977) showed that under

natural growth (i.e., no treatment effect) this gain score strategy provides an

unbiased estimate of the treatment if and only if the group growth patterns are

parallel (which is equivalent to Porter's assumptions) .

Standardized gain scores represent yet another form Of index of response

that has been used to analyze data from studies of natural variation. K in the

index of reSponse is set to either one of OYt / 0 YO’ OT)“; / OTYQ or SYt /syo

where Ozyt and Uzyo are the pOpulatIon variances of the dependent variable

I l 2 2 I O

dimenSIon at pre and posttests, 0 Ty and 0 Ty are the pOpulatIon variances for

t o

the true variables and s and s are the sample estimates of G and O .
Y Yo Yt Yot

Using ANOVA of standardized gain scores as a strategy to control initial

confounding was introduced by Kenny (I975). Even though Kenny did not

distinguish between the different types of standardized gain scores, he argued

that when individuals were assigned to a program based on sociological or

demographic variables, standardized gain scores provide the best index of

re5ponse for controlling initial confounding. Olejnik and Porter (1981) clarified

Kenny's recommendations by showing that the validity of standardized gain

scores is dependent upon the model of natural growth that applies in the absence

of treatment effects. They also pointed out that the two alternative ratios of

population standard deviations are equivalent if the reliability of the pretest and

posttest are equal. Finally and perhaps most importantly, they pointed out that



using a ratio of sample standard deviations followed by ANOVA is an incorrect

procedure that results in misleadingly small standard errors.

Residual gain scores are yet another form of index of response that has

been used in studies of natural variation. Three different types of residual gain

scores appear in the literature of measuring change. The first, which is called

True residual gain scores is defined by setting K in the index of response to the

slope of true posttest on the true pretest. True residual gain scores were

suggested by Tucker et a1. (1966) and called a "base free measure of change."

The second, called Observed residual gain scores, Z, sets K = BYtYO (i.e. the

slope of the manifest variables). The third called estimated residual gain scores,

2, sets Kza’tYO where BYtYO is the sample estimate of the lepe of yt on yo.

Residual gain scores as measures of individual change have been

Characterized in the literature as uncorrelated with initial status but suffering

from low reliability (Kessler, 1977; Linn 6c Slinde, 1977). Using ANOVA on

observed residual gain scores as an analysis strategy in natural variation studies

is comparable to using analysis of covariance. The only difference between the

two procedures is that ANCOVA estimates the value of K from the data while

ANOVA on the Observed residual gain scores requires that K be set apriori to

BYtYO'

ANOVA on true residual gain scores is parallel to estimated true scores

analysis of covariance originally developed by Porter (1967). Again the

distinction is that the true residual gain score approach requires that a

population slope be known apriori while estimated true score ANOVA estimates

that slope from the data. Performing ANOVA on the estimated residual gain

scores raises at least two problems. First the expected value of the estimated

residual gain score is unknown (Draper and Smith, 1981) making it difficult to

determine whether the strategy provides unbiased estimates of the causal



relationship of interest. Second, the procedure suffers from the same bias of

standard errors that Olejnik and Porter (1981) noted for standardized gain scores

using sample standard deviations.

Uses of Indices of Responses
 

Using an index of response in lieu of randomization in natural variation

studies has been a controversial tepic. Perhaps the best known antagonist of

their use is Lord (1967, 1969) who has stated "with the data usually available for

such studies, there is simply no logical or statistical procedure that can be

counted on to make proper allowance for uncontrolled preexisting differences

between groups" (Lord, 1967, p.35). More recently Cronbach and Furby (1970)

have indicated basic agreement with Lord's pessimistic view of the utility of

using statistical adjustment in natural variation studies. On the other hand,

Elashoff, 1969; Hornquist, 1968; Porter (Sc Chibucos, I974 hold a more Optimistic

view. Hornquist (1968) has stated

Even if the initial standing of the subjects is controlled by means

of a number Of relevant variables, there will always be room for

uncontrolled differences that may be important. The

investigator, who because of the nature of his problem cannot

use random or systematic assignments Of subjects to treatments,

has to live with an insecurity in that respect . . . and try to

behave intelligently within the limitations of his design . . . or

leave the scene Of non-experimental research"(p.57).

Porter (1973) has stated ". . . the interpretation of results from designs lacking

random assignment requires yet another degree Of tentativeness above and

beyond what would have been required had random assignment been employed"

(p.41).

Research on teacher effectiveness is one Of the areas in which residual

gain scores have been used most heavily. For some researchers (e.g.

Rosenshine,l970) residual gain scores are considered the definition for teacher

effectiveness and so the logical dependent variable in studies to identify



lO

desirable teacher behaviors. Known as process/product research (Dunkin 6c

Biddle, 1974), studies of effective teacher behavior obtain pre and posttests of

students achievement to form the dependent variable and Observations of

teachers to form independent variables. The residual gain scores are computed

for each student and then aggregated to the classroom/teacher level. The

correlations of class means on residual gain scores and teacher behaviors are

computed and tested for significance. Significant correlations are taken as

evidence that teacher behavior affects student achievement. Examples of

process/product research using residualized gain scores tO control for

confounding variables are BrOphy 6c Evertson, 197A; Creemer, 1974; Creemer and

Weeda, 1974; Soar, 1966; and Veldman and BrOphy, 1974. In all of these studies

BYtYo was unknown and so estimated to define the "constant" in the residualized

gain scores. The researchers, however, ignored this distinction when conducting

their tests of significance of correlation between teacher behavior and

residualized gains. A test statistic using rzw, which is apprOpriate to test Ho :

02w = 0 does not necessarily imply that the parallel test statistics using r2w: is

also a valid test of 02w : 0.

Testing Diwzo as a test for no teacher behavior effect was investigated in

the present study. The investigation was in two parts, analytic and empirical.

The analytic part was conducted to determine the conditions under which piwzo

is equivalent to testing no effect Of a teacher behavior on student achievement.

The investigation considered several different possible formulations of Z. The

empirical investigation was conducted to investigate the apprOpriateness of a "t"

test statistic to test Ho : eiw=o when sample estimates rather than population

parameters were used to define the residualized gain scores. A Monte Carlo

method was used to simulate the sampling distributions Of the different test

statistics based on different formulations of residualized gain scores. These
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were then compared to the theoretical reference distributions to determine the

validity of each test statistic under study.



 



CHAPTER III

THE ANALYTIC CHAPTER

In this chapter, a linear structural model that defines the problem of

measuring change in studies of process/ product research will be presented. The

model incorporates the aggregated characteristics of the data and the possibility

of measurement errors. Given the model, the conditions under which 92w : 0 is

equivalent to no teacher behavior effect on achievement will be identified.

A Linear Structural Model for Process/Product Research
 

As in equation 1, residual gain scores are constructed from Y(O) and Y(t),

the pre- and post-measures of student achievement. The prOposed structural

model attempts to elucidate the relationships among Y(0), Y(t), and W, a variable

representing teacher behavior.

For student 1 in class j, the observed score Y(L)ij can be decomposed into:

(2) Y(L)1j=0(L)ij + e(L)ij , L = 0, t

where ML)” is the part of Y(L)ij which is free from errors of measurement, and

e(L)1j represents measurement error. The n(L)1j is further decomposed into two

components: the class effect and the deviation of student score from his class

mean,

(3) ML)” 2 A(L)j + V(L)1j , L = 0, t

where A(L)j is the class effect at time L, and V(L)ij represents the deviation Of

the ith student score from the mean of jth class. Combining the two equations,

Y(L)1j can be written as

(4) Y(L)1j = A(L)j + V(L)jj + e(L)1j , L =0 ,1-

12
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The measure of teacher behavior can also be decomposed into

(5) Wj : j + egj,

where 5]“ is the true measure of the behavior of teacher j assigned to class j and

e 5. represents measurement error.

I

Schematically, the structural relationships among the three variables are

shown in Figure 1.

Figure l. A structural model.

 

     

 

   

  

       

3H),,

613' 9 V(t)1j ___.__; Y(t)“. (F_1A(t)ij (———H.I egj

82 81 gj <— OJ.

/

v(0)1.j'__s Y(0),-J- e— AIO),-j <—— AJ'

Ie(0)1.j

The B's are the structural coefficients, y represents the reciprocal

relationship between 5j and A(0)j. Hj, Gij: Oj and Aj are residuals or

Specification errors. The structural equations for Mt), and V(t)ij are

(6) A(t)j =81A(0)j 2.835., + Hj.

(7) V(t)1j =52 V(0)1j + G1}.

Within class j, V(t)1j is linearly related to V(0)ij~ This is equivalent to the

assumption of a linear growth operating within each class at the individual level.

The same rate of growth, 82, occurs within each class.

The decomposition of IKL)” into A(L)j and V(L)ij also implies that the class

effect is additive (i.e., A(L)j is a constant effect for all students in the same

Class). The effect of the teacher behavior, W, on student achievement is the
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same for all students in the same class. Teacher behavior may, however, have a

direct effect (83) on A(t) and a reciprocal relationship (Y) with A(O). The former

will result in changes in performance (for the class as a whole) as a consequence

of being exposed to the teacher behavior of interest. The reciprocal

relationships (Y) represents confounding between initial class composition and

teacher behavior. In school settings, students are virtually never randomly

assigned to classes, and so substantial class effects exist before the start of the

school year. Importantly, these differences may be at least in part a

consequence of having teacher j in class j. This will have some impact on A(t)j

through A(O). Also, this reciprocal relationship represents the possibility that

the composition of the class may affect the way the teacher teaches (Doyle,

1979) which can affect A(t)j.

Given the following two assumptions, 83 represents the effect of the

teacher behavior on student achievement:

1. Prior to the study, there is no other teacher behaviorfij, that is

correlated with «E and which has some effect on A(0)j and/or

A(t)j.

2. During the study, there is no other teacher behavior, E2, that is

correlated with E and which has some effect on A(t)j.

These first two assumptions are necessary to leave the interpretation of 837‘ 0

clearly a function of the effect of W and not some other teacher behavior

variables.

D B
The Relationship Between 2w and 3
 

The observed variables Yt, Y0 and W are assumed to have a multivariate

normal distribution with a mean vector Of zero and a variance covariance

matrix, 2 (see Table l).
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Table l

The Total Variance - Covariance Matrix (Z )

Y(t) Y(O) W

Y(t) OZAt + 02v, +08,

Y(O) 81035.0 + B3YOAOOE+BZOZVO OZAO +02V0 +020

W BIYOAO cg + B302E YOAOGE 02€+02eg

In the structural model, errors of measurement and specification errors are

assumed to be uncorrelated among themselves and with the latent variables, '5,

V's, A's and E.

The coefficient, pzw can be written as

To determine the relationship between pzw and 83,, the variances and covariance

are expressed in terms of the structural coefficients.

The covariance between Z and W can be written as

02.. = sew) - E<2>E<w>

_-. E(y(t)w) - KE(37(0)W)

= E(At + Vt + ét) (g+ ea) - KE(A0 + ‘70 + é0)(g + ea)

-_- E(At€) + E(Vt€) - KE(A0€) - KEW‘OE)

Since V's are defined at the individual level and E; at the class level,

5

E(V(L)g) = EEJ(€,§,V(LIIJI
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02w : E(At€) - KE(A0€)

: [$302+ Cov Ao€(Bj - K)

: B3OE+YOAOOE(BI - K)

Then 8 2 + (B K)

30 YOA O l '

(8) 02W 2 g 0 E. 

020w

Equation (8) indicates that if

1. Y = 0, (i.e., no initial confounding) and/or

2. 81: K,

the statement 02w :0 is equivalent to B3 = 0 (provided that the variances

are all greater than zero.)

Defining Values of K
 

In practice, the regression coefficient for predicting y(t) from y(0) is the

value most frequently chosen to represent K. Because of the nested nature Of

the data, however, there are three such regression coefficients. In order to

examine (the appropriateness of using any one of these coefficients for K, the

relationships between each of the coefficients and the structural coefficients are

derived and shown in the following section.

Relationships Between Regression Coefficients and the Structural Model

The total regression coefficient (81'), the between regression coefficient

(8 and the within regression coefficient (8w) can be expressed in terms of theB)

model components as follows (Table 2);

By definition,

EEj(Y(t)1.J.

E(Y(O)1j - M

- MY(t)) (Y(0),j - MY(0))

 

Y(0))2
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As before, both My“) and My(0) are zeros.

The numerator is C°V(Y(t)ij: Y(mij) and the

denominator is Var(Y(o)1j)

Thus, C0v(Y(t)1.j s Y(O)ij)

BT ‘ 

Var(Y(0j,j)

Substituting COV(Y(t)ij, Y(0)il) and Var(Y(o)ij. for their corresponding

values in Table 1 yields

2 2 , 2

8T : (BIO/3‘0 + 820 V0 + BBYOAOO€)/(QZAO +0 V0 +0260)

Similiarly, the between regression coefficient is,

B E(Y(t)j 1- My(t)) (Y(0), -. MY(O))

B ‘ E(Y(O)j-My(o))2
 

= Cov (Troy viow var (9(0),).

By using equation 4 to obtain the means of Y(t)”, Y(0)ij and by substitution

1 2 2
—B o + B O + yB o O

s 2 VO 1 A0 3 A0 g

 

l 2
o + —o + —O

A 5 V0 5 e0

Similiarly, the within regression coefficient is,

B _ Ej(Y(t)1j - My(t)j)(Y(0)ijv- My(0)j)

w ..

Ej(Y(0)1j - My(0)j)2

= 8102 /(02 +02 I)
2 V0 V0 eO

As shown in Table 2, when 53 :0, 02w equals zero if

(9) Y((B -B)O2 +802
l 2 VO l eO





l8

irreSpeCtive of the choice of regression coefficients. for 02“, = to be equivalent

to B3 = 0, equation 9 is both the necessary and sufficient condition.

Conditions under which Y ((81 -82)02v0 + 810280) : 0

When v =0

11 y = 0, irrespective Of the relationships among 81, 52, Ozvo and Ozeo or

the choice of K, equation 9 will be true. Put another way, whenY = 0, there is no

problem of adjusting the achievement criterion for initial confounding with the

teacher behavior.

When Y 7‘ 0

If Y does not equal zero, for equation 9 to hold, (81 - 82) O

must equal zero. This can happen when

= 2 2 2
l. B] 82 (O V0 /(0 V0 + Geo) or.

The former can happen only under unlikely circumstance. The latter can

happen, if a perfectly reliable premeasure is used (so that O2eO = 0): and when

subjects are randomly assigned to clasrooms (so that 81 = 82).

In examing the relationship between 02w and 33, none of the conditions

identified seems likely to obtain in. practice. Random assignment can rarely be

achieved in practice and perfectly reliable achievement measures rarely exist.

An alternative to using a regression coefficient as a method for defining K

would be to estimate 81, directly. For example, from Table 2

2

  

2 2 2 -

820 v + 81‘7 A BIG Y 820 v
___ o o . _ s = o 0

ST 67A + 02A + 6y~ when 83 — 0 thus, 1 2

0 0 e0 0 A
O



  



to estimating K in each of the several ways.

19

Since, E(MSB )= SO2 2

3f) A0 + 0 V0 +02e0, and

E(MSwyO ) =6sz , 02,30

2 l

=‘5—(MS - MS )

0 A0 85/0 WyO

From Table l

8w = 82 (OZVO/ bzvo +02e0))

A 2 —/\

820 V0 —BwMSwyO

81 = (éTuMsB - MSw)/ s + MSW) —’B‘stw)/ (MSB - MSW) /s)

or El :67 M55 + ((s-I)§T- Séwmsw / ((MSB - MSW)

Distributions of Test Statistics
 

Even under conditions where if 83 : 0 then 02w : 0, a t-test of Diw : 0

could still be inapprOpriate due to the effect of having estimated the value Of K

based on sample data rather than setting K a priori to a known constant. Thus

what rem airsto be done is to determine the effects on the distribution of "t" due

defined as the sampling distributions of the t ratio with c-Z degrees of freedom

which is obtained from r2w using the equation

r-Zw / c-2 (Hays, 1973, p. 661).

 

The "t" distribution of riw is
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Since the exact nature of the "t" distributions of riw's could not be

determined, a simulation study was conducted. In addition to using estimates of

BT’ BB and 8w to form residual gain score, Z1, 22 and Z3 respectively, the use of

the proposed estimate of 81, was used to form residual gain score 24. For

comparison, another form of residual gain score, Z5, was formed by setting K to

a priori known constant (i.e., Kzel).





CHAPTER IV

SIMULATION PROCEDURE

As shown in the previous chapter, testing pi,” = 0 is equivalent to testing

H0: B3 :0 if either of the following conditions are met; I) v =0, 2) 81 =82, given

a perfectly reliable premeasure. Interestingly it was found that for both of these

two situations the equivalence between 92w = O and B3 = O is true regardless of

whether Z is defined using K set to the total, between or within regression

coefficient or any other values of K for that matter. However, in practice, the

parametric values of 8T: BB: 8w and 81 are seldom known. Thus, the purpose of

the simulation study was to investigate the apprOpriateness of using a t-test to

test 02w : 0 in situations where estimates are used for 81', 88,8“, and 81. The

empirical sampling distribution Of "t" statistics for each of the four methods of

defining residual gain scores were simulated and compared with the central t-

distribution. The means of the empirical sampling distributions, empirical Type I

error rates, and empirical powers were used to determine the appropriateness of

using a t-test to test Dzwzo.

The procedures employed in this empirical study will now be discussed.

First, the description of the simulation parameters will be given, and then the

data generation routine will be described.

Simulation Parameters
 

As stated previously, this investigation required the study of random

sampling distributions of "t" based on rilw rizw: ri3w: r2“, and r25W'

21





22

Empirical generation Of the random sampling distributions was done repeatedly

taking random samples from a known population, an approach which is typically

referred to as Monte Carlo. The parameters of interest were the number of

classes per sample, the number of students withing each class, the value of 81

relative to B 2, the reliability of the premeasure, the magnitude of initial

confounding, and the central and non-central cases.

As previously stated, the means Of the manifest variables, Yt: Y0 and W

were set equal to zero. Also, without loss of generality Ozyt, Ozyo and O 2w

were set equal to l. Yt: Y0 and W were assumed to have a multivariate normal

distribution.

Both the number of classes, c, and the number Of students per class, 5,

were allowed to vary so that effects on the distributions of the various "t"

statistics could be investigated. The number of classes was set at 10, 30 and 50.

Ten Classes (or teachers) were chosen as an easily obtainable sample size. Fifty

classrooms were chosen as an unusually large sample size. The number of

students per class was set at 10, 20 and 30. The size of 10 was chosen as a lower

bound for classroom size which might occur through loss Of data. Class sizes Of

20 and 30 are typical of schools today.

While 82 represents the within class regression lepe, given a perfect

premeasurefi does not represent exactly the between slope, as shown in Table 2.

Consequently the exact magnitude of B 1, relative to 32 cannot be decided.

Therefore, three different combinations of 81 and 82 were selected. First, 91

was set equal to B 2 with value equal to .7. Second, 81 was set greater than 82

with values .7 and .3 respectively. Third, 81 was set smaller than 82 with values

.3 and .7 reSpectively. The last situation was included for comparison in spite of

the fact that it is rarely encountered in practice. (e.g., Cronbach, I976)
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When 8 1 7‘ 82 the ratio of between variation to within variation varies with

the number of students per class. That is, the intraclass correlation, Pl, gets

smaller as the number Of students per class increases. The intraclass correlation

was set at .30 regardless of c and s for the present study. This value was chosen

because there is evidence, for example in school mathematics, that actual school

variation accounts for 30 percent of the student achievement of MAT

mathematics scores (Haney, 1974).

Since Yt and Y0 contain errors of measurement, the estimators Of the

different adjustment coefficients (i.e., 81-, BB and 3w) will be biased. The

magnitude of bias is proportional to the reliability of Y0. In other words, the

bias depends on the premeasure only (Porter, 1971). The reliability of both pre

and post measure was set to .8. This value was Chosen as a moderate reliability

for achievement tests (Ebel, 1979). Since measurements of teacher behavior

have lower reliability (BrOphy, 1974), .5 was selected as the reliability

coefficient of W.

As a result Of setting 02w OZYO’ 02w : l, thYe’ DYOYO : .8 and the

reliability of w to 5 the values taken by Ozet’ozeO’ ozeg and 02g were .2, .2, .5 and

.5, reSpectively. Also, as a result of setting P1 = .3 the values taken by (,on and

0 2V0 were .24 and .56, respectively, in the presence of errors of measurement.

Three levels of initial confounding were considered: y = 0 to indicate no

confounding y = .4 to indicate substantial confounding, and y = .2 as an

intermediate level of initial confounding.

Lastly, both the central and non-central cases were included in the study to

examine the probability of Type I and Type II errors. For the purpose of this

study, B 3 was set equal to 0.00 and 0.10. .l was chosen as an arbitrary value to

indicate the non-central case. Table 3 illustrates all possible combinations of

the six design dimensions included in the simulation study. An "*" marks the
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cells examined. These cells were selected to facilitate the investigation of the

effects of initial confounding, presence of errors of measurement in the

premeasure, relative magnitude of 81 to 82, sample and class sizes on the

distribution of "t" statistics for different methods of defining rzw- One thousand

samples were simulated for each of the selected cases.

Data Generation Routine
 

Three manifest variables were generated Yt: Y0 and W. The three

variables were generated to have a multivariate normal distribution with a mean

vector of zero's and a variance covariance matrix (see Table I). As shown in

equations 4 and 5 in the analytic Chapter, the manifest variables are defined

Yt=At+Vt+et,

Y0=A0+Vo+eo,

W : E + e8

where all the components have been defined previously. Thus, X can

be decomposed into 2w, EB and 2e, the within, between and errors of

measurement variance covariance matrices reSpeCtively, as shown in Table 4.

Having identified the set of parameters for each pOpulatIon, the Cholesky factor

was computed for the between and within population variance-covariance

matrix. These were used to transform generated between and within normal

variates with (0,1) into between and within components with the desired vector

of means and variance covariance matrix.

A FORTRAN program was written to generate the sample data and

compute summary statistics for each sample. In order to generate the sample

data, the between, within and errors of measurement components needed to be

generated.
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Concerning the between components, two basic steps were used to

generate At, A0 and E. First, a vector of independent normal variates, L, was

generated by calling the function GGNQF three times, once for each latent

variable. This function which is adapted by IMSL (1982) generates one pseudo

random norm a1 deviate (0, D every time it is called. Second, the obtained normal

variates were transformed into a vector of At, A0, 5. This was done by

multiplying L_ with the transpose of the Cholesky factor Of 23(denote T'). This

can be summarized as

7%.,

A0 : T x L

E
l...—  

Steps one and two were repeated as many times as the number of Classes in the

sample, c. The Obtained At, AO,E had a multivariate normal distribution with a

vector mean Of zero and EB variance covariance matrix. The within components

Vt, V0 were generated in a similar way as the between components except 2w

was used instead of EB.

GGNQF was also used to generate the normal deviates used to form errors

of measurement for the manifest variables. The normal deviates were then,

mulitiplied by the standard error of measurement.

Having generated the between, within and error components, each manifest

variable was obtained by addition of its components parts.

Asubroutine was written to compute the different forms of rgw's. The

Obtained sample correlation coefficients were transformed into a t—ratio with c-

2 degrees of freedom using equation 10. Throughout this dissertation the

empirical t-sampling distribution of r21“, will be denoted as tle, rizw as tzzw:

r23“, as t23w: r24“, as t24w and r25“, as tz5W°
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Another subroutine was written to Obtain empirical Type I and Type II

errors for the tzw's at nominal values of .005, .01, .025, .05, .l, .995, .99, .975,

.95, and .90. This allowed consideration of fit for both one and two tailed tests

of the null hypothesis 02w = 0.

In order to check the accuracy of the computer program written to

calculate summary statistics, the simulated data for the 5 classes with 5

students each design were printed out and analyzed separately using the SPSS

statistical package. The results of the two sets of calculation agreed perfectly.

The simulation portion of the program was verified by executing the program to

Obtain Type I errors for a set of parameters in which Yt, Y0, W were perfectly

reliable, Y = 0 and Bl : B 2. Under these conditions the different tzw's all have a

central t-distribution. The empirical Type I errors of the tzw's were in close

agreement to their corresponding nominal alphas. For example, the empirical

Type I errors of tzlw’ tzzw: Iz3w, tzgw and t25w were .049, .049, .051, .048,

.051 for upper tail 0t: .05 and .054, .052, .056, .052, .050 for .05 lower tailotz: .05;

.100, .096, .100, .099 and .101 for upper tall or: .10 and .105, .107, .106, .110 and

.105 for lower tailOt ‘-' .10 nominal alpha.

For each cell identified in Table 3 the program was run once. The seed

number for every run was the random number generated after the last one used

by the preceeding run.





CHAPTER V

RESULTS OF THE EMPIRICAL INVESTIGATION

In Chapter 111, it was shown that Ho: 92w 2 0 is equivalent to Ho: 8 3 = 0 if

either of the following conditions are met: I) y = 0 2) 81 = 32 and a perfectly

reliable premeasure. When these conditions are not met, however, piw = 0 is

equivalent to H0: B3 = 0 only for 24 and Z5. This Chapter demonstrates

empirically the Type I error and power of this first test statistics of HO: oiw=o

for situations which are common in educational research.

The variables of interest in the empirical investigation were: magnitude Of

initial confounding, reliability of the premeasure, relative magnitude of 81 to 82,

number Of classes per sample (sample size), and number of students within each

Class. Any combination of levels Of the above variables identifies a sampling

distribution for each of the several riw's. The specific sampling distributions

investigated were selected according to a design which facilitated investigation

of the effects of each Of the several design variables while holding the other

variables constant. The subset of sampling distributions Chosen to study is

represented by asterisks in the six dimensional matrix in Table 3.

The effects of initial confounding, presence of errors of measurement in

the premeasure, sample and class sizes on the mean estimated of Diw's, the

empirical Type I errors and empirical power of the one and two tailed tests of

Riw's are presented in this chapter.

In general, the results Of the study showed that when there was a

substantial amount of initial confounding, the test statistics for tle, t22w and

t23W were only valid in a few situations. These tests, particularly tzlw and

29



  



30

t23w: tended to be too liberal in situations where 31 = 82 or 81> 52 and too

conservative when 81 < 82. Parallel results for tle and t23W were obtained with

increasing sample size. However, the test statistics for t2“W and tz5W were the

only tests which remained valid across all levels of initial confounding, presence

of errors of measurement, sample and class sizes. Furthermore, the results of

the study indicated that increasing sample and class size and presence of errors

of measurement increased the empirical power of both t24W and t25w in

situations where 81 = 32 or 51> 82.

 

Mean Estimates of 95w when 33 = 0

Initial Confounding Effects
 

By examining the equations in column 5 of Table 2, one can predict that

whenY: 0 and B3 = 0 eacn of the five riw‘s under investigation have expected

value equal to zero. The numerators of these equations are

YGA GE ((81 - 62 0'2\/ + B102e ) for O‘ 9 p' 9 and D7:

0, 0 0 zw 22w1 W

3

f ..0 orpZW and yo
4 A

(B1 - K) for 62 w'G

0‘E 5

Given these numerators, one can see that all piw's increase as y increases,

holding other variables constant. Inspection of the numerators also makes clear

that the sign and magnitude of the oz‘w's is affected by the relationship of 81 to E32

For example, when BPQ and is large, the mean estimates of 021w, 022w andOZBW

are expected to depart positively from zero. Similarly, when 81 = 82 (and errors

of measurement are present) the departure of these mean estimates will be in

the positive direction but not as far as was the case when 81 > 82. In situations

where 81< 82 and Yis large, the departure of the mean estimates Offlilw, 022w and
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- ~ - . _ 2 2 . . . _ .
923w Will be negative given (81 82)0 V- >810 e0 The mean estimate of 922w is

expected to be smaller in absolute value than the mean estimate of 921w and

023w This is because all three share the same numerator but 922w has the

largest denominator. The denominators, as shown in Table 2, are:

“OZZOZW (02A + O2V + OZe ) for pi w,

O O O 1

02 02 (502 + O2 + 02 ) for p- ,
2 W A0 V0 e0 22w

Ozso2 (O? ew+ 02 ) for p~ .

W To eo Z3W

In summary, given v is large, it is predicted that in situations where 51>82,

the empirical sampling distributions of rilw and r23“, will be centered to the

right Of the central t-distribution and to its left when 81 < 32 (though these also

depend on the magnitude of errors of measurement.) Also, it is expected that

the empirical sampling distributions Of raw and r25“, will be the closest to the

central t-distribution across all combinations of Bi and 82.

Table 5 shows the effect of initial confounding on the mean estimates of

921w: 922w: 923w: Oiqw and 025w under the the three different combinations of BI

and 82, where sample size and class size were held constant at 30 and 20

respectively, and pYOYO = .8. As expected, the means of the empirical sampling

distributions of rzw's were all near zero when Y = 0. As Y increased to .2 the

mean estimates of 021w and 923w increased to .026 and .033 when 81 = 82 and

.058, .07, respectively when 81>82. However, their values decreased to -.02 and

-.028 when 81 < 82. Increasing to .4 caused the sampling distribution mean

estimates of 921w and 923w to depart far from zero, particularly in situations

where 81> 92. Their values were .05, .066 when 51 = 82, -.047, -.059 when 81

< 82 and .ll9 and .147 respectively when Bl > 82.

While the sampling mean estimates of 922w remained relatively close to

zero across all levels of y and across all combinations of Bi and 82, there was a
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slight increase in the mean of rizw's in situations where 81 > 82 as increased.

Mean riw's were .0015 at y :0, .012 at Y =.2, and .024 at Y =.4. However, these

mean estimates were close to zero only because the specific values ofpyoyo and

(BI — 82) were such that the two parts Of the numerator in 022w compensated

each other.

The sampling mean estimates of 024w and 025w remained the closest to

zero across all levels Of‘Y and across all combinations of 51 and B 2.

Effects of presence Of errors of measurement (OYOYO 76 l)

 

Oze is a common component shared by the numerators of 921w, pizw and

923w. Since Oze has a positive or zero value its presence should increase the

departure of mean estimates of glw, 032w and 923w from zero in situation where

B]: 82 or B] > 82. However, this departure decreases in situations where Sf 82.

Due to the absence of 026 from the equations of 924w and 925w: errors of

measurement were expected to have no effect on their sampling mean estimates.

Table 6 reports the effect Of the presence of errors of measurement in the

premeasure on the sampling mean estimates Of Dzw's for the three different

combinations Of BI and B 2 for c = 30, s = 20 and Y:.2.

As expected, the mean estimates Ofpi 1w: 022w andG23w increased due to

presence of errors Of measurement when BI = 82. While their values were all

0

equal to '003 when Y0Y0: 1.0 they became .026, .005 and .033, respectively

when OYOYO = .8. Also, as expected, presence of errors of measurement brought

the mean estimates of $1“, and 923w closer to zero in situations where Bl< 82.

Their values were -041, -.056 when pYoYO = 1.0 and became -.02 and -.028 when

p
. . . 8') B D —

YOYO -.- .8. However, in Situations where 1 2 and YOYO - .8, the mean
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estimates of 021w and 023w did not increase as expected. Their values were .057,

p Z . g p : e e.075 when YOYO l and 058, 07 when YOYO 8

The mean estimates of 024w and 925w remained the closest to zero in the

presence and absence Of errors of measurement and across all combinations Of 81

and 82.

Sample and Class Size Effect
 

Due to presence of s in its denominator, 022w was not only expected to

have a smaller mean estimate than 021w and 0:23“, but also it was expected to

get smaller as 5 increased. C is not part of any of the equations of Riwi

therefore, it was expected the mean estimates of piw's would not be affected by

changing sample size.

Table 7 shows the mean estimates of Diw's across different levels of sample

Size where Y = .2, pYOYo : .8 and s = 20.

As expected, the mean estimates of all oiw's were not affected by

increasing c across combinations of 81 and 82. For example, the mean estimates

of 921w: 922w: 923w: 924w and 025w were .06, -.Ol, .07, -.0045, .0073 for c = 10,

.58, .012, .07, .0008, .0074 for c = 20 and .053, .01, .07, .0006, and .0012 for c :

50 in situations where 81 > 32. Table 8 shows the mean estimates of Ozw's across

different levels of class size where Y : .2, pYoYo : .8, c = 30 and 3 = 0.

AS expected, the mean estimates of 021w: 023w: 024w and 925w were not

affected by increasing 5. The mean estimate Of 922w decreased slightly as 5

increased. For example, the mean estimates of 922w were .018 for s : 10, .012

for s = 20 and .0048 for s : 30 in situations where 51> 82.

Empirical Type I Errors for One and

Two Tailed t-Tests When Testing Ho‘oiw = 0
 

TO evaluate the validity of the t-test in testing HO: 02w : 0, the empirical

values of the tests for tzw's were compared to the critical values Obtained from
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the t-distribution with C-2 degrees of freedom for selected level of significance.

When the null hypothesis is true (i.e., B3 = 0), the Observed relative frequency of

data sets having values of tle, tzzw, t23w’ tzmy, and t25w greater than the

critical values in the upper tall or smaller than the same critical values in the

lower tail, yield the empirical levels Of significance. Comparison to the selected

or nominal levels of significance gives an indication of whether the test used is

conservative, liberal, or correct. Comparisons were made at three nominal

levels of significance which are commonly used by educational researchers; .01,

.05 and .1. Observed levels of significance were in all cases based on calculating

tzw's for 1000 replications from a multivariate normal distribution with Specified

characteristics. To facilitate comparison Of empirical and nominal levels Of

significance, 95% probability intervals were computed using the normal

approximation of the binomial distribution with n=1000 and P equal to the

selected levels of significance. Thus, if the selected level of significance was

.05, the 95% probability interval would be .05 r 1.96 ((.05) (I-.05)/(1000))'/2 = .05:

.014. The probability limits for the nominal alpha's are presented in Tables 9

through 16. If the empirical Type I errors exceeded the upper value of the

probability limit this indicated a liberal test. On the other hand, if it was less

than the lower value of the probability limit this indicated a conservative test,

otherwise the t-test was considered valid. The .05 nominal alpha will be Chosen

through out this chapter as the primary base for comparison of the different

situations.

Initial Confounding Effect
 

It was argued earlier in this chapter, given Y is large, the empirical

sampling distributions of rilwa rizw and r23“, will be located to the right of

the central t—distribution in situations where 81: 82 or B l > 82, and to its left
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when 81 < 82. As mentioned earlier, this prediction did not hold for the sampling

distribution of rizw. Also, it was argued that the empirical sampling

distributions of rig“, and r25“, would be the closest to zero. As a consequence,

given Y is large it was expected that using the test statistics tle and t23w to

test pi“, = 0 would result in Liberal tests in situations where 131 :32 or 81> 82,

and in conservative tests when 81 < 82. However, both tqu and t25w were

expected to result in a valid test of the hypothesis of interest.

Table 9 shows the empirical Type 1 errors of the one tailed test of 92w

across three levels of initial confounding and across three combinations of B 1

and 52 for c = 30, S = 20 and pYOYO : .8 Comparable results for the two tailed

tests are shown in Table 10. It should be mentioned that here and throughout

this paper, only the positive tail was considered for the one tailed tests.

a, .6,

All the empirical Type I errors of the one-tailed tests for tzw's were within

1.96 standard errors of their corresponding nominal alphas whenY = O andY = .2.

As Y increased to .4, most of the empirical Type I errors for the one-tailed tests

for tle and t23W were, as expected, greater than the upper limits of their

corresponding nominal alphas. The other tzw's were not affected. For example,

at .05 level Of Significance, the empirical Type 1 errors for one-tailed tests for

tzlw: tzzw: tz3w: 124w, and t25W were .082, .048, .097, .043 and .047

respectively.

While the empirical Type 1 errors of the two-tailed tests for tzw's were in

close agreement with the one-tailed tzw's when Y :0 and Y :.2, they differed as Y

increased to .4. For example, at .05 nominal alpha, the empirical Type I errors

of the two-tailed tests for tzlw: tzzw: tz3w, tzgw and 125w were .043, .029,

.056, .038 and .041, respectively (Table 10). The two—tailed tle and t23W were

only valid due to compensating lack of fit in in each tail. Thus for r'z'lw: r22“,
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and r23“, either the one —tailed test was too liberal or the two-tailed test was

too conservative. In contrast, both the one and two-tailed tests for tzw, and

tz5w were valid in testing the hypothesis of interest across all levels of Y .

Bi<82

As expected, all the empirical Type I errors of the one-tailed tests were

 

within 1.96 standard errors of their corresponding nominal alphas when Y = 0. As

Y increased to .2, the empirical Type I errors for the one-tailed tests for tle

and t23W became slightly conservative (e.g. .036 and .034 for nominal alpha of

.05) asY increased to .4 the degree of conservativeness increased to .019 and .016

at .05 nominal alpha. As expected, the one-tailed test for t22W also became

conservative with increased initial confounding but less so than either rilw or

rzzw-

While the one-tailed tests using tzlw, t22w and t23W were conservative

when Y z .4, only the two-tailed test using t22W was conservative. Its empirical

Type 1 errors was .035 at .05 nominal alpha. It should be mentioned that both the

one and two-tailed tests using tzpw and t25W were valid in testing Ho: 92“,:0

across all levels Of Y.

81> 82

 

As expected, all the empirical Type 1 errors of the one-tailed tests were

within 1.96 standard errors of their corresponding nominal alphas whenY = 0. As

Y increased to .2 and to .4, the empirical Type I errors for the one-tailed tests

using tle and tz3w increased to .091, .103 whenY : .2 and to .148, .193

respectively wheny: .4 at .05 nominal alpha. However, the one-tailed test using

t22w was not liberal at .05 as Y increased, but was at .l nominal alpha (e.g., .114

whenYz .2 and .127 whenY = .4). None of the two-tailed tests were liberal when

Y = 0 and Y = .2 at .05 nominal alpha. But as Y increased to .4 the two-tailed
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tests using tle and t23W became liberal (e.g., empirical Type I errors of .094

and .116 respectively at .05 nominal alpha).

Again the one and two-tailed tests using tzQw and t25w were valid across

all combinations of 81 and 82 and across all levels of Y.

Effects on Empirical Type 1 Errors of Test Statistics

When the Presmeasure Contains Errors Of Measurement

 

 

As mentioned earlier, presence Of errors of measurement was expected to

push the empirical t-sampling distributions of rilw, r22“, and r 23w to the

right Of a central t-distribution when 81 = 82 or 81 > 82. Also, errors of

measurement were expected to bring the empirical sampling distributions of

rilw, r22“, and r23“, closer to the central t-distribution in situations where 51

< 82.

Table 11 shows the empirical Type I errors Of the one-tailed tests of Oiw's

when pYoYo : 1.0 and .8 across the three combinations of 81 and 82 for c = 30, s

= 20 andY:.2. Comparable results for the two—tailed tests are shown in Table 12.

81 = 82

All the empirical Type 1 errors of the one and two-tailed tests using tzw's

across both levels of OYOYO were within 1.96 standard errors of their

corresponding nominal alphas accept for the two-tailed tests using t22W and

tz4w where the empirical Type 1 errors were conservative. In contrast to what

was expected, at least .8 reliability of the pretest does not invalidate the r21“,
3

rZ-Zw and r23“, procedures when 81 = 82.

81(82

 

As expected, the one-tailed tests using tzlw: tZZW and t23W were less

conservative when 51< 2 and reliability of the premeasure was less than perfect.

The empirical Type I errors were .013, .015, .026 when P YOYO : 1.0 and .036,
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.043, and .034 when pYoYo = .8 at .05 nominal alpha. The empirical Type I errors

for the one and two-tailed tests using t2”,w and t25w remained within 1.96

standard errors of their corresponding nominal alphas across both levels of pYoYo'

While presence of errors of measurement did not have any noticeable effect on

the two-tailed tests for tzzw: tz,‘W and t25w: less than perfect reliability of the

premeasure appeared to make the t2 1w and t23w tests slightly too liberal for

nominal .01 (e.g. the empirical Type I errors were both .018).

81>82

 

In contrast to what was expected, the one-tailed tests using tz 1w and t23w

became less liberal in the presence of errors of measurement at .01 and .05

nominal alphas (e.g. empirical Type I errors of .098 and .117 for Dy = l but
oYo

.091, .103, respectively for O YoYo : .8 at .05). The expected increased

liberalness due to errors of measurement in the pretest did occur, however, for

nominal alpha .1.

A similar decrease in liberalness was found for the two-tailed test using

tle and tz3w (e.g. empirical Type I errors of .071, .077 for p¥oYo : 1.0 but .053

and .063 for pYoYo = .8.

Once again the one and two-tailed tests using t24w and tzjw were valid

across all combinations of 81 and 82 and across both p and .8.
YoYo

Sample Size Effect
 

It was expected that increased c should result in increased power. This

should not affect Type I error rates for valid tests but should increase problems

for tests that are too liberal (and may be even for tests that are too

conservative).

Table 13 shows the empirical Type 1 errors of the one-tailed tests of 92w

across three levels of sample size and across three combinations of 81 and B 2 for



 



E
f
f
e
c
t
s

o
f

S
a
m
p
l
e

S
i
z
e

o
n

E
m
p
i
r
i
c
a
l

T

N
o
m
i
n
a
l

A
l
p
h
a

0
9

‘5
.
i
n
d

P
?
°
?
-

-
_

-_
_.

_
.
0
5
1
0

_
a
b
i
l
i
t
y

L
i
m
i
t
s

t
l
l
w

t
z
z
w

t
z
3

.
0
1

.
0
0
2
-
.
0
1
8

.
0
0
9

.
0
1
1

.
0
1
1

B
t

B
.
0
5

-
0
3
b

-
0
5
4

.
0
5
2

.
0
4
5

.
0
5
1

.
l

.
0
8
8
-
.
1
1
2

.
1
0
2

.
0
9
4

.
1
0
2

.
0
1

1
.
0
0
?
-
.
0
1
8

.
0
1
2

.
0
0
9

.
0
1
2

.
O
h

.
0
3
6

.
0
6
4

.
0
3
9

.
0
4
4

.
0
3
9

.
1

.
0
8
8

.
1
1
2

.
0
9

.
0
8
9

.
1
0
7

.
0
1

.
0
0
?

.
0
1
8

.
0
1
2

.
0
1

.
0
1
5

B
>

8
.
0
5

.
0
3
0
.
.
0
0
4

.
0
6
2

.
0
4
9

.
0
6
3w

_
’
t
}
'
i
{

T
a
b
l
e

1
3

u
-
.
-
.
-
-

_
-
4
q
.
.
_
.
.
_
-
-
-
_
_

4
__
t’
5Y
’.
_

.
0
1

.
0
0
9

.
0
4
7

.
0
4
8

.
0
8
8

.
0
9
6

.
0
0
8

.
0
1
3

.
0
4
2

.
0
4
6

.
0
9
0

.
0
8
8

.
0
1

.
0
1

.
0
4
5

.
0
3
9

1
i

*
.
0
0
0

.
1
1
2

_
_
4

.
1
2
9

<
.
0
9
5

-
1
3
5
.
_

.
0
9
6

.
1
0
0

*
G
r
e
a
t
e
r

t
h
a
n

t
h
e

u
p
p
e
r

l
i
m
i
t

o
f

i
t
s

c
o
r
r
e
s
p
o
n
d
i
n
g

0

 

S
m
a
l
l
e
r

t
h
a
n

t
h
e

l
o
w
e
r

l
i
m
i
t

o
f

i
t
s

c
o
r
r
e
s
p
o
n
d
i
n
g

y
p
e

I
E
r
r
o
r
s

f
o
r

O
n
e
-
T
a
i
l
e
d

T
e
s
t
s

o
f

p
i
w
'
s

=
0

w
h
e
r
e

s
=

2
0
,

Y
a
n
d

p
Y
o
Y
o

=
8

 

t
z
l
w

~
t
g
z
w

t
r
j
w

.
t
z
4
w

t
z
s
w

.
0
0
5

.
0
0
8

.
0
0
6

.
0
0
8

.
0
0
7

.
0
5
4

.
0
4
2

.
0
6
0

.
0
3
9

.
0
4
5

.
1
0
9

.
0
9
1

.
1
1
5
*

.
0
9
3

.
0
9
5

.
0
0
7

.
0
1

.
0
0
3

.
0
1

.
0
0
7

.
0
3
6

.
0
4
3

.
0
3
4
0

.
0
4
4

.
0
4
8

.
0
7
5
0

.
0
8
7
0

.
0
7
4
0

.
0
9
1

.
1
0
6

i
-

i

.
0
2

.
0
1
2

.
0
2
2

.
0
1

.
0
1
1

‘
k

i

.
0
9
1

.
0
5
1

.
1
0
3

.
0
4
8

.
0
4
8

i
*

i

.
1
7
1

.
i
1
9
_

_
.
1
9
8

_
.
3
0
5

.
1
0
2
7

n
o
m
i
n
a
l

a
l
p
h
a

n
o
m
i
n
a
l

a
l
p
h
a

.
C
=
3
0
_
.
.

_
-
<

'
—

.
0
0
7

.
0
4
1

.
0
8
1

.
0
2
9

i
t
?
,
w
—

”
1
7
1
0
‘

C
=
5
0

J
l

.
0
1
1

.
0
1
2

.
0
1

.
0
5
8

.
0
8
1
*

.
0
5
6

.
1
0
4

.
1
3
7
*

.
0
9
9

.
0
0
9

.
0
0
7

.
0
0
9

.
0
5
5

.
0
3
9

.
0
5
9

.
1
0
0

.
0
7
1

.
1
0
3

.
0
1
2

.
.
0
3
5

.
0
1
1

.
0
6
7

.
1
2
9

.
0
5

[
I
‘
V
/

.
0
5
6

.
0
9
9

.
0
0
9

.
0
5
8

.
1
0
2

.
0
0
7

.
0
6
2

.
1
1
6

5+7



  



48

Y : .2, s = 20 and Dyoy = .8. Comparable results for the two-tailed tests are
0

shown in Table iii.

81==Bz

As expected, the one-tailed tests for tle and t23W became increasingly

 

liberal as c increased (e.g., the empirical Type 1 errors were .052, .051 for c =

10, .054, .06 for c = 30 and .071, .081 for c = 50 at .05 nominal alpha). The other

one-tailed tests remained valid across all levels of c and across all levels of

nominal alpha.

All the empirical Type 1 errors for the two-tailed tests were within 1.96

standard errors of .05 nominal alpha indicating that sample size has little to no

effect on the empirical Type I errors of the two-tailed tests when 81 = 82 at .05

nominal alpha.

81‘ 82

 

As c increased the one-tailed tests for tzlw t22W and t23W became

increasingly conservative, particularly at .l nominal alpha. While Type I errors

were within acceptable bounds for c = 10, the empirical Type I errors were .075,

.087, .074 for c = 30 and .081, .l and .071 for c = 50. Increasing sample size did

not, however, cause a problem for the validity of tzgw and ‘25w-

The effect of increasing sample size on the validity of tests t21W , t22W

and tZBW were just the opposite for two-tailed tests than for one-tailed tests.

For example, the empirical Type I errors were .112, .113, .lZl at .1 nominal alpha

for c = 50 indicating all three tests were liberal.

B1>82

As expected, most of the empirical Type I errors of the one-tailed tests for

 

tzlw, tzzw, and t23w were beyond the upper probability limits of their
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corresponding nominal alphas for c = 30 and c :50. The liberalness of these tests

was increased as c increased. For example, the empirical Type I errors of the

one-tailed tests for tzlw: t22W and t23W were .62, .49, .063 for c = 10, .091,

.051, .103 for c = 30 and .112, .067 and .129 for c = 50 at .05 nominal alpha.

All of the two-tailed tests were valid when c = 10 and 30 accept for t2“W

which was conservative for c = 10 at .05 nominal alpha. As c increased to 50,

the two-tailed tests for tz 1w and t23W became liberal at .05 nominal alpha (e.g.

empirical Type I errors of .073 and .074). Surprisingly at .1 nominal alpha even

the two-tailed test, for tzqw and t25w became too liberal.

Class Size Effect
 

On a priori grounds it was difficult to predict the effect that varying class

size might have on the validity of the several test statistics under investigation.

As reported earlier only the formula for 922w was a function of class size, 5, and

there it appeared in the denominator.

Table 15 reports the empirical Type I errors of the one-tailed tests for

t zw's across three levels of class size and across three combinations of 81 and 82

forl’ : .2, c = 30, and OYOYO: .8. Comparable results for the two-tailed tests are

shown in Table 16.

81:32

All empirical Type I errors for both one and two-tailed tests were within

1.96 standard errors of .05 nominal alpha. Further, the liberalness of tle and

t23W remained stable as 5 increased. These results indicate that increasing

class size does not have an effect on the validity of the tests.
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8.1 <82

All one and two-tailed tests for tle, tzzw: 123w: t2“W and tz5w were

 

valid across all levels of s at .05, except the one-tailed test for tz3W when

5:20 and 30 which was conservative (i.e., empirical Type I error of .34 in each

case).

8932

At .05 nominal alpha, the one—tailed test for t22W was liberal for 5:10 but

 

became valid as 5 increased (e.g., Type I error of .065 for s = 10, .051 for s = 20

and .06 for s = 30). While this appears to be a positive effect of increasing class

size it is important to note that the trend in changing Type I errors was not

monotonic at .05 nominal alpha and was not present at other nominal alpha levels

investigated.

Empirical Power
 

The value of 0.10 was chosen for 83 in order to illustrate and contrast the

power of the five test statistics for tzw's for testing the hypothesis H0: 83 : 0.

The empirical powers of these test statistics were determined for the case where

the significance levels were .01, .05 and 0.10. Since the results on the empirical

powers of the 5 test procedures were similar for the three significance levels,

only the results for .05 nominal alpha are reported.

In this section, only the tests which were found to have empirical Type I

errors within two standard errors of the nominal alphas when 02w = 0 when B3 =

0 are discussed. A "+" mark was used through the following tables to identify the

tests. The power of a test is defined as the probability of correctly rejecting the

null hypothesis. In general five factors affect the power of a test statistic:

sample size, discrepancy between null and alternative hypothesis, error term,

size of nominal alpha and whether a test is a one or two-
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test. The conditions under which riw's increase or decrease can be determined

by examining column 6 of Table 2. The pOpulation values of p‘zw's when 83 fi

are determined by
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Sinces is not present in the formulas of 924w and 925w: one can expect

that class size will have no effect on the empirical power of the tests for t2”;W

and 125w However, increases in class size is expected to dr0p the power of the

test for 122w: particularly when 81 < 32. Again, class size is expected to have no

effect on the empirical power of the tests for tzgw and tZ5W°

Effect of Initial Confounding
 

Table 17 reports the results of the effect of initial confounding on

empirical power of one-tailed tests for tzw's for c = 30, s : 20, pYoYo : .8.

Comparable results for the two-tailed tests are shown in Table I8.

 

It is important to remember that only the one and two-tailed tests for

124w: tz5w and the one-tailed test for tZZW were valid at .05 nominal alpha.

The empirical power of the one and two-tailed tests for t25W remained

essentially constant across all levels of Y (e.g., the one-tailed test's empirical

powers were .173 forY : 0, .173 forY : .2 and .168 forY = .4). in contrast the

empirical power of the one and two-tailed tests of 02,”, decreased asy increased

(e.g., for the one-tailed test the empirical powers decreased from .164 to .157 to

.132 asY increased from 0 to .2 to .4). Similarly there was evidence that the

power of the one-tailed t22W suffered with increasingY (e.g., empirical power of

.167 forY: O, .171 forY : .2 and .148 forY : .4).

B l<82

Earlier it was shown that only the one and two-tailed tests for tqu and

tij were valid given the null hypothesis.

Once again the empirical power for one and two-tailed tests for t25w

remained essentaiily constant as Y increased (e.g. the empirical powers of the
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one-tailed test were .131 fory : 0 and .124 for both T = .2 and Y: .4). And again

the empirical power for one-tailed test for t2“,W decreased from .139 to .120 to

.10 as Y increased from 0 to .2 to .4. It should be noted that the two-tailed tzgw

and t25w were less powerful than the one-tailed tests.

BFBZ

Only the one and two-tailed tests for taw, t25w and the two-tailed test

for t22W were valid under the null hypothesis.

In contrast to previous results, the empirical power of the one and two-

tailed tests for t25w increased slightly as Y increased (e.g. empirical powers for

one-tailed test of .157, .171, .173 as Y increased from 0 to .2 to .4). The

empirical power of the one-tailed tests for tzuw did not have a clear relationship

to y but the two-tailed test had essentially constant power as Y increased (e.g.

the empirical powers were near .09).

Similarly, the empirical power of the two-tailed tests for tzzw were not

much affected by varying (e.g., empirical powers of .09, .102 and .102 aSY

increased from 0 to .2 to .4).

Effects of Errors of Measurement in the Premeasure
 

Due to the absence of error of measurement components from the formulas

of 034w and 925w one can expect that errors of measurement in the premeasure

will not affect the empirical power of the test statistics using rigw and risw.

Errors of measurement were expected to increase the power of the test

statistics for tzzw-

Table 19 reports the results of the effect of errors of measurement on the

empirical power of the several one-tailed tests for tzw's for c = 30, s = 20 and Y

z: .2. Comparable results for the two-tailed tests are shown in Table 20.
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Bi=32

As seen earlier, only the one and two-tailed tests for tzzw, t24W and t25w

 

were valid, given the null hypothesis. The empirical powers of the one and two-

tailed tests for tzzw: t2,“W and tz5w were increased in the presence of errors of

measurement (e.g. empirical powers of .095, .171 for 122w: .094, .157 for taw,

.117, .173 for tZSW).

Bl<82

Only the one and two-tailed test for ‘24w and tzjw were valid under the

 

null hypothesis.

The empirical power of the one and two-tailed test for t25w decreased in

the presence of measurement error (e.g., empirical power for the one-tailed was

.139 for oYoYo : l and .124 for pYoYo : .8). Similarly, empirical power of t2“W

decreased slightly in the presence of errors of measurement (e.g., .126 for pYoYo

= l and .120 for pYoYo = .8).

81 >82

Earlier it was shown that only the one and two-tailed tests for tzgw and

 

tZSW were valid given the null hypothesis.

Both empirical power of the one and two-tailed tests for tz4w and t25w

increased in the presence of errors of measurement (e.g., .089, .102 for pYoYo :-

1.0 and .159 and .171 for pYoYo .-. .8).

Sample Size Effect
 

It was predicted that the empirical power of all the one and two-tailed

tests for tzw's would increase as c increased. Table 21 gives the results of the

effect of sample size on the empirical power of the one-tailed tests for tzw's for

s = 20,Y = .2 and pYoYo = .8. Comparable results for the two-tailed tzw's are

shown in Table 22.
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Earlier it was shown that only the one and two-tailed tests for tzzw: t2“W

and t25w were valid under the null hypothesis when 81 = 32 or 81(82-

The empirical power of these tests increased as c increased (e.g., the

empirical power of the one-tailed tests for tzzw: t2“W and t25w at c = 50 were

234, 243, and 214 percent of their power when c = 10 in situations where 81 :82).

Only the one and two-tailed tests for tz4w and 125w were valid given the

null hypothesis, in situations, where 81 < 82. Again, the empirical power of these

tests increased as c increased (e.g. the empirical power of the one-tailed tests

for tqu and 125w were .83, .82 for c = 10, .159, .171 for c = 30 and .217, .231

for c = 50).

Class Size Effect
 

It was expected that increased class size would have no effect on the

empirical power of the tests for tz4w and 125w: but that the empirical power of

the test for t22W would dr0p as 5 increased.

Table 23 reports the results of the effect of number of students per class

on the empirical power of the one-tailed tests for tzw's for c = 30, Y = .2 and

O YoYo = .8. Comparable results for the two-tailed tests for tzw's are given in

Table 24.

 

As was shown earlier only the one and two-tailed tests for tzzw: tz4w and

125w were valid, given the null hypothesis.

The changes in the empirical power of the one-tailed tests for tznw and

tzjW were not large but in each case power increased monotonicaly with s (e.g.,

empirical powers at s = 30 were .112 and .119 percent of the empirical powers

when s = 10 and .102 and .103 percent of the empirical powers when s = 20).

There was, however, no clear relationship between power and class size for t22W
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(empirical powers of .160, .171 and .164 as 5 increased). Similar but less

pronounced relationship between power and class size were found for the two-

tailed tests.

81452
 

Only the one and two-tailed tests for tzzw, tzpw and t25W had empirical

Type I errors within two standard errors of the nominal values when 83 = 0.

The empirical powers of the one-tailed tests for tzzw: tzgw and 125w

tended to drOp slightly as 5 increased, particularly from 20 to 30 (e.g., empirical

powers of .114, .113, .,106 for 122w: .121, .120, .106 for t2“, and .126, .124, .112

for 125w as 5 increased from 10 to 20 to 30). However, the relationship between

power and class size for the two-tailed tests for tzzw, tzw, and t25W were not

clear (e.g., empirical powers of .077, .066, .074 for tzzw, .082, .071, .076 for

tznw: .075, .82, .80 for tzjw as 5 increased from 10 to 20 to 30).

BPBZ

Only the one and two-tailed tests for t24w, t25W had expirical Type I

 

errors within two standard errors of the nominal alphas when 83 = 0.

The empirical power of t2"W and tz5w tended to increase with class size

though this relationship was most in evidence for one-tailed test at alpha .1 (e.g.,

empirical powers of .211, .257, .271 for tz,‘W and .234, .272 and .286 for t25w)°



  



CHAPTER VI

SUMMARY AND CONCLUSIONS

The purposes of this investigation were to determine the conditions under

which testing for Ho: 02w=0 is equivalent to testing for no teacher behavior

effect. Five different methods for defining Z were investigated under a variety

of conditions defined by varying (a) the amount of initial confounding, (b)

presence of errors of measurement in the premeasure, (c) sample size, (d) class

size and (e) the relationship between 61 (i.e., the structural slope of class effect

at time t on class effect at time 0) and 82 (i.e., the structural slope of within

class deviation at time t on within class deviation at time 0).

A linear structural model which incorporates the hierarchical nature of the

data and the possibility of measurement errors was provided in chapter three to

determine analytically the conditions for which testing 02w = 0 is equivalent to

testing 83 = 0. The results showed that equivalence of the two null hypotheses

does occur if either of the following conditions are met (1)Y= 0 (i.e., no initial

confounding of teacher behavior and class compositions) (2) Bl = 82, given a

perfectly reliable measure. Such equivalence between pzw = 0 and B3 = 0 is true

regardless of whether Z is defined using K set to the total, between or within

regression coefficients.

A Monte Carlo approach was taken to investigate the appropriateness of

the different test statistics for tzw's in testing the hypothesis of no teacher

behavior effect on student achievements. As expected, whenY = 0 and B3 = 0 all

of the mean estimates of pin/'5 were near zero. Further, the empirical

distributions of the "t" statistics for the different forms of riw's were close to
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their theoretical t-distribution across all combinations investigated. Finally, all

of the test statistics for tzw's were valid and tzlw, t23W and t25w had empirical

power greater than tzzw and tzgw-

Increasing the amount of initial confounding, Y , caused the mean

estimates of 021w, 022w and 023w to depart from zero, but did not effect the

mean estimates of 0224“, and 025w. Results of the empirical Type I error rates

paralleled, for the most part, the empirical results for values of piw's-

Increasingy caused tle and t23W to be centered to the right of the theoretical

t-distribution when 81 = 82 or 31> 32 and to its left when 81 < 52. This caused

the tests to be too liberal in the first two cases and too conservative in the third

case for one tailed tests. For two-tailed tests,tle and t23W were again too

liberal when 81 > B 2 but valid for the other two relationship between B 1 and 82.

Results of the empirical Type I error rates indicated that increasingY caused the

one-tailed test for t22W to be too conservative when 81 = 82, the one and two-

tailed tests to be too conservative when 81 < 82 and the one-tailed test to be too

liberal when 81 >82. The only tests for which empirical Type I error rates were

not affected by increasing the amount of initial confounding were tn,W and

tzjw. It can be concluded that as y increased, only tzzw: tznw and tz5w had

empirical Type I errors within two standard errors of the nominal alphas when 81

81 and B= 82 and t24w: 125w for the other relationships between 2. However, in

situations where t22W was a valid test, it had greater power than tzqw but less

than 125w-

Errors of measurement in the premeasure caused the mean estimates of

02,3 022w and 023w to depart slightly from zero when 81 = 82 and to become

Closer to zero, at least for tzlw and t23w when 81 < 82. However, errors of

measurement did not effect the mean estimates of 02'“, or 025w. The one-tailed
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tests using tz 1w and t23W became less conservative as a result of the presence

of errors of measurement when Sf 82.

The effects of errors of measurement on the two tailed tests were not the

same as those for the one-tailed tests. For example, errors of measurement

brought the empirical Type I errors for tle and t23W closer to the nominal

alphas's when 81 > 82. Concerning the power of the tests with valid Type I errors,

power for tzuw and t25w tended to increase in the presence of errors of

measurement in the premeasure when 51 = 82 or 81 > 82 but decreased when 81

<82- Further 125w had greater power than 124w across all combinations of Bi and

82-

Sample size was found to have no effect on the mean estimates of pzws

across all combinations of BI and 32. Increasing sample size affected empirical

Type I error rates for the one-tailed tests using tle and t23w (i.e., the tests

were too liberal when 81 : 82 or 81 > 52 but too conservative when 81 < 82).

While the results of the empirical Type I error rates for the two-tailed tests

were parallel to the one-tailed tests when 81 > B 2, they differed in situations

where BI = 82 or 81 > 82. Except for the one—tailed tests when 81> 82, increasing

sample size did not affect the empirical Type I error for 122w across all

combinations of Bi and 82 at .05 nominal alpha. Statistics tzaw and t25w were

the only tests to remain valid as sample size increased. The power of these two

tests increased with sample size, and for most cases tz5w had greater power

than tznw'

Number of students within each class had no effect on the mean estimates

of all pzw's. Also, it had no effect on the one and two-tailed test across all

combinations of 31 and 82. In general the tests which were valid, conservative

or liberal when classes were small remained so when class size increased. tzqw:

tij and in some cases t22W were the only tests which had empirical
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Type errors within two standard errors of the nominal alpha when 83 = 0. For

these tests, the empirical power tended to increase with class size whenfil = 82 or

81 > 82 and to-drOp slightly when 8 1 < 82.

In conclusion, when students are randomly asSigned to classrooms or when

81 = 82 and the premeasure has perfect reliability, testing H0: 02“, = 0 is

equivalent to testing no teacher behavior effect. This equivalence is true

regardless of whether Z is defined using K set to total, between or within

regression weights. However, when students are not randomly assigned to

classrooms (i.e.,Y 7‘ 0) which is typically the case in practice, the test statistics

using tzlw: t22W and t23w were valid only in a few situations. In general these

tests, particularly, tle and t23w tended to be too liberal in situations where 81

>32 (the typical case in education) and too conservative when 81 < 82.

Interestingly, the only tests were valid for all conditions investigated were the

tests for tzgw and tzjw- Since K is usually unknown in practice, the procedure

of choice should be tzqw- In addition to being valid, it affords an estimate of K

rather than requiring K to be known apriori.

Increasing sample size and presence of errors of measurement increased

the empirical power of t24W and t25w- Their empirical power increased slightly

with class size when 81 = 82 or 81 > 82 but decreased slightly when Bf 82.

While the empirical power of t25W remained constant $Yincreased when 81 = 32

or 81 < 82, the empirical power of t2“W decreased. In situations where 81> 82,

the empirical power of tzjw increased but tzgw reamined constant. The results

of the investigation of the two-tailed tests were not in complete agreement with

their corresponding one-tailed tests. A possible explanation is that the

distribution of the test statistics may be skewed.

The results of this investigation are limited to the parameter values

chosen. In other words, if some parameter values were changed such as OYoYo
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and the relative magnitude of Bi and 82 some of the results would be different.

For example, the satisfactory results based on using t22w were functions of the

chosen parameter values. If the chosen values of pYoYo’ Bi and 82 had been .9,

.3 and .9 instead of .8, .3 and .7 when Bf 82 the values of 922w would be changed

from .003 to .06. The test statistic.tzzwa may be too conservative instead of

valid for these new parameters.

The results of this study indicate that procedures used by process-product

researchers in forming residual gain scores typically provide misleading results.

Sometimes the test statistics used are too liberal and other times they are too

conservative. Therefore, it is recommended that process-product researchers

who wish to test for no teacher behavior effect use tz,‘W which involves

setting K = él- In addition to yielding valid Type I error rates across all

conditions investigated, the procedure had reasonable power (though not as good

as if K were a known constant).
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