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ABSTRACT

RESIDUAL GAIN SCORES AS A CRITERION FOR CHANGE:
INFERENTIAL PROBLEMS
by

Khalil Elaian

To determine the effect of teacher behaviors, W, in process-product
research, residual gain scores, Z, are often used as the criterion. Significant
correlations between class means of residualized gain scores and teacher
behaviors, r5y/'s, are taken as evidence of teacher effects. The purposes of the
study were to determine the conditions under which testing Hp: P34 = 0 is, in
fact, equivalent to testing for no teacher behavior effect, and also to investigate
the appropriateness of using different definitions of residual gain scores in
testing the null hypothesis. Five different forms of residualized gains were
considered based on the total, Z), between, Z,, and within regression coefficient,
Z3, a newly derived estimate of the regression of posttest class effects on
pretest class effects, Zy> and finally the parameter for the class effects
regression coefficient, Zs.

A linear structural model was built to determine the conditions under
which testing 3, = 0 is equivalent to testing no teacher behavior effect on
student achievement. The analytic results showed that the two null hypotheses
are equivalent if either of the following conditions are met: (a) there is no
initial confounding of teacher behavior and class composition or (b) the slope of

posttest class effect on pretest class effect, B|,is equal to the slope of
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posttest on pretest for within classes, 82 and a perfectly reliable pretest. When
the conditions are not met; however, the two null hypotheses are equivalent only
for Zy and Zs.

A Monte Carlo approach was taken to investigate the appropriateness of
using different rsy's in testing the hypothesis of no teacher behavior effect.
Three criteria were considered: (a) the mean estimates of Pzy's, (b) empirical
Type I error rates, aand (c) empirical power. Parameters varied in the study
were the degree of initial confounding, the reliability of the pretest, the number
of classrooms, and the number of students in a classroom.

The results of the study showed that when there was a substantial amount
of initial confounding, the test statistics using rziws FZows and rzaw were only
valid in a few situations. These tests, particularly the tests using r; W and FZ3w
tended to be too liberal in situations where 8| = B, or B>8, and too conservative
when B <&, Parallel results for the tests using rzw and Fzaw were obtained with
increasing sample size. However, the test statistics using Fzyw and rzsw were
the only tests which remained valid as initial confounding, sample, and class size
increased and in the presence of errors of measurement. Also, the results
indicated that increasing sample and class size increased the empirical power of
bothrz,w and 3y in situations where = By or B> By,

It was concluded that procedures used by process-product researchers in
forming residual gain scores typically provide misleading results. Sometimes the
test statistics used are too liberal and other times they are too conservative.
Therefore, it is recommended that process-product researchers who wish to test
for no teacher behavior effect use Z;. In addition to yielding valid Type I error

rates across all conditions investigated, the procedure had reasonable power and
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does not have the unrealistic requirement of knowing the value of a parameter a

priori.
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CHAPTER I
STATEMENT OF THE PROBLEM

Residual gain scores (RGS) are often used as a criterion for measuring
change in educational research. For example, in reference to evaluating teacher
effectiveness, Veldman and Brophy (1974) state "it is generally accepted that
residual gain scores are superior to simple pretest-posttest difference scores as
measures of teacher influence" (p. 32l). Process/product research on teaching
can be used to illustrate the practice of setting residual gain scores as a
criterion for study (Gage, 1977). Process refers to teaching behavior and product
refers to student learning. Residual gain scores are used as a product variable
which is meant to control for initial differences among classrooms in their
compositions of students. The residual gain scores are typically constructed
from student pre- and post-instruction achievement test scores.

Brophy and Evertson's (1974) two year replicated study conducted at the
University of Texas provides a specific example of using residualized gain scores
as the criterion in process/product research. Thirty teachers were included in
the first year, and 28 in the second year. Classroom observations were made to
assess teacher behavior. Scores on five subtests of the Metropolitan
Achievement Test (MAT) were available for each student. The MAT obtained on
the first year was used as the pretest and the MAT for the second year as
posttest. For each student, predicted values of the posttest scores were
determined from the pretest scores based on the total sample regression line.
Residual gain scores were computed by subtracting predicted posttest scores

from the actual posttest scores.



To determine the effects of teacher behaviors, Pearson's product-moment
correlation coefficients between process variables and average residual gain
scores, aggregated by teacher, were obtained. The sample correlations were
tested for significance by t-tests, with c - 2 degrees of freedom, where c refers
to the number of teachers. The null hypothesis that Brophy and Evertson
intended to test was that teacher behavior had no effect on student
achievement. The aim of the present study is to investigate the appropriateness
of using residualized gain scores in order to determine the process product

relationship.

Definition of Residual Gain Scores

Consider the model used in forming residual gain scores:
Z=Y@)-KY(0) where Y (O)is the measure at time 0,
Y (t) is the measure at time t, and
K is an adjustment coefficient.
As described previously, Z, the constructed residual gain score aggregated by
teacher, is correlated with a measure of teacher behavior, W. Let rz,, denote
the sample correlation coefficient between Z and W, and P;w be the
corresponding parameter. For a test of Hy: P53 = 0 to be appropriate, not only
must the variables, Z and W, be linearly related but, in addition, Ps5, must be
only a function of change in achievement caused by W. If either one of the

above conditions is false, a test of Ho: PZw = 0 will lead to spurious conclusions.

As Z is constructed from equation I, the appropriateness of P53y, = 0 for a
null hypothesis depends upon the choice of K, the adjustment coefficient. While
K is assumed to be a known constant, in practice, this is seldom the case.
Usually K is estim ated from the relationship between Y (0) and Y (t), in terms of

a regression coefficient. Because the nature of the data on student performance



is hierarchical (i.e., students are nested within classrooms) three regression
coefficients are available: the between classroom regression coefficient, the
within classrooms regression coefficient, and the total regression coefficient.
For most educational data, these three regression coefficients are not
interchangeable. Further, it will be shown that in some situations, none of the
three coefficients estimate an appropriate correction parameter.

To further complicate matters, the sampling distribution of r3, will be a
function of the estimator for K. Unfortunately, the nature of the sampling
distribution of r3, is unknown (at least for most situations), and the use of the t-
distribution to test Hy : P, = 0 as in Brophy and Evertson's study, may not be
valid even when the sample regression coefficient estimates an appropriate

correction parameter (Draper & Smith, 1981).

Research Questions

The intent of the present study was to investigate the appropriateness of
using a t-test to test Pz, = 0 as evidence for no teacher behavior effect on
student achievement. More specifically, the following research questions were
investigated.

l.  What are the conditions under which testing P;y = 0 is
equivalent to testing no teacher behavior effect for different
methods of defining Z7?

2. Given no teacher behavior effect, how well does the distribution
of the "t" statistic based on each of several different methods of
defining z approximate the theoretical t-distribution for varying
amounts of (a) initial confounding, (b) presence of errors of
measurement in the premeasure, (¢) number of classrooms, and

(d) class size?






The investigation was conducted in two steps. First, the conditions under
which pzy = 0, if and only if there is no effect of teacher behavior on student
achievement, were determined analytically. Second, a simulation study was
conducted to investigate empirically the distribution of "t" statistics using
different methods of testing rzy,.

In Chapter II, relevant literature will be reviewed. In order to examine the
situation thoroughly, a structual model is introduced in Chapter IIl. Chapter IV
presents the design of the simulation study. The results obtained from the

empirical study and the conclusions reached are presented in Chapters V and VI.



CHAPTER I

REVIEW OF THE LITERATURE

In experimental research the experimenter manipulates variables of
interest and observes the manner in which the manipulation affects the variation
of the dependent variables. In order to be reasonably sure that the observed
variation in the dependent variable is indeed due to the manipulated variables,
the experimenter must control all possible confounding variables. Porter &
Chibucos (1974) suggested two catergories for these possible confounding
variables in the context of program evaluation:

1. Systematic differences in the dependent variable dimensions that
are present in the units of analysis at the outset of program
participation.

2. Systematic differences that occur in the dependent variable
dimensions during program participation which are not a function of
program participation. (p. 440).

While randomization is one of the most powerful methods to control
confounding variables of the first category it does not insure controlling
confounding variables of the second category. To the extent both categories of
possible confounding variables are controlled, arguments for causal relationships
between independent and dependent variables are strengthened.

Studies of natural variation are also used to investigate the possibility of

causal relationships among independent and dependent variables. As was the
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case for experimental research the investigator must be concerned about both
types of confounding variables. In studies of natural variation, however,
randomization is by definition not a part of the design and so other methods must
be employed to guard against confounding. One general method, which has
enjoyed considerable use, involves the formulation of an index of response of
which residualized gain scores, the focus of this study, represented a specific
type.

Alternative Indices of Responses

The index of response is defined by Zii = y(t)ij - K y(O)ij where Y(0), Y(t)
are pre and post measures for the ith individual in the jth group, K is some known
constant. In addition to requiring scores on the measure of interest at two points
in time to formulate Z, K has to be set to an apriori known value. However, the
value K should take depends on knowledge regarding the natural growth model
which adequately describes the data if there were no effects of the independent
variable.

The most commonly used index of response is raw gain scores, where K is
set to unity,

Djj = Y(t)ij - YO where Djj is the raw gain for the ith individual in the jth

group.

In other words, raw gain scores are created by taking the difference of the post
measure and premeasure scores on the dependent variable dimension.

Raw gain scores as a measure of individual change have been criticized in
the literature for having low reliability and for correlating negatively with
premeasure scores (Cronbach & Furby, 1970, Linn & Slinde, 1977; Lord, 1963).
Cronbach and Furby, have also questioned the use of raw gain as a strategy to
measure group change in studies of natural variation, agreeing with Lord (1967)

that gain scores are an inappropriate strategy to control for confounding



variables in natural variation studies of causal relationships. In contrast, Porter
(1973) has suggested that under certain assumptions gain scores may provide the
best technique for natural variation studies. Porter argued that given treatment
effects are additive the pre and posttest measure the same variable in a common
metric and there is no change in variances from pretest to posttest; it can be
shown that the gain score strategy does provide a reasonable approach to data
analysis in natual variation studies. Bryk and Weisberg (1977) showed that under
natural growth (i.e., no treatment effect) this gain score strategy provides an
unbiased estimate of the treatment if and only if the group growth patterns are
parallel (which is equivalent to Porter's assumptions) .

Standardized gain scores represent yet another form of index of response
that has been used to analyze data from studies of natural variation. K in the
index of response is set to either one of Oy / 9y, 9  / OT)’O or sy [sy_

Yt

where 02), and 02),0 are the population variances of the dependent variable

t
dimension at pre and posttests, G%I-yt and OzTyo are the population variances for
the true variables and Syt and Sy, are the sample estimates of GYt and Oyo.
Using ANOVA of standardized gain scores as a strategy to control initial
confounding was introduced by Kenny (1975). Even though Kenny did not
distinguish between the different types of standardized gain scores, he argued
that when individuals were assigned to a program based on sociological or
demographic variables, standardized gain scores provide the best index of
response for controlling initial confounding. Olejnik and Porter (1981) clarified
Kenny's recommendations by showing that the validity of standardized gain
scores is dependent upon the model of natural growth that applies in the absence
of treatment effects. They also pointed out that the two alternative ratios of

population standard deviations are equivalent if the reliability of the pretest and

posttest are equal. Finally and perhaps most importantly, they pointed out that



using a ratio of sample standard deviations followed by ANOVA is an incorrect
procedure that results in misleadingly small standard errors.

Residual gain scores are yet another form of index of response that has
been used in studies of natural variation. Three different types of residual gain
scores appear in the literature of measuring change. The first, which is called
True residual gain scores is defined by setting K in the index of response to the
slope of true posttest on the true pretest. True residual gain scores were
suggested by Tucker et al. (1966) and called a "base free measure of change."
The second, called observed residual gain scores, Z, sets K = BYtYo (i.e. the
slope of the manifest variables). The third called estimated residual gain scores,
Z, sets Kz%’t)’o where B)’t)’o is the sample estimate of the slope of y{ ony,.

Residual gain scores as measures of individual change have been
characterized in the literature as uncorrelated with initial status but suffering
from low reliability (Kessler, 1977; Linn & Slinde, 1977). Using ANOVA on
observed residual gain scores as an analysis strategy in natural variation studies
is comparable to using analysis of covariance. The only difference between the
two procedures is that ANCOVA estimates the value of K from the data while
ANOVA on the observed residual gain scores requires that K be set apriori to
B)’t)’o’

ANOVA on true residual gain scores is parallel to estimated true scores
analysis of covariance originally developed by Porter (1967). Again the
distinction is that the true residual gain score approach requires that a
population slope be known apriori while estimated true score ANOVA estimates
that slope from the data. Performing ANOVA on the estimated residual gain
scores raises at least two problems. First the expected value of the estimated
residual gain score is unknown (Draper and Smith, 1981) making it difficult to

determine whether the strategy provides unbiased estimates of the causal



relationship of interest. Second, the procedure suffers from the same bias of
standard errors that Olejnik and Porter (1981) noted for standardized gain scores
using sample standard deviations.

Uses of Indices of Responses

Using an index of response in lieu of randomization in natural variation
studies has been a controversial topic. Perhaps the best known antagonist of
their use is Lord (1967, 1969) who has stated "with the data usually available for
such studies, there is simply no logical or statistical procedure that can be
counted on to make proper allowance for uncontrolled preexisting differences
between groups" (Lord, 1967, p.35). More recently Cronbach and Furby (1970)
have indicated basic agreement with Lord's pessimistic view of the utility of
using statistical adjustment in natural variation studies. On the other hand,
Elashoff, 1969; Hornquist, 1968; Porter & Chibucos, 1974 hold a more optimistic
view. Hornquist (1968) has stated

Even if the initial standing of the subjects is controlled by means
of a number of relevant variables, there will always be room for
uncontrolled differences that may be important. The
investigator, who because of the nature of his problem cannot
use random or systematic assignments of subjects to treatments,
has to live with an insecurity in that respect . . . and try to
behave intelligently within the limitations of his design ... or
leave the scene of non-experimental research"(p.57).
Porter (1973) has stated ". . . the interpretation of results from designs lacking
random assignment requires yet another degree of tentativeness above and
beyond what would have been required had random assignment been employed"
(p.41).

Research on teacher effectiveness is one of the areas in which residual

gain scores have been used most heavily. For some researchers (e.g.

Rosenshine,1970) residual gain scores are considered the definition for teacher

effectiveness and so the logical dependent variable in studies to identify
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desirable teacher behaviors. Known as process/product research (Dunkin &
Biddle, 1974), studies of effective teacher behavior obtain pre and posttests of
students achievement to form the dependent variable and observations of
teachers to form independent variables. The residual gain scores are computed
for each student and then aggregated to the classroom/teacher level. The
correlations of class means on residual gain scores and teacher behaviors are
computed and tested for significance. Significant correlations are taken as
evidence that teacher behavior affects student achievement. Examples of
process/product research using residualized gain scores to control for
confounding variables are Brophy & Evertson, 1974; Creemer, 1974; Creemer and
Weeda, 1974; Soar, 1966; and Veldman and Brophy, 1974. In all of these studies
By 1Yo Was unknown and so estimated to define the "constant" in the residualized
gain scores. The researchers, however, ignored this distinction when conducting
their tests of significance of correlation between teacher behavior and
residualized gains. A test statistic using r,, which is appropriate to test Hy :
O3y = 0 does not necessarily imply that the parallel test statistics using rsy, is
also a valid test of A5y, = 0.

Testing P =0 as a test for no teacher behavior effect was investigated in
the present study. The investigation was in two parts, analytic and empirical.
The analytic part was conducted to determine the conditions under which Pzy,=0
is equivalent to testing no effect of a teacher behavior on student achievement.
The investigation considered several different possible formulations of Z. The
empirical investigation was conducted to investigate the appropriateness of a "t"
test statistic to test Hg : P3y,=0 when sample estimates rather than population
parameters were used to define the residualized gain scores. A Monte Carlo
method was used to simulate the sampling distributions of the different test

statistics based on different formulations of residualized gain scores. These
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were then compared to the theoretical reference distributions to determine the

validity of each test statistic under study.






CHAPTER IlI

THE ANALYTIC CHAPTER

In this chapter, a linear structural model that defines the problem of
measuring change in studies of process/product research will be presented. The
model incorpor ates the aggregated characteristics of the data and the possibility
of measurement errors. Given the model, the conditions under which pzy, = 0 is

equivalent to no teacher behavior effect on achievement will be identified.

A Linear Structural Model for Process/Product Research

As in equation 1, residual gain scores are constructed from Y(0) and Y(t),
the pre- and post-measures of student achievement. The proposed structural
model attempts to elucidate the relationships among Y(0), Y(t), and W, a variable
representing teacher behavior.

For student i in class j, the observed score Y(L)ﬁ can be decomposed into:
() Y(L)j=n(L)jj + e(L);j , L =0, ¢
where n(L)jj is the part of Y(L)j; which is free from errors of measurement, and
e(L)ij represents measuremnent error. Then(L)jj is further decomposed into two
components: the class effect and the deviation of student score from his class
mean,

(3) ) = AL); + VIL)jj, L = 0,t

where A(L)j is the class effect at time L, and V(L)jj represents the deviation of
the ith student score from the mean of jth class. Combining the two equations,
Y (L)jj can be written as

(®  YL)j = AlL)j + V(L) + e(L)jj , L =0 ,t.

12
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The measure of teacher behavior can also be decomposed into
(5) Wj = j+ egj,
where Ej is the true measure of the behavior of teacher j assigned to class j and
eg represents measurement error.
J
Schematically, the structural relationships among the three variables are

shown in Figure 1.

Figure l. A structural model.

VAR , .
64 (55| — Yo, (__lA(t).ij "3 °z,
K g Gl 9%
A
V(0)4 5 | —— | Y(0) 5 | e [AWD) 5 | e O

Te(0) ij

The £'s are the structural coefficients, Y represents the reciprocal
relationship between Ej and A( O)j- Hj, Gijj, ©j and Aj are residuals or
specification errors. The structural equations for A(t); and V(t);; are
6) A =B1A0) +B3E; + Hj.
(7) V() =8, V(O)jj + Gjj.
Within class j, V(t)jj is linearly related to V(0)jj. This is equivalent to the
assumption of a linear growth operating within each class at the individual level.
The same rate of growth, By, occurs within each class.

The decomposition of (L);j into A(L); and V(L)jj also implies that the class
effect is additive (i.e., A(L)j is a constant effect for all students in the same

class). The effect of the teacher behavior, W, on student achievement is the
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same for all students in the same class. Teacher behavior may, however, have a
direct effect €3) on A(t) and a reciprocal relationship (Y) with A(0). The former
will result in changes in performance (for the class as a whole) as a consequence
of being exposed to the teacher behavior of interest. The reciprocal
relationships (Y ) represents confounding between initial class composition and
teacher behavior. In school settings, students are virtually never randomly
assigned to classes, and so substantial class effects exist before the start of the
school year. Importantly, these differences may be at least in part a
consequence of having teacher j in class j. This will have some impact on A(t);
through A(0). Also, this reciprocal relationship represents the possibility that
the composition of the class may affect the way the teacher teaches (Doyle,
1979) which can affect A(t);.
Given the following two assumptions, 83 represents the effect of the
teacher behavior on student achievement:
1. Prior to the study, there is no other teacher behavior,gl, that is
correlated with & and which has some effect on A(0)j and/or
A(t);.
2. During the study, there is no other teacher behavior, 52, that is
correlated with £ and which has some effect on A(t)j.
These first two assumptions are necessary to leave the interpretation of 83 £0
clearly a function of the effect of W and not some other teacher behavior

variables,

e 8

The Relationship Between "zw and "3

The observed variables Yy, Y, and W are assumed to have a multivariate
normal distribution with a mean vector of zero and a variance covariance

matrix,Z (see Table ).



15

Table 1
The Total Variance - Covariance Matrix (Z)

Y(t) Y(0) W
Y(t) oA, +OV, 06,
Y (o) Blof,,‘o + B3YUA00€+820§/0 OZAO +02V0 +02e0
w 31Y0A0 o, + 8302g YOAOOE) 02£ + OZQE

In the structural model, errors of measurernent and specification errors are
assumed to be uncorrelated among themselves and with the latent variables, 's,
Vis, A's and €.

The coefficient, P,y can be written as

To determine the relationship between F,, and B3,, the variances and covariance
are expressed in terms of the structural coefficients.
The covariance between Z and W can be written as
O, w = E(GW) - E(2)E(W)
= E(¥(1)W) - KE(Y(g)w)
= E(A¢ + Vg + &¢) (&4 eg) - KE(Ag + Vg + &gl + eg)
= E(A{€) + E(V4&) - KE(Ag?) - KE(VgE)

Since V's are defined at the individual level and & at the class level,

S

E(VIL)e) = EEj(E T V(L))
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OZW = E(Atg) - KE(AO&)

B3C‘Z€+ Cov ApE(B) - K)

"

830§+ YOAOOg(Bl - K)

Then )
B30 £ + YOAOOE(B] - K)

(8) Psw =
97%
Equation (8) indicates that if
l. ¥ =0, (i.e., no initial confounding) and/or
2. By=K,
the statementP3,, =0 is equivalent to 83 = 0 (provided that the variances

are all greater than zero.)

Defining Values of K

In practice, the regression coefficient for predicting y(¢) from y(q) is the
value most frequently chosen to represent K. Because of the nested nature of
the data, however, there are three such regression coefficients. In order to
examine the appropriateness of using any one of these coefficients for K, the
relationships between each of the coefficients and the structural coefficients are

derived and shown in the following section.

Relationships Between Regression Coefficients and the Structural Model

The total regression coefficient (B ), the between regression coefficient

(8.) and the within regression coefficient (8,) can be expressed in terms of the

3
model components as follows (Table 2);
By definition,

EEj(Y(t)ij

- M) (Y(O)].J- - M,(0))

,(0)2
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As before, both My (t) and My () are zeros.
The numerator is C°V(Y(t)ij: Y(O)i]) and the
denominator is Var(Y(o)ij)
Thus
, Cov(Y(t)ij , Y(O)ij)
By

Var(Y(ojij)

Substituting C°V(Y(t)ij, Y(O)ij) and Var(Y(o)ij, for their corresponding
values in Table 1 yields
Vi . 2
Br= (Bl + B0 Vo + B3YOR 09/ (Pay +0 Vo + dPeg)

Similiarly, the between regression coefficient is,

. E(Y()) - My () (Y(0)j - My )
° T TTER(0)-My(0)?

= Cov (?(t)j, Y(O)j)/ var (?(O)j)v
By using equation 4 to obtain the means of Y(t)ij’ Y(Q)ij and by substitution

1, 2 2
—8B,0 + B0 + yB,0, O
s 2 VO 1A0 3Aog

1 1
2 2 2
o + =0 + —0
A S V0 s'eq
Similiarly, the within regression coefficient is,

Ej(Y () - My (@), XY (0)jj.- My ();)
w p—3

g

E; (Y (0 - ;Vly(o)j)2

= B,lo%, / (0%, + 0% )
2 VO VO e0

As shown in Table 2, when 63 =0, Pz, equals zero if

(9) Y ((8] = 82)02\/0 + B]Ozeo) = O
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irrespective of the choice of regression coefficients. for P, = to be equivalent

to 83 = 0, equation 9 is both the necessary and sufficient condition.

Conditions under which Y ((8 -Bz)ozvo + Blozeo) =0
When y =0

If vy = 0, irrespective of the relationships among Bl, 32, OZVO and oZeo or

the choice of K, equation 9 will be true. Put another way, whenY = 0, there is no
problem of adjusting the achievement criterion for initial confounding with the

teacher behavior.

WhenY # 0
If Y does not equal zero, for equation 9 to hold, (B] - 82) o
must equal zero. This can happen when
l. B8y =8, (c®, /(c®, +0° ) or,
1 2 VO VO €

0

- 2
2. By =B,ando e
The former can happen only under unlikely circumstance. The latter can

happen, if a perfectly reliable premeasure is used (so that C’zeo = 0), and when

subjects are randomly assigned to clasrooms (so that B| = 85),

In examing the relationship between P3,, and B3, none of the conditions
identified seems likely to obtain in. practice. Random assignment can rarely be
achieved in practice and perfectly reliable achievement measures rarely exist.

An alternative to using a regression coefficient as a method for defining K

would be to estimate Bl, directly. For example, from Table 2

2

2 2 2 _
820 VO + B]o AO ETO YO 820 VO
E’l‘, R S s when 83 =0 thus, 8] = ;
A A e o
0 0 0 A

0
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i = 5o
Since, E(MSg ) = so Ag+ c,2\,0 +°2e0, and

E(MsWyo ) =02y, Pe,

2 1
=5{MSg - MS

0

From Table |

A 2 ‘/\
620 VO —-BwMSWyO
Bl = BriMs, - MSy) / 5+ MSy) -ByMSy) / (MSg - MSy) /s)
or By =B MSg + (s-DBr- By )MSy, / ((MSg - MSy,)

Distributions of Test Statistics

Even under conditions where if B3 = 0 then Pz, = 0, a t-test of Pz, =0
could still be inappropriate due to the effect of having estimated the value of K
based on sample data rather than setting K a priori to a known constant. Thus
what remainsto be done is to determine the effects on the distribution of "t" due
to estimating K in each of the several ways. The "t" distribution of rzy, is
defined as the sampling distributions of the t ratio with c-2 degrees of freedom
which is obtained from r3,, using the equation
(10)

tzw / C-2 (Hays, 1973, p. 66)).
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Since the exact nature of the "t" distributions of r3w's could not be
determined, a simulation study was conducted. In addition to using estimates of
By BB and By, to form residual gain score, Z1, 27 and Z3 respectively, the use of
the proposed estimate of Bl, was used to form residual gain score Zy. For
comparison, another form of residual gain score, Z5, was formed by setting K to

a priori known constant (i.e., K=5)).






CHAPTER IV

SIMULATION PROCEDURE

As shown in the previous chapter, testing piw = 0 is equivalent to testing

Hp: B3 =0 if either of the following conditions are met; 1) v =0, 2) B =B,, given
a perfectly reliable premeasure. Interestingly it was found that for both of these
two situations the equivalence between pP3y, = 0 and B3 = 0 is true regardless of
whether Z is defined using K set to the total, between or within regression
coefficient or any other values of K for that matter. However, in practice, the
parametric values of 3]-, BB» Bw and Bl are seldom known. Thus, the purpose of
the simulation study was to investigate the appropriateness of using a t-test to
test Oz = 0in situations where estimates are used for BT, BB,BW and Bl. The
empirical sampling distribution of "t" statistics for each of the four methods of
defining residual gain scores were simulated and compared with the central t-
distribution. The means of the empirical sampling distributions, empirical Type I
error rates, and empirical powers were used to determine the appropriateness of
using a t-test to test Pzy,=0.

The procedures employed in this empirical study will now be discussed.
First, the description of the simulation parameters will be given, and then the

data generation routine will be described.

Simulation Parameters

As stated previously, this investigation required the study of random

sampling distributions of "t" based on 2 ws FZows FZaws FZ,w and rz5we

21
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Empirical generation of the random sampling distributions was done repeatedly
taking random samples from a known population, an approach which is typically
referred to as Monte Carlo. The parameters of interest were the number of
classes per sample, the number of students withing each class, the value of B
relative to B, the reliability of the premeasure, the magnitude of initial
confounding, and the central and non-central cases.

As previously stated, the means of the manifest variables, Y, Yg and W
were set equal to zero. Also, without loss of generality o2yy, 02yg and o 2w
were set equal to 1. Y, Yg and W were assumed to have a multivariate normal
distribution.

Both the number of classes, c, and the number of students per class, s,
were allowed to vary so that effects on the distributions of the various "t"
statistics could be investigated. The number of classes was set at 10, 30 and 50.
Ten classes (or teachers) were chosen as an easily obtainable sample size. Fifty
classrooms were chosen as an unusually large sample size, The number of
students per class was set at 10, 20 and 30. The size of 10 was chosen as a lower
bound for classroom size which might occur through loss of data. Class sizes of
20 and 30 are typical of schools today.

While B, represents the within class regression slope, given a perfect
premeasure,f does not represent exactly the between slope, as shown in Table 2.
Consequently the exact magnitude of B, relative to B, cannot be decided.
Therefore, three different combinations of B and B, were selected. First, §
was set equal to B 5 with value equal to .7. Second, B| was set greater than B,
with values .7 and .3 respectively. Third, B was set smaller than B, with values
.3 and .7 respectively. The last situation was included for comparison in spite of

the fact that it is rarely encountered in practice. (e.g., Cronbach, 1976)
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When 81 # 82 the ratio of between variation to within variation varies with
the number of students per class. That is, the intraclass correlation, PI, gets
smaller as the number of students per class increases. The intraclass correlation
was set at .30 regardless of c and s for the present study. This value was chosen
because there is evidence, for example in school mathematics, that actual school
variation accounts for 30 percent of the student achievement of MAT
mathematics scores (Haney, 1974).

Since Y{ and Y contain errors of measurement, the estimators of the
ditferent adjustment coefficients (i.e., P, BB and By) will be biased. The
magnitude of bias is proportional to the reliability of Y. In other words, the
bias depends on the premeasure only (Porter, 1971). The reliability of both pre
and post measure was set to .8. This value was chosen as a moderate reliability
for achievement tests (Ebel, 1979). Since measurements of teacher behavior
have lower reliability (Brophy, 1974), .5 was selected as the reliability
coefficient of W,

As a result of setting Ozyt’ OZYO’ Aw = 1, °YiYer PYQYq = -8 and the
reliability of w to 5 the values taken by Ozet’ozeo’ ozeg and o'zg were .2, .2, .5 and
.5, respectively. Also, as a result of setting PI = .3 the values taken by o2 Ag and
g 2"0 were .24 and .56, respectively, in the presence of errors of measurement.

Three levels of initial confounding were considered: y = 0 to indicate no
confounding y = .4 to indicate substantial confounding, and y = .2 as an
intermediate level of initial confounding.

Lastly, both the central and non-central cases were included in the study to
examine the probability of Type I and Type Il errors. For the purpose of this
study, B3 was set equal to 0.00 and 0.10. .1 was chosen as an arbitrary value to
indicate the non-central case. Table 3 illustrates all possible combinations of

the six design dimensions included in the simulation study. An "*" marks the
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cells examined. These cells were selected to facilitate the investigation of the
effects of initial confounding, presence of errors of measurement in the
premeasure, relative magnitude of B; to B,, sample and class sizes on the
distribution of "t" statistics for different methods of defining ry. One thousand

samples were simulated for each of the selected cases.

Data Generation Routine

Three manifest variables were generated Y¢, Y, and W. The three
variables were generated to have a multivariate normal distribution with a mean
vector of zero's and a variance covariance matrix (see Table 1). As shown in
equations 4 and 5 in the analytic chapter, the manifest variables are defined

Yt =Atr+ Vi + ey,

Yg=Ap+ Vg +ep

W=E8+ e8

where all the components have been defined previously. Thus, £ can
be decomposed into L, Zpg and Zg, the within, between and errors of
measurement variance covariance matrices respectively, as shown in Table 4.
Having identified the set of parameters for each population, the Cholesky factor
was computed for the between and within population variance-covariance
matrix. These were used to transform generated between and within normal
variates with (0,1) into between and within components with the desired vector
of means and variance covariance matrix.

A FORTRAN program was written to generate the sample data and
compute summary statistics for each sample. In order to generate the sample

data, the between, within and errors of measurement components needed to be

generated.
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Concerning the between components, two basic steps were used to
generate A, A and & First, a vector of independent normal variates, L, was
generated by calling the function GGNQF three times, once for each latent
variable. This function which is adapted by IMSL (1982) generates one pseudo
random normal deviate O, 1) every time it is called. Second, the obtained normal
variates were transformed into a vector of At, Ao, &. This was done by
multiplying L with the transpose of the cholesky factor of Zg(denote T'). This
can be summarized as

_AJ
Ap = T xL

g

.

Steps one and two were repeated as many times as the number of classes in the
sample, c. The obtained Ay, Ag,E had a multivariate normal distribution with a
vector mean of zero andZp variance covariance matrix. The within components
Vi, Vg were generated in a similar way as the between components except ZW
was used instead of Zp.

GGNQF was also used to generate the normal deviates used to form errors
of measurement for the manifest variables. The normal deviates were then,
mulitiplied by the standard error of measurement.

Having generated the between, within and error components, each manifest
variable was obtained by addition of its components parts.

Asubroutine was written to compute the different forms of rzy's. The
obtained sample correlation coefficients were transformed into a t-ratio with c-
2 degrees of freedom using equation 10. Throughout this dissertation the

empirical t-sampling distribution of rz,w Will be denoted as tz1ws FZow 35 tzow,
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Another subroutine was written to obtain empirical Type I and Type II
errors for the t,y's at nominal values of .005, .01, .025, .05, .1, .995, .99, .975,
.95, and ,90. This allowed consideration of fit for both one and two tailed tests
of the null hypothesis P53y, = 0.

In order to check the accuracy of the computer program written to
calculate summary statistics, the simulated data for the 5 classes with 5
students each design were printed out and analyzed separately using the SPSS
statistical package. The results of the two sets of calculation agreed perfectly.
The simulation portion of the program was verified by executing the program to
obtain Type I errors for a set of parameters in which Yy, Yo, W were perfectly
reliable, Y = 0 and B} = B,. Under these conditions the different t,y's all have a
central t-distribution. The empirical Type I errors of the t,.'s were in close
agreement to their corresponding nominal alphas. For example, the empirical
Type I errors of tz ws tzows tzzws tz,w and tzgw were 049, .049, .051, .048,
.051 for upper tail = .05 and .054, .052, .056, .052, .050 for .05 lower tailo= .05;
.100, .096, .100, .099 and .101 for upper tail o= .10 and .105, .107, .106, .110 and
.105 for lower taila = .10 nominal alpha.

For each cell identified in Table 3 the program was run once. The seed
number for every run was the random number generated after the last one used

by the preceeding run.






CHAPTER V
RESULTS OF THE EMPIRICAL INVESTIGATION

In Chapter IIl, it was shown that Ho: Pzy, = 0 is equivalent to Ho: B3 = 0 if
either of the following conditions are met: 1)y = 0 2) B = B and a perfectly
reliable premeasure. When these conditions are not met, however, P;y, = 0 is
equivalent to Hp: F3 = 0 only for Zy and Zs5. This chapter demonstrates
empirically the Type I error and power of this first test statistics of Ho: P5,=0
for situations which are common in educational research.

The variables of interest in the empirical investigation were: magnitude of
initial confounding, reliability of the premeasure, relative magnitude of 8 to &,
number of classes per sainple (sample size), and number of students within each
class. Any combination of levels of the above variables identifies a sampling
distribution for each of the several rzy's. The specific sampling distributions
investigated were selected according to a design which facilitated investigation
of the effects of each of the several design variables while holding the other
variables constant. The subset of sampling distributions chosen to study is
represented by asterisks in the six dimensional matrix in Table 3.

The effects of initial confounding, presence of errors of measurement in
the premeasure, sample and class sizes on the mean estimated of Psy's, the
empirical Type I errors and empirical power of the one and two tailed tests of
Psw's are presented in this chapter.

In general, the results of the study showed that when there was a
substantial amount of initial confounding, the test statistics for tzjws tzow and
tzyw were only valid in a few situations. These tests, particularly tz|w and

29






30

tz3w, tended to be too liberal in situations where Bl = B or B> B, and too
conservative when B < 32 Parallel results for t, W and tzqw were obtained with
increasing sample size. However, the test statistics for tzyw and tzsw were the
only tests which remained valid across all levels of initial confounding, presence
of errors of measurement, sample and class sizes. Furthermore, the results of
the study indicated that increasing sample and class size and presence of errors
of measurement increased the empirical power of both tz,w and tzsw in

situations where § = & or 8> 8.

Mean Estimates of 5, when B =0

Initial Confounding Effects

By examining the equations in column 5 of Table 2, one can predict that
whenY= 0 and B3 = 0 each of the five rzy's under investigation have expected

value equal to zero. The numerators of these equations are

YOAOOE ((B-I = 62 OZV + B]OZe ) for (= s P D and P

0 0 le 22W Z3W

0 for 3 W

and yo
A A

(8] - K) for 05 W

g
0% 5

Given these numerators, one can see that all pzy's increase as y increases,

holding other variables constant. Inspection of the numerators also makes clear

that the sign and magnitude of the °;y's is affected by the relationship of 81 to 2.
For example, when B|>5 and is large, the mean estimates of 7, w, Pz w andf; 5w
are expected to depart positively from zero, Similarly, when B = 8; (and errors
of measurement are present) the departure of these mean estimates will be in
the positive direction but not as far as was the case when £; > 8. In situations

where B < B, and Yis large, the departure of the mean estimates °f°21W7 0z W and
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. ; ; : - 2 2, o , o
923“, will be negative given (B'I 82)0 V. >Bq0 ey The mean estimate of Pzow 1S
expected to be smaller in absolute value than the mean estimate of Dilw and
zaw- This is because all three share the same numerator but pizw has the

largest denominator. The denominators, as shown in Table 2, are:

bzzczw (02A + OZV + 02e ) for 05
0 0 0 1
02.02 (So2, + o2, + o2 ) for p- .,
Z°w A0 V0 €y 22w
V.2 2 2
CRPL (ohv_(;. t+ o e()) for pz—3w.

In summary, given Y is large, it is predicted that in situations where Bl>82’
the empirical sampling distributions of rz 1w and rzzw will be centered to the
right of the central t-distribution and to its left when B < B, (though these also
depend on the magnitude of errors of measurement.) Also, it is expected that
the empirical sampling aistributions of [Z,w and 35w will be the closest to the
central t-distribution across all combinations of B and 8,.

Table 5 shows the effect of initial confounding on the mean estimates of
Pz ws Pzows Pzaws Pz,w and Pzsw under the the three different combinations of &
and By, where sample size and class size were held constant at 30 and 20

respectively, and Py 8. As expected, the means of the empirical sampling

oYo = °
distributions of r;y's were all near zero when Y= 0. AsY increased to .2 the
mean estimates of #; y and P,y increased to .026 and .033 when B8 = £ and
.058, .07, respectively when B} >8,. However, their values decreased to -.02 and
-.028 when B < B,, Increasing to .4 caused the sampling distribution mean
estimates of Pz w and Pzaw tO depart far from zero, particularly in situations
where B > B,. Their values were .05, .066 when B8 = B, -.047, -.059 when &
< Byand .l19 and .147 respectively when B > B,

While the sampling mean estimates of PZow remained relatively close to

zero across all levels of y and across all combinations of 8; and &, there was a
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slight increase in the mean of r;,y's in situations where 8] >B3as increased.
Mean r;,'s were .0015 aty =0, .012 at v =.2, and .024 at Yy =.4. However, these
mean estimates were close to zero only because the specific values ofPy oYo and
(B} - B) were such that the two parts of the numerator in Pzow compensated
each other.

The sampling mean estimates of PZyw and p25w remained the closest to
zero across all levels of y and across all combinations of 8} and 8.

Effects of presence of errors of measurement (O)’o)’o #1)

02e is a common component shared by the numerators of F; W pizw and
pi3w~ Since 024 has a positive or zero value its presence should increase the
departure of mean estimates of % ws Pzow and Pz 3w from zero in situation where
B1=Bp or B > B,. However, this departure decreases in situations where 8 <8,
Due to the absence of 02¢ from the equations of P zyw and Pzsws errors of
measurement were expected to have no effect on their sampling mean estimates.

Table 6 reports the effect of the presence of errors of measurement in the
premeasure on the sampling mean estimates of P5,,'s for the three different
combinations of B; and B, for ¢ = 30, s = 20 and Y=.2.

As expected, the mean estimates ofp 5 W pizw andc23w increased due to
presence of errors of measurement when B| = B,. While their values were all

p
equal to .003 when “YqYq_ ) 4 they became .026, .005 and .033, respectively

when py o¥o = .8. Also, as expected, presence of errors of measurement brought

the mean estimates of 0z and Pz, closer to zero in situations where By < Ba.

Their values were -.041, -.056 when Pygyo = 10 and became -.02 and -.028 when

in situati B > B P -
p)’o)’o = .8. However, in situations where "}~ ¥ and YoYo = .8, the mean
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estimates of P W and pi3w did not increase as expected. Their values were .057,
p = . . p = <O
.075 when YoYo 1 and .058, .07 when YoYo 8
The mean estimates of Oiz,,w and p25w remained the closest to zero in the
presence and absence of errors of measurement and across all combinations of Bl

and 82.

Sample and Class Size Effect

Due to presence of s in its denominator, p;_zw was not only expected to
have a smaller mean estimate than Pz w and Pz3w but also it was expected to
get smaller as s increased. c¢ 1s not part of any of the equations of psy;
therefore, it was expected the mean estimates of pzy,'s would not be affected by
changing sample size.

Table 7 shows the mean estimates of P;,'s across different levels of sample
size where Y = .2, PyoYo = .8 and s = 20.

As expected, the mean estimates of all p3;y's were not affected by
increasing ¢ across combinations of B and 8. For example, the mean estimates
of Pz ws PZows piBW’ Pzyw and pi5w were .06, -.01, .07, -.0045, .0073 for c = 10,
.58, .012, .07, .0008, .0074 for ¢ = 20 and .053, .01, .07, .0006, and .0012 for c =
50 in situations where B> £. Table 8 shows the mean estimates of P,,'s across
different levels of class size where Y =.2,Py v '=.8,c=30and 3=0.

As expected, the mean estimates of Pz ws Pz3ws Pzuw and pi5w were not
affected by increasing s. The mean estimate of PZow decreased slightly as s
increased. For example, the mean estimates of pizw were .018 for s = 10, .012

for s = 20 and .0048 for s = 30 in situations where 8> &,

Empirical Type I Errors for One and
Two Tailed t-Tests When Testing Hy:P5,, = 0

To evaluate the validity of the t-test in testing Hy: Pzw = 0, the empirical

values of the tests for t,'s were compared to the critical values obtained from
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the t-distribution with c-2 degrees of freedom for selected level of significance.
When the null hypothesis is true (i.e.,83 = 0), the observed relative frequency of
data sets having values of tz ws tzows tzaws tzuws and tzsw greater than the
critical values in the upper tail or smaller than the same critical values in the
lower tail, yield the empirical levels of significance. Comparison to the selected
or nominal levels of significance gives an indication of whether the test used is
conservative, liberal, or correct. Comparisons were made at three nominal
levels of significance which are commonly used by educational researchers; .01,
.05 and .1. Observed levels of significance were in all cases based on calculating
t,w's for 1000 replications from a multivariate normal distribution with specified
characteristics. To facilitate comparison of empirical and nominal levels of
significance, 95% probability intervals were computed using the normal
approximation of the binomial distribution with n=1000 and P equal to the
selected levels of significance. Thus, if the selected level of significance was
.05, the 95% probability interval would be .05# 1.96 ((.05) (1-.05)/(1000))* = .05+
.014. The probability limits for the nominal alpha's are presented in Tables 9
through 16. If the empirical Type I errors exceeded the upper value of the
probability limit this indicated a liberal test. On the other hand, if it was less
than the lower value of the probability limit this indicated a conservative test,
otherwise the t-test was considered valid. The .05 nominal alpha will be chosen
through out this chapter as the primary base for comparison of the different

situations.

Initial Confounding Effect

It was argued earlier in this chapter, given y is large, the empirical
sampling distributions of rZ ws FZow and Fz3w will be located to the right of

the central t-distribution in situations where 8= B5 or 8 > 8, and to its left
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when B < B>. As mentioned earlier, this prediction did not hold for the sampling
distribution of rzowe Also, it was argued that the empirical sampling
distributions of rz,w and rZsw would be the closest to zero. As a consequence,
given Y is large it was expected that using the test statistics tz)w and tzaw O
test 3y = 0 would result in Liberal tests in situations where B | :Bz or Bl> 82,
and in conservative tests when B; < B,. However, both tzyw and tzgw were
expected to result in a valid test of the hypothesis of interest.

Table 9 shows the empirical Type I errors of the one tailed test of Ps,,
across three levels of initial confounding and across three combinations of 8 |
and B, for c = 30, S = 20 and p)’o)'o = .8 Comparable results for the two tailed
tests are shown in Table 10. It should be mentioned that here and throughout

this paper, only the positive tail was considered for the one tailed tests.

By - B

All the empirical Type I errors of the one-tailed tests for t,'s were within
1.96 standard errors of their corresponding nominal alphas whenY = 0 andY = .2.
As Y increased to .4, most of the empirical Type I errors for the one-tailed tests
for tz w and tzaw were, as expected, greater than the upper limits of their
corresponding nominal alphas. The other t,'s were not affected. For example,
at .05 level of significance, the empirical Type I errors for one-tailed tests for
tziwr tzows tzaws tzuws and tzow were .082, .048, .097, .043 and .047
respectively.

While the empirical Type I errors of the two-tailed tests for t,y,'s were in
close agreement with the one-tailed t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>