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ABSTRACT

NUMERICAL APPROXIMATIONS OF THE

LAWS OF SOME DIFFUSION PROCESSES

by

Ponniah Blancheran

In this dissertation. the Gauss—Galerkin approximation

of the laws of some diffusion processes is considered. The

Gauss-Galerkin approximation is obtained through a basic

differential equation describing the evolution of the

expected values of certain functionals of the process. This

differential equation is derived using the martingale

property and also through the semigroup approach.

Dawson [4] and HajJafar [7] derived this basic

differential equation through the Fokker-Planck equation.

They then obtained the Gauss-Galerkin approximation with

polynomial basis functions. The approach considered here

covers diffusion processes for which the Fokker-Planck

equation may not be satisfied or situations where the

polynomial basis functions are inadequate and the use of

more general basis functions becomes appropriate. The

convergence of the Gauss-Galerkin approximations using such

general basis functions is proved in this dissertation.

Two numerical examples. one of which concerns a

degenerate initial distribution, are also presented.



To my brother P. Elango

ii





ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Professors Habib

Salehi and David Yen for their guidance in the preparation

of this dissertation. Their advice, encouragement and the

amount of time spent on discussions are greatly appreciated.

I also wish to thank Professor R.Y. Erickson for his

careful reading of the dissertation and useful discussions

and Professor J.C. Gardiner for serving on my committee.

Finally, I wish to thank Cathy Sparks for her patience,

efficiency and great care in typing this thesis.

iii





TABLE OF CONTENTS

Chapter

INTRODUCTION

1. Statement of the Problem and Motivation

of the Gauss—Galerkin Approximation

2. Organization of the Dissertation

MATHEMATICAL PRELIMINARIES

1. Some Results from Probability Theory

2. Some Results from Numerical Analysis

DERIVATION OF THE GAUSS-GALERKIN APPROXIMATION

AND CONVERGENCE RESULTS. . . . . . . .

1. Derivation of the Gauss-Galerkin Approximation

2. Convergence Theorem.

3. Examples

DEGENERATE INITIAL DISTRIBUTION.

1. Method 1

2. Method 2

NUMERICAL EXAMPLES

1. Example 1.

2. Example 2.

REFERENCES

iv

 

14

2O

26

26

30

32

32

35

37





CHAPTER 0

INTRODUCTION

1. Statement of the Problem and Motivation of the

Gau§§—Galerkin Approximation.

Let {X(t)= t 2 0} be a Feller process (see definition

1.1 of Chapter 1) with state space S = R or an interval of

R. Let P(t,F) = P(X(t) e T), where F is a Borel subset

of S, be the law of X(t), and assume that the initial law

is known. In this dissertation we are concerned with

numerical methods of approximating the law P(t,°). In

particular, we wish to construct a sequence of discrete

measures Pn(t,°) which converges weakly to P(t,°). In

this way the expected values of certain functions or the

probabilities of certain sets of interest can then be

approximated.

The approximation that we consider here, known as the

Gauss—Galerkin approximation and proposed originally by

Dawson [4], combines elements of the Gaussian quadrature and

the Galerkin approximation. Dawson [4] and HajJafar [7]

considered processes which are solutions of stochastic

differential equations. They derived the Gauss-Galerkin

approximation by starting with the Fokker—Planck equation

governing the density p(t,x) and arrived at

§; I f(x) p(t.x) dx = I (Lf)(x) p(t.x) dx

or, written differently,



(1.1) g? E f(X(t)) = E Lf(X(t))

02(x) Q__ + b(x) —; ; a,b are the coefficients of

dx

the stochastic differential equation. Here E denotes the

_ 1

L — 2

expectation operator. Dawson and HajJafar assumed that

(1.1) holds for all mononials and, incorporating the ideas

of the Gaussian quadrature, rewrote (1.1) as

(1.2) 3; 121 §§“)(t) fm(§§“)(t))=igl §§“’(t)(Lfm)(§§n’(t))

+ error(Lfm)

for 1 g m S 2n.

Here fm(x) = x“‘"1 m = 1.2,.... The system (1.2), however

~

cannot be used to find agn)(t), 2:“)(t) because of the

error term error(Lfm). The Gauss-Galerkin approximation is

obtained by solving the system of dynamic equations with the

error term dropped. For more details see HajJafar [7], pp.

38-45.

We consider the Gauss-Galerkin approximation for Feller

processes. The foregoing derivation of the Gauss—Galerkin

scheme starting with the Fokker-Planck equation and with

monomial basis functions has two shortcomings. Firstly,

(1.1), is in many cases more basic than the Fokker-Planck

equation. Secondly, for a number of Markov processes

(1.1) may not hold for all monomials (see Example 3.2 of

Chapter 2). The point of departure in this dissertation is





 

the equation (1.1). We shall derive this equation for

functions in a certain class, using the martingale property.

The class of functions for which (1.1) is valid is

determined by deriving the appropriate boundary conditions.

In this way the Gauss—Galerkin approximations are extended

for more general types of basis functions than the

monomials.

2. giganigation of the Di§§ertation.

This dissertation is organized as follows. Chapter 1

contains the background materials from probability theory

and numerical analysis. In Chapter 2 we develop the

Gauss—Galerkin approximation. Then we prove the convergence

of our approximation, when the state space is a finite

interval. Some examples are then presented.

In many applications it may happen that the initial

distribution is degenerate. In this case, the

Gauss-Galerkin system becomes singular initially. In

Chapter 3 we consider approximating the laws when the

initial distribution is degenerate. Several numerical

examples are presented in Chapter 4.





CHAPTER 1

MATHEMATICAL PRELIMINARIES

In this chapter we introduce some notations and

definitions and state some known results which are used in

the sequel.

1. Some Results from Probability Theory. Our basic

reference for this section is the book by Ethier and Kurtz

[5], where further details can be found. Let {X(t)= t 2 0}

be a time-homogeneous Markov process with the state space

S = R or an interval of R. Let P(t,x,F), xeS, Fe$(S),

where 3(8) denotes the Borel subsets of S, be the

transition probability function. We denote the associated

semigroup of operators by {T(t)= t 2 0}, the infinitesimal

generator by A and the domain of A by @(A). Let C(S)

denote the Banach space of all bounded continuous functions

vanishing at infinity, with the norm Hf" = SpreS|f(x)l‘

Note that if S is compact, C(S) = C(S), the space of

bounded continuous functions on S.

Definition 1.1. A Markov process {X(t)= t 2 O} is

said to be a Feller process if the associated semigroup

{T(t)} is strongly continuous on C(S) and satisfies

T(t) C(S) g 8(3).





Therefore, without loss of generality we can restrict

the Feller semigroup to C(S). We note that @(A) of this

semigroup is contained in C(S) and is dense there.

We now state a theorem which gives the stability

property of Feller processes in the sense of weak

convergence of measures with respect to the initial data.

Theoremfil.2. Let {X(t)= t 2 0} be a Feller process.

For n = 1,2,... let {Xn(t)= t 2 0} be a sequence of

Markov processes with the same transition function as that

of X. (Thus Xn are also Feller processes.) Then

Xn(O) é X(O) implies Xn 3 X. {2 means weak convergence}.

Proof. This is a special case of Theorem 2.5. Chapter

4 of Ethier and Kurtz [5] with Tn(t) = T(t) for all n. D

Martingale Property 1.3. We conclude this section by

mentioning the martingale property related to Markov

processes. The martingale problem approach is a powerful

tool for studying Markov processes. We simply state the

martingale property.

Let {X(t)= t 2 0} be a progressively measurable

Markov process with the infinitesimal generator A and domain

$(A). Then

f(X(t)) - 13 (Af)(X(s)) as

is an {FE} martingale for every f e @(A). Here

F): = a(X(s): s g t).

For more details see Ethier and Kurtz [5] p.162.





2. Some Results from,Numerical Analysis.

Let I = [a,b] n m1, — m g a < b g m. Calculating the

definite integral of a given function f(x) with respect to

a given measure u(dx) on I

f f(X) MdX)

is a classical problem in mathematics. For some simple

cases these integrals can be computed exactly. Otherwise we

have to resort to numerical methods to approximate these

integrals.

Quadrature formulas are integration formulas of the

 

type

D (n) (n)
f f(x) u(dx) = 2 a f(x ) + error(f)

k k
I k=1

The xk are called the points (or nodes) in the formula;

the ak are called the coefficients (or weights) in the

formula.

We now describe the so-called "Gaussian quadrature" or

the "Gauss—Christoffel" integration formulas. Assume,

(2.1) u is a positive measure on I.

(2.2) All moments “k = [ xk u(dx), k = 0.1.2,... exist

I

and are finite.





(2.3) For polynomials p(x) which are nonnegative on I

{ p(x) p(dx) = 0 implies p(x) E 0,

Condition (2 3) is satisfied if the measure u is not

supported on a finite number of points. Assumptions (2.1)

to (2.3) are generalizations of assumptions made by Stoer

and Bulirsch [10] p. 142.

Theorem 2.1. a) The n points {x£n)) and the n

weights {a£n)} can be uniquely chosen so that

“~() ~()(2.4) f f(x) p(dx) = 2 ak“ f(xkn )

k=1

holds for all polynomials of degree less than or equal to

2n-1.

b) Let {pm(')} be the family of orthogonal

polynomials associated with the measure u, that is, pm(°)

is for each m a polynomial of degree m and

fpm(X) pn(X) u(dX) = 0 m ¢ n-

Then the nodes (;£H)1 k = 1.....n} are the 52125 of the

polynomial pn(~).

c) The weights {;£n): k = 1,...,n} are uniquely

obtained as the solutions of the equations

“ ~(n) ~(n)
f f(x) p(dx) = 2 ak f(xk ) for all polynomials

k=1

of degree less than or equal to n—l.





 

For a full discussion see Stroud [11] or Stoer and

Bulirsch [10].

At the nth approximation, the integration formulas

x2n_1} and there are Zn(2.4) are exact for {1.x,...,

unknown variables (n nodes and n weights). Therefore these

nodes and weights can also be obtained as solutions of the

system of nonlinear equations

“ ~(n) ~(n) m m
2 a (x ) = f x p(dx) 0g m g 2n-1

k k
k=1

Since at the nth stage these formulas are exact for all

monomials of degree g 2n-1 the collection {1.x,x2,...}

are called the basis functions of the Gaussian quadrature
 

formulas.

We extend these ideas to more general types of basis

functions. Let

E = g ;(n) 5 N
n k=1 k {x£n)}

Then “n is called the Gauss-Christoffel approximation of
 

g with the basis functions {fml m = 1,2,...,} if
 

n ~ ~

(2.5) 2 afin) fm(x£n)) = [ fm(x) p(dx) 1 < m < 2n

k=1

There are 2n unknowns and 2n equations. The hope is that

these equations can be solved for the unknowns. But the

existence and uniqueness of such nodes and weights do not

seem to be well studied in general.





CHAPTER 2

DERIVATION OF THE GAUSS—GALERKIN APPROXIMATION

AND CONVERGENCE RESULTS

1. Derivation of the Gauss-Galerkin Approximation.

As we already indicated in the introductory chapter, if

we start with the Fokker—Planck equation then the

Gauss-Galerkin approximation can be derived only in

restricted cases. In this section, we derive the

Gauss-Galerkin approximation via the martingale approach for

more general processes.

Let {X(t)= t 2 0} be a Feller process. Let A be its

infinitesimal generator with domain @(A). Then, as was

pointed out in Section 1.3 of Chapter 1

f(X(c)) — I5 (Ar)(X(u)) du

is a martingale for every f in @(A). Let s < t. Then,

E[f(X(t))-f5(Af)(X01))dUI=E[f(X(S))-I(S)(Af)(X(U))dUJ

for every f in @(A). where E denotes the expectation

operator. It follows that

(1 1) Ef(X(t)) — Ef(X(s)) = E}: (Af)(X(u))du.

Af is bounded and therefore by Fubini’s theorem.

E I: (Af)(X(u))du = ]: E(Af)(X(u))du.





Hence

(1.2) E f(X(t)) — Ef(X(s)) = I: E(Af)(X(u))du.

The strong continuity of the semigroup (T(t)! t 2 0} gives

us the continuity of E (Af)(X(t)). To establish this we

will show that lim E (Af)(X(t)) = E (Af)(X(s)).

tas

E (Af)(X(t)) = I (Af)(y) P(t.dy)

= I (Af)(y)(f P(t.x.dY) P(0 dX))

(By Fubini’s theorem) = I (I (Af)(y) P(t,x,dy)) P(O.dx)

= ] T(t)(Af)(x) P(O,dx).

Further,

lim I T(t)(Af)(x) P(O,dx) = I lim T(t)(Af)(x) P(O,dx)

t4s tes

(by strong continuity of T(t)): I T(s)(Af)(x) P(0.dx)

= E (Af)(X(s)).

Therefore by (1.2) we obtain,

9_(1.3) dt E f(X(t)) = E(Af)(x(t))

for every f in @(A).

Equation (1.3) can also be derived through the semigroup

approach. If fe@(A), then T(t)fe@(A) and

%? T(t)f = T(t)Af

d—If(y)1’(t.x,dy)=I(Af)(3')1’(t.x,dy)-

Q
.

t
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Therefore,

I %; [I f(y)P(t.x.dy)JP(o.dx)=II(Af)(y)P(t.x.dy)P(o.dx).

Since I f(y) P(t,x,dy) is a bounded function

L.H.S. = g? I [I f(y) P(t,x,dy)] P(O,dx)

= %; I f(y) [I P(t.x.dy) P(o.dx)]

= §;-I f(y) P(t.dy)

= g? E f(X(t)).

By Fubini’s theorem,

R.H.S. = I (Af)(y) [I P(t,x,dy) P(O,dx)]

= E I (Af)(y) P(t.dy)

= E (Af)(X(t)).

Hence.

g? E f(X(t)) = E(Af)(X(t)) v f e %(A).

The appropriate choice of basis functions is suggested

by the boundary conditions on $(A). In the infinite

interval case we may have to use a limit argument to show

that (1.3) holds for our choice of basis functions.

The Gauss-Galerkin approximation can now be derived.

Let {fmi m=1,2 ..... } be our choice of basis functions for

~ “ ~(n)
which (1.3) holds. Let Pn(t.°) = 2 ak (t) 6 ”(n) be

k=1 {xk (t)}

the n point Gauss-Christoffel approximation with the basis

functions {fmi m=1,2,....}. From (1.3) we get
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(1.4) g? z ;£D)(t)fm(;£n)(t)) =k§1 ££H)(t)Afm(§£n)(t))

+ error (Afm)

The system (1.4) cannot be used to find aén)(t), xén)(t)

because of the error term error(Lfm). The Gauss—Galerkin

scheme is obtained by dropping the error term in equation

(1.4). This way we obtain a sequence of discrete measures

P (t,°) = g a£“)(t) 5

“ k=1 {x£n)(t)}

where aén)(t), xén)(t) are solutions of the system of

dynamic equations

n n

(1.5) %? ksl aén)(t) fm(x£n)(t)) =k21 a£“)(t) Afm(x£n)(t))

1 g m g 2n.

solved together with the initial values

(n) _~(n) (n) _~(n). “ ~(n)
ak (O) _ ak , xk (0) _ xk , E ak 5 ~(n)

k=1 (Xk }

being the Gauss-Christoffel approximation of the known

initial measure P(O,°).

n

The measure P (t,°) = E a(n)(t) 6 is called

“ k:1 1‘ (xfj‘hm

the Gauss-Galerkin approximation of P(t,°) with the basis 

functions {fmi m = 1,2,...}. The system (1.5) is called the

Gauss-Galerkin system.





13

If aén)(t), xén)(t) are differentiable then the system

of dynamic equations (1.5) can be written as

F

C(11) Y(n).(t) = D(n) Y(n)(t)

 

    

(1.6)

_ Y(n)(0) = (an)...,§£n), QED)....,;£“))T

where Y(n)(t) = (agn)(t),...,a£n)(t), xgn)(t)....,x£n)(t))T

(n) (n) (n)
c c D o

C(n) = 11 12 ; D(n) = 1

as?) ea) DI“) 0

CI?) : (fi(x§n)))nxn ’ Gig) — (agn) fi(xgn)))nxn

C2?) = (fn+i(x§n)))nxn ’ 02;) = (agn) fn+i(xgn)))nxn

Din) = (Afi(xgn)))nxn ’ Dén) = (Afn+i(xgn)))nxn

This is a nonlinear system of ordinary differential equations

for which the question of existence and uniqueness of

solutions is not settled. The system of differential

equations (1.6) can be solved numerically. Numerical

solutions of some examples indicate that the system (1.6)

should admit solutions in reasonable cases.
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2. Convergence Theorem.

In this section we shall establish the weak convergence

of the Gauss-Galerkin approximation

P (tn) = 1% a(n)(t) a

“ k=1 k {x§“’(t)}

to the actual law P(t,°) under appropriate assumptions.

Dawson [4] and HajJafar [7] proved weak convergence theorems

when the state space is [0.1] or [0,”) and the basis

functions are monomials. We shall prove similar convergence

result when the state space is [0,1] but with more general

type basis functions. The assumptions made here are similar

to those assumed by HajJafar [7] in the case of monomial

basis functions. The techniques of the proof are closely

related to that of HajJafar.

 Theorem 2.1. Let (X(t)= t 2 0) be a Feller process

with infinitesimal generator A. Denote the domain of A by

@(A). Let the state space S be [0.1] and T > 0 be

given. Let (fnin = 1,2,....} be a class of basis functions

contained in @(A) E C[O,1], B = sp{f1,...f2n }. Suppose
n

that the following assumptions are satisfied.

(i) f1 E 1.

(ii) The operator A admits a countable number of

eigenfunctions (en: n = 1,2,....} and sp{en: n = 1.2,....}

is dense in @(A) with respect to the supremum norm.
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Moreover, for a given e > O and an eigenfunction en, there

exists gm 6 Bm for some m, such that

def.

nlen — ngH = n en — gmH+HAen - AgmN < e.

It can be deduced that sp{f1,f2,....} is dense in

2(A).

(iii) The system of equations (1.5) has a solution such

that V t e [0,T] the weights afin)(t) are nonnegative and

the nodes xén)(t) belong to [0.1].

n

Then Pn(t,’) = 2 aén)(t) 6 converges weakly

k 1 {xff’un

to P(t,°) Vte [0.T], where P(t,°) is the law of X(t).

n

Remark 2.2. Since f E 1, E a(n)(t) = 1 for all t
1 k

k=1

and all n. Therefore with assumption (iii) Pn(t,°) are

all probability measures.

Remark 2.3. Assumption (ii) is certainly satisfied if

the union of the graphs CD = {(f;Af)= feBn} are dense in

the graph G = {(f;Af): fe%(A)} with respect to the norm

HI(f:g)IH = urn + Hg”.

Remark 2.4. The system of dynamic equations (1.5) is a

nonlinear system of differential equations. Therefore, it is
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hard to verify assumption (iii) in general. However, our

examples illustrate that assumption (iii) holds for some

special cases.

Proof of the Theorem. Let

Efi(t) = I fe(x) Pn(t,dx), te[0,T]

Then by (1.5)

%? Efi(t) = I Afe(x) Pn(t,dx) for e = 1,...,2n.

Let 9 be a fixed positive integer. Since Afe e C [0.1],

3 K such that

e

lAfeI s K,

Therefore,

d e e

SUpte[0,T]ld? En(t)l g K8 V n > 2 '

. e , e .
Hence the class of functions {En(°)- n > 5 , t e [0,T]} IS

equicontinuous. Also, this class is uniformly bounded.

Therefore, there exists a subsequence that converges

uniformly to E:(°) (say). By diagonalization argument we

can show that there exists a subsequence kn such that for

any positive integer e,

E: (°) 6 E:(°) uniformly in [0,T].

n

We will now show that {E£(t)= e = 1,2,....} determines a

probability measure. Since {Pk (t,°)2 n = 1.2,....} is a

n

sequence of probability measure on the compact interval

[0,1], this collection is relatively compact. (See
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Billingsley [1]; Theorem 6.1, Chapter 1). Therefore every

subsequence {Pk (t,°)} of {Pk (t,°)} has a further

n' n

subsequence {Pk (t.°)} which converges weakly to a

n"

H

probability measure P*(t,°). Furthermore,

(2.1) Efi(t) = lim E: (t) = lim I fe(x) Pk (t,dx)

1(1‘ln'_)m n" 1(Iln_)(n n"

= I 13(x) P;(t,dx).

sp{fe: e = 1.2,....} is dense in @(A) and because X is

a Feller Process @(A) is dense in C [0.1]. Hence

sp{fe: B = 1,2,....} is a measure determining class. By

(2.1) we can thus conclude that every subsequence of

{Pk (t,°)} has a further subsequence which converges to the

n

same limit P*(t,°) (say). Hence {Pk (t,°)} itself

n

converges weakly to the probability measure P*(t,°).

Now

a fl

m

W
a
s

A

fl

V

I
I I (Afe)(x) Pkn(t,dx)

which means

2 e t
(2 2) Ekn(t) - Ekn(0) I0 I (Afe)(x) Pkn(s,dx) ds.

Since IAfeI g Ke.
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II Afe(x) Pkn(t,dx)l g Kg for all n.

Taking limits in (2.2)

‘e e e e
E t — E o = 1' [E (t - E 0)]*( ) *( ) knig kn ) kn(

= l‘ t Af P s,dx dsknig [I0 I ( e)(x) kn( )1

By the dominated convergence theorem

= t 1' Af )P (s,dx dsIO [knlg I ,(x kn ) ]

= I5 I Afe(x) P*(s,dx)ds.

Therefore,

(2 3) Ee(t) - Ee(0) — It I Af (x) P (s dx)ds f 11 e. * * - 0 e * , 0 r a ‘ .

Let Ee(t) = I fe(x) P(t,dx). Then by (1 1) Ee(°) also

satisfy the same integral equation (2.3). Furthermore,

initially E:(0) = Ee(0). We want to show that

Ee(t) = E:(t) for all e and all t. Let e be an
n

eigenfunction. Then, by assumption (ii), for a given 6 > 0,

there exists g e B for some m such that Hle — g I” =
m m n m

Ilen - gm" + IlAen - AgmH < 6.

Then,

II en(x) P*(t.dx) - I en(x)P*(0.dx) - I5 I (Aen)(x)

P,(s.dx)dsl s I I (en(x) — gm(X)) P*(t.dx) - I (en(x)

— gm(x)) P*(0.dx) — I3 I (Aen(x) - Agm(x)) P*(s.dx)ds

I + I I gm(x) P*(t.dx) — I gm(x) P,(o.dx) — I5

I Agm(x) P*(s.dx)dsl < e + e + eT + 0.
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the last expression being zero by (2.3) together with its

linearity property.

Hence,

I en(x) P,(t.dx) - Ien(x) P*(o.dx) = I5 I (Aen)(x)

P*(s,dx)ds

i.e. %? I en(x) P*(t,dx) I Aen(x) P*(t,dx)

KnI en(x) P*(t,dx).

Therefore,

h t

I en(x) P*(t,dx) = e n I en(x) P*(O,dx).

Likewise

P(t,°) also satisfies,

A t

I en(x) P(t,dx) = e n I en(x) P(O,dx).

Moreover

I en(x) P*(O,dx) = I en(x) P(O,dx).

From these we conclude that

I en(x) P*(t,dx) = I en(x) P(t,dx) for all n.

This together with the assumption about the denseness of the

eigenfunctions imply,

I f dP(t) = I f dP*(t) for all feC[O,1].

Hence Pk (t,°) a P(t,°).

n

The proof given above demonstrates that if we start with

a subsequence {Pk (t,°)} we can show that there is a

n

further subsequence which converges weakly to P(t,°). Hence

Pn(t,°) itself converges weakly to P(t,°) D
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1 d2 d
Remark 2.5. Let A E — a(x) ———-+ b(x) ——. If the

2 dX2 dx

basis functions are polynomials and the drift coefficient

b(x) and the diffusion coefficient a(x) are bounded then

the graphs UGn = U{(f;Af): feBn} are dense in

G = {(f;Af)= fe@(A)}. To prove this let fe@(A) E C2 [0,1].

Then, by the Weierstrass approximation theorem, for any 6 >

0, there exists a polynomial Pm(x) such that

"f(x) - Pm(x)H + Hf'(x) — P$(x)fl + Nf"(x) - P;(x)fl < e

 

Therefore, if the drift and diffusion coefficients are

bounded, then for any 6 > 0 there exists a polynomial

Pm(x) such that

Hf - P N + HAf - AP N < e.
m m

3. Examples.

We now give some examples, where our techniques work,

but the Gauss-Galerkin approximation cannot be derived

through the Fokker-Planck equation or the monomial basis

functions are inappropriate.

Example 3.1. Consider the diffusion process

charactorized by

2

AEX(1—X)9-—2'

dx

a(A) = c2[0.1]

This example arises as a diffusion approximation for a model

in population genetics (see Kurtz [8] p.29). In this example
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also (1.3) cannot be obtained via the Fokker—Planck equation

approach. It is known that for any t > 0 the fixation

probabilities are positive (see Ewens [6] p.41), i.e. there

is an accumulation of mass at 0 and 1. Therefore the law

P(t,°) has a singular part. Although the density of the

absolutely continuous part satisfies the Fokker-Planck

equation the weak form of the latter does not lead to (1.3)

for all monomials, for example for f(x) E 1. Eq. (1.3) can

nevertheless be derived directly through the martingale

approach for all monomials. For each n, there is a

polynomial of degree n which is an eigenfunction of A (see

Example 1.2 of Chapter 3 for more details). Therefore the

assumptions (i) and (ii) of the Theorem 2.1 are satisfied for

the monomial basis functions. It can be shown that the

Gauss-Christoffel nodes and weights satisfy equation (1.6).

Hence the assumption (iii) is satisfied.

To show that the Gauss-Christoffel nodes and weights

satisfy equation (1.6), we note that the measure P(t,°) has

a nonzero absolutely continuous part (see Ewens [6] pp.

40-41). Therefore assumptions (2.1) - (2.3) of Chapter 1 are

satisfied. Hence, the Gauss-Christoffel nodes and weights

exist. The nodes belong to [0,1] and are distinct. The

weights are positive. Secondly, these nodes are

differentiable functions of t. This is so because they are

zeros of the orthogonal polynomials with respect to P(t,°)

whose coefficients are differentiable in t, and an
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application of the inverse mapping theorem gives the zeros

are differentiable. The differentiability of the

coefficients of the orthogonal polynomials follows from the

standard Gram-Schmidt orthogonalization procedure and the

fact that polynomials belong to the domain of A which gives

def.

that (p1,p2)t = I p1(x) p2(x) P(t,dx) is differentiable

in t for polynomials p1, p2. It then easily follows that

the weights are also differentiable in t. Thirdly, these

nodes and weights satisfy the system of equations (1.6). We

note that if fm is a polynomial of degree m, then Afm is

also a polynomial of degree less or equal to m. This

together with equation (1.3) applied to fm = xm—1 and

equation (2.4) of Chapter 1 applied to both fm and Afm

imply that the Gauss-Christoffel nodes and weights satisfy

equation (1.6). By the uniqueness of the solution of

equation (1.6) for this case (HajJafar [7], p. 46) we

conclude that the Gauss-Galerkin nodes and weights exists and

are unique. Hence the assumption (iii) of Theorem 2.1 is

satisfied.

Example 3.2. Consider the reflecting Brownian motion X
 

in [0,1] with the initial distribution uniform on [0,%].

Then

<12;
2

dx

a(A) = (f: feC2[0,1], £'(o+) = f’(1

AE

M
p
4

) 0}
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We Show that the function f(x) = x does not satisfy the

basic equation (1.3) namely

gI-E f(X(t)) = E Af(X(t))

For if f(x) = x satisfy (1.3) then, %? E(X(t)) = 0,

v t 2 o and thus E(X(t)) = i v t 2 0. But as t a m

P(t,°) converges weakly to the uniform distribution in [0.1]

(See Lamperti [9], p. 176), which implies E(X(t)) % % as

t a w. This is a contradiction. Hence the monomial basis

functions are inadequate.

The boundary conditions on @(A) suggest that an

appropriate choice of basis functions is

{1, cos wx, cos 2wx,....}

which are eigen functions of the operator A. By the

Stone-Weierstrass theorem sp(1,cos wx, cos 2wx,....} is

dense in C[O,1]. Therefore, the assumptions (i) and (ii) of

Theorem 2.1 are satisfied. Using the map x 4 cos wx,

0 g x g 1, we can reduce the discussion of this basis to a

set of polynonomial basis with respect to a new measure on

[-1,1]. Similar arguments to those in Example 3.1 can then

be used to conclude that the Gauss-Christoffel nodes and

weights with respect to this new measure have the desired

properties. Transporting these to original space [0.1] will

imply the corresponding nodes and weights satisfy equation

(1.6). Hence assumption (iii) of theorem 2.1 is satisfied.
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Example 3.3. Consider the absorbing Brownian motion in

[0,1]. Then,

A 5 l 9——

2 2

a(A) = (f: f e C2[0,1], £"(o+) = f"(1_) = 0}.

Here the probability measure P(t,°) has a singular part and

therefore (1.3) cannot be derived via the Fokker-Planck

equation approach. An appropriate choice of basis functions

suggested by the boundary conditions on @(A) is

{1,x,sin wx, sin 2wx,....}

These are eigenfunctions of the operator A. Also,

sp{1,x,sin wx, sin 2rx,....} is dense in C[O,1]. Hence

assumptions (i) and (ii) of Theorem 2.1 are satisfied.

Whether the assumption (iii) of Theorem 2.1 is satisfied is

not resolved.

Remark 3.4. Let

2
_ 1 d d

A — 5 a(x) -—§ + b(x) 3;

dx

on the interval [0.1]. Assume a, b are bounded and

continuous. Then at least one restriction of A will generate

a Feller process (see Ethier and Kurtz [5], chapter 8).

Assume further that, a e C2[0,1], b e C1[0,1], a(x) > 0 on

[0,1]. Let the boundary conditions be of the form

f'(0) = f'(1) = 0.

If the operator A on @(A) is a self-adjoint operator then

there exists a countable number of eigenfunctions
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(en: n = 1,2,....} and sp{en= n = 1,2,....} is dense in

C2[0,1] in the supremum norm. (See Coddingtion and Levinson

[2] p.197.)

The operator A of the reflecting Brownian motion

satisfies these conditions.



 

 



CHAPTER 3

DEGENERATE INITIAL DISTRIBUTION

In many applications it may happen that the initial

distribution is degenerate. For a degenerate distribution

all the Gauss-Christoffel nodes coincide. Therefore, the

system of dynamic equations (1.6) of Chapter 2 becomes

singular initially and cannot be solved. We describe here

two ways of handling this case. We point out that the

 

techniques discussed below are applicable to any initial

distribution as well as the degenerate initial distribution.

1. Method 1.

Sometimes it may be possible to choose appropriate

basis functions {fmt m = 1,2,....} so that the equation

(1.3) of Chapter 2 can be solved before discretizing it.

One such choice is the eigenfunctions of the infinitesimal

generator A. Let {fmt m = 1,2,....} be the set of

eigenfunctions with the corresponding eigenvalues Am. Then

Amt

(1.1) E fm(X(t)) = E fm(X(0)) e

Discretizing this system we obtain

7\ t

(1 2) afin)(t) fm(x£n)(t)) = E fm(X(O)) e m , 1gmg2n.

r

I
I
M
'
J

1
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This is a system of nonlinear equations for the nodes and

weights and may be solved numerically using subroutines

available in IMSL (for example, ZSCNT or ZSPOW).

Theorem 1.1. Let afin)(t) > 0, xén)(t)eS, 1 g k g n,

be a solution of (1.2). Let

Pn(t,°) = % aén)(t) a If sp{f1,f2,....} is

k 1 {x£n)(t)}'

dense in C(S). Then Pn(t,°) é P(t,°).

Proof. By (1.2)

Amt

E fm(X(0)) e , lgmg2n

= I rm dP(t,-).

Let e > 0 and f e C(S). Then there exists

N

g = E c f
6 8:1 2 8

I rm dPn(t,°)

such that

Hf — g6" < 6.

Then

II t dpn(.,.) — I f dP(t.°)|

s I If — geIdPn(t.°) +II g6 dPn(t.-) -I g6 dP(t.°)I

+ I If - gel dP(t.°)

< e + 0 + e V n 2 g.

Hence I f dPn(t,°) a I f dP(t,°) for every f e C(S)

i.e. Pn(t,-) :>P(t,o) u
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We now give some examples.

Example 1.2. Let the infinitesimal generator

1 d2 d
A E — a(x) ——— + b(x) ——, with b(x) a polynomial of degree

2 dx2 dx

g 1, a(x) a polynomial of degree g 2 and either b(x) has

degree 1 or a(x) has degree 2, then for each m 2 1 we

can find a polynomial fm of degree (m-1) such that Afm

Amfm. Therefore if the equation (1.3) of Chapter 2 is

satisfied by all polynomials then we could choose {fmi m =

1,2,...) as our class of basis functions and approximate

the law even with degenerate initial distribution.

As an illustration of this let a(x) = x(1—x), b(x) = 0

so that A is defined on [0.1] by

2

x(l - x) 9—-

dx2

with a(A) = c2[o,1]. (Example (3.1) of Chapter 2).

To find the eigenfunction fm of degree m - 1, let

m-l m-2 .
fm(x) = x + am_2x + ... + a0. We want to find

Am, am_2,...,a0 such that,

Af = A f
m m m

i.e.(x—x2)[(m-1)(m-2)xm_3+am_2(m—2)(m-3)xm—4+...+2a2]

m-l m-2

+a x + . +a

= Am(x m-2 " o)
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Equating the coefficients of each degree we get, for m > 2

Am = -(m—1)(m-2)

Amam-2 = (m-1)(m-2) - (m-2)(m—3) am_2

Amam-B = (m-2)(m-3)am_2 — (m-3)(m-4)am__3

Amal = 2a2

a0 = 0

and this system can be solved for a0,a1,...,am_2. For

m = 0,1; the eigenvalues are 0 and the corresponding

eigenfunctions can be taken to be 1.x.

The first few eigenvalues and the corresponding

eigenfunctions are,

0, 0, -2 , —6 ,...

1 x x2—x x3 — g x2 + — x
I 9 i 2 2 ""

These are related to the Gegenbauer polynomials (see Ewens

[6] p.140). We already know (see Example 3.1 of Chapter 2)

that the Gauss-Christoffel nodes and weights exist. These

nodes and weights satisfy equation (1.2).

Example 1.3. a) Brownian motion in [0,1] with

reflecting barriers, i.e.

2

1 d 2 . . .
5 $5 , @(A) = {f e C [0,1]' f (0+) = f (1

The basis functions can be chosen to be

A ) = 0}.

{1,cos wx, cos 2wx,...}
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b) Brownian motion in [0,1] with absorbing boundaries.

Ihen

% ——§ @ A = f e C 0 1 ' f" 0 = f" 1

The basis functions can be chosen to be

A 0).

{1,x,sin wx, sin 2rx,...}.

Both a) and b) have solutions satisfying (1.2).

2. Method 2.

Let (X(t): t 2 0} be a Feller process with X(O) = x.

Then by Theorem 1.2 of Chapter 1 we have the stability

property with respect to the initial distribution, i.e. if

(Xn(t): t 2 0} is a sequence of processes with the same

transition probabilities as X(t) and such that

Xn(0) E X(O) then Xn(t) E X(t). Therefore we can

approximate the discrete initial distribution by a

continuous distribution and approximate Xn(t) using

Gauss-Galerkin techniques. The Gauss-Galerkin

approximations of Xn(t) approximate X(t). We state these

ideas in the following theorem.

Theorem 2.1. Let (X(t): t 2 0} be a Feller process

with X(O) = x. Let (Xn(t): t 2 0} be a sequence of

Feller processes with the same transition probabilities as

(X(t): t 2 0} (i.e. they have the same infinitesimal

generator) and with initial distribution such that
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xn(0) : X(O) = x. Let

m

P (t) = 2 a(m)(t) a
n,m _ n,k (m)

k_1 {Xn,k(t)}

be the mth stage approximation of the law of Xn(t). If

the convergence of the Gauss-Galerkin approximations holds,

then for every bounded continuous function f

1“

lim lim I f dPn m(t) = lim lim 2 f(xgmfl(t)) a£m£(t)

new mam ’ new mew k=1 ’ ’

E f(X(t))

I f dP(t).

Ppppi. {Xn(t): t 2 0}, {X(t): t 2 0} all have the

same transition probabilities and have Feller property.

Therefore Xn(0) E X(O) implies Xn(t) E X(t) by Theorem

1.2 of Chapter 1. By the convergence result of

Gauss-Galerkin approximation, for fixed n,

m

$1: kil f(x£T%(t)) = E f(Xn(t)) Vn, f e C(S)

Xn(t) E X(t) gives lim E f(Xn(t)) = E f(X(t)) V f e C(S).

new

Therefore for all f in C(S)

“1

lim lim k21 f(x£T£(t)) aéT;(t) = E f(X(t)).

Note. When we approximate the degenerate initial

distribution, the nodes of the approximating initial measure

are close to each other and therefore the Gauss-Galerkin

system becomes ill-conditioned initially.





CHAPTER 4

NUMERICAL EXAMPLES

In this chapter we present several numerical examples,

that serve to illustrate the Gauss-Galerkin method developed

in the preceeding chapters. We have considered examples

where the Gauss-Galerkin approximations can be obtained

using the techniques described in Section 1 of Chapter 2 and

also using the techniques described in Section 1 of Chapter

3. The numerical results are then compared. Dawson [4],

HajJafar [7] also have considered several numerical examples

and analyzed them.

The system of nonlinear equations are solved using the

subroutine ZSCNT available in IMSL. The system of ordinary

differential equations are solved using the subroutine

DGEAR.

1. Example 1.

Consider the reflecting Brownian motion in [0,1] with a

given initial distribution. Then,

2 dx2

and a(A) = (i: ie02 [0.1], f'(0+) = f'(1—) = 0}

We can choose the basis functions to be

{1, cos rx, cos 2nx,....}

The approximations were computed with 5 nodes and 5

weights at t values 0.0, 0.1,....,0.6. The numerical

32
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results are given in Table 1. For each t value the first

row gives the approximate values obtained by the Method 1 of

Chapter 3 for the initial distribution 6{l}. The second

2

row gives the approximations obtained by the Method 1 of

Chapter 3 for the initial distribution uniform on [0.4.

0.6]. The third row gives the approximations obtained by

the Method 2 of Chapter 3 which amounts to solving the

Gauss-Galerkin system (1.5) of Chapter 2, with the initial

distribution uniform on [0.4, 0.6].

Note that x = 0.5 for all t. Also a1 = a

x = x and a = 1-2 (a1+a
4 3 2)'

As we pointed out earlier in Example 3.2 of Chapter 2

the process converges weakly to the stationary distribution

which is uniform on [0,1]. Our numerical results show that

the 5 points Gauss-Galerkin approximations converge to the

values listed for t = 0.6. These values are the

Gauss-Christoffel nodes and weights for the uniform

distribution on [0,1] with the basis functions {1, coswx,

cos 2wx,...}. This behavior of the approximations are

consistent with the fact that the process converges weakly

to the uniform distribution on [0,1].





0
0

G
O
O

0
0
0

0
0
0

0
0
0

G
O
O

0
0
0

.12058

.12058

.16389

.16622

.16609

.19500

.19532

.19513

.19931

.19935

.19925

.19990

.19991

.19985

.19999

.19999

.19996

.20000

.20000

.20000

0
0
0

0
0
0

0
0
0

C
O

G
O
O

G
O
O

0
0
0
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TABLE 1

.23890

.23890

.21433

.21338

.21341

.20192

.20180

.20187

.20027

.20025

.20029

.20004

.20003

.20006

.20000

.20000

.20001

.20000

.20000

.20000

C
O

G
O
O

G
O
O

0
0
0

0
0
0

G
O
O

0
0
0

.40958

.40958

.10623

.10576

.10623

.10074

.10069

.10072

.10010

.10009

.10011

.10001

.10001

.10001

.10000

.10000

.10000

.10000

.10000

.10000
0
0
0

G
O
O

0
0
0

C
O

G
O
O

0
0
0

C
O

.44661

.44661

.30800

.30750

.30799

.30116

.30108

.30113

.30016

.30015

.30017

0.30002

.30002

.30002

.30000

.30000

.30000

.30000

.30000

.30000
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2. Example 2.

Consider the diffusion process whose infinitesimal

generator

91
2

dx

a(A) = 02 [0,1].

A E x(1-x)

The basis functions can be chosen to be the

polynomials. The numerical results are given in Table 2.

For each t value, the first row gives the approximate

values obtained by the Method 1 of Chapter 3 for the initial

distribution uniform on [0.4, 0.6]. The second row gives

the approximation obtained by solving the Gauss-Galerkin

system (1.6) of Chapter 2.

Our numerical results show that the smallest and the

largest Gauss-Galerkin nodes converge to 0 and 1

respectively and the corresponding weights converge to 0.5.

This behavior of the approximations are consistent with the

1

fact that the rocess conver es weakl to - 6 + 6 .
P g y 2( {O} {1})
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Table 2

Initial distribution U [0.4, 0.6]

 

t a1=a5 a _a4 1=1-x 2=1-x

0 0 0.11846 0.23931 0.40938 0.44615

0.11846 0.23931 0.40938 0.44615

0.1 0.05146 0.24751 0.06075 0.26014

0.05246 0.24862 0.06186 0.26056

0.2 0.11098 0.23237 0.02391 0.22816

0.11246 0.23231 0.02418 0.22891

0.3 0.17433 0.20084 0.01252 0.21877

0.17499 0.20069 0.01251 0.21870

0.4 0.23063 0.16801 0.00756 0.21491

0.23118 0.16787 0.00757 0.21487

0.5 0.27844 0.13878 0.00501 0.21330

0.27894 0.13865 0.00501 0.21374

0 6 0.31818 0.11406 0.00353 0.21254

0.31864 0.11392 0.00354 0.21262

0.7 0.35096 0.09356 0.00258 0.21215

0.35129 0.09352 0.00260 0.21212

0.8 0.37788 0.07667 0.00195 0.21192

0.37810 0.07674 0.00196 0.21181
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