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ABSTRACT

FORMATION AND SEQUENCING OF VERTICAL RESEARCH JOINT VENTURES

by

Nakarin Amarase

Motivated by the rapid growth in research partnerships and concerned with their sustainability,

this dissertation studies the dynamic formation of vertical research joint ventures (RJVs). A verti-

cal RJV is established by an upstream innovator and one or more of downstream firms in a market

in order to cooperate in conducting Research and Development (R&D), and commercializing a

basic innovation. To shed light on the dynamic formation, the two-period model is introduced.

The first chapter analyzes the relationship between the vertical RJV break-up and its member

efforts. Each firm’s productivity level, negatively correlated with its effort cost, is private informa-

tion. Thus, an innovator auctions off an RJV membership, and works with the highest bid firm.

After the first RJV failure, an RJV can break up. The break-up structure forces a partner to work

harder, but reduces the expected upfront membership fees. This is because the break-up excludes

the most efficient firm from the second RJV, and decreases firms’ willingness to pay, due to their

lost opportunity to work with the second RJV. An innovator’s expected revenue is highest, but the

expected welfare is lowest, when an RJV continues working with the same firm after failing.

The break-up is chosen if there are a large number of additional benefits to compensate for

low expected revenues and enough potential partners to shrink the gap between the best and the

next best firm. This break-up also benefits a society when it is implemented. When the effort cost

is more expensive, additional benefits and the number of firms requisite to sustain the break-up

as an equilibrium decrease. An innovator and a society gain the most under the break-up since it

pushes a partner, providing less effort due to its high cost, to work harder than the others do.

In the second chapter, a vertical RJV is formed when a downstream member has bidimen-

sional private values: the development ability, represented by the high (high-type) and low (low-

type) probability of success, and the marketability, indicated by the market demand. From a firm



partner’s viewpoint, only the expected profit, combining both dimensions rather than each of them,

is concerned. For an innovator whose goal is to maximize expected revenues paid by her partner,

the break-up is also not optimal, since it discourages firms from paying a high price for the first

period RJV membership.

Nevertheless, sufficient non-pecuniary benefits such as reputation or academic achievement

generated by the project success, which is the technological dimension, cause the break-up. This

break-up must also be supported by a high probability of success for the high-type firm simulta-

neously with a moderate ratio of the low-type to high-type’s probability of success. The partial

break-up, which prohibits only the first partner with a low bid from joining the second RJV, re-

quires less extreme parameter ranges to be an equilibrium than the break-up does. Intuitively,

breaking up partially mitigates the adverse effect of the break-up on an innovator’s expected rev-

enue, while still helps an innovator prevent the low-type member in the first period from rejoining

an RJV. In addition, an innovator tends not to provide her RJV partner long-term commitment

when the market demand is uncertain.

The third chapter studies how an RJV size changes dynamically. Adding one or more mem-

bers to an RJV raises the final product market competition in exchange with the higher opportunity

of success (in the first model) and the higher product value (in the second model). In the first

model, each RJV’s project results in a binary outcome: success or failure. An additional partner to

an RJV simply enhances the possibility of success.

The second model allows an RJV to choose after finishing the first development between

conducting further R&D to improve its product value, and selling its current product to the final

market for two periods. If an RJV would rather develop, its size is adjustable. An RJV size either

stays constant, or expands in the first and shrinks in the second model. The effect of an increase in

the discount factor, which is zero for complete discount and one for no discount, on the first period

RJV’s size relies upon the returns to scale of the probability of success in the first model. In the

second model, the higher discount factor makes it more likely for an RJV to conduct further R&D

after the first development.
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Chapter 1

VERTICAL RESEARCH JOINT VENTURE BREAK-UP AND MEMBER EFFORTS

1.1 Introduction

A research joint venture (RJV) is established by firms in the market to cooperate in conducting Re-

search and Development (R&D). This helps them to share R&D costs, information and knowledge,

to improve a current product’s quality, to lower costs, or to innovate a new product. Sometimes

rivals in the final product market form a horizontal RJV, although they will compete with each

other after the co-development process. This paper is interested in the formation of RJVs and

their sequencing. Particularly, the vertical RJV is focused in lieu of the horizontal RJV as in the

literature. The vertical aspect means that an RJV is set up by an upstream and a downstream firm

to codevelop and commercialize basic knowledge. Specifically, the study is restricted to the case

that an innovator owns a basic innovation of a new product. She needs to work with a current firm

in the market to advance development and marketability of her innovation to be sold in the final

product market.

One example of a vertical RJV is university-industry research. Most universities, innovators

in this study, conduct research for an academic purpose. Nevertheless, plenty of them can be de-

veloped and used for a business purpose as well. As in the case of biotechnology studied in Zhang

(2006), universities rely on dedicated biotechnology firms (DBF) in translating their discoveries

and selling them to the market through licensing. In the U.S., universities perform 13 percent ($36

billion) of total U.S. R&D and 54 percent of basic research1. These figures highlight the signifi-

cance of university-industry research. Feller (2009) identifies the current problems in university-

industry research cooperation such as patent and licensing agreements. This is consistent with the

University-Industry Demonstration Partnership (UIDP)’s goal indicated in its brochure to improve

1These figures are from Table 1 in Feller (2009) p. 171.
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the research relationships between industries and universities to be productive and well-established.

UIDP claims that failures in negotiations between these entities lead many U.S. companies to turn

to foreign research universities with more favorable intellectual property rights.

As clearly addressed in its brochure, the UIDP plans to streamline contracting and intellec-

tual property negotiations between universities and industries, whose partnership is an outstanding

example of a vertical RJV. It has been claimed that failure in these negotiations leads to delays or

cancellations of joint research projects. This issue of property right allocation was recently studied

by Herbst and Walz (2009). According to this situation, this study concentrates on the partnership

break-up issue, especially, whether the partnership can dissolve across time (i.e., current member-

ships are discontinued).

Under this pressure of restructuring the university-industry research relationship, the success-

ful Massachusetts Institute of Technology (MIT) research consortium provides a good case study

of a relationship discontinuing. MIT implements membership mechanism for collecting the mem-

ber fees in advance, which allows members to commercialize basic development without a royalty

fee; however, all intellectual property rights are owned by MIT. One noticeable characteristic of

MIT’s research consortia is that the membership status is not permanent; hence, MIT can decide

whom they will invite, the cost of the membership fee, and whether to extend the membership

status. The MIT example motivates this paper to study the dynamic formation of the vertical RJV

based on its membership structure.

Due to an incomplete information structure, i.e., each firm’s productivity level is private infor-

mation, the basic second-price sealed-bid auction is used to keep focusing on the analysis of effort

and break-up. Assume that an innovator, as in the case of MIT research consortia, charges only

the fee in advance of the co-development. Then, if the project succeeds, a firm partner becomes a

monopolist in the final product market and enjoys a monopoly profit. Using the auction along with

this structure implies that an innovator is able to avoid the later property right negotiation problem

with a partner.

Main research questions are: "how does an innovator select her vertical RJV structure when

2



a firm needs to put in effort, directly effecting on the probability of success of the project?", "can

the partnership break-up be an equilibrium? (i.e., working with one firm first and working with

another later)" and "if yes, under what conditions?". The effort cost is negatively correlated with

each firm productivity level, its private information. An innovator is not able to observe each

firm’s productivity level. To simplify, the study focuses on the case that an RJV includes only one

innovator and one partner firm. The incomplete information about the capability of firms is also

simplified by assuming that an innovator sticks to the second-price sealed-bid auction. The setup

detail is illustrated in the next section.

Aghion, Dewatripont and Stein (2008) relate the probability of success to the number of scien-

tists. The more scientists involved with a project, the higher probability of success in exchange for

the higher cost. In this paper, the effort level is comparable with the number of scientists. The au-

thors study the advantages and disadvantages of academic and private-sector research. In academic

reserach, scientists retain the decision righs over what projects to take on, but they can be hired

more cheaply than in the private sector. Scientists are free to choose between two strategies: the

practical or alternative research in academia. In the private sector, an entrepreneur with exclusive

rights to basic research hires scientists to conduct further R&D. An entrepreneur cannot precom-

mit scientists to work on the practical research, the only type of project able to be commercialized.

However, he can force scientists by only purchasing laboratory equipment that is compatible with

the practical, but not the alternative, research. The academic and private-sector research trade-off

is that the academic research has lower cost, and higher chance that the alternative research is

conducted, while the private-sector research costs more, and there is more likely to be practical

research.

The positive effect of the number of scientists on the probability of success is comparable

to the effort and the probability of success relationship in this paper. In addition, the break-up is

analogous to the private-sector research which can force scientists to choose the practical project

in exchange for the higher cost. In this environment, the break-up is used as a tool for an innovator

to push a firm partner to exert more effort due to the cost of losing an opportunity to work with the
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current, and the highest productivity, firm in the second period if the first co-development fails.

The study finds that an innovator prefers her RJV to continue even after the first attempt’s fail-

ure if the upfront membership fee is the only benefit she gains. Intuitively, a partner’s optimal effort

level is chosen to maximize the intertemporal expected profits, directly determining its willingness

to pay for an RJV’s membership. Consequently, breaking up simply pushes an RJV member to

exert excessive effort level which also decreases an innovator’s expected revenue. However, with

a large enough number of additional benefits such as the future value of the RJV’s success, and

a large enough number of potential members, the break-up exists. Furthermore, the higher effort

costs promote the likelihood of break-up. In both cases an RJV partner exerts less effort than an

innovator’s optimal level. Hence, the threat to break up an RJV after failing encourages firms to

work harder, which also benefits a society.

The A+B bidding as discussed in Asker and Cantillon (2010) motivates the idea of additional

benefits. In this A+B bidding, the Arizona Department of Transport holds procurement auctions

for highway repair jobs. A in this bidding represents the dollar amount of all work to be performed

under the contract, whereas B determines the total number of calendar days required to complete

the project. The agency would rather have the cheapest and fastest reconstruction. Thus, the

supplier offering the lowest value of A+B wins the auction. Asker and Cantillon (2010) use this

procurement auction as an example of an auction when price and quality matter. The authors

state that a contractor can invest to speed up his job by hiring extra labor, using some equipment

more intensively, or shifting some resources from other jobs. This environment is consistent with

this paper setup such that an RJV’s member can put in more effort to enhance the probability of

success, which also increases the indirect or extra benefit for an innovator. Instead of introducing

scoring auctions as they do, this paper implements the simple second-price auction to rationalize

the existence of an RJV break-up as a tool for an innovator to stress the significance of the indirect

benefit for her in making decision on the RJV structure.

The franchise bidding literature is also relevant to this paper. Franchise bidding for a natural

monopoly is used as an alternative to regulation. An exclusive franchise is awarded to the bidder
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who will pay the highest lump-sum fee to secure the business. Williamson (1976) is concerned

with the efficiency of franchise bidding schemes. On one hand, franchise bidding has attractive

properties that it avoids the disabilities of regulation when there are economies of scale associated

with production. Also, long-term supply contracts prevent durable equipment from being wasteful

since distributional facilities can be transferred from an original supplier to a successor firm. On

the other hand, the author discusses the severe contractual disabilities of franchise bidding. Under

uncertainty, three contract types are discussed: once-for-all, incomplete long-term and recurrent

short-term.

First of all, once-for-all contracts specify prices and how they will be changed in response to

uncertain future events. This contract type is claimed to increase the risk of a supplier’s oppor-

tunism. Next, incomplete long-term contracts are allowed to be renegotiated, but bidding parity

between an incumbent and prospective rivals at the contract renewal interval is unlikely. Finally,

the recurrent short-term contracts facilitate adaptive and sequential decision making, compared

with long-term contracts. In addition, winning bidders may be more inclined to cooperate with a

franchising authority rather than use such occasions to realize temporary bargaining advantages as

in incomplete long-term contracts. Nevertheless, the efficiency of recurrent short-term contracts

depend crucially on parity of bidders at the contract renewal interval.

Zupan (1989a, 1989b) and Prager (1990) empirically explore the efficiency of franchise bid-

ding in the case of cable television (CATV). They find that the extent of opportunism is not severe.

Specifically, opportunistic behaviors are shown to be smaller in communities where cable televi-

sion rates are not regulated than in communities where basic rates are subjected to regulation in

Prager (1990). These three papers argue that reputation plays a role in constraining firms’ oppor-

tunistic behaviors. Zupan (1989b) shows that renewal contracts are statistically indistinguishable

from concurrently-struck initial franchise contracts with respect to the terms of trade, representing

firms’ opportunism. This result supports the efficiency of recurrent short-term contracts.

Franchise bidding’s long-term contracts are comparable with an RJV structure that an in-

novator holds one auction and allows her partner to work in the second RJV without paying an
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additional fee. These contracts encourage firms to bid higher than another; however, they increase

the risk of opportunism in franchise bidding, and induce firms to exert lower first period effort lev-

els in this study. Furthermore, franchise bidding’s recurrent short-term contracts and this paper’s

no commitment RJV structure are similar because they allow an incumbent to rejoin the second

auction. Firms are more likely to cooperate with franchise authorities with short-term than long-

term contracts, whereas they put in more effort under the no commitment than the continuing with

one firm strategy. In addition to these RJV structures, this paper allows an innovator to implement

the break-up strategy to force firms to work harder in the first period.

This paper contributes directly to the literature of R&D cooperation, which mostly focus on

the horizontal structure. Among them, Katz (1986), d’Aspremont and Jacquemin (1988), and Choi

(1993) formalize the case that firms compete with spillovers in the final product market, but they

cooperate on R&D. The recent papers of Bhaskaran and Krishnan (2009), and Norbäck and Pers-

son (2009) study the organization of innovation collaboration. Most literature, specific to the RJV,

works on the horizontal aspect. Consequently, this paper adds variation to them by studying their

vertical side. One, among rare vertical RJV studies, is the recent paper of Herbst and Walz (2009),

which analyzes the ownership allocations and the choice of R&D technology in vertical R&D co-

operation. Based on the auction mechanism, this study can be viewed as another application of the

broad auction literature. Moreover, this paper is related to the university-industry research litera-

ture. Agrawal (2001) reviews the economic literature and categorizes many aspects related to com-

panies, universities, geography or the spatial relationship, and the channel for knowledge transfer.

Most of the reviewed literature uses the empirical evidence to explain these aspects. Zhang (2006)

studies the university-industry research, particularly the biotechnology industry patent pools. The

author rationalizes the no-pool equilibrium by using the trade-off between the synergy effect, or

the spillover effect, of a pool, and gaining from the differentiation effect without a pool.

The other strand of research related to this study is the partnership break-up. Park and Russo

(1996) address the issue of joint venture failure, and uses the transaction-cost perspective to ex-
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plain it. The data2 show that less than half of the joint ventures survive (99 of 204) after five

years. Cramton, Gibbons and Klemperer (1987) shows that a partnership can be dissolved ex post

efficiently, given no partner with too much a share under the incomplete information about the val-

uation of the asset. The recent working paper of Niedermayer and Wu (2009) studies the conditions

of private information structure in which break-up of research consortia is in equilibrium, although

it should not occur in first-best. The authors use the well-known break-up case between Airbus

and Boeing to motivate the study. This paper has a different viewpoint of the vertical structure but

also focuses on the break-up issue. Thus, it should also contribute as another application of this

literature.

The rest of the paper is organized as follows. The basic model of effort and vertical RJV

dynamic formation is analyzed in the second section. The next two sections study the effects of an

innovator’s additional benefits and the higher effort cost on the equilibrium. Then, the last section

discusses and concludes.

1.2 The Basic Model

In this paper, an RJV is formed to further develop and commercialize an innovator’s basic research.

The probability of success during the co-development process depends on the firm’s effort or in-

vestment level. The more effort a firm partner put into the project, the higher chance of success in

exchange for the higher cost. If innovator and firm optimal effort levels are different, an innovator

may threaten to break up when an RJV fails in order to push a partner to work harder. In so doing,

an innovator works with the highest productivity firm in the first period, and will not partner with

it again in the second period.

Aghion, Dewatripont and Stein (2008) also relate the probability of success to the number

of scientists. The authors study the advantages and disadvantages of academic and private-sector

research. In academic reserach, scientists retain the decision righs over what projects to take on, but

2Table 1 in Park and Russo (1996).
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they can be hired more cheaply than in the private sector. Scientists choose between two strategies:

the practical and the alternative project. The practical project is the only type of experimental

work that can be commercialized. In the private sector, an entrepreneur hires a team of scientists;

therefore, he has the authority to force the scientists to work on the practical project by buying only

the laboratory equipment compatible with it.

According to Aghion, Dewatripont and Stein (2008), the private sector is chosen over aca-

demic research in order to prevent scientists from conducting the alternative project for higher

wages they demand for. Analogous to theirs, this paper intuitively explains an innovator’s decision

of breaking up her RJV as a mechanism to let a firm put in more effort, even with the opportunity

to work with the less productive firm in the second period.

This section develops a simple model, in which an innovator needs to jointly work with a

partner firm to do further research or commercialize her basic innovation. She structures a vertical

RJV by setting the criteria and conditions of how to work with one firm under the incomplete

information context. Each firm’s productivity level is its private information. A firm with a higher

level of productivity has a lower marginal cost of R&D effort. An innovator simply sells the right

to join the RJV to the highest bidding firm without an additional benefit for her in this basic model.

There are two periods of the game. Initially, an innovator sets up an RJV’s structure, and

decides whom will be her partner. Then, an innovator and a partner codevelop a basic innovation.

In this stage, a firm decides how much effort to put into the project. It will enjoy two periods

of monopoly profits if an RJV succeeds. Otherwise, an innovator has an option to redesign with

whom to work in the second period, i.e., an RJV is broken up if she prefers to work with someone

else.

After the second R&D attempt, given that the first fails, the second firm becomes a monop-

olist if it succeeds, but otherwise gains nothing because the basic technology is outdated. The

main research questions here are to study what and how equilibrium exists. Particularly, this study

explores the equilibrium with partnership break-up (the case that a vertical RJV works with a dif-

ferent firm in each period). Although an innovator gets paid before an RJV starts, she is interested
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in a partner’s effort levels. This is simply because effort levels directly affect the price of joining

an RJV. As a result, an RJV does not only prefer a member with low costs to do R&D, but also

one exerting the appropriate levels of effort. This possibly leads an innovator to design an RJV’s

break-up after the first period failure, when it is preferable to push a member to work harder in the

first period.

Due to an incomplete information structure, one of the possible basic allocation mechanisms

is the second-price auction, where the winning firm pays an innovator at the second highest bid.

This is consistent with research questions which mainly concern the existence of the break-up

equilibrium, rather than the optimal licensing mechanism. Abstracting from this interesting but

complicated licensing, however, adopting the basic second-price sealed-bid auction helps this pa-

per keep focusing on the analysis of effort and break-up. Assume that an innovator, as in the case

of MIT research consortia, charges only fees in advance of the co-development. If the project

succeeds, a firm partner becomes a monopolist in the final product market and enjoys a monopoly

profit. Using the auction along with this structure implies that an innovator is able to avoid the

later property right negotiation problem with a partner.

In the standard auction theory, an auction can be used as a truthfully-revealing mechanism for

each firm with its private information about productivity. Specifically, the second-price sealed-bid

auction is used in this study, since it is the weakly dominant strategy for each firm to truthfully

reveal its type (productivity), and the second-price sealed-bid auction follows the revenue equiv-

alence principle under mild assumptions3. Consequently, it is tractable for the analysis because

an innovator’s expected revenue is simply equal to the expected value of the second highest pro-

ductivity firm. The truthfully-revealing property of the second-price sealed-bid auction is formally

proven in Appendix 1A.

3As in Krishna’s textbook, any symmetric and increasing equilibrium of any standard auction
with the expected payment of a bidder with value zero being zero, yields the same expected revenue
to the seller when values are independently and identically distributed and all bidders are risk
neutral. Most conditions already hold in this model. Simply add firms’ risk neutrality and the
zero expected value of a firm with a level of productivity equal to zero, which sounds reasonable
naturally.
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To study the existence of the break-up equilibrium, an innovator is allowed to decide ex ante

which RJV’s structure is used. These include: continuing working with the same firm in both

periods (C), no commitment to a particular firm in the second period (N), and breaking up the first

period RJV to work with another firm in the second period (B). The remainder of this section is to

set up the basic model.

1.2.1 Setup

In the model, there are two groups of players: an innovator (I) and firms. An innovator maximizes

her expected revenue paid as upfront membership fees, equal to the second highest bid. Firms

bid for the right to join an RJV, and put effort into the co-development if they are chosen as an

RJV’s member. Their objective is to maximize expected profits from being a monopolist in the

final product market. Firms make two decisions: how much they bid and how much effort they

put in. By backward induction, firms’ equilibrium strategies are solved. In the beginning, an

innovator decides which RJV structure she will implement. Given firms’ equilibrium strategies, an

equilibrium RJV structure is solved.

There are n existing firms in the market. Denote γi as the ith order statistic of all n firms’

productivity, where i∈ {1, ...,n}. Firms are ranked by the order of their productivity, and identified

by their order, i.e., firm n is the firm with the highest productivity equal to γn. Assume that all n

firms in the market are the same for both periods of the game. This means no change in the

composition of firms between two periods. It usually holds in the high-technology industry such

as computer production. As in Bhaskaran and Krishnan (2009), most products in a computer

industry are introduced around major industry events and conferences. Consequently, the timing

is determined by outside events and a new basic technology is quickly outdated by the superior

technology from rival companies or its own firm. In this context, it makes sense to assume that

there is no change in all firms in the industry between these short two periods of a product’s life.

Denote the RJV’s probability of success in period t from working with firm i, as σ (eti) with

eti being the effort level of firm i in period t. The effort cost function is c(eti,γi) , where γi is
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the productivity of firm i, constant over time. This cost function is convex in the effort level

with ∂c
∂e > 0, ∂c

∂γ
< 0, ∂2c

∂e2 > 0, and ∂2c
∂e∂γ

equal to ∂2c
∂γ∂e < 0. The functional form of this effort cost,

assumed to be the only cost of production, is 1
γ

e2. The productivity is independently and identically

drawn from G(γ), assumed to be the uniform distribution with the support
[
γ,γ
]
. The upper bound

and the lower bound of productivity will be set to maintain the interior solution of an effort level,

implying the well-defined probability of success. To simplify the study, the memoryless model

is imposed. The memoryless structure is that an RJV in the second period learns nothing from

the first attempt, given that the first try fails. This is denoted by assuming that the probability of

success in an RJV with firm i in period t, σ (eti) equals eti.

The game structure is illustrated in Figure 1.1. To begin with, nature randomly draws each

firm’s productivity level. Once creating a basic innovation, an innovator picks one firm, assumed

to be firm i, to be an RJV’s member in the first period. If the first co-development succeeds, a

partner gains two periods of monopoly profits. With the simple linear demand function Q = 1−P,

the monopolist’s profit is 1
4 , while the consumer surplus is 1

8 in each period. Hence, the expected

benefit for firm i is σ1i

[
1
4 +

1
4

]
= 1

2e1i. If the first attempt fails, an innovator finds a different

second period partner to work with, assumed to be firm k ∈ {1, ...,n}. Firm k’s expected benefit is

one period monopoly profit equal to 1
4e1k. If an RJV fails again, firm k obtains nothing.

Assume that an innovator has three options to design her RJV. With the first RJV failure, she

may continue working with firm i in the second period (strategy C−Continuing with one firm),

include firm i in the second auction of the right to join her RJV (strategy N−No commitment), or

auction off an RJV’s membership to the highest bidder among the remaining n−1 firms, excluding

firm i, (strategy B−Breaking up). An innovator makes this decision before the game starts, and

must stick to it until the game ends.
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Figure 1.1: The Game Structure
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1.3 Basic Equilibria

In the basic model, backward induction is used to solve each stage’s equilibrium effort level of all

three structures. An innovator’s equilibrium RJV structure is then analyzed. The last subsection

compares welfare under the three structures.

1.3.1 Stage Two: the second RJV’s attempt

In stage two, an RJV’s partner decides how much effort (eX2k) to put in to maximize the expected

profit equal to the expected revenue (1
4eX2k) subtracting the effort cost ( 1

γk
e2

X2k) for X ∈ {C,N,B}.

The objective function of an RJV’s partner in the second period is:

Max
eX2k

1
4eX2k− 1

γk
e2

X2k, X ∈ {C,N,B}.

The truthfully revealing mechanism of the second-price auction implies that an auction winner

has the highest productivity among bidders. As a result, firm k is firm n under the continuing

with one firm and the no commitment strategies, and firm n− 1 under the break-up strategy. The

objective function’s first order condition shows that e∗X2n = 1
8γn for X ∈ {C,N}, and e∗B2n−1 =

1
8γn−1. The convexity of cost function with respect to the effort level implies that the second order

condition is always satisfied; hence, it is ignored for the rest of the paper. After the effort level is

put in, an RJV’s member becomes a single-period monopolist if the co-development succeeds, and

gets nothing otherwise.

Lemma 1.1. Among the three structures, the second period RJV’s probability of success is lowest

under the break-up. That is: e∗C2n = e∗N2n > e∗B2n−1.

Proof. e∗C2n = e∗N2n = 1
8γn > 1

8γn−1 = e∗B2n−1.

The second period equilibrium effort levels are ordered as in the lemma. The fact that there

are n−1 firms leads the break-up strategy to provide the lowest effort level. Firm n put in the same

level of effort in the second and last period under both the N and C structures.
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1.3.2 Stage One: the first RJV’s attempt

In all three RJV structures, the second-price auction allows an RJV to work with the best firm

in the first period. Nevertheless, each equilibrium level needs to be solved separately based on

its structure. For firms, their effort levels in the first period affect the probability to reach the

second chance under the continuing working with the same firm and the no commitment structures.

For X ∈ {C,N}, firms choose their first period effort level to maximize their total expected profit

consisting of the first period expected profit, 1
2eX1n− 1

γn e2
X1n, and the second period expected

profit, which is the multiplication of the probability of the first RJV failure, (1− eX1n), and the

expected profit given that. Under the C and N structures, firms’ objective functions are as follows:

Max
eC1n

1
2eC1n− 1

γn e2
C1n +(1− eC1n)

[
1
4e∗C2n−

1
γn e∗2C2n

]
;

Max
eN1n

1
2eN1n− 1

γn e2
N1n +(1− eN1n)

[
1
4e∗N2n−

1
γn e∗2N2n−βN2 (γn−1)

]
.

The first part of the objective function is the expected benefit, which is the multiplication of the

probability of success and the two period monopoly profit, subtracting the effort cost. The second

part is the second period expected net benefit given the first RJV’s failure. With the C structure, firm

n considers both the first period expected benefit and the second period expected net benefit given

the first time failure. The second period expected net benefit is lower under the N than C structure.

This is because firm n, who even still wins the second auction due to the truthfully revealing

mechanism, must pay the price equal to the second highest bid, βN2 (γn−1) , which is firm n−1’s

expected net benefit gained by joining an RJV in the second period, 1
4e∗N2n−1−

1
γn−1

e∗2N2n−1.

Under the break-up, firms simply choose their effort level to maximize their expected profit

as in the one-shot game since there will be no second chance if they fail the first attempt. Their

objective function is:

Max
eB1n

1
2eB1n− 1

γn e2
B1n.
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If an innovator selects the B structure, firm n gains nothing in the second period given the first

RJV failure. Hence, its objective function includes only the expected net benefit from the first RJV

attempt. The following lemma summarizes the equilibrium effort levels in the first period.

Lemma 1.2. Among the three structures, the first period RJV’s probability of success is lowest

under the continuing with one firm, and highest under the break-up. That is: e∗B1n > e∗N1n > e∗C1n.

Proof. The equilibrium effort levels are determined by the first order conditions above. Solving

them provides: e∗B1n = 1
4γn, e∗N1n = 1

4γn[1 − 1
32γn + 1

32γn−1] and e∗C1n = 1
4γn[1 − 1

32γn]. Ob-

viously, the break-up encourages firm n to put in the highest effort level, whereas the continuing

working with one firm induces the lowest level of effort among the three RJV structures.

The intuition behind this lemma is that firm n must work hardest under the break-up strategy

because this is the only chance it can join an RJV. Under the C structure, firm n does not have to

participate in the second auction if it fails the first co-development as it does under the N structure;

therefore, firm n works harder under the no commitment strategy.

1.3.3 Revenue Analysis

In this simple model, the only action of an innovator is to choose her RJV structure in the beginning

of the game. To do so, she selects the structure with the highest expected revenue. An innovator’s

revenue is analyzed in this subsection to see if the break-up can exist. With the C strategy, firm

n pays an innovator equal to firm n− 1’s expected intertemporal net benefit gained by joining an

RJV:
1
2

e∗C1n−1−
1

γn−1
e∗2C1n−1 +

(
1− e∗C1n−1

)[1
4

e∗C2n−1−
1

γn−1
e∗2C2n−1

]
. (1.1)

The following equation is the revenue function under the no commitment and break-up strate-

gies.

βX1 (γn−1)+
(
1− e∗X1n

)[1
4

e∗X2k−
1
γk

e∗2X2k

]
, X ∈ {N,B}. (1.2)
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The revenue funtion in this equation can be divided into two parts: the first period bidding

function and the second period bidding function given the first RJV’s failure. In the first auction,

firm n−1 bids at its expected net benefit of being an RJV’s member only for one period when the

N strategy is implemented: βN1 (γn−1) =
1
2e∗N1n−1 −

1
γn−1

e∗2N1n−1. Under the B structure, it tends

to bid less than its expected net benefit since it cannot join the second auction if it wins the first

auction, but an RJV fails. The first period bidding function under the break-up strategy is discussed

in Appendix 1A. When they bid in the first auction, firms consider the expected net benefit in

the second period given that the first RJV fails, and they win the second auction. Particularly,

βB1 (γn−1) = 1
2e∗B1n−1 −

1
γn−1

e∗2B1n−1 −
(
1 − e∗B1n

)
u∗2 (γn−1) , where u∗2 (γn−1) is the second

auction expected net benefit given that firm n−1 wins. The productivity support
[
γ,γ
]

is required

to take this expectation. The lower bound, γ , is set to be zero to restrict the probability of success

to be nonnegative. The productivity upper bound equalizes the highest effort level to one. In

this basic model, the first period break-up effort level, highest among the first period equilibrium

efforts, is also higher than the highest effort level in the second period. Therefore, γ, determined by

e∗B1n = 1, is equal to 4. With γ uniformly distributed within [0,4], u∗2 (γn−1) =
1

64(n−1)4n−1 γ
n−1
n−1 .

To begin the revenue analysis, the revenue function of the continuing with one firm and that

of the no commitment are compared. ERX denotes an innovator’s expected revenue, paid by both

period partners, under the X ∈ {C,N,B} strategy. The following proposition concludes this result.

Proposition 1.1. The no commitment strategy is never optimal for an innovator in the basic model,

i.e., ERN < ERC.

Proof. Since the γn−2 and γn has positive and negative effect, respectively, on the revenue function

under the N strategy, but not the C strategy. Setting γn−2 to be highest, equal to γn−1, and γn to be

lowest, equal to γn−1, in the N revenue function provides higher revenue than the N structure, but

still lower revenue than the C structure given γn−1. The difference between the C revenue function

and the N revenue function with γn−2 and γn replaced by γn−1 is 1
16384γ3

n−1 ≥ 0. This implies the

result in the proposition.
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The continuing with one firm strategy provides higher revenue than the no commitment strat-

egy, although an innovator gains benefit from only the first auction. This is because firms already

take the second period expected net benefit into account when they bid the first auction under the

C strategy. Remarks that both strategies’ expected net benefits in the second period are similar. In

the first RJV attempt, a firm partner put in more effort under N than it does under the C structure.

This benefits the first period revenue, but lessens the chance to acquire the second-round revenue.

It seems that the negative effect of this higher effort is large enough to make an innovator prefer to

work with the same firm rather than to re-auction the second period membership.

Proposition 1.2. In the basic model, an innovator holds only the first auction to sell the right to

join the RJV in both periods, i.e., ERC > max{ERN ,ERB}.

Proof. The previous proposition states that the no commitment strategy is dominated by the con-

tinuing with one firm strategy. Thus, it is sufficient to show that the break-up’s expected revenue

is lower than the no commitment’s. The difference in the N and B’s expected revenues is posi-

tive with the negative slope4. The gap between the expected revenue of the N and B strategy is

zero when n→ ∞; in other words, the break-up provides the lower expected revenue than the no

commitment does.

Figure 1.2 depicts the expected revenues under the three strategies with less than or equal to

ten firms in the market. It is consistent with the previous propositions that the continuing with one

firm strategy, of which expected revenue is the dashed line, is optimal for an innovator. Further-

more, an innovator obtains the lowest expected revenue under the B strategy, represented by the

thick solid line. As a result, the break-up does not exist as an equilibrium in this basic model, and

the only equilibrium is C. The continuing with one firm is optimal even with the lowest effort level

in the first period.

4This holds for general n, i.e., n as large as a million is checked, although this paper had better
stick with the realistic number of firms such as one hundred.
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Figure 1.2: The Expected Revenues
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Intuitively, an innovator’s goal is similar to firm n’s in this basic model. Both an innovator

and her partner maximizes the expected profit generated by selling their final product. The first

RJV member’s choice of effort depends upon both the first and the second period expected profits.

Among the three strategies, C provides firm n the highest expected profit gained by joining the

second period RJV, while B provides it nothing in the second period if the first co-development

failed. The N structure’s second period expected profit for firm n is equal to that of C subtracting

the membership fee paid in the second auction. These second period expected profits encourage

firm n to put in the excessive first period effort under the B and N structure. Firms bid equal to their

intertemporal expected benefits in the first auction. This, indeed, maximizes the expected revenue

an innovator can obtain under the three structures.

1.3.4 Welfare Analysis

This subsection is to analyze social welfare of each RJV structure. The welfare function is as

follows:
3
4

e∗X1n−
1
γn

e∗2X1n +
(
1− e∗X1n

)[3
8

e∗X2k−
1
γk

e∗2X2k

]
, X ∈ {C,N,B}. (1.3)

The second period benefit for a society is the sum of monopoly profit and consumer surplus,

3
8 , whereas that of the first period is 3

4 . As before, k = n for the C and N structures, and n−1 for

the B structure. Thus, the expected benefit for a society is equal to 3
4e∗X1n, and 3

8e∗X2k in the first

and the second period, respectively. The following proposition specifies the optimal RJV structure

for a society:

Proposition 1.3. With less than six firms, the no commitment structure provides the highest ex-

pected social welfare among the three structures, but social welfare is maximized under the break-

up structure otherwise.

Proof. The only difference between the N and C welfare functions is that an RJV’s partner works

harder in the first period, or the first period effort level is higher, under N. At the first stage, e∗N1n >
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e∗C1n. If the derivative of C’s welfare function with respect to e∗C1n is positive, social welfare

under N is higher than under C. This derivative is equal to 3
4 −

2
γn e∗C1n − e∗C2n

[
3
8 −

1
γn e∗C2n

]
,

which is positive when γn < 16
3 , always true with γ = 4. Consequently, N’s expected welfare is

highest among the three when it exceeds B’s. Next, all expected welfare are increasing in the

number of firms since the welfare function is increasing in the productivity level, and the expected

productivity levels of the best and the next best firm are increasing in the number of firms. The

number of firms cutoff such that the expected welfare is higher when there are more firms than

the cutoff, is around 5.78459. Finally, the expected welfare under the break-up strategy is highest

when there are at least six firms.

The no commitment strategy dominates the continuing with one firm strategy simply because

it pushes firm n to work harder in the first period. With enough firms in the market, the break-up’s

welfare, with the highest first period effort level among the three is superior to the commitment’s.

The intuition is that a society must trade off the opportunity to work with the best firm in the

second period with the higher first-round effort level under B. As a result, firm n is preferable to

work harder in the second period, but to work less in the first period only if there are less than

six firms. When there are at least six firms, the expected productivity difference between the best

and the second best firm is low enough to allow the benefit of the higher first period probability of

success outweighs the disadvantage of working with the second best firm in the second period.

Proposition 1.4. In this basic model, an innovator chooses a society’s worst RJV structure among

the three.

Proof. As stated in the previous propositions, an innovator’s optimal strategy is to stick with the

same firm, which is dominated by the no commitment strategy from a society’s viewpoint. The

next step is to show that C’s expected welfare is lower than B’s when there are less than six firms.

The cutoff such that the expected welfare is higher when the number of firms exceeds it is approx-

imately 1.94069, less than the minimum number of firms in this model. As a result, C is the worst

society’s choice among the three.
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Figure 1.3: The Expected Welfare
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In Figure 1.3, the expected welfare under the three structures are compared when there are

at most six firms. This figure illustrates that the N strategy provides the highest expected welfare

when there are at most five firms, and it crosses that of B when n is almost six. The more firms,

the more preferable B is to N, and the more inferior C is to the other. This is because the gap

between the expected productivity levels of the best and the second best firm is decreasing in

the number of firms. When a society with more than six firms compares the break-up with the

no commitment strategy, the advantage of higher first period effort surpasses the disadvantage of

lower second period effort. Unfortunately, an innovator designs her RJV to last two periods. This

strategy provides the highest expected upfront fee for her, but is expected to be the worst for a

society.

The break-up does not occur in this basic model where an innovator only acquires the direct

benefit in terms of revenue from her basic innovation. The next section discusses the situation

when an innovator does not only get paid by an RJV member, but she also gains additional benefit

from the project’s success. The effect of the higher effort cost is then analyzed.

1.4 The Indirect Benefit Model

If an innovator only cares about a revenue from selling an innovation, she will auction off the right

to join her RJV for two periods in the first period. The winner is the highest productivity firm who

bids at its expected intertemporal net benefit. It does not have to put much effort in the first period

relative to other RJV structures, since there is the second chance given that the first attempt fails.

An innovator and firms share the goal of maximizing the expected monetary benefit earned directly

from selling an RJV’s final product to the market. The previous section shows that this is the worst

RJV structure among the three for a society.

This section begins with the idea to generalize the simple model by adding the indirect ben-

efit to an innovator. To be more realistic, innovators such as universities, small laboratories or

software developers do not gain only direct benefits in terms of funds or upfront fees from their
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RJV partners, but also indirect benefits from the further research development. For instance, the

project’s success may help them earn/maintain their reputation, or provide them opportunities to

improve their future research. They also may be able to get a patent based on this co-development,

which will generate future revenues. The effect of this indirect benefit on an innovator’s decision

is analyzed in this section.

Asker and Cantillon (2010)’s notion of the A+B bidding motivates the idea of additional

benefits for an auctioneer. The authors mention that the U.S. State Highway Authorities hold

procurement auctions for highway repair jobs. The agencies would rather have the cheapest and

fastest reconstruction. For example, Arizona Department of Transport designs the A+B bidding

(see the A+B bidding guide), a cost-plus-time procedure. The objective is to select the lowest

bidding firm based on a monetary combination of the contract bid items (A) and the time (B)

needed to complete the project. Asker and Cantillon (2010) study this procurement auction. The

authors explain that a contractor can speed up his job by hiring extra labor, using some equipment

more intensively, or shifting some resources from other jobs.

This environment is analogous to the setup such that an RJV’s partner can put in more effort to

enhance the probability of success, which is positively correlated with the indirect or extra benefit

an innovator gains. Instead of involving a complex auction to reflect how the indirect benefit

affects an innovator’s decision as quality or time, this paper sticks with the simple second-price

auction. This rationalizes the existence of an RJV break-up as a tool for an innovator to stress the

significance of indirect benefits for her in making decisions about the RJV structure.

As already shown in the previous section, the break-up induces the highest effort level among

the three. Thus, an innovator considering the extra benefits may prefer firms to work harder, and

then choose the break-up over the other strategies.

1.4.1 Setup

In addition to an RJV’s membership fee, an innovator obtains the indirect benefit when her RJV

succeeds. She enjoys the extra benefit, αt , given the RJV success in period t ∈ {1,2} as the basic
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innovation lasts only two periods before it expires. If an innovator gains an additional benefit equal

to r in each period with δ as the discount factor, α1 =
∞

∑
s=1

δ s−1r = r
1−δ

, and α2 = α1 − r = δ r
1−δ

= δα1. It is, however, preferred to set them to be as general as α1 and α2.

In addition to the revenue paid by her partners, an innovator obtains α1 in the first period

with the probability of success equal to e∗X1n, and the probability to acquire α2 is
(
1− e∗X1n

)
e∗X2k,

which is the possibility that the first RJV fails, and the second RJV succeeds. The expected indirect

benefit for an innovator, hence, is:

e∗X1nα1 +
(
1− e∗X1n

)
e∗X2kα2, X ∈ {C,N,B}. (1.4)

Again, k = n−1 for the B structure, otherwise it is n. As in the basic model, the effort level of

an RJV’s partner in each period is simply equal to each period’s probability of success. Therefore,

the first part of this equation is the expected indirect benefit in the first period, whereas the second

part is the second-round expected indirect benefit given the first RJV’s failure. To simplify the

analysis, assume the extra benefit to be additive to an innovator’s revenue in the simple model.

This setup does not distort the decision of an RJV member, i.e., no change in the equilibrium

effort levels under all three structures, since it still gains only a monopoly profit from selling the

final product. Nevertheless, this additional benefit improves social welfare. Assume that α1 ≥ α2,

which makes sense since the sooner the project succeeds, the longer an innovator acquires its

indirect benefit.

Proposition 1.5. Both social welfare and the indirect benefit for an innovator are higher under the

no commitment than the continuing with one firm structure.

Proof. As in the case without an indirect benefit, the only difference between N and C’s welfare

is that e∗N1n > e∗C1n. This implies that the welfare function is higher under N than C because

the derivative of C’s welfare function with respect to e∗C1n is positive, shown earlier. Next, an

innovator’s expected indirect benefit under the C strategy is increasing in the first period effort

level, straight from its derivative with respect to the first-round effort equal to α1 − e∗C2nα2 > 0,
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given that α1 ≥ α2. Hence, an innovator gains more indirect benefits when she chooses N over C.

This proposition indicates the higher indirect benefit under the no commitment than the stick-

ing with one firm strategy. It is less straightforward to compare these benefits to the break-up’s.

Both C and N induce firms to work harder in the second period than the break-up does; therefore,

B’s highest effort level in the first period among the three does not ascertain the highest indi-

rect benefit. However, the first period indirect benefit, α1, is necessary to be high to support the

break-up. Indeed, high additional value of the RJV’s project is expected to compensate for the low

expected revenue when an innovator designs to break up her RJV. The next subsection is to check

if this is possible.

1.4.2 The Equilibrium RJV Structure

The RJV equilibrium structure and social welfare are analyzed in this subsection. An innovator

designs her RJV structure based on both direct and indirect benefits, so the C strategy, providing

the highest expected direct benefit among the three, may not be implemented as in the simple

model. Denote UX , X ∈ {C,N,B} as the total benefit for an innovator with the X structure. The

following lemma compares the effect of each period indirect benefit on the total benefit under the

three strategies.

Lemma 1.3. Among the three RJV structures, the break-up’s first period marginal indirect benefit

is highest, while the continuing with one firm’s is lowest. Conversely, the second period marginal

indirect benefit is lowest and highest under the break-up and the continuing with one firm, respec-

tively.

Proof. The total benefit is increasing in the indirect benefit in period t, αt . αt’s marginal benefit

is simply the derivative of UX with respect to αt , which is e∗X1n for t = 1, and
(
1− e∗X1n

)
e∗X2k for

t = 2. Since a member applies the same level of effort in each structure regardless of an indirect
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benefit, the effort levels under the three structures can be ranked as in the previous section. This

implies that ∂UB/∂α1 > ∂UN/∂α1 > ∂UC/∂α1, whereas ∂UC/∂α2 > ∂UN/∂α2 > ∂UB/∂α2.

Because the indirect benefits are additive to the direct benefits, this lemma implies that for

X ∈ {C,N} there exist α̂1BX , and α̂1NC such that EUB ≥ EUX if α1 ≥ α̂1BX , and EUN ≥ EUC if

α1 ≥ α̂1NC, respectively. These cutoffs are:

α̂1BN =
ERN−ERB +α2E

[(
1− e∗N1n

)
e∗N2n−

(
1− e∗B1n

)
e∗B2n−1

]
Ee∗B1n−Ee∗N1n

; (1.5)

α̂1BC =
ERC−ERB +α2E

[(
1− e∗C1n

)
e∗C2n−

(
1− e∗B1n

)
e∗B2n−1

]
Ee∗B1n−Ee∗C1n

; (1.6)

α̂1NC =
ERC−ERN +α2E

[(
1− e∗C1n

)
e∗C2n−

(
1− e∗N1n

)
e∗N2n

]
Ee∗N1n−Ee∗C1n

. (1.7)

ERX in the equations is the expected direct benefit for an innovator, paid by partners, under

the X ∈ {C,N,B} strategy. The cutoffs are increasing in the second period indirect benefit since

the second part of the numerator, which multiplies α2, is positive when e∗B1n > e∗N1n > e∗C1n, and

e∗B2n−1 < e∗N2n = e∗C2n.

These cutoffs are analyzed under the interesting ranges of parameters. Consider α1 in the

range of 0 and 3
2 , four times social welfare and six times the profit in each period. Indeed, raising

the boundary of the first period indirect benefit does not impact on the analysis much since the cut-

offs already exist in these current ranges. Recall that the second period indirect benefit is assumed

to be at most equal to the fist period’s. An innovator obtains higher total expected benefits under

X than Y when α1 > α̂1XY . By the same token, the α̃1XY cutoff is defined such that a society

chooses X over Y when α1 > α̃1XY . Notice that α̃1NC can be ignored since N’s social welfare

always dominates C’s as discussed in the above proposition. With EWX denoting the expected

welfare exclusive of the expected indirect benefit under X ∈ {C,N,B}, the cutoffs are:

α̃1BN =
EWN−EWB +α2E

[(
1− e∗N1n

)
e∗N2n−

(
1− e∗B1n

)
e∗B2n−1

]
Ee∗B1n−Ee∗N1n

; (1.8)

α̃1BC =
EWC−EWB +α2E

[(
1− e∗C1n

)
e∗C2n−

(
1− e∗B1n

)
e∗B2n−1

]
Ee∗B1n−Ee∗C1n

. (1.9)
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Lemma 1.4. The additional benefit cutoffs determining the equilibrium RJV structure chosen by

an innovator are ordered by: α̂1BN > α̂1BC > α̂1NC.

Proof. See Appendix 1B.

Lemma 1.5. The additional benefit cutoff equalizing the expected total benefits under the break-

up and the no commitment structures is increasing in the second period additional benefit, but

decreasing in the number of firms, i.e., ∂ α̂1BN/∂α2 > 0, and ∂ α̂1BN/∂n < 0, in the interesting

ranges of parameters.

Proof. See Appendix 1B.

Lemma 1.6. The total expected social welfare can be higher under the continuing with one firm

than the break-up only when there are two firms.

Proof. See Appendix 1B.

Lemma 1.7. The additional benefit cutoffs determining the equilibrium RJV structure and the

society preference are ordered by: α̂1BN > α̃1BN > α̃1BC.

Proof. See Appendix 1B.

Lemma 1.4 to 1.7 summarize the results in this model. α̂1BN is highest among the five cutoffs

given any number of firms and second period indirect benefit. It is increasing in the second period

indirect benefit, but decreasing in the number of firms, shown in the ranges of α2 ≤ 3
2 , and the

general number of firms. Also, the necessary condition for a society to be better under the contin-

uing with one firm than under the break-up is that there are two firms in the market. Nevertheless,

α̃1BN > α̃1BC even with n = 2, the only case that α̃1BC is matter.

Proposition 1.6. The break-up strategy provides the highest expected welfare among the three

strategies when implemented.
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Proof. The α̂1BN cutoff, the highest among the five, guarantees that an innovator obtains the largest

expected revenue, while a society also achieves the highest expected welfare under B whenever an

α1 exceeds it.

Proposition 1.7. The sufficient condition for the break-up to occur is the large enough number of

firms and first period indirect benefit. The fewer firms, the more the first period indirect benefit

required for the break-up to exist, and vice versa.

Proof. The highest α̂1BN cutoff implies that the large enough first period indirect benefit allows an

innovator to choose B over the rest. Since the cutoff is negatively related to the number of firms, the

more firms, the lower the cutoff, and the more likely that the break-up exists. To show the second

part of the proposition, the definition of α̂1BN is referred. The implicit funtion theorem indicates

that for α1 and n equalizing α1 to α̂1BN , ∂n / ∂α1 = −∂α1 [α1 − α̂1BN ] / ∂n[α1 − α̂1BN ]. Since

∂ α̂1BN / ∂n < 0, n and α1 are negatively correlated in determining the cutoff.

These propositions mean an innovator designs her RJV to change its partner if the first attempt

fails with large enough n and α1. In this case, an innovator prefers an RJV’s member to exert

more effort in the first period via selecting B, although each firm bids less under B than N or C.

This is simply because the first period indirect benefit is able to compensate for the lower upfront

membership fee. In addition, the market with more potential partners tends to have narrower gap

between the highest and the second highest productivity. This, thereafter, reduces the difference

between the bidding under B and other structures.

With α2 = 0.5α1, Figure 1.4 delineates all cutoffs, except α̃1BC because α1 > α̃1BC. The

cutoffs with other second period indirect benefits are illustrated in Appendix 1B. The horizontal

axis is the first period indirect benefit, and the vertical axis is the number of firms. The upper-right

area of of these cutoffs XY is the range of parameters such that an innovator’s expected total benefit

or the expected welfare is higher under X than Y . As in the above lemmas, the cutoff to distinguish

the area with higher expected revenues under the break-up than the no commitment, the thick solid

line, lies above all the others.
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Figure 1.4: The Cutoffs with α2 = 0.5α1
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Notice that the number of firms and the first period indirect benefit have the negative relation-

ship to determine α̂1BN . In particular, the larger number of firms is needed to compensate for the

lower first period indirect benefit, represented by the negative slope of this cutoff. When the first

period indirect benefit is too low, to the left of α̂1NC, a society suffers from an innovator’s decision

to choose C with the lowest welfare among the three, as in the basic model in the previous section.

With α̂1BN > α1 > α̂1NC, an innovator implements the N strategy with two categories of the

parameters. α1 to the right of α̃1BN , the dotted, allows a society to enjoy the highest expected

welfare from the no commitment strategy, whereas the expected welfare is lower than under the

break-up structure with α1 < α̃1BN .

Proposition 1.8. A society is better under the continuing with one firm when it is implemented

than under the break-up only if n = 2, α1 < 0.3, and α2
α1

> 0.95.

Proof. The continuing with one firm is dominated by the no commitment in terms of social welfare.

Next, the total expected social welfare can be higher under C than B only when n < 3, or simply

two firms. Figure 1.5 depicts the cutoffs when there are two firms in the market. The upper-left

shaded area represents the range of α1 and α2 as the fraction of α1 such that an innovator selects

C and it is superior to B from a society’s viewpoint. At α2 = α1, α̂1BC = 7
24 < 0.3, while α2

α1

> 0.95 at α̂1BC = 0.3. Hence, the first period indirect benefit must fall into this range to be in

the shaded area; in other words, this shaded range of parameters is the necessary condition for the

continuing with one firm not to be the worst in terms of social welfare when it is implemented. It

is remarkable that α1 exceeding α̃1BC, the thick dotted line, makes a society worse under B than

C. This is a result of allowing α2 to be increasing in α1. An increase in α1 does not only raise

the difference in the first period expected effort levels between C and B, but it also reduces the gap

between expected effort levels in the second period. When α2
α1

is high, e.g., α2
α1

> 0.95, the latter

effect dominates the former, which causes the definition of α̃1BC to reverse, i.e., α1 must be lower

than this cutoff to allow a society better under B than C.
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Figure 1.5: The Cutoffs with n = 2
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Figure 1.5 indicates the cutoffs with two firms in the market. The vertical axis is fraction of

the second period indirect benefit to the first period’s. The area to the lower right of each cutoff

XY except α̃1BC determines that the expected total benefit for an innovator or the expected social

welfare is higher under X than under Y . This figure also expresses that α2 can be at most fourty

percent of α1 to allow the break-up to occur, as the vertical intercept of the thick solid line, α̂1BN ,

is less than 0.4. With more firms, the larger maximum ratio of α2 to α1 keeps the break-up as

the optimal strategy for an innovator. Indeed, this proposition and figure simply delineate that the

continuing with one firm structure, when implemented, is not always the worst among the three for

a society as in the basic model.

In this section, the break-up exists as an equilibrium strategy for an innovator when there are

enough number of firms and first period indirect benefits. The indirect benefit from pushing firm

to work harder under the break-up strategy must outweigh the lower expected revenue from her

partners to encourage an innovator to choose the break-up strategy over the others. The impact of

the higher effort cost function is discussed in the next section, and then the last section concludes

the paper.

1.5 The Higher Effort Cost

This section analyzes if the existence of break-up in the indirect benefit model is robust to the

higher effort cost function. In doing so, the cost function is changed from 1
γ

e2 to 1
γ

e
3
2 . The

equilibrium effort levels (e∗′) are solved by using backward induction:

e∗′B1n = 1
9γ2

n ; e∗′B2n = 1
36γ2

n−1;

e∗′N1n = 1
9γ2

n

[
1− 1

216γ2
n + 1

216γ2
n−1

]2
; e∗′N2n = 1

36γ2
n ;

e∗′C1n = 1
9γ2

n

[
1− 1

216γ2
n

]2
; e∗′C2n = 1

36γ2
n .

(1.10)

The first period effort level under the break-up structure is still highest in this model. As a

result, the upper bound of the productivity level, γ, is determined by e∗′B1n = 1, to be three.
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Figure 1.6: The Effort Cost Functions
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Figure 1.6 simulates the cost functions with the upper bound productivity level. It is clearly

seen that the effort cost is higher under the new case, the thick solid line, than the previous one,

the dashed line.

Proposition 1.9. With this higher effort cost function, both social welfare and the indirect ben-

efit for an innovator are still higher under the no commitment than the continuing with one firm

structure.

Proof. The only difference between N and C’s welfare functions is that e∗′N1n > e∗′C1n. The deriva-

tive of C’s welfare function with respect to e∗C1n is 3
4 −

3
2γn e∗′C1n − e∗′C2n [38 −

1
γn

√
e∗′C2n], which is

positive when γn < 6
√

2, always true with γ = 3. Thus, social welfare under N, is higher than that

under C. Because the indirect benefit does not change, it is higher under N than under C as in the

previous section.

This proposition simply repeats the result from the previous section. Next, α̂ ′1XY and α̃ ′1XY are

defined such that an innovator obtains higher total expected benefits, and social welfare is higher

under X than Y when α1 > α̂ ′1XY , and α1 > α̃ ′1XY , respectively. Still set α1 in the range of 0 and

3
2 , and α2 ≤ α1. α̃ ′1NC can also be excluded from the analysis as discussed in the previous section.

Lemma 1.8. With the higher effort cost, the indirect benefit cutoffs are ordered by: α̂ ′1BN > α̂ ′1BC

> α̂ ′1NC, and α̂ ′1BN > α̃ ′1BN > α̃ ′1BC.

Proof. See Appendix 1C.

Proposition 1.10. The higher effort cost reduces all cutoffs when there are at least four firms.

With less than four firms, the higher effort cost decreases all cutoffs, but those equalizing the total

expected benefits and expected welfare between under the break-up and the continuing with one

firm.

Proof. See Appendix 1C.
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Figure 1.7: The Cutoffs with α2 = 0.5α1
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Figure 1.8: The Cutoffs with n = 2
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Figure 1.7 fixes α2 to be half of α1 as in Figure 1.4 but with the higher cost of effort. All

cutoffs shift to the lower left of the previous diagram. α̂ ′1BC also decreases because α2 is not high

enough to fall into the shaded range in Figure 1.21.

Figure 1.8 represents the case with two firms, analogous to Figure 1.5. With the higher effort

cost, the lower α1 is required given any α2 to sustain the same innovator’s total expected benefit

and a society’s expected welfare between the break-up and the no commitment, and also between

the no commitment and the continuing with one firm. The lower α1 is also needed to equalize

the total expected benefit for an innovator between under the break-up and the continuing with

one firm. This is again because α2 does not fall into the range of the shaded area in Figure 1.21.

However, the level of α2 relative to α1 must be lower to sustain the similar expected social welfare

between under the break-up and the continuing with one firm.

The higher effort cost function causes the break-up to exist in the wider range of parameters,

which benefits a society due to its highest expected welfare among the three when occuring. The

intuition is that the higher effort cost discourages an RJV’s partner from putting in more effort. As

a result, the break-up, inducing the highest equilibrium effort level in this model, favors both an

innovator and a society. Moreover, the higher effort cost reduces the number of firms and the first

period indirect benefit necessary for the break-up existence.

1.6 Conclusion and Discussion

This paper studies the dynamic formation of a vertical RJV. Particularly, an innovator’s choices

of three RJV structures are: C−Continuing with one firm, N−No commitment and B−Breaking

up. A simple model is set up to show the existence of the break-up equilibrium, which is also

optimal for a society when implemented. The break-up strategy trades a higher effort level in the

first period for a lower productivity level in the second period. It is simply because an innovator

allows the RJV’s member to work for only one period. If the project fails, the first member will be

excluded from the second auction. This pushes the partner to exert more effort levels in the first
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period. If the first project is unsuccessful, the second period RJV will partner with the second best

firm. Among the three RJV structures introduced in this paper, the break-up exists if there are a

large number of the additional benefits from the RJV first period success, and a sufficient number

of potential members. Such indirect benefits are required to compensate for the low expected

revenue, whereas a large number of firms shrink the gap between the highest and the next highest

productivity level, which reduces the negative effect of the break-up on the revenue. When the

effort cost is more expensive, the lower first period additional benefit or the fewer firms are needed

to sustain the break-up as an equilibrium.

The no commitment strategy is generally the best among the three for a society in the basic

setup with less than six firms. It balances the benefit from the high effort level in the first period,

and the opportunity to work with the best firm in the second period. If there are more than six

firms, the break-up provides the highest expected welfare among the three, since the benefit from

the higher effort level in the first period outweighs the lower productivity in the second period.

Nevertheless, both N and B are not optimal for an innovator. Indeed, the revenues under these

two strategies are lower than the revenue under C. This is because the C structure’s effort level in

the first period maximizes the intertemporal expected profits from selling the final product. This

also maximizes each firm’s offer to join an RJV and an innovator’s expected revenue under the

three RJV structures. However, the additional benefits to compensate for the low expected revenue

lead the break-up to be an innovator’s optimal choice among the three with enough firms in the

market. This decision is consistent with a society’s benefit, which includes the total benefit for an

innovator, firm partners and consumers.

There are some potential extensions for future research. To begin with, this study simplifies

the partnership structure by enabling an RJV to incorporate only one innovator and one partner.

The oligopoly market with more RJV members usually provides less profit, but this should help

increase the probability of success. Next, the private information in this model is the productivity

level, combining both codeveloping and commercializing skills. If a firm is an expert in one of

these skills, not both, an innovator’s decision to choose a member may be complicated but more
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realistic. Moreover, this model is based on the memoryless structure that the effort level in the first

period does not pass through the second chance’s probability of success. This assumption is quite

unrealistic, but relaxing it can lead to the problem of splitting the ownership rights after breaking

up. If the first period investment in an RJV can be transferred, an innovator may specify rules for

asset transfers when the first RJV partner fails and does not join the second period RJV. Harstad and

Crew (1999) proposes second-price rules for bidding and transfer of assets in franchise bidding.

A single bid serves to identify both an output price and an asset transfer price. Their benchmark

model can be applied to study an RJV’s break-up when the memoryless assumption is relaxed.

Eventually, comparing an innovator’s break-up expected benefits under the simple second-

price auction with those under the scoring auctions may provide the solution for the RJV instability.

If the complicated auction mechanism allows an innovator to acquire higher expected benefits than

the simple auction with breaking up does, it is not necessary for her to sacrifice the opportunity

to work with the superior partner in the second period for the higher first period effort level. In

this regard, auction design can be used to promote partnership sustainability in the case that an

innovator prefers to break up her RJV in order to push a partner to exert more effort.
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Appendix 1A: The Truthfully Revealing under the Second-Price Auction

The second-price sealed-bid auction induces a firm to bid at its value as the weakly dominant

strategy, when an innovator implements the continuing working with one firm (C), or the no com-

mitment (N) strategy. Unfortunately, this is not obvious under the break-up (B) strategy. This is

because a firm has an incentive to hide its type, a productivity level, in the first period, in order

to confront the second period weak competitors with low bids provided that the first period RJV

fails. The following claim is proven to show that each firm also truthfully reveals its type under the

break-up strategy with the second price auction. Before doing so, assume the monotonicity of the

first period bid function (b) as follows:

Assumption The equilibrium bid function (b) in the first auction is strictly monotone increas-

ing in a productivity level.

Claim With the second price auction, there exists an equilibrium such that each firm truthfully

reveals its productivity level in the first period when an innovator implements the break-up strategy.

Proof. The structure of the proof is that the second period bidding strategy is solved by backward

induction based on the standard solution of symmetric auction games5, and the first period expected

payoff maximization problem is then solved to provide the optimal bid function. Given this bidding

strategy, the existence of the equilibrium is shown. A bid function in period t, t = 1,2, and a

probability of winning the auction in that period is denoted by bt (γ) and ρt(bt), respectively.

Period 2

u2 (b2,v2) = Firm’s expected profit from the 2nd period innovation,

= ρ2(b2)v2− ε2 (b2) ,

where ε2 is an expected payment, and v2 is an expected benefit from winning in the second

period. Let b∗2 (v2) denote the bidding equilibrium.

5Particularly, this proof follows section 8.2.5 in Wolfstetter (1999) to solve for the expected
value of the second auction.
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u2
(
b∗2 (v2) ,v2

)
= u∗2 (v2),

= ρ2(b∗2 (v2))v2− ε2
(
b∗2 (v2)

)
.

∂u∗2(v2)
∂v2

= ρ2(b∗2 (v2))+

[
∂ρ2(b

∗
2(v2))

∂b2

∂b2
∂v2

v2−
∂ε2

(
b∗2(v2)

)
∂b2

∂b2
∂v2

]
.

With the second part being zero by the envelope theorem,
∂u∗2(v2)

∂v2
= ρ2(b∗2 (v2)).

Due to the convexity of u∗2 (v2)
6, the first and second derivative of it with respect to a pro-

ductivity level are positive. This implies the monotonicity assumption (
∂b∗2(v2(γ))

∂γ
> 0) because

∂ρ2(b
∗
2(v2))

∂b2
and ∂v2

∂γ
> 0. With the monotonicity assumption in the second auction, ρ2(b∗2 (v2)) =

ρ2(γ) = G(γ)n−2, the probability of having the highest productivity level among the remaining

n-1 firms in the second period, where G(γ) denotes the distribution of γ with G′ (γ) = g(γ).

u∗2 (v2(γ)) =
∫ v2(γ)

0
∂u∗2(v2)

∂v2
dv2 =

∫ γ

0 ρ2(b∗2 (v2 (x)))
∂v2
∂x dx =

∫ γ

0 G(x)n−2

[
−

∂c
(

e∗2(x)
)

∂x

]
dx. 7

Period 1

The optimal bid function and an actual bid in the first auction is denoted by β ( j) and b

respectively. σt (γi)and et (γi)is the probability of success and effort level of firm iin period t,

respectively. cis the effort cost function, while πt is the market profit in period t. Then, define γ j as

the maximum productivity level of n−1 firms, excluding firm i. The expected payoff of firm i is

denoted by u(b,γi).

u(b,γi) = ρ1(b)
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)
−E

[
β
(
γ j
)
|b > β

(
γ j
)]]

+(1−ρ1(b))
(
1−E

[
σ1
(
γ j
)
|b < β

(
γ j
)])

u∗2 (γi) ;

6As discussed in Wolfstetter (1999) p. 198.
7This is from v2 = π2σ2 (γ) − c

(
e∗2 (x) ,x

)
. With ∂σ2(γ)

∂γ
=

∂e∗2(γ)
∂γ

, ∂v2
∂γ

= π2
∂e∗2(γ)

∂γ
−

∂c
(

e∗2(γ),γ
)

∂γ
= −

∂c
(

e∗2(γ)
)

∂γ
. The last equality is because

∂c
(

e∗2(γ),γ
)

∂γ
=

∂c
(

e∗2(γ),γ
)

∂e2

∂e∗2(γ)
∂γ

+

∂c
(

e∗2(γ)
)

∂γ
= π2

∂e∗2(γ)
∂γ

+
∂c
(

e∗2(γ)
)

∂γ
.
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E
[
β
(
γ j
)
|b > β

(
γ j
)]

=
∫ β−1(b)

0 β (x) d
dx

 G(x)n−1

G
(

β−1(b)
)n−1

dx,

=
(n−1)

G
(

β−1(b)
)n−1

∫ β−1(b)
0 β (x)g(x)G(x)n−2 dx;

E
[
σ1
(
γ j
)
|b < β

(
γ j
)]

=
∫ γ

β−1(b)
σ1 (y)

d
dy

G(y)n−1−G
(

β−1(b)
)n−1

1−G
(

β−1(b)
)n−1

dy,

=
(n−1)

1−G
(

β−1(b)
)n−1

∫ γ

β−1(b)
σ1 (y)g(y)G(y)n−2 dy.

Each firm maximizes its expected payoff as follows:

Max
b

u(b,γi)

= G
(

β−1 (b)
)n−1 [

σ1 (γi) [π1 +π2]− c
(
e∗1 (γi) ,γi

)
−E

[
β
(
γ j
)
|b > β

(
γ j
)]]

+

(
1−G

(
β−1 (b)

)n−1
)(

1−E
[
σ1
(
γ j
)
|b < β

(
γ j
)])

u∗2 (γi) ,

=
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
G
(

β−1 (b)
)n−1

−(n−1)
∫ β−1(b)

0 β (x)g(x)G(x)n−2 dx+
(

1−G
(

β−1 (b)
)n−1

)
u∗2 (γi)

−(n−1)u∗2 (γi)
∫ γ

β−1(b)
σ1 (y)g(y)G(y)n−2 dy.

FOC

0 = (n−1)
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1) ∂

∂β−1(b)

[∫ β−1(b)
0 β (x)g(x)G(x)n−2 dx

]
∂β−1(b)

∂b

−(n−1)u∗2 (γi)g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)u∗2 (γi)
∂

∂β−1(b)

[∫ γ

β−1(b)
σ1 (y)g(y)G(y)n−2 dy

]
∂β−1(b)

∂b .

From the Leibniz Formula8,

∂

∂β−1(b)

[∫ β−1(b)
0 β (x)g(x)G(x)n−2 dx

]
= bg

(
β−1 (b)

)
G
(

β−1 (b)
)n−2

,

and

∂

∂β−1(b)

[∫ γ

β−1(b)
σ1 (y)g(y)G(y)n−2 dy

]
=−σ1

(
β−1 (b)

)
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

.

Plug them back into the first order condition:

8See detail in Bartle (1976) p. 245
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0 = (n−1)
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)
[

bg
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

]
∂β−1(b)

∂b

−(n−1)u∗2 (γi)g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)u∗2 (γi)

[
−σ1

(
β−1 (b)

)
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

]
∂β−1(b)

∂b ;

=
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
−b−u∗2 (γi)

[
1−σ1

(
β−1 (b)

)]
, or

b =
[
σ1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
−u∗2 (γi)

[
1−σ1

(
β−1 (b)

)]
.

=
[
e∗1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
−u∗2 (γi)

[
1− e∗1

(
β−1 (b)

)]
.

The last equality is from the setup that the first period probability of success is the effort level

in that period. With this bidding function, the optimal bidding strategy for firm j is solved by

plugging in b = β
(
γ j
)
, and β−1 (b) = γ j. This yields:

β∗
(
γ j
)

=
[
e∗1
(
γ j
)
[π1 +π2]− c

(
e∗1
(
γ j
)
,γ j
)]
−u∗2

(
γ j
)[

1− e∗1
(
γ j
)]
.

To satisfy monotonicity assumption, ∂

∂γ j
β∗
(
γ j
)
> 0. From ∂

∂γ j
β∗
(
γ j
)
=

∂e∗1
(

γ j
)

∂γ j
[π1 +π2]−

∂c
(

e∗1
(

γ j
)
,γ j
)

∂γ j
− ∂

∂γ j
u∗2
(
γ j
)
+

∂e∗1
(

γ j
)

∂γ j
u∗2
(
γ j
)
+ e∗1

(
γ j
)

∂

∂γ j
u∗2
(
γ j
)
. The Leibniz Formula implies

that ∂

∂γ j
u∗2
(
γ j
)
= G

(
γ j
)n−2

[
−

∂c
(

e∗2
(

γ j
))

∂γ j

]
, whereas

∂e∗1
(

γ j
)

∂γ j
[π1 +π2]−

∂c
(

e∗1
(

γ j
)
,γ j
)

∂γ j

=
∂e∗1

(
γ j
)

∂γ j
[π1 +π2]−

[
∂c
(

e∗1
(

γ j
)
,γ j
)

∂e1

∂e∗1
(

γ j
)

∂γ j
+

∂c
(

e∗1
(

γ j
))

∂γ j

]

=
∂e∗1

(
γ j
)

∂γ j
[π1 +π2]−

[
∂e∗1

(
γ j
)

∂γ j
[π1 +π2]+

∂c
(

e∗1
(

γ j
))

∂γ j

]

= −
∂c
(

e∗1
(

γ j
))

∂γ j
.

Consequently, −
∂c
(

e∗1
(

γ j
))

∂γ j
>

∂c
(

e∗2
(

γ j
))

∂γ j
is the sufficient condition for the monotonic-

ity assumption. Due to
∂c
(

e∗1
(

γ j
)
,γ j
)

∂e1
= π1 +π2 >

∂c
(

e∗2
(

γ j
)
,γ j
)

∂e2
= π2 and the cost function

convexity with respect to the effort level, e∗1
(
γ j
)
> e∗2

(
γ j
)
. Along with

∂2c
(

e∗
(

γ j
)
,γ j
)

∂e∂γ j
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=
∂2c

(
e∗
(

γ j
)
,γ j
)

∂γ j∂e < 0,−
∂c
(

e∗1
(

γ j
))

∂γ j
>−

∂c
(

e∗2
(

γ j
))

∂γ j
. Under this truthfully-telling strategy, the

second order condition is just u∗2 (γi)
∂e∗1

(
β−1(b)

)
∂β−1(b)

1
β ′
(

β−1(b)
) < 1, which is always true.9

It is worth noting that this optimal bidding strategy has a nice interpretation that each firm just

bids equal to its expected monopoly profit from the first auction subtracting the expected monopoly

profit from the second auction, given the first RJV fails.

The final step is to show that this bidding equilibrium exists by substituting this optimal bid-

ding strategy into firm i objective function:

Max
b

u(b,γi)

= G
(

β−1 (b)
)n−1 [

e∗1 (γi) [π1 +π2]− c
(
e∗1 (γi) ,γi

)]
−G

(
β−1 (b)

)n−1
E
[
e∗1
(
γ j
)
[π1 +π2]− c

(
e∗1
(
γ j
)
,γ j
)
|b > β

(
γ j
)]

+G
(

β−1 (b)
)n−1

E
[
u∗2
(
γ j
)[

1− e∗1
(
γ j
)]
|b > β

(
γ j
)]

+

(
1−G

(
β−1 (b)

)n−1
)[

1−E
[
e∗1
(
γ j
)
|b < β

(
γ j
)]]

u∗2 (γi) ,

9From the monotonicity assumption,
β ′
(

β−1 (b)
)

=
∂e∗1

(
β−1(b)

)
∂β−1(b)

[π1 +π2]−
∂c
(

e∗1
(

β−1(b)
)
,β−1(b)

)
∂β−1(b)

−
∂u∗2

(
β−1(b)

)
∂β−1(b)

+
∂e∗1

(
β−1(b)

)
∂β−1(b)

u∗2 (γi)

+e∗1
(

β−1 (b)
) ∂u∗2

(
β−1(b)

)
∂β−1(b)

> 0.

Then, β ′
(

β−1 (b)
)
>

∂e∗1
(

β−1(b)
)

∂β−1(b)
u∗2 (γi) , implying the second order condition holds.
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=
[
e∗1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
G
(

β−1 (b)
)n−1

−(n−1)
∫ β−1(b)

0
[
e∗1 (x) [π1 +π2]− c

(
e∗1 (x) ,x

)]
g(x)G(x)n−2 dx

+(n−1)
∫ β−1(b)

0 u∗2 (x)g(x)G(x)n−2 dx

−(n−1)
∫ β−1(b)

0 e∗1 (x)u∗2 (x)g(x)G(x)n−2 dx

+

(
1−G

(
β−1 (b)

)n−1
)

u∗2 (γi)

−(n−1)u∗2 (γi)
∫ γ

β−1(b)
e∗1 (y)g(y)G(y)n−2 dy.

FOC

0 = (n−1)
[
e∗1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)e∗1
(

β−1 (b)
)
[π1 +π2]g

(
β−1 (b)

)
G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

+(n−1)c
(

e∗1
(

β−1 (b)
)
,β−1 (b)

)
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

+(n−1)u∗2
(

β−1 (b)
)

g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)e∗1
(

β−1 (b)
)

u∗2
(

β−1 (b)
)

g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)u∗2 (γi)g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

∂β−1(b)
∂b

−(n−1)u∗2 (γi)

[
−e∗1

(
β−1 (b)

)
g
(

β−1 (b)
)

G
(

β−1 (b)
)n−2

]
∂β−1(b)

∂b ;

0 =
[
e∗1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
−
[
e∗1
(

β−1 (b)
)
[π1 +π2]− c

(
e∗1
(

β−1 (b)
)
,β−1 (b)

)]
+u∗2

(
β−1 (b)

)[
1− e∗1

(
β−1 (b)

)]
−u∗2 (γi)

[
1− e∗1

(
β−1 (b)

)]
.

Playing the optimal strategy β∗ (γi) =
[
e∗1 (γi) [π1 +π2]− c

(
e∗1 (γi) ,γi

)]
−u∗2 (γi)

[
1− e∗1 (γi)

]
can satisfy this first order condition. As a result, this optimal bidding strategy is an equilibrium

strategy. This also shows that there exists an equilibrium such that all firms truthfully reveal their

productivity levels, which completes the proof.
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Appendix 1B: Proof and Illustration in the Indirect Benefit Model

This appendix proves and illustrates lemmas and propositions in the indirect benefit model.

Lemma 1.4.

Proof.

To order the first period indirect benefit cutoffs, each pair of them is compared separately.

First, Figure 1.9 illustrates that an increase in the second period indirect benefit widens the gaps:

(α̂1BN− α̂1BC), and (α̂1BC− α̂1NC). Both lines are the derivatives of the gaps with respect to

α2. The positive effect disappears when the number of firms is infinity since the first period effort

levels are similar under the break-up and the no commitment.

Due to these positive derivatives it is sufficient to show that the cutoffs can be ranked as in the

lemma when α2 = 0, depicted in Figure 1.10. Obviously, the cutoffs are in the same order as in

the lemma. All cutoffs also drop to zero when the number of firms get close to infinity.

Lemma 1.5.

Proof.

It is clear that the cutoff, α̂1BN , is increasing in α2, as discussed. Figure 1.11 simply depicts

the derivative of this cutoff with respect to the number of firms, which is negative with α2 ≤ 1.5,

and n≤ 100.

Lemma 1.6.

Proof.

The difference in total expected welfare between under Cand Bis increasing in the second

period indirect benefit. With α2 = α1, the shaded area is where a society prefers to have one firm

to work in both peirods rather than the break-up in Figure 1.12. Clearly, this happens when there

are less than three firms.

Lemma 1.7.

Proof.
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Since the derivatives of the gaps (α̂1BN− α̂1BC), and (α̃1BN− α̃1BC), with respect to α2,

are the same, the derivative is positive as in Figure 1.9. Consider the lower bound of the gap

(α̃1BN− α̃1BC), without the second period indirect benefit:

(α̃1BN− α̃1BC) =

(
Ee∗B1n−Ee∗C1n

)
(EWN−EWB)−

(
Ee∗B1n−Ee∗N1n

)
(EWC−EWB)(

Ee∗B1n−Ee∗C1n

)(
Ee∗B1n−Ee∗N1n

) .

For the first part of the lemma, the difference between the cutoffs, (α̂1BN− α̃1BN), is

(α̂1BN− α̃1BN) =
(ERN−ERB)−(EWN−EWB)(

Ee∗B1n−Ee∗N1n

) .

Both gaps are always positive as their numerators are in Figure 1.13.

Illustration of the cutoffs with various α2.

Figure 1.14 to Figure 1.17 delineate the cutoffs with second period indirect benefits. Notice

that the higher second period indirect benefit, the wider gap between α̂1BN , and α̂1BC. Especially,

the higher second period indirect benefit shifts the cutoff between the expected revenues under the

break-up and the no commitment to the upper right. Consequently, it requires more firms or the

higher first period indirect benefit to sustain the break-up as an equilibrium. With α2 = α1, there

exists the cutoff such that a society is indiferent between the break-up and the continuing with one

firm structures. This cutoff is positive only when there are less than three firms. Note that equality

of α2and α1 reverses the interpretation of the cutoff equalizing the expected social welfare. This

is because an increase in α1 now has the negative effect on the difference between the expected

social welfare between Cand B, and between N and B, as discussed in the chapter.
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Figure 1.9: The Derivatives of the Cutoffs’ Gaps
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Figure 1.10: The Cutoffs without α2
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Figure 1.11: ∂ α̂1BN / ∂n
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Figure 1.12: The Cutoff α̃1BC with α2 = α1
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Figure 1.13: The Numerators of the Cutoffs’ Gaps
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Figure 1.14: The Cutoffs with α2 = 0
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Figure 1.15: The Cutoffs with α2 = 0.25α1
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Figure 1.16: The Cutoffs with α2 = 0.75α1
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Figure 1.17: The Cutoffs with α2 = α1
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Appendix 1C: Proof and Illustration in the Higher Effort Cost Model

In this appendix, lemmas and propositions in the indirect benefit model with the higher cost of

effort are shown and illustrated.

Lemma 1.8.

Proof.

The cutoffs are increasing in the second period indirect benefit as in the Figure 1.18.

Notice that the derivatives of the cutoffs determining the total expected benefit for an innovator

and social welfare between each strategy are equal. The number of firms are depicted at most fifty

firms in the diagram, but it can be generalized without a change in this result. Obviously, the second

period indirect benefit has the positive effect on the cutoffs in the same order as in the lemma. So,

it is sufficient to check if the cutoffs are ranked as in the lemma without the second period indirect

benefit. Figure 1.19 illustrates the case with at most ten firms, which can be extended even with

less obvious order than the small number of firms.

Proposition 1.10.

Proof.

Figure 1.20 to Figure 1.24 compare the cutoffs with the higher effort cost to the previous

one. The shaded areas delineate the range of parameters such that the higher cost shifts the cutoffs

upward, or it requires more firms or higher indirect benefit to sustain the cutoffs. With more than

four firms, there is no positive range of parameters such that the new cutoffs are higher. Figure 1.22

and Figure 1.24 show the ranges of the second period indirect benefits with less than four firms

where the higher effort cost increases the total expected benefit cutoff and the expected welfare

cutoff between under the break-up and the continuing with one firm structure, respectively.
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Figure 1.18: The Derivatives of the Cutoffs
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Figure 1.19: The Cutoffs without α2
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Figure 1.20: The Range with α̂ ′1BN > α̂1BN
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Figure 1.21: The Range with α̂ ′1BC > α̂1BC
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Figure 1.22: The Range with α̂ ′1NC > α̂1NC
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Figure 1.23: The Range with α̃ ′1BN > α̃1BN
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Figure 1.24: α̃ ′1BN > α̃1BN
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Chapter 2

VERTICAL RESEARCH JOINT VENTURE FORMATION AND BIDIMENSIONAL

PRIVATE VALUE MEMBERS

2.1 Introduction

Hagedoorn and van Kranenburg (2003) mention that as the movement of mergers and acquisitions

(M&As) attracted the academic interest from the 1980s and early 1990s, the growth in joint ven-

tures and inter-firm alliances also drew researchers attention to the joint ventures and alliances

studies in the 2000s. Three theoretical motivations of firms to choose joint ventures over alterna-

tives such as acquisition and contract are discussed in Kogut (1988): transaction costs, strategic

behavior, and organizational knowledge and learning. In addition to transaction costs sharing and

strategic colluding, knowledge exchange while maintaining their organizational capabilities en-

courages firms to form joint ventures. This motivation is consistent with one of the Organization

for Economic Co-operation and Development (OECD)’s joint venture activities (Caloghirou, Ioan-

nides and Vonortas, 2003): to carry out research and development operations. This paper focuses

on particular joint ventures, the research joint ventures (RJVs), defined in Caloghirou, Ioannides

and Vonortas (2003), as the organizations, jointly controlled by at least two participating entities,

whose primary purpose is to engage in cooperative research and development (R&D).

Along with the trend of growth in joint ventures, there are concerns about instabilities from

conflict between partners. In Kogut (1988)’s table 2, the joint ventures’ instability rate is 46%,

24-30% and 45-50% in US, developed, and developing countries, respectively. Some studies, for

instance Gomes-Casseres (1987), and Carayannis and Alexander (1999), suggest that a joint ven-

ture’s instability may be planned in advance as a process of dynamic adjustment to environmental

changes. Nevertheless, these high instabilities may be an explanation of the decreasing popularity

of RJV compared to other R&D partnerships as discussed in Hagedoorn (2002). The long-term
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movement of newly established R&D partnerships are extensively studied in Hagedoorn and van

Kranenburg (2003). Their table 1 shows that there were 2,770 RJVs out of 9,096 R&D partner-

ships formed in 1960-1998. The ratios of RJVs to total R&D partnerships had declined during

this period. Specifically, the ratio is 84%, 69%, 41% and 17% in 1960s, 1970s, 1980s and 1990s,

respectively.

This paper studies the rationale behind the RJV’s instability. It keeps attention on the break-

up of vertical RJVs, which are common in the high technology industries. A vertical RJV consists

of an innovator, who owns a basic knowledge needed to be further developed and commercialized,

and at least one partner, who provides financial, technological and marketing supports. Examples

of vertical RJVs are the Government-University-Industry (GUI) R&D partnerships, thoroughly

studied in Carayannis and Alexander (1999), and the University-Industry R&D partnerships, of

which US experience is reviewed in Hall (2004). Carayannis and Alexander (1999) point out the

dynamic characteristic of GUI partnerships such that they are sensitive to how alliances change,

and the alliance’s termination in the appropriate time is recognized in advance. Veugelers and

Kesteloot (1994) argue that the motives to form joint ventures, efficiency gains in R&D, and pro-

duction from sharing know-how, also induce firms to cheat. A defecting firm learns through the

venture without sharing its own know-how, but it still supplies the contractually specified inputs to

avoid being detected. This leads to unstable joint ventures.

Hall (2004) states that university participants join the University-Industry partnerships be-

cause of two major reasons: to obtain funds and to acquire practical knowledge. In addition to

financial supports, the university depends on its partner’s capability to jointly further develop its

basic research. If a firm partner is unable to help a university finish its project in the appropriate

time, it may break up its partnership to work with another. According to this, firms are allowed to

have two dimensions of private values: the probability of success and the marketing capability. If

an innovator considers only the financial aspect, she simply works with the highest bidding firm.

On the other hand, an innovator may prefer to work with another firm who provides less financial

support, but is more likely to succeed in codeveloping her basic technology. Unfortunately, the ca-
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pabilities in both dimensions, the technology and marketing, are firms’ private information. A firm

with the highest bid will not necessarily be the one with the highest R&D capacities. In this setup,

an innovator simply works with the firm providing the higest bid for the RJV membership in the

first period. If it turns out that the co-development fails in the first period, an innovator can dissolve

her RJV and will work with another firm. Failure in this case means that co-development cannot

reach a certain standard of product expected by an innovator. Biotechnology and pharmaceutical

partnerships are used to illustrate the model in this study.

Roijakkers, Hagedoorn and van Kranenburg (2005) use the dual market structure in phar-

maceutical biotechnology to explain the low likelihood of repeated ties. Less than 100 large

companies possess more than 80% of the total worldwide market in this industry. RJVs in the

pharmaceutical biotechnology industry are formed by a very large pharmaceutical company and a

small biotechnology firm or laboratory. Large companies need their partners to introduce the ma-

jor innovation products, and then use their superior financial position and marketing capabilities to

transform the innovations into the final products. The likelihood of continued collaboration relies

on the equality of partners in their interdependence, roles in partnerships, and their competencies.

Hence, the RJV break-up takes place, once the large company absorbs the critical technological

knowledge held by the small firm. From an innovator’s viewpoint, however, this paper proposes

the incentive to break up in a similar environment.

In addition, Roijakkers and Hagedoorn (2006) study the trend of pharmaceutical biotech-

nology’s research partnerships since 1975. They find that small entrepreneurial biotechnology

companies took a leading role during the 1980s when biotechnology first became relevant for

the pharmaceutical industry. However, large pharmaceutical firms became more dominant during

the 1990s. Wembridge 2012’s article explains that risk of drug development, which is an expen-

sive, extended and uncertain science, is passed from big pharmaceutical to smaller biotechnology

companies. This article refers to the announcement of the chief executive of Sanofi, the French

pharmaceutical group, that Sanofi will do less internal research, but will work with more outside

companies such as start-up biotechnology firms or universities.
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In this trend of growth in biotechnology and pharmaceutical partnerships, the Boston Con-

sulting Group (BCG) studies the relationship between the demand and supply side in the market

for biotechnology pharmaceutical licensing. In 2010, the surveys, following-up on 2003, 2006,

and 2008 BCG surveys, were sent to around 500 biotechnology companies yielding 95 responses.

This study of the surveys reports that biotechnology companies emphasize more on commercial

capabilities of the partner to successfully bring drug to market; i.e., the top three attributes of

which importance increases are: sales/marketing, manufacturing expertise and research capabili-

ties. Biotechnology firms, innovators, expect both financial support, such as sales/marketing ca-

pacity, and technological support, such as research and clinical expertises, from pharmaceutical

companies, their partners. This is consistent with this paper setup such that firms have bidimen-

sional private values: technological and marketing skills. Biotechnology companies may break up

their partnerships with pharmaceutical firms after the progress was slow, or the co-development

did not succeed. The specific example of these partnerships break-up is as follows.

In March 2012, Biocon Ltd. and Pfizer Inc. announced to end their alliance starting in 2010

to allow Pfizer Inc. to sell generic drugs of diabetes products that Biocon Ltd. would make. Both

companies agreed that they called off the deal due to individual priorities for their respective busi-

nesses of biosimilar products. The chairman of Biocon Ltd. commented that the company will

partner with multiple regional partners instead of having one single global sales ally like Pfizer. In

this case, Biocon Ltd. codeveloped with Pfizer Inc. for technological support such as manufac-

turing, research and clinical expertises, and sales/marketing capability. Nevertheless, the break-up

might be because Pfizer Inc. could not provide technological support as Biocon Ltd. had expected,

even though the $200 million paid upfront as part of the 2010 deal showed financial strength of

Pfizer Inc. Consequently, this partnership break-up can be explained by the technological dimen-

sion in this model. This example leads to research questions. When the break-up is designed in

advance if the joint development does not meet its goal, how do the two dimensions, technology

and marketing, effect the break-up desicion of an innovator? Furthermore, if an innovator im-

plements the simple second-price sealed-bid auction as the partner seeking mechanism, does the
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break-up exist? If so, under what circumstances?

Based on the characteristics of RJVs in literature, this study uses the two-period model, in

which an innovator initially chooses among three RJV structures: continuing with the same firm

even with the first failure (C-Continuing), making no commitment with whom she works after the

first failure (N-No commitment), and breaking up with the first RJV partner when the first co-

development fails (B-Breaking up). The two-period model is suitable to explain high-technology

markets, where innovation will be outdated shortly if the further development fails to provide a

final product meeting the market expectation, or passing certain standards, such as the Food and

Drug Administration (FDA) criteria in the pharmaceutical industry. In the C structure, an innovator

holds only one auction to sell the membership to join her RJV in the beginning of the game. The

winner becomes a monopolist in two periods if the first attempt succeeds. If it fails in the first

period, it has the second chance to continue R&D. An RJV partner in the C structure will be a

one-period monopolist when succeeding in the second attempt, but it gains nothing if an RJV fails

twice. In the N structure, an innovator auctions off the single period RJV partnership in the first

auction. If the first co-development fails, she re-auctions the RJV membership in the second period.

The first period partner is allowed to rejoin the second auction. The process is the same under the

B structure except that the first partner is excluded from the second auction. The break-up in this

model exists when an innovator changes its partner across time. Assume that an innovator can stick

with her ex ante designed structure to avoid the strategic effect on partners’ bidding functions. This

idea is consistent with the conclusion in the literature that the termination of an RJV is planned in

advance.

This paper finds that the two dimensions of firms’ private values are crucial for the break-up

existence. As discussed in the following literature, the goal of profit maximization leads firms to

focus on the expected profit, consolidating both technology and marketing dimensions. A second-

price sealed-bid auction is used; therefore, the highest profit firm wins the first auction. If an

innovator’s goal is to maximize the expected revenue paid by an RJV member, break-up does not

occur. This is because an innovator also concerns only each firm’s offer, a function of the expected
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profit, which is lower under the break-up than the no commitment structure as discussed later. The

break-up, however, exists if an innovator gains not only the revenues from her partner, but also the

non-pecuniary benefits from the project success. For instance, universities or small laboratories

consider academic achievement and reputation in addition to financial support. There are two

types of firms in the technological aspect: those with the high probability of success (high type)

and those with the low probability of success (low type). Three conditions must be met in order

for an innovator to design an RJV to break up: the high type must be substantial, the ratio of the

low type to the high type ( low type
high type ) must be moderate, and non-pecuniary benefits must be high.

The intuition is that the substantial probability of success for the high type implies that a partner

who fails the first RJV is a low type. Consequently, the next highest bid firm is more likely to be a

high type.

In the basic model, the break-up exists only when the high-type probability of success is

extremely high. For example, when the high-type firm probability to succeed is 99%, there are

four firms, and the low to high probability ratio is 0.3, the non-pecuniary benefit is required to be

at least double the single-period market profit of the best marketing product to induce an innovator

to break up. The study is extended by introducing the partial break-up (PB) structure such that

an innovator only breaks up her RJV if the first period partner bids lower than the certain level,

implying that it is a low type. This partial break-up requires less high-type probability of success.

For instance, an innovator implements the PB structure when the high-type probability of success

is 70%, while there are four firms, the low to high relative probability ratio is 0.2, and the non-

monetary benefit is double the single-period best marketing firm profit.

The simple model can be applied to study the impact of market demand uncertainty on an

RJV’s break-up. When future demand for a product is uncertain, an RJV tends to work with a

different firm in each period. This makes the continuing with one firm less attractive than another

since it prevents an innovator from working with the highest bid in the second period. Under N

and B, the second RJV does not work with the first partner, and its probability of success is not

updated after the first RJV failed. This leads the no commitment strategy to provide the higher
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expected probability for the second partner to be a high type than the break-up in addition to the

higher expected revenue. As a result, the no commitment is implemented in this case.

In addition to the RJV literature, two strands of research are relevant to this study: the R&D

and marketing interface, and the auction theory. The R&D and marketing relationship, which de-

termines the success of high-technology industries is wildly studied. Each firm’s R&D and market-

ing capabilities can be measured separately. This influences researchers to study the bidimensional

private values of firms. Souder (1988) uses the data of 289 new product development innovation

projects, and clearly distinguishes the degrees of success between R&D and marketing. For ex-

ample, the R&D high degree of success and failure is described as "breakthrough" and "complete

dud", whereas the commercial outcome’s high degree of success and failure is "blockbuster" and

"took a bath we won’t forget".

Griffin and Hauser (1996) provides a literature review on integrating R&D and Marketing.

The authors differentiate the two dimensions by their tasks, i.e., marketing dominates R&D in

responsibility to assess new applications for products, solve customer problems, produce product

literature, and select advertising claims, while R&D is more important than marketing in estab-

lishing long-term research direction, updating competitive technology, and fixing design flaws.

Nevertheless, marketing and R&D cooperation is necessary to achieve the desired outcome to

timely commercialize a profitable product. Indeed, firms focus only on the financial measures, i.e.,

revenue and profit; and the customer measures, i.e., market share volume and customer satisfac-

tion. As a result, firms consider the marketing and R&D as a whole rather than separate parts in

determining their success.

Many researchers study the significance of R&D and marketing interface in certain environ-

ments. Gupta, Raj and Wilemon (1986) suggests that companies with an offensive strategy, or

venture into new and unfamiliar products, have greater need for a high integration between R&D

and marketing to reduce the risk of new product failure. Dutta, Narasimhan and Rajiv (1999)

assess firm-specific determinants of its performance in high-technology markets. The authors em-

pirically estimate the measurement of capabilities and link resources to capabilities. They find that
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firms with a strong R&D base gain the most from a strong marketing capability, and the R&D

and marketing interaction is the most important determinant of such firms’ performance. Song,

Droge, Hanvanich and Calantone (2005) find that the effect of the interaction between market-

ing and technological capabilities on performance is significant in a high-turbulence environment.

Next, Im and Workman (2004) explains how marketing and new product success are related by us-

ing the new product and marketing program creativity to mediate the relationship between market

orientation and new product success.

In this paper’s model, each firm maximizes its expected profit, which is the function of both

the probability of success and marketing capability. When bidding for the right to join an RJV,

a firm decides how much to bid based only on the expected profit it can make from selling the

final product. Therefore, each firm acts as if it has only one consolidated type, the expected profit,

instead of two dimensions, the technological and the marketing capacities. This consolidation is

comparable with the scoring auction. For examples in Asker and Cantillon (2008) and (2010), the

scoring auction is applied to the procurement when price and quality matter. A seller submits both

price and quality. The winner has the highest score, generated according to the announced scoring

rule. This paper avoids the complication of the scoring rule by allowing firms to bid only for the

RJV membership. This characteristic allows the study to focus on the effect of the two dimensions

on an innovator’s decision to break up an RJV.

To deal with the incomplete information, an innovator simply auctions off the opportunity

to become her RJV partner in the second-price sealed-bid auction. As in Katzman (1999), the

two-period model simplifies the strategic effect on firms’ bidding actions. The author examines

a sequence of two second price auctions, in which the terminal round can be viewed as a one-

shot auction. This encourages firms to bid at their expected value of the right to join the second

round RJV. This paper’s dynamic model is also related to the sequential auction literature. Many

researchers study the price pattern in sequential auctions. Engelbrecht-Wiggans (1994) discusses

the two effects on the price pattern in the sequential auction of stochastically equivalent objects.

Price increases in the later auction because there are less objects left. On the other hand, the
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number of remaining bidders decreases; thus, less competition leads to a lower price. Usually, it is

mentioned that the second effect dominates the first, and so prices drop. Jeitschko and Wolfstetter

(2002) argue that the economies of scale give rise to declining expected equilibrium prices, and the

diseconomies of scale cause the opposite result. Jeitschko (1999), and Feng and Chatterjee (2010)

explore the effect of supply uncertainty on the bidding price. Both find that the supply uncertainty

induces buyers to bid more aggressive in the later auction.

Caillaud and Mezzetti (2004) explain the use of the sequential auction procedure in practice.

As in this paper, the auction of contracts, operating licenses and leases, have a contract duration of

several years, and so another auction is expected at the renewal stage. When the break-up structure

is implemented in this study, firms bid less than their expected value in the first period to account

for losing opportunity to participate in the second RJV when they win the first, and their joint

development fail. Some research, such as Weber (1983), Bernhardt and Scoones (1994), Ding,

Jeitschko and Wolfstetter (2010) suggest that bidders bid less in the first auction to avoid the fierce

competition in the later auction. In Waehrer (1999), the bidders conceal their bid in the first auction

to avoid the auctioneer learning the costs used in determining the price of the later auction through

sequential bargaining. These are examples of the adverse effect from information transmission

discussed in Jeitschko (1998).

Under the break-up structure, an innovator excludes the first period partner from the second

auction, although this firm bids high enough to reveal that it has a high probability of success.

This causes the lower bidding function in the first period auction under the break-up than the

other structures. The partial break-up structure, on the other hand, mitigates this adverse effect

from breaking up on the expected revenues by allowing the first member who bids high enough to

rejoin the second auction even after their first project failure. This differs from the no commitment

strategy in that the first period partner is allowed to rejoin the second auction only if its first period

bidding is high. Hence, firms bid higher in the first auction, and an innovator’s expected revenues

increase. The intuition behind this setup is similar to that explained in Caillaud and Mezzetti

(2004). The low-type bidders do not bid at their values, to account for the losing opportunity to
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join the second auction, while the high-type bidders bid up to their true valuations.

Due to the bidimensional private values of firms, the multidimensional auction is related to this

study. In Thiel (1988), even though there are multiple characteristics of the finalized product, firms

know the utility they can provide to the agency given their costs; therefore, the problem is similar

to simply maximizing the agency’s utility subject to firms’ cost constraint. In this case, the firm

maximizing the agency’s utility wins this multidimensional auction. In this paper’s environment, it

is even easier to map the two dimensions of firms’ private values, the marketing capability and the

probability of success, into a single dimension representing the expected market profit. McAfee

and McMillan (1987) and Milgrom (2004) address multidimensions in the procurement auction,

and attract the researchers attention to the best procurement mechanism. Che (1993) and Branco

(1997) study the design of mechanisms used in multidimensional procurement auctions. Fang and

Morris (2006) find the first and second price auctions’ revenue equivalence breaks down when

there are two types of bidders’ private values: their own valuations and the information signaling

their opponents’ valuations.

The organization of this paper is as follows. The basic model, used extensively in the whole

paper, is characterized in the second section. The break-up existence is analyzed in the third

section. The fourth section extends the basic model to study the partial break-up equilibrium.

The break-up when market demand is uncertain is studied in the fifth section. The final section

concludes and discusses future research possibilities.

2.2 The Model

This section sets up a simple model used extensively in this study. The effect of two-dimension

private information, the ability to develop and market, on an RJV’s structure is explored. In doing

so, assume the basic structure of product innovation that an RJV will be a monopolist if it succeeds

in co-developing an innovator’s basic innovation. Once an innovator develops a basic innovation,

she needs to work with a partner firm for further development and marketing. The crucial part of

78



this model is the two-dimension private information of each existing firm. On one hand, each firm

has a different ability to develop a basic innovation, represented by the probability of success. This

probability of success can be interpreted as the chance that an RJV would have a product passing

a certain standard to be sold in the market. On the other hand, a partner firm’s marketability is

privately known. This characteristic is captured in different market demand corresponding to a

firm marketing each product. This paper uses a two-period model to discern: how an RJV is

formed, whether an innovator should break up with the first partner, and how the bidimensional

private values of firms affect that decision.

The first subsection goes over the notation and the structure of the game. The distribution of

the parameter, created to consolidate both dimensions of firms’ information, is then discussed. The

last subsection explains an innovator’s options to structure her RJV.

2.2.1 Setup

In this model, there are two groups of players: a single innovator (I) with her basic innovation

and n firms in the market. These n firms, staying in the market for both periods of the game, have

their goal to maximize expected profit from being a monopolist in the final product market. An

innovator also plans to maximize her expected revenue paid as fees to join an RJV in this basic

model. Later, an innovator is allowed to incorporate the non-pecuniary benefit into her objective

function. The equilibrium decision made by each firm is how much it bids in each round of auction.

By backward induction, an innovator selects an equilibrium RJV structure in the beginning of the

game to maximize her objective function.
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Figure 2.1: The Game Structure
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Initially, nature draws the types of each firm. In the first dimension, each firm’s capability

to finish the further research is drawn between the high probability of success (σ), and the low

probability of success (σ). The chance to be a high type and a low type is q and 1−q, respectively.

After the production process, an RJV’s partner needs to commercialize its product. The marketing

skill, µ1, is assumed to be randomly and uniformly distributed with the support [0,1].

The structure of this model is illustrated in Figure 2.1. In the first stage, an innovator selects

the RJV’s structure. Then, the first partner, partner i ∈ {1, ...,n}, is chosen from all n firms in the

market. If the RJV succeeds in developing the product, a partner firm sells it to the market for two

periods. The subscript i denotes firm i’s private information, σ(i) and µ(i). If the first RJV attempt

fails, an RJV works with firm k ∈ {1, ...,n} in the second period. An RJV with the second chance

success would gain one-period-monopoly profit, otherwise it has nothing at the end of this second

and last period.

2.2.2 The Consolidation of a Firm’s Bidimensional Values

This subsection studies how two dimensions of each firm’s private information are consolidated.

By setup,
µ(i)

4 is the single-period market profit of an RJV’s first period partner, while σ(i) is its

probability of the project’s success. In other words, firm i’s expected benefit of joining the first

period RJV is σ(i)(
µ(i)

4 +
µ(i)

4 ). Firm i’s willingness to pay for the right to join an RJV is the

function of the product of two dimensions, σ(i)µ(i) = θ(i). θ(i) plays a vital role in maximizing

an innovator’s expected revenue. The intuition is that it is not each dimension of a firm’s private

information, but the combination of both dimensions that matters in determining the project value.

For instance, a firm with a low probability of success intends to pay more for being an RJV’s

member than another with a high probability of success if consumers prefer the former brand to

the latter’s.

1With a linear demand function (Q = a−P), and constant marginal cost (c) equal to average
cost assumption, µ = (a− c)2, where each firm has different market demand due to the different

marketing skill. As a result, the monopoly profit in each period is µ

4 =
(a−c)2

4 .
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Due to its major role in this study, the combination of these dimensions is further discussed.

The implicit assumption here is the risk neutrality of firms. Their only goal is to maximize expected

profit; therefore, they have no preference between having a high probability of success but low

demand and being less likely to succeed with high demand as long as the expected profits are the

same. In light of the above, firms act as if their only private value is θ . When they provide bidding,

it is a function of their expected profit. It will be confirmed later that their bid is increasing in their

expected profit from joining an RJV.

The consolidation of a firm’s bidimensional values, on one hand, simplifies the study by

using the simple auction mechanism to reveal the combined type, θ , as discussed in the next

subsection. On the other hand, an innovator loses the opportunity to learn both dimensions of each

firm through the auction. Since firms bid according to their expected profit, the winner is the one

with the highest expected profit. However, an innovator does not know if her partner’s expected

profit is high because of its high probability of success, market demand, or both. An innovator

whose concern is just to maximize her expected revenue is also not interested in how the θ is

formed. In reality, however, some innovators such as universities or non-profit organizations may

focus more on the non-pecuniary benefits from jointly forming an RJV. In the next section, this

model is applied to capture the scenario with an innovator’s purpose to maximize both expected

revenue and the probability of success. Indeed, this case explains how the RJV break-up becomes

an equlibrium in this model.

The distribution of θ , H (θ), is broken into two parts as in picture a. of Figure 2.2. Due to

the uniform distribution of µ in the range between zero and one, the maximum and minimum of

θ is zero and σ , respectively. When θ ≥ σ , σ = σ , and θ is uniformly distributed within [σ ,σ ],

shown as the flatter solid line in part a. This is to say a firm with higher θ than σ must have a

high probability of success. The cumulative density function of θ given that σ = σ is depicted

in part b. The chance that θ falls into this range is q. r denotes the probability that θ ≥ σ , or

r ≡ Pr{θ ≥ σ}= q
(

σ−σ

σ

)
.
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Figure 2.2: The Cumulative Density Function of θ
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Part c. delineates the distribution of θ when θ < σ . The probability of θ being less than σ is

1− r, and the distribution of θ in this range is illustrated as the dashed line in part a. A firm with

θ in this range may have a high probability of success but a low marketing capacity. On the other

hand, it may be one with a low probability of success. Given that θ < σ , the probability of a firm

having the low probability of success is Pr{σ = σ |θ < σ} = 1−q
1−r . Consequently, Pr{σ = σ |θ <

σ}= 1− 1−q
1−r = q−r

1−r .

This consolidation is relevant to the scoring auction, as studied by Asker and Cantillon in

their (2008) and (2010) papers. These authors apply the scoring auction with two dimensions as in

this paper to the procurement when price and quality matter. In a scoring auction, a seller submits

both price and quality. The winner has the highest score, generated according to the announced

scoring rule. Thus, the difference between this paper’s setup and the scoring auction’s is that a firm

combines both dimensions by itself, and then bids based on that value. This paper also studies the

effect of both dimensions, not merely as the single consolidated dimension, on the RJV structure

in the next section.

2.2.3 RJV’s Structures

Assume that an innovator chooses among an RJV’s three structures ex ante. First of all, an in-

novator sets up only one auction, (strategy C, continuing with one firm) to find a partner to work

with. This RJV keeps developing until it succeeds, and then markets a product. Next, an innovator

auctions the right to join her RJV in the first period. If an RJV fails to develop, an innovator will re-

auction the right to join an RJV in the next period. In this structure, (strategy N, no commitment),

all firms are allowed to join the second auction, even if they failed in the previous co-developing

attempt. Finally, an innovator auctions the right to join an RJV in each period. However, a part-

ner will be excluded from the later auction if an RJV’s previous joint development failed. The

last strategy, (strategy B, break-up), is established to answer whether the RJV break-up can be an

equilibrium, and if that is the case, under which conditions? The second-price sealed-bid auction

is simply used in this paper.
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The bidding functions of all three RJV structures are analyzed as follows. In structure C and

N, the weakly dominant strategy for each firm in each auction is to bid at its value. Hence, firms

bid at their two-period expected market profit in the only auction under the C structure , while they

bid at their two-period expected market profit and single-period expected market profit in the first

and second auction, respectively, under the N structure . The obscure bidding function under the B

structure is solved later in this subsection.

In the single auction under an innovator’s strategy C, firms bid at their expected value of

joining the RJV, which guarantees that they will have the second chance to develop the product

after failing the first time. For firm i, the winner of the only auction, its expected value of the

RJV’s membership is:

σ(i)µ(i)
2 +

(
1−σ(i)

) σ(i)µ(i)
4 .

The first part of this bidding is simply the expected market profit of being a monopolist in

two periods, whereas the second part is the single-period expected monopoly profit conditional

on that the first co-development fails. Another parameter, τ(i) ≡
σ(i)µ(i)

2 +
(

1−σ(i)

) σ(i)µ(i)
4 =

3σ(i)µ(i)−σ2
(i)µ(i)

4 , is constructed to represent the bidding function under structure C.

Figure 2.3 illustrates the distribution of τ. This distribution is analogous to that of θ with

the difference in the support of τ . If τ ≥ 3σ−σ2
4 , σ = σ , and τ is uniformly distributed within

[3σ−σ2
4 , 3σ−σ2

4 ], shown as the flatter solid line in part a. The cumulative density function of τ

given that σ = σ and σ = σ is depicted in part b. and c., respectively. rτ denotes the probability

that τ ≥ σ , or rτ ≡ Pr{τ ≥ 3σ−σ2
4 } = q

(
(3σ−σ2)−(3σ−σ2)

3σ−σ2

)
. This means 1− rτ ≡ Pr{τ <

3σ−σ2
4 }= 1−q

(
(3σ−σ2)−(3σ−σ2)

3σ−σ2

)
. The dashed line in part b. delineates the distribution of τ

conditional on that it is less than 3σ−σ2
4 .
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Figure 2.3: The Cumulative Density Function of τ
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Under structure N, each firm simply bids at the value it expects to gain by joining an RJV, i.e.,

the two-period expected market profit in the first auction, θ
2 , and the single-period expected market

profit in the second auction, θ
4 . The rest of this subsection is spent showing the bidding function

of the first auction under structure B. In the second, and last, auction, each firm bids at θ
4 as it does

under structure N. In the first auction, firms tend to bid less than their value. The intuition is that

the higher bid, even raising the chance to win the first auction, reduces the opportunity of reaching

the second auction if the first attempt fails.

To solve the first period bidding function under B, it is assumed that this function is monotone

nondecreasing in θ in the beginning. This assumption will be confirmed to hold later. Although

firm i is regarded as the member of an RJV in the first period before, this notation is loosely used to

denote any firm out of n firms in the following procedure. It is worth noting that the monotonicity

assumption here only requires that the bidding function of each firm is a nondecreasing function of

θ , or its expected monopoly profit. The bidding function of firm i is solved by backward induction.

Period 2

Since this is the last period, the second-price auction strategy implies that the remaining n−1

firms bid at their value equal to the expected monopoly profit. The profit from joining an RJV in

the second period for firm i is:

π2 =
θ(i)

4 −E
(

θ(l)
4 |

θ(i)
4 >

θ(l)
4

)
.

θ(l) is the highest θ from the remaining n−2 firms, excluding firm i. E
(

θ(l)
4 |

θ(i)
4 >

θ(l)
4

)
is

the expected price paid to an innovator given that firm i wins the right to join an RJV.

Period 1

To solve the bidding function in the first period, the expected profit from joining an RJV for

firm i is: π1 =
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Pr
{

b(i) > β

(
θ( j)

)}[θ(i)
2 −E

(
β

(
θ( j)

)
|b(i) > β

(
θ( j)

))]
+
(

1−Pr{b(i) > β

(
θ( j)

)
}
)
×

{Pr{σ( j) = σ ∩ j fails}Pr
{

θ(i)
4 >

θ(l)
4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
+Pr{σ( j) = σ ∩ j fails}Pr

{
θ(i)

4 >
θ(l)

4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
}.

Also, θ j is the highest θ from the remaining n−1 firms, excluding firm i. The first part of this

expected profit is the two-period expected monopoly profit net of the price paid to an innovator.

This part is considered when firm i’s bid, bi, exceeds the bidding function of firm j, β

(
θ( j)

)
.

For now, simply assume that all other firms bid following this bidding function. When firm i

loses the first auction, and the first RJV attempt fails, the second and the third part is firm i’s last

period expected monopoly profit net of auction fees given that the first winner has a low and high

probability of success, respectively.

The first order condition2 with respect to b(i) yields: 0 =

∂H
(

β−1
(

b(i)

))n−1

∂β−1
(

b(i)

) ∂β−1
(

b(i)

)
∂b(i)

{
θ(i)

2 −b(i)

−Pr{σ( j) = σ ∩ j fails}Pr
{

θ(i)
4 >

θ(l)
4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
−Pr{σ( j) = σ ∩ j fails}Pr

{
θ(i)

4 >
θ(l)

4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
}.

With the monotonicity assumption, the probability of winning the first auction is the same as

the cumulative density function of θ in the first period to the n−1th power, H (θ)n−1. Moreover,

2The second order condition holds if and only if −
∂H
(

β−1
(

b(i)

))n−1

∂b(i)
+

∂2H
(

β−1
(

b(i)

))n−1

∂b(i)
2

[
θ(i)

2 − b(i) − Pr{σ( j) = σ ∩ j fails} Pr{
θ(i)

4 >
θ(l)

4 |σ( j) = σ} π2

(
θ(i)|σ( j) = σ

)
− Pr{σ( j) =

σ ∩ j fails} Pr{
θ(i)

4 >
θ(l)

4 |σ( j) = σ} π2

(
θ(i)|σ( j) = σ

)
] ≤ 0. The first order condition implies

that the second part is zero. As a result, this second order condition is satisfied.
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E
(

β

(
θ( j)

)
|b(i) > β

(
θ( j)

))
=
∫ β−1

(
b(i)

)
θ

β (x)

Pr
{

b(i)>β

(
θ( j)

)} ∂H(x)n−1
∂x dx. The Leibniz Formula

implies that ∂

∂b(i)
Pr
{

b(i) > β

(
θ( j)

)}
E
(

β

(
θ( j)

)
|b(i) > β

(
θ( j)

))
= b(i)

∂H
(

β−1
(

b(i)

))n−1

∂β−1
(

b(i)

)
∂β−1

(
b(i)

)
∂b(i)

. Obviously, the first order condition can be rearranged to be:

b(i) =
θ(i)

2 −Pr{σ( j) = σ ∩ j fails}Pr
{

θ(i)
4 >

θ(l)
4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
−Pr{σ( j) = σ ∩ j fails}Pr

{
θ(i)

4 >
θ(l)

4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
.

This bidding function has the nice interpretation that each firm bids equal to its two-period

expected profit net of the expected profit in the last period given that it wins the second auction.

The last step is to confirm that this bidding function satisfies the monotonicity assump-

tion, which holds when
∂b(i)
∂θ(i)

≥ 0. The sufficient condition is that ∂

∂θ(i)
Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
π2

(
θ(i)|σ( j)

)
≤ 1

4 , where π2

(
σ( j)

)
=

θ(i)
4 −E

(
θ(l)

4 |
θ(i)

4 >
θ(l)

4 &σ( j)

)
. This condition holds if

and only if:

1
4 ≥

[
θ(i)

4 −E
(

θ(l)
4 |

θ(i)
4 >

θ(l)
4 &σ( j)

)]
∂

∂θ(i)
Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
+ 1

4 Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
− ∂

∂θ(i)
E
(

θ(l)
4 |

θ(i)
4 >

θ(l)
4 &σ( j)

)
Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
.

The last term, ∂

∂θ(i)
E
(

θ(l)
4 |

θ(i)
4 >

θ(l)
4 &σ( j)

)
Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
, is:

∂

∂θ(i)

∫ θ(i)
0

y
4

∂

∂y Pr

{
y
4>

θ(l)
4 |σ( j)

}

Pr

{
θ(i)

4 >
θ(l)

4 |σ( j)

} dyPr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}

=
θ(i)

4
∂

∂θ(i)
Pr
{

θ(i)
4 >

θ(k)
4 |σ( j)

}
.

The last equality is from the Leibniz’s formula. This leaves

1
4 Pr

{
θ(i)

4 >
θ(l)

4 |σ( j)

}
−E

(
θ(l)

4 |
θ(i)

4 >
θ(l)

4 &σ( j)

)
∂

∂θ(i)
Pr
{

θ(i)
4 >

θ(l)
4 |σ( j)

}
,
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which is always less than or equal to 1
4 . This ascertains that the monotonicity assumption

holds. Lemma 2.1 summarizes the bidding function under the three RJV structures.

Lemma 2.1.

Under structure C, firm i bids equal to τ(i) =
3σ(i)µ(i)−σ2

(i)µ2
(i)

4 in the first and only auction.

Under structure N, firm i bids equal to
θ(i)

2 and
θ(i)

4 in the first and second auction, respec-

tively.

Under structure B, firm i bids equal to
θ(i)

2 −Pr{σ( j) = σ ∩ j fails}Pr
{

θ(i)
4 >

θ(l)
4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
−Pr{σ( j) = σ ∩ j fails}Pr

{
θ(i)

4 >
θ(l)

4 |σ( j) = σ

}
π2

(
θ(i)|σ( j) = σ

)
in the first auction, and bids equal to

θ(i)
4 in the second auction given that it loses in the first

auction.

2.3 Break-up Analysis

This section analyzes an equilibrium RJV structure, what determines it, and when the break-up

exists. The first subsection compares an innovator’s revenue under C and N, while the third sub-

section compares an innovator’s revenue under C and B. The second and last subsections describe

the intuition behind the break-up when an innovator considers not only the expected revenue but

also the non-pecuniary benefits from her RJV.

2.3.1 An Innovator’s Revenue under the Continuing with One Firm and the No Commit-
ment Structure

The analysis begins with comparison between the continuing with one firm and the no commit-

ment structure. The only decision made by an innovator in this model is to select an RJV structure,
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among the C, N and B strategies. If there is no additional benefit for an innovator, she simply

chooses the strategy that maximizes her expected revenue from an RJV’s partner. As in the pre-

vious lemma, an innovator’s expected revenue is higher under N than B. If firms win the first

auction, but the first co-development fails, they will lose the opportunity to join the second auction

under the break-up strategy, whereas they can attend the second auction under the no commitment

strategy. Consequently, firms bid similarly in the second auction, but bid less under B than N in

the first auction.

If revenues from auctioning off the RJV’s membership is the only benefit for an innovator,

the break-up strategy is not optimal for her. The extra benefit for an innovator is ignored in this

subsection; thus, the C structure’s expected revenue is compared with the N structure’s. These

expected revenues are as follows.

REVC = rτ(n−1)

[
(n−1)τ+2τ

(n+1)

]
+
(

1− rτ(n−1)

)[
(n−1)τ
(n+1)

]
(2.1)

REVN = r(n−1)

[
(n−1)σ+2σ

2(n+1)

]
+
(

1− r(n−1)

)[
(n−1)σ
2(n+1)

]
+r(n) (1−σ)

[(
1− r(n−1)

)[
(n−1)σ
4(n+1)

]
+ r(n−1)

[
(n−1)σ+2σ

4(n+1)

]]
+
[
(1−σ)

(
q(n)− r(n)

)
+(1−σ)

(
1−q(n)

)]
(n−1)σ
4(n+1)

(2.2)

An innovator’s expected revenue under structure X ∈ {C,N} is denoted by REVX . The sub-

script in the parenthesis indicates the order statistic, i.e., (n) is the nth order statistic, or the highest

order statistic of n numbers. The monotone bidding functions under both strategies imply that

the winner in each auction is the firm with the highest τ or θ , under the C or N strategy, respec-

tively. The second-price auction leads the expected revenue in each auction to be paid equal to

the second highest bid, which is the function of n− 1th order of θ or τ . Pr{τ(n−1) ≥
3σ−σ2

4 }

is denoted by rτ(n−1); therefore, Pr{τ(n−1) <
3σ−σ2

4 } = 1− rτ(n−1). By the same token,

Pr{θ(n−1) ≥ σ} = r(n−1), and Pr{θ(n) ≥ σ} = r(n). In addition, q(n) = Pr{σ(n) = σ}. Notice

that the subscript of σ still represents the order statistic of τ or θ . Since q(n) is not the function

of τ and θ , it is the same under both RJV structures. To be comparative with the boundary of θ ,

τ ≡ 3σ−σ2
4 , and τ ≡ 3σ−σ2

4 . The mathematical derivation is shown in Appendix 2A.
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To derive the expected revenue under both structures, the expectation of the bidding function

conditional on the range that τ and θ fall into is separately taken. Each expected value is weighted

with the probability that it lies in that range. It is obvious that the key difference between both

expected revenues is the chance to reach the second period. If an innovator is risk neutral, as

implicitly assumed here, she does not prefer the C to N structure due to the fact that the bidding

under C already covers the value firms expect to gain by joining the second auction when they

fail the first. On the other hand, firms pay only the value of joining the first auction under the N

strategy. If they succeed, an innovator gets nothing in the second period. The risk neutrality makes

an innovator indifferent between the two structures if both strategies’ chances to reach the second

auction are the same. Nevertheless, these opportunities are dissimilar under the two structures.

The C structure’s only one auction makes an innovator gain revenues from the second highest bid

firm. This implies that this firm bids based on the chance of the second highest bid firm reaching

the second round. However, the opportunity that the second auction occurs is the probability that

the highest expected market profit firm fails the first attempt under the N structure.

The revenues before the expectation is taken are analyzed to illustrate the comparison. The

following lemma states the necessary condition for an innovator’s revenue to be higher under N

than C.

Lemma 2.2. The necessary condition for an innovator to have the higher revenue under N than C

is σ(n−1) = σ , and σ(n) = σ , where the subscript denotes the order statistic of θ .

Proof. Under the continuing with one firm strategy, an innovator’s revenue is equal to

the second highest τ , or τ(n−1) =

(
3σ µ−σ2µ

4

)
(n−1)

. By setup, this is higher than

3σ(n−1)µ(n−1)−σ2
(n−1)µ(n−1)

4 , where the subscript is the order of θ not τ. For revenues

to be higher under N than C, it is necessary that the revenue under the N strategy,
3σ(n−1)µ(n−1)−σ(n)σ(n−1)µ(n−1)

4 >
3σ(n−1)µ(n−1)−σ2

(n−1)µ(n−1)
4 . This exists if and only if

σ(n−1) > σ(n). In the model with two types, this means that the highest θ firm is a low type,

while the second highest θ firm is a high type.
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This lemma means that an innovator’s revenue is higher under the no commitment than the

continuing with one firm only when the highest expected market profit firm has a low probability

of success, but the next highest expected market profit firm has a high probability of success. This

is consistent with the intuition discussed. A low probability of success of the highest expected

market profit firm makes it more likely to reach the second auction under the N strategy, but has no

effect on the revenue under the C strategy. The next lemma and proposition explain the relationship

between the relative probability of success and revenues comparison.

Lemma 2.3. When θ(n) < σ , the higher the relative probability of success
(

σ

σ

)
, the lower chance

the firm with θ(n) being a low type, but the higher each period revenue under the N structure.

Proof. The probability of the highest expected market profit firm being a low type given that

θ(n) < σ is
1−q(n)
1−r(n)

. Since q(n) is the function of only q and n, and r(n) is decreasing in σ

σ
, the

higher relative probability of success reduces the chance that the firm with θ(n) is a low type when

θ(n) < σ . The N structure’s revenue is the function of the second highest expected market profit.

As a result, the closer low probability of success to the high probability of success, the higher

expected market profit for the second highest θ firm when θ(n−1) < θ(n) < σ .

Proposition 2.1. When the relative probability of success σ

σ
is neither too high nor too low given

a certain range of other parameters, an innovator’s revenue is higher under N than C.

Proof. From lemma 2.3, an increase in σ

σ
expands the range in which θ(n−1) can be, but decreases

1−q(n)
1−r(n)

. ∂σ

σ

(
1−q(n)
1−r(n)

)
=−

(1−q(n))qn

(1−r)n+1 < 0, and its second derivative is
(1−q(n))q

2n(n+1)

(1−r)n+2 > 0. Due

to the uniform distribution, increasing σ

σ
benefits θ(n−1) at a constant rate. In a low range of σ

σ
,

increasing it improves the relative revenue under N to C. However, if the relative probability is

too high, the negative effect outweighs the positive effect; therefore, raising σ

σ
favors the revenue

under C compared with that under N. The σ

σ
balancing both competing effects provides the high N

structure’s revenue relative to the C structure’s. Hence, in a certain range of other parameters, the
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relative probability, which is not too high nor too low, makes the N structure’s revenue higher than

the C structure’s.

Lemma 2.3 implies that an increase in σ

σ
has both the negative and positive effects on the

revenue under N relative to that under C. On one hand, the higher relative probability of success

decreases the chance of the highest firm being a low type given that θ(n) < σ , which is the nec-

essary condition for the N structure’s revenue higher than the C structure’s. On the other hand, it

extends the range that θ(n−1) < σ , and raises the second highest expected market profit, thereafter.

When the negative effect dominates the positive effect, the N structure’s revenue relative to the

C structure’s is decreasing with respect to σ

σ
, and vice versa. This competing effect implies that

N’s revenue is lower than C’s when σ

σ
is too low, and trading off the probability of firm n being a

low type for the higher expected market profit enhances the relative revenue. On the contrary, an

increasing in σ

σ
at its high level hurts the relative revenue under N to C. In summary, there exists

a middle range of the relative probability level provided other parameters such that an innovator’s

revenue is higher under N than C. This proposition provides the intuitive explanation of the results

after comparing expected revenues.

The difference between the C structure’s and the N structure’s expected revenue is in the

following equation.

τ

[
rτ(n−1)

[
(n−1)+(n−3)τ

τ
(n+1)

]
+

(n−1)τ

τ
(n+1)

]

−σ
4

(
3−σr(n)

)[
r(n−1)

[
(n−1)+(n−3)σ

σ
(n+1)

]
+

(n−1)σ

σ
(n+1)

]
+

(n−1)σσ

4(n+1)

[(
1− r(n)

)
−
(
1− σ

σ

)(
1−q(n)

)]
(2.3)

Equation 2.3 rearranges the difference of equation 2.1 and 2.2 following Appendix 2A. No-

ticeably, the part inside the right brackets of the last two lines contain only the relative probability,

but not σ and σ . This is analogous to the first line where the τ

τ
ratio is in the bracket, not τ or τ .

The analysis focuses on the effect of the relative probability on the comparison of expected rev-

enues. The first and the third lines are positive, while the second line is negative. The derivatives
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of the parts outside the brackets with respect to the relative probability are: ∂σ

σ

τ =−σ2
σ

(3−2σ) ,

∂σ

σ

(−σ
4

(
3−σr(n)

)
) = σ2

4

[
3+qn(1− r)n−1

]
, and ∂σ

σ

(n−1)σσ

4(n+1) = 0. In the last bracket, its

derivative with respect to the relative probability is qn(1− r)n−1+ (1−q)n . The effect of the rel-

ative probability on the first and the second line’s bracket is not clear. However, they are the same

function of different ratios, τ

τ
and σ

σ
. The derivative of τ

τ
with respect to σ

σ
is 9−6σ−6σ+3σσ

(3−σ)2
> 0.

Thus, the direction of the derivative of the first bracket with respect to τ

τ
, and that of the second

bracket with respect to σ

σ
are the same.

Although the effects of a change in the relative probability on most parts are obvious, the

effect on the whole is not. If the effects of the relative probability on the first and the second

brackets are positive, increasing in σ

σ
causes the expected revenue under C, as in the first line,

to be indetermine. Specifically, it is the sum of

[
rτ(n−1)

[
(n−1)+(n−3)τ

τ
(n+1)

]
+

(n−1)τ

τ
(n+1)

]
∂σ

σ

τ and

τ∂σ

σ

[
rτ(n−1)

[
(n−1)+(n−3)τ

τ
(n+1)

]
+

(n−1)τ

τ
(n+1)

]
. The opposite direction of the derivatives makes the

result mixed. There is the same problem with the direction of the derivative of the second line

with respect to σ

σ
. When the effects of the probability ratio on the first and the second brackets

are negative, the derivative of the expected revenue under C, the first line, is negative, whereas the

derivative of the expected revenue under N, the sum of the last two lines, is positive. Unfortunately,

the effect of the relative probability on the whole term is still ambiguous. Figure 2.4 illustrates the

difference in the expected revenues under the C and N structures.
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Figure 2.4: The Expected Revenues under the C and N Structures
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Figure 2.4 fixes the number of firms in the market as the potential members of an RJV in part

a. and b., while part c. sticks with the probability of being a high type equal to one half. The

shaded areas represent the ranges of parameters that REVC ≤ REVN . The top two figures’ vertical

axes show the range of q, the probability that a firm has a high probability of success, from zero at

the bottom to one at the top. The horizontal axes indicate the range of the relative probability of

success, σ

σ
, from zero on the left to one on the right. The depth of the three-dimensional diagrams

in part a. and b. show the high probability of success, σ , from zero at the lower left to one at

the upper right. Picture a. and b., or the top two, set the number of firms to be four and eight,

respectively. Indeed, the patterns of the areas, in which the expected revenue is higher under the

no commitment than under the continuing with one firm, are consistent. Consequently, the two

number of n can delineate how a change in the number of firms affects the expected revenues

comparison. Picture c. in the bottom allows the number of firms to be from two at the bottom to

twenty at the top, and fixes the chance of being a high type to be one half. Its horizontal and depth

dimension also represent a range of σ and σ

σ
. The next propositions summarize the characteristics

of this comparison.

Proposition 2.2. The more firms, the lower probability of being a high type is allowed to sustain

the higher expected revenue under the no commitment than the continuing with one firm.

Proof. See Appendix 2A.

Proposition 2.3. ∃ σ

σ
(n,q) & σ

σ
(n,q) with σ

σ
< σ

σ
; 3 ∀ σ

σ
∈
[

σ

σ
, σ

σ

]
⇒ REVN ≥ REVC. ∂q

σ

σ
,

∂q
σ

σ
, ∂n

σ

σ
& ∂n

σ

σ
≥ 0.

There exists a range of ratios of a low to a high probability of success such that any ratio

within this range can keep the expected revenue higher under the no commitment than the continu-

ing with one firm. An increase in the probability of being a high type, or the number of firms raises

the range minimum and maximum.

Proof. See Appendix 2A.
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When there are four firms in the market, the no commitment strategy cannot dominate the

continuing with one firm in a low q range. On the other hand, the same chance to be a high and

low type does not allow fewer than five firms to have the higher expected revenue under N than

C. Proposition 2.2 concludes the relationship between q and n. Their relationship patterns are

consistent when there are fewer than or equal to twenty firms. It can be extended to the larger

number of firms, although it may not be a range of interest as the number of potential partners is

not that large in reality. The intuitive explanation of this proposition is that the higher probability

to be a high type enhances the possibility that the highest expected market profit firm is a low type

given that θ(n) < σ . This is because an increase in q decreases both the chance that σ(n) = σ , and

θ(n) < σ , but it reduces the latter more, seen from ∂q
1−q(n)
1−r(n)

=−n(1−r)n−1(1−q)n−1(q−r)< 0.

The effect of the larger number of firms in the market can be explained based on the same intuition.

∂n
1−q(n)
1−r(n)

=−
1−q(n)
1−r(n)

[log(1− r)− log(1−q)]< 0. Since their effects on the relative revenues are

in the same direction, one parameter can drop to compensate an increase in the other, while an

innovator’s expected revenue is still higher under N than C.

As discussed earlier, the relative probability of success is significant in determining whether

the expected revenue is higher under the no commitment. With too low relative probability, the

chance of the highest expected market profit firm to be a low type is high, but the second highest

expected market profit is low. Hence, an innovator may gain less under the no commitment strategy.

Actually, there exist the ranges of the relative probability as in Figure 2.4 such that the expected

revenue is lower under the continuing with one firm strategy. Along the cutoffs of these ranges

are the minimum and maximum probability ratios that equalize the expected revenues under both

structures. It is noticeable that a high probability of success is allowed to decrease if the relative

probability increases to keep the expected revenues equal. Nevertheless, at a certain range, raising

the relative probability decreases the opportunity that the expected revenue is higher under N than

under C. This is shown by the fact that an increase in the probability ratio requires a high probability

to increase to move along the cutoff. Finally, even a high probability being one is not enough to

sustain the higher expected revenue under N.
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Given proposition 2.3, an increase in the probability of being a high type and the number of

firms raise the chance of being a low type for the highest expected market profit firm given that

θ(n) < σ . With this higher q and n, the positive effect of the relative probability on the relative

renenues lasts longer; therefore, the maximum cutoff is higher. However, it also shifts the range

minimum of the relative probability to balance the N and C structure’s expected revenues. This is

because an increase in q or n allows firm n with a lower high probability to be likely to be a low

type. This result indirectly affects the relative probability, which is negatively correlated with a

high probability of success.

2.3.2 Probabilities to Be a High Type

In the previous subsection, the expected revenue under the break-up strategy is ignored, since it is

dominated by that under the no commitment strategy. This subsection is to motivate the existence

of breaking up, even with the lower expected revenue for an innovator. The second-price auction

provides the monotone bidding function under each RJV structure. This implies that an RJV works

with the highest τ or θ firm in the first period. If the first RJV fails, it works with the highest τ

or θ firm under the C and N strategy, respectively, but with the second highest θ firm under the

B strategy. As an RJV may work with different firms under each structure, the probability of

its member to be a high type can also be different. This subsection is to formally analyze the

probability to be a high type under each strategy in both periods. qXt(i) denotes the probability of

an RJV’s member being a high type with the ith order firm under the X strategy in period t, where

i ∈ {1, ...,n} , X ∈ {C,N,B} , and t ∈ {1,2} .

Lemma 2.4. q1X(n) = q(n) = 1− (1−q)n ; X ∈ {C,N,B} .

In the first period, the probability of an RJV’s partner to be a high type equals the probability

that at least one among n firms is a high type under all three RJV structures.

Proof. Notice that the n order statistic of q(n) is not based on the order of firms under each struc-

ture, but the probability of not all n firms being a low type. Under the C structure, the probability of
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the firm with τ(n) to be a high type is one if τ(n) ≥ τ and
q(n)−r

τ(n)
1−r

τ(n)
if τ(n) < τ. Thus, the expected

probability of being a high type is rτ(n)+(1− rτ(n))

[
q(n)−r

τ(n)
1−r

τ(n)

]
= q(n). For the no commitment

and the break-up structures, the firm with θ(n) wins the first auction, and the probability of being a

high type is r(n)+ (1− r(n))
[

q(n)−r(n)
1−r(n)

]
= q(n), thereafter.

This lemma simply states that the probability of the first auction winner to be a high type is

the same in all structures. Consequently, changing the RJV structure does not affect the probability

of success in the first RJV’s attempt. In the second period, the probability of an RJV’s partner to

be a high type is as follows.

q2C(n) =


1 if τ(n) ≥ τ , and

(1−σ)(q(n)−r
τ(n))

(1−σ)(q(n)−r
τ(n))+(1−σ)(1−q(n))

otherwise.
(2.4)

q2N(n) =


1 if θ(n) ≥ σ , and

(1−σ)(q(n)−r(n))

(1−σ)(q(n)−r(n))+(1−σ)(1−q(n))
otherwise.

(2.5)

q2B(n−1) =


1 if θ(n−1) ≥ σ , and

q(n−1)−r(n−1)
1−r(n−1)

otherwise.
(2.6)

Given the first RJV’s failure, the probability of firm n under the C and N structure to be a high

type is updated by Bayes’ rule when τ(n) < τ , or θ(n) < σ . Certainly, the chance that the highest

τ or θ firm is a high type decreases after it fails the first attempt as long as its value of τ(n) or θ(n)

does not exceed τ or σ . Nevertheless, the probability of an RJV’s partner in the second period

is not updated under the break-up strategy. Since the first partner is prohibited from rejoining the

second auction, the new partner, the second highest θ firm who does not fail to reach the second

auction, may have the higher chance of being a high type than the firm with τ(n) or θ(n) has. This

possibility provides an innovator an incentive to choose the break-up over the no commitment

strategy as fully discussed later. The next lemma summarizes the ex ante expected probability of

being a high type.
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Lemma 2.5. E
[
Pr{n fails}q2X(n)

]
= (1−σ)q(n); X ∈ {C,N} & E

[
Pr{n fails}q2B(n−1)

]
= (1−

σ)q(n−1)r(n)+
q(n−1)−r(n−1)

1−r(n−1)

[
(1−σ)(q(n)− r(n))+(1−σ)(1−q(n))

]
.

Proof. The ex ante expected probability for the second period partner to be high type is

E
[
Pr{n fails}q2X(n)

]
= E

[
Pr{n fails}E[q2X(n)| n fails]

]
with X ∈ {C,N} . rX(n) denotes rτ(n)

and r(n), when X is C and N, respectively. Then, E
[
Pr{n fails}E[q2X(n)| n fails]

]
= rX(n)(1−

σ) +
(

1− rX(n)

)
(1−σ)(

q(n)−rX(n)
1−rX(n)

)

[
(1−σ)(q(n)−rX(n))

(1−σ)(q(n)−rX(n))+(1−σ)(1−q(n))

]
+
(

1− rX(n)

)
(1 −

σ)(
1−q(n)

1−rX(n)
)

[
(1−σ)(q(n)−rX(n))

(1−σ)(q(n)−rX(n))+(1−σ)(1−q(n))

]
. This equation is simplified to be (1−σ)q(n).

Under the break-up structure, E
[
Pr{n fails}q2B(n−1)

]
= E

[
Pr{n fails}E[q2B(n−1)| n fails]

]
= r(n)(1 − σ)[ r(n−1) + (1 − r(n−1))

q(n−1)−r(n−1)
1−r(n−1)

] + (1 − r(n))(1 − σ)(
q(n)−r(n)

1−r(n)
)[

q(n−1)−r(n−1)
1−r(n−1)

]
+ (1 − r(n))(1 − σ)(

1−q(n)
1−r(n)

)

[
q(n−1)−r(n−1)

1−r(n−1)

]
. It is rearranged to be (1 −

σ)q(n−1)r(n) +
q(n−1)−r(n−1)

1−r(n−1)
[(1 − σ) (q(n) − r(n)) + (1 − σ)(1 − q(n))].

Since the probability to be a high type in the second period matters only when the first RJV

fails, the probability of the first partner’s failure is considered in taking expectation. The ex ante

expected probability for the second period RJV’s partner to be a high type is (1−σ)q(n) under

the C and N structure. This is simply the chance that the highest bidding firm being a high type

multiplying the possibility that the high-type firm fails. The updated part in the second period

disappears because expectation is taken ex ante, or before an RJV will fail. An innovator decides

to choose her RJV’s structure when it is in the beginning of the game. This is why all structures

are compared under the initial expectation.

If an innovator has other benefits when her RJV succeeds in addition to revenues, she may se-

lect the break-up strategy even with lower expected revenues than others. The higher possibility of

success is from the higher probability to be a high type. As a result, the next step is to compare the

probability to be a high type under each structure. As shown earlier, the expected probabilities of

the first partner being a high type are the same in all RJV structures; therefore, only those in the sec-

ond period have to be compared. To simplify the analysis, rearrange the E
[
Pr{n fails}q2B(n−1)

]
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− E
[
Pr{n fails}q2X(n)

]
, X ∈ {C,N} , to be 1

1−r(n−1)
[−(1−σ)

(
q(n)− r(n)r(n−1)

) (
1−q(n−1)

)
+ (1−σ)

(
q(n−1)− r(n−1)

) (
1−q(n)

)
]. The sign of this difference is based on that of the nu-

merator; therefore, the denominator is ignored in the analysis. Ranges of parameters generating

positive numerator are shaded in Figure 2.5.

Figure 2.5 illustrates the sign of the difference between the initial expected probability for

the second period partner to be a high type under B and another structure, with the shaded regions

representing ranges that the expected probability is higher under B than another. In picture a. and

b., the number of firms is fixed at twelve. The vertical axes, the horizontal axes and the depth

dimensions show q, σ

σ
and σ , respectively. In picture a., the range of q and σ

σ
are from zero to

one, while it focuses on the range of σ ≥ 0.9. Picture b. restricts that q≥ 0.95 and σ

σ
≤ 0.05, but

allows σ to be from zero to one. Picture c. in the bottom fixes q at 0.5, and replaces the vertical

axis with n from two to twenty. This picture still sticks with σ ≥ 0.9.

This set of pictures depicts some major characteristics of this comparison. First, as in picture

a., the necessary condition for the break-up to provide the higher initial expected second period

probability to be a high type is to have either high σ or very high q along with very low σ

σ
. In

this case, σ must exceed 0.9 to have the better second period chance under B than under another.

Indeed, the initial expected chance for the second partner to have a high probability of success is

lower under B than under the other structure when σ < 0.9, q < 0.8 and n ≤ 20. When q is high,

and σ

σ
is low simultaneously, the B structure’s expected probability dominates the other’s irrelevant

of σ , as in picture b. For n = 12, q must exceed 0.97, and σ

σ
must be below 0.03 for the higher

B’s expected probability to be a high type than the other’s. Nevertheless, the gap between B and

other’s expected probability to be a high type is not significantly different from zero in this range

of high q, and low σ

σ
. In picture c., there requires the minimum of σ > 0.9 given q = 0.5 and

n≤ 20 to have the higher initial expected probability to be a high type in the second period under

B than another. The effect of a change in q, shown in picture a., and n, shown in picture c., on the

minimum σ necessary for the break-up to provide the highest initial expected chance to be a high

type are unclear. These results are formalized in the following proposition.
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Figure 2.5: The Second Period Probability to Be a High Type under B and Other Structures
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Proposition 2.4. ∃ σ
∗ (q,σ ,n) ; 3 ∀ σ ≥ σ

∗⇒ E
[
Pr{n fails}q2B(n−1)

]
≥ E

[
Pr{n fails}q2X(n)

]
;

X ∈ {C,N} .

There exist the high probability of success cutoffs, σ
∗, such that a high probability level, σ ,

exceeding them implies the higher initial expected opportunity to be a high type for the second

partner under B than another stucture.

Proof. This proposition holds if there are the high probability cutoffs equalizing the two ex

ante expected chances to be a high type in the second period under B and another. Also,

any high probability beyond the cutoffs makes the break-up better than the other structure

in terms of the second period expected probability to be a high type, given the other pa-

rameters constant. The numerator of the difference in initial expected probabilities of be-

ing a high type consists of two parts :−(1−σ)
(

q(n)− r(n)r(n−1)

) (
1−q(n−1)

)
and (1−σ)(

q(n−1)− r(n−1)

) (
1−q(n)

)
. The positive summation implies the positive difference, and

the cutoffs, σ
∗, are at the levels of σ equalizing both parts. The devirative with respect

to σ is
(

1−q(n−1)

) [
(1−σ)

[
r(n)∂σ r(n−1)+ r(n−1)∂σ r(n)

]
+
(

q(n)− r(n)r(n−1)

)]
> 0, and

−(1−σ)
(

1−q(n)
)

∂σ r(n−1) < 0 for the first and the second part, respectively. The cutoffs σ
∗

exist if there is an abritary point σ
′ < σ

∗ such that the negative part dominates the positive one,

and there is another point σ
′′ > σ

∗ such that the positive part is higher than the negative one. If

there are such σ
′ and σ

′′, the summation of the two parts increases as σ grows, and equals zero

exactly at σ
∗. It is obvious in the Figure 2.5 that the difference in the ex ante expected probabilities

to be a high type in the second period is negative at a low σ . Thus, the positive difference, equal

to (1−σ)
[
(1−q(1−σ))n−1 (1+(n−1)q(1−σ)) − (1−q)n−1 (1+(n−1)q)

]
(1−q)n > 0

at σ = 1, implies that there exist certain cutoffs, σ
∗, such that the difference is negative for any σ

lower than them, and positive otherwise.

This proposition states the necessary condition for the second period partner to have a higher

probability to be a high type under B than the other structure. This is the main motivation for

104



whether an innovator plans to break up her RJV when it fails the first attempt. An increase in a

high probability has the negative effect on the ex ante expected opportunities of the second period

partner being a high type under all structures. For the C and N strategies, it is obvious that this

increase does not affect the probability of firm n being a high type, but it reduces the chance to

reach the second period.

This effect on B is less clear. From E
[
Pr{n fails}q2B(n−1)

]
= (1 − σ)q(n−1)r(n) +

q(n−1)−r(n−1)
1−r(n−1)

[
(1−σ)(q(n)− r(n)) + (1−σ)(1−q(n))

]
, an increase in σ has three effects on

this B’s ex ante expected probability. First of all, it lowers possibility to reach the second period,

the same effect as under the other structure, through (1−σ). Next, it raises the probability that the

first partner’s private value surpasses the minimum level to be guaranteed to be a high type, r(n).

On one hand, this effect mitigates the negative effect from reducing (1−σ), but, on the other hand,

decreases (1−σ)(q(n)− r(n)), the probability to reach the second period when the first partner’s

type is high but the total private value is less than the cutoff to be guaranteed to be a high type. The

last effect is on r(n−1), which reduces the opportunitiy for the firm n− 1 to be a high type when

θ(n−1) < σ .

Even though an increase in σ has the total negative effect on E
[
Pr{n fails}q2B(n−1)

]
as well,

its less apparent effect than that on the other structure’s makes the total effect on the difference in

the initial expected probabilities between the break-up and the other positive, especially when σ

is high enough. Moreover, when the first firm’s private value is high, θ(n) ≥ σ , the second firm’s

probability to be a high type under B is q(n−1), irrelevant to σ . With θ(n) < σ , the probability

for structure B’s second partner to be a high type becomes
q(n−1)−r(n−1)

1−r(n−1)
, negatively correlated

with σ . It is noticeable that the updated information has no effect on the second firm chance to

be a high type under B, while it makes the first firm who fails once less likely to be a high type.

However, preferring B to the other structure in terms of the better chance to work with a high-type

partner in the second period requires an extremely high σ , > 0.9. The intuition is that with this

high probability to succeed, the first failure signals that firm n is more likely to be a low type;

hence, it is better to work with the next best firm instead.
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In addition to σ , the high q and low σ

σ
simultaneously cause the difference between the two

initial expected probabilities to be a high type in the second period to get closer, and then disappear.

As mentioned earlier, B is not significantly better in these ranges of parameters. The explanation

is that the excessively high q and low σ

σ
such as 0.98 and 0.02, lead r to be 0.96, or 96 percent of

firms fall into the high range of θ ≥ σ . This makes almost no difference between the chances of

the first and the second highest θ firm to be a high type. Nevertheless, the break-up strategy may

provide slightly higher chance for the second partner to be a high type since it does not fail the first

time as the first firm does.

2.3.3 An Innovator’s Revenue under the Continuing with One Firm and the Break-Up
Structures

Lemma 2.1 implies that the expected revenue under the break-up strategy is dominated by that

under the no commitment strategy. Consequently, an innovator chooses between the no commit-

ment and the continuing with one firm structures if she has no additional benefit from breaking up.

In this subsection, the expected revenue under the C structure and that under the B structure are

compared.

Firm i’s first period bidding function under the break-up structure is
θ(i)

2 − Pr{σ( j) =

σ ∩ j fails} Pr{
θ(i)

4 >
θ(l)

4 | σ( j) = σ} π2(θ(i)|σ( j) = σ) − Pr{σ( j) = σ ∩ j fails}

Pr{
θ(i)

4 >
θ(l)

4 | σ( j) = σ} π2(θ(i)|σ( j) = σ). If θ(i) < σ , Pr{σ( j) = σ ∩ j fails} = (1−

σ)(1− q(n−1:n−1)), Pr
{

θ(i)
4 >

θ(l)
4 |σ( j) = σ

}
=

(
θ(i)
σ

)n−2
, and π2(θ(i) | σ( j) = σ) =

θ(i)
4 −

E
[

θ(n−2)
4 | θ(n−2) < σ

]
=

θ(i)
4(n−1) . q(n−1:n−1) denotes the probability of the highest θ firm

among n− 1 firms to be a high type, whereas q(n−1:n−1) denotes the probability that the high-

est θ among n− 1 firms is less than σ . With θ(i) and θ( j) less than σ , Pr{σ( j) = σ ∩ j fails}

= (1−σ)(q(n−1:n−1)− r(n−1:n−1)). When θ(i) < σ , but θ( j) ≥ σ , Pr{σ( j) = σ ∩ j fails} =

(1− σ)r(n−1:n−1), Pr{
θ(i)

4 >
θ(l)

4 | σ( j) = σ} =
(
(1− r)

θ(i)
σ

)n−2
, and π2

(
θ(i)|σ( j) = σ

)
=

θ(i)
4 −E

[
θ(n−2)

4 | θ(n−2) < σ

]
=

θ(i)
4(n−1) . Hence, the first period bidding function for firm i with
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θ(i) < σ is: β

(
θ(i)|θ(i) < σ

)
=

θ(i)
2 − (1−σ)r(n−1:n−1)

(
(1− r)

θ(i)
σ

)n−2 θ(i)
4(n−1)

−
[
(1−σ)(1−q(n−1:n−1))+(1−σ)(q(n−1:n−1)− r(n−1:n−1))

](θ(i)
σ

)n−2 θ(i)
4(n−1) .

(2.7)

When θ(i) ≥ σ , Pr{σ( j) = σ ∩ j fails} = (1− σ)(1− q(n−1:n−1)), Pr{
θ(i)

4 >
θ(l)

4 | σ( j) =

σ} = 1, and π2(θ(i)|σ( j) = σ) =
θ(i)

4 − E
[

θ(n−2)
4 | θ(n−2) < σ

]
=

θ(i)
4 −

(n−2)σ
4(n−1) . With θ(i)

and θ( j) higher than σ , Pr{σ( j) = σ ∩ j fails} = (1− σ)r(n−1:n−1), Pr{
θ(i)

4 >
θ(l)

4 | σ( j) = σ}

π2

(
θ(i)|σ( j) = σ

)
= (1− r)n−2(

θ(i)
4 −

(n−2)σ
4(n−1) ) +

(
r

θ(i)−σ

σ−σ

)n−2
(

θ(i)−σ

4(n−1) ). When θ(i) ≥ σ , but

θ( j) < σ , Pr{σ( j) = σ ∩ j fails} = (1−σ)(q(n−1:n−1)− r(n−1:n−1)). With θ(i) ≥ σ , firm i’s first

period bidding function is: β

(
θ(i)|θ(i) ≥ σ

)
=

θ(i)
2 − (1−σ)r(n−1:n−1)[(1− r)n−2(

θ(i)
4 −

(n−2)σ
4(n−1) )+

(
r

θ(i)−σ

σ−σ

)n−2
(

θ(i)−σ

4(n−1) )]

−
[
(1−σ)(1−q(n−1:n−1))+(1−σ)(q(n−1:n−1)− r(n−1:n−1))

]
(

θ(i)
4 −

(n−2)σ
4(n−1) ).

(2.8)

Since the monotonicity assumption holds, firm n wins the first auction, and firm n− 1 wins

the second auction. The expected revenue under the break-up strategy is: REVB =
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r(n−1)E[
θ(n−1)

2 | θ(n−1) ≥ σ ]+ (1− r(n−1))E[
θ(n−1)

2 | θ(n−1) < σ ]

+r(n)(1−σ)

[
r(n−2)E[

θ(n−2)
4 | θ(n−2) ≥ σ ]+ (1− r(n−2))E[

θ(n−2)
4 | θ(n−2) < σ ]

]
+
[
(1−σ)(1−q(n))+(1−σ)(q(n)− r(n))

]
E[

θ(n−2)
4 | θ(n−2) < σ ]

−
r(n−1)(1−σ)r(n−1:n−1)

4 E[(1− r)n−2(θ(n−1)−
(n−2)σ
(n−1) )

+(r
θ(n−1)−σ

σ−σ
)n−2(

θ(n−1)−σ

(n−1) )|θ(n−1) ≥ σ ]

−
r(n−1)

[
(1−σ)(1−q(n−1:n−1))+(1−σ)(q(n−1:n−1)−r(n−1:n−1))

]
4 E[θ(n−1)−

(n−2)σ
(n−1) |θ(n−1) ≥ σ ]

−
(1−r(n−1))(1−σ)r(n−1:n−1)

4(n−1) E[((1− r)
θ(n−1)

σ
)n−2θ(n−1)|θ(n−1) < σ ]

−
(1−r(n−1))

[
(1−σ)(1−q(n−1:n−1))+(1−σ)(q(n−1:n−1)−r(n−1:n−1))

]
4(n−1) ×

E[(
θ(n−1)

σ
)n−2θ(n−1)|θ(n−1) < σ ].

(2.9)

Analogous to Figure 2.4, Figure 2.6 illustrates the difference in the expected revenues under

the C and B structures.

In Figure 2.6, the shaded regions represent the ranges of parameters such that REVC ≤ REVN

& REVC ≥ REVB. Picture a., b. and c. fixes n = 4, n = 8 and q = 0.5, respectively. Again, the

horizontal axis and the depth dimension is the relative probability, and the high probability of

success, respectively. The vertical axis indicates the probability to be a high type in picture a. and

b., and the number of firms in picture c. Noticeably, most of the shaded areas are the same in

Figure 2.4 and Figure 2.6. The difference between the two figures are the blank regions inside the

shaded areas where REVC ≤ REVN & REVC < REVB. To compare the three structures, the blank

areas outside the cutoffs, equalizing REVC to REVN , are the ranges of parameters that the expected

revenue is highest under the C structure. The shaded regions represent the regions that REVN ≥

REVC ≥ REVB, whereas the blank regions inside the cutoff, equalizing REVC to REVN , are the

ranges that REVN > REVB > REVC. It is obvious that the expected revenue under the break-up

structure is dominated by that under the no commitment structure; therefore, it is not optimal for

an innovator to break up. In Appendix 2B, Figure 2.16 shows the two cutoffs, equalizing REVC to

REVN , and REVC to REVB, for n≤ 20.
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Figure 2.6: The Expected Revenues under the C and B Structures
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2.3.4 Incentives to Break Up

The last subsection analyzes the incentives for an innovator to pick the break-up strategy, although

it is inferior to the no commitment strategy in terms of the expected revenue. As in Thiel (1988),

the bidimensional private values can be mapped into a single dimensional framework when an in-

novator’s utility function is composed of only the expected revenue. The intuition follows that in

Thiel (1988), where firms, with their cost functions randomly drawn from a probability distribu-

tion, know the agency’s utility function. Even with multiple characteristics of the finalized product,

firms know the utility they can provide to the agency given their costs; therefore, the problem is

similar to simply maximizing the agency’s utility subject to firms’ cost constraint. In this case,

the firm maximizing the agency’s utility wins this multidimensional auction. In this paper’s en-

vironment, it is even easier to map the two dimensions of firms’ private values, the marketability

and the probability of success, into the single dimension representing the expected market profit as

discussed earlier. This holds when an innovator’s goal is to maximize her revenue from selling the

right to join an RJV. In this case, the break-up does not exist as an equilibrium.

In the procurement literature, procurement auctions range from straightforward to complex,

as stated in Milgrom (2004). The author explains that government and business purchases usually

weigh price along with other attributes such as product, contract and supplier attributes. McAfee

and McMillan (1987) address the relevant future research question: what is the best procurement

mechanism when the different firms have different technological trade-offs? The multidimensions

in procurement auctions are price and other characteristics that firms specify along with their bids,

while each bidder’s private value, usually the marginal cost or fixed cost, can be either one or

multidimensioal. In this paper, the private values of firms are bidimensional, but firms bid in the

single dimension by offering their prices to join an RJV. This simplification avoids the complex

process of scoring, as in the scoring auction literature, and allows firms to bid at their values of an

RJV’s membership.

As already discussed, an innovator may also be interested in other non-pecuniary benefits

such as the reputation, or academic achievement. Assume that these additional benefits are the
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functions of the probability of success. Since the probabilities of success in the first RJV’s attempt

are similar in the three structures, this subsection focuses on the probability of being a high type

in the second period. As a result, αE
[
Pr{n fails}q2X(n)

]
and αE

[
Pr{n fails}q2B(n−1)

]
are added

to the expected revenue under the X ∈ {C,N} and B structure, respectively. The weight of these

additional or non-monetary benefits is denoted by α , whereas the weight of the expected revenues

is normalized to be one. Hence, the economic interpretation of α is the value of an RJV’s success

to an innovator in addition to the revenue gained from her partner. The total expected benefit is the

sum of the expected revenue and the expected non-pecuniary or additional benefits.

Lemma 2.6. ∃ α̂X (q,σ ,σ ,n) ; 3 ∀ α ≥ α̂X

⇒ REVB + αE
[
Pr{n fails}q2B(n−1)

]
≥ REVX + αE

[
Pr{n fails}q2X(n)

]
; X ∈ {C,N} .

There exist the non-pecuniary values, α̂X , such that the total expected benefit for an innovator

is higher under the B strategy than under the X strategy for X ∈ {C,N} when non-pecuniary value,

α , exceeds these cutoffs.

Proof. Clearly, equalizing REVB + αE[Pr{n fails} q2B(n−1)] to REVX + αE[Pr{n fails} q2X(n)]

provides α̂X =− REVB − REVX
E
[
Pr{n fails}q2B(n−1)

]
− E

[
Pr{n fails}q2X(n)

] . Since only the positive α is focused,

this study sticks with REVB − REVX < 0 and E[Pr{n fails} q2B(n−1)] − E[Pr{n fails} q2X(n)] >

0.

The economic intuition is that α̂X , X ∈ {C,N} , is the minimum value of expected extra ben-

efits or incentives for an innovator to prefer the break-up strategy to another. If an innovator’s

interest is only to maximize money generated from the RJV, α is zero, and then her decision is

based on which structure between C and N provides higher expected revenue. The ranges of pa-

rameters to allow the expected revenue under N to be at least equal to that under C are already

discussed. The following lemma relates those ranges to the comparison of α̂N and α̂C.

Lemma 2.7. ∀ σ

σ
∈
[

σ

σ
, σ

σ

]
⇒ α̂N ≥ α̂C. ∂q

σ

σ
, ∂q

σ

σ
, ∂n

σ

σ
& ∂n

σ

σ
≥ 0.
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There exist a range of ratios of a low to a high probability of success such that any ratio

within this range can keep the non-pecuniary value’s cutoff higher under the no commitment than

the continuing with one firm. An increase in the probability of being a high type, or the number of

firms raises the range minimum and maximum.

Proof. Proposition 2.3 shows the existence of the middle ranges of relative probability ratios such

that the expected revenue is higher under N than C when a relative probability ratio is in these

ranges. Since the denominators are the same in α̂N and α̂C, REVN ≥ REVC ⇒ α̂N ≥ α̂C. Conse-

quently, the relative probability ratios in the ranges such that expected revenue is higher under N

than C also implies the higher non-pecuniary value’s cutoff under N than that under C. The rela-

tionship between the minimum and the maximum of these ranges with respect to the probability to

be a high type and the number of firms is similar to that in proposition 2.3.

This lemma summarizes the ranges of parameters such that the minimum value of the ex-

pected non-monetary benefits to equalize the total expected benefits between B and N is higher

than the minimum to equalize those between B and C. The break-up exists as an equilib-

rium if α ≥ max{α̂N , α̂C} . Since its numerator is always positive, α̂N is positive if and only if

E
[
Pr{n fails}q2B(n−1)

]
≥ E

[
Pr{n fails}q2N(n)

]
when σ ≥ σ

∗ as in proposition 2.4. Figure 2.16

in Appendix 2B depicts that REVB ≥ REVC only if REVN ≥ REVC for n ≤ 20; therefore, α̂C is

positive when α̂N < α̂C and E
[
Pr{n fails}q2B(n−1)

]
≥ E

[
Pr{n fails}q2N(n)

]
. The conditions for

the break-up strategy to be an equilibrium are stated in the next proposition.

Proposition 2.5. σ ≥ σ
∗ with either α ≥ α̂N when σ

σ
∈
[

σ

σ
, σ

σ

]
, or α ≥ α̂C otherwise

⇒ REVB + αE
[
Pr{n fails}q2B(n−1)

]
≥ REVX + αE

[
Pr{n fails}q2X(n)

]
; X ∈ {C,N} .

The break-up structure is chosen by an innovator if a high probability exceeds the certain

cutoffs, and value of the expected non-pecuniary benefit is higher than the maximum between the

non-pecuniary value’s cutoffs under the no commitment and the continuing with one firm.

Proof. In proposition 2.4, σ ≥ σ
∗ ⇒ E

[
Pr{n fails}q2B(n−1)

]
≥ E

[
Pr{n fails}q2X(n)

]
; X ∈

{C,N} , the necessary condition for α̂X to be positive. Then, the previous lemma states that
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σ

σ
∈
[

σ

σ
, σ

σ

]
⇒ α̂N ≥ α̂C. As a result, any positive α ≥ α̂N when σ

σ
∈
[

σ

σ
, σ

σ

]
and α ≥ α̂C when

σ

σ
/∈
[

σ

σ
, σ

σ

]
implies that REVB + αE

[
Pr{n fails}q2B(n−1)

]
≥ REVX + αE

[
Pr{n fails}q2X(n)

]
;

X ∈ {C,N} .

Proposition 2.6. ∂σ α̂N & ∂σ α̂C < 0.

Both the non-pecuniary value’s cutoffs under the no commitment and the continuing with one

firm are decreasing in the high probability of success.

Proof. See Appendix 2A.

The necessary condition for the break-up to be an equilibrium is σ ≥ σ
∗, which allows the

expected probability to be a high type in the second period under B to exceed that under the other

structure. Given that this high probability surpasses the cutoff, the values of the non-monetary

expected benefit must be high enough, specifically beyond the minimum value cutoffs, α̂N and

α̂C, to warrant the break-up. Since these cutoffs are decreasing in the high probability, the higher

σ , the lower value of additional benefits required to sustain the break-up equilibrium. This result

substantiates the significance of high enough σ as an incentive for an innovator to design her RJV

to break up after the first failure. The intuition is similar to that supporting the higher opportunity

to be a high type in the second period when σ ≥ σ
∗. The high σ , > 0.9 in this study, implies that

if the first RJV fails, it is much likely that firm n is a low type. Hence, an innovator who weighs

the non-pecuniary benefits enough, decides to work with firm n−1 in the second period instead of

firm n.
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Figure 2.7: The Value Cutoffs of Expected Non-Pecuniary Benefits (α̂N&α̂C)
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This section ends with illustrating the value cutoffs of expected non-pecuniary benefits as in

Figure 2.7. Fix the equal chance to be a high and low type, while there are four and six firms in

picture a. and b., respectively. The horizontal axis indicates the relative probability ratio from zero

to one, and the vertical axis shows the high probability of success. In each picture, the lowest mixed

color line is the cutoff equalizing the initial expected opportunity to be a high type in the second

period given the first RJV’s failure under the break-up and the other structure. The areas above this

U-shape mixed color line represent the ranges that an innovator benefits from the higher second

period expected chance to be a high type under B than the other strategy. The red solid lines and the

blue dashed lines depict the value at 0.25, 0.5 and 1 of α̂N and α̂C, respectively. The lowest lines of

both cutoffs are the ranges of parameters such that they equal one. Note that the expected market

profit in each period is 1
4 ; therefore, in order for an innovator to break up, non-monetary benefit

must be four times as great as the single period expected market profit. When the probability to be

a high type is substantially high, e.g., σ = 0.99, while n= 4 and σ

σ
= 0.3, the non-monetary benefit

valued equal to the two-period expected market profit (0.5) is enough to sustain the break-up as

an equilibrium strategy for an innovator. Obviously, the higher the high probability, the lower the

value cutoff of the expected non-pecuniary benefit has to be for the break-up to exist. Notice that

when there are four firms in the market, the extra benefit for an innovator must exceed the expected

market profit in each period.

This section assumes that an innovator decides her RJV structure ex ante, and then sticks to the

strategy with the highest total expected benefits, sum of the expected revenue and the expected non-

pecuniary benefit. The most significant parameter to support the break-up to exist is the high level

of σ . With six firms, at least ninety seven percent of success for the high-type firm simultaneously

with the non-monetary benefit not less than four times the expected market profit in each period

are requisite. This range of parameters may seem unrealistic, and so the break-up is not likely

to occur. Nevertheless, the fact that an innovator can accrue the information of each firm’s type

through learning its bid after the first period allows her to simply design an RJV structure ex ante

as in this model, but earns more expected revenue under the break-up. Thus, the break-up requires
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less extreme ranges of parameters to exist. This model is extended in the next section.

2.4 The Partial Break-up

Previously, the break-up existed only when it was almost certain that an RJV with a high-type firm

succeeded in codeveloping, and an innovator’s non-monetary benefit was relatively high compared

to the revenue from her partner. These requirement make it rare that an RJV will be bronken up.

In this section, the basic model is extended to further explore the possibility of breaking up. This

section begins with explaining the extension’s setup based on the intuition in the literature. The

subsections show how an innovator’s equilibrium strategy changes relative to that under the basic

model.

In the sequential auction literature, the information transmission either between an auctioneer

and bidders, or among bidders, plays a vital role in determining bidding functions and revenues.

Weber (1983), Bernhardt and Scoones (1994), Ding, Jeitschko and Wolfstetter (2010) are among

the large number of researchers to conclude that bidders bid less in the first auction to avoid the

fierce competition in the later auction. This is because bidders learn their rivals’ valuation from

the early auction’s bids. This explanation is consistent with the result that firms bid less than their

expected value from joining the first period RJV to account for losing opportunity to participate

in the second RJV when they win the first, but their joint development fails. In addition to the

adverse effect from more competition in the later auction, Hausch (1986) shows the positive effect

of information transmission among bidders by conveying information about the value of the objects

sold later.

In Waehrer (1999), the auctioneer learns the bidders’ private cost in the first auction, and

determines the price of the later auction through sequential bargaining. The Ratchet effect occurs

and leads bidders to conceal their bid in the first auction. Jeitschko (1999), and Feng and Chatterjee

(2010) study how supply uncertainty affects the bidding function in the sequential auction. In

the first paper, uncertainty reduces the option value from joining the second auction; therefore,
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bidders bid more aggressively, whereas bidders adjust their second-round bids based on the supply

information available after the first auction. The latter paper finds that an auctioneer pretends to

have low inventories to increase bidders competition intensity.

Jeitschko (1998) provides the intuition behind the opposing effects of information transmis-

sion. The direct effect follows the previous literature; bidders bid less to assess their option value

of continuing in a further auction if they lose the current one, since there are less bidders, implying

less possibility for bidders to be a high type even with higher chance that bidders value the object

more in the second, and last, auction. This effect also intuitively supports the first bidding function

under the break-up structure in this paper. Furthermore, the anticipation effect impacts the earlier

bids by allowing bidders to update their beliefs after the first auction. To extend the basic model,

the anticipation effect is used to mitigate the adverse effect from breaking up on the expected rev-

enues. Firms are allowed to signal their type via the first-round bids; hence, an innovator does not

exclude them from the second auction. This encourages firms to bid higher in the first auction, and

increases an innovator’s expected revenues, thereafter.

When an innovator designs her RJV to break up, she trades off the higher probability of

working with a high-type partner in the second period given the first failure with the lower expected

revenues. The break-up benefit is based on the intuition that a firm failing once is likely to be a

low type. Nevertheless, firms can reveal their high type by bidding high enough in the first auction.

Consequently, an innovator breaks up her RJV only if the first period bidding is lower than the

certain cutoff. This new structure is denoted by the partial break-up (PB), since the break-up does

not always happen as in the basic model. The next subsections analyze the partial break-up rule,

and show when it is implemented.

2.4.1 The Optimal Cutoff

In this subsection, a basic model is formally extended by adding the information learning. The ma-

jor drawback of the break-up is that it generates lower expected revenues than the other structures.

In the first auction, firms bid less than their expected values to account for the opportunity cost from
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being unable to join the second auction. Excluding the first RJV member reduces the expected rev-

enues in the later auction. The result is intuitively consistent with the direct effect explored in

Jeitschko (1998). Note that a basic model ignores the anticipation effect from information trans-

mission. The sequential auction literature describes both positive and negative anticipation effects.

The second-price sealed-bid auction allows firms to truthfully bid at their values in the second,

and last, auction. This invalidates the negative effect from increasing competition in the second

auction after bidders learn their rivals’ values in the first auction. Assume also that an innovator

can commit to her RJV structure. Thus, she cannot exploit firms’ private values learned after the

first auction.

The break-up strategy benefits an innovator who considers not only the revenues paid by her

partner but also the possibility of success. Sometimes, firm n−1 is more likely to be a high type

than firm n is when the latter failed the first co-development. This discourages an innovator from

working with firm n after facing the first RJV failure. However, the break-up benefit disappears

if the highest θ firm is already a high type. Excluding firm n from the second auction simply

decreases an innovator’s expected revenues without enhancing the chance to work with a high-

type firm in the second period. Indeed, the monotone bidding characteristic allows an innovator to

infer a firm’s type through the first bidding. If firms bid high enough, they simply reveal that they

are a high type, and they should not be excluded from the second auction. The partial break-up

(PB) strategy is introduced such that an innovator only allows the first auction winner to join the

later auction if its bid was higher than a certain level. The monotone bidding implies that this is

similar to setting the cutoff, θ̂ , such that the first RJV partner is allowed to participate in the second

auction only if the inverse of its first bid, θ−1 (β ), exceeded this cutoff. In other words, the PB

structure excludes only the first winner with θ−1 (β )< θ̂ .

In PB strategy, an innovator incorporates the anticipation effect by encouraging firms with

θ ≥ θ̂ to bid at their values in the first auction. This significantly mitigates the adverse effect in

the break-up strategy. The following lemma describes the first period bidding function under the

PB structure.
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Lemma 2.8. Under the PB structure, if θ(i) ≥ θ̂ , firm i’s first auction bid is equal to
θ(i)

2 , and
θ(i)

2

− (1−σ)r(n−1:n−1)

(
(1− r)

θ(i)
σ

)n−2 θ(i)
4(n−1) − [(1−σ) (1− q(n−1:n−1)) + (1−σ) (q(n−1:n−1)

− r(n−1:n−1))]

(
θ(i)
σ

)n−2 θ(i)
4(n−1) otherwise.

Proof. This lemma implies that firms with θ ≥ θ̂ bid the same under PB as under N, while their

bidding function is similar to that under B when θ < θ̂ ≤ σ . There is to show that θ̂ ≤ σ . Raising

θ̂ increases the chance to disallow a low-type firm from joining the second auction in exchange

with decreasing the expected revenues. At θ̂ = σ , furthur increasing the cutoff does not enhance

the probability to have a high type in the second period, since firms with θ ≥ σ are already a high

type. As a result, an innovator does not set the cutoff beyond σ .

The next step is to solve the optimal cutoff that maximizes the total expected benefit of an

innovator. The previous lemma restricts the choice of an innovator to choose θ̂ ∈ [0,σ ] . With

θ̂ = 0, PB and N are the same structure, because firm n with any low value of θ is not excluded

from the second auction. This lemma, however, limits the break-up to be partially, i.e., an innovator

allows firm n with θ(n) ≥ σ ≥ θ̂ to rejoin the second auction.

Proposition 2.7. θ̂ ∈ {0,σ} , ∀n≤ 20 & σ ≤ 0.99995.

In ranges of interesting parameters, an innovator either does not break up or breaks up only

when θ(n) < σ .

Proof. This proposition implies that there exist the corner solutions of the optimal cutoff in the

ranges of interesting parameters. To prove, it is shown that an interior solution of the opti-

mization problem is actually to minimize the total expected benefit instead of maximizing it.

The total expected benefit for an innovator is E[β1

(
θ(n−1)

)
] + E[Pr{n fails}β2

(
θ(Y−1)

)
] +

αE[Pr{n fails}q2PB(Y )], where βt is the revenue an innovator receives in period t, and Y = n

if θ(n) ≥ θ̂ , and n− 1 otherwise. The first order derivative of the total expected benefit with

respect to the cutoff is θ̂ n−1{α n
1−r(n)

(
1−r
σ

)n
[(1− σ)(1− q(n)) + (1− σ)(q(n) − r(n))]

[
q(n−1)−r(n−1)

1−r(n−1)
−

(1−σ)(q(n)−r(n))

(1−σ)(1−q(n))+(1−σ)(q(n)−r(n))
]− n(n−1)σ−(n−2)(n+1)θ̂

4(n+1)(1−r(n))

(
1−r
σ

)n
[(1−σ)(1−
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q(n)) + (1− σ)(q(n) − r(n))] −
n(1−r(n−1))(σ−θ̂)

4σn

(
θ̂
σ

)n−2
[(1− σ)r(n−1:n−1)(1− r)n−2 +

(1−σ)(1− q(n−1:n−1)) + (1−σ)(q(n−1:n−1)− r(n−1:n−1))]}. The optimization problem’s first

order condition is that the cutoff, or the whole part in the curly brackets is zero. When the first

order condition holds, the second order derivative of the total expected benefit with respect to the

cutoff has the same sign as the second order derivative of the whole part inside the curly brackets

has.

With θ̂∗, not equal to zero and satisfying the first order condition, the second order is positive

when (n− 2) [(1−σ)(1− q(n)) + (1−σ)(q(n)− r(n))] − n(1− r(n−1)) [(1−σ)r(n−1:n−1)(1−

r)n−2 + (1−σ)(1− q(n−1:n−1)) + (1−σ) (q(n−1:n−1) − r(n−1:n−1))] [(n− 2)σ − (n− 1)θ̂∗](
θ̂∗n−3

σn−2

)
> 0. This is minimized by replacing θ̂∗ with n−3

n−1σ , which is less than and equal to zero,

when n = 2 and 3, respectively. Hence, the second order derivative is positive even at the minimum

level when n≤ 3. Figure 2.17 in Appendix 2B illustrates that replacing θ̂∗ with n−3
n−1σ also yields

the positive second order derivative when n≤ 20 and σ ≤ 0.99995. This result shows that interior

solutions are for the minimization problem, and there are only corner solutions to maximize the

expected total benefit at either θ̂ = 0 or σ .

The previous lemma and proposition determine the optimal cutoff to be either zero, or σ .

Consequently, the partial break-up strategy is implemented by excluding the first RJV partner only

if its first bid implies that its θ < σ , when setting the cutoff equal to σ provides the higher expected

total benefit than not breaking up at all.

2.4.2 Expected Revenues and Additional Benefits

This subsection explores the equilibrium RJV structure in this extended model. An innovator

makes a choice of her RJV structure among C, continuing with the same firm with only one auction,

N, providing no commitment with whom to work in the second-round RJV given the first failure,

and PB, partially breaking up or excluding the first-period RJV partner from the second auction

only if its θ < σ .
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Compared with the B structure, PB provides an innovator higher expected revenues and

chances to work with a high-type partner in the second period. Nevertheless, an innovator still

gains higher expected revenues under N than PB, since firms with θ < σ bid less than their ex-

pected values from joining an RJV in the first period in account of losing an opportunity to work

in the second period when failing the first joint development. This causes PB to be dominated by

N when an innovator considers only the monetary benefits from her RJV. Again, α denotes the

weight of the non-pecuniary benefits as in the basic model. The following lemma and proposition

characterize the values of non-monetary benefits to allow PB to be an equlibrium structure.

Lemma 2.9. ∃ α̃X (q,σ ,σ ,n) ; 3 ∀ α ≥ α̃X

⇒ REVPB + αE
[
Pr{n fails}q2PB(Y )

]
≥ REVX + αE

[
Pr{n fails}q2X(n)

]
; X ∈ {C,N} ; Y =

n if θ(n) ≥ σ , and n−1 otherwise..

There exist the non-pecuniary values, α̃X , such that the total expected benefit for an innovator

is higher under the PB strategy than under the X strategy for X ∈ {C,N} when non-pecuniary

value, α , exceeds these cutoffs.

Proof. Again, α̃X = − REVPB − REVX
E
[
Pr{n fails}q2PB(Y )

]
− E

[
Pr{n fails}q2X(n)

] . Still stick with the case that

REVPB − REVX < 0 and E
[
Pr{n fails}q2PB(Y )

]
− E

[
Pr{n fails}q2X(n)

]
> 0.

The cutoff α̃X , X ∈ {C,N}, is the minimum value of the expected additional benefits for an

innovator to prefer the partial break-up strategy to another. The following proposition compares

this cutoff with the other under the break-up structure.

Proposition 2.8. α̃X < α̂X ; X ∈ {C,N} .

An innovator requires less non-monetary incentives to implement PB than she does under B.

Proof. The partial break-up provides the higher expected revenues and expected probability to

work with the second-round high-type firm. This implies that the minimum value of the extra

benefit is less under the partial break-up than the break-up. In other words, REVPB < REVB &

E
[
Pr{n fails}q2PB(Y )

]
< E

[
Pr{n fails}q2B(n−1)

]
⇒ α̃X < α̂X .
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This proposition implies that PB is more likely to be an equilibrium than B is. This is simply

because an innovator allows firms to reveal their types in the first auction in order to avoid breaking

up with a high-type partner. It is the weakly dominant strategy for high-type firms to bid at their

expected values of the RJV membership. This mitigates the adverse effect from breaking up on the

expected revenues, and simultaneously improves the possibility to have a high-type partner in the

second period.

Figure 2.8 depicts the minimum values requisite as incentives for an innovator to choose PB

over the other. Part a. and b. fix the equal chance to be a high and low type with four and six firms

as in Figure 2.7. The horizontal axis indicates the relative probability ratio from zero to one, and

the vertical axis shows the high probability to succeed. The lowest mixed color line still represents

the cutoff equalizing the initial expected opportunity to be a high type in the second period given

the first RJV’s failure under the break-up and the other structure. The areas above this mixed color

line delineate the ranges that an innovator benefits from the higher second period expected chance

to be a high type under B than the other strategies. The red solid lines and the blue dashed lines

also depict the value at 0.25, 0.5 and 1 of α̃N and α̃C, respectively.

As discussed, a high-type firm’s probability of success must be outrageously high, i.e., σ =

0.99, with n = 4 and σ

σ
= 0.3, to encourage an innovator to break up her RJV when the first partner

fails as in Figure 2.7. On the other hand, PB can exist when σ is as low as 0.4 and n = 4. The

mixed color line in Figure 2.8 shows that there are much larger ranges of parameters such that

E
[
Pr{n fails}q2PB(Y )

]
> E

[
Pr{n fails}q2X(n)

]
than those such that E

[
Pr{n fails}q2B(n−1)

]
>

E
[
Pr{n fails}q2X(n)

]
. This result significantly affects the cutoffs, and then the possibility for the

break-up to be an equilibrium even partially not generally as in the B structure. For instance, with

σ = 0.7 and σ

σ
= 0.2, the non-pecuniary benefit equal to double, and less than the single-period

expected market profit is enough for PB to be an equilibrium with four, and six firms, respectively.
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Figure 2.8: The Value Cutoffs of Expected Non-Pecuniary Benefits (α̃N&α̃C)
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The partial break-up relies on less extreme ranges of parameters to exist, and, thus, is more

suitable to explain the break-up of the vertical RJV. Nevertheless, this partial break-up existence

is based on the bidimensional private values of firms, and an innovator’s non-monetary benefits

from the RJV. These characteristics are not restrictive and add the realistic variation in intuitively

explaining the partnership break-up of the vertical RJV.

2.5 Break-up with Demand Uncertainty

In this section, the basic model is extended to briefly analyze the break-up of an RJV when market

demand is uncertain. The following story is used to illustrate.

In September 2011, the Journal Sentinel reported the break-up of the joint venture formed in

2006 between Johnson Controls Inc. and Saft Groupe SA to develop and manufacture lithium-ion

vehicle batteries. Its website states that Johnson Controls-Saft has brought together Johnson Con-

trols - the world’s leading supplier of automotive batteries and a company deeply experienced in

integrated automotive systems solutions - with Saft, an advanced energy storage solutions provider

with extensive lithium-ion battery expertise. The joint venture supplied the lithium-ion hybrid bat-

tery system for the Mercedes S-Class hybrid, the BMW 7 Series ActiveHybrid, Azure Dynamic’s

BalanceTM Hybrid Electric for commercial vehicles, and Ford’s first plug-in hybrid electric vehi-

cle. The reason for break-up according to Alex Molinaroli, president of Johnson Controls’ power

solutions division, was that the joint venture hampered the company’s ability to apply technolo-

gies in areas outside of automotive, and it wanted the flexibility to sell batteries that use advanced

chemistries other than lithium-ion.

Regarding this setup, Johnson Controls, an innovator, seeks to codevelop its automotive bat-

tery technology with Saft, an expert in the lithium-ion battery. After a certain period, five years in

this story, Johnson Controls decides to break up its joint ventue because it plans to use advanced

chemistries other than lithium-ion. This break-up reason is consistent with Saft’s limitation, since

the lithium-ion is its only expertise. The break-up can be interpreted as the result of Johnson Con-
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trols finding out that the market demand changes and lithium-ion may not be able to compete with

other advanced chemistries.

According to demand uncertainty, the marketing capacity, µ , which is uniformly distributed

with the support [0,1], is redrawn in the second period. The first RJV partner with the highest first

period τ or θ under the C and N strategy, respectively, is not necessary to win the second auction

if the first RJV failed as in a basic model. Under the continuing with one firm strategy, firms bid

equal to their intertemporal expected market profit, σ µ

2 + (1−σ)σ
8 . The second part depends only

on σ not µ since firms do not know the market demand for their products in the second period.

The C structure allows the first partner whose product value may be low in the second period due

to demand uncertainty to work with an RJV in both periods. This causes the continuing with one

firm to be inferior to the no commitment strategy in terms of an innovator’s expected revenue.

Moreover, the probability for the second partner to be a high type is updated under the C structure;

therefore, the likelihood of the first partner to be a low type increases after it failed the first co-

development. These characteristics lead the continuing with one firm structure to be less attractive

than the other under demand uncertainty.

As in a simple model, an innovator gains the higher expected revenue under the no commit-

ment than the break-up structure. This is because an innovator works with the highest expected

profit firm in the second period out of n and n− 1 firms under N and B, respectively. Since the

marketing skill is redrawn, the second period partner does not work in the first period RJV, and the

first RJV’s failure does not update its technological type. The probability for the second partner to

be a high type is q(n) and q(n−1:n−1) under N and B, respectively. Consequently, the no commit-

ment dominates the break-up in terms of the probability for the second partner to be a high type as

well.

The no commitment is chosen by an innovator over the break-up and is likely to provide the

higher total expected benefit than the continuing with one firm when market demand is uncertain.

As in the previous example, Johnson Controls may provide no commitment with Saft at the begin-

ning, and it decides to break up their partnership once learning that lithium-ion’s demand drops.
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Noticeably, the no commitment RJV structure does not imply that the first partner can rejoin the

second RJV. It practically breaks up the first period partnership in this case. As a result, it can

also be interpreted as the other break-up strategy, which is more likely to exist as an equilibrium in

practice. This demand uncertainty rationalizes the RJV’s instability. An innovator simply works

with another firm in the second period after the first RJV’s failure. In this market, the marketing

dimension plays a more important role than the technological dimension does in determining the

RJV break-up.

2.6 Conclusion and Discussion

According to the RJV trend, this paper explores the rationale behind the dynamic partnership

break-up from an innovator’s perspective. Firms have two dimensions of private values: the proba-

bility of success and the marketability. As supported in the R&D and marketing interface literature,

firms bid based on their expected market profit gained from working with an RJV. Therefore, this

consolidates both dimensions into a single dimension. Particularly, firms have no preference be-

tween having a high probability of success and a low marketing skill, and being a low type with a

high marketing capability as long as they have the same expected market profit.

Given that an innovator must stick to her RJV structure designed initially, firms bid less under

the break-up relative to the other structures to account for the lost opportunity to join the second

auction. This adverse effect causes the break-up to be undesirable when an innovator’s single goal

is to maximize expected revenues. Nevertheless, an innovator, as in the literature, considers not

only financial support from firms, but also non-pecuniary benefits from the project success, such

as the reputation, or academic achievement. If this is the case, high enough additional benefits

generated by the project success induce an innovator to design her RJV to break up after the first

RJV failure.

The necessary conditions for the break-up structure to be implemented are the substantial

probability for a high-type firm to succeed simultaneously with a moderate ratio of the low-type to
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high-type probability of success. There must also be high non-pecuniary benefits in order for an

innovator to break up her RJV. The intuition is that the substantial probability of success of a high

type implies that a partner who failed the first RJV co-development is, indeed, a low type. As a

result, breaking up with the first failing member improves total expected benefits for an innovator.

The higher high-type firms’ probability of success, the lower the non-monetary benefit requisite to

support the break-up as an equilibrium.

Unfortunately, the break-up requires an extremely substantial high-type probability of suc-

cess. This study then proposes another structure, the partial break-up, such that an innovator’s

decision to break up is conditional upon the first winner’s bidding function. This encourages firms

with high enough expected profits to bid at their true values to distinguish themselves from low-

type firms. The separating bidding functions occur, since low-type firms never bid higher than

their valuations, which is lower than high-type firms’. Even if they win the first auction, low-

type firms know that they will be disallowed from joining the second if they fail the first RJV

attempt. This leads them to bid less than their valuations in the first auction. The partial break-up

is more appropriate to explain the RJV instability in reality. The break-up, as in pharmaceutical

and biotechnology partnerships, usually exists after partners learn each other capabilities and find

out that co-development does not reach their expectation. Partners’ valuations can be signaled

through the offer to join an RJV. If they bid high enough, there is no need to worry that they are a

low type, and the break-up is not necessary. Furthermore, demand uncertainty leads an innovator

to implement the no commitment structure, which allows her to work with the highest bid firm in

the second period after the first RJV failed. Since it is unlikely that the first partner’s expected

market profit will be highest again in the second period, an RJV simply breaks up under the N

structure. This also rationalizes an RJV’s break-up in practice.

The potential future research is to explore the optimal auction design. Myerson (1981), and

McAfee and Vincent (1995) propose the mechanism for the optimal static and sequential auction.

Che (1993) and Branco (1997) study the mechanism design in the multidimensional procurement

auctions. This paper can be extended by analyzing the optimal break-up rule, and then comparing
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the expected total benefit under the optimal mechanism to that gained from this paper’s simple

break-up rule. Also, the scoring auctions can be implemented instead of the price bidding as in this

paper. This is more realistic at the expense of the difficulty in explaining the break-up intuitively.

In this study, an RJV structure is decided only by an innovator side. Given the simple second-

price auction and break-up rule, firms may be allowed to offer the price to join an RJV under each

structure. With a menu of contracts, each firm’s bid reflects its preference on a particular structure,

and an innovator chooses an RJV structure based on this information. If firms are naive, both

private values are revealed in this basic model, and an innovator simply implements the break-up

structure when the highest bid firm is a low technological type, and the second highest bid firm

is a high technological type. Unfortunately, firms consider the strategic effect of their bids on an

innovator’s decision. This can lead to multiple equilibria if exist. For instance, firms can bid at zero

in a specific RJV structure that they prefer not to join. The complexity of a menu of contracts may

outweigh its advantage as a process for an innovator to solicit firms’ information. This interesting

but complicated problem is left to be solved in future research.
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Appendix 2A: Mathematical Derivation and Proof

(2.1) The expected revenue under the continuing with one firm structure (REVC)

Derivation.

REVC = Pr{τ(n−1) ≥ τ}E
[
τ(n−1)|τ(n−1) ≥ τ

]
+Pr{τ(n−1) < τ}E

[
τ(n−1)|τ(n−1) < τ

]
Pr{τ(n−1) ≥ τ}= rτ(n−1) = 1−

n
∑

i=n−1

(n
i
)
(1− rτ)

i rn−i
τ . E

[
τ(n−1)|τ(n−1) ≥ τ

]
is

=
∫

τ
τ y ∂

∂y Pr{y≥ τ}dy,

=
∫

τ
τ yn(n−1)

(
y−τ

τ−τ

)n−2(
1− ( y−τ

τ−τ
)
)

1
τ−τ

dy,

=
(n−1)τ+2τ

(n+1) .

E
[
τ(n−1)|τ(n−1) < τ

]
is

=
∫ τ

0 y ∂

∂y Pr{y < τ}dy,

=
∫ τ

0 yn(n−1)
(

y
τ

)n−2(
1− y

τ

)
1
τ

dy,

=
(n−1)τ
(n+1) .

As a result, REVC = rτ(n−1)

[
(n−1)τ+2τ

(n+1)

]
+
(

1− rτ(n−1)

)[
(n−1)τ
(n+1)

]
.
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(2.2) The expected revenue under the no commitment structure (REVN)

Derivation.

REVN = Pr{θ(n−1) ≥ σ}E
[

θ(n−1)
2 |θ(n−1) ≥ σ

]
+Pr{θ(n−1) < σ}E

[
θ(n−1)

2 |θ(n−1) < σ

]
+Pr{θ(n) ≥ σ ∩ n fails}Pr{θ(n−1) ≥ σ}E

[
θ(n−1)

4 |θ(n−1) ≥ σ

]
+Pr{θ(n) ≥ σ ∩ n fails}Pr{θ(n−1) < σ}E

[
θ(n−1)

4 |θ(n−1) < σ

]
+Pr{θ(n) < σ ∩ n fails}E

[
θ(n−1)

4 |θ(n−1) < σ

]
θ(n) < σ ⇒ θ(n−1) < σ , or the probability of the second highest θ to be less than σ is

one if the highest θ is within that range. Pr{θ(n−1) ≥ σ} = r(n−1) = 1−
n
∑

i=n−1

(n
i
)
(1− r)i rn−i,

and Pr{θ(n) ≥ σ} = r(n) = 1− (1− r)n . In addition, the probability that the firm with θ(n)

fails and θ(n) ≥ σ is Pr{θ(n) ≥ σ}(1−σ) = r(n) (1−σ), while the probability that it fails

and θ(n)<σ is Pr{θ(n)<σ}
[
Pr{σ(n) = σ ∩n fails|θ(n) < σ}+Pr{σ(n) = σ ∩n fails|θ(n) < σ}

]
= (1−σ)

(
q(n)− r(n)

)
+(1−σ)

(
1−q(n)

)
, where q(n) = 1− (1−q)n. E

[
θ(n−1)|θ(n−1) ≥ σ

]
is

=
∫

σ
σ y ∂

∂y Pr{y≥ σ}dy,

=
∫

σ
σ yn(n−1)

(
y−σ

σ−σ

)n−2(
1− ( y−σ

σ−σ
)
)

1
σ−σ

dy,

=
(n−1)σ+2σ

(n+1) .

E
[
θ(n−1)|θ(n−1) < σ

]
is

=
∫ σ

0 y ∂

∂y Pr{y < σ}dy,

=
∫ σ

0 yn(n−1)
(

y
σ

)n−2(
1− y

σ

)
1
σ

dy,

=
(n−1)σ
(n+1) .

Then, REVN = r(n−1)

[
(n−1)σ+2σ

2(n+1)

]
+
(

1− r(n−1)

)[
(n−1)σ
2(n+1)

]
+r(n)(1−σ)

[(
1− r(n−1)

)[
(n−1)σ
4(n+1)

]
+ r(n−1)

[
(n−1)σ+2σ

4(n+1)

]]
+
[
(1−σ)

(
q(n)− r(n)

)
+(1−σ)

(
1−q(n)

)]
(n−1)σ
4(n+1) .

(2.3) The difference between the C structure’s and the N structure’s expected revenue
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Derivation.

The difference is

= rτ(n−1)

[
(n−1)τ+2τ

(n+1)

]
+
(

1− rτ(n−1)

)[
(n−1)τ
(n+1)

]
−r(n−1)

[
(n−1)σ+2σ

2(n+1)

]
−
(

1− r(n−1)

)[
(n−1)σ
2(n+1)

]
−r(n)(1−σ)

[(
1− r(n−1)

)[
(n−1)σ
4(n+1)

]
+ r(n−1)

[
(n−1)σ+2σ

4(n+1)

]]
−
[
(1−σ)

(
q(n)− r(n)

)
+(1−σ)

(
1−q(n)

)]
(n−1)σ
4(n+1) .

The first and the last line can be simplified to be τ[rτ(n−1)

[
(n−1)+(n−3)τ

τ
(n+1)

]
+

(n−1)τ

τ
(n+1) ], and

(n−1)σ
4(n+1) (1− r(n)) +

(n−1)σσ

4(n+1) [(1− r(n))− (1− σ

σ
)(1− q(n))], respectively. The sum of the second

line, the third line and (n−1)σ
4(n+1) (1 − r(n)) is −σ

4 (3 − σr(n))[r(n)

[
(n−1)+(n−3)σ

σ
(n+1)

]
+

(n−1)σ

σ
(n+1) ].

As a result, REVC − REVN = τ

[
rτ(n−1)

[
(n−1)+(n−3)τ

τ
(n+1)

]
+

(n−1)τ

τ
(n+1)

]

−σ
4 (3 − σr(n))

[
r(n)

[
(n−1)+(n−3)σ

σ
(n+1)

]
+

(n−1)σ

σ
(n+1)

]
+

(n−1)σσ

4(n+1)

[
(1 − r(n)) − (1 − σ

σ
)(1 − q(n))

]
.

Proposition 2.2 and Proposition 2.3

Proof.

Proposition 2.2 and proposition 2.3 indicate how a change in one parameter effects on the

other to keep the equal expected revenues under the C and N structure.

Analogous to Figure 2.4, Figure 2.9 illustrates the cutoffs equalizing both expected revenues

when n = 2, 5, 10 and 15. The horizontal and the vertical axis describes the relative probability of

success and the probability to be a high type, respectively, while the depth dimension represents

the high probability of success. All parameters range from zero to one. The regions inside these

cutoffs are the ranges of parameters such that (REVC−REVN)< 0.
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Figure 2.9: The Expected Revenue Cutoffs under the C and N Structures
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The equality between C and N expected revenues is denoted by (REVC−REVN)
∗= 0. Setting

equation (2.3), (REVC−REVN) , to be zero provides: σ

4(n+1) (3−σ) [rτ(n−1) [(n−1) + (n−3)τ

τ
]

+ (n− 1)τ

τ
] − σ

4(n+1)

(
3−σr(n)

)
[r(n−1) [(n−1) + (n− 3)σ

σ
] + (n− 1)σ

σ
] + σ

4(n+1) (n− 1)

σ [
(

1− r(n)
)
−
(
1− σ

σ

) (
1−q(n)

)
] = 0. Consequently, define the cutoff (REVC−REVN)

∗ as:

(3−σ) [rτ(n−1)[(n−1) + (n− 3)τ

τ
] + (n− 1)τ

τ
] −

(
3−σr(n)

)
[r(n−1)[(n−1) + (n− 3)σ

σ
] +

(n−1)σ

σ
] + (n−1)σ [

(
1− r(n)

)
−
(
1− σ

σ

)(
1−q(n)

)
] = 0.

The sufficient condition to prove proposition 2.2, which is the opposite relationship between

q and n in keeping (REVC−REVN)
∗ , is that dq (REVC−REVN)

∗ and dn (REVC−REVN)
∗ have

the same signs. In proposition 2.3, the relative probability of success to sustain (REVC−REVN)
∗

is increasing in both the number of firms and the probability to be a high type. This proposition

holds when the sign of dσ

σ

(REVC−REVN)
∗ is different from that of dn (REVC−REVN)

∗ and

dq (REVC−REVN)
∗. It can be shown graphically that these conditions hold for n ≤ 20, although

they should still hold for larger number of firms, but they are not practical. The derivatives of the

(REVC−REVN)
∗ with respect to n, q and σ

σ
are delineated in Figure 2.10 - Figure2.12.

The number of firms is fixed, at n = 2,5,10 and 15 in picture a., b., c. and d., respectively.

The vertical axis shows the range of q from zero at the bottom to one at the top. The horizontal

axis indicates the range of σ

σ
from zero on the left to one on the right. The depth of each three-

dimensional diagram represents σ from zero (outside) to one (inside). In all figures, the blue

cutoffs separate the regions that (REVC−REVN)≶ 0. The single blue cutoff in picture a. divides

the left region with (REVC−REVN)< 0, and the right region with (REVC−REVN)> 0. In picture

b., c. and d., (REVC−REVN) > 0 in the top-left area, above the U-shape blue cutoff, and in the

right of the blue cutoff.
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Figure 2.10: The Negative Relationship between the Probability to Be a High Type and the Number
of Firms
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Figure 2.11: The Positive Relationship between the Probability to Be a High Type and the Relative
Probability
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Figure 2.12: The Positive Relationship between the Number of Firms and the Relative Probability
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Figure 2.10 shows the result of proposition 2.2. The red cutoffs and the green cutoffs are

the ranges that dq (REVC−REVN) = 0 and dn (REVC−REVN) = 0, respectively. The middle

ranges of parameters in between the two cutoffs are the areas that (REVC−REVN) < 0. At

the (REVC−REVN)
∗ = 0, the blue cutoffs, the derivative with respect to q and n represents

dq (REVC−REVN)
∗ and dn (REVC−REVN)

∗, respectively. Obviously, the single blue cutoff in

picture a., lies in between two cutoffs of both dq (REVC−REVN)
∗ = 0 and dn (REVC−REVN)

∗ =

0, which are the area of negative derivatives with respect to both parameters. In picture b., c.

and d., the U-shape upper left blue cutoffs and the right blue cutoffs are in the ranges such that

both derivatives are positive and negative, respectively. As a results, dq (REVC−REVN)
∗ and

dn (REVC−REVN)
∗ have the same signs.

The blue, the red and the green cutoffs in Figure 2.11 and Figure 2.12 still indicate

the cutoffs such that (REVC−REVN)
∗ , dq (REVC−REVN) and dn (REVC−REVN), equals to

zero, respectively. The last lighter color cutoffs divide the regions of parameters such that

dσ

σ

(REVC−REVN) ≶ 0. Contrary to the other two derivative cutoffs, the areas above the U-

shape upper left lighter color cutoffs and those to the right of the right ligher color cutoffs

are ranges where dσ

σ

(REVC−REVN) < 0. The blue cutoff in picture a. and the right blue

cutoffs in picture b., c. and d. are in the ranges where dσ

σ

(REVC−REVN) > 0, while

dq (REVC−REVN)< 0 and dn (REVC−REVN)< 0, in Figure 2.11 and Figure 2.12, respectively.

Notice that the U-shape upper left blue cutoffs are cut by the lighter color cutoffs. Clearly, their

right parts are in the range such that dσ

σ

(REVC−REVN) < 0, while dq (REVC−REVN) > 0 and

dn (REVC−REVN)> 0, in Figure 2.11 and Figure 2.12, respectively. Ignore the left part of those

blue cutoffs since they are inconsistent with the ranges of (REVC−REVN) = 0, shown in Fig-

ure 2.9. Hence, dσ

σ

(REVC−REVN)
∗ is negatively correlated with both dq (REVC−REVN)

∗ and

dn (REVC−REVN)
∗.

The lighter color cutoffs also imply the existence of the relative probability ratio cutoffs.

At the low σ

σ
close to zero, dσ

σ

(REVC−REVN) > 0 when (REVC−REVN) > 0. When the up-

per left blue cutoffs are within the range of dσ

σ

(REVC−REVN) < 0, an increase in the relative
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probability ratio lowers the difference in expected revenues under the C and N strategy. Since

the (REVC−REVN) > 0 in low ranges of σ

σ
, raising σ

σ
keeps shrinking the gap until it reachs

the zero, the cutoff. The right blue cutoffs in the range of dσ

σ

(REVC−REVN) > 0 implies that

an increase in σ

σ
raises the (REVC−REVN) from negative to zero, the other cutoff. Finally,

dσ

σ

(REVC−REVN) > 0 and (REVC−REVN) > 0 when σ

σ
reaches one. This result obviously

shows that the cutoffs of the relative probability ratio exist. This completes the proof.

Proposition 2.6

Proof.

This proposition concludes that the derivatives of non-pecuniary value’s cutoffs under the no

commitment and the continuing with one firm with respect to the high probability of success are

negative. These results are separately shown as follows.

The derivative of α̂N with respect to σ

By setup, α̂N = −(REVB − REVN) / (E
[
Pr{n fails}q2B(n−1)

]
− E

[
Pr{n fails}q2X(n)

]
).

E
[
Pr{n fails}q2B(n−1)

]
− E

[
Pr{n fails}q2N(n)

]
= [−(1−σ)

(
q(n)− r(n)r(n−1)

) (
1−q(n−1)

)
+ (1−σ)

(
q(n−1)− r(n−1)

) (
1−q(n)

)
] / [1− r(n−1)] ≡ Λ / [1− r(n−1)]. Thus, ∂σ α̂N = [1−

r(n−1)] ∂σ [−(REVB−REVN) / Λ] + [−(REVB−REVN) / Λ] ∂σ [1− r(n−1)]. Since 1− r(n−1),

−(REVB−REVN) / Λ and ∂σ (1 / [1− r(n−1)]), = n(n−1)(1− r)n−2rqσ / (σ [1− r(n−1)])
2, are

positive in the range of interest, the necessary condition for ∂σ α̂N < 0 is ∂σ [−(REVB−REVN)

/ Λ] < 0. Figure 2.13 illustrates ∂σ [−(REVB−REVN) / Λ] when n≤ 20. The shaded regions are

to show the ranges of parameters that ∂σ [−(REVB−REVN) / Λ] ≥ 0. As before, the horizontal

axis, the vertical axis and the depth dimension represents the zero to one range of σ

σ
, q and σ from

left to right, bottom to up and outside to inside, respectively. The interesting ranges are those with

Λ > 0, where σ is high enough, approximately 0.9 or higher, depicted by the ranges inside of the

depth dimension. Obviously, ∂σ [−(REVB−REVN) / Λ]< 0, the blank regions, when Λ > 0. This

implies that ∂σ α̂N < 0.

The derivative of α̂C with respect to σ

Analogous to ∂σ α̂N , the necessary condition for ∂σ α̂C < 0 is ∂σ [−(REVB−REVC) / Λ]
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< 0, implied by − Λ ∂σ (REVB−REVC) + (REVB−REVC) ∂σ Λ < 0. For n ≤ 20, Figure 2.14,

having the same ranges of parameters as in Figure 2.13, shows the blank regions, such that ∂σ Λ >

0, opposite to the blank areas in Figure 2.13, where ∂σ α̂N < 0. As a result, ∂σ Λ > 0 in the range

of interest, where σ is high. In Figure 2.15, the vertical axis, the horizontal axis and the depth

dimension represent the same parameters as in Figure 2.13 and Figure 2.14, but the ranges of σ ,

the depth dimension, are restricted to be from 0.9, outside, to 1, inside.

As in Figure 2.10-Figure 2.12, picture a., b., c. and d. of Figure 2.15 fixes n at two, five, ten

and fifteen, respectively. The same results hold for n≤ 20, and should hold for the larger number

of firms, even not in practice. The pink graphic, the blue graphic and the green graphic depicts the

cutoff such that ∂σ [−(REVB−REVC) / Λ] = 0, (REVB−REVC) = 0 and ∂σ (REVB−REVC) = 0,

respectively. The region above the pink and the blue graphic is where ∂σ [−(REVB−REVC) / Λ]>

0 and (REVB−REVC) > 0, respectively. In picture a., almost all areas but the little green graphic

at the left bottom corner have ∂σ (REVB−REVC) > 0. The green graphic in picture b. divides

the upper left regions with ∂σ (REVB−REVC) > 0 and the lower right regions with ∂σ (REVB −

REVC) < 0. When there are two green graphics as in picture c. and d., the regions below the lower

right and above the upper left U-shape delineate the ranges of parameters with (REVB − REVC) <

0.

The case where (REVB−REVC)> 0 can be ignored, because the break-up also dominates the

continuing with one firm in terms of the expected revenues. There is no need for the non-monetary

benefit to induce an innovator to break up against to stick with one firm. When ∂σ [−(REVB−

REVC) / Λ] > 0 and (REVB−REVC) < 0, represented by the regions that the blue graphics are

over the pink graphics, ∂σ (REVB−REVC)> 0. In these ranges, however,− Λ ∂σ (REVB − REVC)

+ (REVB − REVC) ∂σ Λ > 0 only if Λ < 0, since ∂σ Λ > 0, as in Figure 2.14. Consequently,

∂σ [−(REVB−REVC) / Λ] < 0 in ranges of interesting parameters, and ∂σ α̂C < 0, thereafter.
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Figure 2.13: ∂σ [−(REVB−REVC) / Λ]
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Figure 2.14: ∂σ Λ
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Figure 2.15: ∂σ [−(REVB−REVC) / Λ], (REVB−REVC) & ∂σ (REVB−REVC)
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Appendix 2B: Illustration

The cutoffs equalizing REVC to REVN , and REVC to REVB, for n≤ 20

Illustration.

In Figure 2.16, the cutoffs equalizing the expected revenue under the continuing with one firm

to that under the no commitment stucture are illustrated as the outside pink envelope, whereas the

cutoffs equalizing the expected revenue under the continuing with one firm to that under the break-

up structure are the inside green envelope. The blank regions between the two cutoffs represent the

area that REVN > REVC > REVB. The horizontal axis, the vertical axis and the depth dimension

represents the zero to one range of σ

σ
, q and σ from left to right, bottom to up and outside to inside,

respectively.

The second order condition for the optimal cutoff

Illustration.

The dark areas in Figure 2.17 depict the nonpositive (n− 2) [(1− σ)(1− q(n)) + (1−

σ)(q(n) − r(n))] − n(1− r(n−1)) [(1− σ)r(n−1:n−1)(1− r)n−2 + (1− σ)(1− q(n−1:n−1)) +

(1−σ) (q(n−1:n−1) − r(n−1:n−1))] [(n− 2)σ − (n− 1)θ̂∗]
(

θ̂∗n−3

σn−2

)
when θ̂∗ = n−3

n−1σ , and

4 ≤ n ≤ 20. The horizontal axis, the vertical axis and the depth dimension represents the zero to

one range of σ

σ
, q and σ from left to right, bottom to up and outside to inside, respectively. When

there are four to nine firms, there are the shaded regions only with σ > 0.99995, whereas there is

no dark spot for at least ten firms.
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Figure 2.16: (REVC−REVN) = 0 & (REVC−REVB) = 0
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Figure 2.17: The Second Order Condition for the Optimal Cutoff
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Chapter 3

SEQUENCING OF VERTICAL RESEARCH JOINT VENTURE SIZE

3.1 Introduction

In the current period of rapid technological growth, some high-technological products become

outdated quickly, even though they still function perfectly, and their lifetimes are not shrinking;

firms simply launch new products to keep customers spending. In this highly competitive situation,

Research and Development (R&D) for the product innovation, or drastic process innovation as

mentioned in Tirole (1988), plays an important role in extracting profit from the high-technological

product market. However, Bhaskaran and Krishnan (2009) comment that the increasing uncertainty

and complexity of know-how, and costs of product development encourage firms to share their

investments in joint-development projects, even at the cost of more competition in the product

market.

This paper is interested in the formation of Research Joint Ventures (RJVs), specifically the

vertical relationship between an upstream innovator and one or more downstream firms. The study

takes place in an environment in which an outside innovator owns a basic innovation and needs

to cooperate with at least one current incumbent due to the financial constraint and/or the lack

of access to knowledge and technology required to commercialize this basic innovation. This

context is also used in Norbäck and Persson (2009). Nevertheless, in lieu of allowing the case of

codeveloping with venture capitalists, this paper restricts the option for an innovator to work only

with market incumbents. This is due to the key idea that an incumbent has the knowledge and

experience, in the current technological advances and market structure, necessary to develop this

innovation. One example is that of university research and laboratories. In general, universities

concentrate on academic research, but it is often the case that some research can be sold to a firm

to further develop and commercialize. Usually, a university, which is an innovator in this case,
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cannot predict the project success when the basic innovation is commercialized. This is because it

lacks market and demand information privately owned by an existing firm.

Feller (2009) mentions that the terms of industry-sponsored research agreements and those of

patent and licensing agreements have caused national representatives of major U.S. corporations

and leading U.S. research universities to find a new set of guiding principles since the 1980s.

To establish guiding principles, the Industrial Research Institute (IRI) and the National Council of

University Research Administrators (NCURA) have formed a working partnership, the University-

Industry Demonstration Partnership (UIDP). The mission of UIDP stated in its brochure is to

enhance the value of collaborative partnerships between universities and industries. While tensions

in research agreements and technology transfer agreements lead to the need for re-engineering the

partnership around the country, the university-industry relationships at Massachusetts Institute of

Technology (MIT) are among the most successful partnerships.

Within MIT, various research consortia are developed as the membership mechanism for re-

search groups to collect member fees. All the intellectual property rights arising from consortia are

owned by MIT with royalty-free exclusive rights to commercialize, which are shared by all mem-

bers. This partnership pattern is consistent with the concept of a vertical RJV in this paper such that

an innovator (MIT in this case) develops basic research with other members before it can be com-

mercialized. Another characteristic of the MIT research consortium which makes it an excellent

example for this paper is the variety of the number of members in each consortium. For instance,

the Media Lab at MIT has four large consortia each with forty to fifty members, whereas Oxygen

has only six founding members. These various member sizes imply the difference in the technical

and economic risks of each research project as used in this paper to rationalize the formation and

sequencing of a vertical RJV.

One specific example of a vertical RJV, related to the university-industry research, is the case

of E Ink, founded in 1997 based on research at the MIT Media Lab. The E Ink Corporation devel-

ops electronic paper display (EPD) technologies. As stated on its website, E Ink’s technology is

compatible with many consumer and industrial applications including handheld devices, watches,
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clocks and public information and promotional signs. It claims that customers value its technol-

ogy for its brightness, high contrast, and low power, which are similar to that of paper. In 2009,

E Ink was used in the two leading electronic readers: Amazon’s "Kindle" and Sony’s "Reader",

earning 60% and 35% of U.S. market share as of 2009, respectively. Barnes and Noble, the biggest

bookstore chain in the U.S. jumped into this market and planned to launch its "Nook", another

electronic reader, in November 2009. This market represents the situation such that E Ink, an in-

novator, can choose to work with only one firm to enjoy a monopoly profit. E Ink might do so by

working with one firm, but the product did not finish on time or did not reach the certain quality it

had expected. Consequently, it decided to work with more firms later. In this case, E Ink might not

satisfy the development in the first attempt; therefore, it sacrificed market power for the partnership

benefit. This is consistent with the product’s availability schedule in which Amazon launched the

first version of Kindle in November 2007 with the E Ink’s 4 level grayscale screen. Later, Sony

sold the Reader PRS-700 in November 2008 with the E Ink’s 8 level grayscale screen. However,

Sony developed the touch screen with built-in light to solve the dark screen problem. Barnes and

Noble’s Nook has the E Ink’s 16 level grayscale screen with the color touch screen in the control

and navigation area.

Carayannis and Alexander (1999) comments that the university-industry relationships are dy-

namic entities. The alliances and members evolve over time, and the evolution may change the

alliance’s motivations. Their idea is consistent with this paper’s research questions: "what is an

optimal size for a vertical RJV to maximize the benefit from basic innovation?", and "how is its

size formed and sequenced?". The number of downstream partners in each period is considered as

an RJV’s size. Two-period models are used to explore these questions. In both models, an inno-

vator chooses how many firms she works with in each period. The number of RJV’s members is

positively correlated with the probability of success and the product value in the first and second

model, respectively.

In the first model, an RJV simply has two outcomes of its R&D: success and failure. This

may look simplistic, but it is suitable to explain some high-technology industries such as the phar-
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maceutical and medical technology. Products must pass some quality standard before they can be

sold to the market, otherwise an RJV continues doing R&D until succeeding. The latter model is

to relate the R&D’s result to the product value perceived by consumers. An RJV decides after the

first period product value is revealed whether it stops doing R&D to sell its product with the current

value in two periods or keep improving its product in exchange with the chance to sell in only one

period. Due to the dynamic structure of the models, this paper also studies how the discount factor,

defined as the value of the second period profit after being discounted in the first period, effects on

an RJV’s size.

On one hand, adding more members enhances the probability of success and the product value

in the first and second model, respectively. On the other hand, the more the partners are, the less

the profit an RJV makes. Balancing this trade-off determines an RJV’s decision on its size. An

additional member may specialize in the fields needed to support the product development. As a

result, it is possible for an RJV to sacrifice its expected market power for this advantage. Notice

that this study focuses on the optimal strategy for an RJV as a whole; therefore, the benefit and cost

sharing between an innovator and her partners is ignored. Based on the vertical aspect, it is assumed

that an innovator charges upfront membership fees equal to the expected market profit. Hence, an

RJV and an innovator shares the same objective to choose the optimal number of partners in each

period. This characteristic supports how the study focuses on the trade-off between the market

competition and the product development.

An RJV’s size stays constant or expands over time in the first model. Generally, the discount

factor has the negative effect on the number of members in the first period when the probability

of success is nondecreasing returns to scale. This means an innovator trades off the opportunity to

succeed for the market power. If her RJV fails the first attempt, there is the second chance such

that an RJV can expand to be more likely to succeed, and still obtains the large value of second

period profit after being discounted in the first period.

With two potential partners, an RJV works with both firms in each period of the product value

model. The linear demand function and the uniform distribution of product value lead an RJV to
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work with three firms in the first period when there are at least three firms in the market. It may

downsize to have two members, or keep working with three firms in the second period. The higher

the discount factor (the higher the second period profit after being discounted in the first period),

the higher the minimum product value an RJV needs to stop doing research in the second period.

This implies that an RJV is more likely to keep doing R&D in the second period when the discount

factor is high. The intuitive explanation is that the high value of the second period profit after being

discounted in the first period induces an RJV to sacrifice the first period profit for the opportunity

to improve its product value.

In the RJV literature, cooperative research provides many benefits such as internalizing

spillover externalities, pooling of risk and financial resources, preventing research duplication and

coordinating research technology choices as in Choi (1993). Among the huge amount of research,

most focus on the post-development process such as the organization of R&D to allocate property

rights through patent and licensing discussed in Aghion and Tirole (1994). Grossman and Hart

(1986) provide the conditions that support the vertical integration between firms. Katz (1986),

d’Aspremont and Jacquemin (1988), and Choi (1993) model the cooperative R&D in product mar-

ket competition with spillovers. Kamien (1992)’s chapter in Handbook of Game Theory provides

a nice game-theoretic approach to patent licensing with explanation covering various mechanisms

to distribute innovation. Sen and Tauman (2007), and Giebe and Wolfstetter (2008) revisit the

licensing of a cost-reducing innovation and provide the optimal mechanism combining auctioning

upfront fees with royalty licensing. Some later papers such as Bhaskaran and Krishnan (2009),

and Norbäck and Persson (2009) concern and rationalize the organization of innovation collabora-

tion. Femminis and Martini’s 2009 working paper relates RJV formation to its cost of increasing

collusion in the final market.

Most RJV literature is interested in the horizontal aspect of joint development among firms

that also compete in the product market. Banerjee and Lin (2001) and Ishii (2004) are among rare

studies of vertical cooperative R&D. The first paper adds the variation to the studies of horizontal

R&D by examining the incentives of forming a vertical RJV, which is to allow an upstream firm to
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internalize the externality of an innovation on a downstream market. The authors’ idea of the basic

model with an upstream monopoly is applied in this paper. The latter paper analyzes and compares

the effects of vertical and horizontal R&D cartels. Niedermayer and Wu (2009) study how the

break-up of research consortia often occurs empirically. The private information about difficulty

level is used as the main rationale behind the situation. Bourreau, Doğan and Manant (2008) are

interested in the relationship between a size of an RJV and a degree of cooperation. It is assumed

that the jointly developed product components determine the degree of product differentiation. The

paper addresses an interesting issue that firms do not necessarily make a binary decision when they

join an RJV. This idea can be applied to the study of the formation of an RJV in a more complex

and realistic context.

This paper explores a realistic issue, for example the university-industry partnership at MIT,

with an insufficient amount of research in literature. Even with a simple setup, the paper describes

potential patterns of a vertical RJV that can contribute directly to the RJV literature. This adds

variation to most horizontal RJV literature and can be treated as an application to the scarce vertical

RJV research. In addition, basic models provide the rationale behind the real world vertical RJV

formation. The second and the third section analyzes the model with a degree of success and

product value, respectively. The last section summarizes the paper and discusses the limitation and

extension.

3.2 The Degree of Success

This section sets up models, in which an innovator has an option to work with at least one firm.

An innovator forms the research partnership to do further R&D and commercialize her basic tech-

nology. The goal is to analyze how the size of an RJV is determined. On one hand, the more

RJV members, the higher chance of success. This benefit, on the other hand, comes along with

higher competition in the final product market, which reduces the total benefit an RJV can generate,

thereafter.
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When the product is required to pass a certain standard before to be launched, RJVs confront

only the binary results: success or failure. Success in this case indicates that an RJV’s final product

can be sold, and failure exists when an RJV cannot provide a marketable product. Bhaskaran and

Krishnan (2009) use the pharmaceutical industry to exemplify an industry with long and highly

uncertain lead times for medicine development. The timing uncertainty is due to the strong reg-

ulatory influence from the Food and Drug Administration (FDA) to force a product to possess a

bare minimum quality. If an RJV fails to develop a product meeting FDA criteria, it needs to keep

doing further R&D.

In this environment, an innovator chooses her RJV size in the first period. The more the firms

join an RJV, the higher the degree of the project success, but the lower the total profits from selling

the final product. This paper studies the sequence of RJV’s size in the two-period models. If the

first RJV succeeds, it sells its product in two periods. Otherwise, an RJV may change the number

of its partners in the second, and last, period. If succeeding, an RJV enjoys the single-period profit,

and it gains nothing otherwise. The following subsections analyze the size of an RJV in this setup

in 2.1 with two and in 2.2 with general number of potential partners.

3.2.1 The Two-Firm Model with a Degree of Success

Let I denote an innovator, the only player in the game, with two potential partner firms. She

decides how many members in each period RJV. The upfront membership fees are charged equal

to the expected market profit. As a result, an RJV and an innovator share the same objective to

choose the optimal number of partners. The subgame perfect equilibria of an RJV’s size are solved

by backward induction.

Suppose I develops a basic innovation at period 0. To commercialize this innovation, I needs

to codevelop with at least one partner due to a financial constraint and/or a technological constraint

such as lack of access to necessary knowledge. The development’s degree of success is σk, as a

function of k ∈ {1,2}, a number of partners. (To be interesting, let 0 < σ1 < σ2 < 1). If the joint

development succeeds, there is a monopoly, or duopoly, with one or two firms, respectively, in the

158



market. Denote δ as the discount factor, which is one when there is no discount at all, and zero

with the complete discount. Intuitively, this discount factor can be interpreted as the smaller size

for the subsequent market. The sooner launched product is better than the later one. The structure

of the game is depicted in Figure 3.1.

It is assumed that if the first co-development fails, I has an option to change the number

of firms in the joint development or she can keep working with the same group. An innovator

maximizes the joint development fee from potential partners by charging total discounted expected

profits in the market. Define four formation patterns of the joint development: J11,J12,J21,

and J22, where Jgh denotes joint development with g firm/s and h firm/s in the first and second

chance, respectively, while V1 and V2 stand for the maximum an innovator can charge from a

market monopoly and duopoly profit. Backward induction can be used to solve this game. Lemma

3.1 summarizes these equilibrium strategies.

Lemma 3.1. The equilibrium strategies in the two-firm model with a degree of success are:

(i) J11, if V1
V2

>
σ2
σ1

, and

(ii) J12 or J22 otherwise.

Proof. By backward induction, at the second stage, the expected monopoly and duopoly profit

is σ1V1 and σ2V2, respectively. With V1
V2

>
σ2
σ1

, the expected monopoly profit is higher than the

expected duopoly profit. At this stage, it is better to have only one partner. Therefore, J12 and J22

are eliminated. At the first stage, the expected payoff of J11 is σ1 (1+δ )V1 + δ (1−σ1)σ1V1

> σ2 (1+δ )V2 + δ (1−σ2)σ1V2, the expected payoff of J21. Consequently, J11 is the unique

equilibrium strategy when V1
V2

>
σ2
σ1

. This shows the first part of the lemma.

For V1
V2
≤ σ2

σ1
, working with both firms in the second stage provides higher expected payoff

than working with only one firm. Thus, J11 and J21 are not an optimal strategy. Solving back-

ward, the first stage has the expected payoff of J12 equal to σ1 (1+δ )V1 + δ (1−σ1)σ2V2 ≷

σ2 (1+δ )V2 + δ (1−σ2)σ2V2, the expected payoff of J22. Under a set of given parameters, both

J12 and J22 can be an equilibrium strategy. This implies the second part of the lemma.
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Figure 3.1: The Structure of the Two-Firm Model with a Degree of Success
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Because the model only has two periods, an innovator is induced to make the last period

decision as she does in the one-shot game. Hence, an RJV size in the second period is determined

by comparing the expected benefit between working with one and two partners. The expected

benefit is equal to the expected profit, σV. An innovator, consequently, codevelops with one partner

when σ1V1 > σ2V2 in the second period. Rearranging this condition to be V1
V2

>
σ2
σ1

determines

the first part of the lemma. V1
V2

is the monopoly profit relative to that of a duopoly, and σ2
σ1

is the

two member RJV’s probability of success relative to the single member RJV’s. V1
V2

represents the

benefit from the market power since it is the market profit under a monopoly compared with that

under a duopoly. σ2
σ1

also depicts the partnership benefit by comparing the probability of success

when an RJV has either two or one member. As a result, the higher expected benefit with one

partner than that with two partners, which is σ1V1 > σ2V2, implies that the relative benefit from

market power outweighs the relative benefit from partnership. In brief, an innovator works with

one firm when an RJV benefits more from the market power than the partnership.

After the second period RJV size is determined, the next step is to solve under which ranges

of parameters J12 and J22 are supported as an equilibrium. Lemma 3.2 indicates how changes

in parameters affect an innovator’s decision to choose between J12 and J22. Notice that J21 is

unable to be an equilibrium because it is dominated by J11 if V1
V2

>
σ2
σ1

, and is weakly dominated

by J22 otherwise.

Lemma 3.2. When V1
V2
≤ σ2

σ1
, the difference in the J12 and J22 expected payoff is increasing in σ1

and V1
V2

, but decreasing in σ2. The difference is increasing in δ when V1
V2

>
σ2
σ1

[1− (σ2−σ1)], and

nonincreasing otherwise.

Proof. The derivative of the difference in the J12 and J22 expected payoff with respect to σ1,

V1
V2

and σ2 is δ (V1−σ2V2) + V1 > 0,
σ2V 2

2
V1

[1 + δ − δ (σ2−σ1)] > 0 and −δV2 (1−σ2) −

V2 (1−δσ2) < 0, respectively. The derivative with respect to δ is σ2V2[−1 +
σ1V1
σ2V2

+ (σ2−σ1)]

≷ 0⇔ V1
V2

≷
σ2
σ1

[1 − (σ2−σ1)].

This lemma explains how each parameter effects on an innovator’s decision when the market
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power benefit (V1
V2

) is lower than the partnership benefit (σ2
σ1

).The effects of σ1,
V1
V2

and σ2 on an

innovator’s decision to choose between J12 and J22 are unambiguous. Under both strategies, an

innovator works with two firms in the second period; therefore, she simply chooses the first period

RJV’s size. In so doing, raising σ1 and V1
V2

makes working with one firm superior to having two

partners, whereas an increase in σ2 has the opposite effect.

With a higher probability of success when an RJV has one member and the relative market

profit under a monopoly to a duopoly, an innovator is more likely to work with one than two

partners in the first period. Conversely, a higher probability of success when working with two

firms encourages an innovator to exchange the market power for the opportunity to succeed.

The effect of δ on this innovator’s decision is less clear. On one hand, a high δ benefits

the expected payoff under J12 relative to J22, since it increases the value of the expected second

period profit, higher under J12 than J22, or (1−σ1)σ2V2 > (1−σ2)σ2V2. On the other hand, it

has a negative effect on the difference in the J12 and J22 expected payoff when V1
V2
≤ σ2

σ1
. The

high enough level of V1
V2

and/or σ1 reduces the negative effect of δ on the difference in the J12 and

J22 expected payoff. Thus, the high value of a monopoly’s expected profit relative to a duopoly’s,

from high V1
V2

and/or σ1, entices an innovator to work with one firm in the first period when the

second chance value, represented by δ , is high. The high level of δ , however, causes an innovator

to choose J22 over J12 when V1
V2

and/or σ1 is low because the negative effect of δ dominates its

positive effect on the difference in the J12 and J22 expected payoff.

The discount factor is how much the second period profit is valued in the first period. When

the market profit under a monopoly relative to a duopoly (V1
V2

) and an RJV likelihood to succeed

with one member (σ1) are high, an innovator tends to work with one firm in the first period. The

higher discount factor supports this decision by raising the market power benefit in the second

period. If the relative market profit under a monopoly and duopoly, and the probability of success

with a single partner are low, however, an increase in the discount factor induces an innovator to

sacrifice the first period market power for the higher probability of success with two partners. The

higher opportunity of the first period success is valued more with this higher discount factor.
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Proposition 3.1. J22 and J11 is an equilibrium when V1
V2

<
σ2
σ1

[1 − 1
2(σ2 − σ1)] and V1

V2
>

σ2
σ1

, respectively. For V1
V2
∈
[

σ2
σ1

[1 − 1
2(σ2−σ1)],

σ2
σ1

]
, J12 is an equilibrium if V1

V2
≥ σ2

σ1
[1 −

δ

1+δ
(σ2−σ1)], and J22 is an equilibrium otherwise.

Proof. J11 is an equilibrium when V1
V2

>
σ2
σ1

as in lemma 3.1. Lemma 3.2 implies that there exists
V1
V2

at σ2
σ1

[1 − δ

1+δ
(σ2−σ1)], equalizing the expected payoff under J12 and J22. Since δ

1+δ
≤

1
2 ,

V1
V2

<
σ2
σ1

[1 − 1
2(σ2−σ1)]. This condition means the expected payoff is higher under J22 than

under J12.

This proposition summarizes the ranges of parameters to support an equilibrium RJV struc-

ture. When V1
V2

>
σ2
σ1

, the relative expected profit is higher enough under a monopoly than under a

duopoly such that an innovator prefers to have one partner in both periods. On the contrary, V1
V2

<

σ2
σ1

[1− 1
2(σ2−σ1)] leads an RJV to work with two firms in each period. Notice that δ is irrelevant

to an innovator’s decision when V1
V2

is either high or low. The moderate level of V1
V2

allows δ to be

one of the determinants of an RJV’s structure. Specifically, when V1
V2
∈
[

σ2
σ1

[1 − 1
2(σ2−σ1)],

σ2
σ1

]
,

the higher δ is, the more likely that J12 will be selected.

With the high and low relative market profit under a monopoly to that under a duopoly,

an innovator decides to have one and two firms in her RJV for both periods, respectively (J11

and J22). When the monopoly and duopoly market profits are moderately different, i.e., V1
V2
∈[

σ2
σ1

[1 − 1
2(σ2−σ1)],

σ2
σ1

]
, an innovator works with both firms in the second period. In this range,

the higher discount factor makes it more likely to have one member in the first period RJV. This is

because an increase in δ also raises the second period value of the market power when a monopoly

profit is high enough relative to a duopoly profit.

Even with the basic setup, this model provides a nice perspective about the product innovation

co-development with sequential interaction between an innovator and partners. Proposition 3.1

confirms the existence of the optimal strategy that has different number of partners in different

stages. In particular, an RJV size expands from one member to two members in the middle range

of V1
V2

, while raising V1
V2

, σ1 and δ , and reducing σ2 enhance the possibility of this equilibrium.
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Figure 3.2: The Range of RJV Expansion
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Figure 3.2 illustrates the parameters’ ranges supporting an RJV expansion when the market

demand is Q = a−P with the constant average cost equal to constant marginal cost and a being the

intercept subtracting the marginal cost. If there are two members, they compete on quantitiy in the

final product market. In this case, V1
V2

= 9
8 . The vertical axis, horizontal axis and depth dimension

represents the σ1
σ2

, σ2 and δ , from zero to one, respectively. The shaded areas are the ranges such

that J12 is an equilibrium strategy for an innovator. The necessary condition for this equilibrium

to exist is that the level of σ1 is close enough to σ2, i.e., σ1
σ2

is at least 0.8 when δ = 1. This basic

model is extended to study the general number of potential partners in the next subsection.

3.2.2 The General Number of Firms Model with a Degree of Success

In the two-firm model, an RJV’s size expands given a certain set of parameters. This subsection

generalizes the number of firms, and analyzes if the same result holds. Denote σk and Vk as the

probability of success when an RJV works with k firms, and the maximum an innovator can charge

from the market oligopoly profit (with k competitors), respectively. The RJV formation pattern

Jnm denotes joint development with n firm/s and m firm/s in the first and second chance, whereas

n and m are defined as the optimal number of firms an innovator picks in each period. Again,

backward induction is used to solve the optimal number of firms.

In the second stage, an innovator’s objective function is:

Max
m

σmVm.

The first order condition is to equalize the marginal benefit and the marginal cost of adding a

partner in an RJV. The intuition is the same as in the two-firm model in that the optimal number

of firms in an RJV balances the size’s trade-off between enhancing the probability of success from

the cooperation among firms and decreasing the total market profit due to the later competition.

Assume that σV is concave and differentiable with respect to the number of firms. In addition, both

σ and V are differentiable; however, σ is increasing, and V is decreasing in an RJV size. To choose

how many partners in the first period, an innovator’s objective function consists of two parts: the
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expected two-period market profits, (1+δ )σnVn; and the second period expected market profit

after being discounted in the first period given the first period failure, δ (1−σn)σmVm. In the first

stage, an innovator solves the number of firm n such that:

Max
n

(1+δ )σnVn + δ (1−σn)σmVm.

Given m, the second stage optimal number of partners, the first order condition to solve n is

to equal (1+δ ) ∂σnVn
∂n to δσmVm

∂σn
∂n .

Proposition 3.2. An innovator either expands or fixes her RJV size across time in this model.

Proof. With Jnm being an equilibrium RJV structure, m is solved from the first order condition

such that ∂σmVm
∂m = 0, and n is from (1+δ ) ∂σnVn

∂n = δσmVm
∂σn
∂n . ∂σn

∂n > 0⇒ (1+δ ) ∂σmVm
∂m <

δσmVm
∂σn
∂n . This also implies that n≤ m.

The result from the two-firm model can be ascertained that an RJV does not downsize across

time, or J21 is not an equilibrium. The key characteristic of a basic model to cause this result

is the binary outcome of the project. In general, the binary outcome divides the expected market

profit, assumed to be entirely captured by an innovator, into the probability of success and the total

market profit. This separation allows the straightforward analysis of the benefit (on the probability

of success) and the cost (on the market competition) of an RJV size. The following proposition

discusses the effect of a change in the discount factor on the optimal first period RJV size.

Proposition 3.3. ∂n
∂δ

≷ 0⇔ ∂2σnVn
∂n2 / ∂σnVn

∂n ≷ ∂2σn
∂n2 / ∂σn

∂n .

The relationship between the optimal first period RJV size and the discount factor has the

same direction as the the second derivative to the first derivative ratio of the expected market profit

with respect to the number of firms relative to that ratio of the probability of success with respect

to the number of firms.
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Proof. n is the number of firms maximizing an innovator’s expected payoff; therefore, it is de-

termined by the first order condition of the expected payoff with respect to the number of firms.

The implicit function theorem provides that ∂n
∂δ

= − ∂2
∂n∂δ

[(1+δ ) σnVn + δ (1−σn) σmVm] /

∂2

∂n2 [(1+δ ) σnVn + δ (1−σn) σmVm]. The numerator is ∂σnVn
∂n − ∂σn

∂n σmVm. Replacing ∂σnVn
∂n =

δ

1+δ

∂σn
∂n σmVm from the first order condition gives that − 1

1+δ

∂σn
∂n σmVm < 0. This means the sign

of the derivative is the same as that of the denominator. ∂2

∂n2 [(1+δ ) σnVn + δ (1−σn) σmVm] =

(1+δ ) ∂2σnVn
∂n2 −

∂2σn
∂n2 δσmVm. From the first order condition, δσmVm = (1+δ ) ∂σnVn

∂n / ∂σn
∂n ;

thus, the denominator becomes (1+δ ) [∂
2σnVn
∂n2 − (∂2σn

∂n2
∂σnVn

∂n / ∂σn
∂n )] ≷ 0⇔ ∂2σnVn

∂n2 / ∂σnVn
∂n

≷ ∂2σn
∂n2 / ∂σn

∂n .

This proposition indicates the necessary and sufficient condition to determine the effect of a

change in the discount factor on the optimal first period RJV size. Since an RJV does not downsize

across time in an equilibrium, a change in the discount factor may determine whether an RJV size

stays constant or expands. In the two-firm model, an increase in the discount factor (the higher

value of the second period market profit after being discounted in the first period), given certain

ranges of other parameters, encourages an innovator to expand her RJV from working with one to

two partners.

Particularly, if the probability of success is increasing returns to scale (strictly convex in the

number of firms) or constant returns to scale (linear in the number of firms), its second order

derivative with respect to the number of partners is nonnegative. The higher value of the second

period profit discounted in the first period, the lower the optimal number of the first period members

when the positive effect of an additional firm on the chance of success grows at a nondecreasing

rate. The economies of scale allow the higher discount factor to induce an innovator to trade off

the opportunity to succeed for the market power. In other words, the negative effect of an increase

in the number of partners dominates its benefit to the project’s outcome. With fewer partners in

the first period, an RJV prefers to have higher profits than to be more likely to succeed. The large

discount factor means it can work with fewer firms first, and then expand its size later to increase

the probability of success if failing in the first period.
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The intuitively clear result comes at the cost of the restrictive degree of success. Usually,

the product joint development leads to a certain level of success, not just success or failure. Nev-

ertheless, this basic model is consistent with an industry such as the pharmaceutical business, in

which product launching relies on outside factors such as the FDA criteria. Also, firms compete

by developing their product to be superior to the current market standard in many high-technology

industries. Failing to surpass the quality of a product sold in the market leads firms to be unable

to launch their new product. As in the electronic reader case, the E Ink Corporation needed to

codevelop with partners before providing a better level grayscale screen. Unless the partnership

succeeds, the new product cannot be sold to the market. All in all, this section provides the result

supporting the RJV expansion when the project’s outcome is binary.

3.3 The Product Value

In the model with a degree of success, the binary outcomes of joint development are assumed:

success and failure. The two-firm model’s simplicity demonstrates the trade-off between monopoly

profit with a low probability of success from working with one downstream firm, and duopoly profit

with a high probability of success from working with both firms. Nevertheless, it is quite difficult

in practice to define what it means to succeed or fail. An RJV may be able to produce a product at

a specific level of quality. In this regard, it makes more sense to relate the degree of success to the

demand of such a product.

Bhaskaran and Krishnan (2009) note that products in the computer industry are new to the

market rather than new to the world. Firms in this market face quality uncertainty; hence, they

share innovation in a form of an RJV to diversify their risks. This means an RJV’s success level

is measured by the quality of its product instead of the binary outcome of success or failure as in

the pharmaceutical industry. This characteristic is incorporated into the model with product value.

After codeveloping with its partner/s, an RJV produces a product with a certain value. Zeithaml

(1988) explains the characteristics of product value perceived by customers as: low price, whatever
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they want in a product, quality they get from the price they pay, and what they get for what they

give. The overall definition of the product value is the assessment of the utility based on perceptions

of what is received and what is given.

This section uses the market demand to represent the product value. To do so, assume the

linear demand function (Q = a−P), with the constant average cost equal to constant marginal

cost and a, the intercept subtracting the marginal cost, uniformly distributed from zero to one. The

random draw of the variable a is used as a proxy of the market demand, reflecting the product

value. In other words, each joint development has a specific level of success that directly shown

by a market demand of that product. In this model, the advantage of working with more than one

firm is that there are more chances to draw a, instead of drawing once from working with one firm.

Of course, the maximum draw is used.

The model is restructured by allowing an RJV, after the first attempt, to make a decision to

sell its product immediately, which provides it with two periods to stay in the market; however, it

cannot do further development. If an RJV decides to conduct more R&D, it must go to the market

in the second and the last period with the maximum a it draws from two period attempts. Firms

compete on quantity in the final product market. This structure strengthens the trade-off between

doing more R&D in the second period and staying one more period in the market. As in the basic

model with a degree of success, the analysis begins with a two-firm model, and then generalizes

the number of potential RJV members.

3.3.1 The Two-Firm Model with Product Value

In the two-firm model, let atk denote a draw of a in period t ∈ {1,2} , and k ∈ {1,2}, a number of

partners (1 for working with one firm, and 2 for working with both firms). In addition to J11, J12,

J21 and J22, denote J10 and J20 as an RJV formation that conducts R&D only in the first period

with one firm, and with two firms, respectively. The game structure is shown in Figure 3.3.
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Figure 3.3: The Structure of the Two-Firm Model with Product Value
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This game is solved by using backward induction. After the first joint development, an RJV

learns its a1k. Obviously, an innovator prefers to go to the market for two-period profits rather

than to do further R&D. She, however, sacrifices the first period profit if a1k turns out to be low in

exchange for the higher product value in the second period. If the other co-development is to be

done, an innovator also needs to choose her RJV size.

With product value, an additional member provides an RJV another chance to draw a at the

cost of one more competitor in the final product market, which reduces the market power, there-

after. If an RJV’s product value is high in the first period, it has no need to conduct further R&D.

By backward induction, two decisions are made in the second period after the first period product

value is revealed: whether to further codevelop; and if so, with how many firms. The higher the

first period product value, the more likely an innovator stops doing more R&D. To put it another

way, an innovator keeps working with her firm partner/s in the second period only if the first period

product value is lower than a certain cutoff.

Based upon a1k, the cutoffs are set to determine an innovator’s optimal strategy as follows.

Definition 3.1. Let ã(Jgh) denote the critical value such that an RJV formed with g and h firm/s in

the first and the second period, respectively, decides to sell its product in both periods if it draws

a1g ≥ ã(Jgh) in the first period, but to keep doing R&D otherwise.

Lemma 3.3. An RJV Jgh makes a decision based on ã(Jgh|a1g) such that:

ã(J11|a11) ∈ [0,1] solves 2δa3
11−3(1+δ )a2

11 +δ = 0;

ã(J12|a11) ∈ [0,1] solves 20δa4
11−8δa3

11− (27+35δ )a2
11 +8δa11 +12δ = 0;

ã(J21|a12) ∈ [0,1] solves 6δa3
12−8(1+δ )a2

12 +3δ = 0;

ã(J22|a12) ∈ [0,1] solves 5δa4
12−2δa3

12− (6+8δ )a2
12 +2δa12 +3δ = 0.

Proof. At a1g = ã(Jgh), an RJV working with g firm/s in the first period has the same expected

payoff in the second period whether it keeps doing more R&D or not. In other words, ã(Jgh) is an

a1g that equalizes the expected payoff in the second period of an RJV with g firm/s in the first and

h firm/s in the second period (Jgh) to the expected payoff of selling the product in both periods
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(Jg0). Backward induction is used with a market monopoly profit = a2
4 , and a market duopoly

profit = 2a2
9 to solve this ã(Jgh) as a function of a1g as follows:

ã(J11) : payoff of J10 = expected payoff of J11,

1+δ
4 a2

11 = δ
4 E
[
a2

21|a11

]
,

0 = 2δa3
11−3(1+δ )a2

11 +δ .

ã(J12) : payoff of J10 = expected payoff of J12,

1+δ
4 a2

11 = 2δ
9 E
[
a2

22|a11

]
,

0 = 20δa4
11−8δa3

11− (27+35δ )a2
11 +8δa11 +12δ .

ã(J21) : payoff of J20 = expected payoff of J21,
2(1+δ )

9 a2
12 = δ

4 E
[
a2

21|a12

]
,

0 = 6δa3
12−8(1+δ )a2

12 +3δ .

ã(J22) : payoff of J20 = expected payoff of J22,
2(1+δ )

9 a2
12 = 2δ

9 E
[
a2

22|a12

]
,

0 = 5δa4
12−2δa3

12− (6+8δ )a2
12 +2δa12 +3δ = 0.

The first period minimum product value, such that an innovator conducts further R&D only

when her first draw of a falls below it, is solved under each RJV structure. An innovator must also

decide her second period RJV size. Again, the higher first period product value, the less likely that

an innovator will intend to sacrifice the market power for the better product value. This implies

that there is the critical product value such that an innovator works with two firms in the second

period RJV when the first product value is lower than it. This cutoff is defined as follows.

Definition 3.2. Let â denote the critical value such that an RJV is better to work with one firm in

the second period if it draws a1g ≥ â in the first period, and to work with both firms otherwise.

Lemma 3.4. An RJV makes a decision based on â such that:

â ∈ [0,1] solves 20a4
1g−26a3

1g−8a2
1g +8a1g +3 = 0.
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Proof. â is an a1g that equalizes the expected payoffs in the second period between working with

one or both firms as follows:
â : expected payoff of Jg1 = expected payoff of Jg2,

δ
4 E
[
a2

21|a1g

]
= 2δ

9 E
[
a2

22|a1g

]
,

0 = 20a4
1g−26a3

1g−8a2
1g +8a1g +3.

With the set of ã(Jgh) and â, the decision rule made by an innovator after drawing a1g is

characterized. Figure 3.4 illustrates the ã(Jgh) and â. In Figure 3.4, the top dotted line is â such

that an RJV works with one firm in the second period when a1g ≥ â, and works with two firms

otherwise. Given δ , the thick dashed line ,ã(J22); the thick solid line ,ã(J12); the thin dashed line

,ã(J21); and the thin solid line ,ã(J11), are ordered as in the figure. If a1g ≥ ã(Jgh), an RJV stops

doing R&D, and sells its product to enjoy two-period profits. If a1g < ã(Jgh), an RJV keeps doing

further R&D to improve its product value.

Lemma 3.5. If the first period product value is low, an RJV has two partners in the second period.

Proof. Figure 3.4 shows that ã(J21) and ã(J11) lie lower than â. As a result, whenever a1g <

ã(J21) and ã(J11), it is lower than â, or an RJV prefers to work with two rather than one firm.

In other words, if a1g is high enough to induce an innovator to work with one firm in the second

period, she would rather stop doing R&D.

In this model with two potential partners, the first period product value requisite to induce an

innovator to work with one firm in the second period (â) is higher than the critical product value

for an innovator to stop doing R&D (ã). Accordingly, an innovator does not work with one firm in

the second period. That is to say, she would rather work with both firms whenever it is necessary

to improve her product value.

This lemma means J21 and J11 are not an equilibrium RJV structure. Hence, in the first

period, an innovator simply chooses the structure between J22 and J12 that provides the higher

expected payoff. The expected payoff under those structures are stated in the following lemma.
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Figure 3.4: The Product Value Cutoffs
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Lemma 3.6. An innovator’s expected payoff under J12 (π (J12)) and J22 (π (J22)) are:

π (J12) = δ
27 [ã(J12)5 − ã(J12)4

2 + ã(J12)2 + 3ã(J12)] − (1+δ
12 + 2δ

81 )ã(J12)3 + 1+δ
12 ;

π (J22) = δ
27 [

5ã(J22)6
3 − 4ã(J22)5

5 ] − 1
27 [(1 + 2δ )ã(J22)4 + (2 + 2δ

3 )ã(J22)3 +

(2 − δ )ã(J22)2 − 2(1 + δ )ã(J22) − 3(1 + δ )].

Proof. Given ã(J12) and ã(J22), the expected payoff under each structure is solved as follows.

π (J12) = Pr{a11 ≥ ã(J12)} 1+δ
4 E

[
a2

11|a11 ≥ ã(J12)
]

+Pr{a11 < ã(J12)} 2δ
9 E
[
E
[
a2

22|a11

]
|a11 < ã(J12)

]
,

= δ
27 [ã(J12)5 − ã(J12)4

2 + ã(J12)2 + 3ã(J12)]

− (1+δ
12 + 2δ

81 )ã(J12)3 + 1+δ
12 ;

π (J22) = Pr{a12 ≥ ã(J22)} 2(1+δ )
9 E

[
a2

12|a12 ≥ ã(J22)
]

+Pr{a12 < ã(J22)} 2δ
9 E
[
E
[
a2

22|a12

]
|a12 < ã(J22)

]
,

= δ
27 [

5ã(J22)6
3 − 4ã(J22)5

5 ] − 1
27 [(1 + 2δ )ã(J22)4

+ (2 + 2δ
3 )ã(J22)3 + (2 − δ )ã(J22)2

− 2(1 + δ )ã(J22) − 3(1 + δ )].

With the set of ã(Jgh), it is straightforward to solve for the expected payoff of an RJV Jgh at

the beginning of the first period. Given δ , the optimal formation of RJV is such that Jgh maximizes

the expected payoff. Figure 3.5 depicts the difference in the J22 and J12 expected payoff. Clearly,

the expected payoff of J22 dominates that of J12 in the whole range of δ .

In summary, an innovator begins with having two partners in the first period. Then, if a first

period RJV provides lower product value than ã(J22), it jointly develops with two firms in the

second period, and it sells its product with two partners competing with each other in the final

product market for two periods otherwise. This result is concluded in the following proposition

and Figure 3.6.
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Figure 3.5: The Difference in J22 and J12 Expected Payoffs
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Figure 3.6: An RJV’s Decision to Conduct Further R&D
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Proposition 3.4. a12 ≥ ã(J22)⇒ J20 is an equilibrium, and J22 is otherwise.

In the two-firm model with product value, an RJV’s size does not change across time. An

innovator begins with having two partners. If an RJV’s first co-development results in high enough

product value, ≥ ã(J22), an RJV stops doing R&D, and it works with two firms otherwise.

Proof. As shown in Figure 3.4 and Figure 3.5, J11, J21 and J12 are not an equilibrium structure.

As a result, an innovator fixes her RJV’s size to have two members, and she only decides whether

an RJV keeps doing further R&D in the second period.

Proposition 3.5. ∂ ã(J22)
∂δ

> 0.

The critical value of the first period product value to determine whether an RJV keeps doing

further joint development is increasing in the discount factor.

Proof. The implicit function theorem provides that ∂ ã(J22)
∂δ

=−∂δ (5δa4
12 − 2δa3

12 − (6 + 8δ )a2
12

+ 2δa12 + 3δ ) / ∂a12(5δa4
12 − 2δa3

12 − (6 + 8δ )a2
12 + 2δa12 + 3δ ) at a12 = ã(J22). ∂δ (5δa4

12

− 2δa3
12 − (6 + 8δ )a2

12 + 2δa12 + 3δ ) = 5a4
12 − 2a3

12 − 8a2
12 + 2a12 + 3. At a12 = ã(J22),

5ã(J22)4 − 2ã(J22)3 − 8ã(J22)2 + 2ã(J22) + 3 = 6
δ

ã(J22)2 > 0. ∂a12(5δa4
12 − 2δa3

12 −

(6 + 8δ )a2
12 + 2δa12 + 3δ ) = 20δa3

12 − 6δa2
12 − 2(6 + 8δ )a12 + 2δ . At a12 = ã(J22),

20δ ã(J22)3 − 6δ ã(J22)2 − 2(6 + 8δ )ã(J22) + 2δ = 10δ ã(J22)3 − 2δ ã(J22)2 − 2δ − 6δ

ã(J22) =

2δ

ã(J22) [5ã(J22)4 − ã(J22)3 − ã(J22)− 3]. 5ã(J22)4 − ã(J22)3 − ã(J22)− 3 = ã(J22)[5ã(J22)3

− ã(J22)2 − 1] − 3. If this is negative, the proposition holds, and the necessary condition for this

part to be nonnegative is that 5ã(J22)3 − ã(J22)2 − 1 > 0 otherwise. Assume this condition

holds. ã(J22)[5ã(J22)3 − ã(J22)2 − 1] − 3 < 5ã(J22)3 − ã(J22)2 − 4 < 5ã(J22) − 5 ≤ 0.

Consequently, ∂a12(5δa4
12 − 2δa3

12 − (6 + 8δ )a2
12 + 2δa12 + 3δ ) is negative at a12 = ã(J22),

and ∂ ã(J22)
∂δ

> 0, thereafter.

In this two-firm model with product value, an RJV’s size is set at two for both periods. An

innovator makes decision to do further R&D based on whether her RJV’s first period product value

lies in the shaded area of Figure 3.6 or not. If so, an RJV delays its product launching in order

to improve its product value. As in the above proposition, the higher discount factor, the higher
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product value cutoff. Intuitively, a market with a high discount factor (not much lower value in the

second period than that in the first) allows an innovator to do R&D with the expectation that her

enhanced product value can compensate launching delay. This result is delineated as the positive

slope cutoff in Figure 3.6.

In the second stage, an RJV makes two decisions: whether to do further R&D; and if so, with

one or two firms. As in Figure 3.4, the minimum product value for an innovator to work with one

firm, more than 0.7, is higher than the highest product value cutoff, less than 0.6. This implies that

an RJV works with two members whenever it decides to do further R&D. To check if this result

is due to the two-firm limitation, this model is generalized by relaxing the two-firm assumption in

the next subsection.

3.3.2 The General Number of Firms Model with Product Value

This subsection is to generalize the number of potential partners an RJV can work with. Again,

denote Jnm as an RJV codeveloping with n firm/s and m firm/s in the first and second period, where

n and m are the optimal number of firms for an RJV in each period. Backward induction is used

with an n firm market oligopoly profit equal to na2

(n+1)2
to solve for n and m.

Given a1n, the expected benefit from working with m firms in the second period consists

of two parts: the expected benefit when new product value surpasses and falls behind the first

period product value. If the second period product value is higher than that in the first period, the

oligopoly profit is m
(m+1)2

E
[
a2

2m|a2m ≥ a1n

]
, and it is m

(m+1)2
a2

1n otherwise. The number m is

chosen to maximize this expected benefit. In exchange with enhancing an opportunity to improve

product value, an additional partner causes the final product market to be more competitive.

In the second stage, a1n is revealed, and if an innovator decides to do further R&D, her

objective function is:

Max
m

Pr{a2m ≥ a1n} m
(m+1)2

E
[
a2

2m|a2m ≥ a1n

]
+ Pr{a2m < a1n} m

(m+1)2
a2

1n.
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Taking expectation and plugging in the probabilities, this objective funtion becomes Max
m

m
(m+1)2

[(1 − am
1n)[1 −

2(1−a1n)
m+1 +

2(1−a1n)
2

(m+1)(m+2) ] + am+2
1n ]. The first derivative of this objective

function with respect to m is depicted in Figure 3.7 with m≤ 3.

Figure 3.7 shows the marginal effect of a partner in the second period RJV, or the derivative

of the previous objective function with respect to the number of partners. This figure restricts the

number of firms to be at most three. The derivative with at most one hundred firms are illustrated in

Appendix 3A. When there are at least three firms, an increase in the number of partners, the blank

area, hurts an RJV’s expected payoff in the second period. The shaded area represents the positive

marginal effect or the positive derivative of an RJV’s second period expected payoff with respect

to the number of firms. The figure implies that an RJV with one and two partners should add a

member when its first period product value is low, and should downsize otherwise. The intuition is

obvious because an RJV with low product value in the first period forsakes the first period profit for

an opportunity to have higher product value in the second period. If it already had a high product

value, it would rather enjoy the market power.

Lemma 3.7. In the second period, an RJV has at most three partners in the model with product

value.

Proof. An additional member has the negative effect on an RJV’s expected payoff in the second

period when there are at least three firms, shown in Figure 3.12 of Appendix 3A. Consequently, it

is not optimal for an RJV to have more than three partners in the second period.
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Figure 3.7: The Marginal Effect of a Partner in the Second Period
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Figure 3.8: The Second Period Expected Payoffs
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This lemma eliminates an equilibrium with more than three firms in the second period RJV.

Figure 3.8 illustrates an RJV’s second period expected payoffs with one, two and three partners.

When the first product value is high enough, particularly higher than 0.74, the expected payoff

is highest with a single partner, shown as the thin solid line. Moderate product value, between

0.54 and 0.74, leads an RJV to work with two members in the second period. In this range, the

thick solid line, above others, represents the second period expected payoff of an RJV with two

partners. For the first period product value less than 0.54, an RJV attains the highest second period

expected payoff when working with three firms shown as the dashed line. This result substantiates

the intuition that the higher first period product value, the fewer partners an innovator is willing to

work with in the second period.

In the second stage, an innovator also needs to decide whether an RJV stops doing R&D and

joins the market for two periods. Given n and m, there is the minimum product value ã(Jnm), such

that an RJV keeps doing R&D only when its first period product value is lower than this cutoff.

As in the two-firm model, an innovator delays an RJV’s product launching only if the first period

product value is low. This implies the existence of a product value cutoff determining whether

an innovator further codevelops with m firms in the second period. This cutoff equalizes the two-

period oligopoly market profit with n firms to the single-period expected oligopoly market profit

with m firms. Certainly, product value does not improve if the second period product value is less

than the first period’s. This minimum product value is solved from:

(1+δ )
nã(Jnm)2

(n+1)2
= δ

m
(m+1)2

[(1 − ã(Jnm)m)[1 − 2(1−ã(Jnm))
m+1 +

2(1−ã(Jnm))2

(m+1)(m+2) ] + ã(Jnm)m+2].

The optimal number of an RJV’s member/s in the first period is then solved as in the following

objective function:

Max
n

Pr{a1n ≥ ã(Jnm)}(1+δ ) n
(n+1)2

E
[
a2

1n|a1n ≥ ã(Jnm)
]
+

Pr{a1n < ã(Jnm)}δ
m

(m+1)2
E
[
(1−am

1n)[1−
2(1−a1n)

m+1 +
2(1−a1n)

2

(m+1)(m+2) ]+am+2
1n |a1n ≥ ã(Jnm)

]
.
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Figure 3.9: The Marginal Effect of a Partner in the First Period
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This objective function is the summation of two-period expected market profit given the first

period product value exceeding the cutoff, and the single-period expected market profit with the

first period product value below the cutoff. Figure 3.9 depicts the first derivatives, which are

positive in the shaded areas, of this objective function with respect to n with m = 1, 2 and 3 in

picture a., b. and c., respectively. Unlike in Figure 3.7, the horizontal axis is the discount factor.

Figure 3.13 extends the vertical axis to be up until one hundred firms. An RJV’s expected benefit

is increasing in the number of first period partners when the number of members is one and two,

whereas it is decreasing in n when m≥ 3.

Lemma 3.8. In the first period, an RJV has three partners in the model with product value.

Proof. Figure 3.13 depicts the negative derivative of an RJV’s expected payoff with respect to

the first period number of members with at least three firms. This implies that an RJV does not

benefit from having more than three partners in the first period. On the other hand, an RJV’s

expected payoff is increasing in the number of the first period partners until n is higher than at least

2.5. This causes an RJV to work with three firms in the first period when there are at most three

members in the second period.

In addition to the optimal second period number of firms being at most three, the negative

marginal effect of the first period number of partners when an innovator works with at least three

firms excludes an equilibrium with more than three members. In particular, an RJV optimal number

of partners is three in the first period when the maximum number of the second period members is

also three.

Figure 3.10 delineates the product value cutoff in the second period given that an RJV works

with three firms in the first period. The dotted lines partition the parameter territories such that an

RJV decides to work with one firm (when a13 ≥ 0.74), with two firms (when 0.74 > a13 ≥ 0.54),

and with three firms (when a13 < 0.54). The dashed line, the thick solid line, and the thin solid

line is the ã(J33), ã(J32) and ã(J31), respectively.
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Figure 3.10: The Product Value Cutoffs
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Lemma 3.9. An RJV with three first period partners works with either two or three firms if the first

period product value is low.

Proof. In Figure 3.10, ã(J31) is less than 0.74. When a13 < ã(J31), it, thus, is lower than the

minimum product value requisite for an RJV to choose one member over two or three, or a high

enough a13 to induce an innovator to work with one firm in the second period allows her to stop

doing R&D instead.

This lemma eliminates the J31 as the equilibrium structure.

Proposition 3.6. a13 ≥ 0.54 & a13 < ã(J32)⇒ J32 is an equilibrium, whereas a13 < 0.54 & a13

< ã(J33)⇒ J33 is an equilibrium, and J30 is an equilibrium otherwise.

In the product value model, an RJV’s size stays constant at three, or drops to two members.

When a13 ≥ 0.54 and a13 < ã(J32), the second period members are two, while they are three with

a13 < 0.54 and a13 < ã(J33). High enough first co-development product value in the remaining

territory causes an RJV to stop doing R&D.

Proof. When a13 < 0.54, an RJV chooses three over two partners in the second period. Thus, it

considers to quit doing further R&D if a13 ≥ ã(J33). On the other hand, the range where a13 ≥

0.54 leads an RJV to make decision based on whether a13 ≥ ã(J32). If so, it joins the final product

market without further improving its product value.

Proposition 3.7. ∂ ã(J32)
∂δ

> 0 & ∂ ã(J33)
∂δ

> 0.

The cutoffs of the first period product value to determine whether an RJV keeps doing further

joint development are increasing in the discount factor.

Proof. The implicit function theorem provides that ∂ ã(J32)
∂δ

= −∂δ (16δ [5a4
13 − 2a3

13 + 2a13 +

3]− (113+81δ )a2
13) / ∂a13(16δ [5a4

13−2a3
13+2a13+3]− (113+81δ )a2

13) at a13 = ã(J32), and
∂ ã(J33)

∂δ
=−∂δ (9δa5

13 − 3δa4
13 − 6δa3

13 − (10 + 9δ )a2
12 + 3δa13 + 6δ ) / ∂a13(9δa5

13−3δa4
13−

6δa3
13− (10+9δ )a2

13 +3δa13 +6δ ) at a13 = ã(J33).
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For ∂ ã(J32)
∂δ

, the numerator is 16[5a4
13 − 2a3

13 + 2a13 + 3]− 81a2
13 =

81ã(J32)2
δ

> 0 at a13

= ã(J32). Its denominator is 16[20a3
13 − 6a2

13 − 4a13 + 2] − (1 + δ )162a13 = 32δ

ã(J32) [5ã(J32)4

− ã(J32)3 − ã(J32) − 3] at a13 = ã(J32). This is negative when 5ã(J32)3 − ã(J32)2 − 1 < 0,

implying the result in the proposition. Assume the necessary condition for the nonnegativity of this

derivative holds, which is 5ã(J32)3 − ã(J32)2 − 1 ≥ 0. This assumption implies that 5ã(J32)4 −

ã(J32)3 − ã(J32) − 3 < 5ã(J32)3 − ã(J32)2 − 4 < 5ã(J32)−5 ≤ 0, still providing the negative

derivative, and ∂ ã(J32)
∂δ

> 0, thereafter.

In the second part, the numerator is 9a5
13 − 3a4

13 − 6a3
13 − 9a2

12 + 3a13 + 6 =
10ã(J33)2

δ

> 0 at a13 = ã(J33). The denominator is 9δa5
13 − 20a13 + δ [45a4

13 − 12a3
13 − 18a2

13 +

3] = 3δ

ã(J33) [9ã(J33)5 − 2ã(J33)4 − 2ã(J33)3 − ã(J33) − 4] at a13 = ã(J33). Again, the propo-

sition holds automatically when 9ã(J33)4 − 2ã(J33)3 − 2ã(J33)2 − 1 < 0; thus, assume that

it is nonnegative. This leads to 9ã(J33)5 − 2ã(J33)4 − 2ã(J33)3 − ã(J33) − 4 < 9ã(J33)4 −

2ã(J33)3 − 2ã(J33)2 − 5 < 9ã(J33)2 − 2ã(J33) − 7 < 9ã(J33) − 9 ≤ 0, also implying ∂ ã(J33)
∂δ

> 0.

In this model, an innovator works with three firms in the first period, and with either two

or three partners in the second period. With high product value above the cutoff, an innovator

prefers to sell in both periods rather than conduct additional R&D. The higher second period profit

after being discounted in the first period raises the cutoff because the second period benefit of

co-development increases. The higher discount factor allows an innovator with higher first period

product value to continue codeveloping in the second period. This is depicted as the positive slope

cutoff in Figure 3.10.
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Figure 3.11: An RJV’s Decision to Conduct Further R&D
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Figure 3.11 shows the range of parameters that an RJV decides to downsize from three to two

firms in the second period, shaded area J32. Given high discount factor, specifically at least 0.7,

an RJV with moderate first period product value, in the range of 0.54−0.6, decreases the number

of partners in the second period. If the first period RJV draws high product value, falling in the

blank area J30, it had better sell the final product to obtain two-period profits. On the other hand,

an RJV with low product value, less than 0.54, is willing to trade less competition in the final

product market off against an opportunity to improve product value, illustrated in the shaded area

J33. The higher value of the second period profit after being discounted in the first period (higher

δ ), the higher minimum product value for an RJV to stop doing joint R&D in the second period.

Intuitively, an increase in the first period value of the latter market profit makes it worth for an RJV

to sacrifice its first period profit for the higher future market profit.

In this model with product value, an innovator starts to form her RJV by working with three

firms. After learning the co-development result, she chooses among: enjoying two-period market

profits with the current product value, conducting further R&D with three firms and downsizing

an RJV to two firms. The discount factor or the first period value of the second period profit

determines an RJV’s decision by setting product value cutoffs.

3.4 Conclusion

This paper modelizes sequential formation of a vertical RJV, which is a research joint venture

between an innovator (or upstream firm) and downstream firm/s. One example of this case is an

innovation, from university research, that needs firm/s in a final product market, to commercialize

and further develop. A more common RJV in practice is a horizontal one with a substantial amount

of research literature. This paper deals with not only rare vertical RJV literature but also that of

the dynamic formation of an RJV. Most RJV formation literature focuses on a static or single

period formation without the sequential interaction between innovators and firms. Thus, this paper

broadens the RJV studies to explore this practical issue with limited studies so far.
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The analysis begins with the model of binary R&D outcomes. An RJV size’s expansion exists.

Nevertheless, an RJV downsizes or stays at the same size in the model with product value. The

higher discount factor (zero for complete discount and one for no discount at all) makes it less

likely for an RJV to stop doing further R&D after the first co-development.

The last part of this section discusses the limitation and extension. To begin with, this study

ignores the ownership sharing between an innovator and the downstream firms. This allows the pa-

per to concentrate on the market power and technology development trade-off. With the ownership

issue, an innovator may be unable to change her RJV size without agreement from current part-

ner/s. This can cause an RJV to have a non-optimal size. Also, an innovator is unable to capture the

whole market profit when there are firms’ private information. This issue is relevant to licensing,

which focuses on how to distribute an innovation in the post-innovation process. The licensing

mechanism also impacts on the formation and sequencing of the vertical RJV ex ante, since an

innovator’s formation of an RJV is sensitive to what mechanism can maximize the innovation’s

benefit.

Moreover, if it is possible for an innovator and her partners to codevelop in the future project,

this can facilitate the collusion in the final product market. In this paper, firms end their R&D

cooperation once they sell their products. Consequently, they simply compete on quantity. If firms

tend to work together in a future RJV after they compete with each other in the current market,

they can make a collusive agreement. The uncertainty of their future contact prevents them from

deviating. This issue is left for future research.
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APPENDIX
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Appendix 3A: The Marginal Effect of a Partner

In this appendix, the marginal effect of an additional partner on an RJV’s expected payoff in the

second and first period is illustrated in Figure 3.11 and Figure 3.12, respectively. The shaded area

in each figure represents the positive marginal effect of an additional partner on an RJV’s expected

payoff in the each period, which exists only when there are less than three firms.
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Figure 3.12: The Marginal Effect of a Partner in the Second Period
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Figure 3.13: The Marginal Effect of a Partner in the First Period
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