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ABSTRACT

STABILITY AND CONTROL OF NONLINEAR
SINGULARLY PERTURBED STOCHASTIC SYSTEMS

Mohamed Gamal El-Ansary

By

A class of nonlinear singularly perturbed systems

driven by wide-band noise is considered. The probabilistic

behavior of the slow variables is studied when the fast

variables are sufficiently fast

(represented by H - 0) and

the wide-band noise is sufficiently wide (represented by

€ =+ 0).

The possible interaction between the asymptotic

phenomena associated with singular perturbations and the

asymptotic phenomena associated with fast stochastic

fluctuations,

is,

in general, not a Markov process,

is also considered.

The slow state which

is shown to converge to a

diffusion Markov process in the sense of weak convergence

as

nominal wvalue

fixed.

€ and M tend to zero and the ratio

Yy € [Yl,m), where

Y, >0 i

1

tends to a

n Tio

arbitrary but

This limiting process is the solution of a reduced-

order diffusion model which is derived explicitly and the

interaction between the two asymptotic phenomena described

above, has turned out to be important,

as it is revealed

from the dependence of the reduced order model, in general,

on

Y which equals to

lim
€,1=0

Tieo



Mohamed Gamal El-Ansary

The advantages of having a reduced-order Markov model
in hand, to approximate the slow states, are displayed by
utilizing some of the available work on stability and
stabilization of Markov process. Stability properties of
the non-Markov slow states are studied through those of
the reduced-order Markov states. Design of stabilizing
feedback control strategies for the original system is
based on well-established stabilization techniques of the

reduced-order Markov model.
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CHAPTER I

LITERATURE SURVEY, BACKGROUND AND INTRODUCTION

1.1. Singular Perturbation Techniques and their
Application to Control Systems.

It is a common practice of control engineers to simplify
mathematical models which represent physical systems under
investigation. The singular perturbation approach outlined
in this section provides tools for simplifications in
control systems analysis and design. Accordingly a typical
simplification is to neglect some small time constants,
masses, moments of inertia, some parasitic capacitances and
inductances, and a number of unimportant parameters. The
presence of such parameters increases the dynamic order of
the model and introduces fast modes which make the model
stiff, that is, difficult to handle on a digital computer.
Consider a dynamic system which is modeled by the following

initial value problem:

X (1.1)

x(t) = £(x(t),y(t),ult)) x(ty) = xg

(1.2)

T

<.
o
]

g(x(t),y(t),u(t)) y(to) =Yg
where | 1is a small positive parameter representing para-
sitic elements, x and y are n- and m-dimensional
vectors, respectively, and u 1is an r-dimensional

deterministic input vector. For u = O, the order n+m

of (1.1) and (1.2) reduces to n, that is (1.2) becomes






0 = g(x(t),y(t),u(t)) (1.3)

Suppose that (1.3) has an isolated root along which g%

is nonsingular,
y(t) = h(x(t),u(t)) (1.4)
Substituting (1.4) into (1.1) we obtain the reduced system

X = £(X(t), () X(t) = x5 (1.5)

Reducing the order (m+n) of (1.1) and (1.2) to n of
(1.5) is not the only advantage of (1.5). Another advantage
can be realized when we notice that in (1.2) we actually
have y = g/d, that is, if U is very small and g # O,
then y 1is increasing very rapidly. This explains, in a
sense, what we mean by the stiffness of (l1.1) and (1.2)

which is eliminated from (1.5).

To see the effect of this simplification procedure on
the variable vy, which has been excluded from the simplified
model (1.5), we notice that y which is given by (1.4)

starts at t,. from vy (t )), in contrast to

o ) = hix(ty), ult

o)

the original variable y which starts at t

0]

0 from a pre-

scribed value Yo where there may be a large discrepancy

between and §(t0). Thus the best that one can hope

Yo

for is that vy (t) is a good approximation to y(t) every-

where except near t = t; and that x(t) is a good

approximation to x(t) everywhere. To study the behavior

of y near t =t the time scale is stretched by

Ol

introducing the transformations






_ O

T = m (1.6)
In terms of 71, (1.1) and (1.2) becomes

ax _ ME (x,y,u) x(0) = x (1.7)

ar e o ’

dy _ g(x,y.,u) (0) = (1.8)

ar Yo y Yo :
Setting M = O in (1.7) and (1.8) we get that x(T1) = X5

Then (1.8) can be written in a more convenient form in terms

of n=y-y as

an

T = 9(xg. ¥ () + (), ulty)) (1.9)

The system (1.9) is called the boundary-layer system and
the variable n(T) 1is referred to as the boundary-layer
correction which is significant only during a short interval

[t A basic result of singular perturbation theory is

NARE
an initial value theorem due originally to Tihonov (See [1]
for references) which spells out conditions under which the
solution of the initial value problem for (1.1) and (1.2)

as H =+ O can be approximated by the solutions of the

reduced and boundary-layer systems in the sense that for

all t€ (tg,t.]
x(t) —> x(t), (1.10)
y(t) —> y(t) (1.11)

We notice that, actually vy(t) is approximated by

y(t) +n(1) for all t € [ty,te]l but n(T) + 0 as W+ 0






(i.e. T » ®). The essential conditions are stability type
conditions which are imposed on the boundary-layer system

(1L.9).

The two time scale phenomena accompanied the solution
of the initial value problem is at the heart of the
singular perturbation approach to stability and control
problems. In a typical control problem one starts by
defining separate reduced and boundary-layer problems.
Assuming the existence of solutions for these problems,
an approximate solution is postulated by combining the
separate solutions. The validity of the approximations as

M -+ O 1is established via asymptotic analysis (cf. [1-3]).

In general if the singularly perturbed system, which
is represented by (1.1) and (1.2) is asymptotically stable,
the fast states represented by the vector y are important
only during a short initial period. After that period they
are negligible and the behavior of the system can be
described by its slow states represented by x. In many
applications the fast states y are basically parasetics,
that is, for example the equation (1.2) can represent the
model of an actuator in a control system which can be
neglected. Neglecting the fast modes is equivalent to
assuming that they are infinitely fast, that is letting

M -+ 0 in (1.2).






1.2. Asymptotic Analysis of Systems Driven by Wide -Band

Noise:

In this section we study and review some of the work
that has been done concerning dynamic systems with external
influences which are approximately white noise (wide-band
noise). 1In this thesis, our main concern will be the
asymptotic analysis of a class of systems having the above
property. Let us first introduce the basic topics and
definitions that will be used and then we will review the

work done which is related to our work.

Itd's Stochastic Differential Equation:

It is of the form

dx = f£(t,x)dt +G(t,x)dw(t) to <tLT (1.12)

X 1s a vector (the system state) in Rn, the vector -

valued function £f(t,x) 1is usually called the drift
coefficient, G(t,x) 1is an n xm matrix-valued function
and w 1is a Wiener process, (Brownian motion), usually
taken to be Gaussian, in Euclidean m-space. Equation (1.12)
was originally studied in [4,5] and later, under less
restrictive conditions, in many text books ([cf. 6-8].
Equation (1.12) is interpreted as a stochastic integral
equation

t t
x(t) =x(ty) + [ fls,x(s)lds+ [ G[s,x(s)]aw(s) (1.13)
t t

o 0]

It is assumed that f and G are measurable in (t,x)






for t G[tO,T], x €ER™; and satisfy (i) a growth condition

[£(t,x) | + |e(t,x)| < KL+ |x]), t € [ty,T],
(1.14)
x €R"
and (ii) a uniform Lipschitz condition
l£(t.,x) -£(t,y) | + Je(t,x) —c(t,v) | < Klx -y],
(1.15)

t € [ty.T], x,y € R?

In (1.13) x(to) is any (finite-valued) random vector
independent of the increments dw. Under these conditions
(1.13) determines a unique stochastic Markov process x
which is also called a diffusion process. For w<§c2(Rn),
the differential operator associated with the process x 1is

defined by:

£ (x) = f'(t,x)@X(x)4—%tr[G'(t.X)@XX(x)G(t,x)] (1.16)

Weak Convergence:

The concept of weak convergence can be defined roughly
as follows: Suppose that P is a sequence of probability
measures defined on a metric space S§ and P 1is also a
probability measure defined on S, then it is said that
Pn converges weakly to P, denoted Pn = P if for each
continuous function f on S, IS fciPn - fs fdP. Now
if S = C = space of continuous functions and if Pn and
P are probability measures on S then Pn = P 1if the

finite dimensional distributions corresponding to P






converges weakly to those corresponding to P and the
sequence of measures {Pn} is relatively compact. For
more details about this subject see [9], for example.
Weak convergence has been used, successfully, as the
appropriate type of convergence in asymptotic analysis.
In particular, it has been used to prove the convergence
of a sequence of non-Markovian or Markovian processes to

a Markov process, see for example [10-15].

Stochastic Stability:

As stochastic models have come to be more fully
understandable to engineers and scientists, the study of
rather important stachastic system properties has become
possible. Among these is the property of stability. The
literature on the topic is full of many concepts of
stability that have been studied, see for example ([l6],
for a survey). These stability concepts have, in general,
been derived for the study of deterministic systems. It
follows that there are at least as many stability concepts
for the study of stochastic systems as there are for the
study of deterministic systems. The reason is that the
deterministic concepts of stability have their counterparts
in each of the common modes of convergence of probability
theory. We may recall that the common modes of convergence,
[cf£. 17] are convergence in probability, convergence in the
mean and almost sure convergence. Thus, it is clear that
one has at least three times as many concepts of stability

as for the usual deterministic case. 1Indeed there are






even more. Among those concepts we will state only two
definitions, [cf. 16] of the concepts that we are going
to adopt in this thesis. We shall refer to the equilib-
rium or null solution, x = O, as the solution whose

stability properties are being tested; x will denote the

(0]

initial state at the initial time t We will denote the

O.
solution with initial state x5 at time to by x(t;xo,to)
or simply x(t), which is assumed to be an n-vector.

Definition of Asymptotic Stability in Probability: The

equilibrium solution is said to be asymptotically stable
in probability or equivalently, it is uniformly
stochastically asymptotically stable if for any ny > o]
and n, > O there exists a 6 > O such that if lxol < 8
then:

gt

(i) P x(t)! < nzé , £t >0} >1-n; for some 6 > O.

(ii) P{lim |x(t)] = 0} = 1.
£ o

Definition of Asymptotic Stability in the Mean Square: The

equilibrium solution is said to be asymptotically stable in

mean square if there exists constants o > O, Ky 2 O and

Ky > O such that E]x(t)\zs;Kl+-K25at ¥t > O and then
the process x(t) 1is said to be exponentially bounded in

mean square with exponent a. This form of the definition
is stated in [18] and we are going to use it, as it is,

later.






Review of Related Work:

The mathematical theory of stochastic differential
equations is concerned almost exclusively with the study
of Ito equations and the associated Markov processes.
This theory has found many useful applications and has
become a powerful tool in the study of diffusion processes
(cf. [7]1,[8]). However, many of its aspects are somewhat
drastic idealizations of physical processes in the sense
that the noise affecting the physical system is approximated
by white noise which is not a physical process but an
abstraction. This was the motivation for later work which
led to modeling dynamic systems with external noise which
are approximately white noise, by systems of ordinary
differential egquations with wide-band noise as input so that
Makov process techniques can be used. Several powerful
methods for doing this have been developed. The problem
has been initiated by [19] and then developed more (cf.

[11-15]). In [19], the Langevin scalar eguations:
dxn(t) = m(xn(t))dt-+o(xn(t))dyn(t) (1.17)

has been considered as a mathematical representation of a
physical model, where yn(t) + y(t) in the mean square
sense as n * ~, and y(t) 1is a scalar Brownian motion
process. It has been shown that the solutions Xn(t) of
(1.17) converge to the diffusion process x(t) as n = <,
in the mean square sense, where x(t) satisfies the Ito

equation:
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dx = [m(x)-+%o(x)g%(x)]dt-ko(x)dy (1.18)

This says that the Langevin equation cannot replaced by an
Ito differential equation without realizing the necessity
for the correction term, %o(x)g%(x) in (1.18). More
work has been developed along that line. All the authors
in [11-15] have treated the problem of weak convergence of
xe(-) to a diffusion where xe(o) is defined as the
solutions of ordinary differential equations with wide-band
random hand sides. More specifically the system that they

have all considered is of the form:

€

d € € € €

= L8 - 1rx®(0) .y () +ex(e) .y (1))

(1.19)
€(O) = X
x -~ %o

x €R® and y €Rr"™.

For each ¢ > O, ye(t) = y(t/ez) where vy (t) has been
taken to be, in general, a stationary process (other
hypotheses has been introduced in those references). The

process ye(t) is, in a sense (will be made precise in

the next chapter), a wide-band noise, and the system (1.20)
is a wide-band noise system. The parameter ¢ > O measures
departure from the white noise. Another interpretation for
€ 1is that it differentiates between the time scale of
fluctuations of the coefficients and the solution. In [11]
and [l12] vy(t) 1is considered to be a Markov process,
ergodic, bounded and satisfies other assumptions so that

under certain smoothness conditions on F and G,






11

(xe(t),ye(t)) are, an (n+m), Jjointly Markov process.
It has been proved, using partial differential equations
and perturbation techniques, that xe(t) converges weakly
to a diffusion process x(t), as € -+ 0 on [0,T] where
T < ®, but arbitrary.

At this point, it seems to be interesting to make
analogy between this asymptotic analysis that has been
carried out in [11] and [12] and those of the deterministic
singular perturbation. We notice that the solution xe(t)
of (1.19) is not exactly a Markov process, but it can be
considered as components of a higher-dimsnsional Markov
process, as was the case when (xe(t),ye(t)) was treated
as a jointly Markov process. Then approximating xe(t)
by the Markov process x(t) explains, in a sense, that
an order-reduction procedure has been taken place which
is in analogy to the order-reduction that occurs in
deterministic singular perturbation.

In [13-15] the same system, which is roughly represented
by (1.19) has been studied but with different assumptions on
the process y(t). Semigroup techniques due to [10] and
Martingale approach have been employed in [13] and [14,15]
respectively, to prove that xe(t) converges weaXkly to

the diffusion x(t) whose differential operator [cf. 13]

takes the form:

Af(x) = EG '(x,y(s))f_(x)
o (1.20)

+ j dTEF,(X,y(S))(FI(X,Y(S4-T))fX(X))

0 X
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where £ 1is continuous with continuous partial derivatives

up to the second order.

All the work that has been done in [11-15] is, of

course, closely related to the original problem of [19].

The first attempt, to study stability properties of
dynamical systems which are driven by wide band noise,
has been made in [12]. Stability results about xe(t),
defined by (1.19), has been established which are based
only on conditions upon the approximating diffusion x(t).
These are conditions which guarantee that the equilibrium
of x(t) 1is stable in an appropriate stochastic sense.
Most of the work that has been done, to study stability
properties of stochastic systems, is concerned with the
stability of systems represented as an Ito equation. The
effective method that has been employed is the stochastic
Liapunov method which is analogous to the deterministic

Liapunov method. |[cf. 7, 16 and 20].

1.3. Stochastic Singularly Perturbed Systems:

Since our work is mainly concerned with stochastic
singular perturbations, we will briefly review the prior
work that has been done in the linear case while, in the
nonlinear case, a considerable detailed review will be
established. Singularly perturbed linear differential
equations with random forcing functions have been studied
as models of control and filtering systems [21-23].

Promising results have been obtained like the two-time
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scale linear filter obtained in [21]. However, some
difficulties, arising from the idealized behavior of the
white noise used in the models, have been encountered
especially in the linear quadratic control problem studied
in [22] and [23] where the performance index may diverge.
Some alternatives have been suggested to overcome these
difficulties. Colored noise has been allowed in [24],
which in a sense limits the significance of the fast
subsystem; a near optimal linear output feedback control

is obtained by optimizing a slow subsystem only. 1In [25],
a parameter scaling procedure has been proposed to overcoma
the difficulties that arise from the unclear behaviour of
the fast variables in stochastic singularly perturbed
control systems. As a result, the divergence of the per-
formance index has been avoided and a well-posed linear
quadratic control problem has been obtained. 1In a recent
study of stochastic linear singularly perturbed systems
[cf. 26] a new approach to approximating linear quadratic -

Gaussian estimation and control problems has becen established.

One of the few attempts which has been made to study
nonlinear singularly perturbed systems driven by white
noise, is [27], in which a stochastic control problem has

been investigated for the system:

dx = [a(x) +c(x)z+2B(x)v(t)]At +/2 dw,

(1.21)
x(0) = %
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(1.22)

where all variables are scalars, v(-) 1is a control
variable, and Wy and w, are two independent, scalar
Wiener processes. The unclear behaviour of the fast
variable due to the existence of the white noise, which
has been the source of trouble as we pointed out before
[cf. 221, has been avoided by multiplying the white noise,
in equation (1.22), by H«. Howaver, by modeling the input
stochastic process as white noise some model information
might have been already lost as a result of the incon-
sistency encountered in modeling vhysical systems driven
by wide-band noiss as systems driven by white noise (see

section 1.2).

From the above discussion and from the asymptotic
analysis of systems driven by wide-band noise, that has
been reviewed in section 1.2, it seems appropriate that
in studying singularly perturbed systems the input noise
should be modeled as wide-band noise rather than white

noise.

In that regard, a study of a nonlinear singularly
perturbed system driven by wide-band noise, has been

initiated by [28]. The following system has been considered:

Il—‘

x(t)

Iy (£,x(£),y(£)) + = Fy(t,x(t),y(t)) (1.23)

o

v

= o

T8 (t,x(t),y(t)) + ®(

F (t,x(t),y(t)) (1.24)

My (t)

(')l

v
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where Fi and F° are fluctuations in the time scale t/e
while the natural time scale of the state x 1is t. Here
we write the singular perturbation parameter as u although
in [28] it is written as /€ . The asymptotic behavior of
the state has been studied as the perturbation parameters
tend to zero. Without getting involved in the technical
details and assumptions the essential steps of that approach

are as follows. First, it is assumed that the equation
— _€ €
veEJ (t,x,y) +F (t,x,y) =0 (1.25)

has a unique root vy = re(t,x) which is used to define an

outer solution of x as

Sl (1)) + 2 Fy

VvV E

X(t) = J5 (£,X(t),r (t,X(t),

(1.26)
(e, X(t))) .

Second, the asymptotic behavior of the outer solution X(t)
as € * 0 1is studied using limit theorems of stochastic
processes and conditions are spelled out under which X(t)
converges weakly to a diffusion process X(t). Third, the
diffusion X(t) 1is taken as a candidate for the limit of
x(t). To show this, conditions from [29] are imposed to
guarantee that x(t) -X(t) =+ O as the singular perturbation
parameter (4 in our notation) tends to zero. Implicit in
the approach of [28] there is a sequential ordering of the
two asymptotic phenomena present in the problem. Since an
outer solution is defined first using singular perturbation

ideas and then stochastic asymptotic analysis is applied,
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it is reasonable to say that this approach assumes that the
asymptotic phenomena associated with singular perturbations
are faster than the asymptotic phenomena associated with
stochastic fluctuations. As it will be seen, our results
show that the approach of [28] is valid when % +0 as

€ + O. The approach therefore does not take into consid-
eration the possible interaction between the two asymptotic
phenomena when € and WM are of the same order. Such
interaction has been brought to attention after a paper

by [30]. 1In that paper the following second-order differ-

ential equation, has been considered:
WX (£) +%(t) = a(x(t)) +Db(x(t))vE(t) (1.27)

where ve(t) is exponentially correlated noise with
correlation time €. It has been suggested that for suffi-
ciently small ¢ and ud, x(t), the solution of (1.27)
can be approximated by a diffusion process, defined by an
Ito equation. Moreover, this diffusion process cannot be
obtained as the asymptotic limit which results either by
letting ¢ #+ O first then 4 -+ O or by lettingv M+ 0
then ¢ + O, since two different limits are expected.

In deriving the reduced-order model corresponding to (1.27),
an intuitive reasoning has been employed. It has been
assumed that over a time interval At which is very small
with respect to the relaxation time of x(t) while very
large with respect to KM and ¢, the process x(t) will

behave like a continuous Markov process. With that
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assumption the following well known definitions, from the

theory of Markov process [cf. 6,71,

A(x) = 1lim E{X(t'*AZi =% (t) / x(t) = x}, (1.28)
At-0
2
B(x) = lim p(lXE+80) =x(®V]" /oy _ 43, (1.29)

At
At=0

has been used to calculate the drift coefficient A(x) of
the approximating diffusion and its diffusion coefficient
B(x). In the calculations of the conditional moments given
by (1.28) and (1.29), there has been no demand for finding
an exact solution of (1.27), it has been enough to solve

(1.27) on a small interval At satisfying

1.30
Trel O At >> max (M, ¢€) ( )
where, the relaxation time Trel of x(t) 1is defined by:
. da -1
Trel ~ mln(—ai(x))

Equation (1.27) has been integrated over the interval
[t,t+ At] and after applying the basic assumption (1.30),

the result of integration has been simplified to:

x(t+At) = x(t) +a(x(t))At

(1.31)
t+At A .

J [ g (BHAE-T) M (e (1)) vE (1) ar

t t

+
T

The integral on the right-hand side of (1.31) considers

the correlation of b(x(T)) with Ve(T). Since this
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integral is not a stochastic integral, it has been considered
as a Riemann integral. Then successive approximation has
been used [cf. 32], with initial solution X5 = x(t), and

Taylor series expansions around Xx have been employed.

o’
With the aid of (1.30), only the terms of order At has
been retained and a second order approximation has been
obtained. It has been claimed that higher order approx-
imations have the same accuracy O(At) that the second
order one has. Finally it has been shown that the results
of calculations of (1.28) and (1.29) are:

.5 db

A (x) a(x) +1—WE dX(X)b(X)S(O), (1.32)

Il

B(x) = b2 (x)S(0), (1.33)

where S(w/e) 1is the sbectrum of v°®, so that the
suggested reduced order-model corresponding to (1.27) has

been represented by the following I1to equation:

dx (t) = A(x(t))dt +/B(x(t)) aw(t) (1.34)

There has been no rigorous proof, in that paper, to
validate that the process x(t), defined by (1.27),
converges to the diffusion process x(t), defined by
(1.34), as €,4 » O 1in any stochastic sense.

The remarkable feature about the suggested reduced-
order model (1.35) is its dependence on the ratio S, as

it is apparent from (1.32), hinting to the interaction

between the two asymptotic phenomena.
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1.4. Objectives of the Thesis:

Our main objective, which has been motivated by [30],
is to generalize the reduced-order model, that has been
suggested by [30], to a wider class of singularly perturbed
systems and to provide a rigorous proof of convergence of
the slow states to the diffusion process defined by the
reduced-order model and then, to explore the possible
application of the reduced-order model in stability and
control problems. In this thesis we consider the nonlinear

singularly perturbed system:

X(£) = a) (x(£)) +A , (x(£))y (£) + By (x(£))v(£)  (1.35)
MY (£) = @y (x(£)) + A,y (£) + By (x(£))vE(£) (1.36)
where v€(t) is a wide-band zero-mean stationary vector

process with correlation matrix
EfvEi(t)vi(t+ ) ") = ZR(D)

More assumptions will be imposed on the process v® in the
next chapter. This class of singularly perturbed systems
is similar to the deterministic one studied in [2] from

the viewpoint of allowing nonlinearity in the slow variable
X while assuming linear dependence on the fast variable

y. We allow the input noise to be state dependent by
letting the input matrices By and B, be functions in

x; we do not, however, allow them to be function in vy
since that will destroy the linearity in y which is

very desirable feature as it is apparent from [2].
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The accomplishments reported in this thesis are

summarized as follows:

(a)

The asymptotic behavior of the slow variables,
defined by (1.35) and (1.36), has been studied when
the fast variables are sufficiently fast
(represented by M 4 0) and the wide-band noise

is sufficiently wide (represented by € = 0). A
reduced-order model to represent the behavior of

the slow variables has been derived. It has been
shown that the slow variables converge weakly to the
solution of this reduced-order model as ¢ -+ O and

M + O. However, our proof cover the two cases:

(i) +0 as ¢ =0,

oI

(ii) ¢ and 4 of the same order, i.e., there
exists positive constants Ky and K,

such that 0 < K <5 <K, < =.

The third case, namely:

(iii) S-+0 as w0

Follows essentially as a special case of [33] after
applying results of [12] or [13]. This case is
briefly discussed in chapter 2. The proof adapts

a martingale method developed by [14] for proving
weak convergence of a sequence of non-markovian

processes to a diffusion process.






(b)

(c)
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The use of the reduced-order model in stability of
the full-order system, given by (1.35) and (1.36),
has been examined. A result has been obtained

which provide stochastic asymptotic stability of

the origin of the full system if the origin of the
reduced-order model is so, provided that the
parameters ¢ and d are sufficiently small. The
main advantage of using the reduced-order model is
that it is a Markov model, and the theory of
stochastic stability [cf 16,20] applied to stochastic

differential equations of Ito type is rich.

Applying the reduced-order model in control problems
has been considered. A stablizing output feedback
control has been designed, using a nonlinear observer,
for the reduced-order model. We have been motivated
by the work of [18], in which a stabilizing feedback
control for a system represented by an Ito equation
has been designed using an observer. The designed
control law has been implemented to the full-order
system, with an observer, and conditions, under which
the closed loop system is stable, have been spelled

out via the use of our stability result.






CHAPTER II

REDUCED-ORDER MODEL AND CONVERGENCE RESULT

2.1. Introduction.

This chapter is concerned with sutyding the asymptotic
behavior of the slow variables of a singularly perturbed
system driven by wide-band noise, when the fast dynamics
are too fast, represented by n -+ O, and the wide-band
noise is too wide, represented by € + 0. A reduced-
order diffusion model that approximates the behavior of
the slow variables is derived together with a rigorous
proof of convergence. Our proof covers the two cases
Bn/e + 0 as € 40 and € and M being of the same
order of magnitude, i.e, K; < % < K, for some positive
constants Kl and K, . It is also shown that the case
S 4 0O as K =+ 0, which is not covered by our proof, can

be deduced from results already available in the literature.

This chapter is arranged in the following way. In the
second section we introduce the singularly perturbed model
and list all the assumptions that are needed for the
convergence proof. 1In section 3, the basic theorem is
stated and proved. To make the proof more readable some

lengthy details which are not very essential to follow the

22
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logic of the proof, have been given in separate appendices

at the end of the chapter.

2.2. Problem Formulation and Assumptions:

Consider the singularly perturbed system

X(£) = a) (x(t)) +Ay,(x(£))y () + By (x(£))vE(t),

(2.1)

x(0) = X5

. €
Hy (£) = a,y (x(£)) + A,y (L) + B, (x(£))v (L),
(2.2)
y(0) = vy,
where x €R", Yy ¢R™ and X51Yq are bounded random vectors.

The stochastic process v® €RY is defined as

veit) = 2 v(t/e) (2.3)
\/€

where v (t) satisfies

(A1) wv(t) is a stationary, zero mean, right continuous,
uniformly bounded process on [0O,®). The o-algebras
induced by vVv(t) are assumed to have a mixing property

with an exponential mixing rate [9], i.e.,

sup lP(Az/Al) —P(Az)] < e
Ai,t

for some o > O, where A, €oflv(s), s <t} and

A €ofv(s), s > t+1]. The process vi(t) is said to

2
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be wide-band noise since its power spectral density matrix
s®(w) = s(w/e) will have a frequency band of wo/e when
S(w), the spectral matrix of v, has a frequency band

Wy - Indeed, the process ve(t) converges to Gaussian
white noise by the central limit theorem [11].

The coefficients of (2.1) and (2.2) are assumed to

satisfy

(A2) The coefficients B and B are

210 310 Byor By 2
continuous in x and have continuous partial derivatives
up to the second order which are bounded uniformly in

X. Moreover, as and B2 are bounded uniformly in x.

(A3) The constant matrix A2 is Hurwitz, i.e. Rex(A2)<(O.

(A4) The vector al(x) and the matrices Alz(x) and

Bl(x) are required to satisfy
lay () |+ 1A, ) |+ 1B () | <R(L# |x])  vx€eR” (2.4)

and the vector ao(x) and the matrix B_.(x) which are

(0]
defined by:
a. = a, -A A_la (2.5)
0 1 1272 721 :
and
-1
B. =B, -A,,A,°B (2.6)

0] 1 12772 72
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are required to satisfy
n
lag(x) —a () | + [B (%) -By(z) | <K|x -z] VYx,z €R

for some positive constants K.

We notice that from (A2) and (A4) growth conditions

similar to (2.4) will be satisfied for a0 and BO'

(A3) is needed to guarantee the asymptotic stability
of the boundary layer phenomena associated with y. Under
the assumptions (A2)-(A4), the usual existence and
uniqueness theory for ordinary differential equations
gives us a solution for (2.1) and (2.2) on [O,T] for
sufficiently small u and for each sample path of wv(-).
This follows by minor modification of the technigque used

in proving the basic result of ([34].

Our objective is to study the asymptotic behavior of

x(+) as € 0 and 4 -+ 0. The main result of this
chapter shows that x(-) converges weakly to a diffusion
process x(-). The infinitismal generator associated
with x(:), whose form will follow from the proof of the

result, is given by

n
LYeE(x) = b (x) 2L (x)

. i 0X.

i=1 i

(2.
n 2
1 37 f
+ 5 2 a,.(x) s—m—— (%)
2 i,35=1 ij bxiaxj
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where

b(x) = aj(x) +hy (x) —Alz(x)A—éhz(x)-kh3(x), (2.8)

A(x)

, A
By (x)S(0)B,(x) = [aij(X)]' (2.9)

S(w) 1is the spectral matrix of v,

_ ' ’ ’ -1.,1
hli = tr[DiBOW 4—DiA12A 22] , (2.10)
_ ’ ’ ’ -1
h2.l = tr[EiBOW +EiA12A 221, (2.11)
h,. = tr[-F.B W'B’(A')"1 -F/B V’(A')'l
31 10 22 iTo0~ 2
(2.12)
’ -1
+ FiAl2A 2P],
Dy = [V 45y 1 Tylypi-—==a¥, ¥, 1
nxr
(2.13)
B = [V ] ’
1 1] nxr
E,o= 19Ny 1 VMo im=mmiv gl
nxr
(2.14)
B, = [n..] ,
2 1) mxr
F. = [v. § E v €, E————Ev 5. ] :
i il ) "'x7i2; poxXTime o
(2.15)
A, = [E..] ,
12 137 hxm

l(') denotes transposition.






27

@

W = f R(T)dr
o]
d AzYT s
s=[ e B,R'(1)dr, for some yE€ [y _,®),
0 1
Yl S 0 (2.16)
> A2)\ ’ AZI)\
and P=[ e (B,£ +3%B))e © air. (2.17)
O

We require that the coefficients A(x) and b(x),

defined above, satisfy the following conditions

a5) |a)] <c@+x]?), xerP

(A6) <x.,b(x)> < c(L+ |x]|%), xer®

where C 1is some positive constant.

These two conditions in addition to (A2) guarantee
that the martingale problem corresponding to (2.7) is

well -posed [8].

2.3. The Convergence Theorem:

Theorem: Under the assumptions (Al)-(A6),  x(°*)
converges weakly to X(:) as € 24 0, 4 0 and

where Yff[Y1:°): Yl > O 1is arbitrary, but fixed.

Proof: We utilize a technique for proving weak
convergence of a sequence of non-Markovian processes to
a diffusion process which was introduced in [10] and

further developed in [13-15]. The version used here is
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due to [14]. The main step in the proof is finding a
sequence of test functions fe'“(t) for a given function
f(x) such that certain conditions are satisfied. We use
the so called perturbed test function which was used for
similar purposes in [12-15]. Before we get to the
technical details of the proof we need to introduce some

definitions and terminology.

Truncated Processes: For every positive integer N, let

Sy = {x €R", x|l < N} and define the truncated process

xe';(t) to be the solution of

%51y = ag (xR fa) )+ Ay Ty Sy
+ B x5V, xF R (0) = xg (2:18)
u§€’§ = [azl(xe'g)-+A2y€'u4-B2(xe';)v€],
ye'ﬁ(o) - v, (2.19)
where qN(x) =1 for x GSN, qN(x) = 0 for x ERn-—SN+l

and qN(x) € [0,1] and has third derivatives that are
bounded uniformly in x and N. For each N, {xe'g(-)]
is bounded uniformly in p and €. As it will be seen
the actual technical proof involves only the truncated

processes [x€'§(°)}. See [14,15] for similar treatment.

Terminology: Let (Q,P,7) be the probability space in

which v (-) 1is defined and let JE’; be the o-algebra
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induced by (x°'\(s), y*'K(s), v®(s), 0 <s <t} and

€,u
BN

£Q be the class of measurable (w,t) real valued

the corresponding conditional expectation. Let

functions such that if £(-) Eip then

E|f(t+s) -£(t)] »0 as s = 0" and sup E|f(t) | <=
t

€,

and f(t) is adapted to Jt N

We say
p-lim £° = 0 » sup E|£°(¢t)| < »= and E|£°(t)| » 0 as
s-0 s,t

s + 0'. Define an operator Atk

N
D(Ae';) as follows: f ED(AC';) and Ae';f =g e f,gcL°

and its domain

and

EE';f(t-l» r) - £(t)
p-lim L

r~0

= -g(t) | = 0.

Let Lg be a diffusion operator of the form (2.7) such
that the coefficients of Lg and LY are equal for
x.ESN. Let 20 be the space of continuous functions
£ :RN + R which have compact support and ég
space of functions which belongs to éb together with

be the

its partial derivatives up to the third order.

The following Lemma is Theorems (1) and (2) of [14]

adapted to our case.

Lemma l: Assume that the martingale problem associated
with (2.7) is well-posed. For each fixed N, let

{xe';(°)} be the solution of (2.18) and (2.19). Suppose
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A
that for each £ Ecg, there is a sequence fe';(-) ED(Ae'ﬁ)
and a random variable Me';(f), for each T > O, such
that
p-lim  [£°°0(6) - £(x*' L ()] = o, (2.20)
€,u-20
e/uay
p-lim  [AS'hefrl(6) ~LYE(x 7L (6)) ] = o, (2.21)
€,40
e /Ly
Plsup | £°'1 () —£(x*'L(t))| 2 n) » 0 as
tLT
(2.22)
€M 20, e/l Yy
sup |AS LSl (e)] < M), (2.23)
t<T
and
sup PIM“'L(f) > K) » 0 as K- (2.24)
€,
then ({x(.))} converges weakly to x(.) as ¢ =+ O and

M+ 0 and e€/u = vy.

For notational convenience we write x(t), y(t),

Ae'“, LY, fi(t) and Et instead of xe'ﬁ(t),
€,M €, Y  f€,M €,u :
y N(t), AT g Ly fl,N(t) and Et,N respectively

but we are always working with the truncated process

€,H
()

simplification. Now we proceed with the proof of the

{x Moreover, we omit the Ay terms for further

A
theorem. Let £ EC% be given, then

AME(x(8)) = SE (x(6)) [ay (x(£)) +A , (x(E))y (&)
(2.25)
+ By (x(£))vE(t)]
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we observe that vy (t), the solution of (2.2) is given by:
A t/M 1 B A (e-T/M
y(t) = e Yot 5 e a,, (x(r))dr

1 .t Az(t-f)/u

+ — e B2(X(T))V(T/€)dT
W'e O
Now, since a5y and B2 are bounded uniformly in x and
v(t/e) is uniformly bounded on [0,®), we have:
—a2t/u K, t —az(t-T)/u
ly ()| < ke ‘yo‘*'TT 5 e ar
K t —a,(t-1)/M
+ 3_ f e 2 aTr
u/e O
_ K
<K +-2
NE
of

Then, by the compact support of 5% the last two terms

on the right hand side of (2.25) are of order 1/ /¢

and cannot be part of the operator LY, so they are

averaged out by defining fl(x,t) as:

df A -1
£, (x,t) = .fo 55 (OELA L (xX) (y(t+s,x) +A T2, (%))
. (2.26)
+ By (x)vi(t+s)]
where
A A s /M A,s/u -1
y(t+s,x) = e y(t) + (e -I)A a5, (%)
1 t*s Az(t+s-T)/u . (2.27)
+ = [ e B_(x)v (7)dr
M t 2
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Subtracting the term —A_§a21(x) in (2.26), in a

A
sense, centers y at its steady state mean.

Setting x = x(t) 1in (2.26) and defining

£)(t) = £, (x(t),t) we claim that
[£,(0) ] < KyvE+Ry/H (2.28)

where Kl and K, are positive constants independent of
T and w.
Proof of the claim:

From (2.26) and (2.27) we have:

of

© Azs/u
£ (x(8),t) = fo 5 (X(EE IR, (x(£))e (y(t)

5950

e

(x(t)))

s Az(s—x)/u &
e Bz(x(t))v (E+2x)dx

3. &
i A, (x(v)) ]

+ Bl(x(t))ve(t+s)]ds

then by using the bound on |y(t)| we have:

S |3f s/
£, x(0).8) | <x fo IS xEN A, x(£) |e

12, ,(x(£))]| s -, (s-2)/u
gl lsan b ip a2 [B, (x(£)) | [E,v® (£ + 2 |arlas
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Then, from (A2), (A4), the boundedness of the truncated

process x(t) and the compact support of %§ we have

after integrating with respect to s:

iy ~ u ~ +~ /[I - ey
1] < K+ 1(2\/—Z < KM+ KV D /M < Ky R

is bounded.

where we used that %

The mixing property implies

Bt e+ | ¢ K o™

\/€

Using that in 12 we have:

® s —a,(s-\)/u
< X [ e ? e M€ gyas.
My € O O

Changing the order of integration, we get:

© o -a, (s=-1)/u
I, < == jo [ e ? e M€ qsan
Hy € A

K Im e—ax/e

dx = K€

£, (x(t),t) | < Ky e+ Ky/k, which proves (2.28).

We next show that fl(t) ED(AQ'H). We have [13]
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Ae'“fl(t) p-lim [E £, (x(t+8),t+6) - £ (x(£),t)1/6

p-lim [E £, (x(t+8),t+8) -£) (x(t),t+6) 1/6
Y Vo)

+ p-lim [E £ (x(t),t+06) - £, (x(t),£)1/8
5-0

(2.29)

if the limits exist and are in £o. We first show that the
second limit exists and is in £o. From (2.26), fl(x(t),t)

can be written in the form:

£, (x(t),t) = Io E g, (x(t),t+s)ds

where gl(x(t),t-+s) is equal to the integrand in the

right-hand side of (2.26). So the second term of (2.29)

is

(x(£) £+ 8) ~ £ (x(t),£)1/6
2 §-0

ef1

@

= p-lim [Et f Et+égl(x(t),t4-64-s)ds
8-0 0

[-<]

- f E 9y (x(t),t+s)ds]/6
o}

Setting u = 6+s, we get
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I, = p-lim [| E_g,(x(t),t+u)du - E, g, (x(t),t+s)ds]/s
2 50 fétl IOtl

8
_p_%ig % f Etgl(x(t),ti-s)ds = -gl(x(t),t-ks)
(0]

= SSE(x(£)) (A, (x(£))y (£) + AL, (x (£))ATJa, (x(t))

+ Bl(x(t))ve(t)].

Therefore, the second limit exists. By the compact

§§ and the right continuity of v (t) it

support of
is obvious that Elgl(x(t),t-+s) -g; (x(t),t)| + 0 as

s » 0" and that sup E]gl(x(t),t)\ < @ and this implies
that the second limzt in (2.29) belongs to £O. For the

first limit we have:

p-lim [Etfl(x(t-+6),t-+6) —fl(x(t),t+-6)]/6

5-=0
1 Ia [afl
= p-lim F E, [== (x(t+u),t+8) (a, (x(t+u))
£ -0 6 0 t"ox 1l
+}szdt+u)hﬂt+u)+Blm(t+uﬂv€&+u)ﬂdu
3

S (% (£) 1) (ay (x(£)) + A, (x(£))y (£) + By (x(£)) v (t))

which shows that the limit exists. See [13] for a similar
treatment. Now by an argument similar to the one that has

been used to show that the second limit is in £ we

OI

can show that the first limit also is in £O. We conclude
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that £, () ep(a®™). Then, from (2.29) and the above

limits we have, (with x(t) = x)
€,M . of -1
A fl(t) Sass (x) [Al2(x)y(t) +A12(x)A 2azl(x)

+ B OVE(D)] + = (x.t) [a) (x)

+ Ay, (X)y (£) + By (x)vE(E)] (2.30)
Adding (2.25) to (2.30) we get
of
ASH(EG0 + £ (6) = 35 agto + 5L (x,t) (2, ()
(2.31)

+ A, (X)) + B (x)vE(8)]

The last two terms of (2.31) cannot be part of the operator
for every

LY, so we average them out by defining f2,

x €R® and te€[0,T] as:

of

- A
£y0xt) = [ B, T2 (x,t48) By, ()Y (E+5,%)

+ Ay (x)A_éaN. (x) + By (x)vE(t+s))

(2.32)

+ 8 wago - M e 1as

3%

The form of L(®/M), as defined by (2.5-2.17) with e/u

replacing Y, results as a by-product of showing that
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lfz(x(t),t)l is O(H+¢€), 1i.e., by identifying the
parts of the first three terms on the right-hand side

of (2.32) which are not 0(e) or O(u).

Using that fx and fxx have compact support and
the mixing property (2.4), and (A2)-(A4), it is shown

in Appendix B that:

£, () | < Rye+ KM (2.33)

where, f2(t) = f2(x(t),t) and K3 and K, are positive

constants independent of T and ®. Following the same

steps, we used to show that £, ep@a®'™y ana Ae'“fl €<,

it can be shown that fz(t) ED(AC'“) and Ae'“f2 €£O,

where, (with x(t) = x)

of

afHe, () = LM -2 0 g, 0y ()

+ AL, (0Aa, (x) + B (x)vE(8) -2 (x)ag (x)

af2

+ s (x,t) (3] (%) +A;, (X) Y (£) + By (x)vE(£))

1

(2.34)

Adding (2.31) to (2.34) we get:

€ ,M e/u °f,
ATRE(R) + £ (8) + £, (1)) = LYNE(x) + 52 (x,t)a(x)

af2 €
+ S% (x,t)[al(x)-+A12(x)y(t)-+Bl(x)v (t) 1.

(2.35)
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We define

£ M (1) = £(x(v)) + £ (x(8) ,£) + £, (x(t),t) for
(2.36)
0L t<T

Now we are ready to verify condition (2.20) of lemma (1).

From (2.36), (2.28) and (2.33) we have:

BlE77(8) - £(e) ] = BIE (8) + £,(0) | < K)VE + Ry

+ K3€4-K4H + 0 as ¢€,4L =+ 0
and it is obvious that, for t € [0,T] and ¢,u small,

sup E|£°M(t) -f(x(t))] < =.
t,e,H

Then, by the definition of the p-limit, (2.20) of
lemma (1) is proved. It is shown in Appendix A that:

afl

l—a; (x(t) ,t)aj(x(t)) | < KS\/?+ K6\/E (2.37)

where K and K are positive constants independent of

5 6
T and «. We notice that differentiating fl(x,t) with
respect to x, did not affect the order, i.e. we have
of
the same bounds on f1 and 7;% . Motivated by this

argument and by following the terms that will appear in

the calculation of the bound on f2 which is done in
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Appendix B, we can see that differentiating with respect
to x will not change the order of the resulting terms
and we will get a similar upper bound as in (2.33), taking
into account the mixing property of v, the compact

support of the partial derivatives of £ wup to the third

order and that v°(t) and y(t) are of order li we
Ve
have:
5f2
|55 (x(t),t) al(x(t))l < K, + Kgil (2.38)
and
of

552 () ,8) (g, (x(£))y (€) + By (x(£)) v (1) |

Lo s (2.39)
< Kgy/c + Klo\/u

where the positive constants are independent of ® and T.

By the smooth dependence of LY on Yy (see (2.16)),
and by the compact support of £ and all of its partial
derivatives, there exists a constant ¢ > O such that:

LM e ) —LYe () | <clg-vl (2.40)

Now, we verify condition (2.21) of lemma (1) as follows:

1A HESH (£) —LYg(x(1)) | < [aSHESH (b —L(E/mf(x(t))l

+ LM e e)) —LYe(x (1)) | (2.41)
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But, from (2.35), (2.36) and by applying (2.37)-(2.39) we

get:

of
a8 Mgk 6) LM eie) | < |52 x(0) 0)agx(e) |

3f,
(x(t) . t)ay (x(t) |

ol

Jf
+ 52 x(0),8) By, (x ()Y (8) +B) (x(8)vE () |
< El\/E + EZ\/E+ E3e + E4u (2.42)
where all Ei > O and independent of T and w.

Then, from (2.40) and (2.42) and by taking expectation,

we get:
Bla® M5 (1) ~LYE((0) | < RpW/E+ Kyl + K e + Kyu

+ c[& -yl 20 as e,u 40 and 5 4y,

and since this expected value is finite for all t,

condition (2.21) of lemma (1) is verified. From (2.36),

(2.28) and (2.33) it is obvious that:
{sup |£5°M () - £(x(£)) ] > M) € ((Ky/T+ K/ + Ky€ + Kyu) >1)
a b 2V 3 4
t<T
it follows immediately that

Therefore,

2

Tim

pisup |£5°H(t) —£(x(t))|2n) 40 as e,u-+0 and

LT
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and this proves (2.22) of lemma (l1). From (2.42),
e/n

definition of L and the compact support of £ and
its partial derivatives, condition (2.23) and (2.24) of

lemma (1) follow directly.

Then applying lemma (1) the proof of the theorem is

completed.

Remark 2.1: The above theorem does not cover the
case E-*O as W +0. This case however can be treated

in the following manner.

Asymptotic analysis can be applied in two steps by
letting €& 4+ O followed by M = O. For each Hd > O it
follows from [12] or [13] that if the coefficients of
(2.1) and (2.2) and the process v (t) satisfy the
appropriate assumptions then the corresponding solutions
of those equations converge weakly as € =+ O to the
solutions of the singularly pertubed Ito model: (See

Appendix C for derivations).

dx = [El(x) +A, (x)yldt +B) (x)/S(0) aw (2.43)

udy = [Ezl(x) +A,y]dt + B, (x)/s(0) aw (2.44)
where

a) (x) = a; (x) +hy (%), (2.45)

ng(X) = a21(x)+-ﬁz(x), (2.46)

hy; = tr(p/BW’], (2.47)
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and

h,; = triE{BW’'], (2.48)
and D.., Ei and W are as defined in Section 2.2. The
system (2.43) and (2.44) is a special case of the system
studied in [33] (See (2.1.1) of [33]). Under the
assumptions of [33] the process X(:) converges weakly

to the diffusion process XO(-) with differential operator

L given by (See Appendix C for details)

_ n 2
LE(x) = Z b, (x) ;T(XH% 2 ax %;{—fa(§) (2.49)
i=1 i i,j=1 *J i%%5

where

B(x) = a, (x) —Alz(x)A_:égz]_(x) +hy (0, (2.50)

- —_ ?

h,(x) = tr[-F/B s(O)B’(A’)'l -r/a F(A')'l] (2.52)

3 i1 22 i™127 2 :
and P satisfies

S = _ ’

PR, +A,P = -B,S(0)B] (2.53)

It is interesting to notice that the reduced order model
corresponding to the operator L in (2.49) can be obtained

from .Y in our reduced-order model (2.7) by letting
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Yy +0 (or E + 0). So, generally speaking, we can say
that the operator LY of (2.7) gives the right form of
the reduced-order model for all values of vy, i.e.

Y € [0,®).

Remark 2.2: There are special cases where the
infinitismal generator associated with X, given by (2.7),
is independent of the parameter Y. Such special cases
and their significance will be discussed in Chapter 5.

Here we would like to point out that in such cases the
convergence theorem reduces to the statement: "under the
assumptions (Al)-(A6), x(*) converges weakly to x(-) as

e 0 and K =% O, provided that E > Yl S0






APPENDIX A

To verify inequality (2.37), let us consider fl(x,t)
as defined by (2.26) and (2.27). So, we have:

@ A_s/u 1

£ 60t) = [ L xa,xe 2 ds(y(e) +a73a, ()

© t+s A, (t+s-))/M
+ a0k jo jt e 2 B, (x)E_v® () drds
+ %é(x)Bl(x) Io Etv€(t-+s)ds
= —u L oa, ATy () +A A, ()
© @ A, (t+s-)\) /1
+ SZO0AL, (08 jt Ix—t e ? as B, (x)E_v® (1) da

df *
+ S5 (0B (%) jo E

tve(t-l—s)ds

The second term, after integrating with respect to s will
be
of

“2L ()AL, (x)ATIB, (x) I, E,vE (1) d

Thus we have:

44
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-1

fl(x.t) = “ax(x)Alz(x)A (y(t) +A 2a21(X))

-] (A—l)
+ Zwr, 0 [ BT VA
t

where Bo(x) is defined by (2.6).

Let
-1
Ao =1 ]]mxm
and
By (x) = [0, ()] o
then fl(x,t) in (A-l) can be expressed as:

n m N
£o(x,t) = L % [-uE(x)E., (x)a,. (y. ()
1 5o %, g1 5% Y 2% Yx
> 5 5 (2f J"
+ a, ¢ (x))1+ (= x)e (x) Ey (x)dx)
v=l XYV =1 k=1 °%3

(A-2)

Then, differentiating fl(x,t) with respect to x, we get,

of
for the ith component of the gradient ?S%(X't)' i=1,2,---,n
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of n m 2
1 3" f(x)
—(x,t) = Z X [-ui====E., (x)a,. (y, (t)
o0xX; j=1 k,4=1 axiaxj j4 tx Yk
m 8., (x)
of j4
L of 3 BQV
+ \;231 o L (=) -n a—xj (x) gjz(x)atk v>=:1 %y, 55 (%) ]
N > [B—Tzf(") 6. ) [ EvEOnar
5=1 k=1 Bxi Xj jk ¢ ¢ k
af . %5k | e
+ ax—j(x)gé(x) jt E vy (V) dr] (A-3)

where [éij(x)]nxm = A12(X) as defined by (2.15).

For simplicity we are going to use the same symbol
K to denote different constants. Now setting x = x(t)
in (A-3), and by the use of the following facts:

K

1.y, (0] < ly®f < xR +=2  ¥k=1,2,---,m.
2. \éﬂ (x)8 L A, (x) I < K+ ]x]) <K
Vv =1,2,***,n and £ =1,2,...,m
where |x| is bounded as a result of the truncation.
Same is true for 6., .
Jjk

3. azl(x) is uniformly bounded in Xx.
4. First and second partial derivatives of £f(x) have

compact support.
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From the mixing property (2.4), we have:

]Etvi(x)‘ < HEtvi(k)H < %é e O (A-t) /e
N
we conclude that
]fl(x(t),t)l < KlV/E+-K2vdf , and since

lagx) | < K1+ |x])

and |x| 4is bounded, (2.37) follows.






APPENDIX B

We need to verify the inequality given by (2.33).
The important fact behind doing that is showing how the
form of Lc/“, as defined by (2.5-2.17), results as a
by product of showing that (2.33) is valid. Our goal

is to show that

o afl A
jo [E, =5 (x,t+s) (A, (x)y(t+s,x)
+ A, (XA a, (x) + B (x)v° (£ +5) ]as
= [ Mo -EMa las+o(e) +om)  (B-1)

0]

so that, if we define f2(x,t) by (2.32), (2.33) will be

satisfied. Let I = the left hand-side of (B-1l), and let

A -
g(x,t+s) = A12(x)y(t4-s,x)-+A12(x)A %azl(x)
€ (B-2)
+ Bl(x)v (t +s)
© afl
I = J‘O Et[gx— (x,t+s)-g(x,t+s)]ds
’ (B-3)

©

'
jo Et[g (x,t-+s)oVXfl(x,t4-s)]ds

48
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e} 3 3
where V, = (..._._'_'...'___
X ox sz an

1
product g' -fol can be expressed as:

). From (A-3), the inner

/
g (x,t+s) -vxfl(x,t+-s)

2 n 3£ (x) A
= . (x,t —— &, ,
i,3=1 %, =1 ey e 0% 3 0%y "3 ()G Ty (220
g% § A
+ Nt akvgv(x)) -ugi(x,t4-s) 5% J(x) == (x)azk(yk(t-+s,x)
A df
+ \El o Ly (%)) —ug; (x,t +s) Sx_j(X) S0 (%) ayy
m oC
2 ka 5—3 (x)1]
+ D i[(t+)62f(x)9() (A d
§5e1 3=y b aRRRy TikT Jns Prrstx M
+og, (x,t+s) 25 (x) aei(x) i v (n)dx]
axj 3x. t+s t+s k
* (B—4)
Let us define
—_ A -1
y(t+s,x) = y(t+s,x) +A 2a2l(x) (B-5)

Then, it can be seen easily that the first term of (B-4)

takes the form:
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’ -1—
- Mg (x.t+S)fXX(x)A12(X)A 2y(t+8.x) (B-6)
32£ (x)
where fxx(x) §§T§§T) The second term of
i""3 ' nxn

B 3f p
123 5;—(x)g (x,t+s)
j=1 4=1 j

M3

(B-4) = -u £, (X) A3y (t+5,%))

Y 4 £

where (A_§§(t4-s,x))£ is the 4P component of the
m-vector A_§§(t4-s,x). Then, summing over £ and using

(2.15) we get: The second term of (B-4)

n of ] -1—
= 2 -5 9 (x,t+s)F.(x)A 2y(t-!-s,x) (B=7)
xj j

where Fj(x) is defined by (2.15). The third term of

(B-4)

-2

= g’ (x,t+s) (2, (%)) (A)) AL, (X)T_E (x) (B-8)

The fourth term of (B-4) can be reduced to

[--]
’ €
g'(x,t+8)f  (x)By(x) [ EipgV (MAX (B-9)
t+s
ée.k
For the last term of (B-4), we need to look at ?537 (x) .
i
. -1 . .
Since Bo(x) = Bl(x) _A12(X)A 2B2(x) = (ejk(x))nxm it is
seen from (2.13)-(2.15) that
% m
6.. (x) = V., (x) - 2 ) a %), and therefore
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06 Y. og
jk k £
S (%) = (%) - E_ T %eqgx ¥
i 4,g=1 i
m an X
- 2 5., (xa, —aﬂ_(x)
L,g=1 J

Denoting the last term of (B-4) by I, we have:

> % of " f c
I, = . [g. (x,t+s) -——() (x) v, (A)dx
4 i,5=1 k=1 i ox ax +s k
m dE.
_ of Jp
Zgylxtts) go=(x) 575 %og" gk (%)
p.aq=1 j i
(-]
E ®(A)ax
It+s t+s 'k
2 of Mgk J~°° ¢
- g. (x,t+s) —(x) «a (x) E v, (A)da]
p.,g=1 . axj pq axi t+s CFS K
= Ty tI ,tI,, (B-10)
% i of ’ .J'.ao
I = (x) g (x,t+s)V_v., (x) © () ax
41 521 k=1 ij x'jk s t+s Yk
but from (2.13) and by summing over k we get
n ©
€
T4 _%) Bx (x) g’ (x,t+s) D (x) f EisY (A)ax (B-11)
j=1 j t+s
where Dj(x) is defined by (2.13)
n LU
I =- X Z (x)g; (x,t+s) —le(x)(A B, (x)
42 . T T k. 2°2
i,j=1 p=1 Jj Xi

€
E dx
It+s sV (Man)
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(-]
where (A—éBz(x) f ve(x)dx)z is the %P component of
t+s ©
=1 € .
the m-vector A 2B2(x) ft+s Et+sv (A\)d\x. Then by summing

over 1 and then over p, and using (2.15) we get:

n (-
of ’ -1 €
I,,= -2 =—(x)g'(x,t+s)F,(x)A7;B,(x) [ E,, _v (\)d\
42 5=1 ij j 272 P
(B-12)
g rzn> of ‘
I = - —(x)€. (x)a_ (g (x,t+s)E
. 0X.
43 j=1 p,g=1 °%j P Pq 4
J B v Ay
t+s
where Eq is given by (2.14).
L 3f -1
143 = —jé:l &:(X) (Al2(X)A 2W(X,t+S))j (B-13)

where w(x,t+s) is a vector whose ith component is given
by

®

g'(x.ti—s)E. f ve(X)dx (B-14)
L Tt+s

Then, from (B-3), (B-4) and (B-6)-(B-13), we have:

-
]

@®
IO E lg’(x,t+s) -V £ (x,t+s)]ds

«©

IO B, [-ig (b + )£ (x)A , (X)AT¥ (t+5s,%)

I

o gl—(x)g'(x,t-+s)Fj(x)A_;§(t4-s,x)

J

|
Lt

j
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-2

- ug'(x,t+s) (a21(x))}'{(A§) Ay, (X)9_£(x)

+g'xtes)E (0B (x) [ E_, _vi(oax

t+s t+s
> I ¢
+ (x)g (x, t+—s)D (x) E v (n)dx
j=1 axj t+s Ets
g Sf -1 ® e
- —(x)g’ (x,t +s)F. (x)A7;B, (x) E,. v ()\)dx
j=l o j J 272 It+S t+s
3 >f
- 2 EB{—(x)( 12(x)A w(x t+s)) ds (B-15)
j=1 j

From (B-2) and (B-5) we have:

g(x,t+s) = A x)§7(t+s,x)+Bl(x)v€(t+s)

12(

Substituting g into (B-15) and then after simple

manipulation we have:

©

I = J"O [-utr (£ (X)A), (x)AT

-1g T+ s, x)T (£+5,%)A], ()

-1

- utr (£ (x)A, ()ATLE (Y(t+s,%)v " (t+5))B] (x))

n
>f / - = -1,
- utr(j‘:“l g{—j(x)rj(x)Alet(y(u s,x)y (t+s,x)) (A 5)")
5 2f ! (vE(t+8)y (t+s,%)) BT
- Mtr( §§T(X)Fj(X)Bl(X)Et vi(t+s)y s,X 5

j=1 J
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(0By(x) [ E v (t+s,x)A],(x))

tr (fx
t+s

X

-}

tr (£ (x)By(x) [ EvEO)v'®(t+s)ars! (x))

t+s
X of / . ~ ‘e
tr(j§1 ax—j(x)Dj (x)A] , (x) ft+s Ey(t+s,x)v'"(A)ax
er( S 25 (0p! ()8, (x) fm E,v(t+s)ve(N)an)
j=la—x—j-xj 1 cre Lt s)v () dd)
3 of l; ® - 1€
tr(jéﬁ g;;(x)Fj(x)Alz(x) jt+s E.y(t+s,x)v'"())ax
B (x) 373) )
o of / ® € 1€
- tr(jgi g;;(x)F (x) By (x) jt+s E,v (t+s)v' ())an
B (%) (B-3) /)
S 3f -1
- j§1 B_X—J_ Et(AlZ(X)A 2w(x,t+s))j
- 1A, (E Y (t+s,%) + By ()E v (£+5)]]
oy =2
(azl)x(Az) fx(x)]ds
12
= I (B-16)
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©

7
Now let us consider f Ety(t+s,x)y (t+s,x)ds, where
O

1

we set y(t) = y(t) +A—2a2l (x)

[ Et§(t +s,x)y’ (t+s,x)ds
(0]

® Azs/u_ _, Aés/u
= | E le y(t)y (t)e
(0]
s A, (s-T)/u _ Als/u
+ ]:f e 2 B (x)ve(t+'r)y'(t)e 2 dr
MYy 2
A_s/u s Al (s-2) /u
+ie?2 7y [ v'S(t+0BI(x)e 2 dx
M 0 2
s s A, (s -1T)/u
2 e? B, ()v® (t+ 1) v’ (£ + 1)
L O O
Al (s=2)/u .
le(x)e 2 dtdx]lds (B=17)
From the estimate on y(t) and that azl(x) is bounded,
we get
© A.s/u_ Als/u , K, 2 ® -2a,s/k
[ e 27y (te 2 dslngl+—E) j e 2 dsg%gx’
0] Vv € (0]
(B-18)
and for the second term in (B-17) we have, (notice that
B is bounded)

2
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© s A (s-T)/u _ Als/u
ll [ [ e 2 B, (x)E v (t+m)dry’ (t)e %  as|
vl 2 t
O O
® g -a,(2s -17) /U ©® -a,s/4 -=2a.s/u
K 2 K 2 2
< Te f [ e drds = ¢ | le -e lds
O O (0]
<® <k (B-19)
€ K o
We used that |v (t+7)| ¢ —= and that - < K.
V€
From (B-17) and (B-16), the significant term of I1 is:

© s s A, (s-T)/u
M -1 2
L, = -= [ trf (X)AATS [ [ e
1 u 0 XX 127 2 0" 0

Aj(s-1) /u

Bz(x)Et(ve(t+T)v'€(t+ M)B, (x)e A{, (x)drdxds

(B-20)

Subtracting and adding to (B-20), a term equal to the one
that appears on its right hand side but with
E(ve(ta-T)v'e(t4-x)) replacing Et(ve(t+-7)v'€(t4-x)),

L can be written as:

1
_ 1 5 S € 1€ € 1€
Ly = -3 f [ il tr(E,v (E+T)v 7 (£+X) —Ev (£+T)v " (t+)))
O O O
, Aj(s-M) /M A, (s-1) /M
Bz(x)e Alz(x)fxx(x)Alz(x)e B2(x)dede

1 .=° .8 s -1 A2(s—T)/u
- 7 [ j J fXX(X)Al2(X)A e

O O O
. e , A j(s-N) /o
B2(x)E(v (t+T)v (t+-l))B2(x)e Alz(x)dede
(B-21)
= L,,+L

11 12
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From the mixing property (2.4), it follows [c.f. 36] that

lEv®(nvion —ev® (mveon | ¢ % -t /e (B-22)
for every O L t T A
Then from (B-22), (A4) the bounded truncation state
x(t) = x and the compact support of fxx(x), we have:
® 5 A —a, (s=\) /u =, (s=T) /1
Lyl < %f e s2(/e) 2 e 2 drdrds
o
-8 X =, (s=3) /0 —a, (s=T) /u
tae I SR 2 e ? drdrds
{1
o o0 O
(B-23)

changing the order of integration in

(B-23) .

Then, for

example, the first term in the right hand side becomes:

K Im bR /e =y (s-h) ko, (s-T) /i
He Yy j‘o f}\ g S b

Ky

Jar < ke

dsdrtd)

Similar estimate can be obtained for the second term of

(B-23) . Then, we have: (we used that

JL, 1 < e

u/e < Ky)

(B-24)
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Now we consider

® 5 A A_(s-T)/u
— 1 -1 2 ’ N =T
Lo =5 d [ ] trf (XA, x)875e B, (X)R' (5=)
O O O
, Aj(s=\) /M
B, (x)e Ay, (x)ard)ds
1 ®° s T 1 Az(s—T)/u s -1
- 5 J I ] trf  (0a ,(x)A e B, (X)R (=)
O O O
’ AZI(S—)\)/u ’
B2(x)e A12(x)dXdes
= T1+T2
where, the correlation matrix R(T) = E(v(t+ T)v’'(t))

satisfies, (also follows from (2.4) and [36]):

IR(1)| ¢ k& (B-26)

setting A -7 = w 1in Tl and changing the order of
integrabon, we get:
© s s A, (s+w-)\) /u
- 1 -1 2 ¢+t W
Ty, = - Io Io jw trf  (X)A;, (x)A e B, (x)R'(3)

/

A, (s-A) /M

7/ /
B2(x)e A12(x)ddeds

Integrating by parts just once, gives
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1 ® .8 -1 A2w/|“l W
2 jo jo erf  (x)A, (x)A e B, (x)R" (%)

)
il

1

Bé(x)(Aé)_ A{z(x)dwds

© g . Aos/u
-1 Io Io trf (X)), (x)AT3e © By(x)R'(Y)

’
AZ(S_W)/H =1

Bz(x)e (A2) Alz(x)dwds
1 ® s s A2(s+W—X)/H ) w
* 5 jo jo fw trf  (x)A),(x)e B, (X)R’ (3)
AI
B, (x)e 2(S_X)/“(Aé)_lAiz(x)ddeds (B-27)

Similarly, setting T -A =w 1in T2, changing the order
of integration and then replacing the dummy variable T

by A we get:

©® s s A, (s=)\)/u
_ 1 . » -1 "2 w
T, = -5 J oI et (0A ,(x)A e B, (X)R(3)
O O w
) A (s+w-\) /M
B2(x)e Alz(x)dxdwds
and integration by parts once implies:
7
_ l ® ﬁs -1 w / A2W/}“l =1
T, = % fo JO trf  (x)Ay, (X)A75B, (X)R(Z)B, (x)e (A7)
/
Alz(x)dwds
® A, (s-w) /u A.s/u
1 S = ) W, 2
-3 jo jo trf  (x)Ay, (x)A e B, (X)R($)B, (x)e
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=1
Alz(x)dwds

. = .5 s AZ(S-X)/H

n

+ = fo fo Jw trf  (x)A;, (x)e B, (x)R(3)

A2(S+w-x)/p

Bé(x)e (n! -1

2) Alz(x)ddeds (B-28)
Employing the facts that for any matrix A, trA = trA’
and for any matrices X and Y___, tr(xy) = tr(x‘y’)
nxm mxn

= tr(YX). We observe the following:

(1) The first two terms in (B-27) are equal to the first

two terms in (B-28) respectively.

(ii) The third term of (B-27) = —T2 and the third term
of (B-28) = —Tl.

From these observations and (B-25), we conclude that:

1 s 1 Bow/M LW
Ly, = % jo jo trf  (x)A), (x)A e B, (x)R' () B (x)
(A" A (x)awds
2’ P12

1 r‘w S -1 AZS/M ¢ W ’

- 3 JO fo trf  (x)A;, (x)A e B, (x)R’(3) B, (%)
A2(S-w)/H 1 =1_
e (B) TTA{, (x)dwds (B-29)

The first term in B-29
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@©

-1 ’ =1
= J“O tre  (x)A), (x)A7; 2B (x) (A7) A, (x)ds
© 0 A w ()
-1 2 o) ’ ’
+ J"O i/e trf  (x)A,, (x)A e B, ()R’ (W) B, (%)
(a) A, (x) dwds (B-31)

It can be seen that the second term in (B-30) < Ku.

And the second term in (B-29) is bounded by K) € + KM
where we used (B-26), (A4), boundendess of x(t),

compact support of fxx(x) and that % < K. So, from
(B-16), (B-18), (B-19), (B-21), (B-24), (B-29), (B-30) and

(B-31) we conclude that:

©

1 fo [-ntr (£

)
Il

(0B, (x)A_éEt(§—;(t+ s,y (t+5,%)A],(x))ds

©

- jo tr (£, (x)A),(x)A 75 D BJ(x) (&) A, (x))ds + e
(B-32)
where, 2 is defined by (2.16) and
le; | < Kye+Kyu, (B-33)
where
Kl,K2 are some positive constants independent of

T and W&
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Now, let us consider I3 of (B-16). From (B-17)

we see that the important term in I3 is similar to

(B-20) , namely,

1 2 N5 , s s A2(s—T)/u
L, = -= tr( — (X)F. (X)A, , (%) e
2 M IO j=1 ij Jj 12 IO fo
Al (s-\) /u _
B, (x)E (v (t+ v’ S (£+1))By (x)e ° (8;) "Hyararas

(B-34)

Repeating similar steps to the ones that has been made to

get from (B-20) to (B-21), we can express (B-34) as the

sum of two terms, i.e.,

21 22 (B-35)

and from (B-22), the boundedness of Fj(x) and the same

reasoning as before, we get (note: L21 involves the

expression appearing in (B-22))
Ly | < ke

and similar to (B-25), we get:

1 [~ S Sf , By (s-1) /u
L, = -— i == (X)trF! (x)A, ,(x)e
22 ME IO 0 "0 j=1 axj j 12
_ Al (s-2) /M _
B, ()R’ (A2D)BS (x)e 2 (a]) Fararas
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@ T n - A_(s-T)/u
- Lf f f 2 of (x)trFf(x)A (x)e 2
He ‘5 Y9 Yo j=1 axj Jj 12
Al (s-2) /u
B2(X)R'(>\;T)B2'( ye 2 (Az’) lararas
1 T n o 4 , Az(s-'r)/u
- 5= jo Io jo ]Ejl Erj(x)tr}?.(x)Alz(x)e
Al (s-)\) /1
B, (x)R(ig—)‘)Bé (x)e 2 (Aé)—ld"rd)\ds (B-37)

After some manipulations it can be shown that

-]

L = -
=L

€
© A A, ® A, (-)w

of ' 2 2
K(X)ter(x)A12(x) f e (‘f e M

J 0] 0]

I
!—'Mb

© /C)

(x)R'(w)dez'(x) +B2(x) f R(w)Bé(x)e 2

o dw)

n © A\
= ..j 2 -aa—f.-(x)ter'(x)Alz(x) _Jh e ?

(2 B, (x) + B(x) Z)
0 j=1 Jj o

/=1
e d}\(Az) ds+e2

D 3 -1
=-[ 2z BT(x)ter'(x)Alz(x)P(A ,) ‘ds+e (B-38)
o :

. 2
j=1 ]

where P is defined by (2.17) and

le,| < KM (B-39)
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Similar to (B-18) and (B-19), it follows that the

I

contribution of the first three terms of (B-17) to 3

of (B-16) is O(M). Combining this, with the results of

(B-35) -(B-39) we get the following estimate:

. 2 3f .
J oautr (L = (F (A, (x)

I =
3 o j=1 ij
E, (¥ (t+5,0)7 (t+5,%) (A—%) "y ds
D 3f 1
- L1 ’ / - ’ _
= trJ" ? ax.(x)Fj(x)Alz(x)P(A 5) ‘ds + e, (B-40)
0 j=1 J
where
(B-41)

]e3‘ < Kle + Kzu

for some positive constants Ky and K2 independent of

T and W, Now let us consider

© . ® A, s/M_ Ve
f E,y(t+s,x)v'  (t+s)ds = [ e vy(B)E, v “(t+s)ds
o *t 0 t

® g A2(s -T) /M . e
E,.v (t+T)v “(t+s)drds

1 -
+ 3 JO fo e B, (X)E
(B-42)
Using the mixing property and that vy (t) is O(;E) we get

Vv €
© A_s/u -(a +2)s

2 = € K 2/0 € Ku

[ e y(O)E v (t+s)ds| < £ jo / dsgmg K
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Let T* equal to the second term of (B-42) then we have:

® s A_(s-T)/u
S B, (x) (B v (t+ 1)v' S (t+s)
0

s A2(s-7)/u

-~}
- Eve(t4-T)ve(t4-s))d7ds4-£ f I e
H 70 o

B2(x)E(v€(t-+T)v'e(t4-s))des

=T, + T, (B-44)

Using (B-22) and that B2(x) is bounded we have:

© s —a,(s-71)/u
I, < X[ J e?
1 he Io Jo

595/¢ aras < x (B-45)

If we consider I in (B-16) with (B-42)-(B-45) we get:

2
I, = IO tr(fxx(X)Alz(x)A_%Et(§(t*'S'X)Vle(t'Fs))Bi(X))ds
© -1 1 S A2(S~T)/Ll
— fo tr (£ (x)A), (x)A7; - 3 Io e B, (%)

E(ve(ta-T)v’e(t+-s))B£(x)d¢ds)4—e3 (B-46)
where ]e3l <K€+ Kyu.
First term of (B-46)
€
1 By (v

= -tr jo jo £ (KB, (x)AT5e © 5 B, ()R’ (w)B] (x)dwas
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Im Iw -1 AZ(E)W 7
+ tr f__(X)A,_(X)A e B, (x)R’(w)B. (x)dwds
0 %/e XX 12 2 2 i3
. 1
=
= - jo trf  (x)A), (x)A7; LB (x)ds + e, (B-47)
where
]e41 < Ky + Ky (B-48)
Hence, it follows from (B-46)-(B-48) that:
% 1
- - /
I, =- j‘o tre (0B, ()2 2ZBl<x>ds+e5, (B-49)
|e5| < Kpe + Ky (B-50)

Following steps similar to what has been done in (B-42)-

(B-50) we conclude that:

L n N c ey
= -w (D S COFS (0B (OB, (v (E+ )Y (£45.%))
3= J
@) as
I” > ot , 1
=i tr( = (X)F!(x)B; (x) Z' (A7) 'lds +e (B-51)
o 5=1 axj j L 2 6
where

legl < Kye + Kyu. (B-52)






67

Then, we consider the integral:

® _ e ® A2S/Ll_ @ e
E.y(t+s,x)v' - (\)dads = [ e y(t) [ Ev T (0)axas
O t+s (0] t+s
© ® s A_(s-7T)/u
+ ;.lT ;o J e ? Bz(x)Etve(t+ T)v’ S (t+ 1) drards
O s O
(B-53)
BT
K ¢ o —GZS/“ -a)/e
‘¢1‘ <% I [ e e drds < Kye + KyM (B-54
O s

where we have used the mixing property and that vy (t) is

o(ié).
vk

© o g A2(S—T)/u R e
f f J e Bz(x)(Etv“(t-kT)v (t+ )
O s O

i

9, =

Eve(t+m)v’'%(t+2))drd)\ds

}\2(5-'?)/Ll ,€(

B2(X)E(v€(t+ tyv' € (t+2))drdrds

1 © © ﬁs
t o J oI T e
0°s ‘o

= o1t P2 (B-55)
From (B-22) we get:
© ® 5 -a,(s-T)/u
1 2 —a\/€
|@211 < i I f f € e dtrdiads < Ky € + Ky
O s O
(B-56)

A-T)4rards

Cp22 = L.}—e j Jﬁ I e B2(X)RI(
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Changing order of integration, we get

® XA X A (s-T)/M
1l ( 2 1A =T
o = = e B, (x)R ( )dsdTdA
22 MeE IO JO JT 2 €
© -1 _ ,
= jo (a 22 -2 lwz )ds + e, (B=57)
where
leo] < Kye+Kym (B-58)

and W is defined by f R(t)dTr. Then I, in (B-16), in
o)
view of (B-53)-(B-58) can be written as:
[- <) n \f ©
I, = [ tr( 2 S (x)D/(x)A,,(x) [ Ey(t+s,x)v'c()adx
7 0 jzlaxj J 12 t+s t
. S of / -1y _ % of ,
= [tr( 2 = (DS (0A) (A2 = L 5= (x)DI(x)A) 5 (%)
0 j=1""3 j=1 J
Al (x)W')]ds + e (B-59)
272 8
where
les‘ < K1€ + K2Ll (B-60)

where Ky, K, are some positive constants independent of
T and «. We have used that fx(x) has compact support,
(A2) and (A4). Similarly I5 can be handeled as I7

and we get:
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I, = | tr(f£,_(x)B_(x) E, v (M7’ (t+s,x)dWA], (x))ds
5 fo XX o) £+s t 12
= jw tr(f__ (A, (XATSZB.(x) -£_ _(x)A ., (x)A72W B! (x) ] ds
0 XX 12 2 0 XX 12 2 0
+ ey (B-61)
where
]e9| < K€+ Ko (B-62)

and Ky K, are some positive constants independent of

T and w. Also, in the same way:

(-] n (-]
of 7 - 1€
I, = tr[- 2 —(xX)F.(x)A,, (%) E,y(t+s,x)v’ ()\)ax
9 JO 5=1 dxj Jj 12 £+s t
/ 7 —l
= jw e 2 2E0F! (0A,, ()AL DB (x) ') L
= - o r o SQE X 5 XAy, (x 5 > x) ( 2) s
b ot B 2L Rl oA, 0a B (x) ) L
o r 2 55 (% 3 XA, (x SW B, (X > ds4—elo
j= J
(B-63)
where
leyol < Kye+ Ry (B-64)

Let us consider the integral
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© @

J f Etve(t4-s)v'€(k)dde
O t+s

g
]

Sl By (E+s) v/ (t+ ) dias
O s

1

J T By t+es)v S t+n) -EvE (£ +s)v’ (£ + ) Jdras
O s

© ©
€ 1€ _
+ ] ] BV (t+s)viT(t+ N ards = gy + T, (B-65)
O s
From (B-22), we have
lo; 1 < ke (B-66)
l (-] «© W @
Jg,=3%J) J rR'(Dawds = [ w'as (B-67)
o O o)
Then, from (B-65)-(B-67), (B-16), compact support of
fxx' (A2) and (A4), we get:
-] [-~]
= £ (x)B,(x) [ EvEO)v’'S(t+s)arB(x))d
I = tr( xx (%) Bg ¢ s 1 (% s
0 t+s
«©
/ /
= jo tr (£ (x)B) (X)W BJ(x)) ds+e ) (B-68)
where
lell‘ < Ky€ + Ky (B-69)

and Ky K2 are some positive constants independent of

T and 4. Also, we have from (B-65)-(B-67), (B-16),
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compact support of f_, (A2) and (A4) we get:

n
Ig = I tr E& g;?(x) Dg(x)Bl(x) I E ve(t4-s)v'€(x)dx

(0] Jj J t+s t
z 2 3f
Y 7 7
= [ tr 2 $£=(x) D (x)By (x)W'ds + ey, (B-70)
o =1 °7j
where
lej ol < Rye+RyM (B-71)

and Kl' K2 are some positive constants independent of
T, w. From (B-65)-(B-67), (B-16) and the same assumptions

as before, we get:

© n ©
of ’ € 1€
I,,=-) tr Z ——(x) F(x)B,(x) | E v (t+s)v'"(x)adx
10 o 5=1 oxj Jj 1 tts t
’ -1,/
B2(x)(A 2) ds
z A 3f 1
= -] tr == (x) F.(x)B, (x)W'B)(x) (A)) “ds+e
o jo1 %5 j 1 2 2 13
(B-72)
where
]el3| < Ky€+ Kyu (B-73)

and K,. K, are some positive constants independent of

T and . From (B-14) and (B-16)
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I“ > of -1
I = - —(X)E_ (A, ,(X)A sw(x,t+s)).
11 o 5o1 3%j o t12 2 j
I” 3 of 1
= - —(x) A, (X)A " Zh,(x)).ds + e (B-74)
o 501 3% 12 272 %)) 5 14
where
lel4| < Kye+ Kyl (B=75)

and w(x,t+ s), h2i(x) are defined by (B-14) and (2.11)

respectively. Finally, it can be shown that

11151 < Kpe+Kyu

for some positive constants Ky K, independent of T
and w. Now we add (B-32), (B-40), (B-49), (B-51), (B-59),
(B-61), (B-63), (B-68), (B-70), (B-72) and (B-74), and let
e denote the sum of all e, that appear in the above
equations and then from (B-3) and (B-16) we have:

2

© df,
1= 2 I, =] Eylsz(x.t+s) g(x,t+s)lds
i=1 o)

8

1

2 S =1
jo [trf  (x)A, (x)A75 2B (x) () T"A[, (x)

- tr 1

s

of } ' ‘-
g;f(X)Fj(X)Alz(x)P(Az)

J J

Ctrf (OA. ()AL EB (%) —tr 2 2f F (%)
XX 12 2 1 j=1 bxj J

Bl(x)z;'(A_;)'
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n
+ tr _%: ax (x)D (x)A 2(x) ;Z;
j=1 "7j
n
- tr ? ax (x)D (x)A 2(x)A (x)w'
j=1 J

+ trfxx(x)Alz(x)A-éZBé(x) -trf (x)Alz(x)A_é

B2(x)W'B6(x)

- tr 2 aaxf (X)F ] (x)A, (x)A_%ZBé (x) (Az')_l
j=1 J
3 3¢ -1
+ tr J‘:‘ = (X)F] (X)B ), (x)A ]2'W'B2' (x) (B5)
n Sf
+ trf  (x)B) (X)W B (x) + tr j§1 a‘;_(xmjf(x)sl(x)w'
D 3f ' 't /=1
- tr — (X)F. (X)B, (X)W'B', (x)(A")
5=1 axj J 1 2
3 of -1
- jZﬁ S_;(X)(Alz(X)A 2h2(x))j+e (B=77)

where e 1is the sum of all e which appears in the

k
right hand side of each Ii for i=1,2,---,12, and it
satisfies
lel < K; € + Kol (B-78)

where Ky, K, are some positive constants independent of

T and .

From the definition of B_ (x), the first term, the

0!

third term and the seventh term of (B-77) will cancel.
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Moreover, we notice that

trf () [B) (x)W'BJ (x) -Alz(x)A_;'Bz (x)W ‘B (%) ]
= trf_ (x)By(x)W'B} (x) = % trf_ (x)B, (x)S (0) B/ (x)
- Lirf (x)A(x) (B=79)
2 XX

where A(x) 1is defined by (2.9)

From the definition of P in (2.17), P satisfies

the Lyapunov equation

'] - _ / 7 _
PA, + AP = (252+ BzZ ) (B-80)

From (B-80) and (B-77) we have:

1

i

te[-F] (x)Alz(xm‘ész’ (x) (A_é) " -F(x)A), (x)P(ATY)
’ ’ =1,
- PGBy () 2T (A7) )
= tr[-F] (x)By (x) L' (A-é) ’ +Fj’(x)A12(x)A"§P] (B-81)

Then, from (B-77) and (B-79)-(B-81) we have:

of -1
g5 () (R 50 = (g GO 90y (1) 5 4 0y Ge)

H
Il
—
Mo
’__,M

2

1 3 d°F
+ a,.(x) —m—(x)]ds+e (B-82)
2 i,j=1 13 axiaxj
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where hij' h2j and h3j are given by (2.10), (2.11) and
(2.12) respectively. Then from (2.7)-(2.9) and (B-82)

we have:

@

1= Moo -Lea ras+e (B-83)
o

Therefore, by defining (x = x(t))

d of SfF

£,(x,t) = jo [E (53 (x.t+s)glx,t+s)]+ 5 (0)a (x)

- Le/uf(x)]ds
It follows directly from (B-83) and (B-78) that
lfz(x,t)] < Ky e+ Ky

where Ky and K, are some positive constants independent

of T and w as required.






APPENDIX C

We first derive equation (2.43) and (2.44):

X
Let X = (}7), then (2.1) and (2.2) can be written

in the form:

a, (x) +A,,(x)y B, (x)v®

X = + L (C-1)
N

(ay, () +A,y) B, (x)v°

where o > O 1is small, arbitrary but fixed and 52(x)==&B2(x).
Equation (C-1) is of the form:
F(X,v) +G(X,V) (C-2)

x =1

v €
which has been considered in [11-13], but let us apply, for

example, the result of [13] on the system (C-2), where

Bl(x)v€ .
F (X,v) , v o (t) = v(t/e) (C-3)

> €
B2(x)v

and

a, (x) +A,,(xX)y
G(X,v) = 1 12 (C-4)

lagy (%) +A,9)
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The convergence result of [13], says that under
certain conditions X(:) converges to a diffusion

process xo(-) whose differential operator is given by:

Af (X) = EG’(x.v(s))fs(X)

@©

+ jo EF ' (X,v(s)) (F'(X,v (s + 7)) £, (X)) ) ar (C-5)

I, + I

where

of of, .,

fX= (a—xr g'y')

=B [ (v' (5)B] (x)v' (s)B, (%))

T (v (T4 8B (VE (X) + v (T +8)By ()£, (X))
N dr
Vy(v'('r+s)Bl'(x)fX(X) +v'('r+s)B2'(x)fy(X))

E ] (v (s)B] (x)V (v (1+5)B] (x)f (X))
0

+ v/ (8)B] (07 (v (1 +5)B) ()£ (X))

+ v (8)By (x)V, (v' (T4 5)B] (x) £, (X))

+ v’ (8)B1 ()7, (v' (14 8)By () £, (X)) dr (c-6)

Consider the first term of, 12
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-]

J‘O Ev’(s)B) (x)V_(v'(T+5)B] (%) £ (X))ar

=<}

= tr Io EBl(x)v(s)(Vx(f;(X)Bl(x)v(T-+s))'dT

= tr jo EBl(x)v(s)(fXX(x)Bl(x)v(Ti-s)

iﬁi(X)vxwij(x)vj(T+-s))’dT

+
oxy

5 b8

i,j=1

-]

= tr f EBl(x)v(s)(fx (X)B

(x)v (T +8)
0 X 1l

of
1 9%y

+
Ms

(X)Di(x)v(T+-s))'dT

i

= tr jo EB) (x)v(s) (v'(T+s)B] (x)£__ (X)

+ 2 v'(r48)D! (x) 25 (x))ar
i=1 1 oxy
- ) g; of )
= r(Bl(x)W Bl(x)fxx(x))i-tr Z g;f(X)Bl(x)W Di(X)
1= 1

(C-7)

where wij' Di and W are defined as before.

The second term of I, is given by:

[ Ev/(s)B (07, (v (14 )5, () 0 ar

-]

= tr [ [EB, (x)v(s) (f
'JO 1 Yy
o5 /
+ L = (XE;v(T+s)) lar

i=1 %Y3 1

L(X)By (X)v(T+8)) "
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_ 17 ’ m of 1
= tr (B (x)W'B, (x)fyx(X)) + tr i§1 E(X)Bl(x)w E;
(c-8)

The third term of I, is given by:
J‘O Bv' ()8, ()7 (v' (7 + s)B/ (x) 22 (X)) dr

= tr jo EB, (x) v (s) (£, (X)By (X)v (T +5)) “dr

_ i i ’

= trB, (x)W'B] (x)fxy (X) (C-9)
The fourth term is
fo E(V'(S)gz'(X)Vy(V'(T+S)ﬁé(X)g—g(X)))dT

= tr(Bz(x)W ﬁz(x)fyy(X)) (c-10)
From (C-5), we have
I, = (a, (%) +A,(x)y) '£_(X) +&(a21(x) +A,y) 'fy(X) (C-11)

and therefore, by adding the expressions in (C-7)-(C-11),

we get: that the operator A, corresponding to XO,

which is defined by (C-5) is
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Af (X) = (51 (%) +A12(x)y)fx(X) + (521 (x) +A2y)fy(X)
+ % tr(B) (x)S (0)B (X) £ (x) + 2Bl(x)s(0)'§2’(x)fxy(x)
+ B, (x)S(0)By ()£ (x)] (c-12)

where Ei(x) and Eél(x) are defined through (2.45)-(2.48).

We used the following identity:
1371 ’ g 17 ’
tr[Bl(x)W B2(x)fyx(X)4-B2(x)W Bl(x)fxy(X)]
~
= tr[Bl(x)S(o)Bz(x)fxy(X)
Notice that:
w+w’' = 5(0) (C-13)

It follows from (C-12) that X° satisfies the It -
differential equations

dx = (3, (x) +A,,(x)y)dt + B, (x) yS(0) dw
(C-14)
Mdy = (3, (%) +A, )dt+ B, (x) y/S(0) dw

(C-14) has been introduced in (2.43) and (2.44).

Now we would like to apply the result of [33] to the

singularly perturbed system (C-14). To do that, we need to
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modify (C-14) to be expressed in the same form of the
system considered by [33], see equation (2.1.1) in

[33].

So, let us set Hd = V2 and ; = Vy then (C-14)
becomes (for simplifying the notation, we use y again

instead of ; but it will be understood that we are working

with v)
dx = 3, (x)dt+ 5 AL, (x)ydt + B, (x) /5(0) aw (C-15)
dy = 5 3, (x)dt+ 5 Aydt + 3 B, (x) 5(0) dw (C-16)
Vv

In [33], Theorem 2.1 says roughly that under certain
v
(

assumptions the slow states represented by x (t), and

defined by (2.1.1) there, converges weakly as VY 24 0
to the diffusion Markov process x(t) generated by

Z of (2.2.5).

Our goal here is to use the above result to derive

the operator L <corresponding to thelimiting diffusion

XO of the reduced-order model corresponding to (C-15)

and (C-16), when u(= V2) + 0. Then we compare the form
of L as given by (2.49)-(2.53) with the formula of

LY, given by (2.7), and conclude that L can be obtained

from LY by letting Yy #® O (or E + 0). So we proceed

by writting down the expressions for the operators £l,

£2 and £3 defined by (2.1.3)-(2.1.6) in [33].
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_ ’ 1 ’
£1 = (A2y) -Vy-+§ tr(B2(x)S(O)B2(x) -Vyy) (C-17)
_ 7 —_ ’
£2 = (Alz(x)y) -vx+a21(x) -Vy+tr(Bl (X)S(O)Bz(x)vxy)
(c-18)
- (3 ’ 1 ' ) _
£3 = (al(X)) -Vx4-2 tr(Bl(X)S(O)Bl(X) Vxx) (C-19)
o) o) ’ e d ’
h \v) = —, , — ’ v = T,y — ,
a2
Tax T TxTx) T Gmaw) oo etes
1 7J nxm

For any smooth function f(x), x ERn, which has

compact support, the function ¢él)(x,y) has been

introduced in [33] and it has been required that Wél)
must satisfy:
2 L',(l) (x,y) +£.£(x) = O (C-20)
17f ! 2

which can be written, via (C-17) and (C-18), as

1 , (1)

(Azy)' .vywél)(x,y)4-§ tr(BZ(x)S(O)Bé(x)vyywf (x,y))

+ (A, (x)y) £ (x) =0 (C-21)

By means of the linearity in y and the fact that the
constant matrix A2 is nonsingular, it can be seen that
w%(x,y) has to be linear in y. So we suggest the

following form for ¢f
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(1)
V£ (x.y) = g’ (x)y (c-22)

where g(x) 1is a vector function of x, to be determined

later. Substituting from (C-22) into (C-21) we get:

(Azy)'g(X)-+(Alz(x)y)’fx(x) =0

y' (B9 (x) +A], (x)E (x)) = 0O (c-23)

(C-23) has to be true Vy €Rm, this implies that

1

g(x) = =(B5) AL (O£ (x)

Then, from (C-22) we have:

) 1

(1 - ' -

Vo (xyy) = £ (X)A 5 (X)A Ly (C-24)

which is defined up to an additive constant. We proceed

as in [33], by defining Y(t;x) to be the diffusion process

in R™ generated by £1 given by (C-17). This process

is actually a Gaussian Brownian motion process which possess

an invariant measure given by:

— l -%(YIQ‘IY) m

P(Asx) = [ e dy VACR (C-25)
B ((2m™det Q)

x
2

Q 1is the variance matrix of Y(t:x) and it is dependent on
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the parameter x €R’. Q is in fact the solution P

of the Lyapunov equation (2.53). We notice that

[ Pay:ix) =1 (C-26)

Rm

As in [33] the diffusion operator L (see (2.2.5),

(2.2.6) in [33]), is defined by:

o =/ |,(l)
/ _ P(dy;x) [ay, (x) 7 vg
R

Lf (%) (x,y)

+ tr (B (x)5(0)B) ()7, ¢ (x,v))

(1)

+ (AL (x)y)’ LT Vet () vag (%) - £ (%)

12

+ 5 tr(B (x)S(0)B) (x) - £ _ (x))] (c-27)

1

Substituting from (C-24) into (C-27) and making use of

(c-26), then, the first term of (C-27) is

— — , -1
= - I _ P(dy;x)aZI(X)Vy(fx(x)Alz(x)A 5Y)
R

- a4 /! _l ?
- _ P(dy:x)a,, (x) (£, (x)A, (x)A75)
R

I

;g

'

- fx(x)Alz(x)A—

21(X) (c-28)

It can be shown after simple manipulations that the

second term of (C-27) is:
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= - [ P(ayix)tr (B (x)S(0)B) (x)
Rm

’ -1

i

’ -1,
- trfxx(x)Bl(x)S(O)Bz(x)(A 2) Al2(x)

s of ’ -1,
- iz:Jl tr ax—i(x)B(x)s(0)132(x) (A 5) 'Fy(x) (C-29)

The third term:

[ Bayix) (sy'Al,(0E ()AL, (x)ATSy
m
R

n
of 1, -1
- T sy AL, (NP (AT
i=1 1

= tr(-0(AT) B, (0E ()AL, (%)

n N

of -1 -1,/
- Zﬁ sx; (1A Q(R) By ()35 ()

1

3 20)AL 5 () (x)A], (%))

= > tr((@@Aa™3) +a”

of =1, /.

e

- tr
i

= -1 tr 2718, (0)5(0)BS (x) (A72)

l4

By (RVE . (X)A) ()

n
- tr % i(x)Q(A‘%)’Fi’(x)A

. X . (x) (¢-30)
L i=1 i

12

We used the fact that Q satisfies the Lyapunov equation

(2.53) .
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The last two terms on the right-hand sides of (C-27)

are given by

gi(x)fx(x)i-% tr(Bl(x)S(O)Bi(x)fxx(x)) (C-31)

So, from (C-27)-(C-31) and by replacing Q by P, we

get
LE(x) = (3] (x) =By, (0)AT33,) (x) + by (%)) £ (x)
+ 3 tr(By(x)S(0)B) ()£, (x)) (c-32)

where Ei, 521 and 53(x) are given by (2.45), (2.46) and
(2.52) respectively. The form of L in (C-32) is exactly

the same as if we let ¢/u (or y =+ 0) in (2.7).







CHAPTER III

STABILITY

3.1. Introduction:

Let us consider again the singularly perturbed

system that has been studied in Chapter two, namely:

. €

X = al(x)-+A12(x)y-+Bl(x)v , xX(0) = X5 (3.1)

uy = azl(x)-+A2y-+B2(x)ve, y(0) = Yo (3.2)
which defines (x(t),y(t)) under the hypotheses of

Chapter II. As we have shown, x(t) converges weakly

to the diffusion process x (t) generated by LY of

(2.1)-(2.17). We shall study properties of x(t) as
. €

t += with 0< e ey, 0<u U, and lJ"Y‘ < Yo

€,. are fixed and

S and Yo are sufficiently small.

“o'*o
Our objective is to establish stability results about

x(t) which are based only on conditions upon the approxi-
mating diffusion x(t). So stability analysis can be
performed as if x(t) was given by the reduced order model.
This will lead to a considerable simplification due to the
smaller size of the model as well as the fact that the
reduced-order model is a diffusion one. To justify this

approximation, analytical study has to be performed to

guarantee that the behaviour of the actual x(t) as defined

87
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by (3.1) and (3.2) can be asymptotically predicted by the
reduced order model. Similar studies have been carried
out in [12] for systems driven by wide-band noise, as we
pointed out in Chapter I. Our job is essentially to
extend the methods of [12] to the singularly perturbed
case. In section 3.2 we state and prove theorem (1)
which gives us sufficient conditions that guarantee
stochastic asymptotic stability of the origin x = O

of (3.1) if the origin x = O of the reduced-order model
is so. To show that, we will proceed in a way similar to
[12] except that the averaging of the Lyapunov function is
done in a way that is similar to the averaging of f (x)
in the proof of the convergence theorem of Chapter IT.

Since the operator A H

cannot be applied to unbounded
functions, the Lyapunov function V(x), whose existence
is required for the stability of the reduced-order model,
has to be artifically bounded using truncations. Recently,
in [31], truncations have been employed for a similar
purpose. In Section 3-3, we allow the coefficients of

ay . Al2 and Bl not to vanish at x = O, which is an
essential requirement in Theorem 1, and prove theorem 2
which shows that the mean square of x(t) is bounded on
the entire time interval. The basic steps of the proof
of Theorem 1 are used again in the proof of Theorem 2,
and only differences between the two proofs will be

emphasized. 1In Section 3.4 illustrative examples are

explored.
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3.2. Stochastic Asymptotic Stability:

Before we state the basic theorem of this section we

state all the assumptions needed:

(1) The process ve(t) is defined and is assumed to

satisfy the same conditions exactly as in Chapter II.

(2) The coefficients al'Al2'B1'a21 and B2 are
continuous in x and have continuous partial
derivatives up to the second order which are
uniformly bounded in x €¢rR". Moreover Ay and

B are required to be bounded uniformly in x.

2

(3) A satisfies condition (A3).

2
(4) The coefficients al(x)’A12(X) and Bl(x) vanish
at x = O and for every x €R” and for some

M > O,
\al(x)|-+|A12(x)l-+]Bl(x)l < Mlx| .
(5) The coefficients ao(x) and Bo(x) which are defined
by (2.5) and (2.6) are required to satisfy:
]ao(x) —ao(z)l + ]Bo(x) - B, (2) | <klx -z| Vx,z€eRr"
and for some K > O.

Now we may consider the diffusion process x(t), generated
by LY and given by (2.7)-(2.17), to be the solution of the

Ito equation:

dx(t) = b(x(t)) +o0(x(t))aw(t), x(0) = x (3.3)
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where b(x) 1is defined by (2.8) and

o(x) = BO(X)V/S(O) (3.4)
and we require:
(6) The coefficients b(x) and o(x) satisfy

Ibx) |+ lo(x)| < M|x| Vx €R®, for some M > O

and
|b(x) =b(z) ]|+ |o(x) -o(2)| < K|x -z| vx,z €r"
for some K > O.
We will consider functions V(xX), x ¢R" with the following
properties:

(a) V(x) 1is real-valued, positive definite, V(x) =0

U
b
I
o

V(x) = as |x| 4= and has continuous partial

derivatives up to the third order.

(b) For any vector or matrix valued function g(x,t) =0(x)

for t € [0,T] we have:

]Vé(x)g(x,t)‘ < KV (%), vx € RD (3.5)
vy () g(x,t))o(x, )| <KV(x), ¥x€R" (3.6)
| 33V (x) L1 g? )62 60,6) | < kv (x) ¥x € RD

(3.7)
vi,j,k =1,2,-++,n where gi,gg and gi are

components of vectors or matrices which are O0O(x).

The constant K 1in (3.5-3.7) may not be the same
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and it is independent of T. For example if g(x) = x
and V(x) = x2 or V(x) = x4 then it is obvious that

(3.5)-(3.7) are satisfied.

Truncated Lyapunov function: Let V(x) be a Lyapunov

function which satisfies (a) and (b), stated above. For

each positive integer N, define S = (x:|x] < N}.
Define VN(X) = V(x)qN(x) Vx GRn, where qN(x) =1

. _ . n _ .

in SN' qN(x) = 0 1in R SN+l and qN(x) € [0,1] is

smooth in x and have partial derivatives up to the third

order which are bounded uniformly in XxX,N.

In the following theorem we write L instead of LY,
where it will be understood that L depends on the
prespecified number Y E[Yl,“), Y, > O 1is arbitrary but

fixed. Moreover L 1is defined by:

L 3 1§ 32
L(-) = b, (x) =—(:) +5 a,.(x) s=—=—1I(-)
j=1 axi 2 i,4=1 1j axioxj
(3.8)
where
’ A
A(x) = BO(X)S(O)BO(X) = [aij(X)], (3.9)

The vector b(x) is defined by (2.8)-(2.17).
Now we state the theorem:
Theorem 1: Suppose that there exists a Lyapunov

function V(x) on RV satisfying (a),(b) and, for some

x> 0,
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LV (x) < -AV(X) vx €R" (3.10)

Suppose that all the assumptions (l1)-(6) are satisfied.

Then, there exist and such that for all

“0'Ho Yo
. . €

€,u satisfying O < € €5, O < B <My and lg"Ylf;Yo,

x(t), the solution of (3.1) and (3.2), is uniformly

stochastically asymptotically stable as t+4«, i.e. for

any mny; > O and M, > O there is a & > O such that if

Ixol < & then:

Bt

(1) Pllx(t)] <mye” ™, £t >0 >1 -n, for some 6 > O.

(II) Pi{lim |x(t)]| = o1 = 1.
t

Moreover, if V(x) satisfies, in addition,
n n
c2|x\ 2 < V(x) < cl]x] ! 7x € R

for some positive constants cy and c, and some positive
integers n,y and n, then (I) and (II) will be satisfied in

the large, i.e. independent of the initial condition Xq-

Remark: The condition (3.10), under the assumptions
stated on the coefficients of L, guarantees that the

limiting diffusion process x(t) 1is uniformly stochastically

asymptotically stable as t +4®, see [7] or [20].

Proof of Theorem 1l: 1In the proof we adopt the same

terminology and definitions, concerning the operator AC'“,

which has been used in Chapter II. 1In fact we are going to
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repeat the averaging method but with the truncated function
VN(x) instead of f(x). We follow the basic idea of the

proof of [12 Ch. 5].

Operating, now on VN(x) by Ae’u, (using from now

on x for x(t), for 0t T where T 1is arbitrary),

we dget
e avN .
ATV () = " (%) [ay (%) A, ()Y (B) +B1(X)v ()]
(3.11)
Averaging out the last two terms by defining
V., o, (x,t) = ﬂ](x) jm [A. . (x) (E.9(t+s.x) +A ta__(x))
N,1l ! ox 0 12 t ’ 2721
(3.12)
€
+ Bl(x)Etv (t +s)]ds
where
A A,S/u -1 1
y(t+s,x) = e (y(t) +A 2a21(x)) -A 2a21(x)
p Jt¥s B, (t+s -7) /M . (3.13)
+ = e B,(x)v (7)dT
MYy 2
3V
Ny = 2V
For X ESN (= ?S?(X) = ax(x)), we have

@® /\ _
lvg 1 )] < |§—\;Z(X) fo (AL, (x) (ELy(t+s ,x) +A %azl(X))

+ Bl(x)E ve(t-+s)]ds\,

t

but from (1)-(4) and (3.13) the integral is bounded by

(Klv;E:*sz/E)lX\- So it follows from condition (b) that:
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vy L0 (R e+ R/ BIVIX)  for x €S (3.14)

where Ky and K are independent of N and T. Operating

2
on VN,l(x’t) by A% we get
€, avN -1 €
A MV L (xt) = a5 (x) (A, (%) (Y (8) +AT5a) () + By () v ()]
3V
b el t) [a, (%) + A, (x)y(8) + B, (x)vE ()]
% ’ 1 12 %Y 1
(3.15)
Adding (3.11]) and (3.15) yields
. 3V
RS (Vg () vy (1)) = () ag(x)
avN 1l €
+ e (x,8) [a) (%) + AL, () y(£) + By (x)vE (1) ]
(3.16)

We average out the last two terms of (3.16) by defining:

© BVN 1 A
VN,Z(X't) = Io By —55— (Xt +8) (By,(x) (y(t+s,x)
3V
+ Bl(x)ve(t+s)) +a—}f‘(x)ao(x) -Le/“vN(x)]ds

(3.17)

Following the steps of the convergence proof of Chapter 2,
in which we have shown that |[f,(x,t)| = O(e+H), and by

replacing fl(t,x) by V and f(x) by V_(x) we

N,1

see that each term appearing in V

N

N,2(X’t) is identified,

using the assumptions (1)-(4) and (3.13), with the left
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hand sides of either (3.5) or (3.6). Thus, those

inequalities imply that

‘VN 2(x,t)\ < (Rye+KMIV(x) for x €S8y (3.18)

where K3 and K4 are independent of N and T.

Ay (x,t) = 1My >—8VN'1( t) (A, (x) (y (£) +A 2a. . (x))
N,2 XY= N ¥ ox X 12\ %Y 2891 X
Vv oV
+ By (0)vE(e)) - 5 (0ag(x) + —Z(a, (x) +Ay, (x)y (£)
+ Bl(x)ve(t)) (3.19)
Adding (3.16) to (3.19) we get
i Y
Ae'“vN(x,t) = L°/“VN(x) + BNx'l(x,t)aO(X)
BVN " ] (3.20)
£ =S (x,t) (3] (%) + AL, (X)y (£) + By () v (£))
where
Vi (%) = Vi () + Vg (x,8) V5 (x,t) (3.21)

A
Now from (3.20) and (3.21) and for any X > O, to be

determined later, we have:

aVN,l

X

A A
e'“-+x)v (x,t) = Le/“vN(x)-+va(x,t)+

(x.t)ao(x)

5VN 5 -
+ 5£ (X,t)(al(x)-+A12(x)y(t)-+Bl(x)vv(t))

(3.22)
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A
Our goal at this point is to choose )\ appropriately such
ITA s € /M

that (A -+x)VN(x,t) < 0. From the definition of L ,
(1)-(4), (3.5), (3.6) and the smooth dependence of Le/u
on ¢/u E[Yl,w), there exists a constant ¢ > O such that
for x ESN

lLe/“vN(x) ~L (%) | < c]& -y |V (x) (3.23)

From (3.14) and (3.18) we have for x ESN:

Vg (x,t) > (l—Kl\/_e—Kz\/F—K - K, M)V (%) (3.24)

€
3

Similarly we have for x ESN:

Ve (%,t) < (14K S+ Ky M+ Kye+K

N 3 4H)V(x) (3.25)

Now we want to find upper bounds for the last two terms in

(3.22) similar to the upper bounds in (3.14) and (3.18),

and this follows from the definitions of VN 1(x,t),
VN 2(x,t), from the assumptions (1)-(4) and from (3.5)-(3.7).
So we have:

BVN 1 . .

IT(x,t)ao(x)] < (Kgy/ €+ Koy 1)V () Fx €5 (3.26)

oV VvV

N,2 N, 2 >
| =3 (x,t)ay (x) [+ [—5=(x,t) (B, (x)y (t) + By (x)v (t)) |
) /T i
< (R e+ KgH + Kgy/ €+ Ky gy M)V (x) ix €85, (3.27)
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All the Ky in (3.26) and (3.27) are independent of N
and T. Now it follows from (3.22),(3.23),(3.26),(3.27),
(3.25) and (3.10) that for x ESN we have:
(ASH 4Ny e,t) € [ 4ClE-y] + Ry T+ Ry T+ Eye +K
Nt < e YR VK e IG I,
A s ol
+ ML+ Ky e+ Ky HHKye+KH) V() (3.28)
and YO > O sufficiently small

€0 >0 Ho >0

can be taken small enough

There exist
such that the following conditions are satisfied:
1=KV €g =Ky Hg =K3e0 =Ky = ¢ > 0
satisfying 0 < € < o

(1)
(ii) For all ¢ and u
A A
0 <M My and {J-y] < Yor A
such that:
€ o et i =
')‘+°lJ'Y|+K1\/ €+ Kyy/ M+ Kye+ KyH
A = ==
AL +KV e+ Ky HHKye+Ki) < O (3.29)
Then by this choice of €0 Ho and Yor (3.28) reduces to:
for b'e ESN (3.30)
the function
(3.31)

@& 4 v x,t) < o
Nl A
and for each N,

(P
My (£) = Vg (x(t),t) -V (x(0),0) -jo A% My (x(s) ,s)as

For
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is a zero mean martingale even if t 1is replaced by a

stopping time T with E(7) < =, [e.£f. 10].

Let us now redefine MN as in (3.31), but with VN

A
replaced by eXtVN. We have:

A t A

M () = Vg (x(t),t)e* —v (x(0),0) -I A% My (x(s),s)e®as

(3.32)

But from the definition of A, we have:

A
AG'MVN(X(S),s)e)‘s

A

A
(ek(s+6)VN(x(s-+é),s-+6) -eksv (x(s),s))
. N
= p-lim Et
5=0 S
A A
= p-lim % [ek(9+6) —exs]EtVN(x(s+-6),s+ &)
6=0
N\ 1
+ ™ polim B v (x(s+8), s+ 6)-v (x(s),s)]
50
A

A
eXSVN(x(sL s%+est€’“V (x(s),s)

g
ds N

>>

= e S(Ae'“+§\\)VN(x(s),s)

Then, we replace t by tNT,. = min(t,7.) in (3.32)

N N

where ™~ = inf{t : x(t) ¢ SN1. It is obvious that

E(t ﬂTN) < ®, Then (3.32) becomes:
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A
A(tﬁTN)
Mo(eNTy) = Vgx(eNrg) e Pre -Vy (x(0),0)
tNT A
N s CHYIEA
-J e (A% M+ vy (x(s),s)ds
from which we have:
A
)\(TNﬁt)
e VN(x(t ﬂTN),t ﬂTN) = VN<x(O),O)
tnT A . (3.33)
S\ (€ /M
+ jo et @S H v (x(s),s)ds + My (e N )
Since x(s) GSN fory i0n<s & tﬂTN, (3.30) and (3.32)
give
A
A (TyNE)
e VN(x(tFTN),t. ‘rN) gVN(x(O),O)+M.N(t PTN) (3.34)
Let C2 = l+}(1\/ EO+K2\/ uo+K3€O+K4HO then from (3.24),
condition (i), and (3.25) we have
CVix) L Vpx,t) < cz\/(x) for xESN (3.35)
So (3.34) and (3.35) imply:
A
A(TyNt)
0< ce Vix(tNTY)) gczv(x(o))+MN(t Nty (3.36)

The right hand side of (3.36) is a nonnegative integrable
martingale. Using Kolomogrov's inequality for nonnegative

martingales and that E(MN(t PTN)) = 0, (3.36) gives
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A
A (T Nt)

Plcye N v(x(ENTY) >mM, Ot T

< Ple,Vi(x(0)) +M(eENT) >N, Ot LT
< C,E(V(x(0))) /n (3.37)

Letting N =» «® implies that ™ % since by the linear

growth assumptions on the coefficients there is no finite

escape time. Then from (3.37) we have:

A

Pfcle)‘tv(x(t)) >n, 0<t<TH L czE(v(xo))/ﬂ (3.38)

Letting T - ® we get:

A

Ps'c1e>‘t V(ix(t)) >n, t >0} <c E V(x ) /M (3.39)

By the smoothness assumptions on V(x) we have:

— — "2
cllx\ < VI(x) < czlxl for x| < r, (3.40)

for some r, > O, c, > O, 52 > 0 and some positive integers

1
ny and n2. Then
A A
{cllx(t)| < —=— M t20'2W(x(t)) < == N, t >0

1

Hence by (3.39) and (3.40) we have:
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(3.41)

(3.41) gives

(3.42)

A
-2t/n 1/n
pilx()] <o T Tl £ 0) 21 -cEWxG)/n
c,c
171
c,C n
272 2
> 1-—= E(]x5] )
For any nl and uby choose 1 so small that
, -6t €2¢2 Ny
Pilx(t)] <e " nys t 201 > 1 - = E(\xol
)
where 6 = —. Choosing 6 so small that CZE
1

we get that for all

P x(t)]| < g

and this proves (I).
Now since
lim |x(t)]| = o°
t 4w
A
At

Z— ‘sup e
t>0

(V(x) Dbeing
of the above
(3.39), (3.40)

P'lim |x(t)]| =
t+ A

t
Nyr t > o}

statement) where C

imply that for

o’ >1-

o With \xo\ < 6

> 1 '”1

= {1lim V(x(t)) = 0O:
o

V(x(t)) £l

n

— 2
c2c26
C

N

(3.43)

radially unbounded is necessary for the validity
is any positive constant,

]xol < & we have
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Then as C = ® we get
P{lim [x(t)| = 0) = 1 (3.44)
tre

which proves II. Now if V(x) satisfies (3.40) Vx e r"

and if |x | < =, (3.43) and (3.44) follow in the large.

3.3. Mean Sguare Boundedness:

The stability result presented in section 3.2 was
concerned with establishing the asymptotic stability of
the origin in a stochastic sense where the origin x = O
is an equilibrium point of the system for any driving
input noise. That is, if the initial condition Xy =0
then x(t) = O for all t > O. A key assumption there
was the requirement that al(x), Alz(x) and Bl(x)
vanish at x = 0. While requiring al(x) to vanish at
X = O 1s a typical and acceptable assumption because it

can be always achieved by shifting the origin to the

equilibrium point of the unforced system, requiring

Alz(x) and Bl(x) to vanish at x = O 1is not always
valid. 1In many cases driving inputs do not vanish at
X = O and one cannot discuss asymptotic stability of

X = O because x(t) does not necessarily tend to

X =0 as t »+ «®, For deterministic systems the
appropriate concept of stability is bounded-input bounded-
output stability, i.e., to es*tablish that for any bounded

input the trajectories of the system remain in a bounded set.
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A stochastic version of this concept is the mean-square
boundedness where one shows that x(t) has a bounded
mean square. The objective of this section is to study
the stability of x(t) when Alz(x) and Bl(x) do not
necessarily vanish at x = 0. We now state the following

alternative assumption.

(4') The coefficients al(x), A12(X) and Bl(x) are
required to satisfy, for every x €R" and for some

positive constants M and M

1 2’

\al (x) | + ]Alz(x) | + 1Bl x)| < My 1x| + M,

The Lyapunov function V(x) will be taken to be a
guadratic form, namely V(x) = x’0x, Q > O. So it is
obvious that V(x) 1in this form satisfies conditions

(a) and (b) including (3.5)-(3.7), which are stated in

section 1. Now we are ready to state theorem 2.
Theorem 2: Suppose that there exists a positive
definite n xn matrix Q such that V(x) = x'Ox satisfies
LV(x) < K-AV(x) Vx€Rr" (3.45)

for some K > O and X > O. Moreover assume that all the
assumptions (1)-(6), with (4') replacing (4), are satisfied.

Then there exist

M and YO such that for all ¢,u

“o"o
. . €
satisfying O < ¢ { €5, O < W L My and lg-—y] < Yo+ the

process x(t), defined by (3.1) and (3.2), is bounded in
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the mean square, i.e., there exists a positive constant
K > O such that E{Ix(t)‘z} < K, provided that

2
E{\xo| ] < =,

Remark 2: The gquadratic Lyapunov function V(Xx)
satisfies the following conditions:
)\ 2
E{V(x(t))), E{|lLv(x(t))]) and E{l—-j(X(t))oij(X(t))l}

axl

are bounded in t 1in any bounded time interval, and that
Vix) > c|x]2 ¥x € R and for some c > O. Similar
conditions to these and to (3.45) have been required
[c.f. 18,31] to guarantee that, the solution to an I1to
equation is exponentially bounded in mean square with
some positive exponent, i.e., Ef]x(t)]2 < Kla-Kzéat for
some Kl > 0, K2 > O and a > 0, where x(t) is the

solution of an ItO equation. This is actually the case

for x(t), the solution of our reduced-order model. The

above conditions are valid because V,|Lv| and |(§§L)oij]
i
are dominated by polynomials and ¢ 1is in fact equal to

xmin(Q) which 1is positive since Q 1is positive definite.

Proof of theorem 2: Using the fact that V(x)

satisfies
cllx]2 < V(X)) < c2‘x]2 vx € R™ (3.46)
for some positive constants <y and Coo and then

preceeding in the same way as in the proof of theorem 1 of
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section 3.2, we get the following inequalities which are
similar to the ones given by (3.14), (3.18), (3.23), (3.26)

and (3.27) respectively. The new inequalities take the

forms:
g 1) ] <Ky e+ Ky 1) (1x1%+ 1x1) . (3.47)
IVle(x,t)l < (K3€-+K4u)(lX|2-F\XI-Fl), (3.48)

For some ¢ > O

\Le/“vN(x) - Ly (x) | gc]E—Y](lx]2+]x|), (3.49)
°VN,1 — — 2
‘_TSf_(X't)ao(X)‘ < (Kgy e4—K6v'u)(]x] + |x1), (3.50)

and finally

oV oV

]—dN——(x t)a, ()] + |

N 2

(x,t) (A (x)v© () |

(x)y(t) +B

12 1

< (Kpe + KgH + Ky J E+K OV ) ]x] + x| +1) (3.51)

All the positive constants K, in (3.47)-(3.51) are

independent of N and T. Defining VN(x,t) as in

(3.21), we have

€,d € /M Vy.1 Yy, 2
AV VN(x,t) = L vN(x) + ax' (x,t)ao(x) + ax' (x,t) (al(x)
+ Ay, (x)y () +Bl(x)v€(t)) (3.52)

Then from (3.49), (3.45), (3.50) and (3.51), (3.52) implies

that
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AS My ) < ke Ix1P+ el S -y (1x12 4 1x])

¥ (Kpe+ Kgh + Ko/ & + Ky gv/ ) (1x]% 4 |x| + 1)

;
< K+ (EI\E-Y\ +c; (e,1) =hey) lx]2+32|:=l - vl +c,(e,m)
(3.54)

There exist eo > 0, uo > O and YO > 0, sufficiently
small, such that for 0 < e €O' O<u <L Mo and

€
‘J"Yl < Yo Wwe have
pu— € _-— ot
Cl‘a._Y|.+cl(e,u) -\cy = <K, for some K, > O.

Then it follows from (3.54) that
A%y (x,t) < R -K,|x|? (3.55)
N 1 2 :

for some positive constants El and Eé. Also the above

choice of €0 Mo and Yo can be made small enough that
by the aid of (3.47), (3.48) and (3.46) we have

a 1Y|2-a <V, (x,t) < B \XI2+B ¥x €8 (3.56)
1" 2 N 1 2 TN )

where ay and Bi are some positive constants.

Now let us introduce a set QO as follows:

1
2

Qo = (x € R" : x| < Kyl where Kq = ( )

w”kﬁl

N

We define the starting time To @s follows:
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T.=0 if x(0) ¢ 2

inf (t: |x(t)] = Rk} if x(0) €0Q
£>0 ©

and let be defined as the first time that x(t)

"1
enter Qg  for t > T1,, i..e., T, = inf{t :t;ZTO,X(t) EQO}.

Finally we define Ty @S before (see section 3.2), that is,

Ty = inflt :x(t) ¢ s ). Without loss of generality we

5 s
assume that Sn QO so that ™ 2 Tor Then similar to

(3.31), and for 0 t LT, t > o

vN(x(t OTNHT ). t ﬂernTl) =V _(x(1.),1.)

1

tﬂTNﬂT (3.57)

1
+ j Ae'uVN(x(s),s)ds + MN(t Ny ﬂTl)

o

where My is the zero mean martingale defined similar to
(3.31) except that the lower limit of integration is o
It is obvious by the definitions of TorT and N that

for o £s < tr\TNrol' X(S)<ESN-QO and then (3.55) gives

a®Hy (x(s),s) <O (3.58)

Therefore, (3.57) implies

VN(x(t ﬂTN ﬁTl),t ﬂTNrWTl) < VN(X(TO),TO)-+MN(t DTN.ﬂTl)

(3.59)

But from (3.56) we have:

2 2 "
allx(t nTNrWTI)] < 024-Bllx(70)] + By M (£ T 0T
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Then by taking conditional expectation E_ ., we have:
o
a B B
2 2 2 1 2
E. |x(ent Nt | < =+—=+—=E_ |x(7)]|° <K
o N 1 ay oy oy T o

for some positive constant K independent of N. And

then by taking unconditional expectation, we get
Elx(t Nt _NT )\2 < K
N 1
Since K 1is independent of N, 1letting N 2 ® as we get
E\x(tml)lng VOt T (3.60)

Now, we consider the following cases:

(1) If 7, > T then Elx(t)]zgx 70t T (3.61)
(ii) If 7, < T we redefine Té = inf {t : |x(t)| = K}
Ty

1f Té > T then E‘x(t)]2 {C 7O t<T where
C = max(K,KO).

If Té < T then 1. 1is taken as the starting time

0]
and we repeat the whole process again starting from (3.57)
and with 7, = inf(t :t » 7], x(t) €0, ), and then similar

to (3.60) we get:
4 2 1 4 /!
Elx(tnT{) | <K vte[rd,TNT ]
and so on. Then we conclude that

E]x(t)|2gi, 0< t<T for some K > O,
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independent of T. Therefore letting T = ® we get
2 - .
Elx(t) | <K Tt >0
and this completes our proof.

Remark 3: Suppose that K= O in (3.45), i.e.,
LV (x) < -AV(x), and that the constant M2 in (4') vanishes,

i.e. the coefficients al(x), A..(x) and Bl(x) vanish

12

at the origin and satisfy
la; (x) ] + |A12(x)| + ]Bl (x) ] < Mllxl 7 x €R".

Then, if we proceed in a way similar to the steps of the
proof of theorem (1) we conclude the following

inequalities which are similar to (3.30) and (3.35)

respectively
e,n A -

(A~ -kx)VN(x,t) < O for X tSN (3.62)

c1V(x) < VN(x,t) < czv(x) for X ESN (3.63)
<y and c, are positive constants independent of T and
N. But since V(x) = x'Ox, we have;

c. ]x]2 <V (x,t) < ¢ ]x]z for x €S8 (3.64)

1 N 2 N :

Then similar to (3.34) and by the aid of (3.62) we have:

Q(TNﬂt)
e VN(x(t ﬂTN),t ﬂTN) g_vN(x(O),O)4-MN(t DTN) (3.65)

then from (3.64) we have:
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A
A (T1,.Nt) _
N ke T 17 < S, lxg 12 My e 0T ) (3.66)

0 < Ele

Taking unconditional expectation we get:

A
X(TNﬁt)

S E (e lx(e N1 15 ¢ S,EIx 1% < T

By the monotonic convergence theorem we have:

A
A (T Nt) A 5 =
line(e Y Ixenr)|?) =eExwH < =
N= c
1
5 A
then E(|x(t)|%) < ket YO t<T
since K 1is independent of T, it follows that
2 \
E(lx(t)|%) ¢ ket vt > 0.
3.4. Examples:
Example 1. Consider the system:
X = —5x+xy+xve (3.67)
—x2 €
My = -y+e v (3.68)

We would like to study the stability of x(t) when ¢

and (o are sufficiently small, and let us take vy = .1,

™ |

as a nominal value of the ratio ¢/u. ve(t) =

/
\/
and v(t) 1is a zero mean, stationary, uniformly bounded

v(t/<)

process for t € [0,®) and satisfies a mixing condition
with decaying exponential, so that, if R(T) 1is the

correlation function, then we have
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IR(T)| < &' (taking the exponent to be 1 here).

According to the results of Chapter 2 the state x(t) of

(3.67) and (3.68) can be approximated by a diffusion

process x(t) whose diffusion operator is given by: (Let
us assume that S(0) = 1, where S(w) 1is the spectrum of v)
2 2 2 2 2
L(-) = {—5x4—%[x4—x5x —2x38% 4 2x33%% 4 x&2X 4 xS¥ ]
(3.70)
3-2x2 (7 -.1(7) d 1.2,. — 224
+ 2x"e | e R(T)AT)a=(+) +3x" (L +ex”) =5(-)
o dx 2 dx2

To establish the stability properties of x(t) we need
to study the stability of the diffusion x(t) and this can

be done, if we can find a Lyapunov function V(x) which

satisfies LV (x) < =-AV(x), Vx €R and for some X > O.
Let us choose V(x) = x2, then from (3.70) we have:
2 2 2 2 2
LV(x) = —le2+-[x24-x25X —2x4éx -+2x452X -+x2é2x -+x25X
2 _1(7) 4-2x% 2 2’
+ 4 f e’ R(T)dTr-x e +x"(1+e” ) (3.71)
(0]
2 2 2 o =(1l.1 2
< -10x“ +4.36x°+ .75x° [ s(1-DTqr 4 ax
(0]
2 -
< =xT = =V (X) 7 x € R
2—2x2
We have used that max(x“e )y = .18,

X
Then it follows that, [c.f. 7,20], the solution x
of the reduced-order model given by L of (3.70), is

stochastically asymptotically stable. Then, it follows by
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theorem 1 of this chapter, since all the assumptions of the
theorem are satisfied, that the process x(t) 1is stochas-
tically asymptotically stable for ¢ and u sufficiently

small and for 5 sufficiently close to Y = .1.

Remark: It is interesting to notice that, if we
allow S, for example, to take values in [.05,%) (say),

then we see from (3.71), that the term:

€ 3 2
2 = (&) .2 = —(&41) 4-2x
ax*e? [ e MU R(myar < ax*3%¥ [ et = iéfi___
(0] 0 (-+1)
a
2
4X452x
< ~To5

Since S > .05 and the above conclusion is valid

for sufficiently small ¢ and Hd and for any 3 in
[.05,2). Although theorem 1 is valid only for the case
when S is close to a norminal value Yy in [yl,m) for

some Y, > 0, the proof can be modified to show that if
LV < -\V is satisfied uniformly in Yy then the statement

of the theorem holds for all E > Yq > 0.
Example 2: Consider the system:

X = -2X+ Xy + V- (3.71)

.

HY

_y+ve (3.72)

This system is different from the one which has been

considered in example 1 in that, the right-hand side of

I

(3.71) does not vanish at x = O which means that x )
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is not an equilibrium point and the best that we can hope
to establish is to show that x(t) 1is bounded in the mean
square, for all t > O and for € and WK sufficiently
small and for S sufficiently close to a nominal value

Yy = .5 (say). Let us assume that v® satisfies the same
assumptions as in example 1. The process x(t) of (3.71)

and (3.72) can be approximated by a diffusion process x

1).

whose differential operator is given by: (We take S (0) =
1 a 1 2 g2
L(+) = (=2x+5[x+1]1+2 ) () +50+x)" =5 () (3.73)
dx
where
Z=J rR(mear (3.74)
0]
Then if we choose the Lyapunov function V(x) = x2, (3.73)
implies:
LV(x) = —4x2+x2+x+2xZ+ (l+x)2
= -3x2+(x2+(3+22)x+1)
-2 2
_ _3x2+(x+3+222) '(3+ZZ) +1

Using the fact that (a4—b)2 < 2(a24-b2) for any real

numbers a and bk and that

winN

1z < [ a3 Tqr =
0

we get

LV (x) < 12 -x2 = 12 -V (x) Y x € R
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This implies [c.f. 18] that x(t) is exponentially bounded
in mean square with exponent 1, i.e. E(|§(t)|2) < K14-K25t
Vt>0, for some X; > O and K, > O. Then, since all

the assumptions of theorem 2, of this chapter, are satisfied,
it follows that the process x(t) is bounded in the mean
square sense, VYVt > O, for sufficiently small € and

4 and for sufficiently close to 0.5.

€
I



CHAPTER IV

STABILIZING CONTROL

4.1. Introduction:

It is a well known fact that an important aspect of
feedback design, is the stability of the control system.
Whatever has to be achieved with the control system, its
stability must be assured. Actually, sometimes, the main
goal of a feedback design is to stabilize a system if it
is initially unstable. Let us recall that the two types
of feedback designs are the state feedback, in which it
is assumed that the complete state of the system can be
accurately measﬁred at all times and is available for
feedback, and the output feedback, which is the much more
realistic case where there is an observed variable whose
dimension is, in general, less than that of the states
and it serves as input to the controller. The observed
variable is usually corrputed by an observation noise.
The states of the system, which cannot be measured
accurately in this case, can be reconstructed from the
observed variables and the feedback control, in this case,
is a function of the reconstructed states. For example,
in the case of linear systems, where both the state

equation and all the output variables are corrupted by

115
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additive white noise (the state equation is an It5 equation)
one can use a Kalman filter [c.f. 37] for a state recon-
struction and then a state feedback control can be designed
to achieve certain prespecified objectives. Stabilizing
nonlinear stochastic systems via the use of an asymptotically
stable stochastic observer have been considered recently [18].
The work which is done in that paper is a generalization of

the Kalman filter structure.

Until recently, singular perturbation techniques have
primarily focused on state feedback design of linear
systems. Advantages of these techniques, such as order
reduction and separation of time scales, are expected to
have a more dramatic effect on feedback design of nonlinear
systems. Stabilizing deterministic nonlinear singularly
perturbed systems have been considered, for example, in
[2) and [38]. 1In this chapter we consider the stochastic
stabilization problem for nonlinear singularly perturbed
systems driven by wide-band noise. We consider the
following system:

€

X = al(x)-+A12(x)y-+Bl(x)vll-+Gl(x)u (4.1)
€

nuy = azl(x)-+A2y-+B2(x)vll-+G2(x)u (4.2)

z = cl(x)-+c2y-i-B3(x)v22 (4.3)

where u 1is a control vector in Rp, z 1is the output

€ €
vector in RY (@ < n), vlléff:and v22 €R® are independent

and have the same properties, as v® defined in Chapter 2,
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where € and €, are different in general, so that, if
€
the observation noise v22 has spectrum which is wider
€
than that of the system noise vl1 then we expect €5 to

1 and B3

are, in general, functions in x and are required to

be much smaller than el. The matrices G1'G2'C

satisfy certain smoothness conditions which are specified

later. The outline of this chapter is, roughly, as follows:

1. We begin with the open-loop full-order system (4.1)-(4.3)

and we aticipate an open-loop reduced order model

(OLROM) in the form of an 1to equation.

2. We design a stabilizing feedback control for the above
(OLROM) model which will result in a stochastically
asymptotically stable closed-loop reduced order model
(CLROM) . Work similar to that of [18] has been done,

in that regard.

3. We apply the feedback control which we obtained in
step 2 to the full-order open-loop system (4.1),(4.2),
and we obtain a full-order closed loop system (FOCLS)

which will be of the form (2.1) and (2.2).

4., We apply results of Chapter 2 to identify the reduced-
order closed-loop model (ROCLM) corresponding to

(FOCLS) which has been obtained in step 3.

5. We require that the (CLROM) be the same as the (ROCLM)
and this results in some conditions which will be
referred to as the consistency conditions under which

the OLROM will be identified completely.
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6. We apply the results of Chapter 3 to obtain conditions,
under which the (FOCLS)is stoachastically asymptotically

stable.

Remark: In the second section we will study the case
when all the states of (4.1) and (4.2) are available for
perfect measurement and a stabilizing feedback controller
has been designed according to the above outline. 1In the
third section we repeat the same procedure but in this
case we assume that the states are not available for perfect
measurement and an output feedback controller via an
observer is employed. 1In section 4 we illustrate the

procedure by an example.

4.2. State Feedback Stabilizing Control: Let us write
€

again the full-order system (4.1) and (4.2) with vll
written simply as v
. €
X = al(x)-+A12(x)y+-Bl(x)v -+Gl(x)u (4.4)
MY = @, (X) + A,y + B, (X)V° +G, (x)u
We assume that the slow state variables x(t) are
available for measurement. Since the results of Chapter 2
indicate that x(t) tends in the limit to a diffusion

process, it is reasonable to anticipate that the open-loop
reduced-order model corresponding to (4.4) and (4.5) takes

the Ito form:
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dx = b(X)dt + G (X)udt + 0 (x) dw (4.6)
where the exact forms of the vector b and the matrices
G and ¢ will be determined later. Let us assume that
there exists a sufficiently smooth function g(x) such
that, when the feedback control u = g(;) is applied to

the system (4.6), the resulting closed-loop reduced-order

model

dx = (b(X) +G(X)g(X))dt + o (X) aw (4.7)

is asymptotically stable in some stochastic sense (see
Chapter 3). Then, we apply the control law u = g(x)
to the open-loop full order system (4.4) and (4.5) to

obtain the closed-loop full order system

€

X = T—il(x) +A), (X)y + By (xX)v (4.8)

uy = 321(x)+A2y+B2(x)v€ (4.9)
where

al = al-FGlg (4.10)
and

a21 = azl-Fng (4.11)

Equations (4.8) and (4.9) are in the form of (2.1) and
(2.2) respectively. Then, the reduced-order closed-loop
model corresponding to (4.8) and (4.9) can be obtained by
applying the results of Chapter 2, assuming that the

~

coefficients and the process v satisfy the required
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assumptions which will be spelled out later. So, the
reduced-order closed-loop model corresponding to (4.8)

and (4.9) is:
X = b(R)dt + (G (X) A, (RIAT6, (X)) g (X dat +/A(X) dw  (4.12)

where Db(x) and A(x) are defined similar to (2.8) and
(2.9). Now we impose a consistency condition which is
stated as follows: The closed-loop reduced-order model,
which is obtained by applying the control u = g(X) to the
open-loop reduced-order model, is the same as the reduced-
order closed-loop model corresponding to the closed-loop
full-order system (obtained by applying the same control

u = g(x) to the open-loop full-order system).

This, condition says that the coefficients of (4.6)
must be the same as those of (4.12) for any g(x) and

this implies:

b(x) = b(x) 7 x € RD (4.13)
~ -1 o n
G (x) = Gl(x) —Al2(x)A 2G2(x) i X€ER

2 6y (%) (4.14)
5 (x) = JAX) (4.15)

Hence the open-loop reduced-order Ita model that approximates
the slow states of the non-Markov open-loop full-order system
(4.4) and (4.5) is given by:

ax = b(>‘<)dt+GO(§)udt +/A (x) dw (4.16)
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With the (OLROM) (4.16) in hand we can proceed now to
design the feedback control u = g(x) to stabilize x of

(4.16) .

This control task is much simpler than the original
task of stabilizing x of (4.4), (4.5) since now we are
dealing with the Ito equation (4.16) for which stability
and stabilization techniques exist in the literature
[c.£f. 7, 16, 18, 20]. Suppose now that we succeeded in
finding a sufficiently smooth function g(x) with g(0) = O
such that the application of the feedback control u = g(x)
to (4.16) results in a stochastically asymptotically stable

(CLROM) with a diffusion operator L given by:

tr(A(x)fXX(X)) (4.17)

N+

Te(x) = (b(x) +G (g (x) £ (%) +

The use of the feedback control u = g(x) with the full
system (4.4) and (4.5) is justified by the following
theorem whose proof is a straight forward application of

Theorem 1 of Chapter 3.

Theorem 1: Suppose that there exists a Lyapunov
function V(x) for x €¢R" whichsatisfies all the assumptions

of Theorem 1 Chapter 3 and that EV(X) < =\ (x) for some

A > 0. Moreover, suppose that assumptions similar to (l)-(6)
stated in Chapter 3 are satisfied where, ay.ag and aq

~ ~~ ~ _ ~ —l~
are replaced by a) .35, and ay = 3y —Ale 285+ Trespec-

tively. Then the solution, x(t), of (4.4) and (4.5),

with the control u = g(x), 1s uniformly stochastically
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asymptotically stable as t -+ «, for sufficiently small
€ and M and for S sufficiently close to a normal

value Y’E[Yl:°) for some Yl > 0.

4.3, Output Feedback Stabilizing Control:

Let us consider the full-order open loop system (4.1)

and (4.2) with =z, given by (4.3), representing the

€
observed variables, where vll(t) = —é: vl(t/el),
) 1 1 vV
vyt (t) = — V2(t/€2), v E[Ylfm) for Y, >o arbitrary

v €y
but fixed and vl(t) and vz(t) satisfy all the assumptions

given in Chapter 2. Moreover, let Rl(T) = E(vl(t)vi(ti-T)),

x @

I — —
Ry(T) = E(vy(£)vy(t+ 7)), W, = jo Ry (T)dT, W, = jo R, (T)ar
and Sl(w) and Sz(w) denote spectrum matrices of vy and
Voo respectively. The main assumption in this section is

that the states of the system are not available for perfect
measurement. Then, we follow essentially the basic steps
of section 4.2 to stabilize the initially unstable system
(4.1) and (4.2). So we proceed in doing that as follows:
We anticipate that the open-loop reduced-order model of

(4.1)-(4.3) takes the form:

(4.18)

o}
b
n

£, (X)dt + F, (X)udt + 0y (%) dw

1 1

Q.
N
]

£, (x)dt + F, (X)udt + 0, () dw; + 0, (x)dw, (4.19)

~ ~

We consider a controller of the form u = g(x) where x

is the output of the observer:
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dx = £, (x)dt +F) (x)g(x)dt + K[dz - £, (x)dt -F, (x) g (x)dt]
(4.20)

for some constant gain matrix K. The vectors fl(x),
fz(x) and the matrices Fl'F2'01’02 and oy are to be
determined by applying a similar consistency condition to
the one stated in section 4.2. The closed-loop reduced-
order augumented model which follows from (4.18)-(4.19)

with u = g(x) is:

dx

fl(i)dt+Fl(§)g(§<)dt+ol(§)dwl (4.21)

ax = fl(;()dt+Fl(;<)g(;()dt+K(f2(§) -fz(;c))dt

(4.22)
K(Fz(x) -Fﬁx))g(x)dt%—Ko2(x)dwl4—K03(x)dw2
To determine the exact form of fl'fZ'Fl'F2’01’02 and 03
we propose an observer for the full system (4.1)-(4.3), to
reconstruct the states x, in the form:

X=f (X)+F. (X)u+K(z -f

N 1 2(3?) -Fz(i)u) (4.23)

The gain matrix K 1is the same as the one appearing in
(4.22). Now applying the same control law u = g(§) to
(4.1), (4.2) and (4.23), as a function of the reconstructed
states X, then the closed-loop full-order augumented
system takes the form:

€

(x)y-i—Bl(x)vl1

X = ay (x) +Gl(x)g(§) +A,

PR
1]

£, (X) +Fy (X)g(x) +K(cy (x) - £,(X) -F, (X)g(X)
€

2
+ Kc2y+KB3(x)v2
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€

. ~ 1
My = azl(x) + G2 (x)g(x) +A2y + B2(x)vl

which can be simplified to

> x ~ €
X =a (X) +A12(X)y+Bl (X)v (4.24)
MY = 3,y (X) +A,y + B, (X)v° (4.25)
€
X v. 1
c 1
where X= ’ v o=
~ €
x v22

al(x)4-Gl(x)g(§)

a) (x) =
£,(X) +F) (D g(X) +K(e) (x) —£,(X) =F,(X)g(X))
‘ (4.26)

a,, (X) = (ay) (x) +G, (x)g (X)) (4.27)
Ay, (%)

Alz(x) = (4.28)
KC2
By (x) o)

B, (X) = (4.29)

0 KB, (x)

and

Bz(X) = (Bz(x) 0) (4 .30)
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System (4.24) and (4.25) are basically in the form
of (2.1) and (2.2) and under additional assumptions, which
will be stated later, it can be shown by the convergence

result of Chapter 2 that X(t) of (4.24) and (4.25)

X
converges weakly to a diffusion X = as €, o,

Y

X

€
5 + 0, L » 0 and j% -

convergence proof in the case of only two parameters ¢

€ Y. If we trace the steps of the

and M we will find that, in the case of three parameters,
€

the ratio is given by I% and it does not depend on €y

and so we will require %% Y E[Yl,w). Moreover all the
upper bounds that we established in the steps of the proof
which were O(u+¢€) or O(/H+,. €) will depend here on
€€y M and on the fact that ;% > Y- Let us derive the
differential operator corresponding to X with the aid of
(2.7)-(2.17), where the assumptions that will be listed
later, will validate this derivation. As in (2.8), the

drift coefficient 1is

b(x) = 3, (x) +H (x) —Xlz(X)A—]{ﬁz (x) +Hy (x) (4.31)
The diffusion coefficient
A(X) = 0(X)T(X) (4.32)
where
911 1
0 = (4.33)
T1 922
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~ ~ ~ _1~

aO(X) = al(X) -Alz(X)A 2a21(X)

ag (x) + G (x) g (x)

£ (X)+ (F (%) -KF, (%) =Ke,A 56, (X)) g () +K (¢] (%) ~£, (%) ~c,A 52, (%))
where (4.34)
Gy (x) = G (x) -Alz(x)A‘;c;2 (x) (4.35)
and ao(x) is defined as in (2.5):
BO(X) o}
By (X) = (4.36)
-1 — —
~Kc, A 2B2(X) KB3(X)
where Bo(x) is defined as in (2.6)
Wy o)
W= (4.37)
o) W,
n= (% 0) (4.38)
where
1
= Ay ()T ,
Z=1[ e B, (x)R () dr (4.39)






From (4.29)
D
D, (X) =
0]
where
D, (x)
and
0]
D, (X) =
0
where
D, (x)
From (4.28)
F
F,(X) =
@)
where F.l
F.(X) = 0,
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X
and similar to (2.13) we have: (for X = ~ )
X
i(x) )
for 1 =1,2, ,n (4 .40)
0]
is defined in (2.13)
D, (%)
for i = n+1l1l,°"°,2n (4.41)
0]
= v v . = .
[ xai (x) xcis(x)]nxs’ KB3(X) [Gij(x)]nxs
for 1 =n+1l1l,°"°,2n (4.42)
and similar to (2.15) we have
-l(X)
i=1,2, , N (4.43)
is defined as in (2.15) and
i=n+1l,"",2n (4.44)
nxm
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and from (4.30) and similar to (2.14) we have:

E. (X) = i=1,2,""*,m (4.45)

where E. is defined as in (2.14).

Then similar to (2.10) and from (4.36),(4.37),(4.38),

(4.40) and (4.41) we have:

~

™ _ g B adhiog -1l5
hy; = tr[D;BJW’ +D/A A 22]
_ ’ ' -1 _
= tr[D;B,(x)W+D/A, A 22] = hy; (%)
for 1i=1,2,---,n (4.46)
where hli is defined as in (2.10) and from (4.41) we get
hli =0 for i=n+l,:-:,2n (4.47)
Hence
hl(X)
hl (xX) = : (4.48)
(e

Similar to (2.11), we have:

-~

2] = h, (x)

= =0T Tl T -1
h2i(X) = tr[EiBOW -+EiA12A 5

for i=1,2,"*°*,m (4.49)
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where h2(x) is defined as in (2.11), and similar to (2.12)

we have
h (X) = tr[-N'g w'B/A"L _F'B i’ a Ly +FA A"1p]
3i i~0 27 2 i70 2 i77127 2
= h3i(x) for i=1,2,--:,n (4 .50)
and
h3i(X) = 0 for i=n+l,-°-,2n (4.51)
hy (X)
Hence h3(X) = (4.52)
0]
where h3i(x) is defined as in (2.12). Notice that, it
can be verified that P = P, where P 1is defined as in
(2.17).
Now, since A(X) = go(X)g(O)gc')(X) (4.53)
sl(o) o)
where 5(0) =
o} S, (0)

Then from (4.32),(4.33),(4.36) and (4.53) we get:

By (X)y 8, (0) 0
o(X) =
—KCZA_:2LB2 (x)y/ 8, (0) KB (x)y/ S, (0) |

(4.54)
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Then the reduced-order closed-loop model corresponding

to (4.24) and (4.25) takes the form:

dx = (b(X) +Gy(X)g(x))dt + B (x)/S(0) dw, (4.55)
dx = [£ (%) + (Fy (%) -KF, (X) ~Kc, ~Ke,A 56, (%)) g (%)

+ Ky () —£,(%) —c,a72a,) (X) -c A Th, (X) ]dt

- Ke,ATIB, (%), (0) dw, + KB, (%),/5,(0) dw, (4.56)

Applying the consistency requirement, as stated in section
4.2, the reduced-order closed-loop model (4.55) and (4.56)
has to be the same as the closed loop reduced-order model
given by (4.21) and (4.22). Hence by comparing the
coefficients in the two systems and insisting that they

must be equal for all K and for all functions g(x),

we have:

fl(x) = b(x) (4.57)

Fl(x) = Go(x) (4.58)

ol(x) = BO(X)V/Sl(O) (4.59)

f,(x) = ¢, (x) -c a"la (x) -c N (x) (4 .60)
2 1 27 2721 27 272 :

F.(x) = -c.A LG, (x) (4.61)
2 20 272 '

Hence, the open-loop reduced-order model (4.18) and (4.19)

can be written in the form.
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o))
k]
I

b(§)dt+eo(§)udt+ol(§)dw (4.62)

1

o
N
]

co(x)dti—FO(x)udt4-02(§)dwl4—03(§)dw (4.63)

2

where b(x) and Go(x) are defined by (2.8) and (4.35)

respectively,
co(x) = ¢y (x) —c,A 38, (x) = A Shy (x) (4.64)
Fo(x) = ~c,A72G, (x) (4.65)
0y (x) = By (x),/ 5, (0) (4.66)
0, (x) = ~c,ATIB, (x),/ 5] (O) (4.67)
04 (x) = B, (x)/ 5, (0) (4.68)

and the proposed observer (4.20) takes the form:

ax = (b(x) +Go (%) g (x))dt + K(cgy (x) -cg(x))dt
(4.69)
(X)) g(X)dt + Ko

+ K(FO(X) -F x)dwl4-Ko3(x)dw2

0 2(

The design problem, is to choose a function g(x) which
is smooth enough and a constant matrix K such that both
the state x and the error e = x -x will be stochastically

asymptotically stable. Let us write the Ito equations

X

(4.62) and (4.69) in the form (using X = . )
X
aX = b(X)dt + o (X) dw (4.70)
b(X) = [b(X) +Gg () g (%)

D (%) + G ()9 (x) +Klcy (X) —cg (X)) +K(Fy(X) ~F(x))g(x)

o

(4.71)
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and
oy (%) o)
o((X) = (4.72)

Ko, (%) Ko, (x)

Suppose we succeed in finding u = g(x) and the gain matrix
K to stabilize (4.70), then the next step is to apply the
same control law to the open-loop full order system

(4.1)-(4.3) where u = g(;) and x 1is the reconstructed

states and satisfies the equation of the following observer:

x = b(x) +G4(x)g(x) +K(cy (x) -cy(x)) -KF,(x)g(x)
+ Kc2y+KB3(x)v2 (4.73)
where K in (4.73) 1is the same gain matrix obtained above.

Then we would like to spell out all the conditions, under
which the stability of (4.72) would imply that of (4.1),
(4.73) and (4.2), when u = g(z) is applied to (4.1) and
(4.2). This will be done with the aid of the results of
Chapter 3. We state here the assumptions that will imply
asymptotic stability in probability according to Theorem 1
of Chapter 3. This will require that we consider the case
when c, = O (in the case when <, {4 0 assumptions can
be made to show boundedness in the mean sgquare sense

according to Theorem 2 of Chapter 3.) So considering

c, = 0 we require the following assumptions:

(0) = 0, a, (0) = O,

() B,(0) = 0, By(0) = 0, Aj,(0) = O, C 1

1

and
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(B) DB(X) and 0(X) are required to satisfy:

lg(X) -E(Y)l + \g(x) -E(Y)l <clx-v|l vx,v € r%P

and

lg(x)|2+]g(x)]2gc(1+|x12) v X € R2D

~ ~ ~

(C) The coefficients al(X), Alz(x), Bl(X), a21(x) and
B2(X) are continuous and have continuous partial

derivatives up to the second order which are uniformly

bounded in X €R°™ in addition to a,,(X) and B,(X).
~ ~ ~ : 2
@ lay )|+ [a 0+ 1B; 0] < xlx] v X € R“D
and for some K > O.
~ ~ ~ ~ ; 2n
(E) lao(x) -ag(Y) | + ]BO(X) -B, (V)| < K|x -Y]| ¥ X,Y €R

for some K > O.

(F) vl(t) and v2(t) satisfy the same type of conditions

as stated in (Al) of Chapter 2.

(G) The constant matrix A2 is Hurwitz, i.e., Rek(A2)<:O.

Now we state the following theorem:

Theorem 2: Suppose that there exists a Lyapunov function

V(X) on R2n which satisfies the same type of assumptions
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