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ABSTRACT

STABILITY AND CONTROL OF NONLINEAR

SINGULARLY PERTURBED STOCHASTIC SYSTEMS

BY

Mohamed Gamal El—Ansary

A class of nonlinear singularly perturbed systems

driven by wide—band noise is considered. The probabilistic

behavior of the slow variables is studied when the fast

variables are sufficiently fast (represented by p 4 O) and

the wide—band noise is sufficiently wide (represented by

e 4 O). The possible interaction between the asymptotic

phenomena associated with singular perturbations and the

asymptotic phenomena associated with fast stochastic

fluctuations, is also considered. The slow state which

is, in general, not a Markov process, is shown to converge to a

diffusion Markov process in the sense of weak convergence

as e and H tend to zero and the ratio 5 tends to a

nominal value yéE[Yl,m), where Y1 > O is arbitrary but

fixed. This limiting process is the solution of a reduced-

order diffusion model which is derived explicitly and the

interaction between the two asymptotic phenomena described

above, has turned out to be important, as it is revealed

from the dependence of the reduced order model, in general,

C
I
O
)

on Y which equals to lim

6,1440



Mohamed Gamal El—Ansary

The advantages of having a reduced—order Markov model

in hand, to approximate the slow states, are diSplayed by

utilizing some of the available work on stability and

stabilization of Markov process. Stability properties of

the non—Markov slow states are studied through those of

the reduced—order Markov states. Design of stabilizing

feedback control strategies for the original system is

based on well-established stabilization techniques of the

reduced—order Markov model.



 



This Dissertation is Dedicated

to

Hala El-Ansary, my wife for her love

and understanding throughout the long years

of being a student

It is only through her patience

that this work was completed.

to

Tarek, Noha and Sherief, my children

for their love and support.

ii



ACKNOWLEDGMENTS

It is a great pleasure to express my sincere

appreciation to my major advisor, Dr. Hassan K. Khalil who

introduced me to the fields of singular perturbation and

stochastic systems. His patience, valuable guidance,

expert advice, stimulating discussions, and useful insights

made this work possible.

I would also like to thank the committee members,

Dr. Robert Schlueter, Dr. Robert O. Barr, Dr. David H.Y. Yen

and Dr. Habib Salehi. These professors offered inspiration as

teachers and continued encouragement throughout my graduate

study at Michigan State University.

My gratitude extends to Professor John Kreer, the

Chairman of the Electrical Engineering and Systems Science

Department for his encouragement and support.

Lastly, I would like to thank my typist Tammy Hatfield

for her excellent work in typing this manuscript.

iii





TABLE OF CONTENTS

ACKNOWLEDGEMENTS

I.

II.

III.

IV.

LITERATURE SURVEY, BACKGROUND AND

INTRODUCTION

1.1 Singular Perturbation Techniques

and their Application to

Control Systems

1.2 Asymptotic Analysis of Systems

Driven by Wide —Band Noise

1.3 Stochastic singularly Perturbed

Systems .

1.4 Objective of the Thesis

REDUCED —ORDER MODEL AND CONVERGENCE RESULT

2.1 Introduction

2.2 Problem Formulation and Assumptions

2.3 The Convergence Theorem . . .

Appendix A

Appendix B

Appendix C

STABILITY

3.1 Introduction

3.2 Stochastic Asymptotic Stability

3.3 Mean Square Boundedness .

3.4 Examples . . . .

STABILIZING CONTROL

4.1 Introduction

4.2 State Feedback Stabilizing Control

4 3 Output Feedback Stabilizing Control

4 4 Example

DISCUSSION AND CONCLUSION

5.1 Discussion

5.2 Conclusion and Future Research

BIBLIOGRAPHY

iv

12

19

22

22

23

27

44

76

87

87

102

110

115

115

118

122

135

138

138

142

146





CHAPTER I

LITERATURE SURVEY. BACKGROUND AND INTRODUCTION

1.1. Singular Perturbation Techniques and their

Application to Control Systems.

 

It is a common practice of control engineers to simplify

mathematical models which represent physical systems under

investigation. The singular perturbation approach outlined

in this section provides tools for simplifications in

control systems analysis and design. Accordingly a typical

simplification is to neglect some small time constants,

masses, momentscflfinertia, some parasitic capacitances and

inductances, and a number of unimportant parameters. The

presence of such parameters increases the dynamic order of

the model and introduces fast modes which make the model

stiff, that is, difficult to handle on a digital computer.

Consider a dynamic system which is modeled by the following

initial value problem:

X r
,
-

ll xO (1.1)

g(x(t).y(t).u(t)) y(to) = y0 (1.2)

f(x(t),y(t),u(t)) X(tO)

"
C

<
0

; II

where u is a small positive parameter representing para-

sitic elements, x and y are n- and m-dimensional

vectors, respectively, and u is an r-dimensional

deterministic input vector. For n = O, the order n4-m

of (1.1) and (1.2) reduces to n, that is (1.2) becomes





o = g(§(t) .§(t) .E(t)) (1.3)

Suppose that (1.3) has an isolated root along which 3%

is nonsingular,

Wt) = h(§(t) .E(t)> (1.4)

Substituting (1.4) into (1.1) we obtain the reduced system

x; = f(>_<(t) ,‘fi’(t)) 320:0) = x0 (1.5)

Reducing the order (mi-n) of (1.1) and (1.2) to n of

(1.5) is not the only advantage of (1.5). Another advantage

can be realized when we notice that in (1.2) we actually

have y = g/u, that is, if u is very small and g # 0,

then y is increasing very rapidly. This explains, in a

sense, what we mean by the stiffness of (1.1) and (1.2)

which is eliminated from (1.5).

To see the effect of this simplification procedure on

the variable y, which has been excluded from the simplified

model (1.5), we notice that 37 which is given by (1.4)

starts at tO from y(t

the original variable y which starts at t

O) = h(x(to), u(tO)), 1n contrast to

0 from a pre—

scribed value yO, where there may be a large discrepancy

between yO and y(to). Thus the best that one can hope

for is that y(t) is a good approximation to y(t) every-

where except near t = t0 and that x(t) is a good

approximation to x(t) everywhere. To study the behavior

of y near t = t the time scale is stretched by
of

introducing the transformations





 

T = (1.6)

In terms of T, (1.1) and (1.2) becomes

dx _ _

a;- - uf(x.y.u) x(o) — x0 (1.7)

gl=g(xyu) y(0) = (l 8)dT I I yo 0

Setting H = O in (1.7) and (1.8) we get that x(T) = x0.

Then (1.8) can be written in a more convenient form in terms

of q = y-—y as

3—2 = g<xo.§<to) +nm ,u(to)) (1.9)

The system (1.9) is called the boundary-layer system and

the variable n(T) is referred to as the boundary-layer

correction which is significant only during a short interval

[t A basic result of singular perturbation theory iso't1]’

an initial value theorem due originally to Tihonov (See [1]

for references) which spells out conditions under which the

solution of the initial value problem for (1.1) and (1.2)

as u 4 O can be approximated by the solutions of the

reduced and boundary—layer systems in the sense that for

all t e (t0,tf]

x(t) ——--—> 33(t). (1.10)

y(t) ———> Y(t) (1.11)

We notice that, actually y(t) is approximated by

y(t)+-n(T) for all t€E[tO,tf] but n(T) 4 O as u 4 o





(i.e. T 4 w). The essential conditions are stability type

conditions which are imposed on the boundary-layer system

(1.9).

The two time scale phenomena accompanied the solution

of the initial value problem is at the heart of the

singular perturbation approach to stability and control

problems. In a typical control problem one starts by

defining separate reduced and boundary—layer problems.

Assuming the existence of solutions for these problems,

an approximate solution is postulated by combining the

separate solutions. The validity of the approximations as

H 4 O is established via asymptotic analysis (cf. [1—31).

In general if the singularly perturbed system, which

is represented by (1.1) and (1.2) is asymptotically stable,

the fast states represented by the vector y are important

only during a short initial period. After that period they

are negligible and the behavior of the system can be

described by its slow states represented by x. In many

applications the fast states y are basically parasetics,

that is, for example the equation (1.2) can represent the

model of an actuator in a control system which can be

neglected. Neglecting the fast modes is equivalent to

assuming that they are infinitely fast, that is letting

H 4 O in (1.2).





1.2. Asymptotic Analysis of Systems Driven by Wide-Band
 

Noise:

In this section we study and review some of the work

that has been done concerning dynamic systems with external

influences which are approximately white noise (wide-band

noise). In this thesis, our main concern will be the

asymptotic analysis of a class of systems having the above

property. Let us first introduce the basic topics and

definitions that will be used and then we will review the

work done which is related to our work.

Itb's Stochastic Differential Equation:
 

It is of the form

dx= ffi¢fldt+G(LxhhMt) togth (122)

x is a vector (the system state) in Rn, the vector-—

valued function f(t,x) is usually called the drift

coefficient, G(t,x) is an n xm. matrix—valued function

and w is a Wiener process, (Brownian motion), usually

taken to be Gaussian, in Euclidean m-space. Equation (1.12)

was originally studied in [4,5] and later, under less

restrictive conditions, in many text bodks [cf. 6-8].

Equation (1.12) is interpreted as a stochastic integral

equation

t t

x(t) =x(tO) +f f[s,x(s) ]ds +j G[s,x(s) ]dw(s) (1.13)

t t

O O

It is assumed that f and G are measurable in (t,x)





for t.€[tO,T], xéERn; and satisfy (1) a growth condition

lf(t,x)l4—IG(t,x)l g_K(1+-1x1), t€E[tO,T],

n (1.14)

XGER

and (ii) a uniform Lipschitz condition

‘f(t,X) _f(tIY) ! + lG(tIX) —G(tIY)l g K‘X -Y‘I

(1.15)

tE [tO,T], x,y€Rn

In (1.13) x(t ) is any (finite-valued) random vector

0

independent of the increments dw. Under these conditions

(1.13) determines a unique stochastic Markov process x

which is also called a diffusion process. For $62C2(Rn),

the differential operator associated with the process x is

defined by:

£m(x) = f’<t.x)ex(x)4-§tr[e’(t.x)exx(x)s(t,x)] (1.16)

Weak Convergence:
 

The concept of weak convergence can be defined roughly

as follows: Suppose that Pn is a sequence of probability

measures defined on a metric space S and P is also a

probability measure defined on S, then it is said that

Pn converges weakly to P, denoted Pn = P if for each

continuous function f on S, IS fdPn 4 IS fciP. Now

if S = C = space of continuous functions and if Pn and

P are probability measures on S then Pn = P if the

finite dimensional distributions corresponding to Pn





converges weakly to those corresponding to P and the

sequence of measures {Pn} is relatively compact. For

more details about this subject see [9], for example.

Weak convergence has been used, successfully, as the

appropriate type of convergence in asymptotic analysis.

In particular, it has been used to prove the convergence

of a sequence of non-Markovian or Markovian processes to

a Markov process, see for example [10-15].

Stochastic Stability:
 

As stochastic models have come to be more fully

understandable to engineers and scientists, the study of

rather important stachastic system properties has become

possible. Among these is the property of stability. The

literature on the topic is full of many concepts of

stability that have been studied, see for example ([16],

for a survey). These stability concepts have, in general,

been derived for the study of deterministic systems. It

follows that there are at least as many stability concepts

for the study of stochastic systems as there are for the

study of deterministic systems. The reason is that the

deterministic concepts of stability have their counterparts

in each of the common modes of convergence of probability

theory. We may recall that the common modes of convergence,

[cf. 17] are convergence in probability, convergence in the

mean and almost sure convergence. Thus, it is clear that

one has at least three times as many concepts of stability

as for the usual deterministic case. Indeed there are





even more. Among those concepts we will state only two

definitions, [cf. 16] of the concepts that we are going

to adOpt in this thesis. We shall refer to the equilib-

rium or null solution, x E O, as the solution whose

stability properties are being tested; x will denote the
0

initial state at the initial time to. We will denote the

solution with initial state xO at time to, by x(t7x0,to)

or simply x(t), which is assumed to be an n—vector.

Definition of Asymptotic Stability in Probability: The

equilibrium solution is said to be asymptotically stable

in probability or equivalently, it is uniformly

stochastically asymptotically stable if for any n1 > O

and n2 > 0 there exists a o > 0 such that if 1x0) < a

then:

6t
(i) P[ix(t)l g nze , t 2.0] 2.1-nl for some 9 > 0.

(ii) P[lim [x(t)] = o) = 1.

t-OOO

Definition of Asymptotic Stability in the Mean Square: The

equilibrium solution is said to be asymptotically stable in

mean square if there exists constants d > 0, K1 2_O and

t) lngl+K25at Vt 2 o and thenK2 > 0 such that E]x(

the process x(t) is said to be exponentially bounded in

mean square with exponent d. This form of the definition

is stated in [18] and we are going to use it, as it is,

later.





Review of Related Work:
 

The mathematical theory of stochastic differential

equations is concerned almost exclusively with the study

of Its equations and the associated Markov processes.

This theory has found many useful applications and has

become a powerful tool in the study of diffusion processes

(cf. [7],[8]). However, many of its aspects are somewhat

drastic idealizations of physical processes in the sense

that the noise affecting the physical system is approximated

by white noise which is not a physical process but an

abstraction. This was the motivation for later work which

led to modeling dynamic systems with external noise which

are approximately white noise, by systems of ordinary

differential equations with wide-band noise as input so that

Makov process techniques can be used. Several powerful

methods for doing this have been developed. The problem

has been initiated by [19] and then developed more (cf.

[ll-15]). In [19], the Langevin scalar equations:

dxn(t) = m(xn(t))dt+o(xn(t))dyn(t) (1.17)

has been considered as a mathematical representation of a

physical model, where yn(t) 4 y(t) in the mean square

sense as n 4 m, and y(t) is a scalar Brownian motion

process. It has been shown that the solutions xn(t) of

(1.17) converge to the diffusion process x(t) as n 4 m,

in the mean square sense, where x(t) satisfies the Ito

equation:





lO

dx = [m(x) +3120 (mg—f((x) ]dt+o(x)dy (1.18)

This says that the Langevin equation cannot replaced by an

Itb differential equation without realizing the necessity

for the correction term, %o(x)g%(x) in (1.18). More

work has been developed along that line. All the authors

in [ll—15] have treated the problem of weak convergence of

x€(-) to a diffusion where x€(-) is defined as the

solutions of ordinary differential equations with wide—band

random hand sides. More specifically the system that they

have all considered is of the form:

6
d l e e e e

3:375:21 = €F<x (t).y (t))+G<x (t).y (t))

(1.19)

x€(O) = x0

XERn and thm.

For each 6 > O, y€(t) = y(t/ez) where y(t) has been

taken to be, in general, a stationary process (other

hypotheses has been introduced in those references). The

process y€(t) is, in a sense (will be made precise in

the next chapter), a wide—band noise, and the system (1.20)

is a wideéband noise system. The parameter c > 0 measures

departure from the white noise. Another interpretation for

e is that it differentiates between the time scale of

fluctuations of the coefficients and the solution. In [11]

and [12] y(t) is considered to be a Markov process,

ergodic, bounded and satisfies other assumptions so that

under certain smoothness conditions on F and G,





11

(x€(t),y€(t)) are, an (nt-m), jointly Markov process.

It has been proved, using partial differential equations

and perturbation techniques, that x€(t) converges weakly

to a diffusion process x(t), as e 4 O on [0,T] where

T < m, but arbitrary.

At this point, it seems to be interesting to make

analogy between this asymptotic analysis that has been

carried out in [11] and [12] and those of the deterministic

singular perturbation. We notice that the solution x€(t)

of (1.19) is not exactly a Markov process, but it can be

considered as components of a higher-dimensional Markov

6

process, as was the case when (x€(t),y (t)) was treated

as a jointly Markov process. Then approximating x€(t)

by the Markov process x(t) explains, in a sense, that

an order—reduction procedure has been taken place which

is in analogy to the order-reduction that occurs in

deterministic singular perturbation.

In [13—15] the same system, which is roughly represented

by (1.19) has been studied but with different assumptions on

the process y(t). Semigroup techniques due to [10] and

Martingale approach have been employed in [13] and [14,15]

respectively, to prove that x€(t) converges weakly to

the diffusion x(t) whose differential operator [cf. 13]

takes the form:

Af<x> = EG’(x.y(s))£X<x)

+ ] dTEF’(x,y(s))<F’(x.y(s+-T))fx(x))
O X
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where f is continuous with continuous partial derivatives

up to the second order.

All the work that has been done in [ll—15] is, of

course, closely related to the original problem of [19].

The first attempt, to study stability prOperties of

dynamical systems which are driven by wide band noise,

has been made in [12]. Stability results about x€(t),

defined by (1.19), has been established which are based

only on conditions upon the approximating diffusion x(t).

These are conditions which guarantee that the equilibrium

of x(t) is stable in an appropriate stochastic sense.

Most of the work that has been done, to study stability

properties of stochastic systems, is concerned with the

stability of systems represented as an Ito equation. The

effective method that has been employed is the stochastic

Liapunov method which is analogous to the deterministic

Liapunov method. [cf. 7, l6 and 20].

1.3. Stochastic Singularly Perturbed Systems:
 

Since our work is mainly concerned with stochastic

singular perturbations, we will briefly review the prior

work that has been done in the linear case while, in the

nonlinear case, a considerable detailed review will be

established. Singularly perturbed linear differential

equations with random forcing functions have been studied

as models of control and filtering systems [21—23].

Promising results have been obtained like the two—time
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scale linear filter obtained in [21]. However, some

difficulties, arising from the idealized behavior of the

white noise used in the models, have been encountered

especially in the linear quadratic control problem studied

in [22] and [23] where the performance index may diverge.

Some alternatives have been suggested to overcome these

difficulties. Colored noise has been allowed in [24],

which in a sense limits the significance of the fast

subsystem; a near optimal linear output feedback control

is obtained by optimizing a slow subsystem only. In [25],

a parameter scaling procedure has been proposed to overcome

the difficulties that arise from the unclear behaviour of

the fast variables in stochastic singularly perturbed

control systems. As a result, the divergence of the per-

formance index has been avoided and a well-posed linear

quadratic control problem has been obtained. In a recent

study of stochastic linear singularly perturbed systems

[cf. 26] a new approach to approximating linear quadratic —

Gaussian estimation and control problems has been established.

One of the few attempts which has been made to study

nonlinear singularly perturbed systems driven by white

noise, is [27], in which a stochastic control problem has

been investigated for the system:

dx = [a(x) + c(x)z+ 28(x)v(t) ]dt +\/2_ dwl

(1.21)

x(0) = x
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2

(1.22)

where all variables are scalars, v(o) is a control

variable, and W1 and w2 are two independent, scalar

Wiener processes. The unclear behaviour of the fast

variable due to the existence of the white noise, which

has been the source of trouble as we pointed out before

[cf. 22], has been avoided by multiplying the white noise,

in equation (1.22), by u. However, by modeling the input

stochastic process as white noise some model information

might have been already lost as a result of the incon—

sistency encountered in modeling physical systems driven

by wide~band noise as systems driven by white noise (see

section 1.2).

From the above discussion and from the asymptotic

analysis of systems driven by wide-band noise, that has

been reviewed in section 1.2, it seems appropriate that

in studying singularly perturbed systems the input noise

should be modeled as wide—band noise rather than white

noise.

In that regard, a study of a nonlinear singularly

perturbed system driven by wideeband noise, has been

initiated by [28]. The following system has been considered:

ll
—J

x(t) = Jf(t.x(t) .y(t)) + Ff(t.x(t) .y(t)) (1.23)

\/

H
c
fl

J€(t,x(t).y(t)) + 6(F
 uth) t,x(t) ,y(t)) (1.24)

m
l

\/
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where F: and F6 are fluctuations in the time scale t/e

while the natural time scale of the state x is t. Here

we write the singular perturbation parameter as u although

in [28] it is written as \/E . The asymptotic behavior of

the state has been studiedznsthe perturbation parameters

tend to zero. Without getting involved in the technical

details and assumptions the essential steps of that approach

are as follows. First, it is assumed that the equation

Vt J€(t,x,y) +F€(t.x,y) = o (1.25)

has a unique root y = r€(t,x) which is used to define an

outer solution of x as

€(t,x<t))) + é Fe

/€

x(t) = Jf(t.X(t) .r (t,X(t).

V (1.26)

r€(t.x(t))).

Second, the asymptotic behavior of the outer solution x(t)

as e 4 O is studied using limit theorems of stochastic

processes and conditions are spelled out under which x(t)

converges weakly to a diffusion process Kit). Third, the

diffusion Kit) is taken as a candidate for the limit of

x(t). To show this, conditions from [29] are imposed to

guarantee that x(t) -X(t) 4 O as the singular perturbation

parameter (u in our notation) tends to zero. Implicit in

the approach of [28] there is a sequential ordering of the

two asymptotic phenomena present in the problem. Since an

outer solution is defined first using singular perturbation

ideas and then stochastic asymptotic analysis is applied,
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it is reasonable to say that this approach assumes that the

asymptotic phenomena associated with singular perturbations

are faster than the asymptotic phenomena associated with

stochastic fluctuations. As it will be seen, our results

show that the approach of [28] is valid when E 4 O as

e 4 O. The approach therefore does not take into consid-

eration the possible interaction between the two asymptotic

phenomena when 6 and u are of the same order. Such

interaction has been brought to attention after a paper

by [30]. In that paper the following second—order differ-

ential equation, has been considered:

u$é(t)+>?:(t) = a(x(t))+b(x(t))v€(t) (1.27)

where v€(t) is exponentially correlated noise with

correlation time c. It has been suggested that for suffi—

ciently small e and u, x(t), the solution of (1.27)

can be approximated by a diffusion process, defined by an

Ito equation. Moreover, this diffusion process cannot be

obtained as the asymptotic limit which results either by

letting e 4 0 first then u 4 O or by letting. u 4 0

then 6 4 0, since two different limits are expected.

In deriving the reduced-order model corresponding to (1.27),

an intuitive reasoning has been employed. It has been

assumed that over a time interval At which is very small

with respect to the relaxation time of x(t) while very

large with respect to u and e, the process x(t) will

behave like a continuous Markov process. With that
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assumption the following well known definitions, from the

theory of Markov process [cf. 6,7],

 A(x) = lim B(X(t+AEZL_-X(t) / x(t) = x), (1.28)

At4O

2

B(x) = lim n{[X(t+At) ”(tn / x(t) = x), (1.29) 

At

At4O

has been used to calculate the drift coefficient A(x) of

the approximating diffusion and its diffusion coefficient

B(x). In the calculations of the conditional moments given

by (1.28) and (1.29), there has been no demand for finding

an exact solution of (1.27), it has been enough to solve

(1.27) on a small interval At satisfying

1.30Trel >> At >> max(u.€) ( )

where, the relaxation time Trel of x(t) is defined by:

da —1
Trel m1n(—a§(x))

Equation (1.27) has been integrated over the interval

[t,t+—At] and after applying the basic assumption (1.30),

the result of integration has been simplified to:

>Mt+AU =xHfl+ahdtHAt

(1.31)

nt+At X t+At-T)/|.l b

J j e‘ (x(T))v€(T)dT

t t

+

1
4
H

The integral on the right—hand side of (1.31) considers

the correlation of b(X(T)) with v€(7). Since this





18

integral is not a stochastic integral, it has been considered

as a Riemann integral. Then successive approximation has

been used [cf. 32], with initial solution x0 = x(t), and

Taylor series expansions around x have been employed.0'

With the aid of (1.30), only the terms of order At has

been retained anui a second order approximation has been

obtained. It has been claimed that higher order approx-

imations have the same accuracy 0(At) that the second

order one has. Finally it has been shown that the results

of calculations of (1.28) and (1.29) are:

A(x) = a(x) +fi4375 g—§(x)b(x)sm). (1.32)

2
B(X) = b (X)S(O): (1.33)

Where S(w/€) is the spectrum of v6, so that the

suggested reduced order-model corresponding to (1.27) has

been represented by the following Itb equation:

d§(t) = A(§(t))dt +./B('§£(t)) dw(t) (1.34)

There has been no rigorous proof, in that paper, to

validate that the process x(t), defined by (1.27),

converges to the diffusion process x(t), defined by

(1.34), as €,u 4 O in any stochastic sense.

The remarkable feature about the suggested reduced—

order model (1.35) is its dependence on the ratio 3, as

it is apparent from (1.32). hinting to the interaction

between the two asymptotic phenomena.
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1.4. Objectives of the Thesis:
 

Our main Objective, which has been motivated by [30],

is to generalize the reduced-order model, that has been

suggested by [30], to a wider class of singularly perturbed

systems and to provide a rigorous proof of convergence of

the slow states to the diffusion process defined by the

reduced-order model and then, to explore the possible

application of the reduced—order model in stability and

control problems. In this thesis we consider the nonlinear

singularly perturbed system:

>'<(t) = al(x(t)) +A12(X(t))y(t) +131 (x(t))v€(t) (1.35)

uSHt) = a21(x(t)) +A2y(t) + B2(x(t))v€(t) (1.36)

where v€(t) is a wideéband zero-mean stationary vector

process with correlation matrix

6 e I l T

Eiv (t)v (t+T) ]= ENE)

More assumptions will be imposed on the process v€ in the

next chapter. This class of singularly perturbed systems

is similar to the deterministic one studied in [2] from

the vieWpoint of allowing nonlinearity in the slow variable

x while assuming linear dependence on the fast variable

y. We allow the input noise to be state dependent by

letting the input matrices B1 and B2 be functions in

x: we do not, however, allow them to be function in y

since that will destroy the linearity in y which is

very desirable feature as it is apparent from [2].
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The accomplishments reported in this thesis are

summarized as follows:

(a) The asymptotic behavior of the slow variables,

defined by (1.35) and (1.36), has been studied when

the fast variables are sufficiently fast

(represented by u 4 O) and the wide—band noise

is sufficiently wide (represented by e 4 O). A

reduced—order model to represent the behavior of

the slow variables has been derived. It has been

shown that the slow variables converge weakly to the

solution of this reduced—order model as e 4 O and

H 4 0. However, our proof cover the two cases:

4 O as c 4 0,(i)

(T
)
I
T
:

(ii) a and u of the same order, i.e., there

exists positive constants K1 and K2

such that o < K1 3 E g K2 < w.

The third case, namely:

(iii) $40 as 1140

Follows essentially as a special case of [33] after

applying results of [12] or [13]. This case is

briefly discussed in chapter 2. The proof adapts

a martingale method developed by [14] for proving

weak convergence of a sequence of non—markovian

processes to a diffusion process.



 



(b)

(C)
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The use of the reduced-order model in stability of

the full-order system, given by (1.35) and (1.36),

has been examined. A result has been obtained

which provide stochastic asymptotic stability of

the origin of the full system if the origin of the

reduced—order model is so, provided that the

parameters 6 and u are sufficiently small. The

main advantage of using the reduced—order model is

that it is a Markov model, and the theory of

stochastic stability [cf 16,20] applied to stochastic

differential equations of Itb type is rich.

Applying the reduced—order model in control problems

has been considered. A stablizing output feedback

control has been designed, using a nonlinear Observer,

for the reduced—order model. We have been motivated

by the work of [18], in which a stabilizing feedback

control for a system represented by an Itb equation

has been designed using an observer. The designed

control law has been implemented to the full—order

system, with an observer, and conditions, under which

the closed loop system is stable, have been spelled

out via the use of our stability result.



 

 

 



CHAPTER II

REDUCED-ORDER MODEL AND CONVERGENCE RESULT

2.1. Introduction.
 

This chapter is concerned with sutyding the asymptotic

behavior of the slow variables of a singularly perturbed

system driven by wideéband noise, when the fast dynamics

are too fast, represented by u 4 O, and the wide—band

noise is too wide, represented by 6 4 O. A reduced-

order diffusion model that approximates the behavior of

the slow variables is derived together with a rigorous

proof of convergence. Our proof covers the two cases

u/e 4 O as e 4 O and 6 and u being of the same

order of magnitude, i.e, Kl g_% g_K2 for some positive

constants K1 and K2. It is also shown that the case

S 4 O as u 4 O, which is not covered by our proof, can

be deduced from results already available in the literature.

This chapter is arranged in the following way. In the

second section we introduce the singularly perturbed model

and list all the assumptions that are needed for the

convergence proof. In section 3, the basic theorem is

stated and proved. To make the proof more readable some

lengthy details which are not very essential to follow the

22
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logic of the proof, have been given in separate appendices

at the end of the chapter.

2.2. Problem Formulation and Assumptions:
 

Consider the singularly perturbed system

i(t) = al(x(t))-+A12(X(t))y(t)4—Bl(x(t))v€(t),

(2.1)

x(0) = x0

49(t) = a21(X(t))-+A2y(t)4-B2(X(t))v€(t).

(2.2)

n

where x€ER , yéiRm and are bounded random vectors.
Xo’yo

The stochastic process veéERr is defined as

v (t) = -%: v(t/e) (2.3)

v'EI

where v(t) satisfies

(Al) v(t) is a stationary, zero mean, right continuous,

uniformly bounded process on [0,“). The o—algebras

induced by v(t) are assumed to have a mixing property

with an exponential mixing rate [9], i.e.,

sup |P(A2/Al) -P(A2)] g e_afr

A.,t

1

for some a > 0, where A.l €o[v(s), s g t] and

A. Eo[v(s), s 2_t-tT]. The process v€(t) is said to

2
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be wide-band noise since its power spectral density matrix

S€(w) = S(w/e) will have a frequency band of wO/e when

S(w), the spectral matrix of v, has a frequency band

wo. Indeed, the process v€(t) converges to Gaussian

white noise by the central limit theorem [11].

The coefficients of (2.1) and (2.2) are assumed to

satisfy

(A2) The coeff1Cients al, a21, A12, B1 and B2 are

continuous in x and have continuous partial derivatives

up to the second order which are bounded uniformly in

x. Moreover, a21 and B2 are bounded uniformly in x.

(A3) The constant matrix A2 is Hurwitz, i.e. Rex(A2)<(O.

(A4) The vector al(x) and the matrices A12(x) and

Bl(x) are required to satisfy

1al(x)1+1A12(X)1+1Bl(x)1gK(1 +1x1) Vx ERn (2.4)

and the vector aO(x) and the matrix B (x) which are

O

defined by:

a = a -—A A_la (2 5)
O 1 l2 2 21 '

and

—l

B =13 —A A B (2.6)
0 1 12 2 2



  



25

are required to satisfy

1a0(x) -aO(z)1+1BO(x) —BO(z)1gK1x—z1 ]ix,zERn

for some positive constants K.

We notice that from (A2) and (A4) growth conditions

similar to (2.4) will be satisfied for a0 and B0'

(A3) is needed to guarantee the asymptotic stability

of the boundary layer phenomena associated with y. Under

the assumptions (A2)-(A4), the usual existence and

uniqueness theory for ordinary differential equations

gives us a solution for (2.1) and (2.2) on [0,T] for

sufficiently small M and for each sample path of v(-).

This follows by minor modification of the technique used

in proving the basic result of [34].

Our objective is to study the asymptotic behavior of

x(-) as e 4 O and u 4 O. The main result of this

chapter shows that x(o) converges weakly to a diffusion

process §(-). The infinitismal generator associated

with §( ), whose form will follow from the prOof of the

result, is given by

n

LYf(X) = Z3 b.(x) —— (x)

=1 1

(2.7)
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U 3“
, n aO(x) + hl(

I

— BO(X)S(O)BO(X)as 5
, I [aij(x)1,

S(w) is the spectral matrix of v,

_ ’ I I -l l

h1i — tr[DiBOW +DiA12A 22] ,

_ I I I —l
h2i — tr[EiBOW -tEiA12A 22],

h = tr[—F’B W'B'(A’)-l —F’B .V-.’(A’)'l
3i i 0 2 2 i 0" 2

I —1

+ FiA12A 2P],

___ ., l . I____I .,

Di [inii : vaiz: :Vx 1r] '
nxr

B = [V 2] I

l l] nxr

E1 = [Vxfl 1 : VXni23_——_lvxnir] 7
nxr

B = [h ] .
2 1] mxr

F1 = [V gil : Vx§i2:_—_-:ngim] '
nxm

A _ [5 l .
12 13 nxm

 

l(I) denotes transposition.

x).—A12(x)A'§h2(x)-+h3(x),

(2 .9)

.10)

.11)

.12)

.13)

.14)

.15)
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O

a AZYT ’

Z = I e BZR (T)dT, for some v€E[y ,w),

O l

Y1.> O (2.16)

an A2k I I AZIX

and p = 1‘ e (1322 + 2132)e d1. (2.17)

O

We require that the coefficients A(x) and b(x),

defined above, satisfy the following conditions

(A5) 1A(x)1 gC(1+lx12), xeRn

(A6) <x,b(x)>gC(1+1x12), XERn

where C is some positive constant.

These two conditions in addition to (A2) guarantee

that the martingale problem corresponding to (2.7) is

well-posed [8].

2.3. The Convergence Theorem:
 

Theorem: Under the assumptions (Al)—(A6), _x(')

converges weakly to '§(-) as e 4 o, u 4 o and E 4 y

where yéE[Yl,°), Y1 > O is arbitrary, but fixed.

Proof: We utilize a technique for proving weak

convergence of a sequence of non—Markovian processes to

a diffusion process which was introduced in [10] and

further developed in [13-15]. The version used here is
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due to [14]. The main step in the proof is finding a

sequence of test functions fe'“(t) for a given function

f(x) such that certain conditions are satisfied. We use

the so called perturbed test function which was used for

similar purposes in [12-15]. Before we get to the

technical details of the proof we need to introduce some

definitions and terminology.

Truncated Processes: For every positive integer N, let
 

SN = [xéiRn, HXH g_N] and define the truncated process

xe’;(t) to be the solution of

°€.H_ 6.11 6.11 (2,11 6.11

x N—qN(X N)[a‘1(X N)+A12(X N)y N

(2.18)

6.11 € €.u _

-€.u_ 6.11 6.11 6.11 6
MY N— [a21(x N)+A2y +lex N)v ].

(2.19)

6.

y §(O) = y0

__ _ n_
where qN(x) — l for xéESN, qN(x) — O for XGER SN+l

and qN(x)€E[O,l] and has third derivatives that are

bounded uniformly in x and N. For each N, {x€';(-)]

is bounded uniformly in u and e. As it will be seen

the actual technical proof involves only the truncated

processes {x€'§(°)]. See [14,15] for similar treatment.

Terminology: Let (Q,P,J) be the probability space in
 

which v(°) is defined and let JE': be the o-algebra
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induced by [x€’;(s), ye';(s), v€(s), O g_s g_t] and

EE’; the corresponding conditional expectation. Let

£9 be the class of measurable (w,t) real valued

functions such that if f(°)<E£p then

Elf(t+'S)-f(t)l 4 O as S 4 0+ and sup E1f(t)1<co

t

and f(t) is adapted to 7:’;. ‘We say

p-lim fS = O s sup E1fs(t)1 < w and E1fs(t)1 4 O as

$40 s.t

+ .
s 4 O . Define an operator Ae’; and its domain

D(A€';) as follows: féED(A€’;) and Ae'Ef = g e f,g<E£Q

and

EE';f(t + r) - f(t)

p—lim ’

r40

 

-g(t) = 0.

Let LY be a diffusion Operator of the form (2.7) such
N

that the coefficients of L; and LY are equal for

/\

xéESN. Let 60 be the space of continuous functions

A

f :RN 4 R which have compact support and 63 be the

O

/\

Space of functions which belongs to 60 together with

its partial derivatives up to the third order.

The following Lemma is Theorems (1) and (2) of [14]

adapted to our case.

Lemma 1: Assume that the martingale problem associated

with (2.7) is well—posed. For each fixed N, let

[xe'p(°)] be the solution of (2.18) and (2.19). Suppose
N



    



3O

/\

that for each féflig, there is a sequence fe’;(°)€ED(A€':)

and a random variable Me';(f), for each T > 0, such

that

p—lim [f€';(t) —f(x€';(t))1 = o, (2.20)

e,u40

e/u-W

p-lim [A€';f€’;(t) -L§f(x€'§(t))] = o, (2.21)

6.1140

e/H4Y

P[sup1f€';(t) —t(x€'§(t))1 2 n) 4 o as

KT (2.22)

6.11 4 O. 6/14 4 Y

sup 1A€';f€’§(t)1 gMe'fIfm), (2.23)

th

and

sup P[Mt’,LIl.(f) 2 K) 4 o as K 4 m (2.24)

c,u

then [x(-)] converges weakly to '§(.) as e 4 O and

u 4 O and e/b 4 v.

For notational convenience we write x(t), y(t),

Ae'“, LY, fi(t) and Et instead of x€'§(t),

ye';(t), Ae':, Lg, f:’§(t) and E:’§ respectively

but we are always working with the truncated process

[x€’;(-)]. Moreover, we omit the qN terms for further

simplification. Now we proceed with the proof of the

A

theorem. Let féEGg be given, then

Ae'“i(x(t)) = if (x(t))[a (x(t))+A (X(t)) (t)
a 1 12 Y (2 )

- .25

+ Bl(X(t))V€(t)]
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we observe that y(t), the solution of (2.2) is given by:

AZt/Ll 1 t A2 (t — “/11

Y(t) = e Yol'fi o e 321(X(T))dT

t A (t-T)/u

+ 3:1” e 2 B2(X('r))V(T/€)d'r

c 0

Now, since a21 and B2 are bounded uniformly in x and

v(t/e) is uniformly bounded on [0,”), we have:

-OI t/H t —d (t-T)/u
2 2 2

lY(t)l§K1e ‘YO‘+F I0 e d7

K3 t -az(t-'r)/u

+ -—-:-_f e dT

dye 0

_ 'E

:Kl+.—_2_
V/e

Bf
Then, by the compact support of 5;, the last two terms

on the right hand side of (2.25) are of order lA/E

and cannot be part of the operator LY, so they are

averaged out by defining fl(x,t) as:

f (x t) =1 E (x)E [A (x) (A(t+s x) +A—la ())
1 ' o ax t 12 Y ' 2 21 X

e (2.26)

+ Bl(x)v (t+s)]

where

A Azs/u Azs/u —1

y(t+s,x) = e y(t) + (e -I)A 2a21(x)

l t+s A2(t+s-T)/u € (2‘27)

+ [If e B (X)V (T)dT

t 2

 





32

Subtracting the term -A_§a21(x) in (2.26), in a

/\

sense, centers y at its steady state mean.

Setting X = x(t) in (2.26) and defining

fl(t) = f1(x(t),t) we claim that

lfl(t)l S K:1_\/E'*'K2\/J (2.28)

where K1 and K2 are positive constants independent of

T and w.

Proof of the claim: 

From (2.26) and (2.27) we have:

w éfi AZS/H

f (X(t).t) = f (X(t))Et[A12(X(t))e (y(t)
OOX

+ §A12(x(t)) i0 e 132(x(t))v€(t+1)d1

+ B1(x(t))v€(t+s)]ds

then by using the bound on [y(t)] we have:

°° at “125/11 — E2
[fl(x(t),t)ng1 [a—X(x(t))l[lA12(x(t))le (Kl+-_)

O V/€

1A12(x(t))1 s -02(S->\)/l-l e

+ ___—11 10 e 1B2(x(t))1IEtv (t+11d11ds

= I +1

 

 



 



33

Then, from (A2), (A4), the boundedness of the truncated

process x(t) and the compact support of Bf we have

Bx

after integrating with respect to 5:

~ ~ 11 ~ +3” GI -— ~—
1Il1 g Klu + K6? 3 K111 K2./ E V11 g K2¢u

where we used that E is bounded.

The mixing property implies

lEtV€<t+ M) g % e‘aVe
\/€

Using that in 12 we have:

£2 (S-A)/l~le_a)\/€w s

[12) 3,-l;:.fo [0 e dxds.

H¢€

Changing the order of integration, we get:

w w -G (S-k)/u

llzl g -3;:_1 1 e 2 e'O‘V€ dsdx

1.l\/ € 0 >\

= K I” e-CIX/EZ dk
 = KlyE

1f1(x(t),t)1 g K1VE+ KZV/LI, [which proves (2.28) .

We next show that fl(t) ED(A€’H). We have [13]
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6.11 _.
A f1(t) p 11m [Etf (x(t+ 6) ,t+ 6) —fl(X(t) .t)]/6

640
1

p—lim [Etfl(x(t+ 6) ,t+ 6) -fl(x(t) ,t+ 6) 1/6

640

+ p—lim [E f (x(t).t+ 6) -f (x(tLtH/é640 t 1 1

(2.29)

if the limits exist and are in £0. We first show that the

second limit exists and is in £0. From (2.26), fl(x(t),t)

can be written in the form:

0

fl(x(t),t) = 10 Etgl(x(t),t+s)ds

where gl(x(t),t+-s) is equal to the integrand in the

right—hand side of (2.26). So the second term of (2.29)

is

12 = p-Zéim [Etfl(X(t) .t‘l’ 5) -fl(X(t) .t)]/5

4O

m

= p_§i$ [Et 10 Et+6gl(x(t),t4-64-s)ds

co

- I Etgl(x(t),t-ts)ds]/o

O

Setting u = 6-ts, we get
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ca

12 = p-lim [I6 Etgl(x(t),t+u)du-—fO E (X(t).t4-S)ds]/6

640
tgl

6
. 1 ._13-151,“ 510 Etgl(x(t) ,t+s)ds - -g1(x(t),t+s)

l= _%§(X(t))[A12(x(t))y(t)-+A (x(t))A-2a21(X(t))
12

+ Bl(x(t))v€(t)].

Therefore, the second limit exists. By the compact

support of g; and the right continuity of v€(t) it

is obvious that E1g1(x(t),t-ts) —gl(x(t),t)1 4 O as

s 4 0+ and that sup E1gl(x(t),t)1 < m and this implies

t

that the second limit in (2.29) belongs to i . For the
O

first limit we have:

p-lim [Etfl(x(t+ (5) ,t+ 6) —fl(x(t) .t+ 5) ]/6

640

1 f6 Bfl

= p—lim — E [— (x(t+u),t+ 6) (a (x(t+u))
5‘0 6 O “t 5x 1

+ A12(x(t+u))y(t+u)+Bl(x(t+u))v€(t+u))]du

Bf

= 75%(x(t),t)(al(x(t))-+A12(x(t))y(t)i-Bl(x(t))v€(t))

which shows that the limit exists. See [13] for a similar

treatment. Now by an argument similar to the one that has

been used to show that the second limit is in £ we0’

can show that the first limit also is in £0. We conclude



 



36

that f1(t) €D(A€’H). Then, from (2.29) and the above

limits we have, (with x(t) = x)

€.H _ _§£ -l

A fl(t) — 5X (X)[A12(X)Y(t)-+A12(X)A 2a21(X)

a

+ Bl(x)v€(t)] + 3% (x.t) [a1(X)

+ A12(x)y(t) +Bl(x)v€(t)] (2.30)

Adding (2.25) to (2.30) we get

6'“ f f (t)) — 5f () aflA ( (X) + 1 — '3? x aO(X) + a—X (X.t) [al(X)

(2.31)

+ A12 (X)y (t) + B1 (x)v€ (t) 1

The last two terms of (2.31) cannot be part of the operator

LY, so we average them out by defining £2, for every

XERn and tE[O,T] as:

w afl A

f2(x,t) =10 [Et E (x,t+s)(A12(x)y(t+s,x)

+ A12 (x)A-%a21(x) + B1 (x)ve (t + s))

at (e/u)
+ 5; (X)aO(X) —L f(x)]ds (2.32)

(6/11) - .
The form of L , as defined by (2.5—2.17) With e/u

replacing Y, results as a by—product of showing that  
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1f2(x(t),t)1 is 0(u4-e), i.e.. by identifying the

parts of the first three terms on the right—hand side

of (2.32) which are not 0(6) or 0(u).

Using that fX and fXX have compact support and

the mixing property (2.4), and (A2)-(A4), it is shown

in Appendix B that:

1f2(t)1 g K364-K4H (2.33)

where, f2(t) = f2(x(t),t) and K and K are positive
3 4

constants independent of T and w. Following the same

steps, we used to show that fl<ED(A€’H) and Ae'ufliiio,

it can be shown that f2(t)<ED(A€'H) and Ae'ufzéEio,

where, (with x(t) = x)

Of

Ae'“f2(t) = L(€/“)f(x) 13% (x.t) (A12(x)y(t)

+ A12(X)A‘§a21(x) + Bl(x)v€(t)) Q; (x)a0(x)

at -

+ 75% (X,t)(al(x)-+A12(x)y(t)i—Bl(x)v“(t))

(2.34)

Adding (2.31) to (2.34) we get:

6 u 6/u af1
A ' (f(x)-tfl(t)-+f2(t)) = L f(x)4-?S; (x,t)ao(x)

of

+ 75% (x,t)[al(x)-+A12(x)y(t)-+Bl(x)v€(t)].

(2.35)
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We define

fe'“(t) = f(x(t)) +fl(x(t) ,t) +f2(x(t),t) for

(2.36)

0 g t ST

Now we are ready to verify condition (2.20) of lemma (1).

From (2.36), (2.28) and (2.33) we have:

31fe'“(t) -f(x(t))l = E1fl(t)+f2(t)1g Klfe' +K2./u

+ K3ea-K4H 4 O as €,u 4 O

and it is obvious that, for t<E[O,T] and e,u small,

sup 31f6'“(t) —f(x(t))1 < co.

t.€.u

Then, by the definition of the p-limit, (2.20) of

lemma (1) is proved. It is shown in Appendix A that:

Of
1 ,_ ,_

l-g; (x(t).t)ao(x(t))1
SK5\/€+K6(/H

(2.37)

Where K5 and K6 are positive constants independent of

T and m. We notice that differentiating fl(x.t) with

respect to x, did not affect the order, i.e. we have

0f

the same bounds on fl and 75% . Motivated by this

argument and by following the terms that will appear in

the calculation of the bound on f2 which is done in
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Appendix B, we can see that differentiating with respect

to X will not change the order of the resulting terms

and we will get a similar upper bound as in (2.33), taking

into account the mixing property of v, the compact

support of the partial derivatives of f up to the third

order and that v€(t) and y(t) are of order ii We

V/€

have:

0f2

IT); (X(t).t)al(x(t))1 gK7e+K8u (2.38)

and

0f

15—f- (x(t) ,t) (A12(x(t) )y(t) + 131 (x(t) )v6 (t) 1

_ _ (2.39)

g K9\/€ + RIO/Ll

where the positive constants are independent of w and T.

By the smooth dependence of LY on y (see (2.16)),

and by the compact support of f and all of its partial

derivatives, there exists a constant c > 0 such that:

hfefl”fm)—LYfm)1gch§—y1 (24m

Now, we verify condition (2.21) of lemma (1) as follows:

1A€IHf€'H(t) —LYf(x(t))1 g_1A€'“f€'“(t) -L(€/“)f(x(t))1

+ 1L(€/“)f(x(t)) —LYf(x(t))] (2.41)  
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But, from (2.35), (2.36) and by applying (2.37)—(2.39) we

get:

Of

1Ae'ufe'u(t)-L(€/u)f(X(t))131-63%- (x(t),t)ao(x(t))1

0f

+ 16_X2 (x(t) ,t)a1(X(t))l

Of

+ 13,—X2 (X(t).t)(A12(X(t))Y(t) +B1(X(t))v€(t))1

g ED/E +E2\/1T+ E3e+R4u (2.42)

where all Ki > O and independent of T and w.

Then, from (2.40) and (2.42) and by taking expectation,

we get:

€.H c,u v —— ,— ._ _ _ _

ElA f (t) —L f(x(t))1 g Kl\/€+K2\/11+K3€+K4LJ

+ CIE - Y1 4 O as e,u 4 O and E 4 y,

and since this expected value is finite for all t,

condition (2.21) of lemma (1) is verified. From (2.36),

(2.28) and (2.33) it is obvious that:

(sup 1f€'“(t) —f(x<t))1 2 n) c((Klvfl K2¢E+K3€+K4m 2n)
tg'r

Therefore, it follows immediately that

P1sup1f6'u(t)-f(X(t))lZn)"O as 6.1140 and 34)

th
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and this proves (2.22) of lemma (1). From (2.42),

/u
definition of L6 and the compact support of f and

its partial derivatives, condition (2.23) and (2.24) of

lemma (1) follow directly.

Then applying lemma (1) the proof of the theorem is

completed.

Remark 2.1: The above theorem does not cover the

case 3'40 as H 4O. This case however can be treated

in the following manner.

Asymptotic analysis can be applied in two steps by

letting a 4 0 followed by u 4 O. For each u > 0 it

follows from [12] or [13] that if the coefficients of

(2.1) and (2.2) and the process v(t) satisfy the

appropriate assumptions then the corresponding solutions

of those equations converge weakly as e 4 O to the

solutions of the singularly pertubed Ito model: (See

Appendix C for derivations).

dx = [31(x) +A12(x)y]dt+Bl(x)\/de (2.43)

udy = (3210;) +A2y]dt+B2(x)\/mdw (2.44)

where

31(x) = al(x) +31 (x), (2.45)

_21(x) = a21(x) +h2(x), (2.46)
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and

 
h" . = tr[Ei’B w’], (2.48)
21 1

and Di' Ei and W are as defined in Section 2.2. The

system (2.43) and (2.44) is a special case of the system

studied in [33] (See (2.1.1) of [33]). Under the

assumptions of [33] the process X(-) converges weakly

°(-)to the diffusion process X with differential operator

L given by (See Appendix C for details)

n n 2

_ — 0f 1 8 f(X)
Lf(x) — ‘_ b.1(x) 8—357”) +9: . 21 aij(x) 8x.8x. (2.49)

1—1 1 1,3—1 1 j

where

B(x) = 51(x) -A12(x)A‘§321(x)+h‘3(x), (2.50)

A(X) = [aij(x)l = BO(X)S(O)B6(X). (2.51)

ii (x) = tr[—F.’B 8(0)13’(A’)‘l —F’A 15(A’)’1] (2 52)
3 1 l 2 2 i 12 2 °

and P satisfies

PAz-tAZP = -B28(O)B2 (2.53)  
It is interesting to notice that the reduced order model

corresponding to the operator L in (2.49) can be obtained

Y
from L in our reduced-order model (2.7) by letting
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Y 4 O (or E 4 0). So, generally speaking, we can say

that the operator LY of (2.7) gives the right form of

the reduced—order model for all values of v, i.e.

Y E [0,”) .

Remark 2.2: There are special cases where the

infinitismal generator associated with E, given by (2.7),

is independent of the parameter Y. Such special cases

and their significance will be discussed in Chapter 5.

Here we would like to point out that in such cases the

convergence theorem reduces to the statement: "under the

assumptions (Al)—(A6), X(') converges weakly to §(-) as

e 4 O and u 4 0, provided that E 2 Y1 > O.



 



APPENDIX A

To verify inequality (2.37), let us consider f x,t)l(

as defined by (2.26) and (2.27). So, we have:

fl(x,t) = 1: g; bd.A12(x)eAZS/pds(y(t)-+A—§a21(x))

+ g§(X)A12(X)& I: :+S eA2<t+S-k)/MBZ(x)EtV€(X)dXdS

+ %§(X)B1(X) I: EtV€(t+-S)ds

= _(1%§(x)A12(X)A—%(y(t)-tA_§aZl(X))

+ §§(X)A12(X)E in i” eA2(t+s-X)/M<ksB2(X)Etv€(k)dk

t k-t

+ §§(X)Bl(x) I: EtV€(t-+S)ds

The second term, after integrating with respect to s will

be

0f
-3§(X)A12(X)A_%B2(X) 1t Etv€(l)dk

Thus we have:

44
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f1(x.t) = -u §§<x)812(x)8‘§(y(t) mic-12100)

.. (8-1)
+ §£(X)BO(X) ] Etv€(k)dk

t

where BO(x) is defined by (2.6).

Let

Ia21(X) = [€i(X)]mx1

-1 _

A 2 — [Gij1mxm

and

BO(X) = [eij(x)]nxm

then fl(x,t) in (A—l) can be expressed as:

mn '\

t (x,t) = Z Z [‘H-Cl-f—(X)§- 6001 (y (t)
1 j=l k 3:1 . 8xj 31 £k k

in) c ( ))1 2% 5 (5f 6 ( [a C+ a. - x + —(x) . x) Ev ())dx)
v=l xv v j=l k=l axj jk t t k

(A-Z)

Then, differentiating f (x,t) with respect to x, we get,
1

0f

for the ith component of the gradient 45%(x,t), i = l,2,---,n
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afl(x t) = 4% g [ Hazf(X)§ (x)d (y (t)
0xl j=l k,£=l axiaxj jé 1k k

m 55- (X)
0f L

+ Z akvgvm” H 0?? (x)E—33'." O[Lk(yk(t)
v=l

1

g at g agv
+ W1 de€V(x)) -)~i 0x (X)§j£(x)a.€k v=l Gkvé—X‘fbill

+ ‘2 2E [02f(x) 6 (x) I” E v€().)d)(

j=l k=l axiaxj 3k t t k

0f ae.k w e

+ 8;4(x)?fi%f(x) f Etvk(l)d1] (A‘3)

j 1 t

where [éij(x)]nxm = A12(x) as defined by (2.15).

For simplicity we are going to use the same symbol

K to denote different constants. Now setting x = x(t)

in (A-3), and by the use of the following facts:

K

1. ka<t))g.1y<t))gx<l+—% Vk= 1.2...»m.

2. 11:31 (x)§ 311A12(x)11g_ K(1+1x1) 3 K

Vj = 1,2,°°°,n and I = l,2,--o,m

where 1x1 is bounded as a result of the truncation.

Same is true for 6. .

jk

3. a21(x) is uniformly bounded in x.

4. First and second partial derivatives of f(x) have

compact support.
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From the mixing property (2.4), we have:

‘Etvfiufl g llEtvfiu)” g _I_<__ e—g(x-t)/e

\/€

We conclude that

‘fl(X(t)'t)‘ S.KlV/E+'K2vi
r . and since

‘ao(x)‘ g K(l+ lxl)

and ‘X‘ is bounded, (2.37) follows.



 

  



APPENDIX B

We need to verify the inequality given by (2.33).

The important fact behind doing that is showing how the

form of Le/H, as defined by (2.5-2.l7), results as a

by product of showing that (2.33) is valid. Our goal

is to show that

x)A-la (x) + Bl (x) v e(
2 21

+A t+sts

12‘

= [O [Le/“f(x)-§§(X)ao(x>1ds+-0(e>+-o<u> (B—l)

so that, if we define f2(x,t) by (2.32), (2.33) will be

satisfied. Let I = the left hand—side of (8—1), and let

/\ ..

g(x,t+—s) = A12(X)y(t+-s,X)-+A12(X)A :a21(x)

6 (3-2)
-+ Bl(x)v (t-+s)

w afl

I = $0 Et[-a—x_ (x,t+s) -g(X,t+S)]dS

° (B-3)
no

I

= ID Et[g (x,t-+s)oVXfl(X.t-+S)]d5

48
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_5_I .

where VX — (ax .3;—,‘°-,5§—). From (A-3), the inner

l 2 n

f
x

product g' -V can be expressed as:
l

g’(X,t-+s) ~vxf (x,t-rs)

l

E) E) 52f(x) A
= [—Lig.(x,t+s) -—-—— §. (X)c1 (y (t+s,x)

i,j=l k,L=l 1 BXiBXj gt Ik k

m Bg- A
5f 31

+ \EEI GkV§V(X)) ‘Hgi(X:t+S) ag(x)§§:(x)azk(yk(t+sox)

+ g a Q (X)) -—ng (X t+s) 9—12-02) 5. (x)cx

V21 kV V i I Bj ji Lk

m BQ

' E --—v (X)]

v=l qu axi

+ 2% i [g.(xt+s) 62f”) e (x) foo E vemdx
i,j=l k=1 1 axiéxj 3k t+s t+s k

+ g (x.t+s> 83% ) figIll-fix) fa Et+ vfiumx]
X3 ax. t+s S

1 03—4)

Let us define

_ /\ _

y(t+s,x) = y(t+s,x) +A éa21(x) (B—S)

Then, it can be seen easily that the first term of (B-4)

takes the form:
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I -l'—

- pg (x,t4-s)fXX(X)A12(X)A 2y(t+s,x) (B—6)

where = (ax2f(3x).) . The second term of

3 nxn

<2: 5 1—(34)=-w - OQgW(xt+S) §»(M(N'yW+snd)
j=l L=l ij X 3; 2 2

—l- . th
where (A 2y(t4—s,x))£ is the 2 component of the

m-vector A_%y(t-+s,x). Then, summing over i and using

(2.15) we get: The second term of (8—4)

n Bf I -l—

= Z —ua— g (x,t+s)F.(x)A 2y(t+s,x) (B—7)

j=1 Xj 3

where Fj(x) is defined by (2.15). The third term of

(B-4)

= -ug'(x,t4-s)(a21(x))é(Aé)_2AA12(X)VXf(X ) (B-8)

The fourth term of (B—4) can be reduced to

I E:

g (x,t-+S)fXX(X)BO(x) f Et+sv (X)dx (B—9)

t+s

ae.k

For the last term of (B-4), we need to look at T§%T (x)

1

Since BO(X) = Bl(x).—A12(x)A‘§BZ(x) = (ejk(x))nxm it is

seen from (2.13)—(2.15) that

m

(X) = $- (X)- Z) Z} §j £(X)G n (x ), and therefore

3k 1: 1 q=l iq qk
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66 aw. 5%

‘a‘l’km TEE”) ‘ 2 5x! “L n k(X)
X i £,q=l 1 q q

m an

— Z s (X)0 k(X)
£,q=l z I 8x.

Denoting the last term of (B-4) by I4 we have:

 

 

n r of aw,k w 6

I4 = Z Z [gi(x,t+s) 5X—-(X) 45x (X) I Vk(>‘)d)‘

i,j=l k=l j i t+s

g M agje
._ _ gi(x,t+s) 5327“!) 5X. (x) op nqk(x)

Po --1 J 1 q

j Et+sv£(1)dk

t+s

m 5f an k °° e
- 23— g (x,t+s) ax.(x) up J—ax. (x) J“ Et+svk(>.)dx]

p,q—l j q i t+s

= I4l+I42+I43 (8-10)

513 i of I J.” 6

I = (X) g (x,t+s)V 1). (x) E v (de
41 j=l k=l ij x 3k t+s t+s k

but from (2.13) and by summing over k we get

g 5:? , f e
I ——(x) g (x,t+s)D.(x) E v (de (B—ll)
41 j=1 ij j t+s t+s

where Dj(x) is defined by (2.13)

n m 5f 55. -1

I42 = ‘. ;_ § 53:7(X)9i(x't+s) ax. (X) (A 2B2(X)
1,3—1 p—l 1

co

6

E v (Mdk)
ft+s t+s p
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Q

where (A_%B2(x) f v€(x)d1)£ is the Lth component of

t+s m '

—1 e .

the m-vector A 2B2(x) f Et+sv (1)d1. Then by summing

t+s

over i and then over p, and using (2.15) we get:

n on

of I -l e
I = -Z ——-(x)g (x,t+s)F.(X)A B (X) I E V (Mdl
42 j=1 ij j 2 2 t+s t+s

(B—12)

2% g 5f I

I = - —(x)§. (x)c1 (g (x,t+s)E
. a .

43 3:1 p,q=l X3 JP pq q

f Et+sv€(x)dk)

t+s

where Eq is given by (2.14).

n 5f —1
I43 = .331 SEER) (A12(X)A 2w(x,t+s))j (B—l3)

where w(x,t4—s) is a vector whose ith component is given

by

Q

g'(x.t+s)E. f v€()\)d). (B—14)

l t+s

Then, from (B—3), (B—4) and (B-6)—(B—13), we have:

H

II

IO Et[g’(x,t+ 8) ° fol(x,t+s) ]ds

f0 Et[-ug’(x,t+-s)fxx(x)A12(x)A‘%§(t+-5.x)

of I —l—

H 53—;(X)g (x,t+S)Fj(X)A 211(1‘—+s,x)

j

I

w
:

j
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- ug' (x.t + s) (a21(x> );((A2’> ‘2A1’2(x)vxf (x)

m

I e

+ g (x.t+—s)fxx(x)BO(x) (t+s Et+sv (1)dx

E: af I” e
+ —(x)g’(x,t+S)D.(X)

E V ()x)d)\

j=l axj 3 t+s t+s

1‘ 5f I -l m e
- 1? 5—7(x)g (x,t+s)Fj(X)A 2B2(X) I Et+sv (de

]_]_ j t+s

n af -1
_ jg: 5;;(x)(A12(x)A 2w(x,t+s))jds (B-lS)

From (B—2) and (8-5) we have:

g(x,t+s) = A (X)§7(t+s,x) +Bl(X)v€(t+s)

12

Substituting 9 into (B—15) and then after simple

manipulation we have:

Q

I = f [—utr(£X
-l

O 2
(x)A12(x)A Etmt + s.x)§’ (t + s.x> >A’ <x)>

x 12

- utr (fXX(X)A (x)A‘§Et(§(t + s.x>v’€ (t + s))B‘l’ <x)>
12

 

n
of I — -I ‘1 I

_ utr(j§1 5;;(X)Fj(x)A12Et(y(t4-s,x)y (t-ks,x))(A 2) )

n af 6 -—, —1 ,
—Lmr(2 . anHxnsme(v(t+my W+snd)m ) )

j=l oXj j l t 2
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<x)BO<x) f Etv€(1)dx§'(t4-s.x)Ai2(x))tr(fX

t+s

X

CD

6 I

tr(fxx(x)BO(x) (t+s Etv (1)V’€(t+S)d>.Bl (x))

£(x)Dj’ (x)A12 (x) (t Et37(t + stxw' 6(

axj +s

tr( 1)d1

.
W
v

of

8.
X3

E v€(t+ s)v’€(>.)d>.)‘tr( t

1
2
W

(X)Df (x)B (x)

3 l ft+s

5f I an

S;§(X)Fj(X)A12(X) [t+s Ety(t4-s,x)vtr(

J
E
N
”

B§<x>(A‘§>’>

n on

Bf I 8 I6

- tr( 2 ——(X)F.(X)B (X) E v (t+s)v d3:1 axj 3 1 ft+s t (x) 1

---7 Et(A12(X)A_:w(x,t+ s) )j

— €( I

(x)Ety(t+ s,x) + B1(X)EtV t+ s)]

>’(A’>‘2
(a21 x 2 fx(XHdS

I (B—l6)
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°° I

Now let us consider f Ety(t+s,x)y (t+s,x)ds, where

O

1
we set {f(t) = y(t) +A-2a21(x)

on

I E 37(t+ s,x)y'(t+ s,x)ds

O t

°° A s/LJ_ —/ A’s/Ll

= f EtIe 2 y(t)y (t>e 2
O

s A (s—fl/u __ A'S/u
+ if e 2 B (X)V€(t+T)y’(t)e 2 GT

H o 2

A s/u s A'(s—1)/u

+ -l- e 2 y(t)f V'€(t+X)B'(X)e 2 d1
(1 o 2

s s A (s -T)/).l c

+ %J‘ J" e 2 B2(x)v€(t+T)v'V(t+1)

u 0

A'(S-X)/u ,
Bé(x)e 2 dldk]ds (B-l7)

From the estimate on y(t) and that a21(x) is bounded,

we get

°° A s/u_ __ A’s/u , K ‘2 °° —2o s/u

(f e 2 y(t)y’(t)e 2 ds)gKKl+—_2_) J e 2 dsglf-ggK'

0 \/€ 0

(B-18)

and for the second term in (B-17) we have, (notice that

B is bounded)
2
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I

1 w s .A2(S-T)/H e -—I .A2s/u

‘— I I e B (x)E v (t-tT)dTy (t)e ds]

*1 o o 2 t

m s -d (Zs-T)/u w -d s/u —2d s/u

g,3% I I e 2 des = E I [e 2 -—e 2 ]ds

“ o o o

S. K?“ 3 K (B—l9)

e K H

We used that (v (t+T)‘ g —: and that E 3 K.

\/€

From (B—17) and (B—l6), the significant term of I1 is:

0° 5 s A (S—T)/).l
u -l 2

L = — f trf (X)A A f I e
1 :2 0 xx 12 2 o o

e 16: I AZWS-M/Ll I
82(X)Et(v (t+ T)V (t+ 1))B2(X)e A12(x)d'rd)\ds

(B—ZO)

Subtracting and adding to (B—20), a term equal to the one

that appears on its right hand side but with

E(v€(t+T)v’€(t+i)) replacing E (v€(t+T)v’€(t+i)),
t

Ll can be written as:

L — 1 mfg [St (E €(t+ ) '€(t+)\) E €(t+ ) 'et
1—11‘fooortv TV ”V TV(+1))

, A§<s—1)/u , A2(s-T)/u
B2(x)e A12(X)fXX(X)A12(X)e 82(x)dexds

1 w s s _1A2(s-T)/u

_ 5 f0 f0 f0 fXX(X)A12(X)A 2e

6 IE: I A2/(S_-)\)/M I

B2(X)E(V (t+T)v (t+).))B2(x)e A12(x)d'rd>\ds

(B—21)

=L +L
ll 12
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From the mixing property (2.4), it follows [c.f. 36] that

IEtv€(T)v€(1)—Ev€(T)V€(1)) g E éO‘WtVE (is-22>

for every 0 g t g T g 1.

Then from (B—22),(A4) the bounded truncation state

x(t) = x and the compact support of fXX(x), we have:

s s X —a (S-x)/u —G (s—T)/u
K —a(1 e) 2 2

)Lnlififofofoe / e e
dede

° 8 1’? -0 (S-M/Ll —0 (S-T)/l~l
+ l: f I J éG(T/€) e 2 2

e dXdes

Lie 0

(B—23)

changing the order of integration in (B—23). Then, for

example, the first term in the right hand side becomes:

 

K I” K °° 411/6 —02(s—1)/u -a2(s—'r)/u

E? I f e e e dsdex
O O )\

0‘2 d
w - ——4—— A d

= ZoFH~ I fl G(Li e) e zT/Hdek

2““ o o

a
d1 2 d

, ... —— —(—+—)1

=1-‘e—“J (ee-e“ 6 )dxsKe

Similar estimate can be obtained for the second term of

(B—23). Then, we have: (we used that u/e g Kl)

[L11] 3 Ke (B—24)
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Now we consider

 

 

w s 1 A (S-T)/H

_ _J-_ -l 2 I X-T

L12 - we (0 I0 Io terX(x)A12(x)A 2e B2(X)R ( e )

I A2'(s—>\)/H I

B2(x)e A12(x)dede

l m S T _l A2(S-T)/H x_T

- JE Io I0 (0 terX(x)A12(X)A 2e B2(X)R( )

, Age-m ,
B2(x)e A12(x)d1des

= T1+T2

where, the correlation matrix R(T) = E(v(t4-T)v’(t))

satisfies, (also follows from (2.4) and [36]):

T

(Rm) 3 K50 (B—26)

setting 1,—T = w in T1 and changing the order of

integrabon, we get:

w s s A (s+w—X)/u
_ l -l 2 I w

Tl — ”HE (0 IO fw terX(x)A12(x)A 2e B2(x)R (E)

, Age-w ,
B2(x)e A12(x)d1dwds

Integrating by parts just once, gives
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l m S -l A2w/Ll I w
T = E f0 f0 trfxx(x)A12(x)A 2e B2(X)R (E)

I—lI

2) A12

I

32
(x) (A (X) dwds

w s _ A S/H

— % f0 Io terX(x)A12(x)A %e 2 B2(X)R’(§)

I

A2(S-W)/LlL I -l I

B2(x)e (A2) A12(x)dwds

A2(s+w—x)/u
1 an S S I W

+ J? f0 f0 jw terX(x)A12(x)e B2(x)R ‘5’

A2 (S-X)/L1(A' -1
Bé(x)e 2)

I

A12(x)d1dwds (B—27)

Similarly, setting T —x = w in T2, changing the order

of integration and then replacing the dummy variable T

by 1 we get:

1 an .S as 1 A2(S-)\)/|J.

0 w xx

, Ag (8+w—1)/H I

B2(x)e A12(x)dxdwds

and integration by parts once implies:

_ l °° “S —l W I AZIW/Ll I --1
T2 — E [0 Jo terX(x)A12(x)A 2B2(X)R(E)B2(x)e (A2)

Ai2(x)dwds

m as .A2(s—w)/h .Azs/u



 

 



60

co 5 s A (S-X)/Ll

+ if f J trf (X)A12(X)e 2 B2(x)R(

w

0 0 w xx E
)

A2(s+w-1)/u

B2’(x)e (A, -l2) A12(x)d1dwds (B-28)

Employing the facts that for any matrix A, trA = trA'

and for any matrices X and Y , tr(XY) = tr(X’Y’)
nxm mxn

= tr(YX). We observe the following:

(i) The first two terms in (B—27) are equal to the first

two terms in (B-28) respectively.

(ii) The third term of (B—27) = —T2 and the third term

of (B—28) = -Tl.

From these observations and (B-25), we conclude that:

m A w/u
_1 S -1 2 Iw I

L12 _ E f0 f0 terX(x)A12(x)A 2e B2(X)R (E)B2(x)

(A’)‘1A (x)dwds
2 12

1 no 8 —l 2228/)L I W I

— E JO (0 terX(x)A12(x)A 2e B2(x)R (E)B2(x)

Ads-WV” , —1 ,
e (A) A (x)dwds (B-29)

2 12

The first term in B-29
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co

_ -1 I I -l

_ Io terX(x)A12(x)A 2 ZIB2(X)(A2) A12(x)ds

co 0 -l A2W(E) I I
+ I f terX(x)A12(x)A 2e B2(X)R (W)B2(X)

O s/e

(Aé) -1A12(x)dwds (8—31)

It can be seen that the second term in (B-30) g_Ku.

And the second term in (B-29) is bounded by Klei-Kzu

where we used (B-26), (A4), boundendess of x(t),

compact support of fXX(x) and that % g_K. So, from

(B—l6), (B-l8), (B—l9), (B-21), (B-24), (B—29), (B—30) and

(B—31) we conclude that:

°° 1
I = IO [—utr(fXX(x)A12(x)A_2Et(§(t+-s,x)yv(t-ts,x))A£2(x))ds

°° —1 I I —1
= f0 tr(fXX(X)A12(X)A 2 2 32m) (A2) A12(X))ds+el

(B-32)

where, Z; is defined by (2.16) and

(ell g_Kl€4-K2HI (B—33)

where

K ,K are some positive constants independent of
1 2

T and m
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Now, let us consider I of (B—l6). From (B-l7)
3

we see that the important term in I3 is similar to

(B-20), namely,

a n s s A (5 T)/u
1 8f I 2

L = —— I tr( Z3 -——(x)F.(x)A (x) I I e
2 p 0 3:1 xj j 12

I

A (s-X)/u _

B2(x)Et(v€(t + T)V’€(t + 1))B2’(x)e 2 (Ag) l)d'rd>.ds

(B—34)

Repeating similar steps to the ones that has been made to

get from (B-ZO) to (B-21), we can express (B—34) as the

sum of two terms, i.e.,

L = L + L (B-35)

and from (8-22), the boundedness of Fj(x) and the same

reasoning as before, we get (note: L21 involves the

expression appearing in (B—22))

(L21) 3 K6

and similar to (B-25), we get:

1 w s 1 n af A2(s—T)/u

L — ---— I Z .-—-(x)trF (X)A (x)e

22 “6 IO 0 J10 j=1 a 3 12

A (8—1)/u

B2( )R’<) T>Bz’(x>e 2 (Aé)-lde1ds 

 

 





63

 

 

n \ A (s-T)/u

- —I IS IT 23 Of (x)trFf(x)A (x)e 2
O O O j=1 axj j 12

A'(s-x)/u

(x)R’(AJLI)Bé(x)e 2 (Aé)_lde1ds

1_ w s T n. 5f I A2(s-T)/h

— —— I I I Z} ———(x)trF.(x)A (x)e

us 0 O O j=1 ij j 12

A'(s—1)/u

132mmT —X)Bé(x)e 2 (Aé)-lde1ds (B—37)

After some manipulations it can be shown that

°° n °° A 1 °° A (—)w
5f I 2 2 LJ.

L = — Z -—(x)trF.(x)A (x) e e

22 IO j=l ij j 12 IO (IO

g(§)w .
B2(X)R’ (w)de’ (x) )f: R(ww)B2(XX)e aw)

A51

e d1(A2) ds+e2

I” 2: 5f “a AZX z; z;= - -—-—(x)trF.’(x)A (x) I e (_, B'(x)+B(x) 1’)
O j=l ij j 12 O 2

A’1

e 2 dx(Aé)—ld54-e2

— — In 23 ifli<x>trF’ (X)A (X)P(A_l)’ds+-e (B—38)
_ O j=1 5x j 12 2 2

where P is defined by (2.17) and

]eZI g Ktl (B-39)
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Similar to (B-18) and (B—l9), it follows that the

contribution of the first three terms of (B-l7) to I
3

of (B-16) is 0(u). Combining this, with the results of

(B—35)—(B—39) we get the following estimate:

°° n at
I =J“ —utr(>3 —<x)F.’<x>A (x)
3 O j=1 ij j 12

Et(§(t+ s,x)§’(t + s,x) (A-g) ')ds

°° n at 1_ _ _ I I — I _

_ trI I 5X.(X)Fj(x)A12(x)P(A 2) ds+e3 (B 40)

0 3—1 3

where

1e3l 3 K16 + K2H (B—41)

for some positive constants K1 and K2 independent of

T and w, Now let us consider

an _ [e co AZS/Ll_ IC‘

I E y(t+s,x)v (t+s)ds =I e y(t)E v “(t+s)ds

o t o t

°° s A2(s —T)/u

+ L1: I I“ e B2(X)Etv€(t+T)v’€(t+s)des

(B-42)

Using the mixing prOperty and that y(t) is O(%:) we get:

on A2s/u_ —(0 +%)s

IIO e y(t)EtV€(t-ts)dsI g E IO e
2/u
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Let T* equal to the second term of (B-42) then we have:

°° s A (s-fl/u

T* = 31' I I e 2 Bz(x) (Etv€(t+ T)v’€(t+s)

O

°° s A (s-T)/u

- Ev€(t4-T)v€(t+-s))des+-l I I e 2

H o o

B2(x)E(v€(t-+TWTJ’€(t+-s))des

= Tl + T2 (B-44)

Using (B—22) and that Bz(x) is bounded we have:

I< m ‘s ‘4:](2(S_T)/Ll -GS/€
]TlI g E? IO IO e e des 3 K (B—45)

If we consider 12 in (8-16) with (B—42)—(B-45) we get:

Q

12 = -u f0 tr(fXX(x)A12(x)A_%Et(y(t4-s,x)v’€(t+-s))Bi(x))ds

” _1 1 s A2(s-T)/u

= —u f0 tr(fXX(x)A12(x)A 2 ’E IO e B2(x)

E(v€(t+T)v’€(t+s))B]:(x)des)+e3 (B-46)

Where Ie3I g K1€ + K2u.

First term of (B—46)

co m (E

= _tr IO IO fXX(x)A12(X)A-:e 2 “ B2(x)R’(w)Bi(x)dwds
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w m —l 2(E)w / ,

+ tr IO I/e fXx(X)A12(x)A 2e B2(x)R (W)Bl(x)dwds

m —l-« ,
= - IO terX(x)A12(x)A 224B1(X)dS4-e4 (3-47)

where

le4‘ 3 K16 + KZL‘L (B-48)

Hence, it follows from (B—46)—(B—48) that:

I = —f trf X(x)A12(x)A-%2Bi(x)ds+e (B—49)
x 5'

g Kle + KZH (B—50)

Following steps similar to what has been done in (B—42)—

(B—50) we conclude that:

 

m n \ _I

14 = - (i [O tr(EiL aoxf‘(X)Fjl(x)Bl(x)Et(v€(t+s)y (t+s,x))

3— 3

<A‘§>’)ds

°° n M 1 —1
= _j tr[j§l g(xmj’mml’m) 1’ (A 2) ’]ds+e6 (B—51)

where

1e61 g_Kle + K2u. (B—52)
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Then, we consider the integral:

co 00 OD AZS/H co

Et§(t+-s,x)v’€(1)d1ds = I e y(t) I Etv’€(x)d1ds

O t+s O t+s

a m A (s-T)/u
l 2 6 I6

+ 5 I0 I I e B2(x)Etv (t+-T)v (t+—x)dexds

(B—53)

= CP1 + a2

K m w 4125/"1 -ox/€

lei.£ E I S e e dkds g K16 + KZH (B—54

where we have used the mixing property and that y(t) is

o(%—_).
V/€

0° °° s A (S—T)/LJ
1 p 2 a

w = _ I J e B ( )(E v (t-tT) (t-+1)
2 u 0 s O 2 t

- Ev€(t-+T)v’€(t+-1))dwdids

°° °° as A (S-T)/Ll -

+ g I I I e 2 B2(X)E(vb(t-+T)v’€(t-+1))de1ds

= Lp21 + Cp22 (B—55)

From (B-22) we get:

8 —c (s—T)/u

@211 g—II: I: I e 2 sax/e delds g K164-K2U

0

(3-56)
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Changing order of integration, we get

A2(S-T)/H

 gp = .1. I” I} IX e B (X)R’()k -T)deTdk
22 He 0 O T 2 e

0 l I

= I (A‘ Z -A-1W )ds+e (B—57)
2 2 7

0

where

‘e7I g_Kl€4—K2H (B—58)

and w is defined by I R(¢)d¢. Then I in (B—16), in

o

 

7

View of (B—53)—(B-58) can be written as:

an n of 1 co —' [C

:7 =f tr( 25X (X)D.(X)A12(X) f Ety(t+s,x)v (x)dx

o j=l j 3 t+s

on n n

_ a I -1"" bf I

— f0 [tr(jElg-S(X)Dj(X)A12(X)A 22. -51 ag<x>nj<xm12<x>

—l I
A 2B2(X)W )]ds + e8 (B—59)

where

le8] 3 K16 + Kzu (B—60)

where K1’ K2 are some positive constants independent of

T and m. We have used that fX(X) has compact support,

(A2) and (A4). Similarly I5 can be handeled as I7

and we get:
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on

I = IO tr(fXX(X)BO(X) I E v€(X)y”(t+-s,x)dxA’ (X))ds

t+s t 12

a: _1 » , —]_ I I

I0 tr[fXX(X)A12(X)A 2ZBO(X) -fXX(X)Al (X)A 2W BO(X) ] ds
2

+ e9 (B-6l)

where

Iegl g-Kle + Kzu (B—62)

and K1’ K2 are some positive constants independent of

T and w. Also, in the same way:

 

I = 1xL-Z r—OUF(MA (m I Ia§u+saov”(de
9 f0 3:1 dxj 12 t+s t

I -l

B2(X)(A2) ]ds

— a 3? 5f( >F’( >A <>A‘IZB’( >(A’ )‘ld_ _ IO tr j=1 5§_ x x 12 x 2 2 x 2 s

a E; 8f I -].WI I I -1

+ IO tr ._ BX (X)F (X)A12(X)A 2 B2(X)(A2) ds-I—elo

3—1 J

(B-63)

where

IelOI S.Kl€4'K2H (B-64)

Let us consider the integral
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V a: co

J = I I E v€(t+-s)v'

t

O t+s

€(x)dlds

Q Q 6

I I Etv (t+-s)v'€(t+-X)dde

O s

I I [Etv€(t+-s)v’€(t4-X)-Ev€(t+-s)v’€(t+-x)]dde

O s

Q @

6 I6 _

+ I I Ev (t4—s)v (t4—X)dkds — Jl+J2 (B—65)

O s

From (B—22), we have

lJlI g’Ke (B—66)

1 Q on w (9

r‘: I I

J2 = E I I R (E)dwds = I W ds (B—67)

O O 0

Then, from (B—65)—(B—67), (8-16), compact support of

fxx’ (A2) and (A4), we get:

I = "‘ tr(f (X)B (x) Ev€(>\)v’€(t+s)d)\B'(x))ds
6 J0 xx 0 {+5 t l

= IO tr(fXX(X)B1(X)W’Bé(X)) ds+ell (8-68)

where

Ielfl 3 K16: + Kzu (B—69)

and K1, K2 are some positive constants independent of

T and a. Also, we have from (B—65)-(B-67), (B-l6),
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compact support of fx’ (A2) and (A4) we get:

an n
0°

‘ Bf ’
6 I6

I = tr 2 5—(x) D.(X)B (x) E V (t+s)v (Md):

8 I0 j=1 Xj J l £+s t

a n af

2 IO tr .§; ‘§T(X) D5(X)B1(X)W'
ds-+e12

(B-70)

3—1 3

where

Ielzl g_Kl€4-K2H (B-71)

and K]. I K2

T, w. From (B—65)—(B—67), (B-16) and the same assumptions

are some positive constants independent of

as before, we get:

 

co n on

\f I E I6

I = -I tr 23 to (x) F.(X)B (x) I E v (t+S)v mm
10 O j=l oxj j l t+s t

I —l I

B2(x) (A 2) ds

= _I tr 2 g(x) F’(X)B (X)W’BI(X)(A’)— ds+e

._ a l 2 2 l3

O 3—1 J

(B—72)

where

Iel3I g Kle4-K2p (B—73)

and K1' K2 are some positive constants independent of

T and w. From (8—14) and (B-l6)
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°° af —1
I = - Z) ———(X)E (A (X)A w(x,t+-s)).

I” 21% 5f 1
= - ———(X)(A (X)A— h (x)).ds-+e (B—74)

O j=1 axj 12 2 2 3 14

where

\el41 g Kl€+K2Ll (3-75)

and w(x,t4—s), h2i(x) are defined by (B—14) and (2.11)

respectively. Finally, it can be shown that

”12‘ 3 K16 + K2“l

for some positive constants K1' K2 independent of T

and w. Now we add (B—32), (B—40), (B-49), (B—Sl), (B—59),

(B-6l), (B-63), (B—68), (B—70), (B—72) and (B-74), and let

e denote the smnn of all ei that appear in the above

equations and then from (8—3) and (B—16) we have:

2 w ofl

I = 1:1 Ii = IO Et[7§;(x,t%-s)-g(x,t+—s)]ds

_ at: -l" I I -1 I
_ IO [terX(X)A12(x)A 221B2(x)(A2) A12(X)

— tr 2n: £(X)F’(X)AI (X)P(A’)-:L
._ 8X. j 12 2

3—1 J

— t f (X)A (X)A—IZBWX) -tr E i( )F'()
r XX 12 2 1 j=1 ij j X

Bl(X) 22’ (Ax—é),
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+ tr 2 Pimm’mm (X)A—12
._ 8X. j 12 2

3—1 3

n a 1
- tr é 5——.(X)D3(X)A12(x)A—ZBZ(X)W’

3—1 J

-l I —1

+ terX(x)A12(X)A 22:BO(X)-terX(x)A12(x)A 2

BZ(X)W'Bé(x)

 

n

of I -l-’ I I -l

- tr :13 53?} )Fj(X)A12(x)A 22413200042)

3-1 3

n 5f I -]_W I I -l

+ tr 3E: 5;;(X)Fj(X)A12(X)A 2 B2(x)(A2)

n \f

+ terX(X)Bl(X)W Bé(x)+-tr Z) 5; (x)D'(x)B1(x)W'

J=l j

n of I I I I -l

— t .2 SCOOP (X)Bl(X)W B 2(X) (A )

3=1 3

n 6f —1
_ jg: S§f(x)(A12(X)A 2h2(x))j+e (B-77)

where e is the sum of all e which appears in the
k

right hand side of each Ii for i = 1,2,°--,12, and it

satisfies

le\ 3 Kl€+K2H (B-78)

where K1' K2 are some positive constants independent of

T and w.

From the definition of B x), the first term, the0(

third term and the seventh term of (B—77) will cancel.
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Moreover, we notice that

1
X)A_2trfxx(x)[Bl(x¥WIBé(x)-A12( B2(X)WIB6(X)]

= trf X)BO(X)W’B6(X) = % trf (X)BO(X)S(O)B6(X)
XX ( XX

% terX(x)A(x) (B—79)

where A(X) is defined by (2.9)

From the definition of P in (2.17), P satisfies

the Lyapunov equation

I _ _ / I _

PA2+A2P _ (2132+ 1322) (B 80)

From (8—80) and (B-77) we have:

tr[—Fj' (X)A12(X)A_§ZB2’ (x) (A-%) ’ —Fj'(X)A12(X)P(A-:) ’

I I -l I

- Fj (X)B1(X) Z (A 2) 1

= tr[-F5(x)BO(x)ZL’(A‘§)’-+F5(x)A12(x)A‘§p] (B—81)

Then, from (B—77) and (B-79)-(B—81) we have:

I - I” [4% -a—f—(x) (h (X) -(A (X)A-1h (X)) +h (X))_ O j=l 5X. lj 12 2 2 j 3j

2
1 n a f

+ 2 . Z: aij(x) 3§73§7(x)]ds+-e (B—82)

1,3-1 1 j
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where hij' h2j and h3j are given by (2.10), (2.11) and

(2.12) respectively. Then from (2.7)—(2.9) and (B-82)

we have:

I = I (Le/“f(x)._§§(x)ao(x))ds+-e (B-83)

0

Therefore, by defining (x = x(t))

” af1 af
f2(x,t) = IO [Et[-5-)-(—(X,t+s)g(x,t+s)]+3;(x)a0(x)

- LEI/Hf (X) ]ds

It follows directly from (B—83) and (B-78) that

If2(x,t)] 3 K16 + Kzu

where K1 and K2 are some positive constants independent

of T and w as required.





APPENDIX C

We first derive equation (2.43) and (2.44):

X

Let X = (3’), then (2.1) and (2.2) can be written

in the form:

al(x)-+A12(x)y Bl(x)ve

X: +—_ (C-l)

V/€

h <>+A > E()€H a21 X 2y 2 x v

where u > O is small, arbitrary but fixed and 52(x)==&B2(x).

Equation (C-l) is of the form:

>°<=i_ F(X.V) +G(X.V) (c—2)

V,€

which has been considered in [ll-l3], but let us apply, for

example, the result of [13] on the system (C-2), where

B1(X)V e

F(X.v) = . v (t) = v(t/e) (C-3)

B2(x)v€

and

a (x)-+A (x)y

G(X,v) _ 1 12 (C—4)
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The convergence result of [13], says that under

certain conditions X(-) converges to a diffusion

process XO(-) whose differential operator is given by:

Af(X) = EG’(x,v(s))fs(X)

+ I: EF’(X,V(S)) (F’(X,v(s + T))fX(X))X)dT (c—s)

= Il + 12

where

fx (Si’ 3;),

12 = E I: (v’(s>B{(x>v’<s>Eé<x))

dT

Vy(v’('r+ s)B]:(X)fX(X) + v'(T + s)gé(x)fy(x))

= E IO (v’(s)Bi(X)VX(V'(T-+S)BI(X)fX(X))

’(x)f (X>>+ v’(s)Bl’(x)vX(v’(«r+s)E2 y

+ v'(s)g£(x)7y(V/(T'tS)Bi(X)fX(X))

+ v'(s)g2’(x)Vy(v'(T+s)g2'(x)fy(x)))d7 (c—e)

Consider the first term of, 12
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IO Ev'(s)Bi(X)VX(V’(T4'S)Bi(X)fX(X))dT

co

= tr IO EBl(x)v(s)(VX(f;(X)Bl(x)v(T-+s))'dT

Q

= tr IO EBl(x)v(s)(fXX(X)Bl(X)v(T4-s)

i¥i<x>vxwij<x)vj<T+-s))’dw
+

a iI
W

i, 1

= tr IO EBl(x)v(s)(fXX(X)Bl(X)v(T-+s)

n \f
+ E; 5%;(X)Di(X)V(T4-S))IdT

e tr IO EBl(X)v(s)(v’(T-+s)Bi(X)fXX(X)

a

D
4
:

+ xfl<r+mpfm)——oonh

i=1; 1 5 i

_ , I n af , ,
— tr(Bl(x)W Bl(x)fXX(x))-+tr Z) 5§—(X)Bl(x)W Di(x)

i=1 1

(C-7)

where wij’ Di and W are defined as before.

The second term of I is given by:
2

I Ev'(s)Bi(X)VX(V’(T4'8)§5(X)%§(X))dT
O

Q

= tr IO [EB1(X)V(S)(fyx(X)§2(X)V(I4-S))'

m Bf I
+ Z3 5——(X)E.v(T-+s)) ]dT

i=1 Y1 1
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_ IN! I m of I I
_ tr(Bl(x)W Bz(x)fyx(X)) +tr 5:31 8—9—i-(X)Bl(x)w Ei

(C-8)

The third term of 12 is given by:

IO Ev’(S)§2’(X)Vy(VI(T+S)B]:(X):—}-f((x))d7

___ tr IO E§2(x)v(s) (fxy(X)Bl(X)v(T + s)) ’dT

= trB2(x)W Bl (x)ny (X) (c—9)

The fourth term is

IO B(v’(s)§2’(x)v (v'(T+s)l32(X)§§-(X)))d"r

= tr(B'2(x)W 15:2 (x)fyy(X)) (C-lO)

From (C-S), we have

11 = (a1 (x) +A12(X)y) ’fx(x> +§<a21<x> +A2y> ’fy<X) (c-11>

and therefore, by adding the expressions in (C-7)-(C-11),

we get: that the operator A, corresponding to X0,

Which is defined by (C-S) is
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Af (X) (51 (x) +A (x)y)fX(x) + (321m) +A2y)fy(X)
12

+ 12.- tr[B1(X)S(O)B]:(X)fxx(X) + 2Bl(x)S(O)Ez'(x)ny(X)

+ 152 (x)s<0)'§§(x)fyy<x)1 (c-12)

where al(x) and a21(x) are defined through (2.45)—(2.48).

We used the following identity:

tr [B1 (x)w’§2’ (x) f;X(X) + E2 (X)W ’Bl’ (x) féy (X) 1

= tr[Bl(x)S(O)§;(x)fxy(X)

Notice that:

W+W' = 8(0) ((3.13)

It follows from (C—12) that X0 satisfies the Ito -

differential equations

dx = (ai(x)42A12(x)y)dt4—Bl(x)\/S(O) dw

(C—l4)

udy = (321m) +A2y)dt+ B2(x) \/s(o) dw

(C—l4) has been introduced in (2.43) and (2.44).

Now we would like to apply the result of [33] to the

singularly perturbed system (C—l4). To do that, we need to
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modify (C-l4) to be expressed in the same form of the

system considered by [33], see equation (2.1.1) in

[33].

So, let us set u = V2 and § = Vy then (C-l4)

becomes (for simplifying the notation, we use y again

instead of § but it will be understood that we are working

with 37)

dx = 2:71 (x)dt+% A12(x)ydt + Bl(x) V’sm) dw (C-lS)

dy = % aél(x)dt+-3§.A2ydt+-% B2(X)\/S(O) dw (C—16)

V

In [33], Theorem 2.1 says roughly that under certain

v

assumptions the slow states represented by x (t), and

defined by (2.1.1) there, converges weakly as V 4 O

to the diffusion Markov process x(t) generated by

i of (2.2.5).

Our goal here is to use the above result to derive

the operator L corresponding totjuelimiting diffusion

X0 of the reduced-order model corresponding to (C-15)

and (C—l6), when u(=‘V2) 4 0. Then we compare the form

of L as given by (2.49)—(2.53) with the formula of

LY, given by (2.7), and conclude that L can be obtained

from LY by letting y a O (or E 4 0). So we proceed

by writting down the expressions for the operators £1,

£2 and £3 defined by (2.1.3)-(2.l.6) in [33].
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I l I

ii = (Azy) .v 4-5 tr(BZ(X)S(O)B2(x) .vyy) (c-17)

.52 = (A12(x)y) v +32’l<x) .vy+tr(Bl(x>S(o>BZ’(x)va)

(c—18)

__ — I l I

£3 — (al(x)) -v +—§ tr(Bl(X)S(O)Bl(x) .VXX) (c-19)

a a I 5 5 I

V = —-‘—I...I_ I = —'I°°'I‘— I

Where x (5x1 axn) vy (Byl Bym)

a2

vxx = Vx(vx) = (SiTEET) ' etc.
1 j nxm

For any smooth function f(x), XEERn, which has

compact support, the function ¢él)(x,y) has been

introduced in [33] and it has been required that Vél)

must satisfy:

2 ¢(l)(x y)4—£ f(x) = o (c-20)
l f ' 2

which can be written, via (C—l7) and (C-18), as

’ .v ((1) l ’ ‘(l)
(Azy) ykf (X,y)+2 tr(B2(X)S(O)B2(x)vyywf (x.y))

I —

+ (A12(X)y) fX(X) — O (C-Zl)

By means of the linearity in y and the fact that the

constant matrix A is nonsingular, it can be seen that
2

¢%(x,y) has to be linear in y. So we suggest the

following form for If
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“(1) I

Vf (XIy) = g (X)y (c-22)

where g(x) is a vector function of x, to be determined

later. Substituting from (C—22) into (C-Zl) we get:

(Azy)'g(X)-+(A12(X)y)'fX(X) = O

I

y'mggm +A12(X)fx(x)) = o (c-23)

(C-23) has to be true Vy ERm, this implies that

I —1

g(X) = -(A2) A x)fX(X)

I

12‘

Then, from (C—22) we have:

wél)(X.y) = -f;(X)A12(X)A_%y (C—24)

which is defined up to an additive constant. We proceed

as in [33], by defining Y(t:x) to be the diffusion process

in Rm generated by £1 given by (C—l7). This process

is actually a Gaussian Brownian motion process which possess

an invariant measure given by:

1 I -l

l -§(y Q y) m

1 e dy VA c R (c-25)

2

 

A ((2w)m detQ)

Q is the variance matrix of Y(t;x) and it is dependent on
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the parameter xEERn. Q is in fact the solution 3

of the Lyapunov equation (2.53). We notice that

I F(dy;x) = 1 (C-26)

Rm

As in [33] the diffusion operator L (see (2.2.5),

(2.2.6) in [33]). is defined by:

Lf(x) 1)I F(dy;x)[aél(x) °Vy¢é (XIY)

Rm

+ tr(Bl(X)S(O)Bé(X)V ¢é1)(x.y))

XY

-VX¢él)(X.y)i-§i(X) ~fX(X)

-fXX(X))] (C—27)

Substituting from (C—24) into (C-27) and making use of

(C-26), then, the first term of (C—27) is

1

R

— -I I ‘1 I

= — I m P(dy:x)a21(X) (fX(X)A12(X)A 2)

R

= _ f}:(X)A12(X)A_%5-21(X) . (0-28)

It can be shown after simple manipulations that the

second term of (C—27) is:
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= _ I B(dy;x)tr(Bl(X)S(O)B£(X)

Rm

1

. v (f (X)A12(X)A-2y))
xy x

1 I

2) A12(X)

II l

H
-

H H
}

X

§
‘

w (X)S(O)B£(X)(A-

n 5f -1
- .2 tr —.-(x)B(x)S(O)B2’(X) (A 2) ’Fi’m <c-29)

.‘L

The third term:

I F(dy:x) <—y’A1’2(x>fXX(x)A12(x>A'zy

m

R

5f I I -
_ é Si—'-(x)y A12(X)Fi(X)A 2y

1-1 1

I

= tr(-Q(A_%) [A12(X)fXX (X)A12(X)

 

n 8f —1 -l I I

- El 5X.(X)Q(A 2)Q(A 2) Fi(x)A12(x))

1—1 1

= -1 tr((Q(A‘l)’-+A"1Q)A’ (x)f (X)A (X))
2 2 2 12 xx 12

n A -l

_ tr .2 gflxmm 2) ’Fi’<x)A12(x)

i=1 1

= -1 tr A—lB (x)S(O)B’(x)(A—l)’A’ (x)f (x)A (x)
2 2 2 2 2 12 xx 12

— tr g Bi(x)Q(A_l)’F’(x)A (x) (C—30)

i=1 axi 2 12

We used the fact that Q satisfies the Lyapunov equation

(2.53).
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The last two terms on the right—hand sides of (C—27)

are given by

ai(x)fx(x) +3-l2— tr(Bl(x)S(O)B]:(x)fXX(x)) (c-31)

So, from (C-27)-(C-3l) and by replacing Q by 5} we

get

Lf(x) = ('51 (x) —A12(x)A‘§§21(x) +1—13(x)) ’fX(x)

 
l I

+ 2 tr(BO(x)S(O)BO(x)fXX(x)) (C—32)

where 5i, 551 and h3(x) are given by (2.45), (2.46) and

(2.52) respectively. The form of L in (C-32) is exactly

the same as if we let e/u (or Y 4 O) in (2.7).



   



CHAPTER III

STABILITY

3.1. Introduction:
 

Let us consider again the singularly perturbed

system that has been studied in Chapter two, namely:

x
.

ll al(x)+A (x)y+Bl(x)v€, x(0) = x (3.1)

12 O

uy a21(x)-+A2y-+B2(x)v€, y(0) = y0 (3.2)

which defines (x(t),y(t)) under the hypotheses of

Chapter II. As we have shown, x(t) converges weakly

to the diffusion process x(t) generated by LY of

(2.].)-(2.17). We shall study properties of x(t) as

- e

t 41w Wlth O < e g_€o, O < u 3.90 and ]a-—y\ g-Yo7

€,u are fixed and ,u and Y0 are sufficiently small.
6200

Our objective is to establish stability results about

x(t) which are based only on conditions upon the approxi—

mating diffusion x(t). So stability analysis can be

performed as if x(t) was given by the reduced order model.

This will lead to a considerable simplification due to the

smaller size of the model as well as the fact that the

reduced—order model is a diffusion one. To justify this

approximation, analytical study has to be performed to

guarantee that the behaviour of the actual x(t) as defined

87
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by (3.1) and (3.2) can be asymptotically predicted by the

reduced order model. Similar studies have been carried

out in [12] for systems driven by wide—band noise, as we

pointed out in Chapter I. Our job is essentially to

extend the methods of [12] to the singularly perturbed

case. In section 3.2 we state and prove theorem (1)

which gives us sufficient conditions that guarantee

stochastic asymptotic stability of the origin x = O

of (3.1) if the origin §'= O of the reduced-order model

is so. To show that, we will proceed in a way similar to

[12] except that the averaging of the Lyapunov function is

done in a way that is similar to the averaging of f(x)

in the proof of the convergence theorem of Chapter II.

Since the operator Ae’H cannot be applied to unbounded

functions, the Lyapunov function v(x), whose existence

is required for the stability of the reduced—order model,

has to be artifically bounded using truncations. Recently,

in [31], truncations have been employed for a similar

purpose. In Section 3—3, we allow the coefficients of

a1, A12 and B1 not to vanish at x = O, which is an

essential requirement in Theorem 1, and prove theorem 2

which shows that the mean square of x(t) is bounded on

the entire time interval. The basic steps of the proof

of Theorem 1 are used again in the proof of Theorem 2,

and only differences between the two proofs will be

emphasized. In Section 3.4 illustrative examples are

explored.  
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3.2. Stochastic Asymptotic Stability:
 

Before we state the basic theorem of this section we

state all the assumptions needed:

(1) The process v€(t) is defined and is assumed to

satisfy the same conditions exactly as in Chapter II.

(2) The coeff1c1ents al,A12,Bl,a21 and B2 are

continuous in x and have continuous partial

derivatives up to the second order which are

uniformly bounded in xéERn. Moreover a21 and

B2 are required to be bounded uniformly in x.

(3) A2 satisfies condition (A3).

(4) The coefficients al(x),A12(x) and Bl(x) vanish

at x = O and for every x€ERn and for some

M>O,

Ial(x)I-+IA12(X)[-+]Bl(x)l g_MIxI

(5) The coefficients aO(x) and B (x) which are defined
0

by (2.5) and (2.6) are required to satisfy:

Ia (x)-aO(z)Ii-IBO(X)-—BO(z)I§;le-zI Vx,z€ERn
O

and for some K > 0.

Now we may consider the diffusion process x(t), generated

by LY and given by (2.7)-(2.17), to be the solution of the

Ito equation:

d§(t) = b(§(t)) +o(§(t))dw(t), Em) = x (3.3)
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where b(X) is defined by (2.8) and

O(X) = BO(X)\/S(O) (3.4)

and we require:

(6) The coefficients b(x) and O(X) satisfy

‘b(x)‘+-‘o(x)‘ g_M]x‘ VxéiRn, for some M > O

and

(b(x) -b(z)l+ lo(x) —o(z)| gxix-z\ VX,ZERn

for some K > 0.

We will consider functions V(X), XGERn with the following

properties:

(a) V(x) is real—valued, positive definite, V(x)==O Ll

X ll 0

V(x)-+w as (x1-aw and has continuous partial

derivatives up to the third order.

(b) For any vector or matrix valued function g(x,t)==O(x)

for t<E[O,T] we have:

 

IV):(X)g(X,t)‘ ngx), VXERn (3.5)

((V);(X)9(X.t))xg(X.t)l gKV(x). mm“ (3.6)

‘ 53V(X) 1(X t) 2( t) 3( t)‘ KV( ) V 5RD

(3.7)

Vi,j,k = 1,2,:-°,n where g:,g§ and gi are

components of vectors or matrices which are O(X).

The constant K in (3.5—3.7) may not be the same
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and it is independent of T. For example if g(x) = x

and V(x) = x2 or V(x) = x4 then it is obvious that

(3.5)-(3.7) are satisfied.

Truncated Lyapunov function: Let V(x) be a Lyapunov
 

function which satisfies (a) and (b), stated above. For

each positive integer N, define SN = {x :Ix] ng].

Define VN(X) = V(x)qN(x) VXGERn, where qN(x) = l

. _ . n._ .
in SN’ qN(X) — O in R SN+1 and qN(x)<E[O,l] lS

smooth in x and have partial derivatives up to the third

order which are bounded uniformly in x,N.

In the following theorem we write L instead of LY,

where it will be understood that L depends on the

prespecified number Y<3[Yl:”)r Y1 > O is arbitrary but

fixed. Moreover L is defined by:

 

n. a l n 82

L") = ._ 131‘") 57%”? . 2. an”) W“)
1-1 1 1.3—1 1 3

(3.8)

where

A — ( sog’( '3(X) — Bo X) () o X) — [aij(X)]. (3.9)

The vector b(x) is defined by (2.8)—(2.17).

Now we state the theorem:

Theorem 1: Suppose that there exists a Lyapunov

function V(x) on Rn satisfying (a),(b) and, for some

X > O.



92

LV(X) g_—AV(x) VxeéRn (3.10)

Suppose that all the assumptions (1)-(6) are satisfied.

Then, there exist €O'HO and Y0 such that for all

. . e

€,u satisfying 0 < e g 60’ O < H g “0 and lJ-Y':;YO:

x(t), the solution of (3.1) and (3.2), is uniformly

stochastically asymptotically stable as t-4w, i.e. for

any n1 > O and n2 > 0 there is a 6 > 0 such that if

1x0] < 6 then:

St

(I) P(lx(t)l g n25 , t 2_O} 2_1 -n1 for some 6 > 0.

(II) P(lim lx(t)l = o) = 1.

tam

Moreover, if V(x) satisfies, in addition,

2 nl n
czlx( g_V(x) g cllx‘ VXEER

for some positive constants c1 and c2 and some positive

integers nl and n2 then (I) and (II) will be satisfied in

the large, i.e. independent of the initial condition x0.

Remark: The condition (3.10), under the assumptions

stated on the coefficients of L, guarantees that the

limiting diffusion process x(t) is uniformly stochastically

asymptotically stable as t-4”, see [7] or [20].

Proof of Theorem 1: In the proof we adOpt the same
 

terminology and definitions, concerning the operator AC’H,

which has been used in Chapter II. In fact we are going to
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repeat the averaging method but with the truncated function

VN(x) instead of f(x). We follow the basic idea of the

proof of [12 Ch. 5].

Operating, now on VN(x) by A€.H’ (using from now

on x for x(t), for 0 g t g_T where T is arbitrary),

we-get

€oH
A V (X) = \ (X) [al(x) +A12(x)y(t) +B 

(3.11)

Averaging out the last two terms by defining

N /\ _

V (x,t) = —(x) j [A12(x) (E y(t+s,x) +A
Nyl t

(3.12)

+ B x)E v€(t+-s)]ds

l( t

where

A S/u _ _

2 (y(t) +A gamma) -A Eamon(
D

A

y(t+—s,x) =

2(t+s _ r)/H p (3.13)

+ & f e B (x)v'(T)dT

 

EV m A -1

‘VN,1(X't)‘ g [a(x) f0 [A12(x) (Ety(t+s .x) +A 22:121(x))

+ Bl(x)E v€(t+s)]ds‘,

t

but from (1)—(4) and (3.13) the integral is bounded by

(KlV—€+K2\/U) 1x1. So it follows from condition (b) that:
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IV (x,t)! g_(KlvFEA-K2VKE)V(X) for xéES (3.14)
N,1 N

where K1 and K2 are independent of N and T. Operating

6:H

on VN,1(X't) by A we get

Ae'“v ( t) — -a—v§< )[A (H <t)+A’1a ())+B ( )v€(t)1
N,1X' ’ oxx 12Xy 221X 1X

5V

+ ...—Mm t) [a (x) +A (X)y(t) +13 (x)v€(t)1
ox ' l 12 1

(3.15)

Adding (3.11) and (3.15) yields

6 avN

A '“(vN<x) +VN,1(X’t)) = ‘5';(X)30(X)

EVN 1 E

+ _BX' (x,t) [51:L (x) +A12(X)y(t) +Bl(X)V (t)]

(3.16)

We average out the last two terms of (3.16) by defining:

 

°° BVN l /\

VN'2(x,t) = ID [Et Eh; (x,t-ts)(A12(x)(y(t-ts,x)

8V

+ Bl(x)v€(t+s)) +E§(x)ao(x) —L€/“vN(x)]ds

(3.17)

Following the steps of the convergence proof of Chapter 2,

in which we have shown that ‘f (x,t)l = O(e-tu), and by
2

replacing fl(t,x) by VN,1 and f(x) by V

see that each term appearing in V

N(X) we

N,2(X't) is identified,

using the assumptions (1)—(4) and (3.13), with the left
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hand sides of either (3.5) or (3.6). Thus, those

inequalities imply that

(V (x,t)) g (K3€+K4L1)V(x) for x68 (3.18)
N,2 N

where K3 and K4 are independent of N and T.

 

Ae’HV (x t) = LB/“v (x) —a-\fi“—L—1-(x t) (A (x)( (t) +A-la (x))
N,2 ' N ax ' 12 Y 2 21

av av

+ Bl(x)v€(t)) --5-:§(X)ao(x) + BNX’2(al(x) +A12(x)y(t)

+ Bl(x)v€(t)) (3.19)

Adding (3.16) to (3.19) we get

 

 

6V

€,u _ e/u N,1

A VN(X,t) —L VN(X)+ 5X (x,t)aO(X)

BVN 2 (3.20)

+ 5X, (x,t) (al(x) +A12(X)y(t) + B1(X)Vv(t))

where

VN(x,t) = VN(X)-FVle(x,t)-FVN’2(x,t) (3.21)

A

Now from (3.20) and (3.21) and for any 1 > O, to be

determined later, we have:

A av

 

6&1 A _ €/Ll N,1
(A -+x)VN(x,t) — L VN(x)-FXVN(x,t)-+ Eh< (x,t)aO(X)

BVN 2 C

+ ___—BX: (x,t)(al(x)+A12(X)y(t)+B1(X)Vv(t))

(3.22)
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A

Our goal at this point is to choose 1 appropriately such

em A . . . e/M
that (A -+x)VN(x,t) g 0. From the definition of L ,

(1)—(4), (3.5), (3.6) and the smooth dependence of Le/H

on e/u(E[Yl,w), there exists a constant c > 0 such that

for xESN

(Le/“VN(x) -LvN(x)\ chE—ylwx) (3.23)

From (3.14) and (3.18) we have for x(ESN:

VN(X,t) _>_ (1—Kl\/€-K2\/LL-K3€—K4H)V(x) (3.24)

Similarly we have for x(ESN:

V (x,t) g (1+Kl\/—€+K2V’I+K €+K H)V(x) (3.25)

N 3 4

Now we want to find upper bounds for the last two terms in

(3.22) similar to the upper bounds in (3.14) and (3.18),

 

  

and this follows from the definitions of VN l(x,t),

VN 2(x,t), from the assumptions (1)-(4) and from (3.5)—(3.7).

So we have:

BVN 1 __ __

1 5X (x,t)aO(x)l g (K5\/€+K6¢ (1)V(X) vxesN (3.26)

6V 5V
N,2 N 2 a

( ax (x,t)al(x) ( +1 5X (x,t) (A12(X)y(t) +Bl(X)v (t)))

(_T /_ 1.

g (K7e4-K8u4-K9V(t4-K10V u)v(x) vxéESN (3.27)
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All the Ki in (3.26) and (3.27) are independent of N

and T. Now it follows from (3.22),(3.23),(3.26),(3.27),

(3.25) and (3.10) that for XESN we have:

(A€’“+/>:)V( t) [-)\+C1E— 1+3? "72+? _+K€+KNX' g (1 Y l\/ 2\/Ll 3 4‘1

A __ ,__

+ 1(1+Kl\/ €+K2\/H+K3€+K4H)]V(X) (3.28)

There exist 80 > 0, MO > 0 and Y0 > 0 sufficiently small

such that the following conditions are satisfied:

(1) l -KlV/eo -K2V’HO-—K3€O-K4uo = C1 > 0

(ii) For all e and u satisfying 0 < e g 60,

A

0 < u g “0 and (E'-Y( 3 YO’ A can be taken small enough

such that:

_)\+c1§ ‘Y‘ +El\/_e+Ez\/U+E3€+E4H

A _ _

+X(1+Kl\/€+K2\/H+K3€+K4Ll) go. (3.29)

Then by this choice of 60, H0 and Y0’ (3.28) reduces to:

6M A
(A -+x)VN(X,t) g 0 for x ESN (3.30)

For 0 g t g T and for each N, the function
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is a zero mean martingale even if t is replaced by a

stopping time T with B(T) < a, [c.f. 10].

Let us now redefine MN as in (3.31), but with VN

A

replaced by eXtVN. We have:

But from the definition of A, we have:

 

Ae’HV (x(s),s)e)‘S

N

A E) /\

(eM8+ )VN(X(s+ 6).s+ a) -e)‘SV (x(s),s))
. N

= p—lim Et

690 6

A A

= p-lim % [ex<9+é) —eXS]EtVN(x(s-+6),s-+6)

640

A

As . 1

-I- e p—lim 5 [EtV (x(s+ 6), s+ 6)-V (x(s) ,s)]
N N

640

a Q Q_ __ s s €,u
—— ds e VN(X(s),s)+e A VN(x(s),s)

A A

= eAS(A€'P+ ))vN(x(s) ,5)

Then, we replace t by thTN = min(t,TN) in (3.32)

where TN = inf{t :x(t) ¢ SN). It is obvious that

B(tIWTN) < m. Then (3.32) becomes:
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A

A(tnTN)

MN(t(WTN) = VN(x(t flTN),t PTN)e -VN(X(0),O)

tn'T /\ A

_ I exs(A€’H4-X)VN(X(S),s)ds

0

from which we have:

A

x(TNflt)

e VN(x(t flTN),t flTN) = VN(x(0),O)

tnTN /\
(3.33)

+ f esx(A€’H-+§)V (x(s) s)ds-+ (t 0T )
O N ' MN N

Since x(s) ESN for 0 g s g tflTN, (3.30) and (3.32)

give

A

A(TNflt)

e VN(X(t DTN),t flTN) g_VN(X(0),0)-+MN(t flTN) (3.34)

Let C2 = 1-+KlV/€O4-K2V/uO-+K3€ -+K4HO then from (3.24),

condition (i), and (3.25) we have

V(x) for x 68 (3.35)

c 2 N
lV(x) g VN(X,t) g c

So (3.34) and (3.35) imply:

A

A(TNflt)

0 g cle V(x(t DTN)) g c2V(X(0))+-MN(t DTN) (3.36)

The right hand side of (3.36) is a nonnegative integrable

martingale. Using Kolomogrov's inequality for nonnegative

martingales and that E(MN(t()TN)) = 0, (3.36) gives
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A

A(TNflt)

le V(x(tr33N)) > n, o g t g,T)P(c

g P(c2V(x(0))-+MN(t(WTN) > n, 0 g t g'T}

g c2E(V(X(O)))/n (3.37)

Letting N 4 w implies that TN 4 w, since by the linear

growth assumptions on the coefficients there is no finite

escape time. Then from (3.37) we have:

At

molex V(x(t)) > n. 0 get 3 T) g c2E(V(xO))/n (3.38)

Letting T 4 m we get:

A

P{cleXtV(X(t)) > n. t 2,0) g c2E(V(XO))/n (3.39)

By the smoothness assumptions on V(x) we have:

_ n1

Cl‘X‘ g_V(x) g_c21x‘ for (x) g_rO (3.40)

for some rO > 0, 5i > 0, 32 > 0 and some positive integers

 

nl and n2. Then

A A

_ I'll __gAt gAt

(cllx(t)) g C n. tZO7DfV(x(t)) g—n. tgo?

C1

Hence by (3.39) and (3.40) we have:



 

 

 

/\

-).t/nl 77 l/nl

p(|x(t)( g_e ( __) . t 2 o) 2 1-—c2E(v(xO))/n

c c
l 1

c E n
2 2 2

21- n B(IXOI ) (3.41)

For any ml and n2, choose n so small that (3.41) gives

‘ c E n

Pa’lx(t)lgé'et n2. t>o)>1— 2213(12):]2 (3.42)

9 n2
where 6 = —L Choosing 6 so small that c 5'6 /n<(n ,

n1 2 2 1

we get that for all xO with 1x0) < 6

P (x(t)! eetn t O) > 1 -n (3 43)
' S 2' 2- J — 1 '

and this proves (I).

Now since

(lim (x(t)) = o} = (11m V(X(t))

taw tam

A

2 {sup extc V(x(t)) $.01

tZO l

(V (X)

of the above statement) where C

(3.39), (3.40) imply that for

P(lim (x(t)) = o} 2 1.___75"_

t'fico

.
.

_ 0)

being radially unbounded is necessary for the validity

is any positive constant,

IXOI < 6 we have
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Then as C 4 w we get

P(lim lX(t)l = O) = l (3.44)

tfi“

which proves II. Now if V(x) satisfies (3.40) VxéiRn

and if (x01 < m, (3.43) and (3.44) follow in the large.

3.3. Mean Square Boundedness:
 

The stability result presented in section 3.2 was

concerned with establishing the asymptotic stability of

the origin in a stochastic sense where the origin x = 0

is an equilibrium point of the system for any driving

input noise. That is, if the initial condition X0 = 0

then x(t) = 0 for all t 2 0. A key assumption there

was the requirement that al(x), A12(x) and Bl(x)

vanish at x = 0. While requiring al(x) to vanish at

X = 0 is a typical and acceptable assumption because it

can be always achieved by shifting the origin to the

equilibrium point of the unforced system, requiring

A12(x) and B1(X) to vanish at X = 0 is not always

valid. In many cases driving inputs do not vanish at

x = 0 and one cannot discuss asymptotic stability of

x = 0 because x(t) does not necessarily tend to

x = 0 as t 4 m. For deterministic systems the

appropriate concept of stability is bounded—input bounded-

output stability, i.e., to establish that for any bounded

input the trajectories of the system remain in a bounded set.
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A stochastic version of this concept is the mean—square

boundedness where one shows that x(t) has a bounded

mean square. The objective of this section is to study

the stability of x(t) when A12(x) and Bl(x) do not

necessarily vanish at x = 0. We now state the following

alternative assumption.

(4’) The coefficients al(x), A12(x) and B1(X) are

required to satisfy, for every x€ERn and for some

positive constants M1 and M2.

(al(x)]+1A12(x)‘+1Bl(x)(g Ml‘.x\ +M2.

The Lyapunov function V(x) will be taken to be a

 

quadratic form, namely V(x) = X’Qx, Q > 0. So it is

obvious that V(x) in this form satisfies conditions

(a) and (b) including (3.5)—(3.7), which are stated in

section 1. Now we are ready to state theorem 2.

Theorem 2: Suppose that there exists a positive

definite n.xn matrix Q such that V(x) = X’QX satisfies

LV(X) g K—xwx) VXERn (3.45)

for some K 2 0 and A > 0. Moreover assume that all the

assumptions (1)—(6), with (4’) replacing (4), are satisfied.

€O'H0 and Y0

. . e
satisfying 0 < o 3-60' 0 < u g “0 and ‘fl"Y‘ g YO’ the

Then there exist such that for all €,u

process x(t), defined by (3.1) and (3.2), is bounded in
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the mean square, i.e., there exists a positive constant

K > 0 such that E{Ix(t)12} g_K, provided that

B(1X012)< 9.

Remark 2: The quadratic Lyapunov function V(x)
 

satisfies the following conditions:

E(V(x(t))). B((LV(x(t))() and B((——7(x(t))o..(x(t))(2)

are bounded in t in any bounded time interval, and that

V(x) 2_c(xl2 VxéiRn and for some c > 0. Similar

conditions to these and to (3.45) have been required

[c.f. 18,31] to guarantee that, the solution to an Ito

equation is exponentially bounded in mean square with

some positive exponent, i.e., Ef]x(t))2 g K14-K2eat for

some K1 2 0, K2 > 0 and a > 0, where x(t) is the

solution of an Ito equation. This is actually the case

for x(t), the solution of our reduced-order model. The

av)O’..]above conditions are valid because V,‘LV‘ and ‘(BX l]

i

 

are dominated by polynomials and c is in fact equal to

1min(Q) which is positive since Q is positive definite.

Proof of theorem 2: Using the fact that V(x)
 

satisfies

2

cllx12 g V(x) g c2‘xl VxéERn (3.46)

for some positive constants c1 and c2, and then

preceeding in the same way as in the proof of theorem 1 of
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section 3.2, we get the following inequalities which are

similar to the ones given by (3.14), (3.18), (3.23), (3.26)

and (3.27) respectively. The new inequalities take the

forms:

h%ulbmt)‘g_UfiyFE+KT/E)Hx]2+‘xh, (347)

IVN’2(x,t)1 g (K364-K4H)(‘X124-‘Xl4—1), (3.48)

For some c > 0

 

(Le/HVN(X) — LVN(X)] g_c]E-—y1(1x124-lxl), (3.49)

avN,1
—— r— 2

and finally

 

av av .

1 §;2(x,t)al(x)14-1—7§§3(x.t)(A12(x)y(t)+—Bl(x)v°(t)))

3 (K76 +K8Ll +K9¢3+ KlO\/Ti_) (1x12+ 1x1+ 1) (3.51)

All the positive constants Ki in (3.47)—(3.51) are

independent of N and T. Defining V (x,t) as in
N

(3.21), we have

5V 8V

 

 

€,u __ e/u N,1 N,2
A VN(X.t) — L VN(X) + 5X (x,t)aO(X) + 5X (x,t) (al(X)

+ A12(x)y(t)+-Bl(x)v€(t)) (3.52)

Then from (3.49), (3.45), (3.50) and (3.51), (3.52) implies

that
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Ae'qu(x.t) g K-xc11x12+c(3 -y( ((x(2+ (xl)

+ (K7€+K8H+K9\/€+KlO\/H)((1x12 +(x(+1)

g K+ (El‘E_Y‘+Cl(€'H) -AC1)1X12+52‘E-Y‘+C2(€,(J)

(3.54)

There exist €0 > 0, “0 > 0 and Y0 > 0, sufficiently

small, such that for 0 < e g 60’ 0 < u g.uo and

e

‘fl"YI < Y0 we have

— € — __ _.

cl(J-Y]-+cl(€,u)-xcl — K2 for some K2 > 0.

Then it follows from (3.54) that

€,u — — 2

A VN(x,t) gKl—K21x1 (3.55)

for some positive constants K: and Ké. Also the above

0 and Y can be made small enough that

0' 0 0

by the aid of (3.47), (3.48) and (3.46) we have

choice of e

dlle2-—d2 g_VN(X,t) g 61(X124-82 VxéESN (3.56)

where di and Bi are some positive constants.

Now let us introduce a set QO as follows:

_ 1

K .2

_ n . _ 1

Q0 - (X‘ER .(X( < KO} where KO-— (:7-)

K2

We define the starting time T as follows:
0
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T = o if x(0) i QO

= inf (t :(x(t)( = K) if x(0) e Q

t20 O

and let be defined as the first time that x(t)

T1

enter QO for t 2 TO, i..e., T1 = inf(t :tQZTO,x(t)<EQO).

Finally we define TN} as before (see section 3.2), that is,

TN = inf( )¢ SN . Without loss of generality we

3 . .
assume that SN QO so that TN 2_TO. Then Similar to

(3.31), and for 0 g_t g_T, t 2_TO

VN(x(t flTN.flT1),t.flTN.flT1) = V (x(T ),T )

tflTNflT (3.57)
l

V (x(s),s)ds + (t 0T 0T )

To MN N 1

where MN is the zero mean martingale defined similar to

(3.31) except that the lower limit of integration is TO.

It is obvious by the definitions of TO,Tl and TN that

for TO g.s g_tr)TNr)Tl, x(s)(ESN--QO and then (3.55) gives

Ae'“v (x(s),s) g o (3.58)

Therefore, (3.57) implies

,trlTN()Tl) g_VN(x(TO),TO)4—MN(trWTN.flTl)

(3.59)

But from (3.56) we have:

-
)

2
-
1

2

dllx(t.flTN(3Tl)l g_d2—+Bllx(TO)lZ -+82-+MN(t NOT 1)
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Then by taking conditional expectation ET , we have:

0

G B B
2 2 2 l 2

E [x(tfl'r (MM g—+—+—E (x(T )l gK
TO N 1 cl cl cl TO 0

for some positive constant K independent of N. And

then by taking unconditional expectation, we get

Elx(t 0T 0T )]2 g_K
N 1

Since K is independent of N, letting N 4 w as we get

E\x(tflTl)IZgK Vogth (3.60)

Now, we consider the following cases:

(i) If 312T then E1x(t)(ng 3'03th (3.61)

(ii) If T1 < T we redefine T0 = iJflf{t :(X(t)( = K)

5 t2T1

If T6 Z.T then E‘x(t)]2 g'C )(0 git g T where

C = max(K,KO).

I I

If TO < T then To

and we repeat the whole process again starting from (3.57)

is taken as the starting time

and with Ti = inf(t :t 2 T6, x(t)(EQO}. and then similar

to (3.60) we get:

I 2
E]X(tflTl)( gK’ VtE[TC’),TflT£]

and so on. Then we conclude that

E‘x(t)l2 g'i, 0 g t g T for some 'K > 0,
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independent of T. Therefore letting T a a we get

2 — -

Elx(t)l gK Vtzo

and this completes our proof.

Remark 3: Suppose that K== 0 in (3.45), i.e.,
 

LV(x) g -XV(X), and that the constant M2 in (4') vanishes,

i.e. the coefficients al(x), A12(x) and Bl(x) vanish

at the origin and satisfy

(al(x)]+‘A12(x))+lBl(x)\ ng(x] 'v’xERn.

Then, if we proceed in a way similar to the steps of the

proof of theorem (1) we conclude the following

inequalities which are similar to (3.30) and (3.35)

respectively

6 u A ,
(A ’ -+1)VN(x,t) g 0 for Xt:SN (3.62)

C1V(X) g VN(x,t) g c2V(x) for x(ESN (3.63)

CI and c2 are positive constants independent of T and

N. But since V(x) = x’Qx, we have;

— 2 — 2 /
cllxl g_VN(x,t) g €21X1 for x<:SN (3.64)

Then similar to (3.34) and by the aid of (3.62) we have:

Q n(TN t)

e VN(X(tflTN)ItflTN) ng(x(0),0) +MN(tflTN) (3.65)

then from (3.64) we have:
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A

MT 0t) _

o 56 N Ix(tflT)l2gc]x(2+ (tat) (366)
i 1 N 2 0 MN N °

Taking unconditional expectation we get:

A( ())1 T t
—— N 2 — 2 —

clE(e (X(t(1TN)( )g_c2E(XO‘ g_C

By the monotonic convergence theorem we have:

A( ) AA T flt '-
2 t 2 C

limE(e N (x(tflTNH ) =E(e)‘ (x(t)! ) g;—

N#” c

1

2 Qt
then E(lx(t)l ) 3K6 3'03th

since K is independent of T, it follows that

2 Qt
E((x(t)l ) 3K6 ‘v’tZO.

3.4. Examples:_

Example 1. Consider the system:

x = —5x+xy+xv€ (3.67)

My = —y-+e v (3.68)

We would like to study the stability of x(t) when 6

and u are sufficiently small, and let us take Y = .1,

as a nominal value of the ratio e/u. v€(t) = A: v(t/e)

\/e

and v(t) is a zero mean, stationary, uniformly bounded

process for t.€[0,®) and satisfies a mixing condition

with decaying exponential, so that, if R(T) is the

correlation function, then we have
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]R(T)I g’eT (taking the exponent to be 1 here).

According to the results of Chapter 2 the state x(t) of

(3.67) and (3.68) can be approximated by a diffusion

.process X(t) whose diffusion Operator is given by: (Let

us assume that S(O) = l, where S(w) is the spectrum of v)

2 3—X2 3—2x2 —2x2 —x2

-2x e

X
-+2x e -+xe -+xe ]L(-) = (—5x+%[x+xe

(3.70)

_ 2

(o)4—%X2(1+-ex2) 533

2 co

+ 2x352X j 5'1(T)R(T)dT]a§ 2(-)

X0 d

To establish the stability properties of x(t) we need

to study the stability of the diffusion X(t) and this can

be done, if we can find a Lyapunov function V(x) which

satisfies LV(X) g_—XV(X), V3<EIR and for some 1 > 0.

Let us choose V(x) = x2, then from (3.70) we have:

2 2 2 2 2

LV(X) = ~10X24—[x24—x2ex --2X4eX 4-2x452X 4—x2e2X 4—Xzex

” - 1(7) 4—2x2 2 —x2 2
+4] e' R(T)dToxe +x (1+e ) (3.71)

0

2 2 2 m (1 1 2
g_-10X 4—4.36X +-.75x I 5 ° )TdT-t4X

0

2 ”

g—X = —V(X) vxEJR

2—2X2

We have used that max(x e ) 3 .18.

X

Then it follows that, [c.f. 7,20], the solution X

of the reduced—order model given by L of (3.70), is

stochastically asymptotically stable. Then, it follows by
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theorem 1 of this chapter, since all the assumptions of the

theorem are satisfied, that the process x(t) is stochas-

tically asymptotically stable for e and H sufficiently

small and for E sufficiently close to Y = .1.

Remark: It is interesting to notice that, if we

allow 3, for example, to take values in [.05,w) (say),

then we see from (3.71), that the term:

6 e 2

_ 2 w -(—)T _ 2 w —(-+l) 4-2x

4X482X I e H R(T)dT g4x4e2X f e H = £%?E___

O O (-+ 1)
u

2

4X4é2X

i "1.05

Since 3 Z_.05 and the above conclusion is valid

for sufficiently small 6 and u and for any 2 in

[.05,”). Although theorem 1 is valid only for the case

when E is close to a norminal value Y in [Yl,m) for

some Y1 > 0, the proof can be modified to show that if

LV g_—1v is satisfied uniformly in y then the statement

 

of the theorem holds for all 3 2 Y1 > 0.

Example 2: Consider the system:

X = —2X+xy+v€ (3.71)

. 6
(1y = —y+v (3.72)

This system is different from the one which has been

considered in example 1 in that, the right-hand side of

(3.71) does not vanish at x = 0 which means that x = 0
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is not an equilibrium point and the best that we can hope

to establish is to show that x(t) is bounded in the mean

square, for all t 2.0 and for e and u sufficiently

small and for E sufficiently close to a nominal value

Y = .5 (say). Let us assume that v6 satisfies the same

assumptions as in example 1. The process x(t) of (3.71)

and (3.72) can be approximated by a diffusion process X

1).whose differential operator is given by: (We take S(0) =

L . — ( 2 +1[ +1]+2“) d(- +l(1+ )2d2(-)( ) - (- X 5 X 4.)a§ ) 5 X 5;: (3.73)

where

m 5T

2:] R(¢)5' d: (3.74)

0

Then if we choose the Lyapunov function V(x) = X2, (3.73)

implies:

LV(X) = -4x2+-x24-x+-2x2:+-(1+—X)2

-3x2+ (x2+ (3+2Z)x+1)

2 3+2ZZ_(3+2Z)2
-3X + (X-+ 2 ) 4 +—l

  

2

Using the fact that (a-I-b)2 g 2(a 4-b2) for any real

numbers a and b and that

L
»
)

12):] g(l.5)Td =2

0

we get

LV(X) g 12 -x2 = 12 —V(X) ‘7'XEIR
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This implies [c.f. 18] that X(t) is exponentially bounded

in mean square with exponent l, i.e. E(]X(t)]2) g_K14-Kzet

V'tZJD, for some K1 2_0 and K2 > 0. Then, since all

the assumptions of theorem 2, of this chapter, are satisfied,

it follows that the process x(t) is bounded in the mean

square sense, V't 2,0, for sufficiently small 6 and

u and for sufficiently close to 0.5.E

u



CHAPTER IV

STABILIZING CONTROL

4.1. Introduction:
 

It is a well known fact that an important aspect of

feedback design, is the stability of the control system.

Whatever has to be achieved with the control system, its

stability must be assured. Actually, sometimes, the main

goal of a feedback design is to stabilize a system if it

is initially unstable. Let us recall that the two types

of feedback designs are the state feedback, in which it

is assumed that the complete state of the system can be

accurately measured at all times and is available for

feedback, and the output feedbackq which is the much more

realistic case where there is an observed variable whose

dimension is, in general, less than that of the states

and it serves as input to the controller. The observed

variable is usually corrputed by an observation noise.

The states of the system, which cannot be measured

accurately in this case, can be reconstructed from the

observed variables and the feedback control, in this case,

is a function of the reconstructed states. For example,

in the case of linear systems, where both the state

equation and all the output variables are corrupted by

115
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additive white noise (the state equation is an Ito equation)

one can use a Kalman filter [c.f. 37] for a state recon—

struction and then a state feedback control can be designed

to achieve certain prespecified objectives. Stabilizing

nonlinear stochastic systems via the use of an asymptotically

stable stochastic observer have been considered recently [18].

The work which is done in that paper is a generalization of

the Kalman filter structure.

Until recently, singular perturbation techniques have

primarily focused on state feedback design of linear

systems. Advantages of these techniques, such as order

reduction and separation of time scales, are expected to

have a more dramatic effect on feedback design of nonlinear

systems. Stabilizing deterministic nonlinear singularly

perturbed systems have been considered, for example, in

[2] and [38]. In this chapter we consider the stochastic

stabilization problem for nonlinear singularly perturbed

systems driven by wide-band noise. We consider the

following system:

6

$4 = a1 (x) +A12(X)y+Bl(X)vll+Gl(X)u (4.1)

6

My = a21(x) +A2y + B2(X)v1l +G2(X)u (4.2)

2 = cl(x)+c2y+B3(X)v22 (4.3)

where u is a control vector in Rp, z is the output

E: 2.

vector in Rq (g g n), vlléff:and v22 ER; are independent

and have the same properties, as v6 defined in Chapter 2,





117

where 61 and 62 are different in general, so that, if

e

the observation noise v22 has spectrum which is wider

6

than that of the system noise v11 then we expect 62 to

l'GZ'Cl and B3

are, in general, functions in x and are required to

be much smaller than 61' The matrices G

satisfy certain smoothness conditions which are specified

 

later. The outline of this chapter is, roughly, as follows:

1. We begin with the open—loop full—order system (4.l)—(4.3)

and we aticipate an open-loop reduced order model

 

(0LROM) in the form of an Ito equation.

2. We design a stabilizing feedback control for the above

(0LROM) model which will result in a stochastically

asymptotically stable closed—loop reduced order model

(CLROM). Work similar to that of [18] has been done,

in that regard.

3. We apply the feedback control which we obtained in

step 2 to the full—order open—loop system (4.1),(4.2),

and we obtain a full—order closed loop system (FOCLS)

which will be of the form (2.1) and (2.2).

4. We apply results of Chapter 2 to identify the reduced-

order closed—loop model (ROCLM) corresponding to

(FOCLS) which has been obtained in step 3.

5. We require that the (CLROM) be the same as the (ROCLM)

and this results in some conditions which will be

referred to as the consistency conditions under which

the OLROM will be identified completely.
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6. We apply the results of Chapter 3 to obtain conditions,

under which the(FOCLS)is stoachastically asymptotically

stable.

Remark: In the second section we will study the case

when all the states of (4.1) and (4.2) are available for

perfect measurement and a stabilizing feedback controller

has been designed according to the above outline. In the

third section we repeat the same procedure but in this

case we assume that the states are not available for perfect

measurement and an output feedback controller via an

observer is employed. In section 4 we illustrate the

procedure by an example.

4.2. State Feedback Stabilizing Control: Let us write

6

 

again the full—Order system (4.1) and (4.2) with v11

written simply as v6

. e

X — al(x) +A12(x)y+Bl(x)v +Gl(x)u (4.4)

My = a21(x)-+A2y-+B2(X)v€-+Gz(x)u

We assume that the slow state variables x(t) are

available for measurement. Since the results of Chapter 2

indicate that x(t) tends in the limit to a diffusion

process, it is reasonable to anticipate that the open—loop

reduced—order model corresponding to (4.4) and (4.5) takes

the Ito form:
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d; = b(§)dt+E(X—)udt+g(x_)dw (4.6)

where the exact forms of the vector b and the matrices

G and 0 will be determined later. Let us assume that

there exists a sufficiently smooth function g(x) such

that, when the feedback control u = g(x) is applied to

the system (4.6), the resulting closed-loop reduced—order

model

dx = (36%;) +E(§)g(§))dt+6(§)dw (4.7)

is asymptotically stable in some stochastic sense (see

Chapter 3). Then, we apply the control law u = g(x)

to the Open-loop full order system (4.4) and (4.5) to

obtain the closed-loop full order system

. N e

x — a1(x) +A12(x)y+B1 (X)V (4.8)

(15; = 3210:) +A2y+ B2(X)v€ (4.9)

where

a1 = al-rGlg (4.10)

and

a2l = a21+GZg
(4.11)

Equations (4.8) and (4.9) are in the form of (2.1) and

(2.2) respectively. Then, the reduced—order closed—loop

model corresponding to (4.8) and (4.9) can be obtained by

applying the results of Chapter 2, assuming that the

A

coefficients and the process vc satisfy the required
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assumptions which will be spelled out later. So, the

reduced-order closed—loop model corresponding to (4.8)

and (4 .9) is:

10 (§))g(§)dt +\/A(§) dw (4.12)a; = b(§)dt+ (ol(§) —A (§))z>.‘2 2
12

where b(x) and A(x) are defined similar to (2.8) and

(2.9). Now we impose a consistency condition which is

stated as follows: The closed-loop reduced-order model,

which is obtained by applying the control u = g(;) to the

open-loop reduced—order model, is the same as the reduced—

order closed—100p model corresponding to the closed-loop

full—order system (obtained by applying the same control

u = g(x) to the open-loop full-order system).

This, condition says that the coefficients of (4.6)

must be the same as those of (4.12) for any g(x) and

this implies:

 

b(x) = b(x) 'V’XERn (4.13)

~ —1 .. n

G(X) = Gl(X)-A12(X)A 2G2(x) I7x€ER

3 GO(X) (4.14)

g(X) =\/A(X) (4.15)

Hence the open—loop reduced-order Ito model that approximates

the slow states of the non-Markov open—loop full-order system

(4.4) and (4.5) is given by:

a)? = b(§)dt+oo(§)udt +./A(§)dw (4.16)
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With the (0LROM) (4.16) in hand we can proceed now to

design the feedback control u = g(x) to stabilize x of

(4 .16).

This control task is much simpler than the original

task of stabilizing x of (4.4), (4.5) since now we are

dealing with the ito equation (4.16) for which stability

and stabilization techniques exist in the literature

[c.f. 7, 16, 18, 20]. Suppose now that we succeeded in

finding a sufficiently smooth function g(x) with g(0) = 0

such that the application of the feedback control u = g(X)

to (4.16) results in a stochastically asymptotically stable

(CLROM) with a diffusion operator L’ given by:

O(X)g(X)) . fX(X) +

N
I
H

Lf(x) = (b(x) +G tr (A(X)fX (X)) (4.17)
X

The use of the feedback control u = g(x) with the full

system (4.4) and (4.5) is justified by the following

theorem whose proof is a straight forward application of

Theorem 1 of Chapter 3.

Theorem 1: Suppose that there exists a Lyapunov
 

function V(x) for x E Rn which satisfies all the assumptions

of Theorem 1 Chapter 3 and that LV(X) g -AV(X) for some

A > 0. Moreover, suppose that assumptions similar to (1)-(6)

stated in Chapter 3 are satisfied where, al,a21 and a0

IV ~ ~ — ~ —l~

are replaced by al,a21 and a0 — al-—A12A 2a21, respec-

tively. Then the solution, x(t), of (4.4) and (4.5),

with the control u = g(x), is uniformly stochastically
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asymptotically stable as t 4 w, for sufficiently small

6 and H and for E sufficiently close to a normal

value Y€5[Yl:”) for some Yl > 0.

4.3. Output Feedback Stabilizing Control:
 

Let us consider the full—order open loop system (4.1)

and (4.2) with 2, given by (4.3), representing the

6

observed variables, where vll(t) = 5%: vl(t/6l),

62 1 €1 V”:1

v2 (t) = 4:: V2(t/€2), IT€E[Y1'm) for ‘Y1 > O arbitrary

V/€2

but fixed and vl(t) and V2(t) satisfy all the assumptions

given in Chapter 2. Moreover, let Rl(T) = B(v1(t)vi(t+-T)),

to 03

I

R2(T) — E(V2(t)v2(t+T)), wl —]" Rl(T)dT, w2 —f R2(T)dT

0 0

and Sl(w) and 82(w) denote spectrum matrices of V1 and

v2, respectively. The main assumption in this section is

that the states of the system are not available for perfect

measurement. Then, we follow essentially the basic steps

of section 4.2 to stabilize the initially unstable system

(4.1) and (4.2). So we proceed in doing that as follows:

We anticipate that the open-loop reduced—order model of

(4.1)—(4.3) takes the form:

dX = fl(x)dt+Fl(X)udt+01(x)dwl (4.18)

of = £2 (E) dt + F2 (§)udt + 02 (E) dwl + 03 (E) dw2 (4 .19)

We consider a controller of the form u = g(X) where X

is the output of the observer:
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61;: = fl (X)dt+ Fl(§<)g(§c)dt+ K[dz - f2(;()dt —F2(§<)g(§<)dt]

(4.20)

for some constant gain matrix K. The vectors f1(X),

f2(x) and the matrices F1,F2,01,02 and 03 are to be

determined by applying a similar consistency condition to

the one stated in section 4.2. The closed-loop reduced-

order augumented model which follows from (4.18)-(4.19)

with u = g(X) is:

a; = fl(§)dt+Fl(§)g(§<)dt+ol(§)dwl (4.21)

6);: = fl(§<)dt+Fl(§<)g(§<)dt+K(f2(§) —f2(;<))dt

(4.22)

K (F2 (35) — F2(X) )g (3}) dt + K02(;)dw1 + K03 (x) dw2

To determine the exact form of fl’fZ’Fl’FZ'Ol’OZ and 03

we propose an observer for the full system (4.l)-(4.3), to

reconstruct the states x, in the form:

§ = f (§)-+F (X)u+—K(z-—fl 1 2(32’) —FZ(§)u) (4.23)

The gain matrix K is the same as the one appearing in

(4.22). Now applying the same control law u = g(X) to

(4.1), (4.2) and (4.23), as a function of the reconstructed

states 2, then the closed—loop full-order augumented

system takes the form:

X = al(x) +G (X)g(§)+A (x)y+B
1 12

x
2
-

I— £16.“) +Fl(§<’)g(x) +K(C1(X) —f2(’>2) 426666?)

E:

2
+ Kc2y+KB3(x)v2
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6

- _ 'v l
uy — a21(x) + 02(x)g(x) +A2y + B2(x)vl

which can be simplified to

X = al(X)-+A12(X)y-tBl(x)v (4,24)

. ~ ~ 6

0y = a21(X)-+A2y-+B2(X)v (4.25)

x v61

e l

where X== , v =

2 V62

2

'51 (X) =

£162“) + Fl(§)g(’>‘£) + x(cl(x) -f2(’>‘€) —Fz(’§)g(’>‘<’))

‘ (4.26)

32100 = (a21(x) +62(x)g(x)) (4.27)

1‘12””

A12(XJ = (4.28)

K02

Bl(x) 0

B1(X) = (4.29)

O KB3(X)

and

B2(X) = (B2(X) O) (4.30)
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System (4.24) and (4.25) are basically in the form

of (2.1) and (2.2) and under additional assumptions, which

will be stated later, it can be shown by the convergence

result of Chapter 2 that x(t) of (4.24) and (4.25)

x

converges weakly to a diffusion X = as 61 4 O,
A

X

6

6 4 O, u 4 0 and I} 4 Y. If we trace the steps of the
2

convergence proof in the case of only two parameters 6

and H we will find that, in the case of three parameters,

6

the ratio is given by 1% and it does not depend on 62,

 

6

and so we will require 1% 4 Y<E[Yl,m). Moreover all the

upper bounds that we established in the steps of the proof

which were O(u-te) or O(V/E3tv/6) will depend here on

6

6 and on the fact that :% 2_Yl. Let us derive the1162!“

differential Operator corresponding to i. with the aid of

(2.7)—(2.17), where the assumptions that will be listed

later, will validate this derivation. As in (2.8), the

drift coefficient is

b(X) = 30(X) +31 (X) —A12(X)A_%h2 (x) +83 (X) (4.31)

The diffusion coefficient

A(X) = 3(X)'5’(x) (4.32)

where

311 23’12

8’ = (4.33)

821 E22
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~ N ~ l~

a (X) = al(X)-—A12(X)A-2a21(x)

ao(§) +GO(§)g(§<)

A A A

2

1
(X)A-2GO(X) = G G2(X)

and aO(X) is defined as in (2.5):

:32 (E) KB3 (§)

where B (X) is defined as in (2.6)

w1 0

N:

0 w2

23: Q: 0)

where

6l
w A (——)T

2:: f e 2 ’2 82(X)R£(T)dT

x)-KF2(X)—Kc A-%02(X))g(X)+K(cl(X)—f2(X)
_1 _

‘C2A 2a21(x))

(4.34)

(4.35)

(4.36)

(4 .37)

(4.38)

(4.39)
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x

From (4.29) and similar to (2.13) we have: (for X = . )

x

Di(x) O

Di(X) = for i: lizl°°°an (4.40)

0 0

where

Di(X) is defined in (2.13)

and

O Di(x)

Di(X) = for i = n4—l,°'°,2n (4.41)

0 0

where

_ _ V . =

D1(X) [ Xail(x) XGis(X)]nxs' KB3(X) [Gl](X)]nXS

for i = n+—l,"‘,2n (4.42)

From (4.28) and similar to (2.15) we have

Fi(x)

Fi(X) = i = 1,2,-:~,n (4.43)

0

where Fi is defined as in (2.15) and

Fi(X) — 02nxm i = n+—l,"',2n (4.44)
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and from (4.30) and similar to (2.14) we have:

E,(X) = i = l,2,'°°,m (4.45)

where Ei is defined as in (2.14).

Then similar to (2.10) and from (4.36).(4.37),(4.38),

(4.40) and (4.41) we have:

N

N _ ~ ~ ~I “’1'“ -l .

h1i — tr[DiBOW +DiA12A 22]

_ ’ I -l _
_ tr[DiBO(x)W+DiA12A 22] — hli(X)

for i = l,2,--°,n (4.46)

where h1i is defined as in (2.10) and from (4.41) we get

hli = O for i = n+—l,---,2n (4.47)

Hence

h1(X)

hl(x) = . (4.48)

0

Similar to (2.11), we have:

N _ ~I~ ~I ~ ~ -l~ _

h2i(X) — tr[EiBOW +EiA12A 2Z1 — h2(x)

for i = l,2,°°°,m (4.49)
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where h2(X) is defined as in (2.11), and similar to (2.12)

 

we have

1: (X) = tr[-’B W’B'A-l -E’E E’ (A‘l) ’+i«:’z: 24—11;]
3i i 0 2 2 i O 2 i 12 2

= h3i(x) for i = 1,2,°°-,n (4.50)

and

h3i(X) = 0 for i = n+—l,°--,2n (4.51)

h3 (X)

Hence h3(X) = (4.52)

0

where h3i(x) is defined as in (2.12). Notice that, it

can be verified that P = P, where P is defined as in

(2.17).

Now, since R(x) = 80(X)§(O)86(X) (4.53)

81(0) 0

where S(O) =

0 82(0)

Then from (4.32),(4.33),(4.36) and (4.53) we get:

 

BO(X)\/ 81(0) 0

3(X) =

-KC2A_%B2(X)V/Sl(0) KB3(X)V/SZ(O)

(4.54)
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Then the reduced—order closed—loop model corresponding

to (4.24) and (4.25) takes the form:

a; = (1662) +GO(X)g(X))dt+BO(X)\/_S_(_O—) dwl (4.55)

d§< = [£166 + (13162) 462(2) -KC2 «6224‘; 2(35))g(§<

+ K(cl(X)-f2(X)-—c2A_:a21(X)-c2A-%h2(X)]dt

- KcZA‘%32(§)V/§I76) dwl4-KB3(§)VF§;76) dw2 (4.56)

 

Applying the consistency requirement, as stated in section

4.2, the reduced—order closed-loop model (4.55) and (4.56)

has to be the same as the closed loop reduced—order model

given by (4.21) and (4.22). Hence by comparing the

coefficients in the two systems and insisting that they

must be equal for all K and for all functions g(x),

we have:

fl(x) = b(x) (4 57)

IFl(x) = GO(X) (4.58)

01(X) = BO(X)V(Sl(O) (4.59)

f — A'l A'lh2(x) — cl (X) —c2 2a21(x) —c2 2 2(X) (4.60)

F (x) = -c A‘lG (x) (4 61)
2 2 2 2 '

Hence, the Open—loop reduced-order model (4.18) and (4.19)

can be written in the form.
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dx = b(X)dt+G (§)udt+o (§)dw
0 1 1

Q
.
)

N ll (x)dt+F (x)udt+62(§)dw +6 (§)dw1 3 (4.63)
c0 0 2

where b(x) and GO(x) are defined by (2.8) and (4.35)

respectively.

cO(x) = c1(x)-c2A-:a21(x)-c2A-:h2(x) (4.64)

FO(X) = -c2A_%GZ(X) (4.65)

01(X) = BO(X)¢_S:(_O—) (4.66)

02(X) = -c2A_%BZ(X)\/—873) (4.67)

03(X) = B3(X)\/§é(—O) (4.68)

and the proposed observer (4.20) takes the form:

A A

dx = (b(x)+GO(X)g(X))dt+K(c (32) —c (X))dt
0 0

(4.69)

(§<))g(§<)dt + K62(§)dw +K0 (x)dw+ K(FO(>_<) —F l 3
0 2

The design problem, is to choose a function g(x) which

is smooth enough and a constant matrix K such that both

the state x and the error e = X-—x will be stochastically

asymptotically stable. Let us write the It0 equations

X

(4.62) and (4.69) in the form (using X = A )

X

(33?: §(§)dt+3(3€)dw (4.70)

3300 = b(E) +60(§)g(§<)

\b(§<) +GO(§<)g(§<) +K(co(§) —co(§<)) +K(FO(§) -FO(§<))g(§<)

(4.71)
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and

01(x) O

6(X) = (4.72)

K02(X) K03(x)

Suppose we succeed in finding u = g(x) and the gain matrix

K to stabilize (4.70), then the next step is to apply the

same control law to the open-loop full order system

(4.l)—(4.3) where u = g(x) and x is the reconstructed

states and satisfies the equation of the following observer:

x==bk)+GOmMflX)+KmlMJ—COM))4beOgW)

~ €2

+ Kc2y+KB3(x)v2 . (4.73)

where K in (4.73) is the same gain matrix obtained above.

Then we would like to spell out all the conditions, under

which the stability of (4.72) would imply that of (4.1),

(4.73) and (4.2), when u = g(§) is applied to (4.1) and

(4.2). This will be done with the aid of the results of

Chapter 3. We state here the assumptions that will imply

asymptotic stability in probability according to Theorem 1

of Chapter 3. This will require that we consider the case

when c2 5 O (in the case when c2 4 O assumptions can

be made to show boundedness in the mean square sense

according to Theorem 2 of Chapter 3.) So considering

c2 E O we require the following assumptions:

(A) B (O) = 0, 83(0) = 0, A (0) = 0, c (0) = 0, a (0) = 0, and
12
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(B) b(x) and G(X) are required to satisfy:

[lo/(X) —g(Y)]+ [g(X) —;(Y)] 3 C]X—Y] vx,Y6R2n

and

(”66612.4 (“56612 g C(l+ (x12) 33.6122“

(C) The coefficients ;i(X), Ai2(X), Bi(x), 521(X) and

A4

B2(X) are continuous and have continuous partial

derivatives up to the second order which are uniformly

bounded in X€R2n in addition to a21(X) and 320:).

~ ~ ~ - 2

(D) 1a(X)]+]A (X)[+[B(X)nglx[ V'XERn
l 12 l

and for some K > 0.

(E) (1; (X) -5 (Y)(+ [E (X) -8 (Y)] g K]X -Yl VX YER2n
0 0 0 0 '

for some K > O.

(F) vl(t) and v2(t) satisfy the same type of conditions

as stated in (A1) of Chapter 2.

(G) The constant matrix A2 is Hurwitz, i.e., 1%2A(A2)<j0.

Now we state the following theorem:

Theorem_2: Suppose that there exists a Lyapunov function

V(X) on R2n which satisfies the same type of assumptions

as in (a) and (b) of section (3.2), but for x(ERzn.

Moreover suppose that the assumptions (A)—(G) are satisfied

and let L be the diffusion operator corresponding to

the diffusion process X defined by (4.70), and for some

1 > 0
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EV(X) g -XV(X) )(XfERzn (4.74)

Then there exist 6%, no, and Y0 such that for all

i €1 x(t)

0 < 61 g 60' O < u :40 and ]F-Y] 3 YO. x(t) — 35(t) .

the solution of the closed—loop system resulting from (4.1),

(4.2) and (4.73) after applying the feedback control u = g(x)

is stochastically asymptotically stable as t 4 w.

nggf: From the assumptions and (4.76), the solution

of the closed-loop reduced-order model represented by (4.72)

is stochastically asymptotically stable then following

exactly the steps of the proof of Theorem 1 of Chapter 3

after the necessary modification concerning the following

estimates, which are similar to the estimates given by

(3.14), (3.18), (3.23), (3.26) and (3.27) respectively.

2n

(SN here is subset of R )

)V1,N(X’t)] g (KP/77+ K2\/_E; + K3\/_H)V (X) .

(v2,N(X.t)l 3 (K 6 +K €2+K u)V(X).

 

4 1 5 6

€1/Ll
€1-

IL VN(X) -—LVN(X)] g c]-D--YIV(X),

avN 1 ... _ _ _

I 636 (x,t)aO(X)[ 3 (K7\/ el+K8VI €2+K9\./).l ) V(X),

and

0V 0V ~ ~ 6 6

N,2 ~ N,2 1 2 I

]—-;3—x---(X.t)<’:1l (X) l + )778‘55-(X’t) (A12(X)y+Bl(X) (v1 .v2 ) )l

3 (K10\/ 61+Kll\/ 62 +K12V/u +Kl3€l +Kl4€2 + Kl5p)V(X)
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all the above inequalities are true for X<ESN. Also the

6

above estimates depend on the fact that I} 2 Y1: Then

the result of the theorem follows.

4.4. Example:

Consider the system

6

X = x-txy-txvll-tu (4.75)

6

- 9

“Y = ‘g‘Y'3V11
(4.76)

with observed variable

Z = x4-XV (4.77)

Our objective is to design an output feedback control

N

u, as a function of the recontructed state X, to stabilize

the above system. We assume that

  

1 _ l 1 2 _ l C
vl (t) — /T_ vl(t/6l) and v2 (t) — /:__v2(t/52)

\ b1 y’°2

where vl(t) and v2(t) are taken to be independent, zero

mean, stationary, uniformly bounded processes for t€E[O,®)

and satisfy mixing conditions with decaying exponentials.

Let R1(T) and R2(T) denote the correlation functions of

V1 and v2 respectively, then we have:

-017 —02T

]Rl(T)] g e and [R2(T)\ g e

for some 01 > O and G2 > 0. Let Sl(w) and 82(w) denote
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the corresponding power spectrum functions respectively.

The open-loop reduced-order model is given by (we take

2

_ _ 1—

dx — udt + —xdw (4.78)
2 1

dz = xdt—i—xdw2 (4.79)

We want to find a control u = g(g) where ; satisfies the

equation of the observer

d§< = udt+K[dz —§<dt] (4.80)

The design problem is to choose an appropriate function g(Q)

and a constant K such that § and Q are stochastically

asymptotically stable. So if we choose g(g) = -F§ and we

define e = §W—§ then from (4.78)-(4.80) we have:

/ ’ \

__ _ l—

, dX -F F X i- O

‘ ___ dt + dw (4 .81)

\ de 0 —K e :5; —K>—<

W1

where w =

w2

By taking V(X,e) = x2-+e2, we have:

£V(§,e) = + l§24-l§2+-K2§2
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where i. is the diffusion operator corresponding to the

Ito equation (4.81). Choosing K = 1, F = 2 we get

£v<§£,e) = 433122 —4§e+2e2) g -.23(§2+e2) = -.23v<§,e)

V(x,e)€CR2

§'

Then it follows that, the solution of (4.81) is

e

stochastically asymptotically stable. Then applying the

control law u = -2x to the open-loop full-order system

(4.75)-(4.77), where § satisfies the equation of the

observer

~

x = —3x+u+ (2 —§) (4.85)

will stabilize the system according to theorem 2 of this

chapter, since all the assumptions of the theorem are

obviously satisfied.

This conclusion holds for sufficiently small 61,62 and

M. We notice that in this particular example we do not have

to require that the ratio el/u be sufficiently close to a

nominal value Y since the reduced—order model is independent

of Y.



 

    



CHAPTER 5

DISCUSSION AND CONCLUSION

5.1. Discussion:
 

In this section we discuss the reduced—order model

defined by the operator LY of (2.7) and explore various

special cases of practical significance. Inspecting the

drift coefficient b(x) and the diffusion coefficient

A(X), given in chapter 2, shows that the wide-band nature

of v€(t) affects only the drift coefficient. In other

words, if one had tried to obtain a reduced-order model by

following the intuitively appealing, but wrong, procedure

of simply replacing the wide—band noise by its limit white

noise and then applying the order reduction procedure of

singularly perturbed deterministic systems [1], he would

have obtained a reduced-order model with drift coefficient

aO(x) and diffusion coefficient A(X). The differences

between the two drift coefficients are the terms hl'

—A12A-:h2 and h3. These terms depend, respectively, on

the partial derivatives of B1,B2 and A12 with respect

to x. The appearance of the partial derivatives of B1

and B should be expected in view of the asymptotic
2

analysis of nonlinear systems driven by wide-band noise

[ll—l3]. The appearance of the partial derivatives of
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A12 is less obvious. However, if we take into consideration

that as e and u tend to zero the process y(t) itself

tends to white noise, we can see that A12 plays the role

of an input matrix multiplying wide-band process, similar

to the roles played by B1 and B2. It is interesting to

notice that if the matrices A12,B1 and B2 are constant

(independent of x), the terms hl'h2 and h3 will vanish.

In this special case applying the intuitive procedure of

formally setting H = O and formally replacing the wide-

band noise by its limit white noise, would lead to the

correct reduced—order model.

One disturbing fact about the reduced—order model (2.7)

is that the drift coefficient b(x) depends on Y = lim

€,p40

through the matrices Z1 and P. This is the consequence

‘
C
I
m

of the interaction between the asymptotic phenomena associated

with singular perturbations on one hand, and the asymptotic

phenomena associated with rapid stochastic fluctuations on

the other hand. The dependence of LY on Y has important

impact on the engineering practice of neglecting parasitic

elements when writing down differential equations representing

electrical networks, mechanical systems, etc. It is apparent

now that if one would be interested in solving those equations

when driven by wide-band noise and using the usual white noise

approximations, the parasitic elements should not be neglected

from the outset. Rather, they should be included in the

system description and their relationship with the wide-band

noise be studied in order to obtain the right reduced-order
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diffusion model.

Fortunately, there are interesting classes of systems

for which the engineering practice will work out without

causing trouble. These are systems for which the operator

LY
will be independent of Y. Using the explicit form of

the operator LY given by (2.7)-(2.17), we can easily

identify classes of systems for which this is true.

Essentially, we need to look for special cases when 2 = O

or when the partial derivatives multiplying Z and P

vanish. For example, when B2 = O, the matrix 2 = 0.

That is intuitively clear since B2 = 0 means that y(t)

would be a smooth process whose elimination from (2.1) can

be done using the usual singular perturbation routine.

Indeed, we do not need B2 = O for y(t) to be a smooth

process in the limit. We only need that B2 takes the

special form B2(x) = pagé(x) or B2(x) = €G§2(x) for

some constant a > Checking the proof of the theorem,

N
I
H

it can be seen that the terms containing B2, 2 or P

drop out. In addition, we have already seen that for the

class of systems in which AlZ'Bl and B2 are constant

matrices; the terms hl'h2 and h3 vanish and the drift

coefficient b(x) reduces to aO(X) which is independent

of Y.

In Chapter 1 we have outlined Blankenship's ppproach

[28] and implied that it is valid when E a O as e a O.

This can be verified for our problem by applying Blankenship's

procedure to our system. The algebraic equation
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al(x)+Ay+B (x)v€=O (5.1)
2 2 2

has the unique solution

-1 €

2[a21(
y = -A X) +B (X)V ]. (5.2)

2

Using (5.2), an outer solution for x is defined by

2(t) = a (X(t))+—B (X(t))v€(t). (5.3)
O O

As 6 4 O, x(t) tends to a diffusion process g(t) whose

infinitismal generator has drift and diffusion coefficients

defined by

b==a +h —A A-

and

X = BOS(O)B6 (5.5)

Where

$1 = tr[DinW], (5.6)

$2 = tr[E£BOW], (5.7)

$3 = —tr[F£BOWBéA_:] (5.8)

It can be easily verified that this is exactly our reduced—

order model when Y 4 w (
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5.2. Conclusions and Future Research:

In this thesis, a class of nonlinear singularly per-

turbed systems driven by wide-band noise has been considered.

It has been shown that the probabilistic behavior of the

slow variables can be predicted from a reduced-order diffusion

model which has been derived explicitly. The use of the

reduced-order model in studying stability of the full-order

system, has been examined. Then the possible application of

the reduced-order model in control problems has been con—

sidered. Stabilizing state feedback and output feedback

controls have been designed, where for the latter a non-

linear stochastic observer for the reduced-order model has

been used.

The importance of these results is that of getting an

explicit form of a reduced-order model, where the use of

this reduced—order model may lead to considerable simpli—

fication in solving problems. It is obvious,ikn:example,

that any simulation involving the full—order systems will,

computationally, be much more difficult than working with

the reduced-order model, because of the higher dimension

and the ill-conditioning caused by the small parameters

6 and u. The reduced-order model, being a Markov model,

has an important significance in its own, and this stems

from the fact that the mathematical theory of stochastic

differential equations is concerned mainly with the study

of Ito equations and the associated Markov processes. This

Markov model and its dependence, in general, on the ratio
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E contradicts the engineering practice of neglecting

parasitic elements when writing differential equations

representing physical systems as we pointed out in the

above discussion. What this reduced-order model tells

us is that before neglecting any parasitic elements one

has to study their relationship with the wideeband noise.

An important step towards the effective use of the

reduced-order model has been explored in chapters 3 and 4,

where stability properties of the non-Markov full-order

system has been established from stability properties of

the reduced-order model, and stabilization of the full-

system via the use of the Markov reduced—order model has

been, also, estabilished.

Several additional work and topics are worth of future

study, among those are:

l. Studying nonlinear systems which are more general than

the one that has been considered here and represented by

(2.1) and (2.2), in the sense that the system may be non—

linear in y and also nonlinear in the driving noise. In

this case different stability conditions have to be imposed

to guarantee the stability of the boundary layer system.

The time varying case may also be considered. We studied

here the case when the input noise is bounded and satisfies

a certain mixing condition, so one may consider the case

when the noise is unbounded in addition to some different

conditions other than the mixing one, for example, the case
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when v(t) is the output of a linear system driven by

white noise.

2. Studying systems of the form (2.1) and (2.2) but with

\/TI multiplying the coefficient B2(x) in (2.2). This

case does not have the trouble caused by the fast variable

y(t) which, in our case, tends to white noise as u and

e 4 O, [c.f. 27]. One may also be able to say more about

the asymptotic behavior of y(t) as u and e 4 O.

3. Studying the possibility of obtaining a near Optimal

control by optimizing an appropriate cost function for the

corresponding reduced-order model. One may also consider an

approach to the output feedback problem different from the

one that has been studied in chapter 4 of this thesis. The

suggested approach is as follows: 1) Design a stabilizing

control law for the open—loop reduced—order model based on

state feedback, assuming the states Q, of that system, can

be measured. 2) Construct an observer which generates a

vector x such that for any u the error x(t)-x(t)-+O

as t-+0° in some stochastic sense. 3) Apply the previously

determined control law to x(t) then a stability result may

be established for the augmented system including the states

x

. . If this scheme works for the open—loop reduced-

X

\

order model then this control law may be applied to the full

order model in a way similar to what we have established in

chapter 4 or in a way similar to the above procedure. This

suggested approach is well established for linear time
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invariant systems [c.f. 37], and it is done in the spirit of

the separation principle. A recent work following the above

procedure has been done by [39] for deterministic nonlinear

systems.

4. An important task for future research is identifying

physical systems that can be treated using the results

that has been established in this thesis. A conceivable

class of a systems, may be represented by the following

 
 

      

 

   
 

   

blockdiagram

e

s4-v u x

———>®———9 L13} = Ay+Bu -———‘> >1: = F(X.y) ———-T->

/\

actuator plant

G(X) (4

controller

f‘

a n C . .

where s is some reference input and v 18 a Wide-band

stochastic process.
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