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ABSTRACT

GENERALIZATION OF TAUB'S RELATIVISTIC

RANKINE-HUGONIOT EQUATIONS

by Ahmed S. El—Ariny

The present work refers to the relativistic hydro—

dynamics in the presence of the gravitational field. The

velocity of the propagation of signals is assumed to be a

variable in accordance with the proposition by Einstein

(1907), FOk (1955) and others. The present approach is a

generalization of Taub's work in vacuo. The fluid is con-

sidered to be a collection of particles in random motion

and under the influence of a gravitational field. Only

ideal fluid is taken into account. In this case transport

physical aspects like viscosity, heat conductivity, etc.,

are to be disregarded. The flow governing equations

(continuity, momentum and energy) are based on the Kinetic

theory of gases by means of Boltzmann equation. The space-

time based on a variable velocity of propagation of signals

is necessarily Riemannian one. Due to the difficulties

that arise in establishing solutions of flow problems in

the Riemannian space—time, an approximation is suggested

by introducing a piece-wise constant velocity of signals.

This enables us to obtain, in the Euclidean space-time,

-solutions which are valid only at a point. The entire
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formalism of Taub is transferred to the Euclidean space-

time where the velocity of the propagation of signals is

less than that in vacuo. It is shown that actually the

Taub procedure is transferable to the present case with

small modification involving constant parameters. To

demonstrate the discrepancy between the present approach

and the possible one in the Riemannian space—time, in

Chapter III are some equations which show clearly the

simplification which must be applied to reduce the problem

to the Euclidean space-time. To illustrate the theory a

numerical example is calculated.
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INTRODUCTION

Relativistic theory of fluid dynamics with the refer-

ence velocity of propagation of-signals in vacuo has been

developed by Taub [l8] and Synge [15]. The former based

his work on the Kinetic theory by means of the relativistic

Boltzmann transport equation, while the latter based his

formulations on Maxwell's Boltzmann statistics. Additional

aspects of the microscOpic approach with the reference

velocity of propagation of signals in vacuo have been in—

vestigated by various authors: Goto [8], Vlasov [20] and

others.

Attention is called to the meaning of the word "vacuo”

used in the above literature as it was demonstrated by

Pauli [1A] that in perfectly empty space no gravitational

field exists. According to Einstein's article in 1907 [6],

and the discussion presented by Fok [7], the effect of the

gravitational field upon the form of the metric of the

space—time may be taken into account. Thus, the constant

reference velocity of propagation of signals in vacuo is

to be replaced by a variable one in the presence of the

gravitational field.

It must be emphasized very strongly that the symbols

0 and I do not necessarily denote and refer to the velocity



 



of Ilight. Actually, they may refer to the velocity of

anyfl other signal. It may be optical, electromagnetic

wavwes, etc. Already Pauli [1A] mentioned about other

posssible signals. It is well known that the velocity of

eleactromagnetic waves depends very strongly upon environ-

merrtal conditions.

In the present work, we introduce a generalization

to Taub's work under the influence of the gravitational

field. Thus, the present approach refers to a space-time

with a reference velocity of signals which is considered

to be a function of the spatial coordinates. Following the

analysis of Synge and Schild [17], local rectangular co-

ordinates are used in the Euclidean space-time to provide

simplified solutions that are valid only at a point.

Therefore, by introducing a piece—wise constant reference

velocity of signals, an approximate solution in the Rie-

mannian space—time is obtained from solutions involving

constant parameters in the Euclidean space-time.

In Chapter I, we demonstrate the basic principle

upon which the configuration of the space—time in question

is based. The relativistic quantities, being used in the

following chapters are developed in accordance with the

chosen forms of the metric of the space-time. In addition,

several transformations of coordinates are established.

The modification of Taub's work in accordance with the

present theory is presented in Chapter II. The fundamental

governing equations of a flow in the Riemannian space-time



 

 



are derived in Chapter III by making use of the Boltz—

mann equation. It is shown that the Riemannian space-

time, due to its curvature, results in the appearance of

additional terms-in the differential equations governing

a flow. These additional terms present the main differ-

ence between the formalism in the Riemannian space-time

and its correspondence in the Euclidean one. However, it

is shown also that the entire formulations obtained in

Chapter III are reducible to their correspondence in

Chapter II upon replacing the variable reference velocity

of signals by a constant one evaluated at a particular

point, i.e., by a piece-wise constant reference velocity.

A numerical solution of an initial value problem in

one dimensional flow and the calculations of some shock

parameters are presented in Chapter IV as an illustrative

example demonstrating the influence of the gravitational

field.



  



CHAPTER I

FUNDAMENTALS OF THE APPLIED

RELATIVISTIC MODEL

1.1. Second Einstein Model of the

Special Relativity

 

 

In 1905 Einstein proposed his first model of the

special relativity and in 1907 his second one in which

he took into account the effect of the gravitational

field on the velocity of the propagation of signals.

Einstein [6]1 derived the formula for the metric of the

space-time using the expression

(dA)2 = -(dx2 + dy2 + dzi) + [c(1 + xc'2)]2 dtz, (1.1.1)

where,

X = gravitational potential; x, y, 2 being the

space coordinates,

t = the time coordinate, and c is the velocity of

signals in vacuo.

1.2. Fok's Model
 

Fok [7] proposes the following two metrics of the

space-time in the presence of the gravitational field

 

1Numbers in square brackets refer to the bibli-

ography of standard works.



  



(dAOZ = - (dx2 + dy2 + dzz) + (c2 — 2x)dt2, (1.2.1)

01”

(d4)2 = - (1 + 2xc-2)(dx2 + dy2 + dzz) + (c2 - 2x)dt2.

(1.2.2)

The gravitational potential, x, appearing in the above

metrics, as considered by Fok, should be small. The first

metric, (1.2.1), has a special interest in the present

 

 

work.

1.3. The Metric Tensor of the

Four-dimensional Space-Time

Following the models of the special relativity dis—

cussed above, let us introduce the function I.= I (E3),

J = 1,2,3, defined as

12 = e2 — 2x. (1.3.1)

The function I represents the maximum velocity of the

propagation of signals in the presence of the external

fields of action.

The metric of the four—dimensional {x}-space—time

is chosen in the form

*2 2 _A.2
- c I (dx )

_ _° k
_ 2 = _(dA) ajkdx dX

.— _O_

aopdx dxp, 3 (1.3.2)



  



where

for O a! p . (1-3-3)

xJ being the spatial coordinates, and

it = ct.

Throughout the present work, we use Latin suffixes for the

range 1, 2, 3, and Greek suffixes for the range 1, 2, 3, A,

unless otherwise stated. The contravariant components of

the metric tensor, 5°“, in £09 dfodxp are

-— — — —- — —o
all= a22 = 8.33 =-l, aAA = _ 021 2 a p 0

for c: 7 p . (1.3.A)

From (1.3.2) we obtain

it. “m—2---J-k—J.g
dJI—[I(l _ q I )1 3 q, _ ajkq q a q dt 0 (1.3.5)

1.A. Fundamental Mathematical Operations
 

Assume a metric in {x}-space-time:

(d))2 = aodedep , (1.4.1).

with a metric tensor, aoo’ whose components are functions

of the coordinates, x0. The absolute derivative, denoted

by the symbol 5%; (A being a parameter), of a first order

contravariant tensor, To, is defined by





  

6T0 _ ch u dx

where, gig, denotes the ordinary derivative of T0 with

respect to ,A, whereas, {3v}, stands for the Christoffel

symbol of the second kind which is defined by

3a 3a3a
0 _ l 00 av on _ uv = on

{LIV} " 2'8. ( 3X“ + axv 3X0 ) a [IMHO], (10,403)

where [uv,p] = the Christoffel symbol of the first kind.

The absolute derivative of the corresponding covariant

tensor, To, is_

6T dT
c .=__g__ u dx

The absolute derivatives of the second order contravariant

and covariant tensors, Top and Top, are given respectively

by

STUD _ dTOp o udev p uodxv .
a» - 53. 4-{uv} T d7 -+{} T d7 , (1.u.5)

6T dT V V

__oo-__op_u d_x.-_u 9.;
5A ‘ dA {0v} Tumdl {0v} TuodA ' (1.“.6)

The covariant derivatives of the tensors To, To’ TOp and

Top, with respect to the coordinate XV are defined re-

spectively by, (notice the proper notation):



 
  



o _ o o u A: = o = c
T |v - T,v + {“V} T , - T,xv T,v , (1.4.7)

3X

T | = T — {“ } T ; (1.4.8)
o v o,v 0v u

op _ co 0 up - o no ,
T Iv - T ,v + {w} T + {W} T , (1.4.9)

_ _ u _ u .
Toplv — Top,v {0v} Tup {pv} Tno . (1.4.10)

When the met ric of the space—time {x} assumes the form

(1.3.2), i.e.,

the computat

Christoffel

J ‘1. i

s‘.

t

3

'{flt}

_ _ _ 2

dXJka - c2I 2(dx“)
,2 ’

-(dA) ajk

Eopdf°d%“,i = I(§J) , (1.4.11)

ion of the non—vanishing components of the

symbols gives

.— L+ -

:akJ (c 21Iz)’k’{“3} = —(c I )(c I )

—212

—[1n(c >21 (1.4.12)
,3

Hence, carrying out the computations of the components

of the absolute derivative (1.4.2) using (1.4.12) we obtain

_ 1 —k3 "2 2 .
— —— + 5 a (c I ),k , (1.4.13)



  



gg” = ggq + % [1n(c-212)],j Tj gg

+ % [1n(c-212)],j T” g . (1.4.14)

Similarly,

2;? = 2:9 - 5 [1n(c 2I2):l,J T4 gé, , (1.4.15)

27:” = 2;“ _ % §kj(c—212),kTJ g3; (1.4.16)

The covariant derivatives in (1.4.7) to (1.4.9), with the

contraction v = 0, become

TOI = T° + £'[1n(c—2I2)] TJ - (1 4 17)
o ’0 2 ,j ’ ' ‘

kc _ k0 1 -2 2 kj
T |O -.T ,0 + 2 [1n(c I )],jT

+ l §k3(c‘212) .TL+L+ 5 (1.4.18)
2 ? a J

40 = 40 i '2 2 43
T |O T ,0 + 2 [1n(c I )],jT . (1.4.19)

1.5. Relativistic Mechanics of a Particle

in the Four—Dimensional»Space-Time

The metric, (1.3.2), of the four-dimensional space-

time {X} is used primarily in this section.
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(i) Velocity

The contravariant four-velocity vector is defined

by

= —— . (1.5.1)

Using (1.3.5) and (1.5.1) the contravariant and covariant

components of the four-felocity vector are

53 = EJEI<1 - 521—2)t]-1 ,

—h —- — — 1/ _.

c = q“[1(1 — q2I 2)2] 1 ; (1.5.2)

— _ - -0
CO ' ago; 9 (105.3)

where, a” = g? = c.

The magnitude of the four-velocity vector is given by

50050;? = —1 . (1.5.4)

Since the absolute derivative of the metric tensor vanishes,

the absolute derivative of (1.5.4) with respect to,4 gives

a?
O _

57 - O . (1.55)

(ii) Lagrangian and Momentum
 

Let us introduce the Lagrangian function in the form

x = g—mocza 3°30 . (1.5.6)
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The four-momentum vector is defined by

:2: = m 0250 ED . (1.5.7)
 F =

C O 0

Substituting (1.3.3) and (1.5.2) into (1.5.7) we obtain

E.
J

_ _ _ t _ _

cmo[c 1I(l — qZI 2)2] lqj ;

F, = -mO[c‘11(1 - 521-2)%]-112 . (1.5.8)

Let us define the inertial relativistic mass by

21—1

M = mo[c‘11(1 — 521‘ )3] . (1.5.9)

Hence, the components of the four-momentum vector take

forms

F3 = cMaj , F, = - M12 , (1.5.10)

$3 = aJOFO = moczf - chJ , F” - 5”“ F0 = 5”“Ft = Mc2

(1.5.11)

(iii) Force

The contravariant four-force vector is defined by

O

F(§) =
a?“
33 (1.5.12)

Using (1.4.13), with TJ replaced by F3, the first three

contravariant components of the four-force vector are



 
 



. —j .
J_ = dP 1 —Jk 2 2 —tdx

F(x) dA'+ 2 a (C I ),kP cu

= [QEJ-+ i 53k(c'212) FgJQE (1 5 13)
dt 2 ,k cw ° ° °

Substituting (1.3.5) and (1.5.11) for %% and F0 in (1.5.13)

we obtain

Fgg) - [c'11(1 - qI-2)2]-1[ddt(qu) + 5aaJkM(12)
.k]

[c‘11(1 - EZI'2)%1'IF%§) , (1.5.14)

where we define the physical spatial force by

F(x) = 5%(M50) + % aim/1112),k = §%(MEJ) . (1.5.15)

The first three covariant components of the four-force

vector are

— _ — 9 _ -1 —2 —2 g -1— —
FJ.(X) - ajoF(X) — [c I(l - q I )] FJ.(X) ,

(1.5.16)

where

_ _ _ _°_ 5 _

FJ(X) = aJOF(X) = 55( qj) . (1.5.17)

Similarly, using (1.4.16), with F4 replacing Ti, the

covariant fourth component of the four-force vector is



 

 



dFt . ._q .—
— _ i 1 -Jk -2 2 — dx 1 2 -2 -2 2 —,dx

Ft(x) — d_ - 2 a (c I ),kPJdd — 2 c I (c I ),J ”dd

(1.5.18)

Substituting (1.3.3), (1.5.1), (1.5.7) into (1.5.18) we

get

d?“
"‘ _ __ _ A; ‘2 2 2.—.'k.—.'L+

F4(X) - d0 2(0 I ),k(moc 4 c )

dfit
1 -2 2 2Tk7g _

+ §(C I ),k(mOC I; I, ) - 'dT . (1.5.19)

Hence,

qu 824

- _ __ = __ 22 = _ 5L - 2 QB

F“(X) ‘ d» dt d) [dt(MI )JdA

_ L -

= [1(1 — 2I 2)2] 1Tux) , (1.5.20)

where we define

F (f) = —£L(M12) (1 5 21)L, dt . . .

The contravariant fourth component of the four—force

vector is given by

4_ —40 - ~44 — 2 -2 -
F(X) = a FO(X) = a Fu(X) = -c I F4(X)

_ _ L _ _ _

= [1(1 - qZI 2)21 1021 2§%(M12) , (1.5.22)

or, we may write it in the form
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2 -2<i
4 4

F65) = [1(1 — 521‘2);51“1F“(x),fi(35) = c 1 a-E-(MIZ) . (1.5.23)

(iv) Energy

From (1.5.5), (1.5.7) and (1.5.12) we obtain

2° FO(X) = 0 . (1.5.24)

Substituting (1.5.2), (1.5.16) and (1.5.20) into (1.5.24)

and Simplifying we get

_J'__ _. =

q FJ(X) ad'E‘M-IZ) . (1.5.25)

Eq. (1.5.25) suggests that we may define the real energy

of a particle by

2* = M12 . (1.5.26)

From (1.5.10) and (1.5.26) we have-

2, = -E¥ . (1.5.27)

i.e., the fourth covariant component of the four-momentum

vector is equal to the negative value of the real energy

of the particle.

Similarly, from (1.5.11), (1.5126) and (1.5.27), we.

_*

may define the total relative energy at by

e = F” = —c IIZFn = c I 5* = Me2 . (1.5.28)

which represents the maximum energy the particle may possess.
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1.6. Local Orthogonal Coordinates

“d
{xConsider a Riemannian space-time (f) ,Y“}, i” 3 ct,

with the metric

_(dA)2 = Eopd§°d§p . (1.6.1)

The terms that contain dxl are, in general,

a11(d;1)2 + 2§12d5€1d§2 + 2§13dfldf2 + 251ndf1di—u , (1.6.2)

where we assume that gap is symmetric. Similar expressions

hold for dfz, d§3 and di“. The right hand side of (1.6.1)

can be reduced to a sum of four squares, each having as a

coefficient, the corresponding diagonal component of the

metric tensor gap. In that respect, we follow [17] and

write (1.6.1) in the form

-(dJ)2 = a11(‘¥1)2 + 522(W2)2

+ 533(43)2 + 544(1”)2 , (1.6.3)

where, for example, W1 takes the form

4’1 = dil + 5125114652 + 51351718?

+ 51,5518? , (1.6.4)

and where we assume all # O.
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Hence, we may write

0'

T = b0

—'D _

de , 3(00) 5‘ O . (1.6.5)

If we consider a given point, 0, with coordinates a0 we

may write

5° = (b°p)o(§p — 6°) , (1.6.6)

where the subscript, 0, denotes evaluation at-a particular

point 0. Hence, from (1.6.3), (1.6.4), (1.6.5) and (1.6.6)

we obtain at "O":

-(dfi)2 = §11(d§1)2 + E22(d§2)2 + E33(d§3)2 + E44(d§”)2 :

(1.6.7)

where E11, E11, E33 and g,, are evaluated at the point "0".

In the present work, the components of the metric tensor,

300’ of (1.6.1) are.:

511=azz=a33=l,auu=-CI,Eop=OfOPO#D

(1.6.8)

Using (1.6.4), (1.6.5), (1.6.6), (1.6.7) and (1.6.8) we

 

obtain:

T3 = 855 = d? , w“ = d§“ = d?“ = cdt ; (1.6.9)

’ — ‘ _ — _ -2 2 — _

$11 = 822 = $33 - 1 a 844 - -C I , gO — O for 0 # p .

O 0

(1.6.10)

1

Indices between brackets do not follow the summation

rule.
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Hence, (1.6.7) becomes-

-(dA)2 = 'g'opdyOd'y’p = d§3d§k — Iozdtz . (1.6.11)83k

In the local {§}-space-time coordinates with the metric

(1.6.11), the four-velocity vector is defined by

—A —A

{A = 91 = dt
3' 3 (1.6.12)a

s
“6‘3 = VJEIOM - VZIO'QYHI‘l .

E“ = [c’llo(l - 5210-2)%]-1 , (1.6.13)

with

dt _ —2 -2 % -1—J _ d“j —2 _ —. -J-k

53'- [IO(1 — V I0 ) J ,v - 3%.,v — ngv v

(1.6.14)

If, in Section 1.5, 1 is replaced by IO, 65 by 63, keeping

in mind that all derivatives of 10 with respect to the

space and time coordinates vanish, we obtain the corre—

sponding quantities in the local {§}-space-time coordinates.

The components of the four-momentum vector in {§}-space-

time take the form [see (1.5.10) and 1.5.11)]:

P3 = any , F, =-n"i'IO2 ; P = cnv‘J , F1+ = ficz , (1.6.15)
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where the relativistic,mass, a, in the {§}-space-time is

defined by

a = mo[c-110(1 - 3210-2)%J-1 . (1.6.16)

The components of the four-force vector in the {§}-space-

time become

Fj(§) = [6‘110(1 — FZIO‘Z) 1'1F5(§), FJ(§) = §%(573), (1.6.17)

l

I
_
‘
I

H

A

'
_
J

I <
;

H

N

vF4(§) 3-1F4(Y) : F4(37) = - §?(mI02)

(1.6.18)

The energy equation in the f —Space-time, (1.5.25), has

its correspondence in the y -space—time in the form

(7363(5) = 5%(5102) . (1.6.19)

1.7. Second Form of the Four-

dimensional Space-time

 

 

Here we define the "world point" as a point at a

certain time with three coordinates x1, x2, x3, having

the dimensions of length, and a fourth coordinate x9,

having the dimensions of time t, i.e., x” =.t. The metric

of the space-time (1.3.2) is replaced by

j k

ajkdx'dx-(dT)2 — c-212(dx”)2 = aopdxodxp 3 (1.7.1)

c-ldA and has the dimensions of time.where dr
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Four-velocity
 

 

 

c“ -[c‘11(1 — q I )2] (1.7.3)

Four-momentum

PJ = moczcJ = cZMq.j , Pu = -MIZ; P‘j - moczzg'j - 02Mqj

P” - Me2 = a: , M = mo[c-11(1 - qZI'2)%]“1 (1.7.4)

Four—force

6P 6; _ _ L _ _

FO(X) = 3e° = moczg?o , Fj(x> = [c 1m - qZI 2>21 1F360,

— _ 6 _ d 1 2 ,
FJ(x) — czfich) - CZEa-(qu) + —2-M(I ),J.J , (1.7.5)

F~<x> = [6'11(1 - q21‘2)%1‘1Ft(x) ,

Ft(x) = - 3%(4’112) . (1.7.6)

Energy

31M ) - 341412) = 93* F3(x) = c_212F_ (:2)
q j X ' dt dt ’ qj ’

wa) — CZI-Zd(MI2) (1.7.7)
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The following relation (to be used-below) is obtained-

from (1.4.13) and (1.7.5):

5 J

J
“
!

0
9

t
=0

—2
-1—J _

mO F (x) —

J _
Q_ + % m 1Makj
t o (C

—22

I ),k (1.7.8)

Similarly, the metric (1.6.11), in the {y}-space-time, takes

 

 

the form.

—(dT)2 = d 0d p = g ddeyk — 0—21 2(dyL‘)2 dyl+ =‘dt

(1.7.9)

where;

-2 -2 2

$11 = 822 = 833 = C a gun = *0 Io 9 800 =‘0 for 0 ¥ 0

(1.7.10)

The four-velocity

A - EEK j _ jE .1I (1 2I —2)%]—1 j _ 9X:

5 ' d1 ’ a ' V c o ’ V O , V - dt ,

(1.7.11)

_ _ y -

a“ = [c l10(1 — VZIO 2)2] 1 (1.7.12)

The four—momentum

2 _ 2 _ 2 _ *p j = moo g3 — c mvJ , p” — —mIO — -e (y) , (1 7.13)

* —1 2 2 b__1

p4 = me2 = et(y) , m = mofc 10(1 - V 10- )2] (1.7.14)
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The four-force
 

dp d6

 

110(3)) = 2170 = mOCZE-O, 113(3)) = [c-llo(l .. v210'2)"]‘1FJ(y),

(1.7.15)

83(y) = czg%(mvj> , Fu(y) = [c'110(1 — v210'2)*J'1F.(y) ,

(1.7.16)

_ _ d 2

F4(Y) - - 35(m10 ) . (1.7.17)

The energy

* o

VJ§J(y) = §%(m102) = g% (y) , VJFJ(y) = c-ZIOZF”(Y);

— _ 2 -2d. 2
F“(y) c 10 a€(MIO ) . (1.7.18)

1.8. Transformation of Coordinates
 

A simple form of the metric, (1.7.1), can be obtained

by introducing the transformation of coordinates

X3 = c’li , X” = x‘+ = t . (1.8.1)

Hence, the metric (1.7.1) becomes

dTZ = —AJkdXJka + c5212(dx8)2 = —AodeOpr , (1.8.2)

where,

Ajk = 1 for j=k , A1. = -c‘212, A0p = o, for 0 ¢ 9

(1.8.3)
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The components of the velocity vector in the {X}-

space-time are

- J

VJ(X) = 3% = :30‘1,V“(X) = g?“ = c1’1(1 + v2(X))15

-1 2...

= cl (1 + c c )2, Vj = ch . (1.8.“)

where,

v2(X) = AJkVJ(X)Vk(X) , Aopv°(x)vp(x) = - 1 . (1.8.5)

The spatial force

[moczvj(x)1 = g} (moczcjc'l) c'1F3(x); (1.8.6)
FJ(X) = g%

FJ(X) = c‘lfiJ(x) , F (X) = cF (x) . (1.8.7)
3 J

Similarly, in the local orthogonal coordinates we

apply the transformation

Y'j = c—ly‘j , Y1+ = yL+ = t . (1.8.8)

The metric (1.7.9) has its correspondence in the

form

—(dT)2 = GodeOde = GJKdYJdYk _ 0’2102(dy“)2 , (1.8.9)

where

ij — 1 for j=k , G11 = -c’2102,cOp = 0 for 0 ¢ 9
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The components of the velocity vector are

3 .

VJ(Y) = g? = ch’l , V”(Y) = gg” = clo'1[1 + v2(Y)]36

_ -1 2 -2 8 - . I
- 010 (1 + a c ) , VJ(Y) - cEJ , (1.8.11)

- J k 0 p _
v2(Y) ~ ijv (Y)V (Y) , GOpV (Y)V (Y) — -1 . (1.8.12)

The spatial force

113(1) = c'lew) , 83(1) c‘l'fij(y),Fj(Y-) = cF (y)
J

(1.8.13)



 
 



CHAPTER-II

RELATIVISTIC FLUID DYNAMICS

2.1. Fundamental Aspects

In classical relativistic theories of fluid dynamics,

the fluid is characterized by its internal energy-per unit

mass, 5, measured by an observer at rest with respect to

the element of the fluid as a function of the pressure,

p, and the rest density, po.

In the present modified relativistic theory of fluid

dynamics, additional aspects are taken.into account due to

the presence of a gravitational field. We assume a-cer-

tain domain filled out by.a fluid considered as a collection

of particles with rest mass m0. The system in question

possesses certain amount of Kenetic energy, potential

energy and is subject to the work of the external force

fields.

2.2. The Hydrodynamical Equations
 

The fundamentals of the relativistic fluid in a flat

space with a reference velocity of propagation of signals

in vacuo were derived in [18].1 In this work we derive

the generalized formalism corresponding to that-in [18])

 fi—

1Numbers in square brackets refer to the bibliography

of standard works.

2H
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but using a piece—wise constant velocity of the propa-

gation of signals. The concept of the variable velocity

of propagation of signals leads to the necessity of deal-

ing with Riemannian spaces. As_discussed in Chapter I,

due to insurmountable difficulties in dealing with

Riemannian spaces, we, from the very beginning, intro-

duce an approximation in the form of Euclidean space.

Therefore,we introduce the local orthogonal coordinates,

{y}, (1.7.9). We begin with the hydrodynamical equations

described in terms of a rectangular system of coordinates,

yo, fixed in the space-time {y}. The particle random

J
velocity components v are measured with respect to {y}.

The spatial components of the relativistic velocity vector

are given in the {y}—space-time by (1.7.11), i.e.,

23 = vj[c—1I0(l - v2I0-2)%]—1 , (2.2.1)

from which we obtain

VJ = 0“log“1 + 0-252)_%’C_252 = Sjkfijgk

vjv , (2.2.2)

where, gjk = c"2 for j=k and gjk = O for j # k.

(i) Boltzmann Equation
 

Let us introduce the distribution function f(yJ,t,£j)

in the orthogonal phase—space with coordinates yJ and

velocities £3.



 



26

As shown in-[18] the Boltzmann equation for f is

Df a 3% + v333 + 9333. = A f , (2.2.3)

ay'j 3&3 e

or, substituting (2.2.2) into (2.2.3) we get

"
9

3
a 33 + 33333 = A f , (2.2.4)Df a J 6

8y 3&3

+ c-lloaj(l + 520-2)’%

d

where, JJ= mO-lc-2F3(y) = the external force per unit) mass;

Fj(y) is given by (1.7.16), whereas Aef = the time rate of

change in f due to encounters between the particles.

We define the mean value of a function G by

H
In<G> = fod3g; n = ffd3a, <G> mean value of G,

d3: = daltza3 . (2.2.5)

Multiplying (2.2.4) by any transport quantity @(yj,t,§j),

and integrating over the entire volume of the (81,52,53)-

space we get

_ .. -l’ .1

f¢Dfd3g 2 f¢[%% + c 11053(1 + c 252) 2§_u +~ 5132133g

a.) J
. y 35

= f®Aefd3€ . (2.2.6)

Integrating (2.2.6) by parts, with the usual

assumptions that products of the form (fo) tend to zero

as gJ tends to i a , and that }J is independent of EJ,

after some algebraic rearrangements, we obtain
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_ ° _ -t

f¢Dfd35 E 3%(n<¢>) + c 1I 3L.[n<¢£J(l + c 2&2) 9]

0 J

3y

- . - —L

‘n[<%%> “0 IIOEJU + c 252) ’33—» + 7331.4

ayJ 3:3

= f¢Aefd3€ . (2.2.7)

(ii) The summational invariants
 

Let us associate with (2.2.6) the form

f¢Dfd3g a nA¢ = f¢Aefd€g , ¢ ‘ mean value of 2.

(2.2.8)

There is a certain class of functions, W, characterized

by some conservation properties during encounters in the

sense that the sum of these properties for all the particles

involved in an encounter undergoes no change by the encounter.

Hence, the variation A? = 0, (see [2] and [9]). Such func-

tions are called symmational invariants.

For a gas we may have five summational invariants

corresponding to the physical conservation laws with

w°,o = O,l,2,3,4, inserted for o ix1(2,2,8);

v = m , wj = mogJ , w” = E , (2.2.9)

where E = total energy of a particle, denoted below by

W” in (2.2.11).
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Relation (2.2.8) for such functions takes the form:

fWODfd3£ a n1?“ 0 , (o = 0,1,2,3,u) . (2.2.10)

The condition AFC = O expresses the conservation of

mass during the encounter, AVJ = O expresses the principle

of conservation of momentum, while A?” = O expresses that

of the conservation of energy.

In analogy to the classical relativistic theory,

[7], W” is assumed to be given by [see (l.7.l4)]:

* -1 2 -2 1’ -1
q = = u = 2 = 2 _ 2

w et(y) p mc c mo[c Io(l V I0 ) J

(2.2.11)

Inserting (2.2.2) into (2.2.11), we have

- _ y

W” = chOcIO 1(l + 52c 2)2 . (2.2.12)

(iii) Law of Conservationfiof Mass

In this section we operate interchangebly in both

{yj} and {Y3} coordinates which differ only by the factor

c.

Let us, first, introduce the mass current vector

defined by

1

-2
U0‘ = fVadu , dp = (1 + 22c“2) fd3£ , (2.2.13)

where V“ is given by (1.8.11).
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Substituting 2 = 70 = m0 = constant into (2.2.7),

using the transformation (1.8.8), simplifying and re-

arranging we obtain in the {Y}-space-time:

m Ual = o . (2.2.14)

Eq. (2.2.14) expresses the law of conservation of mass.

Let us introduce the notation of the average velocity

-1 ... 2 1/

85 = n-lfvjfd3g = n fc 11053(1 + £20— )‘2fd3g . (2.2.15)

_ 3 _._.

Defining u2 = z uJuJ, and making use of (2.2.5), (2.2.13)

i=1

and (2.2.15), then simplifying and rearranging, we obtain

’2)»2 = (-n'2U°‘Ua)lé . (2.2.16)

_2

(l - u IO

Let the number density as measured by an observer

moving with velocity 33 with respect to the fixed coordinates

(YJ), taking into account the relativistic aspects, be de—

fined by

02

n = n2(l — 5210-2) = -Ua
o = o

Ua, and p n mo. (2.2.17)

Furthermore, we define a dimensionless velocity,

U“. by

(2.2.18)

Hence, from (2.2.17) and (2.2.18) we have

u u = -1 . (2.2.19)
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The law of conservation of mass, (2.2.14), expressed

in terms of u“ and go then takes the form

(oOu“)la = 0 . (2.2.20)

(iv) Laws of Conservation of

Energy and Momentum

 

 

If we use (1 — 5210-2)-g as a fundamental factor in-

2 _ _

stead of (1 - V I0 2) k, a modified force per unit rest

mass, corresponding to (1.7.15) may be introduced in the

form

"*J(Y) = m ‘61 “1(1 - 621 '2)‘*fij(y) (2 2 21)
s o o o ‘ ° ' '

From (1.7.18), we have

vJFfl(Y) = c“ZIOZF“(Y) . (2.2.22)

Substituting, vJ = c-llogj(1 + €20-2)-% into (2.2.22)

and taking average we get

1
._.' ..l 2 -2 _/

FJ(Y)fc :Oaj(1 + t c ) 2fdat c‘ZIOZIF”(Y)fd3g, (2.2.23)

or, by making use of (2.2.15), we obtain

nF'J(Y)EJ = 6'2102n<F”(Y)> . (2.2.24)

..1_ -1

Multiplying both sides of (2.2.24) by n 1mO (cIO .)

2 —2' _ -L
. (1 — u IO ) 2, using (2.2.21), we get

.7*Jfi- = C—2I 21*4

J o . (2.2.25)
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where we define

7 = m CI (1 — 321 —2)-%<F4(Y)> . (2.2.26)

Remodelling (2.2.23), we get

fFj(Y)den a FU(Y)IV an c‘lioffi“(v)fdgg
J

c‘lion<fi”(Y)> . (2.2.27)

From (1.8.11) and (2.2.5) we obtain:

1 —2_ _ _2 2 _ _ _ L

c 1Ion<FL+(Y)> = c IO n<Fq>n 1010 1(1 + 52c )2

.. ..1/ —,

. (1 + 52c 2) 2fd3§ = -<F”>fv.du . (2.2.28)

Inserting (2.2.28) into (2.2.27), making use of

(2.2.13) and rearranging we have

FJ(Y)UJ + <F”>U. = 0 . (2.2.29)

Using (2.2.21), (2.2.26) and (2.2.18) into (2.2.29),

after some algebraic rearrangements we obtain

37 u = O .
(2.2.30)

Eq. (2.2.27) may also be rewritten in the following

form

—j = —1 _-2 —2l§ _—2
IF deu c Ion(1 u IO ) (1 u 10
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or, using (2.2.17) and (2.2.26);

_2 2 "361+

JFJV as = c I nomo .j 0 (2.2.32)

Substituting ©(gk) = 90, o a 1, 2, 3, 4, [see (2.2.9)

and (2.2.13], into (2.2.7), introducing the transformation of-

coordinates (1.8.8), using (2.2.21), (2.2.26) and (2.2.32),

simplifying and rearranging we obtain the equations of con—

servation of mementum and energy

TO‘BIB = 603*“, (2.2.33)

Where we define the energy momentum tensor by

To"8 = mocszaVBdu . (2.2.34)

The right hand side of (2.2.33) represents the external

forces and the work done by them on the fluid.

*

In order to bring the forces, pOTE-a, to the same form

as in the left hand side of (2.2.33), let us assume the exist-

8
ence of a second order tensor Ha such that

.f>;*“ = HQBIB . (2.2 35)

The form of 110‘8 is chosen below.

Hence, an energy—momentum tensor, T*a8, can be

introduced in the form

T*88 a T88 - n88 . (2.2.36)

As a consequence of (2.2.35) and (2.2.36), the

equations of conservation of momentum and energy, (2.2.33),

Take simple form
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95

T o‘BIB = 0 . (2.2.37)

2.3. Specific Internal Energy
 

According to the manipulations and the discussion

presented in the work [18], we define the internal energy

of the fluid, 5, per unit mass in the {Y}—coordinates by:

2 0—2

m (0 ) Ta0 0803 = Ta uauB = 60(62 + e) , (2.3.1)
B B

where we used (2.2.17) and (2.2.18) to obtain the second

invariant quantity in (2.3.1). The tensor TaB is the co—

variant form of the energy-momentum tensor, Tag, defined

by (2.2.34).

2.4. The Fundamental Inequality
 

The internal energy, a, per unit mass of the fluid

defined by (2.3.1) undergoes certain restrictions when it

is considered as a function of the pressure and the rest

density. The restriction imposed on 8 appears in the

form of an inequality derived by [18] in {Y}-space—time

coordinates:

E: >// ippO-l + 02{[l +191-(C—2po2 0‘1)2]% — 1} . (2.4.1)

The inequality (2.4.1) holds also in the {y}-space-time

coordinates.

As stated in [18], the significance of the inequality

(2.4.1) for a flow, is that it imposes a restriction on the

types of functions, €(p,po), furnished by the relativistic
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kinetic theory of gases. This contradicts the macroscopic

viewpoint which allows e to be any function of p and p0.

2.5. Case of an Ideal Gas

As in [18], we assume in {Y}-space-time coordinates:

T“8 = poc2[1 + c-2(e + ppO-l)]uauB + meB . (2.5.1)

where p is the hydrostatic pressure.

Let us choose the tensor, Has, given by (2.2.35), in

the form

08
H = xGaB . (2.5.2)

As proposed in Chapter I, [see (1.3.1)], the function

I depends on the gravitational potential. Since I = ID =

constant in the {Y}-space-time, it follows that:

x = x0 = constant , (2.5.3)

where x0 is evaluated at point 0.

Inserting (2.5.1) and (2.5.2) into (2.2.36), using

(2.5.3), we have:

*a8 -2 _1 -
T = TGB _ HOB = DOCZEl + C (8 + poo )juau8_

+ (p _ xom.“B . (2.5.4)

The equations governing the motion of the fluid are

[see (2.2.20) and (2.2.37)]:
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(ooua)|a = 0 ; (2.5.5)

T*“B|B = 0. . (2.5.6).

Inserting (2.5.4) into (2.5.6), taking into account

(2.5.3) and (2.5.5), simplifying and rearranging we ob-

tain:

ooczuBEHUGJIB + p,BG°‘B = 0 , (2.5.7)

where we define

u = 1 + c‘2(e + ppO'l) . (2.5.8)

Multiplying (2.5.7) by (-ua), using (2.2.19), (2.5.5)

and simplifying we obtain

DO[€,BUB + p<p°‘1) us] = 0 , (2.5.9)
,8

or, we write (2.5.9) in the form:

0’1) u8,d(9°-1) = (po‘l) uBdc + pd(p ’8= O , de = 5,8

(2.5.10)

Eq. (2.5.10) expresses the first law of thermo-

dynamics with dQ = O, (dQ being the elementary heat input

into the system from the outside). Accordingly, we may

introduce the notion of the absolute temperature a, and

the specific entropy S, as measured by an observer at rest

with respect to the fluid, such that:
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8
663 = dQ = 0 , as = S,8u8,dQ = Q, u . (2.5.11)

8

Combining (2.5.10) and (2.5.11) we have

0—1

de + pd(p ) = @dS . (2.5.12)

2.6. One-Dimensional Motion
 

A11 quantities in one-dimensional motion are assumed

to be functions of the local orthogonal coordinates, Y1

and Y” = t, which are introducedin Section 1.6.

Eq. (2.2.15) can be remodelled by making use of

(2.2.13), (2.2.17) and (2.2.18) as follows

_' _ .. — ...} _ _

uJ = n'lfc 11023(1 + c 252) zfdgg = n IIOIVJdu==n 1IOUJ

'11 05 = 1 (1 — u—ZI -z)%uj , (2.6.1)
(1’1 0 O O O O

or, rearranging we get

_- _ _ _ _t _ _-_

= uJI 1(1 - u2I 2) 2 , u2 = 0. uJuk . (2.6.2)
0 O

_1 -1

Let us denote the dimensionless velocity u IO by

the symbol u, then Eq. (2.6.2.), for j = 1, becomes

u(1 — u2)-% . (2.6.3)1.11

_L

Substituting, ul u(1 — uz) 2, u2 a u3 a 0, into

(2.2.19) and rearranging we get

u” = cIO-l(1 — u2)'15 . (2.6.4)
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Substituting (2.6.3) and (2.6.4) into (2.5.5) and

(2.5.6), using (2.5.4), and rearranging we obtain in the

(y,t)—plane:

[Io'lp°(1 — uW’fiH+ + [6°u(1 - u2)"/21,1 = o 5 (2.6.5)

_1 _ _

[IO czp°uU(l - uz) 11,. + [ooczuu2(l — uz) 1

+ (p - x0)],1 = O . (2.6.6)

Carrying out the differentiations in (2.6.5) and

(2.6.6), simplifying and rearranging we obtain in the

(y,t)—plane:

—1 o-1 o

(l — u2)(IO o p .t + uoo'l

—1

p°,y) + IO uu,t + u,y = 0 ;

(2.6.7)

-1 —1 -1 _1

u(1 — u2)(IO u u,t + Up u,y) + Io u,t + uu,y

+ (1 — u2)2po_lc-2u—lp,y = O , (2.6.8)

where

-2 _1

u = 1 + c (e + poo ) . (2.6.9)

Differentiating (2.6.9) we get

czdn = de + pd(po_l) + po‘ldp . (2.6.10)
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Substituting (2.5.10) into (2.6.10) we get

czdu = pO-ldp . (2.6.11)

Let us introduce the auxilliary quantity:

a2 = pop £10 , i.e., dzpo 1dp0 = u du . (2.6.12)

do

Multiplying (2.6.11) by e'zn‘l, using (2.6.12), we

get

_ _ _1 _

@209 ldpo = C 2n p0 1dp . (2.6.13)

Similarly, we introduce the auxilliary function,

¢, defined by

d¢ = apO-ldpO . (2.6.14)

Hence, we may write (2.6.12) and (2.6.13) in the

forms:

u—ldu = dd¢ 3 (2.6.15)

C-Zpo-lu-ldp = ad¢ . (2.6.16)

Substituting (2.6.15) and (2.6.16) into (2.6.7) and

(2.6.8) and simplifying we obtain:

2 ‘1 _1 =(l - u )(IO ¢,t + u¢,y) + u(1O uu,t + u,y) O , (2.6.17)

6(1 - u2)(IO_lu¢ t + ¢ ) + I u + uu = 0 . (2.6.18)
,
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Hence, Eqs. (2.6.17) and (2.6.18) constitute a

system of partial differential equations for the unknown

variables 6 and u.

Addition and subtraction of (2.6.17) and (2.6.18)

yields, respectively,

(1 - u2)D+¢ + D+u = 0 ; (2.6.19)

(1 - u2)D_¢ — D_u = 0 , (2.6.20)

where

D = (1 + du)I 'IJL + (a + u)JL (2 6 21)
+ 0 at ay ’ ° ‘

D = (1 - du)I "1—3— — (a — u)1 (2 6 22)
— 0 3t 3y ° ' ° -

Let us introduce the identity

2 _1 _1 g

(l — u ) Diu = Diln[(1 + u)(l - u) ] . (2.6.23)

Hence, substituting (2.6.23) into (2.6.19) and

(2.6.20) we obtain respectively

U .
.
.
3

ll

O

0

(2.6.24)

D s = O . (2.6.25)

where,

r = e + ln[(1 + u)(1 — (1)412, s = 0 — 1n[(1 + u)(1 — u)'11’2

(2.6.26)





40

As stated in [18], the functions r and s are the

local relativistic analogs of the Riemann functions which

occur in the classical theory of propagation of one-

dimensional waves of finite amplitude.

The characteristic curves of (2.6.24) and (2.6.25)

along which r and s are constants, are respectively, given

by

(§%)I = (a + u)(1 + au)-1IO , (2.6.27)

d _ -1
(5%)11— —(e — u)(l - au) 10 . (2.6.28)

Let us define

a = aIO . (2.6.29)

It is shown below that the quantity, a, represents

the velocity of sound, whereas a is its dimensionless form

referred to lo.

2.7. Progressive Waves
 

According to the definition of [18], a disturbance

is said to propagate as a progressive wave if either r or

s is constant.

If we assume that:

s = to = constant; (2.7.1)
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we then obtain from (2.6.26)

u = tanh(¢ - to) . (2.7.2)

Inserting (2.7.2) into (2.6.24), carrying out the

differentiation and simplifying we get:

_1 _

1O ¢.t + 1‘(¢)¢’y — 0 . (2.7.3)

where

m.) = (a + u)(1 + au)-1 , (2.7.4)

whereas a is a function ofj¢ determined by (2.6.14).

The general solution of (2.7.3) is of the form:

f(¢) = y - r(¢)10t . (2.7.5)

where f(¢) is an arbitrary function.

It follows from (2.7.5) that ¢ is constant along the

straight lines of slope P(¢) in the (y,IOt)-plane. Hence

a represents the dimensionless velocity of propagation of

a sound wave referred to IO; the form of a is given below.

According to the classical theory, the internal energy, a,

for a perfect gas can be written in the form (see [4]).

_1 -1

e = (y - 1) Doc . (2.7.6)

Differentiating (2.7.6), using (2.5.10), and

simplifying we obtain:



 
 
 



QRb = 7900-1 . (2.7.7)

do

Substituting (2.7.7) into (2.6.13), making use of

(2.6.9), we get after some.rearrangements:

_2 _ —2 — —1 —1

92 = C 7900 1[l + 0 7(7 - l) 1poo 1 . (2.7.8).

If we consider a medium of high temperature, for

which c-2ppo-1 is large compared to one, Eq. (2.7.8) then

approximately becomes

2
a —+ (Y "' l) o (2.709)

Hence, for y>2, sound waves propagate with velocity

greater than the maximum velocity of propagation, i.e.,

IO. This contradiction implies that-the equation for 5,

(2.7.6) for y>2 is not-a possible one.

A physically possible flow, for which (2.7.5) is a

solution, exists only if the curves ¢ = const. do not

intersect in the (y,lot)-plane ([4] and [12]). If this

condition is not satisfied, one-dimensional motion will

suffer a discontinuity in the form of-shock waves accord-

ing to the classical theory.

2.8. Rankine-Hugoniot Equations
 

The relativistic Rankine-Hugoniot equations were

derived by [18] in the flat space-time with the reference

velocity of propagation of signals "c" in vacuo. Similar

equations, having identical forms as those of [18], are
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obtained in the {Y}-space-time coordinates with a refer-

ence velocity "IO". We assume that both 16 and x0 re-

main constant at their corresponding values at a point

"0". Only the flow variables p°,u8, p and e are subject

to Jump discontinuities across the shock. We choose our

coordinate system in such a way that the discontinuity is

at rest and is perpendicular to the Yl-axis of the {Y}-

space—time. We put down the relativistic Rankine—Hugoniot

equations without derivation as obtained by [18] in one-

dimensional flow:

(mass): po+u+(l — n+2)”;5 = po_u_(l.- u_2)J5 = M ;

(2.8.1)

(from momentum):

M = c‘lup+ — p_)(u_oo_l- u+oo+-1)_11% ; (2.8.2)

(energy):

...1 -1

M2c2(u+2 — u_2) = NIP-(9+ - p_)(u+oo+ + 4-93 )

(2.8.3)

In the above formulations, we assume that the fluid

moves from right to left across the fixed shock. Quantities

on the right side of the shock are denoted by the subscript

(—) whereas those on the left side are denoted by the sub-

script (+).



I
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2.9. The Shock Velocity

Following [18], we introduce the quantities:

-1 o 0—1 —1 -2 -1

5 = p+p_ , 0 = 9+9_ 8 = Y+(Y+ — l) c p 9°
3

(2.9.1)

Rewriting (2.6.9) in terms of quantities (2.9.1)

making use of (2.7.6) we have:

_1 —1 —1

u+ = 1 + Bén , u_ = l + Y_Y+ (Y+ - l)(Y_ -l) 8

(2.9.2)

As stated in [18], and hence B may be functions
Y+

0—1

of p+p+ However, they are assumed to be slowly vary-

ing functions and for the purposes of the discussion be-

low, it is sufficient to consider y+ to be a constant.

Hence, the second of (2.9.2) becomes (with y+ = y_):

u = 1 + B . (2.9.3)

From the inequality (2.4.1) and the fact that

e > 0, it follows that:

5/3 2.7+ > 1 . .(2.9.4)

Substituting (2.9.1) and the first of (2.9.2) into

(2.8.3) we obtain after some algebraic rearrangements:
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8(2 + 7. - 1)826'2 + [(7+ + l)§ + (7+ - 1)]86‘l

- {[B(¥+ - 1)(£ - 1) + u_Y+1u_ — 7+} = 0

(2.9.5)

Eq. (2.9.5) is a quadratic form for the quantity Bn-l

Consequently, if_we solve for the positive value of Br)-1

we have:

88-1 = {R - [(7+ + 1)£ + (7+ — l)]}{2t[a + (7+ — 1)l}'1 .

(2.9.6)

where

R = ((y+ - l)2(€ — 1)2 + 45(2 + 7+ - 1)

. [7+u_2 + Bu_(Y+ - l)(€ - 1)]12 . (2 9.7)

After some manipulations, the author of [18] obtained

the following inequality:

9 - u 0—1;u_(€ + 7+ - l)_1[(€ - l)(2 - 7+)
— +

.(._ - 7+)(y_ — 1)‘11 . (2.9.8)

Substituting (2.8.1) into (2.8.2), using (2.9.1)

and rearranging we get:
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u_<1 - u_2)“% = [(y+ - l)B(£ - l)1%[7+(u_ - n+6”)?15

(2.9.9)

As mentioned in [18], u_ is less than one whenever

the right hand side of the inequality (2.9.8) is positive.

According to the convention presented in Section 2.8, the

gas moves from right to left across a fixed shock. The

velocity of the gas on the right side of the shock is de-

noted by Ei, whereas that on the left side is denoted by

ui. The shock is considered to be stationary with respect

to a suitably chosen coordinates {Y}. Let us assume now

that the fluid on the right side of the shock is at rest

and the.shock moves across.the medium. In order to find

the shock velocity, let us superimpose.the velocity of the

magnitude 6i upon the entire system in the direction

opposite to the moving fluid. The gas will be at rest

in the moving new system {Y*}, and the shock will move

with the velocity 5: from the left to the right.

The transformation of coordinates {Y*}+{Y} is of

the Lorentzian type:

y*1 (Yl _ c'lfiit)[1 _ (5:)210-21-5 ’ y*2 = Y2, Yna = y3

t9!-

_... — — —l’ —

(t - cIO 2 :Yl)[l - (ui)21O 2] 2 , ui = u I
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which leaves (d7)2 invariant in the four—dimensional space—

time, i.e.,

-(dT)2 (811)2 + (dY2)2 + (dY3)2 - c
2 2 2

IO (dt)

-2

(dY*1)2 + (dY*2)2 + (dY*3)2 — c I02(dt*)2

(2.9.11)

In our main problem of the association between

Riemannian and Euclidean spaces we solve the problem of

shock in rectangular coordinates related piece-wise to

the curvilinear coordinates. Hence, the velocity u: is

considered to be momentarily constant. This implies that

the above transformations (2.9.10) is valid momentarily in

a piece-wise sense. In conclusion, the velocity of the

shock relative to the gas into which it is traveling is

less than the signal velocity 10. The remaining reason—

ings of the discussion that follows in the work [18] are

valid in the present approach.

2.10. Concluding Remarks
 

A passage from-the present work in the {Y}-space-

time, with reference velocity 10, to that of [18] in the

{Y’}-space-time, with reference velocity c, can be made

through the transformation of coordinates,

Y’J = YJ , Y’“ = c‘lioy“ . (2.10.1)
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As a consequence of the coordinate transformation

(2.10.1), the relation between quantities in the above

reference frames are presented in Table 1. It follows

from this table that the flow variables are independent

of the above coordinate transformation. This is due to

the fact that the fundamental factors (1 — u’2)15 and

(l - u2)1/2 are equa14and that the distribution function

f(Y,t,§j) is an invariant under (2.10.1) (see [8]).

The magnitudes (5:1 and 51) of the velocities of the shock

waves, in the above frames of references, relative to the

gas into which they are traveling are governed by the

relation

6:1 = c1 "131 . (2.10.2)

which shows that 611:»61

However, their dimensionless magnitudes, u: and u_

referred to c and 10, are equal. The same argument holds

for the velocities of sound a' and a. Thus, in conclusion,

only 31 and a are affected by introducing IO in place of

C .
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CHAPTER III

DERIVATION OF THE HYDRODYNAMICAL EQUATIONS

IN THE RIEMANNIAN SPACE-TIME

3.1. Introduction
 

In this chapter, we derive the hydrodynamical

equations in the Riemannian space-time, {x}, with the

reference velocity of signalsz = I(x%. We demonstrate

below that these equations reduce to their corresponding

equations in Chapter II, when we set I = IO = constant

and x = X0 = constant.

The hydrodynamical equations are described in terms

of a curvilinear system of coordinates, x0, fixed in the

space-time {x}, (1.7.1). The particle random velocity

J
components q are measured with respect to {x}.

3.2. Boltzmann Equation
 

Let us introduce the distribution function f(xj,t,;j)

in the Riemannian phase-space, with coordinates, xj, and

velocities, cj. As stated in [8] the distribution

function f(xj,t,cj) is an invariant. The variation in

the number of particles during the interval of time dt is

[f(xJ + dx'j,t + dt,c;,J + dt‘j) - f(xJ,t,;J)']d3xd3r.

= Aefd3Xd3§dt , (3.2.1)
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where, d3x = dxldxzdx3, d3; = dcldczdg3; whereas Aef

= the time rate of change in f due to encounters between

the particles.

Expanding the first term on the left hand side of

(3.2.1) in Taylor series around (xJ,t,;j), retaining only

the first order differential terms, dividing all-through

by d3xd3;dt and rearranging we get

4
.
. I l

+

I II

p
.

“
2

%§ dt 3 a? J e . (3.2.2)

The validity of the Operations of the ordinary

differentiation carried out in (3.2.2) follows from the

fact that the ordinary derivative of a scalar (an in-

variant) is identical with its absolute derivative (see

[171).

Solving (1.7.2) for q'j in terms of cj we get

_ ° - -1 - °

qj = c lItJ(1 + c 2:2) 2 , c 2:2 = ajkcJ k . (3.2.3)

From (1.7.8) we obtain

dcj_ -2 -1 —j 1 k] 2
35 — 0 m0 [F (x) - §Ma (I ),k] . (3.2.4)

Substituting for Qfi = qJ using (3.2.3) and (3.2.4)
dt

into (3.2.2) we obtain
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- - -1/ - - —

Df s §£-+ c 11:3(1 + c 2:2) 23:. + c 2m 1[Fj(x)
at J 0

8X

- —1— MaJk(I7-) 1111. = A r . (3.2.5)
2 ,k 3:3 e

Similar to (2.2.5), we define the mean value of a

function G by:

n<G> = fod3; , n = ffdgt , <G> E mean value of G.

(3.2.6)

Multiplying (3.2.5) by any transport quantity

9(xj,t,cJ) and integrating over the entire volume of the

(C1, C2, C3)-space we get

- _. 2 _12 _ _ _'

fthd- = 19(33 + c 1123(1 + c 2; ) 233 + c 2m 1[FJ(x)
8t 3X.) 0

_ % a3kM(12) k]3§ }d3; = f¢Aefd3C . (3.2.7)
) BCJ

Integrating by parts making use of (3.2.6) we

obtain

at“ -2 ii -2. ii.
105Ed3; — §€f¢fd3t - fatfd3c — at(n<<1>>) — n<3t>, (3.2.8)
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_3_

J’

222.1:
fccjc_ll(1 + c—ZCZ) J d3§ = [fC—II¢CJ(1 + C_2§2)—%fd3§1

8X 3X

- ° _ ...1/

- I{Ji.[c 119:3(1 + c 2:2) 211fd3€

axJ

= (c—II)JLJ[I¢;J(1 + c-2c2)'%fd3;]

8X

_ ° _ -1

+ [Jij(c 1I)]f4>;J(1 + c 2:2) 2fd3c

3X

_ ' - -9
_ fiLj[c 11¢;J(1 + c 2:2) 2de3;

6x

= (C_ll)[n<¢cj(l + c'2:2)'2>1-j

+ (6‘11) J.(n<<z>.J(1 + C_2§2)-2>]

- n<[(c‘11)¢cj(1 + c'222)'81 j> . (3.29)

For j = l, we have

rx7(c‘2mo‘1¢[81(x) - %allM(12),113£1)dcldtzdc3
a;

1-

= ff{c_2f¢mO[F1(x) - %ailM(I2) i1} dCZdC3
a 1

C =-oo

— f/IfiL {c-2m0-1¢[E1(X) — %a11M(IZ) ]}d3; . (3.2.10)

8:1 J

The same is valid for j = 2,3.
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As mentioned before, we assume that products of

the form (f0) tend to zero as CJ tends to 1w. Adding

Eq. (3.2.10) for j 1 and its correspondence for J 8 2,3,

we obtain:

fc'zm ’10[Fj(x) - LaJkM(IZ) .]32 d3;
0 2 ,k BCJ

= - rrJL.(c‘26[m ‘123(x) - %m 'lMaJk(IZ) k1}d3C
BC'J

L. O 3

= — f{c_2m 1[FJ(x) lMaJk(IZ) 133

+ oiLJ[c-2m -1FJ(x) - %c-2m “lMaJk(IZ) k]}fd3c

—n<c_2m -1Fj(x)33.> + n<%m ’lMaJk(12) 33 >
o a: a o , BCJ

%c-2mO-1Majk(12),k]>
- n<¢JL [c-Zm -1FJ(x)]> + n<0—8—jE

J o

a; 8:

(3.2.11)

The mass, M, can be expressed in terms of c2 and I

as follows:

_ - - - - L

M = mOcI 1(l - q2I 2) g = mOcI 1(1 + c 2:2)2 . (3.2.12)

Hence, with I = I(x), we have

—2n[%m ’IMaJk(c‘212) k]= éeaifie'ziz) ,iL.[ei‘1

- 1 - ~ _ _t

(l + c 2:2)21 = (c 1I) .§J(1 + c 2:2) 2 . (3.2.13)

,J
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Substituting (3.2.8), (3.2.9), (3.2.11) and (3.2.13)

into (3.2.7) and rearranging we obtain

7 _1 - ->

f¢Dfd3C = 3%(n<4>>) + (c I)[n<¢cj(l + c 2:2) 2>1 3
,

_ _ -1

+ (c 1I) [n<9cJ(1 + c 2:2) 2>1 - {n<33>
:3 at

+ n<[(c'll)¢cj(l + 0—2C2)_%1 j>
,

— — _ — 1 -

+ n<c 2mO 1Fj(x)§$ > — n<(l + c 2:2)1—2 > a3k(c 1I) k

3:3 8:3 ’

-J

+ n<c'2m ‘192—E > - n<¢;j(l + c‘2;2)15>(c-1I) .}

= f¢Aefd3C . (3.2.14)

3.3. The Summational Invariants 

The summational invariants VG (y), (2.2.9) and

(2.2.12), in the flat space-time, {y}, have their corre—

spondence in the Riemannian space-time, {x}, in the form

0 . .

v (x) = mo , 73(x) = mOcJ .

_ - 1

v“(X) = czmo(cl 1)(l + c 2:2)2 . (3.3.1)

3.4. Law of Conservation of Mass

Substituting 9(cj) = 70 = m0 = constant into (3.2.14)

we obtain
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2 2 -1 .

c ) 2>1,J+(n<mo>),t (e‘li)[n<mO;J(1 + c-

—‘ . ' .. _1

+ (c ’I) J.[n<moz;‘](l + c 2:2) 2>]

9

- ‘ - -}r

_ {n<m > + n<[(c 11)mOtJ(l + C 262) 2193>
o,t

. -2 —1—j
+ n<c. mo F (X)mo,;3>

-~ 1 ~ -
_ n<(l + c 2g2)2aka J(c 1I)

- n<mogj(l + 6-222)'2>(e'11) j} = 0 . (3.4.1)

Simplifying and rearranging we obtain

m {n + c-ll[n<tj(l + c-242)'%>] ,

O ,8 :J

- ° _ _1 _ _

+ (c 1‘1) jn<cJ(l + c 2:2) 2>} = c 2n<F,;j >

3

(3.4.2)

Introducing the transformation of coordinates

(1.8.1), with the usual assumption that the force is

independent of the velocity ;J and with I = I(XJ), Eq.

(3.4.2) takes the form

- . , - , ° —1

m [c 1I(IVidu) + c lI(JVJdu) . + (c 1) .fVJdu] = 0,
0 31+ )J ’J

(3.4.3)
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where,

at = (1 + 0-2;2)—%fd3c . (3.4.4)

Let us define

U“(x) = Iv“(x)du , (3.4.5)

Eq. (3.4.3) can be rewritten in the form, (after

multiplying all through by cI_l):

4 + UJ. + l 1 '2 2 . 3 = 0 . .4.mO{U’q ’J 2[ n(c 1 )]’JU 1 (3 6)

Comparison of (1.4.17) and the left hand side of

(3.4.6) suggests that U0t can be considered as a contra-

variant four—vector, (the mass current vector), in the

Riemannian {X}-space-time, so that we may write

moual = 0 . (3.4.7)

For operations below, we need to introduce the notion

of the average velocity defined by

-_‘ _ - _ _ _3/

wJ =,n lqufdgz = n lfc 1123(1 + c 222) 2rd,; , (3.4.8)

where we used (3.2.3) in (3.4.8).

Defining w2 = Ajkijk, using (3.2.6), (3.4.5) and

(3.4.8) we have



 ”‘7'
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(1 - wZI—Z) = 1 - Ajkijk 1‘2 = (n-lffd3c)(n—1ffd3c)

2 2- - - -l’

lfc l125(1 + c t ) 2fd3§]-- A I-2[n
jk

1/

‘1 2293;]-[n fc—11;k(l + 0-262)—

_ - _ _ 1 ._ -1

= n 20 2IzUcl 1(l + c 2c2)2(1 + c 2:2) 2fd3q].

- - 1/ - ...1/

. [fCI 1(1 + c 222)2(1 + c 222) Zfdgt]

— Ajkn—2(fc-1deu)(fc—lckdu)

= —n*2[(rvidu)(r-c’zizv”du)

+ Ajk(fvjdu)(kadu)] = —n-2[(fV“du)(fVudu)

+ (fVJdu)(fV dp)] = -n-2UaUa . (3.4.9)
J

or,

(1 — 621‘2)% : (—n‘20“U )72 . (3.4.10)
0.

Let the number density as measured by an observer

moving with velocity wfl with respect to the fixed coordi—

nates (X3), taking into account the relativistic aspects,

be defined by

n02(X) = n2(X)(1 - 621-2) = —Ua(X)Ua(X) . (3.4.11)
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o
The corresponding density, p , is.

p = nom . (3.4.12)

Let us, further, define a dimensionless velocity

w = n Ua . (394-13)

WOW = -l . (3.11.111)

Similarly, inserting (3.4.12), (3.4.13) into (3.4.7)

we get

(6°w“)|a = 0 . (3.4.15)

Hence, Eqs. (3.4.7) and (3.4.15) are alternative

expressions for the law of conservation of mass.

3.5. Laws of Conservation

of Energy and Momentum

 

 

As discussed in Chapter II, we introduce the corre-

sponding modified force—vector, [see (2.2.21) and (2.3.26)]:

3"- — _ — - ...}, -— _° _.

9 a = mo ch 1(1 + wzl 2) 2<F“(X)> , <FJ> = Fj . (3.5.1)

Similar manipulations to those presented in Chapter

II lead to the expressions:

8

7 (x)wa = 0 3 (3.5.2)

fF-J.(X)deu = 0-212n0m07*4(X) . (3.5.3)
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Substituting 9(ck) = wk = mock into (3.2.14), we

obtain

1 k -1 , k j —2 2 —g

(nxmoc >),t + (c I)[n<mot c (1 + c C ) >1,j

j k —2 2 —a _ k
I) J.[n<mot C (l + c c ) >1 {n<(moc ),t>

3

+ (c-1

_2 2 -g —2 —j k

> + n<c m F x m >c ) l j 0 ( )( 0: )’CJ
3

+ n<[c-1Imongk(l + c

, —2 2 a k 13 -1 '2 ‘1 k‘fi J— n\(1 + c c ) (mot )’63>a' (c I) + n<c mO mo; F :C >

.J

- n<mogkgj(l + c‘2;2)—%(c-1I) J.} = 0 . (3.5.4)

Simplifying and rearranging, with the assumption

that FJ is independent of :3, we get

-2 2 1 -2 2 -1

[mofck(l + c 2 )2(1 + c C ) 2fd3C] .
3

1/

2fd3€J .

3

-' ,- ° -22-

+ c iILmOfCKCJU + c C ) J

- ' _22_1/

11) j[mOkaCJ(l + c c ) 2fdgt]
3

+ (c

(6" I) j[mortkcju + c_ZCZ)—%fd3€]

+

3

_ _2 2 -1

(c 1I) J.[mofckcjfl + c C ) 2fdac]

- - 1’ - -l’

1) J.aJKmeu + c 2:2);5(1 + c 2:2)2(1 + c 2:2) 2fd3c
.3

—1

+ (c

-2

= c p mo"1Fk(x) , 0 (3.5.5)

ll

:
3

S
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Applying the transformation of coordinates, (1.8.1),

with 1 =.1(x3), Eq. (3.5.5) reduces to

c[(c-11)(mOfV”deu)’q + (c—II)(mOijdeu),XJ]

i k
+ c'1(c521 )(c'li) JAka fV“V”du + c(c‘11) 3m IV v‘ du

,X o ,X o

= c‘lpmo‘dfik(X) . (3.5.6)

Let us define

Tka = mocszkVadu , (3.5.7)

Eq. (325.6), after we multiply all through by

(cZI—l), becomes

1+

T k + 13k . + l(c‘212) AJkT”“
:4 :J 2 3.1

- ° *

+ §11n<c 212)] 313k = 603 k(X),
3

- - _ *

61 1mo 1Fk(X) = 00 9 k(X) , (3.5.8)

where we used (3.4.11) and (3.5.1) to obtain the right

side of (3.5.8).

Similarly, if we substitute 9(cJ) = V“ = moc2(cl'l)

-. 1

(1 + c 222)2 = Me2 (3.3.1), into (3 2.14), simplifying,
3

keeping in mind that F'J is independent of 43, and re-

arranging we get
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[m c2n<(cI-1)(l + C-2C2)%>1
O :4

+ (c'11)[moc2n<(c1‘1)(1 + c‘zngztj (1 + {JCS-2.],J

_ _ _ 1 ° - -1

+ (c 1I) 31mc02n<(cl 1)(1 + c 2:2)2CJ(1 + c 2:2) 2>1
3

 

— mOmO-ln<Fj;j(l + c—2;2)-%>(CI'1)

+ (0-11),ka5kmoc2n<(l + c—2§2)%(cI-l)§§(l + 6'222)'5>

+ moc2n<cI-1(l + c52§2)%; (1 + 0-2;2)_%> (0-11),J = O .

(3.5.9) “

or, rearranging (3.5.9), with I = I(xj), we get

(c-II)[mOczn<(cI-l)(l + c—2;2)%(cI-l)(l + c‘222)*(1 + c‘222)'*>] 4

+ (c_ll)[moczn<(cI-l)(l + c_2§2)%;j(l + c-2;2)-%>]

.J

_- _ _ 1 - _1

+ (c 1I) jfmoczn<(cl 1)(l + c 2t2)2tj(l + c 2:2) 2>1
3

_ _- .- -1

cI 1n<FJ(X)Cj(l + c 2.2) 2 >

_ .. _c1‘ _ ..1

+ (c 11) jimoczn<(cl 1)(l + c 2c‘)2cJ(l + c 2:2) 2>1

3

+ (0-11) 31m002n<(01—1)(l + c'2c2)%cj(l + 972:2)'%>1 = O

3

(3.5.10)
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Applying the transformation {x}+{X}, (1.8.1),

dividing all through by (c-II) and simplifying we get

(m czququu) + (m cZIViVJdu) .
0 31+ 0 3t]

*p07 4
+ %[ln(c-212)] (mocsz9deu)

J

c21'2I83(X)V du = 00 7*(X) , (3.5.11)
3

where, we used (3.5.3) to obtain the right hand side of

(3.5.11).

Let us define

17° = mocsz“VOdu , (3.5.12)

Eq. (3.5.11) then becomes

1““. + ngj + 511n<c'212)1 jT“j = o°'7*“(x) . (3 5.13)

Comparison of (1.4.18) and (1.4.19) with the left

hand sides of (3.5.8) and (3.5.13), suggests that T“8

can be regarded as a second order contravariant tensor in

the Riemannian {Xl-Space-time.

Therefore, (3.5.8) and (3.5.13) are combined into

the tensorial form

18818 = 60J*“ , (3.5.14)
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where the energy—momentum tensor is defined by

98
T = mocszaVBdu . (3.5.15)

The right hand side of (3.5.14) represents the

external forces and the work done by them on the fluid.

0 ]*a
In order to bring the forces, p , to the same

form as in the left hand side of (3.5.14), let us assume

8
the existence of a second order tensor Ha such that-

*

60.7 a = nasls . (3.5.16)

The form of flu8 is chosen below.

*

Hence, an energy-momentum tensor, T a8, can be intro-

duced in the form

*

T “B s T88 — mas (3.5.17)

Hence, from-(3.5.14), (3.5.16), (3.5.17) we get

*

T o‘BIB = 0 . (3.5.18)

3.6. Specific Internal Energy

Similar discussion as that presented in Section 2.3

holds here. The internal energy of the fluid, a, per

unit mass, similarly, is defined by:

TanawB = po(02 + e) . (3.6.1)
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3.7. Case of An Ideal Gas
 

Following [18], we assume:

8
Ta V6002[l + c-2(e + ppO—l)]wawa + pAO‘8 . (3.7.1)

where p the hydrostatic pressure.

98
Let us choose the tensor, H , given by (3.5.16),

in the form

08
H = anB (3.7.2)

Hence, inserting (3.7.1), (3.7.2) into (3.5.17) we

get

T = 606211 + c-2(. + p.0'1)1 wawB + (p - X)A“B

(3.7.3)'

The equations governing the motion of the fluid are

[see (3.4.15) and (3.5.18)]:

I

O

V (3.7.4)(powa)|a ‘

I

O

1

T o“3|... - (3.7.5)

Substituting (3.7.3) into (3.7.5), taking into

account (3.5.16), (3.7.2) and (3.7.4), simplifying and

rearranging we get:

*
AGB=DO; 0. -2 .-

8 U: l + c (8 + p00 1)
3 3

0002W8(uwa)l8 + p

(3.7.6)
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Multiplying (3.7.6) by (-wa), using (3.4.14),

(3.5.2) and (3.7.4), and simplifying we get:

cote BWB +p(po_1),BwB]= 0 , (3.7.7)

or, we write (3.7.7) in the form:

-1 - _

de + pd(pO ) = O , d6 = e 8W8 d(pO 1) = (00 1) BWB .

3 3 3

(3.7.8)

Eq. (3.7.8) expresses the first law of thermodynamics with

dQ =10, where dQ = the elementary heat input-into the

system from the outside.

If we introduce the notion of-the absolute tempera-

ture 0 and the specific entropy S, as measured by an ob-

server at rest with respect to the fluid, such that

ads = dQ = 0 , d8 = s BWB’ dQ = QBwB , (3.7.9)

Eq. (3.7.8) combined with (3.7.9) then becomes

dc + pd(p°'1) = eds . (3.7.10)

3.8. One-Dimensional Motion
 

All quantities in one—dimensional motion are con-

sidered to be functions of the coordinates Xl and-XL+ = t,

also we assume W2 = w3 = 0. Eq. (3.4.8) can be remodelled

by making use of (3.4.5), (3.4.11), (3.4.13) as fOllOWS:
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773 = n-lfc-llt‘ju + c-2§2)-$§fd3; = n-lfIVJdu

= n-lIUj = (n- no)nO-1IU'j = (l — w21_2)%wjl

(3.8.1)

or, rearranging we get

wj = t31‘1(1 _ 621'2)‘3, t2 = A. tflwk . (3.8.2)
Jk

Let us denote the dimensionless velocity fill-1 by

the symbol w, then Eq. (3.8.2) for j = 1, becomes

 

w(l - w2)-% (3.8.3)W1

Substituting w1 = w(l — w2)-;5,w2 5 w3 s 0 into

(3.4.14), and rearranging we get

4 ‘1 2 —%
w = CI (1 - w ) . (3.8.4)

'Writing (3.7.4) in full, making use of (1.4.17) we get

+ %[1n(c'212)1 oowl = o . (3.8.5)
(0 O

(0 W1) + (o W”)
1 9 913 9+

Substituting (3.8.3) and (3.8.4) into (3.8.5),

simplifying and rearranging we get in the (x,t)-plane:

(1 — w2)(I—1pO—1po,t + w pO-lpo,x) + I_lw w t

3

+ w’x = — %w(l _ w2)(lnlz),x . (3.8.6)  
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Similarly, writing (3.7.5) in full making use of

(1.4.17), (3.5.16): (3.7.2), (3.7.3), (3.8.3), (3.8.4),

simplifying and rearranging we obtain in the (x,t)-

plane:

1 —1 —1 -1
w l — w2 I— + w + I w + ww( )( u “,t u u,X) ,t ,x

 

+ (l - wz)2;)O"1C:_211-1p,x = - 3 (l - WZ)(lnIZ)’X

+ (l - wz)2c>o_l<:_2u-1>(’X . (3.8.7)

where

u = 1 + 6-27. + poo-1) . (3.8.8)

Differentiating (3.8.8) we get

02du = de + pd(pO-1) + pO—ldp . (3.8.9)

Inserting (3.7.9) into (3.8.9) we get

chu = 60’1dp . (3.8.10)

Let us introduce the auxiliary function, 9, defined by

u du = a p do (3.8.11)

From (3.8.10) and (3.8.11) we obtain

C-2u_lpo_1dp = dpo—ldpo . (3.8.12)
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Substituting (3.8.12) into (3.8.7) and rearranging we

get

a2(1 — w2)(wI-1pO-1p?t+ pO-lp?x) + I—lw,t + ww,x

= (1 - w2)160‘1c'2.‘1(1 - Wm,X - 2(1912>,x3

(3.8.13)

Furthermore, let us define the auxiliary function 6 by

do = de-ldpo , (3.8.14)

Eqs. (3.8.6) and (3.8.13) in terms of 6 become respectively

2 -1 -1

(l - w )(I ¢,t + W¢,x) + u(I ww,t + w’x)

= - %QW(1 — w2)[1n(12)1’X , (3.8.15)

(1 - w2)(w1_1¢ t + ¢ X) + l-lw + ww

3 3
,t ’x

= _ 2 -2 0-1 -1 _ 2 _ l 2

(1 w )[c o u (l w )x,X 2(lnI ),x]

(3.8.16)

Adding and subtracting (3.8.16) we obtain respectively

I 12=- 2; 2
(1 — w2)8+¢ + 6+N . (l — w )[2(1 + dw)(1nI ),x

—2 0—1

- c 0 u-1(l — w2)x,X1 ; (3.8.17)
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(1 — w2)6_¢ — 6_w = (1 — w2)[%(l — dw)(ln12) X

— c'zpo’t'ln - w2)x’X1 . (3.8.18)

where,

5+ = (1 + awn-13%- + (c +1713); ,

8_ = (1 - cW)1‘1§% - (a — w)§% . (3.8.19)

Let us introduce the identity

.- . - 1

(1 - w2) 18:... = 611n[(1 + w)(l - w) 112 . (3.8.20)

Substituting (3.8.20) into (3.8.17) and (3.8.18) we

obtain respectively

6+r = pO-lc-Zu—l(l — w2)x’X - %(l + aw)(ln12),X;

(3.8.21)

6's = %(l - o.w)(ln12),X - pO-lc-zu—1(1 — W2)X,x°

(3.8.22)

where

r = ¢ + ln[(l + w)%(l _ w)_%] . (3.8.23)

s = . _ ln[(l + w)%(l _ w)-%] . (3.8.24)
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3.9. Concluding Remarks

The one—dimensional hydrodynamical equations

(3.8.15) and (3.8.16) or their modified forms (3.8.21)

and-(3.8.22) in the Riemannian space—time can be reduced

to (2.6.17), (2.6.18), (2.6.24), (2.6.25) in the flat

space-time if we set I = IO = constant, and X = X0 -

constant.

All derivatives of I.and x then vanish and the

right hand sides of the above equations (3.8.15), (3.8.16),

(3.8.21) and (3.8.22) are equal to zero.

 



 



CHAPTER IV

APPLICATION

4.1. Gravitational Potential
 

Let us assume that there exists a celestial body

with a.magnitude of the gravitational potential at its

surface:

4

x(1) = 8.5(10 )xS . (4.1.1)

where

Xs = gravitational potential of the sun at its

surface,

x = 7.34(lOu) mi2 sec—2 . (4.1.2)
8

The velocity of propagation of light signal in

vacuo is

c = 1.86272(105) mi sec-l . (4.1.3)

Using (4.1.1) and (4.1.3) to calculate the dimension-

less quantity

2c-2x(l) = 0.36 . (4.1.4)

73
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Substituting (4.1.4) into (1.3.1) and calculating,

c-llo(l), we obtain:

0-110(1) = 0.8 , (4.1.5)

where 10(1) denotes the signal velocity at the surface of

the body.

(n) n R(l),
The gravitational potential at points R

measured outward from the surface of the body is given by

x(n) = n-lx(l) , (4.1.6)

where, R(l) = radius of the body, n = l,2,3,....

Consequently, the velocity of propagation of signals

(n)
at points R are calculated using the formula [obtained

from (1.3.1) and (4.1.6)]:

10(n) = (1 — 0.36n-l)%c. (4.1.7)

Table 2 shows the calculations of the quantities

c‘6x)n) and c‘110(n) at the points R<n).

The quantities c_2x and c-llo, considered as functions

of the distance Y from the surface of the body, are shown

in Figure l.
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W 0.20-

1 0 — 0.16

0.954 Ic‘1 0 12-

-1 x

I c 0

O I

N

0.90~ 0.08

x0"2

0.855 0.04

0.80 . . ," r . .2 r . 0.0 
O 1 2 3 4 5 6 7 8 9

Y (one unit of Y = R(l))

Figure 1.--The dimensionless gravitational potential

c‘gx and the dimensionless velocity c’iIO(C'1I) as

functions of the Y-coordinate.
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4.2. Gas Model
 

We assume a hypothetical medium consisting only of

electrons at a very high temperature. The governing

equation of state is assumed to follow that of the per-

fect gas law, i.e.,

990-1 = Qmw'le , (4.2.1)

where

02 = universal constant = 1545.33ft 1tf mole-lOR-l;

mw'= molecular weight of the gas, mW = (1836)—1 lbm

for electrons; .

0 = temperature of the gas in degrees Rankine;

2

)s

p '= density of the gas (left_3).

p = pressure of the gas (lbfft-

The flow of the electron gas is assumed to be governed

’.

by (2.6.17) and (2.6.18) in the {Ylespace-time with the

following initial conditions at t = O:

u(Y,O) = uo[l + Y(l + Y)'l] , (4.2.2)

¢(Y.O) = étotg - 1(1 + Y)’11 , (4.2.3)

where uO and to are constants whose values are given below.

The origin of the {Y}-coordinate is located at the surface

of the celestial body described in Section 4.1.

At t = 0 and Y-= 0, we assume

u(0,0) I
I

C

N

O [
\
3

v

(4.2.4)
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O

60(0,0) p = 10‘15 lbm rt‘3 3 (4.2.5)
0

e(0,0) — 1.225(109)OR . (4.2 6)m G
) |

Using (4.2.1), (4.2.5) and (4.2.6) we calculate the

following quantity at t 0 and Y = 0:

c—2pop ; = 0.115 . (4.2.7)

From (2.4.1), (2.7.6) and (4.2.7) we find that

YO < 1.61“ . (“32.8)

As mentioned_in Section 2.9 y is considered to be

a constant. We take y to be equal to 1.614 throughout the

calculations below. 1

Integrating (2.7.7), making use of (4.2.5) and (4.2.7),

we obtain the isentropic relation:

p = K .0. , c—2KO = 1.8676(108) . (4.2.9)

Normalizing p0 with respect to its value at t = 0

and Y = 0, i.e., 0:, we write:

* _

00 = 000: l . (4.2.10)

From (2.7.8), (4.2.9) and (4.2.10) we obtain a as a

*

function of no as shown in Figure 2. Similarly, by inte-

grating (2.6.14), making use of (2.7.8), (4.2.9) and
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*

(4.2.10) with the requirement that-¢ = 0 when p0 = 0

(see [4]), we determine ¢ as a function of po* as shown

in Figure 3. The quantity ¢o’ (4.2.3), is determined

from Figure 3 corresponding to the value p0: = l,

(¢O = 0.354466).

From Figures 2 and 3, the quantity 6, to be used

in the calculations below, is determined as a function of

¢ as shown in Figure 4.

Figures 5 and 6 represent the numerical solutions

of Eqs. (2.6.17) and (2.6.18) with the initial conditions

(4.2.2) and (4.2.3) for ¢ and u for different constant

(n)
parameters Io at a particular instant t =tO for the

range of Y = [0,0.35].

‘ (n)
Using Figure l we determine the positions, Y = Y

= R(n) at which the values of the parameter Io = Io<n)

are chosen (see Table 1). In Figures 5 and 6, vertical.

(n).
lines are drawn at each point Y Points of inter—

sections of these vertical lines with the corresponding

curves drawn for the corresponding parameter Io = 10(n)

are determined. Due to the small range of Y for which

diagrams 5 and 6 are drawn, only one point of intersection

(corresponding to the vertical line Y = O) is shown on

each of these diagrams. However, the numerical values of

¢ and u at the points of intersections can be obtained,

alternatively, using the diagonal numbers of Tables 3 and

4. Curves drawn through these points representing approxi-

mate graphical solutions for ¢ and u in the case of a
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variable reference velocity IO are marked in Figures 5

and 6 as dashed lines for the range of Y = [0,0.35]. The

same curves representing the approximate solutions for

¢ and u are drawn in Figures 7 and 8 for the range of

Y = [0:7Jo
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Figure 2.-—The dimensionless sound velocity 0 as a

function of the normalized density 00*.
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Figure 3.——The quantity 0 as a function of the normal-

ized density 00*.
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Figure 4.—-The dimensionless sound velocity 0 as

a function of the quantity 0.
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4.3. Shock Model

Let us assume that the shock is moving away from

the celestial body described in Section 4.1. As dis-

cussed in Sections 2.8 and 2.9 a coordinate system {Y}

is introduced such that the shock becomes stationary and

perpendicular to the Yl-axis. As in many practical

problems, we specify the shock parameters 03 and p_ on

the right side of the shock, and we choose either the

pressurep+ on the left side or the pressure ratio a as

an additional parameter describing the strength of the

shock, (see [9]). The remaining shock parameters (pi or

n, u_ and u+) are calculated from (2.8.1), (2.9.6),

(2.9.9), taking into account (2.9.1), (2.9.2) and (2.9.3).

For a chosen constant value of the quantity p_pS-l,

(i.e., the temperature on the right side of the shock is

kept constant), Figures 9, 10 and 11 show the relations

(E, ii), (0,3i) and (01,0i) respectively, for different

constant values of the velocity parameter IO. The linear

relation between a; and u, for different values of I0 is

also shown in Figure 12.

In conclusion, Figures 9 and 10 indicate that the

shock parameters E and 0 increase as the gravitational

potential X increases or IO decreases keeping 31 con-

stant; or, for fixed values of the shock parameters a and

n, the velocity El increases as X decreases or IO in-

creases. Similarly, Figure 11 indicates that the velocity
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ui increases as X decreases or IO increases keeping Hi

= constant.

A critical shock strength line "Ecr." is drawn in.

Figure 11. This line shows that the value of H: on the

left hand side increases as X decreases or IO increases,

whereas 31 on the right hand side of that line increases

as x increases or IO decreases, keeping 51 = constant in

both cases. The latter case has not been investigated in

the present work.
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