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ABSTRACT

GENERALIZATION OF TAUB'S RELATIVISTIC
RANKINE-HUGONIOT EQUATIONS

by Ahmed S. El-Ariny

The present work refers to the relativistic hydro-
dynamics 1n the presence of the gravitational field. The
velocity of the propagation of signals 1s assumed to be a
variable 1n accordance with the proposition by Einstein
(1907), Fok (1955) and others. The present approach is a
generalization of Taub's work in vacuo. The fluid is con-
sidered to be a collection of particles in random motion
and under the influence of a gravitational field. Only
ideal fluid is taken into account. In this case transport
physical aspects like viscosity, heat conductivity, etc.,
are to be disregarded. The flow governing equations
(continuity, momentum and energy) are based on the Kinetilc
theory of gases by means of Boltzmann equation. The space-
time based on a variable velocity of propagation of signals
is necessarily Riemannian one. Due to the difficulties
that arise in establishing solutions of flow problems in
the Riemannian space-time, an approximation 1s suggested
by introducing a piece-wise constant velocity of signals.
This enables us to obtain, in the Euclidean space-time,

_solutions which are valid only at a point. The entire
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formalism of Taub is transferred to the Euclidean space-
time where the veloclty of the propagation of signals is
less than that in vacuo. It is shown that actually the
Taub procedure is transferable to the present case with
small modification involving constant parameters. To
demonstrate the discrepancy between the present approach
and the possible one in the Riemannian space-time, in
Chapter III are some equations which show clearly the
simplification which must be applied to reduce the problem
to the Euclidean space-time. To illustrate the theory a

numerical example 1s calculated.
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INTRODUCTION

Relativistic theory of fluid dynamics with the refer-
ence velocity of propagation of signals in vacuo has been
developed by Taub [18] and Synge [15]. The former based
his work on the Kinetic theory by means of the relativistic
Boltzmann transport equation, while the latter based his
formulations on Maxwell's Boltzmann statisties. Additional
aspects of the microscopic approach with the reference
velocity of propagation of signals in vacuo have been in-
vestigated;byvvarious authors: Goto [8], Vlasov [20] and
others.

Attention is called to the meaning of the word "vacuo"
used in the above literature as it was demonstrated by
Pauli [14] that in perfectly empty space no gravitational
field exists. According to Einstein's article in 1907 [6],
and the discussion presented by Fok [7], the effect of the
gravitational field upon the form of the metric of the
space-time may be taken into account. Thus, the constant
reference velocity of propagation of signals in vacuo 1is
to be replaced by a variable one in the presence of the
gravitational fileld.

It must be emphasized very strongly that the symbols

¢ and I do not necessarily denote and refer to the velocity






of light. Actually, they may refer to the velocity of
any other signal. It may be optical, electromagnetic
waves, etc. Already Pauli [14] mentioned about other
possible signals. It 1s well known that the velocity of
electromagnetic waves depends very strongly upon environ-
mental conditions.

In the present work, we introduce a generalization
to Taub's work under the influence of the gravitational
field. Thus, the present approach refers to a space-time
with a reference velocity of signals which is considered
to be a function of the spatial coordinates. Following the
analysis of Synge and Schild [17], local rectangular co-
ordinates are used in the Euclidean space-time to provide
simplified solutions that are valid only at a point.
Therefore, by introducing a piece-wise constant reference
velocity of signals, an approximate solution in the Rie-
mannian space-time is obtalned from solutions involving
constant parameters in the Euclidean space-time.

In Chapter I, we demonstrate the basic principle
upon which the configuration of the space-time in question
is based. The relativistic quantities, being used in the
following chapters are developed in accordance with the
chosen forms of the metric of the space-time. In addition,
several transformations of coordinates are established.

The modification of Taub's work in accordance with the
present theory 1s presented in Chapter II. The fundamental

governing equations of a flow in the Riemannian space-time






are derived in Chapter IITI by making use of the Boltz-
mann equation. It is shown that the Rlemannlian space-
time, due to its curvature, results in the appearance of
additional terms in the differential equations governing
a flow. These additional terms present the main differ-
ence between the formalism in the Rlemannian space-time
and its correspondence in the Euclidean one. However, it
is shown also that the entire formulations obtailned in
Chapter III are reducible to theilr correspondence in
Chapter II upon replacing the variable reference velocity
of signals by a constant one evaluated at a particular
point, i.e., by a plece-wise constant reference velocity.
A numerical solution of an initial value problem in
one dimensional flow and the calculations of some shock
parameters are presented in Chapter IV as an 1llustrative
example demonstrating the influence of the gravitational

field.






CHAPTER I

FUNDAMENTALS OF THE APPLIED

RELATIVISTIC MODEL

1.1. Second Einstein Model of the
Special Relativity

In 1905 Einstein proposed his first model of the
speclal relativity and in 1907 his second one in which
he took into account the effect of the gravitational
field on the velocity of the propagation of signals.
Einstein [6]1 derived the formula for the metric of the

space-time using the expression

(d4)2 = -(dx2 + dy? + dz?) + [c(1 + xc~2)]2 dt2?, (1.1.1)

whgre,
x = gravitational potential; x, y, z being the
space coordinates,
t = the time coordinate, and ¢ 1is the velocity of

signals in vacuo.

l1.2. Fok's Model

Fok [7] proposes the following two metrics of the

space-time in the presence of the gravitational field

1Number's in square brackets refer to the bibli-
ography of standard works.






(de)?2 = - (dx?2 + dy? + dz?) + (c? - 2yx)dt2, (1.2.1)
or
(de)2 = = (1 + 2xc-2)(dx2 + dy? + dz?2) + (c? - 2x)dt?2.
(1.2.2)

The gravitational potential, x, appearing in the above
metrics, as considered by Fok, should be small. The first
metric, (1.2.1), has a special interest in the present
work.

1.3. The Metric Tensor of the
Four-dimensional Space-Time

Following the models of the special relativity dis-
cussed above, let us introduce the function I =1 (fj),

J = 1,2,3, defined as
I = c2 - 2y, (1.3.1)

The function I represents the maximum velocity of the
propagation of signals in the presence of the external
fields of action.

The metric of the four-dimensional {x}-space-time

is chosen in the form

-(de)?

Ejkdiﬁd;k - ¢"212(ax")?2

Eapdi°d§°, , (1.3.2)






where

for o # p . (1.3.3)

) being the spatial coordinates, and

X" = ct.

Throughout the present work, we use Latin suffixes for the
range 1, 2, 3, and Greek suffixes for the range 1, 2, 3, 4,
unless otherwise stated. The contravariant components of

the metric tensor, a°f, in a°® dfodfp are
Zll= 322 = 333 = 1, 3% = - ¢2172, 3%° - o
for o 7 o . (1.3.4)

From (1.3.2) we obtain

e la=1  — — =j=k = X
§%==[1(1 B R D I q? = ajkqjqk, T = %% . (1.3.5)

1.4, Fundamental Mathematical Operations

Assume a metric in {x}-space-time:
(d4)2 = aopdxcdxp , (1.4.1)

with a metric tensor, acp, whose components are functions

of the coordinates, x°. The absolute derivative, denoted

by the symbol é%; (A being a parameter), of a first order

contravariant tensor, TO, is defined by






§T? _ dTo o} podx

i a;r-+{uv}T i (1.4.2)
where, g%f, denotes the ordinary derivative of T with
respect to .J, whereas, {° }, stands for the Christoffel

BV
symbol of the second kind which is defined by

oa sa da

{91 = £39°¢ o —Eb ;“) = a%luv,pl, (1.4.3)
3x ax

where [uv,p] = the Christoffel symbol of the first kind.
The absolute derivative of the corresponding covariant

tensor, To, is

6T° ch y ax’
i3 “d=2 "~ {Gp}Tuajr . (1.4.4)

The absolute derivatives of the second order contravariant

and covariant tensors, T°? ana T , are given respectively
op

by
6 TP _ ar°® o updx" p podx” .
54 “as T T LT Eg s (1.4.5)
§T aT v v
op _ _"0p _ M ax” _ u dx
52 = 32 {oo? Tuoaa 0o Tuogs - (1.4.6)

The covariant derivatives of the tensors To, To, T°° and
Top, with respect to the coordinate x" are defined re-

spectively by, (notice the proper notation):






T°|V = va + {Ev} T+, il: z T,iv = T3, 3 (1.4.7)
oX

Tl = Tyov ™ {iv} T, (1.4.8)

Pl =19, {zv} THP 4 {3\)} O | (1.4.9)

ol = Topoy = Lot Tup = (50} T o o (1.4.10)

When the metric of the space-time {x} assumes the form
(1.3.2), i.e.,

A

-(dg)? dedx - c I (dx )

jk

—_— —0 _p:; "‘ _ _J
aopdx d¥ , 1 = I(xY) , (1.4.11)

the computation of the non-vanishing components of the

Christoffel symbols gives

r

L‘ - -
I%) sy s lugd = 3(e®T7%) (771"

Ty .
Y 1K3 (-2
{44} 28- (c 2J

-22

= —[l (c ) ] (1.4.12)

>J

Hence, carrying out the computations of the components

of the absolute derivative (1.4.2) using (1.4.12) we obtain

sTd _ amd kj ~212 .
-8 3aYeT (1.4.13)

o,|'






§T* _ 4aT* | 1 -2.2 J dx
50 “as Tzl Il
+ 3z [1n(e™?1%)] , ™ §5 . (1.4.14)
Similarly,
§T dT. -y
1 -2 .2 d
-G—AJ = a')—AJ - 5 [ln(c I )J,J Tq d—)fz 3 (l.’-l.lS)
STy dTy -
- _ 1 k3, -2.2 ax
2 T -~zaceIy (1.4.16)

The covariant derivatives in (1.4.7) to (1.4.9), with the

contraction v = o, become

TO'I = TO

. byt %--[1n(c"212)]’.'rJ : (1.4.17)

J

kolo - ch’0

T + % [1n(c™212)7 ,7¥J

J

pLakdemrr%y e

: ¥ ; (1.4.18)

2yy .4, (1.4.19)

49|
Y ’d

O, + % [1n(c™ %1

1.5. Relativistic Mechanics of a Particle
in the Four-Dimensional Space-Time

The metric, (1.3.2), of the four-dimensional space-

time {x} 1s used primarily in this section.






10

(1) Velocity

The contravariant four-velocity vector 1s defined

Dy

= == . (1.5.1)

Using (1.3.5) and (1.5.1) the contravariant and covariant

components of the four-felocity vector are

o= Prra - Pyt

_ _ —y ey L
% = g [I(1 - Q°17%H) 217t (1.5.2)
- _ = —p
CO’ = acpC ) (1-5-3)
where, q“ = %% = ¢,

The magnitude of the four-velocity vector is given by
a %° = -1 . (1.5.4)

op

Since the absolute derivative of the metric tensor vanishes,

the absolute derivative of (1.5.4) with respect to 4 gives

=a 630’
055 =0 . (1.5.5)

(1i) Lagrangian and Momentum

Let us introduce the Lagrangian function in the form

X -

25 795
m, ¢ 2558 & . (1.5.6)

POjH
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The four-momentum vector is defined by

P, = = m,ca ;¢ . (1.5.7)

Substituting (1.3.3) and (1.5.2) into (1.5.7) we obtain

-1 —2_=2\%--1 .
em [e” I(1 - @°I7°)"*] ay

0|
]

- - — = Lo
P, = -m [c7'I(1 - Q°17%)%)7I1% . (1.5.8)
Let us define the inertial relativistic mass by

M=mlc'T(1 - 175570 . (1.5.9)

Hence, the components of the four-momentum vector take

forms
Fj = cﬁaj s P, = - M12 (1.5.10)
) = 39°9F = 2T = oWMgd , B¢ = a4% B = 344F, = Mc?
o] o (0]
(1.5.11)

(iii) Force

The contravariant four-force vector is defined by

9

=0
F(x) = %%

(1.5.12)

Using (1.4.13), with T replaced by BJ, the first three

contravariant components of the four-force vector are






J_ _dP, 1 sk 202y pudX
F(x) d4'+ 5 a (¢ °I )’ P

I
+
N
[\

|
[gumn |
o0
ot
[

-2.2 =t-dt
(¢™“1I ),kPCJEZ' . (1.5.13)

Substituting (1.3.5) and (1.5.11) for %% and P° in (1.5.13)

we obtain

Plgy) = [e7'1QL - T8 &)) + 5 &My )

= et - PTTHITIFL (1.5.11)
where we define the physical spatial force by

_’j = i = .jk 2 6 —-—j

oy = ge@)) + 3 &%) | o= M) . 5.1

The first three covariant components of the four-force

vector are

2. L 1=

4 -1 -2 - -
F(x) = [e I(1 -q I ")7?] Fj

F,(x) = a5, (x) ,

J
(1.5.16)

where
Fy(X) = 3, F(X) = ¢(F@,) . (1.5.17)

Similarly, using (1.4.16), with P, replacing T,, the

covariant fourth component of the four-force vector is






FL;()?) = =

QIQJ
sl ol
1
noj -

(1.5.18)

Substituting (1.3.3), (1.5.1), (1.5.7) into (1.5.18) we

get
dp,
=Y = l -2+2 2=K—y
dP,
_1_ -2,2 2—K—y _ »
+ 2(0 I ),k(moc ctt) = 32 - (1:.5.19)
Hence,
dP, dP,
=y = = 4t _ _rd gr2ydt
Folx) =373 = 3 a5 = ~la&g™?) 75
2. %
= [I(1 - I H)E7IF, (%) (1.5.20)
where we define
F,(X) = - (M12) (1.5.21)
L* dt . . .
The contravariant fourth component of the four-force
vector 1s given by
b__ - - - - - —
F(X) = a“oFc(x) = FYURL(X) = -c’I 2Fq(x)
—2 =2 k- - =
= [1(1 - P17 et d(m2) (1.5.22)

or, we may write it in the form
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y
F(Z) = [I(1 - 32I"2)%17 F%x),F(¥) = ’172 A (MI?) . (1.5.23)
(iv) Energy

From (1.5.5), (1.5.7) and (1.5.12) we obtain

7° F(x) =0 . (1.5.24)

Substituting (1.5.2), (1.5.16) and (1.5.20) into (1.5.24)
and simplifying we get

TF, (%) = FMH2) (1.5.25)

Eq. (1.5.25) suggests that we may define the real energy

of a particle by
c* = M12 (1.5.26)
From (1.5.10) and (1.5.26) we have
| P, = -e* (1.5.27)

i.e., the fourth covarlant component of the four-momentum
vector 1s equal to the negative value of the real energy
of the particle.

Similarly, from (1.5.11), (1,5126) and (1.5.27), we.

—
may define the total relative energy €t by

—% — - — —D - —
e, = P* = -c?17%F, = %17 = Me2 (1.5.28)

which represents the maximum energy the particle may possess.
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1.6. Local Orthogonal Coordinates

{id,f“}, x* = ot,

Consider a Rlemannian space-time (X}

with the metric

-(da8)? = Eopdi"d’f" . (1.6.1)
The terms that contain dx! are, in general,

a;;(dx!)? + 2a;,dx'dx? + 2a;3;dxldx? + 2a;,dx!dx* , (1.6.2)

where we assume that EGD is symmetric. Simllar expressions
hold for dx2, dx? and dx“. The right hand side of (1.6.1)
can be reduced to a sum of four squares, each having as a
coefficient, the corresponding dlagonal component of the
metric tensor Ecp. In that respect, we follow [17] and

write (1.6.1) in the form

-(d4)? = 511(‘?1)2 + 522(‘1’2)2

+ a33(¥3)2 + a,,(¥H)2 (1.6.3)
where, for example, ¥! takes the form
vl = ax! + &3,377°dX? + 3,358,717 d%°
+ 3,374, (1.6.4)

and where we assume a;; # O.
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Hence, we may write

g

y9 = p°

pdx s 3(55) #0 . (1.6.5)

If we consider a given point, 0, with coordinates aP we

may write
5o - Y P P
y = (b p)O(x -a") s (1.6.6)

where the subscript, o, denotes evaluation at a particular
point 0. Hence, from (1.6.3), (1.6.4), (1.6.5) and (1.6.6)

we obtaliln at "O":

-(d2)? = g11(ayt)? + g22(dy?)? + g33(ay®)? + gyu(ay*)2

(1.6.7)

where g11, 811, 833 and g, are evaluated at the point "O".
In the present work, the components of the metric tensor,

C of (1.6.1) are °

— -— — —_— -2_2 —_—
ay] = asp, = azz3 =1, ay, = -¢c "I , aop = 0 for o # o

(1:6.8)

Using (1.6.4), (1.6.5), (1.6.6), (1.6.7) and (1.6.8) we

obtain:
v = gyd = axd , w4 = gy% = dx* = cdt 3 (1.6.9)
811 = 822 = 833 = 1, guy = _C—2£2, Ecp = 0 for o # p .

(1.6.10)

lIndices between brackets do not follow the summation
rule.
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Hence, (1.6.7) becomes
—(d8)2 = g_ dy°ay® = Z..dj9ayX - I_24t?2 (1.6.11)
ap ,jk o . . .

In the local {yl-space-time coordinates with the metric

(1.6.11), the four-velocity vector is defined by

e - %% %% %% > (1.6.12)
AU S SEGTELS Stk il S
€ - Lo, - TITHT (1.6.13)
with
Lo ra - By-130 o %%3’52 ) EjkVﬁVk
(1.6.14)

If, in Section 1.5, I is replaced by I_, g° by v

, keeplng
in mind that all derivatives of IC with respect to the

space and time coordinates vanish, we obtain the corre-
sponding quantities in the local {y}-space-time coordinates.

The components of the four-momentum vector in {y}-space-

time take the form [see (1.5.10) and 1.5.11)]:

Py = oy, P, =-mIo2 ; PY o= Cmed , P* = mec? , (1.6.15)
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where the relativistic mass, m, in the {yl-space-time is

defined by

= _ -1 _ T2 =2y%q-1

m = mo[c Io(l v IO ) 2] . (1.6.16)
The ccmponents of the four-force vector in the {y}-space-

time become

T - PITHNTR W), B3 = g@w,), (1.6.17)

1
™
(¢}

, Fu(@ = - Fn1 ?)

I
(!
H
(o]
~~~
—
I
<
N
H
O
1
N
N~
»
(-}
—
s}
s
~
<
p—

Fyu(y)
(1.6.18)

The energy equation in the X -space-time, (1.5.25), has

its correspondence in the y -space~time in the form

{;‘JFJG?) R (1.6.19)

1.7. Second Form of the Four-
dimensional Space-time

Here we define the "world point" as a point at a
certain time with three coordinates x!, x2, x3, having
the dimensions of length, and a fourth coordinate x”,
having the dimensions of time t, i.e., x* = t. The metric

of the space-time (1.3.2) 1s replaced by

k

a. dedx

-(dT)z Jk

- ¢%1%(ax™)? = aopdxcdxp ; (1.7.1)

c"'d4 and has the dimensions of time.

where dr
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Four-velocity

A dxA J 2.5

J
¢t =37 58t o= qj[c"ll(l - qZI’ 2] 71gd = X

’q - &- E] (10702)

2 -1

Ny

tt = [e7'I(1 - q*17%)7] (1.7.3)

Four-momentum

P, = m c?z, = cquj , P, = -MI?; pd = moczr,J = cZMqJ,

P4 = M2 = ¢} , M= m [e™ I(1 - 17H%17 L (1.7
Four-force

P_(x) = AL Py(x) = [e7'I(1 - @’ I7)37F, (),

Fy(x) = czg%(qu) = 02[%(qu) + %M(IZ)’J] 5 (1.7.5)

Fo(x) = [e7'T(1 - ¢’ 172217, (x)

Fu(x) = - zx(MI%) . (1.7.6)
Energy

qjﬁj<x) = S(M12) = g_%* , qjﬁj(x) = ¢7’1%F (1),

Fé(x) = c’1728 (M12) (1.7.7)
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The following relation (to be used below) is obtained

from (1.4.13) and (1.7.5):

-1 -2..2

== 4+ % m Makj(c °)

o] »K

(1.7.8)

Similarly, the metric (1.6.11), in the {yl}-space-time, takes

the form

L

k -2_ 2 by2 .. .
-(dr)? = gcpdy"dyp = gjkdyjdy -c "I,7(dy")",dy = dt,
(1.7.9)
where;
-2 -2 2
g11 = 822 = 833 = ¢, Buy = -¢ I, g =0 foro #p
(1.7.10)
The four-veloclty
O ACTINE - SeL L ICLO -
& T g7 & svile LU=V, - T
(1.7.11)
- -2 k-
g4 = [eT I (1 - viI %)% (1.7.12)
The four-momentum
2 2 *
Py = moc?—é;J = cfmvy , p, = -mI? = e (y) 3 (1.7.13)
* -1 2.5 =1
p, = mc? = et(y) , m = mo[c I,(1 - VZIO— ) 2] (1.7.14)






21

The four-force

dp ag _ - 1
F,(y) = 577 = melgs Fy() = [e7'I (1 - v21 )97 F, (),
(1.7.15)
Fy(y) = o?gf(mvy) , Fuly) = [e7'1,(1 - vPI ") Ry
(1.7.16)
— _ d 2
Fo(y) = - ae(mI 2) . (1.7.17)
The energy
ae’ ( j
VJFB(y) = g%(mloz) = —% y) s ijﬂ(y) = C-ZIOZF“(Y),
F'(y) = ¢’I, "2&(MI %) . (1.7.18)

1.8. Transformation of Coordinates

A simple form of the metric, (1.7.1), can be obtained

by introducing the transformation of coordinates
xd o= ¢c7hxd L, x4 = x =t (1.8.1)

Hence, the metric (1.7.1) becomes

dr? = -AjkdXJka +# oTP12(ax*)? = -a_ axax® (1.8.2)
where,
-2_2
Ajk =1 for j=k , A4y = -c "I7, Aop = 0, for o # o

(1,8.3)
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The components of the velocity vector in the {X}-

space-time are

v (x) = %%? = e vt = %%“ = eI7H(1 + vE(x))™
= o174 T vy - ety (1.8.4)
where,
V2(X) = AJKVJ(X)VK(X) ;A VIOOVP(X) = -1 . (1.8.5)

The spatial force

Fl(x) = & [ e2vd ()] = & (mc’cde™) = TP 0 (1.8.6)

F(x) = ¢ 'F(x) , F,(X) = oFy(x) . (1.8.7)

J

Similarly, in the local orthogonal coordinates we

apply the transformation
yd = c‘ly'j R Y4 = y* =t (1.8.8)

The metric (1.7.9) has its correspondence in the

form

- 2
—(d1)? = ¢_ ay°ay® = g, avday¥ - ¢7?1_%(ayH)® , (1.8.9)
ap (o]

Jk

where
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The components of the veloclty vector are

J
v (y) = %% =gt L vy = %%“ = eI T'[1 + v2(y)]*®
= o1 "M(1 + g2y, V,(Y) = cgy (1.8.11)

= J k o ) _
V2(Y) = ijv (Y)HVH(Y) , GOOV (Y)VE(Y) = -1 . (1.8.12)

The spatial force

() = T IR(y) , F(Y)

c‘IFﬂ<y),Fj(Y) = cF,(y)

(1.8.13)






CHAPTER II

RELATIVISTIC FLUID DYNAMICS

2.1. Fundamental Aspects

In classical relativistic theories of fluid dynamics,
the fluid 1s characterilized by its internal energy per unit
mass, €, measured by an observer at rest with respect to
the element of the fluid as a function of the pressure,

p, and the rest density, po.

In the present modified relativistic theory of fluid
dynamics, addltional aspects are taken.into account due to
the presence of a gravitational field. We. assume a cer-
tain domain filled out by a fluld considered as a collection
of particles with rest mass mg - The system in question
possesses certain amount of Kenetic energy, potential

energy and 1is subject to the work of the external force

fields.

2.2. The Hydrodynamical Equations

The fundamentals of the relativistic fluid in a flat
space with a reference velocity of propagation of signals
in vacuo were derived in [18].l In this work we derive

the generalized formalism corresponding to that in [18]

lNumbers in square brackets refer to the bibliography
of standard works.

24
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but using a plece-wise constant velocity of the propa-
gation of signals. The concept of the variable velocity
of propagation of signals leads to the necessity of deal-
ing with Riemannian spaces. As discussed in Chapter I,
due to insurmountable difficulties in dealing with
Riemannian spaces, we, from the very beginning, intro-
duce an approximation in the form of Euclidean space.
Therefore, we introduce the local orthogonal coordinates,
{y}, (1.7.9). We begin with the hydrodynamical equations
described in terms of a rectangular system of coordinates,

yo, fixed in the space-time {y}. The particle random

J

velocity components vY are measured with respect to {y}.

The spatial components of the relativistic velocity vector

are given in the {yl-space-time by (1.7.11]), i.e.,
¢ = vj[c_llo(l - VZIO—Z)%]—l , (2.2.1)
from which we obtain
v o= e ed(1 + %) TR e = gjkajak ,
vie™? = gjkv‘jvk R (2.2.2)
where, 85k = ¢”? for j=k and g.,. = 0 for j # k.

Jk

(i) Boltzmann Egquation

Let us introduce the distribution function f(yj,t,gj)
in the orthogonal phase-space with coordinates yJ and

velocities EJ.






26

As shown in [18] the Boltzmann equation for f is

Df

e

oLy VJE-I:-j + ;Jﬁfj =af (2.2.3)
3y 9E
or, substituting (2.2.2) into (2.2.3) we get

d
]

)

pr = 2L 4 c_llogj(l v g2em2y3L L 3L _ ¢

3
3yJ 3§J e

(2.2.4)

ot

where,.}j= m

o lc'zﬁj(y) = the external force per unit mass;

Fﬂ(y) is given by (1.7.16), whereas 8.f = the time rate of
change in f due to encounters between the particles.

We define the mean value of a function G by

i

n<G> = fGfdz&; n = [ffd3g, <G> mean value of G,

dsg = dglg2g3 (2.2.5)

Multiplying (2.2.4) by any transport quantity ¢(yj,t,§J),
and integrating over the entire volume of the (&!,£2,g3)-

space we get

- - -3 -
repfase = solsp + o7 el (1 g o7 P)TRL 4 513
| 2y >
= Jea fdsg . (2.2.6)

Integrating (2.2.6) by parts, with the usual
assumptions that products of the form (f¢) tend to zero
as €Y tends to g , and that }j is independent of EJ,

after some algebraic rearrangements, we obtain
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£oDfA3E = z(n<e>) + ¢TI L [necogd (1 + =2:2)=%7
04y
ST P AT
ay? 9E
= f¢Aefd3£ . (2.2.7)

(1ii) The summational invariants

Let us associate with (2.2.6) the form

JeDfd3& = nad = f¢Aefd€§ s ¢ = mean value of ¢.

1"

(2.2.8)

There is a certain class of functions, Y, characterized
by some conservation properties during encounters in the
sense that the sum of these properties for all the particles
involved in an encounter undergoes no change by the encounter.
Hence, the variation a¥ = 0, (see [2] and [9])). Such func-
tions are called symmational invariants.

For a gas we may have five summational invariants
corresponding to the physical conservation laws with

yO’o = 0,1,2,3,4, inserted for ¢ in (2.2.8):

v = m , ) = mOEJ

s ¢4 = E (2.2.9)

where E = total energy of a particle, denoted below by

y* in (2.2.11).
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Relation (2.2.8) for such functions takes the form:

sv°Dfdse = na¥’ =6, (o = 0,1,2,3,4) .  (2.2.10)

The condition A¥° 0 expresses the conservation of

mass during the encounter, AWﬁ = 0 expresses the principle
of conservation of momentum, while AYY = 0 expresses that
of the conservation of energy.

In analogy to the classical relativistic theory,

(7], v* is assumed to be given by [see (1.7.14)]:

# -1 20 =2y%--1
b = = b = 2 = 2 -
¥ et(y) p me c mo[c Io(l VoI )7?]
(2.2.11)

Inserting (2.2.2) into (2.2.11), we have
- -2k
¥' = em eI TT(L 4 gfeTHE (2.2.12)

(iii) Law of Conservation of Mass

In this section we operate interchangebly in both
{yJ} and {YJ} coordinates which differ only by the factor

c.

Let us, first, introduce the mass current vector

defined by

- -1
U* = V%, dp = (1 + g2¢T?)fragr (2.2.13)

where V% is given by (1.8.11).
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Substituting ¢ = ¥° = m, = constant into (2.2.7),

using the transformation (1.8.8), simplifying and re-

arranging we obtain in the {Y}-space-time:
m U% =0 . (2.2.14)

Eq. (2.2.14) expresses the law of conservation of mass.

Let us introduce the notation of the average velocity

w o= n7lrvdrase = nTiseTir g+ g%eTP) Rrage L (2.2.15)

_ 3 s
Defining G2 = I uJuY, and making use of (2.2.5), (2.2.13)

J=1
and (2.2.15), then simplifying and rearranging, we obtain

(1 - 5210‘2)15 = (-n'zuaua)li : (2,2.16)

Let the number density as measured by an observer

moving with velocity ﬁﬂ with respect to the fixed coordinates
(Yj), taking into account the relativistic aspects, be de-

fined by

02

n°? = n?(1 - EZIO‘Z) = -y®

o_ o
U,» and » n-mg. (2.2.17)

Furthermore, we define a dimensionless velocity,

u%, by

u* = n°7U* (2.2.18)
Hence, from (2.2.17) and (2.2.18) we have

uu = -1 . (2.2.19)
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The law of conservation of mass, (2.2.14), expressed

in terms of u® and p° then takes the form

(e%u*)|, =0 . (2.2.20)

(iv) Laws of Conservation of
Energy and Momentum

-k

If we use (1 - Ezlo-z) as a fundamental factor in-

stead of (1 - vzlo-z)-%, a modified force per unit rest
mass, corresponding to (1.7.15) may be introduced in the

form

My = m e T - T 7O () (2,2.21)

From (1.7.18), we have

2

v.FI(Y) = ¢ Iozﬁ“(y) ) (2.2.22)

J

Substituting, vy = c—llogj(l + gzc"?-)‘l5 into (2.2.22)

and taking average we get
=1 - 2 22 =Y - -
B (Y)re lloaj(l + 6 ¢7) T ase = A1 *sF (V) PdsE, (2.2.23)

or, by making use of (2.2.15), we obtain

nFﬂ(Y)ﬁj = 7’1 'n<Fr(Y)> . (2.2.24)

-1 =1 -1
Multiplying both sides of (2.2.24) by n 1mO (cIo )
- (1 - u-ZIO_Z)'%, using (2.2.21), we get

?*Jﬁj = 0‘21027*“ , (2,2.25)
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where we define

= Tler M - 6210“2)‘%<F”(Y)> . (2.2.26)

Remodelling (2.2.23), we get

du

IR (DVan = B (DY ¢ I_sF (¥)rase

J

c‘110n<ﬁ“(Y)> : (2.2.27)

From (1.8.11) and (2.2.5) we obtain:

1

- - -2_ 2 = -
c Ion<Fq(Y)> = ¢ IO n<F“>n !

re1 7H(1 4 g2
- - —_
(1 + £2¢72)7%pd56 = =<F'>s/Vydu . (2.2.28)

Inserting (2.2.28) into (2.2.27), making use of

(2.2.13) and rearranging we have

Fd(Y)Uj + <FY5U, = 0 . (2.2.29)

Using (2.2.21), (2.2.26) and (2.2.18) into (2.2.29),

after some algebraic rearrangements we obtain

':7 u =0 . (2.2.30)

Eq. (2.2.27) may also be rewritten in the following

form

-2

—3 - — L —_ - =L
IFJdeu = ¢TI n(1l - TITHAA - TI THTRFS

(2.2.31)






32

or, using (2.2.17) and (2.2.26);

2 2 .
-4 o) L
du = c¢c I n mo .

1=
[Py, .

(2.2.32)

Substituting o(eX) = ¥9, o = 1, 2, 3, 4, [see (2.2.9)
and (2.2.13], into (2.2.7), introducing the transformation of.
coordinates (1.8.8), using (2.2.21), (2.2.26) and (2.2.32),
simplifying and rearranging we obtaln the equations of con-
servation of mementum and energy

1B = 007", (2.2.33)

Where we define the energy momentum tensor by

T8 = m_c? [viviay . (2.2.34)

The right hand side of (2.2.33) represents the external
forces and the work done by them on the fluid.
*
In order to bring the forces, po'3 a, to the same form

as 1n the left hand silde of (2.2.33), let us assume the exist-
B8

ence of a second order tensor 1%° such that
03" = . (2.2.35)
The form of 1°® is chosen below.
Hence, an energy-momentum tensor, T*QB, can be
introduced in the form
pho8 o B _ qoB (2.2.36)

As a consequence of (2.2.35) and (2.2.36), the
egquations of conservation of momentum and energy, (2.2.33),

Take simple form
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*
T °"3|B =0 . (2.2.37)

2.3. Specific Internal Energy

According to the manipulations and the discussion
presented in the work [18], we define the internal energy

of the fluid, e, per unit mass in the {Y}-coordinates by:

2, 0y=2 o B _ o B _ Or,2
m (p7) TaBU U TaBu u p (c® + ¢) , (2.3.1)

where we used (2.2.17) and (2.2.18) to obtaln the second

invariant quantity in (2.3.1). The tensor Ta is the co-

B

variant form of the energy-momentum tensor, T“B, defined

by (2.2.34).

2.4, The Fundamental Inequality

The internal energy, e, per unit mass of the fluild
defined by (2.3.1) undergoes certain restrictions when it
is considered as a functlon of the pressure and the rest
density. The restriction imposed on e appears in the
form of an inequality derived by [18] in {Y}-space-time

coordinates:

e % 20p°7 * 02([1 + PR -1y L (2.4.1)

The inequality (2.4.1) holds also in the {yl}-space-time
coordinates.

As stated in [18], the significance of the inequality
(2.4.1) for a flow, is that 1t imposes a restriction on the

types of functions, e(p,po), furnished by the relativistic
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kinetic theory of gases. This contradicts the macroscopic

viewpoint which allows € to be any functlon of p and po.

2.5. Case of an Ideal Gas

As in [18], we assume in {Y}-space-time coordinates:

48 = 0%c2[1 + c-z(e + ppo-l)]uauB + pG“B . (2.5.1)

where p is the hydrostatic pressure.

Let us choose the tensor, H“B, given by (2.2.35), in

the form

%8 = g% (2.5.2)

As proposed in Chapter I, [see (1.3.1)], the function
I depends on the gravitational potential. Since I = Io =

constant in the {Y}-space-time, it follows that:

X = X, = constant , (2.5.3)

where Xo is evaluated at point 0.
Inserting (2.5.1) and (2.5.2) into (2.2.36), using

(2.5.3), we have:

*OLB - =1 .
T AL L L 0%c2[1 + ¢ 2(3 + pp° )]uauB

+(p - x)6*" . (2.5.4)

The equations governing the motion of the fluid are
[see (2.2.20) and (2.2.37)1]:






35

(p°u°>|a =0 ; (2.5.5)

T*asls =0 . (2.5.6)

Inserting (2.5.4) into (2.5.6), taking into account
(2,5.3) and (2.5.5), simplifying and rearranging we ob-

tain:

poczuB[uuajle + p’BGaB =0 ’ (2'5‘7)

where we define

p =14 c-z(e + ppo-l) . (2.5.8)

Multiplying (2.5.7) by (-ua), using (2.2.19), (2.5.5)

and simplifying we obtain

0°Le,qu® + p(e°7h) wP1=0 (2.5.9)

»B
or, we write (2.5.9) in the form:

1

=1 - -1
de + pd(po ) = 0, de = e,BuB,d(oo ) = (p° ),BuB .

(2.5.10)

Eq. (2.5.10) expresses the first law of thermo-
dynamics with dQ = 0, (dQ being the elementary heat input
into the system from the outside). Accordingly, we may
introduce the notion of the absolute temperature ©, and
the specific entropy S, as measured by an observer at rest

with respect to the fluild, such that:
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6dS = dQ = 0 , dS = S,BuB,dQ = Q,BuB : (2.5.11)
Combining (2.5.10) and (2.5.11) we have

de + pd(p°~') = eds . (2.5.12)

2.6, One-Dimensional Motion

All quantities in one-dimensional motion are assumed
to be functions of the local orthogonal coordinates, Y!
and Y* = t, which are introduced in Section 1.6.

Eq. (2.2.15) can be remodelled by making use of

(2.2.13), (2.2.17) and (2.2.18) as follows

s 1 - - - - -
W o= nmlreT e (1 4 e %) THras = n IIOIVJdu =n 1IOUJ
= (n~! -l yd = - u=21 —2yk
= (n no)no I Io(l u "I ) *u s (2.6.1)
or, rearranging we get
J =z -1 _om20 o =24y=% =2 _ —j =k
u’ = u IO (1 u IO ) , U iju (2.6.2)

—1_ 1
Let us denote the dimensionless velocity u IO by

the symbol u, then Eq. (2.6.2.), for j = 1, becomes

0
|
~
—

|
ot

N

~—

ul

Substituting, ul! = u(l - u?)

(2.2.19) and rearranging we get

ut = cI (1 - u?) (2.6.4)

o)
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Substituting (2.6.3) and (2.6.4) into (2.5.5) and
(2.5.6), using (2.5.4), and rearranging we obtain in the

(y,t)-plane:

[1.716%(1 - u2)TH,, + [%u(l - u2)TE, =0 5 (2.6.5)

-1 - -
[I, ¢2p%mu(l - u2)"'1,, + [e%2uu2(1 - u2)~!

+(p=-x)],, =0 . (2.6.6)

Carrying out the differentlations in (2.6.5) and
(2.6.6), simplifying and rearranging we obtain in the

(y ,t)-plane:

-1 o=-1 o

(1 = u?)(1,7 0% 6%t + up®™!

-1
pO’y) + IO uu,t + u,y = 0 3

(2.6.7)
u(l - uz)(Io"lu_lu,t + uu-lu,y) + Io_lu,t + uu,y
(1 -u2)2% ey gy =0, (2.6.8)
where
-2 -1
u=1+c (e + ppO ) . (2.6.9)

Differentiating (2.6.9) we get

c2dy = de + pd(p°™Y) + p°tap . (2.6.10)
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Substituting (2.5.10) into (2.6.10) we get

c2du = o°tap . (2:6.11)

Let us introduce the auxilliary quantity:
2 = ,0,~1du : 2. 0-1. 0 _ =1
0% = pu o » L.e., ap dp” = w du . (2.6.12)
de

Multiplying (2.6.11) by ¢~2u~', using (2.6.12), we

get

02p°713p° = c-zu-lpo-ldp . (2.6.13)

Similarly, we introduce the auxilliary function,

¢, defined by

de¢ = apo—ldpO . (2.6.14)

Hence, we may write (2.6.12) and (2.6.13) in the

forms:
u-ldu = ado H (2.6.15)

¢c2p% 'yTlap = ads . (2.6.16)
Substituting (2.6.15) and (2.6.16) into (2.6.7) and

(2.6.8) and simplifying we obtain:

(1 - u )(Io ¢,t + u¢,y) + a(IO uu,t + u,y) 0, (2.6.17)

2 -1 -
a(l - u )(IO u¢,t + ¢,y> + Io u’t + uu’y o . (2.6.18)
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Hence, Egs. (2.6.17) and (2.6.18) constitute a
system of partial differential equations for the unknown
variables ¢ and u.

Addition and subtraction of (2.6.17) and (2.6.18)

yields, respectively,

(1 - u?)D,¢ + D,u =20 ; (2.6.19)
(1 -u?)D_¢ =Du=20 |, (2.6.20)
where

D, = (1 + oaw)I ' + (a + u)> (2.6.21)

+ o 3t oy ° e
D = (1 - oI "2 = (o - W) (2.6.22)
- o 3t 3y PUeesd

Let us introduce the identity
2. =1 -1-%

(1 =u ) "D,u =D,In[(1 + u)(1 - u) "] . (2.6.23)

Hence, substituting (2.6.23) into (2.6.19) and

(2.6.20) we obtain respectively

D, r =0 |, (2.6.24)
D s =0 . (2.6.25)

where,

%
s

ro= ¢+ 1n[(1 + W = w 7%, s =06 - 1n[(1 + w(l - u)" 1%

(2.6.26)
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As stated in [18], the functions r and s are the
local relativistic analogs of the Rlemann functions which
occur in the classical theory of propagation of one-
dimensional waves of finite amplitude.

The characteristic curves of (2.6.24) and (2.6.25)

along which r and s are constants, are respectively, given

by
(%%)I = (o + W@+ a) T, (2.6.27)
(%%)II= ~(a =W - aw)7'I (2.6.28)
Let us define
o =al "', (2.6.29)

It is shown below that the quantity, a, represents
the velocity of sound, whereas a is its dimensionless form

referred to IO.

2:.7. Progressive Waves

According to the definition of [18], a disturbance
is said to propagate as a progressive wave if either r or
s 1is constant.

If we assume that:

s = ¢, = constant; (2.7.1)
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we then obtain from (2.6.26)

u = tanh(¢ - ¢O) . (2.7.2)

Inserting (2.7.2) into (2.6.24), carrying out the

differentiation and simplifying we get:

-1 _
I 6 +T(0)e =0 (2.7.3)

where
F(¢) = (a + w)(l + au)™ " , (2.7.4)

whereas o is a function of -¢ determined by (2.6.14).

The general solution of (2.7.3) 1is of the form:

£(o) =y - r(e) It (2.7.5)

whére f(¢) is an arbitrary function.

It follows from (2.7.5) that ¢ is constant along the
stralght lines of slope T'(¢) in the (y,IOt)-plane. Hence
o represents the dimensionless velocity of propagation of

a sound wave referred to I the form of a is gilven below.

o’
According to the classical theory, the internal energy, ¢,

for a perfect gas can be written in the form (see [4]).
-1 -1
e = (y - 1) pp° . (2.7.6)

Differentiating (2.7.6), using (2.5.10), and

simplifying we obtain:






dp = yppOTl (2.7.7)

Substituting (2.7.7) into (2.6.13), making use of

(2.6.9), we get after some rearrangements:

a2 = ¢ 2ypp®T 1 + ¢y (y - 1) Ipp%Ti 1T (2.7.8)

If we consider a medium of high temperature, for

-1

which ¢~ %pp° is large compared to one, Eq. (2.7.8) then

approximately becomes
L
a — (y = 1) . (2.7.9)

Hence, for y>2, sound waves propagate with velocity
greater than the maximum velocity of propagation, i.e.,
IO. This contradiction implies that the equation for ¢,
(2.7.6) for y>2 1s not a possible one.

A physically possible flow, for which (2.7.5) is a
solution, exists only if the curves ¢ = const. do not
intersect in the (y,Iot)-plane (f4] and [12]). If this
condition is not satisfied, one-dimensional motion will
suffer a discontinuity in the form of shock waves accord-

ing to the classical theory.

2.8. Rankine-Hugoniot Equations

The relativistic Rankine-Hugoniot equations were
derived by [18] in the flat space-time with the reference
velocity of propagation of signals "e¢" in vacuo. Similar

equations, having identical forms as those of [18], are
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obtained in the {Yl-space-time coordinates with a refer-
ence velocity "IO". We assume that both Ib and X, Te-
main. constant at their corresponding values at a point
"O", Only the flow variables p°,u®*, p and ¢ are subject
to Jump discontinuities across the shock. We choose our
coordinate system 1in such a way that the discontinuity is
at rest and is perpendicular to the Y!-axis of the {Y}-
space-time. We put down the relativistic Rankine-Hugonilot
equations without derivation as obtained by [18] in one-

dimensiocnal flow:

% o po_u_(l - 1.1_2)-;5 = 3

o -—
(mass): o»p +u+(l - u+2)
(2.8.1)

(from momentum):

M= e Mo, - p)(w_o® ' u0®, T (2.8.2)

(energy):

- -1
M2¢2(u,? - u_?%) = M*(p, - p_)(u+p°+1 sl

(2.8.3)

In the above formulations, we assume that the fluid
moves from right to left across the fixed shock. Quantities
on the right side of the shock are denoted by the subscript
(-) whereas those on the left slde are denoted by the sub-

script (+).
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2.9. The Shock Velocity

Following [18], we introduce the quantities:

o o-1

-1 -1 =2 -1
£ =p,p_ . n = op.p_ B = v, (v, -1 c™p 0°

S

(2.9.1)

Rewriting (2.6.9) in terms of quantities (2.9.1)

making use of (2.7.6) we have:

-1 -1 -1
wp = 1 + 8é&n sooow_ =1+ vy vy (yvp=-1(y_-1) "8
(2.9.2)
As stated in [18], v, and hence 8 may be functions
of p+p+o_l. However, they are assumed to be slowly vary-

ing functions and for the purposes of the discussion be-
low, it is sufficient to consider Y, to be a constant.

Hence, the second of (2.9.2) becomes (with Yy = Y_):

u =1+ 8 . (2.9.3)

From the inequality (2.4.1) and the fact that

e » 0, 1t follows that:
5/3 %y, > 1 . (2.9.4)

Substituting (2.9.1) and the first of (2.9.2) into

(2.8.3) we obtain after some algebraic rearrangements:
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(g + vy, - 1)82n7° + [(y, + 1) + (y, - 1)]sn""

- {Blyy, = (e = 1) + u_v Ju_ = v, } =0

Eq. (2.9.5) is a quadratic form for the quantity gn~ '

Consequently, if we solve for the positive value of Bn~

we have:
8070 = (R - [(v, + 16 + (v, - DI2Ele + (v, - D17,
(2.9.6)
where
R= {(yvy, - 1)%(g = 1)% + hg(g + vy, - 1)
Clyvu_? o+ Bu_(v, - (g - DDE . (2.9.7)

After some manlpulations, the author of [18] obtained

the following inequality:

o= e Tz (8 F v, - DTIIE - 1)(2 - yy)

=y - DT (2.9.8)

Substituting (2.8.1) into (2.8.2), using (2.9.1)

and rearranging we get:
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u_(1 - u_2)7F = [(y, - )85 = 1)1y, (u_ - u,n” 17"

(2.9.9)

As mentioned in [18], u_ is less than one whenever
the right hand side of the inequality (2.9.8) is positive.
According to the convention presented in Section 2.8, the
gas moves from right to left across a fixed shock. The
velocity of the gas on the right side of the shock 1s de-
noted by Ei, whereas that on the left side is denoted by
ul. The shock 1s considered to be statlonary with respect
to a suiltably chosen coordinates {Y}. Let us assume now
that the fluld on the right side of the shock 1s at rest
and the shock moves across the medium. In order to find
the shock velocity, let us superimpose the velocity of the
magnitude u! upon the entire system in the direction
opposite to the moving fluid. The gas will be at rest
in the moving new system {Y*}, and the shock will move
with the velocity ul! from the left to the right.

The transformation of coordinates {Y*}-{Y} is of

the Lorentzian type:

y*lo= (v - eTiEle) [ - (Ei)-”iIO’Z]"‘§ , Y*2 = Y2, y#3 = y3

g% = (v - oI T2y - (@H21,7217%, @ = uI
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which leaves (dt)2 invariant in the four-dimensional space-

time, i.e.,

~(dt)? (dY')2 + (dY2?2)2 + (4y3)2 - ¢

2 2 2
I, (at)

-2

(AY*1)2 + (QY*2)2 + (4y*3)2 - ¢ Ioz(dt*)z

(2.9.11)

In our main problem of the assoclation between
Riemannian and Euclidean spaces we solve the problem of
shock in rectangular coordinates related piece-wise to
the curvilinear coordinates. Hence, the velocity EE is
considered to be momentarily constant. This implies that
the above transformations (2.9.10) is valid momentarily in
a plece-wise sense. 1In conclusion, the velocity of the
shock relative to the gas 1lnto which it is traveling is
less than the signal velocity IO. The remaining reason-
ings of the discussion that follows in the work [18] are

valid in the present approach.

2.10. Concluding Remarks

A passage from the present work in the {Y}-space-
time, with reference velocity I _, to that of (18] in the
{Y’}-space-time, with reference velocity c, can be made

through the transformation of coordinates,

yod = yd ) yes o= c'lloy“ . (2.10.1)
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As a consequence of the coordinate transformation
(2.10.1), the relation between quantities in the above
reference frames are presented in Table 1. It follows
from thils table that the flow variables are independent
of the above coordinate transformation. This is due to
the fact that the fundamental factors (1 - u’2)15 and
(1 - u2)* are equal and that the distribution function
£(Y,t,69) is an invariant under (2.10.1) (see [8]).

The magnitudes (u’! and u!) of the velocities of the shock
waves, 1n the above frames of references, relative to the
gas into which they are traveling are governed by the

relation

wl =1 TG (2:10.2)

which shows that u’! >ul

However, their dimensionless magnitudes, u’ and u_
referred to ¢ and Io, are equal. The same argument holds
for the velocities of sound a' and a. Thus, 1n conclusion,
only Ji and a are affected by introducing Io in place of

c.
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CHAPTER ITII

DERIVATION OF THE HYDRODYNAMICAL. EQUATIONS

IN THE RIEMANNIAN SPACE-TIME

3.1. Introduction

In this chapter, we derive the hydrodynamical
equations in the Riemannlan space-time, {x}, with the
reference velocity of signals I = I(x). We demonstrate
below that these equations reduce to thelr corresponding
equations in Chapter II, when we set I = IO = constant
and x = Xo = constant.

The hydrodynamical equations are descrilibed in terms
of a curvilinear system of coordinates, x°, fixed 1in the
space-time {x}, (1.7.1]). The particle random velocity

components qJ are measured with respect to {x}.

3.2. Boltzmann Equation

Let us introduce. the distribution function f(xj,t,;j)
in the Rlemannian phase-space, with coordinates, xj, and
velocities, cj. As stated in [8] the distribution
function f(xj,t,cj) is an invariant. The variation in

the number of particles during the interval of time dt 1is
[e(xd + daxd,t + at,¢d + dagd) - £(xd,t,09)1dsxds0

= 5 fd3xd;zdt s (3.2.1)

51
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where, dix = dxldx2dx3, d3z = dzldz2dg3; whereas A
= the time rate of change in f due to encounters between
the particles.

Expanding the first term on the left hand side of
(3.2.1) in Taylor seriles around (xJ,t,;j), retaining only
the first order differential terms, dividing all through

by d3xdi3tdt and rearranging we get

axd ar . ded ar

<+
I
|

af
ot

The validity of the operations of the ordinary
differentiation carried out in (3.2.2) follows from the
fact that the ordinary derivative of a scalar (an in-
variant) is identical with 1ts absolute derivative (see
[(171).

Solving (1.7.2) for q'j in terms of cJ we get

- ; - - - 3
qj =cl1gd (1 + TR, 2¢% = ajkchk . (3.2.3)
From (1.7.8) we obtain
J .
dazv_ -2 -1lrz=] _ iy kI T2
3e = ¢ my [FY(x) sMa (I ),k] . (3.2.4)
dxJ J
Substituting for g = q° using (3.2.3) and (3.2.4)

into (3.2.2) we obtain






Df = %% + c'II;J(l + ¢ 42)-232 + c-zmo'l[Fﬂ(x)

jk

- -é.Ma (12) k] J = Aef . (3.2.5)

or

Similar to (2.2.5), we define the mean value of a
function G by:
n<G> = fGfdsz , n = ffd3gz , <G> = mean value of G.

(3.2.6)

Multiplying (3.2.5) by any transport quantity
@(xj,t,cj) and integrating over the entire volume of the

(¢!, 2, ¢3)-space we get

[eDfd = f¢{%§ + c'II;J(l + 0_2;2)_%33 + ¢ %n -l[Fj(x)
3x9 °©
- 1 aMMmr2) ]—— Ydsg = sea_fdsg . (3.2.7)

, a;

Integrating by parts making use of (3.2.6) we

obtain
o df - 3% = 2 - n<d,.
Jezgdat = tf¢fd3; - JeEfdst = 3p(n<e>) - n<ge>; (3.2.8)
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- - =1
f¢;Jc 1I(l + c zcz) 2§£3d3C =

X

2

ax?

- - L
Jij[c 'Togd (1 + ¢7222) %) rds0

X

- 7o

= (¢7l1)2 [f¢cj(l + c'zcz)'%fdac]
3%9

¥ [J1J<c‘11>1f¢;3(1 ¥ cT2g2) ragg
9X

- - .
- 12 e ttegd (1 + cT2cY) R rd g
axJ

= (¢~ 'I)[n<ecd (1 + c~272)7 %) ;

+ (c7'D) jIncegd (1 + c"2g%) 7% ]

L]

- n<f(c ' Tyerd (1 + c™%72)7%) e

For j = 1, we have

Frrie™2m Tle[Fl(x) - Zatlm(12) . ]12E jacldg2des
O 2 ,i 3;1
_ C1=+oo
= sr{c %fem [F!(x) - zallm(12) .7} dr2dz?3
o 2 TS S P

- rrre (o7 Tle[Fl(x) - %ailM(Iz)

The same 1s valid for j = 2,3.

J}lds¢

[fc_11¢cj(l + c'zcz)_%fd3c]

(3.29)

(3.2.10)
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As mentioned before, we assume that products of

the form (f¢) tend to zero as ;J tends to te, Adding

Eq. (3.2.10) for J 1 and 1its correspondence for J = 2,3,

we obtain:

-2 =l,r@d _ 1 2 af
fc m o[FY (x) 5a M(I ),K] dsg

= - se2 temom IR () - 3m T'Mat®(12) | Diase
acc.) o < 0 ’

= - f{c-zmo'l[ﬁj(X) - %Majk(lz)’klgfj

3 =2 =1z] 1 -2 -1, 3k, 12
+ ®8CJ[C mg F(x) - 3¢ "m  "Ma (I )’kJ}fd3;

= _n<c-2mo_1ﬁj(x)_a_?_.> + 1’1<%—mo_lMajk(I?‘) 8_®. >

R4 *7og

- n<¢i

N l -2 -1 jk 2
3;3[0 my 1FJ(x)]> + n<¢__J[2C ( ),k]>

o
3z

(3.2.11)

The mass, M, can be expressed in terms of 2 and I

as follows:
- - - - - 1
T=m eIl - q217?) % - m_cI b1+ TPyt L (3.2.12)

J
Hence, with I = I(x), we have

)’k] = %aJK(C—ZIZ)’K-a_BZJ

—i.[%m “lyadK (o212 -1

(eI
ag) < ©

(1 + ¢~ 22" = (C-II)’j;j(l b2 2y (3.2.13)
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Substituting (3.2.8), (3.2.9), (3.2.11) and (3.2.13)

into (3.2.7) and rearranging we obtain

=1

seDfdzc = 5%(n<®>) + (¢ D)lncegd (1 + ™22 7%] 3

-1 ¢

+ (c I)’J[n<®cJ(1 + i) - tn<2¥s

+ n<f(cimecd (1 + 722 '%]

* n‘c_zmo FJ(X)——j> - n<(1+ % 2>%QZJ ajk(c'll),k

=
+ n<e™2m " ¢EEJ> - n<®:j(1 + 0_2;2)¥>(c_11) J.)
s

o ac
= Jea fdsz . (3.2.14)

3.3. The Summational Invariants

The summational invariants ¥° (y), (2.2.9) and
(2.2.12), in the flat space-time, {y}, have their corre-
spondence in the Riemannian space-time, {x}, in the form

¥O(

x) = myo v (x) = mo;J 3

¥4 (x) = e (eI71) (1 + ¢T2e?)% (3.3.1)

3.4. Law of Conservation of Mass

Substituting O(CJ) = O = m, = constant into (3.2.14)

we obtain
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<+

-1 -2 2 X .
(nem_>),¢ (c I)[n<mocj(l +c¢c ¢ ) 1,

+ (¢TI Jo[n<mocj(l + c'zcz)'%>3

4]

- {n<mO > + n<[(c_1I)mocj(l + 0—2;2)—%],J>

st

-2 =1=J
+ n<c “mg F (x)mo’gj>

-1

-2 2% jk

- < +
n<(l c ‘g7 )% mo’gj(c I),k
-2 =1 =
t n<c my mOF,J€J>
3 - =L -
- n<mO;J(l + ¢ TR (T T j} =0 . (3.4.1)
3

Simplifying and rearranging we obtain

-1 J -2,2y-%
m + ¢ "I|lnc< 1 + ¢ > .
O{n,h c [n<zY( z ) J’J
- 2 =i - —_
+ (c7'1) jn<€j(l el Ty = 2n<F>gJ >
3

(3.4.2)

Introducing the transformation of coordinates
(1.8.1), with the usual assumption that the force is
independent of the velocity ;j and with I = I(XJ), Eq.

(3.4,.2) takes the form

- ) ) - . -1
m (e T(svhdu)  + e tTGUvaw) . o+ (e~t1) Lsvdau] = o,
o s b ,J :J

(3.4.3)
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where,
ROl
dp =.(L:+ e ") *fdsz . (3.4.4)
Let us define
u(x) = sv¥(Xau (3.4.5)
Eq. (3.4.3) can be rewritten in the form, (after
multiplying all through by cI™'):

vyl
mO(U’“ U

1 -2_2 i
g + 5[1n(c 5 )J,jU ) i 08 | (3.4.6)

Comparison of (1.4.17) and the left hand side of
(3.4.6) suggests that U® can be considered as a contra-
variant four-vector, (the mass current vector), in the

Riemannian {X}-space-time, so that we may write
a =
m U |a =0 . (3.4.7)

For operations below, we need to introduce the notion
of the average velocity defined by

W o= a7 lrgdrdase = nTlrem 1ed (0 + e 2e?) Rrds ,  (3.4.8)

where we used (3.2.3) in (3.4.8).

Defining w? = A Wﬂﬁk, using (3.2.6), (3.4.5) and

Ik
(3.4.8) we have



\
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(1 - w2172) = 1 - Ajkﬁﬁﬁkl‘z = (n"lrrdsz) (n~lrrdsg)

- - - - -
- A, T e e (1 + 7% ?) Rrd s

Ik

L

Inlre T IeR (1 + T %) T Rrds ]

- - - - L - .
n"2ecT2I eI (1 + ¢T2¢2)3(1 + ¢"%g2) T Erdag].

1]

_ - 1 - -
o [feI 1(l + c 2cz)z(l + c 2;2) %fd3c]

- Ajkn_z(fc-lcjdu)(fc_lgkdu)

= —nT2[(svEan) (F-c 2TV an)

+ Ajk(ijdu)(kadu)] = —n"2[(sV4an) (SVydu)

+ (fVJdu)(fVJdu)] = -n"fvtu . (3.4.9)

or,

(1l =wI )%= (-n""U"U )2, (3.4.10)

Let the number density as measured by an observer
moving with velocity Wj with respect to the fixed coordi-
nates (XJ), taking into account the relativistic aspects,

be defined by

n°2(X) = n2(X)(1 - w?1”?) = “Ut(OU (X)L (3.4.11)
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The corresponding density, po, is .
p- = n°m . (3.4.12)
Let us, further, define a dimensionless velocity

w® = n®lg® (3.4.13)

Using (3.4.11) and (3.4.13) we get

wowo = -1 . (3.4,14)

Similarly, inserting (3.4.12), (3.4.13) into (3.4.7)

we get

()|, =0 . (3.4.15)

Hence, Egs. (3.4.7) and (3.4.15) are alternative

expressions for the law of conservation of mass.

3.5. Laws of Conservation
of Energy and Momentum

As discussed in Chapter II, we introduce the corre-

sponding modified force-vector, [see (2.2.21) and (2.3.26)]:

7% . m TleITh(1 + P21 TR (x)s , <Fs = B L (3.5.1)

Similar manipulations to those presented in Chapter

IT lead to the expressions:

?* (X)wa =0 ; (3.5.2)

2_2 o

IFG(X)deu = ¢ "I'n mo7*“(X) . (3.5.3)
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Substituting ¢(ck) = Wk = mo;k into (3.2.14), we

obtain

k -1 k_J -2 2.=%
(n<moc >)’t + (c I)[n<moc v(l +c¢c "¢7) >]’j

-1 j.k -2 2. =% k
+ (¢™ 1) J.[n<moc (1l +c ) %] - {n<(moc )’t>

5

=l J k -2 2=k, -2 FI k
+nefe Imzog (1 + ¢ ¢7) ],j + n<e”'m F(x) (m T )’;J>

-2 2.% k ij, =1 -2 -
- n<(l + ¢ %) (moc ),Cj>a (¢™ 1) + n<e”"mg

k=]j J
,3 m, ¢ Foyrd >

- nem_e¥ed (1 + 072g2) (e ) RN (3.5.4)

Simplifylng and rearranging, with the assumption

that 7 is independent of ;J, we get

-2 2. % -2 2. 24
[mofck(l +¢c T )%l +c T ) *fdsc] .
3

-1_ - i =2 2. =%
+ e Ilm el (1 4 eT% e %) TErase] ;
b

+ (e7l1) j[mof;k;3<1 r " %) a5

- %
202y %rd51)

(0_11)’j[m0f€kcj(l + c

+

E]

- -2 2 L
(c~'1) j[mofckcj<1 + et a5 ]

-1

+ (7' adfrm (14 e™2e?)%(1 + ¢Te?) (1 + c72c?) T Rra e

)

- —1=
= ¢ 2p m Fk(x) s o

nm_ . (3.5.5)






62

Applying the transformation of coordinates, (1.8.1),

with I = I(Xj), Eq. (3.5.5) reduces to

ol (™' D) (m /Y V¥ an)  + (7 D) (m svIVEan) 4y

+ o7 (eT21%) (7 D) L aat e rvevian + e(eT' D) Lam_svivkay
> o ;XY o
= ¢ lom TP (X) . (3.5.6)
Let us define
TK® = moczkav“du , (3.5.7)
Eq. (3.5.6), after we multiply all through by
(c?17!), becomes
y
¥+ oIk 4 Lem212)  pdKpue
s L :j 2 ,-j
- *
+ 5ln(e7212)] 1K = 005 (),
3
- -1 *
eI”lom TUEN(X) = 0° 7RO, (3.5.8)

where we used (3.4.11) and (3.5.1) to obtain the right
side of (3.5.8).

Similarly, if we substitute ¢(cj) = y4 = mocz(cI_l)
(1 + c™272)% = Mcf (3.3.1), into (3.2.14), simplifying,
keeping in mind that Fd is independent of ;j, and re-

arranging we get
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[mgeZn<(eT™) (1 + ¢7%¢%) %]
s b4

+

(c-lI)[m002n<(cI'1)(l v T2 (1 0-242)-%>]:J

+ (¢7'1) j[mc02n<(01_l)(l FeT ) I (1 4 7))

L

- —3 - =1 -
- mgmy TP g (1 + 072 %) TR (o1

+ (7D atfnoetne(1 + T 1T (1 + o T2M) T
+ moczn<cI-l(l + c—zcz)%;j(l + 0_2;2)-%> (¢ 1) y = 0
(3.5.9)

or, rearranging (3.5.9), with I = I(xj), we get

(¢™'DImyeZne(eI™ ) (1 + ¢ 2¢)2(eI™H (1 + ¢72®) %1 + ¢722) 7]

' 4

231+ c'zcz)'%>]

+

(c_lI)[moc2n<(cI_l)(l + c_zcz)

sJ

-+

(¢ '1) j[mo°2n<(cl_1)(l ¥ T2 5 (1w 7))

cI_ln<Fj(x);j(1 + 0-2;2)_%>

- - -2 2% j - -
+ (7D L mge?ne(eI™ (1 + T2 RI (1 4 72T ]

d

+

(¢™'1) J.[moc2n<(cfl>(1 om0 (1 T ) = 0

L

(3.5.10)
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Applying the transformation {x}-{X}, (1.8.1),

dividing all through by (c-lI) and simplifying we get

(m_c2/V4V4dy)  + (m_e2sV*viau) .
(o] s 4 %) QJ

+ %[1n(c'212)],j(moc2fv“vjdp) el A

2172 () V,an = 2 T TIX) (3.5.11)

J

where, we used (3.5.3) to obtain the right hand side of

(3.5.11).

Let us define

749 = mOCZIV“VOdp , (3.5.12)
Eq. (3.5.11) then becomes

Tt T“jj + 3[1n(e™?1%)] jT“J =027 (X)L (3.5.13)

Comparison of (1.4.18) and (1.4.19) with the left
hand sides of (3.5.8) and (3.5.13), suggests that 78
can be regarded as a second order contravariant tensor in
the Riemannian {X}-space-time.

Therefore, (3.5.8) and (3.5.13) are combined into

the tensorial form

*
TaslB =0°7* (3.5.14)
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where the energy-momentum tensor is defined by
8 = m_c2/vivay . (3.5.15)

The right hand side of (3.5.14) represents the
external forces and the work done by them on the fluid.
o F*a
In order to bring the forces, p s to the same

form as in the left hand side of (3.5.14), let us assume

B

the existence of a second order tensor n® such that

LI AL n“BIB . (3.5.16)

The form of HQB is chosen below.

¥,
Hence, an energy-momentum tensor, T B, can be intro-

duced in the form

p*aB - paB _ o (3.5.17)

Hence, from (3.5.14), (3.5.16), (3.5.17) we get

T*°‘B|B =0 . (3.5.18)

3.6. Specific Internal Energy

Similar dlscussion as that presented in Section 2.3
holds here. The internal energy of the fluid, e, per

unit mass, similarly, is defined by:

Taswaws = %02 + ¢) . (3:.6.1)
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3.7. Case of An Ideal Gas

Following [18], we assume:

TaB = pocz[l_'l' C-Z(E + ppo-l)]wawa + pAaB . (30701)

where p the hydrostatic pressure.

aB

Let us choose the tensor, I -, given by (3.5.16),

in the form

oB

n1%f = ya%® (3.7.2)

Hence, inserting (3.7.1), (3.7.2) into (3.5.17) we

get

T = 0%2[1 + c™%(e + po® )] WP 4+ (p - x)A%P

(3.7.3)

The equatlons governing the motion of the fluld are

[see (3.4.15) and (3.5.18)7]:

(W™,

1]
o
-

(3.7.4)

|
o

B = (3.7.5)

Substituting (3.7.3) into (3.7.5), taking into
account (3.5.16), (3.7.2) and (3.7.4), simplifying and

rearranging we get:

* _2 -
A%B = 07T =1 4o (e + po°™h)

023 a +
oCW(uw)IB P g ,

(3.7.6)
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Multiplying (3.7.6) by (-w_ ), using (3.4.14),
(3.5.2) and (3.7.4), and simplifying we get:

0%le wh + p(o° ™) whi=0 , (3.7.7)

s B s B

or, we write (3.7.7) in the form:

-] - -
de + pd(p°7') =0, de = ¢ BwB d(p°7h) = (x°7hH BWB .
5 3 3

(3.7.8)

Eq. (3.7.8) expresses the first law of thermodynamics with
dQ = 0, where dQ = the elementary heat input into the
system from the outside.

If we introduce the notion of the absolute tempera-
ture 06 and the specific entropy S, as measured by an ob-

server at rest with respect to the fluld, such that

6dS = dg = 0 , dS = S BwB, dQ = Q BwB , (3.7.9)

Eq. (3.7.8) combined with (3.7.9) then becomes

de + pd(p°!) = eas . (3.7.10)

3.8. One-Dimensional Motion

All quantities in one-dimensional motion are con-
sidered to be functions of the coordinates X! and X" = t,
also we assume w? = w3 = 0. Eq. (3.4.8) can be remodelled

by making use of (3.4.5), (3.4.11), (3.4.13) as follows:
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w9 = nlremited (1 + em%?) T rd,e = nT sV an

- - — - L
'n_)n bryd = (1 - WArroHyRdr

-lrd o
n IUY = (n o

(3.8.1)

or, rearranging we get

2

wd = Il - W), 52 = a, wwK . (3.8.2)

Jk

Let us denote the dimensionless velocity w I~ by

the symbol w, then Eq. (3.8.2) for j = 1, becomes

w(l - w2)™% (3.8.3)

wl

w(l - wz)'%,w2 = w3 = 0 into

Substituting w!l

(3.4.14), and rearranging we get
-1 -3
wh = eI (1 - w2) % (3.8.4)

Writing (3.7.4) in full, making use of (1.4.17) we get

+ %[1n(c_212)] ol =0 . (3.8.5)

e o
(p-wh) + (p wh)
5 s 1

E) &

Substituting (3.8.3) and (3.8.4) into (3.8.5),

simplifying and rearranging we get in the (x,t)-plane:

(1 - wz)(I"lpo-lpo,t + w po—lpo’x) + I ww t
>

tw o= - %—w(l - w2)(1nI?) , . (3.8.6)
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Similarly, writing (3.7.5) in full making use of
(1.4.17), (3.5.16), (3.7.2), (3.7.3), (3.8.3), (3.8.4),
simplifying and rearranging we obtain in the (x,t)-

plane:

w(l - wz)(l-—lu—l -1 -1

Mg + wu “,x) + I w,t + ww’X
+ (1 - wz)zpo’lc'zu'lp’X = - % (1 - wz)(lnlz),x
+ (1 - wz)zpo_lcmzu_lx,X . (3.8.7)
where
w=1+c e+ pe°h) . (3.8.8)

Differentiating (3.8.8) we get

c2dp = de + pd(p°~!) + 0% lap . (3.8.9)

Inserting (3.7.9) into (3.8.9) we get

c2dy = p°tap . (3.8.10)

Let us introduce the auxiliary function, u, defined by

-1

O-1
o du = a?p

an® . (3.8.11)
From (3.8.10) and (3.8.11) we obtain

720 0% tap = 02597160 (3.8.12)
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Substituting (3.8.12) into (3.8.7) and rearranging we

get

-1 o=-1 0 o-1 0 -1
2 - w2 + + +
a4(1 ws)(wI “p p,t 0 p’x) I w,t ww’x

= (1 - W% e - w2)x | - 3(1nI2) ]

X

(3.8.13)

Furthermore, let us define the auxiliary function ¢ by

o-1

d¢ = ap do® s (3.8.14)

Eqs. (3.8.6) and (3.8.13) in terms of ¢ become respectively

2 -1 -1
(1 - w?)(I ¢,t + w¢,x) + o(I ww,t + w’x)

= - %aw(l - wz)[],n(Iz)]’x s (3.8.15)

2 -1 -1
(1 - w?)(wI ¢,t + ¢,x) + I "w + WW,

st

]

- _ 2 -2 O0=-1 =1 - 2 _ ; 2
(1 = w4)[ec "»p po (1 - w )x,X =(1nI ),x
(3.8.16)
Adding and subtracting (3.8.16) we obtain respectively

. Wl = - - 2 ; 2
(1 - w2)6+¢ + 8w (1 W )[2(1 + aw)(1nI ),x

- 70T A - w2)x ) (3.8.17)
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(1 - w2)é_e - 6_w = (1 - w2)[5(1 - aw)(1nI?) _

=2 0O0=-1-1

-c oW (1 - wz)x’XJ . (3.8.18)
where,
b, = (14 eIt + (o + wee
o= (1 -anITl2 - (a - wse . (3.8.19)
Let us introduce the identity
(1 -w2) ls,w = 6,1n[(1 + w)(1 - w)T11% L (3.8.20)

Substituting (3.8.20) into (3.8.17) and (3.8.18) we

obtain respectively

_ O0=1_ =2 =1 2 _ 1 2 .
s,r b c “u (1 w )X,x 2(l + aw)(1lnI ),x’

+
(3.8.21)
s_s = 3(1 - aw) (InI2) = 07127 (A~ whx .
(3.8.22)
where
ro= 6+ 1n[(L + w1 - w)™2 (3.8.23)
s = ¢ - 1n[(1 + w)i1 - w)"2] . (3.8.204)
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3.9. Concluding Remarks

The one-dimensional hydrodynamical equations
(3.8.15) and (3.8.16) or their modified forms (3.8.21)
and (3.8.22) in the Riemannian space-time can be reduced
to (2.6.17), (2.6.18), (2.6.24), (2.6.25) in the flat
space-time if we set I = IO = constant, and x = Xo =

constant.

All derivatives of I and x then vanish and the
right hand sides of the above equations (3.8.15), (3.8.16),

(3.8.21) and (3.8.22) are equal to zero.







CHAPTER IV

APPLICATION

4,1, Gravitational Potential

Let us assume that there exlists a celestial body

with a magnitude of the gravitational potential at its

surface:
) = 8500y, . (4.1.1)
where
Xg = gravitational potential of the sun at its
surface,
X. = 7.34(104) mi® sec™2 . (4,1.2)

S

The velocity of propagation of light signal in

vacuo is
- 5 . -1
c = 1.86272(10°) mi sec . (4.1.3)

Using (4.1.1) and (4.1.3) to calculate the dimension-

less quantity

2c‘2x<1) = 0.36 . (4.1.4)

73







T4

Substituting (4.1.4) into (1.3.1) and calculating,

-17 (1)
9

c , we obtain:

(4.1.5)

(1)

where IO denotes the signal velocity at the surface of

the body.
The gravitational potential at points R(n) =n R(l),

measured outward from the surface of the body 1is given by
y(®) = g, (0 (4.1.6)

where, R(1) = radius of the body, n = 1,2,3,....

Consequently, the veloclty of propagation of signals
(n)

at points R are calculated using the formula [obtained

from (1.3.1) and (4.1.6)]:

I (n)

. = (1 - 0.36n'l)%c. (4,1.7)

Table 2 shows the calculations of the quantities

C—2X(n) and c—llo(n) (n).

at the points R
The quantities c-2x and c-lIo, considered as functions
of the distance Y from the surface of the body, are shown

in Flgure 1.
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0.95 A

0.85

0 1 2 3 4 5 6 7 8 9

Y (one unit of Y = R(l))

Figure 1.--The dimensionless gravitational potential
c~?x and the dimensionless velocity c~!I_(c~!I) as
functions of the Y-coordinate.

oX
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4,2, Gas Model

We assume a hypothetical medlum consisting only of
electrons at a very high temperature. The governing
equation of state 1s assumed to follow that of the per-

fect gas law, i.e.,

ppo_l = azmw-le s (4,2.1)
where
(R = universal constant = 1545.33 £t 1b, mole *°R™;
m, ‘= molecular welght of the gas, m = (1836)_l b
for electrons; .
@ = temperature of the gas in degrees Rankine;
p = pressure of the gas (lbfft-z);
0° = density of the gas (1pmft_3).

The flow of the electron gas is assumed to be governed
by (2.6.17) and (2.6.18) in the {Y}-space-time with the

following initial conditions at t = 0:

w(¥,0) = u [l + ¥(L+¥)'] (4.2.2)
07,00 = 54,03 - v(1 + D7, (4.2.3)

where uo and ¢o are constants whose values are given below.
The origin of the {Y}-coordinate is located at the surface
of the celestial body described in Section 4.1.

At £t = 0 and Y = 0, we assume

u(0,0) = uy = 0.2 3 (4.2.4)
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o)
P o

LY

0°(0,0) = 10717 1b_£t73 (4.2.5)

= 1.225(10°)°R . (4.2 6)

n
@
|

0(0,0)

Using (4.2.1), (4.2.5) and (4.2.6) we calculate the

following quantity at t 0 and Y = 0:

e-"p_p°Tt = 0.115 . (4.2.7)

From (2.4.1), (2.7.6) and (4.2.7) we find that

Yo 1.614 . (4.2.8)

As mentioned in Section 2.9 y 1s considered to be
a constant. We take y to be equal to 1.614 throughout the
calculations below.

Integrating (2.7.7), making use of (4.2.5) and (4.2.7),

we obtain the isentropic relation:

o= k% , <%k = 1.8676(10%) . (4.2.9)

Normalizing po with respect to its value at t = 0

and Y = 0, i.e., pg, we write:
* -
pOF = 5007 | (4.2.10)
From (2.7.8), (4.2.9) and (4.2.10) we obtain o as a

*
function of po as shown in Figure 2. Similarly, by inte-

grating (2.6.14), making use of (2.7.8), (4.2.9) and
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*
(4.2.10) with the requirement that ¢ = 0 when p° = 0

o¥
(see [4]), we determine ¢ as a function of »p as shown
in - Figure 3. The quantity o3 (4.2.3), is determined

*
from Figure 3 corresponding to the value po =1,

o)
(¢, = 0.35L466).

From Figures 2 and 3, the quantity o, to be used
in the calculations below, 1s determined as a function of
¢ as shown in Figure 4,

Figures 5 and 6 represent the numerical solutions
of Egs. (2.6.17) and (2.6.18) with the initial conditions
(4.2.2) and (4.2.3) for ¢ and u for different constant
(n)

parameters IO at a particular instant t = to for the

range of Y = [0,0.35].

Using Figure 1 we determine the positions, Y = Y(n)

- - (n)
= = I

R(n) at which the values of the parameter IO

are chosen (see Table 1). In Figures 5 and 6, vertical

y(»),

lines are drawn at each point Points of inter-

sections of these vertical lines with the corresponding
curves drawn for the corresponding parameter IO = Io(n)
are determined. Due to the small range of Y for which
diagrams 5 and 6 are drawn, only one point of intersection
(corresponding to the vertical line Y = 0) is shown on
each of these diagrams. However, the numerical values of
¢ and u at the points of intersections can be obtained,
alternatively, using the dlagonal numbers of Tables 3 and

4, Curves drawn through these points representing approxi-

mate graphical solutions for ¢ and u in the case of a
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variable reference velocity Io are marked in Figures 5

and 6 as dashed lines for the range of Y = [0,0.35]. The

same curves representing the approximate solutions for

¢ and u are drawn in Figures 7 and 8 for the range of
Y = [0,7].
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Figure 2.--The dimensionless sound velocity a as a
function of the normalized density po¥.

.0







84

Figure 3.--The quantity ¢ as a function of the normal-
ized density po¥,
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Figure 4.--The dimensionless sound velocity o as
a function of the quantity ¢.
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Figure 5.--Solution of egs. (2.6.17) and (2.6.18) for ¢ at the
particular instant t = to = 0.4 for different values of the parameter
I_c-1 and the corresponding approximate solution for ¢ (shown in dash-
ed line) in the range of Y [0,0.325].
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Figure 6.--Solution or eqgs. (2.v.17) and (2.€.18) for u at the
particular instant t = t, = 0.4 for different valucs of the parameter
I c-! and the corresponding approximate solution for u (shown 1. dash-
ed line) in the range of Y = [0 , 0.35].
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Figure 8.--Approximate soluticn of egs. (2.6.17) and (2.6.18) for
u = u(Y,0.4) using the diagonal numerical values in Table 4. The vari-
ation of the curve u as a function of Y at t = 0.4 due to the variations
of the parameter IOC"'1 is so small that it cannot be shown clearly on
this diagram.
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4.3, Shock Model

Let us assume that the shock is moving away from
the celestial body described in Section 4.1. As dis-
cussed in Sections 2.8 and 2.9 a coordinate system {Y}
i1s introduced such that the shock becomes stationary and
perpendicular to the Yl-axis. As in many practical
problems, we specify the shock parameters pf and p_ on
the right side of the shock, and we choose either the
pressure p, on the left side or the pressure ratio ¢ as
an additional parameter describing the strength of the
shock, (see [9]). The remaining shock parameters (pi or
n, u_ and u+) are calculated from (2.8.1), (2.9.6),
(2.9.9), taking into account (2.9.1), (2.9.2) and (2.9.3).

For a chosen constant value of the quantity p_pf'l,
(i.e., the temperature on the right side of the shock is
kept constant), Figures 9, 10 and 11 show the relations
(g, ul), (n,ul) and (ul,ul) respectively, for different
constant values of the velocity parameter Io. The linear
relation between u. and u, for different values of IO is
also shown in Figure 12.

In conclusion, Figures 9 and 10 indicate that the
shock parameters & and n increase as the gravitational
potential x i1ncreases or IO decreases keeping Ei con-
stant; or, for fixed values of the shock parameters ¢ and

n, the velocity ul increases as x decreases or I in-

creases. Similarly, Figure 11 indicates that the velocity
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Ji increases as x decreases or I_ increases keeping ul

= constant.

A critical shock strength line "gcr." is drawn in
Figure 11. This line shows that the value of ﬁl on the
left hand side increases as x decreases or Io increases,
whereas ul on the right hand side of that line increases
as x increases or Io decreases, keeping 51 = constant in

both cases. The latter case has not been investigated in

the present work.
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Figure 12.--c”!ul vs. ¢7lu, for different
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