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ABSTRACT

DEFORMATION AND LOAD-CARRYING CAPACITY OF HOLLOW

ELASTIC CYLINDERS SUBMERGED IN A FLUID

By

Mohamed Belal Mohamed Elgindi

This thesis investigates the equilibrium states of a thin-walled,

elastic, cylindrical shell fully or partially submerged in a fluid.

Previous studies on the deformation of the shell have assumed that the

pressure due to the fluid is uniform. The present study takes into

consideration the non-uniformity of the pressure. The consideration of

the pressure gradientbrings an additional parameter to the problem and

is essential to the load-carrying capacity of the shell.

Several formulations of the problem for the shell displacement

under non-uniform pressure are given, which are followed to prove

existence of solution. The problem is solved analytically using

perturbation methods and the analysis shows that there exist critical

values of the pressure near which drastic changes in .the deflection

patterns occur which in turn affect the load-carrying capacity of the

shell. Mathematically these correspond to bifurcation and perturbed

bifurcation problems. Some numerical methods for treating these

"pitchfork" bifurcation and perturbed bifurcation problems are

introduced. Numerical solutions based on Newton’s iteration and

shooting methods are obtained for both the fully and partially



Mohamed Belal Mohamed Elgindi

submerged cases. The results show that given a pressure gradient,

there is an upper limit for the load-carrying capacity of the shell and

this maximum occurs with the shell being partially submerged. The

load-carrying capacity decreases with the depth when the shell is fully

submerged and thus the corresponding equilibrium solution is unstable.
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INTRODUCTION

This thesis is concerned with the problem of a thin-walled, elastic,

cylindrical shell fully or partially submerged in a fluid. The problem

obviously serves as a model for many problems with engineering

importance. Previous studies on the deformation of the shell under the

assumption of a uniform pressure have been done by I. Tadjbakhsh [15],

J.E. Flaherty [6] and C.Y. Wang [17], among others. These studies show

that there exists a critical uniform pressure beyond which the shell will

buckle. Beyond this "buckling" pressure the deformation of the shell

differs drastically from the circular and the calculation of the

post-buckling shape requires in general the solution of a mathematical

nonlinear bifurcation problem. The post-buckling shapes have been

determined numerically for the case of uniform pressure in [15] and [6].

The present study is concerned with a non-uniform fluid pressure

by taking account of the effect of gravity. The consideration of a

pressure gradient brings an additional parameter to the problem and is

essential to the load-carrying capacity of the shell. The analysis shows,

however, that critical pressures still exist near which drastic changes in

the deflection patterns occur which in turn affect the load-carrying

capacity of the shell. Mathematically one now has to contend with the

so—called perturbed bifurcation problems.

Due to the two—dimensional nature of the problem it suffices to

consider a typical cross-section of the shell, i.e. to consider a thin ring.

1



The ring will be modeled as an elastica.

In Chapter 1 the problem for the shell displacement under non—

uniform pressure is formulated along two lines. The first leads to a

nonlinear boundary value problem with two physical parameters A and

‘r representing respectively the depth and the non-uniformity of the

pressure. The second formulation is in the form of a variational

problem based upon Hamilton’s principle of least energy. In Chapter 2,

the two variational formulations of Chapter 1 are followed to prove the

existence of solution. The proof is based upon a work on variational

methods for nonlinear elliptic eigenvalue problems by F.E. Browder [1].

In Chapter 3, regular and singular perturbation methods are used to

obtain analytic solutions of the problem for small values of the

non-uniformity ‘r. A singular or modified perturbation method is

necessary to treat the case when A is near one or a set of critical

values and the regular perturbation method breaks down. In Chapter 4,

a numerical method for determining both the bifurcation and perturbed

bifurcation curves is introduced. This method is based upon the

Liapunov-Schmidt reduction technique and Newton’s method. The use of

Newton’s method in bifurcation problems was considered by D.W. Decker

and H.B. Keller [5]. In their studies both the solution and the

bifurcation parameter are further parameterized by a new parameter (an

approximation of the arc length). In [5] Decker and Keller treated the

bifurcation parameter as an unknown to be determined along with the

solution. Although their method is general it suffers the drawback that

in practical problems the bifurcation parameter is often a physical

quantity and solutions are required for some given values of this

parameter. In the present study, convergence of Newton's iterations to





the solution paths parameterized with the bifurcation parameter near a

bifurcation point is shown for some general bifurcation problems under

appropriate conditions. It is also shown that Newton’s method can be

used to determine the perturbed bifurcation points and the perturbed

bifurcation paths. In Chapter 5 the boundary value problem formulated

in Chapter 1 is discretized by the shooting method. This leads to a

finite dimensional bifurcation problem. The finite dimensional problem is

then solved by the numerical method introduced in Chapter 4. Finally,

numerical results and interpretations are given and discussed. In

Chapter 6 the conclusions of Chapters 1 - 5 are summarized and

discussed.





CHAPTER 1

MATHEMATICAL FORMULATION

1.0 Introduction

The physical assumptions upon which the mathematical formulation is

based are given in Section 1.1. The problem for the cylinder

displacement is formulated along two different lines. The first

formulation given in Section 1.2 is the classical one. It leads to a

nonlinear boundary value problem with two physical parameters A and

1' representing respectively the depth and the non—uniformity of the

pressure. This formulation will be followed in Chapter 2 to prove the

existence of solutions with arbitrary norm. In Section 1.3 the

formulation presented in Section 1.2 is modified for the case of partially

submerged cylinder. A second and equivalent formulation based upon

Hamilton’s principle is given in Section 1.4. It is in the form of a

minimization problem which is followed in Chapter 2 to prove the

existence of solutions for each given value of A and ‘r.

1.1 Pthical assumptions and notations
 

Consider a hollow elastic cylinder submerged in a fluid with its axis

lying horizontally. Because of the two-dimensional nature of the

problem it suffices to consider a typical cross section, i.e. a circular

elastic ring. The thickness of the ring will be assumed small compared

4





with other length parameters of the problem. Under these assumptions

the ring will be treated as an elastica with the local bending moment

being proportional to the local curvature.

Let (x’,y') be Cartesian coordinates with the origin at O, s' be

the arc length measured from O and 9 be the local angle (see Figure

1.1.1).

 

 

A typical cross section.

Figure 1.1.1

The following notations will be used:

p0 I The pressure difference between the inside and the outside of

the ring at the point 0.

H' a The horizontal component of the internal force at the point 0.

2F‘ 5 An external vertical force applied at the point A.

L a Half the perimeter of the ring.

ET I The flexural rigidity of the ring.

p a The density of the fluid outside the ring.

The gravitational acceleration.[
n m

m a The local bending moment per longitudinal length.



1.2 Formul_ation for the fully submergd case

Consider an element of length ds'. The hydrostatic pressure p

is given by

1>= poi-pg y' (LZJ)

A moment balance on the element ds' gives (see Figure 1.2.1)

SI

m + dm = m + (—H' + I p sin 9 ds')ds' sin e

0

s

+ ( I p cos 9 ds’)ds' cos 9

0

OI“

I I

s s

-— = (—H' + I p sin 6 ds')sin 9 + ( I (p cos 9 ds')cos 9,

0 0

(1.2.2)

where p is given by (1.2.1).

II S,

V=choseds

m D

, ,s’, .

H-JDSI nads

0

 

Internal forces and local bending moments

acting on an element of length ds’

Fi ure 1.2.1



The Cartesian coordinates are related to the arc length by

$5' - 92' - -
ds' - cos 9, ds' — s1n 9 (1.2.3)

The physical assumption of an elastica means m is proportional to

32' , the proportionality constant being EI

_ .49.
— EI ds' (1.2.4)

Using (1.2.1), (1.2.3) and (1.2.4), equation (1.2.2) then becomes

I

 

  

s
2

EI d 9 = (-H' + poy' + % pgy'z) sin 9 + (pox’ + pg I y' cos 9 ds')cos 9

ds2 0

(1.2.5)

The following non-dimensional quantities are now used

- E, -93: _XI A _P0L3 T_pL‘ H- Hng F— FILz

s ‘ L ’ X ‘ L ’ y ‘ L ’ ‘ EI ’ ‘ EI ’ ‘ EI ’ ' EI °

Equation (1.2.5) becomes

9” = (—H + Ay + % Ty2)sin 9 + (Ax + ru)cos 9 (1.2.6)

where u is defined by

s

u(s) = I y(t) cos 9(t) dt.

0

The equations of equilibrium for the ring are now:

(a) 955 = (-H + Ay + % Ty’)sin 9 + (Ax + ru)cos 9

(b) x3 = cos 9

(1.2.7)

(0) ys = sin 9

(d) us = y cos 9





with the boundary conditions

9(0) = X(0) = y(0) = u(O) = 0

(1.2.8)

x(1) = 0 and 9(1) = n

and H in (1.2.7) is to be determined.

Observe that the vertical force F' is regarded as a parameter to

be determined by the shape of the ring as follows. A balance of the

vertical forces gives

 

L

F' + I p cos 9 ds' = 0

0

and therefore

EI F' EI L

F = = - I (pa + pgy')cos 9 ds

L2 L2 0

1

= —r I y cos 9 ds

0

= -r u(1).

When T 0 (i.e. when the ring is under uniform pressure A) the

boundary value problem (1.2.7), (1.2.8) has the following (basic)

solution:

1 .

x0 = - Sln as
7T

‘
4

O

u I

: (l-Cos "8) (1.2.9)

1 O l O 1

no = - 51n as - -—- s1n 2ws — - s
71' 2 271’

477



 



for each value of A. This means that the ring remaining circular is

one solution for each value of A when ‘r : 0. For T 3 0, however,

(1.2.9) will no longer be a solution and the nature of the problem will be

completely different.

For Chapters 3, 4 and 5 it will be convenient to write the boundary

value problem (1.2.7) and (1.2.8) in the form

G(X,A,T) = LX — f(X,A) — TN(X) = 0 (1.2.10)

B[X] = BOX(0) + B,X(l) = 0 (1.2.11)

_ T .. _
where X - (x,,x2,x3,x4,x5,x6) , x, — 9 - as, x, - 9S — n,

- 1 sin as x = y — l (l - cos as)
77 i 4 7f ’

x3 — x

A

x5 = u - (%2 sin ns - 3%2 sin 2 ns - 5% 5), x6 = H —‘;:

- J1
LX — ds X,

1- X2

[-x6+A(x.- - cos ns)]sin(x,+ns) + A(x3+ % sin ns)cos(x,+ns)

cos(x1+ns) - cos ns

mm =

sin(x,+ns) - sin as

(x‘+ %(1-cos ns))cos(x,+ns) — %(1-cos ns)cos as

  0
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' 0

l[x + l(l-cos ns)]2sin(x +ns) + [x + §i£_2§ - §i2_22§ — -§]
2 ‘ n ’ 5 71,2 4": 2n

N(X) = cos(x,+ns)

0

0

0

. 0

and Bo, B, are the constant matrices

[ 1 0 0 0 0 0 ‘ ' 0 0 0 0 0 0 ‘

0 0 0 0 0 0 1 0 0 0 0 0

_ 0 0 1 0 0 0 _ 0 0 0 0 O 0

Bo " a BI "

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 l 0 0 0 0 0 0 0 0

. 0 0 0 0 1 0 . . 0 0 0 0 0 0 l    

Note again that when r = 0 the boundary value problem (1.2.10),

(1.2.11) has the trivial (basic) solution X0(A) = 0 for each A.

Remark: Observe that in deriving the formulation (1.2.7) the top

point of the ring 0 was kept fixed (see Figure 1.1.1). Alternatively

one may arrive at a similar formulation by keeping the bottom point of

the ring fixed. Obviously the resulting equations will not be the same

as those in (1.2.7). However, they differ by a constant shift in the

uniform part of the pressure A (due to the two different locations of

the top point of the ring in the two cases). The variational formulation

to be derived in Section 1.4 is equivalent to the one obtained by

balancing the moments while the bottom point of the ring is held fixed.
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The load carrying capacity 7 (a F) then does not enter the energy

expression in the variational formulation and therefore may be treated

as an unknown to be determined by the shape of the ring. The

variational formulation is followed in Chapter 2 to prove the existence of

a weak solution for each given value of A and 'r. The variational

formulation with the top point of the ring being fixed will be given in

Section 2.3, and used to prove the existence of equilibrium states for

each given value of 7 and 'r with |-:-| < 5%.

1.3 Formulation for the ga_rtiallz submerged case

Let 0 6 r* f 1 denotes the arc length of the non—wetted part of

the ring (see Figure 1.3.1).

 

A partially submerged ring

Figure 1.3. 1

In this case the wetted and non—wetted parts of the ring will have

different equilibrium equations. Note also that the pressure difference

at 0 is zero, i.e. A = 0. Let y* = y(r*), x* = x(r*) and
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s

u = I y cos 9 dt. Using the same notations as in Sections 1.1 and

x
r

122 the equations of equilibrium for the non-wetted part may be

written as (0 i s 5 r*)

(a) 953 = -H sin 9

(b) x5 = cos 9 (1.3.1)

(C) ys = sin 9

and for the wetted part (r* i s ‘ l)

(a) 955 = (-H + % T(y-y*)2)sin 9 + T(u cos 9 - y*(x-x*)cos 9)

(b) x5 = cos 9 (1.3.2)

sin 9(C) Ys

with the conditions that x, y, u, 9 and 9S are continuous at r

and satisfy

X(0) = y(0) = 9(0) = 110*") = 0

(1.3.3)

x(1) 0, 9(1) 2 n

Observe that when r = 0 the boundary value problem (1.3.1), (1.3.2)

and (1.3.3) has the (basic) solution

90 = ns

1 .

x0 = - Sln as
7T

1
yo = ; (1 - cos ns)

0 ,0£s£r*

u0 =

%2(sin ns-sin nr*) - 3%2(sin 2ns-sin 2wr*) — 5%(s—r*), r* i s 6 1



l3

1 . 4 Variational fomilation

Hamilton’s principle of least energy is used here to give a

variational formulation for the problem previously formulated in Section

1.2. The variational formulation will be followed in Section 2.2 to prove

the existence of a weak solution for each value of A and 1- and the

"load carrying capacity" 7 to be determined.

Let (x,y) be Cartesian coordinate with origin taken at the point

0, s be the (normalized) arc length measured from 0 and 9 be the

local angle (see Figure 1.1.1)

Let A, “r and 7 (a F) be as in Section 1.2. Note that in the

present case the bottom point of the ring will be kept fixed while the

top point is free to move vertically. In this case the coordinates x, y

of a point on the ring are related to the local angle 9 by the

relations:

5

I cos 9(t)dt

-1

l
l

x(s)

I
I

3
|
I
N

+

‘
-
—
~
.

y(s) sin 9(t)dt.

9 T “t . .

Let n denote the normal vector (ys,—xs) and 2 denote the p081t10n

vector (x,y)T. Then the strain energy W and the potential energy P

are given by

:
2
:

l
l

N
l
i
—
I

A

¢

(
I
t

I

:
1

v

Let y*(s) = I sin 9(t)dt, so that y(s) = y*(s) + g .
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Then P takes the form

1 2 S .
P = — 50 + g .ka + %>[I_lsm<e<s> — 9(s)ds] + in + :33 M + fines e

Hamilton’s principle leads to the following variational formulation.

1

Minimize (V(9) a I (W—P)ds)

l S

1 1 [9; + (x + g ry* + g; ) I sin(9(s)-9(€))d£]ds

- -1

V(9) = -n2 + 2 I

1

— l I (A + % ry* + %%)cos 9 ds (1-4-1)

" -1

over all 9 on [~1,1] satisfying

1 l

9(-l) = —W, 9(1) = n, I cos 9(s)ds = I sin 9(s)ds = 0

-l —1

(1.4.2)

Let n denote an "admissible direction" i.e.

l l

n(1) = n(-l) = 0 and I n sin 9 ds = I n cos 9 ds = 0.

—1 —1

Then the variation 6V(9) in the direction of any such n vanishes and

this leads to Euler’s equation. The variation of V(9) in the

direction of n is defined by V(9) = g; V(9 + an)

8:0

It is easy to verify the following relations:

(1) a I 9: ds = — 2: I n ass ds

1 s l

(2) 6 I I sin(9(s)-9(€))d£ds = 28 I n[x cos 9 + y* sin 9]ds

-l -l —1
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l s 3 l

(3) 6 I y*(s) I sin(9(s)-9(£))d£ds = 2 s I n sin 9 y’“2 ds

-1 -l -l

l 1

+ 38 I n cos 9 u ds - 3u(1)c I n cos 9 ds

-1 -1

S

where u(s) is defined by u(s) a I y*(t) cos 9(t) dt

-1

1 1

(4) 6 I cos 9 ds = - s I n sin 9 ds,

—1 -1

l l

(5) 6 I y* cos 9 ds = - s I n[y* sin 9 + x cos 9]ds

-l -1

It follows from the relations (l)-(5) that the Euler equation is:

-9SS + A(x cos 9 + y* sin 9) + % T y’“2 sin 9 + r u cos 9

(A + 3- T)sin 9 + g: [y* sin 9 + x cos 9]-Tu(l) cos 9 + 3"

=
4

I

= y, sin 9 + #2 cos 9.

(1.4.3)

where p, and p; are arbitrary constants.

Remark: It can be shown that the Euler’s equation (1.4.3) is

identical with the equilibrium equation resulting from balancing the

moments while keeping the bottom point of the ring fixed. It follows

that any solution of the variational problem (1.4.1), (1.4.2) will be an

equilibrium solution.





CHAPTER 2

EXISTENCE 0F SOLUTION

2.0 Introduction

This chapter is concerned with the proof of existence of the solution

for the problem formulated in Chapter 1. The proofs are based upon a

theorem, due to F. Browder, which is used in the proof of existence in

the uniform pressure case [15]. In Section 2.1 some mathematical

preliminaries due to Browder [1] are given and two corollaries of

Sobolev’s and Rellich’s Imbedding Theorems [7] are stated. In Section

2.2 the Browder’s theory outlined in Section 2.1 is used to prove the

existence of a weak solution to the variational problem (1.4.1), (1.4.2) for

each given value of A and 1'. In Section 2.3 a variational formulation,

with the top of the ring being fixed is stated and used to prove the

existence of a weak solution for each given value of 7 and -r with

|-| < -; . In Section 2.4 it is shown that for each 7 and

k > 0 there exists a weak solution 9, H, A, T of the boundary

value problem (1.2.7) satisfying 995" = n2 + k, and that for

L2

each value of 7, A and k > 0 there exists a weak solution

9, H, r of the boundary value problem (1.2.7) satisfying

"GS" = n3 + k.

2.1 Abstract variational problems

Let H be a real Banach space and {wd}j:1 be a sequence in H.

16
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Then Wj -* w will denote the convergence of the sequence {WJ}J:1 to

w in the H-norm and WJ -* w will denote the convergence of the

sequence {f*(wj)}j:1 to f*(w) for every f* e H*, the dual space

of H. A subset C of H is said to be weakly closed if whenever a

sequence {wj}j:l in C converges weakly to w, then w is also in

C. Note that every closed convex subset of a reflexive Banach space H

is weakly closed.

The following definitions and theorem are due to Browder [1].

Definition 2.1.1: A function é : H x H -+ R1 is said to be semi-
 

convex if it satisfies the following three conditions:

(a) For each w in H and each c in R1 the subset Sc,w

defined by

Sc,w = {v e H : +(v,w) 5 c}

is convex, i.e. for each w in H the function

§(-,w) : H -+ R1

is convex function.

(h) For each bounded subset B of H and each sequence {Wj}j:1

in H with Wj -4 w, i(v,wi) -+ +(v,w) uniformly for v in B,

(c) For each w in H, §(°,w) is continuous as a function from

 

H to R‘.

Definition 2.1.2: A function g : H -+ R1 is said to be

differentiable at wo in H if there exists an element g'(wo) in

H* such that for all h in H

g(wo+h) — g(wo) - g'(wo)(h) = o(HhH) as "h" —+ 0.
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A function i : H x H -9 R1 is differentiable at (w,,w2) if there

exists a pair ff, f: in H* such that for all h,, h; in H

§(w,+h,, w,+h,) — +(w,,w,) - ff(h,) — ff(h,) = o(uh,u + thfl) as

uh," —+ 0 and uh," -9 0, and we set ff 2 §;(w,,w2), ff = i;(w,,w2).

Remark: If i : H x H -+ R1 is differentiable at (wo,wo) then

E(w) = +(w,w) is differentiable at we and

E'(Wo) = §;(W0awo) + §;(W0awo)o

Theorem 2.1.1: Let H be a real reflexive Banach space,
 

é : H x H -% R1 be semi-convex and E(V) = +(V,V). Let C be a weakly

closed bounded subset of H. Then E is bounded below on C and

assumes it minimum on C.

Let H, denote the Hilbert space

H.([0.1].R‘) = {w = W.ws e L2([0.11.R’)}

with the inner product

1

<v,w> = I (vw + vsws)ds,

0

where derivatives are being understood in the weak sense.

Let H? denote the subspace of H,

H‘,’ = {w e H, : w(0) = w(1) = 0}.

The following two theorems are corollaries of Sobolev’s and

Rellich’s Imbedding Theorems, respectively. The statements and proofs

of Sobolev’s and Rellich’s Imbedding Theorems can be found in any
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standard book on elliptic partial differential equations (for example

see [7]).

Theorem 2.1ig: Each w e H, is equal almost everywhere to a
 

continuous function on [0,1], and the imbedding of H, in the space

of continuous functions on [0,1], with the maximum norm, is continuous.

Theorem 2.1.3: The imbedding of H, in L2 is compact.
 

2.2 Existence of solution fer fixed A and T

In this section it is shown that the variational problem (1.4.1),

(1.4.2) has a weak solution for each given value of A and 1'.

Let us start by recalling the variational problem formulated in

Section 1.4. It is required to minimize the functional

1 s

V(9) = -W’ + l I [62 + (A + g Ty)(:z cos 9 + I sin (9(8) - 9(6))d£)]ds
2 _1 s 3 n -1

(2.2.1)

overall 9 on [—l,1] which satisfy the conditions

1 l

9(—l) = —n, 9(1) = n, I sin 9(s)ds = I cos 9(s)ds = 0.

-1 —1

(2.2.2)

Upon using the transformation u(s) = 9(3) - as, (2.2.1) and (2.2.2)

reduce, respectively, to:

ww=§I 1g+<x+§wm»MMMs was)

and

l 1

u(—l) = 0, u(1) = 0, I sin(u + ns)ds = I cos(u + ns)ds = 0

—1 -1

(2.2.4)
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where

H

S
I
I
N

+

'
—
z

(a) y(u) sin(u(t) + nt)dt

(2.2.5)

-2 S

(b) h(u) = -; cos(u + as) + I sin(u(s) -u(£) + as - n£)d£

-1

Browder’s theory outlined in Section 2.1 will be used to prove the

existence of a solution of the above variational problem for each given

value of A and r. The proof simply consists of verifying the

monotonicity and smoothness conditions of Theorem 2.1.1. In order to

define the problem more precisely, let H: be the Hilbert space defined

in Section 2.1 and S be the set

1 l

S = {v e H: : I sin(v + ns)ds = I cos(v + ns)ds s 0} (2.2.6)

-1 -1

and t : H x H -9 R1 be the functional

1 l 2 2

HmwagI [%+<x+§wwnmst (Lap
-1

Lemma 2.2.1: The set S defined by (2.2.6) is weakly closed in

2399:: Let {VJ}j:1 be a sequence in S which converges weakly to

v in H3. Since every weakly convergent sequence in H: is bounded,

it follows from Theorem 2.1.3 that {Vj}j:l has a subsequence which

converges to v in the Lz-norm, which may still be called {VJ}J:1 .

But

1 l

l I sin(v(t) + nt)dt - I SiD(VJ(t) + nt)dtl 5 c "VJ-V"

L2
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1

for some constant c. It follows that I sin(v(t) + nt)dt I 0.

-1

1

Similarly I cos(v(t) + nt)dt = 0. It follows that S is weakly

—1

closed.

Lemma 2.2.2: The function i defined by (2.2.7) is semi-convex

and differentiable on H: x Hf.

nggf: The differentiability of i is clear from its definition.

The proof of the semi-convexity of i consists of checking the three

conditions of Definition 2.1.1.

(a) For each fixed v, it is required to prove that the function

+(°,v) is convex. For t 6 [0,1] and uo, u, in H2, set ut

tu, + (1-t)uo, and define

h(t) = i(ut.V) - t+(u1.V) - (1-t)+(uo.V).

It is required to prove that h(t) 6 0 on [0,1]. Since h(0) = h(l)

0, it is enough to prove that h'(t) is nondecreasing. But

h'(t) §u(utaV)(u1 ‘ uo) ‘ *(ulaV) + é(uoiv)

I
h

I
-
‘

and for any 0 6 t < 6

h‘(e) — h'(t) = ;%; 1+u<ue.v) - +u<ut.v>]<ue - ut)

1

1

= E:: I0 [(ue - ut)s]2ds 5 0.

(b) Suppose that {Vj}j:l is a sequence in H: which converges

weakly to v. Then, as in Lemma 2.2.1 the sequence {VJ}J:1 can be
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replaced by a subsequence which converges to v in the Lg-norm. Now

1

21+<u.v> — +<u.v,>| 6 1x1 I I y(v,> — y<v>ds|
-1 ~

1

+ 2%11 I I-1 y(Vj)(h(Vj) - h(V))dS
 

+ 2411 I III h<v><y(v,> — y<v>)dsI

é CHVj - vllL2 -9 0 as j -+ m.

The last inequality follows from the boundedness of the functions y(u),

h(u) and the Mean Value Theorem.

(b) Let {uj}j:1 be any sequence which converges to some u in

H2. Then

21 1 2

1+<u.v> — *(uj.V)I = 5 I I (us - ujs)dS
-1

6 cflus - ujsflLg -9 0 as J -+ w.

Lemma 2.2.3: The functional V(u) a +(u,u) is differentiable on

H: and satisfies V(u) -9 w as Iufl -9 m.

Proof: The differentiability of V follows from that of i, and

since flu" -9 w in H: if and only if flusfl -+ w the lemma follows.

Now by Lemma 2.2.3 there exists a large enough number K such that

V(u) > V(O) for any u not in the closed ball D of radius K. Since

the closed ball D is weakly closed, it follows from Lemma 2.2.1 that

the set C E D n S is weakly closed bounded. It follows from Theorem





23

2.1.1 that V is bounded below and assumes its minimum on C. This

proves the following

Theorem 2.2.1: For each value of A and T the variational
 

problem (2.2.3), (2.2.4) has a solution in H3.

2.3 Existence of solution for fixed 7 and T

In this section the problem of existence of solution for a given

value of 7, T is considered. With the top point of the ring being

fixed, the expression for the total energy becomes

1 2 2 2 S

V(G) = -w2 + g I [9 + (A + - Ty - 476(5-1) I sin(9(5) - 6(€))d£]ds.

0 5 3 0

(2.3.1)

where 6(s—1) is the Dirac function.

It is required to minimize V(9) sugject to the constrains

2 2

9(0) 2 0, 9(2) 2 2n and I cos 9 ds = I sin 9 ds = 0 (2.3.2)

0 0

With the transformation u = 9 - as, V(9) becomes

1 2 2 2
V(u) = - I [u + (x + - Ty(u) — 476(s-1))h(u)]ds (2.3.3)

2 0 s 3

where

s

y(u) E I sin(u + ns)ds,

0

s

h(u) 5 I sin(u(S) - U(£) + 7T8 - n£)d£.

0

The above variational problem can now be reformulated in the

following form. Given T, 7 find A0 in R1 and 110 e H? such that
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the variation 6V(uo) vanishes identically in the direction of any

2 2

n e H: with I n sin(uo + ns)ds = I n cos(uo + ns)ds = 0, and uO

0 0

satisfies the conditions

2 2

I sin(uo + ns)ds = I cos(uo + ns)ds = O

0 2 0 (2.3.4)

T I y(uo) cos(uo + ns)ds = -27.

0

. 0 0 , 0 p 0 l

Deflne é : H1 x H1 -7 R , E : H1 -9 R , g : H1 -+ R and the

subset S s H: by

2 2

(a) +(u,v) 5 l I 112 ds + l I [Z Ty(v) — 476(s-1)]h(v)ds
. 2 0 s 2 0 3

(b) E(u) 5 +(u,u) (2.3.5)

2

(C) g(u) E I y(U) cos(u + ns)ds

0

o 2 2

(d) S a {u 6 H1 : I sin(u + ns)ds = I cos(u + ns)ds = 0}

0 0

Lemma 2.3.2: The function 6 defined by (a) of (2.3.5) is
 

. . . 0

d1fferent1ab1e and seml-convex on H}.

Lemma 2.3.2: The function E defined by (b) of (2.3.5) is
 

differentiable and E(u) -+ m as "u" -9 m.

The proofs of the above two lemmas are similar to the proofs of

Lemmas 2.2.2 and 2.2.3 and are therefore omitted. Also it follows from

Lemma 2.2.1 that the set S is weakly closed.
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Lemma 2.3.3: For T 1 0 the subset
 

c a {u e H? : g(u) = ~ 5)

is weakly closed, where g is as in (c) of (2.3.5).

2599:: It is enough to show that the function g is weakly con-

tinuous. For this let {un}n:l be any sequence in H: with un -—* u

for some u 6 HT. As before, {un}n:1 has a subsequence which con-

verges to u in the Lg-norm. It follows from the Mean Value Theorem

and the following inequality that g(un) -+ g(u).

2

lg(un)-g(u)l . I IY(un)l ICOS(un + ns) - cos(u + "suds

+ I |C°S(un + 7T8)! [y(un)-y(u)lds.

0

Lemma 2.3.4: For any 7, T 1 0, the functional' E assumes its
 

minimum value on the set S U C.

Proof: Since i is semi-convex, S n C is weakly closed and

E(u) -9 +w as flu“ -+ m, it follows from Theorem 2.1.1 that E is

bounded below on S n C and assumes its minimum value on S n C.

Theorem 2.3.1: For any 7, T 1 0 for which S n C 1 ¢ there exist
 

A, p,, p, in R1 such that if 110 is the minimizer of E on S n C

then

2

E'(uo) + A gl(uo) : #1 I Sin(uo + "5)d5

0

2

+ p2 I cos(uo + fls)ds

0
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Proof: Follows from Ljusternik’s Theorem (since all the constraints

under consideration are smooth).

Remark: It is easy to see that the function g, for the problem

under consideration, satisfies

lg(u)l < l . (2.3.6)
71’

Inequality (2.3.6) restricts the range of 7 and T in Theorem 2.3.1.

Observe that for 7, T = 0 with [£1 < 5% it is clear, geometrically,

that the set S n C will not be empty. Finally, note that Theorem

2.3.1 implies the existence of no G H: and A0 e R1 such that no

satisfies the conditions (2.3.4), and the variation 6V(u0) vanishes

identically in the direction of every admissible fUnction n.

2.4 Existence of solution for fixed 7

In this section the problem of existence of solution for a

prescribed value of 7 is considered. Let us first derive the

equilibrium equations which will be used here. The variables H, x

and u can be eliminated from equation (a) of (1.2.7) to give:

95 2

Gsss — CBS + —§ 2 7 + r I sin 9 dt, (2 4.1)

0

where c is an arbitrary constant of integration. Upon using the

transformation w = 98 — n, equation (2.4.1) reduces to

2 t

wSS + vw = 6 - f(w) — T I sin(nT + I w(£)d$)dt (2.4.2)

0 0
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3

n2 — c, 6 = A + cs - E— and f(w) = % w3 + 3 WW”.

2
where v = 2

Formulate the problem as follows. Given 7 in R1 and k > 0,

find T, 6, v e R1 and w e H, with w being a weak solution of

(2.4.2) and satisfies the following conditions

ws(0) = 0, ws(l) = 7, flwflL = k,

2

(2.4.3)

1 l s

I w ds = 0, I cos(ns + I w(£)d£)ds = O.

0 0 0

Let H denote the Hilbert space

H = {w e H, : I w ds = 0}.

Observe that H is the kernel of a bounded linear functional on H,.

Define i : H x H + R‘, E : H 9 R, g, : H 9 R and g2 : H 9 R by

l l

(a) +(v,w) 5 % I v; ds - I [% w‘ + % n w3]ds — 7 V(l)

0 0

(b) E(W) =1 f(wm)

1 (2.4.4)

(o) g.<w> a I w2 as
0

1 s

(d) g.<w) a I cos(ns + I W(€)d€)dS-
0 0

Lemma 2.4.1: The function 4' defined by (a) of (2.4.4) is
 

differentiable and semi-convex on H x H. The functions g,, g,

defined respectively by (c), (d) of (2.4.4) are differentiable and weakly

confinuouscnl H.





28

_P_1;o_o_f: The differentiability of l), g, and g, is clear. That i

is convex in v for fixed w follows from Lemma 2.2.2. The second

condition for the semi—convexity of 4} follows from the fact that the

imbedding of H in L, is compact. The third condition is clear.

Finally g, and g, are clearly weakly continuous.

Lemma 2.4.2: The functional E defined by (b) of (2.4.4) is
 

differentiable and satisfies

E(w) -) +4» as llwll -> m

on the set C a {w e H: g,(w) : k}, for any k > 0.

_P_1;o__gf: It is enough to consider smooth w e H. Observe that for

any weC

l

I w‘ ds 5 max(w’) g,(w) 6 k max(w2).

0

By the definition of H, there exists 6 6 [0,1] such that w(£) = 0

and so

5 l

w’(s) = 2 I w ws ds 5 2 k1/2 ( I w; ds)1/2.

s 0

It follows that

1 l

I w‘ ds 6 2 k3/2 ( I w’ ds)1/2 , and
S

o o

l l

I w3 ds 4 2’/2 k5/‘ ( I W2 ds)’/‘.

0 0 s

From the definition of E and the above inequalities it follows that
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1 l
x l 2 _ 1 3/2 2 1/2

E(w) — 2 ( I wS ds) 4 k ( I wS ds)

0 0

1/2 5/4 1 2 1/4 1/2 1 2 1/2

- 2 k ( I w ds) — 2|7| k ( I w ds) .

o S 0 S

l 2

As "w" 9 m with g,(w) = k, I wS ds 9 w must hold. Therefore, the

0

last inequalities give the result.

Let S 5 {w e H : g2(w) = 0}.

It follows from Lemma 2.4.1 that the set S and the set C

defined in Lemma 2.4.2 are both weakly closed. Then S n C is weakly

closed. Lemma 2.4.2 allows us to restrict to a bounded set. It follows

from Theorem 2.1.1 that E assumes its minimum on S n C, say at wo,

and hence by Ljusternik’s Theorem there exists yo and To in R1

such that

E'(Wo) + ”0 81(Wo) + To 32(Wo) : 0.

From the definition of H, it follows that there exists 60 in R1

such that

1

E'<w.) + v. g.<w.) + r. g.<w.> = .0 I w. ds
0

(2.4.5)

Therefore W0 is a weak solution of (2.4.2) satisfying conditions

(2.4.3).

The conclusion of the above calculations is summarized in the

following
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Theorem 2.4.1: For any 7 in R1 and k > O for which the
 

intersection S n C is non-empty, there exists v0, 60, To in R1 and

W0 6 H, such that Hwoll = k and w0 is a weak solution of (2.4.2)

satisfying conditions (2.4.3) with v = v0, 6 = 60 and 1' = To.

Finally, observe that the proof for the following result is similar to

the proof of Theorem 2.4.1 and is therefore omitted.

Theorem 2.4.2: For any 7 and A and R1 and k > 0 there

exists co, To in R1 and 9 e H, satisfying equation (2.4.1) with

c : co, 7- : To and the conditions 9(0) = 0, 9(1) 2 1r, 933(0) = O,

1 1

955(1) = 7. I cos 9 ds = 0 and I 9; ds = k + n’.

0 0



 



CHAPTER 3

PERTURBATION METHODS

3.0 Introduction

This chapter is concerned with approximating the solution curves of

the boundary value problem (1.2.10), (1.2.11) in the neighborhood of the

trivial solution curve (O,>\,0). A point (O,>\o,0) of the trivial solution

curve through which there passes a non—trivial smooth solution curve

will be called a bifurcation point. If (O,>\o,0) is a bifurcation point it

follows from the Implicit Function Theorem that Gx(0,3\o,0) must be

singular.

In Section 3.1 some basic facts about bifurcation from the trivial

solution are presented and sufficient conditions for a singular point of

the trivial solution curve to be a bifurcation point are given. All the

bifurcation points of the above boundary value problem are found and

asymptotic expansions of the bifurcating solution curves near the

bifurcation points are obtained using the Liapunov-Schmidt theory [16].

Similar results were obtained in [15].

In Section 3.2, for T I 0 but small, the regular perturbation

method is used to obtain asymptotic expansions for the solution curves

of (1.2.10), (1.2.11) in the neighborhood of a point (0,)\,O) for which

Gx(0,>\,0) has bounded inverse. These expansions are not valid near

the bifurcation points. Also a perturbation solution for the case of

partially submerged ring is given.

31
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The behavior of the bifurcation points of a general bifurcation

problem under certain perturbation “r = O is examined in Section 3.3.

It is shown, under some assumptions, that there is locally a family of

"limit points" through each of which there passes a curve of nontrivial

solutions.

Finally in Section 3.4, for a small 1' 1 0, the singular

perturbatiOn method [13] is used to obtain valid asymptotic expansions

of the solution curves of (1.2.10), (1.2.11) in the neighborhood of each

bifurcation point.

3.1 Bifurcation from the trivial solution

Let H be a real Hilbert space, . G : H x R1 -> H be a smooth

mapping and consider the equation

G(X,>.) : 0. (3.1.1)

Assume that equation (3.1.1) has the trivial solution X : O for all

A e R’. If the Frechet derivative GX(O,3\0) has a bounded inverse for

some lo 6 R‘, the Implicit Function Theorem can be applied to

guarantee the local existence and uniqueness of a smooth solution curve

XOK) of (3.1.1) passing through (0,>\o). By uniqueness it must, then,

be the trivial solution curve XOx) : O. Bifurcation theory, however, is

concerned with the study of the solution set of (3.1.1) in a

neighborhood of (GAO) where GX(O,7\0) is not invertible. In the

neighborhood of such a point there may exist non-trivial solution curves

passing through (0J0).

A point (OAO) is called a bifurcation point if there is a smooth

solution curve different from the trivial one, defined in a neighborhood
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of (0,30) and passing through it. In this case such a non—trivial

curve is called a bifurcating branch. From the above discussion a

necessary condition for bifurcation to occur at (GAO) is that GX(0,>\0)

is not invertible.

Let N(L) denote the null space, R(L) denotes the range and L*

denotes the adjoint of a bounded linear operator L on H. For some

i, e R, the following assumptions are made about G; = Gx(0,)\o)

(a) N(G§) is one-dimensional spanned by it,

(b) N(G§’(*) is one—dimensional spanned by ‘1', (3.1.2)

(e) mail) = we?» and R(Gi") = N(Gi{)*.

Thus G; is assumed to be a Fredholm operator with zero index.

Conditions (3.1.2), however, are not sufficient to ensure that (09.0)

is a bifurcation point. In addition to (3.1.2) the following assumption is

made

a a ('1', GXMOJO)» 1 0. (3.1.3)

The number a in (3.1.3) is usually called the bifurcation coefficient.

Under the assumptions (3.1.2) and (3.1.3) it will be shown, using the

classical Liapunov—Schmidt method [16], that there exists a unique

smooth non-trivial solution curve passing through (O,7\o) (and

therefore (09.0) is a bifurcation point).

Using the assumptions of (3.1.2) the space H can be decomposed

into the direct sums
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(a) H : <§> e <+>¢

(3gL4)

(b) H = (Y) e R(G§)

where (X) denotes the linear span of X e H. The decomposition (a)

allows us to write each X e H in the form X = 8* + w for unique

8 e R1 and w e (04-. Using the decomposition (b), equation (3.1.1)

can be decomposed into the two equations

 

 

(a) a(.. + w,xo + p) - <9.G(s+ + w.x. + p)> "z", = 0

(3.1.5)

(b) <?.G(8+ + W.Ao + p)> = 0

where X : x0 + )1.

Let F : <§>¢ x R1 x R‘ 9 H be defined by

F(W:8afl) = G(£* + ”’40 + #) ' (*aG(8* + Waxo + P)> Hiflz

Then F(0,0,0) 0 and Fw(0,0,0) = 0;, which maps <§>¢ one to one

onto R(G§). By the Open Mapping Theorem it follows that Fw(0,0,0)

has a bounded inverse and hence the Implicit Function Theorem can be

applied to F. It follows that there exists a unique smooth curve w =

w(s,p) defined on some neighborhood N of (0,0) such that

(a) w(0,0) : 0

(3.1.6)

(b) F(W(£,,u),£,p) 2 O

for each (8,p) in N. This gives a unique solution to equation (a) of

(3.1.5). Furthermore, the smoothness of the solution W(£,p) allow us to
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expand it about (0,0) and compute its coefficients by successive

differentiation of equation (b) of (3.1.6) with respect to a and p.

This leads to

w(£,p) = epw1 + 82w2 + s 0[(ls| + |p|)2],

 A'+ - a§-1(G§,+ — a ) , (3.1.7)3

I
I

II?"2

 

) .2
t
o I
I A“§ — G§-1(G§x+ - <!,G§x§§> "

H3

where Gfix a Gxx(0,xo) , G§x = Gxx(0,lo) and A', A" are constants

determined by the conditions <+,w,> = 0, <§,w,> = 0 respectively.

Having obtained the unique solution (3.1.7) of equation (a) of (3.1.5)

one must substitute it into equation (b) of (3.1.5) to obtain the

"bifurcation" equation

8[E08 + 8p + E15” + Ezfiz + E352 + T(8,p)] : 0 (3.1.8)

-1 o
(a) E0 - 2 <!,Gxx+§>

_ 1 o 1 o 1 o o

(b) E, — E (Y,Gxx§w1> + 5 (Y,Gxxw1§> + E (Y,Gxxx§§> + <*:GXAW2>

(c) E, = (Y,G§xw,> (3.1.9)

<!,G§xx§§§>

c
u
e
»

<?,G§xw2§> +

b
fl
h
l

g <!,G§x+w,> +

(e) T(8,#) = 0[(|€| + lpl)3]

where G§xx = GxxA(O,Xo) and G§xx = Gxxx(0,ko).

Solutions of the bifurcation equation (3.1.8) are, then, in one—to—one

correspondance with the solutions of (3.1.1) in a heighborhood of (03.0).

Dividing equation (3.1.8) through by the factor a (which corresponds
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to the trivial solution) leads to the equation

shun) E Eos + an + E1811 + E2112 + E382 + T(£,p) : 0

(3.1.10)

whose solutions correspond to the non-trivial solutions of (3.1.1). Since

g(0,0) = 0 and gp(0,0) = a, condition (3.1.3) allows the application of

the Implicit Function Theorem to g(s,p). It guarantees the existence

and uniqueness of a smooth solution curve )4 = y(s) of (3.1.10) defined

in some neighborhood N, of a = 0 such that

(1) 11(0) = 0

(3.1.11)

(2) shy/1(8)) = 0

for each 8 in N,. Expanding y(s) about a = 0 and computing its

coefficients leads to

 y(s) = - a—- z: — 82 + 0(83). (3.1.12)

The above calculations proves the following

Theorem 3.1.1: A point (0,)(0) on the trivial solution curve of
 

(3.1.1) satisfying conditions (3.1.2) and (3.1.3) is a bifurcation point.

Furthermore, there exists exactly one bifurcation branch passing

through (0,J\o) which is given (locally) by

X(s) : t: f + w(£,p(s))

X(s) X0 + 14(5)

where w(8,p(8)) and u(s) are given by (3.1.7) and (3.1.12)

respectively.
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In what follows, the Liapunov-Schmidt theory outlined above, is

applied to the ring problem formulated in Chapter 1 for the case when

the ring is under a uniform pressure, i.e. “r : 0.

Let G(X,A) denotes the mapping defined by (1.2.10) when 1' = 0,

with domain

D = {x e c§[0,1] : B[X] = 0}

where B denotes the boundary operator defined by (1.2.11). The

equation G(X,A) : 0 has the trivial solution X0) : 0 for all

A e R1 and

0 1 O 0 0 0 l

- g 0 A cosns X sinns 0 - sinus

Gx(0,X) : L _ - Sinns 0 0 0 O O

cosns 0 0 0 0 0

- %(l-cosns)sinns 0 0 0 0 0

0 0 0 0 0 0 .  
which is non-invertible if and only if X = An = n3(n2-l), n = 2,3,...,

in which case its null space has dimension one and is generated by §(n)

sin nns

I) 71' COS D775

  

_ sin n(n-l)s sin n(n+l)s]

  

  

2n(n-1) 2fi(n+1)

_ _ cos n(n-l)s cos n(n+l)s n

+(n) _ 2n(n-1) 2n(n+l) ] + "(nZ—l)

_ 1 [sin n(n-l)s _ sin "(n+1)s] _

n 2n(n-l) 2n(n+1)

  

sin ns [cos ”(n—l)s + cos n(n+1)s] + n sin #5

fl 2n(n-l) 2n(n+1) n3(n2—l)   
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The adjoint G§* of G; = Gx(0,kn) is given by

G§*z = — LZ — fxT(0,An)Z = 0

with domain

0* = {z e ci[0,1] : B*[Z] = 0)

where B*[Z] = B:Z(0) + BTZ(1), B: and B? are any 6 x 6 constant

matrices with rank[B: : Bf] = 6 and 8383 = BTBT.

It is well known [12] that the range of G§ is closed,

0*.1.

R(Gfi) = N(Gx ) and R(G§*) = N(G§)L. The null space of G§* is

one dimensional generated by

' —nn cos nns

sin nns

  

x cos n(n—1)s cos n(n+l)s]

n

  

    

( ) 2n(n-l) 2n(n+1)

n :

y —A sin "(n-1)s _ sin "(n+1)s]

n 2n(n-l) 2W(n+1)

0

sin n(n-l)s _ sin n(n+l)s

2n(n-1) 2n(n+l) J

and the bifurcation coefficient (9(n)’ G§x§(n)> is given by

2

a(n)=—n—

2fl(n2—1)

It follows from the above calculations that the conditions (3.1.2) and

(3.1.3) hold and, hence, by Theorem 3.1.1 each (0,7xn) is a bifurcation

point.

For the problem under consideration E0 = 0 and E3 =

- 3/16 n’nz, and therefore an approximation for the unique bifurcating
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branch near “LAn) is given by

X = e f(n) + C(82)

x = An + 3%: (n2—1)82 + 0(53).

Since the coefficient of 8’, in the second expression above, is not

zero, the implicit function theorem yields to

1/2 1/2

E : t [(m) (X-ln) 4' 0((1-An))]

which shows that for each A > kn with l — An small, there are two

non-trivial solutions for the equation G(X,k) ; 0 (see Figure 3.1.1).

The type of bifurcation occuring in this problem is known as "pitchfork

bifurcation". This type of bifurcation frequently occurs in elasticity

problems (for example the deformation of elastic rods and plates under

an external applied edge thrust).

 
1 /' '

\ \ < "
‘ .

Pitchfork bifurcation at kn, n = 2,3,...

Figure 3JJ1
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3.2 Regular perturtition ('r 3 0)

Let G denote the mapping defined by (1.2.10) with domain

D = {x e c;[o,1] : B[X] = 0}

where B[X] is defined as in (1.2.11).

In this section the regular perturbation method [13] is used to

obtain valid asymptotic expansions for the solution of

G(X,J\,-r) : 0 (3.2.1)

for small 1' 3 0 in the neighborhood of a solution (0,AO,O) where

GX(0,)\0,0) is invertible. For this one seeks asymptotic expansions as

'r -> 0 of the solutions X(3\,-r) of (3.2.1) near (0,Ao,0) in the form

X(x,1) = 2 xj(x) 73 . (3.2.2)

3:1

The coefficients Xj(7\) are determined by inserting (3.2.2) into (3.2.1)

and equating each power of T to zero. This leads to a system of

equations

(a) GX(O)AO’O)X1(X) : "' GT(01}‘010)

(3.2.3)

1

(b) Gx<0.x..0)x.<x) = - 5 [Gxx(0.x..0>x.(x)x.<x> +

2GXT(O)A010) + GTT(03A030)]

and so on, which can be solved successively since G§1(0,Ao,0) exists.

Observe that expansions (3.2.2) are valid only in a neighborhood

of each solution (0,X0,0) where Gi1(0,ko,0) exists. This neighbor-

hood shrinks to zero as a bifurcation point (0,kn,0) is approached.
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An asymptotic expansions which is valid in a neighborhood of such a

point will be obtained in Section 3.3 using the singular perturbation.

Returning to the case when G§1(0,Ao,0) exists let us write

X, = (x,,,x,,,x3,,x,,,x5,,x6,). From the definition of G it follows

that

-31n ns 2 cos "8,0,0,O,O)T.

GT(OJX0’0) : (0’ 2" I 2?.r

Solving equation (a) of (3.2.3) for X,(X) one obtains

  

 

 

Case 1: x z 0

—A , X61 . 3 .

x,, = - (x3, cos ns + x,, Sln rs) + -— Sln ns - -- Sin ns
"2 n2 Zn‘

3
+ -- (l + cos #5)

2H3

x = —1 cos 5 — 1 cos ns +
2’ 2n p sin y p A 2n p3

x _ l sin(g—n)s _ sin(p+n)s] + 1 [s _ sin 2ns ]

3‘ 271‘ p2 sin p 20—71) 201+") 27'" 2‘"

l [ sin #3 J

---- 3 cos #5 — ----
232 p2 n

l cos(grfl)s cosgg+w)s ] 1
= . + + ———— o

x“ 2.. 32 sm # 201—») zom) 4an C S 2" S

1 [ . cos #3 ] l l l
+-——-551n7rs+——- --———-————-—--.-—.

232 p2 n 4n2X 2W3 #2 ZpA 51n p

_ 1 -
X51 ‘ ; (X¢1 Sln ”5 + X31)~

l 1 n l
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X

where p = v/n‘ + ;

Case 2: A = 0

_ -3 . 1 s
x,, - Sln ns +--- 5 cos #5 + --

4n‘ 2n3 2n3

_ - 1 . 1

x,, — cos #5 - -- s Sln ns + --

4N3 2W3 2N3

.- 3 0

x3, — s - Sln 2ns + 5 cos 2ns + 3 cos #5

8n‘ 4n3 8n‘ 4n

1 .

— Sln #5

2n5

1 1 l . 1 .

x,, = s2 + -- cos Zns + -- s Sln 2ns + -—- s Sln ns

8W3 4n5 8n‘ Zn‘

 

l

+ -—- cos #5 -

2n5 4N5

1 .

X51 3 ; (X41 51D ”5 + X3,).

 

X61 —

The above expansions are used to give approximations to x2,(0) for

different values of X with 1' = .001 (see Table 3.2.1). These

approximations become invalid near the bifurcation point (0,A,,0) (see

Figure 3.2.1).

The regular perturbation may also be used to obtain approximation

to the solution for the case when the ring is partially submerged. Let
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0 5 r* £- 1 denotes the arc length of the non-wetted part of the ring,

and X(r*,1') denotes the solution vector (6,6',x,y,u,H)T of the

boundary value problem (1.3.1), (1.3.2) and (1.3.3). Write X(r*,1') =

Xo(r*) + rX,(r*) + 0(1'2), where Xo(r*) denotes the basic solution

(1.3.4). The first component x,, of X,(r*) is given by

 

  

[ sin ns + C,s 0 5 s 6 r*
"2

X61 . 1 r*
x,,(s) - ( - ) Sln ns + -- 5 cos ws —‘-- cos ns r* 5 s 5 1

n2 4n‘ 2W3 2W3

 — -l- sin(s-2r*) + 0,5 + C3
. 434

 

 
 

 

 

where

-1 1k 1 a: x 3 - :1:
x6, - (l-r ) + -- (l-r ) cos an + -- Sln 2nr ,

2N2 4n2 8114

X-

C, = 1, sin 2nr* - -1 sin nr* - (r 1)[1 - 2 cos nr*],

4n n‘ 2W3

' X ' X *
C: : Sln 2nr _ Sln nr _ r [1 _ 2 cos nr*] + 1 ’

4n‘ n‘ 2W3 2n3

_ sin nr* r* cos nr*

c,————— .
n‘ "3

Due to the complexity of the other components of X,(r*) they will

not be presented here.

The above expansions are used to approximate x,,(O) at different

values of r* with r = .001 (see Table 3.2.2 and Figure 3.2.1).
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Table 3.2.1 Table 3.2.2

Fully submerged, 1' : .001 Partially submerged, 1' = .001

A X21(0) : 9'(0) r* X21(0) : 9'(0)

0 3. 141601 1 . 0 3 . 141593

20 3 . 141603 0. 8 3 . 141593

40 3 . 141608 0. 6 3. 141593

60 3. 141620 0. 4 3. 141596

80 3. 141665 0. 2 3. 141600

90 3. 141919 0. 0 3. 141601

92 3. 142570

93 3. 191903

6(0)

I

I

l

I

r*< : * a) l

1 1,

Solution curve obtained by regular

perturbation when 1' = .001

Figure 3.2.1
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3.3 Perturbed bifurcition

Let G : H x R1 x Rl -’ H be a smooth mapping, where H is a real

Hilbert space, and consider the equation

G(X,>\,1') = 0 (3.3.1)

Assume that when 1' = 0 (3.3.1) has the trivial solution (0,>\,0)

for all A e R1, and that the perturbation is in such a way that

GT(0,A,0) I 0. The last condition ensures that (3.3.1) no longer has the

trivial solution when 1' 1 0. Assume further that there is lo such

that the Frechet derivative 0% = Gx(0,Ao,0) satisfies the conditions

(a) N(G§) is one—dimensional spanned by 4 1 0

(b) N(G§*) is one-dimensional spanned by t 3 0

(c) R(Gfi) = N(G§*)* and R(G§*) = N(G§)* (3.3.2)

(d) a a < 1, 6;, +> : 0

where G§x = Gxx(0,10,0).

By the Liapunov-Schmidt theory outlined in Section 3.1 it follows

that (0,>\o,0) is a bifurcation point for the unperturbed problem

G(X,3\,0) : 0 (3.3.3)

In this section the behavior of the bifurcation point (0,XO,O) under

the perturbation 1 1' 0 is examined. It is shown under the additional

assumption

b i <'!,G«,-> 1 0 (3.3.4)

where G: = GT(0,A0,0), that there is locally a family of "limit points"
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through each of which there is a family of non-trivial solutions

of (3.3.1). The Implicit Function Theorem together with the per—

turbation theory of linear operators [9] will be used to obtain these

results.

Let Y denotes the space H x H x R1 x R1 and F : Y x R1 9 Y

be defined by

P G(E* + Y1: A0 + r1!r2)

GX(8* + Y1: >‘o + risr2)(* + Y2)

  

F(y,8) : (3.3.5)

(é, y,>

' (*3 YZ>

where y = (y,,y2,r,,r,), and consider the equation

F(y,8) = 0. (3.3.5)

Equation (3.3.5) has the trivial solution (0,0) and the Frechet

derivative of F with respect to y at (0,0) is given by

  

' 6;} o 0 G2-

G§X* G3 G§l§ G§T*

Fy(0a0) : :

<§,'> 0 0 0

0 <§,'> 0 0

where G§x, G§T are Gxx(0,lo,0) and GxT(0,Ao,0) respectively.

Lemma 3.3.1: The bounded linear operator Fy(0,0) has a bounded
 

inverse.
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Proof: This will follow from the Open Mapping Theorem once it is

shown that Fy(0,0) is one-to-one onto. To show that Fy(0,0) is

one-to—one let y : (y,,y,,r,,r2) be such that Fy(0,0)y : 0. Then

(a) G§y1 + r26: = 0

(b) e§x+y, + Giy. + r.G§x+ + r.G§.+ = o

l

O(C) <21Y1> —

l

C(d) (*1Y2> —

From equation (a) it follows that rzb = 0 and therefore condition

(3.3.4) implies that r, = 0. Hence y, = A? for some constant A.

By equation (0) A must be zero and hence y, = 0. Equation (b),

therefore, becomes G§y2 + r,G§x§ = 0, which gives that r,a = 0,

and so r, = 0 and y, = 0 also. Thus y = 0 and Fy(0,0) is

one—to-one. Since Fy(0,0) is clearly onto, the lemma is proved.

Theorem 3.3.1: There exists a unique smooth curve y = y(s)
 

defined on Isl 5 so for some small so > 0 with y(O) : 0 and

F(y(s),e) = 0 for each a.

Proof: The proof follows immediately from Lemma 3.3.1 and the

Implicit Function Theorem.

For each [8| 6 so, where so > 0 is the number provided by

Theorem 3.3.1, let X(£) : 8+ + y,(s), 4(a) = + + y,(a), x(s) :

x. + r.<e> and .(.) = r.(e). Then G<x<e),x<a>.r(s>) = o ' and

Gx(X(a),X(s),r(s))§(c) = 0. It follows from the perturbation theory of

linear operators [9] that the following conditons will hold for small

enough so
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(l) R(Gx(X(s),A(s),T(s))) is closed.

l
l

l
—
J

(2) diIII(N(Gx(X(8).A(8).T(8)))

l
l

1
.
.
.
;

<3) dim<N<G§(X(e>.x(s).r<s)>>

It follows for each |s| ‘ so, where so is small enough, that the

operator Gx(X(s),x(s),r(s)) is a Fredholm operator with index zero.

Furthermore, if N(G§(X(s),x(s),r(s))) is spanned by 1(8) then

a(s) = <Y(8),Gxx(X(s),l(s),7(s)) 3 0 and hence, by a similar argument

to that of Section 3.1, it follows that there exists a unique smooth

solution curve F(s) of (3.3.1) branching from (X(s),k(s),r(s)). It

holds further that d(s) = (1(a), GA(X(s),l(s),T(s))) 1 0 for s = 0.

This shows that the "perturbed bifurcation point" (X(s),k(s),1(s)) is

a limit point. The conclusion of the above calculations is summarized

in the following

Theoran 3.322: There exists a unique smooth curve (X(s),k(s),T(8))
 

defined on Isl 5 so, for some so > 0, of solutions of (3.3.1)

passing through the bifurcation point (0,XO,O). For 8 I 0

(X(a),x(z),1(s)) is a limit point through which there passes a unique

smooth curve of non-trivial solutions of (3.3.1).

Remark: The use of the Implicit Function Theorem in the treatment

of the perturbed bifurcation problems was suggested by Keener and

Keller [10], where they treated the problem using different technics.

Finally, the above theory is applied to the ring problem formulated

in Chapter 1 and approximations to the limit points (X(s),k(s),1(s))

are obtained for this particular problem. An appxoximation to the

solution curves through the limit points will be obtained using the
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singular perturbation method in Section 3.5.

Let G(X,A,1) denote the mapping defined by (1.2.10) with

domain

0 = {x e c;[o,1] : n[x] = 0)

where the operator B[X] is defined as in (1.2.11). Let A0 take

the value An of any of the buckling loads obtained in Section 3.1.

2 _ n

In this case, a and b are given by --2-- and -£-ll-2-

2n(n3—l) 2n3(n3-1)

respectively. Therefore the conditions for Theorems 3.3.1 and 3.3.2

are satisfied. The smoothness of the solution y(s) of Theorem 3.3.1

as a function of 8 allows us to write y(s) : s y8(0) + % :3 y8,(0) +

The coefficients y3(0), y88(0), °-° can be obtained by

differentiating the equation F(y(s),s) = 0 with respect to s and

setting 8 = 0. This leads to:

    

  

[x(t) ' r 8* + W282 + 0(23) '

+(s) + + 2w,s + 0(22)

y(s) : ::

h(s) An + 583 + 0(83)

. 7(8) . . 783 + 0(8‘)

1 0-1 0 _3E3 2E3

Where W2 2 A'é — 2 Gx [Gxxéé], fl = and 7 = b , for some

constant A' to be determined by the condition <§,w,> = 0.

3.4 Singular pertlgbation of bifuigation

In this section the singular perturbation method [13] is used to

obtain a valid asymptotic expansion for the solution curves in a

neighborhood of the bifurcation points )‘n found in Section 3.1. Recall

that the regular perturbation method of Section 3.2 fails to describe the

sohifion curves near each An.
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Let G(X,).,1') denote the mapping defined by (1.2.10) with

with domain D = {X e Cé[0,1] : B[X] = 0} where B is the operator

defined by (1.2.11), and let lo denote An for some n. Due to the

"corner" at the bifurcation point (see Figure 3.1.1) the perturbation is

singular and one has to stretch the neighborhood of the bifurcation

point through a transformation of the form

A = x. + e a“ + z e,(ea>i (3.4.1)

i=2

where a > 0 is a constant to be determined and s is a small

parameter defined by

r 2 sp (3.4.2)

where 3 is a constant to be determined by the nonlinearity of G

near lo. For fixed 1 1 0 the solution X of G(X,X,1) = 0 is

assumed to be a smooth function of s

a .

x = 2 x3 sJ (3.4 3)

where the Xj’s are functions to be determined by substituting (3.4.1),

(3.4.2) and (3.4.3) into G(X,X,T) = 0, equating the coefficients of

each power of s to zero and solving the resulting linear boundary

value problems successively for the Xj’s. Also it is required that

the derivatives of A and r with respect to s will remain bounded

as the bifurcation point A0 is approached. This forces both a and F

to be positive integers.

Equating to zero the powers of 8 leads to equations of the form

3% xj : K3, j = 1,2,2,... (3.4.4)
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where Kj depends only on xi, 1 ‘ j-l for each 3. The solvability

conditions of (3.4.4) are

<?,KJ> = 0. (3.4.5)

For j = 1, equation (3.4.4) is

G§X, : ‘Tc(0) G:

and since <Y,G$> 3 0, the solvability condition (3.4.5) implies that

18(0) = 0 (hence fl 5 2) and X, = A§, for some constant A.

For j = 2, equation (3.4.4) is

G§x2 = — % A’G§x++ — AG§XQA8(O) — % 637,8(0)

whose solvability condition is

o 1 o

A<*,Gxx+>)\8(0) + ‘2' <?,Gf>788(0) : 0

and since A is required to remain bounded as A approaches x0,

<?,G§A§> 3 0 and - <?,G:> 3 0 it follows that X8(0) and 752(0)

must both be zero. Hence a s 2, 3 a 3 and X2 is given by

2 “1

x2 = A'§ — 45 G§ (G§x§§).

where A' is a constant.

3 equation (3.4.4) isFor j

0

GXX3 — % {A3G§xx+++ + 4Ac§x+x, + 2Ac§xx24 + 36§x+Aea(0)

+ GgTsss(0)},
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and the solvability condition (3.4.5) gives

E3A3 + asA + b = 0 (3.4.6)

where E3, a and b are given by

_ _ .2 2 2

E3 ‘ 16 " n

n2

a = ,

2n(n3-l)

: -1 n n

2n3(n2*1)

Equations (3.4.6) determines A as a function of f. "It has a

. . *3 3d/ 2 . _
unique real root 1f 6 <-- 2b E3 , two real roots if E —

2a

:3 3x/2b2E3 and three real roots if é > :3 3~l/2b2E3. It follows

2a Za

 

that at Ac 5 lo - 5% 3x/Zb’E3 s2 + 0(s3) there are exactly two

solutions of the equation G(X,A,1) = 0. This gives an approximation

 

Ao- 5% 3v/szE3 s2 of the limit points which agrees with the results

in Section 3.3.

The above expansions are used to approximate the values of 9'(0)

near A, for T = .001 (see Table 3.4.1). These approximate values

will be compared with the numerical values in Chapter 5. The solution

curves near A, are shown in Figure 3.4.1.



 



Perturbation solution for
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Table 3.4.1
 

X near X, when 1' : .001

 

 

     
 

A [9'(0)l. [9'(0)]2 [9'(0)]3

93. 0 3. 189530 —— ——

93.0188 3.245700 —— -—

x, = 3n3 3.245810 -— ——

93 . 036 3. 304070 —— ——

93.03697 3.307560 3.059780 3.058420

93. 043 3 . 324720 3. 096970 3 . 003091

93. 046 3. 333060 3 . 102901 2 . 988810

93 . l 3. 450670 3. 129250 2 . 844860

«0

A.

1,, a>x
 

 

9ft

Solution curves in neighborhood of k, obtained

by singular perturbation when

Figure 3.4.1

7 = .001
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Remark: The expansions obtained above are valid only in a neighbor-

hood of the bifurcation point Ac. Away from A0 the expansion of

Section 3.2 obtained by regular perturbation are valid. These two

expansions can be "matched" using the method of matched asymptotic

expansions to give a uniform representation of the solution curves. Due

to the complexity of this matching process it will not be presented

here.

Observe that only first order approximation is used in Table 3.4.1.

This is enough to describe the qualitative behavior of the solution

curves near X2. However, second order approximation is needed for

the numerical methods of Chapter 4, where the perturbation solution will

be used as initial guess for Newton’s iteration. The second order

approximation for kg = 7k, is:

 

 

x,, = 16 sin 4 as ,

71A2

x,, = 4 cos 4 as ,

A2 A2

x = sin 4 ns cos ns - __ sin ns

32 1671' 411' ’

A3 A2

x = -- sin 4 ns sin #5 - -— l-cos ns
42 1677 4.", ( ) a

l . 3A2 sin 4 ns

x = - x Sln ns + x + x x + s - ----
52 71, ( 42 32) 41 31 8.", [ 4.", ]

 

A2 sin 6s A2 sin 2 as sin 4 ns

'm[5“—sn]“fil—4n"” 8n 1’

3 n3 A2

fi
l
m

X61 "
4

 

 



 



CHAPTER 4 

NUMERICAL DETERMINATION OF BIFURCATION AND

PERTURBED BIFURCATION SOLUTIONS

4.0 Introduction
 

This chapter is concerned with the study of constructive methods

for determining bifurcation and perturbed bifurcation solutions in the

neighborhood of a simple bifurcation point A0.

In Section 4.1 some general constructive methods for constructing

the bifurcation solution curves in the neighborhood of A0 are

discussed. In these methods the solution X as well as the bifurcation

parameter A are parameterized using a different parameter s.

However, in practical problems A is often a physical parameter and the

solution X may be required for some given values of this parameter.

On the other hand, there can not be a general method in which A is

used as a parameter since for some bifurcation problems non—trivial

solutions may exist only at 7&0.

In Section 4.2 the basic theorems for the convergence of Newton’s

and chord methods are stated.

In Sections 4.3 and 4.4 some numerical schemes, based upon

Newton’s and chord methods, in which A is used as a parameter, are

introduced and shown to converge under appropriate conditions.

Sections 4.5 and 4.6 deal with the perturbed bifurcation problem. It

is shown in Section 4.5 that Newton’s and chord methods can be used to
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compute the perturbed bifurcation points as well as the solution curves

through them. In Section 4.6 Newton’s and chord methods are used to

determine all the perturbed solution curves in the neighborhood of A0.

4.1 Numerical methods for bifurcgtion problemg

Let G : H x R' -> H be a smooth mapping, where H is a real

Hilbert space and consider the equation

G(X,A) : 0. (4.1.1)

Using the same notations as in Section 3.1 it is assumed that (4.1.1) has

the trivial solution X = 0 for all A in R' and that for some A0 in

R the following conditions hold:

(a) N(G§) is one—dimensional spanned by f, <§,+> = l,

(b) N(G§*) is one—dimensional spanned by i, i 3 O,

.L .L

(c) R(Gi) = N<G§*> and R<G§*> = N<G§> . (4.1.2)

((1) a <1, G§x+> 2 0,

I
I

l
-
‘

(e) <!,§>

A bounded linear operator L on a Hilbert space H satisfying

conditions (a) - (c) of (4.1.2) is said to be a Fredholm operator with

zero index. Note that condition (e) of (4.1.2) implies that the

algebraic multiplicity of the zero eigenvalue of G; is one.

Under these conditions the Liapunov—Schmidt theory outlined in

Section 3.1 ensures the existence and uniqueness of the nontrivial

smooth solution curve (X(s),A(s)) passing through (0,Ao). In this  





57

section, some general constructive methods for determining the

nontrivial solution curve are discussed. In all these methods the

solution X as well as the "bifurcation" parameter A are

parameterized using a different parameter s.

The Liapunov-Schmidt method presented in Section 3.1 can be used

to construct the nontrivial solution curves near the bifurcation point

(0,Ao). However, this method is seldom used for actual numerical

calculations due to its disadvantage of involving two iterations

processes.

In the last decade other iterative methods have been developed

which have shown to be of great value for the development of the

numerical methods for bifurcation problems, see Keller and Langford

[11], Crandall and Rabinowitz [4], Chen and Demoulin [2], and Decker

and Keller [5].

In [5], Decker and Keller introduced a method for constructing the

bifurcation branches near (0,Ao). They replaced the single equation

G(s++w,Ao+p):0

by an "inflated" system

6(8" + W, A0 + I!)

F(y.8) = = 0

<§,w>

where y : (w,p) e H x R', introduced an initial "guess" y° : (0,s)

and proved the convergence of Newton’s and chord iterates for a given

small value of s 3 0. Their proof is based upon Newton-Kantorovich

Theorem [8].
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Remark: Although the above methods have the advantage of being

general, the use of s as a parameter can be a disadvantage in

practical problems where A represents a physical quantity and the

solution X is required for some given values of A. For such

problems it is more convenient to use A as a given parameter and

compute the solution X(A). 0n the other hand this may not be possible

in general, for example, when the nontrivial solutions occur only at A0

in which case a different parameter must be used. In Sections 4.3 and

4.4 an approach due to Decker and Keller [5] is followed to prove the

convergence of Newton’s and chord iterates, for certain type of

bifurcation problem, with A being fixed near the bifurcation point A0.

The perturbation methods of Chapter 3 will be used to obtain an initial

"guess" for these iterates.

4.2 Newton and chord methods

The basic convergence result for Newton’s method is the following

theorem due to Kantorovich [8].

Theorem 4.2.1: (Newton—Kantorovich Theorem)
 

Let F : B, 2 B, be a continuously differentiable mapping, where

B, and B2 are Banach spaces such that FU(U°) has a bounded inverse

for some U0 6 B, which satisfies

'1

(a) HFU(U°) F(U°)fl e n

(b) nFU(U°)—’[FU(U) — FU(V)]H s LuU—vu, for all U,V e BR(U°),

an open ball of radius R about U°. Then if h = Ln é % and
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n(l—¢l-2h)

h

 

6 R, the equation F(U) = O has a solution U* 6 BR(U°)

to which Newton’s iterates

UN1 2 Un — FU(Un)—1 F(Un)

converges with a rate of convergence

n—

"0* — Unn 2 (2h)2 1 "
2n-1

 

Furthermore, if R < ”(1+Zl-2h) ,' U* is unique in BR(U°).

The form of the Newton-Kantorovich Theorem suitable for bi~

furcation problems is the following theorem due to G. Moore [14].

Theorem 4.2.2: Let F(U,6) be a mapping from B, x R1 to B,,
 

where B, and B, are Banach spaces. Assume that F is continuously

differentiable with respect to U and continuous with respect to 6.

Let U°(6) be a continuous mapping from R+ to B, such that for

some 6, > 0 FU(U°(6),6) has a bounded inverse for all 0 < 6 < 6,

which satisfies

1

(a) "FU(U°(6).6>‘ F<U°(a).a>n 4 0(6)

(b) "FU(U°(6),6)-1 [FU(U,6) — FU(V,6)]H é L(6)flU-Vfl

for all U,V e B,n(5)(U°(6)).

For some n(6) and L(6) satisfying h(6) = n(6)L(6) = 0(6) as

6 9 0, then there exists 6, > 0, 6, 6 6, and a continuous mapping

U*(6) from (0,6,) to B, such that U*(6) is the unique solution

of F(U,6) = 0 in B,n(6)(U°(6)) and the Newton’s iterates
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[W1 = 0n — FU(Un,6)_l F(Un,6)

converge to U*(6), for each 6 6 (0,6,).

The following theorem, due to G. Moore [14], is the basic result for

the convergence of chord method.

Theorem 4.2.3: Let F(U,6) be a mapping from B, x R1 to B,

where B, and B, are Banach spaces. Assume that F is continuously

differentiable with respect to U and continuous with respect to 6.

Let U°(6) be a continuous map from R+ to B, such that for some

6, > 0 FU(U°(6),6) has a bounded inverse for all 6 s (0,6,) which‘

satisfies

(a) "FU<U°(6).6>" F(U°(6).a)n 4 0(6)

(b) "FU<U°<6>,5>" [FU(U°(6).6)(U‘V) — (F(U,6) - F(V.6))]" e

q(6)flU-V", for U,V e B,n(5)(U°(6)),

for some n(6) and q(6) satisfying q(6) = 0(6) as 6 9 0, then

there exists 6, > O, 6, é 6, and a continuous mapping U*(6) from

(0,6,) to B, such that U*(6) is a unique solution of the equation

F(U,6) = 0 in the ball B,n(6)(U°(6)) and the chord iterates

0n+l = 0n — FU(U°(6),6)_1 F(Un,6)

converge to U*(6) for each 6 6 (0,6,).
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4.3 Newton’s and chord method;with A 33;; pargeter

In addition to the assumptions of (4.1.2) it is assumed here that

% <T,G§x+§> s 0.E0 =

For a given A near A0 an initial guess X0 is chosen, by the

perturbation method of Section 3.1, to be

X°(E) = 36

where E : —— (A — A0).

The following notations will be used throughout this section

6(2) - G(X°(E),x)

Gx(3) . Gx(X°(E).A).

In this section, it is shown that for fixed A close enough to A0

Newton’s and chord iterates, with X0 as an initial guess, converge to a

unique nontrivial solution of the equation

GCXJQ : 0. (4411)

It is shown that G§i(;) exists for all E in some small punctured

neighborhood of zero and that IG§:(;)N = 0(3") as Z 9 0. This will

be the conclusion of the following lemmas.

Using simple modifications the following three lemmas follow from

Theorem 5.1 [5] and the remarks following it. They are stated here

in forms suitable for the present situation.
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Lemma 4.3.1: There exists smooth functions 6(6) and 6(2)

defined on lgl 6 6, for some 6 > 0, such that

Gx<2>+(3> = fi<§>+<3>. M) = 4» and 4(0) = 0.

A ~

Lemma 4.3.2: There exists smooth functions 1(3) and 78(8)

defined on lzl 6 6, for some 6 > 0 such that GX(;)\P(;) 2 Hafiz),

YUM : i and 3“» : 0.

Let 6 be the smaller of the two 6’s provided by Lemmas 4.3.1

and 4.3.2. Define for each 3 in IE] é 6 the subspaces

~

N(8) <§(E)>

~

11(8) {x e H : <1(Z),x> = 0}.

This gives the following decompositions of H

H 2 N(2) 6 8(2).

Finally, let P(;) be the projection onto N(;) and Q(;) = I - F(g).

where I is the identity on H.

Lemma 4.3.3: There exists 6 > 0 such that for each s in

[3| 5 6, Gx(;) maps H(;) one to one onto itself.

Remark: Lemma 4.3.3 implies that Gx(;) has a bounded inverse

on H(;) and hence the behavior of G§1(;) on B will be determined

by its behavior on the subspace N(;). This is studied in the following
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Lemma 4.3.4: The restriction of Gx(;) on the subspace N(;) has

one and only one eigenvalue, namely 6(6). Furthermore, 5(3) satisfies

mb=sé+ouas

as s 9 0.

Proof: The first statement follows from Lemma 4.3.1. To prove

the second statement, differentiate the equation

efiné)=mbub

with respect to g and set 6 = 0. This gives the equation

0 E0 0 0 ° °

Gxxé? - ;- Gxxf + Gx f(O) = fi(0)§

whose solvability condition implies

E0 = 3(0).

The following theorem is an easy consequence of Lemmas 4.3.3 and

4.3.4.

Theoreg,4.3.l: There exists 6 > 0 such that for each s in 

0 < [3| 5 6, G§1(;) exists and

nG§’(Z)n = 0(211) as Z 3 0.

The convergence of Newton’s and chord iterates follows from the

following

Lemma 4.3.5: For each 0 < Igl 6 6, where 6 > 0 is as in
 

Lemma 4.3.1, the following holds
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uG§‘(Z)G(Z)n = 0(IEI’).

Proof: First observe that

~ 2E ~ ~

G(s) = % [G§x§§ - -;2 G§x§]s2 + 0(s3).

E

Since (Y,G§x§+ — -;2 G§x+> = 0, it follows that

<i(3),G(Z)> <1 + 0(2),G(Z)>

0(23).

But, then

l
h

uG§’(Z)G(E)u HG§‘(Z)P(E)G(Z)H + uG§’(E)Q(E)G(Z)n

00812) +0<II€|2>

00312).

Theorem 4.3.2: There exists 6 > 0 such that for each A with
 

-a(A—Ao)

E , Newton’s and chord iterates with

0

0 < [3| 4 a, where E =

initial guess X0 = :9 converge to unique nontrivial solution X* of

the equation

G(x,I) = 0.

Proof: Theorem 4.3.1 and Lemma 4.3.5 imply that n(;), L(;)

and q(E) of Theorems 4.2.2 and 4.2.3 satisfy

77(2) = 00312). M?) = 0031“) and q<2> = WEI).
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The proof now follows by applying Theorems 4.2.2 and 4.2.3.

Remark: The case when E0 3 0 is known as the non-degenerate

case. The degenerate case is when E0 = 0 and E3 3 0 (where E3

E3
is as defined in Section 3.1). If 3_ < 0 then for each A > A0

there are two nontrivial solutions of

G(X,A) : 0.

For this case, using the analysis of Section 3.1 one may choose

x°(E) = 24 + 22 w,

as the initial guesses for the solutions at A = A, where

g : t / -a(A-Ao)

E3

Using a similar argument to that used for the non-degenerate case

it can be shown that n(;), L(;) of Theorem 4.2.2 satisfy

«1(3) = 00312). ME) = 00:19).

which show that the convergence of Newton’s and chord iterates is not

guaranteed. In Section 4.4 the equation G(X,A) = 0 is replaced by the

"inflated" system F(U,A) = 0 [5] which will improve the convergence

rate for the non-degenerate case and guarantee it for the degenerate

case.
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4.4 Newton’s and chord methods applied to an "inflated" system with A

_a_s_vparameter

In this section it is assumed, in addition to the conditions of (4.1.2),

that either of the following conditions hold

(i) E0 3 0 (non-degenerate case)

.2
(ii) E0 = 0 but E3 3 0 and E

3

< 0 (degenerate case).

Let H, denote the Hilbert space H x R1 with inner product

((Wl)) (W2)> : <w13w2> + 81823

1‘31 82

and define F : H, x R1 9 H, by

G(s§ + w, A

F(U,A) = (4.4.1)

<§,w>

for U = (Z) in H, and A in R‘. Finally, define the initial

guesses for cases (i) and (ii) by

~ -a(A—A )

(1) U°(A) = (9), where a = ————°—, 1 e R1
2: E0

(4.4.2)

~2 ~ -a(x"xo)

(ii) U°(A) = [8 2’32], where s = 1 ¢ , A 3 A0.
8 E3

For a given A near A0 it is shown that Newton’s and chord

iterates with the initial guesses (4.4.2) converge to a unique

nontrivial solution U* of the equation
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F(U,A) = 0 (4.4.3)

0

Notations: Write F(E), FU(;) and FU for F(U°,A),

FU(U°,A) and FU(0,A0) respectively.

Observe that

Gx 0

FE, = [ ]. (4.4.4)

Using simple modifications the following theorem and the three

lemmas following it follow from Lemma 5.6 [5] and the remarks following

it.

Theorem 4.4.1: Ffi is a Fredholm operator with zero index, N(Ffi)

is spanned by i, = (g) and N(F§*) is spanned by Y, = (5). The

 

algebraic multiplicity of the zero eigenvalue of F8 is two.

Lemma 4.4.1: There exist smooth functions +,(;), §,(;) and
 

B(g) = l b,,(;) b,,(;) J defined on [El 6 6, for some 6 > 0,

bud”) bud”)

such that

Fix?) 0 ME) ~ +32)

~ ~ = 3(8) ~

0 FU(8) 32(8) 32(3)

0 O

+1(0) : *1: 32(0) 3 *2 and 3(0) 3 [ ]~

1 0
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Lemma 4.4.2: There exist smooth functions ?,(;), 12(3)

and 8(5) = [ 5,,(;) 6,,(;) ] defined on lgl é 6, for some

B..<Z> 822(2)

6 > 0 such that

0* ~

FU (.) o i.<2> A ~ i.<3>

0* ~ ~ = 3(a) ~ .

0 EU (s) 42(2) 42(2)

- 0 0

*1(0) 2 *1, 32(0) 2 Y2 and 3(0) : [ J

 

Definition 4.4.1: Let 6 denote the smaller of the two 6’s
 

~

provided by Lemmas 4.4.1 and 4.4.2. For each s in IE] 6 6

define

N<E) = <+.(3>. +.<E)>

H,(§) = {U 6 H, : <i,(3),u> = 0, i = 1,2}

For each E in IE] 5 6 it follows that H, can be decomposed into

the sum

H, 2 N(2) e H,(E)

 
provided that 6 is small enough. For each such 3 let P(;)

denote the projection onto N(;) and 0(3) 2 I --P(g), where I is

the identity on H,.

In order to examine the convergence of Newton’s and chord iterates

one has to examine the invertibility of FU(;) and determine the rate
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at which HFE‘(;)H tends to infinity as 3 tends to zero. The

following lemma shows that by making 6 small enough the restriction

of FU(;) to the subspace H,(;) has a bounded inverse and hence

reduces the study of the behavior of FU(;) to the study of its

restriction to the subspace N(;).

Lemma 4.4.3: There exists 6 > 0 such that for each E in

lg] 5 6, FU(;) maps H,(;) one to one onto itself.

The behavior of the restriction FU(Z) of FU(Z) to 14(2) is

studied in the following

Lemma 4.4.4: FU(6) has exactly two eigenvalues which are the

same as those of B(;).

Proof: Let a,§,(;) + a,é,(;) denote an eigenvector corresponding

to an eigenvalue a of FU(;). By Lemma 4.4.1 it follows that

at 31

= a

a, a,

and hence a is an eigenvalue of 8(6).

13(2)T

 

The eigenvalues of 3(6) are studied in the following

Lemma 4.4.5: The two eigenvalues of 8(5) are of the form

(1) a: : cl El/z + 0(2)

for the non—degenerate case, and

(ii) a = c. E + 0(32)

for the degenerate case, where C, and C, are non—zero constants.
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Proof: The eigenvalues of B(;) are given by

_ fl * J42-47a _ __________

2

where 4 = b..(2) + b.2(3> and 7 = b..<2>b..<3) — b..<2>b..<3>.

From Lemma 4.4.1 FU(;) satisfies

e) mdnkb=budnmb+befinxa.

Differentiating equation (a) with respect to g and

gives

setting ; = 0

E

at.“ — —; eh. . . .
(b) + FU é1(0) : b11(0)*i + b12(0)§2

0

for the non-degenerate case, and

G§x§§ o

(C) + FU

0

for the degenerate case.

Aw>=mmmn+éuw82

The solvability condition of equation (b) is

b12(0) 2 E0

which proves (i). While the solvability condition of equation (c) is

b12(0) : b11(0) : 0

and, hence

Lw>=d§>

for some constant 8. Differentiating equation (a) once more with

respect to g and setting E = 0 leads to (for the degenerate case)
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23

4G§x+w2 + zcfixw,+ + G§xx+++ — ——§ G§A+

0

F6 ¥.(0) = 6..(0)+. + 6.2(o>+.

whose solvability condition is

t312(0) : 4E3

which proves (ii).

The following theorem is an easy consequence of the

4.4.4 and 4.4.5.

Theorem 4.4.2: There exists 6 > 0 such that for

0 < [3] £ 6, F61(;) exists and

uFfi’(E)u = 0(2’7)

where 7 is % for the non-degenerate case and is

degenerate case.

One more lemma is needed to prove the convergence of

Lemmas 4.4.3,

each s in

l for the

Newton’s and

chord iterates. In this lemma "Ffix(;)F(;)fl is estimated.

Lemma 4.4.6:
 

"EU—1(;)F(;)fl : 0(37)

where 7 is g for the non—degenerate case and 3 for the degenerate

case.
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Proof: For the non—degenerate case

~ E

- 22% Gix” — -; Gin) .
M») = + 00:3)

0

while for the degenerate case

~3 5E

~ 8—6 [4G§x§w, + 26§xw,+ + G§xx+4+ — —3 Gibd] ~

Me) = a + 0(a4)

0

It follows that

<4,(E),F(Z)> = 0(21), 1 = 1,2

where 7 is as defined in the statement of the lemma. Since FU(;)

has a bounded inverse on H,(;) the lemma follows.

It follows from Theorem 4.4.2 and Lemma 4.4.6 above that the

functions h(;) and q(;) of Theorems 4.2.2 and 4.4.3 satisfy

h(E) : O(22) and q(E) = 0(E2)

for both the non~degenerate and the degenerate cases. This gives the

proof for the following

Theorem 4.4.3: There exists 6 > 0 such that for each 2 in

0 < [3| 5 6 Newton’s and chord iterates with initial guess U°(g)

converge to a unique nontrivial solution U* of the equation

F(U,A) = 0

where A is defined as in (4.4.2).
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4.5 Computing the perturbed bifurcation points and the solution curves

through them

Let G : H x R1 x R1 9 H be a smooth mapping, where H is a real

Hilbert space and consider the "perturbed" problem

G(X,A,1') : 0. (4.5.1)

Assume that

(a) G(0,A,O) = 0

(4.5.2)

(b) G-r(0,A,O) 3 0

for each A in R1. Condition (a) of (4.5.2) implies that the trivial

solution solves the "unperturbed" problem

G(X,A,O) = 0 (4.5.3)

for each A c R‘, while (b) implies that (4.5.1) does not have the

trivial solution for any A in R1. Thus the solution set of (4.5.1)

is completely different from that of (4.5.3). Assume further that

G3; 3 Gx(0,Ao,0) satisfies the conditions in (4.1.2) for some A0 in

R1 and that G3- 2 G,-(0,Ao,0) satisfies

b a <i,Gi> 2 0. (4.5.4)

Under these assumptions Theorem 3.3.2 implies that there exists

a smooth solution curve (X(s),A(s),r(s)) of (4.5.1) defined in the

neighborhood of (0,Ao,0) and passing through it, that each

Gx(X(2),A(s),-r(s)) is a Fredholm operator with zero index, that for

s30
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(a) 8(8) <¢(8).GXA(X(8).A(8).T(8))*(8)> f 0

(4.5.5)

(b) d(8) <¢(8).GA(X(8),A(8).T(8))> ‘ 0

where N(Gx(X(s),A(e),r(s))) = <§(s)> and

N(G§(X(s),A(s),r(s))) = <:(e)>, and that through each (X(s),A(s),r(s))

there passes a unique smooth solution curve of (4.5.1). The solutions

(X(8),A(s),T(s)) are sometimes called perturbed bifurcation points.

In this section it is shown that Newton’s and chord methods can be

used to compute the singular solutions (X(s),A(s),T(s)) as well as

the solution curves through them.

Let Y denote the space H x H x R1 x R1 and F : Y x R1 9 Y be

defined by

r G(5* + Y1: A0 + 1"1: r2)

GX(5* + Y1: A0 + F1: r'2)({’ + Y2)

F(y.8) =

<§,y,>

' <‘§:Y2>
  

where y = (y,,y,,r,,r,)T and consider the equation

F(y,s) = 0. (4.5.6)

It was shown in Lemma 3.3.1 that Fy(0,0) has a bounded inverse.

Hence for small enough 8, Fy(0,s) will have a bounded inverse.

Taking y0 = 0 as an initial guess the convergence of Newton’s and

chord iterates, follows from Theorems 4.4.2 and 4.4.3.
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. . * * x * *

Assume now that the unique solution y = (y,,y,,r,,r,) of

(4.5.6) corresponding to some 8 3 0 has been determined and consider

the equation

G(X,A,r) = 0 (4.5.7)

. X . . * *

With 1 = r, being fixed and (X,A) near (X ,A ), where

X* = 2+ + y? and A* = A0 + rf. Let 1* = i + y: and define

G(X* + 8§* + w, A* + p, T)

K(U.8) =

(9*,w>

_ T l a

where U — (w,p) e H x R . Since

GX(X*:A*)T) GA(X*1A*:T*)

Ku(0.0) = .

<+*,-> 0

it follows from (b) of (4.5.5) that it is invertible, and hence that

KU(0,s) is also invertible for small enough 8. But

K(0.8) = 0(82)

and so the conditions of Theorems 4.2.2 and 4.2.3 are satisfied with

U0 = 0 as an initial guess. It follows that for each small 6 3 0

Newton’s and chord iterates with initial guess U0 2 0 converge to a

unique solution of the equation

K(U,s) = 0.
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Remark: In some cases (4.5.1) may have solution curves which do

not pass through the singular solutions (X(s),A(s),1'(s)). Such solution

curves cannot be determined by the above method. In the next section

it is shown, under additional assumptions, that Newton’s and chord

methods can be used to determined all the solution curves of (4.5.1) in

some neighborhood of (O,A0,0).

4.6 Newton’s and chord methods for the perturbed problem

This section is concerned with the numerical computation of all the

solution curves of equation (4.5.1) in a neighborhood of the bifucation

point (0,Ao,0). In addition to the assumptions of Section 4.5 it is

assumed that either of the following conditions hold

(1) E0 3 0 (non-degenerate case)

(ii) E0 = 0 but E3 3 0 and E2 < 0 (degenerate case).

3 \

The initial guess for Newton’s and chord methods is obtained using

the singular perturbation method [13], which leads to the following:

Case 1: (Non-degenerate Case)

For a given T 3 0 the solution curves of (4.5.1) near (0,Ao,0)

can be written as

A3: + 0(22)>
<

A

-

V

I
I

(4.6.1)

- A0 + S; + 0(62)>
2

A

M

\
.
/

I
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where :3 = IT! and A is determined by the equation

EOA2 + aeA + b = 0. (4.6.2)

Case 2: (Degenerate Case)

In this case the solution curves of (4.5.1) near (o,x00) can be

written as:

x = AZ+ + A=§2w2 + 0(33)

(4.6.3)

A = A0 + 532 + 0(33)

where 23 = IT] and A is determined by

EA3 + 66A + b = 0. (4.6.4)

Definition 4.6.1: Let H, denote the Hilbert space H x R1 and
 

define F(i) : H, x R‘ x R1 9 H1, 1 = 1,2, by

G(A;* + W, x0 + 5; + P, g2)

F’(U.s.3) = (4.6.5)

<§,w>

where A is determined by (4.6.2),

G(Agé + Azzzw, + w, A0 + $62 + p, 33)

F2(U.£.3) = (4.6.6)

<§,w>

where A is determined by (4.6.4). In (4.6.5) and (4.6.6)

U = (X) e H,. Finally, let U0 = 0 denote the initial guess.
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Consider the equation

Fi(U,£,;) = 0. (4.6.7)

For any f e R1

6§ 0

FU(1)(0,£,0) = , 1 = 1,2.

<4, > 0

Therefore Fu(i)(0,£,0), i = 1,2 , has the same properties as those

of F8 of Theorem 4.4.1. Furthermore for any constant C > 0 there

is a number 6(0) > 0 such that FU(i)(O,£,;) satisfies the conclusions

of Lemmas 4.4.1, 4.4.2, 4.4.3 and 4.4.4 for [5| 5 c, )2; 4 6(0)

and i = 1,2. The equivalent lemma to Lemma 4.4.5 is

Lemma 4.6.1: The eigenvalues a of 3(6) satisfy
 

a 2 cl El/2 + 0(3)

for some constant C, I 0.

Proof: Differentiating

Fu“)(0.e.3>m2’) = b..('£>+.<'£) + b..(’£)+.(3)

with respect to 2 and setting 6 = 0 gives

AG§A* (i) . . .

+ FU (0,£,0)+,(0) = b,,(0)+1 + b,2(0)+2

 

0

whose solvability condition gives

6,,(0) = Aa : 0.
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Lemma 4.6.1 implies the following

Theorem 4.6.1: For each C > 0 there exists 6(C) > 0 such that

FU(1)-!(0,€,;) exists and

"Fu(i)-1(0,£,;)fl : 0(3-1/2)

 

 

for each ISI 4 c, E in o < (2| 6 6(0), and i = 1,2.

The equivalent lemma to Lemma 4.4.6 is

Lemma 4.6.2:

_, ~ ~ ~

(a) "FU(‘) (0.5.s>F(‘)(0.s.e)n = 0(85/2)

_, ~ ~ ~

(b) "FU(‘) (0,5.s)F(”(0.s,e)u = 0(87/2>.

Proof:

0 0 0 ~

(Aszx§§ + ZAEGxxf + 2G-,-)82

F(1>(0,s,3) = + 0(33).

Since A satisfies (4.6.2) it follows that

<+(E>,F<1>(o,s,2>> = 0(35/2>,

which gives (8).

Similarly

 
<w(E).F<2><0,s.3)> = 0(37/2)

 and this implies (b).
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It follows from the above caluculation that the functions h and

q of Theorems 4.2.2 and 4.2.3 satisfy

ME) = 0(52). q(3> = 0<E=>

for the non-degenerate case, and

Me“) = 0(33). q(E) M3)

for the degenerate case.

 

This gives the proof of the following

Theor- 4.6.2: For each constant C > 0 there exists 6(C) > 0
 

such that for each 5 and E with [SI 5 C and 0 < [El 5 6(0)

Newton’s and chord iterates with initial guess U0 = 0 converge to a

unique non—trivial solution U* of

F<i)(U,s,’£) = 0, 1 = 1,2.

 



 



CHAPTER 5

NUMERICAL METHODS

5.0 Introduction

In Section 3.1 the shooting algorithm for a non-linear boundary

value problem (BVP) of the form X'(s) = g(s,X,>\,T), B0X(0) + B,X(l) =

0, where A and 1' are parameters, is described. The shooting

method reduces the BVP to a problem of finding zeroes of a non-linear

equation with two parameters.

In Section 3.2 the application of the shooting method to bifurcation

and perturbed bifurcation problems [18] is described. This leads to a

finite dimensional bifurcation and perturbed bifurcation problems. It is

also shown in Section 3.2 that the numerical schemes presented in

Chapter 4 can be applied to the finite dimensional problem

corresponding to the BVP (1.2.10), (1.2.11).

The numerical solution of the BVP (1.2.10), (1.2.11) are presented

and discussed in Section 5.3. It is found that the numerical schemes of

Chapter 4 give accurate results in the neighborhood of the bifurcation

points.

Finally, the perturbation solution obtained in Chapter 3 is compared

with the numerical solution in Section 5.4.

5.1 Basic definitions and results

Let g : [0,1] x 0 x R1 x R‘ 4 Rn denotes a smooth mapping, where

81
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0 e (2 C Rn is an open domain, let B0, B1 denote any n x n constant

matrices with rank[Bo : B,] n and consider the BVP

X! : g(S!X!A’T)

(5.1.1)

B[X] 2 BOX(O) + B,X(l) = O.

The shooting method is the most common used method for solving

such a BVP. It reduces (5.1.1) to a finite dimensional problem as

follows. For each A e Rn the smoothness of g ensures the existence

and uniqueness of solution X(s,A,>\,‘r) of the initial value problem (IVP)

X ' : 8(39X’A97)

(5.1.2)

X(0) : A

which depends smoothly on A. Define a mapping K : R“ x R x R -) Rn

by

K(A,J\,r) 3 BOA + B,X(1,A,3\,~r).

The smoothness of g implies that K is smooth mapping. The

following theorem shows that the BVP (5.1.1) is equivalent to the

problem of finding the roots of the (finite dimensional) equation

K(A,7\,T) = 0 (5.1.3)

and gives the relation between the solutions of (5.1.1) and (5.1.3).

Theorem 5.1.1: The BVP (5.1.1) has as many solutions as there are

distinct roots of (5.1.3).
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M: If A is a root of (5.1.3), then there is a unique solution X

of the IVP (5.1.2) satisfying X(O) = A. Since K(A,J\,‘r) = 0, it follows

that B[X] : 0 and hence X is a solution of the BVP (5.1.1).

Conversely, if X is a solution of the BVP (5.1.1) then A = X(O) is a

root of (5.1.3). This sets up a one to one correspondence between the

set of solutions of BVP (5.1.1) and the roots of (5.1.3).

Let X0 denotes a solution of the BVP (5.1.1), A0 be the

corresponding solution of (5.1.3) for some (Mr) and M be the linear

operator

Moo 3 X. ' gX(S!X0)AyT)X (50104)

with domain

D a {x e c;[0,1] : B[X] = 0}.

It is well known [12] that the adjoint M* of M is the linear

operator

m*(2) . — Z' — a; (s,x..x,r)z (5.1.5)

with domain

* __ l . * _ * * _

D — {Z 6 Cn[0,1] . B [Z] ~ B0Z(0) + B,Z(l) — 0}

where B: and B1 are any n x n constant matrices with

rank[B: : Bf] = n and

Bo B: T = B, B? T . (5.1.6)

 





84

For X,Y e Cfi[0,l], let <X,Y> denotes the Lz—inner product.

The proof of the following theorem can be found in many standard

ordinary differential equations texts (for example see [3]).

Theorem 5.1.2: The ranges of the operators M and M* are closed

and satisfy

R(M) = N(M"‘)‘L

R(M*) = N(M); .

The following theorem gives the relationship between N(M) and

N(KA(A0,X,T)) (see [12] for the proof).

Theorem 5.1.3: The mapping E : N(M) 9 N(KA(A0,X,T)) defined by

E(é) a §(0) is one to one onto and

dim<N<M>> = dim<N<KA(A..x.r)>.

5.2 Shootiggpnethod for bifurcation and perturbed bifurcation problems

The theory described in this section is due to H. Weber [18] (see

[18] for the proofs of the lemmas and theorems).

Consider the BVP (5.1.1) under the additional assumptions

(a) g(sfiLA,O) : O (b) gT(sflLA,O) I O

for all A in R1. So that X = O is a solution of (5.1.1) for each X

when T :(L

It follows from the Implicit Function Theorem that nontrivial

solutions of (5.1.1) may branch off from the trivial solution when 1' = 0

only at eigenvalues of the linearized problem. Assume for some A0 6 R
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that the following conditions hold

(a) N(Mo) is one dimensional generated by i

(b) a '=' <!,gxx(°,0,ko,0)+> 3 0 (5.2.1)

(o) b 5 < 1, g-r(°,0,>\o,0)> 3 0

where Mo denotes the linear operator defined by (5.1.4) with X0 = O

and ‘1' generates N(M’g).

Under these assumptions it follows from Theorem 3.1.1 that (O,J\O,O)

is a bifurcation point. Now, Theorem 5.1.1 reduces the study of the

solution set of (5.1.1) in a neighborhood of (O,}\O,O) to the study of the

zeros of the non—linear equation (5.1.3) in the neighborhood of (0,>\O,O).

It follows from Theorems 5.1.1 and 5.1.3 that K(O,J\,O) : 0, KT(0,J\,O) 1 0

for all A in R‘, that N(KA(O,J\OO)) is one-dimensional and that it is

generated by NO). In what follows it is shown that the mapping K

satisfies the conditions of (5.2.1).

Definition 5.2.1: Let P e R“ be such that HP" 3 O and

PTKA(0,xo,0) = 0.

Definition 5.2.2: Let Y and Z denote the fundamental matrices
 

defined (uniquely) by

(a) Y' = gx(s.0.x00)Y (b) 2' = — g§(s.0.x..o>z

Y<°> = I 2(1) : 1.

Lemma 5.2.1:
 

(1) 2(0)T = 2(s>TY(s> = Y(1)
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(2) f(s) = Y(s)+(0)

(3) N(M*) = (2(5) BTP>

1

(4) 3% Y<1.0.xo.0) = Y(1> I Y"’(t)gx,(t.0.xo,0>v(t)dt.
0

Theorem 5.2.1:

(1) <P.KAx(0.x..0)+(0)> = <§.gxx(s.o.x.,0>é>

(2) <P,K.(0.x..0)> = <§.g.<s.0.xo.0>>

where f(s) = Z(s) B?P.

It follows from Theorem .5.2.1 that the conditions (5.2.1) are

satisfied for the finite dimensional problem (5.1.3).

The numerical schemes of Chapter 4 can be used to solve (5.1.3) in

the neighborhood of (0,Ao,0) provided that the algebraic multiplicity

of zero eigenvalue of KA(0,A00) is one. That is, provided that

<P,+(O)> I 0. (5.2.2)

It is shown below that condition (5.2.2) holds for the BVP (1.2.10),

(1.2.11) and therefore allows the application of the numerical schemes

of Chapter 4 to this problem.

To see that (5.2.2) holds for BVP (1.2.10), (1.2.11) let P =

(P,,P2,P3,P‘,P5,P6)T be such that up" = 0 and

(30 + y(1)B,)Tp = 0. (5.2.3)
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It can be shown easily that

  

l—Bfi'n2 l—3a-rr2 O 6flw3 0 -23

—3n2+9an‘ I-Ban 0 6n3—18an5 0 -2+6a'n2

-2+60m2 ~2fi l -12an3 0 4a

y(1) =

0 0 0 l 0 0

— 3 + sen — Z a o —12an= 1 3 a
71’ 71' 7T

0 0 0 0 0 1

_ w _ n (Buzzn _ m _ n .(3n’)n

"here a ” n50 ( 1) (2n+3)! ' fl ‘ n50 ( 1) (2n+2)! '

and, therefore, (5.2.3) is equivalent to

(a) P1 + (1 - 33W2)P2 + (‘2 + 6a"2)P4 = 0

(b) (1 - 3afl’)P2 - 25F. = 0

(c) P3 + P, = 0 (5.3.2)

(d) Sfin3P, — 12an3P‘ + P5 : 0

(e) P6 = 0

(f) —25P, + 4a?4 = 0.

It is easy to show that a > 0, B > 0. Hence if P2 = 0 equation (f)

of (5.3.2) would imply that P, = 0, hence P, = 0 by (a), P3 = 0 by

(c), P5 = 0 by (d) and P6 = 0 by (e). This contradicts the fact
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that HP" 2 0. This shows that P; 1 0 and P6 = 0. Since

*(n)(0) : (0,nn,0,0,0,nw2)

it follows that <P,+(n)(0)> 3 0 and hence the zero eigenvalue of the

linearized finite dimensional problem corresponding to the BVP (1.2.10),

(1.2.11) has algebraic multiplicity one.

5.3 The numerical solution

In this section the equilibrium states of an elastic shell under a

uniform and non-uniform pressure fully or partially submerged in a

fluid are determined. The load-carrying capacity of the shell F is

computed for various values of the parameter 1' (see Figure 5.3.3). It

is found that the maximum of F occur at a point where the shell is

partially submerged in the fluid.

The numerical solution is obtained as follows. The BVP (1.2.10),

(1.2.11) is discritized using the shooting method described in the

previous two sections. This results in a non—linear finite dimensional

problem with the two parameters 7K and T. The numerical schemes of

Sections 4.4 and 4.5 are used to solve the resulting bifurcation and

perturbed bifurcation problems in the neighborhood of the bifurcation

points. Away from the bifurcation points, the finite dimensional equation

is solved by Newton’s method.

It is found that the numerical results compare well with the

perturbation approximations of Chapter 3. This shows that the

numerical schemes of Chapter 4 are able to produce accurate results in
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the neighborhood of a bifurcation point.

Table 5.3.1 gives the numerical values of 9'(O) corresponding to

some values of A near the first bifurcation point A, : 3W3, for the

case when 1' = 0, i.e. when the shell is under a uniform pressure.

These results agree with the numerical results previously obtained in

[15] and [6]. Figure 5.3.1 shows the solution curves branching from

the bifurcation point x,.

Table 5.3. 1

Numerical solution for A near 371’3 z 93.01883 when ‘r = 0

 

 

A 94(0) 9;.(0)

93100 3.14159 ——

93.018 3.14159 -—

93.01883 3.14159 —-

93.02 3.15070 3.13703

93.03 3.16757 3.12258

93.04 3.26680 3.10718

93.05 3.30614 2.98577

93.06 3.34218 2.95345

93.07 3.36170 2.92241

93.08 3.38592 2.90160

93.09 3.40547 2.88449

93.10 3.42700 2.85913     
 



9O

6R1

 

 

50. ,,v’

,z'

//'

110-1

30‘

2-0- \ \

\ \

L04

0'0 I I 9):
 

933 940 960

Bifurcation curves branching from A, : 3113

Figure 5.3.1

Table 5.3.2 and Figure 5.3.2 give numerical values of 9'(O)

corresponding to some values of A near A, for 1' = .001. It appears

from Figure 5.3.2 that there is still a critical pressure AC beyond

which a drastic change occurs in the shape of the shell which in turn

affect the load carrying capacity of the shell.
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Table 5.3.2

Numerical solution for A near 3113 z 93.01883 when 1' : .001

1 MO) one) e;(0)

93. 00 3. 18575 - —-

93 . 01883 3 . 21531 -— --

93 . 036 3 . 27039 -- --

93 . 03697 3 . 27352 -- -—

93.04272 3.28746 3 02756 3 02756

93.043 3.29975 3 04625 3 03192

93.046 3.30758 3 06385 3 00181

93.06 3.34433 3 11090 2 97097

93.08 3.39265 3 12337 2 91125

93.1 3.44004 3 13745 2 86581

0’01
4\

3440041

313515 910 f0 91?:

2-865811 
Solution curves of the perturbed bifurcation problem near

the bifurcation point A2 = 311'3 when 1' : .001

Figure 5.3.2
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Figure 5.3.3 gives the relation between the load-carrying capcity of

the shell F and the pressure A for various values of 1'. It also

describes F as a function of r‘ in the case when the shell is

partially submerged in the fluid, where r* is the arc length of the

non-wetted part of the shell. The last point of each curve in Figure

5.3.3 represents the equilibrium state when there is a point contact

between the sides of the shell (see Figures 5.3.5 — 5.3.7). For large

values of 1' (1' > 385) side contact occurs at a partially submerged

state (see Figure 5.3.7). To study the behavior of the shell beyond this

contact point a different formulation is needed.

 

 

  

F(l'

0.16‘

I" r I r T 1* r I 1 t r [ l 1 1 , I r %X

10 05 (10 160

The load-carrying capacity of the shell for the values of

1' = 0,10,100,200,300,385

Figure 5.3.3
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Remark: Note that for each values of T the maximum of F

occurs at some réh') (see Figure 5.3.3) corresponding to an

equilibrium state where the shell is partially submerged. Note also that

the load-carrying capacity of the shell is zero in the case when the

shell is under a uniform pressure, i.e. T : 0.

Figure 5.3.4 describes F as a function of T while A is kept

zero, i.e. when the pressure difference between the inside and the

outside of the shell is zero.

awe

  
. 1 H a I

00 200 385 400

The load—carrying capacity of the shell as a function of T

when A = 0

Figure 5.3.4
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Finally, Figures 5.3.5 — 5.3.8 give the shape of the shell for various

values of A and T.

—
'

‘
fl
,

\

fi
r
‘
<

 

  ll .
The deformation of the shell for T = 10 and A : 158,150,92

 

 
   

Figure 5.3.5

X y y
‘1

fl.

/ y

.__,__,x . x k x

The deformation of the shell for T = 100, A : 119,100,90

Figure 5.3.6
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Y Y

: x

x x C x

The deformation of a shell with no pressure difference and large values

of T = 385,300,100

L

   

Figure 5.3.7

Y

Y

The deformation of a partially submerged shell for T : 700

and r* = 3,6,1

   

Figure 5.3.8
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5.4 Error in the perturbation solution

In this section the perturbation solution obtained in Chapter 3 is

compared with the numerical solution. The percentage of the error in

the perturbation solution is computed in Tables 5.4.1 - 5.4.4 for

T = .001 and T = 1. Away from the first bifurcation point A2 the

regular perturbation expansions of Section 3.2 are used to approximate

9'(0) while the perturbation expansions of Section 3.4 are used to

approximate 9'(0) for A near A,. In Tables 5.4.1 - 5.4.4, 9'p(0)

and 9'N(0) represent perturbation and numerical solutions

respectively.

Table 5.4.1

Error in the perturbation solution for the partially

submerged case when 1' : .001

 

 

    

r* 6'p(0) 6'N(0) Error percent

1.0 3.141593 3.141593 0.000000

.8 3.141593 3.141593 0.000000

.6 3.141593 3.141593 0.000000

.4 3.141596 3.141596 0.000000

.2 3.141600 3.141600 0.000000

0 3.141601 3.141601 0.000000 
 





Table 5.4.2

Error in the perturbation solution for the fully

 

 

 

submerged case when T = .001

A 6'p(0) 6'N(0) Error percent

0 3.141601 .141601 0.000000

20 3.141603 .141606 0.000095

40 3.141608 .141617 0.000286

60 3.141620 .141630 0.000318

80 3.141665 .141678 0.000414

90 3.141919 .141911 0.000255

92 3.142574 .142506 0.000022

93 3.189530 .185750 0.118650

93.0188 3.245700 .215310 0.945470

93.0360 3.304070 .270390 1.029847

93.0430 3.324720 .299750 0.756720

93.0460 3.333060 .307580 0.770350

93.1000 3.450670 .440040 0.309000   
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Tatfle 5JL3

Error in the perturbation solution for the partially

submerged case when T = 1

 

 

 

 

r* 6'p(0) 9'N(0) Error percent

1.0 3.141593 3.141593 0.000000

.8 3.141627 3.141627 0.000000

.6 3.142336 3.142337 0.000032

.4 3.145058 3.145059 0.000032

.2 3.148582 3.148589 0.000222

0.0 3.149656 3.149680 0.000762     
 





99

Tatde 5JL4

Error in the perturbation solution for the fully

submerged case when T = 1

 

 

 

A 9'p(0) 6'N(0) Error percent

0 3.149656 3.149680 .000762

20 3.152293 3.152360 .002125

40 3.157093 3.157220 .004023

60 3.168193 3.168350 .004955

80 3.214093 3.215390 .040337

90 3.468255 3.481110 .369270

92 3.834543 3.904634 .795000

93 4.176900 4.270300 .187200

93 4.183705 4.277370 .189780

93 4.189932 4.283830 .191917

93 4.192466 4.286450 .192584

93 4.193552 4.287580 .193032

93 4.213093 4.307820 .198955   
 

 

 





CHAPTER 6
 

CONCLUSIONS

In this chapter results in the previous chapters are summarized and

discussed.

In Chapter 1 the physical problem treated in this thesis was

formulated along two lines. The first formulation was obtained by

balancing the moments, keeping the top point of the ring fixed. This

led to a non-linear boundary value problem for one half of the ring

involving two physical parameters A and 1' representing,

respectively, the depth of the ring and the non-uniformity of the

pressure. A second formulation was obtained using Hamilton’s principle

of least energy in which the bottom point of the ring was kept fixed.

This led to a variational problem for the entire ring. Since the bottom

point of the ring was kept fixed the load carrying capacity 27 did not

enter the energy expression and therefore was treated as a parameter

to be determined along with the shape of the ring. A similar variational

formulation in which 27 was treated as a given parameter was also

given and this used to prove the existence of solution for a given value

of 27 in Chapter 2.

In Chapter 2 several existence results were obtained. The

variational formulation obtained in Chapter 1 was used to prove the

existence of an equilibrium state of the ring for each value of A and

T, while 27 was treated as a parameter to be determined (i.e. the

100
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shape determines the load carrying capacity 27). Three existence

results in which 27 was treated as a given parameter were given. In

this case, the load carrying capacity 27 determins the parameters A

and T and, hence, the shape of the ring. The proofs of the existence

results of Chapter 2 were based upon a paper by F.E. Browder [1] and

are extensions to the results obtained by I. Tadjbakhsh [15] for the

uniform pressure case.

In Chapter 3 all the singular or bifurcation points An of the basic

solution curve (the circular solution) were determined for the case when

T = 0 (the uniform pressure case). The Liapunov-Schmidt theory was

used to prove that a pitchfork bifurcation occurs at each An. Valid

asymptotic expansions for the bifurcating solution curves near each An

were obtained. The behavior of the basic solution, the bifurcation

points and the bifurcating solution curves under the perturbation

T 3 0 were examined. It is found that each An goes into a

"perturbed" bifurcation point and that at each such perturbed

bifurcation point a limit point bifurcation occurs. The proof of this

result was based upon the Implicit Function Theorem and, hence, can be

used to construct the perturbed bifurcation points curve as well as the

solution curves through each of them. The regular and singular

perturbation methods were used to obtain valid asymptotic expansions

for the solution curves when 1' 1 0 but small.

In Chapter 4 the convergence of Newton’s iterates near the

bifurcation point was considered. The use of Newton’s method to

determine the bifurcating branches near a simple bifurcation point was

originally considered by Decker and Keller [5]. They replaced the

equation G(A,u) : O by an "inflated" system F(X,a) : 0, where
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X = (A)’ parametrized X by a different parameter 8 (an

approximation to the arc length), introduced an initial guess X°(s) and

proved the convergence of Newton’s iterates to a solution X(8) of the

inflated system F(X,s) = 0 for each small enough a. In practical

problems, however, A is often a physical parameter and it is required

to compute u as a function of A, though it may not always be

possible in general to compute u as function A (since bifurcating

solutions may occur only at the bifurcation point). It is shown in

Chapter 4 that for the pitchfork bifurcation problem Newton’s method

can be used to compute u for a given A near the bifurcation point

while the asymptotic expansions for the bifurcating curves of Chapter 3

were used to produce the initial guess for Newton’s iterates. It was

also shown in Chapter 4 that Newton’s method can be used to determine

the perturbed bifurcation points and the solution curves for the

perturbed bifurcation problem provided that T is small enough, with

the initial guess for Newton’s iterates being obtained from the singular

perturbation expansions of Chapter 3.

In Chapter 5 the boundary value problem formulated in Chapter 1

was discretized by the shooting method. This led to a finite—

dimensional, yet non-linear, problem. Away from the bifurcation points

Newton’s method was used and near the bifurcation points the numerical

schemes of Chapter 4 were used to solve the finite-dimensional problem.

It was found that the load carrying capacity 27 attains its maximum

value at a partially submerged case, that for each 0 5 T 6 k (k z 385)

the deformation of the ring will increase as A increases from 0 until

at A : AC(T), when Opposite sides of the ring touch at one pair of

points (Figures 5.3.5, 5.3.6), and that for T > k opposite sides of the
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ring touch at a partially submerged case. Finally, the perturbation and

the numerical solutions were compared for T = .001 and T - 1. It is

found that the percentage of error in the perturbation solution is less

than 3%.
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