





ABSTRACT

BLENDING-FUNCTION TECHNIQUES
WITH APPLICATIONS TO
DISCRETE LEAST SQUARES

By

Dale Russel Doty

The theory of blending function spaces (bivariate interpolation)
is developed in the general setting of interpolation spaces. In this
setting it is shown that blending function spaces have the desirable
quality of doubling the order of accuracy with less computation when
compared to standard tensor product spaces.

The dimensionality of discretized blending function spaces is
derived, a;nd several bases are explicitly constructed. The special
example of Hermite spline blended piecewise polynomials is developed,
showing that these spaces have bases with small support which are
easy to calculate. These spaces offer maximum order of convergence
for a minimum number of basis elements. For example, linearly
blended piecewise cubic polynomials offer a fourth order approxima -
tion scheme, and cubic Hermite spline blended piecewise polynomials

offer an eighth order scheme.
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Next, using the exponential decay of the natural cubic cardinal

splines and natural cubic spline blending, a derivative-free approxi-
mation scheme is developed, which is eighth order in the interior of
the domain.

Algorithms with corresponding error estimates are given for
solving the discrete least squares problem with unstructured data.
For the univariate case, algorithms are developed using the space of
cubic splines. The resulting error analysis indicates the necessary
restrictions to be placed on the number and distribution of the data
points to insure that the discrete least squares fit will be O(hm) to
a function fe Cm[a, b] from which the data arises, where h is the
mesh size and 1{mg4. An example is given to illustrate that the
discrete least squares fit need not be close to f if these conditions
are not realized. For the bivariate case, algorithms and error
analyses are given for the spaces of bicubic splines and discretized
blending function spaces. It is shown that the discrete least squares
fit to a bivariate function f is of the same order accuracy as the
corresponding interpolation accuracy.

Discrete least squares is considered on general domains which
have curved boundaries and are possibly multiply connected. This
general domain is subdivided into ""standard'' subdomains, and
explicit mappings from the unit square to these standard subdomains

are constructed which are one-one, onto, and have easily calculated
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inverses. Thus, discrete least squares over general domains -
reduces to the cases previously considered.
Finally, an extensive computational error analysis is given

for a constrained least squares algorithm.



BLENDING-FUNCTION TECHNIQUES
WITH APPLICATIONS TO
DISCRETE LEAST SQUARES

By

Dale Russel Doty

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1975



ACKNOWLEDGMENTS

I wish to express my appreciation to Professor Gerald D.
Taylor for his encouragement and guidance during the preparation

of this thesis.

ii



CHAPTER 1

CHAPTER 2

TABLE OF CONTENTS

Page
COMPUTATIONAL ERROR ANALYSIS
FOR DISCRETE LEAST SQUARES .. .. . A |
Section 1 Least Squares with Constraints . . . . 2
Section 1.1 Pivoting . . . .. . . . . 5
Section 1.2 A Constrained
Least Squares
Algorithm . .. ... .. 7
Section 2 Defining the Perturbation
Problem . .. .. e o o e s e s s e s s 10
Section 3 Matrix Norm Inequalities 12
Section 4 Condition Numbers of Non-
square Matrices . .. . .. ¢ ¢ . .. 17
Section 5 An Upper Bound for | |5Q| | ...... 20
Section 6 Basic Relations in the Perturba-
tional Problem ., .. .. ... .. .. 33
Section 7 Effects of Perturbational Errors . . . 37
Section 8 Rounding Errors in Computation , , . 45
Section 8.1 Vector Addition . .. . . 46
Section 8.2 Matrix Multiplication. . . 46
Section 8.3 Solution of A Tri-
angular Set of Equations . 47
Section 8.4 Orthogonal Transfor -
mation , ., ... ... .. 48
Section 9 Rounding Error Analysis . .. ... . 51

BLENDING FUNCTION THEORY B 11

Section 1
Section 2

Section 3
Section 4

Spline and Blending Function
Interpolation e e e e e . . 66
Dimension of Discretized Blendmg
Function Spaces . . . . . . . . .. . . 86
Natural Cubic Blending ... ... . 102
Exponential Decay of Natural

Cubic Cardinal Splines . . . .. .. 109
iii



CHAPTER 3 DISCRETE LEAST SQUARES .. .. ...

Section ] Uniform Error Estimates . . .
Section 2 A Uniform Bound .. ... . ..
Section 3 Univariate Discrete Least

Squares

Section 4 Bivariate Least Squares

with Data on Mesh Lines . . . .
Section 5 Bivariate Least Squares

with Unstructured Data ¢« o o .

Section 5.1
Section 5.2

Section 5.3

Section 5.4

Bicubic Splines . .
Cubically Blended
Cubic Splines . .
Hermite Blended

Piecewise Polynomials.
Linear Blending ., . . .

Section 6 Domain Transformations . . . .

Section 6.1
Section 6.2

Section 6.3
Section 6.4

BIBLIOGRAPHY. . . . . . . . « .,

iv

Type 1 Domain
Transformations . .
Type 2 Transfor-
mations . ... ..
General Domains . .
Discrete Least
Squares over I' ., .

Page
121

122
129

140
155

172
172

178

180
187

199
200

211
213

215

218



LIST OF FIGURES

Page
Figure l . . . . i ¢ v v o v o o o o o o o o o o e e e e e e 108
Figure 2 The Region £ . . « ¢« ¢« ¢ ¢ ¢ v ¢ ¢ e o o o o o o o o 200
Figure 3 . . ... ... ... e s s e e e s e e e s e e s s o s 214
Figure4 . ... ... .... e e e e e e e e e e s e e o o s 214
Figure 5 . & v 0 ¢ o o i e i e et e e e e e e e e e e e e e 215



CHAPTER 1

COMPUTATIONAL ERROR ANALYSIS FOR
DISCRETE LEAST SQUARES
The following chapters will deal with solving the constrained
least squares problems which arise from applications of Blending
Function spaces.
Due to computational considerations, it is necessary to use

methods of orthogonal factorization and pseudo-inverses to obtain

solutions to these problems. It is therefore necessary to perform a

Perturbational and computational analysis of these methods to show
how the numerical solutions are affected. We would hope that the
condition numbers, X, associated with our least squares and con-
straint equations, appear only to the first power in the error analysis,
be ca use our solutions contain only inverses to the first power. This,
howe ver, has been shown not to be the case, quoting van der Sluis

(317 .

"It caused something of a shock, therefore, when in
1966 Golub and Wilkinson asserted that already the multi-
plications QA and QB may produce errors in the solu-

tion containing a factor x“(A). "

We will prove that the condition numbers associated with the
€Ons trained least squares equations appear only linearly in the error

3Nalygis except for the coefficient of the residual.



Section 1. Least Squares With Constraints

We are given the two matrices
(1.1) Ae¢IR™™®, and
(1.2) CeR™™™,

where r<n and m2>n.

Then we seek a solution x e R" which mipimizes the norm

of R |
(1. 3) R = Ax - f, where fe R,

and satisfies
(1. 4) Cx = g, where geR".

We can think of (1. 3) as a least squares problem subject to the
constraint equations given in (1. 4).

We will develop here the method of Halliday and Hayes
[21] for finding a solution to (1. 3) and (1.4). But first we need to
state some of the pertinent theories of factorization by orthogonal
tran s formations.. Householder [22] developed the theory of factori-
Zatiomn into orthogonal transformations. Precisely, he has shown
that i f at step i the matrix C, has the form

L.] 0
(1.5) C.= 1 s
1

T,
i

(i-1)x(i-1) (r-(i-1))xn

Where LidR is a lower-triangular matrix, TidR

e a T ectangular matrix, and Cl = C, then the orthogonal matrix

Pi‘an which introduces zeros into row i, from i+l to n of the



matrix C +1° and leaves the first i-1 columns of Ci unaltered is

i
given by
T
(1.6) Pi=l-vivi /Hi’
where
(1.7) C =C. P, .

i+l i1

If we represent the entries of Ci by c.  for 1€j€r, 1€ kgn,

jk

then the vector v, € R"” is given by

i i

T o o0 )
L4’ 0 S’

i i
(1. 8) \f =(0,¢--, O, cii+agn(.cii)si. c
where sgn (+) is a function of a real variable defined by

+1 if x 0
(1.9) sgn (x) = .
-1 if x<0

S, dis defined by

n N .
(1. 10) si{z (c;j)z]% )

j=1
Fina1ly H, is defined by

i
s, .
11

1-11) Hi=siz+|c i

Also, he has shown that

c1+l |= s. ,

1-12) i, i

°T that the new diagonal element has the Euclidean length of the old

Tow i, from i to n. This is a property of orthogonal



transformations, that the Euclidean length of any transformed row
remains invariant.

If for some i, Si: 0, thenrow i of Ci is zero from i to n,
and we take Pi = I. If this is not the case, then both Si and Hi are

s trictly positive. In either case, the factorization proceeds until the

completion of step r, and we have a matrix, Cr+1’ which is lower
triangular
(1. 13) [Llo] = C_,» where L=L_ .

Define Q by

(1. 14) Q=P .P_.++.P

Then Q is also an orthogonal matrix, i.e., Q.1 =Q", and it

follows from (1.7) that
(1. 15a) [L|0]= CQ, or
(1. 1 51) L=cQq,

wher e Ql is the first r columns of Q,

I
(1.1 - x
5 ) QI—Q[OJ.

Then e may write (1. 4) as

.16y  [Lio] @ x=e¢.



Section 1.1. Pivoting

Row pivoting can be included in the above algorithm for
factoring C. This is done in the following manner. At step i of
the factorization, row k, where i k { r, is chosen as the next
pivotal row by some pivotal strategy. Then we premultiply by a

. rxr C 1 .
ma trix EiglR , which interchanges the rows i and k, see

De skins [7 y P 551]. We now factor Pi-l out of the matrix Ei Ci

and define

(1.17) Cin1 = By G P

where Pi is obtained from row 1i of Ei Ci. We can conclude from

. (1. 4), (1.14) and (1.17) that

(1.18) [L]o] @ x

n
=
s
0]

= E *» e+ E Cx.
r 1

The r efore, for theoretical purposes, we will assume that the matrix
C and vector g with which we are working, have had their rows or
elerm ents permuted beforehand. So that, when we apply our pivotal
stra tegy, the pivotal rows will be chosen sequentially from 1 to r.
The type of pivoting that is usually used in practice is called
"Mase jmal row pivoting''. At step i, this type of pivoting chooses the
Next pivot by the criterion that Si is maximized. If two or more

Tows give the same value, then the first of these is chosen as the



pivotal row. For this type of pivoting, Golub [11] has shown that

(1.19) S.>8. >+ 35.20.

2
If for some i, Si = 0, then from (1.12), L will have a zero
at position i on its diagonal, which means that the rank of L will
be less than r. But from (1.15a) we have C = [L|OJ QT which
imnplies that the rank of C will also be less than r, see Deskins
[7, P. 550]. Therefore, if we assume that C is of full rank r,

then for 1 {igr we musthave

(1. 20) Si>0'

and because the Si for 1L i r are the absolute value of the

dia gonal entries of L we have
(1. 21) L7l exists.

It should be noted that if r 2> n, then CT can be factored in the

following way

CTP ¢ see o Pn = [L|0],

1
wh : . T rxr
€ r e by taking transposes and using Pi = Pi € R
W
Pn e e e o o Pl C = [0—] )

and  w - LT is an upper -triangular matrix. We will use both types

of fa ctorizations in what follows.



Section 1.2. A Constrained Least Squares Algorithm

Next, we shall describe an algorithm for the solution of con-
strained least squares which was developed by Hayes and Halliday
[21]. This will be presented in detail, because we need their for-

mulas for later reference..

Algorithm 1.1. (Hayes and Halliday [21]). If we have a least

squares problem with constraints, as defined in (1.1)-(1.4), where

C is of full rank, then the solution x is obtained as follows.

Step 1: Let C be of full rank, then for 1€ i€r, we have from
(1. 20) that S, > 0 and L is nonsingular. Thus there exists a Q

given by (1. 14) such that in (1. 16)
(1. 16) L|o] @¥x=g.
Step 2: Define the vectors d1 € R” and 4, ¢ ®R™"" such that

1. 23) 1= x.

1. 24, d = L g.

ﬁ% Solve for dZ’ which upon inverting (1.23) will yield a

solution x



n
D

(1. 25) x

Toward this end, using (1. 3) and (1. 23) we have

(1. 26) Ax=AQQT x
T
"'[31|Bz]° x
=B,d +B,d,
=f+R,

where Bl is the first r columns, and Bz the remaining n-r columns

of the matrix A Q
(1. 27) [Bll B,] = AQ.
From (1. 26) we have

10 = -
(1. 28) Bzdz f B1d1+R.

Let B, be of full rank, then the factorization of B,, using

orthogonal transformations, proceeds in the following way. Define

1-29) B2.17 B2

nd for 1 i€n-r

U, B

(1. 3 )
: ) By i+1=Yi By,

vhere at step i, the orthogonal transformation Ui‘ R is defined



by (1. 6), where Bg i plays the role of Ci in (1.8)-(1.12), and we

are factoring from the left. Define

(1. 31) vV=U e veo « U
n-r 1
and
w
(1.32a) [ 1=VB, = B, 1
or
(1. 32b) W = V1 B2 ,

where from (1. 20) and (1.21), WeR P F*07) 40 o0 upper tri-
angular nonsingular matrix. Then the solution of (1.28) which

minimizes R, [see 21], is given by

-1 -
(1.33) dz-w Vl {f—Bl dl ,
where Vl is the first n-r rows of V
(1.34) v, = [__|olv.

It is shown by Peters and Wilkinson [28] that d, as defined (1.33) is

unique. Then by using (1.24), (1.33) and .(1. 25) we have the solution
- -

1! g

(1. 35) x = Q .

-1 -1
W Vl(f-BlL 8)
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Section 2. Defining the Perturbation Problem

In this section, we shall derive an upper bound on the computa -
tional errors of the solution defined by Algorithm 1.1. Toward this
end, we will develop a perturbational analysis of the problem
defined in (1.1) to (1.4). Due to calculation and rounding errors,
the problem which is stored in the computer is not the exact matrices
and vectors as defined in (1.3) and (1.4). Instead, the original
quantities have been perturbed to give the new problem:

(2.1) We are given the two matrices A R™ and
Ce R™ where
(2. 2) _ r<n and n{ m.
Then the solution X of the perturbed problem is the
vector which minimizes the norm of
(2.3) ﬁ = A:?-?, where ?‘Rm.
and we require that X satisfy the constraint

(2.4) 6 ; = ’g\, where ec R".

We will denote with a "hat" all of the perturbed quantities, and

A A\
their meaning will be the same as in Section 1. If C and B2 are

of full rank, then Algorithm 1.1 gives the solution e

ALl A
Ll

(2.5) £=40 .



11

We now define the perturbational quantities §A, §f, §C, &g,

5Pi, 8L etc. as the difference between a perturbed and unperturbed
A A
quantity. For example, §A = A - A, sf=1f -1, etc.

Before we can estimate | I:/E - x| |, we need some well known
facts from the theory of matrices. Due to the lack of references for
the following norm relations for non-square matrices, we will in-
clude in the next section a somewhat detailed development for com-

pleteness.
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Section 3. Matrix Norm Inequalities

Definition 3.1: Let Ae lRmm, then the complex number Xi(A) is an

eigenvalue of the matrix A if and only if there exists a non-zero
eigenvector x. € " such that A x, = Xi(A) x;. The spectral radius
p(+) of A is defined to be p(A) = max |Xi(A)|, see Varga [32 ,

p. 9], and let y (+) of A be defined by 4 (A) = min  {| . (a)]|3,(4) # o}.

Definition 3.2: The Euclidean norm ||-|| of a vector x¢R™ is
m 1

defined tobe ||x|| = (Z (xi)z)z . -The Euclidean (Schur) norm
i=]

IR lE of a rectangular matrix A¢R XM . o defined to be

n m 2 3
|1A] IE = [ifl jEl (aij)] , 8see [36, P- 81].

Definition 3.3: The spectral matrix norm ||.|| of a rectangular

matrix Ae¢R , induced by the Euclidean vector norm, is defined

tobe ||A]] = zlmp ||Ax ||, see Varga [32, p- 9].
x |=1

xeR™

Remark: For a vector xeRm, the Euclidean vector norm, Euclidean
matrix norm and spectral matrix norm are the same, see the follow-

ing lemma.

Lemma 3.]. Given the rectangular matrix A¢R and vector

x¢ Rm then

[ V1)

(3.1) Hall = [paTa)]?® .



(3.2a)
(3.2b)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7
(3.8)
(3.9)
(3.10)
(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

13
T
p(aT 4)= pran™).
T T
p(A- A)=p(AAT).
If A ATe R is nonsingular, then

T, - T
[aaH | = yuaal.
Hallg /¥a<llall< |1allg -

T
[1a™|] = [la]]-

T
Ha“llg = llallg -

If QeR™™ is orthogonal (i.e. QT = Q7}), then lell=1.

If Qe R™" is orthogaonal, then ||QA|| = ||A]] -
If Qe R is orthogonal, then ||AQ|] = ||A|] .

[lax|| < [1all [1x]] .

mxr

If BeR , then ||AB||< |[|A]] [|B]]-

I BeR ", then ||A+B|| < ||A|] + |]B]] -
I A e R™*(M-T) i 2 matrix obtained by deleting the first
or last r columns of A, then HAII |<|lAl] .

If Al ¢ RP-TXM 4 o matrix obtained by deleting the

first or last r rows of A, then HAIH £1lall .

I Qe R™™ jsan orthogonal matrix and Q1 is the first
r rows or columns of Q, then ”Ql| | € 1.

¥ BeR™" and ||B|| <1, then the following inverses

exist and

lla+ 1| g1/ - |IBID,
|l«x+B) 1| < ||B] |/ - ||B] )
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A - -
(3.17) If B, B, §Be anxn’ both B 1 and ﬁ 1 exist and
A - - - -
§B=B-B, then 8 1=B1_Blggn!,
(3.18) If the vector v is any row or column of A, then

vl < TlA]].

Proof (3.1): From Varga [32,p. 11] we have that because AT A is
. - . T,T .
a non-negative definite (i.e. x~ A~ A x 2> 0) symmetric square

matrix, the eigenvalues are all real and non-negative. Since

2 2 T T T 2 2
ax|[%/][x]1? = xT AT Axh"x, weave |[ax]|?/|]x]|% <

T
p(A~ A), where equality is taken on for an eigenvector corresponding

to p(AT A).

(3.2a),(3.2b): We will show that the set of non-zero eigen-
values of AT A R™™ js the same as that of A ATe R™™, Let
X be a non-zero eigenvalue of AT A, then \ is real and there exists
x#0 such that AT A x =\ x. Premultiply by A and we have
(A AT)A x=\N A x. The vector A x is non-zero, because if it were
zero we would have \ x = AT(A x) = 0, and because \ # 0, this
would imply that x = 0, which is a contradiction. Therefore, \ is
an eigenvalue of A AT. The reverse inclusion is proved in an iden-
tical manner.

(3.3): A AT is positive definite because xTAATx =
l IAT x| IZ > 0, and for x f 0 we have, by using an argument similar

to the one given in (3.2a) that | IAT xl l > 0. Because A AT is a
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square matrix, we can use property G of Wilkiison [34 s P 290]

and conclude our result.

2 n m 2
(3.4): I ||x]||=1ythen ||Ax || = Z[E a.. x.
i=1tj

J=1 1] ]

nm , m
< z|za” - zx.] = |lallg.
i=1 J=1 1) J:]_ J E

where we have used the Schwarz inequality on each term in brackets.
Therefore, by using the definition of the spectral norm, we have
Hall < Tlallg -

To prove the left hand side of the inequality we use (3.1) and
(3.2) to obtain | |A| |2 = p(A AT). Because A ATe [Rnxn’ we have

n T n T
from Marcus and Ming [26, P 23] that = (AA7)..= Z \.(AA").

i=1 oy i

Because x* A Alx = | IATxl |2 > 0, and using [26 ,» Pe 69] , we have
that A AT is non-negative definite and )\i(A AT) >0 for

. T, D T n T
1{ig n. Therefore n'p(AA")>Z N (AA )= = (AA"),., =

i=1 1 i=1 ii

n m , 5
Z Z a,, = I |A| | ., and we have proved (3. 4).
i=1 j=1 E

(3.5): Use (3.1) and (3. 2a).

(3.6): Use the definition of | |A| IE .

(3.7): From (3.1) we have ||Q] |2 = p(QT Q) = p(I') =1,
because all eigenvalues of tﬁe identity are 1.

3.8): ||QAl|®=p@a)TQa)=pnaT a)=]|a|%

(3.9): Because QT is orthogonal, use (3. 5) and (3. 8).

(3.10): Follows from the definition of | |A| I



16

(3.11): Using Varga [32 , Pe 11], the norm of AB is obtained
for an unit eigenvector x corresponding to p((AB)T (AB)). Then
[1aB]] = ||aB x| <[[al] [IBx[I<[[al] |IB]], where we
have used (3.10).

(3.12): Similar to (3.11).

(3.13): If A is obtained by deleting the last r columns of

1
A, then Al = A[f)—], where Ie RP-TXM-T) Loy e identity matrix.
From (3.11) and (3.1), |[|A| 12 < |1al1% p([1]0] [(I)—] y= a2,
The other case is done in the same way.
(3.14): Similar to (3.13).
(3.15): Use (3.7), (3.13) and (3.14).

(3.16): Follows from |9 , pp. 112-114].

Al A s |
(3.17): Because I=B "+« B = B ~ . (B + §B)
A | A A-l A=l
= B * B+B-+ §B, we have B +B=1-B -+ §B,

from which our result follows.
(3.18): We will assume that ve R" is row £ of A, where
1< £ L n. Define the vector e, R™ to have zeros in all entries

T T
except for a unit in entry £. It follows that v = (el) A and

T,,2 2 T
Hel N =||e£|| = ple, e,)=p(l)=1.
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Section 4. Condition Numbers of Non-square Matrices

Definition 4.1: If Ae R is any matrix, then the condition

number X(-) of A is defined to be
1
(4.1) X(A) = [p(AT A)/p.(AT A)]’->1,

if A is of full rank, otherwise X(A) is undefined. It should be
recalled from Definition 3.1 that p(AT A) is the smallest non-zero
eigenvalue of AT A in absolute value.

There are many definitions for condition numbers, depending
upon the type of matrix. We will list some of them here and show
that they are equivalent to (4. 1).

If AcR™" isa nonsingular matrix, then the condition number

X(+) of A is defined to be
-1
@2 A= 1A 1Al > 1

If A is singular, then X(A) is undefined, (see[23, P. 81]).

We would like to show that (4.1) and (4. 2) are equivalent for
m = n. This is clear, because if A is not of full rank, then X(A)
is undefined in both (4. i) and (4.2). If A is of full rank and square,
then A-l exists, and using property (I) of Wilkinson [34, P. 290]
and (3.3) we have ||AT1[|2= [|a72a T = [1aT &) ] = 1/uaTa)
Thus we have that (4.1) is equivalent to (4. 2).

If AcR™™ isa rectangular matrix, where m 2>n, then the

condition number ‘X (+) of A is defined to be
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(4. 3) X(A) = suwp ||lax||/mf ||ax|]|>1,
[|=[[=1 |x]]=1
x¢ RP xe¢ R

if A is of full rank n, otherwise “X(A) is undefined, (see Bjorck
[3 ).
To see that (4.1) and (4.3) are equivalent for m3> n, we have

1
from (3.1) and Definition 3.3 that Sup ||A x]|| = p?-(AT A). Also,
|[]]=1

we have that AT Ae Rnxn is of full rank, because if it were not, there
would exist a xe¢[R~ such that x # 0 and AT A x = 0. But this

. . T,T 2 .

implies that x~ A~ Ax= ||Ax||” =0, and in turn that A x = 0.
This cannot happen if A is of full rank n and x # 0. Therefore, we

have that the smallest eigenvalue of AT A is non-zero and

min )\i(AT A) = p,(AT A). Varga [32, P. 11] , has shown that
IKikn

min \ .(AT A) < ||A x| Iz for ||x|| = 1, where equality is taken
Kikn

on for the unit eigenvector x corresponding to p.(AT A). Therefore,
Py
Inf ||Ax|| =p? (AT A), and we see that (4. 3) is equivalent to (4. 1).
|1=]]=1
Remark: The importance of defining p(AT A) to be the smalles non-

zero eigenvalue in absolute value comes from the case where m < n.

Here we have that AT A has a zero eigenvalue even if A is of full
rank, however, A AT has not. Using (3.2b), we have that p(AT A)

= u(A AT) # 0, and our condition number is finite.
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Remark: The typical situation in error analysis is that we must

bound the following

(4.4) Hax|] [Ta7yl 1< Xy [I=]] [yl

where A 1is nonsingular and square. Note that the left hand side of
(4. 4) will be much smaller than the right hand side unless both the

vectors x and y are eigenvectors corresponding to p(AT A) and
p.(AT A) respectively. Therefore, in a practical problem, if A is

" ill-conditioned, we would expect (4.4) to be a gross overestimate of

-1
[lax|] [|A™" y]].

Remark: If Q is orthogonal, then X (Q) = 1.
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Section 5. An Upper Bound for ||8Q]|

We will develop here a bound for the norm of the perturbational
quantity §Q = 6 - Q, where Q is defined by (1.14). It should be
noted that Q and 6 are not the unique orthogonal matrices which
reduce C and 6 respectively if r< n. For example, if we con-
sider Q, then recalling (1.15a) we have [LIO] = CQ. If we post
multiply by the orthogonal matrix P=1 - ZuuTe anxn’ where ueR"
is any unit vector which has its first r entries set to zero, then
C(QP)-= [LIO]. This is true because P will leave unaltered the
first r columns of C Q. Therefore, we cannot expect to obtain a
bound for ||8Q|| by manipulating the formula (1.15a). Instead,
because Q is uniquely defined by (1. 14), we will use the definition of
the Pi given in (1. 6) to obtain our estimate.

In doing this, we shall use the following equality

s s j-1
(5.1) (1 +K) =1+ Z K(1+K) ,
j=1

where K is a non-negative real number and s is any natural num-

ber.

Also, for the following lemma, we recall that ck and 'c‘k

kk kk

A
are the kth diagonal elements of the matrices Ck and Ck respec-

. A
tively., The matrix Ck and correspondingly Ck, as defined in (1. 7),

represent the factorization at step k.
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Lemma 5. 1. If we use the factorization method of Section 1 by
orthogonal transformation with maximal row pivoting, assume after

pivoting that both of the matrices C and € have the same ordering

of rows, also at step k of the factorization sgn (c . ) = sgn (él}:k)

kk

for 1 k r, and finally that there exists a real non-negative

number A such that
(5.2a) [lscll/llcl] gA/[(9+4)’E+aA)r'l ’)((C)] ,
then it follows that

(5. 2b) |18Q]] < K(r) X(C) ||6c||/]|<c]].

where K(r)= (1 +K) -1 and K = 4(2 + Y2 + 2\).

Remark: In (5.2a) we will use the fact that 9 + 4 )[2_+ 8/A\ =1+K.

Proof: To estimate | |6Q| |, we express it as the following tele -

scoping series

A A A
(5.3) ||5Q]|:||p1.p2. ....pr_pl.pz.....pr”
B B P B
= ||5p1.p2. .pr+p1.5p2. 3. .
F e +p1.p2. .Pr-l.spr”
= |6, ||
L = sP s
S k=l k

where we have used (3.8) and (3.9) to obtain the last inequality.

To estimate 5Pk we recall the following definitions from

sections one and two, which we tabulate here for convenience, 1{kgr



5.4) C.=C, C C. P & -¢ ¢ C P
(5.4) 1~ 7 "k+l T Tk K 1 ’Ck+1_kk’
A FANAY
(5.5 [L]o]=caq, [Lo]-=C &
T A A ATIA
(5.6) P _=TI-v, v, /Hk, P =1-v v [H,
g k 273 A n ok 214
(5.7) S =[2 (c )]2, S = [2 (c )]2.
k™5 ke Kk PR Y.
2 k A A2 Ak | A
(5.8) H_ =5, +]|c’ |5, H1<“Sk+|°kk|sk
The vk,ckean are defined as
T Kk Kk k k
(5'9) vk - (o’ ¢ » O’ Ckk + sgn (Ckk) Sk) ck’ k+l’ b .’ ck’ n) »
AT Ak Ak A ak ak
(5.10) Vk—(O, , 0, ckk+sgn(ckk) Sk’ Ck,k+1’ coo, Ck,n)’

where the first k-1 entries are zero. Finally, we have from (5.9)

(5.10), (5.7) and (5. 8) the relations
(5.11) |]|v ||2—2(sz+ |ck | S, ) =2
) k - k kk' "k’ "~ Hk

A 2 A2 Ak A A
(5.12) ||vk|| = 2(5 + |ckk| S)=2H_ .

We will now relate the perturbation & P, to the perturbation

k
A
at step k in 8C_ = C - C . From (5.6) we have
k- "k 'k
A AT ,A T
(5.13) 6P = (I - v, vk/Hk) -(1-v v /Hk)
T A AT A AT A A
= (e Ve TN VO B Y Y (- B /(HCH

We define §v
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L)
(5.14) 5vk = vk - vk
k k -~ k
= (0,0, 0,6¢,, +sgn (€ )5, -5§),6¢ 1 07"
k )T
6ck,n ’

Ky

where we have made use of our assumption that sgn ( cll:k) = sgn (ekk

This assumption means that the initial perturbation of §C in C is

not large enough to cause a sign change in ¢ at step k of the

kk

reduction. If the signs were different, then we can conclude that both

k k
el

(5.15) el el < lse

Later in our proof we will obtain an estimate for § Ck which will

enable us to test if this can happen. If the signs do differ, however,

we cannot guarantee that the matrix §P, will have a small norm,

k

which implies that this type of error analysis does not apply.

If we make use of (5. 14), and substitute for v, in (5.]13), we

k

obtain the following expression for 5Pk

5.16) P. = (V. -6V 48V * vI+Ev. « gV ¢ TR 3
(5.16) 8Py = (v 8V} +6v) * vy +6v) - 6V, )/H +v, - vy (H -H)/(H - H ).

We will now introduce the following notation which will help in

. . . k ak
our making norm estimates. Define the column vectors Ci , Ci

’

N

5Cli(e R"” to be the transpose of row i of the matrices Ck’ Ck and
GCk respectively. Also, define the vectors Ci , Ci , 5Ci e R to

be obtained by setting the first k-] coordinates equal to zero of the

vectors Ci(, ’c‘i‘ and 5C1i(, respectively. If we apply the above
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definitions to (5.7) we have
~k Ak A
(5.17) ||ck|| =S, and ||ck|| = 5 .

We can now use (5.17) and the above definitions to obtain a conven-

ient expression for the norm of (5. 14)

2 rk 2 k k % ~k
(5.18) |lsvi |17 = [16C |17 + 28¢c senCe NI |C I|-]1C |
2k k. 2
+ (eI =TI I h™ .

By the triangle inequality we have

Ak ~k Lk ~k
(5.19) I Ck” °”Ck” < ”Ck'ck|[
< |16l -

Using (5.18) and (5.19) we find

2 ~k, 2 k
(.20 |lev |12 < 2l 16E 117 + 2[seg |- [16E] |

~k 2

where in the last inequality we have made use of the fact that

k k
|5ckk|g ||5Ck||. This gives a bound for Hsvk”
(5-21) IlﬁkagZ”&EkkH *
We use (5.8), (5.17) and (5.19) to obtain a bound for |H -H, |
A A2 Ak ,A 2 k
(5.22) I < ISt e IS - (St e 1S

A A A k k
< (Sk+Sk)° |Sk'sk|+lekkl. Isk'skl"'l Iekkl'lckkl |'Sk
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Lk ~k ~k
< 2 1851+ 118D - 11684
< 2zs,+ 18511 11624 -

If we substitute (5.2]) and (5. 22) into (5. 16) and use (3.5) and (3.11)

we obtain the following after taking norms

(5.23) 6P || < [lsv 1@l v ||+ [lsv | 1)/H,

A 2 A\ A
(1 N7 8- 18, -1 | /1
~k , ~k Nk
< 4116 vy 11+ 1 TsCS /5 + (25, + 1 16S51 D /1 ],

where we have made use of (5.12) in the last inequality. From (5. 8)

we have

(5. 24) H >S

and using this with (5. 11) leads to the estimate

(5.25) (v ]|+ 1 16SKI /B < 2 /0 + 68511 /5

~k
< O+ |16EX11/50/5, -
If we combine (5.11), (5.23) and (5.25), we have the following bound
. ~k k..
for || 6P, ||, using ||6S5] < |1sCt]]
k k
(5.26) |18P, || < 4] IGCkI |-[(2+{E)+ 2| |5ck| |/sk:| /sk .

A condition will be given later, as to when we have a bound for

k
Hﬁck”/sk °
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We now relate the perturbation in step k, which is §C to

k’
the initial perturbation §C. We will do this by tracing the error
backwards step by step. Toward this end we calculate the following

estimates. From (5.4) we have for 1<igr

A
(5.27) 6Ci+1 = lSCi Pi + Ci 5Pi .
For 14 r, row £ of the matrix 6Ci+1 is given by
i+1, T iT A iT
(5.28) (GCI ) = (BCI) Pi+ (CI) 5Pi .

We want to replace the last term in (5.28) by something more conven-
ient for our purposes. It will be shown that

i, T ~i T
(5.29) (CI) 6Pi = (Cl) 6Pi .

To accomplish this, we recall (5.13), which gives
T A AT /A
(5. 30) §P. =v. v, /H -V /Hi .

From (5.9) and (5.10), the first i-1 entries of \A and Oi are zero,
which, when we combine this with (5. 30), implies that the first i-1
rows of 5Pi are zero. This implies that irrespective of how the

first i-1 entries of C; are changed, the resulting product will be

i

P remain unchanged.

the same, as long as the remaining entries of C
Using the fact that 6; agrees with C; in all but the first i-1 entries,

we have

i+1 T i T A ~i T
(5.31) (6Cl ) —(GCI) Pi+(cl) 6Pi
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Define the following non-negative numbers for 1 i r and

i £<r by

= HE/NEN

~i
IICIII/Si ’

(5.32) b,

1]

which, because of (1.20), are all finite.
Taking norms in (5. 31) and using (5. 32) and (3.9) we have

i+1 i
5.3 11sC 1< Hocyl ] +uy s, 116711 -

We will now prove by induction on i, for 1 i r and

1 £ < r, that the following is true

. i
llsct 1< =

(5.34) 0
j=1

i 1
be; S5 |88 11+ [18C, (] .

For i=1, where 1< £ r, inequality (5. 34) is just inequality

(5.33). Assume that (5.34) is true for some i, such that 1< igr-1,
then we will prove that (5.34) is also true for i+l. Using (5.33) for
i+1, and our induction hypothesis, we obtain for 1 £ r

i+2
|16c,“11< |lsC

i+l
4 S

(5.35) ? H+”1,i+1 i+1 ||5P:i+1”

i
1
< = . S. P, C
<= s 1]+ [lscyl|

Sipr 18P 1

LIRS

i+1 )
< = s, |1sP.|] + |lsc, | .
\j=l By 5 J|| J|| llsc, |1
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At this point, we will make use of our assumption of '"maximal row
pivoti.ng". This assumption implies that all of the p.lj L1 for

£ > j, because of the manner in which the next pivotal row is chosen
(see Section 1.1). We have retained the I'Llj 'until this time, because
we will refer to (5.34) later when we discuss pivotal strategies.

Using this assumption, (5.34) now becomes for £=i+l

i+l

i
1
(5. 36) llsc. I < jz=:1 s;l16P;]| + [lsc,, 11 -

At this point in our proof, we would like to show that (5. 36)

and our assumption (5. 2a) leads to

(5.37) ||5c11:||/sk<A, for 1< kg,
and
(5.38) ||5cl;||<(x+1)k'1 ||6C|| for 1< k<.

Where (5. 37) would yield the following simplification of (5.26)
k
(5.39)  |sp,||< K ||sci]l/s,
where K = 4(2 + \/_2-+ ZA) .
Toward this end we will prove the following for 1 kg r

(5. 40) |jc||/sk< Y(C) .

This is true because of our assumptions of ''maximal row pivoting',
and that C is of full rank, and because we have from (1.19) and

(1. 20) that
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s.41)  [lc]l/s <]lcll/s, .

where Sr> 0. Because Sr is the absolute value of element r on
the diagonal of L, which is a lower triangular matrix, we have
l)\r(L)l = Sr , where )\r(L) is an eigenvalue of L. Therefore,
there is a unit vector =xe er, such that Ix =\ r(L)x . From (1.21)

-

L exists, so we have L-lx = (1/)\ r(L))x. Taking norms, we find

(5. 42) 1/s_= ||/ (Lyx]|
IS S
=1L x|
<l
If we use (3.1) we have ||L'1||2=p(L'TL'1)=p((LLT)'1). Using

Wilkinson [34, P. 290] property (F), because (L LT)-1 is a
. . T -1 T -1 .
symmetric matrix we have p((L L") )= ||(L L") "|| . Using
T, -1 \ T
(3.3), we have |[(L L") ""|| =1/u(L L"), and from (5.5) and (3. 2b)
T T T . .
we have p(L L7) = pu(C C) = u(C" C). This proves that (5.40) is
true, using Definition 4.1 for the condition number °X(C) .
We shall prove (5.37), (5.38) and (5. 39) simultaneously by
induction on k, for 1¢ k £ r, by using (5.2a) and (5.36). For k=1,

using (5.40), we have that (5.37) is valid and hence also (5. 39)

because

1
(.43 [lsc |1/s < dllscll/ 11l hlic]/s))

< A/ (xoasxy™ ] x(c)
<A Jawxy!
< A .
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Also, (5.38) is trivial for k=]. Assume that (5.37), (5.38) and (5. 39)
are valid for all £ such that 1 £ k where 1< k< r, then we will
prove that they are also valid for k+1. Using (5.36) and our induc-

tion hypothesis, (5. 38) is valid because

k
k+1 1
(5. 44) ||sck+1|| <jf:1 sj||spj||+||sck+1||
k j ]
< = K |legil] +|lscy, |
J:

k -
< = K(K+1) 7 ||sc|| + ||sc]|
j=1

< (K+1)k []sc]]| ,

where we have used (5.1). To see that (5.37) is valid for k+l

.45 (s l1/s,, <[an® 11scll/1lel]-[1ell/s,, ]

AK+DF /(k+1)" !

<A,

where we have used (5. 44), (5.2a) and (5.40). Finally (5.39) follows
from (5.37) and (5. 26), and our induction is complete.

What we have accomplished is to express the perturbation in
row k at step k of our factorization in terms of the initial perturba-
tion in C. We have also shown in (5. 39) that the perturbation in the
elementary orthogonal transformation at step k is bounded in terms

of the perturbation in row k of C Therefore, if we combine

kl
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(5.38), (5.39) and (5.40), we obtain the following estimate for ||&P, ||
(5.46) |18P, || < K(14K)" ! ||¢sc||/sk
k-1
< K(1+K) T X(©) |lsc]|/[]cl] -

We are now in a position to obtain a bound for ||&Q[|. Using

(5.3), (5.46) and (5.1), it is clear that

r
(5.47) [16Q]| < [E K(1+K)" ! J'X(C) l1scl|/]1cl]
k=1

< K(r) X ||sc|l/l1c]],

where

(5.48) K(r) = (14K)" -1 .

ak
sgn ( ck

"

Remark: In reference to the assumption that sgn(ctk) =

if it is not the case that we have equality for some k, then recalling

(5.15)
k k k
(5.15) Salr Togld €18ei |y

let k be the initial natural number such that we do not have
equality, then (5.15) is valid, and we have from (5. 38)

k k
1€ ls |

k-1
(5.49) Sl el € (1 +K) ||6c]] .

This is a necessary condition for the signs to be different. The
typical situation is as follows. We have a numerical bound for

|| 8C||, and we are performing the factorization on the perturbed
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A
matrix C. We check at each step, k, of the factorization to see if

(5.49) cannot hold for any k, then we can conclude that the factoriza-

k
kk)

tion of the matrix C would proceed in the same way, and sgn( <

k
sgn (ckk) for 1{kgr.

Remark: On pivoting. The usual pivotal strategy used is '"maximal
row pivoting'', see Golub [1 1]. Other strategies of various types
have been tried with various degrees of computational success, see
Jennings and Osborn [25] . Usually, no theoretical justification is
given as to how the computational errors are affected by the choice of
pivotal strategy.

We are able to give here a justification of sorts as to the
desirability of '"maximal row pivoting''. Assume (5.39) holds, then
we have from (5. 34)

i+]
sl

j 1
(5.50) ||&C < T (K ) I1eG T+ [leci,; 1]

Hit1,

e
e
Y

Intuitively, it is seen by examining (5.50) that, by repeated back
substitution, we obtain an expression which is the sum of products,
each of which is made up of repeated factors of the type (K p.st).
Because '"maximal row pivoting'' gives Mgy < 1, it helps reduce the
effect of the power of k in the error analysing giving, in general, a
better bound then a strategy which allows the Kot to be larger than

unity.
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Section 6. Basic Relations in the Perturbational Problem

Using the notation of Sections 1 through 5, we will establish the

following relations, which will be used repeatedly.

Lemma 6.1. (6.1) ccr-r1Y C&T-t 2T B§B2=WTW and
ATA AT A
B2 BZ_W w.
(6.2) Llc-q anaB, Wl:zv
. = lan 2 = l.
.(6.3) X (L) = X(C) .
(6.4) X (W) = XUB,) .
¥ [|L7sL||< A<1, then
N
(6. 5a) 1|L||<e1 ||L||, where e, = (1 +A),
AT -1
(6. 5b) [IL7 1< e, [ILT]], where e, =1/(1 -4,

A
(6.5¢c) "X(L)Se3 “X(C), where e, = (1 +A)/(I -A) .
i |]6Www l||< A <1, then
(6. 6a) W< e, [IW]], where e = (1+4),
A -1
(6. 6b) [ W™ 1< e, [|[W'|], where e, = 1/(1 - Ay,

A
(6. 6c) X (W) e, A(B,), where e, = (1 +A)/(1 -A) .

3

¥ Vr/z ||LlsL|j< A<,

then
(6.72)  ||L7'sL] < X,(n) KO |lsclI/IIc]]
(6. Tb) 182, 11< K,(x) X< |]sc|/lIc]],
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(6.7c) [lsL || < X (r) X (C) ||sC]],
where Kl(r) = Yr (2 +A)/(ﬁ(l Ay,

Kz(r) = 1+K1(r), and K3(r) = Kz(r)+l.

¥ Ym-r)/2 lswwl|l< A<t

then

(6.8a) I1sw w i< K (n-r) X(B,) || B, | I/11B,11.
(6.85)  [[8v |[{< K, (n-r) A(B,) |188,]|/]18,1],
(6.8c) [16W]]|< K (n-r) X(B,) ||§B,]] ,

where Kl(n-r), Kz(n-r) and K3(n-r) are defined in (6. 7).

Under the hypothesis of Lemma 5.1 we have

(6.9a) 168,11, I1sB,]1. 1[sB,|6B,]I1< (l1sall/l]A]l

+ K(r) X(o) ||sc]|/l1clhllal],

(6.95)  [[8B, 1< (|18a[l/]1A]] + [152)) [[A]] -
4 |
If x=Q- 4 , where xe¢ an, Qeanxn is orthogonal, dleR ,
2
2
dzelR and n1+n2=n, then
(6100 [la,11. 114,11< [Ix]] -

T
Proof (6.1): From (1. 15a) we have CC " = [Llo] Qto[ﬁo—]= LLt,

and from (1. 32a) we have

T T T[w T
B)B,=[w'lo]vv [-0-]= wow .
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T

Le=vn![L|o] QT=QI ,

(6.2): From (1.15a) we have L~
where the proof for W is similar.

(6.3): If we use (6.1), (3.2a) and (3.2b), then (6. 3) follows
from Definition 4. ].

(6.4): Same as (6. 3).

A -
(6.5a): Because L =L (I+ L 1

§L) is valid, the result follows
by taking norms.

(6.5b): Because L 1= (I+ L7 161)"! L1 is valid, the result
follows by taking norms and using (3. 16).

(6.5c): This follows from (6.5a), (6.5b) and (6. 3).

(6. 6a)-(6.6c): These are proved in a similar way to (6. 5a)
through (6. 5c).

(6.7a): This is a result of Jennings and Osborne [25 » P 327]
inequality (2. 6) of their paper.

A A T AT
(6. 7b): From (1. 15a) we have §C = L Ql - L Ql = 8L Ql +

A -
L 6Q'lr which gives L BQ'II‘ = 6C - 8L Q'lr . Premultiplying by L 1

T -1 -1 AT . .
we have an =L "§C-L "§L Ql . Taking norms and using

(3.5), (3.11), (3.13) and (3.7) we obtain |[Q || < 1Lt |1sc]|
+||L7YL|| . After using (6.1), (6.3) and (6. 7a) our result follows.
(6.7c): Using (1.15b) and taking norms we have ||8L|| <

Ilsc|| + llcl] | |6Q1 ||, where we have used (3.11), (3.13) and
(3.7). If we use (6. 7b) and the fact that X(C) >1 we have our result.

(6.8a)-(6.8c): These are proved in almost an identical way as

(6. 7a) through (6. 7c).
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A
(6.9a): From (1.27) we have [5131 | sBz] =6AQ+AB8Q.
If we apply (3.13), (3.9) and Lemma 5.1 we have the result.

(6.9b): 6B = 6AQ +A§Q .

(6.10): Use (3.8) and the definition of the Euclidean vector

[dl] T
normon | .- |= Q =x.

2
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Section 7. Effects of Perturbational Errors

In this section we will ,sh;)w the effect of perturbational errors
on a solution given by the method of Algorithm 1.1. In order to obtain
an expression which is compact, it will be necessary to merge all
terms of higher powers into those of the first power. These terms
represent relative errors, which, if the perturbations and condition
numbers are reasonable, should be véry much smaller than unity.
Therefore, it is not unreasonable to make the assumption that they
are bounded away from unity. This is the reason for making assump-
tions (7. 1a) through (7. 1e). It should be clear, that even terms
(7.1a) and ( 7. 1b) represent relative errors, because | |L-l sL|| <
X(L) ||8L]|/||L]|. Also, (7.1c) should be reasonable, because
in the unconstrained case it is always true that | |R| |/| Ifl I £1,
and we would hope that in a practical problem, f would be very near
the space spanned by the columns of A, which would yield a very

small relative error for the residual.

Theorem 7.1. The notation of Sections 1 through 6 is used. If there

exists a real non-negative 2\ <1, such that

(7. 1a) b [|L76L] [ A, where b, = max {1, yF/2} ,

(7.1b) hzllsww'1|]<A, where h, = max {1, f(a-r)/2},
(7.1c) [IR[IZ]IEIIKA, £ # 0

@) |[8,]1< K0 K |[sc]1/]|ClI< A,

(7.1c)  |leall/]]alIKAD,
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A A

where C, C, B, B

,» B, are of full rank and the hypothesis of

Lemma 5.] is satisfied then

(7.2) L1xx| 171 1x|| < (e,] 58] |/]18] [+ K402 | |6C| /] || yMaC)
2
+eal 6] 1711¢] [+2e, | 18A]1/] 1Al ])
: 2
(1Al 171181 1B, +(eZe, | 16sl /] el |
+e, K, (M ]sc||/11€I Dl 1Al 17118, XCruB,)
2 2
+e2k,m-r)(| |A]|7]18,1 V2] |sal 1/]1A]]
+Kk@KC | scl /11l NG | [RI1/11€]]

where the constants e K(r), K, (n-r), K (r) and K.(r) are

2! e4’
given by (6.5b), (7.21), (5.48), (6.7), (7.23) and (7. 26) respectively.

Proof: We have from Algorithm 1.1 that solutions x and & exist to

both problems, where x and % are given by

EN L1 ]
(7. 3a) x=| 'l = a -1 -1
d W'V {f-B
42| *  {£-B, L " g}
—A—. —A-lg —
d
A_Al A
(7. 3b) x=Q 8 = Q ALl A AaA AA
2] A Vl{f-BlL g} |

respectively. Subtracting x from % we obtain



s§d d
(7. 4) Q-x=é\,: 1] + 50[1] ,
§d, d,

A A )
where 5d1 = d1 - d1 and 6d2 = d2 - d2 . Using (6.10), (7.3a) and

(7.4), we find after taking norms

(7.5) [12-%|] < [lsa ||+ [led,|] + [18Q]] ||x]]
Lemma 5.1 gives an upper bound for ||&Q]|

(7.6) |]8Q|| < K(r) X(C) ||8C|]|/|]|c]] -

Therefore, all we have to find are upper bounds for | |6d1 || and

| |6d2| | Using (7. 3a) the expression for 5d1 is

A
(7.7) 6d =L g-L g

1

N-1
L~ (6g - 6Ldl) ,

where we have made use of (3.17) and the definition of d. to obtain
. e e A-1 -1 -1 _ -1 .
our simplification. Because L "~ =(I+ L “8§L) L ~ , we obtain

the following upon taking norms

-1
(7.8) |]ed, 1< e, [ X |6l l/c]ICl| [Ix]])+]|L sLl|] [l=l],

where we have made use of (3.16), (6.3) and (6.10). From (1.4) we

have that ||C|| ||x|| > ||g||, and substituting this and (6.7a) into

(7. 8) we have

(7.9 lsal< e, [I1sell/11el+%,m]18c]1/]1c] ] X(©)] | |-
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Before estimating ||8d2| |, define the vector £ ¢ R™ by

AA 3
(7.10) € ={f - 13l 1} -{f - B, dl}
f % d B. d
=80 -5 8d -8B, d)
A
If we make use of the equalities (1.33), (3.17) and Vl = V1 + 6’V1 ,
we obtain the following simplified expression for 6d2
Al A AN AN A -1 d
(7.11) 5d2=W v {f-B1 dl} -Ww v1 {f-Bl 1}
Al A -1 ] A_1 A
_[w v, -w v, {f-Bldl}+W vlg
Al [ A J
=W 5V1{f-Bldl}-6Wd2+V1€.

In the last expression we have made a simplification by using the

definition of d2 given in (1.33). From (1.28) we have

B,d, -R=f-B d. Substituting this into (7.11) we find

7.12 §d v?*'l[sVBd V.R - §Wd \/I\E,]
(7.12) 2 =  Bpdy -8V R-86Wd, +V,

V/\)-I[__GVB sW)d 6VR(’\€]
(6V) By -8W)dy -8V, B+ V) =1

2

Using (1.32b) we see that

A A
V. B_ -V_B

(7.13) W=V B, -V B,

A
V1 BBZ +6V1 BZ .

If (7.13) is substituted into (7.12), we find after the cancellation of

6V1 B2

Al A A
(7.14) §d. = W [-VlsB d -5VR+VIE .

2 2 2 1

If substitution of (7. 10) into (7. 14) is made, we have after regrouping



41

A _ N N
(7.15) §d = w ! VI[Sf-B 1

2 1

Taking norms in (7.15), and using (6. 6b) and (6.10) we have

(.16)  [lsdy|I1< e, [I1sel /] A]] 1]y + (1B [1/]]A]]
+1sB,11711al1) [16a, [1711x] |+ |1e8[1/]]1a]]
+11eB, [ 711Al1] Hall 11w 1l
v, [IWH 18V ] 1IR]] -

From (1.27), by using (3.9) and (3.13), we have that

@y (181, IB,l1< 1Al .

From (1.3) and our hypothesis (7. 1c) it follows

(7.18) [TALT [Tl > | [£+R]]
>[1£]] - 1R[]

>1lel1/e,>0,

where e, = 1/(1-A) .

Using inequalities (7.17) and (7. 18) to simplify (7. 16) we obtain
1.19)  led,ll< e, le, 018t 1711211 + x4 [[8B [1/]]A]])
1o 11711x11 + 168 [1/]]A]]

+ 1188, 171 1al ]l 1al1/]1B,1 D XBY] |x] |
e, [IWT 18V 1] [IR]],

where (6.4) has been used.

A _
d -6B_d - - .
sd, - 8B d GBZdZ]W sV R
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From (6.9b), and our hypotheses (7. 1d) and (7. le) it follows

(7.20) [1eB [I<2A]0]Al],

thereby simplifying the coefficient of | |5d1 [|/]]x]|]| to be

(7.21) e, =1+ 24,

Using (6.9a) as an upper bound for | |6B1| | and | |6 le |, and sub-

stituting (7.9) for | |6dl| |, we obtain after regrouping
(71.22)] |84, < e e, [[62]1/]1¢]] + 2| [sa]]/]]A]]

te, e, [leg|]/]]e]] + K, (x) Il&c||/]]c|]) XS]

-1
AL TIB X B x| + e, [TW 2] 6V || [IR]]:
where
(7. 23) K4(r)=e2 e4 Kl(r)+2K(r),
and K, (r) = Y7 (2 WANVIE A YA P

We will now obtain an upper bound for the coefficient of ||R]],

by applying the estimates given in (6. 4), (6.8b), (6.92) and (7.18)

-1
(7.24) e, |[|W ] [|sV || [IR]]
<e K (n-r) X4B)||R]| ||8B,]]/]]B,]|?
S T2 72 2 2 2
2 ,
<e, Kz(n-r)[||sA||/||A|| +K(r X< |sc||/]lc]]

2 2
- XEB A HB I DT RTELD T[]

If (7.6), (7.9), (7.22) and (7.24) are substituted into (7.5) and
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regrouped according to condition numbers we obtain
la)
(1.25)  ||Rx]]/]]x]] < (e, | 5] /] ]g]]
2
x| [sC] [711] D) X + (o2 | 6e] /] 4]
+ 2ep]lsal /1Al D] [Al171]B,]]) X(B,)
2
t(eye, [legl]/]]e]]

+e, K@ scl /][] Dl [all/]1B,]]) X(C) K(B,)

2
2 2
+e, Kom-n)([[A][/][B,I D7 ([Tsa]|/]|A]]

, 2
+ KX Q) lsc[[/]1cI DX B [IR[[/]1£]]
where

(7.26) Ks(r) = e Kl(r) + K(r) .

2
We have shown that the condition numbers appear only linearly
in (7.25), except for the coefficient of | lRI |/] |f| [ The question
could be asked, if whether the term 'XZ(BZ) is reasonable, or if it
might be the fault of the error analysis. Van der Sluis [;31 ] has
shown, using a geometrical argument, that squaring of the cc;ndition
number in the unconstrained case can indeed be realized. If
')((Bz) [IR||/]]£]]| is nottoo large, however, the effect of ’XZ(BZ)
can be minimized, and we would expect the condition numbers to
appear only linearly in the error.
Also, the full effect of a condition number is seldom or

possibly never realized, see Wilkinson [34] .
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Finally, because A and B, are calculated during our solution

of (1.1) to (1.4), we have the bound
HAll/11B,11< Yasr [1allg/118,]15 »

which is easy to calculate.
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Section 8. Rounding Errors in Computation

We will state here for later reference some known results on
computational errors as developed by Wilkinson [36], [35] . For our
purposes, we will limit ourselves strictly to floating point computa -
tion.

To develop our results, we introduce the very general notation
fo(-op+), which is used by Wilkinson [36] and others. The "f{"
notation means, that if we have two quantities A and B, which
could be numbers, vectors, matrices, etc., and a corresponding
operator "op'' such as scalar addition, inner product, matrix multi-
plication, etc., then ff (A op B) is that quantity which would result
in the computer by performing that operation by some computer pro-
gram using floating point arithmetic.

A floating point binary number x consists of two parts, the
binary exponent b and the binary mantissa a, where -3 >a » -1 or
1 ag€ 1. Then x is expressedas x = a- Zb. The computer memory
allocated for x is limited to a certain number of digits, which are
divided up in some way between a and b, We will denote by t the
number of binary digits allocated to the mantissa. Also, we will
assume that the number of digits allotted to the exponent is large
enough to accommodate all of our calculations, and will not concern
ourselves here with the problem of exponent under- or over-flow.

Finally, we will assume that the computer with which we are working
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has a double-precision accumulator. This means when single
precision floating point numbers are retrieved from the memory
to perform certain arithmetic operations, they are allocated a double
precision mantissa before the operation is performed. The operation
is carried out in double-precision, and the result is not rounded to
single -precision until it is sent back to the memory.

Under these assumptions Wilkinson [36] has shown the follow-

ing results.

Section 8.1. Vector Addition

Given two real numbers a and b, there exists a real &,

such that

(8.1) f£ (a+b)=(a+b)(1+§&),
where

(8. 2) l€l< 275,

. n
Therefore, if we have two vectors x, ye R,

-t
(8. 3) [[fex+y) -(x+y) ||<2  ||x+y]] .

Section 8.2. Matrix Multiplication

Given a matrix AeR and a vector be IRn, let E denote

the computational error in calculating A-b
(8.4) E =14 (Ab) - A:b,

where the entries of E are represented by e, for 1i< m.
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Wilkinson [36], P. 83 has shown that under the assumption

nZ-t< .1
-t n
(8.5) le.[< 1.06 - 2 [n]aﬂ[]bll +kz=2 (n-(k-Z))laikkuI]
-t n
€£1.06°2 n Z |a_]||b |
k=1 ik k
- n 2 1 n 1
£1.06+ 27 n( = a,k)z(Zbi)" ,
k=1 * k=1

where the last inequality is obtained by using Schwarz's inequality.

Therefore, it follows from the definition of ||* | |E and (3.4) that

-t
8.6)  |IE|[<1.06- 2" n []a[l, |]b]]
-t —
<2 K@ [|a]] [[e]],
where
(8.7) K_l(n)= 1. 06 n3/2

Section 8. 3. Solution of a Triangular Set of Equations

nxn
Let Le R be an upper- or lower-triangular non-singular
matrix. We now wish to know the computational error introduced

by solving the linear equation
(8.8) Lx = b, where x,beR",

for the vector x. Without loss of generality we will assume here
that L is lower triangular. Wilkinson [36] has shown that the

entries X, of x are calculated sequentially from i=1 to i=n
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by using

(8.9) X T fﬁ((-ﬂrl *1 - !rZ L R lr,r-l xr-1+br)/lrr) ’

for 1 r< n. Note that the vector x which we have constructed
in (8.9) is in general not the solution of (8. 8), but rather, it is an

exact solution of the perturbed problem
(8.10) (L+6L)x=Db,
where the lower triangular matrix gL is bounded by [__36 , P 103]
8.11)  |]sll< [sL]]

<1.06 2751 + 1.06-27% 3(n+2)/2) | |L] |E

-t —

<z K,m [|L]],
with
(8.12) K (n) = 1.06 Yo (1 +1.06 27 3(n + 2)/2)

and the value of n restricted sufficiently to make the term
1.06 z't3(n +2)/2 «<1. Also, if Lt exists, then Wilkinson

[36] has shown that (L + 6L)-1 also exists.

Section 8.4. Orthogonal Transformation.

An elementary orthogonal transformation Pe¢lR has the
T n .
form P=1-2ww , where welR and ||w|| = 1. Given the
vector w, we will denote the matrix "P', calculated using floating
e
point arithmetic, by the symbol P, (which may no longer be

orthogonal), i.e.
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(8.13) P = f4(P),

where it is assumed that n2-t <.1. Wilkinson [35] has shown that

if AcRTT is any matrix, premultiplication by P using floating
point arithmetic gives

(8.14) ||£2(Pa) - PA||< 275 Ym ||A]],

where

(8.15) B = 12.36.

Also if A is premultiplied sequentially by orthogonal transformations
Pl’ o T Pm’ and for 1< i< m we define

(8.16a) P, = { (P))

(8.16Db) Ai+1 = {4 (Pi~ Ai)’ where Al =A.

Then there exists a §A¢ R such that

(8:17) Am+1=Pm' Pm_l. o o0 o Pl (A+ GA)’
with
(8.18) [1sall < |lsall g
-t -t m-1
gm2p+27 P [lallg

-t—
<2 K m) []a]],

where B is given in (8.15) and -IZ;(m) is defined by

(8. 19) K (m)= p m3% (142%™ L.
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The results of (8.14) through (8.19) hold also for post multi-
plication by orthogonal transformations., This is true because

(8.20) BP=(P BT)T,

m
where Be¢ R and P = P, and our norms are invariant under

transposition.
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Section 9. Rounding Error Analysis

We now wish to analyze the effect of computational errors on
our least squares solution with constraints. We will show that most
of the error can be accounted for by perturbational induced errors in
the initial problem.

Algorithm 1.1 gives the exact solution (1. 1) to (1.4) to be

L &
(9.1) x=0Q .
wlv {£-8, L g}
1 1
We will now define stepwise the order of computation defined in

(9.1). This will determine the effect of the errors.

Step 1: Reduce C by orthogonal transformations to obtain L.

Define for 1 igr

(9.2) C,,, = (C P), where C =C and [L|0]=TC_,
and

—_— N
(9. 3) P, =1 (B),

where Pie R is that elementary orthogonal matrix which

exactly reduces row i of Ei . Define the orthogonal matrix 6 by

G-9 - P P

(9-4) =P T2 r *

- From (8.17) and (8.18) there exists a perturbation §C in C such
that

(9. 5) [T]o) = (c+s0) 4,
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where
-t —
(9. 6a) llsC||< 2 K, (1) ||c]]|, or
-t
(9. 6b) [1sc|| =02 " [|c|] .

Step 2: Calculate i-l g . From (8.10) and (8.11) there exists a

& —
perturbation 6L in L such that
—-1 — * -1
(9.7) 2 (L g)=(L+8L) g,
- * -1 —-1
where (L +8L ) exists because L does and

* -t— o
(9. 8) [lsL || < 27 K, (x) [|L]] .

Step 3: Calculate El and EZ’ Define for 1€igr

(9.9) Ai+1 = 4 (Ai Pi) where Al = A,

(9.10) [3,13,] - &_,, .
where _151 is defined by (9.3). From (8.17) and (8.18) there exists

E3 mxn
a matrix §A ¢R such that

(9.11) [§1|EZ] - (A+8aM) R,
where

* -t —
(9.12a) [l6a"|| <2 K m) [|A]], or

F 3 -
(9. 12b) |1sa™|| = 02" ||al]),
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Step 4: Calculate El(_L-. + GL*)-1 g .

Define £ « R™ by

(9.13) ﬁ(El - (L + zsL*)'1 g) = El(f+ SL*)-I g + El

A bound for 61 is given in (8. 6)

-t — —_ _— * -
©.19)  |lg 112 Ko [[B ][] [I(T+ L) g

—_ - * -1
Step 5: Calculate f4(f - [BI(L +8L) g+ El]_).

Define 5ze[Rm by
- % -1
(9.15) £(f - EBI(L+ sL) g+€)
=f-(B(L+sL)! EV+E
A bound for 52 is given by (8. 3)

-t - — % -1
(9.16) ||62||<2 ||f-(Bl(L+6L) g+61)||

Step 6: Calculate W by reducing gz with elementary orthogonal

transformations.

Define for 1L i< n-r

(9.17) BZ,i+r = f.l(Ui BZ,i) and BZ, 1 = B2 ,
where

- f A
(9.18) Ui = I(Ui) .

A mxm
Uie R is that elementary orthogonal transformation which exactly

reduces EZ i Define the orthogonal matrix 0 by
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A A A
(9.19) V=Un_r~-~-oU1 .

¥ mx(n-r)

From (8.17) and (8.18) there exists a matrix 6B2 e R such
that

(9.20) [%’-J = EZ,((n-r)+l) -V (§2 + 5132*)

and

(9.21) 188,71 2 K nom) | [B, 1],

-r)x(n-r)

where We [R(n is an upper triangular matrix.

A
Step 7: Premultiplication by V.

Define

- - - % -1
(9.22) z1={f-—(B1(L+6L) g+£1)+£2}
and for 1ig n-r
(9.23) z, = f4(U,

From (8.17) and (8. 18) there exists a vector 6§ze¢ lRm such that

— A—
(9.24) z(n-r)+1 = V(z‘.l +6z),
where
(9. 25) |62 | < z'tk‘3(n-r) IEAIE

We now define ye R"F by

(9.26) y = [1 |o] 3 v (z, +62)
: n-r r+l 171 ’

where
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9.21y V. =[1 _to] ¥.

1 n-r

A A
It is clear that Vl is the first n-r rows of V.

Step 8: Calculate VT/'"l y

We have from (8.10) and (8.11), that there exists a perturbation

*
§W  such that
= -1 = * -1
(9.28) (W y)=(W+ W) "y,
- * -1 . =-1 .
where (W + 6W ) exists because W exists and

% -t — —
(9.29) [|6W || < 2 K, (n-r) [[wW]] .

Step 9: Premultiply by Q.

Define Tlemn from (9.7), (9.28), (9.26) and (9.22) by

-— * -1
(L+sL ) g
(9. 30) 1

— k& o A [ — X -
(Waswh™? v, {62+f-B (L+8L) lg-£1+£2}

and for 1 i<r

(9.31) £, =P

(r+1-i) 1) -

Therefore our calculated solution is given by

(9.32) x=£r+l’

x
and from (8.17) and (8. 18) there exists a vector §£ ¢ R" such that

R *
(9.33) x=Q( +682),
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where
* -t — -
©-30)  [ls2"[1< 2 Ky |1L ] -

From (9.33) and (9. 30) we have an exact representation of our calcu-

lated least squares vector x using floating point arithmetic. We now
proceed to estimate how far X is from the true solution x given
in (9.1). This will be accomplished in two parts. First we will
estimate how far x is from an intermediate vector #® which is the
exact solution of a perturbed problem, and then estimate how far 2
is from the exact solution x of the original problem.

In order to obtain a compact expression, we will make the
assumption that the following quantities are moderately small. For

a real /\ satisfying 0</\ <] assume that

(9. 35a) hl||L'1 L||€ A where h =max {1, Vr/2},

(9. 35b) z‘tiz(r) W (C) € (A -D%/01 +A)Y

(9.35¢) hzllaww’lllgA where h, = max {1, Y(m-1)/2},
(9.35d) z'tﬁz(n-r)’)((sz)s ALY+ D),

(9.35¢)  [IR[1/]1e]1< A,

(9. 35£) 1% -x]1/]1=x g A,

A ’
where x and R will be defined in (9. 37) and (9.38). Also, assume
that the conditions needed to satisfy the hypotheses of Lemma 5. ]

and Theorem 7.] are met.
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It should be clear from (9.8), (6.5c), (9.35a) and (9.35b) that
S | &
(9. 35g) IR R P I R VAW

N —
where L =L = 8L + L. Likewise from (9.29), (6.6c), (9.35c) and

(9.35d) we have
* —-1
(9. 35h) [1sWw || |IW |]1<A,

where %:W: W + W,

We will now account for most of our errors by interpreting them
as errors induced by a perturbation of the initial problem (9.1), and
then apply Theorem 7.1 to bound this portion of the error. Consider

the following constrained least squares problem

A A
(9.36a) C=C+8C, g=g, i.e. §g=0,
where §C is defined in (9.5),

) N
(9.36b) A=A+8A, f=1, i.e. 8§f=0,
where

*71 AT *

(9.36c) 6A=[0|6B2 ] Q" +8a™,

* *
GBZ and §A are defined in (9. 20) and (9.11) respectively, with

solution x which satisfies
AA

(9.37) Cx=g,

minimizing the norm of

A A A
(9.38) R=Ax-f.
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From (9.5) it is clear that the orthogonal matrix 6 reduces 8 »
exactly to [Elo] , where (9.6b) gives a bound for ||8C|]| . Also,
from (9. 36b) and (9.11) we have

(9. 39) AQ- (B, B, + sBz*].

and from (9.20) the ortho‘gma.l matrix G reduces B_ + 6B * to

2 2
A = A

[‘:—] . This is the reason we have L =L and W = W .

Therefore, using Algorithm 1.1 we have

E-l g 3
A A A 1
wly {f - B. L! g} 2
- 1 -
where
B 4. -¢-B 4 +R
(9.41) (Bz + 6Bz ) ,=f-B,d +R.

In order to obtain a bound for | |§l 1, | 'EZI | we use (9.11) and

apply (3.13), (3.9) and (9. 12b) to obtain
9.42)  ||B,|l. |IB,lI =0l al] .
Using (9.42) on (9. 21) we have
* -t
(9.43) |18B, || = oz™" ||A[]).
Therefore, from (9.36c), (9.43), (3.13) and (9.12b) it follows that
-t
. (9. 44) llsal| =0tz " [|A]]),

A
where gA = SBz*[OII] QT + GA* .
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If we use Th;aorem 7.1, (9.44) and (9.6b) it follows that

9.45)  [|R=x|]/]]x]] = 0 (2™ K (o
+0 @7 X(B,) [1al]/]]B,]])
+02™" X(c) B, |1a]1/]B,]1)

-t 2 2
+0(2 " X@©) KB R[]l el |a]]™/
2
113,11%),
where in the last expression we have merged terms by using the fact
that )} (C) >1 .

We now want to estimate the error which we cannot account
for by perturbation. Toward this end use (9.33), (9.30) and (9. 40)

to define Al € Br and AZ ean-r

(9. 46) x-2-0862"+ S[Al]
AZ

Taking norms, it follows from (9.46) and (6. 10) that
- *
(9.47) [Z-2[1 < e ||+ 1A+ 1A

We will consider first the vector AI’ and use (9.30), (9.40) and
(3.17) to obtain

- * - -
(L+6L)lg-ng

(9. 48) Al

-_— ¥ -] =< * A
a+ el sL* 4
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Taking norms and using (9.35g) and (3.16) bounds the first inverse,

using (9.8), (9.35a), (6.5c) and (6.10) yields
9.4 [IA[] = 0™ X(©) |1R]D-

Before evaluating | |A2| |, we will bound the vectors 61 and &2 .
To accomplish this, we show the following result from (9. 39) by

using (3.9) and (3.13)

-— —_— sk A
(9°50) ||B1”’ ||B2+6B2 llSIIAII'

A
Also, it follows from the fact that L 1 g=d

* -1

—_ * —1 —-1 A
(9.51) (L+sL ) g=(I+L &L ) dl.

Therefore, from (9.14), (9.50), and (9. 51) we have using (9. 35g),

(3.16) and (6. 10) that
-t A A
(9.52) [HE T =0 " [[al] [Ix]]).

From (9.16), a bound for | ICZI | follows from the simplification of

the expression

— b . - - -— -
(9.53) f-Bl(L+aL)lg-él=f-BlL g+B (L

3 - K —_
+6L)16L ng-él

* A N — —-1__ % -1=—-
)dz-R+B1(I+L 6L ) L

= (B. + 6B 1

L*a
2 2 8L d; &),

1
where we have used (3.17), (9.40) and (9.41). In (9.35g) it is

— *
assumed that ||L 1|| ||sL || € A <1, upon applying this twice

and using (9.50), (3.16), (6.10) and (9.52) we have that the norm of
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(9.53)is O(||A[] [|x]|]) + O(| |R||), hence from (9. 16)

-2 N A -
(9.54) [E N =02 " [|a]] ||x]])+ o2 t

A A A A A
< LHRIZCIAL =D)AL TxLD -

A A A
Using (9.38) we find | |A|| ||x|| > |]f]| - ||R]|, which, when
combined with (9.54) and the assumption (9. 35e) that

N
[IR||/]1£]|€ A <1, yields
-t A A
(9.55) &, 11 =0@ " [1a]] [1=]]) .

We now define the vector C3e R™ by

{f-B(L+6L) -C +EY-(£-B. L' g}

(9.56) E )

3

2
— -1 -1 -1 __* A
(I+L 6L) L sLd-£+5.

A bound for | |¢_‘,3| | is obtained in similar fashion as that employed
for | If,zl |, therefore we have from (9. 50), (9.35g), (3.16), (9.8),

(9.35a), (6.5¢c), (9.52) and (9.55) that
-t A A
(9.57) €11 =0 "X [lal] |Ix]]) .
Finally, using (9.25) and (9.22) we have
X B.(L ¥\ -1 E +€
(9.58) [l6z]] < 2 K3(n-r)||f-B1(L+6L) g-C+ 2||.

Upon examination of (9.16) and 9.58), we see that they differ only by

(c,2 and the factor -123(n-r), therefore using (9.55) it follows that
-t A A
(9.59) |l6z]| =0 " [|a]] ||x]|]) .

The definition of AZ comes from (9.46), (9.40), (9.33) and (9. 30),
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which yields the following simplification using (9.56), (3.17) and

(9.40)
(9.60) A, =(W+ewH 'V [sa+t-B T+sLH) g

—__1 A —_— ——
_£1+£2})-wlvl[f-Blng]

-wlasswtw ! [-5W* 32 + 01 (53 + Gz)].

Using (9.35h), (3.16), (9.29), (6.10), (3.14), (3.7), (9.57), (9.59),

(6. 6b) and the fact that \/I&\’ = V—V, it follows upon taking norms
-t -1 N A
(9. 61) A1 =0@™ Xy [IWw ] [1al] |Ix|D,

— - A%k 74
where we have used the fact that ||W]|]| = ||Bz+6B2 1< ||Aall,

and X(C) >1.

A
Finally, from (9.44) it follows that ||A|| = O (||A]]|), hence

-t A
(9. 62) A1 = 0@ Xeo) X(B,) | |x[| [1a[l/]1B,I]).
where we have used the fact that | |W|]| = IIBZ” and (6.4) .

xk
We are now in a position to bound | |5£ | | . From (9. 34) we
have

-t

. _
(9. 63) [le2 || =0@ " |[e ],

and substitution of (9.33) into (9. 46) yields after rearrangement

NG R

Therefore, a bound for | ISI*I | follows from (9.63), (9.64), (9.49)

and (9.62)
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(9. 65) 1627 -0 (272t X(C) ||%]]) +
0 2% X(cy X(B,) | [RI] [1al1/]1B,11)+
o [1XI] .

We now have our bound for | |§-Q| | from (9.47), (9.49), (9.62),

(9. 65) and the fact that X (C) >1
— -t A
(9. 66) | 1x-%]|| = o2 X(C) | |x]|])

-t
+0(27 X(C) X(B,) |IR]] [|a]l/]]B,]1).

From (9.45), we have a bound for | |Q-x| |/| le |, which can be
tested to see if our assumption that | IQ-xI |/| |x| |< D is

reasonable. If it is, then from (9. 66) we have
9.67)  [|%-R]] = 02™ X(<) |Ix|])
+0 (27 X(0) X(B,) | Ix|| |1a]1/][B,]]) -
From (9.45) and (9. 67) follows our final result
9.68)  ||x=x||/]|x|] = 0 2™ X(c)
+ 027 X(B, | 1all/]18,]D)
+ 027 X(C) X(B,) |1a]1/]18,]])
+0 (27X () XA IR 1/11£1 101 1Al 1711B,1 1)
(9.68) shows the errors introduced by solving (9.1) using

floating point arithmetic. Here we have suppressed all quantities

which are constant (depend only on A, r, n, and m) to illustrate the
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dependence on the machine accuracy, Z-t, and condition of the

matrices C and B As hoped for, the influence of the condition of

2"
the constraint equations C appears only as a linear factor in
(9.68). However, the term of major influence is the last one, in
which the condition of B2 is squared. The effect of this term will
be minimized if the quantity X(BZ) | IR||/]|£]| is not too large,

i.e. the residual R is small compared to f.
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CHAPTER 2
BLENDING FUNCTION THEORY

In Section 1, an introduction to blending function theory as
developed by Gordon and Hall [12, 13, 14, 15, 16, 17] is given.
The presentation will be a generalization of their results to the more
general setting of interpolation spaces. Most of the proofs of
Section 1 will follow from their own. However, the more general
setting of Section 1 will enable the application of blending function
techniques in the following chapter to be accomplished with greater
ease.

In Section 2 the dimension of discretized blending function
spaces will be shown and several bases will be explicitly developed
in terms of the cardinal bases for the corresponding interpolation
spaces.

In Sections 3 and 4, natural cubic spline blending will be
developed with error bounds given for "approximate' natural cubic
spline blending.

Finally, for fe C[a, b] and ge C( [a., b]x[c, d]) we define
161 = sup |fx)| and [[g]] = sup [e(xy)].

agxg<b agx<b
cgygd



66

Section ]. Spline and Blending Function Interpolants

Given a mesh 1rx:a=x1< x2< -o-<xM=b, the space of

cubic splines on T is defined to be
2 2 . . .
(1.1) S (Tl’x) ={seC [a, b] |s(x) is a cubic polynomial on
[xi, xi+1] for 1€ i€ M-1} ,

see Schultz [29 ] .

Let fe C(l)[a., b:l , then the type 1 cubic spline interpolant,

8o associated with f is defined to be the unique spline which
satisfies
(1. 2a) 8¢ (xi)= f(xi), 1ig M
1 - f ] =
(1.2Db) sf(xi)_f(xi), i=1, M,

The following theorem of Carlson and Hall [ 5 ] gives error

bounds for type 1 spline interpolation.

Theorem 1.1 (Carlson and Ha11[5 ]). Let fe C(m)[a., b] and LI

be a mesh on [a,b]. Then for 1{ m <4, 0 rg min{m, 3}

(r) (m) m-r
TR R [T PR TECRI TR
where the mesh size h = max Axi; Axi = xi+1 - X, the mesh
ICiIKM -1
tatio M = max Axi/ min A x. and E’mr is given in
1<iKM -1 IiKM-1 !

Table 1.
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TABLE 1

émr r=0 r=1 r=2 r=3

m =1 15/4 14 -- --

m =2 9/8 4 10 --
m=3  71/216 31/27 5 (63 + 8 M2)/9
m = 4 5/384 (9+Y3)/216 5 (2 +M2)/4

Bivariate Functions:

We will present here an introduction to blending functions as
developed by Gordon and Hall |_—l 2] ,[l 3],[14], [1 6] . To accomplish this,
it will be desirable to introduce the following general notation, which
will allow us to develop at one time many of their results. Although,
it should be pointed out that the methods of proof used here are just
slight generalizations of their own.

In what follows, we use the notation
k, £ k, £ k+4 k_ 1
(1.4) f( ) - pl )[f] = 9 * flax a8y .

Definition 1.1: Let c ™™

([a, b] x [c, d]) = C(m,n) be the space
of real valued functions with domain |a, b] x [c, d] such that if

fe cl™ n) then gl £) exists and is continuous for 0§ kg m and

0<1<n.
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Definition 1.2: A projection operator (projector) P is an idempotent

linear operator from a function space onto a subspace of the function
space.

We will consider here only projectors which separate the x
and y variables, where the dependence on one of the variables can
be represented by an element from a finite dimensional vector space.
This space is to satisfy an interpolation property for certain values
of the function and its derivatives at specified points. Therefore,
we introduce the following notation:

We are 'given the mesh L < xl< x2< e g st b where
the points are not necessarily distinct. Also, the non-negative

integer m, the interpolation function a:I _*J'm’ where I =

M M

{i is an integer |1 i€ M} and Jm={j is an integer |0 ¢ j§ m},

satisfying the following restraint: if there exists distinct natural

numbers s and t such that x =X, then a(s)f a(t) .

Definition 1. 3: V(rrx, M, m) Q_C(m) [_af, b] is a finite dimensional

interpolation vector space with respect to @ on the mesh L if and
only if there exists an algebraic basis {‘Pi} iﬁ. satisfying the following

cardinality conditions for 1€ i,j € M.

ple() 1 if i=j

(1.5) ( ij = Yo if it

(4)) (x)) = 8

Such a basis for V(,,x, M, m) is called a cardinal basis.
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In terms of the cardinal basis, if fe¢ C(m)[a,b], the the function

Mo ati)
(1.6) px)= Z £ (x.) ¢.(x)

i=1

satisfies the interpolation conditions

(1.7) (pleiy () = f("’(i))(xi). for 1£ i M.

Example 1.1: Let V(nx, M, 0) be the space of Lagrange interpo-

lation polynomials of degree M-1 on [a, bJ interpolating on the
mesh wx:a< xl< xz< e L ng b, then for 1€iM, a(i)=0

and the cardinal basis is { Ii}:fl where

M / M
(1.8) L(x)= M (x-x.)/ M (x,-x.).
e j=1 17

it i#

Given f¢ C(o)[a, b] , then the interpolation polynomial is given by

M .
(1.9) pxy = 2 £ ) a0,
i=1

f(ar(i))

where (xi) = f(xi) .

Example 1.2: Type 1 cubic splines on M-2 22 knots.

2
Then V(wx, M. 1)=S8 (nx) on the mesh wx.a = xl = xz< x3<
< xM-2< X1 S XM T b, where a(l) = a(M) =1 and for
2£ig€ M-], a(i) = 0. Also, the interpolation spline satisfies con-
' ditions (1. 2a) and (1.2b), and the cardinal basis {ci(x)} ?_‘l satisfies

for 1€ j& M
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(1.10a) Ci (xj) = 6ij’ Ci (xl) = Ci (xM) =0 for 2Lig M-1

! = C! = = f i= .
(1.10Db) Cl (xl) CM(xM) 1, Ci(xj) 0 for i=1, M

Example 1. 3: Cubic Hermite splines on M knots.

1
Then V(wx, 2M, 1) =H (-rrx) on the mesh 11'x.a--x1 -x2<x3—x4

<.+ <x = b, where a(i) = (i-1) mod 2 for 1 ig 2M.

2M-1~ *2Mm
Given fe C(l)[a, b], the Hermite cubic spline interpolant p(x) satis-

fies p(a(i))(xi) = f(a(i))(xi) for 1€ig 2M. The cardinal basis

{Hi}iz_l‘;I satisfies for 1 j{ M and 1€ i M

- 1 -
(1.1la)  Hy, (0 )= 80 Hy, (x5 =0,

(1.11b) H_.(x

= 1 = .
2i ) =0, Hy(x,00 =58,

2j-1 j
Remark: Even though our notation V( L M, m) does not include
M

=1’ it is understood that these two

a reference to @ and {¢i}

quantities are always associated with V(-ux, M, m).

We are now in a position to define the projection operator P
~ x

of a bivariate function. Given the interpolation vector space
V(nx, M, m), the corresponding interpolation function a., basis

{¢i}?fl and fe C(m’ 0), we define Px[f] pointwise to be

M .
(1.12a) (Px[f])(x’ y)= = fa(i), 0)

= (%, Y) (%)

where it is clear that
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plei), 0) (a(i), 0)

(1.12b)  ( P [f]) (x, y) =1 (x5 ¥)

for 1€ i< M. Examination of (1. 12a) and (1. 12b) shows that Px

is indeed a projection operator on C(m’ 0).

We define the univariate interpolation vector space
V(-n'y, N, n) < C(n) c, d] in the variable y with interpolation func -

tion ﬁ:IN——> JN and cardinal basis {..pj};\il in an identical manner

as above. The corresponding projection operator Py[f] for

(0,n)

fe C is defined by

N .
= {0.B(3))

(1.13) (P_[£)) x,y) =
b4 j=1

(x, Yj) ¢j(v) )

where for 1 j N

(0,B(3)) A0,B()))

(1.14). (D PY[f]) (%, ¥;) = (x ) -

In the usual manner, we define the sum or difference of two
operators to be the pointwise sum or difference, and the product

as composition. Direct calculation shows that the following state -

. (mlnnl)
ments are valid on C where m, > m and nl> n, and

Px and Py are defined as above.

L] = P
(1. 15a) Px Py ny’

(0,2)

(1.15b) p'0!) P =P D for 0<4< n, and

(k, 0)

(1.15¢) D(k’o) PY = PY D for 0g kgm1 .
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We define the projection operators

(1.16a) R =1-P ,
X X

(1. 16b) R =1-P ,
y y

where I is the identity operator. The following relations are a

. . (mlonl)
direct consequence of (1.15a) to (1.16b). On C where

m 2m and n

1 >n

1

(1.17a) R R =R R
x'y Yy x

(1. 17b) D(°’”Rx=Rx p'%? for 0gtgn, , and

1 L
(1.17¢) b0 R =R, p* 9 for 0gkg m, .

n)

The first observation that we make is that given f¢ C(m’ , then

Px Py[f] is the tensor product interpolant to f, where

> n deti)Ba)

(.18) (P P [fhixy) = (x50 ¥5) (%) Wi(y)

(-

=1 j=1

see Gordon and Hall [14]. It follows from (1.18) that for 1 i M

and 1£j<N
(a(i), B(5)) _ (a(), B3
(1.19) (D P P e (x,v,) = ¢ (x5 ;) -

The error of the tensor product interpolant to f is given by

_(1.20) (1-P P) ()= r_[£]+ Ry[f_] -R_ Ry[f] .
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Gordon and Hall [17] (see Theorem 1.2 below) have shown that
there is an interpolation scheme using the projection operators Px and
PY which will eliminate the terms Rx[f] and Ry[f] in (1. 20).

(

Definition: The operator on C m, n) defined by

(1.21) Px@Py=Px+ Py-PxPy
is the blending function operator and Px () Py[f] is the blending

function interpolant to the function f¢ C(m’ n).

Theorem 1.2. (Gordon and Hall [l 7]) ¥ fe C™ ™) then

(1. 22) (I-P_® Py)[f] = R R [£].

Proof: 1 -(P. +P -P P)) I1-P +(I-P )P
x y x'y x x' Ty

(I-P)(I- Py)

R_ R .
Xy

The set of functional values and derivatives on which P_ @P

interpolates f is given in the following theorem.

Theorem 1.3. (Gordon and Hall 17]). If fe C(m’ n)’ then for

1{i¢ M and ‘ye [c,d]

(1.23a) (D(""i)’ 0) Px @ Py[f]) (xi. y) = f‘a(i)’ 0) (xi. Y),
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also, for 1 jg N and xa[a,bJ

(1.23b) (D(o'ﬁ(j” Px® Py[f]) (%, Yj) - {0-B0Y) (%, vj) .

Proof: By direct calculation.

What we have accomplished is the approximation of a bivariate
function with a sum of univariate functions. Therefore, it should be

clear that the image of C(m’ n)

under the operator Px@ PY is not
a finite dimensional space. In comparison, from (1.18), itis clear
that the image of C(m’ n) under the tensor product operator Px P
is a finite dimensional space. Therefore, to implement the blending
function method, it is usually necessary to make second level
approximations to f(a(i)’ 0) (xi, *) and f( 0, B(3)) (- ,yj) which have
an accuracy compatible with Px® nyf] . This is the sacrifice
which must be made in order to achieve this gain in accuracy.

Next, we want to show how much more accuracy is gained by blend-
ing function techniques, to see if it will justify the extra work of
implementation. Toward this end, we note that the accuracy of
blending function methods depends upon the interpolation accuracy of
the two univariate spaces V(wx, M, m) and V(-n-y, N, n). There-
fore, we introduce the following general notation for an univariate

error bound.
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Definition 1.4: Let V(nx, M, ml) be an interpolation vector space,

with interpolation function a , and cardinal basis {¢i}:\fl . We

say V(u-x, M, ml) has an error bound for the kth derivative if

and only if there exists a function g, (k) =g (hx' m
(k) A

1’ mz, k) such

that if x e [a, b] is any point where ¢ (x) exists for 1 ig M,

(m32)

and feC [a.,b] where m2>ma.x{ml, k} then

M . (m,)
(1.24) 1€9% - = o) (x,) &, s %) < LROIIE: 21,
i=1 -

where hx is a parameter of the mesh T It is clear, if

V(wx, M, ml) has an error bound for the kth derivative,

(mZ: n)
g eC Y, YE [c, d] , Px is the corresponding projection opera-

tor and x is any point satisfying Definition 1.4, then
(1.25a) (p* 9 p_[t]) (X,y) exists, and

(1.2sb) (09 P[] (%) « c® ([c,d]) .
Therefore, it follows from (1.15b) that for 0 £ n
a.26a) @V p [hy=0™p [Py ay,
correspondingly

a.260) (@R [ @y = 0V R {9 @,y

and finally

(mzil)
R_[f]) (%) € g, (k) sup |[f (t,y| -
Kth

‘(1.26c) (o)
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For the interpolation space V(wy, N, nl), interpolation
N
function p.I.N——> J'n and cardinal basis {¢j}j=l’ we use an
analogous definition for an error bound for the lth derivative, and
we have conclusions similar to those given by (1. 25a) to (1. 26c).
We are now in a position to prove the following theorem, which

is a generalization of the error analysis given by Gordon and Hall

[17].

Theorem 1.4. Let V(Tl'x, M, ml) be an interpolation vector space

which has an error bound for the kth derivative for 0 k & m,,

where m_ is an integer such that 0 m

3 € m_. Also, let

3 2

V( rry, N, nl) be an interpolation vector space which has an error

bound for the lth derivative for 0 £ £ n_, where n3 is an integer

(mz,nz
such that 0<n3$ n, . If feC , then
(m_,n,)
(k, £) A A 2’72
(1.27) (-2 @PHED™ V& < gm0 (0] 1,
and
(m_, £)
k, £ 2
a.28) -, PO VA c g mlle T
(k’n ) . (rn ,n
2 22
ML k) g ()] |f
tg )| | ||+gx()gy( ) | |,

where :Q, 9, m nZ, gx(k) and gy(!) are given in Definition 1. 4.

2’

Proof: For 0 qg n, and for each ye [c, d] it follows from

2

(1.26c¢)
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(m_, q)
k
.29) |V R [hEy < gm0 sw £ 2 Ly
agxb
(n
Because D R [f] ‘)eC [_c d] and Lp (Q) exists for

(k, £)

1€ j< N we have that (D Ry Rx[fJ) (x, y) exists and from

(1.29) and Theorem 1.2

(k, £) o p % g plks 0 A
(1.30) (0™ R R [ ] = (07T R DT TR DY)
(k, n,)
< g (%) sup |D R r_f] (X, -
(

m_,n
2’2
< g (g h) HE: I .

The proof of (1. 28) follows in a similar way from (1.20), (1.29) and

(1.30)

Corollary 1.1. (Gordon and Hall [17]) If fe C ([o h] x [o h]),

h< 1, and the spaces V(-n'x, m, 0) and V(-rry, n, 0) are polynomial

spaces as defined in Example 1.1, then

(ko 1) £ 2 (m9 n) m+n'(k+ !)
(1.31) ||((I-Px@Py)|:f]) €€ &, |1 | |n
and
k, £ < . k
(1.32) [l - P PY)[fJ)( 1< <5mk||f(m | |n"
z k, 4 = 7 , n-(k+!
+E NP WL E L E 1 et t)

where 0K k<m, 0§ £<n, & =1/tm-k)! and E_, = 1/(n-1)1 .
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Proof: From [24, p. 289), if £eC™[0,h), then

m

K i k = -k
(1.33) 1% %) - et (x,) li( )(x)léfm,lklIf(m)Hh’m ,

i=1

-k
hence gx(h, 0, m, k) = émk K™ . An application of Theorem 1. 4

completes the proof.

Corollary 1.2. (Carlson and Hall LSJ). If fe C(m' n)([a’ b]x[c, d]),

1< m,n <4 and the spaces V(nx. M, 1) and V(Tl'y, N, 1) are

cubic spline spaces given in Example 1.2, then

(m,n)’
(k, 1) m-k n-{
(1.34) |-, @ P)[t]) < &l | b, kh,, '
and
K, 1 ) -k
(1. 35) ||(<1-PxPy)[f])‘ ’||<5,r,r,kllf(m )Ilhxm

(k, n) n-{ m,n m-k n-f
+E 1™y v & E LA™ Bt

where 0< kg min {m, 3}, 0 < £< min {n, 3}, also &m and €

k nl
are given in Table1l, h = max (xi+l-—x,) and
2€i<M-2
h = max y, .-vy.).

Proof: We have an error bound for the derivatives given by

Theorem 1.1, where gx(hx, 1, m, k)= 6mk hxm-k .
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Carlson and Hall in the same paper [5 ] have given other error

boundkfor Px PY [f] under weaker continuity requirements for f.

(m, n)

Corollary 1.3. If feC ([q,b] x [c, d]), 1{ m,ng 4 and the

spaces V(wx, 2M, 1) and v("y’ 2N, 1) are Hermite cubic spline

spaces defined in Example 1. 3 then

h, 1 AR , -k_ n-t
(1.36) ||((I-Px®Py)[f])( )”<£mkénl||f(m n)||h;’“ hyn \
and
(ko!) A m,l) m-k
(1.37) [luz-2, 2 )[e]) <€ ™ n

A A A
(k,n) n-A (m, n) m-k, n-{
+E N e L 11E™ ) Ing khy ,

A )
. . E
where 0 k ¢ min {m, 3}, 0 £ min {n, 3} also "k and E’nl
are given in Table 2, h, = max (x,. . -x_.),
1<igM-1 2i+l1 2i

h = max (Y,. ,-Y,.) -

1<jEN-1 2j+1 7 2j

TABLE 2

N

&mk k=0 k=1 k=2 k=3

m=1 5/4 4 -—-- ---

m=2 3/4 5/2 12 -

m=3 7/24 1 5 7

m = 4 1/384 Y3/216 1/12 1/2
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Proof: From Carlson and Hall [5 ], if fe C(m) [a,b], then

. A
(1. 38) |14 - = £ ey m || E 1€ n K,
1=

N
implying that gx(hx, 1, m, k) =

m-k
Emk hx

[ ]
We are now in a position to describe the second level decompo-

sition of the blending function interpolant, see [1 7] . The purpose of

this is to create a finite dimensional interpolation scheme while pre-

serving the accuracy of our blending techniques.

Define the

Meshes: Fx: a('x-lgi'zs e g

LS 375 S7% SRR §7

Interpolation functions: a: I——> T

F: Lﬁ _>Jﬁ
(1M

1" i=1

Cardinal bases:

4

{~|:j}j )

1

Projection operators: -P:‘ and Kx

=I-P
x
P andi =I--15. .
Y. Yy y

From this define the interpolation spaces V(;x, M, m) & C(m)([a, b))
and ¥z, W, 3) < c®c,a)).
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* %
For fecl™ ™ ), m' = max{m, m} and n* = max {n, 7} define

the discrete blending approximation to Px@ PY [f] as
(1.39) P ® Py[f] =P P [£] + Pny[f] - Pxpy[f] ,

where, for example

M|
TMZ

Aai), B3N

(1.40) P P [y = 1

=z (3, y7) F(x) yty) -

[
1]

In general, the discrete blending approximation Px@ PY [f] does
not interpolate values of f and its derivatives. However, with the

following restriction on the interpolation spaces, we will prove that

Px@ Py [f] does indeed interpolate.

Definition 1.5: Let V(m_, M, m) and V(7 » M, ™) be interpola-
tion vector spaces with interpolation functions @ and @ respectively,
then V(m, M, m) is subordinate to V(a?x, M, ™) if and only if
mg m and for each i where 1 i M there exists an 1 such that
1€i< ﬁ, x, =§I and a(i) =a(i) .

We have the following generalization of a theorem due to

Gordon and Hall [l 7] .

Theorem 1.5. Given the interpolation spaces V(wx. M, m),
V(’ix. M, m), V(vry, N, n) and V('1r'y, N, n) where V(wx, M, m) is

subordinate to \—I(Tr'x, M, m) and V(ny, N, n) is subordinate to

(m,

V(?Y, N, n), if £ C™®) thenfor 1< i< M, 1< j< N, 1S I M
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and 1< JT< E
@i),8(i)N == A=), B()), =
(1.41) (D PO, [Ey,) = ¢ (% ¥;)
and

(1. 42) (D(a(i).ﬁ(J))p—*(_.D_Ey[f])(xi,‘y? - (a(i).p(m(xi';,? .

Proof: By direct calculation.

Even if our blending spaces are not subordinate to those used
in the second level decomposition, Px@ nyf_] is still an approxi-
mation to Px@ Py [f] and hence to f also. This is the conclusion

of the following theorem.

Theorem 1.6. (Gordon and Hall [1'7]). Given the interpolation

spaces V(nx,M, m) , V(i?x, M, ), V(ny, N, n) and -\;(?r'y, ﬁ,'ﬁ).

* % |
if fec™n) where m* = max {m, m} and n¥ = max {n,n} then
(1.43) 1-POP) (£] = Rx[f] + Ry[f] + R Ry[f]

-R, R [£] - R Rx[f] .
Proof: I-P@®P =1-P P -P P +P P
—_— x Yy X'y 'y ' x xy

I-P@®P_+R_P +R_P
x y x'y Yy x

R R+R -R R +R -R R .
xyxxyyyx



83
An examination of Theorem 1.6 and Theorem 1.4 yields the

following generalization of a theorem by Gordon and Hall [1 7] .

Theorem 1.7. Given the nonnegative integers m3< min{m ,EZ}

2

and n, < min{n _ﬁz}, the interpolation spaces V(Tl’x, M, ml) and

3 2’

V(?x, M, r'?ll) which have error bounds for k, where 0 k< m,

also the interpolation spaces V(Tl'y, N, nl) and V(Fy, N, Til) which

. (m3, n})
have error bounds for f where 0 £ n,, and if feC 2
A —_ * —
where m2 = max {mz, mz} and n2 = max {nz, nz} then
P~ k, £ - m,, !
(1.44) 1 -B @ Pl VR H < g o0 1€ )

—_ k. n
s[5 4 g (k) g )] €22
Yy x b4

—_ (r"ﬁ s _ ’—
FE 0 g (0] [£72 || 4 g o g o] |72 |

where % and ;\r satisfy the conditions of Definition 1. 4.

Proof: Similar to the proof of Theorem 1. 4.

If it is possible, by some procedure, to increase the accuracy
of the spaces V(?r'x, ﬁ, Hll) and V('-r?y, -ﬁ, 'fil), we see from
Theorem 1.7 that the total increase in accuracy for -I;’-‘@;Y is
limited by the term g_(k) gy(l)l |£™2:22)|| | Therefore, it is

not possible to increase the accuracy beyond that of the original

blending approximation.
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Example 1. 4: If we take for each of our interpolation spaces the
space of cubic splines defined in Example 1. 2, then V(rrx, M, 1) =

2 = = 2= &2 —_ = _
S ("X)’ V("x: M: 1)- S (Trx)9 V('"y’ N’ 1)— S ("Y): V(TTY: M’ 1)“

2 — - . .
S ﬁy), m, =m,, n, =n,, m, =min {mz, 3}, n, = min {nz, 3}
1< m,, n2< 4 and if fe C(mz’ n2) then
o (k, £) (mgt), = ™27k
a4 [l -ROPAN I ICE, e 2|5,
v & |em2)) g met
n_,4{ y
2
m_,k ™m_,! x Yy
2 2
vE & |[fmeem2) |y ek merd
m_,k m_,{ b4 y
vE & |2 R2))y Meky m2rd
m_,k m_,! X Yy
For ease of comparison, we will let h = max {hx ’hy}’
h = max {hx, hy}’ m, =n, = 4 and k={ = 0. Then the accuracy

in (1.45) is limited to O(h8), and therefore we take h = h2 to
preserve the overall accuracy of the scheme. This tells us how
much the meshes ’Fx and 'EY must be refined in (1. 45) to obtain a
scheme which is O(h8).

In comparison, for bicubic splines (tensor product (1. 35))
the a.ccuracy is O(h4). In the next section we will compute the
dimension of discretized blending function spaces, and therefore
will be able to show that the increase in accuracy is worth the extra

labor of implementation.
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Remark: In our notation V(nx, M, m), m can be any integer
which satisfies m*< mg m**, where m™ is the smallest integer
which allows enough continuity to perform our interpolation and m**
is the largest integer (if it exists) for which V(wx, M, m) C
C(m**) [a, b]. In Example 1. 2, for type 1 cubic spline interpolation,
m can be equal to 1 or 2. In Example 1.3, for cubic Hermite
splines, m = 1 is the only choice. Note that by increasing m, we
restrict the choice of f which will satisfy our theorems. However,

sometimes it is necessary touse a m > m , if, for example, we

wish to satisfy Definition 1.5 or Theorem 1.5.
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Section 2. Dimension of Discretized Blending Function Spaces

In applications other than interpolation, such as discrete least
squares, Ritz-Galerkin methods and collocation, it is necessary to
have a finite dimensional space on which to do the computation.

Therefore, we introduce the following definition.

Definition 2.1: Let V(m, M, m), V(T M, @), V(z, N, n) and
V(Fy, ﬁ, T) be interpolation spaces (see Definition 1.3), then define
the discretized blending function space DBF(V(u' , M, m),
v("y’ N, n); V(n- ' M m), V(1r , N 7)) to be the image of

(m n )( [a, b] x[c, d]) under the linear dlscretlzed blending func-
tion operator Px Py + PY Px - Px Py’ (denoted by ‘P?-D—Py), where

m* = max {m, m} and n* = max {n, 7} .

From this notation, it is understood that the blending spaces
are V(1rx, M, m) and V(ny, N, n), and the spaces which give the
second level approximations are \-T(?r‘x, M, m) and '\T(?r‘y, N, 1).

When the interpolation spaces are understood, we will drop
them from our notation and denote the space of discretized blending
functions as DBF.

It is clear that DBF is indeed a vector space.

Finally, for this section,.a, @ -,p and p will be the interpo-

N -, N
lation functions and (&} {—} ¥ {"’j}j=1 and {"’j}j=1 will be

17i=1 i“i=
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the cardinal bases for V(wx, M, m), W?x, i-d, m), V(u’y, N, n) and
V(?Y, N, n), respectively.

We will need the following information about product space.
If V(nx, M, m) and V(ny, :N, n) are interpolation spaces, then

their product is defined to be

(2.1) V( M, m) ® V(ny, N, n) = span {fg |f€V(‘ll’x, M, m) and

ge V( " N,n)}.

An element f @ g ¢ V(ﬂx, M, m) ® V("y, N, n) will be abbreviated
by fg = f (X) g, where f Vin,, M, m), gQV(,,Y, N, n) and

fg(x, y) = £(x) g (y) for (x, y) ¢ [a, b] x [c, d].

M .
If {ui}i=l is any basis for V(nx, M, m) and {wj}?‘ is any basis

J=1

for V(wy, N, n) then {ui w, is a basis for Vir, M, m) ()

JICi<M
IJKN
V( "y’ N, n). Therefore,
(2.2) Dimension (V( T, M, m)@V( wy, N, n))

= Dim (V(r_, M, m)) + Dim (V(ﬂy. N, n))
= M N .
Given the interpolation spaces V(‘ll'x, M, m), V(?x, M, m),
V(‘l'l’y, N, n) and V(?Y, N, 1), and, for example, if

feV(im, M, m)@V(ny, N, n) then

‘ M N . .
(2.3) f=3x 3z )80 CR AN
i=1 j=1

by the uniqueness of representation. Also
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(2.4) (V(m, M, mNV(T, M, W)@ V(r, N, n)
= (V(m, M, m)@V(r, N, n))
VY7, M, B @ Vin, N, ),
and
(2. 5) Vim, M, m) @ (V(r, N, n) ) V(7, N, 7))
= (V(n, M, m) @ V(n, N, n))
N(Vim, M, m) @ V(T, N, 7)) .

We see that (2.4) is true, because the left hand side is clearly con-
tained in the right hand side. Also, if f is an element of the right
hand side of (2.4), then

N | M

2.6) f= =<z f£DBU, o) .} o,
j=1| i=1 v )
N [M . . -
j=1li=1 J J

We will have proved our result if the bracketed expressions in (2. 6)
are contained in V(wx, M, m) N V(?x, ﬁ, m) for 1€ j< N. Using
the cardinality conditions, we have for each j satisfying 1 j N

(2.7) {O.BUGN . o L B el BO),

J i=1

M . .
ngwm@%mfmﬁﬁﬁh
i=1

X Yj) ¢i € V(ﬂx. M, m)

which proves (2.4). We note that (2.5) follows in a similar manner.
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We now show that the following statement is valid for mg m

or ngn

(2.8) (V(7,, M, @) ® Vim, N, ) N(Vim, M,m) @

V@, N, B) SV(r, M, m) @ V(r, N, n).

To see that (2. 8) is true, let f be an element of the left hand side.

Then
N(M . . _
(2.9) f= =d s f(a(l)’ﬁ(”)(ii,y.) ¢i} ¥,
j=1i=1 ) )
M N o= —
= > > f(a(l), B(J))(xi,?.) ¢ ¢'
. . J 1 J
i=1 j=1

We will be done if it can be shown that the bracketed expression in
(2.9)is in V(m_, M, m) for 1g j< N. Using n<n and the

A
cardinality conditions for 1 j§ N, then

0. M A _
(2.10) f( ,ﬁ(J))(.’w\) - 3 f(“(l)’ﬁ(-‘))(‘i,,y,.\) ry
J i=1 1) 1
M N = A
(@i, BG),. = — @O ]
= | =f Dy, N | o,
1:1[3‘:1 (%35 ¥35) ¥ (y3) | %

GV(‘IT,M, m)'
X

Finally, from (1.39) and (1.40) it is clear that
(2.11) DBngpan{(V(Fx, M, m)@ V(. N,n)
U (Vr, M, m) @ V(T N, )

VU (V(m, M, m) @ V(m ,N,n)}.
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Usually, however, DBF is a proper subset. The above yieldsthe

following theorem.

Theorem 2.1. Given the interpolation spaces V(‘l’l’x, M, m),

V(¥., M, m), V(r_, N, n) and V(7 , N, T), then
X b A Yy

(2.12) Dim (DBF) MN + MN + MN

- N. Dim (\T(FX, M, m) A V(m_, M, m))

- M. Dim (V(Fy, N, @ N Vin, N, n)).

Proof: From [7 , P- 468], we have for finite dimensional vector
spaces V) and V,
(2.13) Dim (span {vlu Vz}) = Dim (V,) + Dim (V,)-Dim(V, N v,)
Therefore, from (2.11) we have
(2.14) Dim (DBF)< Dim (V(7_, M, ) @ Vim , N, n))
+ Dim (V(r, M,m) @ V(7 ,N,%))
+ Dim (V(r_, M, m) (® V(m , N,n))
- Dim((V(T,, M, @) @ Vi, N, DN (Vi , M, m)@ V(T , N, 7))
- Dim((V(T,, M, ) @ V(m, N, n))\(V(m , M, m)@V(r, N, n)))
- Dim((V(m,, M, m) @ V(T , N, NN (V(m, M, m)@V(r , N, n)))

+ Dim((V(T, M, ) @ V(m, N, s\ (Vim , M, m)@V(T, N, 7))

n (V(Trxn M, m) @ v(ﬂy’ N, n))) .
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The fourth and last terms together are non-positive, hence, can be
dropped (if mgm or n g'ﬁ- then 2.8 would show that they are
equal and the bound is best possible). Using (2.2), (2.4) and (2.5)

we have our result.

For the proof of the next theorem, we introduce the following
notation.

If V(nx, M, m) is subordinate to -V_(Tr'x, I\—/I, m), then from
Definition 1.5, for each i satisfying 1 i< M, there corresponds
a unique i such that 11§ M, Xy =x, and a(i) =&(1) . Thus, we
define the index set IM to be the set which contains each of the i
satisfying the above conditions. Finally, we define the index set IM
to be the set of the remaining M-M integers.

Correspondingly, if V(wy, N, n) is subordinate to (V(?y,ﬁ,?f),
then we define the index sets JN and JN in an analogous way. We

will now prove a lemma which gives a lower bound on Dim (DBF),

and eventually a basis for DBF.

Lemma 2.1. Given the interpolation spaces V(11'x, M, m)

V(w , N, n), V(?r', ﬁ, m) and \7(? , N, n) such that V(v , M, m)
Yy X Yy x
is subordinate to V(’T?x, ﬁ, m) and V(ny, N, n) is subordinate to

V(Fy, N, n), and if
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=10 b 1w 227 (VR Icicm

= {o, Y + P, 5y[$i 43-] - P_[o 4‘5]}3-5 IM, 1<i<N’
= {9, ¢ +P_P ["’14’3] 'Py[“’i Ej]}jeJN, 1<iKM
A DEA RN AN IS 5 R | N

Q= {Ex[cbi 4‘5] +§y[¢ ] ¢ w) 1<igM, 1K€

T,= QUL . T, =QUQUQ, .

then each of the sets Tl’ TZ' T3 and T4 is a linearly independent
subset of DBF.

Proof: The sets Q3 through Q, are clearly contained in DBF,

6
thus we need only show that Q1 and QZ are subsets of DBF,

Because $i qu eC(m’n), then for i¢ IM and 1€ j€ N we have
(2.15) Px@Py[¢i-¢j]=¢i-¢j+Py Px[¢i-..pj] -P_ [4’3"’3] .

We make the observation that for 1 { i< M and ie IM

(2.16) E;(“(i)) (x.)=0,

i
which implies that Px[;i- ..pj] = 0. Hence Q1 , and in a similar

manner also Q2 are contained in DBF. It then follows that T1

through T4 are subsets of DBF .
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We now show the linear independence of the sets T, through

1

T4. For notational convenience and also to save space we will only

brove the linear independence of T_. If T_ is not linearly inde-

3 3
pendent, then there exists real numbers aij for ie I_M, 1€ jE N

also b, for 1< i< M, jeIN and c;; for 1¢IM and jeJM not

all zero such that

(2.17) T a.é ¢+ T Z_ b, ¢ 0.
ielM 1gigKN 1) agigM jeIN B
+ = > cij(Py[cbi "’j] + 1>x|:4>i ¢j]-pxpy[¢i¢j]) =0.

ieIM jeJN
We will show that all cij are equal to zero. To accomplish this,
apply the cardinality conditions for each ’i\e IM and ?e JN to (2.17).
This means the application of the differential operator
—A =N
D(a(i),ﬁ(j)) to (2.17) and evaluating at the point (?{1\,'}73.‘). Because of

the definition of IM and JN, we have for ie IM and je IN

~ 2 A
(2.18) ¢i(“(‘))(§:i~) =0 and q,j(p(m(yvi\) =0,

which implies that there is no contribution from the first two sums

in (2.17). Also, it can be shown that

A —A
((1), B(j)) iy - =
. D = T oc.Plé ¢ NETH = o,
2.19) B B L8 9, Iz 79 = e
. (2.20) (D‘ag)j‘?”( X T c.P [47.&.]))@ T4 = cae
ieIM jeJN noxta 7 H

and
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@), B3 (%3]
2.21 p'*1)PU = T c.P Plé 0.NEMNTA = e,
(z.21) (2 W S e Ty I - o

from which it follows, using (2.17), that 0{3\ = 0 for ’i\e IM and
3'\6 JN . To conserve space, we will only show that (2.21) is valid,
and merely note that (2.19) and (2. 20) are similar.

Because our blending spaces are subordinate, there corre-
sponds an io where 1K iog M, and jo where 1gj°< N such

-4 . - _ =N s =
that o(i) = a(1o), x = x B(j) = B(Jo) and y3>_ Yj . Then

(o] (o]
A = A
(a(i), B(3)) - = - =
2.22 D Z Z c.P_P[eé 4. A yA
(2.22) ( (o oo 53 P Lo 410 G 7
, M N _ _ =3 e
= =z = ¢, T = ¢.(°’(s))(xs)¢.(p(t))'(vt).¢éa(1))(§g)¢Lp(3.).)(%)
ieIM jeJN Y s=1t=1 * J . 3

= M,
ij

where we have used the cardinal interpolation conditions and the
correspondence given above to obtain our result.

With all cij = 0, it is now a simple matter, using the appropri-
ate cardinality conditions, to prove that all aij =0 for ie _IM_,
1€ j N, andall bij =0 for 1{i<M and je E Therefore,

T3 cannot be linearly dependent, and we have completed our proof.

For discretized blending function spaces which have subordinate

interpolation spaces, we now have a lower bound for Dim (DBF).



95

Theorem 2.2. Given the interpolation spaces V( L M, m),

VT, ﬁ, m), V(m , N, n) and ‘\—/(? , N, n) such that V(= , M, m)
x Yy y x
is subordinate to V(Fx, 1\71, m) and V(Try, N, n) is subordinate to

V(?y, N, n), then

(2.23a) Dim (DBF) > M:N + M:N - M-N
(2.23b) Dim (DBF)S MN + MN + M'N
- N+ Dim ('\7(?}‘, M, m)f\V(nx, M, m))

-M - Dim (V(?Y, N,n) N Vi, N,n)) .

Proof: The upper bound follows from Theorem 2.1 and the lower

bound from Lemma 2.1.

We would like to know the exact dimension of DBF, and have
a basis for the space. Examination of Theorem 2.2 shows the assum-

ption needed to obtain our result.

Theorem 2. 3. Given the interpolation spaces V(wx, M, m),

V(?r—, H, m), V(m , N, n) and -{/:(.T—I’ ,ﬁ, n) such that V(w , M, m)
x y y x

is subordinate to TI—(F, I\_/I, m), V(ny, N, n) is subordinate to

V(w , N, n), V(r, M, m) C V(T, M, m), Vim, N, m) C

V('rr_y, N, n), and if

’{"’ ‘”uIM IKiKNT 52 ={¢; “‘}JeJN 1I<i<M,
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Sy =14, q’j}ieIM, 1IN * 54 ® {e; 4’J'}J'E JN, I<iKM’

S5 = {Py[¢i 4‘j] * Px[¢i ‘I’j] " Py Py[¢i ij]}iGIM' jeIN”

Se = {4 “"j} IKiKM, 1<j<N’
T1=SIUSZUS3 , T2=SIUSZUS4 ’

then

(2.24) Dim (DBF) = M:N + M:N - M-N

and each of the sets Tl’ TZ’ T3 and T4 forms a basis for DBF.

Proof: From Theorem 2.2, we have that (2.24) is true because of
the containment of our blending spaces.
Also, because of the uniqueness of representation, we make

the observation that

(2. 25a) FY'[Ei ¢J.] = %, Y for 1<ig M, 1< j<N,

(2. 25b) 1—3x[¢i‘—"j]=¢i:"_j for 1< i< M, 1<j<N,

and

(2.25¢) P [o ¢j] - Ey[q;i ¢j] = 0¥ for 1<IKM, 1<iEN.

Using (2. 25a), (2.25b) and (2.25c), then in Lemma 2.1, Q3 through

Q6 reduce to S3 through S6

it follows that Tl through T

respectively. Thus from Lemma 2.1,

4 each forms a basis for DBF, and

we have proved our result.
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Remark: S5 is not as complicated as it appears. Because our blend-
ing interpolation spaces are subordinate, for each ieIM and jeJN
there exists an io where 1¢ iog M and jo where 1¢ jogN such
that
(2. 26) Sg= (o +4 ¥y -0 4 ).
o o o "o

Often in practice, it is not convenient to work with the

cardinal basis for DBF. If one is willing to work with a spanning

set rather than a basis, the following theorem is useful.

Theorem 2.4. Given the interpolation spaces V(nx, M, m),

V(¥., M, m), V(r_, N, n)and V(7 , N, n) such that V(m , M, m)
x y y x

is subordinate to \7(?}‘, IT/I, m), V(w , N, n)is subordinate to

<

V¥, N, n), V(r.,, M, m)<V(7, M, m), V(r, N, n) &
Yy x X b4

T : M —\M N =N
V(Tl'y, N, n) and if {Ai}i=1 , {Ai}i=l , {Bj}j=l and {B}j=1 are

any bases for V(-n-x, M, m), V(Fx, ﬁ, m), V(rry, N, n) and

V(?y, E, n), respectively, then

(2.27) T. = {A. B.} ~U{a. B}

57 17i Ty IgIKM, IKKN i i’ 1€igM, 1€ €N

is a spanning set for DBF.

Proof: We first show that T5 S DBF. For 1 i M and

(m, n)

l<j<§ we have AigjeC and
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(2.28)

S
Y
>
ol
i
0

(P, P +P P -P P )[A B]
x“y Ty x Tx oyt

1

P Py[Ai 'BTJ] + A Ej - Py[Ai Ej]

"
>
os]

since P_|A, B.]= A, B, whichimplies A B,«DBF. Ina similar
x“ i i’ i
way, for 1€ 1ig M and 1 € j< N we have Xi Bj ¢eDBF, which
implies that T5 C DBF.
Because V('n'x, M, m) V(?x, M, m), it is clear from

(2.1),which is the definition of a product space,that
(2.29) Vi, M, m)X) V( ™o N,n)C V(T _, M, m) & V( ™o N,n) .

It follows from (2.11), (2.29) and the statement following (2.1) that

T5 is indeed a spanning set for DBF,

Remark: For certain spaces, if V(nx, M, m)QV(’r?x, i\_ll, m) ,
then this implies that V(n-x, M, m) is subordinate to \_f(?x, I\—/I, m).
For example, consider the cubic spline spaces of Example 1.2, if
2 2 2 . . 2 s
S (. ) S"(m.), then S7(w ) is subordinate to S (¥ ). This is
x' = x x x

clear, because if x, #a and # b is a knot of the mesh ™ then
there exists a cubic spline in Sz(wrx) which has a jump discontinuity
in the third derivative at x,. However, all cubic splines in
Sz(Fx) are cubic polynomials between the knots of ?x’ from which
it follows that X, must be a knot of 'TFx

If we consider polynomial spaces of Example 1.1, then even

if V( L M, 0)C V("r?x, I\-/I, 0), it does not necessarily follow that
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V('n'x, M, 0) is subordinate to V(Trx, ill_, 0), because " and ‘Fx could
be different.

Finally, let V(nx, M, 0) be the space of piecewise linear
functions and V(wx, M, 0) be the space of polynomials of degree
M-1, then even though V(wx, M, 0) is subordinate ta V(wx, M, 0),

it is not the case that V(Tl’x, M, 0) QV(nx, M, 0).

Example: In Theorem 2.1 and 2.2, even if the intersection of our
interpolation spaces contains only the zero vector, we will show by
the following example that the bounds on the dimension are still
sharp. Let

(2.30a) 11-x=xle’[l,2], AN 1,27,

(2. 30b) V(m_, 1, 0) = span {1} with cardinal basis {1} ,

(2. 30c) ?(Fx, 1, 0) = span {x} with cardinal basis {x/%,},
(2.30d) mo yle[l, 2], T, =V [1, 2],

(2. 30e) V(-ny, 1, 0) = span {1} with cardinal basis {1},

(2. 30f) V(Fy, 1, 0) = span {y} with cardinal basis {y/?i} ,
and if x #X,y #y, and feC( [1,2] x [1,2)

then

(2.31) P ® Py[f]<x. y) = £, y)) - (x/%) 0 1

+Hx, ¥ 1 y/)) - fxp,yy) 1]

and
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(2.32) DBF = {ax+b.y+c-1| a,b and c are real},
therefore
(2. 33) Dim (DBF) = 3,

which is the upper bound of Theorem 2.1 and Theorem 2. 2.
Using (2. 30a) through (2. 30f), and if x) 7 X, but Y=Yy

then from (2. 31) we have

(2. 34) DBF = {a:x + b-(y/yl -1)| a2 and b are real},
therefore
(2. 35) Dim (DBF) = 2 .

Finally, if (2.30a) through (2. 30f) hold, where V( LA 1,0)
and V(wy, 1, 0) are subordinate to V(?x, 1, 0) and \—f(?y, 1, 0),

respectively, (i.e., X, = x, and Y, =§1),then

1 1
(2. 36) DBF = {a(x/xl + y/yl -1)| a is reall,
and
(2.37) Dim (DBF) = 1,

which is the lower bound of Theorem 2. 2.

Remark: If V(-rrx, M, m), \7('1?x, M, m), V(vy, N, n) and
- . . 2 2 2
V(m , N, n) are the spaces of cubic splines S (w.), S(m ), S(m)
Yy x X y
2 _
and S (wy), respectively, then a convenient basis with which to

work is the basis of "'B-splines' (see [29, P. 73}), which have
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support on at most four consecutive inte‘rva.ls and are non-negative.
The B-spline basis is also relatively easy to construct when com-
pared to the cardinal basis. In this case it is often advantageous to
work with a spanning set of bicubic B-splines defined in Theorem
2. 4, and use methods for overdetermined systems to solve the

resulting equations.
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Section 3. Natural Cubic Blending

Often, information about the normal derivatives around the
boundary does not exist, or it is not known to sufficient accuracy to
be compatible with an eighth order method. In the case where some
deterioration of accuracy is acceptable near the boundary of our
domain, we can use natural cubic blending to obtain a method which

is 0(h8) in the interior.

The natural cubic spline basis {Ai}il‘fgl for Sz(wx)gc(z)[_a, b]
onthe mesh 7 ta=x < x_<°***<x_, =b satisfies for
x 1 2 M

1€1i,j< M the conditions

(3.1a) Ai(xj) = Gij’ All(x)) = Al(xy) =0,
(3.1b) Ao(xj) =0, A'd (xl) =1, A'd(xM) =0

— " - 1] -
(3.1c¢) AM+1(xj) =0, AM+1(x1) =0, AM+1(XM) =1.

The natural cubic spline interpolant to a function f e C[a, b] is

defined to be

M
(3.2) 8(x) = = f(xi) Ai(x) ,
i=1

where it is clear that s“(xl) = s"(xM) =0.
The following theorem, which is crucial to the proof of
Theorem 3.2, shows the behavior of the natural cubic spline inter-

Polant of one variable, see Hall [19] .
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Theorem 3.1. (Hall [19 ]). Let s be the natural cubic spline inter-

polant to f eCm[a, b], m = 2, 3 or 4, then for xe [xi,x. ],

i+l
1< i< M-1
(3.3) -0 < 1€ HE_ P ek _w7a AL}
+1/2Rh o A,
(3.4) R = max { |f'(a)], |f"(b)]}

for 0 k 2, where the mesh size hx is defined to be

(3.5) hx = max Axi, Axi = xH‘1 - X, Ai = {21 -t +
1<igM-1
21 -M“} , and the constants E , K and a, are given in the
m, k m k
following tables.
Table 3
gmk k=0 k=1 k=2
m= 2 9/8 4 10
m =3 71/216 31/ 27 5
m = 4 5/384 (9 +Y3)/216 5
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Table 5
K m=4 m=3 m=2
m
7/ 24 1 5/2
Table 6
ﬁl £=0 1 =1 1 =2
ij/4 1 6/AYj

We now generalize this theorem to two variables. For a mesh
. _ _ 2 (2)
on the y - axis -rry.c = y1< y2< < YN = d, let S (ny)gc [c, d_]

be the space of cubic splines in the variable y. The natural cubic

spline basis {Bj};\_l_t)l for Sz(rr ) satisfies conditions similar to
(3.1a) - (3.1c). Define the projection operators Px and PY by
M
(3.6) (P D xy)= Z f(x,y) A (x)
i=1
and
N .
(3.7) P D xy)= = fxy) By,

J=1
for each f ¢ C( [a, b]x[c, d] ). The natural cubic spline blended

interpolant to f is defined to be

(3.8) NB[f] = Px[f] + P [£] - P Py[f] .
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-Y. .

Define h = max ., where A . =Y.
Ay Y5 = Vi1 " Y

1 j§N-1

We have the following theorem.

Theorem 3.2: Let NB be the natural cubic spline blended inter -

polant to fe C(m,n)( [a,b]x[c, d]). If xe [xi, xi+1] , Y€ [yj, yj+1:| ,

1€i<M-1, 1 j{ N-1, 2 m,ng 4 and 0K k, £ < 2, then

(3.9) [(((1- NB)[f]) By (%, |
(m, n) m-k ml
<HEPPIHE | v 4K _ny QAHMY
12 90 S IS R VTSl TTCNS i

m-1 ~ (2,n) n-{
+K_h akAi}Ajﬁl hy+1/2||f ||{<5Mhy

m

xy

+ K hl; A}Aah+l/4||f(22)||AA B, b h

where Al - {21 -1+ 21 -M+1}, AJ - {21 'J+21-N+J} ,

E, . . . .
ik and E’nl are given in Table 3, K and K ~are given in

Table 5, a is given in Table 4, ﬁl is given in Table 6 and hx

and h are the mesh sizes of T and "y’ respectively.

Proof: From Section 1 we have I-NB=R R, where I-P =R
x'y b4 x
(0,2)

and I-Py=Ry. Also from (1.17b) and (1.17c) we have D

R D@8 ,na D™ O -r D0 pefine g = % g [¢].
x Yy y y

Then, for fixed x and vy,
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(k, £) (k, £)

(3.10) [@-NBY ™ Ty p] = (R R DT i, y) |

0,1
R, D' R [f)x, )]

(k, 0)

(D T'R_g) (x,¥)]

IE(X, Y)I .

For each fixed y, we consider Px [g](- ,Y), which is the natural
cubic spline interpolant to the univariable function g(-,y), where

gle,y) e Cm[a,b]. From Theorem 3.1 we have

-k -
Gl 1By < 8™ el E | B ek 1P ALY

+1/2 R, (y) A, a b,
where

(2,0)

(3.12) Ry = max { g% Va,p), 6% Vo, m)}

From the definition of g, we have for 0 { t g m,
t, t, » 2
(3.13) g #0 - plt 008 Ryl:f])

_ Dl g [{6O]
Y

Therefore, applying Theorem 3.1 again, for any fixed £ such that
ag £ b, we have

(t, 0) (t,n), | n-{ n-l, A
( 3.14) lg e < E e, )||{én1hy +K by pzAj}

+1/2R,E) A\ 8, b,

Where
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(t, 2)

(3.15) Ryt = max (|£%%g, o], 1% Dig a)))

(t, 2)
<HE™ .
Taking the supremum over all £ on the right of inequality
(3.14) we have

-1 -1 A
(3.16) Ig(t’o)(é.v)|<IIf(t'n)ll{én, h? +Knhl; By Aj
t, 2 N

Substituting (3.16), for t =m and t = 2, into (3.11) and (3.12)

réspectively, our conclusion follows after regrouping.

We will now make a series of remarks about Theorem 3. 2.

Remark 3.1: The error still goes to zero ecven if only one of our

meshes, LA ‘lTy, is refined.

Remark 3.2: Because of the exponential decay of the terms Ai and

Aj’ if a< a1< bl< b and c K cl< d1< d, then: there exists a

mesh fine enough so that the convergence on the subrectangle

potn -4 -k), where h = max {hx, hy} .

[al, bI]x [cl, dl] is O

Remark 3.3: Moreover, because the exponential decay of the terms

Ai and Aj tend toward zero faster than the term l/h2=(N-1)2
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tends toward infinity, we have the area of higher order convergence

increasing as we refine our meshes T and TI'Y .

Remark 3.4: Explicitly, the rate of increase is given by

al-é=b-b1=c1-c=d-d1=CKhm(NdnﬂNJy—+0_

a8 N—> o, where K is chosen with consideration of the bound

on the derivatives of f.

Remark 3.5: For purposes of illustration, we will consider the

special case of k=2 =0, a=¢c=0, b=d=1, M=N and m=n = 4.

Therefore, both a, and po have a factor of h, and because of the

0

exponential decay of the terms Ai and Aj as we move away from
the boundary, we have the following situation for our error, illus-

trated in Figure 1.

y

A

on?) . on®) . om?

o) o’ - om®)
4 6 4

om?) - o(k’) . O(h%)
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Section 4. Exponential Decay of Natural Cubic Cardinal Splines

Given a mesh m e =X, < x2< cee & X\ = b of M knots, the
natural cardinal splines Ai(x)e Sz(nx) are uniquely determined by
the M + 2 conditions given in (3. 1a) to (3. 1c).

We will now prove the exponential decay of the natural cubic
cardinal splines by a series of lemmas and theorems. Much of what
follows parallels the results of Birkhoff and De Boor [2 ], for
cardinal splines with first derivative end conditions, and we will
quote theorems from their paper which are also valid for natural

splines. Finally, we will use the abbreviation M. V. T, for the

Mean Value Theorem and I. V. T. for the Intermediate Value Theorem.

Lemma 4.1. (Birkhoff and De Boor [2 ]). If p(x) is a cubic poly-

nomial which vanishes at 0 and h# 0 then
(4.1a) p'(h) = -2p'(0) - h p"(0)/2

(4. 1b) p"(h)/2 = -3 p'(0)/h - p'(0) .

Corollary 4.1. For 1 i< M, the natural cubic cardinal splines

satisfy
(4.2a) A;(xjﬂ) = -2A'i(xj)-ij A'i'(xj)/Z
(4. 2b) Ay (xj+1)/2 = -3 A'i(xj)/ij - AL (x),

WwWrhere 1€ j<i-1, and
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(4. 3a) Allx; ) = -2 A} (x)) +ij_1 Ay (x,)[2
(4. 3b) Al (x; )2 = 3A'i(xj)/ij_1 - AL

where i+1< j< M.

Define the function sgn(-) of a real variable by

1 if x>0
(4. 4) sgn(x) = 0 if x=0

-1 if x<0

Lemma 4. 2. (Birkhoff and De Boor [2 ]). Let s(x) be any cubic
spline function with knots at the xj, which satisfy for some i,

s(x; ;)= s(x;.,) =0, s(x;) >0, s'(x; ;) s'(x; ;) 20, s'(x; ;)

-s"(xi+l)$ 0. Then s‘(xi_l) >0, s"(xi_1)>0, s'(xi )L 0,

+1

8''(x,

1+1)>,0, s"(xi)go and s(x) >0 on [x.

UL IIE

Lemma 4.3. For 2<ig M-1, Ai(x) satisfies LLemma 4.2 on the

interval [xi-l’xi+1] .

Proof: From Corollary 4.1 and the fact that A'i'(xl) = A'i'(xM) =0.

Lemma 4.4. For 1 ig M the natural cubic cardinal splines

satisfy

(4.5a) sgn (Al(x,) = sgn (AY(x,)) # 0
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(4.5b) sgn (Al(x)) = -sgn (Al(x, 1) 70,
where 2 jgi-1, and for i+l {j{ M-1
(4. 62a) sgn (A'i(xj)) = -sgn (A'i'(xj)) 70

(4. 6b) sgn (A'i(xj)) = -sgn (A'i("j+1)) 0

Proof: Case l: 2 i M-1.

We will first prove that A‘i(xl) and A'i(xN) are both non-zero.
If this is not the case, say A'i(xl) = 0, then inductively Ai(x) =0
on [xl’xi-l] . Therefore, on [xi-l’xi]’ A(xi-l) = A'(xi_l) =
A"(xi-l) =0, Ai(xi) =1 and from Lemmas 4.2 and 4. 3 we also have
Ai"(xi) < 0. Several applications of the M.V, T. gives ¢ 'e(xi_l, xi)
such that A'i'( ¢£) > 0 and the I. V. T. gives another distinct zero for

A'i' . This implies that Ai is linear on [xi ,xi] because A'i' =0

1

on [xi l’xi]' But this is a contradiction to the fact that Ai must
. o Ay a _
satisfy the conditions Ai(xi-l) = Ai(xi-l) = 0 and Ai(xi) =1. An
identical argument shows that A'i(xM) f 0. The result now follows
inductively from Corollary 4. 1.
Case 2: i=1, M.

. e A, _ |
For i= M, if Al (x,)=0 then Al (x)=0 on [xl,xM_l].

1" 3
We then know that AM has zeros at XM -1 and X\ p showing that

AM cannot satisfy all of the required conditions, therefore A'M(xl)

# 0. An identical argument shows that A'l(xM) 0.
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The result now follows inductively from Corollary 4. 1.

Lemma 4.5. If 1 jgi-2 and xe[x.,x ], then A',(x. )A,(x)

j+1
£ 0 andif i+1¢j<g M-1 for xe[x x, ] then Al(x,) Aj(x)

Proof: From Lemma 4.4, sgn (A'i(xj)) = -sgn A'(x )) §0. Itis

now clear that if the conclusion of the lemma is not true, then Ai
will have four distinct zeros in [xJ X, ] which is false. The other

case is proved in a similar way.

Lemma 4.6. For 1€ i M we have Aflx; 1)>0 and Ai(x,, ,)<0.

Proof: Case 1: 2€ig<M-1.

The result follows from Lemmas 4. 2 through 4. 4.
Case 2: i=1, M.
i = —_ 1" - 1
For i=M, AM(xM) =1, AM(xM) =0. If AM(xM-l) <0, we
have from Lemma 4.4 that A'I\'/I(XM l) < 0. Two applications of the
M. V. T. and one of the I. V. T. yields another zero for A'I{d which

cannot happen if A is to satisfy the required conditions at XM -1

M

and xM. The case where i =1 follows in the same manner.
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Lemma 4.7. On [XI, XZJ y Imax IAI(X)I = 1’ and on [xM-l,xM]

max |AM(x)| = 1.

Proof: On [x xM], direct calculation yields a real number a

M-1’
such that 0> a > —1/(2Ax§/I 1) and

3 3
(4.7) Ay (%) = a(x-xy )" + (1-a(AxM_1) )(x-xM)/AxM_l +1.

Examination of (4.7) shows that AM has no interior relative maxi-

mums or minimums on [x xM]. The bound for A1 follows in

M-1’

the same way.

We will now give a proof similar to that of Birkhoff and De Boor
[ 2 ] for natural cardinal cubic splines.

Lemma 4.8. For 1gj<i-2, if xjg x <X,

417 then lAi(x)I <

, e . i
ijIAi(xj+l)| and if i+l € j < M-1 for xjgxngﬂ, then

A (x)] gij |A'i(xj)| .

Proof: Case 1: 1 jgi-2.

Without loss of generality assume A'i(x. )< 0. From

j+1
Lemma 4.5 Ai(x) >0 on [xj, xj+1], and from Lemma 4.4
" 1 " . 3 b 3 1 .
Ai(xj+1) <0, Ai(xj) >0, Ai(xj) 2 0. Our proof is by contradiction
Let E‘l be the point where Ai obtains its absolute maximum on
1 - - A
[xj, xj+1], then Al(f )=0. Assume A(f)> Ai(xjH)ij >0,
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then because Ai(x,

J+1) = 0, we have from the M. V. T, a &2

satisfying il < &2 < x.

i+1 such that A'i(gz) = -Ai(ﬁl)/ij <

A;(xj+1) < 0. Applying the M. V. T. again we have the existence of

e N
£ . satisfying €2 < €3 <xj+ such that Ai(E_.3) > 0. Because

3 1

" . e

Ai(xj+1)< 0, thel.V.T. gives a 54 satisfying §3 < §4< xj+l
1" — 1 1 -

such that Ai( €4) = 0. Because Ai(xj) >0, Ai(gl) = 0 and

A'i'(xj) >0 (A'_l'(xl) = 0), we have a second zero of A'i' , which implies

that Ai is linear on [xj,x. . This contradicts the fact that Ai

J+1]
3 - - 1
must satisfy Ai(xj) = Ai(xj+1) = 0 and Ai(xj) > 0.

The proof of the other case is identical.

Paralleling the results of Birkhoff and De Boor [2 ], we have

the following two lemmas for natural cubic cardinal splines.

Lemma 4.9: For 1gjgi-2
A'(x, 2 |Al(x, ’
Ay < 172 [ayx, )

and for i+l £ jg§ M-1

Ay, < /2 (A

Proof: From Corollary 4.1.
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Lemma 4.10. For 1 jg< i-2, on [xj, xj+1] we have

,i-i+2

|A(x)] < lAjx; I Ax,,

and for i+2<€ j< M, on [xj_l, xj] we have

i42-j
A, (x)] < 2 | AL, ) ij_l

Proof: Follows inductively from LLemmas 4. 8 and 4. 9.

We have now shown through a sequence of Lemmas that the
natural cubic cardinal splines behave in the same manner as the
splines which have zero derivatives as their boundary conditions.
Therefore, the proof of the following Lemma is now identical to that
given by Birkhoff and De Boor [2 ], and we will only state their

conclusion.

Lemma 4.11. (Birkhoff and De Boor[ 2] ). For 2gig M-l

on [xi xi+1] we have 0< Ai(x)g L and IA'i(xi_l)I < L/Axi_1 ,

-1’
2
1 —_
|ax,, )| € L/Ax;, where L=3M_(M_+1) [(3+4M_ ), the mesh
x x X
ratio is M = max Ax./min Ax. .
1rx 1 1

. _ \ \
We will now show similar bounds for ]Al(xz)l and IAN(xM-l)I

by constructing a majorant, Ui(x), for the end splines. Consider

first the spline A then define the unique cubic spline U, , on

M’ M

3 3 - - " -
[xM-Z, xM] satisfying Uy (x\ ) =Ulx,, ) =UY (x, )=



116

" _ _ . . .
UM(xM) = 0 and UM(xM) = 1. Define the cubic spline T on

[xM-Z’ XM] by T(x) = (UM - AM)(x), then we will prove T'(x )

M-1
20, If M-2 =1, then T"(xM_z) = 0 and we are done. If M-2 >1,

1" 3 1 3
then T (xM_Z) # 0, and we will show that T (xM-l) > 0. To do this,

we use the fact that T'(x )=0 - A" (x ) > 0, which follows

M-2 M M-2

from Lemmas 4.4 and 4.6, and that T satisfies T(xM) = T"(xM) =

T(xM-l) = T(x ) = 0. Also, T satisfies the conditions of

M-2

Lemma 4.1 and therefore (4. 3a) and (4. 3b), for X2 Mo’ XM

" - 1" 1
Because T (xM) =0 and T (xM_z) >0, we have that T (xM) # 0.
From (4. 3a) and (4. 3b) we have that sgn(T'(xj_l)) = -sgn (T'(xj))
#0 for j=M, M-1 and sgn(T"(xj)) = -sgn(T'(xj))# 0 for j = M-2,

M-1. Therefore, because T"(xM_z) > 0 it follows that T'(x ) =

M-1

) - AL

M xM-l) > 0. Using Lemma 4. 6, and our above

1
Um*Mm-1

results, it follows that U'M(xM_l) )A'M(XM_I) > 0.

UM(x) is given explicitly by pl(x) on [x and

M-2’ xM-l]
Pz(x) on [XM-I’ xM], where

pl(x) = b(x-x (x-x (x-xM_1+ZAxM_2)

M-1)* Xy )
2

Py) = oy by ey ) Ly e Wy

+1 /AxM_l)

where b = 1/[ZAxM_2AXM_1(AXM_1 +AXM_2)]

and U'M(xM_l) =AXM-2/(AXM-1 [AXM-I +AxM_2]) .
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Therefore,
(4.8) 0< AL Gk, )< M"x/(AxM_l[l +Mﬂx]) :

A bound for A'l(xz) follows in an identical way.

The above yields the following theorem.

, then

Theorem 4.1. If 1LigM, 1jgi-2 and xjs xng“

2+4j-i

| A (=)< 2 LM_ .

X

If i+2¢j<M and xj-ls xsxj, then

2+i-]
|a,x)] g 257 Lwa .

For 2 igM-1, [A(x)|< L on [xi_l, xi+l], |a )] <

L on [xl, xz] and |AM(x)| &L on [xM-l’ xM], where

L=3M (M +1)2/(3+4M ) and M is the mesh ratio.
m ™ ™ ™
X X X X

Proof: If 2 ig M-1, the result follows from Lemmas 4.10 and
4.11. For i=1, M our result follows from Lemmas 4.7 and 4.10
and inequality (4. 8), where we have used the liberal estimate that

M_f1+M_ )<L and 1<L.
X X

We are now in a position to develop the error estimate for
approximate natural spline blending. Usually, it is not possible to

use all of the values of f along the mesh lines. Therefore, it is
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reasonable to replace the f(xi, y) and f£(x, yj) with gppropriate
approximations pi(y) and qj(x). The type of approximation is arbi-
trary as long as the overall accuracy of the scheme is preserved.
For example, typical choices of approximation could be univariate

spline or polynomial interpolation. We then blend these functions

with natural splines to obtain an approximation to f. We would expect
this approximation to be close to the original function f. Exactly how

close is shown in the following theorem.

We are given the meshes wx:a = x1 < x2< vee & xM =b and

wy:c =Y,<Y, oo L YN = d and the natural cubic cardinal splines

M _ 2 N 2

(m, n)

Theorem 4.2. Let feC ([a, b]x[c, d] ), where 2 {m,ng 4,

and if the approximations to the mesh functions satisfy | |f(xi, °) -
p.(*)||< &, and ||£(~,yj) - qj(-)||< Cy for 1 i< M and

1< j< N, then the natural blending function approximation defined by

~ M N

(4.9) 8(x,y)= Z pAy)Alx)+ Z qj(x) B.(y)

i=1 j=1
M N
- B I (1/2py;) + 1/2 ayix;)Ax) Byly)
i=1 j=1

satisfies

(4.100  [(£-8)x, y)| € [(I-NB)[f)ix, y)| + € KM _ )
. : x

+ € K( M, )¢ 1/2(E,+ &M, VKM, ),
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where a bound for the first term on the right of inequality (4. 10) is

given by Theorem 3.2, M1r and Mn are the mesh ratios, and

2, % y
K(£) = 6£(2£+ 1)(E + 1)7/(3 + 48) .
Proof; Estimate the term
M N
|(NB[£]-B)x K&, Z || +E& = |By)
i=1 LTS B
M N
z |A =
+1/2€ + E ) el z B,y)D

<&, K(M"x) + &y K(Mﬂy) + 1/2(6,x +£y)

- KIM_)K(M_ )
T ™
X y

The proof is completed by applying the triangle inequality, and

carefully observing the bound for each term in each interval given by
o0

Theorem 4.1 and using the fact that = 2" = 2,
i=0

Remark 4.1: It should be noted that the result of Theorem 3.2 is

independent of the mesh ratios M1r and M-rr , while the exponential
x y :
decay of the basis functions is dependent on both M and M*rr
™
x y
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Remark 4. 2: To see the size of K(M ), consider the special case
‘IT .
X

of equal spacing, where M =1, then K(1) = 72/7 .

Ly
X

8
Remark 4.3: If m=n=4 and £=0(h ), then the error satisfies

Figure 1 from Remark 3.5 of Theorem 3. 2.
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CHAPTER 3

DISCRETE LEAST SQUARES

This chapter is devoted to the development of discrete least
squares algorithms on unstructured data sets, and to showing the
accuracy that can be expected depending upon the distribution of the
data points and the smoothness of the function f from which the
data originates.

Sections 1 and 2 develop preliminary estimates for use in the
following section. In Section 3, an example is given to show the
necessity of having a sufficient number of data points reasonably
distributed to guarantee that the discrete least squares fit will be
close the function f. The remaining portion of this section gives
error estimates for several univariate discrete least squares algor -
ithms.

Sections 4 and 5 extend the error estimates of Section 3 to
bivariate functions, and algorithms are developed using discretized
blending function spaces.

Finally, in Section 6, general domains with curved boundarys

are considered, and this case is reduced to the methods of Section 5.
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Section 1. Uniform Error Estimates

We will develop here an error analysis in the uniform norm for
univariate cubic splines in terms of interpolation errors at the knots.

Let se¢ Sz(wx) be a cubic spline on the mesh 1rx:a = xl <x_.<

2

'°'<xM=b, and set

(1) (2)

(1.1) sj = s(xj)’ 33 = (xj) and 33|= 8 (sj) for 1 j M.

The mesh 7 is uniform if x.
x j+1

1€ j< M-1. Also, throughout this chapter, if fe C[a, b], then

-xj =h = (b-a)/(M-l) for

(1.2) [1£]] = sup |f(x)| ,
agxgb

and if ge C( [_a, b]x[c, d]) then

(1. 3) llgl] = sup | gxvy)|.
agxg<b
cCyg<d
. N T .
Finally, for x¢[R° where x = (xl, YRRy xN) define the vector
. norm |Ix|| o - ]x,?z;ﬁ'xll The matrix norm ” Ho of a matrix
A= [aij] € RN®N § ibordinate to this vector norm is defined to be
N

||A]] = max Z lai.l , (see [9 , P 108]) .
1<igN  j=1

Lemma 1.1. Let se¢ Sz(n-x) be a cubic spline on the uniform mesh

m such that Isjlg ¢ and |33|<n for 1 € j € M, then

"(1.4) |ls]| € & + hn/4.
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Proof: From [1 y P 12], if s is a cubic polynomial on
[xj-l’xi] for 1< j< M then

) /h®

(1.5) s(x) = 33_1 (xj-x )z(x-xj__1

, 2 2
- sj (x-xj_l) (xj-x)/h
+ sj-l (xj—x)2 [2(x-xj_1)+h_-l/h3

+ sj (x—xj_l)z[Z(xj-x)+h]/h3 ,

for xe [xj—l’ xj]. Taking absolute values in (1.5) and observing

that all of the polynomial factors of 33 1’ 83’ sj 1 and sj are posi-
tiveywe have after a little algebra,

2 2 2
(1.6) s | € o207 (e, )+ Geox, )% e )] /m% 4

The maximum of the right hand side of (1. 6) occurs for x = xj 1 +

h/2, and our result follows.

Lemma 1.2. Let se S?nx) be a cubic spline on the uniform mesh

m_ such that lst(g for 1{j< M and |si(|g'q for k=1, M,

then

(1.7) |s3|< 3¢/h+nf2 for 2€j< M-1 .

Proof: From [ 1, p. 12], if 8 is a cubic spline then for

2 €j < M-1
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1 1 ! = -
(1.8a) st )+ 4sj tel) 3(sj+l éj_l)/h ,
- - - al
(1. 8b) 4s) + 5] = 3(s, sl)/h s\
and
' - - -8 .
(1.8c) B'M-Z + 4SM-1‘ 3(8M sM_Z)/h SM

Writing (1.8a) - (1.8c) in matrix notation we obtain

_ 9F 1 r | -
4 1 8!, 3(33-91)/h-s1
1 4 1 3'3 3(34-32)/};
(1.9) . 3(sj+1-sj_l)/h
OV
i 1 L.B' a] | 3(°M-BM-2)/h-°'M_

or AX =B, where A, X, and B correspond to the quantities in

(1.9).

Premultiply the tridiagonal matrix Ace lR(M-z)x(M-Z) by the

matrix D = (1/4)I, where I is the identity matrix. We obtain DA =

I + C where

(1.10)

C=1/4
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Examination of (1.10) yields ||C||_=1/2, and using (3.16) of

Chapter 1 we have the existence of (DA)-l and
-1
(1.11) (A | <1/ -]l
<2 .

From (1.11) we can obtain a bound on the derivatives of 8 at the

knots

(1.12) 11%[l,=|1(oa)y ' pB||
<@l D]l 1B,
s1/2||Bl], -

To obtain a bound on ||B||_ we use (1.9) which yields

(1.13) | 1B] |, = max { 35:;4_2 |3(sj+1-sj_l)/h| ;

|3(83-81)/h -8 [, |3(3M-5M_2)/h -8y},

where

(1.14) 322:4_2 |3(s,,-8; /Bl < 68/n,

(1.15) |3(s3-sl)/h - s'l|s 6€/h + n,

and

' (1.16) |38y -804 o)/ b - 83,1 < 6¢/h+n .

Therefore ||B||_< 6¢/h+n, completing our proof of (1.7).
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Combining Lemmas 1.1 and 1. 2 gives auniform norm estimate

for s in terms of its values at the knots.

Lemma 1.3. Let se¢ SZ('rrx) be a cubic spline on the uniform mesh

m such that |sj|<g for 1 j§M and |si<|<r| for k=1, M,

then

(1.17) ||s|| g (7/4)t +(1/4) hn.

Proof: Using Lemma 1.2 and our hypothesis we have for
1j<M

(1.18) |33|< max {n, 3§/h+n/2}

£3tMm+n.

Combining (1. 18) and Lemma 1.1 completes our proof.

Lemma 1. 3 is really a stability result for errors in interpola -

tion. To see this, let s  be the cubic spline which interpolates the

1
. (m)
following values of fe¢C [a.,b], 1€ mg4

(1.19) sl(xi) = f(xi) , for 1ig M,
and

(1.20) s'l(xk) = f'(xk), for k=1, M.
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Also, let s_ be the cubic spline which interpolates the following

2

functional values of f with errors

(1.21) sz(xi) = f(xi) + gi , for 1gig M,
and
(1. 22) s'z(xk) = f'(xk) +nk , for k=1, M,

where |§i| £ & and |'qk| € n . Using Theorem 1.1 of Chapter 2
and Lemma 1. 3 we have an error bound for the approximate interpo-

lation spline s2

(1.23)  |l=s, |1 [lt=s, 1] + 1,8,
< ™I E™ 4 (/)6 + 14y hem,

where f,m o 2Te given in Table 1 of Chapter 2.

Remark 1.1: Often in performing spline interpolation, an approxi -
mate method must be employed to estimate the derivatives at the end
points. It is clear from (1.23) that the values f'(xl) and f'(xM)
must be approximated to at least O(hm-l) to preserve the accuracy
of the interpolation scheme. Specifically, Lagrange interpolation
polynomials can be used to estimate the derivatives. Let P, and
Py be the Lagrange interpolation polynomials of degree m-1 on m
points in the intervals [xl,xz] and [xM-l' xM] respectively.

From [24, P. 289] we have for k=1, M
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-1
(1. 24) 1£(x,) - p! (x)] ¢ B £ [ /im-1)1 .
k k'"k
Therefore, if we define 8, to be that cubic spline which interpolates
= i 1 = p'! ' =
83(xi) f(xi)+_£i for 1 i< M, s3(x1) pl(xl) and 33(xM)

p'M(xM) , then

(1.25) ||f—s3| | < (E'm,O + 1/[4(m-1).v])| |f(m)| [h™+ (7/4) ¢

Examination of (1.25) indicates that the preservation of the order of
the method depends upon limiting the interpolation errors, §i, to be
O(hm) . We will use (1.24) later to obtain an error bound for uni-

variate least squares.
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Section 2. A Uniform Bound

For this section we assume that we are given the set Xg[a., b]
A
of M 2> 3(M-1) data points and the uniform mesh wx:a = x1 < x, <
* < SV b, where h = (b-a)/(M-l). For each j where 2¢j

M-1 we assume that there exists six fixed data points which are

designated by {i;}?_l U {x;}f_lg X such that

-3 _2 1 1 2 3
2.1a x, £ % <%, <%, <x,<x. <%, <%, <%, _,
( ) NE3 S R TR T A H B A 3

and also the existence of {xi}?_l < X and {3':;\4} < X such that

1 2 3 3 =2 . |
(2. 1b) x1< xl<xl<x1\<x2 and xM-IS ':':'M< M< xM< xM.
1 -3 2 =2
Remark: It need not be the case that xj 1= xj or )3 1= xj or
xj3-l = ?Jl , although equality in any of the above is acceptable as long

as they satisfy the conditions of Lemma 2. 1.

Also, for notational convenience, we define xj B §?= xj , and

i . in . .
powers of x, will be written as (x;) to avoid confusion.

We introduce the following notation for the kth divided differ -

ence of the cubic spline s S‘('rrx)

k

(2.2a) Al.‘ = 8 [x?, x.l, xk] = = s(x) p(k, j, i), and
j i j =0 3 ,
Ak -0 — -k k i L
(2. 2b) AF - s [x?, x.l, cee, X, ] - I s(X) p(k, j, i),
i i j =0 9

where, for 0 ig k



130

k
(2. 3a) wk,j,i)=1/ 0 (x - x; 4y ana
=0
1f1'
. i
(2.36) Wk, §,0) =1 /1n=o & - %),
24

(see [24, p. 247]).

Lemma 2.1. Let se Sz(n ) be a cubic spline such that |s'(x )|,
ls'(xM)l < n and |s(§;)|, Is(x )| £ ¢ where the data points xJ
and x; satisfy (2.1a) and (2. 1b). Also, define the real numbers

Y,O’ and{r\by

3
(2.4) ¥h = min{ min {-h- = (x.-x, )}
1< j<M-1 i=1

3
min {-h+ = (xJ-x)}}

2€jiSM i=1
(2.5a) oh = min{ min min {le-xll}
1€j€M-1 0<i, £1<3 J
i1
. . -i -1
min min { |%, -xl}}>0
2€§j€M  0«<i, ££3
and it

(2.5b) &h> = min{ min min |1/p-(3,j.i)|.
1j<M-1 1<i<3

min  min |1/5 (3,5,1)]} > 0.
2<jKM  1<ig3

If Y>0, then
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(2. 6) 18] < 7(1-a)(1-2a)[(3-6a) & [ @ + hn]/(4)) + hn/4.

Remark: From (2.5a) and (2.5b) it follows that 1/3 > 2@ >0 and

1>a>0.

Proof From [l y P 10], 8¢ S?Trx) is a cubic spline if and only if

for 2<j < M-1

2 " " _ .
(2. 6a) (h /6)(sj_l tasv sl V=s 28 b8,
2 L i
(2. 6b) (h /6)(28'1'-}-82')—82 -5, -hs!,
and
(2. 6c) (h2/6)(s" +28")=hs' -8 . +8
: M-1 M M M "M-1°

Because 8¢ C( )[a, b_] is a cubic polynomial on [x . x ] for
1€ j< M-1 we have s'.'+1 = 83'+ s,"'(xj) , wWhere s"'(xj) is evaluated

from the right. Also, 8" (x) = constant = 6A3j on [xj’ x ]. (see

j+1
[24, P- 249]. Therefore,

3 .
" - g -
(2.7) sjl-sj+6hAj,for 1< M-1,

and correspondingly

A3
= ll
(2. 8) st ) =) 6hA for 2€j< M.

Because s is cubic on [x, x ] for 1< j £ M-1, we represent

s on that interval as

0 0 1 0 1 2
(2.9) Sj = Aj + (x-xj) Aj + (x-xj)(x-xj) Aj
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0 1 2 3
+(x-x ) (x-x ) x-x. ) A,
( JN ﬂ( J) 5
(see [24, P. 248]). Differentiating (2.9) twice and evaluating at xj

we obtain

(2.10) sn=2A% 202x. -x! -8 A3 .
j j I R R

Correspondingly, on [xj-l’ xj] for 2 j<€ M we have

(2.11) sv=2 A%y 2(2x. -3 -:':.2) A3,
j j i i

Substituting (2. 7), (2.8), (2.10) and (2.11) into (2. 6a) through (2. 6c)

it follows that for 2 j € M-1
(2. 12a) hz[(.?.xj -E;-?;‘-h) Aj3+ AJ?‘+AJ?'

+ (2x, -x:.l -x.2+h) A3] = -28, + 8,
J J J J J

sj-l j+1’

2 1 .2 3 21 _ ,
(2.12b)  h [(le-xl-xl+h)Al+ Al]'sz'sl'h"’
and

=2 A3 . A2
-xM-h)AM+AM_]-hs'M-s +8 .

2 -1
(2.12c¢) h [(ZxM -x M M-1

M

Substituting (2.2a) and (2. 2b) for our divided differences into
(2.12a) through (2.12c), we obtain the following after regrouping

(2.13a) hz[(ij -§j1-§;-h)m3,j,0)+ﬁ(2,j, 0)
+(2,5,0) + (2%, - x, - %o+ B) (3,5,0] s
wie s T T TR j

+ Zsj - sj__1 - sj+1
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3 .
bP(ex, -% =% -h) B e(®) i (3,4,1)
(I R oy 3

2 . 2 .
= s('i;)ﬁ'(Z,j.i) + s(x;) (2, j, i)

+

i=1 i=1
3

(2%, - x! -x%+h) = s(x)) p (3,3,1)]
iT T =1 9

+

2 12
(2.135) b2, -x) cxC 4R R (3, 1,0 +p (21,08 + 8

3 .
- n¥(2x, -x! -x%4+h) = e(xt) w3, 1,10)
R S o 1
2 .
1
+ Z s(x,)p(2, l,i)] -hs' ,
. 1 1
i=1
and
2 1 2 _ _
(2.13¢) h [(zxM - Ey -y cBE (LM 0 4T (2, M, 0) 5y
tEM T 5M-1
3 .
2 -1 -2 -l -
- -h [(st - %y, - %y -h) 51 5(%y) ¥ (3, M, 0)

2 .
- =
+ iZ-Jl s(xM) (2, M, 0)] + hs'M .

Using (2.3a) and (2. 3b), we simplify (2. 13a) through (2. 13b) to

obtain

=g-+6-’

2.14a 8.  +(E. +2+&)s8. -8,
( ) j-1 (J J)J j+1 J J

(2. 14b) (1 + f,l) 8, -8, = 61 -hs'1 ,

and

(2.14c¢) (6M+ 1) VY T %+hs' ,
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where for 1 j{ M-1

3 .
(2.15a) € =h’[h+ T (x-x)] p(35,050,
J i=1  J )
2 2 3 RIPE
(2.15b) &, = -h® = [h+ = (x.-x.)]s(x.)p.(B,j,i) ,
J i=1 =1 3 J
o
and for 2<j< M 7i
- 5 3 .
(2.15¢) € =n’[-h+ = (xE)]EGI0>0,
j oy 3
3 3 ,
(2.15d)  5,=-h° = [-h+ = (x.xD)]sE)E(340) -
J i=1 2=1 J ) J
i

In (2. 15a) and (2. 15c) we have used (2. 4) and the fact that ¥> 0,
i(3,3,0)< 0 and u(3,j,0 > 0 to show that they are positive. In

matrix form, equations (2.14a) through (2. 14c) become

1+ 51 -1 5,
-1 62+2+£2 -1 e,
(2.16) °
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o |
[

=2
o

ol

+ 6

M-1 M-1

1
6M+ hsM

or AS=E, where A, S and E correspond to the quantities in
(2.16). In order to estimate the norm of the vector S we define

the diagonal matrix D

1+ 61
0 &2+2+ f.z :

(2.17) D=

O 6M-1+2+EM-1 0

™

+1
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From (2.15a) and (2.15c) we see that all of the diagonal entries of
the matrix D are positive, ‘which implies that D.l exists. Using
this fact, and premultiplying A by D-l we obtain

(2. 18) pla=1+B,

where the tridiagonal matrix B is given by

0 1/(1+61)

€, +2+E) 0 1/ (E,+2+E))

(2.19) B=(-1)-

1/(€M_1+2+£M_1) o 1 (§4-1+2+8M-1)
1/(€M+1) 0

¥ ||B| |°°<l, then, from (3.16) of Chapter 1, we have that

(D“IA)-1 exists and

-1, .1, -1

(2. 20) [1s] ], <I1(D " Aa) “[|_|IDE]]|
-1

<[i7a-118119] 11D 'E]l, -

We now proceed to calculate bounds for ||B| Ioo and | |D-1E| | *
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Examination of (2.19), (2.15a) and (2.15c) shows that

(2.21) |1B] | o= max { max {2(E+2+E), 1/(1+€)),
2gjgM-1 T

1/(& +1)} ,

which implies that gj and 63 should be bounded from below to
bound ||B| Ioo from above.

Using (2.15a), (2.4) and (2.5a) it is clear that for 1 j€ M-1
(2. 22) & > h ¥ [u(3,, 0)]
3 1 2 3
>h .- X )(x, - x, . -
> b’/l(xJ %) - %)%, xJ,)I
> b X/[h-(l—Za)-h(l-a) ]

> ¥/ [(1-an1-200] .

Correspondingly, from (2.15c), (2.4) and (2.5a) we have for

2 j< M that

(2.23) ’&'J >¥/[1-a)1-20)] .

Combining (2. 21), (2.22) and (2. 23) yields

(2. 24) |1B] ] & (1-a)(1-2a) / [(1-a)(1-20) + Y]
<1
In order to obtain a bound on | [D-1E| |°o we use (2.16) and

(2.17) which gives
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(8, -hsl)/ (14 &)
(5, + 52)/(52+2+£2)
(2.25) D !E = .

(Bpgyt bppag) /gyt 2+ 8y

35M+ hs,) / Ey+ D

‘Which implies using (2.22) and (2.23) that

-1 A
(2.26)  [|ID'E||_ < [(1-a)(1-20)/((1-e)(1-20) +¥)] |IE]], .
where
- i,
61 hsl
(5, + 8,)/2
A
(2.27) E = .

-~

(bpg_, * Syp.y) /2

i 5M+hs'M _J

A -_—
An upper bound on ||E| |°° is obtained by bounding 6j and 6j from
above. Using (2.5a) and carefully observing internal cancellations

we have for 1 {ig 3
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3

(2.28) [h+ = (%, -x’.)|< h[1 -i-0]
0= 3
24
and
3 2
(2.29) | -h+ = (x, -%.)|<h [l -ia].
=1 7
24i

Combining (2. 15b), (2.15d), (2.5b), (2.28) and (2. 29) it follows

that for 1 j < M-1

(2.30) |5j|$(3-6a)g/3,
and for 2 j<M

(2. 31) |3j|<(3-6a)g/a‘.

Therefore, from (2.27), (2.30) and (2. 31) follows an upper bound

A
for ||E| |°°

A -—
(2. 32) ||E||°°=max { max {|5,+5.|/2 },
2<jgM-1 )

|51 -h1 s'll ’ |6M+hs'M|}

<(3-6a)[d + hn
Combining (2. 20), (2.24), (2.26) and (2. 32) yields
(2.33) ||s||°°<(1-a)(1-2a)[(3-6a)g/&‘ +hn]/ ¥ .

Our result follows from (2.33) and Lemma 1. 3.
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Section 3. Univariate Discrete Least Squares

A

Assume that we are given an unstructured set X = {Ql} :‘fl <

2("' <xM=b,

x). 1f £eC™[a,b], where 1< mg4,

N
[a.,b] of M data points, and the mesh nx:a = x1 < x

where h = max (x."_l
1<jgM-1 !
€ Sz(w ) which minimizes the Euclidean
LS x A

norm of the residual vector Re[RM, where component i of R is

then a cubic spline s

(3.1) R, = £(X,) - sLS(?:i) ,
1. €. ﬁ
(3.2) [IR|] = ( fl (£(x,) - aLS(s'ﬁi)):"‘)l/2
A
. omin (3 oad) - adpd2

2 -
seS (nx) i=1

is a discrete least squares approximation to f on the unstructured
data set X. It would be desirable to have an estimate as to how

close BLS is to f in the uniform norm similar to the estimate we

have for the cubic interpolation spline s8¢ Sz( wx), (Theorem 1.1 of

f
Chapter 2). We would hope that if f is smooth and the residual

vector R is small, then 81.s is close to f. This, however, is not

the case, even if the cubic interpolation spline s, is close to f.

f
Therefore, as a prelude to the next theorem, we will give the follow-
. ing example which illustrates the importance of having sufficient
data points which are reasonably distributed on [a, b] with respect

to the mesh
x
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Example 3.1: We will construct the discrete least squares approxi-

. 2 . _
mation 8, 5¢ S (ﬂx) on the uniform mesh T e =X < x2< <

X\ = M, where xi=i for 1igM, hx=1 and M > 3 to the

function fe C'4[1, M]
E(ax-5/4))° if 1 x£5/4
(3.3) f(x) =
0 if 5/4<xgM
Direct calculation using (3. 3) yields ||f|]| = £ and ||£(4)|| =

30720 &, If 8¢ Sz(nx) is the cubic interpolation spline which inter -

polates f on the mesh L then from Theorem 1.1 of Chapter 2

(3. 4) ||£f-s.|| < 400 £.

¢l
We will explicitly construct the discrete least squares spline

approximation s to f on the following M+ 2 data points

LS

(3.5) X={+i/8]) U {j+£};‘f;1 c M,

where f(1)= -&, f(1 +i/4)=0 for 1€i<3, f(j+&)=0 for

2€j< M-1, and we assume 0< E 1 2. Our construction will show

that the residual vector Re IRM+2 is zero, and that 51.S is the

unique discrete least squares solution to f on the data set X.

If R is zero, then s interpolates f at the points

LS

{1+i/4} i3—0 , which implies that on [l, 2], is uniquely given by

*Ls
(3. 6) s, (%) = €32 (x - 5/4)x-3/2)(x-7/4)/3 ,

where
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(3.7a) sLS(2)=é>o ,
(3.7b) sl &(2)>0 ,
and

(3.7¢) s} ((2)> 0.

(2) . ey _ .
Because 8, g€ c'“'[a,b] and sLS(J+5) = f(j+&) = 0, it follows that

on the interval [j, j+1J, 8 has the unique representation

LS

. g2 .y 3
(3.8) s, %) = (s (5)/(26) + 8 (DEX+ s (H]E)x-5)
2 . . .
+ (8 D)2)x5)" + 8 x=i) + 8, ) -

If 51,5 has been uniquely constructed on the interval [1,j], then

(3.8) gives a unique extension to [1, j+1], hence inductively to

[l,M]. From (3.8), if s ) and s"

LS(J) are all non-

. , .
. . , . N
zero and of the same sign, then sLS(J+1), sLS(J+1) and sLS(J+1)

are all non-zero with the opposite sign and

. | /g2
(3.9) ls g+ > |8 DI/E™

where we have used our assumption that 0 <E 1/2 for the con-
servative lower bound in (3.9). Combining (3.7a), (3.7b), (3.7c)
and (3.9) we conclude that for 3 jg M

. 2j-5
(3. 10) s, S0 > /677,

2M -5
(3.11) ||f-sLS||>(1/8) ,

and
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2M-5
(3.12) |1s;-8, 51> (1/€) ,

where we have used the fact that f{(M) = sf(M) = 0. Therefore, by
decreasing £, we can cause f and its first four derivatives to be
as small in norm as desired. However, the norm of the error in
(3.11) can be made as large as desired, even though the residual
vector R is zero.

From this example, it is clear that an acceptable upper bound

on ||f-s can be obtained only if we place restrictions on the

Ls!|

number and distribution of the data points with respect to the mesh

is close to f, s need not

" Finally, observe that even if s LS

f

be close to either sf or f.

Remark 3.1: The observation should be made that the mesh size

h =1 was chosen only for convenience, and its size is not crucial to

the above example.

The above example motivates the hypothesis of the following

theorem.

Theorem 3.1. Let 8;.5¢ Sz(nx) be a discrete least squares approxi-
. (m) . A

mation to fe C [a,b_], 1 mg 4, on the set X of M unstructured

data points, where " is a uniform mesh. Assume for each j,

"where 2 € j< M-1, that there exists six data points which we desig-

nate by {i;}f_l v {x;'} i3_1§_ X satisfying (2.1a), and also
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iy 3
{xi}

c ~i,3 . . . .
=1 S X and {xM}i=l C X satisfying (2. 1b). Let the real

numbers Y, @ and a be defined as in (2.4), (2.5a) and (2. 5b),
respectively. If ¥ >0, If'(xk) - s'LS(sk)|g n, for k=1, M, and
at all of the data points x; and J_{; defined above |f(x;) - SLS(X;)I

~1 ~i
< & and If(xj) - SLS‘(xj)IS ¢, then

2 (
(3.13)  [[f-s; o |ISE | ((21(1-a)(1-20) fadn+ 1| £ b

+ 21(1-a)(1 -za)zg/(4a>x) + (7(1-a)(1-2a)/(4Y)+1/4) h n,

where 5m is given in Table 1 of Chapter 2 and h_= (b-a)/(M-1).

, 0

Proof: From Theorem 1.1 of Chapter 2, if sfe Sz(wx) is the

cubic interpolation spline to f, then
(3.14) Ilf'slel < Ilf—sfll + Hsf'sLSH

(m) m
gém’o”f 'l hx + Ilsf'sLsH .

We now obtain a bound for | Isf-sLSI | from Lemma 2.1. First
2
observe that sf-sLSeS (nx) and
1 -g! = ! _g!
(3.15) Isf(xk) sLS(xk)l | £ (%) sLS(xk)l
<N

for k=1, M. Furthermore, for our specified data points we have
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(3.16) |sf(xj) - sLS(xj)l < Isf(xj) - f(xj)l + If(xj) - sLS(xj)l
< l |Sf - fl l + g
(m) m
<5m,0||f [In~ + ¢,
and correspondingly
i —i (m), . m
(3.17) Isf(xj) - sLS(xj)|g ém’0| E ) W -
Therefore, from Lemma 2.1

(3.18) < 70-a)1-2a)3-6a)E ol 1€ W7

Ilsf -Slel

+ £)/48Y + (7(1-a)(1-22)/(4Y) + 1/4) h_n

Combining (3.14) and (3. 18) yields (3. 13) and the proof is complete.

Remark 3.2: In Theorem 3.1 it is permissible to use either of the

following estimates for £ ,

(3.19) £ = [IR]], .

or

(3. 20) ¢ = [IR]],

where |[|R[|| < [|R||. Inpractice, however, ||R|| is usuallya
poor choice when compared to | |R| |w, especially for large ICI .

Remark 3.3: It should be noted that during the numerical solution

of a discrete least squares problem, the residual vector R is
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calculated, (see[ 4 ,11,21, 28 ]). Therefore, R is available for

use in the estimates (3.19) and (3. 20).

Remark 3.4: Examination of (2. 3a) through (2.5b) yields the follow-

ing lower bound for ¥ and &

(3.21) ¥>6ba -1
and

A 3
(3. 22) 2> 2

However, 6a-1 and Za3 are usually much smaller than ¥ and a,
respectively, and their use in Theorem 3.1 deteriorates the bound

(3.13).

Example: If we assume that the data points X are distributed in such
a way as to give a >1/4, then from (3.21) and (3.22) Y>1/2 and

a >1/32. This gives the following bound from (3.13)
(m) |, m ,
(3.23) |1£-8; gl 1< &m' ol27 [1£77||h "+126 £ +(85/4)h_+ n .

Examination of Theorem 3.1 shows the need of insuring the
smallness of 1. We want to approximate P(xk) for k=1, M in
some manner which is compatible with the h". One possibility is
as follows. If each of the intervals [xl,xz] and [xM-l’ xM] con-
tains at leést m data points, respectively (the hypotheses of

Theorem 3.1 guarantees at least 3), then using Lagrange interpolation

polynomials of degree m-1, we can approximate f'(xk) for
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k =1, M with the derivative of these polynomials at the end points
of our interval X and X\ (see Remark 1.1). If a constrained
least squares algorithm is used to insure that the least squares
spline 815 has these values for its end derivatives, then inequality

(1.24) gives a bound for M. Therefore, the following Corollary is

an immediate consequence of Theorem 3.1 and the above construction.

Corollary 3.1. If the hypotheses of Theorem 3.1 are satisfied and

there exists m data points in each of the intervals [xl,x2] and
[xM 1’ xM] on which the Lagrange interpolation polynomials of
degree m-1 are constructed to approximate f'(xk), k=1, M, and

s'LS(xk) is equal to those approximations, then
2/ A
(3.24) ||f—sLs| | € [ém o(21(1-e)(1-2a) /(4a7;) +1)
+(1(1-a)(1-20)/4% + 1/a)/(m-1)1] | |£™)] b

+ 21(1 -a)(1 -2a)2§/(435)

It would also be desirable to have an a priori bound on
. (m) et s
| If—sLSI |, knowing only that f e¢C [a,b] and the distribution of

the data points X. Toward this end we prove the following Corollary.

Corollary 3.2. If the hypotheses of both Theorem 3.1 and Corollary

3.1 are satisfied, then
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(3. 25) s, ol < [E 0(21(1-(1)(1-2&)2(1 +f\\41/2)/(4az{)+ 1)
+ (7(1-a)(1-2a)/(4Y) + 1/4)/(m-1)!] ||f(m)|| h;n ,
where ém o isgiven in Table 1 of Chapter 2.

Proof: Examination of (3.24) shows that all that remains is to

bound £ . This will be accomplished by obtaining a bound for | |R]|]|

and using (3. 20). The cubic interpolation spline 8¢ is a candidate

for the discrete least squares approximation to f, hence the norm

of its residual vector must be greater than or equal to | |R| |, i.e.,
A
M
(3.26)  |IR|IK( = (5} - s & NHY?
i=1 i i
M
2.1/2
<z |lt-s 1B
i=1
<E [1£™)) ™ £11/2
m, 0 x '

where an application of Theorem 1.1 of Chapter 2 has been made.

Combining (3. 24), (3. 20) and (3.26) completes the proof.

Al/2 -
Because M / > (3(M-1))1/2 >hx1/2 , the power of hx is no
longer m, as (3.26) might indicate, but rather no larger than
m-1/2, depending upon the number of data points. In practice, of

course, we would expect (3.26) to be a rather crude estimate and
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would hope that £ is much closer to ém, 0 I If(m) [ h;n instead of
the bound given in (3.26).

We now give a more stringent condition on the data points, X,
which will insure that the discrete least squares spline 51.5 will

be uniformly close to f. In preparation for the following theorem,

the real non-negative number l I | |X of a function f is defined to
be
(3.27) [1£]ly = max [£2)] ,

1Ii<KM

5\{, e X

1

which is used in the following Lemma (see[ 6 ]) .

Lemma 3.1. [ 6, p. 91]. Let P be an algebraic polynomial of

degree { n on the interval [a, b], then

(3.28) 1P| |1 -nzﬁl(X))\< [Pl s

where

(3.29) B.(X) = max min {le-:?.l (b-a)} ’
1 xe[a, b] 1<i€f\\/1 1/

and

(330 ||PI]a =B, xn%/2 < [Pl

where
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(3. 31) 81<X)= max min |cos_1((2x-(a+b))/(b-a))
xe[a,b] 1giKM

- cos'l((zﬁi - (a+b))/(b-a))| .

The above Lemma yields the following theorem.

A
M A
Theorem 3.2. Let X = {;’EI} izl g_[a, b] be a set of M unstructured

data points and T =X < X, <..+<x . _=b be ameshon [a,b].

M

Let 81.5°¢ S (n-x) be a discrete least squares approximation to
fe C(m) (a, b], 1{ mg 4, on the data set X with residual vector
A

Re tRM. Define B(X) and g(X) by

(3.32) B(X) = max max minA
1<jEM-1  xe[x,x, ] 1giKM
h 3ol Qe[x x ]
PR R B |
N
{le-xil/(xj+l—xj)} ,
A\
(3.33) B(X) = max r[nax min
I jiM-1  xelx, x, 1igM
<% il K
i V577541
-1
{ |cos ((Zx-(xj+xj+l))/(xj+l—xj))

-1, A
- cos ((in—(xj+xj+l))/(xj+l-xj))l} .
If B(X)<1/9, then
.34)  |lt-s ] 1< [2-osng o 11€™ 7 +1IR]1,]/

(1-98(X)) ,
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or if 8(X)< ﬁ/3, then

(3.35)  ||f-s [-cBxn?/ae 114 ED

Lsll<

A 2
+ [IR]] )/ -3Bxn%/2)
where ‘Em o 2re given in Table 1 of Chapter 2 and

hx = max (x._'_1 -X.) .
1<jgm-1 I )

Proof: Let sp€ Sz(nx) be the interpolation spline to f e C(m)[a, b] .

It follows from Theorem 1.1 of Chapter 2 that

(3360 |lf-a, gll< [1e=s ]|+ 15 -5, ]|
(m m
SE ™R+ (1, -5 gl
To prove (3.34), we first note that s, - s is a cubic polynomial

f LS
on [xj, xj+1] for 1 j< M-1. Because B(X)< 1/9, it follows by

applying Lemma 3.1 to each interval [xj'xj+l] that
(3. 37) ||sf-sLS||<||sf-sLS||X/(1 - 9B(X)) .
Also, using (3.27) and the triangle inequality

(3. 38) s, -8, ol | € max,_ {|(f-s)(X)] + |(f-s, J(X.)]}
£7%us!Ix S 0 £'% Ls"*i

<lle-s /] + IR,

(m) m
<€ ol 18 1T+ TR,
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Combining (3. 36), (3.37) and (3. 38) yields (3. 34). The proof of
(3. 35) is identical to that of (3. 34) and is omitted, thus completing

our proof.

Remark 3.5: Because of the high density required of the data

points, X, it is not necessary to specify an estimate for f'(xk),
k =1, M, and therefore also unnecessary to employ a constrained

least squares algorithm to solve for S1.s°

Remark 3.6: As was done in (3.26) we have

(3. 39) [ IR[ | € | R[]
<M e €™

The bound (3. 39) can be used in Theorem 3. 2 to obtain an a priori

bound for | |f—s where we only need to know X and

Ls! I
f eC(m)[a, b]. However, because VI/\\II > YM-1 )h;l/z , the best

a priori bound obtainable using this method can not have the exponent

of h exceed m-1/2 .

Remark 3.7: The observation should be made that a uniform mesh is
required for an application of Theorem 3.1. However, the conclusion

of Theorem 3.2 is independent of the mesh spacing.
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This section is concluded by recording a few observations on
the distribution of the data points required by each of the above
theorems. The hypotheses of Theorem 3.1 are satisfied if there
exists at least three data points in each interval [xj,xj+1] such that
the spacing satisfies (2. 1a), (2.1b) and in (2.4) we have ¥>0. The
observation should be made that this is a reasonably weak condition
to be placed on X. For example, in each interval, all of the three
data points could lie in just half the interval, say [xj, xj+hx/2] and
¥ > 0 could still be realized. The data points x; = hx/3 + xj ,
sz= 5h /12 + x, and xj3: h [2 + x;, all of which lie in the half
interval, are surely acceptable, and give the value Y= 1/4>0. If
X contains an excess of data points beyond that required to fulfill
the requirements (2.1a) and (2. 1b), then a judicious selection of the
three data points required for each interval can maximize the
quantities ¥, a and 2 and therefore minimize the upper bound
given in (3.13) for | If—sLSI | .

For B(X)< 1/9 in Theorem 3. 2, the number of data points in
each interval [xj'xj+l'] must exceed 9 and be distributed in a
reasonably uniform manner throughout each interval. Usually for
unstructured data, this will require the number of data points in each
interval to be far in excess of 9. In Theorem 3. 2, the number of

data points in each interval must exceed 3w/(2 ﬁ) £ 3.3 to insure

that a(X) < ﬁ/3 . However, uniform distribution of the data points
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is not what is required. Examination of (3. 33) discloses that more
data points are required near the end points of the interval rather

than near the center.
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Section 4. Bivariate Least Squares With Data on Mesh Lines

. = ° o = . - o¢.<
Let T a =X <x2< < x b and ny.c y1<y2<

1 M

YN = d be univariate meshes on [a, b] and [c, dJ respectively. On
[a,b]x[c,d] define the bivariate mesh T @ 'rry which consists

of the M vertical mesh lines x = xi and N horizontal mesh lines

If unstructured data is given only on the mesh lines, 'rry @ "y’
then it is possible to avoid solving a matrix problem of high dimen-
sion by solving a discrete least squares problem on each vertical
and horizontal mesh line. The M + N discrete least squares solu-
tions are then blended with natural splines to obtain a bivariate
approximation. Toward this end, we note that sufficient theory has
been developed to yield several algorithms and corresponding error
bounds.

For the first algorithm, the M + N univariate discrete le.ast
squares cubic splines are constructed on each of the mesh lines of
T @ 'rrY from the cubic spline spaces Sz(wx) and SZ(-rry). If we
have sufficient data points on each of the M + N mesh lines, then
Theorem 3.1 or Theorem 3.2 would yield an error estimate for each
of these splines. If fe C(m’ n)([a, b]x[c, d]), 1{ m,ng 4, and the
residual vector for each of the discrete least squares splines is small

enough, then each would also be an approximation of order m or

n, where 1 m,n 4. Hence, we could blend these splines with
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linear functions, which would give a bivariate approximation to f
which is of order min {m, 2} + min {n, 2}.

Therefore, we introduce linear blending, see Gordon [12] .
In the notation of Chapter 2, define V{( L M, 0) to be the interpo-
lation vector space of piecewise linear continuous functions, such

that the basis functions {(bi} ::Il are defined by

(x-xi_l)/(xi-xi_l) if xi-l‘ xgxi
(4.1) ¢i(x) = (xi+1—x)/(xi+l-xi) if xi§x<xi+l

0 otherwise

and the interpolation function a is.defined by (i) = 0 for

1€ i M. Define the corresponding space V(wy, N, 0) with basis

{\pj};i 1 and interpolation function f, of piecewise linear continu-

ous functions on the mesh "y in an identical fashion. V{( L M, 0)
(and correspondingly V{( -rry, N, 0)) has the following error analysis:
if ge ™ [a,b] then

M 3
(4.2) le- Z ax) ¢, |1< K _[1E™)n ™,

i=1 .

¥*

3
where 1 mg 2, Kl =2 and KZ = 1/8, When m =1, the proof

of (4. 2) follows from [24, pp. 248 -249], where, on the interval

["i' *it 1]
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M

(4.3) lgtx) - iflgmi)«»i(x)l = Joex)xe-x, elxx %]

= (%, ) leley, o x]-eleux, D

1
sz |l .

The proof of the case where m = 2 follows from [24 s P 248].

The error in linear blending interpolation to a function fe C(m,n)

([a, b]x[c, d]), 1{ m,ng2 is given by Theorem 1.4 of Chapter 2

as
* _ % . (m,n) m_n
(4.4) ||f-Px®PY f ||gKmKn||f | Ih, hY ,
%* x
where Kl =2, K2= 1/8, hxzmax (xi+l-x,) and
1 igM-1
h = max (y. .-y.).
Y gjgN-1 Oth )

If h = max (hx’ hy) and m =n = 2, then in terms of h, this
gives a fourth order approximation to f.
We now define stepwise an algorithm, which was described

above. This algorithm will be designated as Algorithm 4. 1.

Algorithm 4.1: Linear Blended Discrete Least Squares with Approxi-

mation to Boundary Derivaties.

:: <... = :: e o o
Let ™ 2 xl<x2 <xM b and nyc yl<yz< <

YN T d be uniform univariate meshes, and let L @ ny be the

bivariate mesh of mesh lines defined above. For 1g j& N, let
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A
A Mj A
Xj = {xji}i-l g[a, b] be an unstruct:uied discrete data set of Mj

N:
points, and for 1 i M let le'{c'ij}j—llg[‘c’ d] be an unstructured
A

discrete data set of Ni points.

(m, n)

Step 1: Let fe C ([_a,b]x[c,d]) where 1 m,n 4. For

X

. € Sz(n ), which is an univariate discrete
LS, j X

1€ j€ N construct s

least squares cubic spline vxhich minimizes the Euclidean norm of
x oM x
the residual vector Rj ¢ R °, where component i of Rj is given

X A A

°LS, j

A _ X . . .
and xjie Xj. Also for each k, k=1, M, (SLS,j) (xk) is constrained
(1, 0)

to equal the approximation to f (xk, yj) given by the Lagrange

interpolation polynomial of degree m-1 constructed on the m data
. A m A \m

points {xji}i=lng’ where {xji}i=1;[x1,x2] for k=1 or

S[XM—I’XM] for k=2, which interpolates the values of

f(?{ji’ yj) (see Remark 1.1 for procedure). Correspondingly, for

y

1< ig M, construct SLS, i

€ Sz(wy), which is a univariate discrete

least squares cubic spline Xhich minimizes the Euclidean norm of
N.
the residual vector Rze R 1, where component j of Rz is given

by

Yy _ ALY A

A _ y . . .
and yije Yi' Also, for each k, k=1, N, (SLS, i) (yk) is constrained

(0, 1)

to equal the approximation to f (xi, yk) given by the Lagrange
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interpolation polynomial of degree n-1 constructed on the n data

A \n A |n
. P -
points {yij}jzl 'C-Yi' where {Yij}j':lg [yl, yz] or k=1, or

4

ij) ’

«

—C-[yN-l’yN] for k=N, which interpolates the values f(xi,

Step 2: Linearly blend the M + N discrete least squares cubic

splines to obtain the following approximation to f

M N
] y x
M N
y X
- ifljfl (1/2)s] g ;7)) + 57 ¢ x,)) &,(%) 4(y)

In order to obtain an error estimate, define the following
parameters of the data sets Xj and Yi' For each j, 1{j <N,
assume that there are m distinct data points of X, in each of the
intervals [xl, xz] and [xM-l’ xM] , and for 1< i< M, assume
that there exists fixed data points in Xj satisfying (2. 1a) and also
fixed data points satisfying (2.1b) with respect to the mesh " For

x
and

j
8}‘ with respect to the mesh m_ by (2.4), (2.52) and (2.5b), res-

R

these fixed data points in Xj, define the real numbers X;‘ ,

pectively (recall the notation that x, = 3:';) =%, is a knot of the mesh

1rx). Finally, define the real numbers

X . X

1 = min X. .
(4.8) IKN
(4.9) @z min "o >0 ,

1<j<N
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and

(4.10) 4 = min 2F >o0.

1<jgN !

Correspondingly, for each i, 1gi <M, identical assumptions
on the data sets Yi’ with respect to the mesh n;', are made. Also,
the real numbers Xy, ay >0 and 3" > 0 are defined in a manner
analogous to (4.8), (4.9) and (4. 10).

For Algorithm 4.1, the following error estimate is valid.

Theorem 4.1. Let s, defined in (4.7), be constructed by Algorithm

4.1, 1f £ ™™ ([a,b]x[c,d)), ¥>0 and ¥ >0, then

n*

*# *  (m* n%), . m*
(4.11) ||f-s||§Km* Kn*llf ||hx hy
+ (3/2)[Cm 0(21(1—ax)(l-Zax)z/(43x‘6x) + 1)
+(1(1-2")1-20%) [ (47 + 1/4)/(m—l)!]| |7 0)) |n"
£ (63/2)(1-a)(1-2a")% max ||R;‘ Ik /(43"!")

I€jSN
+3/2)[E (21(1-aY)(1-22")2/(487¥) + 1)
n, 0

+ (1= 1-2a)/(a¥) + 1/a)/m-1)1] |1€OP)] B}

¥ (63/2)(1-a”)(1-20Y)% max R |1 /(43"7") ,
1< i<M

* = min {n,2}, & and & are

* .
where m = min {m, 2}, n m, 0 n, 0
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. . £ x
given in Table 1 of Chapter 2, K =2, K, = 1/8, h = (b-a)/(M-1)

and hY = (d-c)/(N-1) .

Proof: From (4. 4), we have
(4.12) lle-slI < |1t -P, @ P [l]+]IP, @ P [e]-s]]
" " m*, n* m* n*
<Ko Ko |17 0 w24 R, @R [f]-s] .

Writing out Px @ PY [f] - s and using (4.7), gives

M
= )y - 87
(4.13) P ® Py[f] -8 = 121 (£, 0) - 876 )
N X
+ z (f(.:Y‘) = sLS,j) ‘bj

l J

H

J
M N

y x
—ifl j=21 (1/2)(f(x,, AREIPRLARECT ARE AL

Taking absolute values, observing that both ¢i and ¢j are non-

M N

negative, Z ¢.,=1 and X y, =1, then (4.13) reduces to
i=1 ' =1

(4. 14) (P, ® Py[fJ-s)(x.wls (3/2) max ||fx,, )

1€ i<M

- siS,ill + (3/2) max ||f(-,y.

J)-s’liS I
1€ AN ’

Corollary 3.1 yields



(4.15) max IIf(xi,')-ﬂSY Ny
1€igM

g[én ol21(1- o¥)(1-247)2/ (48Y ) + 1)

+ (701-a”)1-20")/(aV) + 1/ 4)/ (n-1)1] 1% ™) h;

+21 (1-a¥)(1-27)% max ||R2' 1 /4" ¢y,
1€ igM

X

LS,j”' Com -

with a corresponding bound for max ||f(*,y.) - s
IKjEN !

bining (4.12), (4.14) and (4.15) completes the proof of the Theorem.

We first observe that if T1 is the total number of data points,

then T, must satisfy

1
M, N A
(4.16) T. = N.+ T M, »6MN-(M+N),
R

for sufficient data points to be available to apply Theorem 4.1. Next,
because only univariate least squares is being performed, the size
(total number of entries) of the largest matrix that must be stored in
the computer at one time is given by

A A
(4.17) T, = max {(M+2) max M, (N+2) max N, } .
1<jKN 7 1€igM
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Instead, if a bivariate least squares solution was obtained using the
discretized blending function space of linearly blended cubic splines,
the matrix problem to be solved would be significantly larger than

TZ’ (usually of the order of (Tz)z) .

Example 4.1: Consider the special case when m=n=4 and h =

max (hx, hy)' Hence mw< = n* = 2 and (4.11) gives a bound in which
the power of h is four. Also, an a priori bound can be obtained
using Theorem 4.1 and the reasoning of (3. 26) on each residual vec-
tor R;‘ and Riy . However, the highest realizable power of h is

31/2.

If each of the data sets Xj and Yi has sufficient data points,
the following algorithm can be applied, where it is not necessary to

approximate the normal derivatives or to use uniform meshes.

2 M

Algorithm 4.2: Let m e = xl< x,<***<x,,=b and ny:c =Y, <

Y, -+ < YN © d be univariate meshes and let 1'I'x®‘l'l'y be thl%I

corresponding bivariate mesh. For 1< j€ N, let Xj = {jS}i—i]‘c"
A

[a,b] be an unstructure/c;l discrete data set of Mj points and for

Nj
1IigM let Yi= {Qij} i=1 < [c, d] be discrete unstructured data

A
sets of Ni points.

Step 1: Let fe¢ C(m,n)( [a, b]x[c, d] ), where 1{ m,ng 4. For

1€ j€ N, construct 8r .eSZ(vx) which is a univariate discrete

LS, j
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least squares cubic spline vg\hich minimizes the Euclidean norm of

M;

the residual vector R; ¢« R given by (4.5)., Correspondingly, for

1€ i< M, construct s . € Sz(ﬂy) which minimizes the norm of the

y
LS,i

1

residual vector Rz'e 128 defined in (4. 6).

Step 2: Linearly blend the discrete least squares splines to obtain

the bivariate approximation s defined in (4.7).

In order to obtain an error bound, calculate for each j,
A
1 £j <N, the real numbers IS(Xj) and B(Xj) with respect to the
mesh L from (3. 32) and (3. 33), respectively. Define the real

A
numbers ﬁx and ﬁx by

(4.18) ﬁx = max p(X.) ,
ICJEN
A A
(4.19) ﬁx = max B(X,) .
IKigN

Correspondingly, for each i, 1<K i M calculate the numbers
A
ﬁ(Yi) and ﬁ(Yi) with respect to the mesh TrY from (3. 32) and

A
(3. 33), respectively, and define the real numbers ﬁy and py by

(4.20) B. = max ﬁ(Yi),
1<i<M

(4.21) 8 = max B(Y.) .
1<igM

The following error estimate is a consequence of Theorem 3. 2.
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Theorem 4.2. Let s, defined by (4.7), be constructed by Algorithm
(

4.2and £¢c™ ™) ([a,b)x[c,a]). 1t p_<1/9 and B, < 1/9, then

b3
x % (m*, n™) m .n
(4.22) ||f-s||<Km*Kn* | |£ . hy

(m, 0) m b4 .
w32) (298 € €™ O 0™ + max | |R¥|_]/(1-9p.)
x° m,0 x 1<GEN j oo] x

(0,n); |, n y
ro2)[z-s ) & 11£9 ™%+ max ||RY|]_]/0-98),
y ™m0 y 1<iKM 1 oo] y

or if 6x< ﬁ/ﬁi and fi\y < )’?/3, then

K l |f(m*,n*)l lhm* hn*
n* X

(4.23) ||£f-s]|< K v

m*

A2 (m, 0) m x
+3/2) (=3B )& 1™ 0™+ max ||RY|] ]
b4 m, 0 X 1<jgN ) '

/(13 )% 2)
A2 0,
v /2 (238 )42 & (11E" ™)

A2
+ max ||RY|] |A1-(38.)%/2),
IigM ! °°] y

* ®
where m = min {m, 2}, n = min {n, 2}, ém

and & are
n, 0

, 0
* ¥
given in Table 1 of Chapter 2, Kl = 2, K2 = 1/8,

h = max (xi+l-x.) and h° = max (Y.+1-Y.) .

1igM -1 ! Y igjgN-1 T )
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Proof: The proof of Theorem 4.2 is essentially identical to the proof

of Theorem 4.1. We merely note that combining (4.12), (4. 14) and

the bounds of Theorem 3.2 yields our result.

Algorithms 4.1 and 4. 2 are hybrid algorithms, which combine
piecewis;a cubic and piecewise linear splines. If it is desired that
cubic splines be used throughout, then the following algorithm, out-
lined below, may be useful.

We blend our discrete least squares cubic splines with natural
cubic splines (see Section 3 of Chapter 2). If fe C(m,n)( [a., b]xr_c, d]),
2 { m,n £ 4, then this method has a potential accuracy of order
m + n in the "interior of the region', (see Sections 3 and 4 of
Chapter 2). Examination of Theorem 4. 2 of Chapter 2 indicates that
preservation of this accuracy requires the discrete least squares
cubic spline approximations to be of order m + n, when their
residual vectors are small. To accomplish this, on each mesh line
of 1rx®1ry, we replace the meshes T and Tl’y by uniform univari-
ate meshes ?x:a =X. <X < """ < X= = b and Tr_yzc =?l< 72< e &

1 2 M

?ﬁ = d, respectively. From Theorem 1.1 of Chapter 2, the interpo-
lation accuracy of the univariate cubic spline spaces Sz('v?x) and

Sz(?y) is O(i;n) and O(ﬁl;) respectively, where ?lx = (b—a)/(I\_/I-l)

and T’l_y = (d-c)/(l-\-l-l) . Therefore, for the preservation of our
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accuracy, it is necessary to refine the meshes '-Fr'x and T
sufficiently to have e < K™ h” and K" < Y
X x vy y y vy

Remark: For the special case where m =n = 4 and hx = hY = h,

this reduces to fxg h2 and leg h2 .

The above observations lead to the following algorithm,

Algorithm 4. 3: Let T AT X KX, K e KXy, = b, ﬂy=C=Yl<Y2<
-~o<yN=d, nx:a=x1< < .<x1\_/[=b and ﬂy3C=Y1<Y2<

-+ <y YR = d be univariate meshes such that "x and FY are uni-

form, B < h h' and h- < " n (these last two conditions
x X 'y Xy

y

are not necessary for Theorem 4. 3 to remain valid, however, to
preserve the desirability of Algorithm 4. 3, attempts should be made
to insure that these two conditions hold, or at least nearly hold).

Let T @ "y be the bivariate mesh of M+ N mesh lines. The data
points will only be specified on the mesh L @ wy. For 1€j< N,

M,
let Xj = {2 1}1 Jl g[a, b] be a discrete unstructured data set of

A N
Mj points, and for 1i<M, let Y = {y } C[c d] be a dis-

A
crete unstructured data set of Ni points.

Step 1: lLet feC(m’n)( [a, b]x[c, d]) where 2 m,ng 4. For

2

1€ j< N construct sx €S (Fx), which is a univariate discrete

LS, j

least squares cubic spline which minimizes the Euclidean norm of
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2

M.
the residual vector R}‘elR ) defined by (4.5). Also, for k = 1,

2

(s LS J) (xk) is constrained to equal the approximation to
f(1 o)ﬁk,y.) given by the Lagrange interpolation polynomial of

degree m-1 constructed on the m data points {xJ} lng
where {x 1_[x x ] for k=1 or g[xﬁ-l’xﬁ] for k = M,

A
which interpolates the values f(:/;j.,y.). Correspondingly, for

y

LS, i L€ S ('rr ), which is a univariate discrete

1 i< M, construct s

least squares cubic spli.nelyvhich minimizes the Euclidean norm of

N. -
the residual vector RzrelR ! defined by (4.6). Also, for k=1, N,

(s ) is constrained to equal the approximation to

LS, i .)' (Yk

(0 )(x , yk) given by the Lagrange interpolation polynomial of

degree n-1 constructed on the n data points {y} IQY_ , Where
{le}J 1 _[yl, YZ] for k=1 or C[yN I'YN] for k = N which
A
AN

interpolates the values f(x Y. J)

Step 2: Blend the above univariate discrete least squares cubic
splines with natural cubic splines (see Section 3 of Chapter 2) to
obtain the following bivariate approximation to f, where

{Ai}?:l C_SZ( 1-rx) and {Bj};\ilgsz(wy) are natural cardinal basis

functions,

N X
LS,i i J,zjl 81s,j B

M
(4.24) s= =
i=1

M N
- Z Z (1/2)(sLS (y)+sL j(xi))Ai Bj.
i=1 j=1 Sy
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The following assumptions are made on the distribution of the
data points so that an error analysis can be performed. For each
J» 1€ j€ N, assume that there exists m distinct data points of X,
J
in each interval [x, xz] and [xﬁ-l’ xﬁ] , and for 1 i M,
assume that there exists fixed data points in Xj satisfying (2.1a) and
also fixed data points in Xj satisfying (2.1b) with respect to the

mesh ?x. For these fixed data points in Xj, define the real num-

bers 7;‘, '&;‘ and %;‘ with respect to the mesh ;x by (2.4), (2. 5a)

AX
and (2.5b) respectively. Define the real numbers ?‘, Ex and o

@ and ﬁ;‘ , respectively, for 1 ¢ jN.

Correspondingly, for each i, 1g i { M, identical assumptions on the

to be the minimum of 7;‘ ,

data sets Yj, with respect to the mesh Tr'y, are made. The real

numbers Yy, & and %7 are defined in an analogous manner.

Algorithm 4. 3, along with the assumptions on the distribution

of the data points, gives the following theorem.

Theorem 4.3. Let s, defined in (4. 24), be constructed by

Algorithm 4.3. If fec‘m'n)([a',b]x[c,d]), ¥'>0 and ¥ >0,

then for xe[xi,xi“] and Y([Yj.Yj“]

m

(4. 25) l£x, y) - s, v < | 1™ ™) H‘fm.o b

-1 -1 ~
+R DA, [IHE B 0T Ay A [4)
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, 2 -1 ~
+(1/8)] |£™ )ll{ém,oh:’+K 5 Ax A /41 Dy D,

m

/) 142 ™€ h +K(h lAy)AJ/4}(hAx)A

n, 0

+(1/64)] If(z, 2)| I{(thxi)(hyij)}Ai—A_j

+R(M_ )1 +K(M_ )/2){[ o211 *)1-23 )2/(40 7+ 1)
Yy X

F(7(1E7)(1-237)/(4%) + 1/9)/(m-1)1] | £ 00 B::‘
+21(18)(1-25%)% max ||R;‘||w/(43’.‘3")}
I<iKN

+K(M_ )1 + K(M_ )/2){[6 o(21(1- @) 1-2a")%/(4a¥ 7 + 1)
x %

+ (701-@)1-28")/ (47 + 1/4)/ (n-1)1] | 1£02) | 72

+ 21(1-3y)(1-22v'y)2 max IIRT | |°° /(42}'7}')} ,

1€i<M
where & and & are given in Table 3 of Chapter 2, K and
m, 0 n, 0 m
Kn are given in Table 5 of Chapter 2, Axi =X X Ayi = Yy41”
yj, h = max Axi, h = max Ay, R A —{21 1+ 1- M+1},
1< iKM-1 Y 1€jEN-1
A =2 92 ™M™y M - max Ax,/ min DAx., M_ =
J T  1KiKM-1 T 1<i<M-1 Ty

max Ay / min Ay, K& = 6&26+1)E+1)7/(3+48), B_ =
1<jKN-1 7 agigN-r |

(b-a)/(M-1) and Ty = (d-c)/(N-1).



171

Proof: This is a direct consequence of Corollary 3.1 and Theorem

4.2 of Chapter 2.

Remark: The observation should be made that the order of accuracy
depends upon which rectangle, [xi, xi+1] x [Yj’ Yj+l]' the point
(x,y) belongs to, because of the exponential decay of the terms Ai

—

and Aj toward the center of the region. If the norm of the residual
vectors are small enough, m=n =4, h = max (hx, hy)’ ix<' h2
and Ey{ h2 ,then the error satisfies Figure 1 of Chapter 2, i.e.,

eighth order near the center and less near the boundary (see Section

3 of Chapter 2).

Remark: The continuity required by Theorem 4.1 and Theorem 4.2
C(m’ 0)(\ C(O’ n)f\ C(m*’ n*) ) C(m’ n), where m* = min {m, 2}
and n* = min {n, 2} . However, Theorem 4.3 requires continuity of
C(m’ 0 N C(o’ ) A C(m’ n) C(m’ n)' hence, using cubic splines
throughout the algorithm makes more efficient use of the available

continuity.
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Section 5. Bivariate Least Squares with Unstructured Data
A

A
Let X = {(:Qi, 91)}:%1 g_[a,b]x[c, d] be a set of M unstruc-

tured data points. We will describe here several bivariate finite
dimensional vector spaces from which discrete least squares fits
can be calculated on the data set X. The first two spaces, bicubic
splines and cubically blended cubic splines are known (see [29], P- 49
and [1 3], respectively). The Hermite blended piecewise poly-
nomials are new and have some interesting properties. For this
chapter, define the real number ||-||. of a bivariate function

X
£ec!® 0 [a,b]x[c, a]) to be

A
(5.1) €] = max  |fx.,¥.)] -
X 1gi<lOI i1

Section 5.1. Bicubic Splines

Let nx:a=x1< x &+ x _=b and ny:c=y1<y2< e <L

2 M

YN T d be univariate meshes, then the space of bicubic splines is

. 2 2 2 2 .
defined to be S (wx) @ S (rry), where S (1rx) and S (1ry) are cubic

spline spaces of Example 1.2 of Chapter 2 (see [29 » Pe 49] ). From

M+2 and {W.}N+2

the remark following (2.1) of Chapter 2, if {ui}i-l jlj=1

are any bases for Sz(nx) and Sz(ny), respectively, then

. . 2 2
{ui wj} 1IKiKM+2, 1<jEN+2 is a basis for S (1rx) @ S (wy), and the

dimension of this space is (M+2) (N+2) .

(m, n)

Let feC ([a,b]x[c, d]), 1{m,n 4, then saSz('lrx) ®

Sz(ﬂy) is a discrete least squares cubic spline fit (for f on X) if it
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A
minimizes the Euclidean norm of the residual vector Re RM,

where component i is given by
A A A A
(5' 2) Ri = f(xiD Yi) = S(xi’ yi) ’
A A . A
for (xi, yi) eX and 1gig M.
Before deriving an error analysis, the bivariate generalization

of Lemma 3.1 is given ('see [6 ,» P 91] ).

Lemma 5.1. Let Q be a bivariate polynomial of degree (n in

both variables, then

(5.3) ||Q||(1-nZB(X))g||Q||X, where
(5. 4) B(X) = max min {z|x.£i|/(b-a)
agxg<b A 4
cgygd (xi’ yi)eX
+2ly | fic-a},
and
(5.5) lell 1-3mexn® < |1Q |y, where
& -1
(5. 6) B (X) = max min  {|cos ™ ((2x-(a+b))/(b-2))
agxg<b A A
cgy<gd (xi’ Yi)e X

- cos '1((z§i-(a+b))/(b-a)) |

+|cos'1((2y-(c+d))/(d-c)) - cos'l((z§i-(c+d))/(c-d))|} .
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Proof: The proof of (5. 3) is along similar lines as the proof of (5.5)

and is omitted. The proof of the univariate case of (5.5) is given in

[6 , Pp. 91 -92].

Let (% ¥)e¢[a,b]x[c,d] be such that |[Q(x,¥)| = | |Q]]|, then
from (5. 6), there exists (J/'E, ;r) ¢ X such thatif o = cos-l((Zi-
(a+b))[(b-a)), 8= cos  ((2§-(c+d))/(d-c)), & = cos " ((2R-(a+b))/(b-a))

A -1 A
and 0 = cos ((2y-(c+d))/(d-c)), then

>

(5.7) B(X)>|a-2]+]|9-

Define the bivariate trigonometric polynomial of degree n to be
R(a, 8) = Q(((b-a)cos a+a+b)/2, ((d-c)cos 8+c+d)[2) . Because

I = 1R@ B = Ry o for, 0] = B! [ ][ o] 227

(1 0) (0 1)._

(5. 8) (z,8) = R ,8)=0,

and we have
(5.9) R(a, 8) = f ROy, 0)de + R'® Do, 0)d0+ R(Z, 8) ,
c

A -
where C is a straight line from (a, 8) to (a, 8). If C is param-

eterized by te [0, 1], then

1
r{1:0)
(5.10) R(a, ) =f [ (t(a~a)+a, t(e 9)+9) -R
0 (t-1)

193 (t-1)

RO Diyz-8y+5, 4 8-8)+6) R > 1)

(t-1)

+

(@, 8) (t-l)] dt

+ R(3,9).
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By the Mean Value Theorem for each te [0, 1), there exists a

~
te (t, 1), such that

(5.11) R O yz-a)+a, 48-0)+8) - ROz, )y /(t-1)

_ g(2,0)

(H@-8)+a,

e

+ R D gz 248,

with a similar expression for the second term in brackets on the
right hand side of (5.10). Taking absolute values and substituting
(5.11) into (5. 10) we have, after two applications of Bernstein's

inequality (see [6 , P- 91]) ,

(5.12) Q|| = |rR(@ 0|
1
- - 2 . A
< ||Q||n2(|a-a|+|e-3|) f |¢-1]dt+|R(a, 6) |
0
2 |- - A2
< llQlln®(a-a]+5-8)%/2 + |]Ql |,

N
= 2
<llellmpn/2+ (1]l »

A A
where (5.7) has been used and the fact that IR(Q, 6)| = IQ(Q, y)l <

91y -

A
Defi B B i
efine the real numbers B(X, L 1ry) and B(X, T -rry) with

respect to the univariate meshes T and ‘l'I'Y to be
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(5.13) ﬁ(X T ,m )= max max m1n
1€ i< M-1 xe[x X, ] (xk, yk)ex
1< jEN -1

ye [v YJH] x e[x..x.+1]

el v

A A
{lek—x!/(xi+l -%.) + 2|Yk.'Y|/(Yj+l ‘Yj)} ,

and

A
(5.14) B(X, T ) = max max min
I€ig M 1 xe[x,, x, ] (x,yk)eX
1< j<N- ¥

Y[Y Y+1] xk [x x+1]

Yke[YJ ' Yitl

-1 -
{|cos (( (x +x, ))/(x xi))—cos 1((Zx-(xi+x]..+l))/(xi+1

-1
-x )| + |eos (2, (v YNy, y;N-cos T2y -(y;,

j+1

+Yj))/(Yj+l'Yj))|} .

2
Theorem 5.1. Let seSZ(rr ) @ S (1r ) be a discrete least squares

bicubic spline on the data set X to fe C ([a b] [c d]) for

1€ mng4. If B(x)<1/9, then

(m, 0)) ,m (0,n) | 4n
(5.15) ||f-s||<{Cm’o||f | Ih +6n’0||f | | b

+E IiSaaini e B 1+ 1/01-9B X, m, m )

m, 0 nO

+ | |R] Iw/(1-93 (X, 7, m)) -
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Fal
If B (X, M Try) < ﬁ/3, then

(m, O m (0, n) n
(5.16)  |le-s] L& IO 4 g 164 |n]

+ & ||fmn)||hmh Y{1+1/ (3ﬁ(Xv,v)) 2/2)}

m, 0 n 0
& 2
+ R oh1-38(%, m, m0%/2)

where & and & are given in Table 1 of Chapter 2 and h
m, 0 n, 0 x

and hy are the mesh sizes of m and "y’ respectively.

Proof: From Corollary 1.2 of Chapter 2

(5.1m lesll< 115-P, B []]] + |12, P [c]-s]|

<E

(m, 0),,, m (0,n),,,n
i, ol £ b, + & ol 1£7 " lIng

(m, n) m . n
+ & 0 & ollf | Ihy b+ IIPxPy[f]-sH,

where Px PY [f] is the bicubic interpolant to f defined in (1.18) of
Chapter 2. Note that Px Py[f] -8 is a bivariate cubic polynomial on
each rectangle [x X, +l] x [yj, Yj+1:] for 1€ i { M-1 and

1 jg N-1, hence from Lemma 5.1

(5.18) |(Px1:>y £]-s)xv)| < | |pxpy [£]-s| |X/(1 -9B(X, ™, ™)),

because P (X, L ny) < 1/9. It follows that

(5.19) ||P, P [f] s|ly < max, [(P_ P [£]- f)(x y)|
1<1<M

+ max, | (f- s)(x y)l
1<1<M
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<P P LEd-e]] + [ IR] ], -

Using Corollary 1.2 of Chapter 2 and combining (5.17), (5.18) and

(5.19) completes the proof.

Remark: Note that we have the choice of using any basis of Sz( 1rx)
and Sz(rry) . Usually, bicubic B-splines are chosen because they
have the desirable property that they have support on at most sixteen
adjacent rectangles, are non-negative, and easy to calculate, see
[21] . This property minimizes the number of evaluations of the
basis functions which must be made to construct the least squares

matrix.

Section 5.2 Cubically Blended Cubic Splines.

<xX. <+ <

Let Trx:a=x1<x2<---<x 1 2

M=b, Ta =X

5= b, ny:c=yl< y, <0 <yN:dand wy:c=y1< Y,< e <

7§ = d be univariate meshes with the corresponding cubic spline
2 2 — 2 2, —

spaces S (wx), S (Tl’x), S (wy) and S (ny) .

From Definition 2. 1 of Chapter 2, the discretized blending
function space of cubically blended cubic splines, DBFI, is the image
of c1) under themap P_®P.=P. P +P P -P P .

x y xy Xy Xy
?x is said to be a refinement of the mesh L if and only if

the knots of the mesh L are knots of the mesh -;x' For cubic

spline spaces, if ?x is a refinement of L then Sz(wx) is
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- 2 -
subordinate to SZ(‘n'x) and S (nx) - Sz( nx) (see remark following
(2.29) of Chapter 2).
If the meshes ® and 7 are refinements of 7# and =,
X Yy x Yy

respectively, then from Theorem 2.3 of Chapter 2

(5. 20) Dim(DBF ) = (M+2) (N+2) + (M+2) (N+2) - (M+2) (N+2),
and Tl through T4, given in that theorem, each form a basis for
DBFI.

Finally, a bound for | |f-€®_f>y[fll | is given in Example 1.4
of Chapter 2.

Let feC n)([a b_] [c d]), 1 m,n 4, then seDBF1 is
a discrete least squares solution on the data set X if the Euclidean
norm of the residual vector R defined in (5.2) is minimized. Com-

bining the above observations and Lemma 5.1 yields the following

theorem.

Theorem 5.2. Let s éDBF1 be a discrete least squares solution

(m, n)

on the data set X to fe C ([a,b]x[c,d])for 1 mng4. If

BIX, T, T )< 1/9, then

(m, 0), 7 (0,n) 7.
(5.21) JEEIIS R ANMIE )||hx+5n’0||f )th

R

(m, n)
+& | 1£ [+ & (& ol x By

m, 0 n0
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(m, n) mse=n - _- -
R NIt It hy}(1+1/(1-9£3(X, T T

+IR] | (1-9BX, 7, 7))

A
It BX, W, 7)< V2 /3, then

(m, 0), =~ (0,n) =

(5.22) ||f~s||${6m’0||f ||hx+£n’0||f ||hy
(m, n) m._n (m,n), ;=m _n
+ém’0€n’0||f ||hx hy+ &m,OE'n,OHf ||hx hy

(m, n) mTn 2. - .2
+E L 0 & ol 1ET BT B e 1/ -3hx, 7, 7 0% 2))

L .2
+ R /-(3BX, T, 70 2),

where & and &n

m, 0 are given in Table 1 of Chapter 2, hx’

0

1-'1 , h and h are the mesh sizes of w, ;, m and ;, respec-
x vy y X x Yy Yy

tively.

Proof: Identical to Theorem 5.1, hence omitted.

Section 5. 3. Hermite Blended Piecewise Polynomials.

Let 1rx:a=x1=x2<x3=x4<--- <x2M_1 =x2M=b and

wy:c =y, = y2< Vs = y4< eee < Yon-1= YN = d be univariate
meshes and V('rrx, 2M, 1) and V(wy, 2N, 1) be the interpolation
spaces of cubic Hermite splines of Example 1.3 of Chapter 2. Let
{¢i}izj\f and {4"3}_]2—1\; be the cardinal bases (see [29, PP- 25-27]

for explicit representation), a and P be the interpolation functions
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for the interpolation spaces V(Tl’x, 2M, 1), and V(-rry, 2N, 1),
respectively, given in Example 1.3 of Chapter 2.
If ge C(4)[a,b], then

o glati)

i=1

(5.23) g - (4)|| hi,

(x) ¢, 1< (1/384)] g

with a corresponding error bound for the interpolation space
V( *rry, 2N, 1), see Carlson and Hall [5 ]
Refine the mesh T by adding k-2 additional points between

each of the knots x and Xoirl’ for 1 i M-1, to obtain

®

2i
M@ =X =X, KX e KX K T X <K< <X vk
<

% =X =b
x(M-l)k+1 x(M-l)k+2 , where we have the correspondence for

1i<M

(5.24) X211 = Xa-1k+1 2P F25 T Fo1yk42

Define the interpolation function

1 if (i-2) mod k=0
(5.25) a(i) =
0 otherwise

V(;x’ (M-1)k+2, 1) is the interpolation space of continuously differ-

entiable functions such that on the interval [xi each

k+1’ x(i+1)k+2)]
element is a polynomial of degree k+l1 for 0 i M-2. The

(M-1)k+2

cardinal basis for this space is represented by {gi}i=1

By the manner in which the new points have been added we have
that V(m, 2M, 1) is subordinate to V(ix, (M-1)k+2, 1) and

Vim, 2M, 1) € V(T , (M-1)k+2, 1).
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Correspondingly, refine the mesh T by adding £-2 points
between each of the points ij and Y2j+1 of 1ry for 1 jg N-1

to obtain the mesh "y:C:Yl =Y,< y3< cee < ¥, < Yool = y2+2<

< Y(N-l)! < Y(N-l)1+1 = Y(N-l)£+2 = d. Construct the interpolation

space of piecewise polynomials of degree £ +1, \7('1'1'}’, (N-1)2+2, 1),

with interpolation function B and cardinal basis {q;}(jlfll) +e

analogous manner. Then V(‘n’y_, 2N, 1) is subordinate to
V(‘Ey, (N-1)£+2, 1) and V(m, 2N, 1) g_V(ﬁy, (N-1)£+2, 1).

Construct the discretized blending function space DBF_; then,

2’
from Theorem 2.3 of Chapter 2,

(5.26) Dim(DBF,) = 2M[(N-1)2+2]+[2N (M-1)k+2] - 4MN,

and each of the sets T1 through T4 forms a basis for DBF2 .

We will examine the basis T4 in detail. If IM = {i|i=(s-1)k+1 or
i=(s-1)k+2, 1 sg¢M}, IM={i|]1<ig (M-1)k+2 and if IM},

1<s<N} and ﬁ:

\

IN = {j|j=(s-1)2+1 or j = (s-1)2+2,

{j|1<j g (N-1)£+2 and j{IN}, then T,=S,US,US,, where

S = {;”"}um 1€ j 2N 52={¢i qu}lgigZM, jeJN and

S¢ = {¢ ¥ }1<1<2M 1<J<2N

For ¢i¢jesl, let 1= (2((i-1)-(i-1) mod k)/k)+2 and
A -
j =j-(j+1) mod 2, then d)iqfi has support on the rectangle [x;\, xf+l]

xl-_yJ v yJ+2] where we restrict ourselves to the domain [a, b]x[c, d]

(recall that y3‘ =yt

J+l)° Correspondingly for ¢i¢je SZ’ if
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?: (2((j-1)-(j-1) mod z)/z) +2 and 1= i-(i+1) mod 2, then ¢»i$j
has support on [xi\_l, x/i\_l_z] x [yg, y3+1], where x'i = x3+1 and we
restrict ourselves to f_a, b]x[c, d]. Finally, for ¢143e56, if 1=
i-(i+1) mod 2 and 3'\= j-(j+1) mod 2, then ¢i¢j has support on
[x,i\-l’ x'i‘+2]x[y§_l,y3\+z]. Paraphrasing the above, ;i\pj and ¢i-l.|-.lj
have support on at most two adjacent rectangles for the meshes T
and “y’ while the support of ¢»i¢j is over at most four adjacent
rectangles.

The cubic Hermite bases {%}123\;1 and {q;J}:‘:I\; are easy to
calculate and can be stored in the computer in polynomial form.
Actually, only two basis functions need be stored, as the others can

be derived from these two (for explicit representation see [29 ,

PP. 25—27_]). Correspondingly, the basis of piecewise polynomials
—1(M-1)k+2
{¢i}i=1

= (N-1)£+2
v}

of degree k+1, and the basis of piecewise polynomials
j=1 of degree f+1 are easy to calculate and can be stored
in the computer in polynomial form. Again, for similar reasons, only
k+2 or £+2 polynomials need be stored as the others can be easily
generated from these.

Note that the above basis circumvents many of the difficulties
associated with the implementation of discretized blending function
spaces, hence the main reason for its introduction.

It is a simple matter to calculate the interpolation accuracy of

the interpolation spaces \7(1'1-'x, (M-1)k+2, 1) (correspondingly, for



184

V— - . X B
(wy, (N-1)£+2, 1)). For xe[xsk+l’ x(s+l)k+2

ge ctk+2) [a,b]

] and

(M-1)k42 — . _
5.21) gx - = g*Ox) Fx)
i=1 ot
k+2
— K+2
= M (X)) e £x)) fika2yt

i=1

where &(x)e [§Sk+1’ §(5+1)k+2]’ see [33, PP- 1—5_].

Hence
(M-1)k+2 —, .
(a(i)) o, —
(5.28) |lg- = g ))(xi) 5|
i=1
k+2
- (k+2
s fxx ) e o2y
i=1
(k+2 k+2
<™ 2Rt Jucra)
Remark: Note that max (x -x )
0gs<M-2 (s+1)k+2 sk+1
= max (x - X ) =h , the mesh size of 7w .
0<s<M-2 2(s+1)+1 2s8+1 X x
Remark: If k is fixed and the spacing of the points X okt 1 for

3ig k is also fixed, then a more refined estimate can be given

for this term. For example, if k = 6, and X are equally
8 sk+i

- 8 6
spaced for 3 igk, then M |x-x, .|<h_ 24/5 .
i=1 bs+i x
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Combining the above and using Theorem 1.7 of Chapter 2, we
have the following error estimate for fe C(k+2' l+2)( [a, b]x[c, d])

(note that k and £ 2>2),
(5.29) |1£-P_® P[] (1/0cs2) )] |15+2 01 le+2

44

+(1/380)°] |£% 9| |nl n

+(1f(es2)ny| |£0 442 |h§r+2

(k+2, 4)| lhk+2 4

+(1/(384- (k+2)1))| | £ +(1/(384(1+2)'))

”f(4 £+2)| |h4 242

x Y
The limiting accuracy of the above interpolation scheme is hi h4
. : k+2
thus we choose £ and k sufficiently large to insure that hx ,

h:r 2 < h4 h: For example, if  h = max (hx, hy) then this would

imply that in terms of h, the choice of £ = k = 6 would suffice.

Remark: If h = max (hx’ hy)’ and we assume sufficient continuity
of f, then both of the discretized blending function spaces, cubically

blended cubic splines = DBF_, and cubic Hermite blended piecewise

1’
polynomials = DBFZ’ give eighth order approximations to f. For
large M and N, examination of (5.20) and (5. 26) shows that

Dim (DBFI) is much larger than Dim (DBFZ). Thus, there will be
a corresponding savings of computer memory needed to store the

least squares matrix using DBFZ. However, in order to obtain this

savings, the continuity required to implement DBF_ must be larger

2

than DBF1 .
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A

A
Let X = {(Qi, ;’\i)}il\fl - [a, be[c, d] be a set of M unstruc-
tured data points. Let fe C(k+2’ 1+2)( [a, b] x[c, d] ), then a discrete

least squares solution se DBF2 is a function which minimizes the
A

Euclidean norm of the residual vector Re IRM defined in (5. 2).

Theorem 5.3. Let se DBF2 be a discrete least squares solution on

the data set X to fe CT& %8 ([a b)x[c, d]). 1f B (X, M) <

1 /tz, then

(5.30) | |f-s|| < {(1/(ks2)n)| [£5F% O] |h§+2

+ (1 (ee2) | [£0 242 |h:’+2

2)1(4,4),, 4,4
+(1/384)° |£ || by By

+ (1/(384- (k+2)1))] |£ h

y

¥ (1)(384- (2+2) 1)) | [£%4 1723 |h4 +2

(k+2, 4)| Ih1<+2 4

}{1-1/(1-

B(X, mom N} llRlle(l-tzax, M )

A
¥ (X, m, m)< Y2/t, then

(5.31) | |f-s]|< { (1) ety )] €172 00 h}1:+2

+ (1) (e+2) | £ 1F2) |h:;+2

+ (1) 3827 |4 | | n¥ n?

(k+2, 4)| lh1<+2 14

+(1/(384° (k+2) 1) ] |£ v

+ (1/(384- (£42) 1)) | £+ 412D |h4 “2}{1 1/(1-(tB(X Mo ) 2/ 2)}

A 2
IR/ -6, 7, w0 2)

where k,£ >2 and t=max{k+l, £+1}
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Proof: Similar to Theorem 5.1, hence omitted.

Section 5.4. Linear Blending

As a final example, we shall consider the discretized blending
function space of linearly blended piecewise cubic polynomials.

Let wx:a=x1<x L+ <x._ =b and wy:c=y1<y2<--- <

2 M

YN = d be univariate meshes. The interpolation spaces of piecewise
linear continuous functions V(-n'x, M, 0) and v("y’ N, 0) were
defined in Section 4, where the basis functions {¢i}irfl and
{xpj}?__l were given by (4.1) and the error estimate by (4. 2).

Refine the meshes L and -rrY by adding two knots between each
of the knots of m_ and " to obtain ?x:a = 3?1< ;2<§3< e &
§3M-2 =b and ?y:c = '371 < ?2< §3< cee & ;3N-2 =d, fespecﬁvely,

where

(5.32) X, = for 1ig<M, and for

*3(i-1)+1 Y5 T Y335-1)+1

1< jg N

Define the interpolation space of piecewise continuous cubic poly-
nomials \-/('ﬁ'x, 3M-2, 0) (respectively, V(T  3N-2, 0)) with inter-

polation function a(i) =0 for 1€ i€ 3M-2 (B(j) =0 for 1gjg 3N-2)

and cardinal basis of piecewise continuous cubic polynomials {;1:} i3_N11‘.2
—413N-2 . . . .
({qu} i=1 ). For a fixed i, such that 1gig 3M-2, let s = ((i-1)-

(i-1) mod 3)/3 and k=1i-3s,if s M-2, then ¢, is the cubic
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Lagrange interpolation polynomial on the four points {Xx }l:_ ]

38+t

)=28,,.. If k=2, 3, then $i is identically zero

such that $i(;3s Kt

+t

i x = . k =
off the interval [x3s+l’ x3(s+1)+1] I:xs+l’ xs+2] If 1 and

i>1, or s =M-1, then Ei is also the cubic Lagrange interpolation

. . = 4 - =
polynomial on the four points {x3(s-1)+t} 1 such that ¢i(x3(s-1)+t)
= 5t, 4 and identically zero off the interval [xs, xs+2]. Thus, the

support of {¢i}i1\:1 and {c-p}il\f-z ({ij}?:l and {Ej};:_z consists
of at most two adjacent intervals of the mesh T (m ).

Note that V(vx, M, 0) is subordinate to V(Trx, 3M-2,0) and
V(nx, M, O)Q_V(?x, 3M-2, 0) with corresponding relations holding
N, 0) and V(

for V(w 3N-2, 0). Theorem 2.3 of Chapter 2

y Ty

gives the dimension of the discretized blending function space of

linearly blended piecewise cubic polynomials = DBF3 as

(5.33) Dim (DBF,) = 5MN - 2(M+N),

where Tl through T4 each forms a basis for DBF3. Note that
the cardinal basis elements ¢i’ Ki’ q;j and L—pj are particularly
simple, easy to store and compute, with support over at most two
adjacent intervals of the meshes L wy. Hence, the basis
elements for DB}E‘3 will share these desirable properties of being
very simple, easy to store and compute, with support over at most
four adjacent rectangles.

On the interval [xi, xi+l]’ the interpolation error of

V(?x, 3M-2, 0) is just the difference of the cubic Lagrange
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interpolation polynomial and a function ge C(4)l:a, b]. Thus, on
this interval, we have from [24, P- 249]

3IM-2 4

(5.34) |gx) - T g®) e (x)|< M Ix-§3(i_1)+s|||g(4)||/4!
k=1 s=1]

4
<xuy [18)]/4r,

where K 1is a constant less than one.

Remark: If structure is given to the four data points {14:3(]1_1)4_8}:;1 ,
then various estimates for K can be given. For example, if the
points are equally spaced in each interval [xi, xi“], then direct
calculation shows that K = 1/81. If the points are the zeros of the
cubic Chebyshev polynomial (see [24, PPpP. 228] for definition,
explanation and bound), then K = 1/1 28, which is the best possible

for any distribution of the four points in each interval.

From Theorem 1.7 of Chapter 2, for fe C(4’ 4)( [a, b]x[c, d])

- (4,0),, .4
(5.35) ||£-P_(® Py[f]] | (K/24)] |£ || b,

(0, 4),,4 (2, 2) 2.2
K [24)| | f h + (1/64)] |£ h
+ (K [24)] | |In, + (1/64)] | IR

’

+ (K /192)| |f(4’ 2)| Ih: hfr + (K/192)] If(Z’ 4)| Ih: nt

where K< 1 is some constant, which is defined above.
Let fe C(4’ 4)( [a, b]x[c, d] ), then a discrete least squares solu-
tion se¢ DBF_ is a function which minimizes the Euclidean norm of

3 A
the residual vector Re IRM defined in (5. 2) on the data set X.

y 0 -
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Theorem 5.4. Let s eDBF3 be a discrete least squares solution

to f ec(4, 4)([3,, b]xl:c, d]) on the data set X. If -B-(X, L ny) <1/9,
then
(5.36) |]£-s]] < (/2| [£% D |n + (x f20)] | £ ¥ Ih;

(2,2),,2,2 (4, 2) 4.2
s /6] 147 D[ |n2 02+ a<f192)] €4 2] | nd w2

+ (k/192)] €2 | B2 h;}{l-l/(1-9'ﬁ<x, mo m N}

+ IR | /(1-9B0K ) -
A
If B(X, L wy)( \/-2-/3, then

(5.37) | |f-s]]|< {(K/24)] |f(4’ 0)| ]h: + (K/24)| |f(0’ 4)| Ih;
(2,2)) 11,2 4,2 (4,2),,4,2
+(1/64)] £ ||hxhy+(K/l92)||f ||hxhy
(2,4),,2,4 2 2

+(&/192)] |17 %] B BH1-1/0 (3B, m, m ) 20)

R (X 2/z
+IR| g /(1B (X, 7, m T 2),

where K< 1 is some constant, depending upon the meshes "1Fx and

m ,and h and h_are the mesh sizes of # and =
Yy X Yy x

Proof: Similar to the proof of Theorem 5.1.

A procedure is now presented which minimizes the computer

storage needed to compute a discrete least squares solution. Note
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that for the discretized blending function spaces considered, even for
relatively small M and N, a large matrix must be stored in the
computer, with a correspondingly large number of computational
operations needed to obtain the numerical solution. The procedure
given here is to solve a separate discrete least squares problem on
each rectangle [xi, xi+l] x[yj, Yj+1'] for 1 i M-1 and

1< j< N-1. Restricted to this rectangle, the discretized blending
function space of linearly blended piecewise continuous cubic poly-
nomials will be denoted by DBFij’ where it is clear from the pre-
vious notation what the meshes, interpolation spaces, and their
cardinal basis functions will be. From (5. 33), it follows that

Dim (DBFij) = 12, with a basis given by T_  through T  of

1 4

Theorem 2. 3 of Chapter 2. If Xij = Xﬂ([xi, xi+l] x [yj, yj+1])

for 1 i M-1 and 1g j< N-1 represents the ﬁu data points
which are in each of the rectangular regions (note that a data point
could be in more than one Xij if it lies on a mesh line of the bi-
variate mesh L @ vy), then the matrix problem to be stored at any
one time has only IZI&ij elements. This is significantly less
storage than that required by any of the previous methods. If I\//\Iij

is not too large, then most computers, even those having a very

small memory capacity, can store the full least squares matrix in

central memory.



192

Let feCl® 4)( [xi, xi+1] x [yj, yj+l]) and let 53¢ DBFij be
a discrete leaslt squares solution which minimizes the residual
vector Rij R ij , Wwhere each of the ﬁij elements of Rij is the
difference of f and sij evaluated at one of the I'\\/Iij data points of
X... Theorem 5.4 gives an error estimate for | If-sijl | on

1)
[xi, xi+1] x [yj, yj+1]. The set {sij }l<igM-l, 1<jEN-1 forms a
""patch network'' of discrete least squares functions over the full
domain [a, b] x [c, d]. However, this '"patch network' is not neces-
sarily continuous across the mesh lines of T @ wy. In order to
remedy this situation and obtain an approximation to f which has
global continuity on [a, b} X [c, d], the following scheme is intro-
duced which produces an approximation 8¢ DBF_ to f.

3

If T4 of Theorem 2. 3 of Chapter 2 is chosen as a basis for

DBFij on [xi, xi+l] x [Yj’ Yj+l]’ then

T i) dj ij—ij
(5.38) T, = {¢s by }2<s<3, 1<t<2U {¢s b }1gs<2, 2<t<3

U (67 o)

t 1<, t€2,
and
2 o 2 N
(5.39) s.= I = a13t¢1’ $+ T Z b) ¢ 4]
Yo g=2t=1 °F ° s=] t=2 °

2 ‘s cs s
o 1)
* 21 t=21 cst ¢s lpt
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For each fixed i and j, let 0 u,v 1, and define the average

of the "a'", '"b" and ''c¢" coefficients to be

. 1,
(5.40) E{;.J+u, +v 0 ;ﬁxj,vl_:t /DA(i’ V),
(5.41) B - lz itu-s, /DB(i i u, v)
1+u, 2+v =0 1+s, 2+Vv rer T Rl
and
(5. 42) Eij B Zl) lz itu-s, j+v-t /DC(i i, v)
’ 14u, 14v 60 too l¥s:14t »d V)

where the indices are restricted to insure that 1g i,itu-s { M-1 and
1€ j,j+v-t { N-1. The DA(i, j,u,v)=1or 2, DB(iju,v)=1o0r2
and DC(i, j,u,v) =1, 2 or 4 are just the total number of terms

which have been summed in (5.40), (5.41) and (5. 42), respectively.
For example, DC(1,1,0,0) =1, and if M, N > 2, then DC(1,1,1,0) =

2 and DC(1,1,1,1) = 4, etc.

Define
Y n g T, 2 oa gl Gl
~ ~;
(5.43) .= = = &Ll )+ =z B 6] U
s=2 t=1 s=] t=2
2 2 RTEERTIRT
+ 22 T el
s=1 t=1

to be that element in DBFij which has as its coefficients the average

"a'g!', '"b's'"" and ''c's'. Correspondingly, define §'eDBF3 by
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M-1 3 N -
(5.44) 5= = = T % d_,. b,
i=1 8=2 j=1 sl 3(i-1)+s 7
M N-1 3 vij _ M N .
+ T = = b’ oo . + = =z ¢ . . ,
j=1 j=1 t=2 PR O30S, LI
) ~L,N L i,N-1 ~M,j _ ~M-1,j
where we define as,l = as,2 , bl,t = bZ,t ,
4,N _ .i,N-1  .M,j _ M-l,j MN _ .M-1,N-1
B1 T 2 0 11 €1 €7 = %2 '

Let the real number &£>0 be such that

(5. 45) max |£-s..]]
1€ iK M-1 A EEN x["j’ Yir1
I<JKN-1

]sé’

then we have the following theorem.

Theorem 5.5. Let 8¢ DBF., defined in (5.44), be constructed as

3
above, then
~ 3 "
(5.46) |[£-3]]< {5/2+2{ max Z o35 1yl
IiKM-1  s=2
3 -
+ max = ”4’3(j-1)+t”} E,

1jEN-1 t=2
where & satisfies (5. 45).

Proof: It will be shown that for 1 i M-1, 1 j< N-1, and
1<s8,t< 2 that

(5.47)  |E - <D< 3/ €.



195

Because of the cardinality conditions, (5.39) and (5.45),we have for

1i<M-1, 1 jE¥ N-1, 1< 5, t< 2

ij
0 8 - .
(5.48) el - flx, oy jHt-1

)| € E.

Using (5.48), (5.42), the triangle inequality, and observing the
internal cancellation of one of the terms yields (5.47) (notice that if
DC(, j, s,t) = k for k = 1,2 then |E:";Jt - clthl <(k-1)E).  Also,
for 2 s 3 and 1 t£ 2 we have

|~ij

(5.49) st

] ~ij i)
a’, | < 2Z and lbts bts <2 E.
The proof is given only for the first inequality, as the other is nearly

identical. From the cardinality conditions, (5.39) and (5. 45), we

have

. 2 L. ..
ij ij ij - _
(5.50) |a¥ + Z cep P & ) - £

)| € &,
st k=1 N

3(i-1)+s *3(i-1)+8" Yj+t-1

forall 1ig M-1, 1 {j<N-1, 2¢ s 3 and 1K tg 2.
Consider the case where DA(i, j,u, v) = 2 (as the case where
DA(i, j,u,v) = 1 is trivial), and without loss of generality let t = 1.

Then from (5. 40), (5.49) and the triangle inequality we have the

following after some algebra and cancellation
(5.51) IEISJ -ad | = ila -a’ |

2 . . .. . .
<1 [ I:J'l _ 1) 1,) =~ ]
3 [&+ &y f=llck,2 ck,lI P (x3(i.1)+s)
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Lj-1 i,
ax |°k,Jz } °1<,Jl |

< &+ im
k=1,2

A

2 &,

where the second expression was obtained using the fact that

.. . . 2 ..
¢1‘] = ¢1'J-1 > 0, the third from the fact that Z ¢1J =], and
k k ooy K

the last from the triangle inequality and (5. 48).

From (5. 39), (5.43), (5.45), (5.49), (5.47) and (x,y)e[xi,

(5.52)  [(£-5,)0x y)| < [(£-8,006 )| + (s, - 5,0 ¥)]|

3 2 . -
<&+ T 2 260 ¥y
s=2 t=1
2 3 2 2

v 2z 28[Pwl el T 2 E/2) 80 0 wty)

s=1 t=2 s=]1 t=1

3 .. ..
< (5/2€+28 = ([¢ )] + [4) D

s=2
3 _ .
< (5/2)E+ 2&{ max [ z |le,,. ||]
IKigM-1 L=z = 3M-1)s

3
poma |3 105,00]0
IKKN-1 L=z 30-1Ht

.. ‘s 2 s

i

where we have used the fact that 4)18‘] 20, q;t‘] >0, z ¢sJ H
s=1
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2 .. . .
ij -1j = —=ij -

> = = =

) Ug S L 05 = P55 1y OO0 [x; x;,,] and ¥ Y3(j-1)+s

]

We now show that §., =8 on [xi, xi+1]x[yj, y ] This is

ij j+1
accomplished by making the following observations. For 1 s,t<2,

- —ij -

. . =ij
< M- - = . =
1< i< M-1, 1€ j< N-1 we have ¢S ¢3(i—1)+s’ LA 4‘3(j-1)+t’

N . B2 . . The following three sets are sets

¢s ¢1+s-1 llJt: 4j_]+t—1 &

of equal elements

~i,j+v-t gi+u -8,j d ~itu-8,jt+v-t

{aZ+u,l+t}0 1’ 1+s,2+v}0<s<1 an {C1+s, T+t Jo s, t<l’
< =

for 0 u, v 1, which follows from (5.40), (5.41) and (5. 42),
respectively. Direct substitution of the above sets and relations

into (5. 44) shows that ;ij =5.

Remark: Once the meshes ?x and ?Y have been specified, then
direct calculation gives a bound for

3 3
max [E ||$ . ||]+ max [E ||$ . H]
IKigM-1 L=z S(-1)4s 1jEN-1be=2  AI-1Ht

For example, if on each of the intervals [xi, xi+lJ ([yj, yj+1J)

. — 4 - 4
we assume that the four points {x3(i-1)+s}s=l ({Y3(j-1)+t}t=l)

are equally spaced, then direct calculation shows that for Theorem

5.5
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(5.53)  ||£-8]| < (5/2 + 410 + 7 y)/27) £ .

Remark: If Theorem 5.4 is applied to each of the spaces DBFij

to obtain an upper bound for , then

f-s.

the maximum of these can be used for & in Theorem 5.5 .
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Section 6. Domain Transformations

In the previous sections, the domain on which the data was
given was a.lwayé the rectangle [a., b]x[c, d]. In this section, a
method will be presented which will remove this restriction and allow
singly and multiply connected domains with curved boundarys. This
will be accomplished by using vector valued blending techniques
(see Gordon and Hall [16], [ 17 ]) for domain transformations.
Their procedure is to divide the boundary of a bounded region
QCRZ into four parameterized boundary curves. Blending these
four curves yields a mapping ?Jz [O,l 1]x[0, 1]—-»- le which maps the
boundary of [0, 1]x[0, 1] onto the boundary of © . Of major con-
cern is, under what conditions is the map ?J univalent ? Some con-
ditions have been given in [16] to insure univalency, however, the
major responsibility of insuring univalency usually rests with the
ability of the person implementing the scheme. For applicatimi to
least squares, it is imperative to know the point -{I-l(x, y), where
(x,y)e X 2 is a data point. Even though an inyerse for 3 may
exist, it is not expliciﬂy known. Thus, the following procedure is
introduced which allows the inverse of -'(; to be calculated at any
point (x,y)e @ . This will be accomplished by considering several
special domains and then subdividing the domain Q into a fini.te

. collection of these special domains.
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Section 6.1 Type 1 Domain Transformations

Consider the closed region S'ZCRz which has the following

form

3 Fix,4)=0

@}

D 2

Figure 2. The Region Q.

- - -

where the distinct points A = (al,a.z), B = (bl’bz)’ C = (Cl' cz) and

-

D= (dl’ dz) are ordered as in Figure 2 to form a quadrilateral. We
. > 2 2 .

desire a map U:l — 2, where I = [0, l]x[O, 1], whose range is

exactly Q and is univalent.

(1,1)

Let Fe C (Q*), where QF is some open region containing

-

-ty
the curve F(x,y)=0 from A to B where

(1,0)(

(6.1) (F1 O, yif + (5O Dix, y)f > 0

for all points (x,y) on the curve F(x,y) =0 from 2 to B.
For each se [0, 1], construct the straight line -l:(r;s) that con-
- - —_ -
tains the two points (1-s) A+ 8B and (1-s8)D + s C (which are on

the straight lines AB and D—C-, respectively)
— - - - e - —>
(6.2) L(rys)=r{(1-s) A +sB - ((1-s) D+8C)} +(1-s)D+sC,

where r ¢R and s is a parameter. The x and y components of
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-

I(r;s) are expressed as Lx(r;s) and LY(r; 8), respectively.
-

The line L(r; s) can also be expressed in the form

(l-s)(az-dz) + s(bz-cz)

(6. 3) y = (1'5)(a1-d1) - s(bl'cl) (x-((1 —s)a1+sbl))+(l-s)a2+sb

2

or

(6.4) y =n(s) x + £(s) .

Remark 6.1: If for some s ¢ [0, 1_], the denominator of mn(s) is

zero, i.e., (l-s)(al-dl) + s(bl-c1)= 0, or if |n(s)| >>1, then

- ~ ~ ~J
express the line L(r;s) as x =7(s) y + £ (s) where n(s) = 1/1'](8)
and, in the following discussion, interchange the rolls of the x and
y variables. Without loss of generality, throughout this section we
will assume that n(s) is finite for the value of s considered.

-
The following assumptions about the lines L(r;s) (y =n(8)x

+ £(s)) and the curve F(x,y) = 0 are made. For each se [0, lJ,

-
the straight line L(r;s) (y =n(s) x +£ (s8)) intersects the curve
F(x,y) = 0 once and only once. Also, each point of F(x,y) = 0 from
-— -— -
A to B lies on a line L(r;s) (y=n(8)x + £(8)) for some 8¢ [0, l]
(these conditions are usually not too restrictive, since a domain
often can be subdivided until it holds). The line -I:(r; 8) (y=nmn(8)x
+ £(8)) does not intersect the curve F(x,y) = 0 tangentially. Also,
for se [0, 1] , assume that for distinct values of s the lines

L(r;s) (y =n(s) x+ £(s)) do not have a point of intersection in the
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region Q and that the curve F(x,y) = 0 does not intersect the
P— -
interior of the line DC. Finally, for se¢ [O, 1] , if P is that point of
-5
intersection of the straight line L(r;s) and curve F(x,y) = 0, then

— — — - —h
{t(P-((1-s)D+8C))+ (1-8)D+sC| 0gtgl}C®

Remark 6.2: This final assumption can be proved from the others,

but its proof leads us away from the desired results of this section.

Parameterization of F(x,y) =0

We wish to locate the point designated by (x(s),y(s)) =
—l;(s)e Q" where the straight line z(r; 8) (y=n(s)x + £(x)) inter-
sects the curve F(x,y) = 0. This can be accomplished by either
one of the following two procedures which we develop simultaneously.

For a fixed se [0, l] , let

—
(6.5a) z(r) = F(L(r; 8))
and
(6. 5b) w(x) = F(x, n(s) x +£(s)) .

The root * where z(?‘) = 0 or x(s8) where w(x(s)) = 0 is the
desired solution. One of the many root finding techniques for uni-
variate functions can be employed to locate the root in (6. 5a) and
(6.5b); for example, Newton's method or the method of false position
(see [24, PP- 97-100]). If Newton's method is chosen, then the

derivatives z'(r) and w'(x) are calculated as follows.
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> . * (1, 1)
If L(r;s) and (x,n(s) x+§(8)) e, then because Fe¢ C

(Q*), we have

(6.6a)  axr) = F U O Tirs e X rs o)+ OV (Tirs o)) (LY (x5 0))
= F U O Lz an{1-e)a, -a)) + s(b ¢ )
FO D@ en{(1-5)(a, -d,) + s(b,-c,))
6.6b)  wix) = F Ot nis) x + £()) + F O Vi, n(s)x+ g(8))n(s).

Let r and x(8) correspond to the roots of (6.6a) and (6. 6b), res-
pectively. It will be shown that both z'(’r\) and w'(x(8)) | are non-
zero.

If Z'('I\‘) = 0, then without loss of generality, from (6. 1) we

(0, 1) 7

assume that F (L(%; 8)) # 0. Thus from (6. 6a)

-
“’0)(L(

(6.7) (L(%; ) {-F o) [ FO DTz a0} =

(LY( ?; 8))".

X A y, A . A .

If (L' (r;s)) =0, then (L’(r;s)) = 0. Using (6. 2) this implies that
the straight lines AB and DC intersect, which cannot happen,
implying that (Lx(?; s)) # 0. The Implicit Function Theorem (see
[l 0, p. 256]) implies that the slope of the curve F(x,y) =0 at
_’
L(?: s8) is given by the term in brackets of (6. 7) which would equal

y, A X A < 4 - .
(L(r; s))’/(L (r; 8))' = n(s) which is the slope of the straight line
-
(L(r; 8). Our nontangential intersection agssumption guarantees that

this cannot happen, implying that 2'(T) # 0.
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The argument that w'(x(s)) # 0, is similar and is omitted.

For sufficiently close initial estimates T and X for

1 = 1’ 2’ °

(6. 8a) IR z(ri)/z'(ri)
and

(6. 8b) X1 =% w(xi)/w'(xi) ’

N
where the r. converge to r and the x, converge to x(s).
i

(2,2)

Remark 6.3: If FeC (Q*) , then z(r) and w(x) are twice

differentiable in a neighborhood of £ and x(s8), respectively.
Under these conditions, the convergence of Newton's method is

quadratic (see [24, p. 98]).

A
Remark 6.4: Finding an initial estimate for r is often easier than

for x(s), because r =1 corresponds to a point on the line AB and

the curve F(x,y) = 0 is usually ""'somewhat near' AB.

Having calculated * and x(s), then

(6.9a) (% 8)
or
(6.9b) (x(8), n(s) x(s) + £(8)) = (x(8), y(s))

é
is the point of intersectionof F(x,y) =0 and L(r;s) (y =n(s)x +

£ (s)). This completes the parameterization of the curve F(x,y) = 0.
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Remark 6.5: If the curve is given as y = f(x) or x = g(y), then

the extension of the above to this case is obvious.

—
Calculation of U(s, t)

The straight lines DA, CB and DC are parameterized

linearly as follows for s ¢ [0, 1) and t€ [0, 1]
-> -> — —5 -
(6.10a) t(A-D)+D=(1 -t) D+ tA
- — — — —
(6.10Db) t(tB-C)+C=(1-t)C+tB
and

— - —_ — -
(6.10c) s(C-D)+D=(1 -s)D+sC.

_)
For notational convenience we define the vector F(s) =

—
(%(8), y(8)), where there is no confusion between the vector F(s) and

the curve F(x,y) = 0 of which (x(8), y(s)) is a point.

Linearly blend the four curves 1-37&, 5, D_C and F(x,y)=0

. > 2 2
(see {16] for procedure) to obtain the vector valued map U:l —> R

(6.11) f}(s, t) = (1-s) {(1-t)§+ tX} +s{(1-t)3+ t'ﬁ}
+(1-t) {(1-5) D+ sC} + t F(s)
—_ - Y -
-(1-8)(1-t) D - (1-8) tA - 8(1-t)C -8tB

= (1-t) {(1-8) D + sC} + t F(s) .
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- — - =
Remark 6.6: Observe that U(s,0)=(1-8) D+ 8C, U(s, 1) =

- - —_ - —_— - - —
F(s), U(0,t) = (1-t) D + tF(0) = (1-t) D + tA and U(l,t) = (1-t)C +
-

- - >
tF(1) = (1-t) C + tB. Thus the mapping U carries the boundary of

I2 onto the boundary of .

ff is univalent. Let (sl, tl), (sz, tz)eI2 be two points such that

—_ - — —
U(sl’tl) = U(sz,t ). Observe that the points F(sl) and (1-31) D+

2

- —
le are on the line L(r; sl) by construction. From this and (6.11)

it is clear that asl’ tl) is on the same line E(r; sl) because
- —> - — - -
(6.12) U(s,t) = t{F(sl)-[(l-sl)D + slc]} +(1-8))D+s, C

is a straight line passing through these two points. Making the

- —»
corresponding observation that U(sz, tZ) is on the line IL(r; s'z), then
we have 8, =8, from the assumption that the lines -I:’(r; 8) have no

points of intersection in 2 for distinct values of s and for

te[O, 1] .
-
From (6.12) and our assumption that F(s) does not intersect

DC, it is clear that tl = t2 because

6 - -> _ - —> -,
(6.13) Uls ), ty) - Uls |, t)) = (t,-t, )(F(s ) - [(1-31) D+ sch),

2) 1

hence, U is a univalent mapping.

Remark 6. 7: For linear blending, the map ﬁ will not always be

univalent. However, with the special parameterization given, this

problem is circumvented.
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(1, 1)

Continuity of _L'f If FeC (sz*), then we will prove that

.ﬁe C(l’ 1)(I?'). Examination of (6.11) shows that the continuity of
ﬁ is limited only by the continuity of F(s) = (x(s), y(s)), hence it
will be shown that x(s), y(s)eC(l)[O, 1] .

For a fixed Se [0, 1], the denominator of T](/S\) is assumed
non-zero, i.e. |(1-Q)(a1-dl) + Q(bl-cl)l = £€>0. Hence, for
- X3 (/s\-s, Q+5)ﬂf_0, 1], it follows that |(1 -s)(a.1 -dl) + s(bl-cl)l P
E[2>0 where §=Ef2 if |-(a1-dl) + (bl-cl)l <1 or §-=
f/(2| -(a1 -dl) + (bl-cl) |) otherwise. Direct calculation shows that
both n(s) and £ (s) are continuously differentiable in the interval
(Q’-a, Q+5) N [0, 1]. Also observe that F(x, n(s) x + £(s)) is con-
tinuously differentiable as a bivariate function of x and s for
8¢ (/8\-6, 3+5)(\ [0, 1] and x such that (x, n(s)x +£(s)) e Q"

because F ¢ C(l’ )

(Q*) . The implicit function theorem (see [10 ,
P- 257]) implies the existence of x(s) which is a unique continu-
ously differentiable function in some neighborhood N of Q if

1,0 (9 Dix(5), n(e) x(5) + £(3)) n(8)

A A A A
(x (8), n(s) x(s) +£(s)) + F
# 0 (note that our assumptions guarantee that x(s) and y(s) are
both univalent, and we only need prove continuity). It has already

been shown that this cannot be zero (see the discussion following

(6.6b)). Thus

(6.14) x'(8) = -(n'(s) x(s) + g'(s))F(o' 1)/(F(1' 0,4 nsy) KO Uy,
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where F(O’ 1) and F(l’ 0)

are evaluated at the point (x(s), n(s)
x(8) + £(8)) for se N.

From (6. 4), the first derivative of y(s) also exists for se N.

Remark 6. 8: If higher continuity of F is assumed, then higher

derivatives of x(s) and y(s) follow by repeated differentiation of
(6.14) and (6.4) (observe that the denominator of (6. 14) cannot be

zero).

> -
U( [0, 1] x[O, 1]) =2 . Because U is continuous, univalent, and

maps the boundary of I2 onto the boundary of Q (see Remark 6. 6),
-y
we have from Theorem 13.1 of [27 , P 121] that U( [0, l]x[o, 1]) =

Q, i.e., the range of _'(‘J’ is precisely .

Remark 6.9: Linear blending will not always yield a map whose

range is Q. It is possible for the mapping to ''spill over'" the

boundary of £ into the complement of 2, (see [16}).

Summarizing, to constructa univalent and onto bivariate map
-
U, parameterize F(x,y) =0 with respect to s by the above method
and use linear blending. The observation should be made, given the

point (s, t)e Iz, that F(x,y) = 0 need only be parameterized for that

single value of s.
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-1
Calculating U (x,y)

. . *-1An A A
A procedure is now given to calculate U "(x,y) for (x,y)e Q.
-

It was shown above that U is a univalent onto map; thus a unique
point (8,%) ¢ I exists such that T(s,%) = (%, 7).

Coordinate ’s\ is calculated first. From (6.11), observe that

A
(Q,y) lies on the straight line E(r; Q) (y = n(g) x + §('s‘)). The two
- Ao

A > A A
points (1-s) A +sB and (1-s) D+8C are also on the same line.

A
Thus, we desire the value s which causes the vector (vl,vz) =

(1 -Q)X + 33 - [(1 -g) 3+ /s\_C)] to be parallel to the vector (wl,wz)

A A A —> A—> . . .
(x,y) - [(l-s) D+ sC), i.e. (wl’WZ) to be a scalar multiple of (v,

vz). If (vl,vz) # (0, 0), which is the case because A # D and

- —
B 4 C, then the above is equivalent to

w v
1 1

(6.15) det

n
o

wW v

2 2

Direct calculation shows that s must satisfy

A2 A
(6.16) O—Kls +K28+K3,
where
(6.17) K1 = (d1 -cl) (bz-az) - (dz-cz) (bl-al)
A
(6.18) K2 = (d1 -cl) (az-dz) + (x-dl) (bz-c2 + dz-a.2

A
-(dz-cz) (a1 -dl) - (y-dz) (bl-c1 +d1 -al)
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and
6.19 K. = (%-d d) - (y-d d
( . ) 3 - (x- 1)(a‘2- 2) - (Y' 2)(31- 1) .
If K1 = 0, then this is equivalent to
- = = =
(6.20) det(B - A, C-D)=0,

or that AB be parallel to DC. Hence, equation (6.16) reduces to a
linear equation. In either case, because of our construction, s is
unique in the interval [0, 1] .
A

The coordinate t is computed as follows. First, calculate

. . . A . > A A A
the point of intersection F(s), of the line L(r;s) (y = n(s) x + £(s))
and the curve F(x,y) =0 (the procedure is identical to that given

A
above). t is given by

(6.21) T= 11&S) - (1-5)D+ 88|/ |1F3) -{(1-8)D+ 5T |.

The denominator of (6.21) is non-zero because it is assumed that
the curve F(x,y) = 0 does not intersect the line DC.
- - - -2 >
Using the fact that (1-8)A +8B, (1-8)D+5C, F(s) and (%,73)
A .
are all on the line ﬁr; g) (y = n(/s\) x + £(s)) by construction, then
. . > A A A A
direct calculation shows that U(s, t) = (x, y).
. -1 A A . . . A
To reiterate, U "(x,y) is calculated by first solving for s
from the quadratic (6. 16), parameterizing F(x,y) = 0 to obtain

- A A
F(s), and then calculating t from (6. 21).
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Section 6.2. Type 2 Transformations

The above procedure is modified by letting two of the points in
—_ 9 > = = —_ >
Figure 2 coincide, either A =D, B=C, A =B or D = C and the

resulting procedure will be denoted as a type 2 domain transforma -

tion.

—
Type 2a Transformations. The case where A = D will be examined

— -—
first, observing that the case where B = C is nearly identical.

. -
Nothing is changed in parameterizing F(x,y) = 0 to obtain F(s)
— - = >
(using the fact that if s = 0, then F(0)= A = D), and U(s, t) is given
by equation (6.11). T is no longer univalent, because the points
- =
(0,t) for te [0, IJ are all mapped to the single point A = D (see
Remark 6. 6). However, the argument given above proves that (4]
is univalent on (O, 1] x[O, 1] . Nothing is changed in the argument
P
on the continuity of U, taking n(s) = (bz-cz)/(bl-cl) =n for
> 2
Se¢ [0, 1] . However, the proof that U(I') =Q is no longer valid for
-
this case because U is no longer univalent. To circumvent this
-
problem, we first show that U cannot map to a point outside of £ .
A A - A
Let (s, t)e (O, 1]x[0, 1] , then from the above construction, F(s) and
A A - A
U(s, t) are both on the straight line IL(r;s) which can be expressed
—> - - - - —>
as U(8,t) = t{F(8) - [(1-§)D+§C]}+(1-’§)D+’s‘c. Because te [0,1],
our assumptions guarantee that a(ls\,’t\) = (ﬁ, ;\')e 2, proving that R}

.*
maps into 2. To prove that U maps onto 2, let (;2,9)5 Q. If

A A - = A A . . == A
(x,y) = A =Dor (xvy) is a point on the line BC, then take s = 0 or
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A
= 1, respectively., If (g\:,y) is a point on the curve F(x,y) = 0 or the
—_— = A
straight line AC = DC, then take /s\ such that (;\c, ;r) = f‘(s) or
A

=(1 -’é)—15+ga respectively. If (§, y) is not on the boundary of & ,

A A . . ALA . .
then (x,y) is a point on the straight line y = n(x-x)+y, whichis
parallel to the line BC (recall n(s) = n = constant for se [0, l] ).
This line must intersect the boundary of Q at least twice and our
assumptions imply that this line must also be one of the lines
> A A ] N A
I(r; s) for some se(0,1). To see this, note that y = n(x-x)+y

—= > e
cannot intersect the point A = D or the line BC which is parallel
to it. If it intersects the curve F(x,y) = 0 at some point, say
=2 A A A > A . .
F(s), then the lines y = n(x-x)+ y and L(r;s) are identical because
they have the same slope and a point in common. A similar argu-
ment holds if y = n(x-?c) + Q intersects the curve DC at some point
A=> A—> A
(1-8)D+ sC, in either case take s = s. Also note that this value
A A > A
of s is unique because y = n(x-x) +y is a parameter line L(r;s).
N
If s # 0, then compute t from (6.21), and direct calculation
2 AA A A A A

shows that U(s,t) = (x,y) (if s = 0, then any te [0, 1] is accept-

able).

—> =
Type 2b Transformations. Consider the case where D = C (note that

- -
the case where A = B is similar and less complex). All of the

- —_ -
lines IL(r;s) (y =mn(s)x + £(s)) intersect at the point D = C, but no

other point of Q. F(x,y) = 0 is parameterized as above and the

map ? reduces to
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—> — -
(6.22) U(s, t) = (1-t)D + tF(s) .
-
U is not univalent because the points (s, 0) for se [0, IJ are
— e
mapped to the single point D = C. However, the above proof for
—
the univalency of U holds for (s, t)e [0, 1)x(0,1). The differenti-
—
ability of U follows from the above argument. Finally, the proof

that ?I(IZ) = 1is similar to that of type 2a transformations where

- —_
we work with the straight line t{(x,y) - D} + D.

Section 6.3. General Domains. It should be understood that for the

region 2, the side on which the curve F(x,y) = 0 is located was
specified as it was above for purposes of illustration. If it is desired,
then the curve F(x,y) = 0 can be any one of the four sides of the
quadrilateral region, where minor modifications of the above pre-
sentation will yield the appropriate procedure and formulas for the
-

construction of U.

We now consider closed regions I' which can be subdivided

into N subregions Qi such that

(6.23) '= U Q.,
) i
i=1

and for lslvjsN’ ii‘J

(6.24) Int (@) NInt (@) = g,

where each Qj is a type 1 or type 2 region satisfying the assump-

tions of Section 6.1 or 6.2, respectively. For each subregion
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—
construct the map Ui:IZ—-—> Qi . Several examples will be given to
illustrate the procedure (where the numbers in the following illus-

trations have the obvious correspondence).

AN
N\
—_—
N
(%)
A\
\\

AR)

ST
A

Figure 3

In Figure 3, 91, 93, 94

and 06 are type 2b regions (type 2a
could be used with minor modifications) and 92 and 95 are type 1

regions. Note that the left hand side of I2 and I2 (Ii

2
d 1
1 4 and 1))

are identified in the obvious manner and the adjacent side of If and
2 2 =

I4 (I3 and 12) are mapped to the single point P1

r 1 213 L,.:S P’m’mﬁ
& /6|7\8)"
q |10

(PZ) .

A )

[ o

11
11|12 >
5

vy L4

e v Figure 4

—
no
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InFigure4SZ,Q,QS,9

1 9y and are type 2a

g 1 12

regions and the remaining regions are type 1, where the left hand

-

sides of If and Ig are mapped to the point Pl’ etc.

Figure 5

In Figure 5, the regions Qi for 1 i< 10 are all type 1,

where the left hand side of If and I(Z) are identified with the right

hand side of Ig and Ifo, respectively.

The procedure of subdividing I’ should be lucid from the above

examples.

(0, 0)

Section 6.4. Discrete Least Squares Over I' . Let fe C (),

A
where I' satisfies (6.23) and (6.24) and let X ={(§k, Qk)}i’il <r
be a set of I\//\I unstructured data points. A discrete least squares
fit 'éi:Qi——MR to f is constructed over each region Qi in the
following manner. Choose a finite dimensional bivariate real valued
function space S(IZ) over I2 (for example, any of those of Section

-
5) and construct the map Ui:IZ——-> Qi .
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If fzi is a type 2 domain, then constrain S(Iz) to insure that
each element of S(IZ) is constant on that single boundary line of
I2 which is mapped to the single point g(see Section 6.2) (for
the spaces given in Section 5, this can easily be accomplished by
modifying the basis elements). With this restriction there is no

- =1 2 :
ambiguity for the element so Ui » where se S(I”), because s is
-_
single valued on the inverse image (under U, 1 ) of each point of the
1
-] =
type 2 region Qi. Thus we define Ui (P) to be (for example) the

midpoint of the boundary line of I2 whose image under -ﬁi is the

-
point P. A
A A Mi A
Define X, = {(x,.,y..)}. =X NQ. to be the set of M, data
! ij7 71)77)=1 1 A 1
| >-1ao A M
points which are in . and define ST, = {U. (x..,Y..)}. » Where
i i i ij "1)7 j=1
A
for 1£j< Mi
A A =-1 A A
(6.25) (Sij’ tij) = Ui (xij’ Yij ) .

Finally, define the finite dimensional function space V(Qi) =
{so_U’i'1|s6 S(IZ)}.
We say gie V(Qi) (gie S(IZ)) is a discrete least squares fit
to f (fo ﬁi) on the data set AXiQQi (STiAg 12) if the Euclidean norm
M. M

of the residual vector Ri eR (Eie R 1) is minimized, where

companent j of Ri is given by

A A A A

and component j of Ri is given by
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A A A
S.. t..)-5.(8..,t.).

~ -
(6. 27) (Ri)j = (fOUl) ( ij lJ 1 1) 1)

It is clear from (6. 25), (6.26) and (6. 27) that if gi (gi) is a discrete
. . * 2 ¥ o~
least squares fit, then there exists s e¢ S(I") (g = 8, 0 U. "¢ V(Ql))

- ~ -
such that s o—[)li 1 =g (g*o Ui = %li) where

e
Mi —-> Losk 2
(6.28) [IR. || =( Z [(foU)(g s t)-8T(s. .t )] )1/2.
i i=1 i 1) 1ij ij° 1)
and
{1,
(6. 29 IIEH_ 21 f(/\ /\) r(r\ A)Z)I/Z
$29) il = j=1{ Mt Yiy' T8 Py YiJ'] ’
showing that | [R.|| = ||R,|| because ||R || >|[R,|| and

| IRiI | < | |E1| | . Therefore, a discrete least squares fit gie v(Q,)

~ 2
can be calculated from a discrete least squares fit 5,¢ S(I ) by taking

~ ~ -b'l
(6.30) AR U
Observing that
~ - ~
(6.31) ||f—gi||Qi= ||foUi-si||IZ ,

. ~ . .
an error analysis for f - g, over Qi can be given in terms of
foU.-8, over I .
i

Thus, the case of least squares over a general domain I' is
reduced to least squares over rectangular domains and the error

. . - . -
analysis reduces to bounding ||[fe U, -si] | where, for example, fo Ui

i

replaces f in the formulas (5.15), (5.16), (5.21), (5.22), (5.30),

(5.31), (5.36) and (5.37) .
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