
 



 



ABSTRACT

BLENDING-FUNCTION TECHNIQUES

WITH APPLICATIONS TO

DISCRETE LEAST SQUARES

By

Dale Russel Doty

The theory of blending function spaces (bivariate interpolation)

is developed in the general setting of interpolation spaces. In this

setting it is shown that blending function spaces have the desirable

quality of doubling the order of accuracy with less computation when

compared to standard tensor product spaces.

The dimensionality of discretized blending function spaces is

derived, and several bases are explicitly constructed. The special

example of Hermite spline blended piecewise polynomials is developed,

Showing that these spaces have bases with small support which are

easy to calculate. These spaces offer maximum order of convergence

for a minimum number of basis elements. For example, linearly

blended piecewise cubic polynomials offer a fourth order approxima -

tion scheme, and cubic Hermite spline blended piecewise polynomials

offer an eighth order scheme.
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Next, using the exponential decay of the natural cubic cardinal

splines and natural cubic spline blending, a derivative -free approxi-

mation scheme is developed, which is eighth order in the interior of

the domain.

Algorithms with corresponding error estimates are given for

solving the discrete least squares problem with unstructured data.

For the univariate case, algorithms are developed using the space of

cubic splines. The resulting error analysis indicates the necessary

restrictions to be placed on the number and distribution of the data

points to insure that the discrete least squares fit will be 0(hm) to

a function fe CmEa, b] from which the data arises, where h is the

mesh size and 1s m(4. An example is given to illustrate that the

discrete least squares fit need not be close to f if these conditions

are not realized. For the bivariate case, algorithms and error

analyses are given for the spaces of bicubic splines and discretized

blending function spaces. It is shown that the discrete least squares

fit to a bivariate function f is of the same order accuracy as the

corresponding interpolation accuracy.

Discrete least squares is considered on general domains which

have curved boundaries and are possibly multiply connected. This

general domain is subdivided into ”standard" subdomains, and

exPlicit mappings from the unit square to these standard subdomains

are constructed which are one -one, onto, and have easily calculated
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inverses. Thus, discrete least squares over general domains '

reduces to the cases previously considered.

Finally, an extensive computational error analysis is given

for a constrained least squares algorithm.
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CHAPTER 1

COMPUTATIONAL ERROR ANALYSIS FOR

DISCRETE LEAST SQUARES

The following chapters will deal with solving the cOnstrained

least squares problems which arise from applications of Blending

Motion spaces.

Due to computational considerations, it is necessary to use

methods of orthogonal factorization and pseudo -inverses to obtain

solutions to these problems. It is therefore necessary to perform a

Perturbational and computational analysis of these methods to show

how the numerical solutions are affected. We would hope that the

condition numbers, 'X. associated with our least squares and con-

8traint equations, appear only to the first power in the error analysis,

because our solutions contain only inverses to the first power. This,

hOWe ver, has been shown not to be the case, quoting van der Sluis

In];

"It caused something of a shock, therefore. when in

1966 Golub and Wilkinson asserted that already the multi-

plications QA and QB may produce errors in the solu-

tion containing a factor xz(A). "

We will prove that the conditicm numbers associated with the

cons trained least squares equations appear only linearly in the error

analysis except for the coefficient of the residual.



Section 1. Least Squares With Constraints

We are given the two matrices

(1.1) Aeernxn, and

(1. 2) c 6 mm“,

where r<n and m>n .

Then we seek a solution x e an which minimizes the norm

of R

(1.3) R=Ax-f, where felRm,

and satisfies

(1.4) Cx=g, where geer.

We can think of (l. 3) as a least squares problem subject to the

Constraint equations given in (1. 4).

We will develop here the method of Halliday and Hayes

[21] for finding a solution to (l. 3) and (l. 4). But first we need to

state some of the pertinent theories of factorization by orthogonal

traJilszformations... Householder [22] developed the theory of factori-

zation into orthogonal transformations. Precisely, he has shown

that if at step i the matrix C.1 has the form

L.' o

(1.5) C.= 1 9

1 T.
1

 

(i-l)x(i-l) (r-(i-l):)xnwhere LidR is a lower-triangular matrix, TielR

18 a. rectangular ,matrix. and C1 = C, then the orthogonal matrix

Pie‘irum which introduces zeros into row i, from i+l to n of the



matrix C , and leaves the first i-l columns of C1 unaltered is
i+l

given by

i T

(1.6) Pi=I-vivi IHi,

where

(l . 7) C. = C. P. .

If we represent the entries of Ci by ck for 1 g j s r, ls k g n,

then the vector vi e [Rn is given by

T i I i i i

(1‘ 8) Vi "‘°""' 0' cii+8gn('cii)si' ci.i+l’ ci.n)°

«where sgn (° ) is a function of a real variable defined by

+1 if x )0

(1.9) sgn(x)= .

-I if x<0

Si is definedby

n O .

(1.10) S. 2 (642% .
1 5:1 1]

Finany Hi is defined by

(1.11) Hi=S§+lc2i|Si.

AI'O. he has shown that

c1+l I: S. '

”'12) 1,1 1 

or that the new diagonal element has the Euclidean length of the old

row i, from i to n. This is aproperty 0‘ orthogonal



transformations, that the Euclidean length of any transformed row

remains invariant.

Iffor some i, Si: 0, then row i of Ci is zero from i to n,

and we take Pi = I. If this is not the case, then both Si and Hi are

strictly positive. In either case, the factorization proceeds until the

completion of step r, and we have a matrix, Cr+l’ which is lower

tr iangular

(1. 13) [Llo] = or”, where L: Lr+1.

Define Q by

1.14 =P.p.....p

( ) Q l 2 r

. . . —l T .
Then Q is also an orthogonal matrix, 1.e. , Q = Q , and 1t

follows from (1.7) that

(1. 15a) [LlO]: C0, or

(1.151)) LzCQl,

Where Q1 is the first r columns of Q,

I

(1.1 _ _r5c) Ql—Q[0].

Then we may write (1. 4) as

(1.16) [Llo] QTx=g.



Section 1.1. Pivoting

Row pivoting can be included in the above algorithm for

factoring C. This is done in the following manner. At step i of

the factorization, row k, where 1g k g r, is chosen as the next

pivotal row by some pivotal strategy. Then we premultiply by a

. rxr . . .
matr1x EieIR , wh1ch1nterchanges the rows 1 and k, see

De skins [7 , p. 551]. We now factor Pi-l out of the matrix Ei Ci

and define

(1. 17) c:1+1 = (E1C1)P1 ,

where Pi is obtained from row i of E1 Ci. We can conclude from

.(1. 4), (1.14) and (1.17) that

II ["
1

H
1
1
1

0
Q(1.18) [Mo] QTx

Therefore, for theoretical purposes, we will assume that the matrix

C and vector g with which we are working, have had their rows or

eleIl‘lents permuted beforehand. So that, when we apply our pivotal

Stra-tegy, the pivotal rows will be chosen sequentially from 1 to r.

The type of pivoting that is usually used in practice is called

"maximal row pivoting". At step i, this type of pivoting chooses the

he)“: pivot by the criterion that Si is maximized. If two or more

rOWS give the same value, then the first of these is chosen as the



pivotal row. For this type of pivoting, Golub [11] has shown that

(1.19) s )5
1 2

If for some i, Si = 0, then from (1.12), L will have a zero

at position i on its diagonal, which means that the rank of L will

T .
be less than r. But from (1. 15a) we have C = [LID] Q wh1ch

irnplies that the rank of C will also be less than r, see Deskins

[7, p. 550]. Therefore, if we assume that C is of full rank r,

then for l g ig r we must have

(1.20) Si>0,

and because the Si for 1g ig r are the absolute value of the

diagonal entries of L we have

(1. 21) L"1 exists.

It should be noted that if r 2 n, then CT can be factored in the

following way

T
C Pl 0 e e s e Pn 2'." [LI 0],

Wher e by taking transposes and using P? = Pi e Rrxr

W
Pn e e s e 0 P1 C _ [-6—] ,

and Vv = LT is an upper-triangular matrix. We will use both types

0f factorizations in what follows.



Section 1. 2. A Constrained Least Squares Algorithm

Next, we shall describe an algorithm for the solution of con-

strained least squares which was developed by Hayes and Halliday

[2].]. This will be presented in detail, because we need their for-

mulas for later reference..

Algorithm 1. l. (Hayes and Halliday [21]). If we have a least

squares problem with constraints, as defined in (l. l)-(l.4), where

C is of full rank, then the solution x is obtained as follows.

Step 1: Let C be of full rank, then for 1\< i£ r, we have from

(1. 20) that Si > 0 and L is nonsingular. Thus there exists a Q

given by (l. 14) such that in (1. 16)

(1.16) [L'O]QTx=g.

SteE 2: Define the vectors dl‘ (- er and d2 g Inn" such that

(10 23) l - QT x e

(1' 24) d = L-1 g .

§L°L3_ Solve for dz, which upon inverting (1. 23) will yield a

"nation 1



u D(l. 25) x

  
Toward this end, using (1. 3) and (l. 23) we have

(1.26) _ Ax=AQQTx

' 'r

=[B1ll32]Q x

-'-.-12.1c11+iiz<12

=f+R,

where B1 is the first r columns, and B2 the remaining n-r columns

of the matrix A Q

(l. 27) [31' Bz] = A Q.

From (1. 26) we have

10 = -( 28) BZdZ f Bldl+R'

Let :32 be of full rank, then the factorization of 32' using

Orthogonal transformations, proceeds in the following way. Define

(l. 29) B2 1 ._._. B2 -

and for 1‘ i‘n-r

U3(1' 30 =

' ’ B2,i+l i 2,i'

where at step i. the orthogonal transformation Ui‘ [R g is defined



by (1. 6), where B: 1 plays the role of Ci in (1.8)-(1. 12), and we

are factoring from the left. Define

(Ln) v=U ..”.U
n-r 1

and

w
(1.329.) [ o ] - VBZ — BZ.m+l

or

(1.32b) w = v1 B2,

where from (1. 20) and (l. 21), w£m(n-r)x(n-r) is an upper tri-

angular nonsingular matrix. Then the solution of (1. 28) which

minimizes R, [see 21], is given by

-1 -

(1.33) d2.- W V1{f-B1dl} .

where V1 is the first n-r rows of V

(1.34) v1 = [1n_r| o] v .

It is shown by Peters and Wilkinson [28] that d as defined (1. 33) is
2

unique. Then by using (1. 24), (1. 33) and-(1. 25) we have the solution

- *1

L"1 g

(1.35) x = Q .

w"l V1“ - Bl L"1 g)
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Section 2. Defining the Perturbation Problem
 

In this section, we shall derive an upper bound on the computa-

tional errors of the solution defined by Algorithm 1. 1. Toward this

end, we will deve10p a perturbational analysis of the problem

defined in (l. l) to (1.4). 'Due to calculation and rounding errors,

. the problem which is stored in the computer is not the exact matrices

and vectors as defined in (1.3) and (l. 4). Instead, the original

quantifies have been perturbed to give the new problem:

(2. 1) i We are given the two matrices AsRm and

CelRm' where

(2.2) _ r<n and ngm.

Then the solution a? of the perturbed problem is the

vector which minimizes the norm of

(2.3) R = Jig-f: where fsfim,

and we require that ’1‘: satisfy the constraint

(2.4) C Q = 3, where £3 Rr .

We will denote with a "hat" all of the perturbed quantities, and

A A

their meaning will be the same as in Section 1‘. If C and B2 are

. of fun rank, then Algorithm 1. 1 gives the solution 9

((3-1; 1

R
)

n D
)

(2.5

) A-ll\ A A A

w .Vl{f-BIL 3U  
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We now define the perturbational quantities 5A, 5f, 5C, 5g,

5P1, 5L etc. as the difference between a perturbed and unperturbed

A A

quantity. For example, 5A : A - A, 5f = f - f, etc.

Before we can estimate I I)? - xI I, we need some well known

facts from the theory of matrices. Due to the lack of references for

the following norm relations for non-square matrices, we will in-

clude in the next section a somewhat detailed development for com-

pleteness.
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Section 3. Matrix Norm Inequalities
 

Definition 3.1: Let A: Rm, then the complex number xi(A) is an

eigenvalue of the matrix A if and only if there exists a non-zero

eigenvector xie C” such that A xi = xi(A) xi. The spectral radius

p(-) of A is defined to be p(A) = max Ixi(A)I, see Varga [32 ,

p. 9], andfiletpb) ofA be defined byp(A) e mIn {I li‘A’IIXi‘A) ,1 o}.

 

Definition 3. 2: The Euclidean norm I I I I of a vector x: [Rm is

m 1.

defined to be I IxII = (2 (xi)2)z . -The Euclidean (Schur) norm

i=1

I I' I IE of a rectangular matrix ActR mu is defined to be

1

' n m '2-

IIAI IE = I: E .23 (3'11)sz , see [36, p. 81].

is] J=l

Definition 3. 3: The spectral matrix norm I I I I of a rectangular

matrix A: R , induced by the Euclidean vector norm, is defined

to be IIAII = sup IIAxII, see Varga [32, p. 9].

Ix =1

3:: [Rm

Remark: For a vector xeRm, the Euclidean. vector norm, Euclidean

matrix norm and spectral matrix norm are the same, see the follow-

ing lemma.

Emma 3. 1. Given the rectangular matrix Ask and vector

x GRm then

_1_

(3.1) IIAII = [MAT 16.)] z .



(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

2a)

2b)

4)

5)

6)

7)

8)

9)

10)

ll)

12)

13)

14)

15)'

16)

13

T T

MA A) = PIAA ) .

T T

MA A) = “(A A ) .

If A ATe Rm is nonsingular, then

'1‘- 'r
HmA)1H=1#mA).

IIAHE /1’3‘<||A||<||A||E.

'1‘

HA ||= IIAII-

T

IIA IIE = IIAIIE-

If Qe Rnxn is orthogonal (i. e. QT = Q-l), then I IQI I =1.

110cm?“ is orthogonal, then IIQAII = IIAII.

If Q‘Rmxm is orthogonal, then IIAQII = IIAII .

IIAXIKIIAII IIXII -

If Beam”. then IIAB||< IIAII IIBII-

If Bean, then ||A+B||< IIAII + IIBII .

If Al e an(m-r) is a matrix. obtained by deleting the first

or last r columns of A, then IIAII I ( IIAII .

If Al e Pdn -r)xm is a matrix obtained by deleting the

first or last r rows of A, then “A!” ( IIAII .

If Qe Rmxm is an orthogonal matrix and Q1 is the first

r rows or columns of Q, then IIQlI I g 1.

If B: [Rm and I IBI I ‘< 1, then the following inverses

exist and

Ilu+ B)“II<1/<1-IIBI11.

l|<I+ B)"‘-I|l<l|Bl|/(1-||Bll)-
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l " '1 .

and B ex1st and

A -

(3.17) If B, B, 5Beanxn, both B

_ A A-1_ -1 A-1 -1
5B—B-B,thenB _B -B 5BB .

(3.18) If the vector v is any row or column of A, then

||V||<IIA||-

Proof (3. 1): From Varga [32,p. 11] we have that because AT A is

. . . . T T .

a non-negatlve def1n1te (1. e. x A A x 9 0) symmetric square

matrix, the eigenvalues are all real and non-negative. Since

2 2 T T T 2 2

lleII/llxll =x A Ax/x ewehave llell /||xll \<

p(A A), where equality is taken on for an eigenvector corresponding

to p(AT A).

(3. 2a), (3. 2b): We will show that the set of non -zero eigen-

values of AT Ae [Rmxm is the same as that of A ATe Rm. Let

k be a non-zero eigenvalue of AT A, then X is real and there exists

x 910 such that AT A x = )1 x. Premultiply by A and we have

(A AT)A x = )\ A x. The vector A x is non -zero, because if it were

zero we would have x x = AT(A x) = 0, and because X 9( 0, this

would imply that x = 0, which is a contradiction. Therefore, )1 is

an eigenvalue of A AT. The reverse inclusion is proved in an iden-

tical manner.

(3. 3): A AT is positive definite because xTAATx ::

I IAT xI I 2 O, and for x f O we have, by using an argument similar

T

to the one given in (3.2a) that I IAT xI I > 0. Because A A is a
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square matrix, we can use pr0perty G of Wilki‘ison [34 , p. 290]

and conclude our result.

2 n m 2

(3.4): If IIxII:1,then IIAxII = ZIE a_,x,:I

i: J: lJJ

n m m

< EIZaZ 2x22]: IIAII ,

i=1 j:]_ 1.] j:]_.] E

where we have used the Schwarz inequality on each term in brackets.

Therefore, by using the definition of the spectral norm, we have

IIAII< IIAIIE-

To prove the left hand side of the inequality we use (3. l) and

(3. 2) to obtain I IAI I2 = p(A AT). Because A ATe [Rnxn' we have

n T n T

from Marcus and Ming [26, p. 23] that Z) (A A )ii = 2 Xi (A A ).

1:]. 1:]

Because xT A ATx : I IATxI I2 )0, and using [26 , p. 69] , we have

that A AT is non-negative definite and Xi(A AT) 9 O for

. T n T n T
1g1gn. Therefore n-p(AA )32 )t,(AA ) = 23 (AA ).. =

1:]. 1 1:1 11

n m 2 2

2‘. E a.. = IIAII , and we have proved (3.4).

i=1 j=1 ‘3 E

(3.5): Use (3. 1) and (3. 2a).

(3. 6): Use the definition of I IAI IE .

(3.7): From (3. 1) we have I IQI I2 = p(QT Q) = p(I) = 1,

because all eigenvalues of the identity are 1.

(3.8): | IQ AI |2 = p(Q A)TQ A) = p(AT A): IIAIIZ.

(3.9): Because QT is orthogonal, use (3. 5) and (3. 8).

(3. 10): Follows from the definition of I IAI I.
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(3.11): Using Varga [32, p. 11], the norm of AB is obtained

for an unit eigenvector x corresponding to p((AB)T(AB)). Then

IIAB|I=IIA<Bx>Il<IIAII llell<llAll llBleherewe

have used (3.10).

(3.12): Similar to (3.11).

(3.13): If A is obtained by deleting the last r columns of
1

A, then A1 = A[%], where Ie R(m-r)x(m—r) is the identity matrix.

From (3.11) and (3.1), ||A1I [2 g | IAI |2 p([Ilo] [:7] ) = I IAI |2 .

The other case is done in the same way.

(3. 14): Similar to (3.13).

(3.15): Use (3.7), (3. 13) and (3.14).

(3.16): Follows from [9 , pp. 112-114].

A- A A-

(3.17): Because I: B 1 - B = B I - (B+ 5B)

“-1 A A-l A-l

=B 'B+B°5B,wehaveB -B:I-B ~5B,

from which our result follows.

(3.18): We will assume that vean is row 1 of A, where

l\< 1 g n. Define the vector eIe [Rn to have zeros in all entries

T

except for a unit in entry I . It follows that v = (e£)T A and

T 2 2 T

He! II =IIe1II 29(81 e£)=p(l)=1.
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Section 4. Condition Numbers of Non-square Matrices

Definition 4.1: If As IR 13 any matr1x, then the cond1t10n

number X(-) of A is defined to be

T

N
I
H

(4.1) ’X(A)= [p(ATA)/u<A 1.)] 21.

if A is of full rank, otherwise ’X(A) is undefined. It should be

recalled from Definition 3.1 that ”(AT A) is the smallest non -zero

eigenvalue of AT A in absolute value.

There are many definitions for condition numbers, depending

upon the type of matrix. We will list some of them here and show

that they are equivalent to (4. 1).

If Ae IR 1s a non51ngular matr1x, then the cond1t10n number

’X(-) of A is defined to be

-1

(4.2) i<<A>= IIA II-IIAII>1-

If A is singular, then ’X(A) is undefined, (see [23, p. 81]).

We would like to show that (4. 1) and (4. 2) are equivalent for

m = n. This is clear, because if A is not of full rank, then ’X(A)

is undefined in both (4. 1) and (4.2). If A is of full rank and square,

then A.1 exists, and using property (I) of Wilkinson [34, p. 290]

and(3.3)we have IIA'III2 = IIA-lA-TII -.-. II(A'T A)-1II = l/u(ATA).

Thus we have that (4. 1) is equivalent to (4. 2).

If Ae [Rm is a rectangular matrix, where m )n, then the

condition number 060 ) of A is defined to be
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(4.3) 7((A) = Sup IIAxII/ Inf IIAxII >,1,

||X||=1 ||X||=1

xe Rn erRn

if A is of full rank n, otherwise ’)((A) is undefined, (see Bjorck

I3 ]).

To see that (4.1) and (4. 3) are equivalent for m; n, we have

1

from (3. 1) and Definition 3. 3 that Sup | IA xI | = p?- (AT A). Also,

llxll=1

we have that AT Ae [Rnxn is of full rank, because if it were not, there

would exist a xe [Rn such that x a? 0 and AT A x = 0. But this

. . T T 2 .
implles that x A Ax: IIAxII = O, andln turn that Ax: 0.

This cannot happen if A is of full rank n and x 75 0. Therefore, we

have that the smallest eigenvalue of AT A is non-zero and

min 11(AT A) = ”(AT A). Varga [32, p. 11] , has shown that

1<i<n

min Ai(AT A) g I IAxI I2 for I IxI I = 1, where equality is taken

loci

on for the unit eigenvector x corresponding to “(AT A). Therefore,

Inf I IA xI I : Hi: (AT A), and we see that (4. 3) is equivalent to (4.1).

IIXI|=1

Remark: The importance of defining p(AT A) to be the smalles 1123-

gerg eigenvalue in absolute value comes from the case where m < 11.

Here we have that AT A has a zero eigenvalue even if A is of full

rank, however, A AT has not. Using (3. 2b), we have that “(AT A)

= p(A AT) 7! 0, and our condition number is finite.
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Remark: The typical situation in error analysis is that we must

bound the following

(4.4) IIAxII Ha'ylleiam IIxII llvll:

where A is nonsingular and square. Note that the left hand side of

(4. 4) will be much smaller than the right hand side unless both the

vectors x and y are eigenvectors corresponding to p(AT A) and

|.1(AT A) respectively. Therefore, in a practical problem, if A is

' ill-conditioned, we would expect (4.4) to be a gross overestimate of

-1

IIAXII IIA vll-

Remark: If Q is orthogonal, then 7((Q) = 1.
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Section 5. An Upper Bound for I IGQI I
 
 

We will develop here a bound for the norm of the perturbational

quantity 5Q = Q - Q, Where Q is defined by (1.14). It should be

noted that Q and Q are not the unique orthogonal matrices which

reduce C and C respectively if r< n. For example, if we con-

sider Q, then recalling (1. 15a) we have [LID] = C Q . If we post

nxn

multiply by the orthogonal matrix P = I - 2uuTe IR , where ue [Rn

is any unit vector which has its first r entries set to zero, then

C(Q P) = [LIO]. This is true because P will leave unaltered the

first r columns of C Q. Therefore, we cannot expect to obtain a

bound for I I5QI I by manipulating the formula (1. 15a). Instead,

because Q is uniquely defined by (1. 14), we will use the definition of

the Pi given in (1. 6) to obtain our estimate.

In doing this, we shall use the following equality

s S j-l
(5.1) (1+K)=l+ Z K(I+K) ,

1:1

where K is a non-negative real number and s is any natural num-

ber.

Also, for the following lemma, we recall that CR and 3k

kk kk

A

are the kth diagonal elements of the matrices Ck and Ck respec-

.
A

tlvely. The matrix Ck and correspondingly C , as defined in (1. 7),

represent the factorization at step k.
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Lemma 5.1. If we use the factorization method of Section 1 by
 

orthogonal transformation with maximal row pivoting, assume after

pivoting that both of the matrices C and 8 have the same ordering

A

of rows, also at step k of the factorization sgn (C = sgn (c
kk) kk)

for l g k g r, and finally that there exists a real non-negative

number A such that

-l

(5.2a) ||5c||/||c|| gA/I(9+4)’2+8A)r ’)((C):I .

then it follows that

(5.21.) ||50|I<K(r)~’X(C) HacII/IICII.

where K(r) = (l +K)r -1 and K = 4(2 + {2+ 2A).

Remark: In (5.2a) we will use the fact that 9 + 4 {2+ 8A, 2 l + K.

Proof: To estimate I I6QI I, we express it as the following tele-
 

s coping se rie s

A A A

(5.3) IIGQII:IIP1.P2. sssPr_P1P2 ....PrII

i“: ’r‘»= II6Pl-P2 Pr+Pl-5P2- 3. . r

+ +P1-P2- Pr_l 6P H

r

< :1 llapkll.

Where we have used (3. 8) and (3. 9) to obtain the last inequality.

To estimate 5P we recall the following definitions from

k

sections one and two, which we tabulate here for convenience, ngr
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54 c c c c P e A A 8 A

(') 1' ’ k+1' k k’ 1_C’Ck+1_ kpk’

A AA

(5.5) [LIO]=CQ, [LIO]=CQ,

T A /\ A T A

(5.6) Pk_I-vkvk /Hk, Pk_I-vkvk /Hk,

n k 2 l A H Al: 2 l

(5.7) S = I2 (6 )Iz. S = I2 (c )I".
k 1:1: kl k 1:1, k!

2 k A A2 A1: A
(5.8) Hk—Sk+IckkIS, Hk_sk+IckkIsk

The “(91(6an are defined as

T k k k k

(5'9) Vk—(o’ ' 0' Ckk+8gn(ckk)sk’ Ck,k+1’ Ck,n)’

AT_ Ak Ak A Ak Ak

(5' lo) vk - (0! 9 0! Ckk + sgn ( Ckk) Sk, Ck, k+1, 9 C'k, n) i

where the first k-l entries are zero. Finally, we have from (5.9)

(5.10), (5.7) and (5.8) the relations

(511) IIv ||2—2(sz+|ek |5)-2
° k — k kk k - Hk

A 2 A2 Ak A A

(5.12) ||vk|| = 2(sk+ Ickkl sk) = 2 I-lk .

We will now relate the perturbation 6 P to the perturbation

k

A

atstep k in 5Ck=C -Ck k' From (5. 6) we have

/\ AT A T

(5.13) 5P1: = (1 - vk vk/Hk) - (1 - vk vk /Hk)

T A AT A AT A A

= (vkvk ’ Vk vk)/Hk “’ka (H1: " Pad/(Hier) °

We define 5v (IR. by
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A

(5.14) 5vk = Vk - vk

k k A k

" (°""’°’ 5Ckk+ sgn ( Ckkx k'sk)’ 6Ck,k+1’ ’

k )T

6Ck,n ’

k)
k

where we have made use of our assumption that sgn ( ckk) = sgn (ekk

This assumption means that the initial perturbation of SC in C is

not large enough to cause a sign change in C at step k of the

kk

reduction. If the signs we re different, then we can conclude that both

k k
|A|»|(5.15) ckk ckkl < lac

Later in our proof we will obtain an estimate for 5 CR which will

enable us to test if this can happen. If the signs do differ, however,

we cannot guarantee that the matrix 5P will have a small norm,

k

which implies that this type of error analysis does not apply.

If we make use of (5. 14), and substitute for v in (5. 13), we

k

obtain the following expression for 5Pk

(5.16) 5Pk = -(vk-5v1:r+5vk° vg+5vko 5v:)/Hk+$k° 35(Il-lk-Hkvu/ik- Bk).

We will now introduce the following notation which will help in

. . . k Ak
our making norm estlmates. Define the column vectors Ci , Ci

9

A

5C1;e [Rn to be the transpose of row i of the matrices Ck’ Ck and

5Ck respectlvely. Also, define the vectors Ci , Ci , 5Ci e R to

be obtained by setting the first k-1 coordinates equal to zero of the

vectors C?, C? and 5C?, respectively. If we apply the above
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definitions to (5. 7) we have

xk Ak A

(5.17) ||ck|| :5k and ||ck|| -_- sk.

We can now use (5. 17) and the above definitions to obtain a conven-

ient expression for the norm of (5. 14)

2 Ak 2 k k 23k ~k

(5.18) Ilsvkll =|lack|| +zackksgmckalIckll--||Ckll)

Ak ~k 2‘

+ (IICkIl-Ilckll) -

By the triangle inequality we have

ck ~k 9k k
(5.19) IlkH-HCkH g ”Ck‘ck”

~k
g llaCkIIo

Using(5.18) and(5.19) we find

2 wk 2 k

(5.20) Irsvkn <2|lsck|| + zlsckkI-Hs’cf‘w

~k 2

where in the last inequality we have made use of the fact that

k k

|5ckk|< ||5ck||. This givesabound for H5Vkl|

(s 21) New H<2Hs€fk ll
' k \ kk

We use (5. 8), (5.17) and (5. 19) to obtain a bound for Ifik-Hkl

A A2 Ak " Z k

(5°22) |H|('I'1k|< ISk+lckk|Sk "(Sk+lckklsk)l

A A k A k k

S (Sk+Sk)- ISk-Sk|+|3kk|' lsk'5k|+l lekkl'lckkl |°Sk



25

2k Mk Nk

\< ZIIICkH + HCkll)' ||5Ck||

s 2<2sk+ IIaCkII) IIa’EkII.

If we substitute (5. 21) and (5. 22) into (5.16) and use (3. 5) and (3. 11)

we obtain the following after taking norms

(5.23) IIstI I < IIska I<2IIkaI + IIzskaI>/IHk

2 A A

+<|l3k|l/HkI°IHk-HkI/Ifi(

~k , ~k Mk

s 4| lackl I[<I Ika I + I lack! I)/Hk + (ask+ I lack! |)/Hk].

where we have made use of (5. 12) in the last inequality. From (5. 8)

we have

(5.24) H135: ,

and using this with (5. 11) leads to the estimate

(5.25) (llvkl|+l|55:II)/Pfi(\< fi/{H:+||5&:||/1qk

~k

s < /2'+ Hfickll/SkVSk-

If we combine (5.11), (5. 23) and (5.25), we have the following bound

. Mk k.

for IlstII. usmg lIkall< Ilsckll

k k

(5.26) llapkl | g 4| IGCkl |-[(2+ {2) + 2| |6Ck| l/sk] /sk .

A condition will be given later, as to when we have a bound for

k

I lackl I/sk -
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We now relate the perturbation in step k, which is ac to
k!

the initial perturbation 5C. We will do this by tracing the error

backwards step by step. Toward this end we calculate the following

estimates. From (5. 4) we have for 1s ig r

A

(5. 27) 6C”1 = 6Ci Pi + C1 5Pi

For lg! g r, row 2 of the matrix 6Ci+1 is given by

- i+l T i T A i T

(5.28) (5C1 ) _ (6C!) Pi + (C!) 5P1

We want to replace the last term in (5. 28) by something more conven-

ient for our purposes. It will be shown that

i T ~i T

(5.29) (C!) 6Pi = (C1) 6Pi

To accomplish this, we recall (5.13), which gives

T A A T A

(5.30) 6P1 _ vi vi /Hi — v vi /I—Ii

From (5.9) and (5.10), the first i-l entries of vi and 91 are zero,

which, when we combine this with (5. 30), implies that the first i-l

rows of 6Pi are zero. This implies that irrespective of how the

first i-l entries of C11 are changed, the resulting product will be

i

the same, as long as the remaining entries of C1 remain unchanged.

Using the fact that E; agrees with G; in all but the first i-l entries,

we have

i+lT iTA ~iT
(5.31) (5c! ) 45c!) Pi+(C£) 5P1
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Define the following non-negative numbers for 1 g i g r and

i<1\<r by

~' Ni

(5.32) 4,, llClll/IICIII

~i

'lclll/Si ’

which, because of (1.20), are all finite.

Taking norms in (5. 31) and using (5. 32) and (3. 9) we have

“+1 1

(5033) ”ac: H<H5C£||+Hfisillspill°

We will now prove by induction on i, for l< i < r and

1s 1 < r, that the following is true

1+1 1 - 1
(5.34) Mac Hg 2: p.S.||5P.II-+ ”so”.

1 . 123 J J I

F1

For i = l, where 1g 1 g r, inequality (5. 34) is just inequality

(5. 33). Assume that (5. 34) is true for some i, such that l < i(r-l,

then we will prove that (5. 34) is also true for i+1. Using (5. 33) for

i+l, and our induction hypothesis, we obtain for 1g 1 gr

(5. 35) I I602+2| I S I I661“! | + FL1,i+1 Si+1 ll5P1+1 H

i 1

< j: uh. SJ. II6PjII + II6€,II

+“1,i+1si+1'l5pi+1||

1+1
1

< 2 .S. P. + C .\jzl 11,, JIIGJII Ila ,II



28

At this point, we will make use of our assumption of "maximal row

pivoting". This assumption implies that all of the plj g l for

I g j, because of the manner in which the next pivotal row is chosen

(see Section 1. 1). We have retained the p“ ountil this time, because

we will refer to (5. 34) later when we discuss pivotal strategies.

Using this assumption, (5. 34) now becomes for £=i+l

1+1
l l

1
1

(5.36) ||5Ci+1 < Z SjllfiPJ-ll‘rllfiCiHll-

i=1

At this point in our proof, we would like to show that (5. 36)

and our assumption (5. 2a) leads to

(5.37) l'sCtll/SkSA, forlékgr,

and

(5.38) |Iac11:||<(K+1)k"1 ||5c|| for 1<k<r.

Where (5. 37) would yield the following simplification of (5. 26)

k

(5.39) ||6Pk||< K ||15c3k||/sk ,

where K = 4(2 + 5+ 2A) .

Toward this end we will prove the following for 1 4 kg r

(5.40) ”CH/skgxm).

This is true because of our assumptions of "maximal row pivoting",

and that C is of full rank, and because we have from (1. l9) and

(1.20) that
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(5.41) IIcII/sk<IIcII/sr.

where Sr> 0. Because Sr is the absolute value of element r on

the diagonal of L, which is a lower triangular matrix, we have

[x r(L)| = Sr , where xr(L) is an eigenvalue of L. Therefore,

there is a unit vector Xe IRr, such that Lx = k r(L)x . From (1. 21)

L- exists, so we have L-lx = (1/1 r(L))X. Taking norms, we find

(5.42) 1/sr= ||(1/xr(L))x||

- '1 '

‘ I IL XI]

-1

S IIL l I -

If we use (3. l) we have [IL—1H2 = p(L-TL-l = p((L LT)-l) . Using

Wilkinson [34, p. 290] property (F), because (L LT).1 is a

. . T -l T -1 .

symmetric matrix we have p((L L ) )= ”(L L ) I I . Using

T -l - T

(3.3), we have “(L L ) ||=1/.1(L L ), and from (5.5) and (3.2b)

T T T . .

we have p(L L )= ”(C C )= p(C C). This proves that (5.40) is

true, using Definition 4.1 for the condition number 7((C) .

We shall prove (5. 37), (5. 38) and (5. 39) simultaneously by

induction on k, for l$ k g r, by using (5. 2a) and (5. 36). For k=1,

using (5. 40), we have that (5. 37) is valid and hence also (5. 39)

because

<5-43> IIsciII/s1<<IIscII/IIcIIxIIcII/sl)

< [A/(XIC)(1+K)r'1)] 7((C)

<A/(1+K)r"1

< A



30

Also, (5. 38) is trivial for k=1. Assume that (5. 37), (5. 38) and (5. 39)

are valid for all I such that 1 g I g k where 1g k < r, then we will

prove that they are also valid for k+1. Using (5. 36) and our induc-

tion hypothesis, (5. 38) is valid because

k
k+1

1(5.44) ||50k+1||<j§1Sjll5P5||+ll5Ck+1H

k j 1

s _21 K Ilscjll + ||60k+1||
J:

k ._1

< >3 K(K+1)J ||6C||+||6C||

i=1

g (K+1)k I|5c|| ,

where we have used (5. 1). To see that (5. 37) is valid for k+1

(5. 45) ”act: I I/Skfl 4mm“ I IacI I/I IcI II- [I IcI l/SkH]

<A(K+1)k /(K+1)r"1

4A.

where we have used (5. 44), (5. 2a) and (5. 40). Finally (5. 39) follows

from (5. 37) and (5. 26), and our induction is complete.

What we have accomplished is to express the perturbation in

row k at step k of our factorization in terms of the initial perturba-

tion in C. We have also shown in (5. 39) that the perturbation in the

elementary orthogonal transformation at step k is bounded in terms

of the perturbation in row k of C Therefore, if we combinek.
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(5.38), (5.39) and (5.40), we obtain the following estimate for ||5Pk||

k-l
(5.46) II6Pk|l< K(1+K) llacll/sk

k-l

< K(1+K) WC) IIGCll/IICII-

We are now in a position to obtain a bound for I I BQI I. Using

(5. 3), (5.46) and (5. 1), it is clear that

1‘ k-l
(5.47) I|6QII < Z K(1+K) 7((0) INCH/“CH

k:1

s K(r) 7<(C) IIGCIl/IICII.

wher e

(5.48) K(r) = (1+K)r - 1 .

Remark: In reference to the assumption that sgn(c.k = sgn (’c‘:

kk) kk)’

if it is not the case that we have equality for sOme 'k, then recalling

(5. 15)

k k k

let k be the initial natural number such that we do not have

equality, then (5. 15) is valid, and we have from (5. 38)

k k
IA |:l

k-l
(5.49) ckk ckk|g(1+K) ||5c||.

This is a necessary condition for the signs to be different. The

typical situation is as follows. We have a numerical bound for

I I 6CI I, and we are performing the factorization on‘ the perturbed
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A

matrix C. We check at each step, k, of the factorization to see if

(5. 49) cannot hold for any k, then we can conclude that the factoriza-

k)
kk

tion of the matrix C would proceed in the same way, and sgn( 6‘

k

sgn (ckk) for lg kg r.

Remark: On pivoting. The usual pivotal strategy used is "maximal

row pivoting", see Golub [:11]. Other strategies of various types

have been tried with various degrees of computational success, see

Jennings and Osborn [25] . Usually, no theoretical justification is

given as to how the computational errors are affected by the choice of

pivotal strategy.

We are able to give here a justification of sorts as to. the

desirability of ”maximal row pivoting". Assume (5. 39) holds, 'then

we have from (5. 34)

i+l j 1
(5.50) llesci+1 )ll5CJ-I|+IIGCi+-||-

J

1

H S :31 (K ”1+1,j

Intuitively, it is seen by examining (5. 50) that, by repeated back

substitution, we obtain an expression which is the sum of products,

each of which is made up of repeated factors of the type (K P'st)°

Because "maximal row pivoting" gives pat g 1, it helps reduce the

effect of the power of k in the error analysing giving, in general, a

better bound then a strategy which allows the ”st to be larger than

unity.
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Section 6. Basic Relations in the Perturbational Problem
 

Using the notation of Sections 1 through 5, we will establish the

following relations, which will be used repeatedly.

 

Lemma 6‘._1_. (6.1) CCT= LLT, OCT: LLT, BZTB2=WTW and

ATA A A

132 B2_W W.

(6 2) L"lc—Q dB W’l—v. — Ian 2 - l.

.(6.3) 'X (L) = 7((C).

(6.4) X (W) = 70132).

If IIL'l 6L||<A<1, then

A

(6.5a) IILII<e1IILII, where e1 =(1+A),

A-l -1
(6.5b) IIL IIgeZIIL II,where ezzl/(l-A),

(6.5c) :X(L)<e3 ”K(C), where e3 =(1+A)/(l -A) .

If ||8WW‘1||<A<1, then

(6.6a) IIWII<e1 IIWII,where e1=(1+A),

A-l -1
(6.6b) IIW II< e2 IIW II, where e2: l/(l -A),

A

(6.6c) 7((W)< e3 7((132), where e3 =(1+A)/(1-A).

If Yr/z IIL'16L|,I<A< 1,

then

-1

(6.7.) IIL 6LII<K1IrI7<(CI IIscII/IIcII.

(6.7b) ||501||<K2(r) 30C) IISCll/IICH:
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(6.76) |I6L ||< K3<r) 9((0) Ilacll.

where K1(r) = {r_(2 +A)/()/2(l -A)),

K2(r) = 1+K (r), and K (r) = K (r)+1.
1 3 2

u WIIWW'IIKAU.

then

(6.8a) II6W W'1||< Klm-r) 368,) Ilélel/IIBZII.

(6.8b) ||6V1lI< sz-r) ”K(Bz) lIsBZII/IIBZII.

(6. 8c) ||5w||< K3<n-r) X032) IISBZII .

where Kl(n-r), K (n-r) and K3(n-r) are defined in (6.7).

2

Under the hypothesis of Lemma 5. l we have

(6-96) |I631||4||532|LIIIGBII5BZIII€(||5A||/||A||

+K<r)X(C) Il6CII/IIC||)|IAII.

(6.9m IléBllI<<II5AII/IIA||+II601II|AI|-

d1 n1
If x:Q- d , where xe Rn, Qeanxn is orthogonal, dleR ,

2

n2
dzelR and nl+n2=n, then

(610) Ildlll. ||d2l|<|lxllo

T

P.1'00f (6.1): From (1. 15a) we have CCT= [LID] QtQ[—L(-)—:I= L LT ,

and from (1. 32a) we have

T T T w T
B2B2=[W |o]vv [—0—]: w w.
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T1 '1 T

C=L [Llo]o sol,(6.2): From (1.15a)we have L-

where the proof for W is similar.

(6. 3): If we use (6.1), (3. 2a) and (3. 2b), then (6. 3) follows

from Definition 4. 1.

(6.4): Same as (6. 3).

A -

(6.5a): Because L = L (I + L 1 6L) is valid, the result follows

by taking norms.

(6.5b): Because 11'1 = (I + L'16L)'l L"1 is valid, the result

follows by taking norms and using (3. 16).

(6. BC): This follows from (6. 5a), (6. 5b) and (6. 3).

(6. 6a)'-(6. 6c): These are proved in a similar way to (6. 5a)

through (6. 5c).

(6. 7a): This is a result of Jennings and Osborne [25 , p. 327]

inequality (2. 6) of their paper.

A A T AT

(6.7b): From (1. 15a) we have 5C = L Q1 - L Ql = 5L 01 +

4 -

L 60.11“ which gives L 6C);r = 5C - 5L Q? . Premultiplying by L l

T -l -1 AT . .
we have 501 = L 6C - L 5L Ql . Taking norms and using

(3.5), (3.11), (3.13)and(3.7) we obtain ||5Qlll gllL'lll ”so”

+ IIL'lsLl I . After using (6.1), (6. 3) and (6. 7a) our result follows.

(6. 7c): Using (1. 15b) and taking norms we have I |5L| I g

Hac|| + ||c|| [[801]], where we have used(3.ll), (3.13) and

(3.7). If we use (6. 7b) and the fact that ”)QC) )1 we have our result.

(6. 8a)-(6. 8c): These are proved in almost an identical way as

(6. 7a) through (6. 7c).
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A

(6.9a): From (1. 27) we have [6B1I5B2] = 5A Q + A 5 Q .

If we apply (3.13), (3.9) and Lemma 5.1 we have the result.

(6.9b): 5B1: 6A 61+A 6 01 .

(6. 10): Use (3. 8) and the definition of the Euclidean vector

I d1] T

norm on = Q x .

d2
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Section 7. Effects of Perturbational Errors

In this. section we will show the effect of perturbational errors

on a solution given by the method of Algorithm 1. 1. In order to obtain

an expression which is compact, it will be necessary to merge all

terms of higher powers into those of the first power. These terms

represent relative errors, which, if. the perturbations and condition

numbers are reasonable, should be very much smaller than unity.

Therefore, it is not unreasonable to make the assumption that they

are bounded away from unity. This is the reason for making assump-

tions (7. 1a) through (7. Is). It should be clear, that even terms

(7. la) and ( 7. 1b) represent relative errors, because I IL”l GLI I g

7((L) I I ELI III ILI I. Also, (7. 1c.) should be reasonable, because

in the unconstrained case it is always true that I IRI I/I IfI I g l,

and we would hope that in a practical problem, i would be very near

the space spanned by the columns of A, which would yield a very

small relative error for the residual.

' Theorem 7. l. The notation of Sections 1 through 6 is used. If there

exists a real non-negative A < 1, such that

(7.1a) hllIL-IGLI KA, where h1 = max {1.41772} ,

(7.1b) h2||5ww‘l| KA, where h2 = max {1, AW} .

(7.1s) IIRlI/IIfIKA. f 1‘ 0

ma) . II601I|< szxm IIGCIIIIICIKA.

(7.1c) IIGAIIIIIAIKA.
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A. A

where C, C, 32’ B7. are of full rank and the hypothesis of

Lemma 5.1 is satisfied then

«7.2) I.I£-xII/IIxII<(ezIIssII/IIzII+K5<B>IIacIIIIIcIImcI

+<e§IIafIIzIIrII+ze2Ilam/IIAII)

-(||A|l/||BZIImBZ)+(e§e4I|58l|/IlsII

+ex,zmIIscII/IIcIIxIIAII/IIBZIImcmB>

+eix«nerIAII/IIB ll)IIIsAII/IIAII

+K(r)¥(C) IIscII/I IcI IIMBZIII'RIl/I lfll.

where the constants e2, e4, K(r), K2(n-r), K4(r) and K5(r) are

given by (6. 5b), (7. 21), (5.48), (6. 7), (7. 23) and (7. 26) respectively.

Proof: We have from Algorithm 1. 1 that solutions at and 9 exist to
 

both problems, where x and a? are given by

d L g

l

(7.3a) x=Q = Q 41

dz w Vl{f-113 L"g}

,. g-Ig
d

A A 1 A

(7.3b) x=Q a = Q A‘l A A A “'1‘

2 w Vl{f-BIL g}

respectively. Subtracting x from a? we obtain



6d d

(7.4) 2—x=éI II + aQIlI,

5d2 d2

A A _

where 5d1 = (11 - c11 and adz = d2 - d2 . Usmg (6. 10), (7.3a) and

(7. 4), we find after taking norms

(7.5) IIé-xIIsIIsdlIIMIaBZIwIIsBIIIIxII.

Lemma 5.1 gives an upper bound for IIGQII

I7-6) IIGQII<KIrI7<<C)llécll/IICII-

Therefore, all we have to find are upper bounds for II6d1|I and

I IBdZI I. Using (7. 3a) the expression for 5d1 is

/\

(7.7) 6d L g-L g
l

A-l
L (8g - 6Ldl),

where we have made use of (3. l7) and the definition of d to obtain

1 -l -lA - -

our simplification. Because L 1 = (I + L 5L) L , we obtain

the following upon taking norms

-l

(7.8) IladlllsBZHICIIlagH/(IICII IIxII)+||L sLIII IIxII.

where we have made use of (3. 16), (6. 3) and (6.10). From (1.4) we

have that I ICI I IIxII 9 I IgI I, and substituting this and (6.7a) into

(7. 8) we have

<7-9) IIsdlIIse,[IIsgII/IIgII+B,<r>IIscII/II,cII]x<c>IIxII.
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Before estimating I ISdZI I, define the vector E e [Rm by

A A 3

(7.10) g = {f - B1 1} - {f - Bl d1}

r ’15 d B d
" 5 ' 15 1 ' 5 1 l

A

If we make use of the equalities (l. 33), (3.17) and V1: V1 + 6V1 ,

we obtain the following simplified expression for 5d2

A_1 A /\ A A -1 { d

(7.11) 5d2=W V1{f-B1d1}-W vl f-Bl 1}

[it-16 w'1 v I{f B d} 8r” 0
" l ' l ' l l + 16

”I ‘ I_w 5V1{f-Bld1}-6Wd2+vl€.

In the last expression we have made a simplification by using the

definition of <12 given in (l. 33). From (1. 28) we have

B2 d2 - R = f - B1 (11. Substituting this into (7. 11) we find

“I " I(7.12) 6d2_W wlszd2-8v1R-8Wd2+v16

A_1 A

w ((5le -5W)d2-6V1R+V1€ .
2

Using (1. 32b) we see that

A A

. = - V(7 l3) 6W V1 B2 1B2

A

V16B2 + 6V1BZ .

If (7. 13) is substituted into (7. 12), we find after the cancellation of

6Vl B2

A_1 A A

(7.14) 5d =W [-V15Bzd2-5V R+VlE .

2 1

If substitution of (7. 10) into (7.14) is made, we have after regrouping
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75 (id-V’Ir'lesffiod 5Bd 5BdIW-15VR
('1) 2‘ 1'11'11'22’ 1’

Taking norms in (7.15), and using (6.6b) and (6.10) we have

(7.16) IIadzIIs BZIIIGfII/IIIAII ||x||I+IIIBllllllAl|

+ IIBBlll/IIAIII lladlll/llxll + llsBlll/IIAII

+ IleBZII/IIAIII IIAII IIW'III IIxII

+e,IIw'1II I|6V1Il IIRII-

From (1.27), by using (3.9) and (3. 13), we have that

(7.17) IIBIII. IIBZII<IIAII-

From (1. 3) and our hypothesis (7. 1c) it follows

(7-18) IIAII IIXII >/|If+R||

>llf|| - IIRII

where e2 = l/(l-A) .

Using inequalities (7.17) and (7.18) to simplify (7. 16) we obtain

(7.19) IIaBZIIseZIezIIstI/IIfII+<1+IIBB1IIIIIAII>

-|I6d1II/llx||+ IIBBIII/IIAII

+ IIsBzII/IIAIIIIIIAII/IIB,II>x<B,>IIxII

+ eleW'lIl IIsleI IIBII.

where (6.4) has been used.
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From (6.9b), and our hypotheses (7.1d) and (7. 1e) it follows

(7.20) llsBlllézAllAll.

thereby simplifying the coefficient of I I fidl I I/I IxI I to be

(7.21) e4=1+2A.

Using (6.9a) as an upper bound for I I6B1I I and I I6 BZI I, and sub-

stituting (7.9) for I I5d1I I, we obtain after regrouping

(7-22)I I5d2I I < BZIeZ I I5fI I/I IfI I + 2| I5AI I/I IAI I

+<e2 e4 IIagII/IIsII +K4<r> IIscII/IIcIImml

'1

'(IIA||/IIBZIIX(BZIIIX|| +62 IIW || I|5V1|I IIRII'

where

(7.23) K4(r)= e2 e4 K1(r)+2K(r),

and Kl(r)= {17(2 +A)/I)/2(1 -AI).

We will now obtain an upper bound for the coefficient of I IRI I,

by applying the estimates given in (6. 4), (6. 8b), (6.9a) and (7.18)

-l

(7.24) BZIIW II II6V1||||RII

<e K (n-rI'XZIB IIIRII II6B II/IIB II‘2
\ 2 2 2 2 2

z .

g e2 K2(n-r)[II5AI I/IIAII +K(r)'X(C)II5CII/IICII]

2 2
-?< (BZIIIIAII/IIBZIII IllRll/llfll) IIXII-

If (7. 6), (7.9), (7. 22) and (7. 24) are substituted into (7. 5) and
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regrouped according to condition numbers we obtain

(7.2s) IIQ-xII/IIxIlsIezIIsgII/IIgII

2

+K5(r)|I6CIl/IICII)’)((C)+(eZII5fII/IIfII

+2e2||6A||/IIAIIIIIIAll/IIBZIII’XIBZI

2

+(e2e4ll68II/II8II

+e K (rIIIBCIIllICIIIIIIAII/IIBZIII’XICI’XIBZ)
4

+e

N
N
N

2

K,<n-r><IIAII/IIB,II> IIIBAIIIIIAII

+ K(r)X(C)I IscIl/l IcI I>3<2IB2>IIBI I/I IfII.

where

(7.26) K5(r) = e K1(r) + K(r).
2

We have shown that the condition numbers appear only linearly

in (7. 25), except for the coefficient of I IRI I/I IfI I. The question

could be asked, if whether the term I)(2(B2) is reasonable, or if it

might be the fault of the error analysis. Van der Sluis [31] has

shown, using a geometrical argument, that squaring of the condition

number in the unconstrained case can indeed be realized. If

K(BZ) I IRI I/I IfI I is not too large, however, the effect of 'XZ(B2)

can be minimized, and we would expect the condition numbers to

appear only linearly in the error.

Also, the full effect of a condition number is seldom or

possibly never realized, see Wilkinson [34] .
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Finally, because A and B2 are calculated during our solution

of (1. 1) to (1.4), we have the bound

IIAII/IIB,II< I‘T IIAIIE/IIBZIIE.

which is easy to calculate.
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Section 8. Rounding Errors in Computation
 

We will state here for later reference some known results on

computational errors as developed by Wilkinson [3 I, [35] . For our

purposes, we will limit ourselves strictly to floating point computa-

tion.

To develop our results, we introduce the very general notation

f1(- op- ), which is used by Wilkinson [36] and others. The "f!"

notation means, that if we have two quantities A and B, which

could be numbers, vectors, matrices, etc. , and a corresponding

operator "op" such as scalar addition, inner product, matrix multi-

plication, etc. , then fl (A op B) is that quantity which would result

in the computer by performing that operation by some computer pro-

gram using floating point arithmetic.

A floating point binary number x consists of two parts, the

binary exponent b and the binary mantissa a, where -% )a > -1 or

%g as 1. Then x is expressed as x = a- 2b. The computer memory

allocated for x is limited to a certain number of digits, which are

divided up in some way between a and b. We will denote by t the

number of binary digits allocated to the mantis sa. Also, we will

assume that the number of digits allotted to the exponent is large

enough to accommodate all of our calculations, and will not concern

ourselves here with the problem of exponent under- or over-flow.

Finally, we will assume that the computer with which we are working
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has a double -precision accumulator. This means when single

precision floating point numbers are retrieved from the memory

to perform certain arithmetic operations, they are allocated a double

precision mantissa before the operation is performed. The operation

is carried out in double-precision, and the result is not rounded to

single -precision until it is sent back to the memory.

Under these assumptions Wilkinson [36] has shown the follow-

ing results.

Section 8. 1. Vector Addition
  

Given two real numbers a and b, there exists a real 8,

such that

an) f1m+by=m+bfll+éh

wmne

(&2) fiqu*.

. n
Therefore, if we have two vectors x, ye R ,

(8.3) l|f£(x+v)-(x+v)Iléz-tIIXWII-

Section 8. 2. Matrix Multiplication
  

Given a matrix Ae [R and a vector b 6 En, let E denote

the computational error in calculating A-b

(8.4) E:f.€(A-b)-A-b,

where the entries of E are represented by ei for l g is m.
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Wilkinson [36], p. 83 has shown that under the assumption

nz't< .1

-t n

(8.5) IeiI\< 1.06- 2 [nIailIIblI +132 (n-(k-2))IaikIIka]

t n

$1.06‘2-n2 Ia,IIbI
k=1 1k k

- n 2 l n l

<1.06-2tn(z a,k)2(2b:)2 ,

1(2). 1 kzl

where the last inequality is obtained by using Schwarz's inequality.

Therefore, it follows from the definition of I I I IE and (3.4) that

-t
(8.6) IIEI|<1.06-2 nIIAIIEIIbII

-t —

42 KllnlllAII IIBII.

where

(8.7) K—1(n): 1.06 n3/z

Section 8. 3. Solution of a Triangular Set of Equations
 

nxn .

Let Le R be an upper- or lower-triangular non-singular

matrix. We now wish to know the computational error introduced

by solving the linear equation

(8.8) Lx=b, where x,bstRn,

for the vector x. Without loss of generality we will assume here

that L is lower triangular. Wilkinson [36] has shown that the

entries xi of x are calculated sequentially from i=1 to i=n
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by using

(8'9) xr = f£((-£r1xl - £r2 x2 - . . . - Ir,r-l xr-l+br)/£rr) ’

for l g rg n. Note that the vector x which we have constructed

in (8. 9) is in general not the solution of (8. 8), but rather, it is an

exact solution of the perturbed problem

(8.10) (L+5L)x:b,

where the lower triangular matrix 5L is bounded by [36 , p. 103]

(8.11) IIISLIKIIISLIIE

$1.06 2't(1 + 1.06- 2't-3(n+2)/2) IILI IE

.1; —

<2 K2(n) IILII ’

with

— -t
(8.12) K2(n)= 1.06 fn‘(1+l.062 3(n+2)/2),

and the value of n restricted sufficiently to make the term

1. 06 2-t3(n + 2)/2 << 1. Also, if L.1 exists, then Wilkinson

[36] has shown that (L + 6L).1 also exists.

Section 8. 4. Orthogonal Transformation.
  

An elementary orthogonal transformation Pe [R has the

T n .
form P = I - wa , where WeIR and IIwII =1. Given the

vector w, we will denote the matrix "P”, calculated using floating

point arithmetic, by the symbol P, (which may no longer be

orthogonal), i. e.
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(8.13) p s 11(1)) ,

where it is assumed that n2.t < . l. Wilkinson [35] has shown that

if Ae R 1s any matr1x, premultipllcatlon by P usmg floating

point arithmetic gives

— -t

(8.14) IIf£(PA) - PA||< 2 (3 7m IIAII ,

where

(8.15) I3 = 12.36.

Also if A is premultiplied sequentially by orthogonal transformations

P1, 2, °°', Pm, and for l<1<m we define

(8.16a) Pi: f1(Pi)

31
>!

= fl (E;~Xi), where X = A .(8. 16b) 1

1+1

Then there exists a 5Ae [Rnxm such that

(8.17) Am+1 .-. Pm- Pm_1- . P1(A+ 5A),

with

(8.18) IlaAIlsllsAllE

-t -t -1

sm2 I3(1+2 mm IIAIIE

.1;—

<2 K3(m)IIAII '

where [3 is given in (8. 15) and 1;;(m) is defined by

(8.19) 1_(-3(m) = (3 my2 (1 + 2'tp)m'1.
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The results of (8. 14) through (8. 19) hold also for post multi-

plication by orthogonal transformations. This is true because

(8.20) B P: (PBT)T.

m

where B e [R and P = P , and our norms are invariant under

transposition.
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Section 9. Rounding Error Analysis
 

We now wish to analyze the effect of computational errors on

our least squares solution with constraints. We will show that most

of the error can be accounted for by perturbational induced errors in

the initial problem.

Algorithm 1. 1 gives the exact solution (1. l) to (1.4) to be

  

I‘ -1 q

L 8

(9.1) x: Q .

W"l Vl {f - B1 L'1 3}

We will now define stepwise the order of computation defined in

(9. 1). This will determine the effect of the errors.

Step 1: Reduce C by orthogonal transformations to obtain L.

Define for l < i( r

(9,2) (:1+1 = fl (Ci Pi" where C1 = C and [LID] = Cr+1 s

and

‘ ._ A

(9.3) Pi = f1(Pi),

where Pi e IR is that elementary orthogonal matrix which

I A

exactly reduces row i of Ci . Define the orthogonal matrix Q by

6 1’3 1’5 13
(9'4) - l 2 r'

' From (8.17) and (8.18) there existsaperturbation SC in C such

that

(9.5) [flo] = (C+6C)8,
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where

-t—

(9.6a) II6CII<2 K3(r)IICII, or

-t
(9.6b) II6CII:O(2 ||c||).

Step 2: Calculate L-1 g . From (8. 10) and (8. 11) there exists a
  

* _

perturbation 5L in L such that

__1 — :k -1

(9.7) fl (L g)=(L+6L) g

— * -l . —-l
where (L + 6L ) ex1sts because L does and

>1: -t— -
(9.8) II6L ||<2 KZIrHILII-

Step 3: Calculate B1 and B2. Define for léig r
  

(9.9) A1+1 = ff (Ai Pi) where A1 = A ,

(9.10) [Ell-132] = Kr“ ,

where Pi is defined by (9. 3). From (8. l7) and (8.18) there exists

* mxn

a matrix 8A e [R such that

(9.11) [B1 IBZI = IA+5A*)6.

where

>k -t-

(9.12a) II6A Hg 2 K3(n) IIAII, or

>1: -

(9.12b) I|6A||=OIZtIIAIIL
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Step 4: Calculate B1(L + 5L*)u1 g .
 
 

Define ElelRm by

— — r -1 — — *-1
(9.13) fl(131-(L+ 8L) g)=B1(L+6L) g+£l

A bound for 61 is given in (8. 6)

-t— - — -

(9.14) ||51||<2 Kl(r)||131||||(L+8L*)1g||.

_ _ :1: -1

Step 5: Calculate fl(f - [B1(L + 5L ) g + £1]_).
 

 

Define EzelRm by

— — 4-1

(9.15) f£(f-I:B1(L+5L) g+61])

—f EL 8L*'1 5 8_-(1(+ )g+l)+2.

A bound for 62 is given by (8. 3)

-t — _. *-1

(9.16) |l€2|I<2 IIf-(BI(L+5L) 8+61)||

Step 6: Calculate W 15; reducing B2 with elementary orthogonal

transformations.

Define for 1< i< n-r

(9. l7) B2,i+r = f1(Ui B2,i) and B2,1= B2 ,

where

_ f A

(9. 18) Ui _ [(Ui) .

A “13:!!!

U1 6 [R is that elementary orthogonal transformation which exactly

reduces B2 i' Define the orthogonal matrix 0 by
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A A A

(9.19) V=Un_r-----U1 .

* mx(n-r)

From (8. l7) and (8.18) there exists a matrix GB 5 [R such
2

that

920 [WI—E -\7§+6B*
(' ) '6' ' 2,((n-r)+1)' ( 2 2 )

and

>I< -t— —

(9.21) Ilosz Hg 2 K3(n-r) IIBZII ,

— (n—r)x(n-r) , , ,

where We [R 18 an upper triangular matrix.

A

Step 7: Premultiplication by V.
  

Define

_ — —- * -l

(9.22) z ={f—(B(L+6L) g+£)+£}
l l l 2

andfor lgign-r

(9.23) z1+1 :fl€(Ui zi).

From (8.17) and (8.18) there exists a vector 6Ze [Rm such that

(9.24) z(n-r)+l = V(z1+ 62) ,

where

-t- _

(9.25) ||8z||42 K3(n-r)IIz1II .

We now define y e an-r by

(9.26) y : [I I0] 3 = 6 (-z- +52)

n-r r+l l l '

where
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(9.27) 9 =[I [o] 9.
1 n-r

A A

It is clear that V1 is the first n-r rows of V.

Step 8: Calculate W'l y
  

We have from (8.10) and (8.11), that there exists a perturbation

*

6W such that

- -l - * -1

(9.28) fl(W y):(W+ 6W) y,

—' * -l . —-1 . .

where (W + 6W ) ex1sts because W ex18ts and

t—* _. —

(9.29) ||6W Hg 2 K2(n-—r) ||W||.

Step 9: Premultiply by Q.
  

Define 71"an from(9.7), (9.28), (9.26) and (9.22) by

._ * _1

(L+ 6L ) g

(9030) 1 =

  
— *-1A — — *-1

_(W+6W) V1{6z+f-B1(L+6L ) g-51+52}J

andfor lgiér

(r+l-i) 11
(9.31) ~1. =u(i§

1+1 )°

Therefore our calculated solution is given by

(9032) X=lr+l ,

*

and from (8. l7) and (8. 18) there exists a vector 61 e [Rn such that

_ A— >:<

(9.33) x=Q(£1+61 ),
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where

9: -t— _

(9.34) H51 Hg 2 K3(1) ||11||.

From (9. 33) and (9. 30) we have an exact representation of our calcu-
 

 

lated least squares vector 3? using floating point arithmetic. We now
 

proceed to estimate how far i is from the true solution x given

in (9. 1). This will be accomplished in two parts. First we will

estimate how far ; is from an intermediate vector 2 which is the

exact solution of a perturbed problem, and then estimate how far 3‘;

is from the exact solution x of the original problem.

In order to obtain a compact expression, we will make the

assumption that the following quantities are moderately small. For

a real A satisfying 0<A<1 assume that

(9.35a) hlllL.l Ll |< A where h1 = max {1. ME} .

(9. 35b) 2't§2(r) K(C) g (A-AZVU +A) .

(9.35c) hzllaww'lllgA where h2=max{1, W},

(9.35d) Z'tEZm-r) K(BZK (AA2)/(1+A).

(9.35.) Infill/IlflleA.

(9.351?) HQ-XH/IIXIKAv

.A '

where a? and R will be defined in (9. 37) and (9.38). Also, assume

that the conditions needed to satisfy the hypotheses of Lemma 5. 1

and Theorem 7. 1 are met.
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It should be clear from (9. 8), (6. 5c), (9. 35a) and (9. 35b) that

__1 *

(9.35g) llL ll HISL USA.

A —.

where L = L = 5L + L. Likewise from (9. 29), (6. 6c), (9. 35c) and

(9. 35d) we have

>:< --1

(9.35h) l|6WllllW INA.

where Wsz 6W+W.

We will now account for most of our errors by interpreting them

as errors induced by a perturbation of the initial problem (9. 1), and

then apply Theorem 7. 1 to bound this portion of the error. Consider

the following constrained least squares problem

A A

(9.36a) C=C+5C,g=g,i.e. 5g=0,

where 5 C is defined in (9. 5),

A A

(9.36b) A=A+5A,f=f,i.e. 5f=0,

where

>5: AT >:<

(9.36c) 5A=[0|5Bz ]Q +5A ,

* *

6B2 and 6A are defined in (9. 20) and (9.11) respectively, with

solution 3? which satisfies

AA

(9. 37) Cx = g ,

minimizing the norm of

A AA

(9038) RzAX'fo
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A /\

From (9. 5) it is clear that the orthogonal matrix Q reduces C _

exactly to [LID] , where (9. 6b) gives a bound for I [GO] I . Also,

from (9. 36b) and (9. 11) we have

939 26-[s.s.te*]
(' ’ " 1 2 2 '

. A _ *

and from (9.20) the orthogonal matrix V reduces B2 + 632 to

A A .—

[E31] . This is the reason we have L = L and W = W .

Therefore, using Algorithm 1. l we have

  

:4 g a

A A A l
(9040) X: Q = Q a ,

__ A ._ __

w l v {f - B L l g} 7'

L... l 1 .H

where

— * 3 f E 3 a(9.41) (B2 + 6B2 ) 2 - - 1 1+ .

In order to obtain a bound for ”Till I, ||§Z|| we use (9.11) and

apply (3.13), (3.9)and (9. 12b) to obtain

(9.42) ”3,”. IIBZII=0(||AII)-

Using (9. 42) on (9. 21) we have

* -t
(9.43) ”45132 II = 0(2 ||A||).

Therefore, from (9. 36¢), (9.43), (3.13) and (9. 12b) it follows that

-t

.(9.44) ||5A|| = 0(2 Hall) ,

an: A'1‘ *

where 5A: SBZ [0'1] Q +5A .
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If we use Theorem 7.1, (9.44) and (9.6b) it follows that

(9.45) (morn/”XII =0(2'tx(<:))

+o<2‘tx<B,> IIAII/IIBZII)

+<><2't MC) 7((32) IIAII/IIBZID

+ o<2'tx<c> 12(BZXIIRIl/IIfIINIIAIIZI

2

IIBZII n.

where in the last expression we have merged terms by using the fact

that K(C) )1 .

We now want to estimate the error which we cannot account

for by perturbation. Toward this end use (9. 33). (9. 30) and (9. 40)

to define Al e [Kr and A2 ean-r

_ A A * AA}

(9.46) x-x=Q6£ +QA

2

Taking norms, it follows from (9.46) and (6.10) that

_ *

(9-47) llx-§||<||51||+||A1||+||A2||-

We will consider first the vector Al, and use (9.30), (9.40) and

(3.17) to obtain

- *-l —-l

(L+5L) g-L g(9.48) A1

--1 *-1-—1 *A
-(I+L 6L) L 6L d



60

Taking norms and using (9. 35g) and (3.16) bounds the first inverse,

using (9. 8), (9.35a), (6.5c) and (6.10) yields

(9.49) ||A1||= 0(2'tX(C) (IQII).

Before evaluating I IAZI I, we will bound the vectors 51 and 52 .

To accomplish this, we show the following result from (9. 39) by

using (3.9) and (3.13)

.. _ >§< A

(9-50> llBlll. Ill-32+(513z IISIIAII-

_-1 A

Also, it follows from the fact that L g: (11

- *-l --1 *-1"

(9.51) (L+5L) g=(I+L 5L) (1 .

1

Therefore, from (9.14), (9. 50), and (9. 51) we have using (9. 35g),

(3.16) and (6.10) that

-t A A

(9-52) ||51||=0(2 IIAII IIXI|)~

From (9. 16), a bound for I ICZI I follows from the simplification of

the expression

-- *— —- _ _

(9.53) f-B1(L+6L)lg-<€=f-BL g+B1(L

— *

:(B +5B 3 £31 L6L* L5L*d
2 2) - + (+ ) 1-619

2 1

Where we have used (3.17), (9. 40) and (9.41). In (9. 35g) it is

assumed that I IE-1 I I I I5L*I I < A < 1, upon applying this twice
 

and using (9. 50), (3.16), (6.10) and (9. 52) we have that the norm of
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(9.53)is 0(||K|| ||§2||)+0(||fi||), hence from (9.16)

-2 A A -t

(9.54) ||£2|| =0(2 IIAII IIxII)+O(2

A A A A A

'[IIRIIMHAII le||)]|lAll lell).

A A A

Using (9.38) we find IIAII IIxII )IIfII - IIRII , which, when

combined with (9. 54) and the assumption (9. 35¢) that

A

IIRI |/||£| |4 A <1, yields

-t A A

<9-55) ||52||=0<2 IIAII IIxII).

We now define the vector C3e [Rm by

{f-§1(E+5L*)'lg-61+5} -{£-§ E'lg}(9.56) 6 2 1
3

-- -—-1 *-1--1 *A
-5, E,B1(I+L 6L) L 5Ld1 1+2

A bound for I I63I I is obtained in similar fashion as that employed

for I ICZI I, therefore we have from (9. 50), (9.35g), (3.16), (9. 8),

(9.35a), (6.5c). (9.52) and (9.55) that

-t A A

(9.57) ||<53||=0(2 X<C>IIAII IIxII).

Finally, using (9. 25) and (9.22) we have

't- - " * -1 5 a(9.58) ||5z||<2 K3(n-r)IIf-B1(L+5L) g- 1+ 2”.

Upon examination of (9. 16) and (9.58), we see that they differ only by

($2 and the factor E3(n -r), therefore using (9.55) it follows that

-t A A

(9.59) ||52H=0(2 IIAII UK”)-

The definition of A2 comes from (9.46). (9.40), (9.33) and (9.30),
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which yields the following simplification using (9. 56), (3. 17) and

(9.40)

_ —— *-1

)

_ ::<_ A

(9.60) A2=(W+5W)1V1[52+{f-B1(L+5L g

_-1/\ ___1

_£1+£2}]-W VIIf-BIL g]

97-1 (1 + 6w* v—v"1)'1 [-5w* 32 + 91(53 + 57.)].

Using (9.35h). (3-16). (9.29). (6-10). (3-14). (3-7). (9.57). (9.59).

(6. 6b) and the fact that W = W, it follows upon taking norms

-t _ _1 A A

(9.61) IIAZII =0<2 1(0) IIW II IIAII IIxII).

— _ * A

where we have used the fact that IIWII = IIBZ+6B2 IIQ IIAII ,

and 7L(C) 21.

A

Finally, from (9.44) it follows that IIAII = o (| IAI |), hence

(9....) ||A2|| = 0(2't'X(C)'X(B2) IIQI) IIAII/(13,11).

where we have used the fact that ||w|| = ||132|| and (6.4).

We are nowinaposition to bound ||51*||. From(9.34) we

have

(9.63) ||51*||=0(2't||I-1||),

and substitution of (9.33) into (9. 46) yields after rearrangement

alt

Therefore, a bound for I I6! I I follows from (9. 63), (9. 64), (9.49)

and (9.62)
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Z

taco) ((211) +(9.65) ||61*|| =0(2'

-2t

o<2 X<C)X(lell?ll IIAII/IIBZIIH

0(2.‘t HQ“).

We now have our bound for I [BE—Q] I from (9.47), (9. 49), (9. 62),

(9. 65) and the fact that 7((0) >1

_ A -t A

(9.66) IIx-xII =0(2 7((0) IIxII)

-t

+0<2 70C) 7032) IIQI! IIAII/llell)o

From (9.45), we have a bound for I IQ-xl I/I IxI I, which can be

tested to see if our assumption that I Ix-xl I/I IxI I< A is

reasonable. If it is, then from (9. 66) we have

_ A -t

(9.67) IIx-xII = 0(2 ‘X(C) IIxII)

-t

+0<2 700170le IIxII IIAII/Ilelll-

From (9.45) and (9. 67) follows our final result

_ -t

(9.68) llx-XII/l IXII = 0(7- 70(3))

-t

+ 0(2 7032) IIAII/IIBZII)

-t

+ 0(2 7((0) 9((132) IIAII/IIBZII)

-t 2 2

+ 0(2 700) X (BZXIIRll/lIfllxllAll/IIBZII) )-

(-9. 68) shows the errors introduced by solving (9. 1) using

floating point arithmetic. Here we have suppressed all quantities

which are constant (depend only on A, r, n, and m) to illustrate the
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. -t . .
dependence on the machine accuracy, 2 , and cond1t10n of the

matrices C and B As hoped for, the influence of the condition of2.

the constraint equations C appears only as a linear factor in

(9. 68). However, the term of major influence is the last one, in

which the condition of B2 is squared. The effect of this term will

be minimized if the quantity X(B2) I IRI I/I IfI I is not too large,

i.e. the residual R is small compared to f.
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CHAPTER 2

BLENDING FUNCTION THEORY

In Section 1, an introduction to blending function theory as

developed by Gordon and Hall [12, 13, 14, 15, 16, 17] is given.

The presentation will be a generalization of their results to the more

general setting of interpolation spaces. Most of the proofs of

Section 1 will follow from their own. However, the more general

setting of Section 1 will enable the application of blending function

techniques in the following chapter to be accomplished with greater

ease.

In Section 2 the dimension of discretized blending function

spaces will be shown and several bases will be explicitly developed

in terms of the cardinal bases for the corresponding interpolation

spaces.

In Sections 3 and 4, natural cubic spline blending will be

developed with error bounds given for "approximate" natural cubic

spline blending.

Finally, for fe C [a,b] and ge C( Ea, b]x[c, d]) we define

I If! I -- sup |f<x>l and I lgll -- sup (saw).
agx‘b a<x<b

C<Y<d
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Section 1. Spline and Blending Function Interpolants
 

Givenamesh fix:a=x1<x <o--<x =b, the space of

2 M

cubic splines on 17x is defined to be

2 2 . . .

(1. 1) S (Trx) 2 {se C Ia, b] Is(x) is a cublc polynomial on

[xi, xi+1] for 1g is M-l} ,

see Schultz [29 :I .

Let fe C(1)[a,b:I , then the type 1 cubic spline interpolant,

sf, associated with f is defined to be the unique spline which

safisfies

(1.2a) Sf(xi)=f(xi)’ lgigM

! ._ I ° _
(1.2b) sf(xi)_f(xi), 1—1, M.

The following theorem of Carlson and Hall [ 5 ] gives error

bounds for type 1 spline interpolation.

Theorem 1.1 (Carlson and Hall[5 ]). Let fe C(m)[a,b] and 17x
 

beamesh on [a,b]. Then for 1<m$4, ogrgmin{m,3}

(r) (m) m-r

(1.3) ”(sf-f) ||s émr ||£ IIhx .

where the mesh size h = max Axi; Axi = xi+1 -xi, the mesh

lgigM-l '

ratio M = max Axi/ min Ax, and Emr is givenin

lgifiM -l lgifiM - 1

Table 1.
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TABLEl

Cmr r=0 1‘21 r:2 r-_—3

m=1 15/4 14 -- --

m: 2 9/8 4 10 --

m=3 71/216 31/27 5 (63+8M:)/9

2
m: 4 5/384 (9+ (EVEN) 5 (2+Mw)/4

 

Bivariate Functions:
 

We will present here an introduction to blending functions as

developed by Gordon and Hall [12] ,[l 3],[14], [l 6] . To accomplish this,

it will be desirable to introduce the following general notation, which

will allow us to develop at one time many of their results. Although,

it should be pointed out that the methods of proof used here are just

slight generalizations of their own.

In what follows, we use the notation

(1.4) 51"“: p(k’“[f] = 8k+£flaxk8y£ .

Lefinition 1.1: Let C(m’n)([a, b] x [c,d]) = C(m,n) be the space

0f real valued functions with domain a, b] x [c, d] such that if

f6 C(m’ n) then f(k’ 1) exists and is continuous for 0 g k g m and

0<l{n.
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Definition 1L2: A projection operator (projector) P is an idempotent
 

linear operator from a function space onto a subspace of the function

space.

We will consider here only projectors which separate the x

and y variables, where the dependence on one of the variables can

be represented by an element from a finite dimensional vector space.

This space is to satisfy an interpolation property for certain values

of the function and its derivatives at specified points. Therefore,

we introduce the following notations

We are (given the mesh "x3 ( x1( x2( - - - ( st b where

the points are not necessarily distinct. Also, the non-negative

integer m, the interpolation function a:I --)-J.m, where I =

M M

{i is an integer IléiéM} and Jm={j isaninteger I0(j(m},

satisfying the following restraint: if there exists distinct natural

numbers ‘3 and t such that x8 = xt then a(s):la(t) .

Definition 1. 3: V(1rx, M, m) 30"“) [a,b] is a finite dimensional
 

interpolation vector space with respect to a on the mesh "x if and

only if there exists an algebraic basis {'Pi} i541 satisfying the following

cardinality conditions for l < i, j < M.

(0(1)) 1 if i=j

(1'5) (D Oififzj
(4,» (le = on. =

Such a basis for v("x' M, m) is called a cardinal basis.
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In terms of the cardinal basis, if f; C(m)[a,b], the the function

M .

(l. 6) p(x) = 23 {(a(1)) (xi). ¢i(x)

- i=1

satisfies the interpolation conditions

(1.7) (p(“(mm (xi) = f(a(i))(xi). for l\< i$ M.

Example 1.1: Let V(1rx, M, 0) be the space of Lagrange interpo-

lation polynomials of degree M-l on [a,b] interpolating on the

mesh ux:a< xl< x2< < ng b, then for 1‘ is M, (1(1) = O

and the cardinal basis is { 19:51 where

(1.8) f.(x)= n (x-x.) n (x.-x.).

1 i=1 ’ i=1 ‘ J

5941 5.5

Given f ( cm) a, b] , then the interpolatim polynomial is given by

M ((n
(1.9) p(x): E I“ (xi)li(X).

i=1

f(9(1))
where (xi) = f(xi) .

Example 1.2: Type 1 cubic splines on M-2 )2 knots.

2

Then V(1rx, M, 1) - S (11x) on the mesh nx.a - x1- x2< x3<

< xM-2< xM_1 = xM = b, where 0(1) = a(M) = l and for

2‘ i < M-l, a(i) = 0. Also, the interpolation spline satisfies con-

' ditions (1. 2a) and (1. 2b), and the cardinal basis {Ci(x)} 3! satisfies

for l<j(M
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_ l ._ .. ' _
(1.10a) Ci(xj)— 6ij’ Ci(x1)— Ci(xM)—O for 2<1<M1

(1. 10b) C'1(x1)—-C'M(xM): l, Ci(xj)=0 for i=1, M.

Example 1. 3: Cubic Hermite splines on M knots.
 

1
Then V(1rx, 2M, l)— H (17x) on the mesh 11'x.a_x1 -xz<x3—x4

< (XZMI: XZM : b, where 0(1) = (1-1) mod 2 for l( 1‘ 2M.

Given fe C( l),[a b], the Hermite cubic spline interpolant p(x) satis-

fies p(a(i))(xi) : f(0(1))(xi) for 1 <i< 2M. The cardinal basis

{HiZIizjiI satisfies for lg jg M and l< i< M

_ l(1.11a) HZi_1(x2j_l) _ 513., H21_1(x .

(1.11b) H .(x21 )=0,H'(x,)=6
2j-1 2i 2; ij '

Remark: Even though our notation V(1rx, M, m) does not include

M

a reference to 0 and {<1>i}i_l , it is understood that these two

quantities are always associated with V(1rx, M, m).

We are now in a position to define the projection operator P

\ x

of a bivariate function. Given the interpolation vector space

V(1rx, M, m), the corresponding interpolation function 0., basis

(In. 0)
{<I>i:IM1i-1 and fa C , we define Px[f] pointwise to be

M .

(1.12a) (Px[f])(x,y)‘= z f(0(1):0)
i=1 (xi. v) 45x) .

where it is clear that
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0)
(1.1210) (D‘a‘i’m Px[f]) (xi. 9) = 159”" (xi. 9)

for 1g i < M. Examination of (1. 12a) and (1. 12b) shows that Px

is indeed a projection operator on C(m’ 0).

We define the univariate interpolation vector space

V(1ry, N, n) _C_ C(n) c, d] in the variable y with interpolation func-

tion 8:1N—+ JN and cardinal basis {413:1 in an identical manner

as above. The corresponding projection operator nyf] for

(0.11)
f6 C is defined by

N .

>3 f(0.130))

(1.13) (P [3]) (my) =
Y J=1

where for 1< j g N

(D(o.(3(j)> (0.50))
(1014) . Py[f]) (X, Yj) : f (X, Yj) °

In the usual manner, we define the sum or difference of two

operators to be the pointwise sum or difference, and the product

as composition. Direct calculation shows that the following state-

. (1111.111)

ments are valid on C where m1) m and n1)» n , and

Px and Py are defined as above.

(1. 15a) Px PY = PY Px ,

(0.1)
(1.15b) Dw'l) Px = Px D for 0<£< n1, and

(k,0) for nggm .
(k0)

1.5C D’ P=PD(1) y v 1
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We define the projection operators

(1.163.) R =I-P ,
x x

9
(1.16b) R =I-P

v v

where I is the identity Operator. The following relations are a

. (mllnl)

direct consequence of (1. 15a) to (1. 16b). On C where

m>,m andn

1 >n1

(1.17a) RR=RR
x y y x

(1.17b) D(0'1)Rx=RxD(o'1) for ogig n1, and

(k. 0)
(1.17c) D(k’o)Ry=RyD for 0(k‘ml .

(m. n)
The first observation that we make is that given f6 C , then

Px Py [f] is the tensor product interpolant to f, where

M

M
2

f(c1'(1't).fi(.i))

1

. 8 P P f =(11) (x y[])(x.v) 1: ,- (xi. vj)4>i(X) ¢j(v) .

see Gordon and Hall [14]. It follows from (1. 18) that for 1‘( i( M

and lgj S N

(a(i).fi(j)) _ (a(i).fi(j))
(1.19) (D Px Pym) (xi.vj) - f (xi.yj).

The error of the tensor product interpolant to f is given by

. (1. 20) (I - Px Py) [f]: Rx[f] + RyEfJ - Rx Ry[f] .
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Gordon and Hall [17] (see Theorem 1. 2 below) have shown that

there is an interpolation scheme using the projection operators Px and

Py which will eliminate the terms Rx[f] and Ry[f] in (l. 20).

Definition: The operator on C(m,n) defined by

(1.21) Px®Py=Px+Py-PXPY

is the blending function operator and Px Q Py[f] is the blending

function interpolant to the function f6 C(m’ n).

(m. 11)
Theorem 1. 2. (Gordon and Hall [17]). If fe C then
 

(1.22) (1 - Fx 3) Py)[f] = Rx Ry [f].

Proof: I-(P +P -P P) I-P +(I-P)P
x y x y x x y 

(I - 1°le - Py)

RR.

xy

The set of functional values and derivatives on which Px G) Py

interp'olates f is given in the following theorem.

Theorem 1. 3. (Gordon and Hall 17]). If fe C(m,n), then for

l<i(M and .ye [c,d]

(1.23a) (13“"“'°’I.=>x o nyflltx,.y) = £“"‘"°’(xi.v).
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also, for lgjgN and xe[a,bJ

(0.9m) f(0.15m)
(1. 23b) (D PKG) Pym) (x. Yj) = (x. Yj) .

Proof: By direct calculation.

What we have accomplished is the approximation of a bivariate

function with a sum of univariate functions. Therefore, it should be

clear that the image of C(m,n) under the operator Px® Py is not

a finite dimensional space. In comparison, from (1. 18), it is clear

that the image of C(m’ n) under the tensor product operator Px P

is a finite dimensional space. Therefore, to implement the blending

function method, it is usually necessary to make second level

approximations to f(a(i)' 0) (xi, °) and f(o’ BU» (. ,yj) which have

an accuracy compatible with Px® PyEf] . This is the sacrifice

which must be made in order to achieve this gain in accuracy.

Next, we want to show how much more accuracy is gained by blend-

ing function techniques, to see if it will justify the extra work of

irnplementation. Toward this end, we note that the accuracy of

blending function methods depends upon the interpolation accuracy of

the two univariate spaces V(1rx, M, m) and V(1ry, N, 11). There-

fore, we introduce the following general notation for an univariate

e r ror bOlmd.
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Definition 1.4: Let V(1rx, M, ml) be an interpolation vector space,

with interpolation function 0 , and cardinal basis {69:11 . We

say V(11-x, M, m1) has an error bound for the kth derivativeif

and only if there exists a function gx(k) = gx(hx’ m1, m2,k) such

that if x e [a, b] is any point where ¢i(k )(x) exists for l ‘ ig M,

(m2)

and f e C [a, b] where m2 )max (ml, k} then

k (m l

(1.24) “((17:71) - 2 {Minn1M.( )(§)|<<8x(k)|l f 2 ll »
i=1

where hx is a parameter of the mesh fix. It is clear, if

V(1rx, M, ml) has an error bound for the kth derivative,

(m2: n)

g :0 , ye [c, d] , Px is the corresponding projection opera-

tor and x is any point satisfying Definition 1. 4, then

(1.25a) (D(k' 0) 19x [0) (9:, y) exists, and

Ba. 0)
(1.25b) ( Px[£])(9t,-) t C(n)([c,dJ) .

Therefore, it follows from (1.15b) that for o < 1-4 n

(1. 26a) (D‘k' “ Px[f1)(§.y) = (D‘k'm lefm' "3) (9w).

correspondingly

(1. 26b) (13‘1“) Rx [ill (£9) = 03”" °’ Rxffw' “1) (2‘49)

and finally

(mzll)

Rx(3])(x.v)|< 8x00 sup If (t,y)|.

«t4:

(1.266) lurk")
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For the interpolation space V(1ry, N, n1), interpolation

N

function [5.IN Jn and cardmal baSls {tpj}j=1, we use an

t

analogous definition for an error bound for the l h derivative, and

we have conclusions similar to those given by (1. 25a) to (1. 26c).

We are now in a position to prove the following theorem, which

is a generalization of the error analysis given by Gordon and Hall

[17].

Theorem 1.4. Let V(1rx, M, m1) be an interpolation vector space
 

which has an error bound for the kth derivative for 0 ( k ( m3,

where m is an integer such that 0g m Also, let

3 gin‘3 2'

V(1ry, N, n1) be an interpolation vector space which has an error

bound for the 1th derivative for 0 \< l \< n , where n3 is an integer

(m2,n2

such that O<n3\<nz. If f6 C‘ , then

(m .n )
k,£ A 2 2

(1.27) |((I - PKG) Py)[f])( ’(x. 9H s gx(k)gy(1)llf (I.

and

(m .1)
k,£ 2

(1.28) |((I - Px Pynfl)‘ )(§.9)|é gx(k)l If ll

(k.n ) ‘ (m .n
2 2 2

f f k f f+gy()ll l|+gx()gy()l| II.

where £2, 9, m2, n2, gx(k) and gym) are given in Definition 1.4.

Proof: For 0 g qg n and for each y e [c, d] it follows from

2 

(1.26c)
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(m .9)
k

(1.29) ((1)‘ "“Itx[fl)(:’$.)r)l.<gx(k) sup If 2 (-.y)|.
a<x<b

(n

Because D(k RIf](x )eC 2),I_c d] and 41%! )(9) exists for

(191)
l g j g N we have that (D RY Rx [f])((x,y) exists and from

(1 . 29) and Theorem 1. 2

k,f A 0,! k,O A A

(1.30) |(D‘ ’Rnyifl)(x.9)|=|(D‘ ’RYD()I)Rx[f:I)(x,y)I

(k n2)

s g (1) sup (D Rx8] (x.-

(m n)

< gx(k)gy(1)llf 2 2I).

The proof of (1. 28) follows in a similar way from (1. 20), (l. 29) and

(1.30)

Corollary 1.1. (Gordon and Hall [17]). If it c( m'n)([o. h] x [0 11]).
 

h< l, and the spaces V(1rx, m, 0) and V(1ry, n, 0) are polynomial

spaces as defined in Example 1.1, then

- (m, n) h-m+n(k+f)

(1.31) ||((1 — Pxy(9P)[f])(k' |<€mk£mZ IIf IIh

and

k,1 - ,2 -k
(1.32) ||((1 .px Py)[f])( )||< émk||£(m )IIhm

"’ k, -l " "’ + k+1
+6n,||t‘ “ml.“ +5mk€n,||t‘m n)|Ihmn‘ ),

where 0<k< m, og l < n, €mk = l/(m-k)! and En! =l/(n-1)! .
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Proof: From [24, p. 289], if fe C(m)[0,h], then

m

(1.33) [f(k)(x) - 2

1:1

110(3) (m)I Ihm-k '
1. _

("i’ 11‘ ’(x)|< Emkl If

"' -k

hence gx(h, O, m, k) = émk hm . An application of Theorem 1. 4

completes the proof.

Corollary 1. 2. (Carlson and Hall [5]). If f: C(m'n)([a,b]xl:c,d_]),

l<m,n <4 and the spaces V(1rx. M, l) and V(1ry, N, l) are

cubic spline spaces given in Example 1. 2, then

(man).
k,1 - -1

(1.34) ||((1-ch+)Py)[£])( )||< 61,1156an: ||hxmlfi-1Yn ,

and

(k9! ( 91 "k

(1.35) [|((I-PxPy)[f]) )||<Emk||£m )||hxm

(k,n) n-l m,n m-k n-l

+5111”: th +8mkén1||5 )||hx hy
D

where 04 kg min {m, 3}, og 1\< min {n, 3}, also am and C

k n!

are given in Table l, h = max “(1+1-X.) and

Z‘i‘M-Z

h = max (y -y.).

Y 2901-21“ J

Proof: We have an error bound for the derivatives given by

Theorem 1. l, where gx(hx, l, m, k) = ka hxm-k .
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Carlson and Hall in the same paper [5 ] have given other error

bounchfor Px PY [f] under weaker continuity requirements for f .

Corollary 1.3. If qu(m'n)([0013] x [c.d]), ls m,n(4 and the

spaces V(1rx, 2M, 1) and V(1ry, ZN, l) are Hermite cubic spline

spaces defined in Example 1. 3 then

11,1 " A , -k -1
(1.36) ||((I-Px®Py)[f])( )H‘kaénlllf‘m n)||11::‘ by” ,

and

WA) A nun nhk
(1.37) [|((I-Pxpy)[f]) llsémknf‘ ||11x

A A A

(k,n) n-I (m,n) m— n-l

+6111”: ((1.y +smk5n, n: |th "1.), ,

 

 

A A

where 0<kgmin {m, 3}, 0<l(min {n, 3} also 5 andC

mk n!

are given in Table 2, h = max (x . -x .) ,
lgist 21+] 21

h= max (Y. -y.).

l<j(N-l ZJ+l 2]

TABLE 2

A

gmk k=0 k=1 k=2 k=3

m = 1 5/4 4 -—- ---

m = 2 3/4 5/2 12 . ---

m = 3 '7/24 I 5 7

m = 4 1/384 {37216 1/12 1/2
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Proof: From Carlson and Hall [5 J, if f e C(m) [a,b], then
 

k 2M - A -k

(1.38) ||l‘ )- 2: 50(1)) (xi) Hi] | < imknf‘m’n hxm ,

i=1

. . A m-k

implying that gx(hx, l, m, k) = £1“th .

We are now in a position to describe the second level decompo-

sition of the blending function interpolant, see [17] . The purpose of

this is to create a finite dimensional interpolation scheme while pre-

serving the accuracy of our blending techniques.

Define the

Meshes: Fx: a {£15224 ° ' ° $35

wry: c<fi<72<m s fi<d

Interpolation functions: 3;: I——*J_
M m

'6': Ifi——>-JB

Cardinal bases: {59:11

2
|

{411.}J. 1

Projection operators: P; and

N
2
”

11 H

I

x

P and R = I - P- .

Y Y. Y .

From this define the interpolation spaces vfix, :4, m) S C(m)([a, b])

and Vh-ry, N, n) §C(n)([c,d]).r
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* *

For f e C(m ,n ), m* = max{m,'r—n‘} and 11* = max {n,?l'} define

the discrete blending approximation to PXG) Py [f] as

(1. 39) PXG) Py[f] = Px Py [f] + 13ny [f] - Px Py[f] ,

where, for example

M—

2: M
2

(1. 40') 55,, Py[f](x. v) = r‘"“" 5"”(351. vi) 310:) (am .

H I
I

y
—
n

H
.

I
I

0
—
0

In general, the discrete blending approximation Px® Py [f] does

not interpolate values of f and its derivatives. However, with the

following restriction on the interpolation spaces, we will prove that

Px® Py [f] does indeed interpolate.

Definition 1.5: Let V(1rx, M, m) and Vfir'x, M, ‘55) be interpola-

tion vector spaces with interpolation functions a and '5 respectively,

then V(1rx, M, m) is subordinate to Wix, M, ii) if, and only if

mg IT: and for each i where l ( i< M there exists an i- such that

l<-i-< M, xi =E-i- and a(i)='c'r—(-i—) .

We have the following generalization of a theorem due to

Gordon and Hall [17] .

Theorem 1. 5. Given the interpolation spaces V(1rx, M, m),

VG”: , M, m), V(1r , N, n) and VHF, N, n) where V(1r , M, m) is

x y y x

subordinate to 7(Fx, M, m) and V(1r , N, n) is subordinate to

(m.
VfiFy, N, n), if is C n) then for 1< ig M, l<j< N, 1<T<M
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and 1< JTC N

(6(1).p(j))-—- _ E(‘i’).p(j)) .-
(1. 41) (D Px® Pyiflxn‘cayj) - f‘ (ximj)

and

(a(i).'6('3))—— — _ (a(i).'5('§)) -
(1. 42) (D PXGD PYEflxximj) - (any)? .

Proof: By direct calculation.

Even if our blending spaces are not subordinate to those used

in the second level decomposition, Px® Py[fJ is still an approxi—

mation to PxG) Py [f] and hence to f also. This is the conclusion

of the following theorem.

Theorem 1. 6. (Gordon and Hall [17]). Given the interpolation
 

spaces V(1rx,M, m), 17(37):, M, 1%), Way, N, n) and VHF)” E3),

all * .

if’ f e C(m ,n ) where m* = max {m,r-n} and 11* = max {n51} then

(1.43) (1 - PxG) Py)[f] -.- Rx[f] 4. Ry[f] + Rx Ry[f]

- Rx Ry [f] - Ry Rxfi] .

Proof: I-P®P=I-PP-PP+PP
—_ x y x Y y X X y

I-P®P +71 P +3 P
x y xy y.x

RR+'§-_§R+'§-RR.
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An examination of Theorem 1. 6 and Theorem 1. 4 yields the

following generalization of a theorem by Gordon and Hall [17] .

Theorem 1. 7. Given the nonnegative integers m3< min{m ,-rr—1'2}
 

2

and n g min{n h-2}, the interpolation spaces V(11-x, M, ml) and

3 2’

V(?r'x, M, m1) which have error bounds for k, where O< kgm

3

also the interpolation spaces V(-rry, N, n1) and V(Fy,NN, 311) which

m*1

have error bounds for f where 0( lg n and if f (C(m2' n2)
3!

>1: — >1: —
where m2 = max {m2, m2} and 112 = max {n2, n2} then

'— k, I A 9(1.44) (m - Pxo pyml)‘ >x.y))<g(k)llf(m2 "II

_ k,—
+ g(1)||f( “2’” + g (k) g (1)|If(m2’n2)|l

Y x Y

_ (I?) , - (m :—+gx(k) gy(1)l|f 2"Z’II +gx<k)gy<1)llr 2n2’1).

where Q and 9 satisfy the conditions of Definition 1.4.

Proof: Similar to the proof of Theorem 1.4.

 

If it is possible, by some procedure, to increase the accuracy

of the spaces 37(17):, M, .511) and WFy’ N, 31), we see from

Theorem 1.7 that the total increase in accuracy for PE? is

limited by the term gx(k) gy(1)l [f(mz'n2)| I . Therefore, it is

not possible to increase the accuracy beyond that of the original

blending approximation.
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Elample l. 4: If we take for each of our interpolation spaces the

space of cubic splines defined in Example 1. 2, then V(-rrx, M, 1) =

2 -—_. ,— 2.. 2 —._. —

S (Trx) . V(1rx. M. 1) - 5 (fix). V(Try. N. 1) - 5 (Try). WHY, M. 1) —

2 — — . .
S ('53), m2 .. m2, 112 _ n2, m3 — m1n{mz, 3}, n3 _ mm {n2, 3}

lg m2, n2< 4 and if fe C(m2,n2) then

__ -k
(191) (m ) " ml

(1.45) II((I - px® Pym-l) ll< €m2,k| If 2‘ (1h,

+ a ||f(k’ ’12)) ('11 “‘2"
n .1 Y
2

m ,k n ,f x y

2 2

+am kan £||f(m2’n2)||hme-kh ”2"
2: 2: Y

+ a a ||f(m2’n2)| |h mZ'k‘fi “2"
m ,k n ,l X- Y

2 2

For ease of comparison, we will let h = max {hx 'hy}'

h = max {hx’ hy}' m2 2 112 = 4 and k = 1 = 0. Then the accuracy

in (l. 45) is limited to O(h8), and therefore we take h = h2 to

preserve the overall accuracy of the scheme. This tells us how

much the meshes ‘Fx and 'fiy must be refined in (l. 45) to obtain a

scheme which is 0(h8).

In comparison, for bicubic splines (tensor product (1. 35))

the accuracy is 0(h4). In the next section we will compute the

dimension of discretized blending function spaces, and therefore

will be able to show that the increase in accuracy is worth the extra

labor of implementation.
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Remark: In our notation V(1rx, M, m), m can be any integer

which satisfies m*< m< m**, where m* is the smallest integer

which allows enough continuity to perform our interpolation and m**

is the largest integer (if it exists) for which V(1rx, M, m) g

C(m**)[a,b]. In Example 1. 2, for type 1 cubic spline interpolation,

m can be equal to l or 2. In Example 1. 3, for cubic Hermite

splines, m = 1 is the only choice. Note that by increasing m, we

restrict the choice of f which will satisfy our theorems. However,

sometimes 1t is necessary to use a m) m , 1f, for example, we

wish to satisfy Definition 1. 5 or Theorem 1. 5.
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Section 2. Dimension of Dis cretized Blending Function Spaces
 

In applications other than interpolation, such as discrete least

squares, Ritz -Galerkin methods and collocation, it is necessary to

have a finite dimensional space on which to do the computation.

Therefore, we introduce 'the following definition.

Definition 2.1: Let V(1rx, M, m), fi‘ix, M, :13), V(1ry, N, n) and

7(7)}, N: '13) be interpolation spaces (see Definition 1.3), then define

the discretized blending function space DBF(V(11-x, M, m),

V(1ry, N, n), V(1rx’ M, m), V(1rY, N, n)) to be the image of

C(m’k’ n*)( [a,b]x[c, dJ) under the linear discretized blending func-

tion operator Px PY + Py Px - Px Py’ (denoted by. PxG-D Py)’ where

m*= max {m, 13} and n*=max {n, E} .

From this notation, it is understood that the blending spaces

are V(1rx, M, m) and V(1ry, N, n), and the spaces which give the

second level approximations are W11}, M, iii) and WE}, N, '5).

When the interpolation spaces are understood, we will drop

them from our notation and denote the space of discretized blending

functions as DBF.

It is clear that DBF is indeed a vector space.

Finally, for this section,. a,a-,p and? will be the interpo-

N- — Tv’
lation functions and {¢..1"‘},{"}.fil, {45.}j=1 and ”95:1 will be

11:11.1:
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the cardinal bases for V(1rx, M, m), 17(37):, M, E), V(1ry, N, n) and

7(Fy, N, '11-), respectively.

We will need the following information about product space.

If V(1rx, M, m) and V(1ry, IN, 11) are interpolation spaces, then

their product is defined to be

(2. l) V(1rx, M, m) 6:) V(1ry, N, n) = span {fg |f£V(1rx, M, m) and

ge v( "y! N: 11)}-

An element f ® g E V(nx, M, m) ® V‘fly: N, n) will be abbreviated

by fg = f ® g, where f€ V(flx, M, m), g€V(ny, N, n) and

fg(x, y) = f(x) g (y) for (x, y) g [a, b] x [c, d].

is any basis for V(1rx, M, m) and {wj};:l

. b .
18 a asls for V(1rx, M, m)®

If {“1}:
l is any basis

for V(1ry, N, n) then {uiwj1<i<M

1<5<N

V(1ry, N, 11). Therefore,

(2. 2) Dimension (V(1rx, M, m)®V(1ry, N, n))

= Dim (V(1rx, M, m)) ° Dim (V(1ry, N,n))

=M°N.

Given the interpolation spaces V(1rx, M, m), V('1?x, M, in),

V(1ry, N, n) and V(?y, N, ‘5), and, for example, if.

feV(1rx, M, m)® V(1ry, N, n) then

M N . L

(2.3) f = 2 2 f(a(1),p 0)) (xion) ¢i ‘1’ '

i=1 j=l J

by the uniqueness of representation. Also
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(2.4) (Vhrx. M, mam-x, fl, r‘n))®V(wy. N. n)

= (V('rrx. M. m)®V(ny. N. n))

“(Wag ii. fi)® WHY, N. n)).

and

(2.5) V(1rx. M. m) 69 (V(Try. N. mill/717),. 'N’. 3))

=(V(nx. M, m)®V(1ry, N. n))

{\(Vitx:Idrrn)(:>§ig;:iq:irn '

We see that (2.4) is true, because the left hand side is clearly con-

tained in the right hand side. Also, if f is an element of the right

hand side of (2.4), then

N M . .

(2.6) f: 2 >3 f(“(1)'p(m(x.,y.)¢i} q).

j=l i=1 1 J J

N '12 ~. . _

jzl 1:] J J

We will have proved our result if the bracketed expressions in (2. 6)

are contained in V(1rx, M, m) {NV-(ii, M, r71) for lg jg N. Using

the cardinality conditions, we have for each j satisfying 1g jg N

(0.5m) _ (a(1).a())) _
(2'7) f ('9Yj) " if]. f (xi,yj) ¢i€V(1Tx,M,m)

"M _. .

= 2 f(a(1)’B(J))(§i,yj)$ieV(?rx,M,'rh'),
i=1

which proves (2. 4). We note that (2. 5) follows in a similar manner.
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We now show that the following statement is valid for mg Y5-

or ngn

(2.8) (76;. M. a) ® my. N. n))fl<V(nx.M.m) 69

fig. N. “finngx. M. m) 69 W13. N. n).

To see that (2. 8) is true, let f be an element of the left hand side.

Then

N 171 _. .

(2.9) f = z: z: £(0’(1)"3(J”(§i,y.) 4:1} 4..

3:1 i=1 3 J

M N . -. _
= 2 E f(a(1)’fl(3))(xi,;.) 4) Lb.

. J 1 J
1:1 J=1

We will be done if it can be shown that the bracketed expression in

(2.9) is in vmx, M, m) for lg jg N. Using ng‘fi' and the

A

cardinality conditions for l < j< N, then

0 I) M _. I.) _'_

J i=1 1 J 1

M N . -. I.)
(ammm .. flan» ]

= 2 E f ., . . . .i=1[j:1 (x1 YJNJJ (v3) ¢1

eV(1r,M, m).

x

Finally, from (1. 39) and (l. 40) it is clear that

(2.11) DBngpanuT/"GFX, Ming) V(1ry, N, n))

U (wa. M. m) @Vfiflfin

U (V(1rx,M,m) (Ex) V<ny.N.n))}.
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Usually, however, DBF is a proper subset. The above yieldsthe

following theorem.

Theorem 2. 1. Given the interpolation spaces V(1rx, M, m),
 

Va? , M, m), V(1r , N, n) and VG, FIJI), then

x v v

(2.12) Dim(DBF)< MN+MN+ MN

- N- Dim ("v-('n'x, M, E) n V(Trx, M, m))

- M- Dim (Vfiy, N, Ti) 0 V(Try, N, n)) .

Proof: From [7 , p. 468], we have for finite dimensional vector

spaces v1 and v2

(2.13) Dim (span {VlU V2}) = Dim (V1) + Dim (V2)-Dim(Vl n V2).

Therefore, from (2. 11) we have

(2.14) Dim (DBF)< Dim (7111, Rm) (:9 wiry, N,n))

+ Dim (V(1rx, M, m) ® 7(‘fy,-N,‘fi))

+ Dim (V(1rx, M, m) ® V(1ry,N,n))

- Dimuir’fir‘x. M. 5) 69 Why. N. n‘nmvwx. M. m)®\7(iiy. NIB)»

- Dim<("(?x. ”M. r?) 69 vary. N. n))/\(vmx. M. m)®V(wy. N. n)))

- Dim((V(1rx, M, m) @ VG}, N,n))mwnx, M, m)®V(1ry, N, n)))

+ Dimuifl‘ir'x. M. r'fi) ® wiry. N. n))mvwx. M. m)®)7'( FY. N3»

0 (V(1rx. M. m) ® wiry. N,n))) .
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The fourth and last terms together are non-positive, hence, can be

dropped (if m g E or n g}? then 2. 8 would show that they are

equal and the bound is best possible). Using (2. 2), (2.4) and (2. 5)

we have our result.

For the proof of the next theorem, we introduce the following

notation.

If V(1rx, M, m) is subordinate to V—(Fx, M, in), then from

Definition 1.5, for each i satisfying 1g ig M, there corresponds

a unique T such that l {is M, 32:: xi and a(i) =35) . Thus, we

define the index set IM to be the set which contains each of the i-

satisfying the above conditions. Finally, we define the index set fill-

to be the set of the remaining M-M integers.

Correspondingly, if V(1ry, N, n) is subordinate to (fifi,N,E),

then we define the index sets IN and m in an analogous way. We

will now prove a lemma which gives a lower bound on Dim (DBF),

and eventually a basis for DBF.

Lemma 2. 1. Given the interpolation spaces V(1rx, M, m)
 

V(1r , N, n), W37, M, m) and V(? , N, n) such that V(1r ,M,m)

Y X Y x

is subordinate to Vfir'x, M, m) and V(1ry, N, n) is subordinate to

WEE, N, n), and if
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= {9 ¢j}i€IM, 1<j<N’ ‘{Chi 4’j}jeJN, l<i(M’

={¢ Lia-+1335 43'] Px[$i4‘j]}js1M, 1Sj<N'

= {9i E. + 13,, Py[¢i$j] ' Py[¢i Ej]}jeJN, 1< i<M ’

= {Pia-L13] + legi Ej] ' PX FYI}; EjpieIM, jeJN'

C26 = {is-3J9i ~ij + 3,.[4’1 ‘15-] ' 4’1 ¢j}1<i<M, igjgN

T

l

Q1UQZUQ3 , T2 = QIUQZUQ4 . /‘

T3 : Q1V QZUQS ' T4 = inQZUQe ’

then each of the sets T1’ T2, T3 and T4 is a linearly independent

subset of DBF.

Prgf: The sets Q3 through Q are clearly contained in DBF,

6

thus we need only show that Q1 and C22 are subsets of DBF.

Because $143 £C(m,n)’ then for Tel—M and l<j<N we have

(2'15) Px®——Py[¢-¢j]: (bi-43+ Py—Px[¢7¢j] Px[$;¢j]°

We make the observation that for l (i (M and i 6 IM

(2.16) 35““) (xi) = 0.

which implies that Px[$i‘ 43] = 0 . Hence Q1 , and in a similar

manner also 02 are contained in DBF. It then follows that T1

through T4 are subsets of DBF .
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We now show the linear independence of the sets T through

1

T4. For notational convenience and also to save space we will only

prove the linear independence of T3. If T is not linearly inde-

3

pendent, then there exists real numbers aij for i e I—M, 1 ( jg N.

also bij for 14 is M, je-J—N and cij for ieIM and jeJM not

all zero such that

(2.17) §_ 2: a.. 4>. 4.. + 2: §_ b,. <9. i).

ieIM 1<jgN 13 1 J 1<igM jeJN ‘1 1 J

+ z 2 cij(Py[¢i\pj] + Px[¢i¢j]—PxPy[¢iipj]) = o .

ieIM jeJN

We will show that all cij are equal to zero. To accomplish this,

apply the cardinality conditions for each is IM and 3‘s JN to (2. 17).

This means the application of the differential Operator

_. A - A

D(0(i).5(j)) to (2. l7) and evaluating at the point (2937;). Because of

the definition of IM and JN , we have for is ii and j: JTN

-A —I\

-(a(i))-, _ -((s(j))—, __
(2.18) 9i (xi) - o and )5 (vi) - 0.

which implies that there is no contribution from the first two sums

in (2.17). Also, it can be shown that

A 4 l‘

(5(1).fi(i)) -- - ~
0 D 2 Z .0 P o 0 0A, 0 = A0. ,(2 19) ( (1.1M JUN c1J y[¢i"‘3]”"‘i YJ) c1;

(7”) 36‘» 'a 1 , - - _ -

'(2.20) (D J ( z z: c.. Px[¢i¢j]))(xli, J,) = c333

ieIM jeJ’N 1’

and
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(2.21) (D “(WWW 2 2 c.. P P [4’i ¢.]))(§<~,§r'¢) = cw,

ieIM jeJ'N 13 x Y J J J ‘3

from which it follows, using (2. 17), that 0;? = O for ie IM and

je JN . To conserve space, we will only show that (2. 21) is valid,

and merely note that (2. l9) and (2. 20) are similar.

Because our blending spaces are subordinate, there corre-

sponds an i0 where 1g iog M, and jo where lgjog N such

that (i) = a(io), 7‘ = x. , W?) = [3(jo) and 7?: y. . Then

1 1 J
O 0

(7°) (3(4))
2.22 Dal’ J z 2 ..P P “2-. “4,7( ) ( (16 JUN c1J x YB», 413]» (x1 YJ)

, M N _ _ -’-‘ ‘4‘

= >3 z c.. z >3 ¢i(“‘s)’(xs)(.‘5‘t”'(yt).¢;““”(§3)($095.)
ieIM jeJN ‘3 s=lt=1 J ‘ ‘ .J

= CM,

1J

where we have used the cardinal interpolation conditions and the

correspondence given above to obtain our result.

With all Cij = 0, it is now a simple matter, using the appropri-

ate cardinality conditions, to prove that all aij = O for is I‘M,

l<j< N, and all bij = O for lg is M and je J_N. Therefore,

T3 cannot be linearly dependent, and we have completed our proof.

For discretized blending function spaces which have subordinate

interpolation spaces, we now have a lower bound for Dim (DBF).
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Theorem 2. 2. Given the interpolation spaces V('rrx, M, m),
 

“FF, M, m), V(-rr , N, n) and VT? , N, n) such that V(1r , M, m)

x y y x

is subordinate to Vfifx’ M, m) and V(1ry, N, n) is subordinate to

VOTy, N, n), then

(2.23a) Dim (DBF) >,I\—/I-N + M-N - M-N

(2. 23b) Dim (DBF)< MN + MN + M- N

- N - Dim (Wig-1‘71, m)f\V(nx, M, m))

— M - Dim (V(?Y,N,n) fl V(1ry,N,n)) .

Proof: The upper bound follows from Theorem 2.1 and the lower

bound from Lemma 2.1.

We would like to know the exact dimension of DBF, and have

a basis for the space. Examination of Theorem 2. 2 shows the assum-

ption needed to obtain our result.

Theorem 2. 3. Given the interpolation spaces V(1rx, M, m),
 

VHF, "M, m), V(1r , N, n) and VG; ,N, n) such that war , M, m)
x y y x

is subordinate to 7.5;, 1T4, m), V(1ry, N, n) is subordinate to

.332 n). V(1rx. M. m) g VWX. M. m). my. N. n) _c_

, n), and iff
3

«f
l
a
"

2

51 = {¢i 4’j}iei'1\'/i, igjgN’ S2 = {¢i ‘l‘jheJN, 1<i(M,
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S3 = {4’1 q’j}ieIM, lgjgN ' S4 = {4’i ¢j}jeJN, 1<i<M'

S5 = {Pyfiq’j} + Px[$itpj] ' 13;!”in ¢j]}ieIM, jeJN’

St. = ”i Ll’j}1<i<M, 1<jgN’

T1=SIUS2US3 ’ T2:51USZUS4’

T3:51U52U S5 ' T4:51VS2U56 '

then

(2.24) Dim (DBF) = M-N + M-N — M-N

and each of the sets T1’ T2, T3 and T4 forms a basis for DBF.

Proof: From Theorem 2. 2, we have that (2. 24) is true because of

the containment of our blending spaces.

Also, because of the uniqueness of representation, we make

the observation that

(2.25a) Py[¢i¢j]=¢i¢j for 1<igM, 1<j<N,

(2.25b) Px[¢i.pj]=¢i¢j for 1<i< M, 1<j<N,

and

(2. 25c) 19KB)i (3] -.-.- Py[¢i ij] = ¢i (.3. for is is M, 1g jg N.

Using (2. 25a), (2.25b) and (2.25c), then in Lemma 2.1, Q3 through

Q6 reduce to S3 through 56 respectively. Thus from Lemma 2.1,

it follows that Tl through T4 each forms a basis for DBF, and

we have proved our result.
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Remark: 55 is not as complicated as it appears. Because our blend-

ing interpolation spaces are subordinate, for each is IM and js JN

there exists an i0 where lgiog M and jo where 1g jogN such

that

(2.26) 85 = {9143. + 9i (.j -¢i 413.}.

o o o o

Often in practice, it is not convenient to work with the

cardinal basis for DBF. If one is willing to work with a spanning

set rather than a basis, the following theorem is useful.

Theorem 2. 4. Given the interpolation spaces V(1rx, M, m),
 

VG? , Ni, m), V(1r , N, n) and V1? , N, n) such that V(1r , M, m)
x y y x

is subordinate to WNX, M, m), V(1r , N, n) is subordinate to

‘
<
=
'

VHF. N. n). m . M. mafia. M. m). V(w. N. n);
Y x x Y

I
I
E
]-—_ — . M N — N

V(1ry, N, n) and if {Ai}i=1 , {Aii} l{'Bj}j=l and {B}j=1 are

any bases for V(1r , M, m), V('1_r' , M, m), V(1r , N, n) and

x x y

VGFy’ N, n), respectively, then

—{AB} —U{XB}.27 — . . . . . . _ -(2 ) T5 1 J 1gigM, 1<J<N 1 J 1<1$M. 1€J<N

is a spanning set for DBF.

Proof: We first show that T5 §-_ DBF. For 1g is M and

(m. 11)

 

l<j<Nwehave AiBjsC and
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“<3
3

*
U

I
?

(I
!

I

L
_
_
.
J

I
I(2.28) ('5 P +5 P -P P )[A. '13.]

Ex Py[Ai 33] + Ai EJ. - PylAi 1%]

ll .
3
9

w

since '5 [A, 5.] = A, B,, which implies A, '15.. DBF. In a similar
x 1 J 1 J l 3

way, for ls is M and l g j gN we have Ki Bj sDBF, which

implies that T5 g DBF.

Because V(1rx, M, m)C_ Vfix, M, m), it is clear from

(2. 1), which is the definition of a product space, that

(2.29) V(1rx, M, m)® V(1Ty, N, mg; V(1rx, M, m) 6:) V(1ry, N, n) .

It follows from (2. ll), (2. 29) and the statement following (2. 1) that

T5 is indeed a spanning set for DBF.

Remark: For certain spaces, if V(1rx, M, m)§V('-l?x, M, m),

then this implies that V(1rx, M, m) is subordinate to Vfifx, M, m).

For example, consider the cubic spline spaces of Example 1. 2, if

52(1rx)§Sz(Tl-'x), then 52(1rx) is subordinate to 52(Nx). This is

clear, because if xi 9‘ a and z} b is a knot of the mesh fix, then

there exists a cubic spline in 52(1rx) which has a jump discontinuity

in the third derivative at xi. However, all cubic splines in

52(Nx) are cubic polynomials between the knots of 'Fx, from which

it follows that xi must be a knot of Nx

If we consider polynomial spaces of Example 1. 1, then even

if V(1rx, M, 0) g; Vfifx, M, 0), it does not necessarily follow that
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V(1rx, M, 0) is subordinate to Rf(-Ex, M, 0), because 17x and “fix COuld

be different.

Finally, let V(1rx, M, 0) be the space of piecewise linear

functions and _V-(1Tx, M, 0) be the space of polynoznials of degree

M-l, then even though V(1rx, M, O) is subordinate to Vhrx, M, 0),

it is not the case that V(1rx, M, 0)§V(1rx, M, 0) .

Example: In Theorem 2. l and 2.2, even if the intersection of our

interpolation spaces contains only the zero vector, we will show by

the following example that the bounds on the dimension are still

sharp. Let

(2. 30a) 17x = x1e [1,2], «x = x1 e [1, 2_],

(2.30b) V(1rx, 1, 0) = span {1} with cardinal basis {1} ,

(2. 30c) V(?x, l, 0) = span {x} with cardinal basis {x/SEI} ,

(2. 30d) rx = yle[1,2_], Try = yle [1, 2],

(2. 30e) V(1ry, l, 0) = span {1} with cardinal basis {1} ,

(2. 30£) Why, 1, 0) = span {y} with cardinal basis {yr/371} ,

and if x1 951, yl av] and f e C( [1,2] x [1, 2])

then

. P P i = _ ° - °(2 31) x® y[f1(X.v) f(x1.v1) (x/xll 1

+ f(f‘lin) ° 1 °(.'Y/Y1)- f(xl.vl) ' 1' l

and
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(2. 32) DBF = {a-x + by + c- 1| a,b and c are real} ,

therefore

(2. 33) Dim (DBF) = 3 ,

which is the upper bound of Theorem 2.1 and Theorem 2. 2.

Using (2. 30a) through (2. 30f), and if x1 # xl but y1 = yl,

then from (2. 31) we have

(2. 34) DBF = {a-x + b-(y/yl - l)| a and b are real},

therefore

(2. 35) Dim (DBF) = 2 .

Finally, if (2. 30a) through (2. 30f) hold, where V(1rx, l, O)

and V(1ry, 1, 0) are subordinate to V(?x, 1, 0) and Why, 1,0),

respectively, (i-e., 3? = x and y1 zyl),then
l 1

(2. 36) DBF : {a(x/x1 + y/yl - 1)] a is real},

and

(2. 37) Dim (DBF) = l,

which is the lower bound of Theorem 2. 2.

Remark: If V(1rx, M, m), WFX, M, m), V(1ry, N, n) and

7(‘1? , E, n) are the spaces of cubic splines 82(17 ), 52G? ), 52hr )

Y x x Y

and 82(5),), respectively, then a convenient basis with which to

work is the basis of "B-splines” (see [29, p. 73]), which have
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support on at most four consecutive intervals and are non-negative.

The B-spline basis is also relatively easy to construct when com-

pared to the cardinal basis. In this case it is often advantageous to

work with a spanning set of bicubic B-splines defined in Theorem

2. 4, and use methods for overdetermined systems to solve the

resulting equations .
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Section 3. Natural Cubic Blending
  

Often, information about the normal derivatives around the

boundary does not exist, or it is not known to sufficient accuracy to

be compatible with an eighth order method. In the case where some

deterioration of accuracy is acceptable near the boundary of our

domain, we can use natural cubic blending to obtain a method which

is 0(h8) in the interior.

The natural cubic spline basis {10.91131 for 52(1rx)§_C(z)[_a,b]

onthemesh Trzazx <x <°°°<x :b satisfies for

x l 2 M

l g i,j g M the conditions

(3. la) Ai(xj) : fiij’ A'i'(xl) = A'i' (xM) = 0 ,

(3. lb) A0(xj) = o , A'd (x1) = 1, A'd(xM) = o

_ H _ ll __

(3.1c) AM+1(xj)— O, AM+1(X1) -— 0, AM+l(xM) — l .

The natural cubic spline interpolant to a function f e C[a, b] is

defined to be

M

(3.2) s(x)= z f(xi)Ai(x) ,

i=1

where it is clear that s"(xl) = s"(xM) = 0 .

The following theorem, which is crucial to the proof of

Theorem 3. 2, shows the behavior of the natural cubic spline inter-

polant of one variable, see Hall [19] .
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fleoregp 3. 1. (Hall [19 ]). Let s be the natural cubic spline inter-

polant to f eCm[a, b], m = 2, 3 or 4, then for Xe [xi’xiHJ'

IQ is M-l

(3.3) |(s-£)(k’(x)| s llf‘m’lflémk hi'kmm hf‘lakAi}

+1/2 R hx “kAi .

(3.4) R=max{|f"(a)|, |f"(b)|}

for 0 g k {2, where the me sh size hx is defined to be

(3.5) hx = max Axi, Ari = xi“ - xi, Ai s {21“ +

lgigM-l

21-M+1} , and the constants C , K and a are given in the

m,k m k

following table 3 .

  

 

 

  

Table 3

w

Emk ‘ k=0 k=l k=2

m: 2 9/8 4 10

m: 3 71/216 31/27 5

m = 4 5/384 (9+{§)/216 5

Table 4

-"k k = o k = l k = 2
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Table 5

K m = 4 m = 3 m = 2

m

7/24 1 5/2

Table 6

51 l = O 1 =1 1 = 2

AYj/4 1 6/Ayj

 

We now generalize this theorem to two variables. For a mesh

onthey-axis 1r:c=y<y<---<y =d let 52(1r)CC(2)[c d]

y l 2 N ’ y - ’

be the space of cubic splines in the variable y. The natural cubic

N+l
spline basis {B..} for 82hr ) satisfies conditions similar to

J J=0

(3.1a) - (3.1c). Define the projection operators Px and FY by

M

(3.6) (Px[f]>(x.y)= :1f(xi.v)Ai(x)

and

N .

(3.7) (P [f])(x.y)= >3 any.) Bm .
v j=1 J J

for each f e C([a, b]x[c, d]). The natural cubic spline blended

interpolant to f is defined to be

(3.8) NB[f] = Px[f] + Pv [f] - Px py[£].
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Define h = max Ay. , where ij = yj+l - yj .

ISjQN-l

We have the following theorem.

Theorem 3. 2: Let NB be the natural cubic spline blended inter-
 

polant to £6 C(m’n)([a,b]x[c, d]). If x6 [xi, xi+1] , YE [Yj' Yj+IJ 9

lsigM-l,l<j<N-l, ng,n<4 and 0gk,1< 2, then

(3.9) M (-”"INB)[f]) “.)(x v)!

(m, n) m-k m-l n-l

<||f ||{émk +K hx akAiHcim h
11}! m

m-km, 2)

+Knh11b Ale/zllf ||{émkhx

m-l .. (2,n) n-l

+Kmhx akAi}Ajfil hy+l/2||f ||{6Mhy

n-l - (2,2) '-
+Knhy filAj}Aiakhx+l/4||f llAiAjak 6111th

Where A1 : {21-1+21-M+1}, AJ- : {21-J+21-N+J} ,

5. and E, are given in Table 3, K and K are given in

mk m n

Table 5, ark is given in Table 4, 51 is given in Table 6 and hx

and h are the mesh sizes of Tl'x and 17y, respectively.

Proof: From Section 1 we have I -NB : R R , where I -P = R
m x y x x

and I - PY = Ry . Also from (1. 17b) and (1.17c) we have D(0’1)Rx

R pm") and D(k'O)R = R D(k’o). Define g: Dm’uR [f].

x y Y Y

Then, for fixed x and y,
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(3.10) |(((I-NB)[f])(k’“)(x.y)| = |((Rny[f])‘k'“)(x.v)|

_ (k. 0) (0.1)
_ |(D Rx D Ry[f])(x,y)|

= |(D‘k’°)R g) (X.Y)l
x

e |E(x,y)| .

For each fixed y, we consider Px [g](- ,y), which is the natural

cubic spline interpolant to the univariable function g(o , y), where

g(o ,y) e Cm[a,b]. From Theorem 3.1 we have

-k -

(3.11) |E(x.v)| s ||g(m'o)('»Y)H{E’mk 11:1 +Kmharcn lakAi}

+ 1/2 R1(Y)Ai ark hx ,

where

(2.0)
(3.12) R1(v)=max{lg (a.v)|. Is(2'0)(b.v)|} .

From the definition of g, we have for 0 < t g m,

t. t, , I
(3.13) g( 0) = D( 0)(D(0 )Ry[f])

= D‘0'1)Ry[f(t' 0)].

Therefore, applying Theorem 3.1 again, for any fixed :3, such that

agggb, we have

(t,O) (t,n) . n-1 n-1 "

(3.14) lg (§.y)|<|lf (a. )ll{cn,hy +Knhy p,Aj}

+1/2R2(§)Ajp,hy.

Where
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(3.15) R (t): max{If(t’2)(€. c)|. If“)2 (g.d)l} .

(t,2

sllf )ll-

Taking the supremum over all E, on the right of inequality

(3. 14) we have

-1 ..

(3.16) |g(t’o)(§,y)|<||f(t'n)l|{én1 h: +Knhn 151A

t,2 -

+1/2llf‘ )IIAjfi,hy

Substituting (3. 16), for t = m and t = 2, into (3.11) and (3. 12)

respectively, our conclusion follows after regrouping.

We will now make a series of remarks about Theorem 3. 2.

Remark 3.1: The error still goes to zero even if only one of our
 

meshes, fix or 17y, is refined.

Remark 3. 2: Because of the exponential decay of the terms Ai and
 

Aj’ if a< a1< bl< b and c < c < dl< d,then: there exists a

1

me sh fine enough so that the convergence on the subrectangle

hm+n"'k), where h = max {hx, by} .[av bl]x [C1, d1] is 0(

Remark 3. 3: Moreover, because the exponential decay of the terms
 

A1 and Aj tend toward zero faster than the term l/hz=(N-1)z
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tends toward infinity, we have the area of higher order convergence

increasing as we refine our meshes "x and 11- .

 

Remark 3.4: Explicitly, the rate of increase is given by

al -a = b .b1 a el - c = d - d1 = (K log (N-l))/(N-l)—->O_

as N—-—>- 0° , where K is chosen with consideration of the bound

on the derivatives of f.

Remark 3. 5: For purposes of illustration, we will consider the

specialcase of k=l =0, a=c=0,rb=d= l, M=N and m=n=4.

Therefore, both a and 50 have a factor of h , and because of the

0

exponential decay of the terms Ai and A5 as we move away from

the boundary, we have the following situation for our error, illus -

trated in Figure l.

 

  

Y

A

0(h4) 0(h6) 0(h4)

L... i .48; ° ° ° as.

.O;h;). . . . .446; . . . . I. ;)(.h;).
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Section 4. Exponential Decay of Natural Cubic Cardinal Splines
 

Given a mesh fix:a : x1 < xz< - -- < xM = b of M knots, the

natural cardinal splines Ai(x)e 52(1rx) are uniquely determined by

the M + 2 conditions given in (3.1a) to (3.1c).

We will now prove the exponential decay of the natural cubic

cardinal splines by a series of lemmas and theorems. Much of what

follows parallels the results of Birkhoff and De Boor [2 J, for

cardinal splines with first derivative end conditions, and we will

quote theorems from their paper which are also valid for natural

splines. Finally, we will use the abbreviation M. V. T. for the

Mean Value Theorem and I. V. T. for the Intermediate Value Theorem.

Lemma 4. 1. (Birkhoff and De Boor [2 :l). If p(x) is a cubic poly-
 

nomial which vanishes at 0 and h 7! 0 then

(4.1a) mm = -2p'<0) - h p"(0)/2

(4.1b) p"(h)/2 = -3 p'(0)/h - p"(0).

Corollary 4.1. For 1 g i g M, the natural cubic cardinal splines
 

satisfy

(4. 2a) A'i(xj+l) = -2A'i(xj)—ij A'i'(xj)/Z

(4. 2b) A; (xj+1)/2 = -3A'i(xj)/ij - A'i' (xj),

Where l< j <i-1, and
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l _ _ I n
(4. 3a) Ai(xj_1)— 2 Ai (xj) +ij_1 Ai (xj)/Z

ll _ l _ ll(4.3b) Ai (xj_1)/2 - 3Ai(xj)/ij-1 Ai(xj) ,

where i+1 < j g M .

Define the function sgn(. ) of a real variable by

1 if x > 0

(4.4) sgn(x) 2' 0 if x = 0

-1 if x<0

Lemma 4. 2. (Birkhoff and De Boor [2 J). Let s(x) be any cubic
 

spline function with knots at the xj, which satisfy for some i,

8(xi_1)= 8(Xi+1)= 0. 8(xi) > 0. 8'(xi_1) 8"(xi_l)>0. 8'03“)

~s”(x.
1+1)$0 . Then s‘(x )20, s”(xi_ )90, s'(x )so,

i-l 1

)>,O, s"(xi)<0 and s(x))O on [xi-

i+l

s"(x.

1+1 l'xi+l]'

Lemma 4. 3. For 2 S i g M-l , Ai(x) satisfies Lemma 4. 2 on the
 

interval [xi-l’xiH] .

 

Proof: From Corollary 4.1 and the fact that A'i'(x1) = A'i'(xM) = 0 .

Lemma 4. 4. For 1 g is M the natural cubic cardinal splines
 

satisfy

(4.5a) sgn (Ayle) = sgn (A'i'(xj)) 7‘ 0
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(4-5b) sgn (A'i(xj)) = -8gn (A;(xj_1)) 7‘ 0.

where zgjgi-l, and for i+lgj (M-1

(4. 68) sgn (Ai(xj)) = -Sgn (A'i'(Xj)) 5‘ 0

(4. 6b) sgn (Angn = -ssn (Ayxjfln at 0

Proof: Case 1: 231$ M-l .
 

We will first prove that A'i(x1) and Ai(xN) are both non-zero.

If this is not the case, say A'i(x1) = 0, then inductively Ai(x) E 0

_ I
on [xl,xi_1]. Therefore, on [xi-l’xiJ’ A(xi-1) — A (xi-1)

A"(xi_l) = O, Ai(xi) :: l and from Lemmas 4. 2 and 4. 3 we also have

Ai”(xi) < 0. Several applications of the M. V. T. gives F, :(xi_ , xi)

1

such that A'i'( g) > 0 and the I. V. T. gives another distinct zero for

A'i' . This implies that Ai is linear on [xi-l'xi] because A'i' 5' 0

on [xi-l’xi]° But this is a contradiction to the fact that Ai must

satisfy the conditions Ai(xi-l) = Ai(xi-l) = 0 and Ai(xi) = 1. An

identical argument shows that Ai(xM) f O. The result now follows

inductively from Corollary 4. 1.

Case 2: i=1, M.

For i: M, if A' (xM l)= 0 then AM(x)_=.0 on [xv xM_l].

W H '
e then know that AM has zeros at xM-l and xM, showing that

A cannot satisfy all of the required conditions, therefore A'M(x
M

l)

i 0. An identical argument shows that A'1(xM) 3‘ 0 .
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The result now follows inductively from Corollary 4. 1.

Lemma 4.5. If lgjgi-Z and xe[xj,x. ], then A;.(xj+ 1)Ai(x)

1+1
 

<0 andif i+1gngl for xe[xj, xj+1,] then Az(xji;)A(x)

Proof: From Lemma 4.4, sgn (Ai( xj )) = ~sgn((Ai(xj+ l)) -7’ 0. It is
 

now clear that if the conclusion of the lemma is not true, then Ai

will have four distinct zeros in [xJ,,Jx+1,] which is false. The other

case is proved in a similar way.

' I I

Lemma 4. 6. For Is 1 g M we have Ai(xi-l) > O and Ai(xi+l) < O.
 

Proof: Case 1: 2 g i g M_-l .

The result follows from Lemmas 4. 2 through 4. 4.

Case 2: i = 1, M.

For i: M, A l, A”(xMUM) )<0,we0. If A'M(x

M(XM) = M-l

have from Lemma 4. 4 that Ali/f(xM l) < 0. Two applications of the

M. V. T. and one of the I. V. T. yields another zero for A'M which

cannot happen if A is to satisfy the required conditions at x

M M-1

and xM. The case where i = 1 follows in the same manner.



113

Lemma 4.7. On [x1, x2] , max |A1(x)| = 1, and on [xM-I’XM]
 

max IAM(x)| = 1.

Proof: On [xM l’xM]’ direct calculation yields a real number a

such that 0 > a > -1/(2Ax13v[_1) and

3 3
(4.7) AM(x) = a(x-xM) + (l—a(AxM_1) )(x-xMVAxM_l + l .

Examination of (4. 7) shows that AM has no interior relative maxi-

mums or minimums on [x xM]. The bound for A follows in

M-1' 1

the s ame way.

We will now give a proof similar to that of Birkhoff and De Boor

[ 2 J for natural cardinal cubic splines.

 

Lemma 4.8. For lgjgi-Z, if xjgxgx.J+1' then IAi(x)| g

, . . . _
ijlAi(xj+1)l and if 1+1$J<M l for xjgxngfl, then

|Ai(x)|gijlA'i(xj)l -

Proof: Case 1: l g jg i-Z.

 

Without loss of generality assume Ai(x. ) < 0. From

3+1

Lemma 4. 5 Ai(x) >,O on [xj, xj+l]’ and from Lemma 4. 4

An I n . ° b ° - .
i(xj+1) < 0, Ai(xj) > 0, Ai(xj) 3 0 Our proof is y contradiction

Let £1 be the point where Ai obtains its absolute maximum on

1 _ _ 1
[3:3, xj+1], then Ai(§1)— 0. Assume Ai(§1)> Ai(xj+l)ij >0.
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then because Ai(xj+1) = O, we have from the M. V. T. a £2

. o ' E = - E

satisfying £1 < 52 < xj+1 such that Ai(° 2) Ai(_1)/Axj <

Ai(xj+l) < O . Applying the M. V. T. again we have the existence of

. . H
g satisfying £2 < 63 (xj+ such that A1033) > 0. Because

3 l

H . . .
Ai (xj+1)< 0, the I. V. T. gives a £4 satisfying g3 < §4< xj+l

such that A'{(§4) 0. Because Ai(xj) > 0, A'i(§1)= 0 and

A'i'(xj) >,0 (A'i'(xl) : O), we have a second zero of A'i' , which implies

that A1 is linear on [xj,x.J+1]. This contradicts the fact that Ai

' _ ._ i

must satisfy Ai(xj) .. Ai(xj+l) _ 0 and Ai(xj) > 0.

The proof of the other case is identical.

Paralleling the results of Birkhoff and De Boor [2 ], we have

the following two lemmas for natural cubic cardinal splines.

Lemma 4.9: For 1gj<~ i-Z
 

[A'i(xj)|g1/2 lA'i(X )|,

j+1

and for i+1 gjg M-l

|A'.(1xj+l)|< 1/2 |A;(xj)| -

Proof: From Corollary 4. l.
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Lemma 4.10. For 1‘ jg i-Z, on [xj, xj+l] we have

2j-i+2
IAi(x)l s IA;(xi_1)|ij .

and for i+2gj$ M, on [Xj 1, xj] we have

i+2-'

(A)... s 2 ”Aux... >( As“

Proof: Follows inductively from Lemmas 4. 8 and 4. 9.

We have now shown through a sequence of Lemmas that the

natural cubic cardinal splines behave in the same manner as the

splines which have zero derivatives as their boundary conditions.

Therefore, the proof of the following Lemma is now identical to that

given by Birkhoff and De Boor [2 ], and we will only state their

conclusion.

Lemma 4.11. (Birkhoff and De Boor[ 2] ). For 2 g i g M-l
 

on [xi- xi+1] we have OSAi(x)< L and lAi(xi-1)| $ L/Axi-l 91’

2
I _IA (xi+1)) g L/Axi, where L _ 3 MTr (M1T +1) /(3+4MTr ), the mesh

X X x

ratio is M = max Ax./minAx. .

17x 1 1

. - - 3 I

We W111 now show Similar bounds for |A1(x2)| and IAN(xM_1)I

by constructing a majorant, Ui(x), for the end splines. Consider

first the spline A then define the unique cubic spline U on

M' M

' ' — _. II _.
[xM-Z’ KM] satisfying UM(xM-2) — U(XM_1) — UM(xM_2) —
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H _ __ . . .
UM(xM) - 0 and UM(xM) — 1. Define the cubic spline T on

_ _ ' l
[KM-2’ xM] by T(x) — (UM AM)(x), then we W111 prove T (xM-l)

)0. If M-Z =1, then T"(x )2 0 and we are done. If M-Z >1,
M-Z

then T"(xM_2)7l 0, and we will show that T'(x )> 0. To do this,

M-l

we use the fact that T”(x 2) > 0, which follows
.. _ n

M-Z) ‘ O AM("M—

from Lemmas 4. 4 and 4. 6, and that T satisfies T(xM) = T"(xM) =

T(xM_1) = T(x ) = 0. Also, T satisfies the conditions of

M-Z

Lemma 4.1 and therefore (4. 3a) and (4. 3b), for xM_2, de, xM .

II _ II I

Because T (xM) — 0 and T (xM_2) > 0, we have that T (xM) f 0.

From (4. 3a) and (4. 3b) we have that sgn(T'(xj_l)) = -sgn (T'(xj))

3f 0 for j = M, M-1 and sgn(T"(xj)) = -sgn(T'(xj))f 0 for j 2 M-2,

- n - : ._.
M 1. Therefore, because T (KM-2) > 0 it follows that T (xM-l)

- I '(xM-l) AM(xM_1) > 0. Using Lemma 4. 6, and our above

' I I

results, it follows that UM(xM_1) > AM(xM_1) > 0.

I

UM

UM(x) is given explic1t1y by pl(x) on [xM-Z’ xM_1] and

p2(x) on [xM_1, xM], where

p1(x) = b(x-xM_1 )(x-xM _2)(x-xM_1+ZAxM_2)

2

p2(x) = (x-xM_l)(-beM_Z[(x-xM) -AxM_l(mm/Arm1

+1 /AxM_1)

where b = I/EZAxM-ZAxM-1(AxM-1 +AxM_2)]

and U'M(xM_l) :AxM-Z/(AxM-1[AxM-l +AxM-2]) .
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Therefore,

I(4. 8) o < AM(xM_l)g wa/(AxM_1|-_l +Mflx]) .

A bound for A'l(x2) follows in an identical way.

The above yields the following theorem.

 

Theorem 4.1. If lg i g M, lg j gi-Z and xjg xngH, then

2+j-i

|Ai(x)lg 2 LMTr

X

If 1+2SJ<M and xj_le$xj, then

2+i-'
lAi(x)I g 2 JLM1T .

x

For 2g is M-l, IAi(x)l g L on [xi-1' xii-1], |A1(x)| g

L on [x1, x2] and IAM(x)| g L on [xM_1, xM], where

L = 3 M (M +1)2/(3+4M ) and M is the mesh ratio.

11' TI' 1r 11'

x x x x

Proof: If 2 g i g M-l, the result follows from Lemmas 4.10 and

4. 11. For i = l, M our result follows from Lemmas 4. 7 and 4. 10

and inequality (4. 8), where we have used the liberal estimate that

M /(1+M )<L and 1(L.

"x “X

We are now in a position to develop the error estimate for

approximate natural spline blending. Usually, it is not possible to

use all of the values of f along the mesh lines. Therefore, it is
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reasonable to replace the f(xi, y) and f(x,yj) with appropriate

approximations pi(y) and qj(x). The type of approximation is arbi-

trary as long as the overall accuracy of the scheme is preserved.

For example, typical choices of approximation could be univariate

spline or polynomial interpolation. We then blend these functions

with natural splines to obtain an approximation to f. We would expect

this approximation to be close to the original function f. Exactly how

close is shown in the following theorem.

We are given the meshes wx:a = x < x < . - . < x = b and

l 2 M

1r :c = y1 < y2 < . . - < yN = d and the natural cubic cardinal splines

Y

{A194
. 2 N 2

1 1:19 5 (rx) and {Bj}j=1§:_ s (ry) .

(mm)
Theorem 4. 2. Let f e C ([a, b]x[c, d]), where 2 g m,ng 4,
 

and if the approximations to the mesh functions satisfy I |f(xi, -) -

pi(')| |< 5x and ||f(-,yj) - qj(°)||< fly for l< is M and

l g jg N, then the natural blending function approximation defined by

. M . N

(4.9) E(x.y) ‘= 23 pim Aim 2 qj(x) Bim
i=1 j=l

M N

.. .2 .2: (1/2 pi(yj) + 1/2 qj(xi))Ai(X) 356')

1:1 J=l

satisfies

(4.10) |(f-73')(x,v)| s I(I-NB)[f1(x.v)I *CxK‘M. )
a . x

+ av K(ny) + 1/ 2(8); gmmflx) K(Mwy) .
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where a bound for the first term on the right of inequality (4. 10) is

given by Theorem 3. 2, MTr and M1T are the mesh ratios, and

2 x Y

K(t) = 6t<2§+ 1)(§+ 1) /(3 + 4t).

Proof: Estimate the term

 

M N

UNI-3&6]-"s)(x.y)l<c€x .2 |A,(x>| +éY 3‘3 lij)!
1:1 3:]

M N

Z A E B+l/2(£x+£y)( i:ll i(x)l)( j=l| j(Y)|)

g 6x K(Mnx) + 6y K(Mfiy) + l/2(E,x +£Y)

- K(M )K(M )
‘IT 11’

x Y

The proof is completed by applying the triangle inequality, and

carefully observing the bound for each term in each interval given by

00

Theorem 4.1 and using the fact that Z} 2 = 2.

i=0

Remark 4. I: It should be noted that the result of Theorem 3. 2 is
 

independent of the mesh ratios M" and MW , while the exponential

x y .

decay of the basis functions is dependent on both M and Mn

11'

x Y
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Remark 4. 2: To see the size of K(M ), consider the special case

1r .
X

of equal spacing, where M = 1, then K(l) = 72/7 .

TI'

X

8

Remark 4. 3: If m = n = 4 and 6: 0(h ), then the error satisfies

Figure 1 from Remark 3. 5 of Theorem 3. 2.
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CHAPTER 3

DISCRETE LEAST SQUARES

This chapter is devoted to the development of discrete least

squares algorithms on unstructured data sets, and to showing the

accuracy that can be expected depending upon the distribution of the

data points and the smoothness of the function f from which the

data Originates.

Sections 1 and 2 develop preliminary estimates for use in the

following section. In Section 3, an example is given to show the

necessity of having a sufficient number of data points reasonably

distributed to guarantee that the discrete least squares fit will be

close the function f. The remaining portion of this section gives

error estimates for several univariate discrete least squares algor-

ithms.

Sections 4 and 5 extend the error estimates of Section 3 to

bivariate functions, and algorithms are developed using dis cretized

blending function spaces.

Finally, in Section 6, general domains with curved boundarys

are considered, and this case is reduced to the methods of Section 5.
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Section 1. Uniform Error Estimates
  

We will develop here an error analysis in the uniform norm for

univariate cubic splines in terms of interpolation errors at the knots.

Let s e 52(1rx) be a cubic spline on the mesh 17x:a = x1 < x2<

° <xM=b, andset

' (2)
s(l)(x.) and s'.'= 8

J J

(1.1) sj= s(xj), 33: (sj) for lgng.

The mesh TTX is uniform if xj+l-xj = h = (b-a)/(M-l) for

l g j g M-l. Also, throughout this chapter, if fe C[a,b], then

(1.2) ||f||= sup lf(x)l .

agxgb

and if ge C([a,b]x[c, d1) then

(1.3) llsll = sup Is(x.v)l-

agxgb

c<v<d

. N T .
Finally, for x; [R where x = (x1, x2, . . . , xN) define the vector

_ norm "x“ a = Ezlfllxil. The matrix norm '1' H of a matrix

Q

A = [aij] 6 IRNxN subordinate to this vector norm is defined to be

N

||A||°o= max 2 Iai.| , (see [9 , p. 108]) .

lgth'jsl 3

Lemma 1. 1. Let s e 52(1rx) be a cubic spline on the uniform mesh
 

"x suchthat Isjlg g and Isslgn for lgng, then

'u.4) Halls gi-lm/$
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Proof: From [I , p. 12], if s is a cubic polynomial on

[xj-l'xi] for l<J<Mthen

(1.5) S(X) : Si,

2 2

J_1(xj—x ) (x-xj_1)/h

- s'. (x-x.
J _

2
J 1) (xj -x)/h2

+ Sj-l (xj-x)2[2(x-xj_1)+hJ/h3

+ sj (x-Xj-l)2[2(xj -x)+h] /h3 ,

for xe [xj—l’ xj]. Taking absolute values in (1. 5) and observing

that all of the polynomial factors of 534, 83, sj-l and sj are posi-

tive,we have after a little algebra,

2 2 2

o 0- " . + ' . .-(l 6) Is(x)|< n[(xJ x) (x xJ_1) (x xJ_l) (xJ x)]/h + g

The maximum of the right hand side of (1. 6) occurs for x = x. +

J-l

h/2, and our result follows.

Lemma 1. 2. Let s e Siwx) be a cubic spline on the uniform mesh

"x such that |sj|<g for lgng and [siclgn for k= 1, M,

then

(1.7) |s3|g 3g/h+q/2 for 2gng-l.

Proof: From [1 , p. 12], if s is a cubic spline then for

2<j$M-1
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I I 1 = -
(1.8a) Sj-l + 4sj + st 3(Sj+l sj_1)/h ,

1 1 ._ _ _ 1
(1.8b) 4sz+s3- 3(83 s1)/h sl ,

and

I I -_- - - I ,
(1. 8c) BM-Z + 4SM-1' 3(sM sM_2)/h 8M

Writing (1. 8a) - (1. 8c) in matrix notation we obtain

      

' " ". " ' . 1
4 1 s2 3(83-sl)/h-sl

l 4 1 s13 3(84-sZ)/h

(1.9) I = 3“j+1"5-1’/h .

“BM-,1 "5.4-.3”h

- 1 41 fin-13 _ 3(sM-sM_2)/h-s'M.

or AX = B, where A, X, and B correspond to the quantities in

(l. 9).

Premultiply the tridiagonal matrix A: [K(M-mx(M-Z) by the

matrix D = (1/4)I, where I is the identity matrix. We obtain DA =

I + C where

(1.10) c: 1/4 .
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Examination of (l. 10) yields I ICI I00: 1/2, and using (3.16) of

Chapter I we have the existence of (DA).1 and

(LID IHDAYle<LH1-HCH¢)

g2 .

From (I. 11) we can obtain a bound on the derivatiVes of s at the

knots

‘ -l

HA2) HXHw=|HDA) DBHw

-l

S ||(DA) IlwllDllwllBllw

SlfiBHBHw-

To obtain a bound on I IBI I0° we use (1. 9) which yields

(1.13) IIBIIoo=max{ max |3(s.

3<j<M-2 J+1 431-1th ’-

|3(s3-sl)/h - 8'1" |3(sM-sM_2)/h - B'MU»

where

(1.14) 332:1-2 |3(sj+1-sj_1)/hl g 6g/h ,

(1.15) |3(s3-sl)/h - 31' s 6§/h + n,

and A

. (l. 16) I3(sM-sM_Z)/h - shl g 6g/h + n .

Therefore I IBI Ico g 6g/h +1) , completing our proof of (l. 7).
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Combining Lemmas l. l and l. 2 gives auniform norm estimate

for s in terms of its values at the knots.

Lemma 1. 3. Let s e Szhrx) be a cubic spline on the uniform mesh
 

17x such that |sj|<g for lgng and |si<|<n for k=l, M,

 

then

(1.17) ||s||g(7/4)g +(1/4)hn.

Proof: Using Lemma 1. 2 and our hypothesis we have for

1 < J' < M

(1.18) Is'ing max {7), 3g/h+n/2}

<3§Ih+n-

Combining (l. 18) and Lemma 1.1 completes our proof.

Lemma 1. 3 is really a stability result for errors in interpola-

tion. To see this, let s be the cubic spline which interpolates the

l

. (m)
followmg values of f e C [a, b], 1 ( m < 4

(1.19) sl(xi) = f(xi) , for lg i g M,

and

(1.20) s'l(xk) = f'(x.k), for k =1, M.



127

Also, let 32 be the cubic spline which interpolates the following

functional values of f with errors

(1. 21) 52(xi) = f(xi) + £1 , for l g is M,

and

(1. 22) s'2(xk) = f'(xk) +nk , for k = l, M,

where |gi| g g and InkI g T) . Using Theorem 1. 1 of Chapter 2

and Lemma 1. 3 we have an error bound for the approximate interpo-

lation spline s 2

(1'23) lif'52II< IIf'SIII +II51'82H

gamollf‘mW hm+(7/4)§+(1/4)h°n.

where 6m are given in Table l of Chapter 2.
0

Remark 1.1: Often in performing spline interpolation, an approxi-
 

mate method must be employed to estimate the derivatives at the end

points. It is clear from (1. 23) that the values f'(xl) and f'(xM)

must be approximated to at least 0(hm-1) to preserve the accuracy

of the interpolation scheme. Specifically, Lagrange interpolation

polynomials can be used to estimate the derivatives. Let p1 and

PM be the Lagrange interpolation polynomials of degree m-l on m

points in the intervals [xrxz] and [xM—l’ KM] respectively.

From [24, p. 289] we have for k = l, M
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(1.24) If'(xk) - pL(xk)I g hm'1| [f(m)| I/(m-l)! .

Therefore, if we define 83 to be that cubic spline which interpolates

: ’ I = I 1 =
83(Xi) f(xi) + {ii for 1 ( 1g M, s3(xl) pl(xl) and s3(x )

FIN/f(xM) , then

(1.25) IIf—s3I | < (am, 0 + l/[4(m-l)l])| [f(m)| lhm+ (7/4) t.

Examination of (1. 25) indicates that the preservation of the order of

the method depends upon limiting the interpolation errors, gi, to be

0(hm) . We will use (1. 24) later to obtain an error bound for uni-

variate least squares.
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Section 2. A Uniform Bound
 

For this section we assume that we are given the set X§_[a, b]

A

of M >/3(M-1) data points and the uniform mesh Trx:a = x1 < x <

2

. . . < xM z b, where h : (b-a)/(M-l). For each j where 2 < j g

M-l we assume that there exists six fixed data points which are

. -i 3 i 3
designated by {xj}i-1U {Xj}i-1g X such that

(2.1a) x. s x;<3—i.z<§.l<x.<x1.<x.z<x?$x.
J-1 J J J J J J 3+1 ’

and also the existence of {x:}f_1§. X and {321%} EX such that

1 2 3 ..

(2.1b) xl<xl<xl<x1$xZ and xM_l<x

Remark: It need not be the case that le 1 = x: or 3321 = if or

x? 1 = if; , although equality in any of the above is acceptable as long

as they satisfy the conditions of Lemma 2.1.

Also, for notational convenience, we define xj = x. = X. , and

J

i . . ' . .
powers of x, Will be written as (x3)n to av01d confusion.

J

We introduce the following notation for the kth divided differ-

ence of the cubic spline s e §(1rx)

k .

(2.2a) Alf = s [3:9, x.1, xk] = z s(xf) p(k, j, i), and

J J J J i=0 J .

c— - - -k k .

(2.21:) AI.‘ = s [2:9, xi. x. ] = 2 s(i’bmk. i. i).
J J J J i=0 J

where, for 0 g is k
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k .

(2.3a) p(k,j,i) = 1 / n (x? - xi), and

Ifi'

k .
_ ——l

(2.3b) p(k,j, i) = l / n (x? - x.) ,

1:0 J J

£1i

(see [24, p. 247]).

 

Lemma 2. I. Let s e 52(1rx) be a cubic spline such that Is'(xl)I,

_i i . .i

Isv(xM)Ig n and Is(xj)I, Is(xj)I <5 where the data pomts xj

and x; satisfy (2.1a) and (2.1b). Also, define the real numbers

riaandaby

3 .

(2.4) Xh=min{ min {-h- >3 (x.-x1.)}.

1<i<M-1 i=1 J J

3 .

min {-h+ 2". (no-ti)”.

2<j<M 1:1 J J

(2.5a) ot.h=min{ min min {|xT-x‘.|} ,

1Sj$M-10gi,1$3 J J

i721

min min {Iii-§,I}}>O,

2sJ<M 081.10 J J

1sz
and

(2.5b) 3h3=min{ min min Il/p.(3,j,i)I,

1<ng-l 1<i<3

min min |l/p: (3,j,i)|} > 0.

2gng lgig

If X> 0, then



131

(2.6) IIsII< 7(l—a)(1 2a)[(3 -6a)g /"a +hnI/(4a’) +hn/4.

Remark; From (2. 5a) and (2. 5b) it follows that 1/3 > 9 > 0 and

l>o>0.

Proof From [1 , p. 10], s e SITrx) is a cubic spline if and only if

for 2Sj {M-1

2 u H n _ _
(2.6a) (h /6)Jsj-l + 4sj + Sj+l) — sj-l 2sj + sj+l ,

2 n 11 ._. _ .. '(2.6b) (h /6)(281+ s2 ) _ s2 s1 hs1 ,

and

(2 6c) (ha/6X3" + 28" ) = hs' — s + s

' M-l M M M M-l '

Because se C(2)[a, b] is a cubic polynomial on [xj., xj+1] for

l g j g M-l we have s}'+1 = 63% s,"'(xj) , where s'"(xj) is evaluated

from the right. Also, s'"(x) = constant = 6 Aaj on [xj, x J, (see

j+1

[24, p. 249]. Therefore,

3
.7 1.1 = 1.1 ., f ' _ ,

(2 ) SJ+1 sJ+6hAJ or 1ngM1

and correspondingly

(2.8) s'. 1: s'j.' 6hA.3, for 2gng.

Because 8 is cubic on [xj, xj+1] for léng-l, we represent

8 on that interval as

0 0 l 0 1 2

(2. 9) sj — Aj + (x-xj) Aj + (x-xJ.)(x-xj) Aj
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o 1 2 3
+ (x-ijx-xjxx-xj ) A,- 1

(see [24, p. 248]). Differentiating (2. 9) twice and evaluating at xj

we obtain

(2.10) s'.'= 2A.z+ 2(2x. - x.1 - s.2) A? .

J J J J J J

Correspondingly, on [xj_1, xj] for 2gjg M we have

(2.11) s'.'=2A.2+2(2x.-x.1-§.2)A.3.
J J J J J J

Substituting (2. 7), (2. 8), (2. 10) and (2.11) into (2. 6a) through (2.6c)

it follows that for 2 gj $ M—l

(2.12a) h2[(2xj -§;-§§-h)A?+A§+A§

sj“1 - 2sj + st ,

2+h)Ai+ A2] =sZ-sl -hs',

l

+ (2x. -x.1 - xiz+ h) A3] =

J J J J

(2.12b) hZI-_(2xl -x: -x

and

2 -1 -2 "3 ’2 _ ,
(2.12c) h [(Zx -xM -xM -h)AM+AMJ -hsM - BM+8M-1°

Substituting (2. 2a) and (2. 2b) for our divided differences into

(2. 12a) through (2. 12¢), we obtain the following after regrouping

(2. 13a) h2[(2xj-§j1§§'- h)E(3,j,0) +7.:(2, j, o)

+ (2j0)+(2x -x1-x2+h) (3j0)] s

” " J J i *‘ " i

+ 2sj - sj _1 - sj+1
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3 .

-h2[(2xj Ejl -23.?“ - h) z s(§;) fi(3,j,i)

i=1

i 2 i
+ 23 s(x.)fi(2.j.i)+ s(x.) («2.1. 1)

i=1 J i=1 J

l 2 3 i
+ (2x. -x. -x. +h) z s(x.) u (3,j,i)] ,

J J J i=1 J

2 l 2

(2.13b) h [(2x1-x1-x1+h)).1(3,1,0)+p.(2,l,0)]81+ s1 -s2

3 .

= -h2[(2x -xJ -x2+h) 2 s(x1)u(3.1.i)
1 1 1 i-l 1

2 .

+ Z s(x1)p.(2 l i)] -hs'
1 r n 1 !

i=1

and

2 .. ._.2 _ _
(2.13c) h [(2xM - xiv, - xM - h) u (3,M, 0) + u (2, M, 0)] sM

+ 9M " J’M-l

3 .

2 .1 ._2 -1 ..

- -h [(2sM - xM - xM -h) 17:11 s(xM) ,1 (3, M,0)

2 i
+ i_1 s(xM) pt (2, M, 0)] + hs'M

Using (2. 3a) and (2. 3b), we simplify (2. 13a) through (2. 13b) to

obtain

(2.148) -s. +g.+2+€.s.-s. =—.+ .,

') J-1 (J J)J J+1 6J 6J

- 2'. - '(2.14b) (1+él)sl s2 51 hsl,

and

(2-14c) (6M+ 1) 8M - sM-l = 5Mths' ,
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where for l gj (M-l

. 3 .

(2.15a) E. =hz[h +, 2 (X.-x1.)_I u(3.j.0)>o ,
J i=1 J J

2 3 3 1 i
(2.151)) 5. = 'h 2 [h 'I' Z (x.‘X.)]8(x-) I-L (3,5,1) 1

J 1:]. 1:1 J J J

. 1 '

and for 21(ng J1

_ 2 3 .

(2. 15c) 6. = h [-h + 2 (x.-xi)_I 1: (3,j, 0) >0 ,
J i=1 J J

2 3 1 i
(2.15d) 6. = -h 2: [-h + 2: (x..‘x.)] s(i.)fi(3.j.i) -

3 i=1 1:1 3 J J

Hi

In (2. 15a) and (2. 15c) we have used (2.4) and the fact that I) 0,

(1(3, j, 0) < o and ;(3, j, 0) > o to show that they are positive. In

matrix form, equations (2.1'4a) through (2. 14¢) become

I-- 1 '. q

t: -1+ 1 1 s1

-1 62+2+1€2 -1 ea

(2.16)
.
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M-1+ 5M-10
"

I

5M+ hsM   
or AS = E, where A, S and E correspond to the quantities in

(2.16). In order to estimate the norm of the vector S we define

the diagonal matrix D

(2.17) D:
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From (2. 15a) and (2.15c) we see that all of the diagonal entries of

the matrix D are positive, which implies that D.1 exists. Using

this fact, and premultiplying A by D”1 we obtain

(2.18) D-1A=I+B,

where the tridiagonal matrix B is given by

I.—

0 1/(1+€1)

l/(€2+ 2+ 62) o 1/ (62+2+ 82)

(2.19) B=(-l).

l/(EM_1+2+&M_1) o 1/(-E-J\4-1+2+8M-1)

1/(€M+1) 0   
If IIBII°°<1, then, from(3.l6) of Chapter 1, we have that

(DJ-1A)“l exists and

-l -1 ‘ -1

(2.20) llSllw<ll(D A) IlwllD EH...

-1

<[1/<1-IIB||..,)]IID Ell...-

We now proceed to calculate bounds for I IBI I00 and I ID-lEI I00 .
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Examination of (2. 19), (2. 15a) and (2.15c) shows that

(2.21) IIBIIoo=maX { max {2/(E.+2+€.) . l/(l+€1).

zsjsM-l J J

1/(£M+1)} .

which implies that (ij and 53 should be bounded from below to

bound I IBI IoO from above.

Using (2.15a), (2.4) and (2.5a) it is clear that for lg jg M-l

(2.22) Ej >,h31r|p(3,j,0)|

3 l 2 3

>h X x.-x.x.-x,(x.-x/ /|(J J)(J J)J j)!

2 h3X/[h-(1-201)-h(1-o)- h]

>/ ‘6/[(1-oz)(l -2o)] .

Correspondingly, from (2. 15c), (2. 4) and (2. 5a) we have for

2<j<M that

(2.23) E'j >,X/ [(1 —a)(l-2o)] .

Combining (2. 21), (2. 22) and (2. 23) yields

(2.24) IIBIIoog(l-a)(l-2a()/[(1-a)(l-2ar)+X]

<1

In order to obtain a bound on I ID-IEI I0° we use (2. 16) and

(2. 17) which gives
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(61- hs'l)/ (1 + 61)

(52+ 52)/(62+2+£2)

1
(2.25) D‘ E =

(5M_1+ 5M_1) / (EM-1+ 2+ Md)

(6M+ hs'M)/ (£M+ 1)
h -  

Which implies using (2. 22) and (2. 23) that

-1 A

(2.26) |(D Ellwg [(1-a)(1-24)/((1-a)(1-2a)m] ”Ell... .

where

)7 _ . 7

61 hsl

(32+ (52)/2

A

(2.27) E e

h

(5M_1+ 5M_1)/2

  M M _I

/\ _

An upper bound on I IEI Ico is obtained by bounding 5j and 5j from

above. Using (2. 5a) and carefully observing internal cancellations

we have for 1gig3



139

3

(2.28) |h+ 2 (x. -x£.)I< h[l —i-s‘]

1:1 J J

[#1

and

3 1
(2.29) |-h+ z (x.-§.)I<h[1-ioa].

l-Tli

Combining (2.15b), (2.15d), (2.5b), (2.28) and (2.29)it follows

that for lg j g M-l

(2.30) |8j|s(3-6a)g/o?,

andfor 21$ng

(2.31) |3j|<(3-6o)g/3.

Therefore, from (2. 27), (2. 30) and (2. 31) follows an upper bound

A

for ||l~::||0°

A
_

(2.32) IIEI loo: max { max {|8.+5.|/2 }.

2<J°$M-l J J

I }
'61 "hi 8'1' ' J5M+hsM

S(3 -6a)€/3 + hn

Combining (2.20), (2.24), (2.26) and(2. 32) yields

(2.33) ||s| loos (l-a)(1-2a)[(3-6a)g/9 +hn]/ )’ .

Our result follows from (2. 33) and Lemma 1. 3.
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Section 3. Univariate Discrete Least Squares
 

Z
)

Assume that we are given an unstructured set X = {9,} , 1 Q

A

[a,b] of M data paints, and the mesh wx:a = x1 < x2 < - - - < xM = b,

-xj). If fe C(m)'[a,b], where lg mg 4,

p I
I

where h = max (x

lsJ’SM-l J“

e 82hr ) which minimizes the Euclidean

LS x A

norm of the residual vector ReIRM, where component i of R is

then a cubic spline s

A A

(3.1) R1: f(xi) - SLSJXi) ,

1. e.

101
‘ A 1 2

(3.2) IIRII =( E (f(xi) - sLS(i\ti))2) /

i=1

A

M

= min ( Z ”(J/2i) - s(QiIIZIIIZ .
2 ._

seS (17x) 1—1

is a discrete least squares approximation to f on the unstructured

data set X. It would be desirable. to have an estimate as to how

close 8L5 is to f in the uniform norm similar to the estimate we

have for the cubic interpolation spline s e 82(1rx), (Theorem 1. 1 of

f

Chapter 2). We would hope that if f is smooth and the residual

vector R4 is small, then sLS is close to f. This, however, is not

the case, even if the cubic interpolation spline sf is clOse to f.

Therefore, as a prelude to the next theorem, we will give the follow-

. ing example which illustrates the importance of having sufficient

data points which are reasonably distributed on [a, b] with respect

to the mesh 11

x
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Example 3. 1: We will construct the discrete least squares approxi-
 

. Z . _

mation sLSe S (fix) on the uniform mesh 17x.a _ xl < x2< - . . <

xMzM, where xizi for lgigM, hx=l and M>3 tothe

function fe c”) [1,M]

£(4(x-5/4))5 if is x g 5/4

(3-3) f(X) =

o if 5/4 < x g M

Direct calculation using (3.3) yields | If] I = 6 and | |f(4)| | =

30720 C. If sfe 82(1rx) is the cubic interpolation spline which inter-

polates f on the mesh "x' then from Theorem 1.1 of Chapter 2

(3.4) ||£-sf||g4ooé.

We will explicitly construct the discrete least squares spline

approximation 3 to f on the following M+Z data points

LS

(3.5) X = {1 + i/4}:0 U {j +83%: _C_ [1,M] .

where f(1)= -5, f(l +i/4)=o for 1<i<3, i(j+£)=o for

2 (j g M-1, and we assume 0 < 8 <1 2. Our construction will show

that the residual vector Re IRM+Z is zero, and that sLS is the

unique discrete least squares solution to f on the data set X.

If R is zero, then s interpolates f at the points

LS

{1 + i/4} :0 , which implies that on [1, 2], is uniquely given by

SLS

(3.6) sLS(x) = 6-32-(x - 5/4)(x-3/2)(x-7/4)/3 ,

where
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(3.7a) sLS(2)=6>o,

(3.7b) s'Ls(2)> o ,

and

(3.7c) SLS(2)>O .

Because SLSE C(2)[a,b] and sLS(j+€) .= f(j+€) = 0, it follows that

on the interval [j, j+l), s has the unique representation

LS

. . z . '3 . 3
(3.8) SLS(X) = —<sLS(J)/<25) + s'LSm/é +sLS<J)/e )(X-J)

. . 2 . . .

+ (S'LSUVZXX'J) + s'LSUXx-J) + 81.5”)

If sLS has been uniquely constructed on the interval [1,j], then

(3. 8) gives a unique extension to [1, j+l], hence inductively to

[1,M]. From(3.8), if (j) and s(j) are all non-
. I H

E‘Lsm' 8L5 8L

zero and of the same sign, then s j+l), s' (j+l) and s” (j+l)

LS( LS LS

are all non -zero with the opposite sign and

. . 2
(3.9) lsLSu+1>|> lsLSuH/é .

where we have used our assumption that 0 (fig 1/2 for the con-

servative lower bound in (3. 9). Combining (3. 7a), (3. 7b), (3. 7c)

and (3. 9) we conclude that for 3 g j g M

(3.10) IsLS<i)I><1/£)ZJ'5 .

(3.11) ”15'5le l > (1/£)2M-5 ,

and
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ZM-S
(3.12) ”3(3le l > (1/8) .

where we have used the fact that f(M) = sf(M) = 0. Therefore, by

decreasing 5,, we can cause f and its first four derivatives to be

as small in norm as desired. However, the norm of the error in

(3. 11) can be made as large as desired, even though the residual

vector R is zero.

From this example, it is clear that an acceptable upper bound

on I If-s can be obtained only if we place restrictions on theLSll

number and distribution of the data points with respect to the mesh

is close to f, s need not"x' Finally, observe that even if 8 LS
f

be close to either sf or f.

Remark 3. l: The observation should be made that the mesh, Size
 

h = l was chosen only for convenience, and its size is not crucial to

the above example .

The above example motivates the hypothesis of the following

theorem.

 

Theorem 3. 1. Let sLSe 82(1rx) be a discrete least squares approxi-

. (m) . "
mation to fe C [a,b], -1 g ms 4, on the set X of M unstructured

data points, where "x is a uniform mesh. Assume for each 5,

'where 2 < j < M-l, that there exists six data points which we desig-

nate by {31;}:1 U {x;} 3 C X satisfying (2.1a), and also

i=1“
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i 3

{x1}i=1

numbers If, a and 3 be defined as in (2.4), (2. 5a) and (2. 5b),

g X and {iiflil g X satisfying (2. lb). Let the real

respectively. If X>O, If'(xk) - (sk)I<n, for k = l, M, and
I

SLs

at all of the data points x; and 3?: defined above If(x§) - sLS(x;)I

_i _i

S t and [f(xj) - sLngng g, then

2 (m

(3.13) IIf—s Iléém’o(21(l-a)(l-Za) /(432{)+1)||i )||h:‘
LX

+ 21(1-a)(l-Za)2§/(4QI) + (7(l-a)(1-2ar)/(41)+1/4)hx n ,

where 6m is given in Table l of Chapter 2 and hx : (b-a)/(M-l).

,0

Proof: From Theorem 1.1 of Chapter 2, if s e 52(1rx) is the

f 

cubic interpolation spline to f, then

(3.14) llf—slel s llf-sfll + llsf-SLSII

(m) m

«motif |th + llsf-SLSII-

We now obtain a bound for I Isf-sLSI I from Lemma 2.1. First

2

observe that sf-sLS £5 (17)" and

I _ I = I _ I

g 7'1 i

for k = l, M. Furthermore, for our specified data points we have
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i i i i i i
(3.16) Isf(xj) - SLS(xj)| < Isf(xj) - f(xj)l + lf(xj) - sLs(xj)l

< llsf - fll + ’5

(m) m

<6 ||£ ||hx +g,
m,0

and cor respondingly

6:ng 6;(3.17) Is LS J m,
_i (m) m

f(xj) -s OIIf IIhx + g

Therefore, from Lemma 2.1

(3.18) g 7(l-a)(l -2a)(3-6a)(8m, 0| |£(m)| I11:
Ilsf 'SLSII

+ §)/46){ +(7(1-a)(1-2a)/(4b’)+1/4)hx 1)

Combining (3.14) and (3. 18) yields (3.13) and the proof is complete.

 

I

Remark 3. Z: In Theorem 3.1 it is permissible to use either of the

following estimates for g ,

(3.19) g: IIRIIOO,

or

(3.20) g: IIRII,

where I IRI loos I IRI I . In practice, however, I IRI I is usually a

poor choice when compared to I IRI I00, especially for large 131 .

Remark 3. 3: It should be noted that during the numerical solution
 

of a discrete least squares problem, the residual vector R is
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calculated, (see[ 4 , ll , 21 , 28 :I). Therefore, R is available for

use in the estimates (3.19) and (3. 20).

Remark 3. 4: Examination of (2. 3a) through (2. 5b) yields the follow-
 

ing lower bound for Y and 3

(3.21) $36.1 - 1

and

(3.22) 9325’

However, 60-1 and 2023 are usually much smaller than ‘6' and 3,

respectively, and their use in Theorem 3. l deteriorates the bound

(3. 13).

Example: If we assume that the data points X are distributed in such

a way as to give a )1/4, then from (3.21) and (3.22) Yzl/Z and

3 >1/32. This gives the following bound from (3. 13)

(m) m .
(3.23) IIf—sLSI ls (Em, o127 ||f ||hx +126 g + (85/4) bx. 11 .

Examination of Theorem 3. 1 shows the need of insuring the

smallness of 11 . We want to approximate f'(xk) for k = l, M in

some manner which is compatible with the hm. One possibility is

as follows. If each of the intervals [xl,x2] and [xM-l’ xM] con-

tains at least m data points, respectively (the hypotheses of

(Theorem 3. l guarantees at least 3), then using Lagrange interpolation

polynomials of degree m-l, we can approximate f'(:fi<) for
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k = 1, M with the derivative of these polynomials at the end points

of our interval x1 and xM (see Remark 1. 1). If a constrained

least squares algorithm is used to insure that the least squares

spline SLS has these values for its end derivatives, then inequality

(1. 24) gives a bound for M. Therefore, the following Corollary is

an immediate consequence of Theorem 3. l and the above construction.

Corollary 3.1. If the hypotheses of Theorem 3.1 are satisfied and

there exists m data points in each of the intervals [x1,xz] and

[xM_1, XM] on which the Lagrange interpolation polynomials of

degree m-l are constructed to approximate f'(xk), k = l, M, and

s'LS(xk) is equal to those approximations, then

2
(3.24) lli-sle ls [Cm 0(21(1-a)(l-201)/(43X)+1)

+ (7(1-a)(l -2a)/4i’+ 1/4)/(m-l) 1] ||f(m)| pi:

+ 21(1-a)(1 -2c)2t/(431§)

It would also be desirable to have an a priori bound on

. (m) . ' . .
I If-sLSI I, knowmg only that f e C [a,b] and the distribution of

the data points X. Toward this end we prove the following Corollary.

Erollary 3. 2. If the hypotheses of both Theorem 3. 1 and Corollary

3. l are satisfied, then
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2 A1 2
(3.25) IIf-sLSI | g [€m,0(21(l-a)(l-2a) (1+M/ )/(43){)+ 1)

+ (7(1-a)(1—za)/(4x) + l/4)/(m-1)1] ||£(m)|| 11;“ ,

where 6m is given in Table l of Chapter 2.
,0

Proof: Examination of (3. 24) shows that all that remains is to
 

bound g . This will be accomplished by obtaining a bound for I IRI I

and using (3. 20). The cubic interpolation spline sf is a candidate

for the discrete least squares approximation to f, hence the norm

of its residual vector must be greater than or equal to I IRI I, i. e. ,

A

M

(3.26) ||s| |<< 2 (f(SEi) - sfu’iin
i=1

2)1/2

A

M

<( Z Ilf'stI

i=1

2)1/2

<6 ”Emmi?“ ill/2 ,
m,0 x

where an application of Theorem 1. l of Chapter 2 has been made.

Combining (3. 24), (3. 20) and (3. 26) completes the proof.

A1 2 -

Because M / > (3(M-1))1/2 >hxl/Z , the power of hx is no

longer m, as (3. 26) might indicate, but rather no larger than

m-l/2, depending upon the number of data points. In practice, of

course, we would expect (3. 26) to be a rather crude estimate and
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m) I I hm instead of

x

would hope that E. is much closer to am 0 I If(

the bound given in (3. 26).

We now give a more stringent condition on the data points, X,

which will insure that the discrete least squares spline sLS will

be uniformly close to f. In preparation for the following theorem,

the real non -negative number I I I IX of a function f is defined to

be

(3.27) IIfIIX = maxA |i(i’ii)| ,

l<i<M

5‘5, 6 X

1

which is used in the following Lemma. (see I: 6 J) .

Lemma 3.1. I: 6 , p. 91]. Let P be an algebraic polynomial of
 

degree g n on the interval [a, b], then

2
(3.28) IIPII(1 -n (31(30): IIPIIX ,

where

(3.29) (31(X) = max min, {zlx-i’E.l/(b-a)} ,

xe[a,b] l<igM 1

and

(3.30) ||P||<1 -(nf3‘1(X))‘Z/2)<IIPIIX .

where
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(3.31) I(31(X)= max minA Icos-1((2x-(a+b))/(b-a))

xe_[a, b] lgigM

- cos-”(2.3:i - (a+b))/(b-a))I .

The above Lemma yields the following theorem.

9?; A

Theorem 3. 2. Let X = {Qi i_1§_I:a,b] be a set of M unstructured

data points and wxza : x < x2 < . - - < x = b be a mesh on [a,b].

1 M

Let sLS e 52(1rx) be a discrete least squares approximation to

(m) . .
f e C [a, b], 1g m g 4, on the data set X With reSidual vector

A

ReIRM. Define (3(X) and 3(X) by

(3.32) [3(X) = max max minA

lgng-l xe[x,,x,+l] lgigM

J J Qe[x.,x ]

J 3+1

A

{ZIX-XiI/(Xj+l'xj)} 9

A

(3. 33) [3(X) : max Ifnax minA

1 '<M-l xe x.,x. l igM

‘3‘ J “112... x ]
i j’ j+l

-l
{ Icos ((2x-(xj+xj+l ))/(xj+l -xj))

- cos-1(

A

(ZXi-(xj+xj+1))/(xj+l-xj))l}

If p(X)< 1/9, then

((3.34) llf-sLSIK [(Z-9B(X))€m,0|lfm)||h:1+||R|Ioo]/

(1-9B(X)) .
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orif 6(X)< fi/B, then

A 2
(3.35) IIf-SLSI |< [(2-(38(X)) /2)ém, oI [f(m)l |th

+ I IRI lw]/<1-<3B(X))2/2) ,

where gm 0 are given in Table 1 of Chapter 2 and

h = max (x,+1 -x.) .

x 1<j<M-1 J J

 

Proof: Let sfe Sam-x) be the interpolation spline to f c C(m)[a, b] .

It follows from Theorem 1.1 of Chapter 2 that

(3'36) IIf-SLng IIf-SfII + IISf-Slel

(m m

«mom ’1th + Ilsf-sLSH.

To prove (3. 34), we first note that s - s is a cubic polynomial

f LS

on [xj’xj+l] for l( jg M-l. Because s(X)<1/9, it follows by

applying Lemma 3.1 to each interval [xj'XjH] that

(3.37) ||sf-sLS||<[lsf-sLSHx/(l -98(X)).

Also, using (3. 27) and the triangle inequality

(3.38) IIs -8 H g maxA {|(i—s)(i’£,)| + I(f-s )(£.)|}
f LS x 1<iSM f 1 LS i

<llf-sfll +||R||°o

(m) m

<6 Ilf |th MRI)...
m,0
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Combining (3. 36), (3. 37) and (3. 38) yields (3. 34). The proof of

(3. 35) is identical to that of (3. 34) and is omitted, thus completing

our proof.

Remark 3. 5: Because of the high density required of the data
 

points, X, it is not necessary to specify an estimate for f'(xk),

k = l, M, and therefore also unnecessary to employ a constrained

least squares algorithm to solve for sLS .

Remark 3. 6: As was done in (3. 26) we have
 

(3.39) IIRIIOOSIIRII

<55.
(m) m

mom |th

The bound (3. 39) can be used in Theorem 3. 2 to obtain an a priori

bound for I If-s where we only need to know X and

LSI "

f eC(m)[a,b]. However, because V101 > VM-l >/h)j/2 , the best

a priori bound obtainable using this method can not have the exponent

of h exceed m-l/Z .

Remark 3. 7: The observation should be made that a uniform mesh is
 

required for an application of Theorem 3.1. However, the conclusion

of Theorem 3. 2 is independent of the mesh spacing.



153

This section is concluded by recording a few observations on

the distribution of the data points required by each of the above

theorems. The hypotheses of Theorem 3.1 are satisfied if there

exists at least three data points in each interval [xj, xj+l] such that

the spacing satisfies (2.1a), (2. lb) and in (2.4) we have X>O . The

observation should be made that this is a reasonably weak condition

to be placed on X. For example, in each interval, all of the three

data points could lie in just half the interval, say [xj,xj+hx/2] and

X > 0 could still be realized. The data points le = hx/3 + xj ,

ij= 5hx/12 + xj and xj3= hx/Z + xj, all of which lie in the half

interval, are surely acceptable, and give the value 1: 1/4 > 0. If

X contains an excess of data points beyond that required to fulfill

the requirements (2. la) and (2. lb), then a judicious selection of the

three data points required for each interval can maximize the

quantities X, a and 3 and therefore minimize the upper bound

given in (3.13) for I If—sLSI I .

For p(X) < 1/9 in Theorem 3. 2, the number of data points in

each interval [xj’xjH] must exceed 9 and be distributed in a

reasonably uniform manner throughout each interval. Usually for

unstructured data, this will require the number of data points in each

interval to be far in excess of 9. In Theorem 3. 2, the number of

data points in each interval must exceed 31r/(2 f2.) 5' 3. 3 to insure

A

that p(X) < ’273 . However, uniform distribution of the data points
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is not what is required. Examination of (3. 33) discloses that more

data points are required near the end points of the interval rather

than near the center.
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Section 4. Bivariate Least Squares With Data on Mesh Lines
  

° :2 so. = 0 = '00 <Let 11x.a X1 (X2< (XM b and try.c y1<y2<

YN = d be univariate meshes on [a,b] and [c, d] respectively. On

[a,b]x[c, (1] define the bivariate mesh 17x 6) fly which consists

of the M vertical mesh lines x : x1 and N horizontal mesh lines

Y = Yj -

If unstructured data is given only on the mesh lines, fly ® Try,

then it is possible to avoid solving a matrix problem of high dimen-

sion by solving a discrete least squares problem on each vertical

and horizontal mesh line. The M + N discrete least squares solu-

tions are then blended with natural splines to obtain a bivariate

approximation. Toward this end, we note that sufficient theory has

been developed to yield several algorithms and corresponding error

bounds.

For the first algorithm, the M + N univariate discrete least

squares cubic splines are constructed on each of the mesh lines of

. . 2 2

“fix CD 17y from the cubic spline spaces S (17x) and S (17y). If we

have sufficient data points on each of the M + N mesh lines, then

Theorem 3. l or Theorem 3. 2 would yield an error estimate for each

of these splines. If fe C(m’n)([a,b]x[c, d]), is m,n g 4, and the

residual vector for each of the discrete least squares splines is small

enough, then each would also be an approximation of order m or

n, where l g m, n g 4. Hence, we could blend these splines with
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linear functions, which would give a bivariate approximation to f

which is of order min {m, 2} + min {n, 2} .

Therefore, we introduce linear blending, see Gordon [12] .

In the notation of Chapter 2, define V(1rx, M, 0) to be the interpo-

lation vector space of piecewise linear continuous functions, such

that the basis functions {(1)921 are defined by

(x-xi-1)/(xi-xi_l) if xii-1‘ xgxi

(4.1) ¢i(x) = (xi+l-x)/(xi+l-xi) if xigxgxfll

0 otherwise

and the interpolation function a is»defined by 02(1) = 0 for

l (i g M. Define the corresponding space V(1ry, N, 0) with basis

{419:1 and interpolation function (5 , of piecewise linear continu-

ous functiOns on the mesh "y in an identical fashion. V(1rx, M, 0)

(and correspondingly V(1ry, N, 0)) has the following error analysis:

if g. C(m)[a,b] then

M
* (m) m

(4.2) Ilg- .2 s(xi)¢ill<Kmllf ||hx .

i=1 .

:1: at

where 1‘ mg 2, K1 = 2 and K2 2 1/8. When in = l, the proof

of (4. 2) follows from [24, pp. 248 -249], where, on the interval

[xi’ xi+l]
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(4. 3) law - f2: g(x.)¢.(x)| = |(x-xi)(x-xi+1)g[xi.xi+1.x]|

: |(X—Xi+l){g[xl+l,x]-g[xl,xi+1]}I

l

s 2hx||g( )II-

The proof of the case where m = 2 follows from [24 , p. 248].

The error in linear blending interpolation to a function fe C(m,n)

([a, b]x[c, d]), lg m,n g 2 is given by Theorem 1.4 of Chapter 2

as

* * (m,n) m n

(4.4) IIf-Px@ny ||gKmKn||i ||hx hy ,

* >.‘<

where K1: 2, K2 = 1/8, bx: max (xi+1-x,) and

lgigM-l

h = max (V. 'Y-) -

V 1<j<N~1 “1 3

If h = max (hx’ by) and m = n = 2, then in terms of h, this

gives a fourth order approximation to f.

We now define stepwise an algorithm, which was described

above. This algorithm will be designated as Algorithm 4. 1.

Algorithm 4. 1: Linear Blended Discrete Least Squares with Approxi-

mation to Boundary Derivaties.
 

Let 1rx:a=xl<x <"° <xM=b and Try:c=Y1<Y2<'°°<

2

yN = d be uniform univariate meshes, and let irx G) «Y be the

bivariate mesh of mesh lines defined above. For 1g j< N, let
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f4

} j "Xj : {3’2 §[a, b] be an unstructured discrete data set of Mj

J1 i=1

N.

points, and for l g i g M let Yl=_{9ij}j_11§_[c, d] be an unstructured

A

discrete data set of Ni points.

Step1: Let feC(m'n)([a,b]xI:c,d:I) where lgm,ng4. For

X

. 6 52(11- ), which is an imivariate discrete

LS, J x

14 j S N construct 5

least squares cubic spline which minimizes the Euclidean norm of

M.

the residual vector Rife R J, where component i of R? is given

(A

X..

JlJ'i iii-$145.5 "

A __ X , . .

and xjie Xj. Also for each k, k—l, M, (SLS,j) (xk) is constrained

(l. 0)
to equal the approximation to f (x yj) given by the Lagrange

k!

interpolation polynomial of degree m-l constructed on the m data

, Q m A m

pomts {xji}i=lng’ where {xji}i=1§[xl’x2] for k—l or

£[XM_1,XM] for k=2, which interpolates the values of

f(iacji, yj) (see Remark 1.1 for procedure). Correspondingly, for

Y
1g i<M, construct SLS,i e Sam-y), which is a univariate discrete

least squares cubic spline which minimizes the Euclidean norm of

N.

i

the residual vector R36 IR , where component j of R: is given

by

Y _ A _ Y A

/\

and yije Yi' Also, for each k, k=1, N, (3}:S i)‘(yk) is constrained

(0.1)
to equal the approximation to f (xi, yk) given by the Lagrange
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interpolation polynomial of degree n-l constructed on the n data

, ’R n A n

pomts {yij}j=l _C_Yi, where {Yij}j=1§-[y1’ ya] for k—l, or

.).
’A

YiJELYNJ’YN] for k:N, which interpolates the values f(xi,

Step 2: Linearly blend the M + N discrete least squares cubic
 

splines to obtain the following approximation to f

M
N

_ y
x

M N
Y

x
- :31 j: (1/2)(SLS, i(Yj) + sLS,j(xi)) ¢i(x) .pjw)

In order to obtain an error estimate, define the following

parameters of the data sets Xj and Yi. For each j, l {j s N,

assume that there are m distinct data points of Xj in each of the

intervals [x1, x2] and [x and for l < i< M, assume

M-l’ XM] '

that there exists fixed data points in Xj satisfying (2.1a) and also

fixed data points satisfying (2. lb) with respect to the mesh "x. For

these fixed data points in Xj’ define the real numbers I: , ax and

j

33‘ with respect to the mesh 17x by (2.4), (2.5a) and (2.5b), res-

pectively (recall the notation that xi = SE: = xi is a knot of the mesh

wx). Finally, define the real numbers

x . x

x : mm X ,

(4.8) 1<j<N J

(4.9) ax: min 'a}.{>0 ,

l<j<N
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and

(4.10) a = min a. >0.

1<5<N J

Correspondingly, for each i, l g i g M, identical assumptions

on the data sets Yi’ with respect to the mesh 11:4,, are made. Also,

the real numbers Ky, arY > 0 and 3” > 0 are defined in a manner

analogous to (4. 8), (4.9) and (4. 10).

For Algorithm 4.1, the following error estimate is valid.

Theorem 4. 1. Let 3, defined in (4. 7), be constructed by Algorithm

(

 

4.1. If f e cm'n)([a,b]x[c,d]), xx>o and xy> 0, then

:1: *

(4.11) ||i—sllgxmi Kn*IIf

Axx

+ (3/2)I:€m O(21(l-arx)(l-2c1rx)2/(4ar t ) + 1)

+(7(1-ax)(1-2ax)/(41(x) + l/4)/(m-1)!]IIf(m’0)I Ih:r1

+(63/2)(1-ax)(1-2ax)2 max ||R7‘lloo/(43x3x)

1<i<N ’

+ (3/2)I:f.n C,(21(1-c1ry)(l--2cry)2/(433,3”)+ 1)

+ (7(1-ay)(1-2aY)/(42§Y) + l/4)/(n-1)1_I ||i‘o'n)| |h’;

+ (63/2)(l-ay)(1-2ary)2 max ||RZ||°° /(43y7{y) .

1gigM

* . * .
where m = min {m,Z}, n _ min {n,2}, 6m,0 and Limo are
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. . * *

given 1n Table l of Chapter 2, K1 = 2, K2 = 1/8 , hx = (b-a)/(M-l)

and hY = (d-c)/(N-l) .

Proof: From (4. 4), we have

(4.12) llf-sll s llf - PKG) Py1f1||+ IIPxGD PYEfJ-sll

 

* * (m*, * m* nut:

gKm* Kn.< If n )IIhx hy+HPx®Py[f]-5II.

Writing out PX ® Py [f] - s and using (4. 7), gives

M

_ . _ V(4.13) PxC-DPyIfJ-s— :1 (f(xi,) sLS,i)¢i

N

+ >3 (£(- y.)-sx .).);
._ ’ J LS.J J
J-l

M N

—23 2 Mann: yl-sy (y)+f(x y)-s" (x))<(> 4:
i=1 j=1 i' j Ls,i j i’ j LS,j i i j

Taking absolute values, observing that both (pi and qij are non-

M N

negative, )3 d), = l and E 41, = 1, then (4. 13) reduces to

i=1 1 j=1 3

(4.14) |(Px® P [fJ-s)(x.v)|< (3/2) max ||f<xi.-)
V 1<i<M

x
- SSLSJH + (3/2) max I If(-,y.)-sLS,jI I

1<5<N J

Corollary 3.1 yields
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(4.15) max ||f1x..-) - sY .ll
IsiSM i LS,1

<[én o(21(1- ay)(l-2ay)2/(43YXY) + l)

+ (7(1-ay)(1-2ay)/(4iy)+1/4)/(n-1)1] ||£(°'n)|| h:

+ 21 (1-a”)(1-2a")2 max IIRY || /(43Y1§V) ,
. i 00

lg igM

with a corresponding bound for max I If(’ ,y.) - 8:8 I I. Com-

bining (4.12), (4.14) and (4.15) completes the proof of the Theorem.

We first observe that if T is the total number of data points,
1

then T1 must satisfy

M A N /\

(4.16) T1: Ni+ Z Mj >6MN-(M+N),

i=1 j=l

for sufficient data points to be available to apply Theorem 4. 1. Next,

because only univariate least squares is being performed, the size

(total number of entries) of the largest matrix that must be stored in

the computer at one time is given by

A ~/\

(4.17) T2 = max {(M+2) max M,, (N+ 2) max N. } .

1gjgN J l<i<M
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Instead, if a bivariate least squares solution was obtained using the

dis cretized blending function space of linearly blended cubic splines,

the matrix problem to be solved would be significantly larger than

T2, (usually of the order of (T2)2) .

Example 4. 1: Consider the special case when m = n == 4 and h =
 

max (hx, hy). Hence m* = n* = 2 and (4.11) gives a bound in which

the power of h is four. Also, an a priori bound can be obtained

using Theorem 4. 1 and the reasoning of (3. 26) on each residual vec-

tor R? and R? . However, the highest realizable power of h is

31/2.

If each of the data sets Xj and Yi has sufficient data points,

the following algorithm can be applied, where it is not necessary to

approximate the normal derivatives or to use uniform meshes.

 

. .: : : <00. 2 : :Algorithm42 Let nxa x1< x2 <xM b and ‘n’yC y1<

YZ < < yN = d be univariate meshes and let 1Tx®fly be the

corresponding bivariate mesh. For 1 < j < N, let X. ={xji}i-lic,_

A

[a,b] be an unstructured discrete data set of Mj points and for

Ni

l< i g M let Y1: {9ij}j_1§_[c, d] be discrete unstructured data

A

sets of Ni points.

Step 1: Let fe C(m’n)([a,b]x[c,d]), where l (m,ng4. For

1( jg N, construct 81:8 jeszhrx) which is a univariate discrete
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least squares cubic spline which minimizes the Euclidean norm of

M.

the residual vector R: e IR J given by (4. 5). Correspondingly, for

1 g i< M, construct s -e 52(1ry) which minimizes the norm of the
Y

LS, i

i

residual vector R2,: [R defined in (4. 6).

Step 2: Linea rly blend the discrete least squares splines to obtain
 

the bivariate approximation 8 defined in (4.7).

In order to obtain an error bound, calculate for each j,

A

l gj g N, the real numbers 8(Xj) and 0(Xj) with respect to the

mesh Tl’x from (3. 32) and (3. 33), respectively. Define the real

A

numbers 5x and fix by

(4.18) 0 = max 6(X.) ,

x 1<5<N J

A A

(4.19) 8x: max s(x.)

KKN

Correspondingly, for each i, 1 ( i< M calculate the numbers

A

(3(Yi) and 8(Yi) with respect to the mesh Try from (3. 32) and

A

(3. 33), respectively, and define the real numbers fly and fly by

(4.20) B = max s(Yi).

1<i<M

(4.21) B = max 30!.)

l<i<M 1

The following error estimate is a consequence of Theorem 3. 2.
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Theorem 4. 2 . Let 5, defined by (4. 7), be constructed by Algorithm

4.2and iec(m'n)([a,b]x[c,d]). If 8x<1/9 and 8y<1/9, then

.1, g * *

>".~ * (m"‘,n>€) m n

(4.22) ||£—s||<Km*K .. If ||hx by
‘l‘

 

(mm m x .
+(3/2) [(2-9 (3 ) <5 IIf llh + max llR-ll /<1-9a >

x m,0 x 1$j<N J co] x

(0.11) n Y
+(3/2)[(2—9(3 )6 [If I|h + max ||R. || /(1-98 ),

y n,0 y lgiQM 1 00] y

or if €x< )12_/3 and 3y < 5/3, then

(m* n*) mac< n};<

(4.23) ||£-s||< K *K * IIf ' ||hx h

n Y

A 2 (m,0) m x

+<3/2)f(2-(3a )/2)<i llf llh + max IIR.II ]
x m,0 x 1$j$N J 00

/(1-(3Bx)2/2)

A 2 o,

+(3/2)[(2—(3(3y) /2) 611,0] |f( “Mb:

A 2
+ max IIRYII /(1-(3fi ) /2) ,

lgigM 1 °°] Y

>1: *

where m = min {m,Z}, n = min {n,2}, (Em and (in are

,0 ,0

>1: *

given in Table 1 of Chapter 2, K1 = 2, K2 = 1/8,

h = max (x. -x.) and h‘ = max (y. -y.)”.

1gigM-l 1“ 1 Y 1gjgN-l 3“ J
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Proof: The proof of Theorem 4. 2 is essentially identical to the proof
 

of Theorem 4.1. We merely note that combining (4.12), (4. 14) and

the bounds of Theorem 3. 2 yields our result.

Algorithms 4. l and 4. 2 are hybrid algorithms, which combine

piecewise cubic and piecewise linear splines. If it is desired that

cubic splines be used throughout, then the following algorithm, out-

lined below, may be useful.

We blend our discrete least squares cubic splines with natural

. . . (m,n)
cubic splines (see Section 3 of Chapter 2). If fe C ([a,be[c, d3),

2 < m,n g 4, then this method has a potential accuracy of order

m + n in the "interior of the region”, (see Sections 3 and 4 of

Chapter 2). Examination of Theorem 4. 2 of Chapter 2 indicates that

preservation of this accuracy requires the discrete least squares

cubic spline approximations to be of order m + n, when their

residual vectors are small. To accomplish this, on each mesh line

of 1r @w , we replace the meshes 'n' and Tr by uniform univari-

x y X Y

ate meshes 17x33 = x1< x2< '° ' < XM = b and Try:C = yl< y2< -- - <

37E = d, respectively. From Theorem 1.1 of Chapter 2, the interpo-

lation accuracy of the univariate cubic spline spaces 52(5):) and

2 _ . -m -n . - -
S (Try) is 0(hx) and 0(hy) respectively, where hxz (b-a)/(M-l)

and h; = (d-c)/(N-l) . Therefore, for the preservation of our
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accuracy, it is necessary to refine the meshes '1')" and 'T'r'

x

sufficiently to have ‘11:? g h? h: and hn g hm hn

Y Y Y

Remark: For the special case where m = n = 4 and hx = hy = h,

this reduces to hxg h2 and hyg h2 .

The above observations lead to the following algorithm.

<°°°<xM=b, ny:c=yl<y2<
 

1

<yN=d, Fx:a=-£l<§2< .. (xfizb and ?y:c=371<y2<

°-<y—-— d be univariate meshes such that it and F are uni-

x Y

form, hx g hm hn and l-in g hr: h: (these last two conditions

x Y Y

are not necessary for Theorem 4. 3 to remain valid, however, to

preserve the desirability of Algorithm 4. 3, attempts should be made

to insure that these two conditions hold, or at least nearly hold).

Let Trx G) Try be the bivariate mesh of M+N mesh lines. The data

points will onlybe specified on the mesh 1TX® Try . For 1 gjg N,

let Xj :{in}i=j1 __CZ,[a b] be a discrete unstructured data set of

A A i

Mj points, and for 1< i g M, let Yi = {yij}j_11§[c,d] be a dis-

A

crete unstructured data set of Ni points.

Step 1: Let feC(m'n)(I_a,b]x[c,d]) where 2(m,n< 4. For

1 g j ( N construct SK 6 52(77):), which is a univariate discrete

LS, j

least squares cubic spline which minimizes the Euclidean norm of
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A

M-
._..

the residual vector R: e [R J defined by (4. 5). Also, for k = l, M,

x , . . . .
(SLS, j) (xk) is cons trained to equal the approx1mation to

f( 1’ mfik’yj) given by the Lagrange interpolation polynomial of

degree m- l constructed on the m data points {lel=.}mlC X

where {xjii}r:1__I:xl ,x2] for k = 1 or ;[§.fi-l,§fi] for k = M,

A

which interpolates the values 2f(xji,yj). Correspondingly, for

Y
LSie 82(1ry), which is a univariate discretelg is M, construct 5

least squares cubic spline/which minimizes the Euclidean norm of

N- _

the residual vector R2218 1 defined by(4.6). Also, for k=1, N,

(sY

S,LS i

f(0.1)

.') (yk) is cons trained to equal the approximation to

(xi,'y'k) given by the Lagrange interpolation polynomial of

A

degree n-l constructed on the n data points {91}? l QYi , where

{Yij}j=__1 _[Y1, Y2] fork=1 or CILyN1,yN] fork: N which

interpolates the values f(xi,

>

ij)°

§
<
:
>

S_te_p__2: Blend the above univariate discrete least squares cubic

splines with natural cubic splines (see Section 3 of Chapter 2) to

obtain the following bivariate approximation to f, where

{Ai}i\:l QSZUrX) and {Bj}:1§_82(1ry) are natural cardinal basis

functions,

N X

LS,1 i :1 sLS,j Bj

M

(4.24) S = 2

i=1

M N

.. 12:1 j:Z)1(1/2)(SyLS,1.(y.)+SLS,j(xi)) Ai Bj.
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The following assumptions are made on the distribution of the

data points so that an error analysis can be performed. For each

j, 1‘ jg N, assume that there exists m distinct data points of X,

J

in each interval [x, x2] and [KM-1' xfi] , and for 1 < i g M,

assume that there exists fixed data points in X5 satisfying (2. la) and

also fixed data points in Xj satisfying (2. lb) with respect to the

mesh 3;. For these fixed data points in Xj, define the real num-

bers 73‘, 53‘ and 3‘: with respect to the mesh Fx by (2.4), (2. 5a)

and (2.5b) respectively. Define the real numbers 7x, Ex and fix

to be the minimum of Y? , 33‘ and 33‘ , respectively, for ' 1 ( j(N.

Correspondingly, for each 'i, l ( i ( M, identical assumptions on the

data sets Yj, with respect to the mesh 7r}. are made. .The real

numbers 7y, KY and 3}! are defined in an analogous manner.

Algorithm 4. 3, along with the assumptions on the distribution

of the data points, gives the following theorem.

Theorem 4. 3. Let s, defined in (4. 24), be constructed by
 

(mm)
Algorithm 4.3. If feC ([a,b]x[c,d]). 7x>0 and 7y>0,

then for x€[xi'xi+l] and Y€[ijYj+l]

(4- 25) |f(X. y) - s(x.v)| < I |f(m'n)l Him, 0 11::1

m-l n n-l "

+ Km(hx AxiAi/tinén’o hy+Kn(hy Avlej/(n
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(m, 2) m m-l ""
+ (1/8)| If ||{ém’ 0 hx + K (hx Axini/4}(hyayj)Aj

m

+(1/8)llf(2’n)|l{é h: +Knn(h 'leij/4}WhAx)/_\
n,0

+ (1/64)| [f(z’ 2" I{(thxi)(hyAYj)}Ai—A—j

+K(M1T )(1+K(M1rxam)/Z){[O(121( -ax)(1 -2a“)2/(4013‘7x)+ 1)

v

+ (7(1—ax)(l -23X)/(4'?‘) + 1/4)/(m-1)1] | |£(m' 0)| | 71:1

+ 2.1(1-axx1-za")2 max Ile‘llw/MZQ'IT‘H

1<5<N

+ K(MTr )(1+ K(M1T )/2){[6n O-(21(1 3y)(1 23")2/(45Y7Y)+ 1)

x v

+(7(1-3y)(1-2ay)/(4YY)+1/4)/(n-l)1] ||f‘0'n)| | '1?”

+21(1-3Y)(1-23Y)2 max IIRYII,o /<4ay1y)}
, . 1<i<M

where E, and E. are given in Table 3 of Chapter 2, K and

m, 0 n, 0 m

Kn are given in Table 5 of Chapter 2, Axi = xi+1-xi,Ay1 = yj+1-

yj, bx: max Axi, h = max Ay, , A1 ={21 11+21M+1},

1<i(M-l y 1<j(N-1

1T

A.={21’3+21‘N+5}, M = max Ax/ min Ax. , M =

J x IsisM-l 1 1004-1 ‘Ty

max A,,/ min Ax, mt):6&(2§+1)(€+1)Z/(3+4§).if
l<j<N-l J 1<j<N-1 J .

(b-a)/(i71-1) and iv = (d—c)/('1'\1'-l).
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Proof: This is a direct consequence of Corollary 3. 1 and Theorem
 

4. 2 of Chapter 2.

Remark: The observation should be made that the order of accuracy

. . t
depends upon which rectangle, [xi, xi+1] x [yr Yj+ll the pom

(x,y) belongs to, because of the exponential decay of the terms Ai

~

and Aj toward the center of the region. If the norm of the residual

vectors are small enough, m = n = 4, h = max (hx’ hy)' Hx“ h2

and Kyg h2 ,then the error satisfies Figure 1 of Chapter 2, i. e. ,

eighth order near the center and less near the boundary (see Section

3 of Chapter 2).

Remark: The continuity required by Theorem: .4. l and Theorem 4. 2

C(m’ o’flcw’ n)“ C(m*’ 11*) 2 C(m’ n), where m* = min {m, 2}

and 11>:< = min {n, 2} . However, Theorem 4. 3 requires continuity of

C(m’ O) n C(O’ n) n C(m,n) = C(m’ n), hence, using cubic splines

throughout the algorithm makes more efficient use of the available

continuity.
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Section 5. Bivariate Least Squares with Unstructured Data

A

A

Let X = {(xi, 91)}111'1 §[a,b]x[c, d] be a set of M unstruc-

 

tured data points. We will describe here several bivariate finite

dimensional vector spaces from which discrete least squares fits

can be calculated on the data set X. The first two spaces, bicubic

splines and cubically blended cubic splines are known (see [29], p. 49

and [13], respectively). The Hermite blended piecewise poly-

nomials are new and have some interesting properties. For this

chapter, define the real number I I I IX of a bivariate function

f 6 C(0’ 0)( [a, b]x [c, d]) to be

A

(5.1) IIfII .= max |£(£,,y.)| .

X 1gi<1¢1 1 1

Section 5. 1. Bicubic Splines
  

t :: ‘°° = :: so.

Le Trxa x1<x2( (XM b and "Ye Y1<Yz< <

yN = d be univariate meshes, then the space of bicubic splines is

. 2 2 2 2 .
defined to be S (1)-x) ® S (Try), where S (17x) and S (fly) are cubic

spline spaces of Example 1. 2 of Chapter 2 (see [29 , p. 49]). From

M+2 and {w.}N+2

the remark following (2. l) of Chapter 2, if {ui}i-l J j-l

are any bases for 82(17):) and 82(1ry), respectively, then

2 2. . . a o , d

{115‘ wJ}1<1<M+2’ 1<J$N+z is a ba31s for 8 (fix) (:9 S (try) an the

dimension of this space is (M+2) (N+2) .

Let f e C(m’n)([a,be[c, d]), lgm,n g 4, then seSZ(1rx) ®

2

S (17y) is a discrete least squares cubic spline fit (for f on X) if it
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A

minimizes the Euclidean norm of the residual vector Re R ,

where component i is given by

A A /\ A

(5' 2) Ri - f(xiO Vi) 1' s(xi! yi) J

A A . A

for (xi, yi) e X and 1 g 1 g M.

Before deriving an error analysis, the bivariate generalization

of Lemma 3. 1 is given ('see [6 , p. 91] ).

Lemma 5.1. Let Q be a bivariate polynomial of degree gn in
 

both variables, then

(5.3) ||Q||(l-nZE(X))g||Q||X, where

(5.4) 3(X) = max min {2|x-xil/(b-a)

agxgb A A

cgygd (xi’ vi)6X

+ zlv-ir‘il/(c-dl} .

and

(5.5) ||Q|| (l--§-(n8(X))2)g||Q||X, where

-"- -1
(5.6) 8 (X) = max min {|cos ((2x-(a+b))/(b-a))

agxgb A A

cgygd (xi’ 1'1)6 X

- cos-1((in-(a+b))/(b-a))I

+|eos‘1((2y-(c+d))/(d—c)) — cos’1((2§i-(e+d))/(c—d))I} .
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Proof: The proof of (5. 3) is along similar lines as the proof of (5. 5)
 

and is omitted. The proof of the univariate case of (5. 5) is given in

[6 , pp. 91 -92].

Let (x, y)e[a,b]x[c,d] be such that IQ(3E,y)I = IIQI I, then

from (5. 6), there exists (1?, 5}) e X such that if E = cos-1((23E-

(a+b))/(b-a)), '6: cos'1((2§-(c+d))/(d-e)), 3 = eos'1((2$2-(a+b))/(b-a))

A -1 A

and 0 = cos ((2y-(c+d))/(d-c)), then

A ’\ _ A

(5.7) 8( x>)>|3—o|+|9-8|.

Define the bivariate trigonometric polynomial of degree n to be

R(a, 6) = Q(((b-a)cos a+a+b)/2, ((d-c)cos 9+c+d)/2) . Because

IICII: |R(5:—5)|= HRHL-n,0]x[-1r,o]:||R||[-oo,oo]x[-oo,oo]the11

R.(1 o) R,(o 1).

(5-8) (3.9)= 0.9)=0

and we have

(5.9) 116,8) =f R(l' O)(a, 8)do + R(0’1)(a, 8)de+R(&‘, 3) ,

C

A —

where C isa straight line from (3,9) to (3,9). If C is param-

eterized by te [0,1], then

1

R” 0)

(5.10) R(a,0) =] [R (t(a-a)+a,t(6 -9)+0)
-R

o (t-l)

 (t-l)

R<0.1) (o. 1)
”(E-SHE}, t( 613 )+3)-R

(t-l)

 (3’6) (t-l):I dt

A

+ 11(6), 8) .
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By the Mean Value Theorem for each te [0, 1), there exists a

te (t, 1), such that

(5.11) (R(l’o)

z a”, °)(‘t’(a‘—6‘)+3, "(

A! ~—— A A _ A

+ R(l’ ”(dB-3H3, t(9-9)+9) (9-9) ,

with a similar expression for the second term in brackets on the

right hand side of (5. 10). Taking absolute values and substituting

(5.11) into (5. 10) we have, after two applications of Bernstein's

inequality (see [6 , p. 91]) .

(5.12) IIQII = |R(67.-5)|

1

(la-{r‘|+|8-?5|)z f |t—1|dt+|R(a‘,3)|

o

2 .. - A 2

< IlQlln (la-3l+|6--9|> /2+ HQIIX

A

— 2

< llQll<nfi<Xn /2+ Manx.

A A

where (5. 7) has been used and the fact that IR(3, 9)I = I062, y)I S

Manx.

A

Define the real numbers (3(X, Try) and p(X, Tl’x, Try) with

flx’

respect to the imivariate me shes "x and Try to be
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(5.13) (3(X,1r ,11' )= max max min

1<i<M- 1 xe[x, xi+ 1] (xk,yk)€X

1<J<Nl £[::1+1]xe[x x ]
Y Y yj+l k 1’ 1+1

A

Yk e[yj. ij]

A A

and

.A.

(5.14) (3(X1rx, Try )= ax max Amin

lgi M-1 erx, xi+1] (xk,yk)eX

114 N- 1

y[yj,yj+1] xk[xi'xi+l1I

vkeEYj. 33,1]

{ Icos-l((2xk-(x+x1+1))/(xi+1-xi))-cos-l((2x-(xi+xi+l))/(xi+l

-x ))| + loos-1H2? -(Y +y ))/(y ‘Y ))-cos'1((2v-(v
i k j j+l j j+1j+l

+ yjn/(yjH-yjnl} .

2

Theorem 5. 1. Let SESZ(Trx ) 6:) S (11-Y ) be a discrete least squares
 

bicubic spline on the data set X to fe C(m n),([_a b]x [c, d]) fOr

1 g m,n{ 4. If 5(x)<1/9, then

.0 0.
(5.15) IIf—sII<{Cm,OIIf(m )| lh:+‘c’n,ollf( 11)||h1;

+5 If(m 11)||h:1 h: }{1+1/(19'8'(x.x.n 111)}
m0 r10I

+ llRIlw/11-9E (anxnryn .
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a
If p(x, 17x, Try) < 5/3, then

< ,o
(5.16) ||f-s||g{ém’0||fm )llhxm+a

(0,11) 11

“Hf |th

+6, ||f(’m “)Hhm hn}{1 + 1/(1(3E(X,1rxy,17))2/2)}
m, 0 an, O

A 2
+ IIRI loo/(l-(3fi(X.Trx.Try)) /2),

where 5 and (i are given in Table 1 of Chapter 2 and h
m, 0 n, O x

and hY are the mesh sizes of "x and Try, respectively.

Proof: From Corollary 1. 2 of Chapter 2
 

(5.17) ||f—sll< llf-PxPy[f]l| + IIPXPYBJ-sll

$5,
(m,0) m (0.11) n

Milt 1th +5n,0|lf |th

(m,n) m n

+ £m,0 {hollf ||hX hy+ IIPXPy[f]-s||,

where Px Py [f] is the bicubic interpolant to f defined in (1.18) of

Chapter 2. Note that Px PyEf] -s is a bivariate cubic polynomial on

each rectangle [xv x1+1]xxyj,[y yj+ 1] for 1<i<-M l and

IQ j g N-l, hence from Lemma 5.1

(5.18) |(PX Py [f]—s)(x, y)I g | IPxPy[f]-s|IX/(1-9f-3(X,1rx, try»,

because [3 (X, Trx, Try) < 1/9. It follows that

(5.19) ||Px Py[f]-S|lx {maxAHXP Py[f] f)(xi, yi)|

1<i<M

+ maxA |(f— s)(x, yi)|

1<i<M 1
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s IIPXPYEfJ-fll + IIRII..-

Using Corollary 1. 2 of Chapter 2 and combining (5. l7), (5. 18) and

(5.19) completes the proof.

Remark: Note that we have the choice of using any basis of 32(1rx)

and 52(1ry) . Usually, bicubic B-splines are chosen because they

have the desirable property that they have support on at most sixteen

adjacent rectangles, are non -negative, and easy to calculate, see

[21] . This property minimizes the number of evaluations of the

basis functions which must be made to construct the least squares

matrix.

Section 5. 2 Cubically Blended Cubic Splines.
 

=b, Fgazf<§<...<Let wx:a=x1<x2<---<xM x 1 2

xL-Ifzb’ Try:C=Y1< y2<~~ (yN=dand nyzc=y1<y2<no<

.11? = d be univariate meshes with the corresponding cubic spline

2 2 — 2 2 _

spaces S (17x), S (Tl'x), S (fly) and S (Try) .

From Definition 2. 1 of Chapter 2, the discretized blending

function space of cubically blended cubic splines, DBF is the image
1’

of C(l’l) under the map P @P =P— P +P P -P P

x Y x Y x Y x Y

Tl'x is said to be a refinement of the mesh "x if and only if

the knots of the mesh Tl'x are knots of the mesh ‘13:. For cubic

_ 2

spline spaces, if 1Tx is a refinement of TTX, then S (wx) is
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_. 2 ..

subordinate to 52(nx) and S (17X) g Szhrx) (see remark following

(2.29) of Chapter 2).

If the meshes ? and ? are refinements of 1r and 11' ,
x y X Y

respectively, then from Theorem 2. 3 of Chapter 2

(5.20) Dim(DBF1) e (M+2) (N+2) +(1'\71+2) (N+2)-(M+ 2) (N+2),

and T1 through T4, given in that theorem, each form a basis for

DBF].

Finally, a bound for | lf-Px®Py[f_]| I is given in Example 1. 4

of Chapter 2.

(m

’n)([a,be[c,d]), l< m,ng4, then seDBF isLet feC l

a discrete least squares solution on the data set X if the Euclidean

norm of the residual vector R defined in (5. 2) is minimized. Com-

bining the above observations and Lemma 5.1 yields the following

theorem.

Theorem 5. 2. Let s EDBF1 be a discrete least squares solution

onthe data set X to fe C(m’n)([a,b]x[c,d])for lgm,n(4. If.

 

(3(X, Ex, Ey)< 1/9, then

( ,0 - (0. "
(5.21) ||£-s||<{£m rm )Ilhx+5n,o||f ”)|th,Oll

(m,n) m n (m,n) -m n

+5m’08n,0||f llhx hy+£m,06n,0.||£ ||hx hY
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+5 no’llfm n)||hm h:}(1+1/(1-913(.wa.?¥)))
m,0€

+ llRllw/(1-9B<X.¥X,Tty)).

A

If p(x, Fx, ny) < 1’2/3, then

(m.0) — (0.11) '-

<s.22> ||f-s|l<{&m,ollf llhx+£mollf 11h,

(m,n) (m n)
+ém0 £n0||t llhin hyn+5m,0£n,0||£ ||hm h:

(m,n) m-n 3 ._ .. 2
+£m,OE,n,O||f ||hx hy}(1+l/(1(313(X1rx,fiy))/Z))

A

__ 2

+l|R|lw/<1-< 3B(X1r.wry)) /2).

where E, and C, are given in Table 1 of Chapter 2, h ,

m, 0 n, 0 x

h , h and h are the mesh sizes of 1r , ;, 1t and :17, respec-

x y x x y y

tively.

Proof: Identical to Theorem 5.1, hence omitted.

Section 5. 3. Hermite Blended Piecewise Polynomials.
 

 

Let wxza=x1=x2<x3=x4<~o (XZM-l =x2M= b and

nym = y1= y2< y3 = y4< .. - < y2N_1= y2N = d be univariate

meshes and V(1rx, 2M, 1) and V(1ry, 2N, 1) be the interpolation

spaces of cubic Hermite splines of Example 1. 3 of Chapter 2. Let

{41912}: and {419:}: be the cardinal bases (see [29, pp. 25-27]

for explicit representation), a and (3 be the interpolation functions
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for the interpolation spaces V(Tl’x’ 2M, 1), and V(1ry, 2N, 1),

respectively, given in Example 1. 3 of Chapter 2.

If ge C(4)[a,b], then

2M - 4

(5.23) ||g — 2 g(a(1))(xi) ¢i| | g (1/384)| |g(4)|| hx .

i=1

with a corresponding error bound for the interpolation space

V(Tl'y, 2N, 1), see Carlson and Hall [5 ].

Refine the mesh 1Tx by adding k-Z additional points between

each of the knots x2i and x21+1’ for 1g 1 g M-l, to obtain

"x‘ ”‘1 = x2<x3< < Xk<xk+l :Xk+2< xk+3< <x(M-l)k

<

(1
3

’- = " = fx(M-1)k+1 x(M-1)k+2 b, where we have the correspondence or

1<i<M
\

(5.24) X214 = K(i_1)k+1 and 3‘21 = x(1-1)k+2

Define the interpolation function

1 if (i-Z) mod k = 0

(5.25) 217(i) :

0 otherwise

vGr-X, (M-l)k +2, 1) is the interpolation space of continuously differ-

entiable functions such that on the interval [xi each

k+1’ x(1+1)k+2)J

element is a polynomial of degree k+1 for 0 g i ( M-Z. The

cardinal basis for this space is represented by {$1} gill-”1G2

By the manner in which the new points have been added we have

that V(1rx, 2M, 1) is subordinate to Vfirx’ (M-l)k+2, l) and

V(1rx, 2M, 1) _C._ V('1?x, (M-l)k+2, 1).
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Correspondingly, refine the mesh fly by adding 1-2 points

between each of the points ij and y2j+1 of 11'Y for 1 g jg N-l

' _:=- :_ _ °°'<— -' :-to obtain the mesh “y c yl y2< y3< y£< yl+l yl+2<

(N-1)1< Y(N-1)l+1 = y(N-1)£+2 = (1. Construct the interpolatlon< 37

space of piecewise polynomials of degree 1 +1, VG}, (N-1)1+2, 1),

_
_ _ 1

with interpolation function (3 and cardinal basis {41}(,1:I 1) +2 in an

analogous manner. Then V(Try, 2N, 1) is subordinate to

VGt'y, (N-1)1+2, 1) and V(17y, 2N, 1) gfifiy, (N-1)1+2,1).

Construct the discretized blending function space DBF ° then,
2’

from Theorem 2. 3 of Chapter 2,

(5.26) Dim(DBF2) = 2M[(N-1)1+2]+[2N (M-l)k+2] - 4MN,

and each of the sets T1 through T4 forms a basis for DBF2 .

We will examine the basis T4 in detail. If IM = {1|1=(s-1)k+1 or

1 = (s-l)k+2, 1g 6 gM}, EM”: {1|1 g 1g (M-1)k+2 and 1¢IM} ,

JN = {j|j=(s-l)l+1 or j = (s-1)f+2, lg s QN} and JN =

{j|1<jg(N-1)1+2 and ngN}, then T4:SIUSZU56’ where

S1 = {—'¢1j“’}1eIM, 1< j g 2N’ S2 = {4’1 llJj}1< 1<2M, jeffi and

S6 :{¢1‘pj}1<1<2M, 1<j<2N

A

For «pitpjesl, let 1 = (2( (1-1)-(1-1) mod k)/k)+2 and

A .—

J -(j+l) mod 2, then (bi 43 has support on the rectangle [x15 xi‘+lJ

x[y3.\_ , j+2]’ where we restrict ourselves to the domain [a,b]x[c, d]

(recall that y3.‘ = y’.‘J+1). Correspond1ngly for ¢iLIJj€ 82’ 1f
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j: (2((j-l)-(j-l) mod 12)/l) + 2 and i: i-(i+1) mod 2, then ((11:11;

has support on [xi-1’ xi+2] x [33}, y3+1], where xii: = x3+1 and we

restriCt ourselves to [a,b]x[c,d]. Finally, for (5143656, if i =

i-(i+1) mod 2 and j": j—(j+l) mod 2, then (pitpj has support on

[XE-1, x€+z]x[y3_l,y3\+2]. Paraphrasing the above, $143 and (1)1.th

have support on at most two adjacent rectangles for the meshes “fix

and 11y, while the support of 411113. is over at most four adjacent

rectangles.

The cubic Hermite bases {1111}??? and {419:1 are easy to

calculate and can be stored in the computer in polynomial form.

Actually, only two basis functions need be stored, as the others can

be derived from these two (for explicit representation see [29 ,

pp. 25-271). Correspondingly, the basis of piecewise polynomials

—- (N-1)£+2
{¢j}j=1

of degree k+1, and the basis of piecewise polynomials

of degree [+1 are easy to calculate and can be stored

in the computer in polynomial form. Again, for similar reasons, only

k+2 or [+2 polynomials need be stored as the others can be easily

generated from these.

Note that the above basis circumvents many of the difficulties

associated with the implementation of discretized blending function

spaces, hence the main reason for its introduction.

It is a simple matter to calculate the interpolation accuracy of

the interpolation spaces 10%;, (M-l)k+2, 1) (correspondingly, for
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V- - . - .(11y, (N 1)1+2, 1)) For xe[xsk+1, x(s+l)k+2

g e C(k+-2)[a, b]

J and

(M—1)k+2 3(' _

(5.27) g<x>~ 2 11‘ 1”(2)1110

1:1 1 1

k+2

- k

= n (x-x k+l) g( +2)S(x))/(k+2)! ,

where E(x)e [xsk+1, x(s+l)k+2]’ see [33, pp. 1-5].

Hence

(M-l)k+2 —.
(a/(1 _ --

(5.28) llg- 2 g ”(x11 ¢i||

i=1

k+2

— k+2

g n Ix-xsk+i| Hg‘ )H/(k+2)!

i=1

(k+2 k+2

< llg )| |hx /(k+2)!

Remark: Note that max (1? - 3? )

ogng-z (s+l)k+2 sk+1

: max (x - x )= h , the mesh size of 1r

O<s<M-2 2(s+l)+1 Zs+1 x x

Remark: If k is fixed and the spacing of the points xsk+1 for

3 g i g k is also fixed, then a more refined estimate can be given

for this term. For example, if k = 6, and 3':- are equally

8 sk+i

spaced for 3g 1g k, then H Ix-x6 +, I < h8 24/56 .
i=1 5 1 x
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Combining the above and using Theorem 1. 7 of Chapter 2, we

have the following error estimate for fe COG-2' 1+2)( [a,b]x[c, d])

(note that k and .2 >2) ,

—— k
(5.29) (If-Px (9 Py[f] | | g (1/(k+2) z)| [f(kJ'Z' 0)l |hx+2

(4, 4)| lh4h4
+(1/384)z||f+(1/(1+2)1)| (f(0’£+2)| Ih:+2

+(1/(384-(k+2)!))||f(
(k+2’4)llhk+2h:+(1/(384(1+Z)'))

. ||{(4,1+2) ||h4h1+2

by

The limiting accuracy of the above interpolation scheme is h: h4 ,

. . . 1&2
thus we choose I and k suff1c1ent1y large to insure that hx ,

h;++2 < h4xh3° For example, if' h = max (hx’ hy) then this would

iInply that in terms of h, the choice of I = k = 6 would suffice.

Remark: If h = max (hx, hy)’ and we assume sufficient continuity

of f, then both of the discretized blending function spaces, cubically

blended cubic splines = DBF and cubic Hermite blended piecewise11

polynomials = DBFZ’ give eighth order approximations to f. For

large M and N, examination of (5. 20) and (5. 26) shows that

Dim (DBFl) is much larger than Dim (DBFZ). Thus, there will be

a corresponding savings of computer memory needed to store the

least squares matrix using DBFZ. However, in order to obtain this

savings, the continuity required to implement DBF must be larger

2

than DBF1 .
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A

A

Let X = {(121, ;>i)}i\:11 _C_ [a, b]x[:c,d] be a set of M unstruc-

k2!
(+, +2)([a

tured data points. Let fe C , b] x[c, d]), then a discrete

least squares solution 3 e DBF is a function which minimizes the

2 A

Euclidean norm of the residual vector Re [RM defined in (5. 2).

Theorem 5. 3. Let s e DBF2 be a discrete least squares solution on

k+2, 1+2)([
the data set X to fe C( a, bJXEC, d]). If 30% 17x, Try) <

l/tz, then

(5'30) llf-SII<{(l/(k+2)z)|[f(k+2
’°)l|h:+2

+ (1/(1+2)!)l
|f(0,1+2)l

'11:” 2 (4,4) 4 4
+(1/384) ||£ || 11th

h

Y

}{1-1/(1-

Em, nx,ny))}+ “Rum/(1-36m, «x, Try».

A

If fi(X9 17x: 17y)< fi/t, then

(5.31) ||f-s||< { (1/(k+2),)| lf(k+2, 0)ll h)1:+2

+ (1/(1+2) y)I Ifm’ 1+2)l lhffz
2 4,4 4 4

+(1/384) ||£( )Ilhxhy

+ (1/(384' (k+2) !))| lf(k+2’ 4)Hh
:+2 4

h

V

+ (1/(384- (1+2) 3))l “(4: “2)l “1:11;”
A

}{1-1/<1-<th. «x. «Yul/2)}

4- Z

+ llRllw/u-UHX, «x, «33)/2) ,

where k,£ )2 and t:max{k+l, 1+1}
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Proof: Similar to Theorem 5. 1, hence omitted.
 

Section 5. 4. Linear Blending
  

As a final example, we shall consider the dis cretized blending

function space of linearly blended piecewise cubic polynomials.

Let 17x:a:xl<x <---<x =b and wy:c=yl<yz<“° <

2 M

yN = d be univariate meshes. The interpolation spaces of piecewise

linear continuous functions V(1rx, M, 0) and V(1ry, N, 0) were

defined in Section 4, where the basis functions {(1)1}:1 and

{419:1 were given by (4.1) and the error estimate by (4. 2).

Refine the meshes 11x and Try by adding two knots between each

of the knots of fix and Try to obtain wxza = xl< x2<x3( <

1&31‘4“2 = b and wy:c = y1< y2< y3< . . . < y3N-2 = d, respecuvely,

where

5- .=". f 1 ’ d .= . f( 32) x1 x3(1_1)+1 or SISM an yJ Y3(J-l)+l or

lgjgN.

Define the interpolation space of piecewise continuous cubic poly-

nomials V(Fx, 3M-2, 0) (respectively, Vfir'y, 3N-2, 0)) with inter-

polation function 37(1) = o for 1g 1g 3M-Z (Em = o for 1 g j g 3N-2)

and cardinal basis of piecewise continuous cubic polynomials {$913.sz

3N-2)

i=1 '

(i-l) mod 3)/3 and k = i -3s,if sg M-Z, then $1 is the cubic

({Ej} For a fixed i, such that Is is 3M-2, let s = ((1-1)-
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Lagrange interpolation polynomial on the four points {x }:_1

3s+t

such that (735:3 = 5 If k = 2, 3, then Ei is identically zero

s+t) kt °

off the interval [3? x8+z]. If k = l and

3s+1’ x3(s+1)+1] : [xs+1’

i >1, or s = M-l, then oi is also the cubic Lagrange interpolation

}4

3(s-l)+t t=l )

polynomial on the four points {3? such that $16?
3(s-l)+t

= 6t, 4 and identically zero off the interval [x8, xs+ZJ' Thus, the

M - 3M-2 N - 3N-Z .
support of {¢i}i=1 and {4)}1:1 ({Lle} j=l and {Lle}j:1 consists

of at most two adjacent intervals of the mesh 17x (fly) .

Note that V(1rx, M, 0) is subordinate to VCR", 3M-2, 0) and

V(1rx, M, 0)_C_V(?x, 3M-2, 0) with corresponding relations holding

N, 0) and V(for Wu 3N-2, 0). Theorem 2. 3 of Chapter 2

y’ "7r

gives the dimension of the discretized blending function space of

linearly blended piecewise cubic polynomials = DBF3 as

(5.33) Dim (DBF3) = SMN - 2(M+N) ,

where T1 through T4 each forms a basis for DBFB. Note that

the cardinal basis elements (bi, (Ti, qu and 713 are particularly

simple, easy to store and compute, with support over at most two

adjacent intervals of the meshes fix or Try. Hence, the basis

elements for DBF3 will share these desirable properties of being

very simple, easy to store and compute, with support over at most

four adjacent rectangles.

On the interval [xi, xi+l]’ the interpolation error of

Vfirx, 3M-2, 0) is just the difference of the cubic Lagrange
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interpolation polynomial and a function g e C(4)[a, b]. Thus, on

this interval, we have from [24, p. 249]

3M-2 4

(5.34) |g(x)- z g(§k)$k(x)|< II lx-§3(i-1)+s| Ilg(4)||/4!

k=1 3:]

4 4

<Kh Ham/4:.
x

where K is a constant less than one.

Remark: If structure is given to the four data points {x , }4 ,
_______..

3(1-l)+s 321

then various estimates for K can be given. For example, if the

points are equally spaced in each interval [xi, xi+1], then direct

calculation shows that K = 1/81. If the points are the zeros of the

cubic Chebyshev polynomial (see [24, pp. 228] for definition,

explanation and bound), then K = 1/128, which is the best possible

for any distribution of the four points in each interval.

From Theorem 1. 7 of Chapter 2, for £6 C(4’ 4)( [a,betc, d])

—— (4,0) 4
(5.35) [If-Px® py[£]| K (K/24)| If H hx

+ (K/zm )5“): Ihj+ (1/64)| |f‘2’ ZHI hfihf,

(4, 2)| |h4 112

X

(2, 4) 2 4
y+(K/192)||£ ||hxh+ (K/192)| If

9

where K < 1 is some constant, which is defined above.

Let fe C(4' 4)( [a, b]x[c, d] ), then a discrete least squares solu-

tion 5 e DBF is a function which minimizes the Euclidean norm of

3 A

the residual vector Re IRM defined in (5. 2) on the data set X.
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Theorem 5.4. Let s e DBF3 be a discrete least squares solution

to f £C(4’ 4)(l:a, b]x[c, d]) on the data set X. If E(X, Tl'x, 17y) < 1/9,

then

4 .
(5.36) ||f—sl ) g {(K/24)| )4‘4'0’) |hx+ (K/24)| (5° 4’) lb:

(2, 2) 2 2 (4,2) 4 2
+ (1/64)| |f ||hx by + (K/192)| If H 1.th

+ (K/192)||f(2’4)||h:h:}{1-1/(1-9'5(X,1rx,wy))}

+ llRlloo/(l-9fi(x.1rx. try».

.4.

If R(x; 17x, 17y) < xii/3, then

(5.37) ||f—sl|<{(K/Z4)||f(4’o)||h:+(K/24)||f(0’4)||h:

(2.2) 2 2 (4,2) 4 2
+(1/64)||f ||hxhy+(K/l92)llf ”11th

(2,4) 2 4 A 2
+ (K/l92)||f ||hx hy}{l-1/(l-(3[3(X,1rx,1ry)) /2)}

R. AX 2/2
+|l I'm/(1'(3p( HTXHTYH )2

where K < l is some constant, depending upon the meshes “fix and

TT- ,and h and h are the mesh sizes of 1r and 1r

Y x Y x

Proof: Similar to the proof of Theorem 5.1.

A procedure is now presented which minimizes the computer

storage needed to compute a discrete least squares solution. Note
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that for the discretized blending function spaces considered, even for

relatively small M and N, a large matrix must be stored in the

computer, with a correspondingly large number of computational

Operations needed to obtain the numerical solution. The procedure

given here is to solve a separate discrete least squares problem on

each rectangle [KY ] xEyj, Yj+lJ for lg i< M-1 and

X1+1

lg jg N-l. Restricted to this rectangle, the discretized blending

function space of linearly blended piecewise continuous cubic poly-

nomials will be denoted by DBFij’ where it is clear from the pre-

vious notation what the meshes, interpolation spaces, and their

cardinal basis functions will be. From (5. 33), it follows that

1 through T4 of

Theorem 2. 3 of Chapter 2. If xij = xr)([xi, xi+l] x [y], yj+l])

Dim (DBFij) = 12, with a basis given by T

for l g ig M-1 and 1g jg N-l represents the M15 data points

which are in each of the rectangular regions (note that a data point

could be in more than one Xij if it lies on a mesh line of the bi-

variate mesh fix G) fly), then the matrix problem to be stored at any

one time has only IZMiJ. elements. This is significantly less

storage than that required by any of the previous methods. If 101ij

is not too large, then most computers, even those having a very

small memory capacity, can store the full least squares matrix in

central memory.
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(4. 4)
Let fe C ([xi, xi+1] x [yr Yj+l]) and let Sije DBFij be

a discrete least squares solution which minimizes the residual

A
.. A

vector Rij eiR J , where each of the Mij elements of Rij is the

A

difference of f and sij evaluated at one of the Mij data points of

xij' Theorem 5. 4 gives an error estimate for | lf—sijl I on

[3:1, xi+1]x[yj, Yj+l]' The set {81.j}l<igM- l, l‘j‘N1 forms a

"patch network" of discrete least squares functions over the full

domain [a, b] x [c, d]. However, this ”patch network" is not neces-

sarily continuous across the mesh lines of "x G) fly. In order to

remedy this situation and obtain an approximation to f which has

global continuity on [a, b] x [c, d], the following scheme is intro-

duced which produces an approximation gs DBF to f.

3

If T4 of Theorem 2. 3 of Chapter 2 is chosen as a basis for

DBFij on [xi, xix+l]xEy" yj+1,] then

“ij

(5.38) T ={¢ ij} U{¢:j":’}
4 s LPt 2<s<3,1<t(2 l<s<2, 2<t<3

U {ctij ij}

4‘13} 1<s,tg2,

and

2 1' -" i' 2 1 1 -i'
(5.39) s..= z z aJt<b1J 4.3+ z z bjt 4): .th

‘3 s=2t=l s 3 8:1 t=2 3

2 2
ij ij ij

+ 3:311:33 Cat ¢3 Lpt °
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For each fixed i and j, let 0 g u, v g 1, and define the average

of the ”a“, "b" and ”c" coefficients to be

.. 1 . .

(5°40) §12J+u,1+v = :0 412311;; /DA(i’j’u’v)’

(5.41) '13” = 12 i+u's'j /DB(i j u v)
1+u, 2+v 5:0 1+8, 2+v ’ ' ' ’

and

(5.42) "615 - 21 12 eilflHl'jJ'V‘t /DC(i j u v).
1+u,1+v 5:0 t=O 1+s,l+t ’ ’ ’

where the indices are restricted to insure that l g i, i+u-s g M-1 and

14 j, j+v-tg N—l. The DA(i,j, u, v) = l or 2, DB(i, j,u,v) = l or 2

and DC(i, j,u, v) = l, 2 or 4 are just the total number of terms

which have been summed in (5. 40), (5. 41) and (5. 42), respectively.

For example, DC(l, l, 0, 0) = l, and if M, N > 2, then DC(l, l, l, O) =

2 and DC(1,1,1,1) = 4, etc.

Define

3 2 ij -ij ij 2 3 ~ij ij ~15IV I"

(5.43) 31].: z: 2: ast est 4’t + z 2 lost cps. it

8:2 13:]. 3:1 (2:2

2 2 xi ij i'

+ Z 2 C431: ¢s q’tJ ’
s=l t=l

to be that element in DBFij which has as its coefficients the average

Hale”, Hb's" and "c's". Correspondingly, define s’éDBF3 bY
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M-1 3 N ij _

(5.44) 14’: 2 >3 2 “a1 4». .).,

i=1 3:2 5:1 ‘11 3(1'1)+8 1

M N—l 3 ~ij _ M N ij

+222b¢>.¢. +226¢.¢.,

i=1 j=1 t=2 11 1 3‘34)” i=1j=1 1’1 1 J

, ~i,N _ ~1,N-1 ~M,j _ ~M-1,j
where we define as,l — as,2 , b1,t — b2,t ,

A1,N _ ~i,N-l ~M,j _ ~M-l,j ,N _ ~M-l,N-1

c1,1 ‘ C1,2 ’ C1,1 C2,1 and C1,1 “ C2,2 '

Let the real number £>O be such that

(5.45) max ||f—s..l I

1<i<M-1 13 E i’ 11in] in’ Y5+

KKN-l

4e,
1]

then we have the following theorem.

Theorem 5. 5 . Let gs DBF3, defined in (5. 44), be constructed as

above , then

3 _

(5.46) ||£—‘s’||<{5/2+2{ max 2: (|¢3(i_1)+8))

lgigM-l 8:2

3 _
+ max ll1p3(j-l)+t||} a,

ISJ'gN-l 13:2

where 8 satisfies (5.45).

Proof: It will be shown that for 1g i g M-l, 1g j< N-l, and

l< s, t< 2 that

~ij ii
(5.47) lest - cst|g (3/2) 5.
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Because of the cardinality conditions, (5. 39) and (5. 45),we have for

1<i<M-1,1<5<N-1,1< s,tg2

(5.48) Icij - f(st Hg 5.
xi+s-1’ yj+t-1

Using (5.48), (5. 42), the triangle inequality, and observing the

internal cancellation of one of the terms yields (5. 47) (notice that if

~ij
DC(i, j, s, t): k for k = 1, 2 then lcst - CZJtl S (k-l) 5,) . Also,

for 2gs<3 and 1<tg2 wehave

~ij _ ij ~ij _ ij

(5.49) Iast aSt |< 2?, and Ibts bts |< 2 5,.

The proof is given only for the first inequality, as the other is nearly

identical. From the cardinality conditions, (5. 39) and (5. 45), we

have

no 2 on o.

13 ij 13 -

. Z(5 50) last+ k_1 ckt (bk (x )-f( .Y. )ISé.
3(i-l)+s x3(i—l)+8 3+t-1

forall 1<i<M-1,1stN-l, 2gsg3 and 1g tg 2.

Consider the case where DA(i, j, u, v) = 2 (as the case where

DA(i, j, u,v) = l is trivial), and without loss of generality let t = 1.

Then from (5. 40), (5. 49) and the triangle inequality we have the

following after some algebra and cancellation

~ij ij _ l i,j'l _ i,j

I I la a
' — s,2 5,1 1

(5.51) asl $1 - a

2 O . C O I C

< 1|: 1,J'1 _ 1,.) 1:1 -
\ a 5+ 5+ 2 Ick,2 ck,1| (pk (x

k=l 3(i—l)+s)]



/
A t
o

(
1
“

where the second expression was obtained using the fact that

.0 C O 2 I.

431'] = (bl'J-l >/ 0, the third from the fact that E (1)13 E l, and
k k k-l k

the last from the triangle inequality and (5. 48).

From(5.39), (5.43), (5.45), (5.49), (5.47) and (x,y)e[xi,

(5.52) |(f-3'ij)(X.y)l g |(f-sij)(X.Y)| + Ins,j - ngxxmn

3 2 .. ..

g E + z 2: 2£(¢:J(X)l 42:1(v)

8:2 t=1

2 3 _i. 1' 2 2 U. i.

+ z z 28l¢t1(y)l¢SJ(X)+ 2 Ema/2”: (natty)
s=l t=2 s=l t=l B

3 .. _..

s (5/2)€+2€ >3 (lfithH + ILIJLJWH)
5:2

3 - .

g(5/2)E,+2£{ max [23 Ht . ll]

1<i<M—l s=2 3(1'1118

3

+ max [>2 Hi. ll]}.
1<j<_N-l t=Z 3(3’1)”

iJ'

t

.. 2

where we have used the fact that 4):] >/ 0 , E 4) a 1,

8:1

20» 41



2 .. .. ..
ij ‘1] - -1_] -

Z : l : :

s-1 4’5 "' ’ ¢s ¢3(i-l)+s on [xi’ xi+l] and 11’s L1J3(j-l)+s

We now show that sij = s on [xi, xi+1]x[yj, yj+l]° This is

accomplished by making the following observations. For 1 g s, t g 2,

__ -—ij_ _, . -iJ'g _ _ : . . , — . ,91g 1 M 1. 1<J< N 1 we have 4’, ¢3(1_1)+3 ‘1’t ¢3(J-1)+t

415: ¢ , and ((111 = q), . The following three sets are sets

8 i+s-l t j+t-l

of equal elements

~i,j+v-t ~i+u-s,j d ~i+u-s,j+v-t

{a2+u,l+t}0<t<l ’ { 1+s,2+v}ogs<1 an {C1+s, l+t }0<s,t<l ’

for 0 g u, v < 1, which follows from (5.40), (5. 41) and (5. 42),

respectively. Direct substitution of the above sets and relations

into (5. 44) shows that :ij = ’4’ .

Remark: Once the meshes ?x and .5}, have been specified, then

direct calculation gives a bound for

3
3

max [2 H3 . I|]+ max [2 [I]: _ H].

lg i<M-1 8:2 3(1-1)+S 1$j<N_l t=2 3(J'1)+t

For example, if on each of the intervals [xi, x144] ([Yj: yj+lJ)

. — 4 — 4

we assume that the four pomts {x3(i-1)+s}s=l ({y3(j-l)+t}t=l)

are equally spaced, then direct calculation shows that for Theorem

5.5
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(5.53) ||£-’§||< (5/2+ 4(10+ 7 (7‘)/27)€.

Remark: ' If Theorem 5. 4 is applied to each of the spaces DBFij

to obtain an upper bound for [If-81” I [x17 , then

the maximum of these can be used for 8 in Theorem 5. 5 .
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Section 6. Domain Transformations
 

In the previous sections, the domain on which the data was

given was always the rectangle [a, b]x[c, d]. In this section, a

method will be presented which will remove this restriction and allow

singly and multiply connected domains with curved boundarys. This

will be accomplished by using vector valued blending techniques

(see Gordon and Hall [l6], [l7 ]) for domain transformations.

Their procedure is to divide the boundary of a bounded region

QCRZ into four parameterized boundary curves. Blending these

four curves yields a mapping ii:[o,1]x[o, 1]—’-IRZ which maps the

boundary of [0, 1]): [0, 1] onto the boundary of n . Of major con-

cern is, under what conditions is the map .13 univalent ? Some con-

ditions have been given in [16] to insure univalency, however, the

major responsibility of insuring univalency usually rests with the

ability of the person implementing the scheme. For application to

least squares, it is imperative to know the point 3-1(x,y), where

(x, y) s X C 82 is a data point. Even though an inverse for ‘6 may

exist, it is not explicitly known. Thus, the following procedure is

introduced which allows the inverse of E to be calculated at any

point (x, y) e (2 . This will be accomplished by considering several

special domains and then subdividing the domain 8'2~ into a finite

. collection of these special domains.
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Section 6. 1 Type 1 Domain Transformations
 

Consider the closed region QCRZ which has the following

form

[fingbo

2
0
)

c
o
l

D a

Figure 2. The Region {2.

—) —» ->

where the distinct pomts A = (a1, a2), B = (b1,b2), C = (c1, c2) and

.5

D = (d1, d2) are ordered as in Figure 2 to form a quadrilateral. We

. *‘1’ 2 2 .

deSire a map U:I -—+ 52, where I = [0, l]x[0, 1], whose range is

exactly S2 and is univalent.

(1.1)
Let Fe C (52*), where 82* is some open region containing

-9v -—b

the curve F(x,y) = 0 from A to B where

(1.0) (0.1)
)2+(F
)

for all points (x, y) on the curve F(x,y) = 0 from X to B.

(6.1) (F (x.y (x,y))2>o

For each se [0, 1], construct the straight line L(r;s) that con-

—> —> —> —>

tains the two points (l-s) A+ 8B and (l-s)D+sC (which are on

the straight lines AB and DC, respectively)

—>-> —'> —> —> —r —>

(6.2) L(r;s): r{(l-s) A +sB - ((l-s) D+sC)} +(l-s)D+sC ,

where relR and s is aparameter. The x and y components of
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.4

L(r; s) are expressed as Lx(r; s) and Ly(r; s), respectively.

_y

The line L(r; s) can also be expressed in the form

(l—s)(a2-d2) + s(bZ-cz)

(6. 3) y = (1'3)(a1'd1)+ s(bl'cl) (x-((l -s)a1+sb1))+(l-s)a2+sb 

2

01‘

(6.4) Y n(S)X+§(S)-

Remark 6. 1: If for some 3 4 [0,1], the denominator of 11(3) is
 

zero, i.e., (l-s)(a -d1) + s(bl-c1)= 0 , or if [11(3)] >> 1, then

1

4 N “J N

express the line L(r; s) as x = n(s) y + E, (s) where 71(3) = l/n(s)

and, in the following discussion, interchange the rolls of the x and

y variables. Without loss of generality, throughout this section we

will assume that 11(3). is finite for the value of 3 considered.

_y

The following assumptions about the lines L(r; s) (y = 11(8) x

+ §(s)) and the curve F(x,y) = 0 are made. For each s 4 [0,1],

4

the straight line L(r; s) (y = 11(3) x +§ (s)) intersects the curve

F(x, y) = 0 once and only once. Also, each point of F(x,y) = 0 from

“*, -> —b

A to B lies on a line L(r; s) (y = n(s) x + §(s)) for some 86 [0,1]

(these conditions are usually not too restrictive, since a domain

often can be subdivideduntil it holds). The line L(r; s) (y = 11(3) x

+ §(s)) does not intersect the curve F(x, y) = 0 tangentially. Also,

for s e [0, l] , assume that for distinct values of s the lines

L(r; s) (y = r)(s) x + €(s)) do not have a point of intersection in the
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region :2 and that the curve F(x, y) = 0 does not intersect the

— —>-

interior of the line DC. Finally, for s e [0,1] , if P is that point of

—-’

intersection of the straight line L( r; s) and curve F(x, y) = 0, then

—> —D —.> 4 -+

{t(P-((l-s)D+ sC))+ (1-s)D+sCl o g t g 1 }gs2

Remark 6. 2: This final assumption can be proved from the others,
 

but its proof leads us away from the desired results of this section.

Parameterization of F(x,y) : 0
 

We wish to locate the point designated by (x(s),y(s)) =

F(s) e 82* where the straight line L(r; s) (y = 11(3) x + §(x)) inter-

sects the curve F(x,y) = 0. This can be accomplished by either

one of the following two procedures which we deve10p simultaneously.

For a fixed 3 6 [0,1], let

(6. 5a) z'(r) : F(_1:(r; s))

and

(6.5b) w(x) = F(x, 11(3) x +§(s)) .

The root 9 where z(?) = 0 or x(s) where w(x(s)) = 0 is the

desired solution. One of the many root finding techniques for uni-

variate functions can be employed to locate the root in (6. 5a) and

(6. 5b); for example, Newton's method or the method of false position

(see [24, pp. 97-100]). If Newton's method is chosen, then the

derivatives z'(r) and w'(x) are calculated as follows.
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-" . >.'< (1,1)

If L(r,s) and (x,n(s)x+§(s)) d2 , then because FeC

(52*), we have

(6. 6a) z'(r) = F‘1'°’(L(;r s))(1‘L(r; s))'+ FO 1’(Ltr: 8))(Ly(r;s))'

:F('lO)(L(r;s)){(l-(s)a1-dl)(+s1-c1)}

+ F(O’ 1)(1—in; 8)){(1-S)(a2-d2)+ 8(b2-02)}

(6. 6b) w'(x) = F”' O)(X.n(8) x + as» + F‘O'1’(x.n(s)x+§<s>)n(s).

Let 1’) and x(s) correspond to the roots of (6. 6a) and (6. 6b), res-

pectively. It will be shown that both z'(lr‘) and w‘(x(s)) ' are non-

zero.

If z'(lr) = 0, then without loss of generality, from (6. l) we

(0 ”(L
assume that F s)) f 0. Thus from (6. 6a)

01(L( (0 1)“
(6.7) (Lx($;s))' {-F1r;s))/F(L(r an}:

(1417?;an

x A y A . . . .
If (L (r; s))' = 0, then (L (r;s))' = 0. Usmg (6. 2) this implies that

the straight lines AB and DC intersect, which cannot happen,

implying that (Lx(’r; s)) at 0. The Implicit Function Theorem (see

[10, p. 256]) implies that the slope of the curve F(x,y) = 0 at

_)

L(?; s) is given by the term in brackets of (6. 7) which would equal

y A x A . . .

(L (r; s))'/(L (r; s))' : 11(3) which is the slope of the straight line

A

(L(r; 3). Our nontangential intersection assumption guarantees that

this cannot happen, implying that z'(?) 7‘ 0.
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The argument that w'(x(s)) :f 0, is similar and is omitted.

For sufficiently close initial estimates r1 and x , for

1

1 = l, 2,

(6' 8‘1) 1.1+1 = 11 ' z(14)/”(111)

and

(6'81”) X1+1 = 1‘1 ' w(x11/W'(xi) J

A

where the ri converge to r and the x1 converge to x(s).

(2.2)
Remark 6.3: If F 4C (9*) , then z(r) and w(x) are twice
 

differentiable in a neighborhood of {5 and x(s), respectively.

Under these conditions, the convergence of Newton's method is

quadratic (see [24, p. 98]).

A

Remark 6. 4: Finding an initial estimate for r is often easier than
 

for x(s), because r = 1 corresponds to a point on the line KB and

the curve F(x,y) = O is usually "somewhat near" ATB.

Having calculated ? and x(s), then

*A

(6.9a) L(r;s)

01‘

(6.913) (K(S). 11(8) X(S) + 5(8)) = (X(8). Y(S))

+

is the point of intersectionof F(x, y) = 0 and L(r; s) (y = T)(S) x +

E, (8)). This completes the parameterization of the curve F(x, y) = 0.
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Remark 6. 5: If the curve is given as y = f(x) or x = g(y), then
 

the extension of the above to this case is obvious.

._.)

Calculation of U(s, t)
 

The straight lines DA, C_B and DC are parameterized

linearly as follows for s e [0, l] and t6 [0, l]

—5 9 -s -5. -¥

(6.10a) t(A-D)+D:(l -t)D+tA

(6.10b) t(B-C)+€:(l -t)€+ t3

and

—9 a —) —> —>

(6.10c) s(C-D)+D=(1-s)D+sC.

.9

For notational convenience we define the vector F(s) =

._.

(x(s), y(s)), where there is no confusion between the vector F(s) and

the curve F(x,y) = O of which (x(s), y(s)) is a point.

Linearly blend the four curves D—A, C—B, DC and F(x, y) = 0

. -> 2 2

(see [16] for procedure) to obtain the vector valued map U:I ——>R

—) __s 4 —> 4

(6.11) U(s,t)=(1-s){(l-t)D+tA} +s{(1-t)C+tB}

+(1-t) {(1-s)3+ 8E) + tfis)

—> —> —) .1.

-(l-s)(1-t)D -(1-s) tA - s(l-t)C - stB

= (l-t) {(1-s)3+ 33} + tfis).
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-> —> -> 4

Remark 6. 6: Observe that U(s, 0) = (l-s) D + sC, U(s, l) =
 

->_p -+ —)> -> —->- —> ->-

F(s), U(0,t)= (l-t) D+tF(O) :(1-t)D+tA and U(1,t):(1-t)C+

1-> —> —>

tF(1) = (l-t) C + tB. Thus the mapping U carries the boundary of

I2 onto the boundary of Q.

U is univalent. Let (81, t1), (sz, t2)el2 be two points such that
 

-.> —> —>- ->

U(s ,t )= U(sz,t ). Observe that the points F(sl) and (l-sl) D+

l 2

—> —-> ‘

le are on the line L( r; 81) by construction. From this and (6. 11)

._y.

it is clear that U(slfil) is on the same line L(r; 31) because

.4 -) —* -+ 4 —+

(6.12) U(sl, t) = t{F(sl)-[(l-sl)D + 81C]}+(1-sl)D + 81 c

is a straight line passing through these two points. Making the

-) -s

corresponding observation that U(s t2) is on the line L(r; 8'2), then
z)

.—p

we have 31 = 82 from the assumption that the lines L(r; s) have no

points of intersection in $2 for distinct values of s and for

te[0, 1].

.5.

From (6. 12) and our assumption that F(s) does not intersect

DC, it is clear that t1 = t2 because

6 13 t 3 15" 3 3]( ~13) (51’ 2) - (Sl.t1)—(t2-t1)( (81) - [(1-81) + 81 ).

hence, U is a univalent mapping.

Remark 6. 7: For linear blending, the map U will not always be
 

univalent. However, with the special parameterization given, this

problem is circumvented.
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(1.1)
Continuity of U. If Fe C (52*), then we will prove that

.+

Us C(l' 1) 12

 

( ). Examination of (6. 11) shows that the continuity of

U is limited only by the continuity of F(s) = (x(s), y(s)), hence it

will be shown that x(s), y(s)eC(1)[0, l] .

For a fixed Q6 [0, l], the denominator of 11(3) is assumed

non-zero, i.e. )(1-s)(a1-d1)+ g(bl-clfl = (5)0. Hence, for

86 (3-5, 3+5)n[o,1], it follows that )(1-s)(al-d1) + s(bl-cl)| 2

£/2> o where 5 = 6/2 if l-(al-dl) + (bl-cl)| <1 or 5 =

f/(ZI -(al -dl) + (bl-c1) I) otherwise. Direct calculation shows that

both 71(3) and g (s) are continuously differentiable in the interval

(Q-s, 3+5) fl [0, 1]. Also observe that F(x, r)(s) x + g(s)) is con-

tinuously differentiable as a bivariate function of x and s for

86 (3-5, §+5)/\ [0, 1] and x such that (x, r)(s)x +§(s)) e (2*

(1’ 1)(521‘). The implicit function theorem (see [10 1because F e C

p. 257]) implies the existence of x(s) which is a unique continu-

A

ously differentiable function in some neighborhood N of 8 if

F”' 0’ ‘0' l’(xté‘). «3) x(é‘) + §(§)) m?)
A A A A

(X (S), n(8)X(S) +§(S)) 4: F

7% 0 (note that our assumptions guarantee that x(s) and y(s) are

both univalent, and we only need prove continuity). It has already

been shown that this cannot be zero (see the discussion following

(6. 6b)). Thus

(6.14) x'(s) = -(n'(S) x(s) + €‘(8))F(O'11/(F11’0)+n(8) F‘o’ 11) ,
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where F(O' 1) and F(l’ O) are evaluated at the point (x(s), n(s)

x(s) + €(s)) for as N.

From (6. 4), the first derivative of y(s) also exists for s e N.

Remark 6. 8: If higher continuity of F is assumed, then higher
 

derivatives of x(s) and y(s) follow by repeated differentiation of

(6.14) and (6. 4) (observe that the denominator of (6. 14) cannot be

zero).

->..)

U([0, 1134-22411) = $2 . Because U is continuous, univalent, and
 

maps the boundary of 12 onto the boundary of 9 (see Remark 6. 6),

_.)

we have from Theorem 13.1 of [27 , p. 121] that U([0, l] xEO, 1]) =

$2, i.e., the range of U is precisely 52.

Remark 6. 9: Linear blending will not always yield a map whose
 

range is $2 . It is possible for the mapping to "spill over" the

boundary of $2 into the complement of S2, (see [16]).

Summarizing, to construct a univalent and onto bivariate map

.9

U, parameterize F(x, y) = 0 with respect to s by the above method

and use linear blending. The observation should be made, given the

point (3, t) e 12, that F(x, y) = 0 need only be parameterized for that

single value of s.
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""-1

Calculating U (x,y)
 

A procedure is now given to calculate 13462,?) for (9:, 9k ‘2 .

It was shown above that U). is a univalent onto map; thus a unique

point (3,1135 12 exists such that 7173,?) = (2’2, £1).

Coordinate ’3‘ is calculated first. From (6. ll), observe that

($2,?) lies on the straight line L(r; 3) (y = mg) x + g(Qn. The two

A —) A-> A —b A—r

points (l-s) A +s B and (l -s) D+ 8C are also on the same line.

Thus, we desire the value 9 which causes the vector (v1,v2) =

%

(1-3) A + 33 - [(1-3) 3+ 38] to be parallel to the vector (wl,w2) =

A A A -) A-) . . _

(x,y) - [(l-s) D + 8C], 1. e. (w1,w2) to be a scalar multiple of (v1,

v2). If (vl,vz) a! (0, 0), which is the case because A :f D and

-)- —+

B :I C, then the above is equivalent to

w v

1 1

II

C(6.15) det

W2 v2

Direct calculation shows that 5 must satisfy

A2 A

(6.16) 0—Kls +Kzs+K3,

where

(6.17) Kl : ((11 -c1) (bZ-az) - (dz-c2) (bl-a1)

A
(6.18) KZ — ((11 -c1) (az-dz) + (x-dl) (bZ-c2 + dz-a2

d c ) d ) A d b -+d -a
4 2' 2 (a1' 1 ”(y‘ 2)( 1'°1 1 1)
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and

6 1 K — " d d A d d< . 9) 3 — (x- luaz- 2) -<y- 2)(al- 1).

If K1 = 0, then this is equivalent to

—->- —+ —> —>

(6.20) det(B-A, C-D)=O,

or that AB be parallel to DC. Hence, equation (6.16) reduces to a

linear equation. In either case, because of our construction, ’3‘ is

unique in the interval [0, 1] .

A

The coordinate t is computed as follows. First, calculate

. . . " A . 4 A A A

the pomt of intersection F(s), of the line L(r; s) (y = 11(3) x + g(s))

and the curve F(x, y) = 0 (the procedure is identical to that given

A

above). t is given by

(6.21) 2: Hum?) - {(1-2)B+38}||/||?(3) -{(1-3)“13+3"}| l-

The denominator of (6. 21) is non—zero because it is assumed that

the curve F(x,y) = 0 does not intersect the line DC.

-> 4 —> -) ->

Using the fact that (1-§)A+’s‘B, (1 -’s‘)D+§c, F(Q) and (32,9)

A .

are all on the line fir; Q) (y = M?) x + g(s)) by construction, then

. . -* A A A A

direct calculation shows that U(s, t) = (x, y).

. *-l A A . . . A
To reiterate, U (x,y) is calculated by first solvmg for s

from the quadratic (6. 16), parameterizing F(x,y) : 0 to obtain

—-> A A

F(s), and then calculating t from (6. 21).
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Section 6. 2. Type 2 Transformations
 

The above procedure is modified by letting two of the points in

-> -> -—'>- —) Q A —> -)

Figure 2 coincide, either A = D, B = C, A = B or D = C and the

resulting procedure will be denoted as a type 2 domain transforma-

ti on.

_5

Type 2a Transformations. The case where X = D will be examined
 

-—> -+

first, observing that the case where B = C is nearly identical.

~ ->

Nothing is changed in parameterizing F(x, y) = 0 to obtain F(s)

—> —9 —> —>

(using the fact that if s = 0, then F(O) = A = D), and U(s, t) is given

by equation (6.11). U is no longer univalent, because the points

- -+

(0, t) for te [0, I] are all mapped to the single point A = D (see

Remark 6. 6). However, the argument given above proves that U

is univalent on (0, 1]x[0, l] . Nothing is changed in the argument

_)

on the continuity of U, taking n(s) = (bz-c2)/(bl-cl) = n for

‘* 2
s e [0, l] . However, the proof that U(I ) = $2 is no longer valid for

—;.

this case because U is no longer univalent. To circumvent this

.5

problem, we first show that U cannot map to a point outside of $2 .

A A . “*A

Let (s, t)e (O, 1]x[0, 1] , then from the above construction, F(s) and

“‘A A "') A

U(s, t) are both on the straight line L(r; s) which can be expressed

-) —> —) —> --> —}

as U(Q, t) = t{F(’s\) - [(1 -§)D+§C]}+(l -§)D+3C. Because ta [0,1],

our assumptions guarantee that 6%,?) 2 62,9) 6 $2, proving that U

- ‘9 A A

maps into S2. To prove that U maps onto 52 , let (x,y)e $2 . If

A A AA . . . — A
(x,y):A: Dor(x,y)isapoint on the line BC, then take 3 =0 or
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A

= 1, respectively. If ($2, y) is a point on the curve F(x,y) = O or the

. . — -— A A A -o- A

straight line AC = DC, then take 3 such that (x, y) = F(s) or

A —b A—r . A A .

=(l -s)D+ sC, respectively. If (x, y) is not on the boundary of S2 ,

A A . . A A . .
then (x, y) is a point on the straight line y = n(x-x) +y, which is

parallel to the line BC (recall n(s) = n = constant for se [0, 1]).

This line must intersect the boundary of Q at least twice and our

assumptions imply that this line must also be one of the lines

_’ A A, , A A

L(r; s) for some 55 (0,1). To see this, note that y = n(x-x)+ y

—as —> —-—-

cannot intersect the point A = D or the line BC which is parallel

to it. If it intersects the curve F(x, y) = 0 at some point, say

-->A A A —¥ A

F(s), then the lines y = n(x-x) + y and L(r; s) are identical because

they have the same slope and a point in common. A similar argu-

ment holds if y : T‘(x-3i) + § intersects the curve DC at some point

A -+ A—i A

(l -s)D+ sC, in either case take 8 = 3. Also note that this value

A A ‘9' A

of s is unique because y = T](X-X) + y is a parameter line L(r; s).

A

If g '7’ 0, then compute t from (6. 21), and direct calculation

—5 A A A A A A

shows that U(s, t) = (x, y) (if s = 0, then any te [0,1] is accept-

able).

—a. ->

Type 2b Transformations. Consider the case where D = C (note that
 

—> ->

the case where A = B is similar and less complex). All of the

—) —> -+

lines L(r; s) (y = n(s) x + €(s)) intersect at the point D = C, but no

other point of Q. F(x, y) = O is parameterized as above and the

map U reduces to
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--> A —)

(6.22) U(s,t)= (l-t)D+ tF(s) .

_p

U is not univalent because the points (s, 0) for s 6 [0,1] are

—~ —>

mapped to the single point D = C. However, the above proof for

_y

the univalency of U holds for (s, t)e [0, 1]x(0, 1] . The differenti-

_.).

ability of U follows from the above argument. Finally, the proof

that U(Iz) = $2 is similar to that of type 2a transformations where

-> 4

we work with the straight line t{(x,y) - D} + D .

Section 6. 3. General Domains. It should be understood that for the

region (2, the side on which the curve F(x, y) = 0 is located was

specified as it was above for purposes of illustration. If it is desired,

then the curve F(x, y) = 0 can be any one of the four sides of the

quadrilateral region, where minor modifications of the above pre-

sentation will yield the appropriate procedure and formulas for the

construction of U.

We now consider closed regions 1" which can be subdivided

into N subregions 9i such that

(6.23) I" = U $2. ,

. 1

i=1

andfor 1<i,j€N. iilj

(6.24) Int “21)/Mint (93.) = ¢ ,

where each Qj is a type 1 or type 2 region satisfying the assump-

tions of Section 6.1 or 6. 2, respectively. For each subregion
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.ub-

construct the map Ui:IZ--> 9i . Several examples will be given to

illustrate the procedure (where the numbers in the following illus-

trations have the obvious correspondence).

 

\
x

H N w

A

V
\

 

     

Figure 3

In Figure 3, $2 , $2 , $2 and $2 are type 2b regions (type 2a

1 3 4 6

could be used with minor modifications) and $22 and (25 are type 1

. . 2 2 2 2
regions. Note that the left hand Slde of II and I4 (I3 and 16)

are identified in the obvious manner and the adjacent side of If and

2 2 2 . . “"
I (I and 16) are mapped to the Single pOint Pl

4 3

,123t+:: 5mm}?

15' 678 2

9107

1112

1112 —9

[In J')‘ . P

’I’ I V Flgure 4 3

(P2) .
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InFigure4Q,Q,Q
1 4 5'9

, $2 and Q are type 2a

8 ll 12

regions and the remaining regions are type 1, where the left hand

—+

sides of If and I: are mapped to the point P1, etc.

 

 

 
 

      

 

Figure 5

In Figure 5, the regions 9i for IS i g 10 are all type 1,

where the left hand side of If and I: are identified with the right

hand side of I: and IIO’ respectively.

The procedure of subdividing F should be lucid from the above

example 3.

(0.0)
Section 6. 4. Discrete Least Squares Over 1" . Let . f e C (1") ,
  

where I‘ satisfies (6. 23) and (6.24) and let X = { (£16 §k)}11:’:1 E 1"

be a set of 101 unstructured data points. A discrete least squares

fit gi:Qi——>R to f is constructed over each region $21 in the

following manner. Choose a finite dimensional bivariate real valued

function space 5(12) over I2 (for example, any of those of Section

_5

5) and construct the map Ui:I2——+ 9i .



216

If {21 is a type 2 domain, then constrain S(I2) to insure that

each element of S(Iz) is constant on that single boundary line of

I2 which is mapped to the single point 3 (see Section 6. 2) (for

the spaces given in Section 5, this can easily be accomplished by

modifying the basis elements). With this restriction there is no

. . +4 2 .
ambiguity for the element 5 o Ui . where Se S(I ), because 3 is

-D_

single valued on the inverse image (under U, 1 ) of each point of the

.1

+-1 —)-

type 2 region S21. Thus we define Ui (P) to be (for example) the

4

midpoint of the boundary line of I2 whose image under Ui is the

4

point P. /\

M. A

Define X = {(i? 9.)} 1 = X (\9. to be the set of M data

1 ij’ i] j=l 1 A i

. i . . . '*-l A A i

pomts which are in $2. and define ST. = {U. (x..,y..)}. , where

1 1 1 iJ ij J=l

A

for lg jg Mi

A A ”Ml A A

(6.25) (Sij’ tij) — Ui (xij' Yij ) .

Finally, define the finite dimensional function space V621) =

{5°Ui-l I s e S(IZ)}.

We say git V621) (sic S(I2)) is a discrete least squares fit

to f (fa U1) on the data set AXiQQi (STiag 12) if the Euclidean norm

M

of the residual vector Ri e [R 1 (Eie IR 1) is minimized, where

component j of R1 is given by

626 R -£A A A

and component j' of Ri is given by
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A N A

3.. t..) - s.(’s‘... t..).

N —>

(6.27)
(R-)' : (fOUi)( 1J 1] 1 1:] 1:]

1J

It is clear from (6. 25), (6.26) and (6.27) that if ’g’i (E1) is a discrete

.1,
’1‘

least squares fit, then there exists s*e S(Iz) (g = g. 0?}..1 e V(Q))

i 1 i

such that 8*0—6,-l =‘g’. (g*eU. z’s’.)where

i i A i 1

Mi 4 ..

(6.28) ||R.|| =( 2 [(£.3.)(s... i..)-'s'"‘(/s‘... Q..)]2)1/2.
1 j=1 i ij ij ij ij

and

1?).

(629) ||§||-< 21H" ) (A “12)1/2

. i _ i=1i x11 y111' -g x1J' Vii] '

N N

showing that IIRill = IIRiH because IIRiII >I|Ri|| and

I IRiI I < I IRil I . Therefore, a discrete least squares fit gie V621)

~ 2

can be calculated from a discrete least squares fit sie S(I ) by taking

N M +‘1

(6. 30) g1: SjOUi

Observing that.

H -) Al

(6.31) [If—gill“:- ||£.>Ui-si||12 .

C N O I

an error analys1s for f - gi over 9i can be given in terms of

.4 ~ 2

fo U.-s. over I .
i 1

Thus, the case of least squares over a general domain I" is

reduced to least squares over rectangular domains and the error

. . _* M -)

analySis reduces to bounding I Ifo U, -si| l where, for example, fa U1
1

replaces f in the formulas (5.15), (5.16), (5.21), (5.22), (5.30),

(5.31), (5.36) and (5.37).
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boundaries and are possibly multiply connected. This general domain is sub-

divided into ”standa rd" subdomains, and explicit mappings from the unit

square to these standard subdomains are constructed which are one -one, onto,

and have easily calculated inverses. Thus, discrete least squares over

general domains reduces to the cases previously considered.

Finally, an extensive computational error analysis is given for a con—

strained least squares algorithm.
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