—'J-'—.'4_ TO ANALYTIC. SYNTHESIS OF A PRACTICAL LIMITATIONS FUNCTION GENERATOR FOUR-LINK MEQHANISM Ph. D. ERSITY Thesis for the Degree of MICHIGAN STATE UNIV Han-GIGS I... DoweII, .Ir. I965 THE-IS“: 0-169 ‘ 4“ L14. ‘ Jil<~ Michigan Scam University This is to certify that the thesis entitled PRACTICAL LIMITATIONS TO ANALYTIC SYNTHESIS OF A FOUR-LINK MECHANISM FUNCTION GENERATOR presented by Harold L. Dowell, Jr. has been accepted towards fulfillment of the requirements for Ph.D. degree in MeCh. Engr. “ }*”' b /513] s (/12flé{/;4xuy// / jZK 214/14 {C t C } Major professor Date November 29, 1965 ABSTRACT PRACTICAL LIMITATIONS TO.ANALYTIC SYNTHESIS OF A POLE-LINK MECHANISM FUNCTION CENERATCR by Harold L. Dowell, Jr. The problem was to investigate certain practical limitations to synthesis of a four-bar mechanism function generator. The limitations investigated were: 8) Branching: Some of the precision points may lie on one branch of closure and some on the other, meaning that a joint must be separated and reconnected in a different configuration of the mechanism to complete the range. b) Closure: Moving the links beyond the first or last precision position, but still within the range may require the mechanism to enter a region beyond its limits of motion. c) Change Points: The link lengths may be such that as the links d) pass through a folded configuration the follower is able to move in either direction. Transmission Angle: During operation within the range of motion, the acute angle between centerlines of coupler and follower link may become so small as to preclude effective force transmission. Excessive Link Length Ratio: Two of the links may be much longer than the other two making the operation of the mechanism impossible because of deflection of the longer links or because of space requirements. The method of investigation was experimental. Several commonly used functions and their ranges were chosen; for each, a series of four-bar .Ila Harold L. Dowell, Jr. mechanisms to generate the function were synthesized. When one of the limitations was encountered, the particulars were recorded and the next mechanism was synthesized. The syntheses and analyses were performed with the aid of a digital computer; 4050 function generators were synthesized for each of eight functions. Since attention was concen- trated on the design failures attributable to any one of the above limitations, the sucessful designs were discarded. For this work, the analytic synthesis was performed with three un— knowns (the three link length ratios) and four arbitrary parameters to give the greatest variety of solutions consistent with reasonably accurate function approximation. The Freudenstein Equation with three precision points was used. The arbitrary parameters were the starting angles (corresponding to the first precision point) and range angles for input and output links. The aim was to find a pattern for each limitation in terms of these four arbitrary parameters; if such a pattern is known, then the parameters can be chosen so as to avoid or minimize encountering the limitations. The results of the investigation are based on choices of 40 degrees for minimum transmission angle in the range of operation and six for maxi- mum link length ratio. On this basis, about 92 percent of the attempts at synthesis failed because of one of the limitations. Choice of ranges from 30 degrees to 150 degrees had little influence on whether or not one of the practical limitations appeared. Making the starting angles differ will reduce the probability of Harold L. Dowell, Jr. branching for input and output links rotating in the same direction if the function has positive slope or for input and output links rotating in opposite directions if the function has negative slope. Avoiding the third quadrant for the starting angle of output link will reduce the probability of branching for input and output links rotating in opposite directions if the function has positive slope or for input and output links rotating in the same direction if the function has negative slope. These same measures will also reduce the likelihood of problems with closure. Patterns for the transmission angle limitation were found and are given in the thesis. These patterns depend on whether input and output links rotate in the same or opposite directions and on whether the first and second derivatives of the function have like or unlike signs. As long as the starting angles of input and output links were not exactly the same, change points were not a practical limitation. No significant generalization can be formed from this work which will aid the linkage designer in avoiding the limitation of excessive link length ratio. PRACTICAL LIMITATIONS TO ANALYTIC SYNTHESIS OF A FOUR-LINK MECHANISM FUNCTION GENERATCR BY Harold Li?bowell, Jr. A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DCIJTCR OF PHILCBOPHY Department of Mechanical Engineering 1965 COpyright by HAROLD LEE DOYIELL, JR. 1966‘ ‘ C h '1 ACKNOWLEDGMENTS During the academic year 1964-65, I was a Science Faculty Fellow of the National Science Foundation; the support and confidence signified by that award have been important to my work. Professor Palmer J. Reiten, Chairman of Mechanical Engineering, University of North Dakota, relieved me of teaching duties for two consecutive years, thereby expressing his confidence in me. While a student at Michigan State University, I have frequently received inspiration and encouragement -- exenplary and direct - from my professors. Many of my hours were spent in the Computer Laboratory of Michigan State University: the Director, Professor Lawrence von Tersch, made special arrangements essential to the completion of this task. Mrs. Elizabeth Unger, with her staff of Programing Consultants, frequently helped me out of bewilderment; herself an engineer, she showed genuine interest in my Problem. Mr. Robert Sparbel wrote (and named) the tape handling function, KLUNKER, and advised me on other programing matters. At the time I was writing computer programs, I shared an office with Professor Mahlon C. Smith, who applied his talents and experience in my 1behalf, often and generously. Mr. Michael Hooth made half of the seventy-two plots, a tedious chore which he executed with speed and care. The members of my Graduate Committee gave good counsel — technical and administrative. They are professors William A. Bradley, Rolland 1'. Hinkle, ii iii George H. Martin, Edward Nordhaus and Howard L. Womochel. Professor Hinkle served as chairman of this committee. My interest in kinematics of mechanisms was kindled by Professor Hinkle's excellent textbook on the subject several years ago; my personal associa- tion with him has been rewarding. By her tactful and constant encouragement, my wife, Johnnie, has shared with me the burdens of the task; she has helped to make it pleasant work. With care and devoted persistence, in spite of my interruptions, Mrs. Joyce Medalen typed the manuscript. TABLE OF CONTENTS ACIGNOEJLEM'ZENT O O O O O O O O O O O O O 0 LIST OF FIGLV'Rg O O O O O O O O O O O O O 0 INTRODUCTION 0 O I O O O O O O O O O O O O The Four-Bar Planar Mechanism A5 a FUUCtion Generator 0 o o o o o 0 DESCRIPTION O O O O O O O O O O O FUMZTIOAS WHICH CAN BE IJECHANIZED APPROXIIMITELY o e o o o o o o o o APPLICATIOBB O O O O O O O C O O A REVIEW OF THE DEVELCPNENI' OF DESIGN TECHNIQUES o o o o o o o o THEPROBLEi-i ............... Statement of Prgblem . . . . . . . . . THE BRAICHING LIMITATION . . . . THE CLCBURE LIMITATION . . . . . THE CHANGE POINTS LIMITATION . . THE TRAIEMISSION ANGLE LIMITATION THE LINK LENGTH RATIO LIMITATION THE name) or INVESTIGATION . . . . . . . . Statement of Method . . . . . . . . . THE FUJR ARBITRARY PARAMETERS . . FUIIZTIOhB AND RANGES . . . . . . (BDERING THE LIMITATIONS . . . . CCTIIPU‘I‘EROU'I'PUT......... A Preliminary Study . . . . . . . . . The COWQULGI Programs 0 o o o o o o 0 iv Page ii vii 13 14 16 l7 l7 19 19 21 24 24 2o 26 29 Page MAINPROGRAMFCR FINALSTUDY............... 29 SUBROUTINES.......................30 MAIN PROGRAM FIR PRELII-IINARY STUDY . . . . . . . . . . . 34 Disglaxing the Results . . . . . . . . . . . . . . . . . . . . 34 THEINDEXI.......................35 THEPLOT........................37 THERESULTS............................40 Number of Design Failures by Kind . . . . . . . . . . . . . . 4O Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4O Summaries of Plots . . . . . . . . . . . . . . . . . . . . . . 40 Sample Output from Preliminary Study . . . . . . . . . . . . . 59 INTERPRETATIONOFRESULTS.....................74 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Transmission Angle . . . . . . . . . . . . . . . . . . . . . . 75 FUIIZTIONS HAVING LIKE SIGNS PCB FIRST AND SECOND DERIVATIVES . . . . . . . . . . . . . . 75 FUACTIOAB HAVING UNLIKE SIGbS FCR FIRST AND SECOND DERIVATIVES . . . . . . . . . . . . . . 75 Link Length Ratio . . . . . . . . . . . . . . . . . . . . . . 75 COIxCLUSIOIS............................76 A~PPENDIXI............................78 Derivation of Eguations . . . . . . . . . . . . . . . . . . . 78 THE SYNTHESIS EQUATION . . . . . . . . . . . . . . . . . 78 TI—E AMLYS IS EQUATI OI‘J . C O O O O O O C O O O O C C O O O 80 vi APPEBDIX II 0 O O O O O O O O O O O O O O Commgter'Proqrams in Fortran . . . . MAIN PROGRAM PCR FINAL STUDY . small-11m O O O O O O O O O 0 MAIN PROCRAM FCR PRELIMINARY STUDY LIST OF REFEREDCES Page 82 83 86 99 104 10 . ll . 12 o 13 . 14 . l5 . 12 13 13 15 15 18 21 21 25 28 32 32 LIST OF FIGURES £222.22 P3192 2.99.2 16...36 31. 17...38 32. 18 . . . 41 33 . l9 . . . 42 34 . 2O . . . 43 35 . 21 . . . 44 36 . 22 . . . 45 37 . 23 . . . 46 38 . 24 . . . 47 39 . 25 . . . 48 4O . 26 . . . 49 41 . 27 . . . 5O 42 . 28 . . . 51 43 . 29 . . . 52 44 . 30 . . . 53 45 . vii 57 58 6O 61 62 64 65 66 67 68 79 INTR CDLCTI ON The Four-Bar Planar Mechanism As a Function Generator DESCRIPTION A function generator is a passive device which has a prescribed functional relationship between its inputs and its output. The four- bar mechanism with pinned joints when used as a function generator has only a single input. The functional relationship may be accomplished by coordinating rotations of input and output shafts or by coordinating derivatives of these rotations. Use of a rack and pinion transforms these rotations to linear motion. Thus, if the function be designated f, the relationship is: (Output) = f(Input). The input and output for the mechanical function generators considered here will be restricted to rotations. The constraint of the four-bar mechanism (Fig. 1) provides the necessary unique relationship between rotations of input (driver) and output (follower), these bars being joined by the frame and coupler. All bars are considered to be I‘igid bodies and the pinned joints assure coplanar motion. So if the IUtations of the input and output, each measured by an angle from some radial datum fixed to the frame, are called P and 8, respectively, then the desired function if exactly or ideally mechanized would be characterized by: S = H?)- Shaffer and Cochin (5)1 have given a means to determine whether a particular function can be exactly mechanized by a four—bar mechanism. \ NUmbers in parentheses indicate References. l 10 PIVOT HO PNoT HOLE Bl MARY LIN K5 M —~ . PINNED JOINT coun‘R \ (Faun. THUS) SCHEMATIC REPRESENTATION FOLLOWIK or ALL THE Asova BINARY LlNKS. on ou‘l'PuT LINK Damn! OR INPUT Lune -2 FRAME OR FIXED Lung FOUR- BAR M E_C_HAN|$M FlGURE. 1 INPUT OUTPUT Posl‘rgofizi oF INPUT LINK AND ouT?uT LINK PO‘NT P°|NT H v rams-on S A Henson PKEus\0N {(x; ?IECI$|°H Po: N T—~v._. PolNT / ,/\——5={(?) \—?REvv appears in many textbooks for undergraduate engineering students. LIsing complex numbers to represent vectors in a plane and combining them to form the quadrilaterals of the four-bar linkage for three and four specified positions ("loop equations"), Sieker (8) obtained sets of simultaneous equations. He noted that these are equations for the "Circle—point-curve" and the "center—point-curve". He obtained Synthesis equations for a function generator for three and four Positions as well as for fewer positions with their derivatives. Several numerical examples were presented. 9 4-0 I l . I ‘ ' n ‘ I '1' I if : hag-ve’ n ., a . ‘ . ‘ “I Q> - \l‘ - n u u .H. e ‘ s... _ . ‘ on. y AJJen (9) applied Hain's point-position—reduction to the graphical design of four—bar mechanisms as function generators. Freudenstein (10) tabulated dimensions of numerous four—bar mechanisms to generate various functions using his equations for 5, 6, and 7 precision points. Each mechanism is a minimum error approximation; he solved his equations (7) *with a digital computer. Also, he mentioned some applications of mech— anical function generators and discussed the suitability of functions for mechanization. Michalec (11) gave a summary of types of elements used in mechanical analog computers based on his experience with a United States manufac— turer of these computers. Starting with the graphical construction employing point-position- l‘E!¢:!uction, Worthley and Hinkle (12) derived analytic equations for design of four-link function generators. And, to reduce the error of the approximation, Hahn (13) proposed four-bar mechanisms in series; the Ifi.rst mechanism is designed using one of the analytic schemes and its error curve is plotted. Then, from a collection of error curves which T16! prepared, one chooses a second four-bar mechanism such that the errors of both when superposed will result in reduced error for the combination. Taking the four-bar mechanisms used in preparation of Hrones and Nelson's atlas of coupler curves (2), Vidosic and Johnson (14) developed a set of 146 pairs of curves as suggested earlier by Nickson (4): l) The trace curve; normalized output vs. normalized input. 2) The deviation curve; (normalized output-normalized input) vs. normalized input. 83/ making trace and deviation curves for a function which is to be .l" I. c on“... . 0‘. .— . .ell,‘ v - . :e O... ‘ mechanized and comparing them with the trace and deviation curves of their collection, one can select a suitable mechanism. Their collection of curves was prepared with the aid of an electronic digital computer. Also using the digital computer, Dunk and Hanson (l5) wrote a Program to analyze the performance of a six-bar mechanism as a function generator. By iteration with the aim of reducing error, design is possible. Hinkle (16) suggested using his angular velocity ratio theorem in selecting a four-bar mechanism configuration; by studying a plot of the function the orientation of the coupler with respect to the flame at any station in the range can be predicted. The electronic analog computer was used by Keller (22) as a design aid for four-link Inechanisms; he obtained graphical display with the cathode ray oscillo- 8 cope . Equations for synthesis of four—bar mechanism function generators (loop equations) were presented by McLarnan (17, 19); he gave equations for three, four, and five conditions and Fortran programs to perform sYnthesis and analysis. Also, he gave (19) a complete discussion of theory and limitations, including coments about ”branching”, to be Considered below. McLarnan and Hagan (18) proved that no more than flure constraints are allowed if scale factors for input and output are to be arbitrarily chosen. They noted that seven different combinations °f (precision points and derivatives are possible, and that the linkage hairing two links very long relative to the other two links can be replaced by an inversion of the slider-crank. Their development resulted in a sixth degree equation with three trivial solutions and either one or three real, nontrivial solutions. Finally, two modern textbooks contain rather complete discussions, to date, of design techniques for function generators. One is by Hirschhorn (20), the other by Hartenberg and Denavit (21). This review of the development of design techniques has been selective rather than complete; the intention was to indicate the variety of approaches to the problem of function generation using a four-bar mechanism, and to show the movement away from graphical methods toward analytic methods augmented by the electronic digital computer. {1 ‘1 THE PROBLEM Statement of the Problem The problem confronted in this thesis is to investigate the practical limitations to analytic synthesis of a four-link mechanism function generator with the aim of finding some pattern for their occurrence and thus a means to avoid them. In spite of the amount of work and the diversity of attack on the Problem of designing a four-link mechanism as a function generator, the solutions obtained are often not usable. While the solutions do satisfy the theoretical requirements at the precision points, they do not always satisfy the mechanical requirements. a) Some of the precision points may lie on one branch of closure and some on the other, meaning that a joint must be separated and reconnected in a different configuration to complete the range of Operation. This limitation is discussed as "branching” below. b) Moving the links beyond the first or last precision point, but Still within the range, may cause the mechanism to enter a region beyond its limits of motion where it is impossible for the links to remain cOnnected. This is treated below as ”closure". c) The synthesized link-lengths may be such that as the links pass ' through a folded configuration the follower is able to move in either direction: it may continue to move in the same direction that brought it into the folded configuration or it may move in the opposite direc- tiOn. This is discussed under "change points”, below. d) During operation within the range of motion, the acute angle be'tween centerlines of coupler and follower link may become so small 10 as to preclude effective force transmission. This limitation is discussed below as ”transmission angle”. e) Two of the links may be relatively much longer than the other two making the Operation of the mechanism physically impossible because of deflection of the longer links, or because of space requirements. This limitation is referred to as ”link length ratio". Except for the transmission angle and link length ratio, these limita- tions are not matters of quality or degree: they are more in the nature Of dichotomies.‘ They are decisive. Graphical synthesis reveals these limitations as they arise; analytic synthesis can obscure their Presence until after the solution is completed and a sketch or model Of the linkage has been made. When such a limitation appears, new values for the arbitrary parameters must be chosen and another solution begun. It is impossible to predict such failures of solution. Concerning branching, Hartenberg and Denavit declare (21), p. 233, ”No systematic way is known to the authors for avoiding the trouble that was encountered.” Again, McLarnan (19) has this to say about selecting arbitrary parameters, p. 14, "Normally the designer would Want to make a number of choices of U2 and U3 [rotations of coupler] in order to have a number of alternative solutions to examine before selecting the best one for use. The proper selection of values u2 and '43 has not been studied extensively enough with regard to Optimizing the solution to permit any guide lines to be laid down at this time." Of course, the error or the deviation between the mechanized function and the ideal function may also be regarded as a practical limitation .1 I; .L n if.-- -‘f l O ‘ a PI. N. is: ' «,4 'l 'I if. 11 to design but the recent literature is replete with error-reducing techniques to be applied after a generally usable configuration has been determined. The five practical limitations mentioned above must be satisfied prior to such refinement. The problem for this thesis is an investigation of these practical limitations to the design of four—bar mechanism function generators. THE BRAICHING LIMITATION Given four bars identified by their lengths A, B, C, and P, where these are input link, coupler, output link and fixed link, respectively, let the position of the input link be specified. Then the coupler and out- put link can close the loop of four links in either of two different ways or branches as shown in Fig. 3. The output angle $81 corresponds to branch 1; output angle $82 to branch 2- Each branch may be thought of as a reflection of the other about the diagonal D-D. AS an example of the branching difficulty, suppose that Fig. 4 represents a three precision—point approximation to some function. Use of the synthesis equation with P2 = 45 deg., S2 = 60 deg., range of P 90 deg. and range of S 60 deg. gives the linkage A, B, C, and frame shown in heavy s011d lines in Fig. 5. For the first position, the four links are con- heciao so that Link A is inclined at angle 22 and Link c at angle 52. As Link A is moved from angle P2 counterclockwise to angle P3, Link C mo‘Ves to occupy position b1; when A is moved to P4 then C moves to Cl. But the desired second and third locations for C are b2 and c2, on the other branch. If after being connected at position a1, Link A is moved BRANCH. \ a I \l BRANCH 1 OUT PUT 13 FlGUEE 5 14 clockwise to the folded position, Fig. 5, then moved counterclockwise again with an open rather than a crossed configuration, positions b2 and c2 will be satisfied when A is at P3 and P4, respectively, but then position a1 will not be satisfied with A at P2. THE CLCBURE LIMITATION The input link and output link of a four-bar mechanism may not be able to rotate through 360 deg. (i.e., turn continuously) but, instead, one or both may be restricted to oscillate within some angle. A link which can turn continuously is referred to as a crank; one which can only oscillate is called a lever. This matter has been thoroughly investi- gated and the particulars are well-known. One good discussion is in Hartenberg and Denavit's book (21); part of their discussion is followed be low to establish some terminology that is needed. Let the length of the shortest link be calledxb; the length of the longest link, 2 3 the lengths of the other two links can be called 10 and 32. Then, if 4+4 < 10+}, the linkage is termed a Grashof linkage (Fig. 6) for which three cases exist: a) If link AD is the input, the input link is a crank and the output link is a lever. The mechanism is called a crank-lever. Two of these are possible, since either link adjacent to 4b can be fixed. b) If link xv is fixed (i.e., if xi is the frame) both input and output links are cranks; the mechanism is called a drag-link or a double-crank mechanism. c) (Otherwise, input and output links are levers. This is called a double-lever mechanism and there are three possibilities. Note that when xv is the output link of a Grashof linkage A/ could turn continuously if the output were the driver rather than driven, but this is precisely the converse meaning of ”output". / d, CRANK-LEVER , DouBLE. CRANK (INPUT 15/4,) (FRAME \S A) / \MPUT 7. (“DOUBLE LEVER d. DOUBLE LEvEK If}? dAE ‘ 2M .5. __E3 9 "1 .TtiE. -___§_Bfl.$_,*i9_ F. .6 . .-‘:L.’:‘__!S_e 6.; ELC: U RE 6 ———.__ —._._ —__. ._._ m“ / J 47 r IIIIII/li/l/ d.PARALLELOGRAr/\ b, KlTE SHAPED 16 On the other hand, if A 4-K > 70+; , only double-lever mechanisms are possible. Or, ifo + Z = 767 + 3, , change points occur; this is con- sidered below. bmte in Fig. 6-a, for example, that the output lever is restricted to nmve within its angle of oscillation and that it occupies the extreme values of this angle when input link and coupler centerlines become colinear. In a synthesized linkage, the precision points will lie within this angle of oscillation but it often happens that the range angle speci— fied in the synthesis problem must lie partly outside one of the extremes of the angle of oscillation. Where this happens the mechanism is not a solution to the synthesis problem. Closure is not possible. Similar considerations apply to the input link of a double lever mechanism. THE CHANGE POINTS LIMITATION In the discussion of closure, one of the possibilities was shown to be: 3, +2 = 70 + 7’ . For this case, if ¢=7a or if sea-j, , the link— age is a parallelogram or kite-shaped as the equal—length links are opposite or adjacent to each other, respectively (Fig. 7). But even if A; is equal neither to 70 nor to 3,, as long as ,d,+’£ = 70+} , change Points occur when the linkage is folded flat (i.e., when the centerlines of all links coincide). While the indecisiveness of change points can he corrected by inertia forces or by mechanical stops to prevent an undesired change, and even though the range of operation of the function Emnerator*may never include a change point, the possibility of change Fmints is regarded herein as a design failure. 17 THE TRAISMISSION ANGLE LIMITATION Uflmther the coupler pushes or pulls the output link during Operation of 1mm mechanism, the Optimum angle between centerlines of the coupler and the output link for force transmission is 90 degrees. The transmission angle, TA, is defined as the angle between centerlines of the coupler and follower link or its supplement, whichever is smaller. See Fig. 8. lfldle the optimum transmission angle is well-defined, the minimum value is a matter of judgement. A quotation from Hirschhorn (20), p. 257, is pertinent: ”Alt, who first suggested the use of this parameter as a quality index for the transmission of motion, recommended a minimum value of 40 deg. for low-speed and 50 deg. for high-speed applications. Other kinematicians have reit- erated these values. However, it is extremely doubtful whether such generalizations should be accepted uncrit- icaIIYQ' Fozrthe purposes of this study, 40 degrees was taken as a minimum in accord with recommendations in most references. 50, if at any position within the range the transmission angle becomes less than 40 degrees, the design is regarded as a failure. THE LINK-LENGTH RATIO LIMITATION Choosing a maximum link-length ratio, RATIO = 2% , is again a judgement. er'this work, the maximum link-length ratio was arbitrarily chosen to be 6. 18 (NPUT IN PulT T7/If/If/777 INPUT TA TA ‘NPuT—ei 11277/ril’ 'TA INPUT '- A THE. TRAN$M\E>$\QN ANGLE-.7 T THE NETHOD OF INVESTIGATION Statement of the Method The investigation was basically experimental: several commonly used functions and their ranges were chosen; for each, a number of mechanisms to generate the functions were synthesized using a well-known analytic technique. When a practical limitation was encountered, the particulars were recorded and a different synthesis was performed. The syntheses and analyses were done with the aid of a digital computer; in this way 4050 function generators were synthesized and analyzed for each of eight functions. For the analytic synthesis of a four-link mechanism, seven variables are involved: three link-length ratios, the starting positions for the input link and for the output link, and the range angles for the input link and for the output link. Theoretically, all seven of these variables may be treated as unknowns; actually, the mathematical difficulties are such that Ordinarily only three, four, or five unknowns are attempted, values for the remaining variables being arbitrarily assumed as parameters. For this work, the analytic synthesis was performed with three unknowns and four arbitrarily chosen parameters to give the greatest variety of solutions consistent with reasonably accurate approximation. With three unknowns, three precision points may be prescribed; obviously, with more precision points the error of the approximation can be reduced. But even with only three precision points, errors of less than one percent of the range of output are possible. Furthermore, as stated previously, error reduction methods are plentiful. 19 20 The Freudenstein Equation (derived in the Appendix) was used for synthesis at three precision points. Here the arbitrary parameters were taken as the positions of input link and output link for the first precision point and the range angles of input link and output link. The unknowns were taken as the three link—length ratios, based on the fourth link which was assumed to have a length of unity. Hence the following notation (See Figs. 9 and 10.): A Length of input link 8 Length of coupler link C = Length of output link F = Length of fixed link (frame) = 1 P2 = Angular position of input link at first precision point configuration. 82 = Angular position of output link at first precision point configuration. RP = Range angle for input link R5 = Range angle for output link THE FOUR ARBITRARY PARAMETERS For a function with positive slope, the input and output links can rotate in the same direction. But Hinkle (16), p.286 , points out that a dif- ferent mechanism results when the input and output links are assumed to rotate in opposite directions; he calls it the alternate solution. Similarly, if the function has negative slope, the input and output links can rotate in opposite directions or - for the alternate solution - in the same direction. In this work, the alternate solution is accomplished by using negative values of one of the range angles: R8 was given both positive and negative values. 21 Y . HUI/ll l/l/I/l/l/l77 \ J i F__ [(5—77 ,._, .,_..,r,,,_,fi'_ FIGURE 9_ 4 3 z 5 4 3 RP 'NPUT OUTPUT NOTE: PRECISION POINT POSITIONS ARE 2,3 44” [III/III/IIIIII/ll 22 Hence, the schedule for selection of arbitrary parameters was as follows; Value of Parameter, Degrees P2 10 50 90 130 170 210 250 290 330 $2 20 60 100 140 180 220 260 300 340 RP 30 6O 90 120 150 RS 30 ~30 60 ~60 9O -9O 1 20 --120 150 —150 An91es P2 and 82, corresponding to the first precision point, are always measured counterclockwise from a datum ray; range angles RP and R5 are magnitudes. Two hypothetical functions, having a positive slope and the other having negative slope, are shown in Fig. 11, where the meaning of the four arbitrary parameters is illustrated. Parameters P2 and S2 fix a POint in the P-S plane; parameters RP and RS act as scale factors, the Sign of RS having its further significance mentioned above. Also, note in Fig. 11 that the first and last precision points (P2 and P4) are distinct from the ends of the range RP (P1 and p5). This distinction is necessary for re—spacing the precision points to Optimize the error. HOVIlever, of course, P2 and Pl, for example, might have the same value. In the programs, precision points P2, P3, and P4 have been calculated from the values of x2, x3, and x4, taken as input data. And x2, x3, and X4 were determined by Chebyshev spacing in the range of X; see Hartenberg and Denavit (21), p. 140, or Hinkle (16). p. 284. Whi1e parameters P2 and S2 were chosen in steps of 40 degrees, the data Shows steps of 20 degrees for them. In solving the synthesis equation, link lengths A and C may have emerged as negative values whereupon they were changed to positive values and angles P (if A was negative) and S (if C was negative) were advanced 180 degrees. Since 180 degrees consists 23 fuua‘lou Hume 73°“:"5 .3593? LML'YIMN HAVING NEGATIVE SLOPE U ’I 9 I I gasot) ‘RY 5‘1“) RY I l I I l I l f I I l \ XI X} x;‘ xzxs x x. X1.1 ’3' N": 7 Rx RX Foo. ‘RS Posmvs: Foo. Rs Peon-we: RS i $5__ ' I ‘ I l 1 PI P17 I";Y 7: p 113 rs 5—4 Fee RS NEQATNE: 'Foe RS thA‘erZ SII Si 524»— — l 1 R5 I RS 521’— l I I I . I I I . | I l l l = l I 1 _ 1’. h‘ 15’ 1'37, P P, PJ P? P43, 7: RP fl RP 24 of four—and-a-half 40 degree intervals, the 20 degree steps were introduced. The difference of 10 degrees (or integral multiples of 10 degrees) between P2 and S2 was introduced to prevent starting a solution with all four links having colinear centerlines. Incidentally, this precluded parallelogram linkages. FUNCTION AND RANGES The functions used for this study are listed in Fig. 12, which also gives a function identification number, the range for the approximation and the precision point spacing: X2, X3, X4. CRDERING THE LIMITATIONS Unavoidably, the order of apprehending the practical limitations had the effect of assigning priority to them. Since it is not known that these limitations are exclusive, failures attributed to one kind of practical limitation might have been attributed to some other kind had the order of testing been different. From the viewpoint of the mechanism designer this is not important but it does impede developing a theory of failure for a particular kind of limitation. Even so, certain ordering criteria prevail: a) Over-riding influence of certain limitations. (For example, if branching occurs then the maximum link length ratio and minimum transmission angle are immaterial.) b) Consquence of the limitations. (For example, the change points limitation can be corrected by other means, so it has low priority.) c) Time of computation. PRECISION Pawns N9- FuNcTIoN RANGE. X7- X3 X4 - ""—“‘“—'“‘_" __.:_"..‘—::-:‘.'.::‘_“:(L.,.__ .* “‘77::- '::_—- —:__ _.______.___ __ --- _.____.-_.___ I", I [4:31— I \ Iéxe’: 7. 1067 1.5 1.933 x I I I 2 15:9," ‘1 éXé1 l‘.8(:-G O .8(='é -— i .,____. I. _- fl __ -._-___ _ 'Y _._1Li. -. -2 ..._... L _._-.__.L_...._._. ._ - l I ‘I I ‘3 ' we" OéXélO l .467 570 9'33; i I I_ ,_ x I J I 3 4 I WM x ”I I éxéIO [.603 5.5 9.397 ’ - IO xi ! . I t4 I 5 gzsguux O éXé 2. . '134. [.0 £866» --_-_-g_ _- _- -I g. 9 i / 566 '_ Oéxéz ,:3:4' [.0 . 6 I5- cosn x I X I 9 A I 5 4- o 7 ! q=TA~x O’Xn .10 .75 /.4 r___- _.---__- _- '_-_ -_._--_.. __ x __-r__rr - 8 ‘1 4 e 10 gum,“ o _. X .ee7 5.0 9.33 51,2 ___.r___._.___.__~.-_... -x _ __ -.__ I I 9 g“(2 Oé—Xé'o .467 570 9.33 L‘-.I-__---_-_-__,_-- _--.,.-x .............. - FuNm‘LI'ONS AND RANGES G U RE I2. .. .-.———— 26 According to these criteria, the following order was used: 1. Maximum link length ratio exceeding 15. 2. Branching. 3. Closure. 4. Minimum transmission angle less than 40 degrees. 5. Maximum link length ratio exceeding 6. 6. Change points. CCMPUTER OUTPUT For each mechanism synthesis which failed to be usable, the kind of practical limitation responsible for the failure and the corresponding values of the four arbitrary parameters were recorded on magnetic computer tape. Later, a sorting program read this tape, consolidated the data as explained below in Displaying the Results and printed the results in a form convenient for plotting. A Preliminary Study Prior to extensive examination of the practical limitations to analytic synthesis, an intensive preliminary study was made; in addition to recording the failures, certain performance features of each usable mechanism were determined and recorded. In the preliminary study, the practical limitations were discovered using the same methods as for the final study except that 10 degrees rather than 40 degrees was taken for the minimum value of the transmission angle. For each usable mechanism found in this preliminary study, the error was optimized by re-spacing the precision points in the manner described by Hinkle (l6) and by Hartenberg and Denavit (21) and the mechanism was 27 classified as crank-lever, double-lever, double-crank, etc. according to the index NGRAS in Fig. 13. Then all results of interest were printed in the following order: Identification number of usable mechanism . . . NPLOT Cla$$1fication number a o o o o o o o o o o o o NGRAS Error, percent 0 o o o o o o o o o o o o o o 0 Ep Minimum transmission angle . . . . . . . . . . TAM Value of angle P corresponding to TAM . . . . . PTM Maximum link length ratio 0 o o o o o o o o o RATIO Number of passes in SPACE subroutine . . . . . NSPAC Length Of links 0 o o o o o o o o o o o o o o o A,B,C Indicator for negative A or C . . . . . . . . . NEGP, NEGS Precision points as re-spaced . . . . . . . . . X2, X3, X4 Values of the four arbitrary parameters . . . . P2,52,RP,RS For each non—usable mechanism found in this preliminary study, appropriate results were printed. A portion of the printed output is given in The Results, pp.70 and 71. The interpretation of this printed output will be aided by the following notes: 1. 2. 3. In the line beginning "RATIO EXCEEDS 15.”, the statement LARGE = 1 appears. This indicates that the maximum link length ratio, while greater than 15, did not exceed the numerical capacity of the computer. If it ever did, the statement LARGE = 2 would appear. "UNABLE TO CLCSE LOOP" means that a failure due to the closure limitation occurred. "NSPAC = 100" means that after 100 passes in the SPACE subroutine the test for optimizing the error had not NGRAS CLASS --.._-_——.______ —__——— -4 —.—. ---——~— -...___- I CRANK - LEVEK ’3. DOUIBLEcCKANK I———-~—-—+—-- DOuBLE-LEVER,’ BuT OuTPwT 3 LOULD ROTATE rimuousI-Y IF IT WERE. MADE THE DRIVEIL. 4. DOuBLa-LEVEK 5 CHANGE ‘POINTS 6 CHANGE POINTS , KITE- semen CHANc—le 'Pown‘s, 7 PARALLELOGRAM ~ THE INDEX NGRAS 29 been satisfied, so the effort was abandoned for the mechanism. The function used for the preliminary study was the reciprocal function, y = l/x, in the range l‘é x é.2. Sketches of each usable mechanism in the configuration for the first precision point were drawn by the digital plotter. A few of the 922 sketches obtained are shown in The Results, pp. 72 and 73. The preliminary study confirmed certain aspects of the procedure and sharpened the pursuit. Most of the subroutines developed for the prelim— inary study were used for the final study. Furthermore, the sketches of mechanisms made by the plotter provided the writer much satisfaction and encouragement. The Computer Programs Although a full listing of all digital computer programs and subroutines appears as Appendix II, this section contains concise descriptions of these programs to give the reader a comprehensive summary. MAIN PROGRAM FCR FINAL STUDY Nine passes in this main program were required to collect the data for the eight functions (including two different ranges of the exponential function) listed in Fig. 12. Automatic advance through the nine passes was planned but an unknown total run—time and limited availability of the computer required a provision for orderly interruption before the time required exceeded the time allowed. Such an interruption should occur between passes and should leave the tape on which the data was being recorded in proper condition for a re-start. The indexes 11, I2, 13, I4, 15, and NPLOT and subroutine COPY were intended to be used for such a re-start. However, as it happened, the total run-time was within the time allowed, so this feature was not used. Index NP was used to identify each pass. For each pass, the data input was the five values of X (i.e., X1, X2, X3, X4, and X5). Proper choice of each function in subroutines FERD3 and ERROR was also regulated by index NP 0 Next, the four arbitrary parameters were set for one of the 4050 combina- tions. For this combination, a mechanism was synthesized by subroutine FERD3. Then this mechanism was checked for maximum link length ratio by subroutine MAM, for branching by subroutine BENCH, for minimum trans- mission angle by subroutine ERRfiR, again for maximum link length ratio and finally for change points by subroutine GRAS. Following this, certain parameter restorations were made, if necessary, and the next one of the 4050 parameter combinations was set. At several points during the above procedure, a failure may have been recorded. SUBROUTINES Subroutine FERD3 Input: X(J), J21, 2, ...5, 2(2), 3(2), RP, RS Output: Y(J), le, 2, ...5, 2(1), 9(3), 2(4), P(5), 5(1), 3(3), 3(4), 5(5), RX, RY, A, B, c, NEGP, NEGS, LARGE (The index NP was also used as an input parameter during the final study to permit changing the functions for successive runs.) Calculate: A, B, C using the Synthesis Equation. (See Appendix I for a derivation of this equation.) If A is negative, rotate input link 180 degrees and make A positive. 31 Set NEGP = 2. If C is negative, rotate output link 180 degrees and make C positive. Set NEGS = 2. Initially, LARGE = 1. If A or'C is quite large, set LARGE = 2. If loop-closure is impossible, set LARGE = 3. (This never happened in FERD3.) This subroutine calculates the link lengths for the mechanism using the Synthesis Equation. Subroutine MAMI Input: A, B, C Output: LS, LL, LE1, LE2, LE3 This subroutine determines which of A, B, C and F = l is maximum and which of these is minimum, finds the maximum link length ratio, RATIO, and sets indexes according to the schedules shown in Fig. 14. Subroutine BRANCH Input: P(J), J22, 3, 4, SL1), J22, 3, 4’ A, B, C, Output: NS, NSD Calculate: Calculate: Compare: ssp(3), 3:2, 3, 4 as the output angle for the mechanism when the positive square root is used in the Analysis Equation. ssm(3), 3:2, 3, 4 as the output angle for the mechanism when the negative square root is used in the Analysis Equation. 532(3) with 5(3), 3:2, 3, 4. If all three agree (within 1:3 deg.) set NS = 1 and NSD = 1 and return to main program. If “at, o o 0 Compare: ssm(3) with 5(3), 3:2, 3, 4. If all three agree (within 32 LLleDEx FOR LsleDEx Fog SHOKTEST LINK,A LONGEST LINK,( 4 A a c. 1 l A a C 1 L5 I 2 3 4 LL I '2. 3 4 INDEXES FOIL EQUAL LINK LENGTHS (INITIALLY LEI = LE2 = LE3 = I) A=B A'C A=l‘B=C 3'1 C=l LE\ 2. 3_4 I———-—-—-4p~~.~-—— — ~-<>——-- —-.—.—._4 2 3 L E 2 I. —"'—".II—"* 2 —-.‘— __..>_____-__-_ _ LE3 INDEXES FOR SUBROUTINE MAMI .“__--__ E00? XI X2 Rx - -—.—-—...-___—. THE EKEPL-EU NCTION f- I.-C_:LU-_KE--‘--5_ 33 i 3 deg.) set as = 2 and Nan = 1 and return to main program. If not, set NSD = 2 and return to main program. This subroutine determines if branching occurs (NSD = 2) and, if not, it also determines whether the positive or the negative square root should be used in the Analysis Equation. Subroutine ERROR Input: P1, P2, S2, RP, RS, X1, Y2, RX, RY, NS, A, B, C Output: 5(3), 3:1,2,. . . 101, EMAX, xmxx, rap, TAM, PTM, NE. (The index NP was also used as an input parameter during the final study to permit changing the functions for successive runs.) This subroutine builds the error function, E(x), consisting of 101 ordinates (Fig. 15), determines the maximum error, EMAX, the correspond- ing value of X, XMAX, and the maximum percent error, EP, based on the range of y. This subroutine also finds the minimum value of the trans- mission angle in the range of operation, TAM, and the corresponding value of P, PTM. Finally, it checks for closure throughout the range of operation. If closure is a limitation, the index, NE, is set to 3 and control is returned to the main program. Subroutine (IRAS Input: A, B, c, 15, LL, LE1, LE2, LE3 Output: NGRAS This subroutine determines to which of the classifications in Fig. 13, p. 28, the mechanism belongs. Subroutine ATQ Input: Y, X Output: V 34 This subroutine determines the angle V: Arctan Y/X, in the correct quadrant. Subroutine SPACE (Not used during the final study.) Input: x(3), 3:1, 2, ...5, RX, RY, xrmx, E(K), K=1, 2, ... 101. Output: x(3), 3:2, 3, 4, NOPT, name This subroutine re-spaces the precision points X(2), X(3) and X(4) until the extrema of the error function agree within a tolerance ofI:(.OOl)(RY). A count of passes through this subroutine, using index NSPAC, is kept. NOPT = 1 means: Error function not yet optimized. NOPT = 2 means: Error function is optimized. Subroutine SCALE (Not used during the final study.) Input A, B, c, 15, P(2), G (G is the angle of inclination of the coupler link for the configuration of the first precision point, measured from the datum ray. See Fig. 45.) Output: X2, X3, X4, Y2, Y3 This subroutine scales link lengths preparatory to plotting so that the shortest link has a length of unity. Also, horizontal and vertical components of the pinned joints are determined for input to the plotter. MAIN PROGRAM FOR PRELIMINARY STUDY Only one range of one function was handled by this program but the interrupt and re-start feature was needed often because of the long run- time (more than six hours of computer time). But here, the interruption had to be between any two parameter combinations among the 4050. Much 35 printed output was obtained; in addition, certain output data was recorded on tapes 5 and 6, although the data on tape 6 was never used. The plotting was done with the aid of an NSU Computer Center library subroutine, PLOT. Another library subroutine, CHAR, was used to plot the small circles indicating the pinned joints and to plot the identification number, NPLOT, for each sketch. Otherwise, this program was similar to the main program for the final study. Displaying the Results Since the purpose of the work was to investigate the practical limitations to analytic synthesis of linkage function generators, the occurrences of these limitations had to be displayed in such a way as to show a pattern, if such a pattern exists. For each limitation studied, it was to be determined if that limitation was dependent on the function being gen- erated and if so, in what way. Also, the influence of the four arbitrary parameters on each of these limitations had to be revealed by the display. In view of the thousands of items of data stored on tape,the anticipated manner of display affected the way in which this data was to be read from the tape and printed. Graphical display on transparent paper was indicated because of the possibility of stacking sheets of paper together and looking through them, somewhat in the manner of a contour map. THE INDEX I In order to reduce the number of variables involved and still preserve distinction, two of the four arbitrary parameters, the range angles RP and RS, were combined into a single index, 1. Referring to Fig. 16, it is seen that any pair of values for RP and RS gives a distinct value of Fore RS (-31 I: “RP-3O + )RS) G 30 up Rs so so so I20 I50 30 I 6 II I6 2| (,0 2 7 I2 I7 22 90 3 8 I3 I8 23 no.4 9 I4 9 24 I50 5 IO I5 20 25 FOR R5 (+) 2 RP 'RS 30 60 90 I20 I50 3O 26 3| 3C. 4| 4e 60 27 32 37 42 47 90 28 33 38 43 48 I20 29 34 39 44 49 ISO 30 35 40 45 50 QHE INDEX I FIGURE I G 37 the index I, from 1 through 50. For example, for'RP = 60, R5 = -l20, I = 9 and for'RP = 90, R3 = +60, I = 37. THE PLOT Then, for a single function and its range, using P2 as abscissa and 82 as ordinate, the event of a failure due to branching, say, could be indicated by placing the number I in the cell given by coordinates (92, 52). It would then always be possible, though perhaps tedious, to recapture all values of the four parameters for which branching was a limitation for that function by reading the number I and its associated coordinates from the plot. See Fig. 17 for some examples of the plot. This procedure has the disadvantage of subduing the effect of changes in the range angles RP and RS. But some initial plots indicated that the limitations being studied were not sensitive to variation of RP and RS, so the procedure was adopted. Initial plots also revealed similarities in pattern for plots belonging to RS(positive) and similarities in pattern for plots belonging to RS(negative) but no similarities when plots belonging to RS(positive) were compared with plots belonging to RS(negative). Thus, two families of patterns were quickly identified: the RS(+) family and the RS(-) family, or the family for the solutions and the family for the alternate solutions. This knowledge simplified the plot procedure since it reduced from 50 to 25 the maximum number of entries I to be plotted in each cell. At each point (P2, S2), as many as eight entries I were placed inside the square cell; additional entries I were placed outside the plot and 38 P2 = 330, 52 a I20 RP=90IIzs=-eo l\—__Y—__—/ I =I'L P2: 330, sz-Izo, Rinse, RS = —eo I17. I P2-uo, $2:zzo,121>=co,Rs=—I20 I I \——-—‘,———/ ; 3 1 i=9 V, t ‘. / I I P2=|I0,51=220,RP=COJRS=—30 / '. I - P I I 1‘; / / E I 1>2=uo, sz= 220, RP-30,RS=—GO , 1,4/ I I r—v——-—/7 ; , a . 1‘2 / ‘ I 34 — -' / 7 O / l, / I / ' 3 / , ‘ ’ / /" I 300- ‘1. . q ’ I I K / I I. I I '/ I I 260‘ ,I/ / I | / "/ ‘ l w 220- "’ III III :7 0 I30- I N I “I I I I40— I i I_ an. I . 300- I 4 C417 1 60— I :. I so I I r T I i I I I r ’0 50 90 I30 I70 no 250 290 330 "P2 Deeneas 2 7 I2 Au lNgARcED we,“ 0:: A ‘ng 3HONINQ‘ Tue I7 ~ALPHABETIL ChAKAC’TEK ”D" USEb FOL '3 [8 CONV|MuAYIoN o: auTlias I __-_-_-_‘_/ 22 23 D TYPICAL “Du-mus Fonz Tue: ”PLOT 3ng I7 39 referenced with an alphabetic character inside the cell. Finally then, each plot on transparent paper was to be for one of the five practical limitations, for one function and its range, and for one family, either'RS(+) or RS(-). By stacking transparencies and peering through the stack with a strong light in back, the plots could be compared on the basis of function sensitivity or family sensitivity. This, in fact, was the way the Summaries of Plots were made. With this plan in mind, the sorting program to read the data tape was written to tabulate the data, function—by-function, in sets of five columns, each column corresponding to a single practical limitation. The tape was read once for the RS(+) family, obtaining 25 such sets of five columns for each function; then the tape was read again for the RS(-) family, obtaining another 25 sets of five columns for each function. THE RESULTS Number of Design Failures by Kind By subtracting the total number of design failures from 4050, the number of usable mechanisms obtained for each function is as shown in Fig. 18. In Fig. 19 are given numbers of failures attributed to the practical limitations of each kind, listed by function. Notice that not a single failure for any function was attributed to the change points limitation. Plots In all, seventy-two plots were made, as tabulated below: Function Branching Closure Transmission Link Length Total No. Ratio Angle RS(+)RS(-) RS(+)RS(-) R$(+) RS(-) RS(+)RS(-) \OCDQO‘U‘AOOMH HHI—‘i—‘l—‘Hl—‘l—‘H I-‘l-‘D-‘I-‘Hl—‘l-‘I-‘H HHI—n—H—H—HHH I-‘l-‘I-‘Hl-‘Hl-‘HH I—‘l-‘D-‘l-‘HHI—‘l-‘H I—‘HHI—‘Hl—‘Hl—‘H HHHHHHI—‘HH HI—‘l-‘I-‘l—‘I-‘t-‘HH cocooooooooooooooo Total 72 Several of these appear as Figs. 20 to 35, inclusive. Summaries of Plots By superimposing transparencies of the plots and comparing their patterns by groups, certain similarities of pattern were observed. 40 41 ._______.__ -. .__. ..---- --- _ - -1 ‘ '" Isolate” oe'“‘u’s;'s‘ s’" ' NCT I o N “ FU __--__-___----._-.._-- ,MECHANIEMS OBTAINED N9. KIND AND RANGE. FROM 4050 svumescs .__._.--_ .... -.---_-.__ __ _ __ ..___. ray--. s1. Iéxél . 333 I XI-- I“ 00 T.__ - I .I '1.- __-.-i_-_-___- .- . _- 1" . I ‘ I .1.-_- - I | I I: . IO NUMBERS (_DF _EAMILUKES ArftzIBuTED _To CHE TDRAQTICAL ___. LIMITATIONS: OF EACH: KIND FUNCTION BRANCMNQ CLOSURE Tamsmssuon L|NK Lemma CHANGE N9 ANGLE RATIO “Pom-rs RS(+) 34c, 429 364 454 o I RSI-I 435 44I 344 475 TOTAL 78I 870 708 959 o Rs(+) 585 .394 4Ie 389 O 2 R3(—) 530” 437 552 - 340 0 TOTAL. IIISM I531_I_.998 L729 0 Ragga} 939 I252 1_ 339 I 379 o 3 IT_{__S(:) 44-742; _I_285 I 53! I4I2 0 ,TOTAL 1 |§_42 J 537 870 79I O IEEfit) I-..5..?-§ I 4' 6 _4 53 ..2- 399 o 4 R$_<-_-_)_ I _4_7__5__ I. 407 - 42 I__~__~_L_;Ia2 o ITOTAL I003 I 823N074 L7‘3I L 0 £5<+>I 3.48 I 45I 5.5.5..--I-.405 I O 5 15<+>I 45.5-_I -445 -454 = 5.55 I o ’IOTALL 786 I934:rII60 763 O ‘KSCHI 807 I £834.33] _, 369 0 e 3.55:2 I 6. 5.5.1 -5..8.2_-I_.E_i-_0 344.-- o pomLLIZIéo Legal 907 7/3 0 IRSH) _I_ _6 26 I _BHLQH I-fi.§_I__.__ @465 I" o ,7 Bit.) 34.3.2.7.-- 5L4 ___5Z-5---__§0I o ITOTAL1023I629 IIOI age 0 £5._<fi__I_ -99 55.12.58. 5.5.7 - “.552 I- 0 5 RE“) I 62.27 ’93? -5 -E?--..I 347 0 E'I‘ZLIIsso Igol 324, I727 o 55 (+2 6 55 L 55.4 5.5 7.. ---;I__-.5-.5_2... . _ 0' 9 Rs(—) I610 4I4 556 334» 0 "TOTAL. Im7— 6 5 ~ ”.72.? 5.5”.3 “HI-7.1.3 O F IGURE I9 43 44 45 46 47 49 50 52 54 55 56 57 58 59 An attempt to represent these likenesses of pattern resulted in the Summaries of Plots, as listed below: Functions Branching . . . . . RS(+) l to 5, incl. Fig. 36 Branching . . . . . . . . RS(-) 1 to 9, incl. Fig. 37 Closure o o o o o o o o o RS(+) 1 to 9, inCIO Fig. 38 Closure o o o o o o o o 0 RS(-) 1 t0 9, incl. Fig. 39 Transmission Angle. . . . RS(+) 2,3,5,6,7,9 Fig. 40 Transmission Angle. . . . RS(+) 1,4,8 Fig. 41 Transmission Angle. . . . RS(—) 2,3,5,6,7,9 Fig. 42 Transmission Angle. . . . RS(-) 1,4,8 Fig. 43 Link Length 0 o o o o 0 RS(") 1 to 9, inClo Fig. 44 For all Summaries of Plots, the shaded area represents design failures due to that kind of limitation; the clear area represents freedom from failure due to that kind of limitation. A certain judgement was employed in making the Summaries of Plots: where no more than two cells having one entry apiece coincided in a stack of six or more functions, this was regarded as clear area. Also, where only one cell having no more than three entries appeared in a stack of six or more functions, this was regarded as clear area. A Summary of Plots was not made for Link Length.Ratio, RS(+), because no pattern was diScernible. For the Summaries of Plots of the branching limitation, the dense regions caused by a concentration of entries in these regions were judged worthy of special notice. Sample Output from Preliminary Study Two pages of printed output and two pages of corresponding sketches of mechanisms are given as a sample of the output from the preliminary study. 52 DEGREES 60 220 ~ [00“ m4 20 T “‘\ l I 1 I l ' f I I F IO 50 90 :30 I70 ’llO 750 290 330 P2 DEGREES NOTE-:2 SHADED AREA REPRESENTs oesmn FMLUKE. SUMMARY OF PLOTS FUNCTlONS’. ITO 9, mcLuswE,‘RS H") BRANCHKNG HeuRE 36 $2 DEGREES 61 340 4 20 -L t ‘ l I 1 I I l I i0 50 90 I30 I70 ZIO 250 290 330 ‘ P7. DEGREES . >»._ NOTE; SHADED AREA REPRESENTS DEEMGN FAILURE. SUMMARY OF PLOTS Fuuc-nous: \To 9,1McLu5NE , RS Q”) BRANcrH N6 FIGURE 37 $7. DEERE ES 340 300 - ' - ’ [— 260 -‘ 220 - W I: .00- w~ D ‘20. 62 1 ‘ V \ x ‘ I l I I A x. 1 IO 50 90 130 |7O 2\O 250 290 330 'P2 Daakcas NOTE: SHADE!) AREA REPRESENT: DE$\GN Fm LUKE. SUMMARY OF PLOTS FuNCTlousi 1 To 9, mcLuswE ,‘RS (+3 CLOSURE FiGUKE- 38 5’2. DEGREES 340‘ . 300‘ 260 d 2.20 ‘ 180-1 ‘40- )001 204 r T I j T i f T I IO 50 90 I30 no 210 250 290 330 P2. DEGREEs MOVE: SHADED AREA REPRESENTS DESIGN FA\LuQE. SUMMARY OF PLOTS FUNCTlONS; | TO 9) mcLusuva,RSC—) CLOSURE. FIGURE. 39 64 52 DEGREES l I ' I I I I I IO 50 90 I30 I70 2|O 7.50 290 330 1:“). DEGREES ‘ NOTE: SHADED AREA REPRESENTE) DESlGN FAILURE. SUMMARY OF PLOT s FUNCTIONS: 2.,3,S,6,7 AND 9 1 R5 (+7 FIRST 6. secouo 'DEK‘VATIVIE3 WITH LIKE sIGNs. TRANSNHSSKDN ANGLE FIGURE 40 52 DEGREES 340 300' - ‘ 1 2.60 J 65 220 - I40“ IOO“ so? 20" "—1 I 1 V I l I T I I0 so 90 I30 no me 250 290 330 P2 DEGREES NOTE: SHADED AREA REPRESENTS DESIGN FAILuKE. SUMMARY OF PLOTS FUNCTION81l74 AND a , RS (+3 FIRST é, sacouo DEENATIVES WITH UNLIKE SIGNS. TKANSMI$$\ON ANGLE FIGURE. 4| 52 DEGREES 66 340 300 d 2601 22.0 - l90~ I40— [00 'I 60" 20- I l I I I r I I I I0 50 90 I30 I70 2|O 250 2.90 330 . P2 . DEQKEES ' NOTE: SHADE!) AKEA REPKESEN‘Ts DESIGN FAILURE. SUMMARY OF PLOTS FUNCTIONS: 2,3,5,G,7 AND 9 ,KS L“) _ FIRST Q, Sgcouo ‘DEOJVATIVES van-H LIKE $|C1N s. TRANSMI5$I O‘N ANGLE. FIGURE. 42 52. DEGREES 60‘ 67 340 " 300‘ Zea-I I 210‘, I80“ I40? I00 " ‘20‘ I I— T I '— T r T I I I I0 50 90 I30 I70 740 9.50- 290" 330 P7. DEGREES NOTE: $HhDED AREA REPRESENTS ‘DEQIGIII FAILURE. SUMMARY OF PLOTS FUNCTIONS: I,4 AND 8 , R-S‘C") FIRST Q sccouo DERIVATIVES WIT“ UNLIKE SIGNS. TRANQSMISSION ANGLE FIGURE 43 $2 DEQRE ES 300‘ 2604 2.20 -I " 68 340+ I804 I404 I004‘ 60* 20-} j I A V U V I _ l V 1' f ' 1;“ A V 1 IO 50 9o ' I30 I70 ZIO . 250 290 330 P2 DEGREES ‘ NOTE: SMADID AREA Kafka-azure. DESIGN FAILuILe, SUMMARY OF PLOTé FUNCTIONS: I To 9, INCLUSIVE. , RSC“) LINK LENGTH RATIO 1 FIGURE 44 69 Among the 922 usable mechanisms obtained for generating the function l/x in the range 1 f x f 2, there are 190 mechanisms having less than one percent error and having the minimum transmission angle greater than 10 degrees. And among these 190 mechanisms, 46 have the transmission angle in the range of operation always greater than 40 degrees. For mechanisms with less than one percent error, the greatest value for minimum trans- mission angle in the range of operation was 68 degrees. See NPLCT : 296, p. 70. The smallest error for a mechanism with IAMl>>4O degrees was 0.1 percent. See NPLOT : 427, p. 71. 7O 1 a . v I. ~g g .... ta . x . .U a 9!. In \,I.rlI..-IrJ.IIu.-IIII.II,, II II I.I .II III..-) I .\ r, I . l . II r... I. I III I r. I I I I .. I II III I II.I I u I v I. III. --III I I I I . . . . .... . I... L. I \ IIIIIIIII..II.I..soIII.I. III. .u‘lI. l I. It. I-I..F..II ...]! . r. ¢ 0! . 4 ~ .I '\ fl ' II III II II- 'IIII'I“. ‘I: l .:.I. D“: I I IIIIII' ‘.' I t..'- I I, ‘ IIIII _V I.IIII.I.I,IIIII»I I...I.I. I I .IIIrurI .rlil . r. L I .I I f .I I. I IIIl.lI IIIIII IIIIIIIII.IIIII-IIIII.I.IIIIIIIIIIIIIII .IIIOIII- IallllIIIIOI .... ... - Hw,.0~....r.m m . Lu; sma+v R «.... azmrkwc .. ‘ m; u. r 0.. v 2 cc 3 .. ... ’s ..\ saw ’ l k . .. o' . s w s x. n .I I 1.0 o. I e. 3 a a ... ..V J \ r. s... "o Pun. I \H .R“ , \. Y- \— I. .. I N .... . . ,- u - . wiox W. 4H...“ ...; 3 ... I . i ._ .. “L w;.; -. .... bum ..u .. W H” L m» C .. o .1: _ . ... . ... .5. I x .s . y ..3‘ .: .t/m ...d. ..w o- :2 I 5.. \ Ii . F f ‘v ~\, -’ ._,. ...... 3r .- ‘c-l ‘od \‘d u" N E I \L ‘ t .3 . ... ... hm“; m. I ..- 5.. IIIJIII. I .. I O 54 . i..._ 'L. Ww~ r. V» ‘H "u m. w. m“ »_ ”w .7 a“ ”0 _ us A.“ «.~ ~: .fiu: L r m. In. 3“ .. L 0' as. l .. . N V.. \. .... ... .. i . .. .— e:; r0 :rm ...... ~.0.J..-. 3. ...- _. . N. L Hi to .* .\ a.“ D C . I I ... 7 c ., . .. .l ....Wr 0“ «h mk (at... n... .. n... a. . m... .0 ... A... \o . .. .. . . . ... . .... .... .... ...... . ~.. ['0‘ . ... tn.» Mu .0.m .. .. .. O .0\\....J .nu cc.mmw- $.13.“ w m...» Camonw .... m. ”.... . ...w o .... n .m ... : ... I... _. a- _h .... ... -.., m. H n ......Cfiwk. :I L": LI. 6 ,-. 1 o '- s-E {.le uiyulII-IIIIII'tntlvllvn‘ ... a) I. .u rcswv uIcvw -. U ”Fwy? 3r...” nmn a J ... NHL... .w .c u 0’ 00.0.5001... O .... .. ...- H ztuau *. O ._ . CC I ... I. . nvr c QV. 1. ._ Y\. M...» . .4 L .H as . -0 . .... ..N n... ... IP‘ I ’3 o ...... an w. ..x. ”.mx. csoux ”...: ... ... a}. -nom c .... . ... R. .. .. a...“ D .3 RR. “w . w.. .- l f. . .- . .... ... L .J . r . IJ ls \ ....» I. xv I I. 5 f. . a u. . I . «x. 00 ‘4 fig C . a, (N 3M um; eels? _m.;u; m ... . .... L :;;.:a _ W. M... ..." a .... r. .... .M .... 2. r. U. .9 L 0‘ :4» IIIIIIII...IIII.I-IIII.I.II.|.II.L 71 < - . . . I . _. . _ .. , I ‘ I ‘ A I I I I I I I I I I . I ' I 4 A , I I l I I .‘ I I l ’ I ) - I I I ‘ I O I I I C‘- I I I I. I ‘ 'u , , ~ -. I l \' ._, "( ' 0“, . w 'I N 9. .. 7Q i I v v - I ’x ) ,2 , — up— 1 .. .. y .2 I 3 1 . . . ‘ ‘ y r a. :9“ _ ,- -. , . 'f. b ‘ , _ A... h.- w L. l .- u . ‘¥ ,_ l < ~~ ., A -. ,n x... ,_., _4' . ) .. ‘ . . _‘ I _ ,‘ ‘ _J a . - - . - -7 ‘5 . ‘ ' --.- g, k I ...- -- ' I _ ' I A .‘,- -. . .1 -.4 '_4 ..n 7‘.- ~__ 3.— ‘ 0. ~ .. . r ‘. x -I . ...: - - . ~ - ‘ ___- . _; I . ' \~-I ”‘- . -; . . . I v": 1 v—I -' N '4‘ s- \ ’.’* ,. . a .I _ ,. I ‘ ' . {I} , 1 LI . .I r- v. ‘.I -. A -~ . O ' ~ \4 -_ _ u _ ' ' s ‘ ' . l - " -. n -. . ‘ 1 V“, v. 1 ., ...; .J .H. r‘ « I 1 Q‘ I - n l 7 . - I , . .. ’ .. --. | _, ‘_ O K‘ O ‘ - __‘ _ .... . ~— .«A‘ I‘ ‘ . v. I\ \ x _ 1' A‘ .4... .. . . _ v ' " r “I - 'U‘: ‘1‘- ~ 7 . " _‘ . p I — 1' ,\.. I. \“’ {1‘ bo' ' 1i .1 u: - ,, ‘- -‘ v I " I ---‘ .. . -7 ~ 0 ' \u-I-I :z ‘ 3 ‘ ~' p _ .~. . . -- w . i k ‘ - *' . . -I '1’. g J ' , .— ~ I ‘ F ...“ ,I ,. I \ .... -. '.‘ g- . 5-. yo. - \ .‘v‘ . ’ .\ .-. .- I. . ..- ', ‘ a M r“ . .. s N 1‘ - ' ‘4 x . 7 - - . .. .... v, ‘ - 'Z‘ h—s 6’1 -1‘ ...' -'.J' - 'I . -‘ , I. A" -~. ., ,- ‘- _. '._. _‘ «a. J. *- ——-* 1:1 3" ‘ :‘ 'I.- __S '..- »._- ‘0 I \ ~.. ._ x.‘ X, L. ., xi.” ‘1 I- a . -I-‘ . --- . - .I \r I- -§ < ‘ .. ' ‘ ~ -.I \v’ M . , ‘ -.. ' I w‘ . ‘ ..' a , ‘... _ .— ‘.. 0 H‘ 7’ s‘ ' t .. . ' ‘1’". $ 1 s. LN- .‘ .- $ 2 ‘ \ g " ~ Q I . , u -h ' --- ~. .I . . - _ _. ~ -‘ 'w .._ "n: I.; .4‘ \ ‘ . , . . A .‘ ‘d. a \ .-‘ I... -\ II. . A . I - p. - k ' d I I ' g I I ~ ’ . ‘ . ~ . ‘V ‘ L- ...- J.‘ ‘.~ - I... v ’ ' \ lII ‘ - ...- L ‘, \ ‘I \ n ‘ -- 5 v ll '0 I. 0 A ... r‘ _ I: l I C? O 0 .1 9 f1 0 I ._ .. I - ‘ . * “ r ‘ ‘ 7.“ 3 I.“ L , w .- ’.' ‘. -~. ~. -.. .- . ‘ ‘ l . a 1 _l h 1 g“ r ' ' ,v - v. , u q ‘ ; r ' .1 W “ O 1" u; ‘4‘ I0 ...- '- . ~~ L-. n- ‘I. I- . to I. m .1 ' s o p. . _‘ , - . ‘5‘ - . . r' - J P , r r . ’ . l b " 1“ . ~ F... ‘. ~l '\ ‘ ‘ ’ . ‘ .-I I E_ .- ‘-. s x. -' - - a. .p ' f C‘ -- _. - ~n I ‘ Q‘-" I | ‘~— ~o-I— . , h— \ , H H 1 ... ...... y‘- c. v— ' -I , . . ‘.« I -\ ..0 \C. . -‘ .-. ‘\ '. " ... ... '. ... "' ~ I ' .4 - "- ' -- -, _._~ \ - aa . v.‘ . .4. -.. i; I' \ II ..., ‘0') »‘ ..- . I‘ ‘ ..I ~ 5) ...4 _ .- - , - :2. r‘- ~ .. » — , , ,. . . - --- - , — ”-1 *w' -’ — k - , \ 5 . s- 'u. .. 1.... I-v-o “- .. v . Q ’ ‘ a“ N J? g o I“, 9 H I: g 4 "k a 2. a .i. c ' o . :- ”‘v , .- ,-_ ‘ A - - - . , — . , r ,. _ 4 . ‘ ‘ —V at. . k.' ' ”‘- \ L> __ ' - \ i», !-< \._ ... t‘ u - \ - .. , v-o- - ‘o . .- . - , . v ‘ ' ‘ I ‘m .' _.\ -\-i o \r ‘u 'd " . ‘~J ' '-’ ‘ “” L' ' J an, - , - ’.. . fl ‘ O ‘.’ “. ‘l '\ \ .~ k u. ..‘v' I‘ . ‘ v- v C A. ' '~ . \ 3 . - . t ' ‘ . r~ v - I‘ w “ '.-'. I :o t: _ . _ I - . .‘I a" '7’ . N In ‘. ‘r‘ ‘ I . -_ _ . . -. « . ~— \ - \- I ¢ ... ... ‘ .- ' \ -.. .- -- .. u» ——a l ‘I —o “ ' \ ' «‘ ,~_, V _ ‘ .« - <~- . A . V . '1‘. .. ,_ ‘ - f“ w 0"" ,4. . , I ‘p’ _ - s » - " - . s i“ ,- '~ ‘ P. T u ( ‘0 v.: i s “‘ n ‘ ‘~ ‘ . ..a , a I..- - § I -. .. . I “ “- I‘ " 0 ~. -,——— g“ o . v v' 0 Off 0 0- O 0 -, “ -x ‘ _ . \ I ...... __ . .. . ., - ‘ _ , ’ ‘ . . ‘ V“. \.-4 —.3 ~ . . . _d . p‘ _ fl _ ‘ 5_“ _ fl ‘P‘. ‘ I __. “. . w_ .__ ‘ ac _ ._ _. , I _ .. . ‘ . . .- . . . . —- I! ' ' u. ~r~- .; --- 0 .z. e v I v .'. : ..- :S * :_. .. I y. .. a m -\ .—.‘ ..- .... I I. . .—-‘ _._. . . '—w. ._ - . ‘.. '--. _‘ ..__ - _‘ ‘ . N “‘3- .‘“‘ - he ‘ '-' » ' " ' ' - . . - .-~ ..J‘ '\\ m " .. .’ -..~ "4 :‘ ‘ ' a .5 ‘7‘ o ”I 1 x — ‘. = 1‘. ' ""I ' 7‘ ‘ -— -“ " ‘ ' *- ‘ i L 1 ’ ~J ‘ D—i ' ‘ .3 I ‘ '- . ~ W. .. . 1'. _ .r ... - ... . - . I Q - v I . ' ' ‘ ‘l - ‘ . ‘ ' ' a. \-_,o ',' L .- ._ I '(" -. a " ..I' “’4 ~ '3 ‘9 - ’ "'- '.' ". . . " . ... k ‘ ’ -1- . ,. . . l . ’ .. ~_- ‘ g“ " ' fl , ‘-.l ‘g" \..- L. in.‘- M -4; ....) ‘5. - I; , .' I —«- ---. r, -v . ~ ’ A ~. I ”i I -- .-- - f . . ‘ C _. ‘ §~. - ‘ II 'C' )4 «J I I I '——‘ } . .l H..- . - ,l ' I . . ... _ a- . , . ,a- I a -- - . \ u —~ u- u, l _ ... , . . l . A I ! . ‘ ‘ ‘ . I ° s;- ' .v u I ~ - - . A. - .... - g. u ' rip 5 V. § § \. k- t ‘ '~ \n . I— ' ... - ~-\ ‘I‘v - '~ "‘ - - ' (t ’ ' o —v. ,. p 0-. ’- \-b ‘1‘ ‘- d" ‘\ («I I. .0 ~ V‘J “av —'- _ J VI- ul “-‘ IV, .... '. .- —a I ..J _J 'o ~14 I" n ‘ . ‘ .. .... ~ _ .. ._ = . . . t .. ‘ H t L .' Iu-A . “3.. ‘ ‘ ~ g. c - b. 'v". \' h. _ , _ . .' -.. .- ... ' - v _ (a . ‘ I - I . h u an. I .I ’ R ~ "" ~ ‘3 ". a ‘h ‘ . 4 -- -... s..’ I". -4 l‘“ o ' I ,-‘ \ -.- ~.. \ . ; .‘5 '- 4 ‘ _ \ - , u . o -I ..4- ,4 . . I. ‘- r”. . ..-. .- ~ -- ’0- .\I . ... v“, ( I H ‘n‘ v V: ‘n-u ‘- \_ _. .1 w ‘... ~‘n-n-o L- I. l .‘ “0- - H g ‘- 5- '»‘. 9 '~ 5 I l - - '5 - " u. .I " ' _ 9 '4 -- 9 .\ . .. . a I, ‘ ..- ‘4 O 9." . _, 0 PO- . A u. 9-.- .\ v \ "' .- - - -~ ,u. . ~ . ‘ -. - . g I." x ‘ , ~‘- 0‘ 0 ‘~ g I . ‘k' V" '- v «- 1; l '— ' i ‘ \ K-o ;\ ~ ~ ‘- «- .. . . “. '~_ -~ ‘ \" .’ ' . ~ ”fl - ' '1’. " ‘ - k" . fl ‘4'. . ,g ‘ _'I J \ my - J - 3 ....4 ' - .... ' .. -v‘ I 'v' . ~ 0 v . - I ....d '- b J w . - "“ .—~ l ’ ; A v 0. I .» J ’— 3- .4 _J 1.- V" _ ....) « = ....J o‘ ...) ~ .- I ’ .... 1. _ . . L , v—I .0 . M I -- . _' . .4-4 . ...- ' “- " ‘~ ‘ I - a v ‘ -. - . ‘ -. ' l I 1 l" .- ’ - ., " —.; c- K‘ 1‘ "- do A. l‘ s.. l" "h ‘fi ‘0 ‘ ‘I Id- 0. ‘. \o n3 (t \‘ ha I ~ ~ " - ‘« I’ ' ’3 ' ‘ "~. “ \ O ’\ I ’ -‘ " I‘ ":‘ I‘ *‘ ~ ." (I ‘I' ,I' ' ‘ * .“_ (~. :3 ‘o a" .. . '- ' ‘ .y ' - . u I... In .‘v .’_ 3‘ .‘ ... 5‘ . \J. .‘_- I. . ... "N . ...“ ... a “I v... k . . — n . ,. .. ’5 h 4 ,. V p s ’,. ’ M _. '.‘ -~ - h I ’- KL ._ b“ 5'- \o. ». ~——. ~« " -.., -, ‘ “0|. ‘o-J - - .... .Y<5).P<5>.st5>.NA.xse<5>. (105).Nav57105 I seems FCfiQMA1'(614t) ____“__““"__WH_~W_,W m_muh___s“"_-_i__.m__sl ,m_ww«,d __l“__i._l__ _ 5055 F0QMAT<1CA5) soco FOQVATt5F9e __ ..r__. _.. 5005 I'vn.4HT(2°H 330;": 92-143 THmOLI'oH LP-IBQSH LIb—IJoDH LRP—ISQSW 15H NR S=I3 7H N91,. OT=14 ) RAD”(Z)-ZX3014155263/1500 TIM1=TI./: 5(0) 3 fl"._"__READ 50C55eI1712735774:ISoNPLOT.-Wflmm—~Mwm——Mu NEGP=l 5 NEGS = 1 'TCACCMCdQY DO zoo NQ=NDLOTcz3 _mm_‘~“wun_“_mfl__ J I 39(KH»E\I)QI-lqu) ) V(2) c I 33) 9,<'(4'I4X(5)- _v I \ .0 m 0 ;> 4 LI} ’\ 9A N I I . 'tIm . H O 1 'n‘ U] I; 0 W431‘ ;‘O M0 m '0 Urrfl [\) “ltd HI )1 )4 / n wto Mu: ~zjo 0 II h) 01 III ‘ ‘I h m' t W m 0 m 0 U2 mc>-fixnmrun I r\ Ln v t—(|-_ % i P 2I 0+ 1' CO “_T‘””‘C oo ‘321a5“’“'“‘ 7“ ""” “”_'"_""m—_"'"‘""’”’ 5001 x A J) x “‘ " DO 5050 LP='. * 9 ””—“"TT””7""""TT“”"T”*T“”T”MT"W“T”‘ P<2)=P(2)+4oa —' SkfiififikéfifiinmwflT' F2=Oo "TT DO 5050“LTSEIZI9 ‘” I " '7’ ‘ ‘ ‘” "T“ " —“‘”_“"T“ 12:1 TI """ 5(2)=512$+4OI““T‘"7”‘ T ‘7" ” ’”‘T”_‘MW"“" "_ _"T‘T' T”T"”* RP—F3*30o ”‘““‘”““¢3Ep;‘ "”“““‘"“””‘*‘"““”““““““““— 5 3. DO 5045 LQ9213.5 “fil3zlr I T__ hy'w“ Qp: 53+3Q° HS: F4 300 Msztj-j C'o ___._____~_ __ _ _. "___? _ DO 5048 LQ5-14.5 -522 _ W145} -,.l_mwm”_n 3 -"733 _ ,9 figfl_fi*~ __ 3_“_ _' 2222____i.e Qs=RS+300 s-_o-.______Moons-048 NQszwloam - , _g_g g H ______ _ _fiH GO TO(506595 Ooé)o15 ——45066meowro<5 ocr7~_5oo9oe HE;__2_H_M_WMMHIII_etmrnmimmlwi, 5055 15:2 5 N25: 2 222_ _GO To 5066_“w _ 4 A - WNW _ 5309 RS=-1.EQS 445007MNSPAC=01A_H_I ---i, _ ..m a i I ._-_,-M“"M “_qehm_ Enos CALL FERD3.s<2>.ne.es “”Co”To”5015"‘"”"'"“”" ' ’ I “’ "7 ”“‘“'"” 7"" ‘5Q£SCALL MAMI(A9 B. C LS LL LEi.LE2.LE3. RATIO) 7 I=9S (2)9RH91QS 5‘5““ GO To 5"“0’15 "T"— TWTTTHTTT'T""”“HTT 9 1x=1z3 ‘5‘ "”wQTTEE"TAPE‘5.“1x.912>.s<2).99.Ns”“”'“* “*‘””““*““‘ ”””””"“"—"“‘”—_ .5 00 TO 5015 “'1O""’1x:"1 1‘” M ‘ ' " ' ' ’ ' ' ' "’“‘“‘ " “' "" ‘“ ’H_ ’“ ”‘ _ MQITWE TA:D E 5. 1x. P(2)oS(2).RP 95 SUESGO Tw3<5040‘5041>.\45 "‘ "T "‘ “350,411 RS: ~10*Q$ 544>GO ‘T015042.5043).Nac: *‘TT ’5 _“._____._.fi_____..__._ 22-5943 012 > ~9121-150. -““REGD'='1"‘-—m'"‘ “UT-T“- .-.- 7 T " ' .- _-,--._,,_,_--._____,-_____-____- —'_ ... 1F-55<2)_lga,.“‘ ‘“‘”“”"““‘"“ “‘ “ ‘“‘ “ ‘ --H____~_._ “NE-GS—1 “so I”(53(2)>5047.5045.5045 T”- "’"”‘"WT”“” " ‘ ": 475<845_435__ W... ___. ___ 5050 CONTINUE *\-~ -- INUE END FILE“ 5". 5---..-55---...-.-5..._.55...-.._ T-~4.5I“W2=T1MEE(0> rxma ;:< 1HM2.5 oTIM1)5002 5602 ‘\'2oo(; ((“IME‘Ilfiglifj3540000039)5002 200 ..-.....5_5-,“___.m-- QNTINUE \m 3 SUOZ' D mun: TAPE 5. 1X.P<2).5<2).RP.RS 00 T13 5015 5 9229121 5 52:512) 5 x1=x<11 Y2=Y12> 33 CALL. 9N9) fiQC-Q(le9p29$29 RP QS9X1_9Y29'\X9RY9 N59 A9B9C9E9EMAX9XMHX9ZP9 ‘ETAMuDTNmE QIN.‘ 5005 9LpoLIS9LRP9ERS9 NR) 89 NP EN0*F1‘LE"‘ ‘ 5. -.___._____ ____ 2. _ \~~—..._END:- ILE 5 STOP “\ ~ 4:210 \‘\\~\\ SUBROUTINES 86 SUQR OUTI E F: ’ ._—_—h___.——__~—_— ___——~—_.—- 5ND); Y<53o 3:1.W3.14 b926D/1q00 5,1 _ 333533103 RAHFCZ L H R \J'r‘ -___..___.___- DJJUOK.A\uFC (3 )))+COSFH ?é-n:t2+u*#2+3.-2.*A*C*H3 IH<3H352235333323 522 bun???) ____________ _ _____ A _________________________ '~A-~—._.. - ---~---— ___5230 DETU1w --DU3IF(3F) P IF (\3 33335043934 503 A 07/13/65 R33(\3 Y P3 83 RP3 RS3RX3RY3 A3 B3 C3NEGP3 NEGS3LARGE) p(3)3 8(5) —_—...._—..._._..___—..._“—_._——._-_—__.—___—-—__—————_———.—n~—__-—.-.._..___-__.._..._. ‘1 531 J = 3’5 501 \(J) ‘ \3 1(3)) 3 ''''''''''''''''''''''''''''''''' F 3 .Cfi‘ - (x!) 333"“ ' = i'(:$3 ‘ ”'CV.3 3 ”“—_~" ”113:9C2)*€?*CAC;3-\(Q))/QK SC“3"13C234-‘ST'CYC3.3-YCZ.}')/R‘." ________________________________________ ___- “— 3 9(5)=P(1)+‘k “”“““"S(~a)-‘)(J_)+ S """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ”Q S‘J J: 0,4 f«?)u~(Z?+‘F*(YCJ)-X(2))/RX" *“'— 1 53 CECJ3=.C;‘* 3*CYCJ39YC233/RY J D’J'JIL 4 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ‘ L; C3C13333L33'00332 '52.:33 (J) :I-m‘J‘i-a-Ta‘QJ’f“ ”U ._~__._M ”— " ‘__ _ """"""""" " (:33 3‘ £4.33 51?“IF~W.J.-“<127513351335Lo‘—’ - O 3 “w 513 PCJJ =*(J)-30” 515WTFCSCJ33ilfl35l 35; """"""""""""""""""""""""""""""""""""""""""" '— 514 3CJ330333+3CJ3 3C}”3'I 5133 __________________ 3-"- - _____ 3 "3 '—_— 51513:“? .“QCJ3351 353.73.215 SL733C3133133-3633 ”FM' '-’3 513 CJHT? i: Elwi— Jun-a 3 \n’FCPCZ 33)“) __- _CUFF C 513.3:(53'3333 ————————————————————————————————————————— , '32 = {33'30‘33 r 3FCSC2333 " COSrCA/‘xJFCSC3333 43+ '5 CC’SFCF..3FCPCI2333W FO‘3C‘AurU’C4333 ___"-FMHC-----—' '5 = G353CTAUFC3C2333 ' COSF C1ADLCSC4333 ”3'3MCOSFCQH3FCPC23-SCQ333 -?COSF(PADF'='3Y"STKTTT_“‘” _m_“_ ___“ “fl 3 U33¢(”AQFCP(23'S(2))) ' COSFCPAUPCPC43' 3(433) "mWRSC fiffib- n’AWfi3/CH3*”O'AJ*'L3 ——————————————————————————————————————— F E393.\E JT FMWLT ‘193523 ‘33339131373 —————————————————————————————————————————————————————————— 3_ 3" 3 ..... C35 ~55'h9"43/C ’6'H3*W53 I; ;{;IW3 'EUT rAigI :13352i*—" . 519 LA E332 i%;‘ge¢ “““““““““““““““““““““““““““““““““““““““““““ " 521 H3313/C (9(3) 8(3)))-H1*C OSFTRADFIS(3))I“" --..—.—.___-___.__.__———————-—-—_——__. ___-__. 3 _—.——————_.—_—-._.__ .-.—___. “__.. ---—————-———.-—-—--—————-————-—~--__——-—— -.._———.——_.—_—.__.--.__‘. ' '1°* 5 MW“--. 3-“ , _ _UJ 3J9 J = 115 _“W PCJJ =_PCJ3 +f137. _______________________________________________________ IF (”CJ)‘-'36033 93535363535 5'36 53(33': PCJ) 11-3633. __ _ A? __ ..--“ ________________________________ 535 CJ'TIHUE m._:;:33H..;fl_2 ._..L»_‘ "__‘ _ __w"_____ 334 1’ (C3 53735083508 ...- V f. in. j .1) ,E ’ -—.~-———-—---——~—_——- ........ $4.30 a——.——_—..._-...————_————..__————.—.—_._..____—_“_..._._ ._,_- 537 f‘, :- .._..—._...__._.._-.——--————-~———..——.—‘-—_— ...—..—_-_——-————————..—..—-y.—.-_——_—o_——.c_—...—-— ’7 'J ’53 if)”: 1,75 ’ ‘ ___-_ ”WWW-W— qCJ) :2 StJ‘ +189]. --------------- I F i 3133""6-73‘6'62')“ 5 91510-31 J--- ------~-- — — ___-.____-___ 51,0 3( 2} '3 3(J) "' 3:33. ,________-___5.O.9__‘: Q, T {7W E-_-_______ _ _- """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" " 3.7“). = 2 W533- em m “------ ___-_..._ - -.-..._._ “WWW-“- --~---* -- -- ~ E JD _ ._ - _ _ ___- . x- _________________________________ Y_____*_______,HN -_NH_»______ __ __“___ _ ---__ "XL “___- , -___.__ “.--——-._ —____..—_ --___—~—.————-—_———.———_ . ___...___.____—___—._ -.- J—.-_—————-c—_——--——a———.—— ——~———————-——-.-.——_—--_———_- ~~H A___..—..___.—._—___.__..._..—-__.. -J’HG-A- ...v.7._‘-__.__,7_ _v .7-r-———.—-—-—-_—-“--—-—n-————_--——-.—. an_—-——._-——._-_ - —. ~——._—"__. __ - _ —_...—H—-_—————_--—-———————_—~- —._-_.————___ v - 7- ...-~—-—..__._ -- ‘- ~‘ ~-‘ “-—. FIN4J3U 07/13/65 .__--—--—-~—--—_—--_——-_~~~_—-—— __—~—_—____—-..__-....—-_———_--—__.—~——--——-—--——_~—-.———_——.--—__—-—._—-———-—»-.~_——P---__—_———J——- 8U 8R 'JJTIIE mM I(AJBJCJ LSJLLJ LE 1o LE2J LESJRATIOI ”— 1251*?"1 ' LE2 = 1 - . ““““““““““““ L~;3"“:"1"‘"‘""'“""“"”‘ ""””““""‘““"“"“""‘“‘”""“"”"“"‘“"’""““““““"‘“""“"""' IF (A-B) 5:3J512J5°3 """""""" ‘80? IF '(A‘ C) 4J '5 SJ 576 "'""""""""""‘ """"'"""""""""""""“"""""”' 525 IF (A' “1 Ib91153 5:5 29 —~ - * 5 _J 3 IAXW . - 4 -~- ... ~--———~-—- ~— - - LL = 1 ““““““““““““““““ IF (fa-CT 55333 1:912 " “mm-"m - ‘""“"'~‘ 512 IF (3'1JI ‘13! 514J 515 """" "'"n'SiS ' r4“; I’E'JT'EM1: """""""""""""""""""""""""""" "T ' _________________ L = 4 “ G;I”TTY“SUL ”"" ‘ 514 L23 3 2 """"""""" '51;3“*Hp;17¢‘1r‘_,‘““‘"”"“'““"‘“”*""““‘“"“ ‘ "‘”" ”'*“"““""“"“""“"" LS = 3 ““““““““““““““““ Y3J“'T.‘j“3'j"‘:“"”"““"““"”‘”“"“‘""”‘“"“"‘""""“"“"“" ““‘""'""’"“‘ ‘ 511 L52 = 2 51?“IF‘TW‘1.351335E7J315. “ ‘ ' SUB LE = 4 """"""""""""""" 74‘3"”TT’S'2 37”" “"‘“ “ " "““""‘“”"“"""m"' 5 7 L22 - 3 """"""""""""" 53(3' 4.‘II:'.1'Y§""’”"’"'“'" " ""'“'""'_"'"""—' L” = 2 “““GD 7*stan ' ‘ “ ‘ 532 LE1 = 2 ''''''''''''' ”Sui—“IF (‘5'; "IT ”Sti'chJ'Sfl 9 J5'20 """w 521 IF (4~i.I 521J52 J523 7 __________ 523 '4‘ iAX {Bu—“"""“2' “m" """"""""""""" T" _ LL = 2 IF C{:CY"5247575J925‘ 'M‘“~ ”M“- ________ 526 IF ( .) -L3J2 4J549 """"" 525‘ L51 — 5.3_____-____.-___ " “"“”‘"“”“”""“ " ' " __________ 824 IF (4-1.) 527J524J"L5 _______ S?{3"TIE2:"='—4"‘—~““—“—-h—_"_" ”__"———""—"'__‘_""_“ _- _______ $27 34-31,: A L’ a L ___________ . SJ T3 500 ----- 5122 LEE2 = 3‘__-_—"_—___"—_-"‘___"-—_’__"——__—_"_--'__ '_ __—-_-—"'_'_-__- ______________ 521. MA‘ = 3.. “““““““ l.L" 1 ¥;,_2_____________3 “‘““”‘“"‘“"*‘"“‘“”'“”“‘""""‘““‘”“"‘ ’ _ G~ T) 554 519 LE2~€TQ “C Fifi IF (C-lJ) 21,5ofl 529 ______ 529' ‘44:?T‘AX‘I':WC“~M — CTN—”_"M .----___--___-..___-____-._____._____-_J__.~___L_-___-.. ' LL = 3 -"' IF (AJQXWSIHJ542J545 ___________________________________________________________ 22“ 553 IF (4-1 ) ,J.- DL7JJLD 5d»? 553-. ""575“ "55A __5u7 “557' - ‘\ --- ---— 'LE1 5 Ldl =‘2 IF (d'loI 527J5R9J 515 LES 21?. GO T0 521 Ir‘Ca- C) 55), 536,5'7 IF (C-A) 53,0 DJQ7ID/l ..-- ....——..4-o———.—. -....- . .Q—. o 1 1 __F— .--..__—_._-...._._.—__. _-__.—_._._—-—.—___—___..._———————_--__—————___ ___—.....— .-_-.‘__.- . -...h-w ..-—-— FIN4J3O _.—-__-———————-—————-——_—._———~-_———_———-——a——.——.—o—-——~———o———o——o———.— GO TO 513 ———-——_—_-——-——————--—— 07/13/65 —--.——-—_-—u—o-————-n——-u————~——_. “3 CE 2TIT2 _"TTT “ ’— 535 IF (7? A) 516. SSBJ 527 -------------- 5:55"1;Ei“‘=;y***"‘"“'“'*“"""‘ “"“""‘ "‘"“"‘““'“"““'“""“'“""'"'“"‘“"‘""“*“"*""""" 80 T‘ 516 “"""""”5 3 5"3; :1 ' I; '3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 504 If: ("Y-7L“. ‘I F '21 J WIS 3,529 “_—_—__——530T"7AT1'f'= Iv;£“/.s-I1 ""'T"” ' " '"F OJ Twp-64".; 72.5)42! 54°)JLEJ. """""“”3}3'f”n I F— .. 1..., _. ___--- ___--- ------------------------------------- IF’JI.);>UJ,5 J552 """""""" 'SEF§"'IE‘<. 521+ )I~ 155 SJ 5553: 55 _-—”'_‘"'_’-_ “—""—-'-—_'"“”_——'_—‘_-__"fip' 551 LE1=4 F' GJ'T4‘553 -2. 552 IF<.131-JIF1553,553,551 “““““““““ ;:§3”13;I== {#Ef""“""“""'”""‘”‘ ' “’“ "'“""""”"‘""‘“"""""" IF505J565,563 ............... 5 91-21 T'_=__'f*_':.1_-___L“-_____________________________ ___ __ IFCOI F)55613070 558 -22“ Sgé IF(,_pl+ I-I543 J54}J5QZ__* _fl_ 567 LE2=3 ___________________ r; .I __T “'1 _S 4 I'; _ __ _____ ___ ______ ________________ 968 IF( .14.,"I17 I 490,940,507 - _________ 543_29 TI (539JH41JJL-8 ______________________________ .22 569 DIF=fi-1.- ~L‘_____"_ _IF:1:§)5HUD°7L{D7ZM__ 573 IF(.701+ IF1543J54DJ 571 _______________ 523L_L-5"=:’un_________,_________-___-_~______---___________-____--_-___--------__-__-——--——---—-——— GU T T 54 u ...... 572 IF .4 , 3 L3 1'.- II I >45 325 4 O J 5 71-"--- ___,_”_________________________________.H_-___._-___________ 540 RETUTJ \— END F _ - _- .\\‘~fi~___ fifififififififi 2 "‘———_—. _ — —.——--———-—.-~-—--—-.——-_—-—-————-~_- _—-_-—--—.- _- ~—--.—‘U.—.—h "—— SUQRU JTI‘E BRAJCH(P)SJA)BOLIOVS DDNSD> ”*’ “13: ’5101 DCBJTSC5JJSSQC4JJSSnC4) RA JFC .fi)=7 *50141 DOROJ/1R00 "-“‘"“"“"‘““‘1js-:J"‘"‘"“‘““““““‘ ““““““““““““““““““““““““““““““““““““““““ HQ 443? J:? 4 _____________________ " 1.: .5. 7. 117 C PM W (1’ C J) ) )4 H 4" __-___---_____-___..______________________-_ 1'53JSJJLFCDA '4.“ CPCJ)))'4 * 3(\**d*u332+3.'8**?)'(2 * “CJ'CU SFCJADFCPCJ)3)/C* ‘4“4“~“_“”W QE:Q44*£+Q?J*q-Q3**2 ___________________ I f: C 11:- ) 4 0 11 , H U .4. 3 4 0 4 3‘ "4 _____-._.-__ ________________._________---__________J__-_________.__- 4031 N5U:3 "R 5 m "e “““““““““““““““““““““““““““““““““““ 4013 R=Qw?'?(7F’ S.u 3: l“n '4'"“ '"—"' _ 8944.1” :341‘1‘3‘ 393Mi72+flo ————————————————————————————————————————————————————— CRLL ATJ (4uUn0 SDENJHALFS) ------------------- ?: C I).-2: fl 'qLT S:h_—‘~fl‘_—hm“TD-*"---"-- -_-“4_------_-_--4 IF534’CJJ- 99.:4n14; 4012:4012 “4404.172 333% J} =3 3PCJJ- L360 0 , 4011'_351.E ATJ(S-U*n.b DE‘ HALFSJ ———————————————————— ‘3 31 C I)": 24:41:41: JK—LWF‘ 3""- .- H 4 -._'-_-.- "4 ___ -“—“-""—"-”"“ ---.-____-____. __ IrLo)J(J)-a)9 )4 U7'4U14o4914 “nu-“$0421.24“ 35- "C U” ..‘1CJJ'06 0 o 4 __ -.___-._ "M w ------------ 4032 C 3TJ.JE a; 43 3 35371 ” ‘ “‘"‘"' ______ mu__________f4J 3‘4’C3J4:j‘~(.1) ___--J-____”_-___~_____-- ___ ________ IFCbJJ4U‘4JHUOJJ4UU5 - _______§_0_U4_ I? (3.?SDJ4'4L‘SJ 4UC3; _4005 —.—--—- «m—c—fin—m-u-a—o —-—--.--n—u—o—_-——-o—~— 40:35 IrLu;'-:>J)H1J"3 4003 "400.5 .__ 4003 Cu”TTgUE _______ 4g7?;3_ ____-- fiiTJQN _____________ €1_0_Q_6__ .i‘.‘ u __‘4_‘:]_3~7__ _-J__=9 : (4 ______ _ ___ _________.___._._-_ Su=SSJ(J)-:LJJ -_ IFtsn) 4n)a.+1u7.4on9 40033 IF<”3‘;'-1231‘J3 4 3:1." "I; v0 37, 4 U7 ______________ {10 0 9 I 1'" ( C5 . - p '3 'g_4_j__i._']_:_‘3§ U 7 §_0_0 7,__ ---" _,_-______________ 4007—309713‘E 444444444444444444444 was; 444444444444 «457);1.""—""C_"~“—"“_'"'-""""’*"""'""*""_"——""—4H"_“_ -—_'_—-—-”—~N”""" ~«H~___ RETuRJ 4o d‘m53=9 ' __________ RETURJ ______ Eva . _ 5 ----H_-_-__ ._________5.________.________.._____.______..___.__.____.____.. fix ..-__....——___——_—-._—-—.————————-—————_—...._..__--_._—._~_——_.. . ~ __- __._—.——" ~“\~-.J 92 n 3539 _____________________________________________________________________________________ QZZLiLQS _ 5U5&3JT14& EQ{3R(P3 P21821RP148 X13Y29RKJRYJN03A B COEIEMAX)XMAXI ”" 1??) T x" 2. t” T211"; E) D141‘6103 ECICS) """"""""""""" 7361‘? (Z) =Z‘i‘5‘I1 4159265/1m", """""'"""" " T "M "'"""""""‘ M$:l ________________ _ _ _______ """"""""""""""" T3C651E—7562-—_"_-__-_"_--”——"-_-' '_'" T T __W_ ci'QX ?WD1__u_ ‘* - , M A A _ _ 5 Do 63Ul 3-30161 !=J-L 555933.’ '* 5"}..i300r __IU 13-39.54:>_”~5”5051 _-_ “Wm--- ""““}303“5 Ir\6~J.+’L)o‘x$)1603216464 6fl32 Ra: 731Wf°5 Gd T? 6035 5031 IFW(3 ).-DE )_6U 6‘15053 _6‘_35 _. m_ ___________ -____-__6033 Pt= 91-66) ___._-._..~_. '4 73.60315, 6034 PE=6SJ.+PE 6035 01=‘ :F(?A F(PC)) A.._———————-—-————-—. QZ=C7$r\3A"(J 33‘? /A Q63:\,‘./‘”)‘t673*("’1« r(r’ 33 _____-___ {3-55; ”vb-Pli’O-r 11624-1,)/(2T6616J)_:§K-3' RF:Q1:#¢PJ94fl)-h‘w~g ___________________________________ .3F(‘16U56 .......... 6Q55.IEL133L1)T33 511605716 4 6056 IF(133. ST 6 571605716 53 ........... éflnlmlFlnl3602616326 6627_h. 6027 IF(R3)6029J642916028 -~__6326.lF(4316026163£616029H”a 6028 IF~ w A“ ‘~ ~_‘ —~~ —-_—-———- —— -..—.-.- _fi -— 93 33" 4930 __________ - _ -_ - _- _____________________________________ 01!.13/65 ............. 6008 :1‘1I=X=fi(J) ’#— XNAX3XA 3“— QJ T3 6097 ____-_-_-5-n..0..6-_- 137(513-3001'3 (3').)25'3" 303930—51: 01'? 7 9—6 00 7 --------------------------------------- _. ———————————————————— 5009 E'MX-‘1.*E(J) ____________________ X 11“ X:9:.A_!---__-_.___._._._____---..._.- .___-_--.---___.__.____-..-.._.._.____._-_._____---______-___.___~-______..- 6na7 IFckY)SO41}504116042 ’““‘““oo41”12‘161Ax+1126144‘6010 6‘16‘"”“‘ ' ”"” 604? IF(E.1.’-\X-3Y‘-6G44 601.0 6 10 ________ 5010 53:32 """""""""""""""""""""""""""""""""" ' """" _____________________ Q E T U ‘ 3 “_______________ ' 6044 G1U *611F14A1F(6 ))-A*S11r(nAUF(PE)) - - GUS m:3*CJSF(R 7F(:r)>+1.-A*UU6F(RADF(PE)) CALL ATQ (GwU116U:U,a) ”5-5-1:- _______________________________ _ ________________ I?(T)6015)5J14I0014 111““- 6013 jT 3Q5.flu__ _____________ __ 6014 IFCT- 90.)6 13.661916 16 6015 TA: -T GJ"TJ"6§17 """ 6016 Ir(T- -180.)6018, 6018 .6019 ________________ 60mm ‘7 A="1”3“u".":T """"""""""""""""""""""""""" “ "" 3"3I__T.9_-_6_01_7- -------------------------------- _---. -_ 601m9 I:(T-J7U.)6U9U 6021:1 .6C?1 GU TO 6017 '" . .V ----____-§_Q_2_1-_-T-I§:'-§-5-9-:I ___________________________________________ 6017 IF_._1 -7” \42}; r1+M m e .s m 1: 711172111 5 >7 111‘: ‘4") :‘2‘ 1*‘c‘1’1‘5‘ffzm‘rrrz‘c‘s‘; NuPT=1 ’171"Q’EYI"E1WTTW3“E"W3 WU. 3 E(1U47:5:73”ETIQ§T§WT _Z(1)=1. 3 7(5_)=2. 3 .Hfix 1. +(XMAX- X- (1)379x s z<3>=1.+-xc1))/Rx 2(4)=1. +~1<1>>qu -——_-—————..- @.X= ZCJ+1)_- ZtJ) _A-——.-————_———‘—— Hi} lfiiJR (fr-'14.}? ‘r‘n-A'" l ZA(K)-7(J)an/‘ufl __7Q06_ 7007 7005m_ 7009 --.._--.-...-——--—_—.———_—_----_ . ‘‘‘‘‘ 7022 _____________ _Zfl2l -——-—_———~—_——.--— 7015 _______Z£11 7004 ____________________ 1JMJRT32 __“11012_ -~____Zfl13 ----__-_._ .---7&1}? . D- _______________ 2015 -~____1024.SIEP= a1nI<191\)-- -- ................. _XLZ): :((1)+(Z.(2/-1. )*RX _________________________________________________ 7015 MSPAC JSPAC+1 ,.._-_-___w_ RETURDC _- -- - .................... —— — --— 7018 I.‘ _‘~~- -—_.._‘_..__._ ”_Zfif11137511g2 -.D?’J--/.-. U51 JFW1-13 ___ .JEAEIQL)7fi1fl173fl£,7011 _WG _7013.-- J: 4_--___-_-.-___-_-__-_ --_.- ”CHEEEEMIIJIDDfi-.25 _STEP= E 1(Jf1)/DQM1 25 ——~g-——-—-- Ir(E(;<))7GG 3.7FL617u06 , 1*(EV(J>' LfillZHEZ-ZAQELZQEE E1] ('3-f:(<) __— U TO [00" L‘(J)~->-'x<))7009 2009,70un ( 3i(J)=-.LO*LT(<) IF(T‘L22”2«:7U7027 23 TOL=-1.*TOL ETUL= “(J7-L’(’+3} IF(T3L+ETUL770121731237004 -JE1I3L:EIDLlZfiLZLZF12LZ0U4 CONTIJUE DETU? ‘4 IF<2¢AX~ 2(1))7n14.7015.7143 .-LJ \[T 1.31112; GO TO 7017 DM=Efl11)15m(2)+EH(3)+EM(41_H_ GO TO (7016:701617‘13o70187od IF(CHE K)70?1:7‘ 2417024 2(2): 2(2)-~TE~*(Z<») 2(1)) ZS: Z(J) 3 731=Z(J-1) PRDP=ZMAK-231 --..‘-.M__fi._-______- ...--.-.1-_‘ -.. -..-E - .-.. ..__._..__.___ -...___..~.-.___._._.--—.-_—__—_—_~-_._.....-__—--——_-_—_- ——-—~—_—- .-——-_—-———_—~-c-—_ —_———.——-__-._-. »._.... __.._..._..___._ .... -....— 97 ETN413U ,__.07/13/65., 7(J1= ->-\f *RIQP -Y(J1= K<11+ti = “v3.14150255/150. ....................................... 417113/65 _-_-_______.- SaganUTIug snMLE 14. = “sh/n. 1'. 11—35253 5 t3 ’3 ”A * _ 5_9_?_-_,p5.°-_r“-.'__3.._o__ _____________________ - '59 3 .‘3/45 _ C.’ — aj/jnj _________ __ __ __________________ ‘< 4 -= 3. . / 7? Cu m as 503 C9 = l. ________________________ I4 r3--_’5__,-\[_C -_____ _-___,_~_______- 5:? .1 v; C ______________________ ‘1‘?” 5.. J. o-/_ (3.- -..... -----." G 3' 75“ 565 ___-.." ___—53.4.}? 3 A _ _ .. {2 ..‘J g, _____________________ RP... and ---- ------ _H X ‘7 = .L o _____________ .5. D_‘5__)<..2_-E__59__1C $15.1. RAD F- (-P H .. __ X35 =‘ ){2' 4" N" *CUSFCRADFKGH Y2 2 AP *SLLLEKRADFIPH Y3 ‘=~ Y2 *' F3!“ *SINF(RAUF(G3) ___ EEILIRE‘J --.. END ’ __________________________ a ---____*___m___-_____ . ................................................................... — .————._ MAIN PROCRAM FCR PRELIMINARY STUDY 99 "’ 100 16130 _m_u__m“fl__ H-.Awn_1"_m_wu..nmm1“1wumfl.u_n_h_m_mmmmElléiiéé __________________ PR'JD ”II-1A1 FUU 0 ° . 01%;:o101 xgXSAt521Etlos);NAME(10)**—-—“—--~- 5056 FORHAT(13A8) ' ' ' ———————— '3300"FUR1-1'AT(59"9'.‘J)‘“ - -~- 1 5051 FURm\T(25HM FUJCTIUN Y = 1/X: X1; 1615. 8:7H X5 3 €15.8l) “““““ 5054‘”FURI’1 11‘1T'('121’i'i""t3r 11:15 IN FERULS :‘T‘"‘""“"""“““"““""“""”:"“""“""‘-""“"“"""' 5010 FURHAT(2$H UM ULE TO CLOSE LUOP ) §2113“‘f-‘U.'-<.“11\‘I'(ELM—RAT1L3 1-Lxc 61.1.38 1;»: RA!IO‘B‘f’i‘élfil§‘1.10H"“EARGE“‘=T‘o"1‘4')“"‘""‘“" 5n17 FURM1T<12H 821~0n1~9.1 ”' ‘ " ‘ "" "' --------- 5019' FuRy-z 3C1" ('1 411““(1‘11‘1‘7153 1:HRU‘~’ 1. ) "“ ““"""“"""“" 5052 FURn1T(23m CM€K NEG IV S;°ACE.) --------- 5023 1'1 041.1r1; 1%‘4'11‘5131‘10 111.1; ) -----__1__ 5 —-*-----~----' 5026 FURn\f(de TM LESS T1AJ nu- ES. TAM = 1614.518H PIN-=~.El4.8) b029~F521111271 RATIO EXCEEUS 6; HAIIO -'TE15:87 ” -* 9050 FOR:- .ATIISH CriAnSE POINTS. ) ----------- :10olr-F1121121'1I 11--’n: 1 11111r;>---~-“----~~—--- --* - -—- - E41 5032 FuRH1T(16H PARALL:LOGRAM.J ‘1 """""" 5 U 3 4‘”F‘UR1‘IRT(1IIH‘_—~"3".0 T 5 I 4'; .1. "1””?"Lin A 5"”=‘"I’4‘i7H”"EP"“—T1’ €15 ,‘ 3 )‘7'"""""‘"“"""'”""I bfléb FDRHAT(6U I[\1=ClD: 3: 5H PT34 .L5. 3,7H RATIU- E14. 8:7H NSPAC: I4) 5067’FUHHAIC4U“”2=“‘flooth H: Cl4oaiéH C: t14o 3) 3H NEUP31206H NEGS3 I2) 5038 FORnaIC7U A73 2 251518174 X5 =‘9E3.5 8:7H X4 =5:E15 8) -------- “5039WFUR1«Ttod‘“V2-r/1214H 14-17.2111 HP=F7-?74H”R§= F7 2” ‘I — 50u5 FURH11<26H Cu1HLETED in4UUUH LR=1315H LI_=;325H LRP=1315H LRS=1311 E} 1'5'1'1‘51‘13‘3353'1CSTW’MWPLQUTS’I 4 ) __________________________________ RADFCZ)=/ko1-4199265/ILU ' III¢~IWII r13)‘””"*“"” Ncfifi-L 5 uzuS :,1 7'35" {1‘ 15357:);I1.4431515771531713 )5 ————————— RCA” DOUU:X(1)1X(2)9X(5)JX(4)1X(5) --------------- PHIRT“5UUU?XIIJTXI2)7XI3)oXIEIJXISI ’— REAU 5055aIl:I2:I3:I4OI5:NPLD[ -—————5055“FURHWTT6TWI IF(IigEQolgANUUIZoElegANDoI31EG11§ANOQI41EQUEZAND:I5gEQ:2)50571 --—-___'___—-———.. --n———-—-— —--——-.——-_-- -— .—--—-.---————< _-___—__.-.—.___— .f‘.. a , . -.---.__-._—~————_—_——_-———_._--....—._.—.___—....—.-_._._...._._ 5057 1 IF(%A T10 15 353111501L 5:12 5U12flpdlzfiT 5U1é1nATIU1LARG “ IX=2 'HRTT?”TAFE*§T*TXTFT2YTS (ZTTRDTPS “_ ‘G0 TV SulS ________ 5511"IIfCNBRAVCfiT?“S“K"§“575$TXJU) — GU T0 (53141501615006)1NSD 5315” P.75T 5U17 X=3 “___“: —————— €116:IE'O'XIEWTAb—E—57 ’ X; P ( 2W) 1 S ( 2-37RFP'TRSI _______ T 50571A13101NEGPIEGS ____________ gOJ'TU 5U'5 “m— 5014 Pl=P(i) 5 223 9(2) 5 82: 3(2) 5 X1: X(1) S Y23YC2’ .. ‘ CALL EQRWQ.~JDT """"""""" '--_-— ---—._-_-.__.—_.-.. -. _ , ~__._._..----‘__._—_————_..—-————->~—__~-__---__._————_—-_ --~Em¥ quT‘ T_Ap51-IX1P(221§12)1RP1RST GO T615U1: _M»_HH 5020 IrC‘Tixpf17 35308 5_02215022 502'2 PHI‘T 5323 _————- ..--21. _ -.:-_. _ V-.._A.___—...._-—--——._—————._—-—_——-——.—_—~——._._ __————__—_—_.____ “M _._IX=b _ 7 _________________________________ AKITE TAPE 51 IX P‘2)1S(2)1RP RS KLHW‘ GU T7 5015 5021 IFR5: ______________________ 33—77775U15 _ _ 7 TY=CtSINP(PADP(S(2)))PA*SINF(RADF(P(2))) TX5C§CUSF(QADFTS(217"A‘CUSPfKAfiPCP(Z)33315. . CALL ATG(TV TX:G) ---------------------- JKCC"S"KT:TXT"CILS{P"G{X2oX3¢X3:Y?:Y3) NPLUT=NPLOT*1 CALmetUTT577:1177271UW771WUoI CALL PL0T(0000030p5000509) CALL PLOT(009110;235077500) CALL PL0T(D.:0.:D:50.9300 ) --------------------- *rQEmCHAP—;mfi32poou37 1.H0:1 001006310551) “ CALL PLOT‘CQDOOIZp 5001500) ---------------- PWCAECmPCUTTYQTX77135OTTSEG) YP= Y2’3032 $ XP=X299032 CALL CqAR(YP“XwF1Hn1119.I:564AQUG4) ’ _CALL PLOT("/ X7 2:509:500 ) ______________________ CALL— PLDI "(Y‘S‘IXSZ I 50 g 0 DOT) YP=Y3'bO32 $ XP=X32.03? AWWPHu—"CALitu'VCHIA'Q—(YP 1677-1110: 1 a 027.13 547705.41 CALL PLUT(Y5:X312:50opSUo) CALL PEUTTWTTX1.ITBO.oSU.) N YP3P.032 5 XP=X4'. 037 _ _____________________ CALL CHAR ( VP: X7 {1140 1: ‘53-'75 5473-0354.)“ ___- “--- _H- CALL PL0T(0o:X49205001500 ) _ ————————————————— CALL PLOTC CT; 07;; 1 50 q :30—§~)-"““_““““ “___--- M0P=JPLOT ’ '”DJ”1§UH33133 dA‘J)-NOP-JOP/1U*1n ““100 NUP=JUPI10 “7" PM“ u H“ ---------------------------------------------------- VPLO“(NA(3)*64+NA(2))*64+NA(1))*1073741824 YP=-.5 $ XP=.25 """""""""""""""""""""""""""""""""""""""""""" CALL CHAR(YP XP NPL003109o0125a.125) - CALL PL0T14090002050905001 —~—~____ ‘_-_._,., .--r. _ A-.._.--w.u..-.._._,..- A ...- . 11-, .._._-...--_-......__.__.._-._-___..._..___.-.-____-_“.___.__.._-_..__________ .---— IN4c3D 07/13/65 ..—_—_¢-—.-——————..____--.._...._.- ~_._._-__-————.—.—___—-__._—____--———.-_.-—.-—-—_..._ JALL HLDT :0..;.;-1;3.00.:1?0.) iKKrJ:\(0)av(fi} P‘2)35(2)0RP2R3 331 ~ #4034, Pvmvms. a? ------- PR- T 50:53)“;\ 3PTII’RAT10’NSPAC ”TTTTTTA'ETST %OT7NGRAS;EPTTAM. PTMTRKTTUoNSPICo I. BTUTNEGPTNEGSa —————————————— fiR‘ut-5557,4.u.u.w uPT ‘EGS“”"‘ 03147'5033,A(2),x<3 ) x<4> 5015"PRILT"5039;FI2T}$I2)oRQaRS"" TIM2=TIMCFIU} ------------------ T r (TT 1:. . uTz-T ”71751-52”;ng 0 2._...___--___- 53-62 IFIITIVZ' TI 1)oGT. 7290000 0)500215004 —————————— 3004 GO IT’DUZbaJL4ljakRS m“_ T ‘ 5041 QS=-“.. *nS 5043 ,3‘T3\Sj+p,g 4777NEGP 5043 ”(°)‘)Id)-ID” IFIFI ))304455 42 5042 "“""”“5344 PI2)~T' <23+533 ‘ 56-4 '2 '40 T9 (5u459574.6 )aNEGS 5046 SIP.)= 3(233350 '1:85:J """"""""""" TTISQ )>)o/7,5:45 5045 5047 8(2)=b I2‘+?5no “"”"”“5045 93 5 49‘sz75 50’0 X(J)=ASA{J§ 5348‘CUNTTFU: Sfififl CO“TI. UE “““““ 5002 PRIJT 5334""U‘CTS‘ERP"CRS‘YVS 3JPL0T END FiLE 5 ' “EENTT‘TTI ”E'"S Emu =1LE 6 EMP"PTCETB ___________________ SIR? END ‘~~H _————___~—.-~._—~—_— LIST 9;; REFEBENZES 1. Svoboda, Antonin, Computing Mechanisms and Linkages, Dover Pub- lications, New York, 1965. (First published by McGrawbHill Book Co., Inc., 1948.) 2. Hrones, John A., and George L. Nelson, Analysis gilthg_Four-bar Linka e, published jointly by Technology Press, M.I.T., Cambridge, Mass., and John Wiley & Sons, Inc., New York, 1951. 3. Hain, Kurt, Angewandte Getriebelehre, Hermann Schroedel Verlag K.G., Hannover, 1952. 4. Nickson, Philip T., ”A Simplified Approach to Linkage Design", Trans. lst ggnf. on Mechanisms, Penton Pub. Co., Cleveland, 1953. 5. Schaffer, B. W. and I.Cochin, "Synthesis of Four Bar Mechanisms When the Position of Two Members is Prescribed", Iggg§;,§§fl§, vol. 76, 1954. 6. Freudenstein, F., "An Analytical Approach to the Design of Four- Link Mechanisms”, Trans. ASHE, vol. 76, 1954. 7. Freudenstein, Ferdinand, "Approximate Synthesis of Four-Bar Link- ages, ASLE Paper No. 54-F-l4, Eggs; %, vol. 77, 1955. 8. Sieker, K. H. "Zur algebraischen Mass-Synthese ebener Kurbelgetriebe", Ingenieur-Archiv., vol. 24, Part I, pp. 188-215, 1956. 9. Allen.C. Wesley, "Point-Position+Reduction," Trans. 5th.Conf. 2Q Mechanisms, Penton Pub. Co., Cleveland, 1958. 10. Freudenstein, Ferdinand, "Four-Bar Function Generators", 13322, gth_ggg£. on Mechanisms, Penton Pub. Co., Cleveland, 1958. 11. Michalec, George W., "Mechanical Analog Computer Components", 155139;. 2131 992:; 93 Mechanisms, Penton Pub. Co., Cleveland, 1958. 104 105 12. Worthley, W. W. and R. T. Hinkle, "Four-Bar Linkages, Approximate Synthesis", ASME Paper No. 58wA-130, 1958. 13. Hahn, Edward E., "Series Design of Four-Bar Mechanisms", Trans. éth'Conf.'gg_Mechanisms, Penton Pub. Co., Cleveland, 1960. l4.‘ Vidosic, J. P. and H. L. Johnson, "Synthesis of Four-Bar Function Generators", Iggg§;,§th_§gg£, gg_Mechanisms, Penton Pub. Co., Cleveland, 1960. 15. Dunk, A. C. and C. L. Hanson, "Six-Bar Linkages", I£§2§;.§£h;gggig gg Mechanisms, Penton Pub. Co., Cleveland, 1960. 16. Hinkle, R. T., Kinematics_gf Machines, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, N. J., 1960. 17. McLarnan, C. W., ”Design Equations for Four-Bar Function Generators", Trans. 7th Conf. gg.Mechanisms, Penton Pub. Co., Cleveland, 1962. 18. McLarnan, Charles W. and C. Tarver Hagan, "Synthesis of Four-Bar Function Generators with Five Constraints, A§M§ Paper No. 63—WA—200, New York, 1963. 19. McLarnan, Charles W., Equations for Four-Bar Linkage Function Generators, Engrg. Expt. Sta. Bull. 197, University Publications Sales, Ohio State University, Columbus, Ohio, 43210, (Not dated but apparently published in 1964). 20. Hirschhorn, Jeremy, Kinematig§_and Dynamics 25 Plane Mechanisms, McGraw—Hill Book Co., Inc. New York, 1962. 21. Hartenberg, Richard S. and Jecques Denavit, Kinematic Synthesis 2: Linkages, McGraw-Hill Book Co., New York, 1964. 22. Keller, Robert E., "Mechanism Design by Electronic Analog Computer Trans. 7th Conf. on Mechanisms, Penton Pub. Co., Cleveland, 1962.