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ABSTRACT

SOME HYPOTHESIS THEORY MODELS

FOR PERFORMANCE IN CONCEPT

LEARNING TASKS

By

Charles Ernest Kenoyer

Recent research (Levine, 1966) has led to rejection of the sampling-

with-replacement axiom. The procedure of the Levine study differed from

that of the typical concept identification study in that blank trials

were administered and the feedback that was provided on other trials was

predetermined (fixed). A.modified procedure was subsequently developed

(Kenoyer and Phillips, 1968), in which feedback was fixed for early

trials and no blank trials were used. Further evidence against sampling

with replacement and for multiple-hypothesis processing was obtained

with this modified procedure, which is like that of the typical concept

identification study from the subject's point of view. The present

study replicated the Kenoyer and Phillips study and extended it by in-

cluding all combinations of fixed feedback over the first three trials.

Several implications of the Restle and.Bower-Trabasso models were tested

in Experiment 1 by means of this procedure.

Levine's (1966) hypothesis theory assumes memory for the current

hypothesis set following an error. A detailed model (Chumbley, 1969)

within the framework of Levine's theory was tested in the present study.

against data from Levine's study. Inadequate fit suggested a need for
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additional models. Five models were presented, in Which individual

hypotheses are eliminated independently.

For Model 1, on each trial each hypothesis is eliminated with a

probability that is determined by the trial outcome, "right" (R) or

"wrong" ON), and the set of hypotheses that have been eliminated are

retained perfectly. Medals 2 and.3 assume the same hypothesis-elimina-

tion process assumed in Model 1, but also assume fallible memory for

eliminated hypotheses. In both models, an elimination operator is

applied to the probability that each hypothesis is in the current set,

then a memory operator is applied to the probability that each hypothesis

remains in the eliminated set. The memory operator is the same for

every trial for Model 2, but depends upon the trial outcome (R or W)

for Model 3. For Medel 4, the operators of Model 3 are applied in

opposite order, and Model 5 is obtained by reversing the order of the

operators of Model 2.

All five models were tested against Levine's data. Medels l and

3 were inadequate and were.not tested further. Model 5 yielded accept—

able fit by a chi—square criterion. Medels 2 and N failed to meet the

same criterion, but were retained for further testing against data from

Experiment 2. It was conjectured that the most important form of loss

from memory might differ for the two studies. The best-fitting model

for Experiment 2 was Model 4. A suggested explanation for the difference

was that Levine's use of blank trials introduces a long interval during

which a constant forgetting process is important, while cognitive strain

due to information processing should be the major cause of forgetting

in the present study. Here the process should be affected by trial out-

com.
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Model a, while clearly superior to Medels 2 and 5 for these data,

did not satisfy a chi-square goodness-of—fit criterion (p < .001).

This measure of fit was computed for points on the mean learning

curve and the trial-of-last-error (TLE) curve for eight experimental

conditions, for a total of 104 datapoints, and so was extremely

sensitive to deviations from fit. Although this test indicates that

the model is not true, it was also found that the model accounts for

91 per cent of the variance among TLE points and 97 per cent of the

variance among the mean learning curve points, over all eight experi-

mental conditions.
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INTRODUCTION

Several recent models of concept learning have described

processes by which characteristics of the problem are assumed to be

abstracted and used as a basis for classifying stimulus Objects.

Restle's (1962) cue learning model accounts for acquisition of such

classification behavior in terms of random sampling of strategies

from a hypothetical pool of strategies available to the subject, and

subsequent testing and rejection of the selected strategies as

classification information is provided by feedback on each trial.

Bower and Trabasso's (1964) concept identification model explains

acquisition in terms of random selection and testing of.gug§, and is

otherwise very similar to Restle's model. Later models (Trabasso

and Bower, 1966, 1968; Levine, 1966) assume a process in which

hypotheses are manipulated. Levine (1966) and Richter (1965) have

pointed out that the terms strategy, Egg, and hypothesis are used

in these models to refer to similar elements, and levine (1967) has

discussed the models under the more general heading, "hypothesis

theory."

These models are applicable to situations in which the subject

is required to learn to classify stimulus objects on the basis of

characteristics that are already discriminable by the subject. The

models are applicable to concept attainment, (Cf. Bruner, Goodnow,

and Austin, 1956), concept utilization (Cf. Martin, 1965), or concept

identification (Cf. Bower and Trabasso, 1964), but not to concept

formation. The distinction between concept formation and the other
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terms listed above is that a new concept, i.e., one based on a

characteristic of the stimulus not previously discriminated, is

involved in concept formation, while previously discriminated

characteristics are the basis of concept identification, utiliza-

tion, or attainment tasks (or. Bourne, 1966, p. 3).

Concept identification differs from.simple discrimination in

that there are several stimulus characteristics that could serve as

bases for classifying the stimuli, but only one characteristic leads

to correct classification responses for a given problem. When it is

of interest to establish the set of hypotheses from.which samples are

drawn, a list of the characteristics on which stimuli vary is some-

times provided for the subject. (or. Trabasso and Bower, 1966.) The

stimulus qualities (e.g., color, size, etc.) that constitute potential

bases for correct classification responses are called dimensions, cues,

or attributes. The description of an individual stimulus in such

problems comprises a value for each attribute (e.g., red, large, etc.).

Solution of such problems can be indicated by a criterion run of

correct responses or by a statement of the attribute value or combina—

tion of attribute values that determine correct classification.

Hypothesis theory provides a framework within which questions

about concept identification may be formulated and tested in the kind

of experiment described above. variations in experimental procedure

may therefore lead to new predictions within the theoretical frame-

work, and so the theoretical framework serves to suggest a variety of

'ways of examining the process. The framework also provides a way to

produce various specific models. By changing assumptions about memory,
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sampling of hypotheses, and response rules, it is possible to generate

models that differ substantially although they are all formulated

within the general framework. Such models can be compared to the

data and to each other and the theory can be elaborated by choosing

among models on the basis of these comparisons.

The mathematical.models cited have typically been tested in a

restricted class of experiments. In these experiments each cue takes

on two values, the set of stimuli is presented in several random

orders, the response set consists of two classification responses,

problems continue to a learning criterion, classification is based upon

a single dimension, and the classification rule is predetermined by

the experimenter. Important questions of a preliminary nature have

been examined in this rather restricted situation, but it is clearly

desirable that a theory of concept identification be applicable to a

broader class of situations. As Levine (1967) has pointed out,

hypothesis theory is applicable to complex concepts (e.g., conjunctive

or relational) as well as to the simple one—dimension concept.

Deviations from the constraints listed above have appeared

recently in experiments designed to test the hypothesis model. Levine

(1966) introduced a procedure in which subjects were informed of outcomes

("right" or "wrong") only on every fifth trial, beginning with trial

1. The subjects' hypotheses were inferred from.sets of responses on

the intervening "blank" trials (trials on which subjects were;not in-

formed of outcomes). The outcomes were determined arbitrarily, and the

outcome sequence was used as an independent variable. Since it was

;necessary to control the amount of information provided on each trial,

Levine did not randomize the stimuli, but organized them in a highly



1+

constrained sequence. In this situation the solution that is con-

sistent with the information provided to the subject on outcome trials

is jointly determined by the stimuli, responses, and outcomes on the

outcome trials. Since the responses are not under the experimenter's

control, neither is the solution, and so the solution is a dependent

variable. Levine also ran subjects for a fixed number of trials,

rather than to criterion.

A.procedure that represents a compromise between Levine's

paradigm and the more common experiment in concept identification was

used by Kenoyer and Phillips (1968) to test assumptions of the

hypothesis models. Arbitrary outcomes were administered on the first

three trials. The solution that was consistent with the information

provided on those trials was then the basis for outcomes on later

trials. Trabasso and Bower (1966) also used a procedure in which

the classification rule was determined jointly by the stimuli,

responses, and outcomes, in order to test an assumption of their

concept identification model. Although these experiments differ

considerably in procedure, they are all relevant to assumptions about

the processing of hypotheses in a problem.requiring the identification

of a classification rule. Emphasis on different aspects of the theory,

hypothesized process, or experimental paradigm has led investigators

to refer to experiments of this type as discrimination (e.g., Levine,

1966) concept identification, (e.g., Bower and Trabasso, 1964) one

learning (Restle, 1962), or concept attainment (e.g., Haygood and

Bourne, 1965). No attempt will be made here to review the work in

all these areas, since many studies would not deal with the theoretical

issues of interest in the present study. A review of work in any one
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of the areas would both include irrelevant studies and exclude

relevant ones.



ISSUES IN HIPOTHESIS THEORY

The Hypothesis as a Construct

Krechevsky (1932) reported that rats performing in a discrimin—

ation experiment displayed strong positional preferences at the out-

set of the experiment, and referred to such preferences as hypotheses

(Hs). This designation amounted to a behavioral or operational defini-

tion of a word that had already acquired.meaning in everyday English.

It was perhaps on this account that Spence (1940) objected to this

use of the term. He argued that such perseverative tendencies were

;not adaptive and that they would, in fact, retard learning. His objec-

tion to applying the term "hypotheses" to such tendencies thus seems

to have been based upon positive connotative meaning already

associated with the term.

Harlow (1959) has subsequently developed a theory in which

learning is taken to be a process of inhibiting error factors, which

are the same kind of maladaptive behavioral tendencies as Krechevsky's

H5. The nonrandom nature of the naive subject's behavior at the

outset of a discrimination problem (error factor) and the nonrandom

choice behavior at the outset of a transfer problem (learning set) are

quite different in terms of their adaptiveness, but may be considered

as hypotheses which happen to vary in their appropriateness to the

performance criteria defined by the experimenter. Harlow and his

associates have investigated these phenomena extensively in primates.

Levine (1963) studied hypotheses (in Krechevsky's sense) in

human subjects. In the first of two related experiments, he distin-

guished two kinds of response tendencies. One kind was uncorrelated

6
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with cues, and consisted of identifiable patterns of responding,

such as alternation. Levine designated these response tendencies

"Response-sets." The other kind of patterns were called "Predic-

tions." These patterns displayed regularity with respect to the stimulus

set. One prediction pattern is "win stay, lose shift." A subject dis-

plays such a pattern with respect to a given cue, such as color. If

the subject displayed a strong tendency to shift his choice to the

opposite color after an error and to repeat his color choice after a

correct response, he was said to follow this prediction pattern. Four

cues were varied in the experiment, and each subject performed in

90 two—trial problems. Within each problem, either of the two

possible responses would be a repetition with respect to some cues

and a shift with respect to others. Levine performed an involved

analysis of conditional response probabilities over the whole problem

set, however, and found reliable prediction patterns. He also con-

cluded from this analysis that response sets contributed little or

.nothing to performance.

In Experiment II, therefore, he directed his attention to further

analysis of prediction behavior. He administered 24 multiple-cue

discrimination problems to two groups. Color hypotheses were correct

for the first 12 problems and letter hypotheses for the last 12 problems.

Every fourth problem (problems 2, 6, ..., 22 for one group and problems

4, 8, ..., 24 for the other) was a test series of four trials. Subjects

were not informed of outcomes on these trials, and stimuli were

organized so that every possible response sequence on the four trials

was inconsistent with all but one of the eight hypotheses. Half of



the possible patterns were not consistent with any hypothesis. A11

problems other than the test problems were 14 trials long, and

subjects were informed of outcomes.

Levine Combined response sequences corresponding to each value

of a cue. For example, responses consistent with the hypothesis

"large" and those consistent with "small" were combined and called

§§£§_hypotheses. He plotted the proportion of each of these cue

hypotheses over test problems. The graphs of probabilities of all

hypotheses showed that the probability of a gglgp_hypothesis in-

creased over the first twelve problems, on which £2123_was correct,

then suddenly decreased after the thirteenth problem, on which the

solution was changed to.lgt§gg, The probability of anlgppgp

hypothesis remained low until after the thirteenth problem, then

increased quickly to an asymptote around .5. It was clear that

hypotheses were being held over from one problem to the next, and

were therefore involved in trials at the outset of some of the

problems.

Supporting evidence for hypotheses at the outset of learning

‘was provided by a later experiment (Kenoyer and Phillips, 1968), in

which outcomes ("right" or "wrong") were arbitrarily set for the first

three trials, rather than depending upon the subject's response as is

usually the case. There were eight possible hypotheses (classifica-

tion rules) which were listed for the subjects. The stimuli for the

first three trials were so related that, for a given string of outcomes,

a unique hypothesis was consistent with each possible sequence of three

choice responses. On subsequent trials, outcomes were consistent with
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the hypothesis determined on the first three trials. In one of the

treatments, subjects were told "right" after each of the first three

responses (the BER treatment condition). If a subject began with a

hypothesis, therefore, errorless performance was to be expected,

since the procedure "tracked" any such hypothesis over trials 1-3.

If subjects were responding randomly until an error occurred, how-

ever, as Bower and Trabasso's (1964) model specifies, the probability

of errorless performance on the remaining six trials of a problem would

be (1/2)6 = 1/64. The observed proportion of correct responses for the

BER treatment condition was .976. It is clear that subjects were

processing information at the outset of the problems, and Levine’s

conclusion that human subjects employ hypotheses at this stage of a

problem was supported by this result.

It is important to note, however, that the behavioral indicator

in this case was performance on subsequent trials, and so the con-

clusion pertains only to information gain on trials 1-3, rather than

to hypothesis behavior on those trials. The term "hypothesis" in the

study cited just above, refers to a theoretical construct rather than

to a response sequence, as in Levine's (1963) use of the term.

Levine's (1963) results suggest that subjects display hypothesis

behavior at the outset of a problem. In both of the experiments re-

ported in that study, however, early trials constituted the whole test

series. In the first experiment there were 90 problems of two trials

each, and in the second the hypothesis data were obtained on test

problems of four trials each. The test problems were identified as tests

in the instructions to the subjects. More recent evidence indicates
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that these special circumstances may have caused subjects to behave

somewhat differently than they would have done in a more extended

task. Chumbley (1969) gave subjects four initial training trials, on

which outcome information was provided, followed by seven test trials

without outcomes. Chumbley obtained a good fit of his Hypothesis

lManipulation (HM) model to the test-trial data, but stated that it

could not be fitted to the training-trial data. He found that the

probability of a right-hand button-press was higher than chance.

This result is consistent with the assumption that subjects in this

situation behave according to response sets, in the sense defined

above. Another finding prevents this conclusion, however. The tasks

were experimenter-paced, and so subjects who did not respond on

schedule simply had a trial without a response. Some of the subjects

did not respond at all on training trials but responded without error

on test trials. Chumbley concluded that his instructions had led

.subjects to emphasize test-trial behavior to the exclusion of meaning-

ful choice behavior on training trials. Although some kind of

effective problem-solving process during training trials was indicated

by test-trial performance, hypotheses were not evident from training-

trial data. The definition of "hypothesis" as a theoretical construct

used to explain organization of subsequent behavior is therefore not

- consistent, in the context of Chumbley's study, with the definition of

the tern as a pattern of responses. Throughout the remainder of this

paper, "hypothesis" will refer to the theoretical construct unless

otherwise specified. The usefulness of such a.notion in organizing

findings about concept identification and discrimination, both within
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and between problems, is evident from the above discussion. The

models to be discussed below represent the problemrsolving process

as generation (or selection) and testing of hypotheses. They differ,

however, in their assumptions about the nature of the selection

process.

Memory

An important characteristic of a hypothesis model is the amount

of memory that is assumed. Restle (1962) developed three alternative

models. The alternative processes for selecting hypotheses were selec-

tion of one at a time, all at once, and,g_at a time. Restle showed

that the three models were alike in their predictions on error data.

The memory assumption of each model was pivotal in the derivations of

the error predictions, however, and so Restle‘s proof did.not establish

that single-hypothesis models and.mu1tiple-hypothesis models are

indiscriminable in general, even with respect to error data. The

equivalence was established for Restle's three specific models, with

their assumptions of severely limited memory.

Restle assumed.sampling of hypotheses with replacement in the

one-at—a-time model. For the all-at-once model the subject was assumed

to consider all hypotheses at the beginning of the task. This model

assumes that response probabilities are determined by the proportion

of the strategies consistent with each response. The hypothesis set is

assumed to be partitioned on the basis of consistency with the classifi-

cation response and those in the inconsistent set are assumed to be

dropped (forgotten) from.the set being considered. A correct response
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occurs on those occasions when the correct hypothesis is in the

consistent set, i.e., the set that is retained. Occurrence of an

error is possible only when the correct hypothesis is in the dis-

carded set.

Since the subject is not assumed to be able to retrieve these

hypotheses without starting again with the total hypothesis set, an

error implies that the subject has the full set to work with, just as

at the outset of the problem. The;pyat-a-time model requires an

additional sampling assumption, and Restle chose to assume that all

subsets of size p_were equally likely to be selected. The multiple-

hypothesis models are similar in all other respects. The restarting

property, which implies that the subject is in the same state of

ignorance after each error as at the beginning of the problem, is

therefore common to both multiple-hypothesis models as well as to the

single-hypothesis model.

Bower and Trabasso (1964) developed a model that was mathe-

matically equivalent to Restle‘s one-strategy model, except for’their

added assumption that subjects begin problems in a guessing state and

continue to guess until an error occurs. The selection process assumed

in this model operates upon one values rather than strategies, however.

Since the model assumes that the subject deals with only one cue at a

time, hypotheses based upon two or more cues are excluded from considera—

tion.

A later model (Trabasso and Bower, 1968) assumes multiple

hypotheses, and is quite similar to Restle's (1962) grat-a-time model.

This model assumes that a "focus sample" of size §_is selected from the

stimulus array. Sampling probabilities are assumed to be controlled by
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cue salience. The focus sample is assumed to be reduced after each

correct response, as in the Restle model, and after each error a new

focus sample is assumed to be selected with replacement. Response

probabilities are generated as in the Restle model.

Levine (1962) and Holstein and Premack (1965) provided random

outcome information to subjects for a given number of trials, where

the number of trials varied over experimental conditions. Random out-

come trials were followed by a discrimination problem. The finding that

random outcomes retarded solution of the discrimination problem is

inconsistent with the sampling-with-replacement assumption. The amount

of retardation was constant over variations in the number of random-

outcome trials.

Restle and Emmerich (1966) performed three related experiments

in which they investigated.memory in a concept identification situation.

In the first experiment, four groups of subjects were given one

problem at a time or two, three, or six problems concurrently, i.e.,

with trials for one problem interspersed with trials from another

problem or problems. Learning was faster in the groups that had one

or two concurrent problems than in the groups with three or six problems.

They pointed out that this result was in conflict with two hypothesis

models (Restle, 1962; Bower and Trabasso, 1964). The break between

two and three problems was interpreted as evidence that the memory

span was overloaded.with nine stimulus dimensions (three per problem)

but not with six. The authors argued that it must be memory for stimuli,

rather than hypotheses, that was breaking down in the multiple-problem

condition, thus indicating that they could remember the correct hypothesis.

This conclusion does not follow from the data, however. The process
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described by Levine (1966) would imply a considerable memory load

on early trials, but less as the hypothesis sets were reduced, and

finally only one hypothesis per problem.

Experiment 2 of the Restle and Emmerich study compared a condi-

tion in which the stimulus remained available to subjects after feed—

back with a condition in which the stimulus disappeared before feedback.

The two levels of the stimulus availability variable were arranged

factorially with number of problems. subjects solved either one

problem or six problems concurrently. Stimulus availability reduced

errors for the one-problem group, but not for the sixrproblem group.

Restle and Emmerich pointed out that the effect on the one—problem group

was consistent with stimulus memory, but also with hypothesis memory,

since the presence of the stimulus could be used to limit the hypothesis

set from which the subject sampled. They offered.no explanation for the

lack of effect on the six-problem group. Erickson and Zajkowski (1967),

however, suggested that concurrent problems lead to interference with

short-term.memory of hypotheses that have been tested but rejected. If

this were the case, it would be reasonable to expect subjects to adopt

a strategy requiring no memory for rejected.hypotheses when performing

in the concurrent problem condition. If subjects conformed to the Restle

(1962) model or, equivalently, to the Bower and.Trabasso (1964) model

in that situation, they would need to remember only the current

hypothesis for each problem and in the group without stimulus availability,

the stimulus. Five hypotheses would then have to be remembered while

the subject processed information leading to selection of a hypothesis

in the current problem. The cue values for the different problems were
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quite dissimilar, however, and so interference should.not be great.

Furthermore, the error probabilities would be unaffected by such inter-

ference unless the whole set of one values were forgotten, since only

one hypothesis is assumed to be retained. Selecting (i.e., remembering)

one cue value randomly and basing the hypothesis on it is equivalent to

remembering two or three cue values and randomly selecting one of

these as the basis for a single hypothesis. It is reasonable to assume

that subjects in a single-problem situation retain information from past

trials (about either stimuli or hypotheses), but have too little avail-

able memory to do so in the sinproblem condition.

Further information about memory in concept identification was

reported by Trabasso and Bower (1966), who tested the sampling-with-

replacement assumption of their previously published model (Bower and

Trabasso, 1964) with a rather complex experimental procedure. For

one group, the correct choice responses could be based on either of

two characteristics of the stimulus. For example, size and color

could be redundant, so that choosing the large object would be

behaviorally equivalent to choosing the red Object, and either would

be correct. For a second group, the same two cues (e.g., size and

color) were treated as follows. A.problem.began with only one of these

cues relevant. When the subject made an error, he was informed of it,

and if he made.no further errors he proceeded quickly to criterion

and solved the problem. A second error, however, was treated

differently. The subject was.not informed of the error. Instead.the

criterion for a correct response was changed, e.g., from large to red.

In shifting the criterion from size to color, the specific color to be

associated with the correct response was selected so as to be consistent
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with the trial on which the subject was informed of an error. This

treatment was called a "dimensional shift." On every second error in

this group, the correct response criterion was shifted to the other of

the two cues, or dimensions.

The Bower and Trabasso (196%) model assumes that subjects solve

such problems by selecting a single cue value (such as red) after each

error, without regard to whether the cue value has been tested

previously. Under this assumption the advantage of having two redundant

and relevant cues is that there are two chances to select a correct

cue instead of just one. In the experiment just described, however,

the model implies that the same advantage accrues to the subjects in

the dimensional shift group, given the sampling-with-replacement assump-

tion. After an error>they may select the currently relevant one and

solve or they may make a response that is not consistent with that cue,

and still be given an opportunity to solve on the alternate cue. The

probability of solution after an informed error should therefore have

been the same for both groups. Trabasso and Bower found, however, that

the dimensional shift task was the more difficult. They suggested a

‘neW'model in which cues could.not be resampled until some number, kg

of trials after it had been tested and rejected. Such a model, they

;noted, would account for the results reported by Levine (1962) and

Holstein and Premack (1965) as well as those of their own study.

Levine (1966) tested the replacement axiom.with a different

experimental procedure. On the first trial the outcome information was

provided to the subject. Four trials followed on which:no outcome

information was given. Three such blocks were given, followed by a final

(sixteenth) trial on which the outcome was given. There were therefore
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only four outcome trials in the series. The stimuli on the outcome

trials and those within test-trial blocks were "internally orthogonal."

An important characteristic of such stimulus sequences is that any

response sequence that correlates perfectly with one cue is uncorrelated

with all other cues. Since test blocks were arranged in this way,

response sequences could be analyzed to determine what hypothesis, if

any, the subject was tracking.

Levine estimated the size of the hypothesis set from the

probability of selecting one of the hypotheses consistent with the out-

come—trial stimulus. Under the sampling-with-replacement assumption,

the size of the hypothesis set should remain the same throughout the

experiment. If subjects had been perfect information processors, the

set should be reduced by half after each outcome trial. The obtained

curve fit neither of these models perfectly, but was considerably

closer to the curve for perfect processing. As in the Trabasso-Bower

(1966) study, it was clear that the sampling-with-replacement axiom

“was inconsistent with the data.

Since all of the sampling schemes that imply the restart-after-

errors principle are falsified by the results cited above, some kind

of memory assumption is;needed, and so the nature of what is remembered

becomes important as well as the amount. Trabasso and Bower (1966)

suggested that their earlier single-hypothesis model be modified by

adding two assumptions dealing with two distinct kinds of memory. In

the resulting model, subjects are assumed to remember rejected.hypotheses

for k_trials, where k_is a free parameter of the model. After k_trials

a rejected hypothesis is assumed to be returned to the hypothesis pool.
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The second kind of memory that was assumed dealt with stimulus informa-

tion. 0n error trials it was assumed that the subject performed a

consistency check, comparing stimulus information from the error trial

with that from.the preceding trial.

Use of all of the stimulus information provided on an error trial

to limit hypothesis selection is called local consistency (Gregg and

Simon, 1967; Trabasso and Bower, 1968). The Bower and Trabasso (1964)

model has this property (Atkinson, Bower, and Crothers, 1965, p. 32),

as do two more recent multiple-hypothesis models (Trabasso and Bower,

1968) and the model cited just above. The Trabasso and Bower (1966)

model further assumes consistency over the trial preceding the error

trial, but all of the models just cited have in common at 193$

consistency with the error-trial information.

Kenoyer and Phillips (1968) tested the local consistency assump-

tion in an experiment in which complementary pairs of stimuli were

presented. Each cue (size, color, shape, and border) had two values.

The alternative values of the cues were called complements. Red was

thus the complement of blue, square was the complement of circle, large

the complement of small, and presence of a border was the complement of

absence of a border. Two stimuli were a complementary paig_if the value

of every cue in the first stimulus (Cl) was the complement of the value

of the corresponding cue in the second stimulus in the pair (CZ). The

first member of the pair was always presented before the subject had

been given enough information to solve the problem, and the outcome on

that trial was arbitrarily a'W.
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Assuming local consistency, the subject would select some cue

and would make his category assignment agree with the correct category

assignment on the error trial. If the subject classified C as VEK,
1

combining this response with the W outcome would result in a correct

classification of NONVEK for that stimulus. Then regardless of which

cue the subject selected after the error, the cue value present in C1

would be assigned to NONVEK. When C2 appears, the Opposite value of

that cue (and all other cues) is present, and the local consistency

assumption implies that the subject must assign it to the VEK category.

Thus the category assignment of C must match that of Cl’ according to
2

the local consistency assumption. If.no information is processed after

a correct response, as the single-hypothesis models imply, this predic-

tion on matches holds regardless of the number of trials intervening

and C(the lag) between the trials on which C are presented, given
1 2

that the responses on these trials are all classified as correct.

The multiple-hypothesis models developed by Trabasso and Bower

(1968) assume processing after correct responses. Responses are

assumed to be consistent with all hypotheses not yet eliminated from

the sample, however, and this implies that one of the hypotheses con-

sistent with the error-trial information is retained until another error

occurs. Thus the C1 to C2 lag is unimportant to the match prediction

within these multiple-hypothesis models as well as in the single-

hypothesis models. Kenoyer and Phillips feund that the probability of

a match was;not;near l, in general, as implied by the models. What is

remembered immediately after an error cannot be determined with certainty

from this result, but the complete stimulus-response-outcome information
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does.not remain available over a series of correct trials. This

result does not completely isolate the local consistency assumption,

since some kind of forgetting process could be posited to account for

the loss over trials.

Experiment 3 of the Restle and Emmerich (1966) study, cited

previously, was more directly relevant to the local consistency assump-

tion. subjects were given one or six concurrent prdblems, and the

same stimulus was presented on two consecutive trials, both very early

and very late in the problem. On late trials, the probability of an

error on the second presentation following an error on the first

presentation was.near chance (1/2). 0n early trials, for the one-problem

group, three of the 61 subjects who made correct responses on the first

presentation and 3 who made errors on the first presentation, made errors

on the second presentation. This result simultaneously refutes the

local consistency assumption and the assumption that the process re-

starts after errors without local consistency. The former assumption

implies that the probability of a correct response on the second

presentation following an error on the first is 1 and the latter implies

that it is 1/2. Subjects in the six-problem condition made 8 errors

following 62 correct responses and 19 errors, following 69 errors.

IMemory was less effective for this group than for the one-problem group,

and less effective after errors than after correct responses. This result

on early trials, like the corresponding data on the one—problem group,

refutes both local consistency and restarting assumptions. It is

consistent with Levine's (1966) theory, however. The overall results of

this experiment may be explained by assuming that subjects processed
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multiple hypotheses and tried to keep track of rejected hypotheses

on early trials, but changed strategies when they failed to solve

and began processing single hypotheses and sampling with replace-

ment.

Multiple hypotheses

In addition to providing evidence on the sampling-with-replace—

ment question, Levine's (1966) experiment also yielded data relevant

to the question of multiple versus single hypotheses. Since he was

able to manipulate outcome sequences as an independent variable, Ievine

could compare sequences with different;numbers of errors in terms of

their effect on subsequent performance. He compared a one-error condi-

tion (RRW), a two-error condition (RWW and WRW), and a three-error

condition (WWW). The dependent variable was probability of a correct

hypothesis after trial 3, a correct hypothesis being defined as the

one hypothesis that was consistent with the information provided to the

subject on all three outcome trials. Levine found that the probability

of a correct hypothesis was an increasing function of the number of

correct (R) outcomes. It is evident from these data that subjects were

processing information on R trials. If subjects processed only one

hypothesis at a time, no information about that hypothesis would be

provided on correct trials. Since each of the sequences Levine com-

pared ended with a‘W, differences among probabilities for the three

groups constitute further evidence that the problem-solving process

does.not simply restart after errors.
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Richter (1965) presented subjects with a series of four-trial

problems, in which the stimulus sequence was structured like those

of the Levine (1963, 1966) experiments, and so logical solution of

the problem was possible after three trials. The probability of a

correct response on trial h was therefore comparable to the probability

of a correct hypothesis after trial 3 in the Ievine (1966) study.

Richter used predetermined solution rules rather than fixed outcomes.

He found that probability of a correct response on trial h was an

increasing function of the number correct on trials 1 through 3.

Erickson, Zajkowski, and Ehmann (1966) and Erickson and Zajkowski

(1967) found evidence for multiple-hypothesis processing in latency

data from concept identification experiments. In both studies a

post-criterion decrease was found. Pre-criterion latencies were

analyzed separately for trials following errors and correct responses.

Latencies following correct responses clearly decreased over pre-

criterion trials. Results on latencies following errors were equivocal.

For one analysis the median latency was computed for the first and last

halves of pre-criterion trials following errors, and the means of

these median latencies were compared. The mean for the last half was

greater than that for the first half. A regression line on trials

however, showed a slight negative sloPe. The post-criterion decrease

in latency suggests processing of multiple hypotheses. If hypotheses

are processed on correct trials as well as on error trials, solution

is possible on correct trials and the post-criterion decrease can be

explained by reduction of the hypothesis set after the last error. The

pre-criterion decrease in latency indicated by the regression of latency
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on trials can also be explained in terms of multiple hypotheses. If

the number of hypotheses being processed is reduced after an error,

than the time required to process them should decrease.

The evidence for a multiple-hypothesis process is convincing,

but the memory assumptions of the multiple-hypothesis models developed

by Restle (1962) and Trabasso and Bower (1968) are inadequate on other

grounds, as was stated above. Ievine‘s (1966) multiple—hypothesis

theory is similar to the Restle nyat-a-time model, but the memory

assumptions are different. As in the Restle model, the hypotheses

consistent with the classification responses are assumed to be retained.

The treatment of the hypotheses discarded on that trial, i.e., those

inconsistent with the classification response, differs for the two

models. They are lost, according to the Restle model, to be re-

covered only by starting again with the whole hypothesis set. The

assumption in the Levine theory is that these hypotheses can be retrieved,

although with some difficulty. The difficulty of retrieval of this set

of hypotheses provides an explanation for the decreased effectiveness

of information processing on error trials as compared with correct

trials.

Levine'spfiypothesis Theory,

The Levine theory includes none of the assumptions that are re-

jected by the above arguments. It assumes that subjects begin a pro-

blem with hypotheses rather than in a guessing state. It assumes that

multiple hypotheses are processed, although only one hypothesis is

assumed to be the basis of each response. Since it assumes that
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hypotheses, rather than specific stimulus information are remembered,

it does not imply local consistency. The proposition that the solu-

tion process restarts after each error is neither assumed nor implied

by the theory.

The assumed reduction of the hypothesis set after each trial

on which information is provided implies, in the usual concept identi-

fication situation, an increase over trials in the probability of

selecting the correct hypothesis as a basis for responding. Since

this assumption is contrary to the restarting-after-errors property

that has been supported by previous research, it requires further

discussion. The increase in the probability of solution over trials

defines an inhomogeneous Markov process (Cf. Atkinson, Bower, and

Crothers, 1965). Stationarity of the probability of a correct

response when the subject is in the pre-solution state, however, does

;not depend upon homogeneity of the prdbability of solution. If

solution has not occurred, Levine's theory holds that some other

hypothesis being entertained by the subject determines choice

responses. If the cue values corresponding to hypotheses are varied

independently, the hypothesis that determines the choice response

brings about chance responding. Actually, as Restle (1962).noted,

;not all hypotheses are independent of the correct one. The

occurrence of the complement of the correct cue value is completely

redundant (perfectly correlated) with the nonoccurrence of the correct

one value. But this implies that the complement of the correct one

value is likely to be eliminated early. The remaining hypotheses

have the required independence property. Given a reasonably large

initial set of hypotheses, the probability of an error would.not be
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greatly affected by this.nonindependence and the hypothesis that

always leads to a wrong response would tend to be eliminated early

in the problem. The probability of an error prior to the last error

should therefore decrease only slightly over trials as a result of

eliminating the complement of the correct hypothesis. A slight

decrease in the probability of an error is consistent with reported

results, in fact (Trabasso, 1966, p. 45; Bower and Trabasso, 1964),

although the decrease has.not been found to be significant.

Levine did not explicitly state an assumption that all

hypotheses are equally likely to be selected, but he estimated the

size of the active hypothesis set as the reciprocal of the proportion

of correct hypotheses. This estimation procedure suggests that the

equal-likelihood assumption was intended, and it is therefore treated

here as part of the theory. The mechanism for retrieving hypotheses

was also left unspecified in Levine’s outline of his theory. Some

specific assumptions about this process are needed if the theory is

to be tested.

Chumbley's Hypothesis.Manipulation Medel

Chumbley (1969) presented a Hypothesis Manipulation (HM) model

based upon Levine's theory. In this model, the current set of

hypotheses is partitioned into two subsets by the subject's choice

response. The subset that is consistent with the choice response is

retained and if the response is correct, the current hypothesis set

for the next trial has been reduced. The subset that is.not consistent

with the choice response is discarded. If the response is called

"wrong", the discarded hypotheses are the proper ones to retain as the
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.new current set. The HM model assumes that the subject retrieves the

discarded set (as a whole) with probability 3;. Otherwise the entire

set is lost, and the subject begins again with the whole initial

hypothesis set.

Chumbley performed an experiment in which the problems consisted

of four training trials followed by seven.test trials. Treatment groups

solved either one problem or three concurrent problems and had either

a 5-sec. or a lS-sec. intertrial interval. The parameter.t_was

estimated separately for each of the four conditions. The HM model

fitted the data from the test trials, but not the training-trials data.

One puzzling result on training trials was a higher than chance

occurrence of a right-hand button press. A second result was even more

striking. The trials were experimenter-paced, and so it was possible

to sit through training trials without responding, and without any loss

of information. Chumbley found that some subjects did not respond at

all on training trials but performed without error on test trials.

Chumbley suggested that this discrepancy between model and data

was due to a procedural artifact. He claimed that test-trial performance

was emphasized to the detriment of meaningful performance on training

trials, and that the model was therefore not;necessarily wrong, but

should.be tested in an experimental situation from.which this artifact

is absent. It seems appropriate, therefore, to test the HM model against

data reported by Levine (1966).

Test of the Hypothesis Manipulation Medel

Chumbley's parameter, I” is the probability that the set is re-

trieved and retained until the next set reduction operation. If the
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hypotheses are not retrieved, the assumption is that the subject must

start over with the initial hypothesis set. When the stimulus sequence

is internally orthogonal, as in the Levine (1966) study, the model

states that half of the hypothesis set is discarded. The current set

is reduced to half its former size after a correct trial in any case.

After an error trial, this reduction occurs only if the discarded set is

successfully retrieved, i.e., with probability'tp If the current set

is not reduced, it is replaced by the full initial set. Thus, if there

are two hypotheses in the current set on an error trial, the set is

either reduced to one hypothesis or replaced by the initial set of

(typically) eight hypotheses. 'With an initial set of eight hypotheses,

then, every subject must have either four or eight hypotheses after

trial 1.

If we define a Bernoulli random variable xi such that xn=l when

a tenable hypothesis is selected after an error on trial n, and xn=0

otherwise, we have for the WWW condition:

E(xi)= Pr (xi=l) = Pr (tenable H is selected I r Hs remain).

Then E(xl)=Pr (tenable H is selected I 8 Hs remain) . (l-t)+

Pr (tenable H is selected I u Hs remain)- t

Since four Hs are tenable after trial 1, the probability of selecting one

of them is simply four divided by the tota1.number of He remaining, and:

liltzltic.
E6‘1): 2 2

E(x2)= Pr (tenable H is selected I 8 Hs remain) ' (l-t)

+ Pr (tenable H is selected I 4 Hs remain) ' t(l-t)

+ Pr (tenable H is selected I 2 H5 remain) ° t2

2
_ (l-t) t(l-t) 2 _ 2t + t + 1
_u+ 2+t— 1+
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Pr (tenable H is selected I 8 H5 remain) ° (l-t)'
3
1
A

(
3
“
V

II
+ Pr (tenable H is selected I 4 Hs remain) ° t(l-t)

+ Pr (tenable H is selected I 2 Hs remain) ' t2(l-t)

  

+ Pr (tenable H is selected | 1 H5 remains) - t3

_ (l-t) + t(l-t) + t2(l-t) + i _ ut3 + 2t2 + t + l

‘ 8 u 2 ‘ 8

Expressions may be derived similarly for sequences other than

WWW} The Chumbley model assumes.no loss of information on correct trials.

Again referring to the Levine study, the model predicts four hypotheses

remaining after an initial "right" reinforcement, two hypotheses remain-

ing after the subject is told."right" on trials 1 and 2. Then for the

RRW condition,

E(5'ol)=1.

E(x2)=l, and

936(3):? + t = LEE

for the RWW condition,

E(:‘El)=1

EGE )=t + _l_-_t__ 3t+l

2 4 " u

- 2 2 2
E(x3)=t + t-t l-t 61; + t + 1

+ =

' L» 8 8

and for the WRW condition,

E(x1) = t + t'-§-' 2
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The remaining task is to obtain a distribution so that an

appropriate test of fit may be applied. Since the xi are Bernoulli

random variables, the.number of tenable hypotheses on any one problem

is a sum of Bernoulli random variables over subjects. Assuming subject

independence, the sum over subjects is a random variable, yi, with a

binomial distribution. The probability of tenable hypotheses on the

ith problem, ii, estimates the parameter p_ of the binomial distribution.

Given Levine's sample of 80 subjects, the distribution of the mean is

closely approximated by the normal. Now if t_is assumed to remain

constant over problems, the distribution of the random variable y is

identical on all problems within an outcome-defined condition. If

interproblem independence is assumed, then the mean over problems is

the mean of independent, identically distributed random variables. Two

implications from the Central Limit Theorem are that the distribution

of this mean approaches the normal as the.number of problems over which

the mean is taken increases, and that the variance of the sample mean

is inversely proportional to the number of problems (Cf. Parzen, 1960).

For the analysis at hand it is important to note simply that the

variance of the mean is less than that of any one of the variables

averaged. The deviation of an Observation of y from the population

mean "y’ is approximately.normally distributed with mean 0 and variance

less than the variance of the binomial variable, y. A test of fit to

y based upon the binomial distribution of y is therefore a conservative

test, in the sense that a deviation of a given size is more probable in

the distribution of y, due to its larger variance.

The test is not.necessarily conservative if interproblem indepen—

dence does not hold. The variance of the mean of two random variables
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is given by:

var (3.3.2.) a. ELF—z) = Var(w) + Var (firm 2 - Cov(w,z)

If‘w and z are independent, this reduces to:

var(w) + Xar(z) + 0

Assuming identical distributions, we have:

Var(w+z) _ 2-Var(w) _ Var(w) _ Var(z)

2 _ a _ 2 _ 2

If the covariance is.negative rather than zero, the variance of the

mean is even smaller. If the covariance is positive, however, the

variance of the mean is greater than indicated above, where the covariance

is assumed to be zero. When the covariance is positive, the variance of

the mean is:

 

W+z _ CIwZ + 022 + 2 'Cov (w,z)i

Var ("2—) ‘ u

32 + Cov(w,g)__ 32 + pwz 0w 0z

2 _ 2

”'2 2 pw 02 I l

‘2 2

OtherWise, Var (72'; = + 0:5 CW 02—‘ <__(___)_1+29wz _;2

This last inequality holds because, for a fixed suml’éflrgz, the product

oi 'o:, and therefore oW ~02, is maximized.when aw = 02. Then regard-

less of the equality of o: and 0:, we have:

var (£129 592
2

In words, the variance of an average of two random.variables is.no greater

than the average of their variances. This principle clearly can be

extended to more than two random variables.
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'Frequencies' were obtained from the reported proportions by

multiplying by the number of subjects (80). The sampling distribu-

tion of these quantities, according to the above argument, have

variances less than or equal to those of the corresponding binomial

distributions of the scores for occasions, over which they are averaged.

For a binomial distribution with N=80, the chi-square statistic is

distributed approximately as chi—square. The expected frequencies

generated from Chumbley's HM model were therefore compared to the data

from Levine's study by means of the chi-square test.

The procedure was as follows: Trial values of the parameter (t)

of the model were used in a Fortran program to generate expected pro-

portions (i.e., probabilities) of tenable hypotheses. The observed

proportions used were those reported by Levine (1966). Three Pearson

chi-square statistics were computed from these observed and expected

proportions. The parameter value selected was the one for which the

sum of the three chi-squares statistics was a minimum. The procedure

therefore differs from minimum chi-square techniques in that a different

criterion (the sum of three chi-squares) was minimized. Each of the

chi-square values was computed on a pair of frequencies. One of each

pair was the frequency of a consistent hypothesis after a W’on trial 1.

The other was the frequency of a correct hypothesis after trial 3 for

the one-error, two error, or three-error condition. Since different

expected frequencies follow from WRW and RWW, these were averaged to

yield the expected frequency for the two-error condition. For WWW the

chi-square value was 8.05, for RRW it was 11.09, and for'WRWsRWW, 8.91.

The value of the parameter t_selected in this way was .h9. If two

degrees of freedom are assumed for each chi-square, each is significant
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beyond the .025 level. The fit of the HM model is therefore unsatis-

factory by this criterion.

The criterion just described is somewhat conservative since it

does not reduce the degrees of freedom for the estimated parameter t,

A more stringent test of the model may be devised by using the sum of

the three chi-square statistics as a test statistic, comparing it with

values in a chi-square table. Since the observations used in

calculating the three chi-squares are not independent, the sum cannot

be expected to have the chi-square distribution. Such pseudo chi-

squares have smaller variance, however, than the analogous chi-square

distributions (Cf. Atkinson, Bower, and Crothers, 1965). Therefore the

actual probability of Type 1 error is less than for the chi-square distri-

bution, and the test is conservative. Combining the chi-squares yields

a pseudo chi-square of 28.05 with six degrees of freedom, less one

degree of freedom.for the parameter 3, which is significant beyond

the .001 level.

In the following chapter, models are presented in which different

assumptions are made about retrieval and.memory of hypotheses. These

alternative assumptions may lead to a better fit to the Levine data.

The models also include a modified.response assumption suggested by

Chumbley's experimental data. Chumbley's finding that some subjects did

.not respond on training trials but performed perfectly on test trials,

and that subjects had a nonchance tendency to press the right-hand

button suggests that pre-solution responding is not necessarily related

to hypothesis processing. In a situation in which emphasis is placed

on post-solution performance, it is reasonable to conjecture that subjects
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concern themselves with solving rather than with maximizing the chance

of a correct response on early trials. If working out a response

rule based on the hypothesis set interferes with processing of the

hypothesis set, then disregarding the correspondence between hypotheses

and responses early in the task could be an effective strategy.

Some support may be found for this notion. Goodnow and Pettigrew

(1956) found that subjects in a prediction task reported solving the

problem rather easily when they stopped trying to predict and simply

observed. In that study subjects had to make some response in order

to get feedback, and so the "just observe" strategy was not as readily

identified as in the Chumbley study. Byers (1965) allowed subjects

in a concept attainment experiment the option of offering hypotheses

on each trial, and found that the tendency to offer hypotheses on early

trials decreased significantly over problems. In this case, the pro-

cess of selecting a hypothesis from the tenable set may have interfered

with processing. In the model to be developed in the.next chapter, it

will be assumed for tasks stressing post-solution performance that

subjects respond according to strategies not connected with the

tenable hypothesis set until only one element remains, and then respond

according to the single hypothesis. For comparison to the Chumbley

model, however, the.new model will be fitted to the Levine data, and

hypothesis—relevant responding will be assumed.



STATEMENT OF THE PROBLEM

Findings cited in the preceding chapter lead to a fairly detailed

picture of the concept identification process. Recent evidence (Restle

and Emmerich, 1966; Levine, 1966; Trabasso and Bower, 1966) indicates

that the concept identification process does not restart after errors.

Something is remembered. Trabasso and Bower proposed a model in which

both the eliminated hypotheses and one values of the positive stimulus

enter memory. Restle and Emmerich argued that memory for stimulus

information was necessary to explain their results.

Memory for rejected hypotheses was suggested by Erickson and

Zajkowaki (1967) and Levine's results indicate that hypotheses are

remembered after errors. Although what is remembered in Levine's experi—

mental situation is almost certainly a set of hypotheses, the situation

is sufficiently different from the standard concept identification

experiment to leave room for doubt that Levine’s findings extend to that

situation. (Cf. Trabasso and Bower, 1968, p. 50.) A test of some

implications of Levine's theory in an ordinary concept identification

task seems to be .needed.

Chumbley (1969) developed a model based on Levine's theory and

applied it to a situation in which subjects were given four training

trials followed by seven test trials. The model fit the test trials,

but Chumbley reported that it did not fit the training trials. The

test described in the preceding chapter shows that prediction of the

proportion of tenable hypotheses in the Levine study was also inadequate-

ly accurate.

34
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A model consistent with the findings discussed in the preceding

chapter is still needed. A.major purpose of this study is to develop

such a model, and to test it in an experimental situation that conforms

to the usual concept identification arrangement.

Although something, probably a set of hypotheses, is remembered,

it is equally clear that something is lost, or forgotten. What is.not

clear about the forgetting is when it occurs. It is reasonable to

hypothesize that processing of a large or otherwise difficult set of

hypotheses results in both loss from.the hypothesis set and forgetting

of previously stored information (retroactive interference). Restle

and Emmerich‘s (1966) data on repeated presentation of a stimulus

showed that there was some immediate loss of information, since

performance was not perfect on the second presentation. The data on

complementary stimuli (Kenoyer and Phillips, 1968) suggests that even

more loss occurs over trials. One way of investigating this loss of

information over trials is to present complementary pairs of stimuli,

as in the Kenoyer and Phillips study, and manipulate the.number of

trials intervening between the presentation of the first and second

member of a complementary pair. In the present study the lag effect

was arranged factorially with the initial outcome sequences, in order to

facilitate this kind of analysis. Versions of the model both with and

without the retroactive interference assumption were developed and

compared.

The use of fixed outcomes on initial trials in this study provides

particularly powerful tests of the extant hypothesis models. When the

"process model" (Cf. Gregg and Simon, 1967, p. 250) is examined rather
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than the stochastic model that is derived from.it, several of the

models discussed in the preceding chapter (Restle, 1962; Bower and

Trabasso, 1963; Trabasso and Bower, 1966, 1968) yield deterministic

predictions. These predictions require analysis of error trial stimuli

so that consistency between the information provided on that trial and

later performance can be determined. If the position of the error

trial in the trial sequence can be predetermined, as in the fixed-out-

come procedure, this consistency checking is facilitated considerably.



THE INDEPENDENT HYPOTHESIS ELIMINATION MODELS

General Development

The strategy of the present study is to isolate component assump-

tions of extant models and to test the assumptions individually when

such tests can be devised. As Sternberg (1963) noted, a test of the

whole model is a test of the logical conjunction of all of its assump-

tions. A test of a single assumption therefore serves as a test of

the whole model, since falsity of any one element of a logical conjunc-

tion implies falsity of the conjunctive assertion. Whenever an assump-

tion can be falsified in a reasonably simple experiment, therefore, it

seems profitable to test it in isolation.

Besides serving to falsify models, tests of individual assumptions

are useful in the construction of.new models. Rejection of a given

assumption may suggest an alternative treatment of a mechanism within

a model. A framework of sorts has been established for the model to

be developed in this chapter, simply by the nature of the models

already discussed.

Several assumptions have been rejected in studies discussed in

the preceding chapter. The sampling-with-replacement axiom has been

falsified in a number of the studies cited (Levine, 1962, 1966; Holstein

and Premack, 1965; Richter, 1965; Trabasso and Bower, 1966; Restle and

Emmerich, 1966; Erickson and Zajkowski, 1967). An alternative assump-

tion is sampling without replacement. Richter (1965) and Levine (1966)

both found that subjects failed to display the perfect performance

implied.by this assumption. Restle and Emmerich (1966) and Kenoyer and

37
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Phillips (1968) have presented evidence against the local consistency

assumption. The assumption that subjects improve performance only

after error trial has been refuted by Levine's (1966) results. In

the same study Levine also demonstrated that subjects are capable of

processing information about hypotheses that are not currently being

used as a basis for responding.

An adequate model must not include any of the rejected assump-

tions. In the case of those assumptions that were refuted by Levine's

data, it seems advisable to acquire further evidence in a standard

experimental situation, but it is probably best to consider alternative

assumptions when constructing a.new model. Lack of fit of Chumbley's

(1969) model to Levine's data suggests that alternatives to his

process assumptions should be considered. Finally, Chumbley's pre-

solution (training trial) results suggest a modification of the response

assumption.

Common to all the models discussed here thus far is the concept

of a set of hypotheses available to the subject, from.which he selects

elements to be tested against the feedback or information provided

on each trial. Even in view of empirical evidence eliminating several

assumptions included in various models, Levine's theory remains intact.

The model to be proposed here is consistent with Levine's general

hypothesis processing framework although it differs from.Chumbley's

more completely specified process assumptions. A reasonable alternative

to Chumbley's assumption of all-orenone retrieval of the whole hypothesis

set is all-orenone retrieval of each individual hypothesis. An example

of this kind of model is Phillips, Shiffrin, and Atkinson's (1965)
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register model of short-term memory. In the hypothesis model to

be developed here, however, the memory mechanism must be combined

with other mechanisms, and so a register model of the memory process

without simplifying assumptions leads to prohibitive complexity in the

overall.model. The assumption that hypotheses are retrieved independently,

while probably not true, seems adequate for the purposes of the model

being developed here.

A decision must be made as to what hypotheses are assumed to be

remembered. If only the hypotheses that have.not been eliminated are

remembered, then loss of the correct hypothesis from this memory store

would render the prOblem unsolvable. This difficulty can be handled

by assuming perfect memory, but this assumption does not fit available

data (e.g., Levine, 1966; Richter, 1965). Another solution is to

assume, as Chumbley (1969) did, that the subject starts with the entire

hypothesis set if memory fails. Given that the hypothesis set can be

reconstructed from the stimuli, this is quite reasonable. It could

even be assumed if it required the subject to store the initial

hypothesis set in memory. The Chumbley model, however, has been shown

to yield unsatisfactory fit to Levine's data, and so an alternative

explanation should be considered.

An alternative assumption is that what is remembered is the set

of logically eliminated hypotheses. The complement of this set yields

the currently entertained set, and so the information needed for

responding is always available. Equivalently, the subject could scan

the stimulus, matching its elements with eliminated hypotheses, and so

avoid dealing with the entertained set. Under this assumption any
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forgotten hypotheses simply become part of the set of hypotheses that

are currently entertained by the subject and have to be eliminated

again. In this view, a set of hypotheses is.not forgotten. Rather,

the subject only forgets which hypotheses have been eliminated.

A flow diagram of the Independent Hypothesis Elimination (IHE)

models appears in Figure 1. As the figure indicates, the subject is

assumed to begin the task by establishing two sets, or lists. The

set U0 is the set of hypotheses held by the subject to be untenable at

the beginning of the task. Uo may be described as containing all

hypotheses that are disallowed by the experimental instructions, but

the model deals only with those hypotheses that are described to the

subject as legitimate. In the context of this set (H) of hypotheses,

U0 is assumed to be empty. Since information provided to the subject

makes logical elimination of hypotheses possible, Un is.not generally

empty for.n>»0. The residual hypothesis set, Rn, is the complement

of Un with respect to H.

Hypotheses sufficient for solution of the kind of problem of

interest here must specify a partition of the stimulus set in which

the subsets are assigned to categories established by the experimenter.

(Cf. Haygood and Bourne, 1965.) A.hypothesis could, for example,

associate red figures with VEK and green figures with NONVEK. An equi-

valent partition would be obtained by associating red figures with VEK

and "everything else" to NONVEK. In a two—category problem, specifi-

cation of the second category, is redundant. The nonredundant representa-

tion is assumed in the present model. Adoption of this assumption requires

assumption of an additional step in the process, in which one of the two
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categories is adopted as a focal category, i.e., the subject chooses

to consider VEKs or NONVEKs to be positive instances. Stimuli are

assumed to be assigned to this focal category, then, throughout the

task.

The next step in the assumed process is to select a category

assignment, Ah, which associates the stimulus on trial Q_with VEK or

NONVEK. If in assigns S to the focal category (F), then the subject

sets up a list (Ln) of the cue values in the complement of the stimulus

(i.e., those.not present in the stimulus), which can be eliminated

if he is correct. If the subject does not assign the stimulus to

the focal category, then the cue values present in the stimulus are

placed in the list Ln.

If the response is called "right", the subject has only to

retain Ln and add its members to Un, the untenable set. Because little

processing is assumed to occur at this stage, the probability of

loss is relatively small. If the subject is told "wrong", however,

he must recover the complement of Ln with respect to H. The recovery

process is assumed to increase the likelihood of an error. Elements

are then forgotten from Un with probability fn. After Un has been

obtained in this way, the residual hypothesis set Rn, can be recovered

by eliminating the elements of Un from the full hypothesis set H.

On later trials, after enough information has been presented to

the subject for logical solution of the problem, the nature of the

assumed process depends upon whether solution has occurred. If only

one hypothesis remains, the problem is solved, and the response is

determined by whether the one value that the hypothesis associates with
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the focal category is present in the stimulus. If so, the stimulus

is assigned to the focal category; otherwise it is assigned to the

other category. If more than one hypothesis remains in the residual

set, the subject selects a category assignment by a strategy that is

.not specified in the flow chart. In an experiment for which pre-

solution performance has been stressed, such as Levine's (1966)

experiment, the assumed strategy is to respond according to a randomly

selected hypothesis from the residual set. In an experiment such as

Trabasso and Bower's (1966, 1968), using redundant relevant cues, it

is assumed that subjects notice the redundancy of the cues corresponding

to hypotheses in the residual set rather quickly when all other

hypotheses have been eliminated, and respond consistently with those

hypotheses. In the ordinary concept identification task, however, the

response selection process is assumed to be unrelated to hypotheses

in the residual set (including the correct one), and so responses are

randomly correct or incorrect. This property of the model would account

for Chumbley's (1969) finding that training-trial data were.not pre-

dictable by his HM model, since choice responses on the training trials

would not be related to the subjects' hypotheses.

Hypothesis States

It is more convenient to represent IHE Models in terms of hypo-

thesis states than in terms of subject states. If we consider the

probability, vin' that hypothesis H is in Rn' the state probability
i

vector for hypotheses on trial n is:

V = <v v

n ln’

2n’ ..., Vin, ..., vmn> , where there are p_hypotheses
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in R0. Since all hypotheses are, by assumption, in R0 with probability

1.

Vo = <1,1,l,1,l,1,1,l> .

Now if a transformation, Tin' can be specified such that

Vin = vi,n-l Tin’ then Vin can be obtained by successive applica-

tions of transformations to hypothesis states, and so Vn can be

obtained for n = 1,2, .... Given Uh, the probability distribution may

be obtained for the number of hypotheses in Rn. The probability that

there is exactly one hypothesis in Rn is

m
m . g P H.

iil Pr [Hi 83” . ¢E“’J#l] 1:1Pr [Hi 83“] iii r [ J an]

S
L
:

V. 1-

i=1 1 jil ( v3)

since hypotheses are eliminated independently. In general, if we de-

M

fine an mrelement vector Xn such that

x _ 1 if Hi ERn

ipn ' , i=l,...,m

o if H. éR
l .n

then Pr [MR ) = k] = z 1}; vx(l-v)1 x,
-“ Xn 2K i=1

where subscripts for v and.x have been excluded for clarity. Thus v

should be read as Vin and x should be read as xin' K is the set of all

vectors X such that

m - k
.2 xin _ '

i=1

When v=x;0, vx is taken to be 1, and for v=x;1, (1-'v)1""x is taken to

be 1. Thus the probability distribution can be derived from the state

probabilities for individual hypotheses.



Resppnse Assumptions

For situations such as the Levine (1966) experiment, in which

the subject is encouraged to optimize pro-solution responding, it is

assumed that the hypothesis upon which his responses are based is

selected from Rn, and that all elements of Rn are equally likely to be

selected. In this process there is no way to eliminate a hypothesis

unless information on the current trial allows its logical elimination,

and so every hypothesis in Un (i.e., every hypothesis not in Rn) is in

the set (Dh) of hypotheses that have been logically eliminable on or

before the,pth trial. It follows that the complement of Du is a sub-

set of Rn, and therefore that

N022) <N<Rn>

The probability that the working hypothesis (H*), which is selected from

O c .

Rn’ is also a member of Dn’ is

8

 

c c

Pr [H* EDn] : k‘él Pr [H* e:Dnl rn=k] . Pr [rn:k]

8 n

N(D )
= 2 C . Pr r =k

i=1 k [n ]

Eliminability Indicators

In the development that follows, it is convenient to define an

eliminability indicator, ein’ for the'ith hypothesis on trial p, The

indicator ein takes on the value 1 if H1 is eliminable on trial p, 0

otherwise. For the case of eight hypotheses, there is an ordered set of

eight such indicators for each trial, which may be represented as an eight-

element vector, En' Symmetry in the hypothesis set makes it possible to
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place the elements in any arbitrary order, given that the same order-

ing is maintained over all trials of a problem. On each trial, half

of the hypotheses are eliminable and half are.not. Thus we can

represent the vector for trial 1 as:

E1 = <1,1,l,l,0,0,0,0>

Half of the elements have the same value on trial 2 as on trial 1,

and the other half have the opposite value, assuming "orthogonality"

of stimuli (Cf. Levine, 1963). we can therefore represent the vector

for trial 2 as:

E2 = <l,l,o,o,l,l,o,0>

A vector for trial 3 that satisfies the orthogonality requirement for

the two vectors above is:

E3 = <1,0,l,0,l,0,1,0>

The principles outlined above apply to all of the Independent Hypothesis

Elimination (IHE) models. The individual IHE models differ with respect

to the.nature of the transformation, Tin’ that operates on v to
i ’ [1"]-

yield vin'

IHE Model 1

In IHE Medel 1, it is assumed that hypotheses are.not lost (i.e.,

forgotten) from Un. The probability that an eliminable hypothesis in Rn

is also in Rn+1 is the probability that the elimination process fails for

that hypothesis, i.e., lip if trial p_is an error trial or leg if it is a

correct trial. Thus
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75"?v, . - Pr [ not eliminated I eliminable ]
ln l,n—l

° Pr [ not eliminable ] + vi n ' Pr [.not eliminable ]
,

= v (1-pnein), where pn = w or pn = c.
i,n-l

Given a pair of values for ELand p, the transformation rule is speci-

fied for IHE Model 1 for the first three trials, and hypothesis state

probabilities can be generated in a Fortran program. Thus the same

procedure described above for the Chumbley model can be used to

evaluate IHE Model 1 against Levine's data.

Test values for the parameters of the model (ELand c were

used to generate expected proportions of tenable hypotheses for fOur

situations: following a W outcome on trial 1, and following trial 3

for the RRW, WWW, and RWW4WRW conditions. A Pearson chi-square

statistic was computed for each of three pairs of proportions consisting

of the trial 1 proportion and one of the three trial 3 proportions.

The observed proportions used in the computations were those from

Levine's study. The parameter values selected were those for which

the sum.of the three chi-square statistics was a minimum.

The procedure differed somewhat, because two parameters were

being varied. First a relatively coarse grid was need, in which;p and

p_varied in steps of .10. In regions where fit was best, a finer grid

‘was applied, until steps of .01 were used in the best-fit regions. ‘While

it must be recognized that extrema of functions (in this case, the

chi—square value) may be missed by such procedures, inspection of the

values generated did not suggest failure of monotonicity as parameters

were varied from an optimum value.
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IHE Model 2

A hypothesis in Rn-l is assumed to enter Un with a probability

determined by ein and pn, just as in IHE Model 1. If we represent

the probability that the hypothesis is in Rn immediately after the

elimination process as Vin? we have:

*_
v. v. _

1n l,n-l (1 Pn ein)'

Hypotheses in Un’ however, are assumed to be forgotten (and hence enter

Rn) with probability_f. Applying the forgetting operator to vin*,

V.
a _ *

ln vin + f<l vin )

* ..f+vin (l f)

= f+vi,.n—l (l‘Pn ein) (l‘f)

The probability §_is a free parameter of the model, and has the same

value on every trial. The transformation characterizing IHE Model 2 is

therefore completely specified.

The same method of parameter estimation and test of fit described

for IHE Model 1 was also applied to IHE Model 2 in order to fit the

model to Levine's data.

IHE Modelp3

This model differs conceptually from.IHE Mbdel 2 only in that.the

probability of retaining a hypothesis in Un is.not constant. If the

memory store for rejected hypotheses is separate from the memory store

for hypotheses currently being logically manipulated, the assumption of

a constant forgetting parameter seems reasonable. In IHE Model 3, how-

ever, these memory stores are assumed to be affected similarly by



50

processing requirements. MOre precisely, both retention of hypotheses

in Un and elimination of those currently being processed are assumed

to occur with the same probability pn on a given trial. Then,

* = _

vin Vi,.n-1 (1 9n sin)

Now, since hypotheses in Un are assumed to be forgotten with probability

l-Pn’

* _ _ *

vin vin + (l Rn) (1 Vin )

_ r

(1 En) + vin Rn

) p
(1‘9n) + v. (l-p .nl,n-l .n 8in

The transformation rule characterizing IHE Model 3 is completed.

The procedure for evaluating IHE Model 3 was the same as that for IHE

Model 1.

IHE Model 4

If the order of the two processes, hypothesis elimination and

forgetting of eliminated hypotheses, is reversed, a new model results.

This modified model describes a process in which the forgetting opera-

tion occurs when the subject is analyzing the stimulus and processing

information that leads to hypothesis elimination, rather than after

information processing has occurred. Such a model could, for example,

describe a process in which storage of new information tends to result

in displacing old information. IHE Model 4 is described here in terms

of the operators already described for IHE MOdel 3, applied in reverse

order. Thus we have

)v. * = v.

in lyn-l + (l-Pn) (l-v. ) = l‘Pn (l-V.
1,n-1 l,n-l

: * ..

vin vin (1 En ein)

=[l-pn (l-virn_l)] (l—pn ein)
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The parameters p_and p_were estimated, and IHE Model 4 was tested,

by the same procedure used for IHE Model 3.

IHE MOdel 5

Just as IHE Model 4 was obtained from IHE Model 3 by reversing

the order in which the forgetting and elimination operators are applied,

the corresponding operators for IHE Model 2 may be reversed to yield

IHE Model 5. Thus we obtain

) r = 1+f-fv.* = _

V’ vi,.n--1 + (l v l,n-1ipn—l

= * _

v. vin (1 En 6i

in ) = (1+f‘fvi,n-l) (l—p e. )
n .n in

The model is identical in all other respects to IHE Model 2, and

the same procedure was used for parameter estimation and fit that were

used for that model.

Comparison of Models

Levine (1966) reported the proportions that were used in the

present study for preliminary evaluation of the models described above.

The first of these is the proportion of hypotheses following an error

on trial one that are consistent with the information provided by that

trial. For each of three conditions, one error (RRW), two errors (WRW

or RWW), and three errors (WWW), Levine reported the prOportion of

hypotheses following the third trial (for conditions in which the out-

come was "wrong") that were consistent with the information provided

by the first three trials. For each of the models discussed above,

parameters were varied to generate probabilities corresponding to these

proportions and the parameter values that yielded the best fit to the
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observed proportions (by the criterion described previously) were

taken as estimates of the parameters. These estimates appear at

the right-hand side of Table 1.

At the top of Table l are the observed proportions reported by

Levine. The corresponding predicted values are given for each model.

The chi-square value for each condition appears in Table 1 just below

the expected third-trial proportion on which it was computed. The sum

of the three chi-squares appears on the same line with them, to the

right.

Each chi-square has two degrees of freedom if.none are deducted

for parameter estimation. Thus 6.0 is the critical value at the .05

level of significance. Thus each of the chi-square values for Chumbley's

HM model leads to rejection of the model. IHE Model 1 and IHE Model

3 fit even more poorly using either the sum of the chi-squares or

each chi—square as a criterion. One of the chi—square values of IHE

Model 4 is significant beyond the .01 level and the sum.is signifi-

cant beyond the .005 level. The fit to Levine's data is better for

IHE Model 2, but is not really good, since two of the three chi—squares

are significant beyond the .10 level and the sum is significant beyond

the .05 level with 5 degrees of freedom. For IHE Model 5 the fit is

much better. None of the chi—squares is significant at the .25 level.

The pseudo chi—square for the sum has three degrees of freedom after

correction for estimating p; p, andrf, It is significant beyond the

.25 level, but;not at the .10 level. If only two degrees of freedom

are deducted for the nondegenerate parameters p_and f, four degrees of

freedom remain. By this reckoning, the sum is.not significant even at

the .25 level.
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Certain features of the models became apparent as they were

fitted to the Levine data. All of the models predicted proportions

for trial one that are too small. This is quite pronounced for

Chumbley's HM Model, IHE Model 1, and IHE Model 3. For the last

two models mentioned, the Optimal value of the parameter p_for fitting

the data point for trial one (after one error), was obviously higher

than the optimal value for fitting the data points for trial three.

The parameter p, however, was unaffected by the trial one proportion

since trial one was an error trial. One result was that the estimate

of;p was higher than that of p, and the expected proportions of

consistent hypotheses after one, two, and three errors were in increas-

ing order rather than in the decreasing order of Observed proportions.

This kind of prediction by the model is qualitatively unacceptable.

The evidence presented.both by Levine (1966) and by Richter (1965)

indicates that information provided by "right" trials is more effective-

ly used than information provided by "wrong" trials.

In IHE Model 2, which has an additional parameter for forgetting,

both p;and‘p_1ose their potency as parameters. The best estimate for

each is 1.00. In effect, this means that the effect of adding the

forgetting parameter is to override the other two parameters.

The qualitative defect found in IHE Model 1 and 3 did.not appear

in IHE Model 4. The parameters p_and p, and therefore also the expected

proportions for the three outcome conditions, are in the prOper ordinal

relationship. Quantitative fit is.not impressive, however. There is

virtually no difference among the expected proportions on trial three,

and the expected proportion for trial one is low.
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The fit of IHE Model 5 is the best of all the models tested.

The expected proportion for the first trial fits well, and those for

the third trial in the three experimental conditions are properly

ordered. It is apparent, however, that the model does not differentiate

strongly enough among the three conditions. The expected proportions

are more similar than the observed.proportions.

Application of the models to Levine's data served as a screening

process by which some of the models could be excluded from further test-

ing against data collected in the present study. The least promising

of the models discussed above are Chumbley's HM model, IHE Medel 1,

and IHE Model 3. Besides generally poor fit, the two IHE models

displayed serious qualitative defects. The HM model did not seem to

warrant further testing, and there is reason to doubt that its author

intended that the model be applied to experiments such as those of the

present study, in which solution is stressed rather than pre-solution

performance.

0f the remaining three models, IHE Models 2 and 5 yield the best

fit to Levine's data. These models are quite similar, differing only in

the order in which the forgetting process (operator) and the hypothesis

elimination process (operator) are applied to the hypothesis state

probabilities. The remaining model, IHE Model 4, fits Levine's data less

adequately than the two just discussed, but was retained for further

testing. The procedure of Levine's study, in which blank trials were

administered, may have led to a greater degree of forgetting of feedback

information than occurs when feedback is given on every trial. Such a

state of affairs is suggested by the finding that the forgetting parameter
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(;_E‘_) in IHE Models 2 and 5 overrides the parameters 1'. and 3. There-

fore IHE Model 4, the best of the models that did not include the

parameter 3, was tested against the data of the present study.



METHOD

Design

Two separate experiments were conducted. In Experiment 1, pairs

of complementary stimuli were separated by one trial (lag 1) or five

trials (lag 5). The other independent variable, the sequence of out-

comes on the first three trials, was combined.with the lag variable in

an incomplete factorial design. There were two types of problems. In

the predominant type, all outcomes were predetermined. For these

problems, all possible outcome sequences were used on the first three

trials, and responses were called correct on the remaining six trials.

These are called fixed-outcome problems. In the other type of problem,

the first three outcomes were fixed, but the responses on later trials

were considered right or wrong depending upon whether they were

consistent with the stimulus-response outcome information on the first

three trials. These are called contingent-outcome prOblems. The first

two prOblems were of this type, as well as the first two problems in

the last half of the eighteen—problem set (problems 10 and 11). Each

subject performed on all problems, but two groups were given the

problems in two different orders. The outcome sequences are shown in

Table 2 for all problems for group 1, where an underscore with.no letter

indicates that the outcome for that trial was contingent upon agreement

with the hypothesis determined by trials 1 through 3. Asterisks mark the

trials on which the complementary stimuli, C and C2, were presented.
1

For group 2 the problems were arranged in a different order. Problems

57
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Table 2

Outcome Sequences for Experiment 1, Group 1

OutcomeTask

1.

2.

3.

R*

R*

R*

R*w*
7.

9.

10.

12.

R*
13.

R*

14.

R*
15.

16.

17.

R*
18.
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l, 2, 10, and 11 were presented in the same order and the problem

blocks 3-9 and 12-18 were interchanged.

The same initial-outcome variable was used in Experiment 2.

Three warmup problems were administered. Sixteen contingent-outcome

problems were administered in which the lag was always 5 and each of

eight initial-outcome conditions was administered twice. Apparatus

considerations made it convenient to administer 18 rather than 16

problems besides the warmup problems. Therefore the first problem

in the first half and the first problem in the last half of the

experimental problem set were extra fixed-outcome problems, inserted

so that the number of problems conformed to the apparatus constraint.

The treatment orders were varied by interchanging the problem blocks

in the first and second halves of the problem set as in Experiment 1.

The warmup and extra problems were administered in the same order

for both groups. The outcome structures for group 1 appear in Table

3. In Experiment 2 subjects were asked to state the correct hypothesis

at the end of each problem if they knew it, but were not asked to

guess.

Subjects

College students fulfilling an introductory psychology course

requirement served as subjects. In Experiment 1 all Group 1 subjects

were run before Group 2 subjects rather than in random order because

it was necessary to reorder all stimuli before changing groups. Since

all subjects had the same stimulus sequence in Experiment 2, subjects

were randomly assigned with the constraint that the sizes of the two groups



21.

20.

19.

18.

17.

16.

15.

14.

13 .

12.

ll.

10.

5.

3.

4.

2.

1.

Task Outcome

Outcome Sequences for Experiment 2, Group 1

Table 3

6O
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‘were kept as nearly equal as possible throughout. In each experiment

a few subjects were discarded because of apparatus failures and pro-

cedural errors. One subject was discarded because of avowed red-

green color blindness, although there was.no evidence that he had any

difficulty with color discrimination in the experiment. Data from.61

subjects were analyzed in each experiment. There were 31 subjects

in Group 1 and 30 in Group 2 for each.

Apparatus

For both experiments stimuli were presented on a rear-projection

screen of flashed opal glass. The screen was installed in an open-

backed cabinet of wood and hardboard, and was visible through a clear

plastic window 4 inches high by 12 inches wide, in the front of the

cabinet. The window was in three sections, and each section was

hinged at the top to form a transparent movable panel. The bottom.of

each section rested against a Microswitch, which served to register

responses. Figure 2 shows this cabinet. The labels "VEK" and "NON-

VEK" were placed on the leftmost and rightmost panels, respectively.

The center panel, on which the stimulus appeared, was locked so as to

be immovable. The categorizing response on each trial was indicated

by pressing the panel with the appropriate label. This device was

described previously in reports of similar research (Kenoyer, 1968;

Kenoyer and Phillips, 1968).

The subject inputs (switch closures) could be rendered ineffective

by the experimenter by means of a pushbutton control held in his hand;

another button on the same control device rendered the subject's inputs

effective. 'When these inputs were ineffective, a red light just above
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Figure 2. Stimulus display and response device.
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the stimulus window was turned on. When the inputs were effective a

response by the subject advanced the Carousel projector by which the

stimuli were displayed, showing the stimulus for the.next trial.

For Experiment 2 all stimuli could not be loaded simultaneously

into a single Carousel tray, and so two Carousels were used. The

stimuli for the three warmup problems were loaded in one Carousel pro-

jector and the remaining stimuli were loaded in a second Carousel, in

order to avoid interrupting the procedure to change trays.

Procedure

The instructions shown in Appendix A were read to the subjects. A

demonstration of the subject response panels was given, with the inputs

disabled, and the functions of the red signal light and response panels

were explained. ‘When subjects had questions, the instructions were

paraphrased. As the instructions state, the subject was supplied with

a card (Figure 3) listing the stimulus dimensions and the values on

each dimension. Another card, pictured in Figure h, was shown to

subjects when the nature of the concepts was being described.

In the first experiment the subject progressed through the 18

tasks with only momentary breaks between consecutive tasks. During this

interval the red light indicating the end of a problem was on. Subjects

typically began the new problem immediately when the light was extinguish-

ed; if not, the experimenter informed the subject that it was time to

start a.neW'problem. There was considerable variation in time to complete

the set of tasks, but nearly all subjects required more than 15 minutes

and less than 30 minutes.
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Figure 3 . Card shown to subjects to illustrate the nature

of concepts.
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ATTRIBUTES

Size:

Shape:

Color:

Border:

large

small

circle

square

red

green

bordered

unbordered

 

Figurel+. List of attributes and values.
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In the second experiment there were 21 tasks in all, and total

performance time was slightly longer. The procedure also differed in

that there was a pause after the familiarization trials to change pro-

jector connections, and subjects were asked to state the correct

hypothesis at the end of each task.

The experimenter sat to one side of the subject in a chair with

a writing surface. A record booklet was placed on the writing surface.

The subject sat in a chair facing the presentation device, which sat on

a table. The booklets for experiments 1 and 2 are shown in Appendices

B and C, respectively. The experimenter provided feedback for the first

three responses in accordance with the predetermined sequence of out-

comes for the first three trials in every case. For fixed-outcome

problems, all remaining responses were called "right." For contingent-

outcome problems, the experimenter tracked the subject's response

sequence on the decision tree shown in the protocol booklet. This

procedure determined the correct hypothesis for a problem.after three

trials, and subsequent outcomes were made contingent upon agreement with

the hypothesis determined in this way.

Stimulus Materials

The stimuli were figures projected on the rear-projection screen,

varying on four binary attributes: Size, shape, color, and border.

Figures were either red or blue, squares or circles, and either had a

white border or no border. The large figures were four times the area

of the smaller, and squares were approximately equal to circles in

area. All figures appeared on a dark background. For experiment 1 two

different randomized stimulus orders were used for the two groups. The
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two orders appear in Tables 4a and 4b. The stimuli for the first half

of the problem set are the same as those for the last half. This

repetition was caused by progressing through the entire set of slides

in the Carousel slide tray twice. Only one order was used in Experi-

ment 2. The stimuli for problem blocks 4-12 and 13-21 were identical

for the same reason just given for Experiment 1. The stimulus order

appears in Table 5.



Task

10.

ll.

12.

13.

l#.

15.

16.

17.

18.

Code:

68

Table 4a

Stimulus Sequences for Experiment 1, Group 1

LGCN

LGQB

SGQB

SRCN

LGCB

LRCB

SRCB

LRCN

LGCN

LGCN

LGQB

SGQB

SRCN

LGCB

LRCB

SRCB

LRCN

LGCN

L

G: green, Q

LGQB

LGCN

SRCB

SRQB

LRQB

SGCB

SGQB

SGCN

SGCB

LGQB

LGCN

SRCB

SRQB

LRQB

SGCB

SGQB

SGCN

SGCB

large, R:

SGCB

LRQN

SRQN

LRCB

SRCB

SRQB

LRQB

LGQN

SGQN

SGCB

LRQN

SRQN

LRCB

SRCB

SRQB

LRQB

LRQN

SGQN

red,

Stimulus

SGQB

SGCN

LRQN

LRQN

SGQN

SRCN

LGCN

LRQB

LRQN

SGQB

SGCN

LRQN

LRQN

SGQN

SRCN

LGCN

LRQB

LGQN

LRQB

LRCN

LGCB

SRQN

LGQB

SGQB

SGCN

SRQB

SRQN

LRQB

LRCN

LGCB

SRQN

LGQB

SGQB

SGCN

SRQB

SRQN

SRCN

SRQB

SRQB

SGQB

SRQB

LRQB

LRCB

LRQN

LRCN

SRCN

SRQB

SRQB

SGQB

SRQB

LRQB

LRCB

LRQN

LRCN

LRCN

SRQN

LGQB

LGQN

LRCN

LGCB

SGCB

SGQN

SRQB

LRCN

SRQN

LGQB

LGQN

LRQN

LGCB

SGCB

SGQN

SRQB

SRCB

SGQN

SGCN

SGCN

SGCB

LRQN

SRQN

LGCB

SRCN

SRCB

SGQN

SGCN

SGCN

SGCB

LRQN

SRQN

LGCB

SRCN

LGCB

LGQN

LRCB

SGQN

LGQN

LGQN

LGQB

SRCN

SGCN

LGCB

LGQN

LRCB

SGQN

LGQN

LGQN

LGQB

SRCN

SGCN

: circle, B: border, S: small,

square, N: border.
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Code:
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Table 4b

Stimulus Sequences for Experiment 1, Group 2

LGCN

LGQB

LRCB

LRCN

SRCB

SGQB

LGCN

LGCB

SRCN

LGCN

LGQB

SGQB

SRCN

LGCB

LRCB

SRCB

LRCN

LGCN

LGQB

LGCN

SGCB

SGCN

SGQB

SRCB

SGCB

LRQB

SRQB

LGQB

LGCN

SRCB

SRQB

LRQB

SGCB

SGQB

SGCN

SGCB

SGCB

LRQN

SRQB

LGQN

LRQB

SRQN

SGQN

SRCB

LRCB

SGCB

LRQN

SRQN

LRCB

SRCB

SRQB

LRQB

LGQN

SGQN

Stimulus

SGQB

SGCN

SRCN

LRQB

LGCN

LRQN

LGQN

SGQN

LRQN

SGQB

SGCN

LRQN

LRQN

SGQN

SRCN

LGCN

LRQB

LGQN

LRQB

LRCN

SGQB

SRQB

SGCN

LGCB

SRQN

LGQB

SRQN

LRQB

LRCN

LGCB

SRQN

LGQB

SGQB

SGCN

SRQB

SRQN

L: large, R: red, C: circle,

SRCN

SRQB

LRQB

LRQN

LBCB

SRQB

LRCN

SRQB

SGQB

SRCN

SRQB

SRQB

SGQB

SRQB

LRQB

LRCB

LRQN

LRCN

LRCN

SRQN

LGCB

SGQN

SGCB

LGQB

SRQB

LRCN

LGQN

LRCN

SRQN

LGQB

LGQN

LRCN

LGCB

SGCB

SGQN

SRQB

SRCB

SGQN

LRQN

LGCB

SRQN

SGCN

SRCN

SGCB

SGCN

SRCB

SGQN

SGCN

SGCN

SGCB

LRQN

SGQN

LGCB

SRCN

LGCB

LGQN

LGQN

SRCN

LGQB

LRCB

SGCN

LGQN

SGQN

LGCB

LGQN

LRCB

SGQN

LGQN

LGQN

LRQB

SRCN

SGCN

B: border, S: small,

G: green, Q: square, N: no border.
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Table 5

Stimulus Sequences for Experiment 2

Task Stimulus

1 , LRCN SRCB SGCN SGCB SGQN LGCN LGCB SRCN SGCN

2 . SGQB LGQN SRQN SGCN SRCN LRCB SRQB LRQN LRCN

3 . LRCN SRCB SRQN LGCN LGQB LRCB SGCN LRQN LGCB

LL. LGQB LRQN LGCN SGCN LRCN SGQN LGQN SRQN SRQB

5 . SGCB SGQN SRQB SRCN LGQN SRQN LRCN SGCN SRQB

6. LRCB SRQB SGCB SRCN SGQB LRQB LGCB LGQN LRQN

7 . LRCN LGQN SGCN SRQB LRQN SGQN SRCN LGCB LRQB

8 . SRCB SGQB LRQB LGCN LRCB SGCB LGQB SRQN SGCN

9, SGQB SRCB SRQN LRQN SRQB LGQB SGCN LRCB LGCB

10 . LGCN SGCB LGQB SRCB SGQB LGCB LRCN LRQB SRCN

11. SRCN SRQB LRCB LRQN SRQN SGQB LRQN SGCN SGQN

12, LGCB LRQB SRCB SGQN LGQB SRQB LRCN SGCB LGQN

13, LGQB LRQN LGCN SGCN LRCN SGQN LGQN SRQN SRQB

11+. SGCB SGQN SRQB SRCN LGQN SRQN LRCN SGCN SRQB

15. LRCB SRQB SGCB SRCN SGQB LRQB LGCB LGQN LRQN

16. LRCN LGQN SGCB SRCN SGQB LRQB LGCB LGQN LRQN

17, SRCB SGQB LRQB LGCN LRCB SRCB LGQB SRQN SGCN

18 . SGQB SRCB SRQN LRQN SRQB LGQB SGCN LRCB LGCB

l9 . LGCN SGCB LGQB SRCB SGQB LGCB LRCN LRQB SRCN

20 , SRCN SRQB LRCB LRQN SRQN SGQB LGQN SGCN SGQN

21. LGCB LRQB SRCB SGQN LGQB SRQB LRCN SGCB LGQN

Code: L: large, R: red, C: circle, B: border, S: small,

G: green, Q: square, N: no border.





RESULTS

Test of Medals

Detailed predictions may be derived from some current models

for the experimental conditions of the present study. Several such

predictions are evaluated below.

The first of these follows from the assumption (Bower and

Trabasso, 1964) that subjects begin a concept identification task in

a guessing state and remain in that state until an error occurs, at

which time they select a hypothesis. In the RRR condition it follows

that a subject cannot have solved the problem at the end of three

trials, since there have been no errors. The probability that a subject

in this condition makes a correct response on any trial after the third

is than 1/2, provided that no error has occurred. The probability of

making no errors on the remaining six trials is (1/2)6=1/64. The

observed prOportions of errorless solutions for the RRR condition were

0.836 for Experiment 1 and 0.869 for Experiment 2. These observations

were based on 61 subjects in each experiment, each performing on one

RRR problem in Experiment 1 and on two in Experiment 2 and.so the

proportions clearly are reliably different from 1/64.

For the WRR condition predictions from two models (Bower and

Trabasso, 1964; Trabasso and Bower, 1966) are equivalent and quite clear.

Since subjects responses were called "wrong" on trial 1, these models

assume that selection of a new cue occurred after that trial. The

models assume "local consistenqy," and so the subject's selection of

a cue following an error trial must, according to this assumption, be

71
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consistent with the information provided by that trial. Since the

correct hypothesis in this condition is selected by the experimenter

so that it agrees with the subject's choices on trials 2 and 3, the

models predict errorless solutions with probability 1. The observed

proportions of errorless solution were 0.738 for Experiment 1 and

0.694 for Experiment 2. Both proportions are reliably different from

1.

The Restle (1962) model does.not include a consistency check on

the error trial, and so predicts only that all responses will be con-

sistent with trials 2 and.3 in such fixed outcome problems. The pro-

portion of WRR problems in Experiment 1 for which this two-trial con-

sistency held was 0.82.

The Bower and.Trabasso (l96fi) model assumes consistency checks

after errors, in which the cue to be selected is checked against the

error-trial information only, and so for the WWR condition this model

predicts that all responses will be consistent with trials 2 and 3,

but not necessarily with trial 1. The same prediction holds for RWR,

since the second-trial consistency check looks back to the correct

choice on trial 2 and the experimental procedure ensures agreement with

trial 3 for this condition as well as for WWR. The proportion of

'WWR problems for which consistency with trials 2 and 3 was found was

.75 and the corresponding proportion for RWR problems was .79. Ninety-

.nine per cent confidence intervals for the probabilities associated

‘with these proportions were computed by means of the normal approxima-

tion to the binomial distribution. Since both intervals lie below .88,

it is apparent that the probabilities are.not.near 1.
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A pair of models developed.more recently yield the same pre-

dictions for the two conditions discussed just above. Trabasso and

Bower (1968) presented two models which differ in their predictions

about behavior such as learning a second redundant relevant cue, but

cannot be discriminated on the basis of manipulations of the outcomes

on the first three trials, as in the present experiment. These models

assume consistency checking against the error trial as does the Bower

and Trabasso (l96fi) model and, although they assume multiple-hypothesis

processing, their prediction for this case is similar to that of the

1964 model. After the second trial the subject is assumed to select

a new "focus sample" without regard to trial 1 information. According

to these models, the sample is then narrowed down on correct trials by

discarding those hypotheses inconsistent with the chosen stimulus.

Consequently there are at least one, at most two hypotheses left in

the sample after trial 3. If there is one hypothesis, the subject's

responses are consistent with it, and.perfect consistency with trial

2 results. If there are two hypotheses, the subject's response is

consistent with both of them on each trial until a trial occurs on

which they are placed in Opposition. 'When they are opposed, the sub-

ject;narrows the focus by discarding one of them.and so retains the

remaining hypothesis throughout the remainder of the problem. In

either case, then, every response is consistent with the trial 2

response and with trial 3 as well. This is the same prediction made

by the 1964 model for the'WWR condition and the RWR condition. The

observed proportions were .75 and .79, as stated in the preceding

paragraph.
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The model (Trabasso and Bower, 1966) that relinquished the

samplingdwith-replacement axiom also added consistency checking against

the trial preceding the error trial. For the WWR and RWR conditions,

according to this model, a consistency check occurs, comparing trials

1 and 2, eliminating any cue that is inconsistent with those outcomes,

and selecting a new cue value that agrees with trial 1 and trial 2

outcomes. Consistency with trials 1 and 2 is thus assured by the

subject's behavior and consistency with trial 3 is generated by the

experimental procedure. This model therefore predicts errorless per-

formance after trial 3 with probability 1 for both RWR and WWR. The

observed proportions of errorless performance of these conditions

were 0.694 and 0.410, respectively.

The outcome combinations still to be considered are those with

a "wrong" on trial 3 (XXW). The Bower—Trabasso (1964) model predicts

for this condition that all responses will be consistent with trial

3 information. By the same argument given above, with respect to

trial 2 consistency in the XWR conditions, the two more recent multiple-

hypothesis models (Trabasso and Bower, 1968) yield the same prediction

for this condition. The proportion of trial-three-consistent proto-

cols observed for XXW conditions was 0.795.

Since it assumed consistency checking against the trial before

the error trial, the Trabasso-Bower (1966) model predicts perfect

consistency with trial 2 as well as trial 3 in the XXW case. The

observed relative frequency of such consistency on XXW problems was

0.504.
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Lag Between Complementary Stimuli

Another test of local consistency is that described by Kenoyer

and Phillips (1968), in which consistency is indicated by the sub-

ject's matching responses on complementary stimuli. A description

of this procedure and its rationale was given in a previous chapter.

The finding by Kenoyer and Phillips that matches occurred with

probabilities different from 1 was confirmed in the present study.

The present design also considers two values of lag (the.number of

trials intervening between complementary stimuli). In Experiment 1

the relative frequencies of matches were 0.702 for lag l and 0.586 for

lag 5. The decrease over lag is significant, and indicates some loss

of information over trials. Although this loss could be interpreted

as a forgetting process, further examination of the data suggests

another possibility.

Whenever errorless solution occurs, the choice responses

corresponding to the complementary stimuli necessarily match. Since

the criterion for correct responding is established partly by the trial

on which the first member of the complementary pair (Cl) is presented, a

correct response to the second member is necessarily the same response

that is called "wrong" for the first member. Therefore, any subject

who solves the problem before the presentation of the second member of

the complementary pair (C2) scores a match on that problem. Methods have

;not been devised for identifying all subjects who solve before the trial

on which C is presented, but some improvement can be effected by elimin-

2

ating those subjects who solve with no errors after the third trial.
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It is useful, therefore, to examine the conditional proportion

of matches given that errorless solution does not occur. For Experi-

ment 1 the conditional proportion was 0.498 for the lag 1 condition

and 0.328 for lag 5. If no information from.the error trial and subse-

quent trials were utilized, the corresponding probability would be .5.

The lag l proportion is not significantly different from.this chance

level, but the lag 5 proportion is below chance. The number of observa-

tions (i.e., the;number of problems with at least one error) from which

these proportions were computed was 479.

The finding that the lag 5 proportion was below chance suggests

that the decrement is not simple forgetting. If it is regarded as

information loss, it must be attributed to misinformation. A plausible

source of misinformation in Experiment 1 is the series of "right" rein-

forcements between the two complementary stimuli. If subjects do process

information on those trials, then any response that is not consistent

with the hypothesis established on the first three trials leads to

category information that is inconsistent with the established

hypothesis.

Experiment 2 did not provide this potential source of misinforma-

tion, since feedback after the first three trials was contingent on

the response, and feedback on the first three trials, though arbitrary,

was.necessarily consistent with the correct hypothesis. If the spec-

ified kind of misinformation did occur in Experiment 1, the conditional

probability of a match should be greater in Experiment 2. The local

consistency assumption, on the other hand, predicts a lower conditional

probability of a match in Experiment 2, since each error trial is

assumed to "restart" the subject. The conditional relative frequency
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observed in Experiment 2 was 0.682, which was reliably greater than

that for either lag in Experiment 1. This proportion was calculated

for a sample of 330 instances. The sample size was smaller in Experi-

ment 2 because that experiment was not designed primarily to gather

data on matches, and consequently the first of the complementary pair

of stimuli did.not always coincide with an error trial. The variation

was.not due to differences in the.number of subjects who made errors:

the number of subjects making at least one error averaged over condi-

tions was approximately 36 in Experiment 1 and.approximately 37 in

Experiment 2.

General Results

Although the major emphasis in this study was on the evaluation

of models and of certain theoretical assumptions, several results should

be reported because of their relevance to other questions that may be

raised about the study. Such results are included in this section

of the Results chapter.

In Experiment 1 subjects were not informed of errors on trials

after the third in most of the problems (problems 3-9, 12-13), but were

told "right" regardless of their responses on these trials. Regardless

of the effectiveness of subjects' initial strategies, feedback indicated

perfect performance, and so there was.no apparent need to improve. In

this situation it seems reasonable to expect little or no improvement

in actual performance. This expectation was checked.by means of two

dependent variables, a binary indicator variable indicating either that

one or more errors occurred (1) or that solution occurred without error

(0), and the number of errors occurring after the third trial. By
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"error" is meant a response that is not consistent with the hypothesis

established on the first three trials. Subjects were not informed of

these errors in Experiment 1. The comparison was between the mean

for the first half of the problems and the mean for the last half

(problems 3-9, 12-18). The relative frequency of at least one error

'was 0.550 on the first half and 0.517 on the second half. The mean

;numbers of errors were 1.852 and 1.813 for the first and last halves

of the problems, respectively. The difference between neither of these

pairs of numbers is significant. It may be noted that while the number

of errors decreased over problems, the relative frequency of at least

one error increased slightly. The comparisons were based on data

from 61 subjects.

The situation was different for Experiment 2. On all but the

two filler problems, consistent feedback was provided on all trials.

Under these conditions it is reasonable to expect some improvement over

problems. The same dependent variables described just above were used,

as well as a third variable, an indicator variable which took the value

1 if the subject verbalized the hypothesis correctly after the problem,

or 0 otherwise. The probability of at least one error was .502 for

the first half (problems 5-12) and .395 for the last half (problems

14-21). The mean number of errors was 1.256 for the first half and

1.029 for the last half. The probability of correct verbalization was

.730 for the first half and .793 for the later ones. None of these

differences is significant although all are in the proper direction to

indicate improvement. Problems 4 and 13 (the filler problems) were

excluded from the analysis. ‘Warmup problems (1—3) were also excluded.
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Another indicator of change in performance is match frequency.

If a subject becomes more efficient in encoding the stimulus, he may

be expected to retain more information about the stimulus over trials.

If so, the redundancy in the second member of a complementary pair of

stimuli (C2) would result in an increasing tendency to respond correctly

when C2 is presented, and match frequency would increase. In Experi-

ment 1 the relative frequency of a match was .567 for the first half

and .520 for the second half. The difference is.not significant.

Matching responses on complementary stimuli are not independent

of errorless solution. If solution occurs at any time before C2 (the

second member of the complementary pair) is presented, a correct

response, and therefore a match, occurs on that trial. It is possible

that the effect of lag on match frequency may be due in part to the

effect of lag on the proportion of errorless solutions. The effect of

lag on the prOportion of errorless solutions was therefore assessed.

Proportions of problems with at least one error before solution appear

in Table 6, in which rows are experimental conditions defined by the

outcomes on the first three trials of the problem, and columns are lag

conditions. The marginal proportions for the two lag conditions were

.612 for lag l and .618 for lag 5. The difference is not significant,

and seems too small to mediate effects of any consequence.

The marginals for outcome conditions vary more strongly. The

'variability among these conditions was significant (>g=34.18, df=5).

The observations on which the chi-square was computed were on the same

subjects, and the independence assumption underlying the use of chi-

square is therefore questionable. However, the result of the test

serves as an indication of rather large variability among the proportions.
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Table 6

Pr0portions of Problems of Which At Least

One Error Occurred, By Experimental Conditions

Lag 1 Lag 5 Row Mean

w .721 .852 .787

‘WWR .459 .410 .435

WRW .721 .721 .721

wa .770 .754 .762

WRR . 311*

RWR .459 .426 .443

RRW .541 .541 .541

RRR .164*

Column

Mean .612 .617 .615

*The WRR and RRR conditions were excluded from.the analysis,

since both lags were not used for these conditions.
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The number of VEK presentations in the first three trials is

a dependent variable, since the outcomes on those trials are pre-

determined and the classification on each trial is jointly determined

by the response and the predetermined outcome. The number of VEK

presentations was counted for each subject and outcome condition, and

intercorrelations were computed among these.numbers. The inter-

correlations appear in Table 7. It is apparent that the problems

with the same first-trial outcome intercorrelate positively and that

the correlations between these and the problems with the opposite first-

trial outcome are negative, although the correlations are.not large.

Under the fixed-outcome condition that characterizes these first three

trials, the stimulus is what the subject calls it (VEK or NONVEK) on

"right" trials and the opposite of what he calls it on "wrong" trials.

The correlation pattern suggests, then, that individual subjects tend

to choose VEK or NONVEK consistently on these first three trials.

The following procedure was used to evaluate this conjecture.

Correlations were computed on a binary variable indicating VEK (1) or

NONVEK (0) for the first trial. The intercorrelations among problems

are shown in Table 8 for group 1. 'With few exceptions (9 out of 162),

the correlations are positive, and many of them.are greater than .352,

which is the smallest correlation that is significantly different from

zero at the .05 level for 31 subjects. The correlations for group 2

appear in Table 9. Here there is only one negative correlation and

again several of the correlations are significantly greater than zero.

For 30 subjects,.r_is significant at the .05 level when'r_> .358. These

correlations indicate some individual consistency in the selection of a
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Table 7

Correlations Among Numbers of VEK Presentations

in Experimental Conditions

(All Correlations Multiplied.by 100)

100 44 22 10 -25 -54

44’ 100 37 13 -29 —51

22 37 100 06 12 -26

10 13 06 100 ~06 -07

-25 -29 12 -06 100 18

-54 -51 —26 -07 18 100

-22 -15 -02 -36 20 15

~07 -18 02 05 21 19

-15

-02

-36

20

15

100

08

~18

02

05

21

19

08

100
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given categorization response on these pre-solution trials. The

means (which are, of course, probabilities) do not reveal this

.nonrandom behavior. For group 1, the proportions of VEK responses

were .468, .516, and .556 for the three trials, respectively. For

group 2, the corresponding proportions were .554, .568, and .493. From

these proportions it is reasonable to infer that there is no preference

in the population of subjects for either response. The correlations

indicate, however, that there are consistent preferences at the indivi-

dual level which are not apparent in group means. The above results

support the contention that subjects begin such problems;nonrandomly

rather than in a guessing state. Some of the variability of early

choice responses is therefore accounted for by response preference.

Another potential source of behavior regularity that was investi—

gated is the correlation of responses with the presentation of cue

values. Trabasso and Bower (1964) have dealt with the tendency of groups

of subjects to select a given cue by including cue weighting parameters

in their models. The present method, however, deals with tendencies

of individual subjects to assign stimuli with a given property to a

given category. If a subject tends to assign large stimuli to VEK,

for example, then his VEK responses are, in a loose sense of the term,

"correlated" with the appearance of large stimuli. If VEK and NONVEK

are coded as 1 and 0, respectively, and size is coded so that 1 indicates

large and 0 indicates small, the stimulus and response are quantified and

the term "correlation" can be applied in the more rigorous sense of the

Pearson product-moment correlation. A positive correlation between classi-

fication and size then indicates a tendency to emit VEK responses when
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large stimuli are presented, and a negative correlation indicates the

opposite classification preference. For each subject a correlation

can be obtained between his string of responses and the string of values

for each cue.

The string of numbers identifying trial numbers within problems

and the string of problem numbers can also be correlated with the

response variables just described. A positive correlation between a

subject's responses and trial numbers indicates a greater tendency to

emit VEK responses (coded l) on later trials than on earlier trials,

while a ;negative correlation indicates a decreasing preference for the

VEK response. Either a positive or a.negative correlation may then be

taken to indicate a change in response preference over trials. Similar-

1y, nonzero correlations between the response variable and problem number

indicate a shift in response tendency over problems.

The correlations described above were computed for a limited set

of trials. The set of trials that were of interest are those over which

the subject cannot reasonably be expected to change hypotheses and for

which sufficient information has not been provided for solution to the

problem. Therefore no trials after the first three were included and,

of the first three, only those trials that were not preceded by a "wrong"

outcome were used in this analysis. A nonzero correlation between any

cue and the classification response therefore serves as a measure of

the contingency relation between an individual's responses and the presence

of a particular cue zalug, If subjects began problems consistently with

the same cue (e.g., size) but alternately classified small stimuli as

VEK and large stimuli as VEK consistent selection of a cue would.not

;necessarily yield nonzero correlations, but the stronger consistency,
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i.e., a consistent contingency relation between classification response

and cue zalgg_over observations, appears as a nonzero correlation.

For this analysis it is necessary to consider subjects, cue

values, trial number, and problem number as variables. Observations

of values taken on by these variables are taken over different occasions

(trials). The portion of the correlation matrix that shows inter-

correlations among subjects is not relevant to the analysis, since

the object is not to identify similar response strings. The part that is

of interest is the set of intercorrelations between response strings and

the other variables, and the intercorrelations among the non—subject

variables.

Twenty-four trials were used in the analysis of each of the two

groups. The critical value for the correlations between qualitative

variables (phi coefficients) with this sample size is .40. Most of the

correlations with cues do.not reach significance, but there are a few

exceptions. For example, the classificational responses of Subject 16

in group 1 correlated significantly with both size and border (Table 10).

An especially impressive regularity is indicated by the entries

for Subject 11 in Table 11. PACKAGE (Cf. Hunter and Cohen, 1969), the

set of correlational programs used for this analysis, enters "900" in

the correlation table for variables with zero variance. subject 11

made the same response on all trials used in the analysis. Inspection

of the data card showing the classification responses for the first

three trials for all 18 problems revealed that all but two of the 54

responses were VEK.
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Table 10

Correlations of subjects' Responses With Cue

Subject

31

Large

Red

Circle

Border

Problem

Trial

values, Trial, and Problem Number

Group 1

(All Correlations Multiplied by 100)

large Red Circle

9

16

41

-7

~21

-29

~0

22

0

9

—7

~14

~o

21

-7

~0

~0

8

~22

~12

~21

21

-15

~8

-7

~0

28

8

-7

14

-7

~14

100

16

7

-5

16

32

-5

~18

-27

~11

-25

-13

2

—16

12

2

-25

5

11

~2

2

13

-7

39

30

~4

~2

—16

-19

2

20

-7

~18

-25

-34

~14

Border Problem

33

~29

3

16

11

2

-14

~18

13

14

34

~8

~64

7

—1

25

38

16

~20

~10

~28

-15

8

-23

9

-6

~28

8

-9

-53

-55

5

-5

ll

~8

100

-4
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Table 11

Correlations of subjects' Responses With Cue

Values, Trial, and Problem Number

(All Correlations Multiplied by 100)

Large

-7

~21

l6

.5

14

-6

14

-32

39

-9

900

-8

-23

6

~4

20

6

~11

~14

~14

-29

-3

14

13

2

39

2

~10

9

_29

100

Red

~14

~14

7

-0

12

-29

—0

~12

-15

~12

900

~0

-0

~14

35

~28

Group 2

Circle

16

~16

2

23

4

-25

14

29

14

4

900

-7

-23

-7

-6

-31

~12

~40

~11

~20

~11

~42

-27

32

44

44

44

19

~4

20

5

16

100

~44

16

-27

Border

-8

38

-23

~18

4

13

~20

~24

3

1

900

2

33

33

-3

-8

92

-43

33

13

28

13

~12

_lg

-36

-19

13

-l

13

~18

8

441+

100

4

36

Problem

39

-8

26

23

34

”15

~8

~18

900

-0

~21

31

10

~16

-25

-8

~12

~12

13

27

27

~14

~2

14

16

100

~4

Trial

26

20

15

~10

~27

~44

900

-15

54

-15

-18

32

10

-0

~10

77

~10

.50

-63

~16

-63

-4

61

~21

26

-27

36

~4

100
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There are large correlations with both trial number and problem

.number. Unfortunately, the assumptions;necessary to determine a

significance level for these correlations cannot be justified. The

magnitudes of some of the correlations are such as to suggest, how-

ever, that the subjects with which they are associated shifted.their

response preferences over problems or over trials.

Evaluation of the IHE Models

The probability of each possible sequence of errors and correct

responses can be generated from the IHE models, and so it is possible,

in principle, to test the fit of the models against observed frequencies

of the error protocols. The procedure is.not feasible for the present

study, however, since for 6 trials there are 26:64 possible sequences.

There are three fixed outcomes at the beginning of each problem and

six response-contingent outcomes constitute the remainder of the

problem. Each of these conditions can therefore yield 26:64 different

outcome sequences for the trials after the third. There are only two

observations on each condition for each subject, for a total of 122

observations on each condition. The number of observations fer each

condition is therefore less than twice as large as the number of

categories. This ratio is.not sufficiently large for minimum chi-square

methods of estimating parameters. The usual way of avoiding this problem

is to consolidate categories.

One way of consolidating in the present study is to place all

protocols for a given condition having the same trial of last error in

the same category. This procedure yields a separate probability distri-

bution for trial of last error for each condition. There are only seven
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categories (one for errorless runs on the last six trials). Given

that the expected frequencies for a given set of parameter values are

all sufficiently large, a chi-square measure of goodness of fit is

reasonable.

A learning curve can also be obtained for each condition. For

each protocol generated by the model, the probability of that protocol

is added to each point on the error probability curve (learning curve)

where the protocol shows an error. For example, a probability must

be generated for the sequence 111000111 (where 1 indicates an error, 0

a correct response), as well as for all other sequences of the same

length. This protocol can occur only in the WWW condition, as indi-

cated by the errors on the first three trials. Then for the WWW

condition, the probability that this sequence occurs is added to

error probabilities for trials 7, 8, and 9. When all possible sequences

have been tallied in this way, the resulting probabilities constitute

the learning curves for the eight experimental conditions.

The procedure used for this test was similar to that described

for the preliminary test discussed previously, in which Levine's (1966)

data were used. Test values of the parameters were entered as data

into a Fortran program, and theoretical (predicted) learning curves

and trial of last error (TLE) curves were generated. A chi-square

statistic was computed for each of the two curves for each experimental

condition, and the sum of these chi-squares was taken as the indicator

of goodness of fit.

Each of the eight experimental conditions then had seven TLE

data points and six learning curve points, for a total of 104 data points.
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Computing the theoretical curves and the chi-square statistics for so

many points is obviously more time-consuming than the preliminary

analysis. Results of that analysis were therefore used to simplify

the present one. Since the best estimate of the parameter gpwas

1.00 for both IHE Model 2 and IHE Model 5 in the preliminary test,

this parameter was not varied in the present test. With g?1.00 for

these two models, each had only two parameters, w;and.§} As in the

preliminary test, IHE Model 4 had the two parameters w;and g,

The parameter values yielding the best fit, the chi-square

values for the TLE curve and the learning error curve for each condi-

tion, and the sum of the chi-squares appear in Table 12 for IHE

Models 2, 4, and 5. The minimum sum found for IHE Model 2 was 1100.,

that for IHE Model 5 was 643., and that for IHE Model 4 was 266. There

are thirteen frequencies (twelve degrees of freedom) for each condi-

tion, and eight conditions, yielding 96 degrees of freedom for the

overall chi-square before correction for estimated parameters. The

sums for all three IHE models are therefore tested against chi-square

with:ninety~four degrees of freedom. All three models then, deviate

from the observed data of the present study sufficiently to be rejected

beyond the .001 level.

Of the three models, IHE Model 4 is clearly superior. For this

model, the observed and.expected proportions for trial of last error

appear in Table 13, and those for the mean error curve are presented

in Table 14. The predicted proportions shown are all generated from

the parameter values shown in Table 12, those that yielded the minimum

sum of chi-squares. Although the model does.not fit adequately by this



I
H
E

I
H
E

C
h
i
-
s
q
u
a
r
e
s

f
o
r

F
i
t

o
f

L
e
a
r
n
i
n
g

C
u
r
v
e
s

a
n
d

T
L
E

C
u
r
v
e
s

t
o

E
a
c
h

E
x
p
e
r
i
m
e
n
t
a
l

M
o
d
e
l

2

T
r
i
a
l

o
f

L
a
s
t
E
r
r
o
r

L
e
a
r
n
i
n
g

C
u
r
v
e

M
o
d
e
l
4

T
r
i
a
l

o
f

L
a
s
t

E
r
r
o
r

L
e
a
r
n
i
n
g

C
u
r
v
e

M
o
d
e
l

5

T
r
i
a
l

o
f

L
a
s
t
E
r
r
o
r

L
e
a
r
n
i
n
g

C
u
r
v
e

R
R
R

1
2
0
.

4
3
.

2
.

T
a
b
l
e

1
2

C
o
n
d
i
t
i
o
n

f
o
r

I
H
E
M
o
d
e
l
s

2
,

4
,

a
n
d

5

R
R
W

3
7
.

4
8
.

3
2
.

1
5
.

R
W
R

6
5
.

1
4
.

2
0
.

2
1
.

5
8
.

1
6
.

R
W
W

1
8
.

2
1
3
.

7
.

3
2
.

5
3
-

W
R
R

6
2
.

1
5
.

5
7
.

1
5
.

W
R
W

1
7
.

2
4
9
.

1
1
.

2
8
.

5
6
-

4
4
.

1
0
4
.

5
2
.

W
W
W

1
8
.

1
7
0
.

1
4
.

1
7
.

3
9
.

4
3
.

S
u
m
s

2
8
1
.

7
1
9
.

1
0
0
0
.

1
3
9
-

1
2
7
.

2
6
6
.

3
9
3
-

2
5
0
.

6
4
3
.

P
a
r
a
-

m
e
t
e
r
s

w
=
.
9
9

F
=
.
O
3

W
=
-
7
3

W
=
-
5
5

F
=
.
O
3



T
a
b
l
e

1
3

E
x
p
e
c
t
e
d

a
n
d

O
b
s
e
r
v
e
d
P
r
o
p
o
r
t
i
o
n
s

f
o
r

T
r
i
a
l

o
f

L
a
s
t

E
r
r
o
r

i
n

E
a
c
h

E
x
p
e
r
i
m
e
n
t
a
l

C
o
n
d
i
t
i
o
n

I
H
E
M
o
d
e
l
4

T
r
i
a
l
N
u
m
b
e
r

3
4

5
6

7
8

9

R
R
R

E
x
p
e
c
t
e
d

l
.

.
0

.
O

.
0

.
O

.
O

.
0

O
b
s
e
r
v
e
d

.
8
7
7

.
0
3
2

.
0
0
0

.
0
2
4

.
0
0
0

.
0
1
6

.
0
4
9

R
R
w
E
x
p
e
c
t
e
d

.
3
5
3

.
1
1
3

.
1
0
0

.
0
9
2

.
0
9
1

.
1
0
4

.
1
4
7

O
b
s
e
r
v
e
d

.
6
3
1

.
0
6
5

.
0
3
2

.
0
3
2

.
0
1
6

.
1
1
4

.
1
0
6

R
W
R

E
x
p
e
c
t
e
d

.
5
5
7

.
0
8
7

.
0
7
1

.
0
6
2

.
0
6
0

.
0
6
8

.
0
9
5

O
b
s
e
r
v
e
d

.
7
2
1

.
0
7
3

.
0
1
6

.
0
4
0

.
0
0
8

.
0
3
2

.
1
0
6

R
W
W

E
x
p
e
c
t
e
d

.
2
5
4

.
1
1
5

.
1
1
2
;

.
1
0
7

.
1
0
9

.
1
2
5

.
1
7
8

O
b
s
e
r
v
e
d

.
2
8
6

.
0
7
3

.
0
9
8

.
1
0
6

.
0
4
0

.
1
4
7

.
2
4
5

‘
W
R
R
E
x
p
e
c
t
e
d

.
7
5
7

.
0
5
1

.
0
4
0

.
0
3
4

.
0
3
2

.
0
3
6

.
0
5
0

O
b
s
e
r
v
e
d

.
7
3
7

.
0
1
6

.
0
5
7

.
0
4
0

.
0
2
4

.
0
5
7

.
0
6
5

W
R
W

E
x
p
e
c
t
e
d

.
3
0
0

.
1
1
6

.
1
0
6

.
1
0
0

.
1
0
0

.
1
1
5

.
1
6
3

O
b
s
e
r
v
e
d

.
2
7
0

.
0
9
8

.
0
7
3

.
0
5
7

.
0
9
8

.
1
8
0

.
2
2
1

W
W
R

E
x
p
e
c
t
e
d

.
4
4
4

.
1
0
5

.
0
8
8

.
0
7
8

.
0
7
6

.
0
8
7

.
1
2
2

O
b
s
e
r
v
e
d

e
6
5
5

e
0
5
7

e
0
8
1

e
0
4
0

e
0
1
5

e
0
4
9

e
0
9
8

W
W
W

E
J
C
p
e
C
t
e
d

e
2
2
6

e
:
L
l
L
l
’

a
1
1
1
+

o
1
1
2

a
m
u

0
1
3
2

o
1
8
8

O
b
s
e
r
v
e
d

.
2
6
2

.
0
5
7

.
0
5
7

.
0
9
0

.
1
1
4

.
1
3
1

.
2
8
6

94



T
a
b
l
e

1
4

E
x
p
e
c
t
e
d

a
n
d

O
b
s
e
r
v
e
d

P
r
o
p
o
r
t
i
o
n
s

o
f
M
e
a
n

E
r
r
o
r
s

i
n

E
a
c
h

E
x
p
e
r
i
m
e
n
t
a
l

C
o
n
d
i
t
i
o
n

I
H
E
M
o
d
e
l

4

T
r
i
a
l

N
u
m
b
e
r

4
5

6
7

8
9

R
R
R

E
x
p
e
c
t
e
d

.
O

.
O

.
O

.
O

.
O

.
0

O
b
s
e
r
v
e
d

.
0
7
3

.
0
2
4

.
0
6
5

.
0
4
9

.
0
5
7

.
0
4
9

R
R
W

E
x
p
e
c
t
e
d

.
3
8
7

.
3
1
3

.
2
5
9

.
2
1
5

.
1
7
7

.
1
4
7

O
b
s
e
r
v
e
d

.
1
7
2

.
1
6
3

.
1
4
7

.
1
6
3

.
1
8
8

.
1
0
6

R
W
R

E
x
p
e
c
t
e
d

.
2
5
3

.
2
0
4

.
1
6
8

.
1
3
9

.
1
1
5

.
0
9
5

O
b
s
e
r
v
e
d

.
1
1
4

.
1
3
1

.
1
1
4

.
0
5
7

.
0
9
0

.
1
0
6

R
W
W

E
J
C
p
e
C
t
e
d

e
“
'
5
1

e
3
7
6

o
3
1
2

o
2
5
9

o
2
1
5

o
1
7
8

O
b
s
e
r
v
e
d

.
4
3
4

.
4
0
1

.
2
7
8

.
2
7
0

.
2
8
6

.
2
4
5

W
R
R

E
x
p
e
c
t
e
d

.
1
3
5

.
1
0
9

.
0
8
9

.
0
7
4

.
0
6
1

.
0
5
0

O
b
s
e
r
v
e
d

.
1
2
2

.
1
1
4

.
0
9
0

.
0
9
8

.
0
9
8

.
0
6
5

w
a
w
E
x
p
e
c
t
e
d

.
4
2
2

.
3
4
5

.
2
8
6

.
2
3
7

.
1
9
6

.
1
6
3

O
b
s
e
r
v
e
d

.
4
8
3

.
3
5
2

.
3
5
2

.
3
0
3

.
2
7
0

.
2
2
1

W
W
R

E
x
p
e
c
t
e
d

.
3
3
0

.
2
6
3

.
2
1
5

.
1
7
8

.
1
4
7

.
1
2
2

O
b
s
e
r
v
e
d

.
1
0
6

.
1
8
0

.
1
3
9

.
0
7
3

.
1
2
2

.
1
4
7

W
W
W

E
x
p
e
c
t
e
d

.
4
6
8

.
3
9
5

.
3
2
9

.
2
7
3

.
2
2
6

.
1
8
8

O
b
s
e
r
v
e
d

0
3
2
7

0
3
5
2

0
3
2
7

0
3
7
7

0
2
5
“

0
2
8
6

95





96

criterion, it accounts for 91 per cent of the variance among the 56

proportions in the TLE curve and 97 per cent of the variance among

the 48 proportions in the mean learning curve.



DISCUSSION

Current Models

One of the purposes of this research was to evaluate certain

assumptions of current models of concept identification. Although some

of these assumptions had been tested in other contexts, the procedure

of the experiments reported here led.to particularly strong predictions

from the assumptions tested, and so was expected to provide a sensitive

test of them.

The simplest of these assumptions was that subjects begin a pro-

blem with no hypothesis and select hypotheses only after error trials.

This assumption was included in Bower and Trabasso (1964) model for

mathematical convenience rather’than for substantive reasons, but its

evaluation by the relatively direct method of the present study seemed

appr0priate. The finding, in the present study, that subjects in the

RRR condition performed without error with high probability extends

the findings of Levine (1966) and.Richter (1965) by providing evidence

for hypotheses at the outset of the standard concept identification

situation.

Several deterministic predictions following from.the lpgal_

consistency assumption were tested and found to be in conflict with the

data. This assumption, like the one discussed just above, may be

analyzed into two process assumptions. The first of these is that the

hypothesis selected after an error is consistent with the information

on that trial. The second is that hypotheses are not abandoned on

97
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correct trials. Previous research (Restle and Emmerich, 1966) has

shown that repeated presentation of a stimulus on successive trials

does not lead to perfect performance on the second presentation after

an error on the first. The deviation from perfect local consistency

was not large in that study, however. The greater discrepancies

found in the present study are probably due to processes occurring

over a longer series of trials, since the predictions tested here

have to do with consistency over the remainder of a problem after an

error trial. Predictions that were examined included (a) errorless

performance in the WRR condition, (b) consistency with trials 2 and 3

in the RWR and WWR conditions, (c) consistency with trial 3 in the

WWW,'WRW, RWW, and RRW conditions, and (d) matching responses on

complementary stimuli after either one or five intervening trials.

Effect of Lag on Matches

An earlier study (Kenoyer and Phillips, 1968) showed that the

proportion of matching responses to complementary stimuli was not near

1 in general, and the present study added support to that finding with

a larger sample of subjects and an exhaustive set of combinations of

outcomes on the first three trials. The present study also varied the

.number of trials intervening between presentations of the two comple—

mentary stimuli (lag) independently of other variables, and so permitted

a comparison of lag l and lag 5. The longer lag led to a lower proportion

of matches, suggesting information loss over trials. Since all responses

were called correct on the lag trials, this difference is inconsistent

'with the notion that correct trials have.no effect on subjects. The
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importance of correct trials, indicated by performance differences

in studies reported by Ievine (1966) and Richter (1965), thus

generalizes to a different concept identification paradigm.

Matches would occur in the present study whenever solution of

the problem preceded the second complementary stimulus. Match pro-

portions were therefore computed for those problems on which at least

one error occurred. The mean of these conditional proportions was

found to be significantly below .5, the chance level. In Experiment 1

all responses on lag trials were called correct irrespective of their

consistency with the established concept, and so it was conjectured

that this below~chance proportion of matching responses was due to

misinformation on lag trials. Such misinformation can occur only if

the subject is tracking more than a single hypothesis that determines

his response. This explanation of the low match proportions implies

that the proportions in Experiment 2 would.not be below chance, since

misinformative feedback was not given. This prediction was confirmed.

There is some support, therefore, for this interpretation.

Alternative explanations for these data exist, of course. It

is possible, for example, that subjects have preferred hypotheses that

guide their early choice responses. A subject might, for example,

prefer "red VEK." Then presentation of a LRCB stimulus would be

followed by a VEK response with high probability. If the subject then

forgot that the favored "red VEK" hypothesis had been eliminated, later

presentation of the complementary stimulus SGQN would be followed by a

NONVEK response with high probability, and a failure to match would

occur frequently. Previous evidence for information processing on
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correct trials, however, lends support for the former explanation,

while the generally low correlations found in the present study be—

tween early responses and stimulus dimensions do not lend support

to the "preferred hypothesis" explanation.

Effect of Outcome Sequence on Difficulty

Data on proportions of problems with one or more errors indi-

cated that the difficulty of a problem depends significantly upon the

outcome sequence on early trials. The most difficult condition was WWW

and the least difficult was RRR (Table 2). Previous research (levine,

1966; Richter, 1965) has indicated that some of these experimental

conditions were more facilitative than others under rather special

circumstances. The results of the present study show that the order-

ing of these tasks on difficulty generalizes to the usual kind of

concept identification experiment, in which post-solution performance

is emphasized. Besides extending these findings on task difficulty to

a new situation, the present study has also elaborated the set of

conditions investigated. Richter did;not manipulate outcomes as an

independent variable and Levine reported only the RRW and WWW conditions

and.eombined data from the RWW and'WRW conditions. The present study

deals with all eight possible R~W sequences over the first three trials.

IHE Models

The IHE models developed in the present investigation were sub-

jected to rather rigorous criteria for acceptance. First, each model

was constructed so as to be consistent with recent evidence for
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(a) multiple hypothesis processing, (b) differential information pro-

cessing on correct and error trials, (c) failure of strict local con-

sistency, and (d) failure of the assumption that errors serve to

eliminate the effects of previous trials, "restarting" subjects.

Second, the IHE models, along with Chumbley's (1969) HM model,

were tested against data from Levine's (1966) experiment. Some of the

models, IHE Models 1 and 3, displayed qualitative characteristics that

were in conflict with available data and were pursued no further, al-

though only one of the models (IHE Model 5) fit the Levine data

adequately, IHE Models 2, 4, and 5 were all consistent with qualitative

criteria, and were all tested against the data of Experiment 2 of the

present study.

This last test of the models yielded several interesting results.

The first is the finding that IHE Model 4 gave the best fit, rather

than IHE Model 5, which fit Levine's data best. Although any interpreta-

tion of this kind of finding should be made with caution, such a result

is consistent with certain differences between the two experimental

situations. In the Levine experiment, four blank trials intervened

between successive feedback trials, and the hypothesis assumed to

govern the subject's response was inferred from the series of blank

trials. It is therefore plausible that forgetting of eliminated

hypotheses over the series of blank trials could be due primarily to

mental activity during the blank trials and hence be virtually unaffected

by outcomes. IHE Model 5 assumed an elimination operator that depends

upon the nature of the outcome, but its forgetting operator is the

same for every outcome trial, regardless of the.nature of the outcome.
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Thus this model seems more appropriate for such an experiment than IHE

Model 4, in which the forgetting operator is determined.by the out~

come.

In the present research.no blank trials are administered. For-

getting therefore occurs only during a feedback trial. It is reason-

able, in this case, to expect any differential cognitive strain due to

trial outcomes to affect the forgetting of eliminated hypotheses as well

as the elimination of hypotheses. IHE Model 4, in which the probability

of forgetting an eliminated hypothesis is determined by the trial out~

come, fits these data better than IHE Model 5. This finding supports

the contention that the forgetting processes are different for the two

situations.

Another point of interest is the fit of IHE Model 4 to each con-

dition. Although the model can be rejected on the basis of a chi-square

fit to the data, the theoretical curve for each condition seems to

resemble the data for that condition more than the data for other

conditions. It may therefore be fruitful to consider other models that

are similar to it, perhaps taking additional sources of variation into

account by including additional parameters.

It is also interesting to note that the best estimate of g_in

IHE Model 4 was 1.00. One implication of this result is that the model

attained the degree of fit described earlier without assuming any loss

on correct trials, either of information from that trial or of pre-

viously eliminated hypotheses. In terms of simplicity of the model,

this result means that only the parameter w_remains. The development of

new models by adding parameters is therefore more feasible than for a
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model with two parameters, since the time required for parameter

estimation increases exponentially with the number of parameters.

Two directions for further model development were suggested by

results in this study. The first was suggested by the evidence that

subjects vary substantially in terms of strategies. In view of this

variation, it may be more fruitful to attempt to fit large behavior

samples for individual subjects rather than to extend a model to a

large population of subjects, all of whom must be described by the

same parameter values. At the simplest level, this approach consists

of application of the same model to all subjects, but with a new set

of parameter estimates for each subject. At a second level, quali~

tatively different models may be.necessary for different subjects.

Bruner, Goodnow, and Austin (1956) found it helpful to classify sub-

jects in two or more strategy categories. Their "successive scanner"

category corresponds closely to the kind of subject described by

Restle's (1962) and Bower and Trabasso's (1964) models, while their

"focusser" corresponds to subjects described by the IHE models. If

such categorial differences are used to determine which model is to be

applied to each subject, itymay be possible to improve fit considerably.

A second direction follows from the notion of a register model

(e.g., Phillips, Shiffrin, and Atkinson, 1967), which formed the

conceptual basis for the processes assumed in the IHE models. In IHE

Models 2 and 5, the register for eliminated hypotheses and that for

hypotheses being processed on the current trial were assumed to operate

independently, and each was represented by a separate parameter. In

IHE Models 3 and 5, the two functions were seen as shared in the same
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register, so that increased cognitive strain on error trials affected

both alike, and both functions were represented by a single parameter.

Of course, in both cases the probability operators at best only

approximated what would be developed from a well specified register

model. Actually imbedding a register memory process in the IHE

models was seen as too complex at this stage of the research.

A second approximation can perhaps be obtained, however, by.noting

that two memory functions may share a common register, in the sense

that they can displace each other, without having exactly the same

probability parameter. In other words, one function may take priority

over the other although both are subjected to the same stresses. The

second approximation that will be attempted in subsequent research

will simply include a parameter for adjusting the relationship between

the two probability functions. The first and simplest of these will

be a proportionality parameter relating the probability of remembering

an eliminated hypothesis to the probability of hypothesis elimination.

A register model, while difficult to formulate in this context, may be

expected to be the and.product in this line of development.

All of the models derived in this study include the assumption

that the subject stores and imperfectly retains the set of rejected

hypotheses. It was.noted that memory for tenable hypotheses alone would

lead to serious consequences if the subject forgot the correct hypothesis,

since there would be no way of recovering it short of beginning the

problem.again with the whole hypothesis set. It is plausible, however,

that the strategy of remembering both a list of eliminated hypotheses

and a list of hypotheses not yet eliminated is employed. The problem
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of distinguishing between single—list and two-list models was beyond

the scope of this study, but will become.necessary if register models

of hypothesis processing prove viable.
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APPENDIX A

INSTRUCTIONS READ TO SUBJECTS

IN BOTH EXPERIMENTS

In this problem, we're interested in finding out how college

students learn to classify patterns. For each set of patterns I

will have in mind a classification rule, and.your task will be to

figure out what it is. There will be several of these tasks, each

very short.

This is how we'll proceed. A pattern will be projected on

the screen here in front of you, like that one (pointing). You will

classify each picture as either VEK or NONVEK, and will indicate

your choice by pressing the panel with the label corresponding to

your decision. Either here (demonstrating) or here (demonstrating).

These labels have no meaning; but are just convenient names for the

two classifications. After you classify each picture, I'll say

"RIGHT" or "WRONG." As we continue, you should be able to figure out

a rule that will enable you to classify all the pictures correctly.

The pictures have been randomly ordered, and so the order in which

they appear has no bearing on your task.

From picture to picture the pattern can change in any of four

‘ways so that there are four attributes to consider. The four attri-

butes are: color: either red or green: shape: either a square or a
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circle: size: either large or small: and that's a large one; and

border: either the figure has a white border or it has no border,

like that one (pointing).

The solution to the problem will depend upon only one of

these four attributes. By this, I mean that only one attribute is

is crucial in your decision of how to classify the pictures.

Let me illustrate to you what I mean by using one attribute

to classify a picture. This sample will;not contain the pictures in

your problem, but the principle is the same. That is, the classifi-

cation depends upon only one attribute of the picture. (Holding card

with figures before a.) If the classification rule I had in mind

placed all hexagons in the VEK category and triangles in the NONVEK

category, then I would say "RIGHT" if you indicated a hexagon to be

a VEK or a triangle to be a NONVEK, or I would say "WRONG" other-

wise, regardless of other characteristics of the figure.

Here is a card listing some information you should remember.

Refer to it as often as you like throughout the experiment.

Do you have any questions?

There is one more procedural point I'd like to cover. You'll

.notice that this redlight (pointing) is on: this indicates that the

box is turned off and so pressing the panels had.no effect (demonstrat-

ing). When the box is turned on, the projector advances each time

you press a panel. At the end of each of your tasks, I'll simply
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turn the box off, and you'll know the task is over when the red

light comes on.
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PROTOCOL BOOKLET FOR EXPERIMENT l
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NONVE

NONVEK(RED)

(TASK I)

WRR
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///////’VEKN"“‘~~~ NONVEK(LARGE)

NONVEK ”////,VEK(CIRCLE)

\\\\\\\ NONVEK\

\NONVEK(N0 BORDER)

/VEK(RED)

VEK/

‘I‘I“‘--NONVEK(SMALL)

’//’/,VEK(NO BORDER)

NONVEK

~7“- NONVEK(CIRCLE)

(TASK 2)

wwR d””/’,,VEK(5QUARE)

VEK

‘I“--.N0NVEK(80RDERED)

NONVEK VEK(LARGE)
 

‘\\\\\\NONVEK.’//’/
 
 

“‘~.R0RVEK(GReen)
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TASK 4:

TASK 5:
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TASK 8:

TASK 9:
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Page 3
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‘////////VEK<
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\NONVEK/
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TASK 12: ~__ ___ ’*_ .__

R w W* R R* R R R R

TASK l3: ___ ___

W R W* R R R R R R*

TASK l4: ___ _

R N RR R R R R R R*

TASK IS: ___ __‘ ___ ___ ___ ___ ___ ___ ___

w w* R R R R R R* R

TASK l6: __- ___ ___ ___ __- __. ___ ___ ___

W W W* R R* R R R R

TASK l7: ___ ___

N W* R R* R R R R‘ R

TASK '8: ___ ___ ___ ___

R* R R R R R R* R R

  

REMEMBER TO PUT RECORD GAP ON TAPE
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WARMUP 1: J’flf,-a~*"VEK
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I

NOWEK (BORDERED) - f HYPOTHESIS

”’,,,a»*'”'VEK (N0 BORDER) ”‘"“‘”“"‘“

J///l rONVEK (LARGE)
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TASK 1: HYPOTHESIS
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TASK 1o: ' HYPOTHESIS
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(NO BORDER)

 

(SMALL)
 



wmmml
129

mm

 


