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ABSTRACT

SOME HYPOTHESIS THEORY MODELS
FOR PERFORMANCE IN CONCEPT

LEARNING TASKS

By

Charles Ernest Kenoyer

Recent research (Levine, 1966) has led to rejection of the sampling-
with-replacement axiom. The procedure of the Levine study differed from
that of the typical concept identification study in that blank trials
were administered and the feedback that was provided on other trials was
predetermined (fixed). A modified procedure was subsequently developed
(Kenoyer and Phillips, 1968), in which feedback was fixed for early
trials and no blank trials were used. Further evidence against sampling
with replacement and for multiple-hypothesis processing was obtained
with this modified procedure, which is like that of the typical concept
identification study from the subject's point of view. The present
study replicated the Kenoyer and Phillips study and extended it by in-
cluding all combinatiaons of fixed feedback over the first three trials.
Several implications of the Restle and Bower-Trabasso models were tested
in Experiment 1 by means of this procedure.

Levine's (1966) hypothesis theory assumes memory for the current
hypothesis set following an error. A detailed model (Chumbley, 1969)
within the framework of Levine's theory was tested in the present study,

against data from Levine's study. Inadequate fit suggested a need for
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additional models. Five models were presented, in which individual
hypotheses are eliminated independently.

For Model 1, on each trial each hypothesis is eliminated with a
probability that is determined by the trial outcome, "right" (R) or
"yraong" (W), and the set of hypotheses that have been eliminated are
retained perfectly. Models 2 and 3 assume the same hypothesis-elimina-
tion process assumed in Model 1, but also assume fallible memory for
eliminated hypotheses. In both models, an elimination operator is
applied to the probability that each hypothesis is in the current set,
then a memory operator is applied to the probability that each hypothesis
remains in the eliminated set. The memory operator is the same for
every trial for Model 2, but depends upon the trial outcome (R or W)
for Model 3. For Model 4, the operators of Model 3 are applied in
opposite order, and Model 5 is obtained by reversing the order of the
operators of Model 2.

A1l five models were tested against Levine's data. Models 1 and
3 were inadequate and were not tested further. Model 5 yielded accept-
able fit by a chi-square criterion. Models 2 and 4 failed to meet the
same criterion, but were retained for further testing against data from
Experiment 2. It was canjectured that the most important form of loss
from memory might differ for the two studies. The best-fitting model
for Experiment 2 was Model 4. A suggested explanation for the difference
was that Levine'!s use of blank trials introduces a long interval during
which a constant forgetting process is important, while cognitive strain
due to information processing should be the major cause of forgetting
in the present study. Here the process should be affected by trial out-

come .
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Model 4, while clearly superior to Models 2 and 5 for these data,
did not satisfy a chi-square goodness-of-fit criterian (p < .001).
This measure of fit was computed for points on the mean learning
curve and the trial-of-last-error (TLE) curve for eight experimental
canditions, for a total of 104 data points, and so was extremely
sensitive to deviations from fit. Although this test indicates that
the model is not true, it was also found that the model accounts for
91 per cent of the variance among TLE points and 97 per cent of the
variance among the mean learning curve points, over all eight experi-

mental canditions.
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INTRODUCTION

Several recent models of concept learning have described
processes by which characteristics of the problem are assumed to be
abstracted and used as a basis for classifying stimulus objects.
Restle's (1962) cue learning model accounts for acquisitian of such
classification behavior in terms of random sampling of strategies
from a hypothetical pool of strategies available to the subject, and
subsequent testing and rejection of the selected strategies as
classification information is provided by feedback on each trial.
Bower and Trabasso's (1964) cancept identification model explains
acquisition in terms of random selection and testing of cues, and is
otherwise very similar to Restle's model. Later models (Trabasso
and Bower, 1966, 1968; Levine, 1966) assume a process in which
hypotheses are manipulated. Levine (1966) and Richter (1965) have
pointed out that the terms strategy, cue, and hypothesis are used
in these models to refer to similar elements, and Levine (1967) has
discussed the models under the more general heading, "hypothesis
theory."

These models are applicable to situations in which the subject
is required to learn to classify stimulus objects an the basis of
characteristics that are already discriminable by the subject. The
models are applicable to concept attainment, (Cf. Bruner, Goodnow,
and Austin, 1956), concept utilization (Cf. Martin, 1965), or concept
identification (Cf. Bower and Trabasso, 1964), but not to cancept

formation. The distinctiaon between concept formation and the other
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terms listed above is that a new cancept, i.e., one based aon a
characteristic of the stimulus not previously discriminated, is
involved in concept formation, while previously discriminated
characteristics are the basis of concept identification, utiliza-
tion, or attainment tasks (Cf. Bourne, 1966, p. 3).

Caoncept identification differs from simple discrimination in
that there are several stimulus characteristics that could serve as
bases for classifying the stimuli, but anly one characteristic leads
to correct classification responses for a given problem. When it is
of interest to establish the set of hypotheses from which samples are
drawn, a list of the characteristics on which stimuli vary is some-
times provided for the subject. (Cf. Trabasso and Bower, 1966.) The
stimilus qualities (e.g., color, size, etc.) that constitute potential
bases for correct classification responses are called dimensians, cues,
or attributes. The description of an individual stimulus in such
problems comprises a value for each attribute (e.g., red, large, etc.).
Solution of such problems can be indicated by a criterion run of
correct responses or by a statement of the attribute value or combina-
tion of attribute values that determine correct classificatian.

Hypothesis theory provides a framework within which questians
about cancept identification mgy be formulated and tested in the kind
of experiment described above. Variations in experimental procedure
may therefore lead to new predictions within the theoretical frame-
work, and so the theoretical framework serves to suggest a variety of
ways of examining the process. The framework also provides a way to

produce various specific models. By changing assumptions about memory,
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sampling of hypotheses, and response rules, it is possible to generate
models that differ substantially although they are all formulated
within the general framework. Such models can be compared to the

data and to each other and the theory can be elaborated by choosing
among models on the basis of these comparisans.

The mathematical models cited have typically been tested in a
restricted class of experiments. In these experiments each cue takes
on two values, the set of stimuli is presented in several random
orders, the response set consists of two classification responses,
problems continue to a learning criterion, classification is based upon
a single dimension, and the classification rule is predetermined by
the experimenter. Important questions of a preliminary mature have
been examined in this rather restricted situation, but it is clearly
desirable that a theory of concept identification be applicable to a
broader class of situations. As Levine (1967) has pointed out,
hypothesis theory is applicable to complex concepts (e.g., canjunctive
or relational) as well as to the simple one-dimension concept.

Deviations from the constraints listed above have appeared
recently in experiments desighed to test the hypothesis model. Levine
(1966) introduced a procedure in which subjects were informed of outcomes
("right" or "wrong") only on every fifth trial, beginning with trial
1. The subjects?! hypotheses were inferred from sets of responses on
the intervening "blank" trials (trials on which subjects were not in-
formed of outcomes). The outcomes were determined arbitrarily, and the
outcome sequence was used as an independent variable. Since it was
necessary to control the amount of information provided on each trial,

Levine did not randomize the stimuli, but organized them in a highly
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canstrained sequence. In this situation the solution that is con-
sistent with the information provided to the subject on outcome trials
is jointly determined by the stimuli, responses, and outcomes on the
outcome trials. Since the responses are not under the experimenter's
control, neither is the solution, and so the solution is a dependent
variable. Levine also ran subjects for a fixed number of trials,
rather than to criterion.

A procedure that represents a compromise between Levine's
paradigm and the more common experiment in concept identification was
used by Kenoyer and Phillips (1968) to test assumptions of the
hypothesis models. Arbitrary outcomes were administered aon the first
three trials. The solution that was consistent with the informatiaon
provided an those trials was then the basis for outcomes on later
trials. Trabasso and Bower (1966) also used a procedure in which
the classification rule was determined jointly by the stimuli,
responses, and outcomes, in order to test an assumptian of their
cancept identification model. Although these experiments differ
cansiderably in procedure, they are all relevant to assumptians about
the processing of hypotheses in a problem requiring the identification
of a classification rule. Emphasis on different aspects of the theory,
hypothesized process, or experimental paradigm has led investigators
to refer to experiments of this type as discrimination (e.g., Levine,
1966) concept identification, (e.g., Bower and Trabasso, 1964) cue
learning (Restle, 1962), or concept attainment (e.g., Haygood and
Bourne, 1965). No attempt will be made here to review the work in
all these areas, since many studies would not deal with the theoretical

issues of interest in the present study. A review of work in any one
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of the areas would both include irrelevant studies and exclude

relevant ones.



ISSUES IN HYPOTHESIS THEORY

The Hypothesis as a Canstruct

Krechevsky (1932) reported that rats performing in a discrimin-
ation experiment displayed strong positional preferences at the out-
set of the experiment, and referred to such preferences as hypotheses
(Hs). This designatiaon amounted to a behavioral or operational defini-
tion of a word that had already acquired meaning in everyday English.
It was perhaps an this account that Spence (1940) objected to this
use of the term. He argued that such perseverative tendencies were
not adaptive and that they would, in fact, retard learning. His objec-
tion to applying the term "hypotheses" to such tendencies thus seems
to have been based upon positive connotative meaning already
associated with the term.

Harlow (1959) has subsequently developed a theory in which

learning is taken to be a process of inhibiting error factors, which

are the same kind of maladaptive behavioral tendencies as Krechevsky's
Hs. The nonrandom nature of the naive subject's behavior at the
outset of a discriminatiaon problem (error factor) and the nanrandom
choice behavior at the outset of a transfer problem (learning set) are
quite different in terms of their adaptiveness, but may be considered
as hypotheses which happen to vary in their appropriateness to the
performance criteria defined by the experimenter. Harlow and his
associates have investigated these phenomena extensively in primates.
Levine (1963) studied hypotheses (in Krechevsky's sense) in
human subjects. In the first of two related experiments, he distin-
guished two kinds of response tendencies. One kind was uncorrelated

6






with cues, and cansisted of identifiable patterns of responding,

such as alternation. Levine designated these respanse tendencies
"Respanse-sets." The other kind of patterns were called "Predic-
tians." These patterns displayed regularity with respect to the stimulus
set. One prediction pattern is "win stay, lose shift." A subject dis-
plays such a pattern with respect to a given cue, such as color. If
the subject displayed a strong tendency to shift his choice to the
opposite color after an error and to repeat his color choice after a
correct response, he was said to follow this prediction pattern. Four
cues were varied in the experiment, and each subject performed in

90 two-trial problems. Within each problem, either of the two

possible responses would be a repetition with respect to some cues

and a shift with respect to others. Levine performed an involved
analysis of conditional respanse probabilities over the whole problem
set, however, and found reliable prediction patterns. He also can-
cluded from this analysis that respaonse sets contributed little or
nothing to performance.

In Experiment II, therefore, he directed his attentian to further
analysis of prediction behavior. He administered 24 multiple-cue
discrimination problems to two groups. Color hypotheses were correct
for the first 12 problems and letter hypotheses for the last 12 problems.
Every fourth problem (problems 2, 6, ..., 22 for aone group and problems
4, 8, ..., 24 for the other) was a test series of four trials. Subjects
were not informed of outcomes on these trials, and stimuli were
organized so that every possible response sequence on the four trials

was inconsistent with all but ane of the eight hypotheses. Half of



the possible patterns were not consistent with any hypothesis. All
problems other than the test problems were 14 trials long, and
subjects were informed of outcomes.

Levine combined response sequences corresponding to each value
of a cue. For example, respanses consistent with the hypothesis
"large" and those consistent with "small" were combined and called
size hypotheses. He plotted the proportion of each of these cue
hypotheses over test problems. The graphs of probabilities of all
hypotheses showed that the probability of a color hypothesis in-
creased over the first twelve problems, on which color was correct,
then suddenly decreased after the thirteenth problem, an which the
solution was changed to letter. The probability of a letter
hypothesis remained low until after the thirteenth problem, then
increased quickly to an asymptote around .5. It was clear that
hypotheses were being held over from one problem to the next, and
were therefore involved in trials at the outset of some of the
problens.,

Supporting evidence for hypotheses at the outset of learning
was provided by a later experiment (Kenoyer and Phillips, 1968), in
which outcomes ("right" or "wrang") were arbitrarily set for the first
three trials, rather than depending upan the subject's respaonse as is
usually the case. There were eight possible hypotheses (classifica-
tion rules) which were listed for the subjects. The stimuli for the
first three trials were so related that, for a given string of outcomes,
a unique hypothesis was consistent with each possible sequence of three

choice responses. On subsequent trials, outcomes were consistent with



9

the hypothesis determined on the first three trials. In one of the
treatments, subjects were told "right" after each of the first three
responses (the RRR treatment condition). If a subject began with a
hypothesis, therefore, errorless performance was to be expected,
since the procedure "tracked" any such hypothesis over trials 1-3.
If subjects were responding randomly until an error occurred, how-
ever, as Bower and Trabasso's (1964) model specifies, the probability
of errorless performance on the remaining six trials of a problem would
be (1/2)6 = 1/64. The observed proportion of correct respanses for the
RRR treatment condition was .976. It is clear that subjects were
processing information at the outset of the problems, and Levine's
canclusion that human subjects employ hypotheses at this stage of a
problem was supported by this result.

It is important to note, however, that the behavioral indicator
in this case was performance on subsequent trials, and so the can-

clusion pertains only to information gain on trials 1-3, rather than

to hypothesis behavior on those trials. The term "hypothesis" in the
study cited just above, refers to a theoretical construct rather than
to a response sequence, as in Levine's (1963) use of the term.

Levine's (1963) results suggest that subjects display hypothesis
behavior at the outset of a problem. In both of the experiments re-
ported in that study, however, early trials constituted the whole test
series. In the first experiment there were 90 problems of two trials
each, and in the second the hypothesis data were obtained an test
problems of four trials each. The test problems were identified as tests

in the instructions to the subjects. More recent evidence indicates
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that these special circumstances may have caused subjects to behave
somewhat differently than they would have done in a more extended
task. Chumbley (1969) gave subjects four initial training trials, on
which outcome information was provided, followed by seven test trials
without outcomes. Chumbley obtained a good fit of his Hypothesis
Manipulation (HM) model to the test-trial data, but stated that it
could not be fitted to the training-trial data. He found that the
probability of a right-hand buttaon-press was higher than chance.

This result is consistent with the assumption that subjects in this
situation behave according to response sets, in the sense defined
above. Another finding prevents this canclusion, however. The tasks
were experimenter-paced, and so subjects who did not respond an
schednle simply had a trial without a response. Some of the subjects
did not respond at all on training trials but responded without error
on test trials. Chumbley concluded that his instructiaons had led
.subjects to emphasize test-trial behavior to the exclusion of meaning-
ful choice behavior on training trials. Although some kind of
effective problem-solving process during training trials was indicated
by test-trial performance, hypotheses were not evident from training-
trial data. The definitian of "hypothesis'" as a theoretical construct
used to explain organization of subsequent behavior is therefore not

- consistent, in the cantext of Chumbley'!s study, with the definition of
the term as a pattern of respanses. Throughout the remainder of this
paper, "hypothesis" will refer to the theoretical construct unless
otherwise specified. The usefulness of such a notion in organizing

findings about concept identification and discrimination, both within
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and between problems, is evident from the above discussion. The
models to be discussed below represent the problem-solving process
as generation (or selection) and testing of hypotheses. They differ,
however, in their assumptions about the nature of the selection

process.

Memory

An important characteristic of a hypothesis model is the amount
of memory that is assumed. Restle (1962) developed three alternative
models. The alternative processes for selecting hypotheses were selec-
tion of one at a time, all at ance, and n at a time. Restle showed
that the three models were alike in their predictions on error data.
The memory assumption of each model was pivotal in the derivations of
the error predictions, however, and so Restle!s proof did not establish
that single-hypothesis models and multiple-hypothesis models are
indiscriminable in general, even with respect to error data. The
equivalence was established for Restle's three specific models, with
their assumptions of severely limited memory.

Restle assumed sampling of hypotheses with replacement in the
one-at-a-time model. For the all-at~once model the subject was assumed
to consider all hypotheses at the beginning of the task. This model
assumes that response probabilities are determined by the proportian
of the strategies consistent with each response. The hypothesis set is
assumed to be partitioned on the basis of cansistency with the classifi-
cation response and those in the inconsistent set are assumed to be

dropped (forgotten) from the set being considered. A correct response
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occurs on those occasions when the correct hypothesis is in the
cansistent set, i.e., the set that is retained. Occurrence of an
error is possible anly when the correct hypothesis is in the dis-
carded set.

Since the subject is not assumed to be able to retrieve these
hypotheses without starting again with the total hypothesis set, an
error implies that the subject has the full set to work with, just as
at the outset of the problem. The n-at-a-time model requires an
additional sampling assumption, and Restle chose to assume that all
subsets of size n were equally likely to be selected. The multiple-
hypothesis models are similar in all other respects. The restarting
property, which implies that the subject is in the same state of
ignorance after each error as at the beginning of the problem, is
therefore common to both multiple-hypothesis models as well as to the
single-hypothesis model.

Bower and Trabasso (1964) developed a model that was mathe-
matically equivalent to Restle's ane-strategy model, except for their
added assumption that subjects begin problems in a guessing state and
continue to guess until an error occurs. The selection process assumed
in this model operates upon cue values rather than strategies, however.
Since the model assumes that the subject deals with only one cue at a
time, hypotheses based upon two or more cues are excluded from considera-

tion.

A later model (Trabasso and Bower, 1968) assumes multiple
hypotheses, and is quite similar to Restle's (1962) n-at-a-time model.
This model assumes that a "focus sample" of size s is selected from the

stimulus array. Sampling probabilities are assumed to be controlled by






13

cue salience. The focus sample is assumed to be reduced after each
correct respanse, as in the Restle model, and after each error a new
focus sample is assumed to be selected with replacement. Response
probabilities are generated as in the Restle model.

Levine (1962) and Holstein and Premack (1965) provided random
outcome information to subjects for a given number of trials, where
the number of trials varied over experimental conditions. Random out-
come trials were followed by a discrimination problem. The finding that
random outcomes retarded solution of the discrimination problem is
incansistent with the sampling-with-replacement assumption. The amount
of retardation was constant over variations in the number of randam-
outcome trials.

Restle and Emmerich (1966) performed three related experiments
in which they investigated memory in a concept identification situatian.
In the first experiment, four groups of subjects were given one
problem at a time or two, three, or six problems cancurrently, i.e.,
with trials for ane problem interspersed with trials from another
problem or problems. Learning was faster in the groups that had one
or two concurrent problems than in the groups with three or six problems.
They pointed out that this result was in conflict with two hypothesis
models (Restle, 1962; Bower and Trabasso, 1964). The break between
two and three problems was interpreted as evidence that the memory
span was overloaded with nine stimulus dimensions (three per problem)
but not with six. The authors argued that it must be memory for stimuli,
rather than hypotheses, that was breaking down in the multiple-problem
condition, thus indicating that they could remember the correct hypothesis.

This conclusion does not follow from the data, however. The process
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described by Levine (1966) would imply a considerable memory load
on early trials, but less as the hypothesis sets were reduced, and
finally only ane hypothesis per problem.

Experiment 2 of the Restle and Emmerich study compared a condi-
tiaon in which the stimulus remained available to subjects after feed-
back with a condition in which the stimulus disappeared before feedback.
The two levels of the stimulus availability variable were arranged
factorially with number of problems. Subjects solved either one
problem or six problems concurrently. Stimulus availability reduced
errors for the one-problem group, but not for the six-problem group.
Restle and Emmerich pointed out that the effect on the cne-problem group
was consistent with stimulus memory, but also with hypothesis memory,
since the presence of the stimulus could be used to limit the hypothesis
set from which the subject sampled. They offered no explanation for the
lack of effect on the six-problem group. Erickson and Zajkowski (1967),
however, suggested that concurrent problems lead to interference with
short-term memory of hypotheses that have been tested but rejected. If
this were the case, it would be reasonable to expect subjects to adopt
a strategy requiring no memory for rejected hypotheses when performing
in the concurrent problem conditiaon. If subjects conformed to the Restle
(1962) model or, equivalently, to the Bower and Trabasso (1964) model
in that situation, they would need to remember only the current
hypothesis for each problem and in the group without stimulus availability,
the stimulus. Five hypotheses would then have to be remembered while
the subject processed information leading to selection of a hypothesis

in the current problem. The cue values for the different problems were
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quite dissimilar, however, and so interference should not be great.
Furthermore, the error probabilities would be unaffected by such inter-
ference unless the whole set of cue values were forgotten, since only
one hypothesis is assumed to be retained. Selecting (i.e., remembering)
one cue value randomly and basing the hypothesis on it is equivalent to
remembering two or three cue values and randomly selecting one of

these as the basis for a single hypothesis. It is reasonable to assume
that subjects in a single-problem situation retain information from past
trials (about either stimuli or hypotheses), but have too little avail-
able memory to do so in the six-problem condition.

Further informatiaon about memory in concept identification was
reported by Trabasso and Bower (1966), who tested the sampling-with-
replacement assumption of their previously published model (Bower and
Trabasso, 1964) with a rather complex experimental procedure. For
ane group, the correct choice responses could be based an either of
two characteristics of the stimulus. For example, size and color
could be redundant, so that choosing the large object would be
behaviorally equivalent to choosing the red object, and either would
be correct. For a second group, the same two cues (e.g., size and
color) were treated as follows. A problem began with only ane of these
cues relevant. When the subject made an error, he was informed of it,
and if he made nho further errors he proceeded quickly to criterion
and solved the problem. A second error, however, was treated
differently. The subject was not informed of the error. Instead the
criterion for a correct response was changed, e.g., from large to red.
In shifting the criterion from size to color, the specific color to be

associated with the correct response was selected so as to be consistent
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with the trial on which the subject was informed of an error. This
treatment was called a "dimensional shift." On every secand error in
this group, the correct response criterion was shifted to the other of
the two cues, or dimensions.

The Bower and Trabasso (1964) model assumes that subjects solve
such problems by selecting a single cue value (such as red) after each
error, without regard to whether the cue value has been tested
previously. Under this assumption the advantage of having two redundant
and relevant cues is that there are two chances to select a correct
cue instead of just aone. In the experiment just described, however,
the model implies that the same advantage accrues to the subjects in
the dimensional shift group, given the sampling-with-replacement assump-
tian., After an error they may select the currently relevant ane and
solve or they may make a response that is not consistent with that cue,
and still be given an opportunity to solve on the alternate cue. The
probability of solution after an informed error should therefore have
been the same for both groups. Trabasso and Bower found, however, that
the dimensional shift task was the more difficult. They suggested a
new model in which cues could not be resampled until some number, k,
of trials after it had been tested and rejected. Such a model, they
noted, would account for the results reported by Levine (1962) and
Holstein and Premack (1965) as well as those of their own study.

Levine (1966) tested the replacement axiom with a different
experimental procedure. On the first trial the outcome information was
provided to the subject. Four trials followed an which no outcome
information was given. Three such blocks were given, followed by a final

(sixteenth) trial an which the outcome was given. There were therefore
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only four outcome trials in the series. The stimuli on the outcome
trials and those within test-trial blocks were "internally orthogonal."
An important characteristic of such stimulus sequences is that any
response sequence that correlates perfectly with one cue is uncorrelated
with all other cues. Since test blocks were arranged in this way,
response sequences could be analyzed to determine what hypothesis, if
any, the subject was tracking.

Levine estimated the size of the hypothesis set from the
probability of selecting ane of the hypotheses consistent with the out-
come-trial stimulus. Under the sampling-with-replacement assumptian,
the size of the hypothesis set should remain the same throughout the
experiment. If subjects had been perfect information processors, the
set should be reduced by half after each outcome trial. The obtained
curve fit neither of these models perfectly, but was considerably
closer to the curve for perfect processing. As in the Trabasso-Bower
(1966) study, it was clear that the sampling-with-replacement axiom
was inconsistent with the data.

Since all of the sampling schemes that imply the restart-after-
errors principle are falsified by the results cited above, some kind
of memory assumption is needed, and so the nature of what is remembered
becomes important as well as the amount. Trabasso and Bower (1966)
suggested that their earlier single-hypothesis model be modified by
adding two assumptiaons dealing with two distinct kinds of memory. In
the resulting model, subjects are assumed to remember rejected hypotheses
for k trials, where k is a free parameter of the model. After k trials

a rejected hypothesis is assumed to be returned to the hypothesis pool.
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The second kind of memory that was assumed dealt with stimulus informa-
tian. On error trials it was assumed that the subject performed a
cansistency check, comparing stimulus information from the error trial
with that from the preceding trial.

Use of all of the stimulus information provided on an error trial

to limit hypothesis selection is called local consistency (Gregg and

Simon, 1967; Trabasso and Bower, 1968). The Bower and Trabasso (1964)
model has this property (Atkinson, Bower, and Crothers, 1965, p. 32),
as do two more recent multiple-hypothesis models (Trabasso and Bower,
1968) and the model cited just above. The Trabasso and Bower (1966)
model further assumes consistency over the trial preceding the error
trial, but all of the models just cited have in common at least
cansistency with the error-trial informatian.

Kenoyer and Phillips (1968) tested the local consistency assump-

tion in an experiment in which complementary pairs of stimuli were

presented. Each cue (size, color, shape, and border) had two values.
The alternative values of the cues were called complements. Red was
thus the complement of blue, square was the complement of circle, large
the complement of small, and presence of a border was the complement of

absence of a border. Two stimuli were a complementary pair if the value

of every cue in the first stimulus (Cl) was the complement of the value
of the correspanding cue in the secand stimulus in the pair (CZ)‘ The
first member of the pair was always presented before the subject had

been given enough information to solve the problem, and the outcome an

that trial was arbitrarily a W.
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Assuming local consistency, the subject would select some cue
and would make his category assignment agree with the correct category

assignment on the error trial. If the subject classified C., as VEK,

1
combining this respanse with the W outcome would result in a correct
classification of NONVEK for that stimulus. Then regardless of which
cue the subject selected after the error, the cue value present in Cl
would be assigned to NONVEK, When C2 appears, the opposite wvalue of
that cue (and all other cues) is present, and the local consistency
assumption implies that the subject must assign it to the VEK category.
Thus the category assignment of 02 must match that of Cl' according to
the local consistency assumption. If no information is processed after
a correct respanse, as the single-hypothesis models imply, this predic-
tion on matches holds regardless of the number of trials intervening
(the lag) between the trials on which Cl and C2 are presented, given
that the responses on these trials are all classified as correct.

The multiple-hypothesis models developed by Trabasso and Bower
(1968) assume processing after correct respanses. Responses are
assumed to be consistent with all hypotheses not yet eliminated from
the sample, however, and this implies that ane of the hypotheses can-
sistent with the error-trial information is retained until another error
occurs., Thus the C1 to C2 lag is unimportant to the match prediction
within these multiple-hypothesis models as well as in the single-
hypothesis models. Kenoyer and Phillips found that the probability of
a match was not near 1, in general, as implied by the models. What is
remembered immediately after an error cannot be determined with certainty

from this result, but the complete stimulus-response-outcome informatian
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does not remain available over a series of correct trials. This
result does nhot completely isolate the local cansistency assumption,
since some kind of forgetting process could be posited to account for
the loss over trials.

Experiment 3 of the Restle and Emmerich (1966) study, cited
previously, was more directly relevant to the local consistency assump-
tion. Subjects were given ane or six concurrent problems; and the
same stimulus was presented on two consecutive trials, both very early
and very late in the problem. On late trials, the probability of an
error on the second presentatian following an error on the first
presentation was near chance (1/2). On early trials, for the one-problem
group, three of the 61 subjects who made correct responses on the first
presentation and 3 who made errors on the first presentation, made errors
on the secand presentation. This result simultaneously refutes the
local consistency assumption and the assumption that the process re-
starts after errors without local consistency. The former assumption
implies that the probability of a correct response on the second
presantation following an error an the first is 1 and the latter implies
that it is 1/2. Subjects in the six-problem condition made 8 errors
following 62 correct responses and 19 errors, following 69 errors.
Memory was less effective for this group than for the one-problem group,
and less effective after errors than after correct responses. This result
on early trials, like the corresponding data aon the ane-problem group,
refutes both local cansistency and restarting assumptions. It is
consistent with Levine's (1966) theory, however. The overall results of

this experiment may be explained by assuming that subjects processed
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multiple hypotheses and tried to keep track of rejected hypotheses
on early trials, but changed strategies when they failed to solve
and began processing single hypotheses and sampling with replace-

ment.

Multiple hypotheses

In addition to providing evidence on the sampling-with-replace-
ment question, Levine's (1966) experiment also yielded data relevant
to the question of multiple versus single hypotheses. Since he was
able to manipulate outcome sequences as an independent variable, Levine
could compare sequences with different numbers of errors in terms of
their effect on subsequent performance. He compared a one-error condi-
tion (RRW), a two-error condition (RWW and WRW), and a three-error
condition (WWW). The dependent variable was probability of a correct
hypothesis after trial 3, a correct hypothesis being defined as the
one hypothesis that was cansistent with the information provided to the
subject on all three outcome trials. Levine found that the probability
of a correct hypothesis was an increasing function of the number of
correct (R) outcomes. It is evident from these data that subjects were
processing information on R trials. If subjects processed only one
hypothesis at a time, no information about that hypothesis would be
provided on correct trials. Since each of the sequences Levine com-
pared ended with a W, differences among probabilities for the three
groups constitute further evidence that the problem-solving process

does not simply restart after errors.
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Richter (1965) presented subjects with a series of four-trial
problems, in which the stimulus sequence was structured like those
of the Levine (1963, 1966) experiments, and so logical solution of
the problem was possible after three trials. The probability of a
correct response on trial 4 was therefore comparable to the probability
of a correct hypothesis after trial 3 in the Levine (1966) study.
Richter used predetermined solution rules rather than fixed outcomes.
He found that probability of a correct response on trial 4 was an
increasing function of the number correct on trials 1 through 3.

Erickson, Zajkowski, and Ehmann (1966) and Erickson and Zajkowski
(1967) found evidence for multiple-hypothesis processing in latency
data from concept identification experiments. In both studies a
post-criterion decrease was found. Pre-criterion latencies were
analyzed separately for trials following errors and correct responses.
Latencies following correct responses clearly decreased over pre=
criterion trials. Results on latencies following errors were equivocal.
For ane analysis the median latency was computed for the first and last
halves of pre-criterion trials following errors, and the means of
these median latencies were compared. The mean for the last half was
greater than that for the first half. A regression line an trials
however, showed a slight negative slope. The post-criterion decrease
in latency suggests processing of multiple hypotheses. If hypotheses
are processed on correct trials as well as on error trials, solutian
is possible an correct trials and the post-criterion decrease can be
explained by reduction of the hypothesis set after the last error. The

pre-criterion decrease in latency indicated by the regression of latency



23

on trials can also be explained in terms of multiple hypotheses. If
the number of hypotheses being processed is reduced after ‘an error,
then the time required to process them should decrease.

The evidence for a multiple-hypothesis process is convincing,
but the memory assumptions of the multiple-hypothesis models developed
by Restle (1962) and Trabasso and Bower (1968) are inadequate on other
grounds, as was stated above. Levine's (1966) multiple-hypothesis
theory is similar to the Restle n-at-a-time model, but the memory
assumptions are different. As in the Restle model, the hypotheses
consistent with the classification responses are assumed to be retained.
The treatment of the hypotheses discarded on that trial, i.e., those
inconsistent with the classification response, differs for the two
models. They are lost, according to the Restle model, to be re-
covered only by starting again with the whole hypothesis set. The
assumption in the Levine theory is that these hypotheses can be retrieved,
although with some difficulty. The difficulty of retrieval of this set
of hypotheses provides an explanation for the decreased effectiveness
of information processing on error trials as compared with correct

trials.

Levine's Hypothesis Theory

The Levine theory includes none of the assumptions that are re-
jected by the above arguments. It assumes that subjects begin a pro-
blem with hypotheses rather than in a guessing state. It assumes that
multiple hypotheses are processed, although only one hypothesis is

assumed to be the basis of each response. Since it assumes that
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hypotheses, rather than specific stimulus information are remembered,
it does not imply local consistency. The proposition that the solu-

tion process restarts after each error is neither assumed nor implied
by the theory.

The assumed reduction of the hypothesis set after each trial
on which information is provided implies, in the usual concept identi-
fication situation, an increase over trials in the probability of
selecting the correct hypothesis as a basis for responding. Since
this assumption is cantrary to the restarting-after-errors property
that has been supported by previous research, it requires further
discussion. The increase in the probability of solution over trials
defines an inhomogeneous Markov process (Cf. Atkinsan, Bower, and
Crothers, 1965). Stationarity of the probability of a correct
response when the subject is in the pre-solutian state, however, does
not depend upon homogeneity of the probability of solution. If
solution has not occurred, Levine's theory holds that some other
hypothesis being entertained by the subject determines choice
respaonses. If the cue values corresponding to hypotheses are varied
independently, the hypothesis that determines the choice respanse
brings about chance responding. Actually, as Restle (1962) noted,
not all hypotheses are independent of the correct one. The
occurrence of the complement of the correct cue value is completely
redundant (perfectly correlated) with the nanoccurrence of the correct
cue value., But this implies that the complement of the correct cue
value is likely to be eliminated early. The remaining hypotheses
have the required independence property. Given a reasonably large

initial set of hypotheses, the probability of an error would not be
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greatly affected by this nonindependence and the hypothesis that
always leads to a wrong response would tend to be eliminated early
in the problem. The probability of an error prior to the last error
should therefore decrease only slightly over trials as a result of
eliminating the complement of the correct hypothesis. A slight
decrease in the probability of an error is consistent with reported
results, in fact (Trabasso, 1966, p. 45; Bower and Trabasso, 1964),
although the decrease has not been found to be significant.

Levine did not explicitly state an assumption that all
hypotheses are equally likely to be selected, but he estimated the
size of the active hypothesis set as the reciprocal of the proportion
of correct hypotheses. This estimation procedure suggests that the
equal-likelihood assumption was intended, and it is therefore treated
here as part of the theory. The mechanism for retrieving hypotheses
was also left unspecified in Levine!s outline of his theory. Some
specific assumptians about this process are needed if the theory is

to be tested.

Chumbley's Hypothesis Manipulation Model

Chumbley (1969) presented a Hypothesis Manipulation (HM) model
based upon Levine'!s theory. In this model, the current set of
hypotheses is partitioned into two subsets by the subject!s choice
response. The subset that is consistent with the choice response is
retained and if the response is correct, the current hypothesis set
for the next trial has been reduced. The subset that is not consistent
with the choice response is discarded. If the response is called

"wrong", the discarded hypotheses are the proper ones to retain as the
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new current set. The HM model assumes that the subject retrieves the
discarded set (as a whole) with probability t. Otherwise the entire
set is lost, and the subject begins again with the whole initial
hypothesis set.

Chumbley performed an experiment in which the problems consisted
of four training trials followed by seven. test trials. Treatment groups
solved either one problem or three cohcurrent problems and had either
a 5-sec. or a l5-sec. intertrial interval. The parameter t was
estimated separately for each of the four conditions. The HM model
fitted the data from the test trials, but not the training-trials data.
One puzzling result on training trials was a higher than chance
occurrence of a right-hand button press. A second result was even more
striking. The trials were experimenter-paced, and so it was possible
to sit through training trials without responding, and without any loss
of informatian. Chumbley found that some subjects did not respond at
all on training trials but performed without error on test trials.

Chumbley suggested that this discrepancy between model and data
was due to a procedural artifact. He claimed that test-trial performance
was emphasized to the detriment of meaningful performance on training
trials, and that the model was therefore not necessarily wrong, but
should be tested in an experimental situation from which this artifact
is absent. It seems appropriate, therefore, to test the HM model against

data reported by Levine (1966).

Test of the Hypothesis Manipulation Model

Chumbley!s parameter, t, is the probability that the set is re-

trieved and retained until the next set reduction operation. If the
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hypotheses are not retrieved, the assumption is that the subject must
start over with the initial hypothesis set. When the stimulus sequence
is internally orthogonal, as in the Levine (1966) study, the model
states that half of the hypothesis set is discarded. The current set
is reduced to half its former size after a correct trial in any case.
After an error trial, this reduction occurs only if the discarded set is
successfully retrieved, i.e., with probability t. If the current set
is not reduced, it is replaced by the full initial set. Thus, if there
are two hypotheses in the current set on an error trial, the set is
either reduced to one hypothesis or replaced by the initial set of
(typically) eight hypotheses. With an initial set of eight hypotheses,
then, every subject must have either four or eight hypotheses after
trial 1.

If we define a Bernoulli random variable Xy such that xn=1 when
a tenable hypothesis is selected after an error on trial n, and xn=0
otherwise, we have for the WWW condition:

E(ii)= Pr (xi=l) = Pr (tenable H is selected | r Hs remain).

Then E(x;)=Pr (tenable H is selected | 8 Hs remain) . (1-t)+

Pr (tensble H is selected | 4 Hs remain) -t

Since four Hs are tenable after trial 1, the probability of selecting one
of them is simply four divided by the total number of Hs remaining, and:

1-t ., _ 1+t
2 2

E(x,)= Pr (tenable H is selected | 8 Hs remain) ° (1-t)
+ Pr (tenable H is selected | 4 Hs remain) * t(1-t)

+ Pr (tenable H is selected | 2 Bs remain) ° 2

(a-t) , t@-t) , 2 28+t +1
n 2 = m

ct+
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Pr (tenable H is selected | 8 Hs remain) * (1-t)

=
—~
Ny
~
1]

+

Pr (tenable H is selected | 4 Hs remain) * t(1l-t)
+ Pr (tenable H is selected | 2 Hs remain) * t2(1-t)

Pr (tenable H is selected | 1 Hs remains) °* t3

+

(1-t) , 2Q-t) , £2Q-t) &£ s +2tP+t+1
8 m 2 = 8

Expressians may be derived similarly for sequences other than
WWW. The Chumbley model assumes no loss of information on correct trials.
Again referring to the Levine study, the model predicts four hypotheses
remaining after an initial "right" reinforcement, two hypotheses remain-

ing after the subject is told "right" on trials 1 and 2. Then for the

RRW caondition,
E(x,)=1,
E(J-Cz)=l, and
E(§3)=1-8-_t + b .’%ﬂ
for the RWW conditian,
E(x;)=1
E(x,)=t + LL}E - 33;1

E(x;)=t , t;tz E 6t thvl

and for the WRW condition,

B(z) = t+t5E= 1

2 2
=y _ 2ttt 1t _mP a3t
E(x)) = t"+ 55—+ 8
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The remaining task is to obtain a distribution so that an
appropriate test of fit may be applied. Since the x; are Bernoulli
random variables, the number of tenable hypotheses on any one problem
is a sum of Bernoulli random variables over subjects. Assuming subject
independence, the sum over subjects is a random variable, Yy with a
binomial distribution. The probability of tenable hypotheses on the
ith problem, ii’ estimates the parameter p of the hinomial distribution.
Given Levine's sample of 80 subjects, the distribution of the mean is
closely approximated by the normal. Now if t is assumed to remain
constant over problems, the distributian of the random variable y is
identical on all problems within an outcome-defined condition. If
interproblem independence is assumed, then the mean over problems is
the mean of independent, identically distributed random variables. Two
implications from the Central Limit Theorem are that the distribution
of this mean approaches the normal as the number of problems over which
the mean is taken increases, and that the variance of the sample mean
is inversely proportional to the number of problems (Cf. Parzen, 1960).
For the ahalysis at hand it is important to mote simply that the

variance of the mean is less than that of any one of the variables

averaged. The deviation of an observation of y from the population
mean My is approximately normally distributed with mean O and variance
less than the variance of the binomial variable, y. A test of fit to
y based upan the binomial distribution of y is therefore a canservative

test, in the sense that a deviation of a given size is more probable in

the distribution of y, due to its larger variance.
The test is not necessarily conservative if interproblem indepen-

dence does not hold. The variance of the mean of two random variables
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is given by:

Var(wtz) _ Var(w) + Var (El+ 2 * Cov(w,z)

Var (2) =S85

If w and z are independent, this reduces to:

Var(w) + Xn(z) + 0

Assuming identical distributiaons, we have:

Var(wtz) _ 2:Var(w) _ Var(w) _ Var(z)
2 L T2 T2

If the covariance is negative rather than zero, the variance of the

mean is even smaller. If the covariance is positive, however, the
variance of the mean is greater than indicated above, where the covariance
is assumed to be zero. When the covariance is positive, the variance of

the mean is:

Wizy _ 042 + 952 4+ 2 «Coy (w,2)
Var ( 2 ) u

o° + Cov(w,2z) _ 0% + Pyg Oy Oz
2 B 2

Oy, = O -—W.'-Z = 02 02
If % z, Var ( > ) + Pvz.rz - 02‘1+ puz) P e 52
2 -

% 4 Pwz Ow Oz 2 1+ Pwz) -2
2 = 2 =9
This last inequality holds because, for a fixed sum ¢ 2w+ozz, the product

Otherwise, Var (WZZ) =

o_i -UZ, and therefore Oy Oy is maximized when Oy = Oge Then regard-
less of the equality of 05 and ci, we have:

Var (%) Y
In words, the variance of an average of two random variables is .no greater
than the average of their variances. This principle clearly can be

extended to more than two random variables.
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'Frequencies' were obtained from the reported proportions by
multiplying by the number of subjects (80). The sampling distribu-
tion of these quantities, according to the above argument, have
variances less than or equal to those of the corresponding binomial
distributions of the scores for occasions, over which they are averaged.
For a binomial distribution with N=80, the chi-square statistic is
distributed approximately as chi-square. The expected frequencies
generated from Chumbley's HM model were therefore compared to the data
from Levine's study by means of the chi-square test.

The procedure was as follows: Trial values of the parameter (t)
of the model were used in a Fortran program to generate expected pro-
portions (i.e., probabilities) of tenable hypotheses. The observed
proportions used were those reported by Levine (1966). Three Pearson
chi-square statistics were computed from these observed and expected
proportions. The parameter value selected was the one for which the
sum of the three chi-squares statistics was a minimum. The procedure
therefore differs from minimum chi-square techniques in that a different
criterion (the sum of three chi-squares) was minimized. Each of the
chi-square values was computed on a pair of frequencies. One of each
pair was the frequency of a consistent hypothesis after a W on trial 1.
The other was the frequency of a correct hypothesis after trial 3 for
the ane-error, two error, or three-error condition. Since different
expected frequencies follow from WRW and KWW, these were averaged to
yield the expected frequency for the two-error condition. For WWW the

chi-square value was 8.05, for RRW it was 11.09, and for WRW-RWW, 8.91.
The value of the parameter t selected in this way was .49. If two

degrees of freedom are assumed for each chi-square, each is significant
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beyond the .025 level. The fit of the HM model is therefore unsatis-
factory by this criterion.

The criterion just described is somewhat conservative since it
does not reduce the degrees of freedom for the estimated parameter t.

A more stringent test of the model may be devised by using the sum of
the three chi-square statistics as a test statistic, comparing it with
values in a chi-square table. Since the observations used in
calculating the three chi-squares are not independent, the sum cannot
be expected to have the chi-square distribution. Such pseudo chi-
squares have smaller variance, however, than the analogous chi-square
distributions (Cf. Atkinson, Bower, and Crothers, 1965). Therefore the
actual probability of Type 1 error is less than for the chi-square distri-
bution, and the test is conservative. Combining the chi-squares yields
a pseudo chi-square of 28.05 with six degrees of freedom, less ane
degree of freedom for the parameter t, which is significant beyond

the .00l level.

In the following chapter, models are presented in which different
assumptions are made about retrieval and memory of hypotheses. These
alternative assumptians may lead to a better fit to the Levine data.

The models also include a modified response assumption suggested by
Chumbley's experimental data. Chumbley's finding that some subjects did
not respond on training trials but performed perfectly on test trials,
and that subjects had a nonchance tendency to press the right-hand
button suggests that pre-solution responding is not necessarily related
to hypothesis processing. In a situation in which emphasis is placed

on post-solution performance, it is reasonable to conjecture that subjects
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concern themselves with solving rather than with maximizing the chance
of a correct response on early trials. If working out a respanse
rule based on the hypothesis set interferes with processing of the
hypothesis set, then disregarding the correspondence between hypotheses
and responses early in the task could be an effective strategy.

Some support may be found for this notiaon. Goodnow and Pettigrew
(1956) found that subjects in a prediction task reported solving the
problem rather easily when they stopped trying to predict and simply
observed. In that study subjects had to make some response in order
to get feedback, and so the "just observe" strategy was not as readily
identified as in the Chumbley study. Byers (1965) allowed subjects
in a concept attainment experiment the option of offering hypotheses
an each trial, and found that the tendency to offer hypotheses an early
trials decreased significantly over problems. In this case, the pro-
cess of selecting a hypothesis from the tenable set may have interfered
with processing. In the model to be developed in the next chapter, it
will be assumed for tasks stressing post-solution performance that
subjects respond according to strategies not connected with the
tenable hypothesis set until only one element remains, and then respond
according to the single hypothesis. For comparison to the Chumbley
model, however, the new model will be fitted to the Levine data, and

hypothesis-relevant responding will be assumed.



STATEMENT OF THE PROBLEM

Findings cited in the preceding chapter lead to a fairly detailed
picture of the concept identification process. Recent evidence (Restle
and Emmerich, 1966; Levine, 1966; Trabasso and Bower, 1966) indicates
that the concept identification process does not restart after errors,
Something is remembered. Trabasso and Bower proposed a model in which
both the eliminated hypotheses and cue values of the positive stimulus
enter memory. Restle and Emmerich argued that memory for stimulus
information was hecessary to explain their results.

Memory for rejected hypotheses was suggested by Ericksan and
Zajkowski (1967) and Levine's results indicate that hypotheses are
remembered after errors. Although what is remembered in Levine's experi-
mental situation is almost certainly a set of hypotheses, the situation
is sufficiently different from the standard concept identification
experiment to leave room for doubt that Levine's findings extend to that
situation. (Cf. Trabasso and Bower, 1968, p. 50.) A test of some
implications of Levine's theory in an ordinary concept identification
task seems to be needed.

Chumbley (1969) developed a model based on Levine's theory and

applied it to a situation in which subjects were given four training
trials followed by seven test trials. The model fit the test trials,
but Chumbley reported that it did not fit the training trials. The

test described in the preceding chapter shows that prediction of the
proportian of tenable hypotheses in the Levine study was also inadequate-

ly accurats.

34
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A model cansistent with the findings discussed in the preceding
chapter is still needed. A major purpose of this study is to develop
such a model, and to test it in an experimental situation that canforms
to the usual cancept identification arrangement.

Although something, probably a set of hypotheses, is remembered,
it is equally clear that something is lost, or forgotten. What is not
clear about the forgetting is when it occurs. It 1is reascnable to
hypothesize that processing of a large or otherwise difficult set of
hypotheses results in both loss from the hypothesis set and forgetting
of previously stored information (retroactive interference). Restle
and Emmerich's (1966) data on repeated presentation of a stimulus
showed that there was some immediate loss of information, since
performance was nhot perfect an the second presentation. The data on
complementary stimuli (Kenoyer and Phillips, 1968) suggests that even
more loss occurs over trials. One way of investigating this loss of
information over trials is to present complementary pairs of stimuli,
as in the Kenoyer and Phillips study, and manipulate the number of
trials intervening between the presentation of the first and second
member of a complementary pair. In the present study the lag effect
was arranged factorially with the initial outcome sequences, in order to
facilitate this kind of analysis. Versions of the model both with and
without the retroactive interference assumption were developed and
compared.

The use of fixed outcomes aon initial trials in this study provides
particularly powerful tests of the extant hypothesis models. When the

"process model" (Cf. Gregg and Simon, 1967, p. 250) is examined rather
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than the stochastic model that is derived from it, several of the
models discussed in the preceding chapter (Restle, 1962; Bower and
Trabasso, 1963; Trabasso and Bower, 1966, 1968) yield deterministic
predictions. These predictions require analysis of error trial stimuli
so that caonsistency between the information provided an that trial and
later performance can be determined. If the positian of the error
trial in the trial sequence can be predetermined, as in the fixed-out-

come procedure, this consistency checking is facilitated considerably.



THE INDEPENDENT HYPOTHESIS ELIMINATION MODELS

General Development

The strategy of the present study is to isolate component assump-
tions of extant models and to test the assumptions individually when
such tests can be devised. As Sternberg (1963) noted, a test of the
whole model is a test of the logical conjunction of all of its assump-
tions. A test of a single assumption therefore serves as a test of
the whole model, since falsity of any ane element of a logical conjunc-
tian implies falsity of the conjunctive assertion. Whenever an assump-
tion can be falsified in a reasaonably simple experiment, therefore, it
seems profitable to test it in isolatian.

Besides serving to falsify models, tests of individual assumptions
are useful in the constructian of new models. Rejection of a given
assumption may suggest an alternative treatment of a mechanism within
a model. A framework of sorts has been established for the model to
be developed in this chapter, simply by the nature of the models
already discussed.

Several assumptions have been rejected in studies discussed in
the preceding chapter. The sampling-with-replacement axiom has been
falsified in a number of the studies cited (Levine, 1962, 1966; Holstein
and Premack, 1965; Richter, 1965; Trabasso and Bower, 1966; Restle and
Emmerich, 1966; Ericksan and Zajkowski, 1967). An alternative assump-
tion is sampling without replacement. Richter (1965) and Levine (1966)
both found that subjects failed to display the perfect performance

implied by this assumption. Restle and Emmerich (1966) and Kenoyer and

37



38

Phillips (1968) have presented evidence against the local consistency
assumption. The assumption that subjects improve performance only
after error trial has been refuted by Levine's (1966) results. In
the same study Levine also demonstrated that subjects are capable of
processing information about hypotheses that are not currently being
used as a basis for responding.

An adequate model must not include any of the rejected assump-
tions. In the case of those assumptions that were refuted by Levine's
data, it seems advisable to acquire further evidence in a standard
experimental situation, but it is probably best to consider alternative
assumptions when constructing a new model. Lack of fit of Chumbley's
(1969) model to Levine's data suggests that alternatives to his
process assumptions should be considered. Finally, Chumbley's pre-
solution (training trial) results suggest a modification of the response
assumptian.

Common to all the models discussed here thus far is the concept
of a set of hypotheses available to the subject, from which he selects
elements to be tested against the feedback or information provided
on each trial. Even in view of empirical evidence eliminating several
assumptions included in various models, Levine's theory remains intact.
The model to be proposed here is consistent with Levine's general
hypothesis processing framework although it differs from Chumbley's
more completely specified process assumptions. A reasonable alternative
to Chumbley's assumption of all-or-none retrieval of the whole hypothesis
set is all-or-none retrieval of each individual hypothesis. An example

of this kind of model is Phillips, Shiffrin, and Atkinson's (1965)
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register model of short-term memory. In the hypothesis model to

be developed here, however, the memory mechanism must be combined

with other mechanisms, and so a register model of the memory process
without simplifying assumptions leads to prohibitive complexity in the
overall model. The assumption that hypotheses are retrieved independently,
while probably not true, seems adequate for the purposes of the model
being developed here.

A decision must be made as to what hypotheses are assumed to be
remembered. If anly the hypotheses that have not been eliminated are
remembered, then loss of the correct hypothesis from this memory store
would render the problem unsolvable. This difficulty can be handled
by assuming perféct memory, but this assumption does not fit available
data (e.g., Levine, 1966; Richter, 1965). Another solutian is to
assume, as Chumbley (1969) did, that the subject starts with the entire
hypothesis set if memory fails. Given that the hypothesis set can be
reconstructed from the stimuli, this is quite reasonable. It could
even be assumed if it required the subject to store the initial
hypothesis set in memory. The Chumbley model, however, has been shown
to yield unsatisfactory fit to Levine's data, and so an alternative
explanation should be considered.

An alternative assumption is that what is remembered is the set
of logically eliminated hypotheses. The complement of this set yields
the currently entertained set, and so the information needed for
responding is always available. Equivalently, the subject could scan
the stimulus, matching its elements with eliminated hypotheses, and so

avoid dealing with the entertained set. Under this assumption any
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forgotten hypotheses simply become part of the set of hypotheses that
are currently entertained by the subject and have to be eliminated
again. In this view, a set of hypotheses is not forgotten. Rather,
the subject anly forgets which hypotheses have been eiiminated.

A flow diagram of the Independent Hypothesis Elimination (IHE)
models appears in Figure 1. As the figure indicates, the subject is
assumed to begin the task by establishing two sets, or lists. The
set Uo is the set of hypotheses held by the subject to be untenable at
the beginning of the task. Uo may be described as containing all
hypotheses that are disallowed by the experimental instructions, but
the model deals only with those hypotheses that are described to the
subject as legitimate. In the context of this set (H) of hypotheses,
Uo is assumed to be empty. Since information provided to the subject
makes logical elimination of hypotheses possible, qn is not generally
empty for n>0. The residual hypothesis set, R.n’ is the complement
of qn with respect to H.

Hypotheses sufficient for solution of the kind of problem of
interest here must specify a partition of the stimulus set in which
the subsets are assighed to categories established by the experimenter.
(Cf. Haygood and Bourne, 1965.) A hypothesis could, for example,
associate red figures with VEK and green figures with NONVEK. An equi-
valent partition would be obtained by associating red figures with VEK
and "everything else" to NONVEK. In a two-category problem, specifi-
cation of the second category, is redundant. The nonredundant representa-
tion is assumed in the present model. Adoption of this assumption requires

assumption of an additional step in the process, in which one of the two
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categories is adopted as a focal category, i.e., the subject chooses
to consider VEKs or NONVEKs to be positive instances. Stimuli are
assumed to be assigned to this focal category, then, throughout the
task.

The next step in the assumed process is to select a category
assignment, An' which associates the stimulus on trial n with VEK or
NONVEK, If An assigns S to the focal category (F), then the subject
sets up a list (Ln) of the cue values in the complement of the stimulus
(i.e., those not present in the stimulus), which can be eliminated
if he is correct. If the subject does not assign the stimulus to
the focal category, then the cue values present in the stimulus are
placed in the list Ln'

If the response is called "right", the subject has only to
retain Ln and add its members to Un' the untenable set. Because little
processing is assumed to occur at this stage, the probability of
loss is relatively small. If the subject is told "wrong", however,
he must recover the complement of Ln with respect to H. The recovery
process is assumed to increase the likelihood of an error. Elements
are then forgotten from Un with probability £ After Un has been
obtained in this way, the residual hypothesis set Rn’ can be recovered
by eliminating the elements of Un from the full hypothesis set H.

On later trials, after enough information has been presented to
the subject for logical solution of the problem, the nature of the
assumed process depends upon whether solution has occurred. If anly
one hypothesis remains, the problem is solved, and the response is

determined by whether the cue value that the hypothesis associates with
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the focal category is present in the stimulus. If so, the stimulus

is assignhed to the focal category; otherwise it is assigned to the
other category. If more than one hypothesis remains in the residual
set, the subject selects a category assignment by a strategy that is
not specified in the flow chart. In an experiment for which pre-
solution performance has been stressed, such as Levine's (1966)
experiment, the assumed strategy is to respond according to a randomly
selected hypothesis from the residual set. In an experiment such as
Trabasso and Bower's (1966, 1968), using redundant relevant cues, it

is assumed that subjects notice the redundancy of the cues corresponding
to hypotheses in the residual set rather quickly when all other
hypotheses have been eliminated, and respond consistently with those
hypotheses. In the ordinary concept identification task, however, the
response selection process is assumed to be unrelated to hypotheses

in the residual set (including the correct one), and so responses are
randomly correct or incorrect. This property of the model would account
for Chumbley's (1969) finding that training-trial data were not pre-
dictable by his HM model, since choice responses on the training trials

would not be related to the subjects' hypotheses.

Hypothesis States

It is more convenient to represent IHE Models in terms of hypo-
thesis states than in terms of subject states. If we consider the

probability, Vin’ that hypothesis H, is in Rn' the state probability

i

vector for hypotheses on trial n is:

Vn= v, , Vopt tter Vigr cces vmn> , where there are m hypotheses

1n in
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in Ro' Since all hypotheses are, by assumption, in Ro with probability
1,

V° = <,1,1,1,1,1,1,1> .

Now if a transformationm, Tin' can be specified such that

T. , then v,

V., = V. . be obtai b i ica-
in i,0-1 Tin in €30 be o tained by successive applica

tions of transformations to hypothesis states, and so Vn can be
obtained for n = 1,2, .... Given Vh, the probability distribution may
be obtained for the number of hypotheses in Rn‘ The probability that

there is exactly ane hypothesis in Rn is

m
m
3 = P H.
iz=:l Pr [Hi ER.n &HJ mn"#l] ii]_Pr [Hi Ean] Jil r [ J an]

- V. 1=
5t g Govy)

since hypotheses are eliminated independently. In general, if we de-

fine an m-element vector Xn such that

_J1 if H. R
xi'.n 1 .n ] izl’l..,m
0 if H. #R
i n
then Pr [N(R ) = k] = . 1 vx(l-v)l—x,
n X ek i=1

where subscripts for v and x have been excluded for clarity. Thus v

should be read as Vin and x should be read as Xy 0 K is the set of all

vectors X such that

" =k
I a7
i=1

When v=x=0, v* is taken to be 1, and for v=x=1, (1-v)1-x is taken to
be 1. Thus the probability distribution can be derived from the state

probabilities for individual hypotheses.



Respanse Assumptians

For situations such as the Levine (1966) experiment, in which
the subject is encouraged to optimize pre-solution responding, it is
assumed that the hypothesis upon which his responses are based is
selected from Rn’ and that all elements of R are equally likely to be
selected. In this process there is no way to eliminate a hypothesis
unless information on the current trial allows its logical elimination,
and so every hypothesis in U (i.e., every hypothesis not in Rn) is in
the set (Dn) of hypotheses that have been logically eliminable on or
before the nth trial. It follows that the complement of D, is a sub-
set of En’ and therefore that

) G,

The probability that the working hypothesis (H*), which is selected from

. c .
Rn’ is also a member of Dn’ is

8
Pr [H* EDE] = 5 Pr [H* eD§| r =k] * Pr [r,=k]
8 n
N(D)
— X -
) € . Pr [ry=k]

Eliminability Indicators

In the development that follows, it is convenient to define an
eliminability indicator, e; , for the ith hypothesis on trial n. The
indicator in takes on the value 1 if Hi is eliminable an trial n, O
otherwise. For the case of eight hypotheses, there is an ordered set of

eight such indicators for each trial, which may be represented as an eight-

element vector, En' Symmetry in the hypothesis set makes it possible to
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place the elements in any arbitrary order, given that the same order-
ing is maintained over all trials of a problem. On each trial, half
of the hypotheses are eliminable and half are not. Thus we can

represent the vector for trial 1 as:

E, = <1,1,1,1,0,0,0,0>

Half of the elements have the same value on trial 2 as on trial 1,
and the other half have the opposite value, assuming "orthogonality"
of stimuli (Cf. Levine, 1963). We can therefore represent the vector

for trial 2 as:

E, = <1,1,0,0,1,1,0,0>

A vector for trial 3 that satisfies the orthogonality requirement for

the two vectors above is:

Ey = <1,0,1,0,1,0,1,0>

The principles outlined above apply to all of the Independent Hypothesis
Elimination (IHE) models. The individual IHE models differ with respect

to the nature of the transformation, Tin’ that operates on v to

i,n-1

yield Vin®
IHE Model 1

In IHE Model 1, it is assumed that hypotheses are not lost (i.e.,
forgotten) from Un. The probability that an eliminable hypothesis in Rn
is also in Rn+l is the probability that the elimination process fails for
that hypothesis, i.e., 1-w if trial n is an error trial or l-c if it is a

correct trial., Thus
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=V

Vin -1 " Pr [ not eliminated | eliminable ]

« Pr [ not eliminable ] + Vi Pr [ not eliminable ]
,.

), where p, =worp =c.

=Yy gy (P n

n®in
Given a pair of values for w and ¢, the transformation rule is speci-
fied for IHE Model 1 for the first three trials, and hypothesis state
probabilities can be generated in a Fortran program. Thus the same
procedure described above for the Chumbley model can be used to
evaluate IHE Model 1 against Levine's data.

Test values for the parameters of the model (w and c) were
used to generate expected proportians of tenable hypotheses for four
situations: following a W outcome an trial 1, and following trial 3
for the RRW, WWW, and RWW-WRW conditions. A Pearson chi-square
statistic was computed for each of three pairs of proportions consisting
of the trial 1 proportion and aone of the three trial 3 proportians.
The observed proportions used in the computations were those from
Levine's study. The parameter values selected were those for which
the sum of the three chi-square statistics was a minimum.

The procedure differed somewhat, because two parameters were
being varied. First a relatively coarse grid was used, in which w and
¢ varied in steps of .10. In regions where fit was best, a finer grid
was applied, until steps of .01l were used in the best-fit regians. While
it must be recognized that extrema of functions (in this case, the
chi-square value) may be missed by such procedures, inspection of the
values generated did not suggest failure of monotonicity as parameters

were varied from an optimum value.
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THE Model 2

A hypothesis in Rn-l is assumed to enter Un with a probability
determined by i and Py just as in IHE Model 1. If we represent
the probability that the hypothesis is in Rn immediately after the

elimination process as vin? we have:

* —

V. V. -
in’ © Vi pg (1P ey,
Hypotheses in Un’ however, are assumed to be forgotten (and hence enter

Rn) with probability f. Applying the forgetting operator to vin*’

= * - *
Vin = Vin +£Q1 Vin )

* -
v, (1-1)

= f+vi,.n-l (l-Pn ein) (-£)

The probability f is a free parameter of the model, and has the same
value on every trial. The transformation characterizing IHE Model 2 is
therefore completely specified.

The same method of parameter estimation and test of fit described
for IHE Model 1 was also applied to IHE Model 2 in order to fit the

model to Levine'!s data.

IHE Model 3

This model differs conceptually from IHE Model 2 only in that the
probability of retaining a hypothesis in Un is not constant. If the
memory store for rejected hypotheses is separate from the memory store
for hypotheses currently being logically manipulated, the assumption of
a constant forgetting parameter seems reasonable. In IHE Model 3, how-

ever, these memory stores are assumed to be affected similarly by
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processing requirements. More precisely, both retention of hypotheses
in Un and elimination of those currently being processed are assumed

to occur with the same probability p, oo a given trial. Then,
* = -
Vin® = Vi,n-1 (P, o3
Now, since hypotheses in Un are assumed to be forgotten with probability

l-Pn’

"

* - - *
vin vin +Q Pn) Q vin )

- E 3
(1 Pn) + Vin Pn

(l_Pn in

(l_Pn) T Vin-1

) P,
The transformation rule characterizing IHE Model 3 is completed.
The procedure for evaluating IHE Model 3 was the same as that for IHE

Model 1.

IHE Model 4

If the order of the two processes, hypothesis elimination and
forgetting of eliminated hypotheses, is reversed, a new model results.
This modified model describes a process in which the forgetting opera-
tion occurs when the subject is analyzing the stimulus and processing
information that leads to hypothesis elimination, rather than after
information processing has occurred. Such a model could, for example,
describe a process in which storage of new information tends to result
in displacing old information. IHE Model 4 is described here in terms
of the operators already described for IHE Model 3, applied in reverse

order. Thus we have

v, ¥ = v,

in i,n-1 + (1-Pn) Qv

) = 1-p, (1-v. )

i,n-1 i,n-1

= * (11—
vin vin Q Rn ein)

=[1-Pn (l—vi,n-l)] (l—Pn ein)
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The parameters w and c were estimated, and IHE Model 4 was tested,

by the same procedure used for IHE Model 3.

IHE Model 5

Just as IHE Model 4 was obtained from IHE Model 3 by reversing
the order in which the forgetting and elimination operators are applied,
the corresponding operators for IHE Model 2 may be reversed to yield

IHE Model 5. Thus we obtain

* - - = -
Vig* = Vi g1 T AV ) £ WE-E

= * - = - -
Vin T Vin < Pn ein) (1+f fvi,n—l) Q Pn ein)
The model is identical in all other respects to IHE Model 2, and

the same procedure was used for parameter estimation and fit that were

used for that model.

Comparison of Models

Levine (1966) reported the proportions that were used in the
present study for preliminary evaluation of the models described above.
The first of these is the proportion of hypotheses following an error
on trial one that are consistent with the information provided by that
trial. For each of three canditions, ane error (RRW), two errors (WRW
or RWW), and three errors (WWW), Levine reported the proportion of
hypotheses following the third trial (for conditions in which the out-
come was "wrong") that were consistent with the information provided
by the first three trials. For each of the models discussed above,
parameters were varied to generate probabilities corresponding to these

proportions and the parameter values that yielded the best fit to the
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observed proportians (by the criterion described previously) were
taken as estimates of the parameters. These estimates appear at
the right-hand side of Table 1.

At the top of Table 1 are the observed proportions reported by
Levine. The corresponding predicted values are given for each model.
The chi-square value for each condition appears in Table 1 just below
the expected third-trial proportion on which it was computed. The sum
of the three chi-squares appears on the same line with them, to the
right.

Each chi-square has two degrees of freedom if none are deducted
for parameter estimation. Thus 6.0 is the critical value at the .05
level of significance. Thus each of the chi-square values for Chumbley's
HM model leads to rejection of the model. IHE Model 1 and IHE Model
3 fit even more poorly using either the sum of the chi-squares or
each chi-square as a criterion. One of the chi-square values of IHE
Model 4 is significant beyand the .01l level and the sum is signifi-
cant beyond the .005 level. The fit to Levine's data is better for
IHE Model 2, but is not really good, since two of the three chi-squares
are significant beyand the .10 level and the sum is significant beyond
the .05 level with 5 degrees of freedom. For IHE Model 5 the fit is
much better. Naone of the chi-squares is significant at the .25 level.
The pseudo chi~square for the sum has three degrees of freedom after
correction for estimating w, c, and £, It is significant beyond the
.25 level, but not at the .10 level. If aonly two degrees of freedom
are deducted for the nhandegenerate parameters w and f, four degrees of
freedom remain., By this reckoning, the sum is not significant even at

the .25 level.
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Certain features of the models became apparent as they were
fitted to the Levine data. All of the models predicted proportions
for trial one that are too small., This is quite pranounced for
Chumbley's HM Model, IHE Model 1, and IHE Model 3. For the last
two models mentiaoned, the optimal value of the parameter w for fitting
the data point for trial one (after one error), was obviously higher
than the optimal value for fitting the data points for trial three.

The parameter c, however, was unaffected by the trial one proportian
since trial one was an error trial. One result was that the estimate
of w was higher than that of ¢, and the expected proportions of
consistent hypotheses after ane, two, and three errors were in increas-
ing order rather than in the decreasing order of observed proportions.
This kind of prediction by the model is qualitatively unacceptable.

The evidence presented both by Levine (1966) and by Richter (1965)
indicates that information provided by "right" trials is more effective-
ly used than information provided by "wrong" trials.

In IHE Model 2, which has an additional parameter for forgetting,
both w and ¢ lose their potency as parameters. The best estimate for
each is 1.00. In effect, this means that the effect of adding the
forgetting parameter is to override the other two parameters.

The qualitative defect found in IHE Model 1 and 3 did not appear
in THE Model 4. The parameters w and c, and therefore also the expected
proportions for the three outcome conditions, are in the proper ordinal
relationship. Quantitative fit is not impressive, however, There is
virtually no difference among the expected proportions on trial three,

and the expected proportian for trial one is low.
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The fit of IHE Model 5 is the best of all the models tested.
The expected proportion for the first trial fits well, and those for
the third trial in the three experimental conditions are properly
ordered. It is apparent, however, that the model does not differentiate
strongly enough among the three conditions. The expected proportions
are more similar than the observed proportians.

Applicatiaon of the models to Levine's data served as a screening
process by which some of the models could be excluded from further test-
ing against data collected in the present study. The least promising
of the models discussed above are Chumbley's HM model, IHE Model 1,
and IHE Model 3. Besides generally poor fit, the two IHE models
displayed serious qualitative defects. The HM model did not seem to
warrant further testing, and there is reason to doubt that its author
intended that the model be applied to experiments such as those of the
present study, in which solution is stressed rather than pre-solution
performance.

Of the remaining three models, IHE Models 2 and 5 yield the best
fit to Levine's data. These models are quite similar, differing only in
the order in which the forgetting process (operator) and the hypothesis
elimination process (operator) are applied to the hypothesis state
probabilities. The remaining model, IHE Model 4, fits Levine's data less
adequately than the two just discussed, but was retained for further

testing. The procedure of Levine's study, in which blank trials were
administered, may have led to a greater degree of forgetting of feedback

information than occurs when feedback is given an every trial. Such a

state of affairs is suggested by the finding that the forgetting parameter
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(£) in IHE Models 2 and 5 overrides the parameters w and c. There-
fore THE Model 4, the best of the models that did not include the

parameter f, was tested against the data of the present study.



METHOD

Two separate experiments were conducted. In Experiment 1, pairs
of complementary stimuli were separated by ane trial (lag 1) or five
trials (lag 5). The other independent variable, the sequence of out-
comes an the first three trials, was combined with the lag variable in
an incomplete factorial design. There were two types of problems. In
the predominant type, all outcomes were predetermined. For these
problems, all possible outcome sequences were used on the first three
trials, and responses were called correct on the remaining six trials.
These are called fixed-outcome problems. In the other type of problem,
the first three outcomes were fixed, but the responses on later trials
were cansidered right or wrong depending upaon whether they were
consistent with the stimulus-response outcome information on the first
three trials. These are called contingent-outcome problems. The first
two problems were of this type, as well as the first two problems in
the last half of the eighteen-problem set (problems 10 and 11). Each
subject performed on all problems, but two groups were given the
problems in two different orders. The outcome sequences are shown in
Table 2 for all problems for group 1, where an underscore with no letter
indicates that the outcome for that trial was contingent upon agreement
with the hypothesis determined by trials 1 through 3. Asterisks mark the

trials on which the complementary stimuli, C, and Cz, were presented.

1
For group 2 the problems were arranged in a different order. Problems

57
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Table 2

Outcome Sequences for Experiment 1, Group 1

Outcome

Task

1.

2.

3.

R*

b,

R*

5

R*

7

9.
10.

11.

12.

R*

13.

R*

14,

R*

150

16.

17.

R*

18.
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1, 2, 10, and 11 were presented in the same order and the problem
blocks 3-9 and 12-18 were interchanged.

The same initial-outcome variable was used in Experiment 2.
Three warmup problems were administered. Sixteen contingent-outcome
problems were administered in which the lag was always 5 and each of
eight initial-outcome conditians was administered twice. Apparatus
cansiderations made it convenient to administer 18 rather than 16
problems besides the warmup problems. Therefore the first problem
in the first half and the first problem in the last half of the
experimental problem set were extra fixed-outcome problems, inserted
so that the number of problems conformed to the apparatus constraint.
The treatment orders were varied by interchanging the problem blocks
in the first and secand halves of the problem set as in Experiment 1.
The warmup and extra problems were administered in the same order
for both groups. The outcome structures for group 1 appear in Table
3. In Experiment 2 subjects were asked to state the correct hypothesis
at the end of each problem if they knew it, but were not asked to

guess.

Subjects

College students fulfilling an introductory psychology course
requirement served as subjects. In Experiment 1 all Group 1 subjects
were run before Group 2 subjects rather than in random order because
it was necessary to reorder all stimuli before changing groups. Since
all subjects had the same stimulus sequence in Experiment 2, subjects

were randomly assigned with the constraint that the sizes of the two groups
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Table 3

Outcome Sequences for Experiment 2, Group 1

Outcome

Task

1.

2.

3.

L.

5

7-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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were kept as nearly equal as possible throughout. In each experiment
a few subjects were discarded because of apparatus failures and pro-
cedural errors. One subject was discarded because of avowed red-
green color blindness, although there was no evidence that he had any
difficulty with color discrimination in the experiment. Data from 61
sub jects were analyzed in each experiment. There were 31 subjects

in Group 1 and 30 in Group 2 for each.

Apparatus

For both experiments stimuli were presented on a rear-projection
screen of flashed opal glass. The screen was installed in an open-
backed cabinet of wood and hardboard, and was visible through a clear
plastic window 4 inches high by 12 inches wide, in the front of the
cabinet. The window was in three sections, and each section was
hinged at the top to form a transparent movable panel., The bottom of
each section rested against a Microswitch, which served to register
responses. Figure 2 shows this cabinet. The labels "VEK" and '"NON-
VEK" were placed an the leftmost and rightmost panels, respectively.
The center panel, an which the stimulus appeared, was locked so as to
be immovable. The categorizing response an each trial was indicated
by pressing the panel with the appropriate label. This device was
described previously in reports of similar research (Kenoyer, 1968;
Kenoyer and Phillips, 1968).

The subject inputs (switch closures) could be rendered ineffective
by the experimenter by means of a pushbuttan control held in his hand;
another button an the same control device rendered the subject'!s inputs

effective. When these inputs were ineffective, a red light just above
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Figure 2. Stimulus display and response device.
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the stimulus window was turned on. When the inputs were effective a
response by the subject advanced the Carousel projector by which the
stimuli were displayed, showing the stimulus for the next trial.

For Experiment 2 all stimuli could not be loaded simultaneously
into a single Carousel tray, and so two Carousels were used. The
stimuli for the three warmup problems were loaded in ane Carousel pro-
Jector and the remaining stimuli were loaded in a second Carousel, in

order to avoid interrupting the procedure to change trays.

Procedure

The instructions shown in Appendix A were read to the subjects. A
demanstration of the subject response panels was given, with the inputs
disabled, and the functions of the red signal light and response panels
were explained. When subjects had questiaons, the instructions were
paraphrased. As the instructions state, the subject was supplied with
a card (Figure 3) listing the stimulus dimensions and the values an
each dimension. Another card, pictured in Figure 4, was shown to
subjects when the nature of the concepts was being described.

In the first experiment the subject progressed through the 18
tasks with only momentary breaks between consecutive tasks. During this
interval the red light indicating the end of a problem was on. Subjects
typically began the new problem immediately when the light was extinguish-
ed; if not, the experimenter informed the subject that it was time to
start a new problem. There was considerable variation in time to complete
the set of tasks, but nearly all subjects required more than 15 minutes

and less than 30 minutes.
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NONVEK VEK

Figure 3. Card shown to subjects to illustrate the nature
of concepts.
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ATTRIBUTES
—_—— large
Sige: small
. circle
Shape: square
Color: red
green
Border: bordered
unbordered

Figure 4. List of attributes and values.
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In the second experiment there were 21 tasks in all, and total
performance time was slightly longer. The procedure also differed in
that there was a pause after the familiarization trials to change pro-
Jector connections, and subjects were asked to state the correct
hypothesis at the end of each task.

The experimenter sat to one side of the subject in a chair with
a writing surface. A record booklet was placed on the writing surface.
The subject sat in a chair facing the presentation device, which sat on
a table. The booklets for experiments 1 and 2 are shown in Appendices
B and C, respectively. The experimenter provided feedback for the first
three responses in accordance with the predetermined sequence of out-
comes for the first three trials in every case. For fixed-outcome
problems, all remaining responses were called "right." For contingent-
outcome problems, the experimenter tracked the subject!s response
sequence on the decision tree shown in the protocol booklet. This
procedure determined the correct hypothesis for a problem after three
trials, and subsequent outcomes were made contingent upon agreement with

the hypothesis determined in this way.

Stimulus Materials

The stimuli were figures projected on the rear-projection screen,
varying on four binary attributes: Size, shape, color, and border,
Figures were either red or blue, squares or circles, and either had a
white border or no border. The large figures were four times the area
of the smaller, and squares were approximately equal to circles in
area. All figures appeared on a dark background. For experiment 1 two

different randomized stimulus orders were used for the two groups. The
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two orders appear in Tables 4a and 4b., The stimuli for the first half
of the problem set are the same as those for the last half. This
repetition was caused by progressing through the entire set of slides
in the Carousel slide tray twice. Only one order was used in Experi-
ment 2. The stimuli for problem blocks 4-12 and 13-21 were identical
for the same reasaon just given for Experiment 1. The stimulus order

appears in Table 5.



Task

10.
11,
12.
13.
14,
15.
16.
17.
18.

Code:
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Table L4a

Stimulus Sequences for Experiment 1, Group 1

LGCN
LGQB
SGQB
SRCN
LGCB
LRCB
SRCB
LRCN

LGCN

LGCN
LGQB
SGQB
SRCN
LGCB
LRCB
SRCB
LRCN

LGCN

LGQB
LGCN
SRCB
SRQB
LRQB
SGCB
SGQB
SGCN

SGCB

LGQB
LGCN
SRCB
SRQB
LRQB
SGCB
SGQB
SGCN

SGCB

SGCB
LRQN
SRQN
LRCB
SRCB
SRQB
LRQB
LGQN

SGQN

SGCB
LRQN
SRQN
LRCB
SRCB
SRQB
LRQB
LRQN

SGQN

Stimulus

SGQB
SGCN
LRQN
LRQN
SGQN
SRCN
LGCN
LRQB

LRQN

SGQB
SGCN
LRQN
LRQN
SGQN
SRCN
LGCN
LRQB

LGQN

LRQB
LRCN
LGCB
SRQN
LGQB
SGQB
SGCN
SRQB

SRQN

LRQB
LRCN
LGCB
SRQN
LGQB
SGQB
SGCN
SRQB

SRQN

SRCN
SRQB
SRQB
SGQB
SRQB
LRQB
LRCB
LRQN

LRCN

SRCN
SRQB
SRQB
SGQB
SRQB
LRQB
LRCB
LRQN

LRCN

LRCN
SRQN
LGQB
LGQN
LRCN
LGCB
SGCB
SGQN

SRQB

LRCN
SRQN
LGQB
LGQN
LRQN
LGCB
SGCB
SGQN

SRQB

SRCB
SGQN
SGCN
SGCN
SGCB
LRQN
SRQN
LGCB

SRCN

SRCB
SGQN
SGCN
SGCN
SGCB
LRQN
SRQN
LGCB

SRCN

LGCB
LGQN
LRCB
SGQN
LGQN
LGQN
LGQB
SRCN

SGCN

LGCB
LGQN
LRCB
SGQN
LGQN
LGQN
LGQB
SRCN

SGCN

L; large, R: red, C: circle, B: border, S: small,

G: green, Q: square, N: border.



17.

18.

Code:
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Table 4b

Stimulus Sequences for Experiment 1, Group 2

LGCN
LGQB
LRCB
LRCN
SRCB
SGQB
LGCN
LGCB

SRCN

LGCN
LGQB
SGQB
SRCN
LGCB
LRCB
SRCB
LRCN

LGCN

L: large, R:

G: green, Q

LGQB
LGCN
SGCB
SGCN
SGQB
SRCB
SGCB
LRQB

SRQB

LGQB
LGCN
SRCB
SRQB
LRQB
SGCB
SGQB
SGCN

SGCB

SGCB
LRQN
SRQB
LGQN
LRQB
SRQN
SGQN
SRCB

LRCB

SGCB
LRQN
SRQN
LRCB
SRCB
SRQB
LRQB
LGQN
SGQN

Stimulus

SGQB
SGCN
SRCN
LRQB
LGCN
LRQN
LGQN
SGQN

LRQN

SGQB
SGCN
LRQN
LRQN
SGQN
SRCN
LGCN
LRQB

LGQN

LRQB
LRCN
SGQB
SRQB
SGCN
LGCB
SRQN
LGQB

SRQN

LRQB
LRCN
LGCB
SRQN
LGQB
SGQB
SGCN
SRQB

SRQN

SRCN
SRQB
LRQB
LRQN
LBCB
SRQB
LRCN
SRQB

SGQB

SRCN
SRQB
SRQB
SGQB
SRQB
LRQB
LRCB
LRQN

LRCN

square, N: no border.

LRCN
SRQN
LGCB
SGQN
SGCB
LGQB
SRQB
LRCN

LGQN

LRCN
SRQN
LGQB
LGQON
LRCN
LGCB
SGCB
SGQN

SRQB

SRCB
SGQN
LRQN
LGCB
SRQN
SGCN
SRCN
SGCB

SGCN

SRCB
SGQN
SGCN
SGCN
SGCB
IRQN
SGQN
LGCB

SRCN

LGCB
LGQN
LGQN
SRCN
LGQB
LRCB
SGCN
LGQN
SGQN

LGCB
LGQN
LRCB
SGQN
LGQN
LGQN
LRQB
SRCN

SGCN

red, C: circle, B: border, S: small,
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Table 5
Stimulus Sequences for Experiment 2

Task Stimulus

1. LRCN SRCB SGCN SGCB SGQN LGCN LGCB SRCN SGCN

2 SGQB LGQN SRQN SGCN SRCN LRCB SRQB LRQN LRCN

3. LRCN SRCB SRQN LGCN LGQB IRCB SGCN LRQN LGCB

4, LGQB IRQN LGCN SGCN LRCN SGQN LGQN SRQN SRQB

5e SGCB SGQN SRQB SRCN LGQN SRQN LRCN SGCN SRQB

6., LRCB SRQB SGCB SRCN SGQB LRQB LGCB LGQN LRQN

7., LRCN LGQN SGCN SRQB LRQN SGQN SRCN LGCB LRQB

8. SRCB SGQB LRQB LGCN LRCB SGCB LGQB SRQN SGCN

9., SGQB SRCB SRQN LRQN SRQB LGQB SGCN LRCB LGCB
10, LGCN SGCB LGQB SRCB SGQB LGCB LRCN LRQB SRCN
11, SRCN SRQB LRCB LRQN SRQN SGQB LRQN SGCN SGQN
12. LGCB LRQB SRCB SGQN LGQB SRQB LRCN SGCB LGQN
13, LGQB LRQN LGCN SGCN LRCN SGQN LGQN SRQN SRQB
14. SGCB SGQN SRQB SRCN LGQN SRQN LRCN SGCN SRQB
15. LRCB SRQB SGCB SRCN SGQB LRQB LGCB LGQN LRQN
16, LRCN LGQN SGCB SRCN SGQB LRQB LGCB LGQN LRQN
17, SRCB SGQB LRQB LGCN LRCB SRCB LGQB SRQN SGCN
18, SGQB SRCB SRQN LRQN SRQB LGQB SGCN LIRCB LGCB
19. LGCN SGCB LGQB SRCB SGQB LGCB LRCN LRQB SRCN
20, SRCN SRQB LRCB LRQN SRQN SGQB LGQN SGCN SGQN
21, LGCB LRQB SRCB SGQN LGQB SRQB LRCN SGCB LGQN

Code: L: large, R: red, C: cirecle, B: border, S: small,

G: green, Q: square, N: no border.






RESULTS

Test of Models

Detailed predictions may be derived from some current models
for the experimental conditions of the present study. Several such
predictions are evaluated below.

The first of these follows from the assumption (Bower and
Trabasso, 1964) that subjects begin a concept identification task in
a guessing state and remain in that state until an error occurs, at
which time they select a hypothesis. In the RRR condition it follows
that a subject cannot have solved the problem at the end of three
trials, since there have been no errors. The probability that a subject
in this condition makes a correct response on any trial after the third
is then 1/2, provided that no error has occurred. The probability of
making no errors on the remaining six trials is (1/2)6=1/64. The
observed proportions of errorless solutions for the RRR candition were
0.836 for Experiment 1 and 0.869 for Experiment 2. These observations
were based an 61 subjects in each experiment, each performing on one
RRR problem in Experiment 1 and on two in Experiment 2 and so the
proportions clearly are reliably different from 1/64.

For the WRR condition predictions from two models (Bower and
Trabasso, 1964; Trabasso and Bower, 1966) are equivalent and quite clear.
Since subjects responses were called "wrang'" an trial 1, these models
assume that selection of a new cue occurred after that trial. The
models assume "local consistency," and so the subject's selection of

a cue following an error trial must, according to this assumption, be

71
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consistent with the information provided by that trial. Since the
correct hypothesis in this condition is selected by the experimenter
so that it agrees with the subject's choices aon trials 2 and 3, the
models predict errorless solutions with probability 1. The observed
proportions of errorless solution were 0.738 for Experiment 1 and
0.694 for Experiment 2. Both proportions are reliably different from
1.

The Restle (1962) model does not include a consistency check on
the error trial, and so predicts only that all responses will be con-
sistent with trials 2 and 3 in such fixed outcome problems. The pro-
portian of WRR problems in Experiment 1 for which this two-trial con-
sistency held was 0.82.

The Bower and Trabasso (1964) model assumes consistency checks
after errors, in which the cue to be selected is checked against the
error-trial information anly, and so for the WWR condition this model
predicts that all responses will be consistent with trials 2 and 3,
but not necessarily with trial 1. The same prediction holds for RWR,
since the second-trial cansistency check looks back to the correct
choice on trial 2 and the experimental procedure ensures agreement with
trial 3 for this condition as well as for WWR. The proportion of
WWR problems for which consistency with trials 2 and 3 was found was
.75 and the corresponding proportion for RWR problems was .79. Ninety-
nine per cent canfidence intervals for the probabilities associated
with these proportians were computed by means of the normal approxima-
tion to the binomial distribution. Since both intervals lie below .88,

it is apparent that the probabilities are not near 1.
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A pair of models developed more recently yield the same pre-
dictians for the two conditions discussed just above. Trabasso and
Bower (1968) presented two models which differ in their predictions
about behavior such as learning a second redundant relevant cue, but
cannot be discriminated on the basis of manipulations of the outcomes
on the first three trials, as in the present experiment. These models
assume consisteney checking against the error trial as does the Bower
and Trabasso (1964) model and, although they assume multiple-hypothesis
processing, their prediction for this case is similar to that of the
1964 model. After the secand trial the subject is assumed to select
a new "focus sample" without regard to trial 1 information. According
to these models, the sample is then narrowed down an correct trials by
discarding those hypotheses inconsistent with the chosen stimulus.
Caonsequently there are at least one, at most two hypotheses left in
the sample after trial 3. If there is ane hypothesis, the subject'!s
responses are consistent with it, and perfect consistency with trial
2 results. If there are two hypotheses, the subject!s response is
consistent with both of them an each trial until a trial occurs on
which they are placed in opposition. When they are opposed, the sub-
ject narrows the focus by discarding one of them and so retains the
remaining hypothesis throughout the remainder of the problem. In
either case, then, every response is consistent with the trial 2
response and with trial 3 as well. This is the same prediction made
by the 1964 model for the WWR condition and the RWR condition. The
observed proportians were .75 and .79, as stated in the preceding

paragraph.
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The model (Trabasso and Bower, 1966) that relinquished the
sampling-with-replacement axiom also added consistency checking against
the trial preceding the error trial. For the WWR and RWR conditionms,
according to this model, a consistency check occurs, comparing trials
1l and 2, eliminating any cue that is inconsistent with those outcomes,
and selecting a new cue value that agrees with trial 1 and trial 2
outcomes. Cansistency with trials 1 and 2 is thus assured by the
subject's behavior and consistency with trial 3 is generated by the
experimental procedure. This model therefore predicts errorless per-
formance after trial 3 with probability 1 for both RWR and WWR. The
observed proportions of errorless performance of these conditions
were 0,694 and 0.410, respectively.

The outcome combinations still to be considered are those with
a "wrong" on trial 3 (XXW). The Bower-Trabasso (1964) model predicts
for this condition that all responses will be consistent with trial
3 information. By the same argument given above, with respect to
trial 2 consistency in the XWR conditions, the two more recent multiple-
hypothesis models (Trabasso and Bower, 1968) yield the same prediction
for this condition. The proportion of trial~three-consistent proto-
cols observed for XXW conditians was 0.795.

Since it assumed consistency checking against the trial before
the error trial, the Trabasso-Bower (1966) model predicts perfect
caonsistency with trial 2 as well as trial 3 in the XXW case. The
observed relative frequency of such consistency on XXW problems was

0.504,
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Lag Between Complementary Stimuli

Another test of local cansistency is that described by Kenoyer
and Phillips (1968), in which consistency is indicated by the sub-
Jject's matching responses on complementary stimuli. A description
of this procedure and its ratiaonale was given in a previous chapter.

The finding by Kenoyer and Phillips that matches occurred with
probabilities different from 1 was confirmed in the present study.

The present design also considers two values of lag (the number of
trials intervening between complementary stimuli). In Experiment 1
the relative frequencies of matches were 0.702 for lag 1 and 0.586 for
lag 5. The decrease over lag is significant, and indicates some loss
of information over trials. Although this loss could be interpreted
as a forgetting process, further examination of the data suggests
another possibility.

Whenever errorless solution occurs, the choice responses
corresponding to the complementary stimuli necessarily match. Since
the criterion for correct responding is established partly by the trial
on which the first member of the complementary pair (Cl) is presented, a
correct response to the secand member is necessarily the same response
that is called "wrang" for the first member. Therefore, any subject
who solves the problem before the presentation of the second member of
the complementary pair (Cz) scores a match on that problem. Methods have
not been devised for identifying all subjects who solve before the trial
an vhich C, is presented, but some improvement can be effected by elimin-

2
ating those subjects who solve with no errors after the third trial.
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It is useful, therefore, to examine the conditional proportion
of matches given that errorless solution does not occur. For Experi-
ment 1 the conditional proportion was 0.498 for the lag 1 conditian
and 0.328 for lag 5. If no informatiaon from the error trial and subse-
quent trials were utilized, the corresponding probability would be .5.
The lag 1 proportiaon is not significantly different from this chance
level, but the lag 5 proportion is below chance. The number of observa-
tians (i.e., the number of problems with at least ane error) from which
these proportiaons were computed was 479.

The finding that the lag 5 proportion was below chance suggests
that the decrement is not simple forgetting. If it is regarded as
information loss, it must be attributed to misinformation. A plausible
source of misinformation in Experiment 1 is the series of "right" rein-
forcements between the two complementary stimuli. If subjects do process
information on those trials, then any response that is not comnsistent
with the hypothesis established an the first three trials leads to
category information that is incansistent with the established
hypothesis.

Experiment 2 did not provide this potential source of misinforma-
tion, since feedback after the first three trials was contingent an
the response, and feedback on the first three trials, though arbitrary,
was hecessarily cansistent with the correct hypothesis. If the spec-
ified kind of misinformation did occur in Experiment 1, the conditianal
probability of a match should be greater in Experiment 2., The local
cansistency assumption, aon the other hand, predicts a lower conditianal
probability of a match in Experiment 2, since each error trial is

assumed to "restart" the subject. The conditional relative frequency
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observed in Experiment 2 was 0.682, which was reliably greater than
that for either lag in Experiment 1. This proportiaon was calculated
for a sample of 330 instances. The sample size was smaller in Experi-
ment 2 because that experiment was not designed primarily to gather
data an matches, and consequently the first of the complementary pair
of stimuli did not always coincide with an error trial. The variation
was not due to differences in the number of subjects who made errors;
the number of subjects making at least one error averaged over condi-
tians was approximately 36 in Experiment 1 and spproximately 37 in

Experiment 2.

General Results

Although the major emphasis in this study was on the evaluation
of models and of certain theoretical assumptions, several results should
be reported because of their relevance to other questions that may be
raised about the study. Such results are included in this section
of the Results chapter.

In Experiment 1 subjects were not informed of errors aon trials
after the third in most of the problems (problems 3-9, 12-13), but were
told "right" regardless of their responses an these trials. Regardless
of the effectiveness of subjects! initial strategies, feedback indicated
perfect performance, and so there was no apparent need to improve. In
this situation it seems reasanable to expect little or no improvement
in actual performance. This expectation was checked by means of two
dependent variables, a binary indicator variable indicating either that
one or more errors occurred (1) or that solution occurred without error

(0), and the number of errors occurring after the third trial. By
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"error" is meant a response that is not consistent with the hypothesis
established aon the first three trials. Subjects were not informed of
these errors in Experiment 1. The comparison was between the mean

for the first half of the problems and the mean for the last half
(problems 3-9, 12-18). The relative frequency of at least one error
was 0,550 on the first half and 0.517 on the second half. The mean
numbers of errors were 1.852 and 1.813 for the first and last halves

of the problems, respectively. The difference between neither of these
pairs of numbers is significant. It may be noted that while the number
of errors decreased over problems, the relative frequency of at least
one error increased slightly. The comparisons were based on data

from 61 subjects.

The situation was different for Experiment 2. On all but the
two filler problems, consistent feedback was provided on all trials.
Under these conditions it is reasonable to expect some improvement over
problems. The same dependent variables described just above were used,
as well as a third variable, an indicator variable which took the value
1 if the subject verbalized the hypothesis correctly after the problem,
or O otherwise. The probability of at least one error was .502 for
the first half (problems 5-12) and .395 for the last half (problems
14-21)., The mean number of errors was 1.256 for the first half and
1.029 for the last half. The probability of correct verbalizatiaon was
.730 for the first half and .793 for the later ones. Nane of these
differences is significant although all are in the proper direction to
indicate improvement. Problems 4 and 13 (the filler problems) were

excluded from the analysis. Warmup problems (1-3) were also excluded.
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Another indicator of change in performance is match frequency.
If a subject becomes more efficient in encoding the stimulus, he may
be expected to retain more information about the stimulus over trials.
If so, the redundancy in the second member of a complementary pair of
stimuli (Cz) would result in an increasing tendency to respand correctly
when C2 is presented, and match frequency would increase. In Experi-
ment 1 the relative frequency of a match was .567 for the first half
and ,520 for the secand half. The difference is not significant.
Matching responses on complementary stimuli are not independent

of errorless solution. If solution occurs at any time before C, (the

2
second member of the complementary pair) is presented, a correct
response, and therefore a match, occurs on that trial. It is possible
that the effect of lag on match frequency may be due in part to the
effect of lag on the proportion of errorless solutions. The effect of
lag on the proportion of errorless solutiaons was therefore assessed.
Proportions of problems with at least one error before solution appear
in Table 6, in which rows are experimental conditions defined by the
outcomes on the first three trials of the problem, and columns are lag
canditions. The marginal proportions for the two lag conditians were
.612 for lag 1 and .618 for lag 5. The difference is not significant,
and seems too small to mediate effects of any consequence.

The marginals for outcome conditions vary more strongly. The
variability among these conditions was significant (%=34.18, df=5).
The observations on which the chi-square was computed were on the same
subjects, and the independence assumption underlying the use of chi-

square is therefore questionable. However, the result of the test

serves as an indication of rather large variability among the proportians.
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Table 6
Proportions of Problems of Which At Least

One Error Occurred, By Experimental Canditions

Lag 1 Lag 5 Row Mean

WWW .721 .852 .787
WWR 459 410 435
WRW .721 «721 .721
RwWw 770 o754 762
WRR .311*
RWR 459 426 443
RRW 541 541 <541
RRR 164

Column

Mean 612 617 615

*The WRR and RRR conditions were excluded from the analysis,

since both lags were not used for these conditions.
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The number of VEK presentations in the first three trials is
a dependent variable, since the outcomes on those trials are pre-
determined and the classification an each trial is jointly determined
by the response and the predetermined outcome. The number of VEK
presentations was counted for each subject and outcome condition, and
intercorrelations were computed among these humbers. The inter-
correlations appear in Table 7. It is apparent that the problems
with the same first-trial outcome intercorrelate positively and that
the correlations between these and the problems with the opposite first-
trial outcome are negative, although the correlations are not large.
Under the fixed-outcome condition that characterizes these first three
trials, the stimulus is what the subject calls it (VEK or NONVEK) an
"right" trials and the opposite of what he calls it on "wrong" trials.
The correlation pattern suggests, then, that individual subjects tend
to choose VEK or NONVEK consistently on these first three trials.

The following procedure was used to evaluate this conjecture.
Correlations were computed on a binary variable indicating VEK (1) or
NONVEK (0) for the first trial. The intercorrelations among problems
are shown in Table 8 for group 1. With few exceptians (9 out of 162),
the correlations are positive, and many of them are greater than .352,
which is the smallest correlation that is significantly different from
zero at the .05 level for 31 subjects. The correlations for group 2
appear in Table 9. Here there is only cne negative correlation and
again several of the correlations are significantly greater than zero.
For 30 subjects, r is significant at the .05 level when r > .358. These

correlations indicate some individual consistency in the selection of a
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Table 7
Correlations Among Numbers of VEK Presentations
in Experimental Caonditions

(A1l Correlations Multiplied by 100)

100 Ly 22 10 -25 -54
Ly 100 37 13 -29 =51
22 37 100 06 12 -26
10 13 06 100 -06 -07

-25 =29 12 -06 100 18

-54 =51 -26 -07 18 100

-22 15 -02 -36 20 15

-07  -18 02 05 21 19

-15
-02
=36
20
15
100
08

-18
02
05
21
19
08

100
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given categorization response on these pre-solution trials. The
means (which are, of course, probabilities) do not reveal this
nonrandom behavior. For group 1, the proportions of VEK responses
were .468, .516, and .556 for the three trials, respectively. For
group 2, the corresponding proportions were .554, .568, and .493. From
these proportions it is reasonable to infer that there is no preference
in the population of subjects for either response. The correlations
indicate, however, that there are consistent preferences at the indivi-
dual level which are not apparent in group means. The above results
support the contention that subjects begin such problems nonrandomly
rather than in a guessing state. Some of the variability of early
choice responses is therefore accounted for by response preference.

Another potential source of behavior regularity that was investi-
gated is the correlation of responses with the presentation of cue
values. Trabasso and Bower (1964) have dealt with the tendency of groups
of subjects to select a given cue by including cue weighting parameters
in their models. The present method, however, deals with tendencies
of individual subjects to assign stimuli with a given property to a
given category. If a subject tends to assign large stimuli to VEK,
for example, then his VEK responses are, in a loose sense of the term,
"correlated" with the appearance of large stimuli., If VEK and NONVEK
are coded as 1 and 0, respectively, and size is coded so that 1 indicates
large and O indicates small, the stimulus and response are quantified and
the term "correlation" can be applied in the more rigorous sense of the
Pearson product-moment correlation. A positive correlation between classi-

fication and size then indicates a tendency to emit VEK responses when
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large stimuli are presented, and a hegative correlation indicates the
opposite classification preference. For each subject a correlation

can be obtained between his string of responses and the string of values
for each cue.

The string of numbers identifying trial numbers within problems
and the string of problem numbers can also be correlated with the
response variables just described. A positive correlation between a
subject!s respaonses and trial numbers indicates a greater tendency to
emit VEK responses (coded 1) on later trials than on earlier trials,
while a negative correlation indicates a decreasing preference for the
VEK response. Either a positive or a negative correlation may then be
taken to indicate a change in response preference over trials. Similar-
ly, naonzero correlations between the response variable and problem number
indicate a shift in respanse tendency over problems.

The correlations described above were computed for a limited set
of trials. The set of trials that were of interest are those over which
the subject cannot reasonably be expected to change hypotheses and for
which sufficient information has not been provided for solution to the
problem., Therefore no trials after the first three were included and,
of the first three, only those trials that were not preceded by a "wrong"
outcome were used in this analysis. A nonzero correlation between any
cue and the classification response therefore serves as a measure of
the cantingency relation between an individual's responses and the presence
of a particular cue value. If subjects began problems consistently with
the same cue (e.g., size) but alternately classified small stimuli as
VEK and large stimuli as VEK cansistent selection of a cue would not

necessarily yield nanzero correlatians, but the stronger consistency,
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i.e., a consistent contingency relation between classification response
and cue value over observations, appears as a nonzero correlation.

For this analysis it is necessary to consider subjects, cue
values, trial number, and problem number as variables. Observations
of values taken on by these variables are taken over different occasions
(trials). The portian of the correlation matrix that shows inter-
correlations among subjects is not relevant to the analysis, since
the object is not to identify similar response strings. The part that is
of interest is the set of intercorrelations between response strings and
the other variables, and the intercorrelations among the non-subject
variables.

Twenty-four trials were used in the analysis of each of the two
groups. The critical value for the correlations between qualitative
variables (phi coefficients) with this sample size is .40. Most of the
correlations with cues do not reach significance, but there are a few
exceptions. For example, the classificational responses of Subject 16
in group 1 correlated significantly with both size and border (Table 10).

An especially impressive regularity is indicated by the entries
for Subject 11 in Table 11. PACKAGE (Cf. Hunter and Cohen, 1969), the
set of correlational programs used for this analysis, enters "900" in
the correlation table for variables with zero variance. Subject 11
made the same response on all trials used in the analysis. Inspection
of the data card showing the classification responses for the first
three trials for all 18 problems revealed that all but two of the 54

responses were VEK.
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Table 10

Correlatians of Subjects! Responses With Cue

Subject

O O O\ EW D

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Large
Red
Circle
Border
Problem
Trial

Values, Trial, and Problem Number

Group 1
(A11 Correlations Multiplied by 100)

Large Red Circle

9
-16
-8
-21
-21
-4
~i7
-22

14
28
-7
-0
..3 2
-7
7
b5
-0
8

7
35

7
36
-0
—25
-21

28
-28
=41

7

-14
-22
100
=14

9
16
41
-7

=21
-29
=0
22

0

9
-7

-14
-0
21
=7
-0
-0

8

=22

=12
=21
21

-15
-8
-7
-0
28

8
-7
14
-7

14

100
16

7
-5
16

32
=5
-18
=27
-11
=25
-13
2
-16
12
2
-25
5
11
-2
2
13
=7

Border Problem

39
30
4
-2
16
..]_9
2
20
-7
-18
-25
_34
14

33
-29
3
16
11
2
-14
-18
13
14
34
-8
-64
7
-1
25
38
16
=20
=10
-28
-15
8

..23
9
-6
=28
8
-9
=53
=55
5
-5
11
-8
100
-4
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Table 11

Correlations of Subjects? Respanses With Cue

Values, Trial, and Problem Number

(A1l Correlations Multiplied by 100)

Large

-7
=21
16
=6
14
-6
14
_3 2
39
-9
900
-8

- 23
6
-l
20
6
-11
-1k
-1k
- 29
-3
14
13
2
39
2
-10
9
-29
100
-7
5
-18

L
=21

Red

-14
-14
7
-0
12
-29
-0
-12
-15
=12
900
=0
-0
-14
35

-28

Group 2

Circle

16
-16
2
23
L

-25
14
29
14

L

900
-7

-23
-7
-6

-31

-12

-40

-11

-20

-11

42

_27
32
L4
Ly
Ly
19
-
20

5
16

100

-4y
16

..27

Border

100

Problem

39
-8
26
23
34
-15
-8
-18

900
-0
=21
31
10
-16
-25
-8
-12

12

13
27

27
=14
-2

14
16

100
-4

Trial
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There are large correlations with both trial number and problem
number. Unfortunately, the assumptions hecessary to determine a
significance level for these correlations cannot be justified. The
magnitudes of some of the correlations are such as to suggest, how-
ever, that the subjects with which they are associated shifted their

response preferences over problems or over trials.

Evaluation of the IHE Models

The probability of each possible sequence of errors and correct
responses can be generated from the IHE models, and so it is possible,
in principle, to test the fit of the models against observed frequencies
of the error protocols. The procedure is not feasible for the present
study, however, since for 6 trials there are 26=64 possible sequences.
There are three fixed outcomes at the beginning of each problem and
six respaonse~contingent outcomes constitute the remainder of the
problem. Each of these conditions can therefore yield 26=6b different
outcome sequences for the trials after the third. There are only two
observations on each condition for each subject, for a total of 122
observations on each condition. The number of observations for each
conditiaon is therefore less than twice as large as the number of
categories. This ratio is not sufficiently large for minimum chi-square
methods of estimating parameters. The usual way of avoiding this problem
is to consolidate categories.

One way of consolidating in the present study is to place all
protocols for a given condition having the same trial of last error in
the same category. This procedure yields a separate probability distri-

bution for trial of last error for each condition. There are only seven
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categories (one for errorless runs on the last six trials). Given
that the expected frequencies for a given set of parameter values are
all sufficiently large, a chi-square measure of goodness of fit is
reasonable.,

A learning curve can also be obtained for each condition. For
each protocol generated by the model, the probability of that protocol
is added to each point an the error probability curve (learning curve)
where the protocol shows an error. For example, a probability must
be generated for the sequence 111000111 (where 1 indicates an error, O
a correct response), as well as for all other sequences of the same
length. This protocol can occur only in the WWW condition, as indi-~
cated by the errors on the first three trials. Then for the WWW
conditiaon, the probability that this sequence occurs is added to
error probabilities for trials 7, 8, and 9. When all possible sequences
have been tallied in this way, the resulting probabilities constitute
the learning curves for the eight experimental conditions.

The procedure used for this test was similar to that described
for the preliminary test discussed previously, in which Levine's (1966)
data were used. Test values of the parameters were entered as data
into a Fortran program, and theoretical (predicted) learning curves
and trial of last error (TLE) curves were generated. A chi-square
statistic was computed for each of the two curves for each experimental
candition, and the sum of these chi-squares was taken as the indicator
of goodness of fit.

Each of the eight experimental conditions then had seven TLE

data points and six learning curve points, for a total of 104 data points.
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Computing the theoretical curves and the chi-square statistiecs for so
many points is obviously more time-consuming than the preliminary
analysis. Results of that analysis were therefore used to simplify
the present aone. Since the best estimate of the parameter ¢ was

1.00 for both IHE Model 2 and IHE Model 5 in the preliminary test,
this parameter was not varied in the present test. With ¢=1.00 for
these two models, each had only two parameters, w and f. As in the
preliminary test, IHE Model 4 had the two parameters w and c.

The parameter values yielding the best fit, the chi-square
values for the TLE curve and the learning error curve for each condi-
tion, and the sum of the chi-squares appear in Table 12 for IHE
Models 2, 4, and 5. The minimum sum found for IHE Model 2 was 1100.,
that for IHE Model 5 was 643., and that for IHE Model 4 was 266. There
are thirteen frequencies (twelve degrees of freedom) for each candi-
tion, and eight conditions, yielding 96 degrees of freedom for the
overall chi-square before correction for estimated parameters. The
sums for all three IHE models are therefore tested against chi-square
with ninety-four degrees of freedom. All three models then, deviate
from the observed data of the present study sufficiently to be rejected
beyand the 001 level.

Of the three models, IHE Model 4 is clearly superior. For this
model, the observed and expected proportions for trial of last error
appear in Table 13, and those for the mean error curve are presented
in Table 14. The predicted proportions shown are all generated from
the parameter values shown in Table 12, those that yielded the minimum

sum of chi-squares. Although the model does not fit adequately by this
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criterion, it accounts for 91 per cent of the variance among the 56
proportions in the TLE curve and 97 per cent of the variance among

the 48 proportions in the mean learning curve.



DISCUSSION

Current Models

One of the purposes of this research was to evaluate certain
assumptions of current models of concept identification. Although some
of these assumptions had been tested in other contexts, the procedure
of the experiments reported here led to particularly strong predictions
from the assumptions tested, and so was expected to provide a sensitive
test of them.

The simplest of these assumptions was that subjects begin a pro-
blem with no hypothesis and select hypotheses only after error trials.
This assumption was included in Bower and Trabasso (1964) model for
mathematical convenience rather than for substantive reasons, but its
evaluation by the relatively direct method of the present study seemed
appropriate. The finding, in the present study, that subjects in the
RRR condition performed without error with high probability extends
the findings of Levine (1966) and Richter (1965) by providing evidence
for hypotheses at the outset of the standard concept identification
situation.

Several deterministic predictions following from the local
consistency assumption were tested and found to be in conflict with the
data. This assumption, like the one discussed just above, may be
analyzed into two process assumptions. The first of these is that the
hypothesis selected after an error is consistent with the information
on that trial. The second is that hypotheses are not abandoned an

97
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correct trials. Previous research (Restle and Emmerich, 1966) has
shown that repeated presentation of a stimulus an successive trials
does not lead to perfect performance on the second presentation after
an error on the first. The deviation from perfect local consistency
was not large in that study, however. The greater discrepancies
found in the present study are probably due to processes occurring
over a longer series of trials, since the predictions tested here
have to do with consistency over the remainder of a problem after an
error trial, Predictions that were examined included (a) errorless
performance in the WRR condition, (b) consistency with trials 2 and 3
in the RWR and WWR conditions, (c) consistency with trial 3 in the
WWW, WRW, RWW, and RRW canditions, and (d) matching responses on

complementary stimuli after either one or five intervening trials.

Effect of Lag an Matches

An earlier study (Kenoyer and Phillips, 1968) showed that the
proportian of matching responses to complementary stimuli was not near
1 in general, and the present study added support to that finding with
a larger sample of subjects and an exhaustive set of combinations of
outcomes on the first three trials. The present study also varied the
number of trials intervening between presentations of the two comple-
mentary stimuli (lag) independently of other variables, and so permitted
a comparison of lag 1 and lag 5. The langer lag led to a lower proportian
of matches, suggesting information loss over trials. Since all responses
were called correct on the lag trials, this difference is incansistent

with the notion that correct trials have no effect an subjects. The
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importance of correct trials, indicated by performance differences
in studies reported by Levine (1966) and Richter (1965), thus
generalizes to a different concept identification paradigm.

Matches would occur in the present study whenever solution of
the problem preceded the second complementary stimulus. Match pro-
portiaons were therefore computed for those problems on which at least
aone error occurred. The mean of these conditiaonal proportions was
found to be significantly below .5, the chance level. In Experiment 1
all responses an lag trials were called correct irrespective of their
cansistency with the established concept, and so it was conjectured
that this below-chance proportion of matching responses was due to
misinformation aon lag trials. Such misinformation can occur anly if
the subject is tracking more than a single hypothesis that determines
his response. This explanation of the low match proportions implies
that the proportions in Experiment 2 would not be below chance, since
misinformative feedback was not given. This prediction was confirmed.
There is some support, therefore, for this interpretatian.

Alternative explanations for these data exist, of course. It
is possible, for example, that subjects have preferred hypotheses that
guide their early choice responses. A subject might, for example,
prefer "red VEK." Then presentation of a IRCB stimulus would be
followed by a VEK respanse with high probability. If the subject then
forgot that the favored "red VEK" hypothesis had been eliminated, later
presentation of the complementary stimulus SGQN would be followed by a
NONVEK response with high probability, and a failure to match would

occur frequently. Previous evidence for information processing on
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correct trials, however, lends support for the former explanation,
while the generally low correlations found in the present study be-
tween early responses and stimulus dimensions do not lend support

to the "preferred hypothesis" explanatian.

Effect of Outcome Sequence on Difficulty

Data aon proportions of problems with aone or more errors indi-
cated that the difficulty of a problem depends significantly upon the
outcome sequence on early trials. The most difficult condition was WWW
and the least difficult was RRR (Table 2). Previous research (Levine,
1966; Richter, 1965) has indicated that some of these experimental
canditions were more facilitative than others under rather special
circumstances. The results of the present study show that the order-
ing of these tasks an difficulty generalizes to the usual kind of
concept identification experiment, in which post-solution performance
is emphasized. Besides extending these findings on task difficulty to
a new situation, the present study has also elaborated the set of
canditions investigated. Richter did not manipulate outcomes as an
independent variable and Levine reported only the RRW and WWW canditions
and combined data from the RWW and WRW conditions. The present study

deals with all eight possible R-W sequences over the first three trials.

THE Models

The IHE models developed in the present investigation were sub-
jected to rather rigorous criteria for acceptance. First, each model

was constructed so as to be cansistent with recent evidence for
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(a) multiple hypothesis processing, (b) differential information pro-
cessing an correct and error trials, (c) failure of strict local con-
sistency, and (d) failure of the assumptiaon that errors serve to
eliminate the effects of previous trials, "restarting" subjects.

Second, the IHE models, along with Chumbley's (1969) HM model,
were tested against data from Levine's (1966) experiment. Some of the
models, IHE Models 1 and 3, displayed qualitative characteristics that
were in conflict with available data and were pursued no further, al-
though only one of the models (IHE Model 5) fit the Levine data
adequately, IHE Models 2, 4, and 5 were all cansistent with qualitative
criteria, and were all tested against the data of Experiment 2 of the
present study.

This last test of the models yielded several interesting results.
The first is the finding that IHE Model 4 gave the best fit, rather
than IHE Model 5, which fit Levine!s data best. Although any interpreta-
tion of this kind of finding should be made with caution, such a result
is consistent with certain differences between the two experimental
situations. In the Levine experiment, four blank trials intervened
between successive feedback trials, and the hypothesis assumed to
govern the subject's response was inferred from the series of blank
trials, It is therefore plausible that forgetting of eliminated
hypotheses over the series of blank trials could be due primarily to
mental activity during the blank trials and hence be virtually unaffected
by outcomes. IHE Model 5 assumed an elimination operator that depends
upon the nature of the outcome, but its forgetting operator is the

same for every outcome trial, regardless of the nature of the outcome.
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Thus this model seems more appropriate for such an experiment than IHE
Model 4, in which the forgetting operator is determined by the out-
come.

In the present research no blank trials are administered. For-
getting therefore occurs anly during a feedback trial. It is reason-
able, in this case, to expect any differential cognhitive strain due to
trial outcomes to affect the forgetting of eliminated hypotheses as well
as the elimination of hypotheses. IHE Model 4, in which the probability
of forgetting an eliminated hypothesis is determined by the trial out-
come, fits these data better than IHE Model 5. This finding supports
the contention that the forgetting processes are different for the two
situations.

Another point of interest is the fit of IHE Model 4 to each con-
dition. Although the model can be rejecfed on the basis of a chi-square
fit to the data, the theoretical curve for each condition seems to
resemble the data for that condition more than the data for other
conditions. It may therefore be fruitful to consider other models that
are similar to it, perhaps taking additiaonal sources of wvariation into
account by including additional parameters.

It is also interesting to note that the best estimate of ¢ in
IHE Model 4 was 1.00. One implication of this result is that the model
attained the degree of fit described earlier without assuming any loss
on correct trials, either of information from that trial or of pre-
viously eliminated hypotheses. In terms of simplicity of the model,
this result means that only the parameter w remains. The development of

new models by adding parameters is therefore more feasible than for a
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model with two parameters, since the time required for parameter
estimation increases exponentially with the number of parameters.

Two directions for further model development were suggested by
results in this study. The first was suggested by the evidence that
subjects vary substantially in terms of strategies. In view of this
variation, it may be more fruitful to attempt to fit large behavior
samples for individual subjects rather than to extend a model to a
large population of subjects, all of whom must be described by the
same parameter values. At the simplest level, this approach consists
of application of the same model to all subjects, but with a new set
of parameter estimates for each subject. At a second level, quali-~
tatively different models may be necessary for different subjects.
Bruner, Goodnow, and Austin (1956) found it helpful to classify sub-
Jects in two or more strategy categories. Their "successive scanner"
category corresponds closely to the kind of subject described by
Restle!s (1962) and Bower and Trabasso's (1964) models, while their
"focusser" corresponds to subjects described by the IHE models. If
such categorial differences are used to determine which model is to be
applied to each subject, it may be possible to improve fit considerably.

A second direction follows from the notion of a register model
(e.g+, Pnillips, Shiffrin, and Atkinson, 1967), which formed the
canceptual basis for the processes assumed in the IHE models. In IHE
Models 2 and 5, the register for eliminated hypotheses and that for
hypotheses being processed on the current trial were assumed to operate
independently, and each was represented by a separate parameter. In

IHE Models 3 and 5, the two functions were seen as shared in the same
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register, so that increased cognitive strain on error trials affected
both alike, and both functions were represented by a single parameter.
Of course, in both cases the probability operators at best only
approximated what would be developed from a well specified register
model. Actually imbedding a register memory process in the IHE
models was seen as too complex at this stage of the research.

A second approximation can perhaps be obtained, however, by noting
that two memory functions may share a common register, in the sense
that they can displace each other, without having exactly the same
probability parameter. In other words, one function may take priority
over the other although both are subjected to the same stresses. The
second approximation that will be attempted in subsequent research
will simply include a parameter for adjusting the relationship between
the two probability functions. The first and simplest of these will
be a proportionality parameter relating the probability of remembering
an eliminated hypothesis to the probability of hypothesis elimination.

A register model, while difficult to formulate in this context, may be
expected to be the end product in this line of development.

A1l of the models derived in this study include the assumption
that the subject stores and imperfectly retains the set of rejected
hypotheses. It was noted that memory for tenable hypotheses alane would
lead to serious consequences if the subject forgot the correct hypothesis,
since there would be no way of recovering it short of beginning the
problem again with the whole hypothesis set. It is plausible, however,
that the strategy of remembering both a list of eliminated hypotheses

and a list of hypotheses not yet eliminated is employed. The problem
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of distinguishing between single-list and two-list models was beyond
the scope of this study, but will become necessary if register models

of hypothesis processing prove viable.
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APPENDIX A

INSTRUCTIONS READ TO SUBJECTS

IN BOTH EXPERIMENTS

In this problem, we're interested in finding out how college
students learn to classify patterns. For each set of patterns I
will have in mind a classification rule, and your task will be to
figure out what it is. There will be several of these tasks, each

very short.

This is how we'll proceed. A pattern will be projected on
the screen here in front of you, like that one (pointing). You will
classify each picture as either VEK or NONVEK, and will indicate
your choice by pressing the panel with the label corresponding to
your decisian. Either here (demanstrating) or here (demanstrating).
These labels have no meaning; but are just convenient names for the
two classifications. After you classify each picture, I'1ll say
"RIGHT" or "WRONG." As we continue, you should be able to figure out
a rule that will enable you to classify all the pictures correctly.
The pictures have been randomly ordered, and so the order in which
they appear has no bearing on your task.

From picture to picture the pattern can change in any of four
ways so that there are four attributes to consider. The four attri-

butes are: color: either red or green; shape: either a square or a
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circle; sizet either large or small; and that's a large one; and
border: either the figure has a white border or it has no border,
like that ane (pointing).

The solution to the problem will depend upan only ane of

these four attributes. By this, I mean that anly one attribute is
is crucial in your decision of how to classify the pictures.

Let me illustrate to you what I mean by using ane attribute
to classify a picture. This sample will not contain the pictures in
your problem, but the principle is the same. That is, the classifi-
catiaon depends upan anly ane attribute of the picture. (Holding card
with figures before S.) If the classification rule I had in mind
placed all hexagons in the VEK category and triangles in the NONVEK
category, then I would say "RIGHT" if you indicated a hexagon to be
a VEK or a triangle to be a NONVEK, or I would say "WRONG" other-
wise, regardless of other characteristics of the figure.

Here is a card listing some information you should remember.
Refer to it as often as you like throughout the experiment.

Do you have any questions?

There is one more procedural point I'd like to cover. You'll
notice that this redlight (pointing) is on; this indicates that the
box is turned off and so pressing the panels had no effect (demanstrat-

ing). When the box is turned on, the projector advances each time

you press a panel. At the end of each of your tasks, I'1l simply
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turn the box off, and you'll know the task is over when the red

light comes on.
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PROTOCOL BOOKLET FOR EXPERIMENT 1
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113 DATE

TIME

DISSERTATION
EXPERINENT |
GROUP §

’,,,/”// VEK (BORDERED)

VEK

VEK

\\\\\\\\\ VEK(SHALL)
NONVEK::::::

NONVEK (RED)

(TASK 1)

WRR / VEK(GREEHN)
VEK

,/////// T~ NONVEK(LARGE)

NONVEK

”/’//,VEK(CIRCLE)
~\\\\\\ MOWVEK

NONVEK(NO BORDER)

VEK(RED)

_—

VEK
T~ NOHVEK(SMALL)

VE VEK(NO BORDER)

~

NOHVEK
T~ NONVEK(CIRCLE)
(TASK 2)
WWR "”’//,VEK(SQUARE)
VEK
T~ NONVEK(BORDERED)
NONVEK VEK(LARGE)

ONVEK

TS~ NONVEK(GREEN)




TASK 3:

TASK 4:

TASK 5:

TASK 6:

TASK 7:

TASK 8:

TASK 9:
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RF R "Wt "R "R* R "R "R
W W "Wk R "R R "R "R*
"R "R Wk "R R R TR TR%
R "W "R "R "R R "R* "R
W R W& R R R "R R
R W& "R “R* R R "R R
Wk "R R R R R*® "R "R

Page 2
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VEK (BORDERED)

VEK””””,
,”’/’/,,/’ T NONVEK(SQUARE)
‘\\\\\\\\\ VEK(SMALL)

NONVEK
TS~ NONVEK(RED)

VEK(GREEN)

///,/’ T NONVEK(LARGE)

NONVEK
VEK(CIRCLE)

NONVEK
T~ NONVEK(NO BORDER)
VEK(RED)
VEK
ﬂONVEK(SMALL)
VEK(NO BORDER)
NONVEK
T~ NONVEK(CIRC )

VEK (SQUARE)
VEK-“”'—"

.OHVEK(BORDERED)

NONVEK
VEK(LARGE)

NONVEK
NONVEK (GREEN)

Page 3
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TASK 12:

R W Wk R R* R R R
TASK 13:

W R W R R R R R*
TASK 14:

R W Wk R R R R R*
TASK 15: _

W Wk R R R R R* R
TASK 16: . .

W W Wk R R* R R R
TASK 17: ___

W W* R R* R R R R
TASK 18:

R* R R R R R* R R

REMEMBER TO PUT

RECORD GAP ON TAPE

Page 4
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PROTOCOL BOOKLET FOR EXPERIMENT 2
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WARUP 1: VEK
/ \ NONVEK
\ L
NONVEK e
NONVEK
/ VEK
VEK =
NONVEK
NONVEK
"/
NONVEK
~ NONVEK
ATY []) VEK
JARQr 2 _—
VEK <
\ NONVEK

VEK
mwrx/
\ NONVEK

NONVEK

NONVEK/
\

NOMVEK

CATE

TIME __

(RED)

(CIRCLE)

(LARGE)

(YO LORDER)

HYPOTHESIS

(CORDERED)

(SMALL)

(SQUARE)

(GREEN)

(NO BORDER)

(LARGE)

(RED)

(CIRCLE)

EYPOTHESIS

(SQUARE)

(GREEN)

(SMALL)

(CORDERED)
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WARMUP 3¢ VEK
WWR VEK/
/ T NONVEK
VEK
\ VEK
NONVEK/
\ NONVEK
VEK
VEK/
/ T NONVEK
NONVEK
\\\\ ""’,,—'VEK
NONVEK
\ NONVEK
VEK
VEK/
/ \ NONVEK
VEK
\ VEK
NONVEI/
\ NONVEK
VEK
VEK"——”———"
/ \ NONVEK

NONVEK
VEK

v

/\

NONVEK
NOMNVEK

DATE

TIME

(SQUARE)

(GREEN)

(SMALL)

(BORDERED)

(NO BORDER)

(LARGE)

(RED)

(CIRCLE)

HYPOTHESIS

—— e e e e

LHYPOTHESIS
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TASK 1: HYPOTI'ESIS
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GROUP 1
TASK 2. / VEK
WWW VEK
/ \ NONVEK
VEK
\ VEK
NONVEK/
\ NONVEK
VEK
VEK/
/ T~ NONVEK
NONVEK
\ /VEK
NONVEK
\ NONVEK
TASK 3: __— VEK
RRW VEK
/ \ NONVEK
VEK
\ VEK
NONVEI/
\ NONVEK
/VEK
VEK
/ \NONVEK
NONVEK
\ P
NONVEK
\ NOMVEK

DATE

TIME

(RED)

(LARGE)

(SQUARE)

(NO BORDER})

HYPOTHESIS

(BORDEREDY

(CIRCLE)

(SMALL)

(GREEN)

(RED)

(BORDEREDY —

(LARGE)

(CIRCLE)

HYPOTHESIS

(SQUARE)

(SMALL)

— ——— ———  — —— ———

(NO BORDER)—

(GREEN)




TASK VEK

RWW VEK

/\

INONVEK

VEK
VEK

/N

/\

NONVEK
NONVEK
| VEK
VEK/
/ T NONVEK
NONVEK
\\\\ "””,a'VEK
NONVEK
T~ NONVEK
TASK 5: VEK
WRW

VEK

/\

NONVEK

VEK
VEK

/N

NONVE

/\

NONVEK

VEK
VEK

/\

NONVEK

N

NONVEK
VEK

d

/\

NONVEK
NONVEK
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DATE

TIME

(Red)

(CIRCLE)

(LAFGE)

(NO BORDER) _

HYPOTHESIS

(BORDERED)

(SMALL)

(SQUARE)

(GREEN)

(GREEN)

(SQUARE)

(NO BORDER)

(LARGE)

KYPOTHESIS

(SIALL)

(BORDERED)

(CIRCLE)

(RED)
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GROUP 1

TASK 6: VEK

WWR VEK

/\

ILONVEK
VEK
VEK

N

NONVEK

/\

NONVEK

VEK

|
=

\ /\

NONVEK

NONVEK
VEK

RN

NONVEK

/

NONVEK

TASK 7: VEK

RWR
VEK

/\

NONVEK

VEK
VEK

/N

NONVE

/\

NONVEK

VEK

/\

VEK
//// NONVEK
NONVEK

\

NONVEK

VEK

/\

NOMNVEK

DATE

TIME

(NO BORDER) .

(LARGE)

(RED)

(CIRCLE)

HYPOTHESIS

(SQUARE)

(GREEN)

(SMALL)

(BORDERED)

(LARGE)

(NO BORDER) _

(GREEN)

(CIRCLE)

(SQUARE)

(RED)

(BORDERED)

(SHALL)

HEYPOTHESIS
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CROUP 1
TASK 8: VEK
RRR VEK/
/ \ NONVEK
VEK
\ VEK

NONVEK

/\

NONVEK

VEK

NONVEK

NONVEK
VEK

9

NONVEK

/

NONVEK

TASK 9:
WRR

VEK
VEK

/\

NONVEK

<
R

A
A

VEK

NONVEK

VEK

NONVEK

)

NONVEK
VEK

/\

NONVEK
NONVEK

DATE

TIME

(RED)

(SIALL)

(CIRCLE)

%

(BORDER. . )

(. BORDER) _

(SQUARE)

(LARGE)

(GREEN)

(RED)

HYPOTHESIS

(SQUARE)

(SMALL)

(NO BORDER)

HYPOTHESIS

(BORDERED)

(LARGE)

(CIRCLE)

(GREEN)
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TASK 10: HYPOTHESIS
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GROUP 1
TASK 11: VEK
WRW /
VEK:
’///”, “--““~NONVEK
VEK
\ VEK
NONVEK/
\ NONVEK
VEK
VEK/
/ T NONVEK
NONVEK
\ / VEK
NONVEK
\ NONVEK
gAiKR12: "”—"__——-VEK
VEK
/ \ NONVEK
VEK
\ VEK.
NONVEI/
\ NONVEK
— VEK
VEK
\ NONVEK
NONVEK
/ veR

NONVEK\
NONVEK

DATE

TIHME

(SQUARE)

(1’0 BORDER)

(RED)

(LARGE)

HYPOTHESIS

(SMALL)

(GREEN)

(BORDERED)

(CIRCLE)

(BORDLRED)

(RED)

(CIRCLE)

(LARGE)

KYPOTHESIS

(SMALL)

(SQUARE)

(GREEN)

(NO BORDER)
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GROUP 1

TASK 13:
RWW

VEK

A

INONVEK

VEK
VEK

/N

NONVEK

/\

NONVEK

VEK
VEK
NONVEK

NONVEK
VEK

\\/\

d

NONVEK

/

NONVEK

TASK 14:

WWWw VEK

VEK

/\

NONVEK

VEK
VEK

/N

NONV

/\

NONVEK

VEK
VEK

/\

NONVEK

AN

NONVEK
VEK

d

/\

NONVEK
NONVEK

- (RED)

DATE

TIME

(CIRCLE)

(LARGE)

(NO BORDER)

HYPOTHESIS

(BORDERED)

(SMALL)

(SQUARE)

(GREEN)

(NO BORDER)

(LARGE)

(GREEN)

(SQUARE)

(CIRCLE)

(RED)

(SMALL)

(BORDERED)

KYPOTHESIS
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GROUP 1
TASK 15: VEK
RWR VEK /
/ T NONVEK
VEK
\ VEK
NONVEK/
\ NONVEK
VEK
VEK/
/ T~ NONVEK
NONVEK
\\\\ "’—’,,—'VEK
NONVEK
\ NONVEK
TASK 16: VEK
WWR _—
VEK
/ \ NONVEK
VEK
\ VEK.
NONVEI/
\ NONVEK
— VEK
VEK
/ \NONVEK
NONVEK
N\ ™
NONVEX
\ NONVEK

DATE

TIME

(SQUARE)

(GREELN)

(SMALL)

(BORDERED)

HYPOTHESIS

(NO BORDER)

(LARGE)

(RED)

(CIRCLE)

(SQUARE)

(RED)

(BORDEREDY

(SMALL)

(LARGE)

(NO BORDER)

(GREEN)

(CIRCLE)

HYPOTHESIS



DATE

GROUP 1 129
TIHE
TASK 17: /VEK ¢ BomED
WRR VEK |
T NONVEK
/ (SQUART)
VEK
VEK
\ _— (LARGE)
NONVEK _
NONVEK
(GREEN) HYPOTHESIS
_ VEK
VEK\
/ NONVEK
(SMALL)
NONVEK
VEK
\ _— (CIRCLE)
NONVEK\
/v
NONVER o
owvER e
TASK 18: VEK
RRW __— (LARGE)
/ NONVEK  (BoRDERED)
VEK
\ N
NONVE ~_
NONVEK  ((c1RCLE) KYPOTHESIS
T (SQUARE)
vm(\
NONVEK
/ (RED)
NONVEK
v
\ ' (NO BORDER),
NONVEK\
NONVEK

(SMALL)
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