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ABSTRACT

A MATHEMATICAL ANALYSIS OF THE EFFECTS OF

COMPONENT FAILURES ON SYSTEM PERFORMANCE

by Richard Charles Dubes

The requirements of modern technology necessitate extremely

large and complex systems. As the number of components in-

creases, so does the chance that the system's Operational worth

will be degraded because of component failures. This thesis

proposes a mathematical model, called the General Model, which

analyzes the effects of such failures on a system's operational

worth, as measured by reliability and utility functions. This

model differs from existing models in that it includes the

effects of both drift and catastrophic failures on the per-

formance of redundant systems.

The General Nodel separates the analysis into a set of

drift problems by defining states for a system. A system changes

states when a component fails catastrophically. Since a

system's drift properties change when a component fails, a drift

analysis is made for each state.

A system is classified as either loaded or non-loaded,

depending on whether or not the catastrOphic failure of a

:redundant component changes the failure rates of other components.

{Techniques for finding the probability distribution of the system's
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states are presented for both cases. The components can

fail catastrophically in either one or two modes.

Two algorithms are presented for finding reliability

expressions when a system is non-loaded and drift is neglected.

These algorithms are applicable to any active redundant system

for any component failure distribution. The first algorithm

applies when components have one failure mode; the second,

when two failure modes are allowed. A procedure for simpli-

fying the resulting reliability expressions is also presented.

Two types of component drift are discussed. In the

first, the amount of drift depends on the length of time the

component operates; in the second, the drift is a function

of the states the system passes through and how long it remains

in each state. Techniques for determining these drift proper-

ties and for relating them to system drift prOperties are

provided.
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(I H A I” T ER I

INTRODUCTION

The technology that sends man into space and propels missiles

from continent to continent has an insatiable appetite for more

complex and more 50phisticated systemsl. National security neces-

sitates the gains in operational worth that result from larger

systems. However, these gains are offset by an increase in the

chance of system failure, a consequence of using more components.

The need for more reliable systems requires no further elaboration.

Any scheme that is directed at decreasing the chance of.

system failure is, by common usage, termed a reliability pro-

gramz. An interesting history of the efforts in this direction

has been presented by Ryerson (6). As discussed by Chorafas .

(7 Chapter #0), a successful reliability program begins with

specifications and proceeds through design, development, manu-

facture, and field testing. Component failure data is fed

back from each stage in a continual re-design cycle.

 

1For example, Koenig (1) has stated that the SAGE con-

tinental defense system contains over 1,252,000 individual tubes,

(tiodes, resistors, capacitors, inductors, and printed circuits.

IPerry (2) reports that the NIKE-HERCULES missile system consists

of about 1,500,000 individual parts.

2A wide variety of reliability programs have been proposed

111 the literature, e.g., by Saltz (3), Greene (4), and Dreste (5).
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A most important step in any reliability program is the

failure analysis which predicts, on the basis of component

failure datal, whether the system meets its reliability

objectives. This thesis presents a mathematical model for

accomplishing such a failure analysis analytically.

For purposes of a failure analysis, a system is presumed to

have been optimized on the basis of criteria prescribed by speci-

fications, such as the mean-squared error for a control system or

the signal-to-noise ratio for a transmitter. Suitable measures of

these performance criteria are assumed to be defined so that a

system's operational worth can be judged quantitatively.

Sufficient data on the failure tendencies of the components are

also assumed to be available. The failure analysis presented in

this thesis uses these data, along with information on component

connections, to determine the measures of Operational worth.

Component failures

Component failures are ordinarily separated into two classes

(e.g., see Feyerherm (9)) called catastrophic, or chance, and

drift, or degredation, failures. The distinguishing features of

these classes are discussed in this section.

Connor (10) describes catastrophic failure as follows.

”Chance (catastrophic) failure will include those physical

 

1The precision of any prediction of system reliability

:rests on the amount and accuracy of component failure data.

Statistical sampling plans for obtaining this data will not be

presented in this thesis. An excellent exposition of such plans

has been given by Epstein (8).
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occurrences (without a central tendency in time)which are beyond

the engineering resolution of normal techniques for product

design, manufacture and Operation, and cause cessation of perfor-

mance requiring corrective maintenance.

When a component fails catastrophically, its characteristics

change suddenly, a discontinuity in operation occurs, rendering

the component operationally useless. The term "failure" usually

refers to catastrophic failure which is the only type of failure

considered in the majority of books and papers on reliability.

A component's chance of failing catastrophically is determined

by two factors-~the component's inherent strength and the environ-

ment. The former is built into the component by the manufacturing

process. Uncontrollable variations in raw materials and

fabrication techniques cause variations in the susceptibility of

presumably identical components to failure. This inherent

strength can change with time as the component deteriorates with

age. The environment is the totality of all random and deter-

ministic factors in the Operating medium which can cause changes

in the characteristics of a component. If failure data is to

be used to predict failure tendencies, it must be taken under the

same environment that will be experienced in actual use.

in contrast to the spontaneity of catastrOphic failure,

drift is a gradual transition to less desirable component pro-

jperties. The point at which a component fails because Of drift

depends on the sensitivity of system performance to that com-

ponent's properties, on the drift characteristics of other

components, and on the amount of drift in system performance that
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can be tolerated. The drift failure of a system, which is

determined in terms of prescribed tolerance limits, can be caused

by a relatively slight drift in a group of components in the same

direction or by extreme drift in a single component. Also, two

components might drift in Opposite directions so as to compensate

for one another. For these reasons, the drift failure of a

component cannot be uniquely related to that for a system.

Deleterious drift in one situation can be tolerable in another.

Classification of systems

The mathematical techniques which are applied to a failure

analysis depend to a great extent on the manner in which the system

is used. Systems are classified, by usage, as intermittent or

continuous and as repairable or non-repairable.

A continuous system is one which is turned on and allowed to

operate until it fails and in which components can fail

catastrophically at any time. That is, the failure-causing

environment is present whenever the system is operating. Examples

Of continuous systems are airplanes and missiles during flight,

the control systems driving a scanning radar antenna, and the

generators supplying a power distribution system.

An intermittent system, on the other hand, is one whose

periods of use and non-use alternate, usually in a random fashion.

Such systems are Often subsystems which Operate at the command of

a larger system. Examples are the braking system in an automo-

bile and the arithmetic units in a digital computer. An

excellent failure analysis of intermittent systems has been

presented by Flehinger (ll).
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In a repairable system, components are replaced when they

fail or according to a prescribed maintenance policy. The time

needed to locate, replace, and repair the failed component is

included in the failure study. In a non-repairable system, each

component operates until it or the system fails; both component

and system failures are permanent.

In this thesis, all systems are assumed to be continuous and

non-repairable.

Neutralizing failures

The severity of component drift can often be reduced by

proper design, especially in electronic circuits. The two

standard design procedures for effecting this reduction are called

the "worst case" method, discussed by Ashcraft and Hochwald (12)

and Suran (l3) and "marginal checking", examined by Chorafas

(7 p. 370), Patterson (14), Brown and Dennis (15), and Drenick (16).

In both methods, those component parameters to which the system

is most sensitive are set so as to effect system performance in

the worst possible manner. The system is designed to operate

satisfactorily under these hostile conditions. However, as

pointed out by Hellerman and Racite (17), these methods have two

serious shortcomings. First, the event that all critical-

component characteristics will simultaneously attain limiting

values in actual operation is extremely small so that the

conmmnents have unnecessarily tight tolerances; second, they

'provide no measure of relative reliability so that comparative

lcosts for different situations cannot be weighed against in-

creases in Operational worth.‘
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A non-redundant system is one in which the catastrOphic

failure of any component causes system failure; i.e., every

component is essential to prOper Operation. The effects of

catastrOphic failure in a non-redundant system can be reduced in

either of two ways: (1) by using more reliable components,

(2) by using redundancy. With systems containing a large num-

ber of components, the first is Often ineffective. however,

Davis (18) cites a case when redundancy is impractical because

of space, weigtt, and cost considerations. On the other hand,

Luebbert (19) contends that redundancy is the only realistic

approach to the failure problem.

Redundant components are components which are extraneous

if all other components are working properly, but which can

replace catastrophically failed components without inter-

rupting the operation of a system. Three types of redundancy are

distinguished, called active, standby, and majority redundancy.

If a redundant component is used continuously from the time

the system is energized until failure, the system contains

active redundancy. If a failed component is automatically

replaced by a new component, using a detection and switching

apparatus, the system contains standby redundancy. Flehinger (PO)

has presented a very thorough analysis of standby redundant

systems.

These two types of redundancy are not both applicable to

all situations. For instance, the total resistance of a set of

paralleled resistors changes when the separate resistors fail.

However, two electrical generators can form an active redundant
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system, if they are paralleled and both have the proper loading

capacity. Alternately, they can be used in standby, if a

detection and switching mechanism is available. Both active and

standby redundancy are used with continuous, repairable or non-

repairable, systems.

Majority, or voting, redundancy was introduced by Von

Neumann (21) and extended by Depian and Grisamore (22). The

primary application of majority redundancy is to gate circuits

in digital computers, which are intermittent systems. A single

gate is replaced by a set of identical gates whose binary

outputs are polled by a majority device. The output of this

device is designed to agree with the majority of inputs.

One of the few design procedures for constructing a

redundant system was presented by Moore and Shannon (23, 24)

in their classical study of "crummy" relays. Active redundancy

is used, but the systems are intermittent.

Only active redundant systems are treated in this thesis,

although the failure analysis can easily be extended to standby

redundant systems.



CHAPTER II

MATHEMATICAL LODELS OF FAILURE ANALYSES

Every analytical paper treating the influence of component

failure on system performance introduces, at least implicitly,

a reference frame, or set of "ground rules" which acts as a

model and upon which the paper's computations are based. In

the great majority of such models, failure types, distributions,

or component interconnections are specified, and are used in the

computation of numerical figures of merit. A comprehensive

mathematical model which contains these detailed models as

special cases is outlined in the first section.

This broadly based mathematical model is termed the General

MOdel. It embraces many types of failure analyses yet permits

direct computation of figures of merit. with this model, three

features are incorporated into figures of merit which are not

.apparent in any model available in the literature. First, both

the drift and catastrophic failure tendencies of a system are

cnombined; second, the drift characteristics Of components in

:redundant systems are included; third, the changes in the

failure-causing environment of a component caused by the failure

«of other components is taken into account.

The salient aspects of three important models presented in

'the literature and their relationships to the General Model are



presented in the second section.

Foundations of the General Model

The General Model contains a set of definitions which

provides the framework for statistically describing the components

of a system, for relating these descriptions to system behavior,

and for evaluating corresponding figures of merit. Definitinns

of the mathematical terms used to construct the General Model

are given in the first part of this section. In the second,

some measures of operational effectiveness are defined. The

procedural technique for using the General Model to carry out a

failure analysis is presented in the third part of this section.

Definitions

Part_parameter

For the purpose of analysis, a system can be broken into

units, usually called subsystems and components. The most basic

units which can be defined are called irreducible multiterminal

componentsl, each of which is completely characterized mathe-

matically by a terminal representation. Any coefficient in the

corresponding terminal equation is called a part parameter if it

satisfies the following two conditions.

i) It is a random variable with a non-trivial distribution.

ii) It is not a function of other random variables.

Any through or across variable which satisfies these two

conditions is also termed a part parameter.

The set of part parameters defined for a system must exhibit

all the inherent statistical characteristics of the system's

 

lThis notation has been introduced by Koenig and Blackwell

(95, p. 109).
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building blocks.

Each part parameter is represented by a stochastic

processl, written (Bi(t), t 6 Ti) where T is a linear point
i

set representing usage times. The valuesof Bi(t), for any t,

are separated into two mutually exclusive sets, labelled Ci(t)

and D.(t).

1

The set Ci(t) is assumed to contain at most two points,

0. and c which are extreme values Of B.(t), both of which
11 12 l

connote complete breakdown or catastrophic failure. A part

parameter is said to have failed at time t if Bi(t) E‘ Ci(t)°

Since many part parameters may be associated with a component,

the relationship between failure in the real sense and a part

parameter assuming an extreme value is often nebulous. Thus,

a physical interpretation of part parameter failure will not be

made. Failure is permanent so that if Bi(t) = c then
ij’

Bi(T) = c. . for all T > t.

13

The set Di(t) contains all possible drift values. If

Bi(t) 6‘ Di(t)’ the part parameter may or may not be operating

properly, depending on tolerance limits.

The set of all part parameters is represented by the

vector E(t) = (Bl(t),...,Bk(t)).

Parameter state variable

A convenient format for expressing the distribution of

Bi(t) is afforded by an auxiliary random variable Xi(t) = X(Bi(t)),

called the parameter state variable, or the state variable for

the part parameter Bi(t). The range of this random variable is

 

1The definition of a stochastic process and the notation

used are given in Appendix A.
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defined in E0. (1).

Xi(t) = 0 if Bi(t) 6‘ Di(t)

(l) = 1 if Bi(t) = cil

= 2 if Bi(t) = ci2

The numerical values assigned are, of course, entirely arbitrary.

The distribution of Bi(t) can then be prescribed by the

cumulative distribution function FB (b;t) in Eq. (2).

i

2

(2) F (b;t)==:E: 3‘ (b/x;t) p (x;t)

“ . - ‘ _
In Eq. (2), FBi/Xi(b/x,t) - p(Bi(t)._ b / xi(t) _ x) and

pX (x;t) is the density function of Xi(t).

i

The convenience of this notation becomes apparent when the

individual terms are considered. FB /X (b/0;t) represents the

i i

drift characteristics of the part parameter. (b/l;t) and

FBi/Xi

FBi/X1(b/2;t) are step functions, each with a saltus of one. The

density factor expresses the relative probability of catastrophic

and drift values.

System state variable

If the drift characteristics of a redundant system are to

be studied at a certain time, both the part parameters which have

not failed and their connections must be known. This information

is supplied by an auxiliary random variable, called the system

state variable, denoted by X(t). Depending on the order in which

the part parameters fail and the type of redundancy, different

drift situations can arise. A one—to-one correspondence is

established between the values of the system state variable and
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all possible drift situations, or states. Specific values for

the system state variable are assigned in later sections when

active redundancy is considered. In the following discussion,

the system state variable is assumed to have distinct values

x1,...,xm.

System parametegg

A system parameter is any function of part parameters used

to make a quantitative judgement on the excellence of performance.

Each system parameter is represented by a stochastic

process, (Ai(t)’ t €~q§)’ The set of all system parameters is

denoted by the vector X(t) = (A1(t),...,An(t)).

The relationship between the ith system parameter, the

set of part parameters E(t), and the system state variable X(t)

is given in functional notation by Eq. (3).

Ai(t) hi(B(t), X(t);t)

(3)

(E(t)) for all t such that X(t) = j.hij

The form of Eq. (3) indicates that each system parameter

can become a function of different part parameters when the system

changes its state; i.e., when part parameters fail.

The (continuous) density function for the joint distribution

of the system parameters is expressed by Eq. (4).

m

(it) f-E(a;t) =2 j=l fX/X(a/xj;t) pX(xj;t)

The cumulative distribution function corresponding to Eq.

(A) is denoted by FX(§;t).

If a large system is divided into a set of components, the
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contribution of each component to over-all operation is expressed

by a set Of component parameters. They play the same role for the

components as the system parameters play for the system. The

system parameters for the large system are then expressed in terms

of these component parameters. If some of the components are

labelled as subsystems, their parameters are called subsystem

parameters.

Value functions

All system characteristics to be evaluated quantitatively

are contained in the system parameters. The means for computing

relative numerical values for these characteristics are provided

by value functions. These functions are the figures of merit by

which the system's operational effectiveness is judged, using

tolerance sets as criteria.

A tolerance set, denoted by Si(t) for the ith system para-

meter, is that set of values of system parameter Ai(t) such that

the statement ”Ai(t) E“ Si(t) at time t" means that that portion

of system performance judged by Ai(t) is completely satisfactory

at time t. The tolerance sets are defined in terms of design

Objectives and limits imposed by specifications.

The possible value functions are many and varied. This

thesis is concerned with two of these, called reliability and

'utility which are defined below.

Reliability

The standard definition of the reliability of a system has

beenl given by many authors (e.g. Bazovsky (26, p. 11)). "Reli-

ability is the probability of a device performing its purpose
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adequately for the period of time intended under the Operating

conditions encountered.”

Adequate performance is taken to mean performance within the

tolerance sets. Then, the reliability, R(to,tl), of a system for

the time interval (tO,tl), t0 .= t1, is defined by Eq. (5).

(5) R(to,tl) = P(Ai(T) € si(T), all t0 5 T 5 t1 and all 1)

Utility

The drift of a system parameter just outside its tolerance

set might be much less serious than an extreme value. This effect

is included by defining a utility function, written ui(Ai;t), for

each system parameter. The range of each parameter utility

function is arbitrarily taken as [0,1] with the maximum value

shown below.

ui(Ai;t) = 1 if Ai(t) 6‘ Si(t)

This assigns maximum utility when the system is Operating

as well as can be expected, as far as the ith system parameter is

concerned. When Ai(t) assumes an extreme value, ui might be taken

as zero. The values of u for system parameter values between

1

these limits might be taken as a non-increasing function Of

A.(t).
1

Some system parameters might reflect more essential properties

than others. This is taken into account with a weighted sum of

parameter utility functions, called the system utility function

U(A}t) defined in Eq. (6).

n

(6) U(A;t) =2 w.(t) u.(A.;t)
i=1 1 l l



15

The following conditions are assumed to be satisfied in

Eq. (6).

2E:n w.(t) = 1 and w.(t) E: 0, any t and i : l,...,n.

i=1 1 1

The weights are made functions of time so that the relative

importance of the various parameter utility functions can be

changed in time. The system utility function has range [0,1].

Measures of the distributions of the parameter utility function

and of the system utility function, such as the mean and variance,

serve as numerical values of utility.

Failure analysis using the General Pbdel

A simple illustration of a multi-loop control system will

show how the Operation of a system is viewed in terms of the

General Fodel. Both the forward and feedback loops might contain

redundant components.

A set of system parameters such as response time and gain

margin, are defined to measure the Operational effectiveness of

the system. These parameters are functions Of component charac-

teristics such as plant constants, amplifier gains, and gear

friction. All such characteristics which are assumed to be

lmnldom variables are designated as part parameters.

The system is turned on at time zero. The part parameters

drinft from their initial distribution as the system operates,

(mulsing changes in the distributions of the system parameters.

Ifiher1.a part parameter fails, the system changes states. The

efftxzt of this failure could be minor, if proper redundancy is
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available, or it could remove a feedback loop. This, in turn,

could simply degrade system performance or could cause instability

and system failure, depending on the type of failure and number

of feedback loops. The amount by which the system's operational

worth is decreased depends on the tolerance sets assigned to the

system parameters and on the choice of value functions.

By a failure analysis is meant the determination of value

functions whose numerical values depend on usage time and on the

distributions of part parameters. The five steps below outline

such a failure analysis on the basis of the General Model.

1. Select the part and system parameters. Because of

analytical complexity, all component characteristics may not be

designated as part parameters. The choice depends on the in-

herent variability in the component characteristics and on the

sensitivity of system performance to these variations. The set

of system parameters must express all facets of system operation

which are to be examined, as dictated by design objectives.

2. Determine the distribution of the system state variable.

Both the range and distribution of the system state variable must

be found. This step is the main topic of Chapter III.

3. Perform a drift analysis for each state. The joint

distribution of the system parameters for each state of the

system is found. Since the system changes states when a part

parameter fails, the forms of the system parameters change, as

shown in Eq. (3). Chapter IV covers the execution of this step.

#. Combine the drift and catastrophic failure effects.

The results of Steps 2 and 3 are combined, using Eq. (4), to find

the joint distribution of the system parameters.
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5. Determine the value functions. The joint distribution

derived in Step # is used to form the reliability and utility

functions, both of which depend on usage time and part parameter

distributions.

In summary, the cornerstone of a failure analysis using

the General Model is the concept of separating the analysis into

a set of problems, each of which can be solved independintly.

The system state variable provides the means both for this

separation and for the recombination of these problems into the

over-all analysis and applies the prOper weight to each result.

That is, drift failures in more probable situations are weighted

more heavily than those in less probable situations. The catastro-

phic failure tendencies of the part parameters determine the

distribution of the system state variable. Thus, both types of

failures are packaged together so that Operational effective-

ness can be judged on the basis of all pertinent factors.

Although the five basic steps are used in all failure

analyses, their execution can take on many forms. The entire

analysis may be accomplished analytically or a computer-simulated

sampling plan can be set up. The computational details depend on

the interaction between part parameters, the types of failure

distributions, and the forms of the system parameters. Also,

the analysis might be simplified into finding certain measures

of the distributions of system parameters.

It should be emphasized that the General hodel is not

limited to reliability and utility value functions, but provides

the foundation for calculating any analytical value function.
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Existing models

In this section, the salient features of three mathematical

models from the literature having wide applications are presented,

along with their relation to the General Model. However, before

these three models are discussed, some other work on model

building deserves mention.

Two papers by Rosenblatt (27, 28) present, somewhat quali-

tatively, some features which are desirable in a model. A

series of simple models are given along with methods for ex-

pressing physical events in probability language.

An early approach to an over-all failure study was presented

by Benner and Meredith (29). The assumptions made include normally

distributed performance parameters, series systems, and inde-

pendently failing components. This frequently-referenced paper

presented ideas which were quite novel at the time of its

publication.

A theoretical exposition of the factors causing component

failure has been given by Birnbaum (30). The physical condition

of a structure is considered as a stochastic process whose

prOperties depend on environment, usage, and observed samples.

However, the model is not directly applicable to the calculation

of value functions.

Many facets of a failure analysis are discussed in a paper

by Drenick (16). Most of the techniques presented are applications

of renewal theory. However, cost minimization procedures are

given for the marginal checking technique. Several figures of

merit are used. A rather quantitative method for handling drift
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is considered. This paper is more a collection of techniques than

a comprehensive working model.

Renewal models

A brief outline of the aims of renewal theory applicable

to failure analyses is presented below. The following assumptions

are made.

1. All system components must be operating properly for

the system to be operating properly.

2. Removal of a system component is caused either by

failure during operation or by a predetermined maintenance policy.

3. Upon removal, a component is immediately replaced by a

new and statistically identical one.

According to Drenick (31), the system may be viewed as a

number of sockets into each of which a component is inserted. At

each socket, a renewal process develops, i.e., an unending sequence

of removals and replacements. Corresponding to each socket,

there is a parent population from which a component is drawn

each time a replacement is required. The over-all failure

pattern for the system is then a superposition of many such re-

newal processes. The derivation of this failure pattern's

propmrties is the main objective of a renewal study.

Two functions, called the renewal rate and the expected

Innnber of replacements, relate the renewal process at each socket

euui the system removal pattern. These functions are found from

time solution to differential equations and depend on the para-

meters of the component failure distributions.

The above assumptions imply that a component failure can be
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detected, located, and corrected in a negligible period of time;

i.e., the system is always operating. Implied here are the

assumptions that system failure can be traced to one particular

component and that replacement of that component restores the

system to prOper working order. Failure caused by component

drift is not allowed, so that this theory is directly applicable

only to catastrophic failures.

The case when all components have the same lifetime

distributions has been studied in some detail by Flehinger and

Lewis (32). One interpretation of this is that all system

components have the same parent population. Detailed solutions

to the resulting renewal equation, using mean-time-to-failure and

survival probability as figures of merit, are also presented

for various hazard functions.

The system failure pattern when the renewal processes for

all the sockets are not identical has been studied by Drenick (31)

in an approach motivated by the central limit theorem. An

asymptotic expression for survival probability of the form

exp(-t) is derived under certain conditions. An interesting

feature of this approach is that the asymptotic expression

becomes more accurate as the number of sockets increases. A

restrictive assumption is that of independence of the renewal

processes for the various sockets.

It is stretching a point to say that the renewal model is a

special case of the General Model. If each part parameter is

allowed only two values, and if the three assumptions are applied,

:1 study of the General Model implies a study of the renewal
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model. However, both the mathematical techniques used and the

aims Of the investigations are different. Although some features

of the renewal model at the component level will be incorporated

into the General Model, the viewpoint taken is that the two models

cover different areas of study and should not be combined.

Markov chain models

If drift is neglected and if all component failure rates

are constant, the theory Of stationary Markov chains1 can be

applied directly to a failure study. A most interesting analy-

tical model using this approach has been presented by Barlow and

Hunter in two papers (33, 34). The first paper (33) states the

mathematical and probabilistic basis Of the model. The second

(34) is a special case which covers a type of optimal redundancy

for series-parallel systems along with maintenance and

checking policies. The Optimal redundancy study has also been

published in a separate paper (35). The main features of the

Barlow-Hunter model are discussed below.

The essential description of a system is given in terms of

a stochastic process which describes the system's state. The

number Of states is determined by the number Of components,

their connections, and the number of states each component can

assume. In all examples presented, each system component can,

at any time, be in one of two or three states. One corresponds

to "in use"; the others, to "in-repair”, where both open and

short circuit types Of failures are allowed. Time-tO-failure

 

1An outline of the properties of continuous parameter

Markov chains is presented in Appendix B.
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and time-tO-repair are both assigned exponential distributions so

that the well-developed theory of stationary Markov chains can

be used. Independence Of component failures need not be assumed.

this technique is particularly applicable to repairable systems

containing active redundancy in which drift is neglected.

Two figures Of merit are used, called reliability and

efficiency. Both are defined in terms of a gain function

g X(t) whose domain is the state space of the stochastic process

and whose range is contained on the real line. Speaking quali-

tatively, the value of the gain function should be relatively

large for favorable states of the system and relatively small

for unfavorable states.

The following definition of reliability is used by Barlow

and Hunter.

R(t) = E[g(X(t))] = jg X(t,w) dP(w)

A particularly useful gain function is expressed in terms

of a class A of favorable states of the system.

G X(t) 1 if x(t) E A

0 otherwise

With the gain function G, the R(t) function becomes the

probability that the system is in a favorable state at time t.

R(t) =f dP(w)

A

The second figure of merit, called the efficiency and

denoted by Eff, is defined below.
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Eff = If gX(t,w) dP(w) dF(t)

In this expression, F(t) is the distribution function for a time-

based distribution which could reflect the presence Of an environ-

mental threat in time. If this distribution is continuous and

uniform on [0,T], Eff is the time average of R(t) over that

interval.

Two Observations should be made concerning the definitions

of reliability used by Barlow and Hunter.

1. Since reliability is here defined as the expected value

of a random variable, it is not, in general, a probability. NO

restrictions have been placed on the range of g[X(t)], so its

value is not limited to the unit interval, or even to positive

values. If the gain function given above is always used, this

Objection is eliminated.

2. Even with the special gain function, the R(t) function

is not reliability in the usually-accepted sense, since it is not

a function of a time interval. The Objection here is not to the

usefulness of the figure of merit, but to its name.

The Barlow-Hunter Model is a special case of the General

Model. Assuming that each component can be characterized by a

singfle part parameter, the two models are related by prOperly

interpreting the two notations. If drift is neglected, the

parameter state variables completely describes the failure tenden-

cies of the part parameters. Thus, the parameter state variable

and the state variable for each component used by Barlow and
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Hunter are synonymous. The three values assigned to the parameter

state variable in Eq. (1) correspond to the allowable states for

each component in the Barlow-Hunter Model. The states of the

system are the same in both models. The gain function and the

utility function serve the same end. The R(t) function and the

efficiency are then measures of utility.

Another approach using Markov chains has been presented by

Rohn (36). Standby, rather than active, redundancy is the main

concern Of this paper. The figure of merit used is called

"fractional up-time" which is the fraction of time the system is

operable during a time interval. Drift failure is neglected and

only one mode of catastrophic failure is allowed. Variations in

the Operational worth of the various standby components are

included. Both time-tO-failure and time-to-repair are assigned

exponential distributions. Ashar (37) has also studied this

problem using Markov chains, but from a more general viewpoint.

Roberson's model

One of the only models in which both catastrophic and

drift failures are included in a unified analysis has been

presented by Roberson (38). The essential features Of this

model are discussed below.

System performance is measured by a vector E Of scalar

quantities representing variables such as voltage, pressure and

(counter readings. Ideal, or perfect, system performance is

(defined by a value of E, denoted by if. System error, e, is

(defined as the norm of (E - E*) and measures the system's

cmperational worth in terms Of a value function which is a
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non-increasing function of system error.

The value function to which most of Roberson's paper is

devoted is called "p-error", and is defined as the solution to

the following equation.

P(eEep)=p (051351)

The distribution of the system error is defined in terms

Of the zero-failure probability R, the inherent accuracy,

A(e'), and the failed accuracy, F(e').

R = P(no component failure)

A(e') P(e f. e', if no component failure)

F(e') P(e :5 e', if one or more component failure)

The zero-failure probability R equates system failure to

failure of any component. The parameters Of A are called

accuracy parameters and describe the drift properties Of the

system when all components are Operating properly. Different

degrees Of operational worth are inserted for varying degrees

of system failure by means Of the parameters Of F, called

failure severity parameters.

The p-error satisfies the following equation.

p = R A(ep) + (l-R) F(ep)

The value of p establishes a performance level. If a value of

p is specified, the value of eP can be found from the above

equation. Thus, the relationship between probable system error

and the system performance level can be derived. Roberson dis-

cusses in some detail the existence of and bounds on solutions

for ep.

The main limitation on this model is that it is applicable
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only to series systems. This is implied by the zero-failure

probability R which includes all catastrophic tendencies.

This measure also allows for only one mode of catastrophic

failure.

Roberson's model is a special case of the General Model.

The vector ; corresponds to the part parameters; system error

e serves as the system parameter. If norm (2 - §*) is identically

zero when ; =I;*, the tolerance set on e is the single point

zero. Using a single set of values as ideal performance

provides a direct relationship between the tolerance set on

the system parameter and limits on the part parameters.

However, it seems more desirable to speak Of a range of values

as satisfactory performance. The distribution constants for the

distributions of the part and system parameters serve the same

purpose as the accuracy and failed-severity parameters used by

Roberson. The p-error and the utility function measure the

same characteristics of system behavior.



CHAPTMR III

CATASTROYHIC FAILURES

Methods for determining the range and distribution of system

state variables for systems containing active redundancy are

presented in this chapter.

As a by-product of this study, techniques for finding

reliability expressions for active redundant systems in which

drift is neglected are derived. Two results are presented

which have not been given in the literature. First, an

algorithm for deriving reliability expressions for non-loaded

systems is given which is independent of failure distributions

and component connections. When properly interpreted, this

algorithm can be used when the part parameters have one or two

failure modes. Second, a method for determining the reliability

of any loaded system composed of exponentially failing part

parameters is described.

In the first section, systems in which each part parameter

has one catastrophic failure mode are discussed; in the second,

two failure modes are allowed.

One catastrOphic failure mode

As was discussed previously, the values Of the part

parameter Bi(t) are segregated into two sets, Di(t) and Ci(t)’

which are interpreted as drift and catastrophic values,

27
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respectively. In this section, Ci(t) is assumed to be a

i' The value C1 is either of the two extreme

values allowed for Bi(t)' For notational convenience, these two

one-point set c

extreme values are referred to as the Open and short modes Of

failure.

Range of the system state variable

Before the states of a system, or values of the system

state variable, can be enumerated, the concept Of catastrophic

system failure must be defined. A system has failed (catastro-

phically) when it is considered to be Operationally useless.

This state could correspond to a system parameter value far

outside its tolerance set or to an extreme value of a value

function. When in this state, the system is shut down; no

further part parameter failures can occur. A physical inter-

pretation of system failure can be made only on a particular

system.

The states Of a system are designated in terms of the

parameter state variables. A numbering system for accomplishing

this is presented below.

The base r representation of any (base 10) non-negative

integer N can be written as M M ----Ml if Eq. (1) is
10 k k-l

satisfied.

k

(1) N10 :2 Miri-l , o : Mi :5 r-1

1:].

In particular, if r=2 and if Eq. (2) is satisfied, then

MkMk_1---M1 is the binary representation of N10.
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E k i 1
(2) N = M.2 ' , M = o or 1

IO i=1 1 i

The range of a parameter state variable Xi(t) was defined

11 = C1 and 012 is a set of

measure zero. Assuming that the system is turned on at t = O,

in Eq. (11.1). In this section, c

at which time no part parameter has failed, state numbers are

assigned by the following two rules.

1. If, at time t, the system has not failed, let

M1 = Xi(t). Let the number Nlo Obtained from Eq. (2) be the

state number at t.

2. Consider all numbers formed as in Rule 1 for which the

system is failed. Let the minimum of these be the state number

corresponding to system failure.

The binary representation of each state number will be

written as a k-digit number, assuming the system has k part

parameters. If a system is in a non-failed state at time t,

such a representation exhibits the values of the parameter state

variables at t; the left-most binary digit, or bit, is the value

of Xk(t), the second from the left, Xk_l(t), and so forth so that

the right-most bit is the value Of X1(t).

Two questions must be answered before the two rules can

be used to enumerate the states of a particular system:

(1) which sets of part parameters can fail before the system

fails; (2) which sets of part parameters can be in the failed

state at the same time? This information can be presented in

either of two forms--by a state table or by a reliability diagram.
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The state table exhibits all sets of failed part parameters

and the corresponding state numbers in tabular form. A state

table has k+1 column headings, one for each parameter state

variable and one for the system state variable. Although the

headings can be listed in arbitrary order, it is convenient to

write them in the order Xk(t) Xk_l(t) --- X1(t) X(t). The

The numbers 0 to 2k-1 are listed in binary form under the first

k headings and the state numbers are determined by the two

rules. If the system is operational for the values in a

particular row, the state number of the system is the base 10

equivalent of that row's binary number. All rows which represent

impossible states are omitted.

An example of a state table and corresponding reliability

diagram is given in Fig. l in which all failures are assumed to

be Of the Open variety.

The state table can be generated in the following manner.

Consider any set of values for the parameter state variables.

If Xi(t) = 0, let Bi(t) be its nominal value; if Xi(t) = 1,

let Bi(t) = c For each possible set of part parameter values,1'

determine if the system has failed. Then, apply the two rules

for finding state numbers. This is repeated until the state

table is completed. A set of values can be ignored if the

corresponding event has measure zero; i.e., the failure of one

part parameter might effectively remove other part parameters

from the system by shutting down some subsystem. This process

can be programmed on a digital computer.

A reliability diagram contains the same information as a
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Fig. l.--Example of a state table and corresponding reli-

ability diagram.

state table, except that it does not number the states ex-

plicitly. It merely exhibits schematically the relation between

part parameter and system failures. A step-by-step procedure

for constructing a reliability diagram will not be given.

Rather, a set of rules by which an existing diagram can be

interpreted is presented, followed by some examples.

As used in this thesis, a reliability diagram is a col-

lection of blocks, one for each part parameter, and lines drawn

between two vertices. The lines connect the blocks so that each

block is contained in at least one path between the vertices.

The block for each part parameter is labelled with that para-

meter's subscript. The reliability diagram is interpreted by

means of the following rules.

1. If Bi(t) = c1, i.e., X1(t) = l, the ith block is

Q



32

either erased from the diagram (Open failure) or replaced by a

solid line (short failure) depending on the single mode of

catastrophic failure assigned to Bi(t).

2. The system is in the failed state either if a solid

line exists between the two vertices, or if there is no path

consisting of blocks and lines between them. Otherwise, the

system is Operational. Some simple examples are shown in

Fig. 20

, , 1.,
 

 

    

 

   
 

 
  

 

 

 

          
 
   

      

         
 

  

 
<> 1

Fig. 2.--Examples of reliability diagrams

In Fig. 2A, system operation ceases if any of the three

part parameters fails Open, or if all fail short. The situation

is reversed in Fig. 2B; all must fail Open or any one can fail

short for system failure. Fig. 2C is a type Of bridge diagram.

If all part parameters can fail in the Open mode, system

operation ceases if all part parameters in any of the following

sets are failed: (31,32), (34,35), (31.33.35), (B2,B3,B4).

(B1,B2,B3), (B3,B#,B5). It should be noted that, for example,

the event (Bi(t) = c1, all i=l,2,3,4) has measure zero.

If all part parameters in Fig. 2C can fail only in the
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short mode, the catastrophic failures of all the part parameters

in any of the following sets would cause system failure:

(81,84), (B2,B5), (B2,B3,B4), (B1,B3,B5), (BZ,B3,B5), (Bl,B3,B#).

The diagrams in Fig. 2 have one feature in common--only

two lines are connected to each block. Such diagrams will be

called "two-line" diagrams. However, all active redundancy

cannot be represented by this type of diagram, as shown in

Fig. 3.
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Fig. 3.--Reliability diagrams

At first glance, Fig. 3A and Fig. 3B appear to represent

the same system. However, blocks Q and S are in parallel in

Fig. 3B, but are not in Fig. 3A. Also, if all part parameters

except B1, B5, and B6’ failed Open, the system represented by

Fig. 3B is Operable, while that represented by Fig. 3A has

failed. It might seem that the diagram in Fig. 3A can be

transformed into an equivalent two-line diagram, such as that in

Fig; j3C, since they have the same blocks in the paths between

the vertices. However, the two diagrams do not produce the same
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reliability number.

The type of diagram drawn in Fig. 3A is, then, more general

than a two-line diagram. It sometimes has a closer relationship

to block diagrams for physical systems and should be easier to

construct. However, in general, there is no direct correspon-

dence between the topology of a reliability diagram and those of

signal flow graphs, linear graphs, or schematic diagrams.

The primary difference between the variety of reliability

diagrams proposed in the literature (39, 40) and those used in

this thesis is the interpretation given each block. In this

thesis, the blocks represent part parameters, while in the

usual diagrams, they represent components.

Distribution of the system state variable

The concept of a lifetime random variable is presented

first, followed by a discussion of loading effects. The process

of state changing is then discussed. This subsection is concluded

with a review of the analytical techniques available for deriving

the density function for the system state variable.

Lifetime random variables

The catastrophic failure tendencies of a part parameter

are Often exhibited by means of an auxiliary random variable,

called the time-to-failure, or mortality, or lifetime random

variable, denoted by L. The range of each lifetime variable is

the usage time of the system. The event [L1 = t] means that the

ith part parameter fails at time t. The range of the parameter

state variable for part parameter Bi(t) is expressed in terms of

the lifetime variable in Eq. (3)
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(3) Xi(t) 0 if Li >' t (no failure up to time t)

1 if Li S t (failure at or before t)

The alternate expression for the range Of a parameter

state variable in Eq. (3) is introduced to show how the well-

known concept of time-tO-failure ties in with the General

Model. The lifetime variable is especially useful when the

reliabilities of systems in which drift is neglected are

studied. The relationship between the distributions of part

parameters, their state variables, and lifetime variables is

given in Eq. (4).

(43) P (Li S t) P(Bi(T) = c some T .<. t) = P(X1(T) = 1,

some T S t)

i,

P(Xi(t) = 1) = pxi(l;t)

ll 0(4b) P(Li > t) = P(B1(T) i ci, a11T S t) = P(X1(T)

a11T S t)

= P(Xi(t) = o) = pXi(O;t)

Loading,effects

The technique used to find the distribution of a system

state variable depends to a great extent on whether the lifetime

distributions change after the system's state changes. When a

part parameter fails, the stresses on the remaining part para-

meters might increase, thus increasing the chance Of their

failing. The amount by which a part parameter is weakened could

depend both on which states the system has passed through and

on how long the system has remained in each of these states.

Such effects are referred to as loading effects.
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A system is classified either as non-loaded or as loaded.

The set of all states for which the system is Operational is

denoted by z If, for all x“ 6‘ 20, the joint density function0.

pf(;;t) of the parameter state variables is given by Eq. (5).

the system is said to be non-loaded. The binary representation

# ' t_-_ t

of x is written as xk x1.

_ k

— *0 _. t.(5) pX(x ,t) - .TT px (x1,t)

i=1 i

It should be noted that the parameter state variables in a

non-loaded system are not statistically independent, since no

part parameter can fail after the system has failed.

The operation of a non-loaded system can be viewed in

terms of the following illustration. Consider each part

parameter as being Operated at a separate test station, rather

than in the system. However, let the failure-causing environ-

ment Of each part parameter be the same as would be experienced

in the system. As the part parameters fail, consult either

the reliability diagram or the state table to determine when

the system fails. Shut Off all test stations at the instant

of system failure.

A non-loaded system can be considered as one in which

failures are caused mainly by the system's external environment

such as vibration, humidity, and temperature. In a loaded system,

failure is also caused by the task the system is performing,

e.g., by the currents, forces, or pressures associated with the

various part parameters.
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The failure pattern in a loaded system is obviously more

complicated than in a non-loaded system. When loading is a

factor, the illustration cited above is changed. The environ-

ment at each test station varies with time and depends on which

part parameters have failed, the order in which they failed,

and how long each part parameter had Operated.

The state-changing process

It will be assumed that each lifetime variable is of the

continuous type. Then, the event in which two or more part

parameters fail simultaneously has measure zero. Thus, a system

can go from state i to state j without passing through inter-

mediate states if and only if the binary representations of

i and j differ by one bit, assuming that neither state i nor

state j is the failed state. Since repair is not allowed, the

bit must be a O in i and a l in j, which means that the part

parameter corresponding to that bit has failed.

If state j is the failed state, its binary representation

may differ from that of i in any number Of bits because a

common state number was assigned to all situations implying

system failure. For example, in Fig. 1, state 1 goes into

state 3 if any one of its 0 bits changes to a 1.

When finding a system state variable's distribution, it is

Often convenient to record all possible inter-state transitions

on what will be called a transition chart. A one-tO-One cor-

respondence is established between the possible states of the

system and a set Of nodes. If a one-step transition from state

i to state j is possible, a directed line is drawn from node i to
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node j. All possible transitions are so recorded. in example of

a state table and transition chart is given in Fig. 4 in which

all failures are in the Open mode.

X4(t) x (t) X2(t) X1(t) X(t)
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State Table

Transition Chart

Fig. 4.--Example of a state table, transition chart and

reliability diagram.

Distribution of the system state variable for non-loaded systems

A technique for deriving the density function Of the

system state variable for non-loaded systems is given below.

The set Of all state numbers for which the system is not failed

is denoted by Z ' the failed state, by Z The density function

0’ 1'

of the lifetime random variable for the ith part parameter is
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denoted by fi'

* . --- t o e . .

If x E“ Z0, where xkxk_1 x1 is its binary representation,

the value of the system state variable's density function,

PX’ is given at x‘ by Eq. (6), using Eq. (5).

_ k

*0 -— — *0 .. i.

(6) pX(x ,t) - pX(x ,t) — £7; pxi(xi,t)

The individual factors in Eq. (6) are related to lifetime

distributions by Eq. (7) on the basis of Eq. (4).

t

(7a) pX (l;t) - P(Li f t) J{ fi(Z) dz

1 0

so

(7b) pX (O;t) P(Li=> t) J[ fi(z) dz

1 t

The value of the density function at the failed state

Z1 is given in Eq. (8).

k

(8) pX(Zl;t) = l - Z 077’ pX (xi;t)

Equations (7) and (3) prescribe the distribution of the

system state variable for any non-loaded system, regardless of

the form of the lifetime distributions or of component connections.

As an example, the density function of the state variable

for the non-loaded system whose reliability diagram and state

table are shown in Fig. 5 will be computed. All part parameters

are assumed to fail in the Open mode. The distribution Of the

ith lifetime random variable, i = 1,2,3, is assumed to be
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exponential; the density function fi is as shown in Eq. (9).

 

  

   

 

   

(9) fi(Z) = Hi exp(-Hiz), if z >- O and the system is Operational

= O , if 2 <= 0 or if the system is failed

The constant Hi is called the hazard or the failure rate.

is. 312. 51 3‘.

j) 0 O C C

O C l 1

/ 3 O l L 2

O l l P

1 O O 4

2

l O l 2

l 1 L P

Fig. 5.--Example of a reliability diagram and state table

The following expressions are Obtained from Eq. (7).

pXi(O;t) = exp(-Hit)

pxi(l;t) = l - exp(-Hit)

Equation (6) is used to find the density function of the

system state variable at the points Of Z0 2 (0,1,4).

pX(O;t) (O;t) : exp[-(hl+n2+h3)t]p (O;t) p (O;t) p
X3 X2 X1

pX(l;t) e pX3(O;t) pX2(O;t) pX (1;t)

exp[-(H2+H3)t] - expTe(Hl+H2+H3)t]

px(4;t) = pX (l;t) pX (O;t) pX (O;t)

3 2

exp[-(H1+H?)t] - expf-(H1+H?+H3)t]

The last value Of the density function is found from Eq. (8).
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pX(2;t) = 1 + exp[-(H1+H2+H3)t] - exp[-(H2+H3)t]

- exp[-(H1+H2)t]

Distgipption of the system state variable for loaded systems

Determining the distribution of the state variable of a

loaded system can be a very difficult problem, since the failure

times Of the part parameters depend on a variety Of factors.

Only the case described by the following conditions will be

considered.

1. At any time, the lifetime distributions for all non-

failed part parameters depend only on the state the system is in

at that time, and not on any state the system was in prior to

that time.

2. As long as the system has not failed, the lifetime

variable for each non-failed part parameter has the expon-

ential distribution shown in Eq. (9). The hazard for each

such distribution can change when the system's state changes.

These conditions reduce the problem of finding the system

state variable's distribution to an application of stationary

Markov chains. The notation and terminology used in Appendix

B will be translated to fit the present situation.

The system state variable is described by a continuous

parameter, stationary Markov process [X(t), O :5 t.§ 0°]

having a finite number of states. The states, although

non-negative integers, do not necessarily include all numbers

in the sequence O,l,2,...,2k.

At time zero, the system is in state 0, since no part

parameters are assumed to be failed when the system is
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turned on. The distribution at t = o is thus given by Eq. (10).

(10) px(x;0) = P(X(O) = x) II |
'
-
"

x = O

= O , x i O

This implies that, at any time, the value of the density

function at any state 3 is expressed by Eq. (11).

(11) px(j;t) = p03(t)

As explained in Appendix B, there are essentially two

methods for finding the required transition probabilities

poj(t). The first is to use the algorithm implied by Eq. (B.14).

Equation (11) then becomes Eq. (1?).

(12) px(j;t) =:E: O np0j(t)

1']:

Either of the separate induction processes given in

Eq. (B.12) or Eq. (B.13) can be used to find the terms in

Eq. (12). This method is particularly useful for simple topologies,

such as those in Fig.'s 3, 4, and 5.

The second way to proceed is to use either the backward

system of equations in Eq. (B.17) or the forward system in

Eq. (B.18), tOgether with the initial conditions of Eq. (10).

The solutions to either of these sets of differential equations

are the transition probabilities. This method is more appli-

cable in large systems or where repair is allowed. Either of

these systems of equations can be programmed directly for the

digital computer since they are in normal forml. Analytical

 

1Digital computer solutions to differential equations in

normal form have been studied by Wirth (41).
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solutions can be obtained by using Laplace transform techniques and

matrix algebra, or signal flow graphs.

To use either of these two methods for finding transition

probabilities, the q's in Appendix B must be expressed in terms

of the lifetime distributions of the part parameters. This is

discussed in Appendix C and the results are summarized below.

The lifetime density function, fir’ for the part parameter

Br(t) when the system is in state i is given by Eq. (C.l).

_ _ >- _
(0.1) fir(2) - Hirexp( Hirz) if z ._ O and i 6‘ Z and Xr(t) _ O

O

_'7 _.
ifz<Oori~slorXr(t).—l

If Xr (t), m = l,2,...,n are all 0 when the system is in

m

state i, then q1 is given by Eq. (0.2).

n

(C.2) qi =2 Hirm 1f 1 E ZO

m=1

= 0 if i = Z1

If 3 can be reached from i in one step, i, j 6f Z0, and if

Xr (t) is a O in the binary representation of i and a l in that

1

of j, is given by Eq. (C.3).qij

(C03) qij = Hir

1

If i E. Z0, j = Z1 and if the failure of any of the part

parameters Br (t),...,Br (t) cause the system to fail, qij is

v1

given by Eq. (C.4).

V

The constants qij and q1 can thus be computed from the
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failure rates of the part parameters. The constants are conveni-

ently recorded on what is called a Markov transition chart. This

is the same as the transition chart defined previously, except

that self loops are drawn on each node and constants are associ-

ated with each directed line. The constant is associated with

qi

the self loop on the node representing the ith state. The

constant qij is associated with the line going from node i to

node j.

To show the change in the distribution between loaded

and non-loaded systems, the example of Fig. 5 will be repeated

when the system is assumed to be loaded. By the notation

defined above, Hij is the failure rate of the jth part parameter

when the system is in state i. The Markov transition chart,

drawn from the state table in Fig. 5, is shown in Fig. 6.

 

 

q0 = H01+ H02+ H03

q1 = H12+ H13

q2 = 0

qh = H31* H32

q01 = H01

qoa = H02

qou = H03

q12 : H12+ H13

qhz = H31+ H32

Fig. 6.--Markov transition chart corresponding to Fig. 5

The density function of the system state variable will be

computed by both methods.

The first method uses Eq. (11) and Eq. (12) and the induction



process given in Eq. (B.12).

00

P00”) = Z n=OnPoo(t)

exp(-q0t), n = O

pX(O;t)

A w V

I
I

nPOO

:0 ,nfO

pX(O;t) = exp(-qot)

Since state 1 can be reached from state 0 only by a single

jump, the density function at l is evaluated as follows.

t

px(l;t) lp01(t) = j; quexp[-qu-ql(t-s)]ds

q01

 

qo_q1 [exp(-q1t) - exP(-qot)] , qO ¢ ql

The density function at 4 is found in the same manner.

go-

There are three ways of going from state 0 to state 2; one

q

__2&; [exp(—qht) - eXP(‘th)] 9 qo # qh

way involves a single jump while the others use two jumps.

pX(2;t) = (t) + (t)
1p02 2902

The individual terms are evaluated below.

qo
t

2

1p02(t) : L qozeXP(-qos) d5 = '62)“ [1 - exp(-q0t)]

t

2p09(t) = 2E:j 1 h. .I; qojexp(-qos) lpj2(t'5) ds

After integrating and rearranging terms, the following is

obtained.
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q )q

(t) = —J‘—Ql [ (1/q1)[1 - exp(-qlt)] - (l/qo)[l -

exp<-qotfl]

q q

+ _Jééélg [ (l/qh)[l - exp(-qht)] - (l/qo)[l -

exp(-qotfl]

The expression for px(2;t) can also be found from the

following identity.

P (Bit) = 1 - 2:: p (i;t)
x i¥2 x

The second method of deriving the system state variable‘s

density function is based on the forward system of equations

given in Eq. (B.18) with initial conditions given by Eq. (10).

The backward system in Eq. (B.§U could also have been used.

Since the system cannot return to a state, the forward

equations need not be solved simultaneously.

p60(t) = -p00(t) qO , since qu = 0 when j i O.

pX(O;t) = pOO(t) = exp(-qot)

pél(t) = -p01(t) q1 + pOO(t) qu since q21 = C41 2 O.

P64(t) = -p04(t) Oh,+ pOO(t) q04 since qlh = ng : 0.

Since q2 = O, the following equation can be written.

p62(t) = Poo(t) qo2 + p01(t) q12 + pcu(t) C42

This can be solved for p02(t) by direct integration,

using the previous results. The solutions to these equations

for p01(t), p02(t), and pcu(t) produce the same results as were

obtained by the previous method.

It should be noted that if HOi = Hli = H31, i = 1,2,}, the
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system is non-loaded. In this case, the distribution derived

above agrees with the previous example concerning Fig. 5.

Reliability

The General Model is now particularized to derived tech-

niques for finding reliability expressions when drift failures

are neglected. Omitting drift failures simplifies the analysis

considerablv since the distributions of the parameter state

variables provide the necessary mathematical description of the

part parameters. The only schematic or connection information

needed is contained in reliability diagrams or, equivalently,

state tables. Because of the different techniques involved,

the reliability of loaded and of non-loaded svstems are discussed

separately.

Reliability of non-loaded systems

In Eq. (11.5), the reliability value function for the time

interval (t0,tl) was defined. In the special case under con-

sideration, only one system parameter, denoted by A(t), need be

defined. Using the notation of Eq. (11.3), the range of A(t)

is defined in Eq. (13).

(12) A(t) o if X(t) E z
o

1 if X(t) 6 Z

1

The tolerance set S(t) for the system parameter A(t) is

the single value 0. Then, the reliability for the time interval

(t0,t1) can be written as follows.

R(to,t1) = p(A(T) = 0, all t0 3 T 5 t1), where tO < tl

Since repair is not allowed, the fact that A(t) = 0 implies

that A(7’) = 0, all T'=’ t. Thus, the reliability expression
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is simplified to that in Eq. (14).

(14) R(tO,t1) P(A(tl) o / A(tO) = o)

P(A(tl) = o, Afio) a o)

- P(A(to) : O)

 

 

P(A(tl) = o) pA(O;tl)

= P(A(t0) = o) = pA(O;tO)

The density function pA(O;t) is expressed in terms of the

system state variable in Eq. (II.#). Each state number for which

the system is Operational is equivalent to a set of values for

the parameter state variables. The binary representation for

each such state number exhibits the corresponding values of the

parameter state variables. Thus, for the value 0, Eq. (15) is

equivalent to Eq. (II.#).

(15) pA(O;t) ==§E: ._ pA/Y (O/x;t) px(x§t)

all x ’

In Eq. (15), PE is the joint density function of the para-

meter state variables at time t. This expression can be simpli-

fied by evaluating the conditional density termscn1 the basis of

Eq. (13), as shown in Eq. (16).

(16) (0/§*;t) = o if x* = Z i.e., A(t) = l1;

1 if x‘ E‘ Z0, i.e., A(t) = o

pA/‘SE

In Eq. (16), E* is the binary representation of x*.

By the definition of a non-loaded system in Eq. (6), the

joint density function of the parameter state variable can be

expressed as the product of marginal distributions. The final
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expression for the system parameter's density function is obtained

by substituting Eq. (6) and Eq. (16) into Eq. (15), with the

result shown in Eq. (17a).

k

(17a) pA(O;t) -_— > 77 px (icing)

‘ Z0, i=1 i

The summation in Eq. (17a) extends over all sets of

parameter state variable values which are binary representations

of state numbers in ZO.

k

FF p (x.;t)

2 i=1 Xi 1

(17b) pA(l;t) = l - pA(O;t) = ii:

1

In Eq. (17b), the sum extends over all sets of parameter

state variable values which are not binary representations of

state numbers in Z0, even if some of these sets of values have

measure zero.

An algorithm for computing either pA(O;t) or pA(l;t),

called the one-failure algorithm, is now presented. The one-

failure algorithm is based on Eq. (17) and exploits the analogy

between a reliability diagram and a combinational switching

circuit schematic. The following three steps define the one-

failure algorithm.

1. Construct a reliability table. The form of the

reliability table, which corresponds to a truth table, is the

same as that of a state table, except that the heading for the

system state variable is replaced in a reliability table by a

heading for A(t). All 2k sets of values for the parameter state
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variables are listed, even though some are sets of measure zero.

2. Compute one term of Eq. (17a) from each row of the

reliability table for which A(t) = O, or one term of Eq. (17b)

from each row for which A(t) = 1. If one of these rows is

x' —-- x' the corresponding term in Eq. (17) is given below.
k 1’

k

g2; pxi(x£;t)

In this computation, either all A(t) = 0 rows or all

A(t) = 1 rows are used, not both.

3. Add all terms computed in Step 2. If the A(t) = 0

rows were used, the expression for pA(O;t) is found from

Eq. (17a); if the A(t) = 1 rows were used, pA(l;t) is

computed as indicated by Eq. (17b).

A general method for simplifying the transmittance ex-

pression of a two-terminal combinational switching circuit has

been discussed by Caldwell (42, p. 145) and is called the

Quine-McCluskey method. The variation of this technique

presented below is used to simplify the expression for pA(O;t)

or for pA(l;t) obtained from the one-failure algorithm.

The Quine-McCluskey method starts with a truth table

representing the standard sum form of a transmittance and derives

its prime implicants. In the variation presented below, an

expression for pA(O;t) or pA(l;t) is obtained from the relia-

bility table which is simpler in the sense that it involves

fewer terms and fewer factors in some terms than the expres-

zaion resulting from the one-failure algorithm. This method is
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based on the following identity.

pxi(0;t) + pxi(l;t) = 1, any i = l,...,k

The analogous expression from Boolean algebra is Y + Y' = l.

The Quine-McCluskey method also used the identity Y + Y = Y, for

which there is no analogy in terms of density functions, so that

the method cannot be applied in toto. This explains why a

complete analogy cannot be drawn between a switching circuit

schematic and a reliability diagram. That is,1n a switching

circuit, the transmittances<xfall possible paths can be added to

form the transmittance of the circuit. However, if the reli-

abilities of all possible paths in a reliability diagram were

added, the result would not be the reliability of the system,

since all Boolean operations are not valid for a reliability

diagram.

The simplification procedure is described by the following

rules; Step 1 of the one-failure algorithm is assumed to have

been completed.

1. The procedure uses either the binary representations

for all rows in the reliability table for which A(t) = O or

those for which A(t) = 1. For convenience, the number of 1's in

a binary number will be called that number's index. The numbers

are separated into groups such that all numbers in any group

have the same index.

2. The groups are arranged in a column, beginning with the

group of lowest index and continuing with groups of increasing

index. A line is drawn between each pair of groups to indicate

where the index changes.
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3. The numbers in the group with index i are compared to

those in the group with index 1+1. Comparison between groups

with indices which differ by more than 1 is not necessary. If

two numbers, when compared, differ by one and only one digit,

these numbers are checked and combined into a single number with

the non-common digit being replaced by a blank. For example,

0100 and 0110 combine to form 01_0, while 0100 and 0010 cannot

be combined. Once a number is checked, it is eliminated from

consideration. Thus, this technique differs from the Quine-

McCluskey method in which an exhaustive comparison is made.

4. After making all possible comparisons, all the numbers

containing a blank are recorded in a separate tabulation. Again,

the numbers are arranged into groups by their indices and the

groups listed as in Step 2.

5. The comparison procedure is then repeated. However,

if two numbers are to be combined, their dashes must be in the

same position and they must also differ in one and only one

bit.

6. A third tabulation is made, the groups arranged, and

the comparison and checking procedure repeated. This continues

until no new tabulations can be formed.

7. The expression for pA(O;t) or pA(l;t) is a sum of

terms, one for each unchecked number in all the tabulations.

The terms are written as before except that a l is written for

each blank. For example, 01_1“0 becomes the following,

assuming that the columns of the reliability table are labelled

x6, x5,..., x1.
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pX6(0;t)pX (l;t)pX (1;t)pX (O;t)

5 1

An example of the simplification procedure is given in

terms of the partial reliability table in Fig. 7. Only those

lines for which A(t)

reliability diagram is shown in Fig. 3A.

partial reliability table, it was assumed

meters fail in the open mode.

simplification procedure is shown in Fig.

X

0

numbers in Fig. 8 as follows.

pA(O)

sizes
0 O

O O O

O O O

O O O

O O l

O O l

O O l

O l O

O l O

O l O

X

0

1

X1

0

l

0

One set of

X6

0

O are listed in Fig. 7. The corresponding

In constructing the

that all part para-

tabulations for the

8.

5515251

0 1 o 1 1

o 1 l o 0

Fig. 7.--Partial reliability table for Fig. 3A

The required expression is written from the unchecked

+
+

For simplicity, pX (x;t) = pi(x).

i

p6(0) [p5(o)p,<1)p3(o>p2(1)pl<o> + p5(o>p,<o>p2(1)pl<o>

p5(0)p3(0)p2(1)p1(1) + p5(l)p4(0)p2(o)pl(1)

p5(l)p4(0)pl(0) + p5(0)p2(0)]
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000000 x 00000_ x 000_o_ x 00__0_

000001 x 000_lo 001_0_ x

000010 x 00010_ x 010__o

000100 x 00100_ x

001000 x 0100_o x

010000 x 00_011

000011 x 00110_ x

000101 x 010_01

000110 x 0101_0 x

001001 x

001010

001100 x

010001 x

010010 x

010100 x

001011 x

001101 x

010101 x

OlOllO X

Fig. 8.--Tabu1ations of a simplification procedure for Fig. 7

The purpose of the one-failure algorithm and simplification

procedure is to provide an almost rote method, which is always

applicable, for finding the reliability of a non-loaded system

when drift is neglected. As with most universal techniques,

short-cut methods exist for certain connection sehemes. An

example of such a scheme is the series-parallel diagram discussed

‘by Radner (40), Lipp (43), Moskowitz (41), Bazovsky (26) and
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others. These authors also use a form of Bayes' theorem which

can reduce the work involved in obtaining reliability expres-

sions.

A different approach has been taken by Weiss and Kleiner-

man (45). This early work studies the set of all paths in a

reliability diagram which is drawn with directed lines. If

the corresponding "path reliabilities" are combined prOperly,

the system's reliability can be found. This technique seems

to have been discarded by later works in the area, probably

because of the unnecessary labor involved. This work also lets

the reliability of each component be a random variable, which is

not in accord with the standard definition.

The analogy between reliability diagrams and switching

circuit schematics has been noted by many authors, particularly

by Moscowitz (44). This paper utilizes concepts similar to

signal flow graphs and equivalent circuits from a non-proba-

bilistic viewpoint. Components are represented by lines and

their connections, by nodes. Such a representation is inherently

a two-line diagram. Each line is assigned a constant, cor-

responding to an average reliability over a time interval. A

technique is then given for finding an average value for the

system's reliability. As Moskowitz recognizes, each line on his

diagram must correspond to a different component for his

technique to be valid. This rules out an equivalent diagram for

non-two-line diagrams such as that in Fig. 3C.

Reliability of loaded systems

Some of the results for non-loaded systems are now extended
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to loaded systems. Drift failures are again neglected so that

each part parameter can assume only two values. The discussion

of loaded systems diverges from that for non-loaded systems after

Eq. (14) since, in a loaded system, the joint distribution of

the parameter state variables cannot be expressed as the product

of marginal distributions.

If the expression for the density function of the system

parameter A(t) given in Eq. (II.4) is combined with Eq. (13),

Eq. (18) is obtained.

(18) pA(0;t) = E px(x;t)

z
o

The sum in Eq. (18) extends over all values x 6‘ Z0,

the set of non-failed states.

As discussed previously, if the lifetimes of all part

parameters have exponential distributions of the form shown in

Eq. (C.1), the theory of stationary Markov chains can be used to

find the density function of the system state variable. Under

these conditions, Eq. (11) can be used with Eq. (18) to produce

Eq. (19). The reliability of loaded systems is found from

Eq. (14) and Eq. (19).

(19) pA(0;t) = E poj(t)

z
0

Of course, Eq. (18) is also valid for non-loaded systems.

Ithever, the one-failure algorithm does not explicitly use the

system state variable and is much easier to apply.
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In an interesting paper, Balaban (46) has discussed, among

other things, the effects of loading on systems containing active

redundancy. This paper is one of the very few which explicitly

discusses these effects. However, this study applies only to

two elements in parallel, both of which have exponential

failure distributions. Although formulas in terms of general

failure densities are given, the failure process must have the

stationary property before the formulas are valid. Only

exponentially distributed lifetime variables possess this

property.

Some simple reliability diagrams with exponentially

failing components are also discussed by Bazovsky (26, p. 134)

in which loads are shared by the components.

Two catastrophic failgre modeg

The results of the previous section are now extended to

systems in which part parameters can fail catastrOphically in

either of two modes. In this section, the set of catastrophic

values Ci(t) for at least one part parameter in a system is

taken as a two point set. However, a part parameter cannot

take on both catastrophic values during one period of operation.

., all T 2t forThat is, if Bi(t) = c 13ij’ then Bi(7') = c

j = 1,2.

This section is subdivided in the same manner as was the

previous section.

Since two failure modes are distinguished for part para-

rneters, two catastrophic failure modes are also distinguished

for'the system. For convenience, these modes are called the Open
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and short modes of system failure.

The range of the system state variable

As before, the range of a system state variable is defined

in terms of parameter state variables. If r = 3 in Eq. (1),

and if Eq. (20) is satisfied, MkMk_1 ... M1 is the base three

representation of N10.

k i 1
(20)N =E M3”,0§Ms2.

lO i=1 i 1

Assuming that all part parameters are operational at t = 0,

when the system is turned on, state numbers are assigned by the

following rules.

1. If, at time t, the system has not failed, let

M1 = Xi(t)' Let the number N10 obtained from Eq. (20) be the

state number at t. The set of all such numbers is denoted by

Z0.

2. Let y1,..., y3 be all numbers obtained as in Rule 1,

for which the system is in the failed-open state. Then

Z11 = min. (y1,..., yj) is the state number when the system has

failed in the open mode.

3. If the word "open" is replaced by "short" in Rule 2,

then Z = min. (y1,..., yj) is the state number when the system
12

has failed in the short mode.

The set of values, ( Z12) is denoted by Z
211* 1°

The base three representation of a state number in ZO’

'when written with k digits, exhibits the values of the parameter

state variables.
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All possible states of a system can be conveniently

displayed in the form of a state table. The only change from the

state table discussed in the previous section is the base in

which the state numbers are written. This information can

also be recorded schematically on a reliability diagram which

is interpreted in the same manner as was discussed previously.

An example is given in Fig. 9.

The distribution of the system state variable

Lifetime random variables are discussed first, followed

by techniques for obtaining the required distributions.

Lifetime randog_yariab1es

The possibility of three values for each parameter state

variable implies that the distribution of Xi(t) cannot be

specified in terms of Li alone. The mode of failure is also

important. This additional information is included by defining

the two functions, Kil(t) and K12(t) in Eq. (21).

- — ‘ O

(21) Kiln) - P(Bi(t) .. °i1 / Li _ t),

_ - <

K12“) .. P(Bi(t) .. c:12 / Li .. t)

If Li 5 t, the ith part parameter must have failed in one

of the two modes so that the following conditions must be

satisfied.

Ku(t) + Kiz(t) = 1; (t) 2 0, all t, j = 1,2.Kij

The relationship between a parameter state variable,

lifetime variable, and values of a part parameter are given in

Eq. (22) in which the (continuous) density function of L1 is

denoted by f1.
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Fig. 9.--Examp1e of a state table and corresponding

reliability diagram.
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(22a) pX (O;t) -_- P(Bi(T) € D1(T), o 5 T :5 t)

1

(>0

P(Li=> t) =-/; fi(z) dz

(22b) pX (l;t)1 P(Bi(t) = cil / L. < t) P(Li f. t)
11‘—

t

Kil(t) ”I; fi(z) dz

(22c) pX (2;t) = P(Bi(t) = oi2 / Li :5 t) P(L1 E t)

i

t

K12(t) .j; fi(z) dz

As an example, the distribution of a parameter state

variable when the lifetime random variable has the exponential

distribution in Eq. (9) will be found.

The relative frequency of short and Open failure are

assumed to remain constant with time so that the total failure

rate, H in Eq. (9) is the sum of two constant failure values.
19

Hi = Hi1 * H12

The 1 and 2 subscripts imply open and short failure rates,

respectively. Then, the K functions are shown below.

Kil(t) = H11 / Hi ; K12 = 312 / Hi

Under these conditions, the density function in Eq. (22) can

be written as in Eq. (23)l.

 

1Care must be taken when combining two failure rates. A

conceptual error, such as that made by Bazovsky (26, p.138) in his

discussion of switch failures, can easily creep into a develop-

ment. Bazovsky lets a switch have a constant fail-open rate H

and a constant fail-short rate H . He then makes the following

statements. 8

go = Probability of failing open = 1-exp(-hf)



62

(23a) pX (O;t) = exp(-Hit)

1

(23b) pX (lgt)1 (H11 / H1)[ 1 - exp(-Hit)]

(23.) px (2;t) (H12 / Hi)[1 - exp(-Hit)]

i

The state-changing process

The state-changing process is essentially the same as that

discussed in previous section. The system leaves state i,

i E Z0 if a 0 digit in the base three representation of i

changes to a 1 or to a 2, which implies that the corresponding

part parameter has failed. The hystem cannot leave either state

in Z1, nor can it return to any state. Transition charts are

drawn in the same manner as in the previous subsection.

Distripution of the system state variable for ng£;1oaded systems

For state numbers in Z the density function of the system
09

state variable can be found from Eq. (6) by using Eq. (22) for

the separate factors. The value of this density function for the

two states in Z1 is not as easy to compute. The sum of these two

terms must satisfy Eq. (24)

k

(24) Z pX(x;t) = 1 -Z 7T pX(xi;t)

" Z i=1

“1 0

 

q8 = Probability of failing short = l-exp(-Hst)

r = Probability of no failure = l-(qO+qs) = exp(-H0t)

+ exp(-H t) - 1

Now, if t >min.(1n 2/H , 1n 2/H ), then r ¢ 0, which, ofscourse,

violates the definition of the pgobability of an event. The

error here is in the assumption that the two possible failure

events are independent and mutually exclusive.
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One is tempted to compute the separate terms on the left of

Eq. (24) from formulas similar to Eq. (6), using those rows in the

or Z However, the sum of the

11 12'

two terms computed in this manner might not satisfy Eq. (24).

state table for which X(t) = Z

If all 3k possible rows were entered on the state table,

regardless of whether some are sets of measure zero, Eq. (24)

would be satisfied, but these is no assurance that the values of

the density function so obtained would correspond to the actual

failure probabilities.

At present, the density function's values at the shut down

states can be found only when each parameter state variable

has the distribution given in Eq. (23). This situation is

discussed with loaded systems.

Of course, for simple cases, such as all blocks in the

reliability diagram in series and parallel, the density function

can always be computed.

Eistgibution of the system state variable for loaded systems

As in the previous section, only a special case is dis-

cussed, namely when the state variable of each part parameter has

the distribution given in Eq. (23). The failure rates H in this

distribution may change when the system changes states. Again,

the theory of continuous parameter, stationary Markov chains

is applied directly to this problem. The initial condition of

the process are given by Eq. (10). The density function can

be evaluated from Eq. (11) by either of the two techniques

discussed previously. The relationships between the q's,

which determine the transition probabilities, and the lifetime



distributions are shown below.

The density function fii of the lifetime variable

. . A .th , . .
ass001ated with the 3 part parameter when tne system is in

state i is assumed to be of the form shown in Eq. (25).

fij(z)=0, z<0ori€zl

(25) =0if Xj(t) £Oandi € :50

= Hij exp(-Hijz) otherw1se.

In Eq. (25), Hij = + 2, where Hi. 15 the open
Hijl Hij 31

failure rate and Hi the short failure rate.

32’

If Xr (t), m = l, 2, ..., n are all 0 when the system is

m

in state i, then qi is given'by Eq. (26)

n

(26) qi =2 Hir if i E Z0

m=1 m

0 ifi€Zl.

If the failure of Br(t) causes the system to go from state

i to state j, i,j E? Z0, q. is one of two failure rates.

13

If Xr(t) = l in the binary representation of j, qij is

given by Eq. (27a).

(27a) qij = Hirl

If Xr(t) = 2 in the binary representation of j, qij is

given by Eq. (27b).

(27b) qij = Hir2.

If i 67 Z0, j = 211 and if the open failure of any of the

part parameters Br(t), ..., Bvit) causes the system to go from

i to j in one step, qij is given by Eq. (28a).



65

V

(283) (11‘j = zmzl Hirmle

If i 67 Zo’ j = Z12 and if the short failure of any of the

part parameters Br (t), ..., Br (t) causes the system to go

1 h

from i to j in one step, qij is given by Eq. (28b).

h

(28b) qij =Em=l Hirmg

Reliability

Special techniques for finding reliability expressions

when drift is neglected are now presented. For notational

simplicity, all part parameters are allowed to have both failure

modes. Non-loaded and loaded systems are discussed separately.

Reliability of non-loadeggsystemg

Since drift failures are neglected, the system parameter

A(t) defined in Eq. (13) is again the only system parameter of

interest. Only two values of A(t) need be defined, even though

the set Z in Eq. (13) contains two points, since the reliability
1

value function does not distinguish the modes of system failure.

The expression for reliability in Eq. (14), that for the

density function of A(t) in Eq. (17), and the one-failure

algorithm are all directly applicable to this case. The only

difference is that in the previous section, base 2 numbers are

used in the reliability table and in this section, base 3

numbers are used.

The simplification procedure discussed previously would
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have to be extended to cover this case. Three , rather than two,

base three representations have to be combined to eliminate a

factor.

The one-failure algorithm, although applicable here,

requires 3k rows in the reliability table, where k is the number

of part parameters. A second algorithm, called the two-failure

algorithm, is now presented which requires only 2k+l rows and

allows direct utilization of the simplification procedure. The

two-failure algorithm is described by the following three steps.

Its theoretical basis is given in Appendix D.

1. Assume that no part parameter can fail in the short

mode. Find an expression for either of two functions, called

p(l)(0;t) and p(1)(1;t) by using the one-failure algorithm and

simplification procedure. Only 0's and 1's are listed in the

reliability table. The bits in the unchecked numbers resulting

from the simplification procedure are interpreted as follows.

i) 1 becomes pX (l;t)

ii) 0 becomes 1 i pxi(l;t), not pXi(O,t)

2. Assume that no part parameter can fail in the open

mode. Find an expression for either of two functions, called

p(2)(0;t) and p(2)(l;t) by using the one-failure algorithm and

simplification procedure. The reliability table contains only

0'5 and 2's. The results of the simplification procedure are

interpreted as follows.

i) 2 becomes pX (2;t)

ii) 0 becomes 1 : pX (2;t), not pX (O;t)

1 1

3° Determine p (O;t) from one of the following relations.
A ,
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p(l)(0;t) + P(2)(O;t) - 1pA(O;t)

pA(O;t) = 1 - pA(l;t) = 1 - [p(l)(l;t) + p(2)(l;t)]

A method similar to the two-failure algorithm has been

used by Price (47), without proof, to compute the reliability

of parallel components.

The situation when all blocks in a reliability diagram

have identical failure distributions has been studied by

Barlow and Hunter (34). The diagram studied is a series and

parallel connection of subdiagrams, each of which is constructed

from blocks connected in series and parallel. In this case,

the reliability can be written directly, using a multinomial

distribution.

As an example, an expression for pA(O;t) will be found for

the system whose reliability diagram is given in Fig. 10,

using the two-failure algorithm.

T _
 

    

      

    

      

   

A
Fig. lO.--Example of a reliability diagram

The details of Step 1 of the two-failure algorithm are

shown in Fig. 11. Only those rows for which A(t) = l are

listed in the reliability table. The following expression



results from this step.

as pi(x).

p(1)(l;t) -.-.

pL,(1) [ (1 -

p,(1)[p1(1)

O O 1

0 l 1

1 0 0

1 O 1

1 1 0

1 l 0

l 1 1

1 l l

[1 - p4(1)] p2(1) p1(1> +

p3(1)) pl(1) + p3(1)]

p2(1) p1(l) +

68

For convenience, pX (x;t) is written

1

+ p3(1) - p1(l) P3(1) - P2(l) pl(l)]

X

1

l

l

1

0011

1001

0111

1011

1101

1110

Fig. ll.--Examp1e of Step 1 of

1100

1111 X

10 1

110_ x

111_ x

the two-failure algorithm

The details of Step 2 are shown in Fig. 12. Only those

rows for which A(t) =

The following expression is obtained.

p(2)(O;t)

+

O are listed in the reliability table.

[1 - p4<2)][_p3<2>(1 - p1(2)) + 1 - p3(2)]

p,(2) [1 - p2<2)][1 - p1(2)]

1 - p3(2) p1(2) -

p4(2) [p1(2) + p2(2) - p1(2) p2(2) - pl(2) p3(2)]
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0 0 0 0 0 0000

0 0 0 2 0 0002

0 0 2 0 0 0020

0 0 2 2 0 0200

0 2 0 0 0 2000

0 2 2 0 0 0022

2 0 0 0 0 0220

2 2 0 0 0 2200

Fig. l2.--Examp1e of Step 2 of

x 000_ x 00_

x 002_ X

x 02_0

x 2_00

x

x

x

x

the two-failure algorithm

The results of Step 3 are obtained as follows.

pA(0;t)

Loaded systems

 

1 - p(1)(1;t) + p(2)(0;t) - 1

P(2)(O;t) - p(l)(1;t).

If the lifetime variables of all part parameters have the

distribution shown in Eq. (25), the theory of Stationary Markov

chains can be used to find pA(O;t) in Eq. (14). Equation (19)

is again used for this purpose, on the basis of Eq. (25)

through Eq. (28).



CHAPTER IV

DRIFT EFFECTS

Two types of drift in redundant systems are discussed in

this chapter, neither of which has been treated in the litera-

ture. In the first type, the drift characteristics of each

non-failed part parameter depend on the length of time the

system operates; in the second, the drift characteristics depend

both on the states the system assumes and on the length of

time the system remains in each state. Both types are appli-

cable to loaded and to non-loaded systems.

The first section in this chapter outlines the particular

drift problem to be discussed. Methods for finding the joint

distribution of the system parameters at a given time are

presented in the second section. These methods provide a

basis for the third section which deals with time variations

in the distributions of part and system parameters.

The drift problgp

If the joint distribution of the system parameters is

known at any time, the reliability and utility value functions

can be found. However, for definiteness, only the measure of

utility defined by Eq.(la) will be treated in this chapter.

The techniques presented can be extended to cover other value

functions.

70
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(1a) Q(t) P(Ai(t) 6‘ Si(t), all i=1,...,n)

f-(;;t) d;

—/S(t) A

The function Q(t), smetimes called pointwise reliability,

is the probability that the system is operating satisfactorily

at time t. The notation S(t) represents the tolerance sets for

the system parameters A(t)°

In order to use the General Model to find expressions for

Q(t), Eq. (II.4) is substituted into Eq. (1a) with the result

shown in Eq. (lb).

(lb) Q(t) = ii: p (x;t) Jf‘ f- (a/x;t) d;

x X S(t) A/X

If x (f Z1, i.e., if the system is in a failed state, the

corresponding integral in Eq. (1b) is assumed to be zero for

any tolerance sets. Since, by definition, the system is

operationally useless after it has failed, this is not a

restrictive assumption. Equation (1b) then becomes Eq. (1c).

(10) Q(t) = EE: p (x;t) ‘j:_ f- (a/x;t) da

20 X S(t) A/X

The sum in Eq. (10) extends over all x 6? Z the set of09

non-failed states.

When the system has not failed, those part parameters

which have not failed and which have not been removed from the

system because Of the failure of other part parameters are

called the Operational part parameters. When the system is in



72

state x 6? Z0, the set of Operational part parameters is

denoted by B¥(t). The members of this set change when the

system changes states as do the forms of the system parameters.

Thus, in order to evaluate the integrals in Eq. (1c), the joint

distribution of the system parameters for every state in ZO

must be found at time t. These joint distributions can be

derived by the techniques discussed in the next section if

the joint distribution of the operational part parameters for

every state in Z are known at time t. Methods for deriving
0

these joint distributions from drift data are presented in the

last section.

Distributions of systemgparameters at one time

This section is devoted to a review of the available

techniques for studying the joint distribution Of the system

parameters at a particular time. Specifically, the distribution

of the A's in Eq. (2) will be studied, where E =(Bl,...,B )
k

represents a set of Operational part parameters.

(2) A1 = vi(B1,...,Bk) i=1,...,n

The first two subsections present techniques for finding

the entire distributions of functions Of random variables, the

first using analytical methods and the second, Monte Carlo

techniques. The methods available for finding certain measures

of distributions are taken up in the third subsection. Some

special techniques for the important special case of linear

functions of independent random variables are presented in the

last subsection.
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Analytical techniques for finding complete distributions

The exact form Of the joint distribution of the B's in

Eq. (2) is assumed known; i.e., the density or cumulative

distribution function describing this joint distribution is

given in closed, analytical form. The vi functions are also

assumed to be known.

The first technique to be discussed has been presented by

many authors, e.g., Cramer (48, p. 292). This technique is

first presented for the case when n = k in Eq. (2) and applies

only when all B's are continuous random variables. The

following two conditions are assumed to be satisfied for all

B )(vector) values 3 of the set Of random variables B a (B1,..., k

for which the joint density function of B is non-zero.

A) The functions vi are everywhere unique and continuous

and have continuous partial derivatives avi/az:j i,j = l,...,k.

B) The relationships in Eq. (2) define a one-tO-One

correspondence between the points b and 2, which are values Of

B and A, so that the inverse relationships written as Eq. (3)

exist, where the wi are unique.

(3) B1 = "1(A1,0009Ak) i = l,.ee,k=ne

The functions in Eq. (2) and inverses in Eq. (3) are

written in terms of values of the random variables in Eq. (4)0

(4a) 8.1 = Vi(b1,...,b ) i 1' l,...9k=n

k

(4b) bi = "1(a1,...9ak)

The probability element of the joint distribution function

of the A's is expressed in terms of that for the B's in Eq. (5).

(5) fK(;)da = lJlfg (B)db
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The values 6 in the right-hand side of so. (5) must be

replaced by values 3 from the inverse transformation in Eq. (4b).

The function IJI is the absolute value of the Jacobian of the

transformation defined by Eq. (4a).

_ 8(wl,...,wn)

J _

8.0.1, . . . an)

 

The Jacobian can also be expressed as follows, where, in

the result, Eq. (4b) is used.

-1

a (V1,...,vn)

J =

3(b1,...,bn)

 

For the special case when n=l, the transformation in

Eq. (4a) is written in Eq. (6a).

(6a) 81 = vl(bl,eoe,bk)

ai bi , i = 2geee,ke

If conditions A and B are satisfied, the unique inverse

transformation given in Eq. (6b) exists.

(6b) b1 w1(al,...,ak)

bi = a1

The Jacobian of this transformation becomes the following.

, i = 2,oee,ko

-l

= <9wl(al,...,ak) = avl(b1,a2,...,ak)

69a1 €9b1

In this expression, b

J
  

1 is replaced, after differentiation, by

w1(al,...,ak). Then, Eqo (5) becomes the following.

fK(a)da = 'JlfBl,B2,...,Bk(w1(al""’ak)’a2"'°'ak)da

The (marginal) distribution of A1 is then found by integration

as shown in Eq. (7).
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(7) rA (.1) =f ---] fK(a)da2---dan
1 an a2

The extension to the case when n >-l, but n # k is Obvious.

A second technique for finding the joint distribution of

the A's in Eq. (2) has been discussed by Middleton (49, p. 21).

The characteristic function of the vector variable A is

expressed in terms of that for B. The joint density function of

A’is then found by an inverse Fourier transform.

In almost all applications of the above techniques, the

resulting density functions are of non-standard form, and are

not tabulated. However, in a few special cases, they are of

recognizable form. For example, the sum of independent, normally

distributed random variables is itself normally distributed.

The chi-squared, student's t and F distributions were all

derived from certain combinations of random variables.

However, these special forms have only a limited application to

the present problem.

Monte Carlo techniques for finding complete distributions

As applied to the problem at hand, "Monte Carlo" is a

synonym for "sampling by computer". A method using this

approach for approximating the density function of a known

function of random variables has been presented by Hellerman and

Racite (17). Their procedure, called "synthetic sampling",

approximates the density function of A in Eq. (8).

(8) A = V(Blgeee,B )

k

The cumulative distribution function for each Of the random
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variables B1,...,B is assumed known. Each B is a continuous

k

random variable so that there exists a unique inverse Of these

distribution functions for any number between 0 and l. A random

number generator1 is assumed to be programmed in the digital

computer.

The first computational step is obtaining k numbers

r1...,rn from the random number generator. Each of these is

used to compute one inverse of a cumulative distribution function

are found, where b Fgl(ri). That
k i:

i

is, a random sample from the distribution of each B1 is Obtained.

One value of A is then computed from the b's using

so that k numbers b1,...,b

Eq. (8). The whole process is repeated at Often as is necessary

until a number of values of A are obtained. Each is interpreted

as a random sample from the distribution of A. These samples are

then grouped in intervals on the axis representing values of A.

The proportion of numbers in each interval is plotted in

histogram fashion to approximate the density function of A.

Some generalizations can be made on the technique des-

cribed above. The B's need not be continuous random variables.

If one is discrete, its cumulative distribution function is a

step function with jumps at each point for which the density

function is non-zero. A one-tO-One correspondence between the

saltus at each jump and a subinterval Of the [0,1] interval can

 

1A random number generator is a set of computations which

will produce random sam les from a distribution that is uniform

on the closed interval TO,1 . They have been discussed, for

example, by Taussky and TO (50)°
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be made. Thus, these subintervals can be related to mass points

of the distribution.

Obviously, if the distribution of more than one function

Of the B's is desired, each set of numbers (r1,...,rk) is used

to compute a value for all functions of interest.

Techniques for finding measures of a distribution

In situations where the complete distribution of a function

is not easily found, certain measures Of the distribution can

be useful in a failure analysis. Some of these measures and

methods for estimating them are discussed in this subsection.

Moments

The moments, LL1,L12,... of a distribution having cumu-

lative distribution F are defined in Eq. (9).

{>0

(9) [13 = Jr xde(x)

—96

If L10 ES 1, and if the moments LL1,L12,... corresponding

to a distribution function F(x) are all assumed to be finite,

and if the series shown below is absolutely convergent for some

r=> 0, then F(x) is the only distribution function having these

moments.

00

Z (uJ/j!)rj

i=0

If C(s) is the characteristic function for the distribution

defined by F(x), then C(s) is given by the following, where i

is the complex Operator.
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(>0 0

C(s) = Z (LL./j:)(is)J

i=0 3

I
J

These relationships between the moments, distribution function,

and characteristic function were pointed out by Cramer (48, p. 174).

Tchebycheff's inequality

It is seldom easy to find or estimate all the moments of

a distribution. Fortunately, many reliability computations

require only an estimate of the percentage of the density

function which is within certain limits. Such estimates can be

made from approximations to the mean and variance of a distri—

bution by means of the Tchebycheff inequality given in Eq. (10),

which has been discussed by Cramer (48, p. 183).

(10) P(IY - ml 2 ks) 5 (l/k2) , k > 0

In Eq. (10), Y is a random variable having (finite)

mean m and variance 52. Thus, the probability that the value Of

a random variable lies in the range m i 4.58 is at least 0.95,

no matter what the distribution of the random variable, as long

as it has finite mean and variance.

The estimates provided by the inequality in Eq. (10) is,

in many cases, quite conservative. For example, if Y has a

normal distribution, the following is true.

P( IY - ml 2 3s) a 0.0014

However, Eq. (10) produces an estimate of 0.111. Nevertheless,

Eq. (10) provides one of the only analytical means for using

estimates of m and s to place bounds on probabilities.
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Estimation of the mean and variance

Methods for estimating the mean, m and variance, 52, for

a random variable A of the form shown in Eq. (8) are now

considered.

The first method to be discussed is called the "propagation

of error" method. A very thorough review Of this technique has

been given by Murphy (51) in which the relationships between

cumulants of A and the B's are studied. A simplified form

has been presented by Heyne (52) for functions Of two variables.

The following results are derived in Appendix E.

The mean Of A is estimated from Eq. (E.5), in which

mi

(E.5) m é v(ml,...,mk)

= E(Bi).

The variance of A is estimated from Eq. (E.6), where

s: is the variance of Br and vr is the partial derivative of v

with respect to Br’ evaluated at the means of the B's.

k

2 . 2 2

(E.6) s = E r=1 vr(ml,...,mk) sr

Equation (E.6) rests on the following three assumptions.

1) Equation (E.5) is satisfied.

2) The B's are statistically independent.

3) The higher order terms in Eq. (E.1) are neglected.

If condition 2 is not satisfied, the covariance terms in

Eq. (3.4) must be added. If condition 3 is not satisfied,

covariance terms resulting from the higher order terms in the

Taylor expansion in Eq. (E.1) must also be added. If condition 1
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is not satisfied, Eq. (E.6) is essentially useless. In this

case, one must resort to numerical integration Of the expression

for the mean and second moment, since for any random variable A,

the variance, if it exists, is given by the following expression.

32 = L12 _ m2

The discussion of a Monte Carlo technique in the previous

subsection suggests another possible approach to the problem

of approximating m and 8?. Since random samples of A are

Obtained in the Monte Carlo technique, methods Of statistical

inference could be used for estimating m and s2. A review of

such techniques is beyond the scope of this thesis.

Linear functions of independent random variables

The very important special case of linear functions of

independent random variables is now discussed. Of course, all

techniques described previously also apply here, but some

special techniques are of interest. The importance of this

case stems from the fact that non-linear functions can some-

times be approximated by linear functions, using Eq. (E.1)

as shown in Eq. (11).

k

(11) v(B1,...,Bk) 2 J05) + Z vr(E)Br

r=l

The following notation is used in Eq. (11).

k

Jo(m) v(m1,...,mk) - 2E:r mrvr(ml,...,mk)

=1

vr(m) = vr(m1,...,mk)
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The vr(m) factas are sometimes called sensitivity terms

since they can also be Obtained from the differential of v.

For convenience, the function shown in Eq. (12), rather

than that in Eq. (11), will be discussed. In Eq. (12), the Ci

are mutually independent random variables.

k

(12) A :2

i=141

Two analytical techniques for finding the distribution of

A have been presented by Cramer (48, p. 158). The first is

concerned with characteristic functions. If Ci(5) is the

characteristic function of £1 and CA(s) that of A, then they are

related by Eq. (13).

x,

k

(13) CA(s) = .n’ 01(s)

1:1

This method has been used, for example, by Depian and Grisa-

more (22).

The second method uses the convolution integral, shown

symbolically in Eq. (l4).

(l4) FA(x) = F1(x) ‘ F2(x) ‘ -~- * F(x)

In Eq. (14), Fi(x) is the cumulative distribution function of

i' The star symbols are interpreted as follows.

(>0

F1(x) * F2(x) = j[°;F1(x-z)dF2(z) = F2(x) ‘ F1(x)

It must be emphasized that Eq. (13) and Eq. (14) are valid
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only if the 41 are independent random variables, related to

A by Eq. (12).

An interesting method for approximating the distribution of

A in Eq. (12) has been presented by Gray (53) for the case when

all C1 are continuous random variables. Piecewise linear

approximations to the density functions of the {'5 are made and an

algorithm for approximating the density function of A, section

by section, is given.

Time variations

Methods for finding the joint distribution of a set of

operational part parameters, knowing their drift characteristics

are presented in this section. If this joint distribution is

derived for every non-failed state of the system at time t, the

techniques of the previous section can be applied to find the

joint distribution of the system parameters, and Q(t) can be

computed from Eq. (10).

The drift phenomenon is described qualitatively in the first

subsection. The second and third subsection treat independent

and dependent drift, respectively.

The drift phenomenon in a part parameter

As outlined by Golubjatnikov (54), the variations in the

value of a part parameter due to drift can be segregated into

three categories, viz, initial variations, short term drift,

and long term drift.

Initial variations account for differences in the values

of several new part parameters from the same lot. Such variations

are caused by the manufacturing process and are usually centered
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about a rated, or nominal value. A normal distribution is Often

used to describe this variation with the mean as the nominal

value.

Short and long term drift describe non-catastrophic changes

in the value of a part parameter in time. Long term drift is

a gradual deterioration resulting in eventual failure. The

limiting or end-of-life value depends on the particular system

and on the tolerance sets assigned to system parameters. Short

term drift, on the other hand, is a random fluctuation about

some norm, caused by random changes in the environment. This

norm includes the effects of long term drift. The percentage

of variation caused by short term drift is usually smaller than

that caused by long term drift.

Independent drift

Independent drift refers to the situation when the drift

characteristics Of the Operational part parameters, at any time,

depend only on the length of time the system has operated.

That is, the environment which causes the drift does not change

as long as the system is Operating.

The sets of operational part parameters are, at any time,

assumed to be statistically independent random variables. If

B¥(t) = (Br1(t),...,Brh(t))is a set of operational part para-

meters, their joint density function, for all t such that X(t) = x,

is shown in Eq. (15).

h

(15) fig-(b;t): n” fB (b;t)

x i=1 ri
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The drift characteristics for a single operational part

parameter B1(t) will now be discussed. These characteristics are

expressed as the sum of two random variables in Eq. (16).

(16) B (t) = B (o) + B(d)(t)
i i i

The system is assumed to be turned on at t = 0 so that,

in Eq. (16), Bi(0) is a random variable representing initial

variation. The random variable Bid)(t) represents the drift

of B1(t) from its initial value at the end of a time interval of

length t and includes both short and long term drift. For

any time t for which B1(t) is operational, B1(O) and Bid)(t)

are assumed to be statistically independent, an assumption that

has been made by Xavier et. a1. (55).

Two methods for determining the distributions of the

separate terms in Eq. (16) are now considered.

Empirical method

The first method relies upon measured data and is used

to find the distribution Of Bi(t) at one particular time. This

method has been suggested by Xavier et. a1. (55) and is now

quantified in terms of the General Model

To find the distribution of B1(O), a group Of components

from the same lot are phped on test simultaneously. The value

Of Bi(0) is measured on all components and the data is plotted

in histogram fashion as shown in Fig. 13.

The ordinate of Fig.13 represents the percentage of values

of Bi(O) falling within the various intervals. A (discrete)

density function can be generated from the histogram as follows.

The possible values of Bi(O) are denoted by bij'
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5
8

 

 

 

 

        

Fig. l3.--Histogram of measured data

bid = ()é)(eJ + ej-l

If pij is the ordinate of the histogram for the interval

) , j=l,...,K

(ej,e ), then the density function for B1(O) is given in
j-l

Eq. (17).

j=1’OOO,K(l7) pB (bi;0) p. iszb

i 13
i ij’

0 otherwise

The distribution of the change from the initial value at

time t, Bid)(t), is often known from specifications. If it is

not, the above technique can be used to measure it. In any

event, the (discrete) density function for this distribution

is shown in Eq. (18).

(18) péd)(bi;t) - pig) if bi = big)

1

0 otherwise

j=l,eeo,k

The distribution of Bi(t) at time t is found by using

Eq. (16), Eq. (17), and Eq. (18) with Eq. (1A). The resulting

density function is shown in Eq. (19).
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(19) (b -t) — K (d)(b b -t)pB. i9 ’ . pB. i - i,j, pij

1 j=l 1

. (d .
1f bi : bij + bir) , J=l,eeo,K; r=l’eee,k

0 otherwise

Analytical method
 

If the variation in time of the pointwise reliability, q(t),

is desired, the above method cannot be used; rather, the dis-

tribution of Bi(0) and Bid)(t) are approximated by continuous

distributions which are assigned from experience. The

distribution parameters for the assigned distributions are

assumed tO be known functions of time. For instance, both

(d)

i

mean and variance of Bi(0) would be constant while those of

Bi(0) and B (t) might be assigned normal distributions; the

Bid)(t) could be monotonically increasing functions of time.

Equation (14) is again used to find the distribution of Bi(t),

as shown by the density function in Eq. (20).

(>0

(d)
(20) fB (bi,t) _-/' fB. (bi-z,t) fB (z,O) dz

1 —oo 1 1

Example

As an example, the pointwise reliability, Q(t), is com-

puted for the d-c power supply system shown in Fig. 14.

The following assumptions are made.

1) Neither voltage supply can drift; the drift of

Bl(t) and B2(t) is independent.

ii) Failure of any part parameter removes the corresponding

supply from the system; one failure mode is allowed.

iii) The system is loaded.



 

  

    

 

I Bl(t) = gl(t)

‘2 I? B2(t) = g2(t)

1 2? L ::>?i
» B(t)=e

+ 3 1

63 ~ + =
1 3 $963. B4(t) e2

RL = 50 Ohms

el = e2 : e = 100 volts

State table Transition diagram

0 O O O O

O O 0 l 1

O O l O 2

O O 1 l 3

O l O O 4

O 1 1 O 3

1 O O O 8

l O O 1 3 Z0 = (0,1,2,4,8)

1 l 0 0 3 Zl = (3)

Fig. l4.--Power supply system and corresponding state table

and transition diagram.

iv) The load current, iL, is the only system parameter.

The system parameter is expressed in terms of the part

parameters as follows, using the notation of Eq. (II.3).

hO(B(t)) =

h1(B(t))

l + RL[B1(t) + 82(t)]

h8(B(t)) =

v...

e[Bl(t) + B2(t)]

1

‘

eB2(t)

l + RLB2(t)

 



h2(B(t)) = h4(B(t)) =

System state variable
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eB (t)
__7 l

1 + RLBl(t)

The distribution of the system state variable for the

loaded system

px(0;t)

PX( jzt)

is stated below.

p00

p03

(t)

(t)

exp(-th)

qj-qO

j = 1,2,

9

= ——91— exp(-qot) - exp(-qjt)

4,8

The numerical failure rates are given below in dimensions

Of (hours)-l, using the notation Of Eq. (C.l).

q01 = H01

q02 = H02

qou = H03

q08 = H04

q0 = H01

q2 = H21

ql -

2

= 3

= l

5

+ H

02

+ H2

-1o’5

«10'5

0-4

«110"5

+ H03

3

+ H

H2

H1

H2

H1

-4
01+ = 2°10

" H12+ H14 = qt]. = HA2 + I144 = 35.10

1 = H81

2 = HA2 ‘

3=H83

4:344‘

_ _ _ . '5

5

The value of this density function for the states in

Z is given below at different times.
0

t (hours)

0

100

500

1000

5000

PX(O;t)

1

0.9802

0.9048

0.8187

0.3679

pX(1;t)

0

0.00195

0.00863

0.0152

0.0265

px(2;t)

0

0.00126

0.0131

0.0229

0.0397

px(4;t)

0

0.00970

0.0432

0.0760

0.1327

pX(8;t)

0

0.00210

0.02185

0.0382

0.0662



89

Drift analysis

The drift prOperties of the two conductances are assumed to

be the same and are given below, using the notation of Eq. (16).

Both Bi(0) and Bid)(t), i=l,2, have normal distributions,

the former with mean m0 and standard deviation s0 and the latter

with mean md(t) and standard deviation sd(t). The following

values are in mhos.

m - 1 , s0 = 0.0333

md(t) = 0.5 [1 - exp(-8o10'3t)]

sd(t) 0.5 [exp(-2olo’3t) -1 ]

The mean decreases and the standard deviation increases in

time. For all values of time, the 3s limits are positive so

that negative values of conductance are, for all practical

purposes, eliminated.

The tolerance set is taken as S(t)=(l.95,<>0). To com-

pute Q(t), the integrals in Eq. (10) are expressed in terms of

cumulative distribution functions.

00

J4 f (a/x;t)da = l - F (1.95/x;t)
1°95 A/X A/X

In state 0, A(t) = ho(t). The sum B1(t) + B?(t) has a

normal distribution with mean m(t) and standard deviation

S(t).

m(t) = 2[mO + md(t)]

s(t) = [255 + 2s§(t)]%

The cumulative distribution function of A at any time t

can thus be expressed as follows.



1 - rA/X(1.95/O;t) 1 -P
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[Bl(t) + 82(t) - m(t)

s(t)

 

0.78 - m(t)]

s(t)

 
¢[m(t) - 0.78] E w0(t)

s(t)

In the above expression, 0 is the cumulative distribution

function of the standardized normal distribution for which

tables are availabe.

Since the drift properties of the conductances are iden-

tical, the values Of the integrals in Eq. (10) are the same for

states 1,2,4,8.

l - FA/X(l.95/j;t) = ¢[
 

%m(t)}é- 0.78] E 711(t) 9 j=1929u98

(2) s(t)

Numerical values for WO(t) and w1(t) are tabulated below.

t

0

100

500

1000

5000

wO(t)

 

1.0000

1.0000

1.0000

1.0000

w1(t)

 

1.0000

0.9986

0.0281

0.0002

0.0000

Finally, Q(t) is computed from Eq. (10) as shown below.

Q(t) = wo(t) pX(O;t) + W1(t)[:px(l;t) + px(2;t)

t

0

100

500

1000

5000

9(t)

1

0.9952

0.9074

0.8218

0.3679

+ PX(4;t) + pX(8;t)]

It should be noted that if the catastrophic failure

effects were neglected, the Operational effectiveness of the

system would be judged by w0(t); if drift were neglected, the
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reliability, R(O,t), is the sum of the density function values

of the system state variable at t for all non-failed states. In

particular,

R(O,5,000) = 0.6330.

Both these procedures give Optimistic predictions, when

compared to Q(t).

Dependent drift

The second type of drift to be discussed is called

dependent drift. In this case, the drift characteristics of

the part parameters depend not only on which states the system

assumes but also on the length of time the system remains in

each state.

For any x ET Z0 and any t, Eq. (15) is again assumed to

be satisfied so that the drift properties of each part parameter

can be investigated separately. TO find the distribution of an

Operational part parameter, given that the system is in state

x ff Z0, each possible sequence of states through which the

system can pass, starting at state 0 and ending at state x,

must be investigated. This is accomplished by defining an

auxiliary random variable, called the sequence variable and

denoted by Yx’ for each state of the system in 20.

A system is said to assume sequence (x,t;x,t), where

E = (x1,...,xN) and t = (to,tl,...,tN), if the state-to-state

transitions, beginning in state 0 and ending in state x, occur

in the following order. The system goes from state 0 to state

x1 at time to, from x1 to x2 at t1, from xN-l to xN at tN-l’

from xN to x at tN, and the system remains in state x from
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tN to t, where 0 < t1 < t2 < --- < tN < t. The sequence

variable is assigned a unique value for each sequence the

system can assume.

Assuming that Bi(t) is operational when the system is in

state x, its distribution is expressed in terms of the sequence

variable for state x by Eq. (21).

(21) fB./X(bi/x;t) = 2E: J{_ fB,/Y (bi/y;t) fY (y;t) dt

1 y t 1 x x

Each term in Eq. (21) represents one sequence which the

system can assume in going from state 0 to state x Z0. The

value y of Yx specifies the exact transition times for the

sequence. Integration is over all possible transition times,

0.: t0< --- < tN< t.

The conditional density term f is found from an

Bi/X

extension of the independent drift development. The amount by

which part parameter Bi(t) drifts when the system is in state

j for a time interval of length T is denoted by the random

variable B§:)(T). This is the amount Of change in Bi(t) from

its value when the system enters state j. If the system assumes

the sequence ((x1,...,xN), (to,...,tN);x,t), the relationship

between the value of Bi(t) at time t and the drift variables

is given by Eq. (22).

(d>(t _t ) + ___(d)
(22) B1(t) = 31(0) + 1301 (to) + 3x11 1 0

(d) (d)
+ BxNi(tN-t ) + Bxi (t-tN)

N-l

The drift in each state is assumed to be independent of

the value of Bi(t) when the system enters that state. Thus, the
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random variables on the right of Eq. (22) are statistically

independent for any set Of times, 0 < t0< --- < tN < t.

If the system assumes the sequence used in Eq. (22), the

distribution of Bi(t) is found from Eq. (14) as shown by the

density function in Eq. (23). For convenience, the density

function Of B§:)(T) is written as fji(2;t) and that of Bi(O),

as f.(z;0).
1

_ N+1 (d) _ _ _

(23) fB /Y (bi/y,t;t) = Jr_ fxi bi - 2E: zj;t-tN f (x;t) dz
1'

X Z j=0

The following notation is used in Ed. (23).

f(d)(;;t) = f ( )"'fOi(zl't0)fi(zo;O)x i zN+13tN'tN-1
N

d2 = dzN+1dzN---dzldzo

The integration is over all values Of the z's for which

the arresponding density functions are non-zero.

Since the drift variables in Eq. (23) are independent,

the central limit theorem can be used to approximate the distri-

bution of Bi(t) by a normal distribution. If the distributions

of the variables in Eq. (22) are near-normal, this would be a

good approximation. However, for arbitrary distributions, the

number Of variables must be large before this approximation is

valid.

The distribution of the sequence variable for a particular

state is now discussed. The lifetime variables for all part

parameters are assumed to have exponential distributions which

are given in Eq. (III.9), for non-loaded systems, and in Eq.

(C.1), for loaded systems. To minimize the notational com-
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plexity, each part parameter is assumed to have only one failure

mode. If the system assumes the sequence ((xl,...,XN).(tO,...,tN);

x,t), the part parameter that fails at time tJ is denoted by

BS (t), j=0,1,...,N.

j ._

If the system is non-loaded, fY (y;t)dt is computed as

X

f0 llOWS o

i) The probability that BS (t) fails at time tj’

J

j:O,l’ooe,N, is the fOIlOWingo

N N _

H H exp - g H t dt

0 s O O 5

3:0 J 3:0 j j

11) The probability that no part parameter in B¥(t) fails

to time t is the following.

X

exp -t 2 H

i=1 rj

Both events must be realized so that fY (y;t)dt is the

x

product Of the two terms.

If the system is loaded, the failure rates become functions

of the states and the expression for fY (y;t)dt becomes more

complex, as shown below. X

i) The probability that Bs.(t) fails at time tj is the

J

following, where xO represents state 0.

N N

TT II eXp - :E: H t.

i=0 ”‘38: i=0 3383' 3

ii) The probability that no part parameter in B¥(t) fails
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to time t is the following.
0

X

exp -t1 2E:. HOr.

3:1 J

iii) The probability that no part parameter in §¥(t) fails

from time tj to tj+l’ j=O,l,...,N-l is the following.

x

exp -(tj+l-t3) 21:1 ijri

iv) The probability that no part parameter in §¥(t) fails

from time tN to t is the following.

x

exp -(t-tN) 21:1 Heri

The product of all terms above is the required density

function.

In stating the expressions above, it was assumed that no

part parameter is removed from a system because of the failure

of other part parameters. If this assumption is not satisfied,

extra factors must be inserted into some of the terms in

Step iii.
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Conclusions

The failure analysis used to analytically predict the

susceptibility of a redundant system to failure is dependent on

three factors, viz., the failure state, the figures of merit,

and the available time and money. The General Model furnishes

a practical means for accomplishing a failure analysis at the

level of sophistication and complexity that is dictated by

these factors.

If only catastrophic failure data is available, the one-

failure and two-failure algorithms permit direct computation

of reliability when the system is non-loaded. If drift data

is also available, the General Model partitions the failure

analysis into a set of drift problems which are re-united on

the basis of catastrophic failure tendencies. A higher

level of complexity is introduced when the system is loaded

and when the drift is dependent. Correspondingly, both the

amount of required data and the analytical complexity increase.

Although only non-repairable systems are considered in this

thesis, the theory of Markov chains used with loaded systems is

directly adaptable to repairable systems. The difficulty of

the drift problem is magnified in repairable systems,

especially if the drift is dependent.

Two extensions of the work in this thesis would be of

great value. Firstly, the distribution of the system state

variable for loaded systems should be studied when the lifetimes

do not have exponential distributions. Secondly, methods for

finding the joint distribution of operational part parameters
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from their drift properties are needed when they are not

statistically independent.



APPENDIX A

SOME BASIC DEFINITIONS FROM PROBABILITY THEORY

These definitions are taken from Doob (56).

Definition: Probability set function P

Let f) be some basic space; let there be a certain col-

lection of sets of points of {2 which are called measurable sets.

The class of measurable sets is assumed to be a Borel field.

A (set) function P is assumed to be defined for all measurable

sets and is a probability measure, i.e., P is completely addi-

tive, non-negative, and P(g?) = l.

The number P(A) is called the probability or the measure

of the (measurable) set A of points on , or w points.

Definition: Random variable

A (real) function x, defined on a space of w points, is

called a (real) random variable if there exists a probability

measure P defined on the w sets and if, for every real number

a, the inequality X(w) .5 a delineates a measurable w set;

i.e., F(A) is defined for all real a.

F(a) = P[x(w) :5 a]

Thus, a (real) random variable is a (real) measurable

function.

Definition: Stochastic process

A stochastic process is any family of random variables

98
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[x(t), t E T]. The notation used is that x(t) is the obser-

vation at time t and T is the time range involved.

The term "stochastic process" is usually applied only when the

process involves infinitely many random variables. Historically,

this term has been reserved for families of random variables

with some simple relationship between the variables.

Definition: Sample function of a stochastic process

If [X(t). t 6‘ T] is a stochastic process, a function of

t f T obtained by fixing w in x(t,w) and letting t vary is

called a sample function of the process, where x(t,w) is the

value of the random variable x(t) at the point w.

Definition: Markov process and Markov chain

A (strict sense) Markov process is a stochastic process

[x(t), t 6f T] which satisfied the following condition.

For any integer n 2 1, if tl < t2--=---<:n are para-

meter values, the conditional probability distribution

of x(tn) relative to x(tl),---,x(tn_1) is the same as

that relative to X(tn-l) in the sense that for each

(real) a, the following is satisfied with probability

1.

P[X(tn).‘_‘a/ x(tl),---,x(tn_1)] = P[x(tn,):a/ X(tn-l)]

Whenever Markov processes are discussed, strict sense is

assumed. If the values of x(t) for any t are discrete in nature,

the Markov process is called a Markov chain.

Definition: Separable stochastic processes

Let [x(t), t ET T] be a real stochastic process with linear

parameter set T. Let H! be a system of linear Borel sets. Then,
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the process is called separable relative to “f if the following

condition is true.

Let {t3} be a sequence of parameter values; let A be

a w set of probability zero; let I be any open interval.

Then, the w sets, [w: x(t,w) EB, t € IT],

[wz x(tj,w) 6 B, t3. 6 IT], where BE‘ELi , differ by at

most a subset of A.

If \y is the class of all (finite or infinite) closed

intervals, the process is called separable.

If T is an infinite sequence, the stochastic process

[x(t), t 67 T] is called a discrete random process or a random

sequence. The general sample is a sequence. If T is an interval,

the stochastic process is called a continuous parameter process.

The general sample is a function of t defined on an interval.

Markov chains which are random sequences are studied in

detail by Feller (57). Both random sequences and continuous

parameter Markov processes are considered by Bartlett (58).

The main interest here is the continuous parameter process,

considered in Appendix B.



APPENDIX B

CONTINUOUS PARAMETER MARKOV CHAINS WITH A FINITE NUHBER OF STATES

This discussion is taken mainly from Doob (56).

Let [x(t), O 2 t5“] be a (continuous parameter) Markov

chain such that the random variables x(t) assume the values

l,2,...,No Each value is called a state of the chain.

If P(x(s,w) = i) " O, the probability, given state i at

time s, that state 3 is found at time t is called a transition

probability and written as pi (s,t).

J

pij(s,t) = P(x(t,w) = j / X(S,W) = i) , t 33 5

Two fundamental properties of transition probabilities are

stated in Eq. (E.1) and Eq. (B.2).

Let P(x(s,w) = i) " O.

c? 2 , :

(B.2) pik(s,u) = Zj pij(s,t)pjk(t,u), O E s < t < 11

Equation (8.2) is a special case of the Chapman-Kolmogorov equation.

The sum is over those values of j for which pjk(t,u) is defined.

Definition: Markov transition matrix function

Let P(s,t) be the matrix with typical element pij(s,t).

If P(s,t) satisfied Eq. (8.1) and Eq. (B.2) it is called a Markov

transition matrix function.

101
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A sufficient condition for the existence of a Yarkov process

is now stated.

Given a Markov transition matrix function, there exists a

corresponding Markov process [x(t), O .f t<C>O] which is

obtained as follows.

1) Choose any initial probability distributions.

P(x(O,w) = i) , i = l,2,...,N

ii) For every finite t set, 0 = to < tl< < t ,

define the following.

P(x(to,w) = a0, x(tlw) = al,...,x(tn,W) = an)

= P(x(O,w) = a0) P(x(t1,w) = al/x(0,w) = ao) - - -

P(x(tn,w) = an/x(tn_l,w) = an_l)

= P(x(O,w) = a0) paoa1(0,t1) - - - pan-lan(tn_l,tn)

If, for each pair (i,j) the transition probability pij(s’t)

depends only on t-s whenever P(x(s,w) = 1) => 0, then the Markov

process is said to have stationary transition probabilities.

The two fundamental properties given in Eq. (B.l) and Eq. (8.2)

then become those in Eq. (E.5) and Eq. (B.4).

(3.3) pij(t) : O, z pij(t) : l , t > O

3

(B.4) pik(s+t) = 2E:j pij(8) pjk(t), s,t => 0

Definition: Stationary Markov transition matrix function

Let P(t) be the matrix with typical element pij(t). If

P(t) satisfied Eq. (B.3) and Eq. (B.4), it is called a stationary

Markov transition matrix function.
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A Markov chain defined in terms of a stationary Markov

transition matrix function, with some initial probability

distribution, will be called a stationary Markov chain. Only

this type of chain will be discussed.

Solutions for the transition probabilities are discussed

below. Two general approaches may be used. The first considers

equations resulting from the differentiation of Eq. (B.4).

The resulting solutions are usually presented in matrix form.

The second method, summarized below, attacks the problem from

the viewpoint of the sample function. It is felt that this

second method leads to greater understanding because of its

more direct probabilistic interpretation.

Definition: Step function

A function g(t) will be called a step function if it

satisfies all of the following conditions.

1) g(t) has only finitely many points of discontinuity

in every finite closed interval;

ii) g(t) is identically constant in every open interval

of continuity points;

iii) If tO is a point of discontinuity, either of the

inequalities in Eq. (E.5) is satisfied.

(E.5) 8(t0-):s(t0) .5 g(t0+)

g(tO-):g(to) : g(tO+)

Definition: Jump of a function

A function g(t) is said to have a jump at the point tO if

it is discontinuous there, and the one sided limits g(tO-) and

g(to+) exist and satisfy one of the inequalities in Eq. (E.5).
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Before considering solutions for the transition probabili-

ties, some useful properties concerning stationary Markov chains

are given. The following assumptions are used.

If P(t) = [pij(t)] is a stationary Markov transition matrix

function, it is assumed that the conditions in Eq. (E.6) is

satisfied, where pi (t) is continuous when t - 0.j _

(E.6) lim _ .
t "O Pij(t) — l for i — J

The following conclusions are evident from Eq. (E.6).

1) lim
t o pij(t) = o for i a 3.

ii) p1j(t) is continuous for all t.

iii) If j i i, (t) either vanishes identically or never

vanishes, except when t = 0.

Theorem 3,;

Let[ (t)] be a stationary Markov transition matrixP13

function. Then

lim

t___Wpijw) exists for all i,j and the limit is approached

exponentially fast.

Theorem B.2
 

Let [pij(t)]be a stationary Markov transition matrix

function satisfying Eq. (3.6). Then, the limit in Eq. (3.7)

exists for all i.

(3.7) lim 1 ' pii(t) _

t-—-o t ‘ qi

 

Furthermore, if [x(t), O : t<<>0] is a separable process

determined by[ (t)], together with an initial distribution,pi.j

Eq. (3.8) is satisfied.
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(3.8) p [x(T,w) i, to : T : to + a / mom) = i]: exp(-qia)

Theorem B.3
 

Let [pij(t)] be a stationary Markov transition matrix

function satisfying Eq. (E.6). Then, the limits in Eq. (B.9)

exist and satisfy Eq. (B.10).

p (t)
(3.9) lim ii q , 1 ,1 j,

t——-o t ij

(B010) Z q , = q = O

jii 13 i

If, in addition, [x(t), O :5 t‘qxqis a separable process

determined by [pi (t)] together with an initial distribution,
j

then there exists with probability 1 a sample function discon-

tinuity which is a jump. In fact, there exists a first and a

last discontinuity which are jumps.

Theorem B.“

The sample function of a separable Markov chain with a

finite number of states having stationary transition probabili-

ties satisfying Eq. (E.6) are almost all step functions.

Equations (B.7). (B.8), and (B.9) express three crucial

points. The probability of no transition is seen to be asymp-

totically linear as t approaches 0 from Eq. (B.7). From Eq.

(B.8), the probability of no transition in some interval is seen

to be a decreasing exponential function of the length of the inter-

val. Finally, Eq. (B.9) shows that the probability of transition

from one state to any other is also asymptotically linear as t

approaches 0. These facts are used to derive the equations

describing the transition probabilities.
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Let lpik(t) be the probability, given x(to,w) = i, that

X(t0+t,w) = k and the transition from i to k is accomplished in

exactly one step. This implies, from Theorem B.4, that the

sample function is a step function which takes on the two values

i and k and that there is only one jump discontinuity in the

sample function. This jump point is labelled 5.

Then, lpik(t) can be evaluated by the following considera-

tions.

1) x( T,w) E i to the jump point 5. From Eq. (B.8),

the probability of this event is exp(-qis).

ii) There is a jump to k at the jump point 5. From

Eq. (3.9), the probability of this is qikds.

iii) x(T,w) E k from s to t. From Eq. (3.8), this

probability is exp(-qis).

iv) The probability of realizing all three of these

events, for any 5 in the interval (O,t) is given below.

lpik(t) =j;t qik exp [-qis -qk(t-s)]ds k # i

= O k = i

Now let npik(t) be the probability, given x(t0,w) = i,

that x(to+t,w) = k and that the transition from i to k has

been accomplished in exactly n steps. An induction process is

used to derive this probability. However, two methods can be

used to state the induction process, depending on how the

sample function is viewed. In both methods, Eq. (B.11), which

is based on Eq. (B.8), is used

(t)(3.11) o , k g i
Opik

exp(-qit) , k = i
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The first jump method

Here, the sample function is viewed as having a first jump

at s. The following considerations lead to the general term of

the induction process.

1) The probability of no jump until 8 is exp(-qis) from

Eq. (B.8).

ii) The probability of a jump at s from state i to any

state j i i is qijds from Eq. (B.9).

iii) The probability of going from j to the final state of

interest k in exactly n steps is (t-s).
npjk

iv) The above three events can be realized for any state

j ¥ 1. Thus, the general term of the induction process is

given by Eq. (3.12).
t

_ q.. exp(-q s) p. (t-s)ds, n 1' O
(3.12) n+1 pik(t) - :E:j#i .j; 13 i n 3k

Thg_last jump method_

In this method, the last jump of the sample function is

assumed to take place at s. The general term of the induction

process is derived as shown below.

i) The probability of going from the initial state i to

any other state j i k in exactly n steps is n1313(5).

ii) The probability of jumping to state k from state j i k

at the last jump s is qikds.

iii) The probability of no jump between 5 and t is

exp[-qk(t-s)].

iv) The above events can be realized for any state j # k.

Thus, the general term of the induction process is given

by Eq. (3.13).
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t

(B.15) n+1pik(t) = 23.1% L qjk exp -qk(t-s) npij(8)ds’ n I 0

Since, by Theorem (B.#), almost all sample functions are

step functions, a general expression for any stationary transition

probability is given by Eq. (B.14).

00

(3.14) pik(t):=:E: o npik(t)

n:

N.

The equations for either of the induction processes

together with Eq. (B.1h) provide an explicit algorithm by which,

given the qi's and qij's, the transition probabilities can be

computed. Specifically, the two algorithms are represented by

Eq.'s (3.15) and (3.16).

t

(B.15) pik(t) = (Sik exp(-qit) + 25:3g1 -j; qij exp(-qis)pjk(t-s)ds

Equation (B.16) is obtained from Bq.'s (B.11), (B.13),

and (B014) 0

t

(B.16) pik(t) = 61k exp(-qit) + ngk qukexp[-qk(t-s)] pij(s)ds

In Eq. (B.15) and Eq. (B.16), (Sik is the Kronecker delta

function defined below.

= O , i f k

An alternate method of solution is found from the deriva-

tives of Eq. (B.15) and Eq. (B.16).
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The set of equations in Eq. (8.17), called the ”backward

system", results from differentiating Eq. (8.15).

(3.17) pii(t) = .q1 pik(t) + :E:j¥i qij pjk(t) ; i,k = l,...,N

The set of equations in Eq. (8.18), called the "forward

system", results from differentiating Eq. (8.16).

(3.18) pii(t) = -pik(t) qk + 2E:j¢k qjk pij(t) ; i,k e l,...,N

The initial conditions for both systems are shown in

EC}. (B019).

(B019) (0) = 1 , 1 : 3
P13

= O i i j

From Eq. (8.17) or Eq. (8.18) together with Eq. (8.19), it

can be seen that the q's and qid's determine the transition

probabilities uniquely. It can be shown that Eq. (8.17) and

Eq. (8.18) with initial conditions in Eq. (8.19) have a unique

solution satisfying Eq. (8.1) and Eq. (8.2) if Eq. (8.10) is

satisfied. The 's and qij's themselves must be known.
qi

However, they should be deducible either experimentally or

theoretically using Eq. (8.7) and Eq. (8.9). That is, from

Eq. (8.7), the probability of no transitions in time dt is

l - qidt, where second order terms are neglected. Similarly,

the probability of a transition from i to j in time dt is

qijdt, again neglecting second order terms.
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THE APPLICATION OF FARKOV CHAINS TO THE ANALYSIS OF LOADED SYSTEMS

In this appendix, the q's which describe a Markov chain

are expressed in terms of the lifetime distributions of part

parameters for loaded systems. The part parameters are assumed to

have one failure mode. The lifetime density function fir for

part parameter Br(t) when the system is in state i is assumed

to be of the form shown in Eq. (0.1).

(0.1) f1r(2)
. > 0 _

Hirexp(-Hirz) if z _ O and i E Z0 and Xr(t) - 0

=0 ifz<Oori=ZorXr(t)=l

l

The qi constants defined in Eq. (8.7) are considered first.

 

_ lim 1 ' Pii(t)

qi " t—c-o t

If i = 21’ Pii(t) E 11, since the system cannot leave the

failed state, so that q1 = 0.

If i € 20, and if xr (t) = o, m = l,2,...,n when the

m

system is in state i, the system stays in state i if none of

the part parameters Br fails in the time interval of length t.

m

Then, (t) can be expressed as follows.
pii

llO
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n 00

ff Jr f (z)dz

m=l t 1rm

(t)

n

7"("[exp(-Hir t)] = exp(-Het)

m-l m

H - Vffin H

e Z— m=1 1r

The expression for qi is then obtained by substituting

Pii(t) into the equation defining qi.

 _ 11m 1 - exp(-H°t) - 11“ H ex (-H t) - H
qi ‘ t-—-o t ‘ t-—a-o e P e ‘ e

Thus, q1 is the sum of the failure rates of all part parameters

which are not failed when the system is in state i. The ex-

pressions for qi are summarized in Eq. (C.2).

n

X i . .0
m=l m

=0 ifi=Z

(0.2) qi

The expression for qij’ i i j defined in Eq. (8.9) is

now considered.

_ lim Pij(t) 1 # j

qij ‘ t——+»o t ’

If i,j 6‘ Z0, and if j can be reached from i in one step,

then there is one part parameter, say Br (t), for which Xr (t) = O

1 l

in i and Xr (t) = l in j. It is assumed that Xr (t) = O,

1 m

m = 2,3,...,n, in both i and j. The expression for qij is

obtained by means of Eq. (8.1A).
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(>0

pij(t) e ano npij(t)

Since 1 g j, (t) = O.
Opij

Since the system has only a finite number of states and

since a state cannot be reached after the system has left it,

this sum has only a finite number of terms, say N. Then,

qij can be expressed as follows.

- 11” (l/t) N - (t) - N 11“ (t)/t
qij - t_’0 :1 up“ — n=l t—“OFHPij ]n

The term lpij(t) is computed below. The dummy variable 5

is some time for which the system is in state i, but which is

less than t.

i) The probability that the part parameter Brl(t) fails

at time s is the following.

firl(s) ds = Hirlexp(-Hirls) ds

ii) The probability that no other part parameter fails to

time s is the following.

00n

Tr f. (2) da = exp(-H )

211:2

5

1r 1

s m

n

H = H

1 Z m=2 irm

iii) The probability that no other part parameter fails

from s to t is the following.
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n 00

ff J[ f3 (2) dz = exp -H (t-s)...—2 [2 1

n

H = H.

2 Z m=2 er

These three events can be realized for any 5.

t

1pij(t) = J2 Hirl exp(-Hes) exp[-H2(t-s)] ds

n

H = H + H, = H g H
e l 1rl Zmz-l irm 2

lpij(t) e [Hirl / (Ha-He)][exp(-Het) - exp(-H2t)]

The first term in the expression for qij can now be found.

lim

t-*-O

(c.3)

lfiiifl _ 11” H /(H H ) H ( H t) H ( H t)
t ‘ t——4’O [ irl 2‘ e ' eeXp ’ e + aexp ' 2

: H,

11‘

l

The following can be shown.

. p (t)
11m n ij _ >,
t C t - O for n ._ 2

Thus, qij is given by Eq. (C.3).

qij = Hir
1

That is, if non-failed state j can be reached from state i

in one step, qij is the failure rate of the part parameter whose

failure would cause the transition from i to j.

If j = 21 and if j can be reached from i in one step,

there may be a set of part parameters such that if any one fails,
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the system goes from i to Z If this set of part parameters is1.

Brl,...,8rv, qij is given by Eq. (C.4).

V

(Colt) qij =Zmzl Hirm

 



APPENDIX D

JUSTIFICATION OF THE TWO-FAILURE ALGORITHM

When all part parameters can fail in either of two modes,

and when drift is neglected, the two-failure algorithm presented

in Chapter III can be used to find reliability expressions.

The theoretical justification for this algorithm is demonstrated

in this appendix.

The four terms used in the two-failure algorithm are

defined below. The system is assumed to have k part parameters.

p(1)(l;t) = P(A(t) = l / Xj(t) g 2, j=l,...,k)

p(l)(0;t) = P(A(t) e o / Xj(t) # 2, j=l,...,k)

p(2)(1:t) = P(A(t) e 1 / Xj(t) g l, j=l,...,k)

p(2)(0;t) = P(A(t) o / Xj(t) g 1, j=l,...,k)

Since A(t) can assume only the values 0 and 1, Eq. (D.l)

is obtained.

(D.la) p(l)(l;t) l - p(l)(0;t)

(D.lb) p(2)(l;t) = l - p(2)(0;t)

Equation (D.2) is obtained from Theorem D.l, given below.

(D.2) pA(l;t) = p(l)(l;t) + p(2)(l;t)

Equation (D.2) and the definition of a density function

produce the following expression.

pA(O;t) = l - pA(l;t) = l - [p(1)(l;t) + p(2)(l;t)]

The following is found by substituting Eq. (D.l) into this

115
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relation.

(l)(0;t) + p(2)(0;t) - lpA(O;t) = p

The last two equations are used in the final step of the

two-failure algorithm. Thus, the proof of Theorem D.l completes

the justification of this algorithm.

Theorem D.l

Let the value of the density function of A(t) at A(t) = 1

be given by Eq. (III.l7b).

k

(III.l7b) p (l;t) e E Tr p (x ;t)
A X i

Z 1:]. i

l

The sum in Eq. (III.l7b) extends over all possible sets of

parameter state variable values for which the system is failed,

even if some are sets of measure zero.

(1) (2) . .
Let p (l;t) and p (l;t) be computed as prescribed in

Steps 1 and 2 of the two-failure algorithm.

Then, Eq. (D.2) is satisfied.

(D.2) pA(l;t) = p(l)(l;t) + p(2)(l;t)

Proof:

The following notation is used in this proof.

A 2-tab1e is a (partial) reliability table which lists

all possible sets of parameter state variable values for which

A(t) = 1 when each part parameter has two failure modes; i.e.,

each row represents one term in Eq. (III.l7b).

A 1-0pen table is the table used to compute p(l)(l;t) is

Step 1 of the two-failure algorithm. Similarly, a leshort table

is used in Step 2 to compute p(2)(l;t).
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The following relations are defined.

(1
A )(l;t) + p(2)(l;t)pA(l;t) = p A

(l) k
(D.3a) pA (l;t) = Tr pX (xi;t)

l

(2) k

(D'Bb) pA (l;t) =2 7T pX (x1;t)

2

The one subscript in Eq. (D.5a) means that the sum extends

over all possible sets of parameter state variable values for

which the system is failed Open; the two subscripts in Eq. (D.5b)

cover short system failures. Each row in the 2-table is included

in one and only one sum in Eq. (D.3).

The method of proof is tOthow, on the basis of the

reliability tables, that Eq. (3.4) is satisfied.

(3.4.) p§1)(l;t) . p(1)(l;t)

(D.4b) p§2)(l;t) = p(2)(l;t)

Proof for Eq. (D.#a)

For simplicity, the method of proof is demonstrated for

the reliability diagram of Fig. (111.5). The table below

shows entries in the l-open and 2-tables which produce cor-

responding terms on the two sides of Eq. (D.4a). Only that

portion of the 2-table for which the system is failed Open is

shown.
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l-open table (for pkl)(l;t)) 2-table (for pi1)(l;t))

X3(t) X2(t) X1(t) X3(t) X2(t) X1(t)

l 1 l l l l l

2 O 1 l O l l

2 l l

3 I O l l O l

l 2 l

4 l l O l l O

l l 2

5 O l O O l O

O l 2

2 1 O

2 1 2     
 

The following table shows the terms which are computed

from the separate entries in the preceeding table. For con-

venience, pxi(j;t) is written as p1(j). The terms from the

l-open table are computed by Step 1 of the two-failure algorithm;

those from the 2-table, by Eq. (III.l7b). The following identity

is used.
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Entry p(l)(l;t) pél)(l;t)

1 p3(l)p2(l)p1(l) p3(1)p2(1)p1(1)

2 (l-p3(1))p2(1)pl(l) (p3(0)+p3(2)p2(l)p1(1)

= (l-p3(1)p2(1)p1(1)

 

3 p3(l)(l-p2(l))p1(l) p3(l)(p2(0)+p2(2))p1(1)

= p3(1)(l-p2(l))p1(l)

 

4 P3(l)p2(1)(1-pl(l) p3(l)p2(1)(p1(0)+p1(2))

= p3(1)p2(1)(l-p1(1))

 

 
5 (l-p3(l))(l-p1(l)) p3(0)(p1(0)+p1(2))p2(l)

° p2(l) + p3(2)(p1(0)+p1(2))P2(l)  = (l-p3(0))(l-p1(l))p2(l)
 

This proof hinges on the fact that if the system is failed

open when all the part parameters in a certain set are failed

open and the remaining part parameters are non-failed, then the

system is failed Open no matter what states the remaining part

parameters assume. This can be seen by noting that, when the

system is failed open, its reliability diagram is separated into

two parts which cannot be joined together by assuming that any

of the remaining part parameters have failed short. This fact

is used to make the correspondences in the first table. For

instance, in entry 5, the state of 82(t) cannot change the fact

that the system is failed open. Similarly, in entry 5, the

system is failed open for any states of 81(t) and 83(t).

A similar proof can be stated for Eq. (D.#b).



APPENDIX E

DERIVATION OF AN APPROXIMATION TO THE MEAN AND VARIANCE OF A

FUNCTION OF RANDOM VARIABLES

In this appendix, an approximation to the variance, s2,

and mean, m, of the random variable A defined in Eq. (IV.8) is

derived for use with the Tchebycheff inequality.

The first step involves the Taylor series expansion of

the function v(bl,...,bk) about a point (bl,...,bk) = (z1,...,zk)

which is given in Eq. (E.1).

(E.1) v(b1,...,bk) = v(zl,...,zk)

(>0 k j

+ z (l/j!) Z (br-zr)a/&b v(zl,...,zk)

jzl r:1

The notation in Eq. (E.l) is interpreted as follows.

k 3

2E: hr / bj v(b1,...,bk)

 

 

r=l

z! j' k c1 V(bl,eee,bk)

= . (h ) c c c

c !c !---c ! nr 1 1 2 k
l 2 k 1.1 b1 b2 --- bk

The prime on the summation sign indicates that the sum

extends over all set of values (cl,c2,...,ck) for which the

following is satisfied.

:E:k

c = j and O :5 c. :5 j
i=1 i i
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In the second term on the right of Eq. (E.1), the argu-

ments (21,...,zk) are used with v to signify that the partial

derivatives are evaluated at the point (21,...,zk).

The Taylor series expansion of the function in Eq. (IV.8)

about the point (81,...,Bk) = (m1,...,mk) is given by Eq. (E.1)

if 21 is replaced by mi 1

terms for which j Z 2 are neglected, Eq. (B.2) is obtained.

, where m is the mean of Bi. If all

(B.2) v(Bl,...,Bk) - v(ml,...,mk)

k

22 (Br-mr) vr(ml,...,mk)

r=l

In Eq. (8.2), the following notation is used.

Vr(ml,...,mk) = (6/8 hr) V(Bl,eee,Bk)

The partial derivative is evaluated at the point (m1,...,mk).

In order to approximate the variance of the random variable

A, the number Si

' A 1’ ' ' k 1’ "m1:

is defined by the expectation in Eq. (8.3).

Equation (E.4) results from substituting Eq. (B.2) into

Eq. (E.3) and taking the expectation.

k

2 2 2

(E.4) SA E vr(ml...,mk) sr

r=l

+ 222E: vrl(ml,...,mk) vr2(m1,...,mk) Cov(BrlBr2)

In Eq. (E.h), s: is the variance of Br and the double prime

implies that the sum extends over all terms for which the following

is satisfied.
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< <

r >r1andl_rl,r2_n
2

If the 8's are statistically independent, all covariance

terms are zero.

In order to use Eq. (E.#) as an estimate of the variance of

A, the approximation in Eq. (E.5) must be made.

(E.5) v(ml,...,mk) é E[v(81,...,Bk)]

Equation (E.5) is exactly satisfied if v is a linear

function. For some non-linear functions, this might produce

an extremely poor approximation, as shown by the following

example.

If B has a normal distribution with mean zero, then the

left side of Eq. (E.5) is zero for the 82 function. However,

A has a chi-squared distribution with one degree of freedom.

Thus, the right side of Eq. (E.5) is unity.

Equation (E.5) has been used by various authors, e.g.,

Whiteman (59), Dreste (5), and Krohn (60). Dreste and Krohn

suggest using Eq. (E.5) under the assumption "...that

component-part value ranges are not large relative to the nominal

value..."

Assuming that the 8's are statistically independent,

that the higher order terms in Eq. (E.1) can be neglected, and

that Eq. (E.5) is satisfied, the estimate for the variance is

obtained from Eq. (8.4) as shown in Eq. (E.6)

r—I

The estimate for the mean is given by Eq. (E.5)

"
0

(E.6) 52 2 Si
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