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SATYA DEVA DUBEY : ABSTRACT

Sevcrli problems in testing hypotheses about and in estimating para-
meters of Weibull distributions, particularly the exponential, are con-
sidered. Soms attention is given to the possibility that simple assump-
tions about the intensity function will lead to classes of distributions
of wide applicability in describing distributions of length of life.

in the case of the exponential failure law with known location para-
meter, the minimum-variance-single-observation-unbliased estimator of the
location parsmeter is investigated. It is found that if the rth ob-
servation in order of increasing time is the single observation on which

this estimate is based and if we write r = ngn » then

lim gn -g;QO.S‘ .

n —> oo

Several tests of parameters are developed for the case in which no
observations beyond the rth in order of magnitude are used. When the
scale parameter is known, the likellhood ratlio test that the location
parameter is a given value is uniformly most powerful against all altern-
atives. When the scale parameter is unknown, the likelihood ratio test
that the location parameter is a given value is uniformly most powerful
unbiased. For the latter situation a simple test function based on the
first and rth observation Is proposed. This test function is shown
to be unbiased and for the left-sided alternatives the power of the like-

1ihood ratio test and of the simple test function is shown to be identical.



SATYA DEVA DUBEY ABSTRACT

For a simple hypothesis on the location and the scale parameters the
test function derived by means of the Neyman-Pearson lemma Is shown to
be uniformly most powerful against alternatives confined to the south-
west quadrent. A uniformly most powerful unbiased test for the scale
parameter Is derived for the case in which the location parsmeter is
unknown and for the case in which it Is known a similar test function
of first r observations Is suggested. The power functions for these
tests sre expressed in terms of the Incomplete Gamma Function. Two
simple test functions for testing the hypothesis on the scale parameter
when the location parameter is known and unknown respectively are pro-
posed and their power functions are derived.

Some results are extended to two sample problems. For the likeli-
hood ratio test based on the first r, (< n|) and r, (< "2) ob-
servations to test the hypothesis on the equality of two location para-
meters assuming the sams but unknown sca|§ parameter, the power function
is derived and it is shown that the test is unblased.

The percentile estimators for the paramsters of the exponential laws
are derived for various situations. The choices of the cumulative prob-
abilities are made so that we have ainimum variance unbiased percentile
estimators for the estimators. The asymptotic results are given for the
sampling distributions, the means, the variances and the coverlance of

the unbiased percentile estimators.



SATYA DEVA DUBEY ABSTRACT

The moment-recurrence formulas for the Weibull laws are established
and the moment estimators of Weibull parameters are derived through them.
The percentile and the modified percentile estimator for these parameters
are derived explicitly and by using the reliability and the intensity
functions other estimators are obtained.

Starting from the intensity function, a large number of potentially
useful failure laws are generated and the estimation of the paramsters
is considered. Finally the applications of some of these failure laws

are pointed out.
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i. UINTRODUCTION

X
Epstein [23] has derived simple estimators of the parsmeters of
exponential distributions whose probability density functions (p.d.f.)

are

(X

e

}(xjé):{—é-t y 170, 970 0

i 0, otherwise

<
and Y-

_L_.-ﬁ G nL (M 7V ~7 520

j L) v ) ‘Qj//;i’; ‘ (2)

when samples are censored. There he is led to investigete the proper-
ties of an unbiased estimator for @ which involves only the r(< n)th
observation of the samcle of size n drawn from (!). Denoting the

rth observation by Xe o9 his unblased estimatoer of @ {s given by
b4

i ox
'h)’n, - EIQL"Y\' IQ" M
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e = \+ i
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y= -

where \3\ e

From [23] we find that in [14] he has shown that ©_' ~is of very high

?
efficiency (> 96 percent) Iif jl :{ ,l (> 90 percent If i\;;—]
- A L " M )
when compared with the best estimator Sr n where
»

% Numbers in parentheses refer to the bibliography.
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(The reference [14] was not avallable to this author.)

Here we have considered the probliem of finding the most efficient
single-observation estimator of © . The results concerning this have
been investigated In Chapter |l. whose summary we give below.

in the second chapter we show that the smallest sample observetion
in case of the |-parameter exponential fallun' law provides a worse es-
timator (in the sense of minimum variance unbiased estimator) among
single-cbservation estimators for average life than any one of the
(n-1) remsining sample observations In a sample of size n . It
follows from (23] that the largest sample observation, up to the sample
size five, provides the best estimator for average life in the same
sense. Here ws show that a single-cbservetion unbiased estimator for
aversge life based on the r(< n) th statistic where < :“r\gm with
oo 6, € =
possesses minimm varisnce. (It is about 66 percent efficient in com-
parison with the minimum variance unbissed estimator based on all ob-
servations in the sample. The sample median has only 48 percent effi-
clency. The smellest sample observation is — ‘90 (n, wlc size) percent

600 |

efficient and the largest sample observation has - m /m) asymptotic

efficiency. Since the life test data are naturally ordered we have de-
pendent random variables to work with. In this connection ws have found
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the product moment correlation cosfficient to order (n + 2)°l between
any ith and jth (I < j) ordered sample observations from exponen-

tial population. This correlation Is

(ko) = Ly )y - - __A[->‘
k) J}(m-w\) L 4ty (“WW A j
it Is asymptotically equal to J.‘:ﬂ‘_&’_il .

}(”ﬂ—t* A

Epstein and Sobel have derived the best test for the H: 0 = o,
against A: O = o, (< 0') based on the first r(< n) observations
out of & sample of n drawn from (1) in [1]. In the first part of

Chapter 111, we have considered tests for the hypotheses:

>

1) N 0-00 against 0400, 6 known.

if) N: 0-00 against A: oaoo, ¢ uvnknown.

,.
(1]

iif) N G-Go ageinst 6460, @ known,

and
iv) M: c-co ageinst A: G#Go, 0 unknown.

Paulson (4] and Lehmenn [2] have considered these hypotheses under the
assumption that all n sample observations are available. Here we have
extended the results of Paulson and Lehman for all the cases. The ex-
tension consists in the fact that our tests are based on only the first
r(< n) ordered observations from a sample of size n . Furthermore

we have also considered v) H: ¢ =6 ageinst A: ¢ ¥6, and



assuming the same but unknown scale parameter. Paulson [4] has consid-
ered this hypothesis under the assumption that all the sample ob-
servations are avallasble. Epstein and Tsao [7] have derived the reduced
likelihood ratio test when samples are censored from the right. Here
following Paulson (4] we have derived the powsr function of this test
end have shown that the test is unblased. For the tests concerning the
hypotheses 1), ii), 111) and iv) we have derived the powsr functions
and have Investigated some of their properties. Following Lehmenn (2]
ws have obtained the uniformly most powerful (UMP) unbiased test for the
hypothesis i1) when sample Is censored from the right. In the case of
the hypothesis i1i) we have shown that the lllollho;:d ratio test Is UNP
against all alternatives and for the hypothesis iv) ws have shown, by
following Lehmenn (2], that the corresponding likelihood ratio test is
UMP unbiased test. Furthermore we have pointed out that the best test
for the H: 0 =0, against A: 0=0, (< 0') , considered by Ep-
stein and Sobel [1], Is UNP for the H: €C = Gy and 0 = 0, against

A: 6<6, and 0<0, . This test Is also UMP for the H: 02> O

0 0
against A: 0< 0  with knomm G .

0
Epstein and Sobe! have considered a test based on the rth observe-
tion only to test H: @ =0, ageinst A: 0=0, (< 0') in [1). This
has led us to consider simple test functions for the hypotheses i), ii),
and iv) in the second part of this chapter. Since the test function for
the hypothesis 1ii) is based on the first cbservation alone sand is UMP
we have considered simple test functions for the remaining three cases.

When guarantes time (location psrameter) is known, the proposed simple
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test function to test the hypothesis about 0, the scale paramster, is
based on only the rth observation of the sample. VWhen gusrantes tims
is unknown, a corresponding simple test function is based on the first
end the rth observations. For both caeses the powsr functions have
been derived and have been reduced to the Incomplete Bets Function.
Vhen the scale paramster is unknown & simple test function based on the
first and the r(< n) th observations has been suggested to test hy-
potheses on guarantee tims. (ts power function has been derived which
shows that the test Is unbissed and for the left-sided alternatives its
power function and the powsr function of the corresponding |ikelihood
ratio test is identical. Two moment-recurrence formulas have been es-
tablished to compute higher moments of this simple statistic.
| in Chapter IV. we have made an extensive study of the percentile
estimators for both the location and the scale parameters of the expo-
nential feilure law In three different cases. Soms of the results of
this report are extensions of the results of Chapter (. We have derived
the sampling distributions of the percentlle estimetors; have derived
their asymptotic distributions, have given expressions for their kth
moments end have made choices for cumulative probabilities such that the
corresponding percentiles in first two cases insure minimum variance
single-observation unbiased percentile estimators provided the sample
size is Iar§o. For the third case we have given the asymptotic form of
the covariance matrix.

Kao [12) has derived the maximum likslihood estimators (m.l.e.) of
6 and m for the 2-parameter Welbull law when a rendom sample is



censored from the right. His likellhood equations demend the use of
successive approximetions. Duggan [13] has obtained moment estimstors
for all the three paramsters of the Weibull law which requires use of a
table especially prepared for this purpose. Representing the p.d.f. of
the 3-parameter Weibull law by

v e (b6
, ‘t_ > 6 d )1) _'r_ {m o )
&(’t) - (M—é~~'§‘)— ﬁ , - 7/ k)1 ( (‘ 30/ \))d

/
&me{o,).

m

Lo » Otherwise,
we have presented in Chapter V. the results listed in the following
paragraph.

First we show that B, (measure of skewness) and 8, (measure of
kurtosis) for the Weibull laws are functions of m , the shape para-
meter, only. Then ws establish & lemms which reveals the relationship
between the rth moment and the rth power of the first moment of the
Welbull law. This lesma is used for deriving moment estimators for the
Welibull parameters. Ve obtain percentile and modifled percentile esti-
-ltors for the Welbull parameters In the form of formulas. By means of
the relliability function and the intensity function we have derived
some other estimators for the Welbull paramesters as well.

In the sixth chapter, » large number of failure laws have been gen-
erated by various reasonable assumptions sbout the form of the intensity
function. The applications of some failure laws, generated in this men-
ner, have been pointed out and the estimetion of parameters of such
fallure laws has been considered.



11. SOME RESULTS RELEVANT TO EXPONENTIAL FAILURE LAW

in this chapter we shall derive some results of interest In life
testing problems where the random varisble has the following exponen-

tial 'prob.blllty density function

N

, ) ~ )
S(X\ = 6 < ) X PECES (““’9/00/ G
. 7€ 7900)

0, otherwise.
We shall assume G to be known throughout this chapter and since we are
concerned with life test data in time units we shall write t [Instead
of X - G and reduce the above exponential probability law to the one-
parsmeter exponential probability density function (p.d.f.) whose form

is given by

’_,l.t
Le ©° [ tso

(
- 6
%(t/\'j/o » otherwise.

Nt

Now we proceed to prove the following simple theorem.

Theorem |: For the sbove one-parameter exponential fallure law, the mex-
loum of sample observations provides a more efficient estimetor of average

1ife than its minimum.



Proof: Let (tl, tys ooy tn) be a sample of size n . It does not
metter here whether they are ordered or not. Howsver, it is clear that
in the life testing situations our observations will always appear ordof-
od. Let E --x(t', oy ooy t”) and ”1 --ln(t', tys ooy tn) .
Now the p.d.f. of f Is given by

_ B me

-3 T3
509)- { (me B, B0

otherwise.

This glves




Proof: Ve write (l—x)m:;__l( )(-') x”

Therefore
|- (0 xgm & m §-! &=
- - . (-l X, for xX
x B Z (3’> ) "
o X:\
Mo e .
= (\-X L
—x ) - Z (l—x) for L %o



Hence the lemma is proved.

M . m -\
Returning to EE - BZJE y we see that ‘E{Z—{z—] is
k=1 L=l
an unbiased estimetor of © . Its variance is found to be

2

m -

i ,
z k] Vll‘(f) o« An expression for Vear (5,) is given In
K=1| o

the following lemme.

Lomma 2: |If t, is the rth ordered sample observation out of a random
sample of size n(l < r <n) drawn from the above one-psrameter expo-
nonetial law then the

)|

Proof: The p.d.f. of t, is given by
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—(’Tl-)z+|)_. e %oy
m\ 5 - &

0, otherwise.

For the sake of convenience we drop subscript r from t

- The charac-
teristic function of the above p.d.f. is given by
ut [ iut
L
sw=re =le )t
° : t .
ml PO (- (ke +)g & /&--E)%oéf
T =\ £ - ‘
U

To integrate out the above integral, wrltc_t.: ?, then

0
Wy oy (M-l Y -\ e

Let < ‘= Z then
\

L mi M =W e
be ¢ = =T m-h)lSZ (\-2) Az

Since the real parts of (n-r¢l-lu) and r are positive, the above in-

tegral is a Beta function whose arguments are n-rel-ju and r respec-
tively ([22], p. 2!2) Thus

mi e
d})( W) = Ekﬁ }-@__ﬁ.@;.}, B(’n—h-\»l Lu));)
(- fevf ) ’

T ('n—awér ux)
i}m‘(i)(\k)}\ Z M(,n )L-\-‘)— ZQMC’Y\ }H-&;tu);



where sny braach can be chosen.
The rth cumulent is given by k)z.: 1)

% d, wé[u} /
ol w g

have k).: %Q)‘ -O:f—-l—__-—-,- :Vmgz:-)—\/a’ftx'

Therefore, Nax t)?. Z < ’”J)z

P—

Incidentally K = ( )_;G_L_.___

UTE

» the maximum of sample observations is t. when sample observations

"N
2
sre ordered, therefors, \\/q)LE= VO&L-t =6 Z

M ¢ J’

incidentally, E§ E't =6 Z—“ which checks with the direct

¢

derivation of the expectation of the -nxhn- of sample observations.

Z
Thus Vm%— 5* ~rK1 , & 92.
2%)

The p.d.f. of "2_—, the minimum of sample observations is given by

5 and again
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A
)= {Len‘f B ’ N0

0, otherwise.

This gives [ 1 = (2 ) (ki
L krf\ ) \ ) 92

Hence Errl:—% QMCL \/,o)r_”l :'a‘r‘

The unblased estimetor of @ based on the minimum sample observation is

n"l whose variance is 02 .

. .
Thus we see that Var(f A >5 v.r(n’Yl) which immediately proves

the theorem.
The following lemme is usefu! in deriving the p.d.f. of ”’L from

the joint p.d.f. of E and "2 .

Lomma 3:
< [ m \(_J} I
Z | ¥ ) ) 3‘,-»” .“ /YH\
. &'=:° \ é/ M g }'
Proof: We write (\—I)m = Z (?)(-i) X o¢x<l.
peo
\ m, . b moo
(o) o = ('.“\_‘y 2o = 5 [T
uou)o(\ x) AA = — M‘Z,:o H(‘/g ok }:o(” o

hence the lemme is proved.



-~

Noting thati | ,—_j'/y _"2.).{_’)".;_0(/”2) mn')" is

Euler’s constant, ws see that the unblased estimetor of @ based on the
maximum of sample observations has asymptotic variance zero. Howsver

the variance of the unbiased estimator of @ based on the minimm
2 » Independent of sample size n . Thus its
2

sample observation is ©
asymptotic variance is also ©
it Is shown now that in fact the unblased estimetor of @ , based
on the minimum sample cbservation provides the worst estimetor of 0 In
the sense of minimum variance unbiased estimator in a class of single-

observation estimators.

Proof: For the r(l <r<n) th ordered sample observation ws have
established that

Et mh+ C@ \/ah.t =9 Z (NS )b'
3’ ! ¢
Here r=1 gives Et‘: t”"Z:%M \/a, .'_,| = Va)x = 9_ ;

m*+

e siws [ = Eg-_e'i? ot Vot =€ elﬁjz-;

and for | <r<n ws have the expressions for Et. and Var t

given above.



e
STt £
2 — (M- 71“\‘. N \ e
b (1= 6% 6 FLIE 2o
. i — !
/ Y \ b"\v / i~ &
"l\ .Z:l m"h*d /‘ \?:\Y & ¢

for r>1 ,
hence it is proved that the minimm sample observation provides the

worst estimator of O in a class of single-observation estimators.

Since

Jar

\
‘g \
M
l
>
T

\ /t \ = /7

/ ; - 9 Y ‘ 7 IV
\ /e / («»_____
S Rohead

it is not clear at this stage whether the maximum sample cbservation pro-

vides the best estimator of © among estimstors based on & single ob-
servation. MNumerical computation ([23], Table i1) shows that the mexi-
mun sample cbservation provides the best single-observetion estimetor

of © s0 long as the sample size does not exceed five. Oeyond five the
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mximum of sample observations no longer provides the best single-obser-
vation estimator of 0 . We would like to know for which rth ordered
sample observation we obtain the Sost estimator of 0 .

In other words we want to find an integer r , say r_ (depending
on n) such thet F(n, rn) is minimmof F(n, r) for fixed n

Z“*—“z Z_ K?
R = \(\_h*d‘) K=Me/ex!
F(nx)= ('Z I
r= (- h+3‘) ) K=N-h+! K

We shall answer this question for large n In this chapter. It Is clear
thet o<r(n, r) <1 . Let g__._‘. Now we shall shew thet the limit
m

inferior of S is larger than zero. First we prove the following lesma.

]

4: F(n, r) 2'; .

f: Let us define & random variable X with the following probabil-

ity distribution.

(

T B
L o,im(.l;}:? )"

This gives e |

EX = ngi)jj - and EXl: _fzf"__,
Z(*\"”&)l = (\'A-MHL

o
4



Now Var X>O0 Implies F(n, r) 2-'; . Q.E.D.

A very simple upper estimate of F(n, r) Is computed as

M
L o
, - K* TR -
F('v\)z)—w* ¢ T
)= T L T T RS T R(man )
[y L &) ey
x\ L
MR

2
From F(n, r) 2% and -ln F(n, r) < -:n -(T-':-'-)-T » we have

2 ' 2

1 <F(n, r ) < min ) which gives ;l < min 2 .

Ta r rn-r+l) r r(n-rel)
r{n- Nl

Therefore g:z-:x - 27 (l-u- )

-;7(!+%>(2+;"->2 or ;7(2-»%)2 according as

n=2 mod3, 1 mod3 and wmod 3 respectively. Hence

lim inf Qﬂz 3 S o8 .

2
A better upper estimate of g —'1- given by s
k
n=r+}

follows from the result of Blom ([25], p. 80 equations 7.3.11 & 7.3.13).
Further using the fact that |§ is a strictly monotone nonincreasing

function, an upper estimate of F(n, r) Is computed as



Now we proceed to prove the following Theorem.

Theorem 2: Let rrum F(’T }L\‘:F/*nh and ? - ?c,n where
enen T moom
M
—_—

h WZ-_);»\ —(Z-i
F("“.)‘L) oy \ - ‘

N le'
[ 41
. \ /‘ft—)'.u»l /
~
Then 1) % Lo(L] for some oK £ \ and sufficiently large n; in fact
i1) S tends to the limit & as n tends to plus Infinity

where go is the positive root of the oquatton,pm(kg’)-&lc: 0:

2 F(m,kz

11)) converges to unity on the open S interval (0, 1)

as n tends to plus infinity where ‘G((S):

CHEES)

In other words, F(n, r) is asymptotically equal to :—’(g‘) , and

in particular  F(n, r ) is asymptotically equal to ."-t(g o  ond
Fin, %

m ( .__._2 converges uniformly in g’(oég;%éo()to unlty

(o)

as n tends to plus infinity, provided a is any consteat satisfying

iv)

0<a<l! .
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Proof: 1) First we show that for large n, F(n, n) > F(n, n-1) .

4“1}» ”"frz/s") _tm" 1;1 \évh. ﬂ M
q\
tn—>0m. From now on we assume that 1 <r<n-l . Put i-g

sothet L<§ci-Ll .
ﬂ" - n

Let 1‘((8} :___g_.____.,.... 0< ;< 1.
(-0 )n (-5)’

-y5) = Lol68
Q=3) ki (1=6)
Here the denominator, (l-g)z ,61\3(1-3) y is <0 for O <g< 1,
and the numerator, AP;ﬂl-&)#Z?, is >0 for o<§<§o where
go is the positive root of the equation, 2g+ Ln(l-g) = 0, and it

is <0 for SO<S<1 . [The function 9(5)-2g+ Enu-S),

0< 8< 1 has the following properties.



i) lim g(g)no; ii) lim 9(8)--0, and
Lo 52\

i) ugx g(g) -9(%) >0 . Therefore, 50, 8 positive root
of g(3) lies between 3 end 1. It is obvious that there s no real

root of g(S) greater than one]. This means that 0(8) decreases

from + @ to 9(80) as 8 increases from 0 to So and .(S)

(1)
increases from HSO) to +® as glncruses from So to 1.
[goé <797 , which gives Ngo) = 1.545].
An upper ostlntc of F(n, r) is found as
. zL_ N
F(”Y’t 7L) h:'._%...._ - \_ﬁ‘. . m.._
) | 2 [ 2 ‘/ r\._*,»* \\
[Cax) i)
N\ r—hat/ 0 -
R /(L-l (- SN _{‘(’(5/ R (_“g),___,\
RO KA VA TS P (Y
\ l+g;)

Now we prove the following lemmes.

Lemma 5: If P lsconstont,0<a<l,and 0<u< 1 then

‘§<Q>= jﬁ\(i“ UL) increases with u .

Ln/vB%)

Proof

4}( 1) = B () 'Lﬂm(l-bt) (1- VL)M('—mg
Qi'Sig Bbt)im (\=pw)
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The denominator,  (1-u)(1-pu) f/nz(l-u) , is >0 .

=-plewlus by )4 <(—w><P“+LP“a”‘+~)
2%7(\3[3)b(.+ (P P WP + ?—P)”

+ - f LG u:n

Hence, by virtue of the lemme s,

wn) o W8 fI=0-20 7 yorp i B
i) YRR L ]

\+ %

We may note that

fm (v I (m)

T e —— 04 Ny 400 .
Z;(’T‘*‘ /(Y\“P)%t( H——) £ ?_—ﬁl i

SI.II-rly we find & lower estimate of F(n, r) .
)

X el = oo

Qg( M- Y

o} L) 7—“;&"; ST m

) "Mwx)

wr T/
& o ¢ &

S S e T Y I
LT R S S 5 ¢ L-$
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v
Now choose @ and B such that go<p<a<l and () = 3 §(p) .

We consider the following cases.

uul:o<§5a<l.
The following lower estimate of F(n, r) actuslly holds for sny fixed g

Since ‘—g —_ l decreases with gi
N fM\ 8)
F w5 71*’—,51 . (s)
where ' !.,;,‘ \”?(._o( —>1 8 n—>+w .
Case Il: a< ;‘;<I .
R

Y 1 -0-w) V()1

F(’Y\;h) m) rony \+‘ (\‘«J)/ 2T 2

(’Y\) » therefore,

-m 7 'J) )€/Y\ m.»\\
| Jm ( )
L} \ i -Ly*.c\) T-(»-’Y—Y\%\) A ,ﬁl)

1+-n
I .lbn_cm) wsocsics .
Jop (A 0% 03
\"2
Thus we see that for large n ,

["/f(\ ﬁ) 7\{;_] fm( J for 5'5(3,.51 . (%)

l-/

For large n , ..._.,




Consequently, F(n, r) > F(n, r') when g -£->a and

5"'&16(5\0’31 and n large . There is at least one such value
of r' when n Is large. Hence F(n, r) does not assume its minimum
-S>a « That is, F(n, r) assumes its minimum, F(n, rn) R

Q.E.D.

i1) Ve have hare 3 — ' ¢ o{ and
":h (/‘Y\ ~. N

D)(l \ ’t/ﬂ ‘» Z !c)(l 6/;)1‘“ O/é\m’ where

(r\
€. o ()9>and é 70) approach zero as n tends to plus infinity.
) ~. - 4 27‘\ \-I 7
TR e iz )T
/ﬂnaF(M)l < (”'MA /)/ j st)'\'__}) Y\‘(m jlg' '.' i
‘f' Mh / AN \,m J/
tnd, ) e - }
|—X ) Y
M n) — e IR
( 7 \T"'Y \-;_f‘_(».. N ( " T - /)/’
. — .
for O é 9 :;CX" ) .
/
¢ e '

We proceed to show that i\n tends to d as n—>¢m . Let €>0
be given. wchooug in (g E,J +€) such that ig’
and t(oo)d(o %) < ain m§ -€), t(g 06)1-0(§ $€) ,

say. (That this Is possible follows from properties enumerated
under (1) ). Now we choose N so large that for a >N,

R ”‘”Hf” ) 4 WJ((S-M)M—FM . ©



(That this is possible follows from properties enumerated under (1).
n)e'n (>0) — o0, e;'(>o) —>0 and

8% (§y e, foe0 ) ror 1512e, 1) 2081

m
AR e I AP o)
so, s | " |
)y M (e e

Hence from (6), (7) and (8) It immediately follows that for |§ So| >¢,
F(n, ¢) >F(n, r )

Thus we have F(n, r) > F(n, r ) >F(n, r ) This implies that

5,,--,,& must e in (&, -€, Sooe) matis, |§ -5 ) <¢
for n>N.

Q.E.D.
~
1ii) From (2) we have for 0<s<1, Q_
\_;/S/l r £Y\(”r\: 1\
Fimge) ¢ ¥ Tanfn)
2 SN T 71 o 'L‘k -
This gives
m?(*v,h'
lln - A
"\C

From (3), we have for o<0<a<l ,



This gives .
! - >/ ’
T v10)

!bmforonry% in 0<g§a ’ L‘/M /{\F(,Y% ?1) ‘

Since we can choose Q as close to unity as we wish, l)t immediately
follows that _E%ﬁ)cmnrgos to unity on open interval (0, 1) as
n—>4+00 . FE:'thomro, from the definition of asymptotic equlviionco
((28], p- 10) it follows that F(n, r) is asymptotically equal to

- ’(g) and in particular F(n, r ) is asyuptotlcally equal to

- 0(8‘
o a.£.0.
iv) To prove the statement iv) true we show that for every £ > 0,

there exists an N(depending on & and Q) such that
MF('Y\,,‘Z) -\ \ '/ ~

- ——— \ (\‘_
L((r, m F/”r‘)/y
for n> N and ol In (0, a] . Thet is, LLW» —-—-:-7-;——.- ‘.
N L{/({)
Q o
for all 2 satisfying 0<2 <a<1 . From2) we get, for,

AR [t L
mE/ Ry ‘A Iy lr) , .,
0< g; A<l , o= e - < — e e i+(m""" ¢ g (7.9)

Y(5) Cpde(rris

A /

tends to zero as n tends to plus infinity. That is, for every &> 0,
J an M(¢) such that [¢''| < € for a3 N

From 3), we get for 0 < §§a,



\\F(n %) - |- oL !

__.____.... 0 s — \

O \ Fad bl

where (-:,"‘ (> 0) tends to zero as n tends to plus infinity. That is,
for every é>o,} N(E, a) such that for n >N, le"‘|<§ .
Now take N = largest of N(E) and N(€, a) . Then for a> N,

I.F(I\z%) —\ Z ?é/’ <£ gives /U.M/\ M FC“ h') \ , for

Wie) it T T TR S
every g in (0, @]; and, ﬁ%tg?—)}y |7—e~:glvcs

llw. f’ﬁﬂ“ﬁ:}.,‘]7_ L}wx 6/ -0 which means

"M L \( U) n at

lJ./W f_ﬁF (Q{‘L}}?' >, | , for every g in (0, @] . Hence
“N A ‘:* ( E) K ﬂ

xx)w D_F(Y\x ,:\) e \ for every » in (0, a] . By virtue of

the existence of a single N , the uniform convergence is established.

Q.E.D.
/r) L\
We claim thot civmme=- . does not converge uniformly to unity on the
(0, 1). &
mV 0} ,

comnrgos uniformly to unity on the (0, 1).

Proof: Suppose that —- 5.
Then, for any soquona T?

wi th o<f <1, it would be true that

m i F \
Now choose W‘H'S:TI Then \'( St N hence
n T n \ ™r '}»Z&/W\),



/ " e/ A
rr _— T e T e ) - which spproaches

\ /_”.:'_ e "f AN

\ f’(\ e | —

=3 7/
0\19 »
LV "‘T L.
SN NG This is a contradiction.
":\" <“ /.3 ‘
Q.E.D.

it seems interesting to point out, beyond the result of Theorem 2,

the following facts. If we spproximste

(Y\ q.\\
< \ -
L - L And ’ v by
- } AV Y\..
) 1
- ! ' ! ‘{ ’ . ! i and
/ M\\f - | Pk Y ’
- . . o U
¢ : 1,
- /m )
S . S I L ,_W )
4 Vo ’\—
— NG o ’
T M-h

respectively then we can write

cde

Tls) 2 gy -
v

Let 5 -;‘;— . Then this approximstion for F(n, r) reduces to ﬂg.).

The minimum of ﬂ;{l gives the same go which has been shown In
ﬁ
Theorem 2 to be the limit of ¢ . This result can also be derived by

means of the Euler's Summation Formula.
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Following ([24], [26] and [27]9 we derive the expressions for the
expectation and the variance of the rth ordered sawle observation from
one-parameter exponential law up to order (n + 2) « They are:

%

= / /Y\‘*‘ \ f"s. p
: e R L
bty S L D) 2R 2) _/

and, &
" /L
L .

w— J;( ( ’. v ip(\.» Q—"_"‘/‘/ A“\ -‘q‘ 2)
/

As n Increases with & fixed, the ssymptotic distribution of t
'Y\ ) t- ‘:‘.f.
has the mean, O L.\.-_ - 5 and variance 3 Ak respective-
AL . !" , / ( \ [A\a AS ‘/

ly. This follows from the results in [24]. Hence the asymptotic veri-
ance of the unblased estimator, based on the t, th statistic, for 6

works out to be

l »
Q~ L : ' A e :
5 k Vap, U
7 E e IR I
fr\ \'\‘w Pa ~ A

Now we want to determine r so that this varience Is minimum. Treating
the expression for the variance as a function of r , taking its first
derivative with respect to r and setting it equal to zero, we get,

after simplification,
(. feny 2% e
Qe 5 . ' -
'\\‘ \\\ ..." } \ : ot

Writing n'%f = x , we reduce the above equation to ln(l-x) +2x=0,

0<x<! . If x

0 is the solution of the above equation then



‘n = (n+l) X, Pprovides minimum variance for large n . Ve get
| 2

xo % 0.797 which glves asymptotic minimm varience = 1242 ¢ . s
result also follows from the fact that F(n, r“) Is asymptotically
equal to %’( 50) where O(go) « 1.545 . We know that in the present
situation the ssmple mean is the unique minimum verisnce unblased esti-

2
mator for 0 [19]. The varisnce of this estimator Is Cly « Hence

n
the asymptotic efficiency of the estimator based on the . r_th statistic
is found to be about 66 percent. The subject matter for the Case | In
Chapter IV. 1Is clesrly related to the present dlséusslon. From the re-
sults derived therse, it follows that the sample median hes aspproximately
48 percent asymptotic efficlency.

As a point of interest, the product-moment correlation coefficlent
betwsen two order stailsttcs, sey t; and tj(l < j) in a random sample
of size n drawn from one-parsmeter exponential law to order (n + 2)"
is obtained by means of the formula given in [24] and [26]. This works

out to be

where Py ®mT and pz-n-'i—r « Its asymptotic expression

is clearly -5 . er SI=33 . This result also follows

[ 1P7. (::' A\ } / )r kﬁ(\- o ‘.‘)

from Cramer ([10], p. 369).

-
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100. SOME TESTS ON PARAMETERS OF EXPONENTIAL FAILURE LAV

Part 1.

If a random variable (r.v.) X has the probability density func-
tion (podof.)

§W=q5 j'

the likelihood ratio test of H: 0 = 0

qv‘?(

y X 70 and 9?0

» Otherwise 3

. against A: 0 = 02(< 0')
given the first r(< n) ordered observations from s random sample of
n ylelds, as shown by Epstein and Sobe! [1], the critical region
2 1
5 X. ,3_“ }7 _7( \g,.Epstolucnd Sobe! [1] show that = {i’x -\»Y\h) "
L=\
has @ chi-square distribution with 2r degrees of freedom. The paras-
meter O Is the expected value of X and is, in life testing, called
average life.

Let ¢(x) be the probability of accepting the alternative when the
ot.'sorvatlon vector is x . Now following Fraser [3] it is easy to see

r
Eo -(Q(x)} <a for 0>0 and furthermore the test does

|
not depend on 02 so long as 02<0'. Hence it at once follows that

the test function, §(x) derived by mesns of Neymen-Pearson lemme is @



uni formly most powsrful (UNP) test for the H: @ > 0, versus

A: <0 Similarly we can show that the corresponding test function,

' L
namely,

Yo
r . < “ ! s A - -
-0 p{.» VRS SR f.')‘\))-x ~
: j - " - -

|

1 , otherwise y

for the H: @ =0, against A: 0=, [ o 0') is UNP test for the
modiflied H: OSOl agalnst A: 0> 0| s, &lthough In life testing
problem, H: 0> 0' seems in general to be of practical Interest. How-
ever, there does not exist a UNP test for the H: 0O = o, against
A: 0 ¢ o, - But if wa restrict ourselves to a class of unbissed tests
there does exist a UNP unbliased test for the H: 0 = ol against
A 040 .

Here we propose to consider testing statistical hypotheses connected
with the two-paramester exponential lew whose probability density function
(p.d.f.) Is glven by

) e
! ) .
- - NN
.
e ‘\ ' , \

. 5 - PR \\"Cd”‘d) . L(_ ’ ‘/«

where O is known as the scale parameter and G the |°¢It'°l"l parameter.
G Is identified as guasrantes time or minimm life In life to:;tlng situ-
ations.

Since our life test data refer to measurement of time it seems appro-

priate to denote the observation vector by t instead of x . (In the
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‘sequel we shall use T and t in the sense of random and observation
vector respectively.

Now, in fallure snalysis we generate data by destructive tests and
so from an economic point of view we consider a censoring scheme in
which we use only the first r(< n) ordered observations:

E<t <ty,<...<t <o .

To test the H: 0 =0, against A: 0= 02(< 9,) , asswming G
to be known, say €, (not necessarily zero), the best a- level test
function based on the first r out of n ordered observations can of
course be derived directly from the test function given above for G = 0 .
Obviously, this test function would provide UMP test for modified
H: 0> 0' against A: 6 < 0' and would possess all the other proper-
ties which have been pointed out regarding the hypothesis considered by
Epstein and Sobel.

When G Is unknown, the best « - level test function for simple
H: O = 0| ageinst simple A: O = o, (< 0') is found to be

Y
A A g :
. N “- N . e N _
5 1) 2o\ t.* \,.‘) =T R TL -'3 e
1 - .
Vo - -
i { .3 ’ . 0
where £ Y (T o7 (4 M Fo% || pas chi-square distribution
05 —\> Ll/ ’Mh. M
- 2 ' -

with 2r - 2 degrees of freedom. For modified H: 0 = 00 against
A: 04 oo and G unknown, the UNP unbiased Q - level test function

-



is feund to be

éa

, otherwise

7

where < and c, are determined from

dt)=1

\..

\ ( A
kL.)_T h-| c.‘(;’f,»’_/ T l-"-O‘/\
Q ) G -) & ’
Cl
in conjunction with
f
~ \'2- ——
TN i ‘
r <. \ S‘( f() A 9 \ - C
S ¢
. ¢ ol ;
= = —5=0,
where .
. - '(g i
~ \ “ _ ) \4 }1 o-“.‘::‘ :‘r‘ \‘ 2
, (’\ \ IZ‘}L\ C’\‘ " ( o C !
r I RN 4.
-\ 1)-—-%
-4/ |
f\o , oOtherwise.
The relation (2) yields, <,
sl T Ll o B
\y. ‘ \aor - 0! S

The numerical solution for < and <y

be carried out by successive

m

(2)



approximstions or graphically.

-3

This test function is derived by follow-

ing the hint given in Lehmenn ([2]), Problem 12 i), p. 202)

For the MN: o

@=0, against A:

oiﬁo assuming G to be knowm,

say Go , 8an a - level test function is defined by

1 , otherwise.

bR
ol e ¢zt Qo)»r.('-w,g;('i‘); 5

N

has chl-.squan distribution with 2r degrees of freedom ws obtain the

p.d.f. of

A > + (n-k)f t};— GJ .

This is

()= 4O

0, otherwise.

k]

\20}\:" \.-"



FT, WU
' v A .
-{z"\ ,; “.‘,,s . ) !A ~ (\ :j :“I\‘ = l._o{ s (3)
2 B et )
LI
in conjunction with
~ N ) 3
Y .:.D —_ (‘ ".H .';‘. g\ ) C( "\ = O )
'! ;’ ", _)C' - < — 9: é’()
The relation (4) ylelds ',.i?‘
n - g S
™ o _ A -
e, € = &, ©“

The equations (1) and (3) can be expressed in terms of the Incomplete
Gasme Function as "

T B T
L= VoL e-lyg - ST
and
(] -

; ) L
' 3 . e e
(.\ : \ X_\in"“\ ‘.L “i}(; 90

60 A _ -

respectively, where J(p, q] is the Incomplete Gamme Function whose
values are tasbulated in [5].

And ﬂ’mlly the power functions corresponding to H: 0 = Oo against
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A: 0400 assuming G unknown and H: 0-00 against A: 0400

assuming G known are expressed as

«Q
] o ! e | N
P(@) —_ \ - I i?(v“ & Lo | JaE | y S

Y6 T, 2
o
and
* R T T .
P(&\ — LN R S U A ISR
joT T s Ty LT s i g
- ~ ~— - R

respectively.

Earlier we have seen that the test function \

v 2 :\ -t G; ) . & \ (Q \;.3'5\“\"“*-)‘
:\j"‘é'\"_c ‘. RCE

1, otherwise \

is UWP for the H: 0> Oo against A: 0 < Oo assuming G to be

known, say Go . We shall show later on that this test function Is

again UMP for the HN: G-co and 0-00 sgainst A: G<G° and

6 < Oo .
For testing the H: G = G, against A: G ¢ LN and 0 known,
say 0, the UMP test based on the first r(< n) ordered cbservations
out of a rendom sample of size n from the two-parsmeter exponential
population is obtained by means of likelihood ratio. The 11 ke ihood

ratio,



Ak £(%)
O I

where U) = {eo ’ oog and (| = {c, % 25 gives in the present situ-

ation

- %)'OCEFGN))
< if t, >6,
C

)=

This implies that the a - level likelihood ratio test is given by

- T‘S‘o (t\"G?o> /}
Cb(t): {0 If € 7 O<

if t‘<‘0 .

ke <A, on T <G,,
M
where /\.a is determined from the integral, Sf()\) d\ =a. f(>\)'
0

the p.d.f. of A under null hypothesis is a uniform distribution over
unit interval which immedlately gives >\a «Q. Anequivalent a - level

test function is then glven by

f - - “' ZJ n
: ‘g.'l

For rsn where n is the size of a random sample from the same
exponential law, Psulson (4] has considered, smong other things, H: G = 0

against A: G4 0. Here we shall reformulate Pauison's problems and
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obtain more general results besides considering other problems as well.

We may note that whenever a UMP test exists it Is unbiased since
its power cannot fall below that of the test §(t) 2= a, and in addition
Neymen and Pearson have shown that if a UMP test exists, it Is the lke-
lihood ratio test.

Now we shall derive power function, P(G) of the likelihood ratio
test for H: G = Go versus A: C ¢ Go s assuming 0 = Oo known and
show that the likelihood ratio test is unblased and UMP.

From the equivalient G - level test function given above, we write

the power function as

P(@) = gf VAt + /t)A{-

where

4)-
i) = Go— Jfﬁ 60 ﬁ’ﬂ@(

Now we consider three cases.

Case I: 6<6,



Q.,
b(6)= 1= | 56)AE, =1 (o *O8)
which gives P(Go)-a, as expected.

Case I1: G <G<a .
%0 A W

which gives P(Go) = Q as expected.

Case I11: G6>0 .

o)
Oo P
= J’f‘(k‘)ft‘ = ST Qt)o((‘ =,
- ‘ (n
(\ ¢>,
'Cbc )‘ /4[ . which implies

0(6) = 1- (1=a) & (O 6)//«

For co<6<a »

m
o F (6-6,) -

which implies



M)
A LV LY. ,
P((h) - X < ’ PN

And, for G>a,
P(C) =1 >a .

Hence P(G) >a for every G {(- 00, ®) and so the likelihood ratio
test is unblased. | |

To show that this test Is UMP, we need to establish that the criti-
cal region provided by the above « - level equivalent test function
gives maximum powsr of the test for each and every alternative to
H; G=G, . To ses this, we consider two simple alternatives, namely,

0
G-G' (>Go) and G-Bz (<Go) for the null hypothesis € = G, .

0
For simple hypothesis against simple alternstive we find the a - level
best test by the application of the Neyman-Pearson lemma. Here Neyman-
Pearson lemme gives the following G - level best test function for the
H: G =G, against A: G =G, (> Go) and also against A: G = cz(< Go)

0o if Gost'sco-;oo a
o - A

1 if t‘<6° or t'>60-;00 Qa.
This test function Is identical with the squivalent « - leve!l test
function based on the likelihood ratio test end furthermore it is Iinde-
pendent of c' and ‘2 and hence of every alternative for the hypothesis
G= Go ; so clearly the likslihood ratio test Is UNP. This property is
slso the subject of Lehmann's problem 13.2 (i) of page 110. [2].



4H1-

For testing the H: G = Go ageinst A: G ¢ Go when the scale
parameter @ is unknown, the llkelihood ratio )\ based on the first

r(s n) ordered observations out of a rendom sample of size n Is

given by

A=
L

which cen be written as

e T (L6, T

A ;
O ZOApemtt)

" 4
rro- [1] and [19] it follows that &fY\ t G] > OU\ML
eKL (t-t) + (fv\—h)(t —t )}

are independently distributed as chi-squares with 2 and 2r-2 degress

%
2_(E ) S b
i (‘tt— 'xM) T rY\’h <t):6;vj

A

- (7= k- Go)
%(t-—t (M- }z)(t—‘t)
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has the welli-known F distribution with 2 and 2r-2 degrees of
freedom. The statistic Z is clearly equivalent to the sbove likeli-
hood ratio test. Thus the a - level test function for the aforemention-

ed hypothesis is:

<§<@"%O ooz
e

otherwli se )

where b Is determined from the F - table. The use of this test func-

tion is equivalent to the decision rule: accept H when Go <t < Go + % R
where
E (ta —t\ >+(Y\-h)(t7‘—'t\)
W = e e e e » whose p.d.f. Is gliven by

0, elsewhere

and p.d.f. of t, Is given by
-1 (t v Gy)
(R .76
ey= 7 ’

G
We may note here that t, end u are independently distributed so that

f(t‘, u = f(t') f(u) . The powsr function is derived now.
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The relations G<co<1:'<60022 <o glves

6_*_5(1

S u) j Jc(f)o(f:,o(u-z - (=)< &07),

/

()

where o = /| + _bﬁ> which follows from the fact that

Here the relations Gps6<t < 6y * :—2 <e gives

PG) = ﬁo(u) [ ggbz(bi)dﬁl7d%

(66) - G

-

e 6] PRl @-@:f}
-6 mini e,
—ee” L[y T |

[ (W - YDLH{_JJJL




&y~

which is the form in which the Incomplete Gamma Function has been tabu-
lated [5].
Having derived the powsr function we show now that the 1ike!ihood

ratio test is unbiased.

2 (6-6,)

For 6<6,, £ | which meens

°(G) = \=(I-)e T

For 6260, we write

$0 £t
T6-6) G

Differentisting P(G) with respect to G,

m SOO -§K_’Y\ (G.-G;) L‘i]
A

¥(6) = 7 Flwde
366y
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Recalling that G > G, , the integral expression for P'(G) is
clearly positive which implies that P(G) is a monotone non-decreasing
function of G for G > G, and we have shown earlier that for G < 6 »
P(G) > a hence it follows that for any G, P(G) > a and so the like-
l1ihood ratio test is unblased.

The likellhood ratio test for the alternative G ¥ Go » 0 unknown,
is not UMP. But when we restrict ourselves to a class of unblased tests
there does exist a UMP unblased test. Such UMP unbiased test function
is derived by making use of the hint given in Lehmann ([2]), Problem 12

i1), page 202). This is

~
.\-—

ITAN

-—
s

o Y 0 /7! L
\ h \n 1 4+ ¢ -
4({‘): ﬂ? J i ( L—-t‘/-*_(:“ })(thtl‘)

[ 1, otherwise ,

where as shown earlier Z has F distribution with Z and 2r-2 de-
grees of freedom.
It may be noted that our UMP unblased test function and our unbiased

likelihood ratio test function for the H: G = §

o Vversus A: Gico

are identical.
For testing the H: G = Go and O = Oo
the UNWP test based on the first r(< n) ordered observations

versus A: G < Go and
0< eo »
is obtained by means of the Neyman-Pearson lemma. The test function is

given by






4)(6)‘ 0 i l%L(L—G) + (n-p)t=Gs )7 €

~h -
where under the null hypothesis ét ;'? (t{" G;o)-‘—(“'ﬁ)/t;;&ozz/

)

has chi-square distribution with 2r degress of freedom. The proof that
the sbove test function Iindeed provides the UMP test for the H: G = Go

and 0= Oo versus A: 6 < Go and 6 < Oo follows directly from the
similar arguments of Neyman and Pearson [6]. It may be remarked at this
stage that we have obtained esrlier the exactly same test function for
testing the M: 0 =0, against A: 0=, (< 0|) assuming G to be
known, say Go .

A liksllhood ratio test based on the first r,(<n)) and r,(<n,)

observations out of two ordered samples of sizes " and n, respec-

2
tively drawn randomly from exponential! fallure laws,

(e d e e

and, — 'é“ (7("61;_)

"L"Q )8\(17672

Co=7"
0, otherwise )

for testing H: G' = Gz assuming © , the common scale parameter un-

known has been derived by Epstein and Tseo [7]. Moting
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t' '<t'2<...<t'r and t

< tzz < oo < tzr are the first

21 2

ry (€m) and r, (<n,)) observations of random samples of sizes n,
and n, respectively, an equivalent likelihood ratio test function is

given by

io if 0<w<c

¢(¢) =
1, otherwise
-
where
/‘?‘n\—\-7‘{-2\)"(‘)'!{" (,-.' f t. >t
=) T T n
),LJ' ______
with
Loy -
N ! Sy .o /NN |
N A & S SRR BAESRTE s
2,\ -—— {—,i‘ ; -/:_ ( (*: b l ‘=l/ B ‘ . I:')(t(,‘ht V{“!);
L..;_\ L&‘:‘ ( : -

The statistic w has an F distribution with 2 and 2r, ¢ 2r, -4
degrees of freedom. Paulson (4] has considered the same hypothesis and
has selected another equivalent (differing by constant only) 1ikelihood
ratio test function for this hypothesis when = and rp=n, .
Furthermore he has shown that the likellhood ratio test for this hypoth-
esis Is unblased and has expressed its power function in terms of the In-

complete Gamma Function. For r, <n, and r,<n,, the Paulson's



form of the test function is given by

. W~
43(*:): 0 .l 0<F§E~§: <ec,

1, otherwise

where c, = F_—o-_r'c-':-r and w is the same as given above. Let
! 2

rer, +J1, . For the a- level test function we have Q= (,“')-(r-z)

which follows from the relation,

SM:H w)dw = £

¢ (h=2)

Now we proceed to derive powsr function for the sbove test function
snd show that it Is unblased by following Paulson [4].

nt, - t)) If t, >ty

writing Z= | ,
: np(tyy = t))) If ¢y, > ¢y,

we have 7‘:-{ - which gives the acceptance region for the null

IA BN

hypothesis as: O

-3 -5
W e °

w-Je eyl 0 470

0, otherwise.

ZSc'u , where the p.d.f. of u is given by
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The p.d.f. of Z 1Is derived by observing that the probability that 2
lies in any interval is the sum of the probabllities that "2“21 - t”)
and n|(t" - tz‘) lie In that interval and by then using standard
methods for finding the distribution of the difference of two rendom
variables. For the case H = ‘2 - 6' >0, the p.d.f. of Z s

_h m3

2
—.Cl (2) t f_,_j__,__ yﬁr\;ﬁm‘ 9-\- e 7 “
) (’Y\.‘—W;)Q L | =)

. mH 1
fte= ot ] ot Fen
SOEEE i L
)€ Z Lo

Likewise for the case H <0, the p.d.f. of Z is



() @ T iz e

The power function, P(H) , for the case H >0, s

K LA

W
P(H): \—-%g S (D)j J)o{z-— gd% 5(3 11}0(3

o
v J

X3 ~1

4+ c{\LS L) sludde
M ¥ fm

1

Upon integrating out end simplifying, the power function becomes
oL




The powsr function for the case H<O0 s
—"k

() {((*\kg %)DC('*)X'M%—)(ON §/¥(2 f{u‘/‘(/%
4

X (6“& 3
=+ S AU ) _g.;(%)g(x)ju "
—1.1. =" J

C \

Agein on integrating out and simplifying, we get

LRt }

A | MoH

f{“(_, \ . 3. ‘““-."
(L*)'“C’\ v "1*1\‘}12) .5 |
M —\-Y\l o o

M, 4

-\ rin -2”“‘1'_{‘35:1
= _C(l:f.‘,ih\— L 5w

m, " R
__T__'_- e@ / W\‘_._ \ 'I 71_2
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To show that P(H) > when H ¢ 0, it is sufficient to show that
the derivative p'(H) >0 when H>0 and P'(H) <O when N <O .

Of course P(He0) ma. For H>0, ws write P(N) after integrat-

'" w.r.t. Z as

P(4)= 1= ek ﬂ"‘ég(WWM

’Y\'\'*:Y\?. -
M, B gl
T TE . M
M€ [ m ®
- g R S -y —5‘ U()O(W
/\"\\Aﬁ"Y\L L
>0 ( " -e.iw - )
| - ’Y\ 3 .
1 + -
M My m M
e
where [£(x))] = £(b) - f(a) . Upon differentiating and simplifying
we get -
i "L
g rme G4
M\j\}ww ‘ﬂﬂ G Y_Q‘ML__ v Huwdw
(9) (1’\ el }3’ ‘_

00 G{ \A

MW
St &
MMy S - v [ﬁ —C ]g(ujﬁ(‘
"N, H —

+@\*”’“1)9 oy A




Soth Integrals are clearly positive, so P'(H) >0 when H>O0 . Sim-
ilarly we can show that P‘'(H) <0 when H < O . Therefore, It
follows that the test is unblased.

Part 2.

Iin Part |. we have shown that for testing the H: G = Go against
A: G ¢ Go assuming 6 unknown, en equivalent likelihood ratio test

function is:

0 if 0<Z<b
Q(t)-$

"- 1, otherwise
A .

where

(R-)(t, =G0

L= “"({ )+ (L)

has an F dlstrlbutlou with 2 and 2r-2 degrees of freedom. This
test Is UMP unbiased. Now we propose a new statistic denoted by s
which is analogous to Carlson’s statistic h (8] to test the abovc
hypothesis. This statistic Is defined by
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S ]
- h
) T LT » or for convenience in wrltlngA— tl.iho
s

L, - +
’ Ano Sun )L t“‘-

—~

A great advantage In choosing this statistic stems from the fact that It
requires only two observations namely, the first and the rth one to
test the hypothesis. Howsver, recommendation regarding the use of this
new statistic depends mainly on Its possessing satisfactory properties
of a good test function. Superficially, this statistic has properties
similar to Student’s t test in that it is homogeneous of degree zero
in the variable (t' - Go) , and the numerator and denominator are in-
dependently distributed. In the present discussion we hope to derive
i) the p.d.f. and c.d.f. of Se.n? ii) the expectation of S n’
i11) Two Moment-Recurrence formulas to compute variance etc. Iv) the
power function for this test function, and v) some properties of this
test functione

Wherever we shall consider it necessary to use S, , t° avold am-

1

biguity we shall use it, otherwise we shall write s for Se.n ® Inci-
14

dentally, it is easy to see that if we were to replace t,, t3, cees T

by t. In 2, it would reduce to

. ml?\»}ft @) Miha) o

Z = A — :
(rY\ \) (t){“t\) M=\ A)‘-,h
On the basis of our new statistic s, an a - level test function

for the H: G = Go versus A: G ¢ Go , assuming 6 unknown is de-

fined as

(0 if 0<s<c

¢(t) = O)

-

1 if s>c ,
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oo
where ¢ is determined from the relation Jf(s) ds ma ; f(s)
being the p.d.f. of s under null hypothesis m?ch we proceed to derive
now.
The joint p.d.f. of x, and xj(l <j), tha ith and the jth

ordered sample observations out of an ordered sample of size n drawn

from any continuous p.d.f., say f(X) is given by

f)L\

R
(.
")} -i\—- '_/j )7 ,,.(‘x, _.,(1!.
Lo, otherwise <) (f)’
- o0 Z.’LL-LJCJ;A’OO
where F(x) Is the c.d.f. of X whose p.d.f. is f(x) . In the present

|
L6
1 6 -
& ]9 X7 O

0, otherwise.

Six)=

Replacing x by t as we are dealing with time measurement and writing

i =1, j=r we get the following joint distribution of t, ond ¢

M “——’(t G‘>_L‘M}*/t 677\

(=)L (M- f)‘ t52 )
t-6) oG8 ]

G, LK, L, L850

under the null hypothesis.

e

Het)-= ]

0, otherwise.



Msking the transformations, u -t - co and v= t. -t , w

get the following joint p.d.f. of u and v.

L1 [fn W=+ (=R U']
M) — &
oy JEDIGDTOR SO,
__j,(rk)b): (-*-Q ) ’«L/U’?O
} 7

t 0, otherwise.

Clearly we have here f(u, v) = f(u) f(v) with reanges for u and v
independent of each other, hence it immediately follows thet u and v
are independently distributed, an observation msede in the beginning of
the 2nd part of this chapter.

Now /S _T',; Go- L gives
—C?i’-t|
(_, . L ng S +|) Vj‘
/‘{\ -

%[)5}“7 ! W:}jé[&o (1-< g) =

)
OI 0, otherwise.

This finally glves the p.d.f. of s under null hypothcsls as
"o [M)H’h )w]v‘ 2

jc(ﬁ) sz)(rwyls re® (1t )Own

(]

bV >0

which sfter integration can be written as



’

e Ve L (e e
- : - _for s
(- VEITET Ly ) e
) Fo b e T
0, otherwise.

incidentally, S f(s) ds = 1  proves the fbllowlng interesting lemma.

O
R,
Yiml \ e= -/ - N\ |
Lemma | A ,_l\ b / Ve d _
—— (Y\ /< h'_.Z) /“ | ll l/) / -
R / R A
=0 \ ( A

When ren, f(s) reduces to
M (% — (44 ; -l
JC(/&) :7;;‘) ."r:f' :V —-€ ( | = VAV
(v ) J
uhich'ogrees with Carlson's [8] expression (2.5) where @ -‘l! ,
v -\';)n , and f(s) = g, (h:) .

To compute Q percentige points of S, a ™ derive an expression
?
for F(s), the c.d.f. of s, so that for given @, we have the rela-

tion, | -a. = F(so) from which we determine s

0 0 *






R(m4ms-ftl, At)
B (oA, )

where B(p, q) = fxp-l (l-x)q" dx |Is known as & Beta-function.
Agein r=sn, glves oA F(s) = 1 - (n-1) B(ns + 1, n-1) , which agrees

= |

with Carison’s expression (2.6) where s = h:‘ and F(s) = G, (ht) .
Now we derive the expression for expected value of s . This is
obtained as



FO o0 nAAN-RH )0 i L
: JS 9( +)ob(l~f )J%(/g

| o 2 Y sm
. 0 / -~
e ° /e<1~—ﬁ ) AV

v
By making the transformetion y = ¢ ¢ s we write the above integral as

() |
H’hm T2yl s)! S ;m‘u‘“"”)’(é/

I!slng the standard integral given in [9], n-nly,

< X "7 0(1 —im&r“ DJCM ’7“(\-+\70£’)4+\ 70

amd_
writing (1-y) "2 = (1-y) (1-y) "3
h-3
2 rra, Xt
-2 (s ><~9 R
=0
(,y"h\)l \ QZ 3 \—1|:( .
E}) = ) !) wm /h“}’:ft—*l)
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Lletting k=t <+ 1 In the first expression occurring in the above

parentheses,
(1)) [ S
1 _ n-1) | o N - '_ ‘ ~ 4
E,J}?h‘— m(ﬁ-—l){(\’fr)’)l | = KL ) ) [/ﬂ( Jet K )
23
7R3 0T |
— ( v /(—\) , (fn-h+t+\)J]
=0

Now renaming the index k as t and combining the sums,

() | B3 et
[ /&55. " 2))( *h) [ i( . >+t £ }(/ ,im(l-h:l-t+)

/ﬁ‘3)
Using the famous identity, -+

Lt
o w3,
P& _ . [_) 3/(“ -

)L' /h(_ﬁ—lj Y‘ }\J

y 3 }”)(*‘)
£

-2
(ry\~\) ! 7 f\_/ h-".:z "l Q_‘) X(Lﬂ'\ (ﬂ"’}t-‘*‘t*‘ \) 3
SRR S LS T s




<61-

This is a simple direct form for calculating the expectation of S a
t

Carison’s (8] expression (4.3) is a special case of the present expres-

sion for Esr n when r=sn . The variance and the higher moments of
»

S, n GO0 be computed by means of either of the two recurrence formulas
2

established below.

Lemme 2: For k>1 and k41 <r<n, the kth moment of s
L

can be expressed as follows:

P <o ket =S T o S YW Y I
th = . =2 =m0

- m '\g\._‘) _-/-Y_\-— /s,__‘)%" L /;l)’Y\J .
Proof: o0 o9
Proof. Se-1
L L C O
i) \ﬁ—l) (n-t)l & )f
K-l 96 Livesa . 8 &
LA Bl o f;{:p
T (rerinE ) o

Wherever convenient we shall denote integral of the following type
6%)] - _L \
5 MV hd

S:@M(\ -e,g) v S sk
< - 3’

0

Now integrating by parts the integral S(n-r + 1, r-2; k) under the



assuwption of k > |
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and k+1<r<n , weget

K-
PR Rlis &y ¢ (M-l =35 )
ro ey (Wh/ " Lf(& |
-
- - M-prl 2 <—i]
Noting that | Fj‘{"\"/ S< ) .
K=
Re3) V=g )i kel
Sln-f42, %=1 k= _¢ Ll B
( e ) (e (k-1 <2 2 T
and, Q > <:'l o
s ik, ¢
SQV\—-h—‘r\)}I—Z K = - i (K_ X 9" ) E/J/;z)% 9
we finally get after slnllﬂatlm,
& k. \<<’Y\-,‘z+\ {v K= /@ ﬁi .
= o MY ;1—\ n AT

To show another relationship between (k-1)th and kth moments of s,

N S D RN (S IV

- _r
we write v~ | - - El—@-f. g)j

in the Integrend of S(n-r+2, r-3; k-1) which gives

‘9\(—2
E)SK @“" « i S@w wh»;k)

(k) R in-p)Im = LV ]
lbtlng that @’\ ‘)S(f)’\ ey & k/d
et ey T e
S(PY\— ey ;C}L"B;K‘ V) o = T L/

(¢ g eg e T
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and
(r=2) ! (roxylm <!

S(rnmnty s k=) = ICS I T A

we finally get after simplification,

Qo E.D.

This Investigation points out a slip in Carison’s lemma ((8], p. 52).

The correct expression of his lemme is found to be

E’Q’: 7’17?\7‘)) ] (m s/ /ﬁk ' ﬁxK‘J

71—l

in addition to this, his Table 2. does not seem to record correct numerli -
cal values. In particuler, the correct value of Eh:z = 0.196 against
the recorded value 0.131 . Further work shows that numerical error Is

not dus to the typographical error in the formula.

illustration: Compute Es“ 5 by two formulas established in the
above lesms and check them by direct eveluation of Es: 5 from Integra-
»

tion. The first formula gives
2

!:‘
S
po
>~

<

’\)

I

w!?
\/
U,|p
VS

r\)

5 j&%‘_/



'
i)

Lo

97,. 3 } . r-
E/aq)g - M'): "';:;'-— /)3)14 - /-)‘/‘{DS“;
- g—l;.i. (3 "i/ - ) 1~ < (2 LP\LBMA\?
=T lyyg i, - /]
= 48['5 bna- 23],
The direct computation gives

45 45 )
- / ) \-,
= 42 T8(2,,0) =252 %),
= é:i L5 A 2-3m3]

Hence we have a perfect check.
Now immediately we get

\/ah,( }34)5)-— — <5M ’—-ﬂm%)'i—/—(li 5/M )

=0.24(0:

We now proceed to derive the power function for the test function

t, - 6
(0 if 0< ‘t_"_to <e¢
r ]

(e) =

1 , otherwise
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which hes been suggested earlier for testing the H: G = Go against
A: G ¢ co assuming @ to be unknown. Writing u for t. -t , the

above test function is equivalent to

0 It ¢ <t

o 'Scu-oﬁ

0
¥(t) =

: 1, otherwise.

Here we recall that t, and u are Independently distributed. The

’odof. of t' and u are

_n _

g(t;)__. ) \

0, otherwise
and,

k “L [ a
‘ _ (,\(\-.FE.{y-é— W %2
_ \{Y’\"‘) l‘ o N <'\ = C; \ IJL\ 9

'%QQ AT TR —C /} 9 7

0, otherwise.

Now we are ready to derive expressions for powsr function by considering

two cases.
Case I3 6560 . o I‘ C'H‘Cﬁo \]
R (L('L)' {(t)i’bldv{
P(G\ — \ JOJ L ():o ,Y._l
M o) - i Ye
GH_GM 'f =/ =N\ 7 3
:“__&B( ) i (1< )3—(\LJ”{»I
o) "E(@—GJ - »)_p(m_me,-u-ﬁ}z—:\)‘}
C o e e TR g g )= B 7o)
=1 el neRylo | B



= (= (1=&)-C , vhers
N C,—i."-'f?t "L"
- B</r+y.‘ T __), which follows from the expression of cumule-
= B M-R3 R

tive distribution function given earlier. It may be noted that the powsr
function for this simple test function is the same under Case (. as for

the likslihood ratio test. Furthermore for € < G, It is clesr that

o
P(G) >ac and P(G)e=a .

Case II: cgco . Cu+@
57 s e }
(6)= 1= § £(u)' j )xtj;(u.
G"G’o L (‘77
3
0 _ Ny "VL-L/
i 6\~ e /
=\ = S;{‘(\L)"—l-ﬁ o 1)0(“
G-Go -
S
= =T (r-payne
N a 56-G,)
6rs XS Lt Tefer i)
vhere 1) as=e © ond
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is the Incomplete Beta function whose values are tabulated In [20]. This
gives P(co) s as expected. Hers for the Case 1l., the powsr function
of the simple test function Is different from the power function of the
corresponding llkelihood ratio test.

e - D eurG-6
Writing P(G,): | = S [‘Q Blt® J’o_ >’ ‘)g(q)a('i.
&-G., B

and taking its first derivative w.r.t. ¢ we get

< m

/ -5 (eu+Gr6)

P(G) =2 )( < Lruyd
G- G )
e

which is positive for G > G, and P(G) =a, hence P(C) >a for

€26,

immediately follows that the simple test is unblased. (t msy be men-

and earlier we have seen that for €<6y, P(C) >a so, it

tioned that the Incomplete Beta function can be expressed as cumulative
binomial probabilities.

Now that we have shown that the simple test function is unblased;
it may be Interesting to compute suitable power function tables and
graphs to point out differences between the simple test function and the
likelihood ratio test. In life testing situstions, H: € > Go ageinst

A: G< G, Is of Interest and for this situstion It ls’clur that both

0
the likelihood ratio test and the simple test function are equally good



in terms of the power and the unblasedness of the test. Because the
l1likelihood ratio provides UMP unbliased test it follows that in the class
of unbiased tests the power of the likelihood ratio test Is uniformly
better than that of the simple test.

For computing the moments and especially the variance of this simple
test function we have established two recurrence formulas earlier. We
need not establish such recurrence formulas for computing moments of the
likeliheod ratio statistic, 2, since it has a well-knowmm F distribu-
tion with 2 and 2r-2 degrees of freedom. Noting that

| 270

Sy=q(*a)"

0 , otherwise

we have, EZ% @ (r-1)**! B(r-k-1, ke1) , valid for r > ke2, which
can be further slqllflod to

K 2
= k ) » where (h L) is & Binomial cosfficlient.
(h l 3
\< / \ . ..}';’_

s A.(.'l'i.

This gives EZ = %—:% H E Lo — and

{h-i)(h-a)
(-
i = - J

e )U'";) i E\ - ) <\— -;{:“

which |s Independent of sample size n . From the moment recurremce

EZ

R ..,....---v—-—-—"-

formulas for the simple test function it sppesars that its variance is not
independent of sample size, n .
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Now we propose two simple test functions for testing the H: 0 = Oo

against A: 0 ¢ % assuming G to be known and unknown respectively

and derive thelir power functions. For G known, say Go s we define a

simple test function as

/
0 If c'Str-GOScz

¢(¢) -:i
1 , otherwise;

and for 6 unknown we define another simple test function as

<e¢

0 If ¢St -t <

2
¢(c) =
1, otherwise.

The p.d.f. of t. for the case when € Iis known, is given by

oty 6,)
/Y)' o f h

! ”n & Ve
J(t) 9} (“‘f- Lt~ Z6)

0, otherwise. t ?
7176’
Letting ¢, - Go - X we get
ml ""’(”‘ P X
'l e < '( t— ¢ v 9
W)= JEOIT-HTE \ )0
0, otherwise. A

Under nul!l hypothesis we have
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. *Jg}(“-éwjx - X\ e
: e e (1= 6
700 = /
0, otherwise.

Letting —C_ °—_}, we get

i

ﬂ})'—‘— G- (' é) 0l 3 L |

0, otherwise.

Ve determine < and <, from the equation

_&
- %o
j H:@)o‘(} = |-«
_ G
€ & _&
-G
a
in conjunction with \;*2’“ < ( )0(& ‘s =
06 JC‘_ 9__
__e"’é - - o
The relation (6) yields
¢ e _
. ﬁ-(m ) 5 - 3 |
\ -
——(fn-ﬁwx)i’: £ e
= €, ¢ Gto(i__ "T;z‘) .

(5>

(6
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The relation (5) cen be reduced to the lncombloto Beta Function as

O(:\—I_g[”‘(\--;- )7’1-’ . l[//‘ Jri /‘i_‘

< % B

The numerical solution for < and c, can be carried out by successive

approximations or graphically. The power function is now given by

P(e): -1 ¢ ‘1_}”"*’“ )/’j' 4 ey [/Y\“M\)"\‘ I
- P o8

Wwhen G is unknown, the p.d.f. of t,. -t =u is given by

(M= 1 ‘r- %—%) = S -2
~ (r=2) (1 )f)'-l"{,f) = ( } ’
Sty= T X

0, otherwise.

: '__.....__. - v - |
gQ\U:@ﬁQ“ Hoey )ozv”cl.

0, otherwise.

Ve determine 2 and <, from the equation



)

— —

8C)

e
\ £(w) dum

L

<
- 5,

in conjunction with

— -
T ( o
! ~5 | 5 ( \I) J( y)
-
The relation (8) gtves —< 9
—(m- 77) 90 P _ %\ \?"“2

The relation (7) cen be expressed in terms of the Incomplete Bets Func-

tion as

l
[}
%

The power function of this test is given by

6) M Cl\“~%+

e

Aol

(7)

(2



IV. PERCENTILE ESTIMATORS FOR PARAMETERS OF EXPONENTIAL FAILURE LAW

The problem of obtaining percentile estimators for parameters of ex-
ponential failure laws and investigating soms of thelr properties Is
taken up in this chapter. A percentile estimetor for the shape parameter
of the Weibull law is derived in the next chapter. Its expression being
unwieldy, it has been thought useful to take up somewhat exhaustive in-
vestigation on percentile estimators of exponential laws first.

We write p.d.f. of exponential failure law as

~L k-6
L~ %" .
S‘(t): ( & >JE/%GC<(—;:0°§0) £

0, otherwise.

For a given cumulative probability p, the percentile 'T/p is obtained

from

Ty

b= )y dt

&

W’b: G- éim(h\;)’ ,&e(o_,j-

which glves
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Correspohdlng to population percentile T/p s we denote sample percentile

by tp and obtaln the following percentile estimators for the parameters

of the above fallure lew.

Case I. If 0= Oo is known, a percentile estimator for G, denoted by

g, Is given by

=40 in(iop) Fremy pel)

Case Il. If G = G, is known, a percentile estimator for 0 , denoted
by x, 1Is given by

3= (6ot ) [ nli-p)] ™ finom be (o)

Case I1il. When both G and © are unknown, percentile estimstors for
G ond O can be derived from the equations

tpl -G - OL(l-p') ,

tpz =6 - Oﬁ“("Pz) »
where P and P, both belong to unit open interval end are chosen in
such a manner that rb' = [np'] <‘A_z - [npzl ; n being the size of

random sample drawn from the above exponential population and (np] , as
usual means the largest integer in np . Clearly {A.' < t).z would mean



-75-

P < Py - The above two equations give the following percentile estima-
tors for @ and G .

x=a(t -t ) where as= [En(l-p) - Lﬂ(l-p )]" >0 and
Py Py 1 2

= bt <+ (I-b) ¢ where b--olnl- >0 .
9= bty ( )Pz (1-p))

When G = 0, the above falilure law reduces to the commonly used
one-parsmeter exponential failure law in which case the percentile esti-

mator for O boils down to

= =t [n(eb)] 7 o persy).

, SQ
We mey note that for 0 <p<1 , we canwrite -Ll\(l-p) -z-:-p..
(=)

Now we proceed to derive the sampling distributions of the above per-
<entile estimators of G and 6 and investigate some of thelr properties.
Following Cramer ({10}, pp. 367 ff), the p.d.f. of tp , denoting for

simplicity by t , in @ random sample of size n is found to be

| -5 Aty (t'G‘) -1 -0 N
" t"\'&‘.‘ﬁj\e\e 5(" ) (l—‘CG( )/)
( )“ t56.

Lo » oOtherwise

where = (np] and np is not an integer. If np is an Iinteger we

are in the indeterminate éaso and tp may be any value in the interval
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(t”p » ‘tnp+l) « Since g=t+ Oofm(l-p) ,» we have

Eg = £t 6, n(1- P)] }E(K >i 3%

where d = 0 Q’h(l -p) and the expression for Etj is obtained from

f(t) elither by direct computation or by means of characteristic functions.

From the results of Chapter 1l., it follows that

\

| il - TK(}'
r ] N i HJ [ K ()J«\[f\-i—&/{v ()] 47
?( f‘ (n- rA)' Z,_ (,_:0< >\2/ (- pﬂ),y-ﬂ

which gives

E} — C-\"\' %OQ'Y\ <\—k>)'+ 90 i‘o—r{\:‘ﬁ:z’ )

\JQ — i
6T 3 Qwﬂ)z—

Hence an unblased estimator of G based on percentile estimstor g is

L

| N
1 - 7 [ n-pEt

-
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Recalling that t/l. = (np] = np-q where 0<q<1 , itls easy

to see that

\

— e is asymptotically equa! to '/j/“(" ) and
L - ru C ’
L=p

l
..__.7-:“7-—- is asymptotically equal to -ﬁ_—y ,» which
= Q }J\'f\)l n(l-p

imply that for large n , expectation of g approaches G and variance
0 02
of g approaches -2 TE; . Iinvoling Cramér's Theorem
n

([10], p. 369), the above unbiased estimetor of G based on percentile

estimator has asymptotically normel distribution with mean G and var-

o2
0O P
iance o T-p .

Now in order to obtain minimum variance unbiased percentile estimator

of G, we keep n fixed and choose p such that for large n , the

variance , -;‘-Q T% is minimum. Clearly, any pe(:‘- » %)

provides such a percentile estimator of G . This means, tl.- (np] =1,
the first (or the smallest) sample observation out of an ordered sample
of size n drawn from exponential population yields minimm veriance
unblased percentile estimetor of G . Ve note that the maximum 1ike!ihood

estimator of G is the smallest sample observation.



Since for Case 1l., x = (Go - t) j/n"(l-p) » we have

S S N, RS
Ex = E[ett- AR R

/Qp A 6;..,.”.\ ((/
ce-/mlp) >0 . rmny,

K. mi Kl
EXT = i () 2( @ o)

This glves

M
F ::C ? and \larx-co %
1._

LM M n-,—ba- l)

\4?

Therefore, it is clear that x[

‘ \} is an unblased
L TR

estimator of © with variance equal to

2
9 ZQ\‘\N\-L)ZX "Y\ N+:\ ¢ Using asymptotic results

L-
relating to ; \ N
’\(\—\A+ L

LT O

[\/}?

o
iUV
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recalling that ¢ = - ﬁrn-'(l-p) we see that expectation of x , o

percentile estimator of 6 , approaches 0 and its variance approsches

Ozp

n(1-p) Ifn!(l-p)

. And Invoking Cramer's Theorem ([10], p. 369) it

follows that unbiased percentile estimmtor of © has asymptotically

normal distribution with mean © and variance

2
:"('Lj‘l-, L“'-z("P) . We may now attempt to choose p such that

the variance of unbiased percentile estimator of 0 is minimm. Con-
sidering expression for such variaence as a function of p , and setting
its first derivative with respect to p equal to zero we find the equs-
tion, 2p +pm(l-p) = 0. Now P » the solution of this equation would
insure minimum veriance of unbiased percentile estimator of 0 . By
iterative procedure we obtain Po " 0.797 . Hence P.,- [npol glives
the appropriate ordered sample observation which we should teke to form
unbiased percentile estimator of O in order to have an assurance of
minimum variance.

For Case I1l., percentile estimators of 6 and G have been de-
rived earlier. They are X = a(t',2 - tp') wi th

am }jj'h-' ]Tp"— >0 and g = btp' + (1-b) tpz with
[m(l-p) Ql
1
[' ,0“("'92) >0 where P|é(°o n ., Pzé(o) n,

r)k' - [np'] < [npz] .tx,z (implying P < pz) . Noting that t&'
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and o are integers, for convenience, we replace 0 by I and
by j , setisfying | <j . The joint distribution of order statistics
t;, and tj (i<j) in & rendom sample of size n drawn from exponentia)

population is given by

( . FlE @)W“Fﬁ 6)]
(51

e — —— -..-

"U"F[)'

._.) _——g(td—g)fég@ t——'é(tg@ﬁzf:
G, <”f,‘ ¢t <20
"

\ otherwi se.

Now the sultable expression for percentile estimator of 6 in terms of
ith and jth order statistics is x = '(tl - t') where I <j oand
a as already defined above. The p.d.f. of x Is derived from f(t', tj)
by integrating out tj over tj >G+§ , after expressing t in

terms of x and tj o« Thus, we get
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(@-) q ilyglas

WC)C) g— -\X& v)

‘» k“’ =0 (~‘L'< ™, :é—(wm-é—}v)’
; (M+k- L+)

\ 0, otherwise.

\ | A0

This gives rth moment of x as

@ mirla 9 SRS [~
EI ((J’/$ (-1 'Y\COI Zozb K> ’Yﬁ).
) K+w( A= (- f*)-(jf)

(/Y\-H\ L+) a

j 1-py
where 8 =/m — . Since x is a linear function of tI

X

l-pz

and t it is clear that we can obtain moments of x in terms of

j »
joint moments of t, and tj o Thus

k. K -”YY\ I S
E K-r - .\: ) /\; () Et ‘/t
=S 2t Q‘/t‘) a%};o( ) ;i

By this formula we get
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M
L2
I
o)
TN
[
A
l
[T
1=
7
N
O
T
™o
=
—
N
~ C
=
1
=
o

o |
o X = oO—!'i\/a)L tLA— \/a/"w—t&—Q&w(tutd>\l R
vaﬁt = 8 > / 7 o nd so Var t; cen be written

(7\ (+9

by replacing | by J In the expression for variance of L, and
L

_nt |
C‘V@“W‘ 9 ;@‘”‘QL

which also follows from Sarhan [11]. Asymptotically expectation of x

Llc )J-V) (=)

The above asymptotic results follow directly from the expressions given
for expectation end variance of x . Alternatively these results could
have been derived from Cramdr's results ([10], pp. 369). Furthermore,

Cromér's fesult would imply that x , percentile estimator of 0 , has
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asymptotically normal d.lstrlbutlon with mean © and variance
L <\° ’\:’ Q/Y\l ~b ) .
/Y\ (‘ \‘)O- Fz =ba
An unblased percentile estimator of 6 is clearly seen to be

T[N} N W

=0

—(t-t. }_‘_,_._ C__'.___]-l
—(t}, tt)):ié;‘v\-aj\( K:ofr\-(-kk

whose variance can be written as

‘ U
3 [f A ZC\___ 9
K:—O(ww—ﬂ( 2 L O'Y\-L,+\<) ?-J
ri‘h-&j\( Z’Y\ ~(+k

k=0

Again invoking Cramer's Theorem ([10], pp. 369 ff) the following is true:
This unblased percentile estimator of © has asymptotically the same
normal distribution as the blased estimator x .

An sppropriate expression for percentile estimetor of G In terms

of ith and jth order statistic is: g = bt, + (1-b) tj where
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[

-1
] >0 oand '<j « We derive Po‘ofe of 9 by

- kﬁ)
making the transformetion g = bt, + (1-b) tj R tj - tj and integrat-
ing out t over t “ « This glves

C=) (=) . N
/—l\ *—L"l .
Q,—\‘/&L’jl(r— L‘ékao %:O\K) “on
{a)= e =4[5 - S i)y )

L) e ,
O( m-C = (k) (£-1)

\ 0, otherwise.
\

Since g is a linear function of t, and tj » the formula for the

Y76

rth moment of g is given by

E?( = £ bt +(- E)t]

;( )\Q(b) Ett& ,

where product moments of t, and tj of verious orders can be computed.
Thus

} bEt + (L BJEt
‘G*@{bzq\“"\”('l’) "r\y\'K
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and,

VQ&} — ¢ Uk = (\~L;'Vaﬂt&‘+2b<"b) &V(tuta‘)
=b(a) e Z@ -+ 0 ¥ e

Asymptotically expectation of g approaches G and variance of g

spproaches

(.b)l_l_f_wg_l] wee b= | 1= __(‘_EL}

ﬁ—L[(z\,—Q' -‘1 + (1=
W [ )i Jon (1)

On the basis of expectation of g it is clear that

is an unblased percentile estimator of G, if @ Is knomm. In case

@ Is unknown we need to replace 6 by the unblased percentile estima-

torof 0. For @ known, by use of Cramér's Theorem agein g hes

asymptotically normal distribution with mean G and variance

L e

(b ) Pz)

.E-i:f‘“






which is the sams as given earlier except that b has been expressed in
terms of P and P, -

Now we proceed to derive joint distribution of x and g from
joint distribution of t, and tj . The percentile estimators,
X = a(tj - t') and g = bt, ¢ (1-b) tj for 6 and G respectively

can be conveniently expressed as

x = (t, -t)En-' <"P2 , and
g [t,«gn(l-pz) - tj[m(l-p,)]/ﬁm" (;,—:f)

Making the above transofrmations we get the following joint distribution

of x and g from joint distribution of t; and tj .

[ ()

w (o9 0n)0 6%
e o - 1Qm<\ b) =Gt }-&){ -llm(l— ) 6{9
_1Ta_ A |
X [\-—e LLg-xln (i) G]J

L [gabo)-6] -gu—m(w)-c‘l] :
X Vﬁ — £

- owcﬂu MU*W2170-‘

\ 0, otherwise.

PP o L L
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~ From the joint distribution of x and g It does not seem convenient
to obtain expression for covariance between x end g . However, since
both x and g are linear functions of t, and tj we can compute

covariance of x and g by knowing covarience of t; and ¢t Thus,

K

CW(%@: Cov @(ﬁf(d, bt + (1-}) tﬂ
=0 (i-p) Vg, — okl £ 40 () (tt).

Noting that in the present case expression for Cov(t', tj) - Vart, ,

the above expression reduces to

Crv (g() 3) - q(\--\o) L\/oh tﬁ - Vmi (‘1
_ L[ ) ) _ - l .

k=0

which is asymptotically equal to




V. WEIBULL FAILURE LAWS

The probabllity density function (p.d.f.) of the 3-parameter Welbull

fallure law is given by

m-1 -1 (t-6)"
!‘t—.gl—— [ ] e » t Zce('o' Q) ‘9.6(0’ o) °
f(t) = 7

0 , otherwise

where G is the location parameter, known as guarantee time, 6 , the
scale parameter and m the shape parameter. When m = | , the 3-para-
meter Weibull law reduces to the 2-parameter exponential law. When 6
is known we have the 2-parameter Welbull law and when both G and 0
are known we have the !-parsmeter Weibull law. Even here the shape pars-
meter, m , being unknown, presents rather a difficult problem of esti-
mation.

in the present investigation we shall work with the 3-parameter
Weibull law. The results will, of course, remain valid for speclal cases
of this law. It will also be possible to obtain some more interesting
results Iin special cases.

The rth momenat of the 3-parameter Weibull law is given by
Fr = / k K |9 o

K=o

~

+1)

\
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{r «)——v@m)j

where \“2 and r).“ are the second, third and the fourth central
moments

We may note that the variance of the 3-parameter Weibull random
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variable (r.v.) is a functionof © and m and its B, and B, func-
tions of m . Recalling that B, and Bz are measures relating to the

shape of a frequency curve it seems appropriate to call m the shape
parameter of Weibull law. The following relationship between the rth

moment and the rth power of the first moment can be of use in investigat-

g
)

ing properties of the 3-parameter Weibull aw.

3 el s
{

Lemma 1: If Py(d=)) =

=1

J
0, otherwise

o T(FN)
Et EBW\W (E4)
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From the above recurrence relationship, ws have the following inter-

esting results.

";“_)”; T(Tv = ::;; Y‘(-,S;)* get,
";,

W in general, forany r > 1,

true. ‘
r(%*\ e ¢
Lomma 2: - — e — » where
s J—-xy s
(% I B(_;--_-;-J
\
8(a, b) g."(l yb-1 for a>0, b>0 ,

ey
since B(a, b) = JWOANO] . Welting r(%):f(%-{-i}

[‘(a + b)

((%’A*\): LV(L):iT(Q\l):_g_ - :(;;:‘_)T(:;)
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and repeating this process several times we finally get

QoEoD-

Now we can write the above recurrence relationship as

J-

T %
* iy ¢

From the above results it also follows that
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The quantities By and B, can be expressed in terms of Beta function

Wen lec Is & positive Integer, it Is ture [21] thet

o) v [ (0]

For the 2-perameter Welbull law whose p.d.f. is given by
"ty AL
w7t
ﬂt):{’@‘ ~ t70& ome(e)
0 , otherwise

we have

r

e -o® [E+) .



This glves

Ee-0" (‘(.'.,u) ,  end

v.”..-%h-(gn) N (;_...)1

In this case the recurrence relation between moments is relatively simple.

In fact,

SEXh r(-sl”) _°£r'('l=,l> [Y(r%;l') ) [T_'é(‘.;l-rl)‘(n)r'

This is a special case of Lemma | . Here we define

1 If jmr
P(J = j) ™
0, otherwise.

The above recurrence formula yields the following identities-

M L VA
S LZ)\ o __h_\ e L)w:u@t.

oy ™

L= l

Now without loss of generality, assuming G =0 and @6 =1, the

p.d.f. of I|-parameter Welbull law is given by |
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mt e sy t>0, m>0

0, otherwise.

The recurrence formula for moments is

h (o Ta) Ry r(é‘f*ﬂ. h
E‘t -Y(%&*)- Fh(-};—&) T (%; )"‘ rh(_&\_y (Eé)

which Is identical with the recurrence formula established earlier in

case of the 2-paramster Welbull law. This recurrence formula is also @
special case of Leme | with degenerate probability lawat ; = r .

Now we proceed to discuss the problem of the estimastion of the pars-
meters of Welbull laws. It Is clear from the functionsl representation
of Weibull laws that If m , the shape parameter of Welbull laws is
known, the trensformetion, u = (t-6)™ reduces the 3-parameter Weibull
law to |-parameter exponential law. With G also known, the above trans-
formation being a parameter free transformation causes no difficulty In

getting the maximum likelihood estimator (m.1.e.) of © , the scale
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paramster of the Welbull law, based on the first r(< n) ordered observa-
tions out of a random sample of size n . In fact, such m.l.6. of 6 s

found to be
r

St -9"+ (a-n) (¢, - 0"
i=]

®>

r,n

it possesses all desirable properties of a good estimetor, namely, con-
sistency, unbiasedness, sufficiency, completeness and asymptotic normal-
ity. The proofs are exactly the same as given by Epstein and Sobe! [1]
and [19]. Incase G is unknown but m known we suggest that G be
estimated by the smallest sample observation (m.l1.e.) which in life test-
ing case is the first sample observation. The m.l.e. of @ is now found

to be
r
Z (¢, - £)" + (a-r) (e - ¢)"
G - i=2 .
r,n

it may be added that the m.l.e. of O in case of the scale parameter
Weibull law is a unique minimum variance unbiased estimator which follows
from a theorem of Lehmenn and Scheffe ([3], p. 61). In this case a
single-observation minimm variance unblased percentile estimetor of ©
can be obtained in exactly the sams manner as has been explained in
Chapter (V. of this work. When m=1 and G = Go » the l-parameter
Weibull law can be immediately reduced to the l-ﬁonnur exponential law.
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in this case the parameter of the Weibull law cen be estimeted most ef-
ficiently by the maximum likelihood method. And a single-observation
minimum veriance unbiased percentile estimstor of the paramster has been
the subject metter of discussion in Chapter IV. When m=1| and G
unknown, the 3-parameter Weibull law becomes the 2-parameter exponential
law. The most efficlent estimators for the parsmeters of the 2-parameter
exponential law besed on the first r(< n) observations have besn found
by Epstein and Sobel [19]. But again if we wish to derive estimators of
G and O based on only two cbservations, percentile unbliased estimators
for them have been obtained in Chapter IV. and we can insure minimum
variance for this type of estimstion by proper choice of cumulative
probabilities. However when m , the shape parameter, Is unknown and
we are interested in getting good estimetors for all the 3-parameters of
Welibull law we face several difficuities. The llkelihood equations to
obtain m.l.e. for G, © and m fall to provide oxpll;:lt solutions for
them. Kao [12], assuming G = 0 , proceeds to derive m.l.e. for @

and = on the basis of the first r(< n) ordered observations Afm 8
random sample of size n . His llkelihood equations, nemsly,



z Pt O ﬁ)t”“ M;L

L

_%... 4 zm

clearly reveal the need for use of the successive approximation method.
0f course, the similar situation will srise in cese of the 3-psrameter
Weibull law. Here we shall first estimete € by the smallest sample
observation which is the m.1.e. for G and then the m.l.e. for 0 and
m can be obtained in the above menner.

Duggen [13] has worked out the moment estimetors for G, 6 and m
of the Welbull law. Agsin we do not have explicit solutions for 6, @
and . Howsver his table seems to be convenient for computing such
moment estimetors. His numerical example based on the data pertaining
to life of 34 automobile batteries provides negative estimate for 6 .

The recurrence formulas for moments of Weibull laws established
earlier appesr to throw more light on obtalning moment estimators for

the paramsters of Weibull laws. In case of the l-paramster Welbull law

w$~z—\ (e t)h

=
b= %)

our recurrence formula is:

n_ MUrk)
——TU&*«\) L @z) =%

|

n
\
|

L=



Equating population moments to sample moments we get, for r = 1,

1) T (sample mase) = L r(l)

For r=2,

T2 Z“M 2\MT(“)

1) <= (semple estimete) = ———

2
)
| Y
?-% Zt‘ and 2.1 Zt , and so on.

t=) =)

Thus for every r ws have an equation In m which provides moment es-
timetor for m , the shape paramster of the |-parameter Weibull law.
This raises a problem of investigating the effect of properties of mo-
ment estimetor with respect to (w.r.t.) r , the order of moment an in-
vestigation which we do not intend to take up at the present time. While
investigating this problem it seems fruitful to conslider the consequences
of directly computing moment estimator for the shape psrameter from the
expression of the rth moment since Et' = [‘(5-& l) -E r(f) .
For Instance, If the 2nd moment is found to provide a better estimetor
for the shape paramster then the Ist moment, in that case the moment
estimator should be computed from the equation, ¢t 2. % r(é)
relatively simpler expression to hendie than 11) mentioned above.

From the p.d.f. of the 3-psramster Welbull law we obtein the
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following expressions for median and mode.

A;Mlm)-c+0%(im2) , and
1
,Y((m).(coo"<-%)% when m>1

G, otherwise.

This gives the following expressions for median and mode for the |-pars-
meter Welbull law.

] !
}\-(sz)" and -<n-l—)" when m>1.
0 Ouwmw
Equating population median to sample median we get
]
" A jmf/wz
t ed (sample median) = (EY\Z) - which gives ma = .

ZVC‘-«!

This s indeed a simple estimator for m whose exhaustive investigation
should be taken up on a subsequent occasion. Equating population mode
to sample mode does not provide such an explicit estimetor for m as we
have with the median. Here ws have

tode (sample mode) = Q-:): .

Since the recurrence formula for the moments of the 2-paramster
Welbull law Iis identical with that of the |-paramster Weibull law we

shall obtain the moment estimastor of its shape parameter in a similar
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fashion and then proceed to derive moment estimator of its scale para-
meter. As for instance, if m is the moment estimetor of its shape
paramster then one moment estimator of the scale parameter, derived from

the expression of its first moment, is found to be

— ™

) RN
0 (moment estimetor) = r(_\r—*y - r\r& (_L_)

a
in case of the 2-parameter Weilbull law,

] ]
>\(~dlan) =0 ] ( ﬁ*n 2) - " and

Equating population median and mode to sample median and mode we get

- e o)
This gives, = (im_d - f/mm) - ﬂm(;}r) -Muz-o .

Solving the above equation for m we have ‘\- med .
va'\z

From the relation (1) it is clear that the median and the mode of the
Weibull law are quite apart provided m is less than two and awey from
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one. In this situation it seems reasonable to use sample median and
sample mode to estimate the parameters, © and m of the Weibull law.
When m s large it is not desirable to obtain estimators from sample
median and mode for the psramsters of Welbull law. Because in that case
median and mode are very close to each other.

Recognizing the fact that the moment estimetors are usually not as
~ good as maximum likelihood estimators and furthermore realizing that both
moment and maximum likellhood estimetors have failed to provide equations
explicitly solvable for the estimators of the parameters of Welbull laws,
we proceed to present some other estimators for the psrameters of Weibull
lows in formula form so that it mey be possible to improve these estime-
tors by following the technique of generating BAN estimetors from them.
in Chapter IV., we have taken up the problem of deriving percentile esti-
mators for the parameters of the exponential law and have investigated
their properties. There we have mentioned that the subject matter of
Chapter 1V. has been the consequence of getting percentile estimator of
the shape parameter of Welbull laws. Here ws give such percentile esti-
mators of the paramsters of Weibull laws. '

Corresponding to the given cumulative probability p , the popula-
tion percentile "(P for the 3-parameter Weibull law Is found to be

1 1
’V,-GN"[XM(I-»"I"‘ .

In case of the |-paramster Weibull lawwhere G =0 ond O =1, we
have
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Tp-ﬁn": (l-p)-'-pnwl- (1-'-;) )

Equating population percentile to sample percentile we have

1
t (sample percentile) = E/Y\. (11-) which gives

A
m (percentile estimator) =

We may note that p = i- corroms to sample median in which case we

have shown earlier that m——z ,  which follows from the

med
above percentile estimetor when we put p = % .

The |-parsmeter Weibull law admits any positive known velue of
scale paramster. |f scale parameter s known Oo » the percentile es-

timator of the shape parameter is given by

fmo“ﬁ'vxlm'
o Dy

Here oo = | reduces this ) to the former '; which provides a check

on the accuracy of the expression. In case of the 2-paramster Weibull

law we have population percentile ’]”P glven by
1 |

’T’-O:M;<'> :

P T-p

Yo obtain percentile estimetors of 6 and m we choose two cumulative
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probabilities p, and p, such that [np']<[np2] where n is the

number of sample observations. When population percentiles T’P and
1
7Y are equated to sample percentiles t_ and t we get
P2 P P2
I (e - }NMt_
A | % Ao [ =1/1
[ ] end 0=t (m .l-;> .

- I
Mtp' - Mt’z P/

in case of the 3-parameter Welbull law let us pick up three cumula-

tive probabilities, namely, Py » Py and p3 such that
[np‘] < [npz] < [np3] o Equating population percentiles to sample per-

centiles we get the following equations,

l 1
£, =6*0 " ,ﬁm(l-p,)"l -

] )
t =Ge+0™[ /fm(l-p)"l'
Py 2

1 1
t -°4°'l/EM(l-p3)°'l' .
P3

These equations give

1 |

sy " ', [ L*\('-pl)"l .- thu-p,)"l - ,
t - C T T ' T
2 ! [/‘ ("Pz)-'l " [ ,fr/vg(l"P')-'] -
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vihl ch provides estimetor for m by the successive approximation procedure.

Then.

1 ] A
A A -1, 3 a2 A"
0= “,,3 - tpz) (i jm(l-%) - %,!%(l-pz) j .

o

o
]
o
Hl:l
3
2

it Is clear that the above percentile estimstor of m can be ob-
tained by successive spproximetions. This may not be convenient in
meny instances. But, we can derive a modification of the percentile
estimator for m In formula form If we use an indirect satisfactory
"estimator for G . The smallest sample observation Is the sufficient
statistic for G and can be used as its estimator. Denoting a satis-
factory estimator for G by 6* ,» modified percentile estimators for

m and O are

A [l ™" - fbvxqm,(n-pz)"
" %(tp' -eY) - )(;\(tpz -

and

>
°

1
O=
)M(l-p')"
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respectively with tp' and tpz as sample percentiles corresponding

ta predetermined cumulative probabilities P and P, satisfying
(np,] < [np,] -

Now we present soms other estimators for the parameters of Welbull
laws. In case of the 3-paramster Weibull law, the expression for the
cumulative density function (c.d.f.) is found to be

]
F(x) =1 - .- o (x-c).

which gives
- »Pm(x-c) -km + .Mm(l-r(x) 7t

Noting that, | - F(x) is the probability that an item will survive
beyond x , we call 1 = F(x) = R(x) , the reliability of the itea.

The equation,

QN\QJW R (x) = m XM(x-G) - XMO

is a linear function of (x-G) . It is known that sny sample distribu-
tion function of a continuous random varisble obeys the uniform law on
the unit interval. For the sake of convenience, we denote ny\QMR"(x)
by y . On the basis of sample observations: t, < L, < eee < tn ) w8

define
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n
o 0, ) = > (y, - -X/v(t,-c) o Inay? (2)

Now, F}',"oo %—%-0, %%.0 (3)

~om

yield 3 equations,

— "
igﬂ'z (¢,-6) - fmo Zym(:‘-c) - ?Yx fm(:,-c)
C=\ (=) (=)

Z&m(t -6) -nL’Y\O - iy'

=

5 da >

=y

‘ t"'c
t=

Here it is easy to get expressions for m and 6 in terms of € .
The real difficulty is In obtaining estimator for G . We can overcome
this difficulty if we use an Indirect satisfactory estimator for € .
One such estimator for G has been pointed out earlier.

8y means of the equations (2) and (3) we derive estimators for the

paramsters of Welbull laws under various situations.



i)

i)

| -parsmeter Weibull law:
a) Special Case: G =0 and 0=l .

é Yy f/"\‘:
i/(f\“z Y

b) General: G-Go and 0-00

R ir— Y Y/V‘('t"o) . b % %—n_—rb‘\“n"o)
i—; /(wi (¢;-69)

2-paramster Weibull law:

a) Special Case: )

A ZMJPM
El:_l- (/{M‘s - W) ‘
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where n n

b) General: G-Go

Sty -7 ey - 49

N j=)

> Ity - Tnteegr?

and,

111) 3-paramster Welbull law:

Here using G* as a satisfactory indirect estimator for G ,

we have
>ty - D Ay -6
(L)
> thne¢ - Tree?
i=l
and,
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in case of the 2-parsmeter Welbull law we cen derive estimetors for
m and O In formula form from another consideration as weil. In the
field of life testing, the concept of intensity function, /\(t) (also
called force of mortality or hazard rate) plays a very useful role.
This Is defined as

probabllity density at t of a fallure time random varisble

f(t
- i3 -
)\ G reliability function at time t of the |tem under consider-
tion.

.tn-l
Now for the 2-parameter Weibull law with G = 0 , )\(z) - % .

This gives LY\)\(t) - 9/\'\(-) + (m-1) Q/V\,t - @‘M which is a linear

function in t . Ve can convert sample observations to the date on in-

tensity function by following Lomex [18]. Let us denote QN\)\(t) by

2 . On the basis of sample cbservations: L <t <... < t,, v de-

fine

n
h(m, 6) = Z (z, - L‘V\(n) - (m-1) X/\'\t' + Q.MO)Z .

Here ’%% =0 and % =0 yleld
; (2, - 2) /?-M,t,
]

i ‘YN\‘: _W)z

A
me |

| T TR
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Vi. (INTENSITY FUNCTION: GENERATOR OF FAILURE LAWS

The statistical snalysis of data pertaining to life, death or failure
time of inenimate and snimate objects (e.g. 1. length of life of elec-
tric bulbs, electron tubes etc. which are specimens of Industrial produc-
tion and, 1i. reaction times observed while determining the effect of
drugs on mics, rats etc.) and also fatigue of men, mechines etc. can be
successfully conducted only when we correctly know the probability density
function (p.d.f.) of the random variable (r.v.) concerned. The problem
of actual determination of the p.d.f. of a r.v. arising in the field of
1ife testing has not yet recelved due atgmtlm frg tln statisticians.

On the basis of empirical evidence of Davis [15], the exponential law wes
taken as a good first spproximetion to the distribution of length of life.
Epstein, Sobel and others have mede useful statistical contributions
which are valid Mr the assumption of oxpomntlol'lty. Realizing the
limitations of this assumption, soms work has been done with the Weibull
law [12]. The arguments put forwerd in favor of the use of the Weibull

" law appear in observing that the intensity function, defined in Chapter
V. of the r.v. representing length of life can change with time in con-
trast to the exponential law whose intensity function Is constant in
time. Since several industrial products show aging offoci:, it becomes

v appimt that the intensity function of such r.v. must essentially be 8

function of time. The matter doss not seem to end here. The inteansity
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function, as a matter of fact, appears to be a very useful tool in gen-
erating @ large number of p.d.f.'s appropriate to life testing data.

The term, Intensity function, is due to Gumbel [17]. It is synony-
mous to hazard rate or force of mortality in actuarial statistics. For
the sake of convenience to the readers we restate the definition of the

intensity function, A (t) .

A(t)-r{!&) - {-‘8- R provided t>6¢ ,

where f(t) is the p.d.f. of a r.v. representing length of life of an
item and R(t) = 1-F(t) Is the reliability function of the item which
is the probabllity that an item will survive beyond a given tims, t .
Before we proceed further, it mey In‘ proper to list soms of its simple

properties.
AR > f(t) since O<F() <) .
This implies that >\(t) is alweys non-negative.

i1) The reciprocal of the intensity function is called Mills' ratio.
it has been studied by Mills, Gordon, Birnbaum, Des Raj etc. in different

connections.

11)) >\(t) may be independent of t ; It msy increase with t
without limit; it may converge towerd a constant.

iv) A(t) - E{g— with t>6 , gives

o
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t
“{ Alx) dx

a) f(t) = /\(t) . and
b) f(t) = = R*(2) where t>6 .

The proofs for a) and b) are immediate and hence we omit them. Unless
otherwise specified € wlll; for convenience, generally be taken as
zero in the following.

The intensity function of the 3-paramster Welbull- law whose p.d.f.

is
a-l -1 (e-0)"
'_'.(t;‘)._.‘ » t>6&- o, ®) & 6, mc(0, ®) .
f(t) =
0, otherwise
is found to be

t-6 m-1
ING) - !‘—5)—— .

meter omtlal law. The simplicity of the Intensity function for these

When m=1, >\(t) - which is the intensity function for the 2-para-
fallure laws, which have been found to agree wel! with empirical data in
meny cases, and the appesl of the idea that the Intensity function, an
instantaneous propensity to failure in an object with has survived to
time t; should be a simple function of t, suggests that forms derived
from other simple assumptions about the behavior of the intensity func-
tion mey find application in a wider class of cases than those covered by
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the Weibull distributions. One naturally considers using a polynomial

in t for the intensity function. If

P
}\(t)- E . ¢! then
i=0 o
N I
P . _i=0
N e  T+] , t>0
le0

0, otherwise.

Unless the polynomial is restricted, ws have the trouble of too many
paramsters to be able to tel! without a l;rgo number of data whether the
fit is good because of the appropriateness of the form or because of the
number of parameters.

In some applications it is ressonable to assume that the intensity
function is a decreasing function of tims. Lomex [18] has pointed out
that >\(t) - F:_t appears to be more appropriate for the data nlatln
to retall, craft and service groups in business fallure and )\_(t) -ae Bt
for menufacturing trades. Corresponding to }\(t) - F.Tt we get

- ]
B <l¢§> (o ), t>0

f(t) =

and corresponding to )\(t) -ae bt we have

Rl



-116-

g (-]

e e » t>0
f(t) =

0, otherwise.

1 b t
it Is clear that m -5 + . is a linear f«ngtlon of t. De

noting 7%“) by z we obtein soms estimators for a and b on
the basis of sample cbservations: t, <t, <...<t iIn the fol lowing

manner.

n
Let g(a, b) = Z- z; -

)

Now ’1_!-(5!:-'-’1-0 and Fv—ja-(!:-?)--o yleld two

equations whose solutions are

n ]
-— 2 -—
z Z‘l -t Z Gy
/\_ jml j=)
n . n




-117=

where 'z‘.-'; Z z, . Similarly from )\(t) -ae bt
=)

we gct/{)v\)\(t) - Xfr\a - bt mfch is a linear function of t . Here

[
let h(a, b) - Z(y‘ -Y/Y\a + I)t‘)z ’ where ys= &M)\(t)
L)

“2h
and tyy tyy eeoy t, are sample observations. MNow ~a " 0 and

/%-E =0 yield two equations whose solutions are
- A-
N
a=e’? bt » and
n
E (t‘ - ?) (Y' - ;)
/L o I=t

n
Z_(t‘ -2

where t and y are arithmetic means.

Finally we generate failure law from the consideration of growth

cruves. HNere /\(t) - - (a:-it) s which Is known as

1+ e

a logistic function, gives



B |
.a+pt(".c)p
, R |

]l ¢ =
(l#oa*’t) s

f(t) =
0, otherwise.

Furthermore, ﬂ’n(;—?\-‘)\?ﬁ— s a+ft is a linear function of

t . Hence letting

n
’(ai ’)- Z (""a'pt‘)z

'l.l‘. Us %\(—ML—> .M t" tz, seey t“ are wl‘

1= N(v)
observations, :%-% =0 and %—% «0 yleld

N oo AL
Quu-8¢t , and

E (t' -t) (u‘ -u)
jm)
- n

A
(]
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where t and u are arithmstic meens.

t
The transformation u = _g .>\(x) dx is helpful in reduc-
0

ing unwieldy expressions of fallure laws to relatively simple forms pro-
vided the paramsters involved In the intensity function are knowmn. In
particular, with extrems value distributions which have possibility of
applications in life testing problems the above transformetion mey prove

of lmmense value.
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