CONTRBUTIONS TO STATISTICAI. THRORY BT LTF THSWING AND REMABITIY

Thasis for tha Dogras of Ph. D. MICHIGAN STATE UNIVERSITY

Satya Dova Duboy 1960

This is to certify that the thesis entitled CONTRIBUTIONS TO STATISTICAL THEORY OF LIFE TESTING AND RELIABILITY
presented by

Satya Deva Dubey
has been accepted towards fulfillment
of the requirements for
Ph. D._ degree in Statistics

Date May 19, 1960

AND RELIABILITY

By

SATYA deva dubey

A THESIS

Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics

Satya Deve Dubey
Candidate for the degree of
Doctor of Philosophy

Final examination, May 11, 1960, 2:00 P.M., Physics-Mathematics Building

Dissertation: Contributions to Statistical Theory of Life Test-
Ing and Rellability
Outline of Studies
Major subjects: Probability, Mathematical and Applied Statistics
Minor subjects: Mathematics
Biographical items
Born, February 10, 1930, Sakara Bazid, India
Undergraduate Studies: Patne University, 1947-51
Graduate Studies: Indian Statistical Institute, Calcutta 1951-53; Carnegie Institute of Technology, Pittsburgh, Pa., Fall, 1956; Michigan State University, 1957-60.

Experience: Technical Assistant, Indian Institute of Technology, Wharagpur, India, 1953-56; Graduate Assistant, Carmegie Institute of Technology, Fall 1956; Temporary Instructor (Feb. to June 1957), Full-time Rescarch Worker (Sumer 1957) and Teaching and Special Graduate Rascarch Assistant (1957-60) Michigan State University, Editorial Collaborator of the Journal of American Statistical Association (Dec. 1957 \& March 1958).

Founder Mamber of Indian Society of Theoretical and Applied Mechanics, 1955; full member of Society of Sigme Xi, nember of Institute of Mathemetical Statistics.

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to Professor Kenneth J. Arnold for his expert supervision, valuable criticisms and active interest throughout this investigation. I am also grateful to Professor Leo Katz for his encouragement at an early stage of this work and to Professor Fritz Herzog of the Department of Mathematics for heiping me In the proof of Theorem, 2 of Chapter II. My sincere thanks are due to Mrs. Jane Joyaux for the excellent typing of the manuscript. finally, I am indebted to the Office of Mational Science Foundation for financial support.

DEDICATED

 T 0My Beloved Parents

CONTRIBUTIONS TO STATISTICAL THEORY OF LIFE TESTING
 AND RELIABILITY

By
SATYA DEVA DUBEY

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics
1960

Errata Cheet

Page	Line	Printed	Read
1	8	location	scale
24	6	\%*	δ_{n}^{*}
54	7	Student's t test	Student's t
55	$3 \begin{aligned} & \text { (from } \\ & \text { below) } \end{aligned}$	t_{i} and t_{j}	t_{1} and t_{r}
77	6	Involing	Invoking
91	8	$\pi B\left(\frac{1-1}{m} \cdot \frac{1}{m}\right)$	$\prod_{i=1}^{1-1} B\left(\frac{1-1}{m}, \frac{1}{m}\right)$
92	3	$\frac{1}{m} \Gamma\left(\frac{1}{m}\right)^{j}$	$\left[\frac{1}{m} \Gamma\left(\frac{1}{m}\right)\right]^{j}$
$11 /$	$\begin{aligned} & 15 \begin{array}{l} \text { (4th } \\ \text { from } \\ \text { below) } \end{array} \end{aligned}$	with	which

$y \log$

Several problems in testing hypotheses about and in estimating parameters of Weibull distributions, particularly the exponential, are considered. Some attention is given to the possibility that simple assumptions about the intensity function will lead to classes of distributions of wide applicability in describing distributions of length of ilfe.

In the case of the exponential fallure law with known location parameter, the mininum-variance-single-observation-unbiased estimator of the location parameter is investigated. it is found that if the rth observation in order of increasing time is the single observation on wich this estimate is based and if we write $r=n \delta_{n}$, then
$\lim _{n \longrightarrow \infty} \delta_{n}=\delta_{0}=0.8$.
Several tests of parameters are developed for the case in which no observations beyond the rth in order of magnitude are used. When the scale parameter is known, the likelihood ratio test that the location paramater is a given value is uniformly most powerful against all alternatives. When the scale parameter is unknown, the likelihood ratio test that the location parameter is a given value is uniformly most powerful unbiased. For the latter situation a simple test function based on the first and rth observation is proposed. This test function is shown to be unbiased and for the left-sided alternatives the power of the likelihood ratio test and of the simple test function is shown to be identical.

For a simple hypothesis on the location and the scale parameters the test function derived by means of the Meyman-Pearson leman is shown to be uniformly most powerful against alternatives confined to the southwest quadrant. A uniformly most powerful unbiased test for the scale parameter is derived for the case in which the location parmater is unknown and for the case in which it is known a similar test function of first r observations is suggested. The power functions for these tests are expressed in ternis of the Incomplete Gama Function. Two simple test functions for testing the hypothesis on the scale parameter When the location parameter is known and unknown respectively are proposed and their power functions are derived.

Some results are extended to two sample problems. For the likelihood ratio test based on the first $r_{1}\left(\leq n_{1}\right)$ and $r_{2}\left(\leq n_{2}\right)$ observations to test the hypothesis on the equality of two location paramoters assuming the same but unknown scale parameter, the power function is derived and it is shom that the test is unblased.

The percentile estimators for the parameters of the exponential laws are derived for various situations. The choices of the cumulative probabilities are made so that we have minimm variance unbiased percentile estimators for the estimators. The asymptotic results are given for the sampling distributions, the means, the variances and the coveriance of the unbiased percentile estimators.

The moment-recurrence formulas for the Weibull laws are established and the moment estimetors of weibull parameters are derived through them. The percentile and the modified percentile estimetor for these paramaters are derived explicitly and by using the reliability and the intensity functions other estimators are obtained.

Starting from the intensity function, a large number of potentially useful fallure laws are generated and the estimation of the parameters is considered. Finally the applications of some of these failure laws are pointed out.

CONTENTS

I. INTROOUCTION 1
11. SONE RESULTS RELEVANT TO EXPONENTIAL FAILURE LAW 7
III. SOME TESTS ON PARAMETERS OF EXPONENTIAL FAILURE LAW 30
IV. PERCENTILE ESTIMATORS FOR PARAMETERS OF EXPONENTIAL FAILURE LAW 73
V. weibull failure Laws 88
VI. INTEMSITY FUNCTION: GENERATOR OF FAILURE LAWS 112
BIBLIOERAPHY 120

I. INTRODUCTION

Epstein [23]* has derived simple estimators of the parameters of exponential distributions whose probability density functions (p.d.f.) are

$$
f(x ; \theta)=\left\{\begin{array}{l}
\frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad y>0, \theta>0 \tag{1}\\
0, \text { otherwise }
\end{array}\right.
$$

and

when samples are censored. There he is led to investigate the properties of an unbiased estimator for 0 which involves only the $r(\leq n)$ th observation of the sample of size n drawn from (!). Denoting the roth observation by $x_{r, n}$, his unbiased estimator of 0 is given by

From [23] we find that in [14] he has shown that $0_{r, n}^{n}$ is of very high efficiency ($\geq \mathbf{9 6}$ percent) if $\frac{\pi}{n} \leq \frac{1}{\alpha}\left[\geq \mathbf{9 0}\right.$ percent if $\quad \therefore \leq \frac{2}{2}$] when compered with the best estimator $\hat{\theta}_{r, n}$ where

[^0]$$
\hat{\theta}_{\pi, n}=\frac{\sum_{i=1}^{4} x_{i n}+\left(r-r_{n}\right) x_{n n}}{r}
$$
(The reference [14] was not avallable to this author.)
Here we have considered the problem of finding the most efficient single-observation estimator of 0 . The results concerning this have been investigated in Chapter it. whose sumary we give below.

In the second chapter we show that the smollest sample observation In case of the 1 -parameter exponential fallure law provides a worse estimator (in the sense of minimum variance unbiased estimator) among single-observation estimators for average life then any one of the ($n-1$) remining sample observations in a semple of size $n \cdot$ it follows from [23] that the largest sample observation, up to the sample size five, provides the best estimator for average Ilfe in the same sense. Here wh show that a single-observation umbiased estimator for average ilfe based on the $r(\leq n)$ th statistic where $\Omega=n \delta_{n}$ with $\lim _{n} \delta_{m}=\delta_{0}=0.8$
possesses minimm variance. it is about 66 percent efficient in comparison with the minimin variance unblased estimator based on all observations in the sample. The sample madian has only 48 percent efficiency. The smillest sample observation is $\frac{100}{n}$ (n, sample size) percent efficient and the largest sample observation has $\frac{600}{n \pi^{2}} \ln (n)$ asymptotic
efficiency. Since the life test data are naturally ordered the have dependent random variables to work with. In this conmection we have found
the product moment correlation coefficient to order $(n+2)^{-1}$ between any i th and j th $(i<j)$ ordered sample observations from exponential population. This correlation is

$$
e\left(t_{i}, t_{j}\right)=\sqrt{\frac{i(n-j+1)}{j(n-i+1)}}\left\{1-\frac{1}{4(n+2)}\left(\frac{1}{n-j+1}-\frac{1}{n-i+1}\right)\right\} .
$$

It is asymptotically equal to $\sqrt{\frac{\bar{i}(n-j+i)}{j(n-i+1)}}$.
Epstein and Sobel have derived the best test for the H : $0=\theta_{1}$ against A : $0=\theta_{2}\left(<0_{1}\right)$ based on the first $r(\leq n)$ observations out of a sample of n dram from (1) in [1]. In the first part of Chapter III. We have considered tests for the hypotheses:

1) H : $0=\theta_{0}$ against A : $0 \neq \theta_{0}$, 6 known.
ii) $\mathrm{H}: \quad 0=\theta_{0}$ against $A: 0 \notin \theta_{0}, 6$ unknown.
iii) $H: G=\sigma_{0}$ against $A: G \notin \sigma_{0}, 0$ known,
and
iv) $H: G=\sigma_{0}$ against $A: G \notin G_{0}, 0$ unknown.

Pauison [4] and Lehmann [2] have considered these hypotheses under the assumption that all n sample observations are available. Here we have extended the results of Paulson and Lehman for all the cases. The extension consists in the fact that our tests are based on only the first $r(\leq n)$ ordered observations from a sample of size n. Furthermore we hove also considered $v) H: G_{1}=G_{2}$ against $A: G_{1} \not G_{2}$ and
assuming the same but unknoun scale parameter. Paulson [4] has considered this hypothesis under the assumption that all the sample observations are available. Epstein and Tsao [7] hove derived the reduced Ilkelihood ratio test when samples are censored from the right. Here following Paulson [4] we have derived the power function of this test and have shown that the test is unbiased. For the tests concerning the hypotheses 1), ili, ili) and (v) we have derived the pourer functions and have investigated some of their properties. Following Lehmann [2] we hove obtained the uniformily most powerful (Uwi) uoblased test for the hypothesis 11) when sample is censored from the right. In the case of the hypothesis ili) we have shown that the likelihood ratio test is UWP against all alternatives and for the hypothesis iv) we have shown, by following Lehmenn [2], that the corresponding Ilkelihood ratio test is UW unbiased test. Furthermore we have pointed out that the best test for the H: $0=\theta_{1}$ egainst A : $0=\theta_{2}\left(<\theta_{1}\right)$, considered by Epstein and Sobel [1], is UWP for the $H: ~ G=\sigma_{0}$ and $0=\theta_{0}$ against A: $C<\Theta_{0}$ and $0<\Theta_{0}$. This test is also UW for the $H: 0 \geq 0_{0}$ against A : $0<0_{0}$ with known 6 .

Epstein and Sobel have considered a test based on the rth observation only to test $H: ~ 0=\theta_{1}$ ageinst $A: \quad 0=\theta_{2}\left(<\theta_{1}\right)$ in [1]. This has led us to consider simple test functions for the hypotheses i), ii), and (v) in the second part of this chapter. Since the test function for the hypothesis ili) is based on the first observation alone and is unp we have considered simple test functions for the remaining three cases. then guarantce time (location parameter) is known, the proposed simple
test function to test the hypothesis about 0 , the scale parameter, is based on only the rth observation of the sample. When guarantce time is manom, a corresponding simple test function is based on the first and the rth observations. For both cases the power functions have been derived and have been reduced to the Incomplete leta function. When the scale paramater is unknown a simple test function based on the first and the $r(\leq n)$ th observations has been suggested to test hypotheses on guarantce time. Its power function has been derived which shows that the test is unblased and for the left-sided alternatives its power function and the power function of the corresponding likalihood ratio test is identical. Two moment-recurrence formulas have been established to compute higher moments of this simple statistic.

In Chapter IV. we have mede an extensive study of the percentile estimators for both the location and the scale parameters of the exponential failure law in three different cases. Some of the results of this report are extensions of the results of Chapter II. We have derived the sampling distributions of the percentile estimators; have derived their asymptotic distributions, have given expressions for their kth moments and have made choices for cumulative probabilities such that the corresponding percentiles in first two cases insure minimum variance single-observation unbiased percentile estimators provided the sample size is large. For the third case we have given the asymptotic form of the covariance matrix.

Kao [12] has derived the maximin likelihood estimators (m.l.e.) of
0 and m for the 2-parameter Maibull law when a random sample is
censored from the right. His likelihood equations demend the use of successive approximations. Duggan [13] has obtaimed moment estimators for all the three parameters of the Heibull law which requires use of a table especially prepared for this purpose. Representing the p.d.f. of the 3-parameter Meibull law by

$$
f(t)= \begin{cases}\frac{m(t-G)^{m_{1}-1}}{\theta} e^{-\frac{1}{G}(t-G)^{m}} \\
0, \text { otherwise, } & , \overrightarrow{G \in(-\infty, \infty) \dot{ }} \begin{array}{l}
\theta, m \in(0, \infty)
\end{array}\end{cases}
$$

we have presented in Chapter V. the results listed in the following paragraph.

First we show that β_{1} (measure of shmmess) and β_{2} (measure of kurtosis) for the Weibull laws are functions of m, the shape parameter, only. Then we establish lemm which reveals the relationship between the rth moment and the rth power of the first moment of the Weibull law. This lemma is used for deriving moment estimators for the Heibull parameters. We obtain percentile and modified percentile estimators for the Weibull parameters in the form of formulas. By means of the rellability function and the intensity function we have derived some other estimetors for the Melbull parameters as well.

In the sixth chapter, large number of failure laws have been generated by various reasonable assumptions about the form of the intensity function. The applications of some failure laws, generated in this manner, have been pointed out and the estimation of parameters of such fallure laws has been considered.

II. SOME RESULTS RELEVANT TO EXPONENTIAL FAILURE LAW

In this chapter we shall derive some results of interest in life testing problems where the random variable has the following exponenrial probability density function

$$
f(x)= \begin{cases}\frac{1}{\theta}-c^{-\frac{1}{\psi}(x-G)}, & x>(r \in(-\infty, \infty) \notin \\ 0, \text { otherwise. } & \partial \in!0, \infty)\end{cases}
$$

We shall assume G to be known throughout this chapter and since we are concerned with life test data in time units we shall write t instead of $X-6$ and reduce the above exponential probability law to the aneparameter exponential probability density function (p.d.f.) whose form is given by

Now we proceed to prove the following simple theorem.

Theorem 1: For the above one-perameter exponential failure law, the maxlm of sample observations provides a more efficient estimator of average life than lis minimum.

Proof: Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a sample of size n. it does not matter here whether they are ordered or not. However, it is clear that in the life testing situations our observations will always appear orderad. Let $\xi=\max \left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $\eta=\min \left(t_{1}, t_{2}, \ldots, t_{n}\right)$. now the p.d.f. of ξ is given by

$$
f(\xi)=\left\{\begin{array}{l}
\frac{n}{\theta} e^{-\frac{\xi}{\theta}}\left(1-e^{-\frac{\xi}{\theta}}\right)^{n-1}, \quad \xi>0 \\
0, \text { otherwise. }
\end{array}\right.
$$

This gives

$$
E \xi^{k}=n \theta^{k} \Gamma(k+1) \sum_{j=0}^{n-1}\binom{n-1}{j}(-1)^{j} \frac{1}{(j+1)^{k+1}}
$$

Hence,

$$
\begin{aligned}
& E \xi=n \theta \sum_{j=0}^{n-1}\binom{n-1}{j}(-1) \frac{j}{(\dot{j}+1)^{2}}=\theta \sum_{j=0}^{i-1}\binom{n}{j+1}(-1)^{j} \frac{1}{j+1} \\
&= \theta \sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{1}{k}=\theta \sum_{k=1}^{k} \frac{1}{k} \text {, by virtue of the following lament. } \\
& \quad \sum_{k=1}^{n}\binom{n}{j}(-1)^{j-1} \frac{1}{j}=\sum_{j=1}^{n} \frac{1}{j}
\end{aligned}
$$

Proof: we write $(1-x)^{n}=\sum_{j=0}^{n}\binom{n}{\dot{j}}(-1)^{j} x^{j}$

$$
\begin{aligned}
& =1+\sum_{j=1}^{n}\binom{n}{\dot{\gamma}}^{(-1)^{j} x^{j}} \\
& =1-x \sum_{j=1}^{n}\binom{n}{j}(-1)^{j-1} x^{j-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{1-(1-x)^{n}}{x}=\sum_{j=1}^{n}\binom{n}{j}(-1)^{j-1} x^{j-1} \quad \text { for } \quad x \neq 0 . \\
& \frac{1-(1-x)^{n}}{x}=\sum_{j=0}^{n-1}(1-x)^{i} \quad \text { for } \quad x \neq 0 \\
& \int_{0}^{1} \sum_{i=0}^{n-1}(1-x)^{i} d x=\sum_{i=0}^{n-1} \int_{0}^{1}(1-x)^{i} d x=\sum_{j=1}^{n} \frac{1}{j}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} \sum_{j=1}^{n}\binom{n}{j}(-1)^{j-1} x^{j-1} d x & =\sum_{j=1}^{n}\binom{n}{j}(-1)^{j-1} \int_{0}^{1} x^{j-1} d x \\
& =\sum_{j=1}^{n}\binom{n}{j}(-1)^{j-1} \frac{1}{j}
\end{aligned}
$$

Hence the lame is proved.
Returning to $E \xi=\theta \sum_{k=1}^{n} \frac{1}{k}$, we see that $\xi^{n}\left[\sum_{k=1}^{n} \frac{1}{k}\right]^{-1}$
an unbiased estimator of 0 . Its variance is found to be
$\left[\sum_{k=1}^{n} \frac{1}{k}\right]^{-2} \operatorname{Var}(\xi)$. An expression for $\operatorname{Var}(\hat{\xi})$ is given in
the following leman.

Len 2: If t_{r} is the r th ordered sample observation out of a random sample of size $n(1 \leq r \leq n)$ dram from the above one-parameter expononetial law then the

$$
V_{a r} t_{i}=\theta^{2} \sum_{\gamma=1}^{i} \frac{1}{(m-r+i)^{2}}
$$

Proof: The p.d.f. of t_{r} is given by

$$
f\left(t_{r}\right)=\left\{\begin{array}{l}
\frac{n!}{(r-1)!\left(r_{1}-r\right)!\theta} e^{-\left(r_{1}-r+i\right) \frac{t}{\theta} r}\left(1-e^{-\frac{t_{r}}{\theta}}\right)^{r-1}, t_{r}>0 \\
0, \text { otherwise. }
\end{array}\right.
$$

For the sake of convenience me drop subscript r from t. The charactouristic function of the above p.d.f. is given by

$$
\begin{aligned}
\phi_{1}(u) & =E e^{i u t}=\int_{0}^{\infty} e^{i u t} f(t) d t \\
& =\frac{n!}{(r-1)!(n-r)!\theta} \int_{0}^{\infty} e^{-(n-r-i u+1) \frac{t}{\theta}}\left(1-e^{-\frac{t}{\theta}}\right)^{r-1} d t .
\end{aligned}
$$

To integrate out the above integral, write $\frac{t}{\theta}=y$ then

$$
E e^{i n y}=\frac{n!}{(r-1)!(n-r)!} \int_{0}^{\infty} e^{-(n-r+1-i u) y}\left(1-e^{-y}\right)^{r-1} d y
$$

Let $-e^{-y}=z$ then

$$
E e^{i x y}=\frac{n!}{(r-1)!(n-r)!} \int_{0}^{1} z^{n-r-i u}(1-z)^{r-1} d z
$$

Since the real parts of ($n-r+1-1 u$) and r are positive, the above intogral is a beta function whose arguments are $n-r+1-i u$ and r respeclively ([22], p. 212). Thus

$$
\begin{aligned}
& \phi_{2}(u)=E e^{i u y}=\frac{n!}{(r-1)!(n-r)!} B(n-r+1-i u ; i) \\
&=\prod_{j=1}^{r}(n-r+j) \\
& \ln (n-r+j-i u) \\
& \ln \phi_{2}(u)=\sum_{j=1}^{r} \ln (n-r+j)-\sum_{j=1}^{r} \ln (n-r+j-i u),
\end{aligned}
$$

where aw y breach cen be chosen.
The ret cumulent is given by $k_{r}=\left.(-1)^{r} \frac{d^{r} \ln \phi_{2}(u)}{d u^{r}}\right|_{u=0}$ and m hove $k_{2}=-\left.\frac{d^{2} \ln \phi_{2}(u)}{d u^{2}}\right|_{u=0}=\sum_{j=1}^{r} \frac{1}{(n-r+j)^{2}}=\operatorname{Var} y=\frac{1}{\theta^{2}} \operatorname{Var} t_{r}$. Therefore, Var $t_{r}=\theta^{2} \sum_{j=1}^{r} \frac{1}{(n-r+j)^{2}}$. Q.E.D.

Incidentally $k_{1}=\left.(-) \frac{d \ln \phi_{2}(u)}{d u}\right|_{u=0}=\sum_{j=1}^{\pi} \frac{1}{n-r+j}$. $=E \gamma \quad$ which gives $E t_{r}=\theta \sum_{j=1}^{\pi} \frac{1}{n-r+j}$
ζ, the maximum of sample observations is t_{n} when sample observations are ordered, therefore, $\operatorname{Var} \xi=\operatorname{Var}_{\text {ar }} t_{n}=\theta^{2} \sum_{j=1}^{n} \frac{1}{j^{2}}$ and again incidentally, $E \xi=E t_{n}=\theta \sum_{j=1}^{n} \frac{1}{j} \quad \begin{gathered}\gamma=1 \quad \gamma \\ \text { mich checks with the direct }\end{gathered}$
derivation of the expectation of the maximum of sample observations. mow $\operatorname{Var}\left(\frac{g}{\hat{\sum} \frac{g}{k}}\right)=\theta^{2} \frac{\sum_{\frac{n}{k}}^{\frac{1}{k^{2}}}}{\left(\frac{k}{k} \frac{1}{k}\right)^{2}} \leqslant \theta^{2}$. The p.d.f. of η, the minimum of sample observations is given by

$$
f(\eta)=\left\{\begin{array}{l}
\frac{n}{\theta} e^{-\frac{\eta}{\theta} \eta}, \quad \eta>0 \\
0, \text { otherwise. }
\end{array} \quad(\gg 0\right.
$$

This gives $E \eta^{k}=\left(\frac{g}{n}\right)^{k}(k!)$
Hence $E \eta=\frac{\theta}{n}$ and $\operatorname{Var} \eta=\frac{\theta^{2}}{n^{2}}$.
The unbiased estimator of 0 based on the minimum sample observation is $n \eta$ whose variance is e^{2}.
Thus we see that $\operatorname{Var}\left(\frac{\xi}{\sum_{i}^{n} \frac{1}{k}}\right) \leq \operatorname{Var}(n \eta) \quad$ which immediately proves
the theorem.
The following lame is useful in deriving the p.d.f. of η from the joint p.d.f. of ξ and η.

Lemme 3:
$\sum_{j=0}^{n}\binom{n}{\dot{j}}(-1)^{j} \frac{1}{j+1}=\frac{1}{n+1}$
Proof: wore $(1-x)^{n}=\sum_{j=0}^{n}\binom{n}{j}(-1)^{\dot{j}} x^{j} .0<x<1$.

$$
\operatorname{now} \int_{0}^{1}(1-x)^{n} d x=\frac{1}{n+1} \text { and } \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} \int_{0}^{1} x^{j} d x=\sum_{j=0}^{n}\binom{n}{j}\left(-1-\frac{j_{1}}{j+1},\right.
$$

hence the lemme is proved.

Noting that $\sum_{1}^{n} \frac{1}{k}=\ln \left(n+\frac{1}{2}\right)+\gamma+O\left(\frac{1}{n^{2}}\right)$, where γ is Euler's constant, we see that the unbiased estimator of 0 based on the maximin of sample observations has asymptotic variance zero. However the variance of the unbiased estimator of 0 based on the minimum sample observation is θ^{2}, independent of sample size n. Thus its asymptotic variance is also $\boldsymbol{\theta}^{2}$.

It is shown now that in fact the unbiased estimator of 0 , based on the minimum sample observation provides the worst estimator of 0 in the sense of minimum variance unbiased estimator in a class of singleobservation estimators.

Proof: For the $r(1 \leq r \leq n)$ th ordered sample observation we have established that

$$
E t_{r}=\theta \sum_{j=1}^{\pi} \frac{1}{n-r+j} \text { Var } t_{r}=\theta^{2} \sum_{j=1}^{\pi} \frac{1}{(n-r+j)^{2}} .
$$

Here $r=1$ gives $E t_{1}=E \eta=\frac{\theta}{n}$ and $\operatorname{Var} \dot{1}_{1}=\operatorname{Var} \eta=\frac{\theta^{2}}{n^{2}}$;

$$
r=n \text { gives } E t_{n}=E \xi=\theta \sum_{1}^{n} \frac{1}{\dot{j}} \text { and } \operatorname{Vart}_{n}=\operatorname{Var} \xi=\theta^{2} \sum_{1}^{n} \frac{1}{j^{2}}
$$

and for $1<r<n$ we have the expressions for $E t_{r}$ and $V^{\text {Var }} t_{r}$ given above.

for $r>1$,
hence it is proved that the minimum sample observation provides the worst estimator of θ in a class of single-observation estimators. Since

$$
\operatorname{var}\left(\frac{\xi}{\sum_{i}^{n} \frac{1}{j}}\right)=\theta^{2} \frac{\sum^{n} \frac{1}{j^{2}}}{\left(\sum_{i}^{n} \frac{1}{j}\right)^{2}} \leqslant \theta^{2}
$$

and

$$
\operatorname{Var}\left(\frac{t_{r}}{\frac{\sum_{j=1}}{n-r+j}}\right)=\theta^{2} \frac{\sum_{j=1}^{i c} \frac{1}{(n-i+i)^{2}}}{\left(\sum_{j=1}^{r} \frac{1}{n-r+j}\right)^{2}} \leq \theta^{2},
$$

it is not clear at this stage whether the maximum sample observation provices the best estimator of 0 among estimators based on - single observation. Numerical computation ([23], Table 11) shows that the maximin sample observation provides the best single-observation estimator of 0 so long as the sample size does not exceed five. Beyond five the
maximum of sample observations no longer provides the best single-obsernation estimator of 0 . We mould like to know for which eth ordered sample observation me obtain the best estimator of 0 .

In other words we want to find an integer r, say r_{n} (depending on n) such that $F\left(n, r_{n}\right)$ is minimum of $F(n, r)$ for fixed n
where

$$
\sum_{i=1}^{r} \frac{1}{(r-r+j)^{2}}
$$

$$
F(n, r)=\frac{\sum_{i=1}(r-r+j)^{2}}{\left(\sum_{j=1}^{r} \frac{1}{(n-r+j)}\right)^{2}}=
$$

We shall answer this question for large n in this chapter. it is clear that $0<\boldsymbol{F}(n, r) \leq 1$. Let $\delta_{n}=\frac{k_{n}}{n}$. Now we shall shew that the limit Inferior of δ_{n} is larger than zero. First we prove the following lame. Le nan $\quad F(n, r) \geq \frac{1}{r}$.

Proof: Let us define a random variable X with the following probebilty distribution.

$$
\text { for } j=1,2, \cdots r .
$$

an $E X^{2}=\frac{r}{\sum_{j=1}^{\frac{1}{1}} \frac{1}{(n-r+j)^{2}}}$

Now Var $x \geq 0$ implies $F(n, r) \geq \frac{1}{r}$
A very simple upper estimate of $F(n, r)$ is computed as

From $F(n, r) \geq \frac{1}{r}$ and $\min _{r} F(n, r) \leq \min \frac{n^{2}}{r(n-r+1)^{2}}$, we have
$\frac{1}{r_{n}} \leq F\left(n, r_{n}\right) \leq \min \frac{n^{2}}{r(n-r+1)^{2}} \quad$ which gives $\frac{1}{r_{n}} \leq \min \frac{n^{2}}{r(n-r+1)^{2}} \cdot$
Therefore $\delta_{n} \geq \max \frac{r(n-r+1)^{2}}{n^{3}}=\frac{4}{27}\left(1+\frac{1}{n}\right)^{3}$ or
$\frac{1}{27}\left(1+\frac{2}{n}\right)\left(2+\frac{1}{n}\right)^{2}$ or $\frac{1}{27}\left(2+\frac{3}{n}\right)^{2} \quad$ according as
$n=2 \bmod 3,1 \bmod 3 \operatorname{and} \bmod 3$ respectively. Hence
$\lim \inf \delta_{n} \geq \frac{4}{27} \div 0.148$.
A better upper estimate of $\sum_{n-r+1}^{n} \frac{1}{k^{2}}$ given by $\frac{\pi^{2}}{6(n-r+1)}$
follows from the result of Blow ([25], p. 80 equations 7.3.11 © 7.3.13).
Further using the fact that $\frac{1}{k}$ is a strictly monotone nonincreasing function, an upper estimate of $F(n, r)$ is computed as

Now we proceed to prove the following theorem.
Theorem 2: Let $\min _{1 \leqslant \pi \leq n} F\left(r_{1}, r\right)=F\left(n_{1} r_{n}\right)$ and $\delta_{n}=\frac{r_{n}}{n} \quad$ where $F\left(r_{r, i}\right)=\frac{\sum_{r-r+1}^{n} \frac{1}{k^{2}}}{\left(\sum_{r-r+1}^{n} \frac{1}{k}\right)^{2}}$.
Then i) $\hat{j}_{n} \leqslant \alpha<\mid$ for some $\alpha<1$ and sufficiently large n; in fact
ii) δ_{m} tends to the limit δ_{0} as n tends to plus infinity where δ_{0} is the positive root of the equation, $\ln (1-\delta)+2 \delta=0$;
iii) $\frac{n F(n, r)}{\psi(\delta)}$ converges to unity an the open δ interval $(0,1)$
es n tends to plus infinity where $\psi(\delta)=\frac{\delta}{(1-\delta) \ln ^{2}(1-\delta)}$.
In other words, $F(n, r)$ is asymptotically equal to $\frac{1}{n}((\delta)$, and In particular $F\left(n, r_{n}\right)$ is asymptotically equal to $\frac{1}{n} \|\left(\delta_{0}\right)$; and iv) $\frac{n F(n, r)}{\psi(\delta)}$ converges uniformly in $\delta\left(0<\delta=\frac{r}{n} \leq \alpha\right.$)to unity as n tends to plus infinity, provided α is any constant satisfying $0<\alpha<1$.

Proof: i) First we show that for large $n, F(n, n)>F(n, n-1)$.
Let $\sum_{1}^{n} \frac{1}{k^{2}}=s_{n}$ and $\sum_{i}^{n} \frac{1}{k}=t_{n}$.
Then $F\left(\eta_{i}, n\right)=\frac{s_{n}}{t_{n}^{2}}, F(n, n-1)=\frac{s_{n}-1}{\left(t_{n}-1\right)^{2}}$

$$
F(r, n)-F(n, n-i)=\frac{1}{ \pm_{n}^{2}\left(t_{n}-1\right)^{2}}\left[\lambda_{n}\left(t_{n}-1\right)^{2}-\left(\langle-1)^{2} t_{n}^{2}\right]\right.
$$

$>\frac{\operatorname{t}_{n}\left(t_{n}-2 \dot{s}_{n}\right)}{t_{n}^{4}}>\frac{t_{n}-\frac{T^{2}}{3}}{t_{n}^{3}}>0$ for large n, since $t_{n} \rightarrow+\infty$. From now on we assume that $1 \leq r \leq n-1$. Put $\frac{r}{n}=\delta$ so that $\frac{1}{n} \leq \delta \leq 1-\frac{1}{n}$.

$$
\text { Let } \psi(\delta)=\frac{\delta}{(1-\delta) \ln ^{2}(1-\delta)}, 0<\delta<1
$$

Then $\psi^{\prime}(\delta)=\frac{\ln (1-\delta)+2 \delta}{(1-\delta)^{2} \ln ^{3}(1-\delta)}$.
Here the denominator, $(1-\delta)^{2} \ln ^{3}(1-\delta)$, is <0 for $0<\delta<1$, and the numerator, $\ln (1-\delta)+2 \delta$, is >0 for $0<\delta<\delta_{0}$ where δ_{0} is the positive root of the equation, $2 \delta+\ln (1-\delta)=0$, and it is <0 for $\delta_{0}<\delta<1$. (The function $g(\delta)=2 \delta+\ln (1-\delta)$, $0<\delta<1$ has the following properties.
i) $\lim _{\delta \downarrow 0} g(\delta)=0$;
ii) $\lim _{\delta \uparrow \mid} g(\delta)=-\infty$, and
iii) $\max _{\delta} g(\delta)=g\left(\frac{1}{2}\right)>0$. Therefore, δ_{0}, a positive root of $g(\delta)$ lies between $\frac{1}{2}$ and 1 . It is obvious that there is no real root of $g(\delta)$ greater than one]. This means that $\phi(\delta)$ decreases from $+\infty$ to $\phi\left(\delta_{0}\right)$ as δ increases from 0 to δ_{0} and $\psi(\delta)$ increases from $\psi\left(\delta_{0}\right)$ to $+\infty$ as δ increases from δ_{0} to 1 . $\left[\delta_{0}=.797\right.$, which gives $\psi\left(\delta_{0}\right)=1.545$].

An upper estimate of $F(n, r)$ is found as

$$
\begin{aligned}
& F(n, \pi)<\frac{\int_{n-r}^{n} \frac{d x}{x^{2}}}{\left(\int_{1-1}^{n+1} \frac{d x}{x}\right)^{2}}=\frac{\frac{1}{n-r}-\frac{1}{n}}{\ln \left(\frac{n+1}{n-r+i}\right)} \\
& \quad=\frac{r}{r n(n-r)} \ln ^{2}\left(1-\frac{\pi}{n+1}\right)=\frac{\psi(\delta)}{n}[\ln (1-\delta) \\
& \left.\ln \left(1-\frac{\delta}{1+\frac{1}{r}}\right)\right]^{2}
\end{aligned}
$$

Now we prove the following lemme.
Lem 5: If A is constant, $0<\beta<1$, and $0<u<1$ then

$$
\Phi(u)=\frac{\ln (1-u)}{\ln (1-\beta l)} \quad \text { increases with } u
$$

$$
\phi^{\prime}(u)=\frac{\beta(1-x) \ln (1-u)-(1-\beta u) \ln (1-\beta u)}{(1-u)(1-\beta u) \ln ^{2}(1-\beta u)}
$$

The denominator, $(1-u)(1-\beta u) \ln ^{2}(1-\beta u)$, is >0.
The numerator

$$
\begin{aligned}
& =-\beta(1-u)\left(u+\frac{1}{2} u^{2}+\cdots\right)+(1-\beta u)\left(\beta u+\frac{1}{2} \beta^{2} u^{2}+\cdots\right) \\
& =\frac{1}{1 \cdot 2}\left(\beta-\beta^{2}\right) u^{2}+\frac{1}{2 \cdot 3}\left(\beta-\beta^{3}\right) u^{3}+\cdots+\frac{1}{(n-1) n}\left(\beta-\beta^{n}\right) u^{n}+ \\
& +\cdots . \quad \text { Q.E.0. }
\end{aligned}
$$

Hence, by virtue of the leman 5 ,

$$
\begin{equation*}
F(n, r)<\frac{\psi(\delta)}{n}\left\{\frac{\ln \left[1-\left(1-\frac{1}{n}\right)\right]}{\ln \left[1-\frac{1-\frac{1}{n}}{1+\frac{1}{n}}\right]}\right\}^{2}=\frac{\psi(\delta)}{n}\left[\frac{\ln (n)}{\ln \left(\frac{n+1}{2}\right)}\right]^{2} \tag{2}
\end{equation*}
$$

We may note that

$$
\frac{\ln (n)}{\ln \left(\frac{n+1}{2}\right)}=\frac{\ln (n)}{\ln (n)+\ln \left(1+\frac{1}{n}\right)-\ln 2} \rightarrow 1 \text { as } n \rightarrow+\infty
$$

Similarly we find a lower estimate of $F(n, r)$.

$$
\begin{aligned}
& F(n, r)>\frac{\int_{n-r+1}^{n+1} \frac{d x}{x^{2}}}{\left(\int_{n-r}^{n} \frac{d x}{x}\right)^{2}}=\frac{\frac{1}{n-r+1}-\frac{1}{n+1}}{\ln \left(\frac{n}{n-r}\right)} \\
&= \frac{r}{(n+1)(n+1-r)} \ln ^{2}\left(1-\frac{r}{n}\right)=\frac{\psi(\delta)}{n} \frac{1}{1+\frac{1}{n}} 1-\delta \\
& 1+\frac{1}{n}-\delta
\end{aligned}
$$

V
Now choose α and β such that $\delta_{0}<\beta<\alpha<1$ and $\phi(\alpha)=3 \phi(\beta)$.
We consider the following cases.
Case 1: $0<\delta \leq \alpha<1$.
The following lower estimate of $F(n, r)$ actually holds for any fixed δ. since $\frac{1-\delta}{1+\frac{1}{n}-\delta}=\frac{1}{1+\frac{1}{n(1-\delta)}} \quad$ decreases with δ.
$F(n, n)>\frac{\psi(\delta)}{n} \cdot \frac{1}{1+\frac{1}{n}} \cdot \frac{1-\alpha}{1-\frac{1}{n}-\alpha}$
where $\frac{1}{1 \cdots} \cdot \frac{1-\alpha}{1+\cdots}$
Case 11: $\alpha<\bar{m}<1$.

$$
\begin{aligned}
& F(n, r)>\frac{\psi(\delta)}{n} \cdot \frac{1}{1+\frac{1}{n}} \cdot \frac{1-\left(1-\frac{1}{n}\right)}{1+\frac{1}{n}-\left(1-\frac{1}{n}\right)} \geqslant \frac{\psi(\alpha)}{n} \frac{1}{1+\frac{1}{n}} \cdot \frac{1}{2} \\
& \text { For large } n, \frac{1}{2} \frac{1}{1+\frac{1}{n}}>\frac{1}{3} \cdot \frac{\ln (n)}{\ln \left(\frac{n+1}{2}\right)} \text {, cmerofore, } \\
& \frac{\Psi(\delta)}{n} \cdot \frac{1}{2} \cdot \frac{1}{1+\frac{1}{n}}>\frac{1}{3} \frac{\psi(\alpha)}{n} \frac{\ln (n)}{\ln \left(\frac{n+1}{2}\right)}=\frac{\psi(\beta) \frac{\ln (n)}{n} \ln \left(\frac{n+1}{2}\right)}{1} \\
& \geqslant \frac{\psi\left(\delta^{\prime}\right)}{n} \cdot \frac{\ln \left(\frac{n}{\ln }\left(\frac{n+1}{2}\right)\right.}{\ln } \text { for } \delta_{0} \leq \delta^{\prime} \leq 0 .
\end{aligned}
$$

Thus we see that for large n,

$$
\begin{equation*}
\left.F(n, r)>\frac{\psi\left(\delta_{0}\right) \ln (\theta)}{\ln \left(\frac{n+1}{2}\right)} \text { or } s^{\prime} \in \mid \delta_{0}, \mu\right) . \tag{4}
\end{equation*}
$$

Consequently, $F(n, r)>F\left(n, r^{\circ}\right)$ when $\delta=\frac{r}{n}>\alpha$ and $\delta^{\bullet}=\frac{r^{0}}{n} \in\left[\delta_{0}\right.$, $\left.D\right]$ and n large. There is at least one such value of p^{\prime} when n is large. Hence $F(n, r)$ does not assume its minimum when $\frac{p}{n}=\delta>\alpha$. That $i s, F(n, r)$ assumes $i t s$ minimum, $F\left(n, r_{n}\right)$, when $\delta_{n}=\frac{r_{n}}{n} \leq \alpha$.
Q.E.D.
ii) We have here $\partial_{n}=\frac{\pi_{i}}{r_{i}} \leqslant c$, and
$\frac{\psi(0)}{\pi}\left(1-\epsilon_{n}^{\prime}\right)<E(m, i)<\frac{\psi(S)}{n}\left(1+\epsilon_{n}^{\prime \prime}\right)$ for $\quad 0<\delta \leqslant \alpha$ mo. $\left.E^{\prime}(\rangle^{\prime}\right)$ and $E_{m}^{\prime \prime}(>0)$ approach zero as n tends to plus infinity.

$F(n, r)>\frac{\psi(0)}{n} \frac{1}{1+\frac{1}{r}} \frac{1-\alpha}{1+\frac{1}{n}-\alpha}=\frac{\psi^{\prime}(0)}{n}\left(1+\frac{1}{n}\right)^{-1}\left(1+\frac{1}{r(-\alpha)}\right)^{-1}$ for $\left.0<\delta \equiv \alpha^{\prime}\right)$.

We proceed to show that \hat{O}_{0} as $n \rightarrow+\infty$. Lets to $\in>0$
 $\left.\left.m * \delta_{0}<\psi\left(\delta_{0}\right)<\operatorname{tin}(t) \delta_{0}-\epsilon\right), *\left(\delta_{0}+\epsilon\right)-k \delta_{0} \in \epsilon\right)$, say. (That this is possible foll ems from properties ammerated under (1)). Now we choose M so large that for $n>N$,

$$
\begin{equation*}
P\left(\delta_{0}^{*}\right)\left(1+\epsilon_{n}^{\prime \prime}\right)<\psi\left(\delta_{0} \pm \epsilon\right)\left(1-\epsilon_{n}^{\prime}\right) . \tag{6}
\end{equation*}
$$

(That this is possible follows from properties enumerated under (1).

$$
\text { ii) } \epsilon_{n}^{\prime}(>0) \longrightarrow 0, \epsilon_{n}^{\prime \prime}(>0) \longrightarrow 0 \text { and }
$$

iii) $\delta^{*} \in\left(\delta_{0}-\epsilon, \delta_{0}+\epsilon\right)$. , For $\left|\delta-\delta_{0}\right| \geq \epsilon, \psi(\delta) \geq \psi\left(\delta_{0} \pm \epsilon\right)$
hence

$$
\begin{equation*}
\frac{\psi\left(\delta_{n} \pm 9\right)}{n}\left(1-\epsilon_{n}^{\prime}\right) \leq \frac{\mu(1)}{n}\left(1-\epsilon_{n}^{\prime}\right)<F(m, n) . \tag{7}
\end{equation*}
$$

and, for $\delta^{*}=\frac{i_{n}^{*}}{r_{i}} \in\left(\delta_{0,} \delta^{*}\right), \psi\left(\delta_{n}^{*}\right)<\psi\left(\delta^{*}\right)$,
so,

$$
\begin{equation*}
\frac{\psi\left(\delta^{*}\right)}{n}\left(1+\epsilon^{\prime \prime}\right)>\frac{\psi\left(\delta_{n}^{*}\right)}{n}\left(1+\epsilon_{n}^{\prime \prime}\right)>F\left(n_{n}, \pi_{r}^{*}\right) \tag{8}
\end{equation*}
$$

Hence from (6), (7) and (8) it immediately follows that for $\left|\delta-\delta_{0}\right| \geq \epsilon$, $F(n, r)>F\left(n, r_{n}^{*}\right)$.
Thus we have $F(n, r)>F\left(n, r_{n}^{*}\right)>F\left(n, r_{n}\right)$. This implies that $\delta_{n}=\frac{r_{n}}{n}$ must lie in $\left(\delta_{0}-\epsilon, \delta_{0}+\epsilon\right)$. That is, $\left|\delta_{n}-\delta_{0}\right|<\epsilon$ for $n>M$.
Q.E.D.
iii) From (2) we have for $0<\hat{0}<1$,

$$
F(n, 9)<\frac{\psi_{1}(i)}{n}\left[\frac{\ln (n)}{\ln \left(\frac{y+1}{2}\right)}\right]^{2}
$$

$$
\lim _{m} n(n, r)
$$

From (3), we have for $0<0 \leq \alpha<1$,

$$
F(n, n)>\frac{\psi(\hat{0})}{n} \cdot \frac{1}{1+\frac{1}{n}} \cdot \frac{1-\alpha}{1+\frac{1}{n}-\alpha}
$$

This gives
$\frac{\lim _{m}}{n} \frac{n F(n, n)}{W(\delta)} \geqslant 1$.
Hence for every $\hat{\partial}$ in $0<\delta \leq \alpha, \lim _{n} \frac{n F(\eta, r)}{\psi(\delta)}=1$.
Since we can choose α as close to unity as we wish, it immediately follows that $\frac{M F\left(' N y^{2}\right)}{\psi(\delta)}$ converges to unity on open interval $(0,1)$ as $n \longrightarrow+\infty$. Furthermore, from the definition of asymptotic equivalence ($[28]$, p. 10) it follows that $F(n, r)$ is asymptotically equal to $\frac{1}{n} \phi(\delta)$ and in particular $F\left(n, r_{n}\right)$ is asymptotically equal to $\frac{1}{n}\left(\delta_{0}\right)$.
Q.E.O.
iv) To prove the statement iv) true we show that for every $\in>0$, there exists on W (depending on \in and α) such that

$$
\left|\frac{n F(n, r)}{Y(i)}-1\right|<E
$$

for $n \geq N$ and all δ in $(0, \alpha]$. That is, $\lim _{n} \frac{M F(\eta, \eta)}{\psi(\delta)}=1$
for all δ satisfying $0<\delta \leq \alpha<1$. From 2) we get, for,

$$
0<\delta \leq \alpha<1, \frac{m F(\gamma, i}{\psi(j)}<\left[\frac{l_{r}(\gamma)}{\operatorname{lr}(\gamma+1}, 1+\epsilon_{n}^{\prime \prime} \text { where } \epsilon_{n}^{\prime \prime}(>0)\right.
$$

tends to zero as n tends to plus infinity. That is, for every $\in>0$, \exists an $N(\epsilon)$ such that $\left|\epsilon_{n}^{\prime \prime}\right|<\epsilon$ for $n \geq N$.
From 3), we get for $0<\delta \leq \alpha$,

$$
\frac{n F\left(n_{1}, z\right)}{\psi(\delta)}>\frac{1}{1+\frac{1}{n}} \cdot \frac{1-\alpha}{1+\frac{1}{n}-\alpha}=1-\epsilon_{i n}^{\prime}
$$

where $E_{n}^{0}(>0)$ tends to zero as n tends to plus infinity. That is, for every $\in>0, \exists N(\epsilon, \alpha)$ such that for $n \geq M,\left|\epsilon_{n}^{\prime}\right|<\in$. Now take $N=$ largest of $N(\in)$ and $N(\epsilon, \alpha)$. Then for $n \geq N$,

$$
\frac{r_{i} F(n, r)}{\psi(\delta)}-1<\epsilon_{n}^{\prime \prime}<\in \text { gives } \lim _{n} \frac{\eta F\left(r_{1}, r\right)}{\psi(\delta)} \leqslant 1 \text {, for }
$$ every δ in $(0, \alpha]$; and,$\frac{M F(n, r)}{\psi(\delta)}-1>-\underset{n}{\text { Ǵgives }}$

$$
\lim _{n}\left[\frac{n f\left(r, \frac{1}{2}\right)}{\psi(\delta)}-1\right]>-\lim _{n} \in_{M}^{\prime}=0 \quad \text { which means }
$$

$\lim _{n} \frac{m F\left(r_{i}\right)}{}-\cdots(\delta) \geqslant 1 \quad$, for every δ in $(0, \alpha]$. Hence $\lim _{r n} \frac{m F(r, r)}{\mu}=1 \quad$ for every δ in $(0, \alpha)$. by virtue of the existence of a single N, the uniform convergence is established.
Q.E.D.

$$
n \Gamma(n, n)
$$

We claim that -...., does not converge uniformly to unity on the $(0,1)$.
$m F i(n, i)$
Proof: Suppose that $-\frac{m}{n}\left(i_{1}\right)$ converges uniformly to unity on the (0,1).
Then, for any sequence $\left\{\rho_{n}\right\}$ with $0<\rho_{n}<1$, it would be true that

$$
\lim _{n} M F(n, r E n)^{\prime}\left(S_{n}\right)=1
$$

Now choose $\rho_{n}=\frac{n-1}{n}$. Then $\psi\left(\frac{r-1}{r}\right)=\frac{n-1}{\lambda_{r}^{2}(n)}$, hence

This is a contradiction.
Q.E.D.

It seems interesting to point out, beyond the result of theorem 2, the following facts. If we approximate

respectively then we cen write

$$
F(x, y) \therefore \frac{1}{L^{2}(2)}+
$$

Let $\delta=\frac{r}{n}$. Then this approximation for $f(n, r)$ reduces to $\frac{d(\delta)}{n}$ The minimum of $\frac{(\delta)}{n}$ gives the same δ_{0} which has been shown in Theorem 2 to be the limit of C_{n}. This result can also be derived by means of the Euler's Summation Formula.

Following ([24], [26] and [27]9 we derive the expressions for the expectation and the variance of the eth ordered sample observation from one-parameter exponential law up to order $(n+2)^{-1}$. They are:
 and, Var $t_{1,}=5^{2} \cdot \frac{2}{m a+y+2 j}$.

As n increases with $\frac{r}{n}$ fixed, the asymptotic distribution of t_{r}
 Dy. This follows from the results in [24]. Hence the asymptotic variaane of the unbiased estimator, based on the t_{r} th statistic, for 0 works out to be

$$
\frac{b^{2}}{r r} \quad \hat{c}
$$

Now we meant to determine r so that this variance is minimum. Treating the expression for the variance as a function of r, taking its first derivative with respect to r and setting it equal to zero, we get, after simplification,

$$
\left(n \left(1-\frac{6}{6}+j+b^{6}+i\right.\right.
$$

Writing $\frac{r}{n+1}=x$, we reduce the above equation to $\ln (1-x)+2 x=0$, $0<x<1$. If x_{0} is the solution of the above equation then
$r_{n} \doteq(n+1) x_{0}$ provides minimum variance for large $n \cdot$. We get $x_{0}=0.797$ which gives asymptotic minimum variance $=\frac{1.545}{n} 0^{2}$. This result also follows from the fact that $F\left(n, r_{n}\right)$ is asymptotically equal to $\frac{1}{n} \phi\left(\delta_{0}\right)$ where $\phi\left(\delta_{0}\right) \div 1.545$. We know that in the present situation the sample mean is the unique minimum variance unbiased estimater for θ [19]. The variance of this estimator is $\frac{\theta^{2}}{n}$. Hence the asymptotic efficiency of the estimator based on the r_{n} th statistic Is found to be about 66 percent. The subject matter for the Case 1 in Chapter IV. is clearly related to the present discussion. From the resuits derived there, it follows that the sample median has approximately 48 percent asymptotic efficiency.

As a point of interest, the product-moment correlation coefficient between two order statistics, say t_{i} and $t_{j}(i<j)$ in a random sample of size n dram from one-parameter exponential law to order $(n+2)^{-1}$ is obtained by means of the formula given in [24] and [26]. This works out to be

where $p_{1}=\frac{1}{n+1}$, and $p_{2}=\frac{j}{n+1}$. Its asymptotic expression
 from Cramér ([10], p. 369).

111. SONE TESTS OW PARAMETERS OF EXPOWENTIAL FAILURE LAW

Part 1.

If a random variable (r.v.) X has the probability density funczion (p.d.f.)
$f(x)=\left\{\begin{array}{l}\frac{1}{\theta} e^{-\frac{x}{\theta}}, x>0 \\ 0, \text { otherwise } g\end{array}, y 0\right.$
the likelihood ratio test of H : $0=\theta_{1}$ against A : $\theta=\theta_{2}\left(<\theta_{1}\right)$ given the first $r(\leq n)$ ordered observations from a random sample of n yields, as shown by Epstein and Sobel [1], the critical region
$\sum_{i=1}^{n} x_{i}+\left(r_{i}-r_{j} x_{r} \leq i\right.$. Epstein and Sobel [I] show that $\frac{2}{\theta}\left[\sum_{i}^{r} x_{i}+(n-r) x_{r}\right]$
has a chi-square distribution with $2 r$ degrees of freedom. The parameter 0 is the expected value of X and is, in life testing, called average life.

Let $\phi(x)$ be the probability of accepting the alternative when the observation vector is x. Mow following Fraser [3] it is easy to see that $E_{\theta}\{\phi(x)\} \leq \alpha$ for $0 \geq 0$, and furthermore the test does not depend on θ_{2} so long as $\theta_{2}<\theta_{1}$. Hence it at once follows that the test function, $\phi(x)$ derived by means of Moymen-Pearson lemme is a
uniformity most powerful (UMP) test for the $H: 0 \geq 0$, versus A: $0<0_{1}$. Similarly we can show that the corresponding test function, namely,

$$
\phi(x)=\begin{aligned}
& \left.0 \quad \sum_{i}^{i} x_{i}-r-k\right) x_{i} \leq i \\
& 1, \text { otherwise },
\end{aligned}
$$

for the $H: \theta=\theta_{1}$ against A : $0=\theta_{2}\left(>\theta_{1}\right)$ is un p test for the modified $H: 0 \leq \Theta_{1}$ against $A: \quad 0>\boldsymbol{\theta}_{1}$, although in life testing problem, $H: 0 \geq 0$, seams in general to be of practical interest. Howaver, there does not exist a UW test for the $H: 0=0$ against A: $\quad \not \leqslant 0_{1}$. But if we restrict ourselves to a class of unbiased tests there does exist - UMP unbiased test for the $H: 0=0_{1}$ against
$A: \quad \theta \not \theta_{1} \cdot$
Here we propose to consider testing statistical hypotheses connected with the two-parameter exponential law whose probability density function (p.d.f.) is given by

where 0 is known as the scale parameter and 6 the location parameter. G is identified as guarantee time or minimum life in life testing situations.

Since our life test data refer to measurement of time it seems appropriate to denote the observation vector by t instead of x. In the
" sequel we shall use T and t in the sense of random and observation vector respectively.

Now, in failure analysis me generate data by destructive tests and so from en economic point of view we consider a censoring scheme in which we use only the first $r(\leq n)$ ordered observations: $6 \leq t_{1}<t_{2}<\ldots<t_{r}<\infty \quad$

To test the $H: \quad 0=\theta_{1}$ against A : $0=\theta_{2}\left(<\Theta_{1}\right)$, assuming G to be known, say G_{0} (not necessarily zero), the best α-level test function based on the first r out of n ordered observations can of course be derived directly from the test function given above for $6=0$. Obviously, this test function mould provide ur test for modified H: $0 \geq 0$, against $A: 0<0$ and mould possess all the other properties which have been pointed out regarding the hypothesis considered by Epstein and Sober.

When 6 is unknown, the best α - level test function for simple
$H: 0=\theta_{1}$ against simple A : $0=\theta_{2}\left(<\theta_{1}\right)$ is found to be

 with $2 r-2$ degrees of freedom. For modified $H: 0=0_{0}$ against A: 0 \& θ_{0} and 6 unknown, the UMP unbiased α - level test function

Is found to te

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } E_{1} \leqslant \sum_{2}^{r}\left(t_{i}-t_{1}\right)+(n-r)\left(t_{r}-t_{1}\right)=y \leqslant c_{2} \\
1, \text { otherwise } y
\end{array}\right.
$$

where c_{1} and c_{2} are determined from

$$
\begin{equation*}
\frac{1}{(k-2)!\xi_{0}^{i-1}} \int_{e_{1}}^{\varepsilon_{2}} y^{r-2} e^{-\frac{y_{1}}{\theta_{0}}} d y=1-\alpha \tag{1}
\end{equation*}
$$

In conjunction with

The relation (2) yields,

The numerical solution for c_{1} and c_{2} can be carried out by successive
approximations or graphically. This test function is derived by following the hint given in Lehmann ([2], Problem 12 i), p. 202)
for the H : $\theta=\theta_{0}$ against $A: \quad \theta \neq \theta_{0}$ assuming 6 to be known, say σ_{0}, an α - level test function is defined by

Noting that

$$
2\left[\frac{r}{\theta}\left(t_{i} s_{0}\right)+\left(n,\left(t_{r}-G_{0}\right)\right]\right.
$$

has chi-square distribution with $2 r$ degrees of freedom me obtain the p.d.f. of

$$
u=\frac{2}{2}\left(t_{i}-G_{0}\right)+(n-r)\left(t_{r}-G_{0}\right) .
$$

This is

$$
f(u)=\left\{\begin{array}{l}
\frac{1}{(r-1)!\theta^{k}} u^{r-1}-e^{-u}, u>0 \\
0, \text { othenses. }
\end{array}\right.
$$

We determine c_{1} and c_{2} from the equation

In conjunction with

The relation (4) yields

$$
\begin{aligned}
& \text { The relation (4) yields } \\
& e_{1}^{2}-\frac{C_{1}}{\theta_{0}}=e_{2}^{e_{2}}
\end{aligned}
$$

The equations (1) and (3) can be expressed in terms of the Incomplete Game function as

$$
\alpha=1: I\left[\begin{array}{r}
1 \\
\cdots
\end{array}\right] \cdots \theta_{0} ; \dot{y}_{1} ; \frac{e_{1}}{b_{0}}
$$

and

$$
A=1-I\left[\pi ; \frac{c_{2}}{\theta_{0}}\right]+\left[\theta_{i} ; \omega_{0}\right.
$$

respectively, where $I[p ; q]$ is the Incomplete came Function whose values are tabulated in [5].

And finally the power functions corresponding to $\mathrm{H}: ~ \theta=\theta_{0}$ against
$A: \quad \neq \theta_{0}$ assuming c unknown and $K: \quad 0=\theta_{0}$ against A : $\theta \neq \theta_{0}$ assuming 6 known are expressed as

$$
P(\theta)=1-T\left[\begin{array}{l}
0-1, \\
\hdashline- \\
\theta
\end{array}\right.
$$

and

$$
P(\theta)=\left[1 r, \frac{z_{2}}{6}\right]+1\left[n, \frac{3}{\theta}\right]
$$

respectively.
Earlier we have seen that the test function,

is un p for the $H: 0 \geq 0_{0}$ against A : $0<\theta_{0}$, assuming G to be known, say G_{0}. We shall show later on that this test function is again UMP for the $H: G=G_{0}$ and $\theta=\theta_{0}$ against A : $\subset<\sigma_{0}$ and $0<\theta_{0}$.

For testing the $H: C=\epsilon_{0}$ against $A: C \not C_{0}$ and 0 known, say 0_{0} the UWP test based on the first $r(\leq n)$ ordered observations out of a random sample of size n from the two-parameter exponential population is obtained by means of lIkelihood ratio. The lIkelihood ratio,

$\sup _{\mathrm{a}} f(t)$
$\sin f(t)$
where $\mathcal{W}=\left\{\omega_{0}, \theta_{0}\right\} \quad$ and $\Omega=\left\{c, \theta_{0}\right\}$ gives in the present situaction

$$
\lambda= \begin{cases}-\frac{\eta}{\theta_{0}}\left(t-G_{0}\right) & \\ 0 & \text { if } t_{1}>s_{0} \\ & \text { if } t_{1}<s_{0}\end{cases}
$$

This implies that the α - level likelihood ratio test is given by

$$
\begin{aligned}
& \phi(t)= \begin{cases}0 \text { if } e^{-\frac{n}{\theta_{0}}\left(t-G_{0}\right)} & >\lambda_{\alpha} \\
1 \text { if } & \leq \lambda_{\alpha} \text { or } t_{1}<G_{0},\end{cases} \\
& \text { where } \lambda_{\alpha} \text { is determined from the integral, } \int_{0}^{\lambda_{\alpha}} f(\lambda) d \lambda=\alpha \cdot f(\lambda),
\end{aligned}
$$

the p.d.f. of λ under null hypothesis is a uniform distribution over unit interval which immediately gives $\lambda_{\alpha}=\alpha$. An equivalent α - level test function is then given by

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } \epsilon_{0} \leq t_{1} \leq \epsilon_{0}-\frac{1}{n} \theta_{0} \ln \alpha \\
1 \text { if } t_{1}<\sigma_{0} \text { or } t_{1} \geq \epsilon_{0}-\frac{1}{n} \theta_{0} \ln \alpha .
\end{array}\right.
$$

For $r=n$ where n is the size of a random sample from the same exponential 1 aw , Pauison [4] has considered, among other things, $H: ~ 6=0$ against $A: G \neq 0$. Here we shall reformulate Paulson's problems and
obtain more general results besides considering other problems as well. We may note that whenever a UP test exists it is unbiased since its power cannot fall below that of the test $\varphi(t)=\alpha$, and in addition Merman and Pearson have shown that if a Ur ip test exists, it is the likellhood ratio test.

Now we shall derive power function, $P(G)$ of the likelihood ratio test for $H: ~ G=\sigma_{0}$ versus $A: \quad \subset \neq \sigma_{0}$, assuming $\theta=\theta_{0}$ known and show that the likelihood ratio test is unbiased and UMP.

From the equivalent α - level test function given above, we write the power function as

$$
P(G)=\int_{G}^{G_{0}} f\left(t_{1}\right) d t_{1}+\int_{a}^{\infty} f\left(t_{1}\right) d t_{1},
$$

where

1) $f\left(t_{1}\right)=\left\{\begin{array}{l}\frac{n}{\theta_{0}} e^{-\frac{\pi}{\theta_{0}}\left(t_{1}-G\right)}, t_{1}>G \\ 0, \text { othonise }\end{array}\right.$
and
ii) $a=G_{0}-\frac{1}{n} \theta_{0} \ln \alpha$.

Now we consider three cases.

Case 1: $\mathbf{G} \leq \mathbf{6}_{0}$.

$$
P(G)=1-\int_{G_{0}}^{a} f\left(t_{1}\right) d t_{1}=1-(1-\alpha) e^{\frac{n}{\theta_{0}}\left(G-G_{0}\right)}
$$

which gives $P\left(G_{0}\right)=\alpha$, as expected.
Case 11: $\mathbf{6}_{0} \leq 6 \leq 0$.

$$
P(G)=\int_{a}^{\infty} f\left(t_{1}\right) d t, \cdots:-\int_{G}^{l} f\left(t_{1}\right) d t=\alpha e^{\frac{n}{\theta_{0}}\left(a_{1} \tilde{v}_{0}\right)}
$$

which gives $P\left(\epsilon_{0}\right)=\alpha$ es expected.
Case III: $6 \geq 0$.

$$
P(G)=\int_{a}^{\infty} f\left(t_{1}\right) d t_{1}=\int_{G}^{\infty} \dot{\infty}\left(t_{1}\right) d t_{1}=1
$$

For $\mathbf{c} \leq \boldsymbol{\sigma}_{0}$,

$$
\begin{aligned}
& e^{\frac{n}{\theta_{0}}\left(G-\hat{\sigma}_{0}\right)} \leq 1, \text { mich implies } \\
& P_{\text {For }}(G)=1-(1-\alpha) e^{\frac{m}{\sigma_{0}}\left(G-G_{0}\right)} \geqslant \alpha, \\
& e^{\theta_{0}\left(G-G_{0}\right)} \geqslant, \text { mich implies }
\end{aligned}
$$

$$
P(\hat{G})-\alpha^{\prime \hat{\theta_{0}}\left(\hat{\theta}-\hat{n}_{0}\right)} \geqslant \lambda .
$$

and, for $6 \geq$,

$$
P(\alpha)=1 \geq \alpha
$$

Hence $P(6) \geq \alpha$ for every $6 \in(-\infty, \infty)$ and so the likelihood ratio test is unbiased.

To show that this test is UM, we need to establish that the criticcal region provided by the bow α - level equivalent test function gives maximum power of the test for each and every alternative to $H_{i} 6=G_{0}$. To see this, we consider two simple alternatives, namely, $G=G_{1}\left(>\epsilon_{0}\right)$ and $G=G_{2}\left(\leqslant G_{0}\right)$ for the null hypothesis $G=G_{0}$. For simple hypothesis against simple alternative we find the α - level best test by the application of the Meyman-Pearson lemme. Here MeymanParson lame gives the following a - level best test function for the $H: C=G_{0}$ against $A: C=G_{1}\left(>G_{0}\right)$ and also against A : $G=G_{2}\left(<G_{0}\right)$

$$
\phi(t)=\left\{\begin{array}{lll}
0 & \text { if } c_{0} \leq t_{1} \leq c_{0}-\frac{1}{n} \theta_{0} \ln \alpha \\
1 & \text { if } t_{1}<\epsilon_{0} \quad \text { or } \quad t_{1}>\epsilon_{0}-\frac{1}{n} \theta_{0} \ln \alpha
\end{array}\right.
$$

This test function is identical with the equivalent α - level test function based on the ilkelihood ratio test and furthermore it is independent of G_{1} and G_{2} and hence of every alternative for the hypothesis 6 - G_{0} : so clearly the likelihood ratio test is uni. This property is also the subject of Lehmann's problem 13.2 (1) of page 110. [2].

For testing the $H: G=\sigma_{0}$ against $A: G \neq \sigma_{0}$ when the scale parameter 0 is unknown, the likelihood ratio λ based on the first $r(\leq n)$ ordered observations out of a random sample of size n is given by

$$
\lambda=\left[\frac{\sum_{2}^{2}\left(t_{i}-t_{1}\right)+(n-r)\left(t_{r} t_{1}\right)}{\sum_{1}^{2}\left(t_{i}-G_{10}\right)+(n-r)\left(t_{r}-G_{0}\right)}\right]^{r}
$$

which can be written as

$$
\lambda^{\frac{1}{r}}=\left[\frac{m\left(t_{1}-G_{0}\right)}{\sum_{2}^{2}\left(t_{1}-t_{1}\right)+(n-r)\left(t_{r}-t_{1}\right)}\right]_{i}^{-1}
$$

From [1] and [19] it follows that $\frac{2}{\theta} n\left(t_{1}-G_{0}\right)$ and

$$
\frac{2}{\theta}\left[\sum_{2}^{r}\left(t_{i}-t_{1}\right)+(n-r)\left(t_{r}-t_{1}\right)\right]_{1}
$$

are independently distributed as chi-squares with 2 and $2 r-2$ degrees
of freedom respectively and hence the quantity,

$$
z=\frac{n(r-1)\left(t_{1}-G_{0}\right)}{\sum_{i=2}^{m}\left(t_{i}-t_{1}\right)+(n-r)\left(t_{r}-t_{1}\right)}
$$

|
has the well-known F distribution with 2 and $2 r-2$ degrees of freedom. The statistic 2 is clearly equivalent to the above likelihood ratio test. Thus the α - level test function for the aforementioned hypothesis is:

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } 0 \leq z \leq b \\
1, \text { otherwise },
\end{array}\right.
$$

where b is determined from the F - table. The use of this test funccion is equivalent to the decision rule: accept H when $\sigma_{0}<t_{1}<G_{0}+\frac{b u}{n}$, where

$$
\begin{aligned}
& u=\frac{\sum_{2}^{r}\left(t_{i}-t_{1}\right)+(n-r)\left(t_{r}-t_{1}\right)}{r_{2}-1}, \\
& f(u)=\left\{\begin{array}{l}
(r-1)^{r-1} u^{r-2}-e^{-\frac{1}{\theta}(h-1) u} \\
0, \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

and p.d.f. of t, is given by

$$
f\left(t_{1}\right)=\left\{\begin{array}{l}
\frac{\eta}{\theta} e^{-\frac{\eta}{\theta}\left(t_{1}-G\right)} \\
0, \text { el sombre. }
\end{array}, t_{1}>G\right.
$$

We may note here that t_{1} and u are independently distributed so that $f\left(t_{1}, u\right)=f\left(t_{1}\right) f(u)$. The power function is derived now.

Case 1: $\mathbf{G} \leq \mathbf{6}_{\mathbf{0}}$.

The relations $6 \leq \sigma_{0}<t_{1}<\sigma_{0}+\frac{b u}{n}<\infty \quad$ gives

$$
P(G)=1-\int_{0}^{\infty} f(u)\left[\int_{-G_{0}}^{G_{0}+\frac{b u}{n}} f\left(t_{1}\right) d t_{1}\right] d u=1-(1-\alpha) e^{\frac{n}{\theta}\left(G_{-}-G_{0}\right)}
$$

where $\alpha=\left(1+\frac{b}{r-1}\right)^{-(r-1)}$ which follows from the fact that
$(-f(z) d z=\alpha$

$$
\int_{b}^{\infty} f(z) d z=\alpha
$$

case II: $\mathbf{c} \geq \mathbf{c}_{0}$.
Here the relations $\epsilon_{0} \leq \epsilon<t_{1}<\sigma_{0}+\frac{b u}{n}<0 \quad$ gives

$$
\begin{aligned}
& P(G)=\int_{\frac{n}{b}\left(G-G_{0}\right)}^{\infty}\left[-\int_{G}^{\infty} f\left(t_{1}\right) d t_{1}\right] d u \\
& =\alpha e^{\frac{M}{\theta}\left(G-G_{0}\right)}+I\left[r-1 ; \frac{n(r-1)\left(G-G_{0}\right)}{\theta}\right] \\
& \left.-\alpha e^{\frac{n}{\theta}\left(G-G_{0}\right)}\right]\left[r-1 ; \frac{n(r-1+b)\left(G-G_{0}\right)}{n}\right] \\
&
\end{aligned}
$$

which is the form in which the Incomplete Gemma Function has been tabulated [5].

Having derived the power function wee show now that the lIkelihood ratio test is unbiased.

$$
\frac{\eta}{\theta}\left(G-G_{0}\right)
$$

For $6 \leq \epsilon_{0}, \tau \leq 1$ which means

$$
P(G)=1-(1-\alpha) e^{\frac{n}{\theta}\left(G-G_{0}\right)} \geqslant \alpha .
$$

For $6 \geq G_{0}$, we wite

$$
P(G)=1-\int_{\frac{n}{b}\left(G-G_{0}\right)}^{\infty} f(u) d u \int_{G}^{a_{0}+\frac{b u}{n}} f\left(t_{1}\right) d t_{1}
$$

$$
=1+\int^{0}\left[e^{\frac{1}{\theta}\left[n\left(G_{0}-\sigma_{0}\right)-b u\right]}-1\right] f(u) d u
$$

$$
\frac{n}{b}\left(G_{0}-G_{0}\right)
$$

Differentiating $\mathbf{P}(6)$ with respect to 6 ,

$$
P^{\prime}(G)=\frac{\pi}{\theta} \int_{\frac{m}{b}\left(G-G_{n}\right)}^{\infty} e^{\frac{1}{\theta}\left[n\left(G_{-}-G_{0}\right)-b u\right]} f(\omega) d u
$$

Recalling that $G \geq G_{0}$, the integral expression for $P^{\prime}(G)$ is clearly positive which implies that $P(G)$ is a monotone non-decreasing function of 6 for $G \geq G_{0}$ and we have shown earlier that for $G \leq G_{0}$, $P(G) \geq \alpha$ hence it follows that for any $6, P(G) \geq \alpha$ and so the likeIl hood ratio test is unbiased.

The likelihood ratio test for the alternative $6 \neq G_{0}, 0$ unknown, is not un. But when we restrict ourselves to a class of unbiased tests there does exist a UP unbiased test. Such UMP unbiased test function is derived by making use of the hint given in Lehmann ([2], Problem 12 11), page 202). This is $\phi(t)=\left\{\begin{array}{l}0 \text { if } 0 \leq \frac{r_{1}(h-1)\left(t_{1}-G_{0}\right)}{\sum_{2}\left(t_{i}-t_{1}\right)+\left(n-h_{2}\right)\left(t_{r}-t_{1}\right)}=t \leq i \\ 1, \text { otherwise, }\end{array}\right.$ where as shown earlier 2 has F distribution with 2 and $2 r-2$ degees of freedom.

It may be noted that our UWP unbiased test function and our unbiased likelihood ratio test function for the $H: G=\sigma_{0}$ versus $A: G \neq \sigma_{0}$ are identical.

For testing the $H: G=\sigma_{0}$ and $0=\theta_{0}$ versus $A: G<\sigma_{0}$ and $\theta<\theta_{0}$, the UP P test based on the first $r(\leq n)$ ordered observations is obtained by means of the Meyman-Pearson lemma. The test function is given by
1
$\phi(t)=\left\{\begin{array}{l}\text { of } \sum_{1}^{n}\left(t_{i}-G_{0}\right)+(n-r)\left(t_{r}-G_{0}\right) \geqslant e \\ 1, \text { ornorice },\end{array}\right.$ where under the null hypothesis $\frac{2}{\theta_{0}}\left[\frac{r}{\sum_{1}}\left(t_{i}-G_{0}\right)+(n-r)\left(t_{h}-G_{0}\right)\right]$
has chi-square distribution with $2 r$ degrees of freedom. The proof that the above test function indeed provides the un test for the $H: G=\mathbf{G}_{0}$ and $0=0_{0}$ versus $A: \quad \ll C_{0}$ and $0<\theta_{0}$ follows directly from the similar arguments of Meyman and Pearson [6]. It may be remarked at this stage that we have obtained earlier the exactly same test function for testing the H : $0=\theta_{1}$ against A : $0=\theta_{2}\left(<\theta_{1}\right)$ assuming G to be known, say G_{0}.

A likelihood ratio test based on the first $r_{1}\left(\leq n_{1}\right)$ and $r_{2}\left(\leq n_{2}\right)$ observations out of two ordered samples of sizes n_{1} and n_{2} respectively dram randomly from exponential failure laws,

$$
f_{1}(x)=\left\{\begin{array}{l}
\frac{1}{\theta}-e_{1}^{-\frac{1}{0}}\left(x-G_{1}\right), x>G_{1} \\
0, \text { otherwise }
\end{array}\right.
$$

$$
f_{2}(x)= \begin{cases}\frac{1}{G}-e^{-\frac{1}{\theta}\left(x-G_{2}\right)} & , x>G_{2} \\ 0, \text { otherwise }, & \end{cases}
$$

for testing $H: G_{1}=G_{2}$ assuming 0 , the common scale parameter unknown has been derived by Epstein and Tao [7]. Noting
$t_{11}<t_{12}<\ldots<t_{1 r_{1}}$ and $t_{21}<t_{22}<\ldots<t_{2 r_{2}}$ are the first $r_{1}\left(\leq n_{1}\right)$ and $r_{2}\left(\leq n_{2}\right)$ observations of random samples of sizes n_{1} and n_{2} respectively, an equivalent likelihood ratio test function is given by

$$
\phi(t)=\left\{\begin{array}{lc}
0 & \text { if } 0<w<c \\
1, & \text { otherwise }
\end{array}\right.
$$

where

$$
x^{c}= \begin{cases}\left(i_{1}+i_{i_{2}}-2\right) n_{1}\left(t_{1} t,\right. & \text { if } t_{11}>t_{21} \\ \frac{\left(i_{1}+k_{2}-2\right) n_{2}\left(t_{21}-t_{1}\right)}{u} & \text { if } t_{21}>t_{11}\end{cases}
$$

with

The statistic w has an F distribution with 2 and $2 r_{1}+2 r_{2}-4$ degrees of freedom. Paulson [4] has considered the sam hypothesis and has selected another equivalent (differing by constant only) likelihood ratio test function for this hypothesis when $r_{1}=n_{1}$ and $r_{2}=n_{2}$. Furthermore the has shown that the likelihood ratio test for this hypothesis is unbiased and has expressed its power function in terms of the Incomplete Gamma Function. For $r_{1} \leq n_{1}$ and $r_{2} \leq n_{2}$, the Paulson's
form of the test function is given by

$$
\phi(t)=\left\{\begin{array}{lll}
0 & \text { if } 0<\frac{w}{h_{1}+h_{2} 2}<c_{1} \\
1, & \text { otherwise }
\end{array}\right.
$$

where $c_{1}=\frac{c}{r_{1}+r_{2}-2}$ and w is the same as given above. Let $r=r_{1}+r_{2}$. For the α - level test function we have $\alpha=\left(1+c_{1}\right)-(r-2)$ which follows from the relation,

$$
\int_{e_{1}(r-2)}^{\infty} f(w) d w=\alpha
$$

Now we proceed to derive power function for the above test function and show that it is mablesed by following Paulson [4].

$$
\text { Writing } z= \begin{cases}n_{1}\left(t_{11}-t_{21}\right) & \text { if } t_{11}>t_{21} \\ n_{2}\left(t_{21}-t_{11}\right) & \text { if } t_{21}>t_{11}\end{cases}
$$

we have $\frac{w}{r-2}=\frac{2}{u}$ which gives the acceptance region for the mull hypothesis as: $0 \leq Z \leq c_{1} u$, where the p.d.f. of u is given by $f(u)=\left\{\begin{array}{l}\frac{u^{r-3} e^{-\frac{u}{\theta}}}{\theta^{r-2}(r-3)!} \\ 0, \text { otrenses. }\end{array}\right.$

$$
u>0 .
$$

The p.d.f. of \mathbf{Z} is derived by observing that the probability that \mathbf{Z} lies in any interval is the sum of the probabilities that $n_{2}\left(t_{21}-t_{11}\right)$ and $n_{1}\left(t_{11}-t_{21}\right)$ lie in that interval and by then using standard methods for finding the distribution of the difference of two random variables. For the case $H=\boldsymbol{G}_{2}-\boldsymbol{G}_{1} \geq 0$, the p.d.f. of \mathbf{Z} is

$$
f(z)=\left\{\begin{array}{l}
f_{1}(z)=\frac{-e^{-\frac{n_{1}}{\theta} H}}{\left(n_{1}+n_{2}\right) \theta}\left[n_{1} e^{\frac{n_{1} z}{n_{2} \theta}}+n_{2} e^{-z}\right], \\
f(z)=\frac{\left[n_{1} e^{\frac{n_{2}}{\theta}}+\frac{\left.n_{2} e^{-\frac{n_{1}}{\theta}}\right]}{n_{1}}\right] 0 \leq z \leq n_{2} H}{n^{-\frac{z}{\theta}}}, \\
n_{2} \leq z \leq \infty .
\end{array}\right.
$$

Likewise for the case $H \leq 0$, the p.d.f. of 2 is

$$
\begin{aligned}
& f^{*}(z)=\left\{f_{1}^{*}(z)=\frac{e^{\frac{n_{2}}{\theta} H}}{\left(n_{1}+n_{2}\right) \theta}\left[n_{2} e^{\frac{n_{2} z}{n_{1} \theta}}+n_{1} e^{\left.-\frac{c^{\frac{z}{e}}}{}\right], ~}\right.\right. \\
& {\left[n_{2} e^{-\frac{n_{1} H}{\theta}}+n_{e} \frac{n_{2} H}{\theta}\right] 0 \leq Z \leq \cdots n_{1}} \\
& \left\{f_{2}^{*}(z)=\frac{n_{2} e+n_{1} e^{\theta}}{\left(n_{1}+n_{2}\right) \theta} c^{-\frac{z}{\theta}},-n_{1}+z \leq \infty\right.
\end{aligned}
$$

The power function, $P(H)$, for the case $H \geq 0$, is

$$
\begin{aligned}
& P(H)=-\left\{\int_{0}^{u} d u \int_{0}^{n_{2} H} f_{1}(z) f(u) d z-\int_{0}^{\frac{n_{2} H}{c_{1}}} d u \int_{c_{1} u}^{c_{1}}(z): \dot{r}\right. \\
&+\int_{\frac{n_{2} H}{c_{1}}}^{d} d z \\
& \int_{n_{2} H}^{\infty} f_{2}(z) f(u) d z
\end{aligned}
$$

Upon integrating out and simplifying, the power function becomes $x \cdot 4$

$$
\begin{aligned}
& +\alpha\left(\frac{n_{1}-c^{2!}}{n_{1}+n_{2}}\right)\left\{1-I\left[n_{1}-2 ; \frac{n_{2}+(1+c)}{c_{1} \theta}\right]\right\} \\
& -\frac{n_{2}}{n_{1}+n_{2}} e^{-\frac{n_{1}+1}{\theta}}\left(\frac{n_{2}}{n_{2} \cdots n_{1}}\right)^{2-2}\left[n-\frac{H\left(n_{2}-n_{1} c_{1}\right)}{c_{1} \theta}\right]
\end{aligned}
$$

The power function for the case $H \leq 0$ is

$$
\begin{aligned}
& P(H)=1-\left\{\int_{0}^{\infty} d u \int_{0}^{-n_{1} H} f_{1}^{*}(z) f(u) d u d z-\int_{0}^{-\frac{n_{1}+t}{c_{1}}} d u \int_{e_{1} u}^{-n_{1} H} f_{1}^{*}(z) f(u) d z\right. \\
& \left.+\int_{-\frac{n_{1}-}{e_{1}}}^{\infty} d u \int_{-n_{1}+t}^{e_{1} u} f_{2}^{*}(z) f(u) d u\right\}
\end{aligned}
$$

Again on integrating out and simplifying, we get

$$
\begin{aligned}
& +\alpha\left(\frac{n_{2} e^{-\cdots} n_{1}+n_{2}}{n_{1}+n_{2}}\right)\left\{1-I\left[r-2 ; \frac{-n_{1} H\left(1+e_{1}\right)}{e_{1} \theta}\right]\right\} \\
& -\frac{n_{1}}{n_{1}+n_{2}}-e^{\frac{n_{2}}{\theta}{ }^{H}}\left(\frac{n_{1}}{n_{1}-n_{2} e^{\prime}}\right)^{9,-2}\left[n-2 ;-\frac{-H\left(n_{1}-n_{2} e_{1}\right)}{e_{1} \theta}\right] .
\end{aligned}
$$

To show that $P(H)>\alpha$ when $H \neq O$, it is sufficient to show that the derivative $P^{\prime}(H)>0$ aten $H>0$ and $P^{\prime}(H)<0$ when $H<0$. of course $P(H=0)=\alpha$. For $H>0$, we wite $P(H)$ after integrantIng w.r.t. 2 as

$$
\begin{aligned}
& P(H)=1-\frac{n_{2}}{n_{1}+n_{2}}\left[1-e^{-\frac{H}{\theta}\left(n_{1}+n_{2}\right)}\right] \\
& +\int_{0}^{\frac{n_{2} H}{c_{1}}} \frac{n_{2} e^{-\frac{n_{1} H}{\theta}}}{n_{1}+n_{2}}\left[-e^{\frac{n_{1} H}{n_{2} \theta}}-e^{-\frac{Z}{\theta}}\right]_{e_{1} u}^{n_{2} H} f(u) d u \\
& -\int_{\frac{n_{2} H}{e_{1}}}^{\infty} \frac{\left(n_{1} e^{\frac{n_{2} H}{\theta}}+n_{2} e^{-n_{1}} \theta\right.}{n_{1}+n_{2}}\left[-e^{-\frac{z}{\theta}}\right]_{-n_{2} H}^{e_{1} u} f(u) d \cdot l
\end{aligned}
$$

where $[f(x)]_{a}^{b}=f(b)-f(a)$. Upon differentiating and simplifying we get

$$
\begin{aligned}
P^{\prime}(H) & =\frac{n_{1} n_{2}}{\left(n_{1}+n_{2}\right) \theta} \int_{0}^{\frac{n_{2} H}{e_{1}}}-\frac{n_{1} H}{\theta}\left[e^{\left.\frac{n_{1} e_{1} u}{n_{2} \theta}-e^{-\frac{e_{1} u}{\theta}}\right] f(u) d u}\right] \\
& +\frac{n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{\theta}} \int_{\frac{n_{2}}{\theta}}^{\infty}-e^{-\frac{e_{1} u}{\theta}}\left[e^{\left.\frac{n_{2}}{\theta}-e^{-\frac{n_{1} H}{\theta}}\right] f(u) d u}\right.
\end{aligned}
$$

Both Integrals are clearly positive, so $\mathrm{P}^{\prime}(\mathrm{H})>0$ when $\mathrm{H}>0$. Simllarly we can show that $P^{\prime}(H)<0$ when $H<0$. Therefore, it follows that the test is unbiased.

Part 2.

In Part 1. we have shown that for testing the $H: G=\boldsymbol{\sigma}_{0}$ against A: $G \notin G_{0}$ assuming θ unknown, on equivalent likelihood ratio test function is:

$$
\phi(t)= \begin{cases}0 & \text { if } 0 \leq z \leq b \\ 1, & \text { otherwise }\end{cases}
$$

where

$$
\mathcal{\alpha}=\frac{n(r-1)\left(t_{1}-G_{0}\right)}{\frac{2}{2}\left(t_{i}-t_{1}\right)+(n-h)\left(t_{r}-t_{1}\right)}
$$

has an F distribution with 2 and $2 r-2$ degrees of freedom. This test is UWP unbiased. Mow we propose a new statistic denoted by ${ }^{5} r, n$ which is analogous to Carlson's statistic h_{n}^{*} [8] to test the above hypothesis. This statistic is defined by

$$
\int_{M_{1, r}} \cdots \frac{t_{1 n}-G_{0}}{i_{i n}} i_{n} \quad \text { or for convenience in writing } S_{r}=\frac{t-G_{0}}{t_{r}-\frac{t}{i}} .
$$

A great advantage in choosing this statistic stems from the fact that it requires only two observations namely, the first and the eth one to test the hypothesis. However, recommendation regarding the use of this new statistic depends mainly on its possessing satisfactory properties of a good test function. Superficially, this statistic has properties similar to Student's t test in that it is homogeneous of degree zero in the variable $\left(t_{1}-G_{0}\right)$, and the numerator and denominator are independently distributed. In the present discussion we hope to derive i) the p.d.f. and c.d.f. of $s_{r, n}$, ii) the expectation of $s_{r, n}$, iii) Two Moment-Recurrence formulas to compute variance etc. iv) the power function for this test function, and v) some properties of this test function.

Wherever we shall consider it necessary to use $s_{r, n}$ to avoid ambiguity we shall use it, otherwise we shall write s for $s_{r, n}$. Incldentally, it is easy to see that if we were to replace $t_{2}, t_{3}, \ldots, t_{r-l}$ by t_{r} in Z, it would reduce to

$$
Z^{*}=\frac{r n\left(q_{1}-1\right)\left(t_{1}-G_{0}\right)}{(n-1)\left(t_{r}-t_{1}\right)}=\frac{n\left(q_{1}-1\right)}{m-1} \operatorname{ser}_{n}
$$

On the basis of our new statistic s, an α - level test function for the $H: G=G_{0}$ versus $A: G \neq G_{0}$, assuming θ unknown is defined as

$$
\phi(t)=\left\{\begin{array}{lll}
0 & \text { if } 0 \leq s \leq c \\
1 & \text { if } s>c
\end{array}\right.
$$

$$
\int_{e}^{\infty} f(s) d s=\alpha ; f(s)
$$ being the p.d.f. of s under null hypothesis which we proceed to derive now.

The joint p.d.f. of x_{j} and $x_{j}(i<j)$, the fth and the j th ordered sample observations out of an ordered sample of size n dram n from any continuous p.d.f., say $f(x)$ is given by
where $F(x)$ is the c.d.f. of x whose p.d.f. is $f(x)$. In the present case

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{g} e^{-\frac{1}{\theta}(x-G)}, \quad x>G \\
0, \text { othenomso. }
\end{array}\right.
$$

Replacing x by t as we are dealing with time measurement and writing $i=1, j=r$ we get the following joint distribution of t_{i} and t_{j} under the null hypothesis.

$$
\frac{g^{2}}{} e^{-\frac{1}{\theta}\left[\left(t-G_{0}\right)+(n-x+)\left(t-G_{0}\right)\right]}
$$

$$
f(t, t)=\left\{\begin{array}{l}
\\
0, \\
0,
\end{array}\right.
$$

Making the transformations, $u=t_{1}-G_{0}$ and $v=t_{p}-t_{1}$, we get the following joint p.d.f. of u and v.

$$
\begin{aligned}
& \frac{n!}{(r-2)!(n \cdot n)!\theta^{2}} e^{-\frac{1}{\theta}[n u+(n-\gamma+1) v} \cdot\left(1--e^{-\frac{v}{\theta}}\right)^{r-2}, \quad u, v>0 \\
& 0 \text {, otherwise. }
\end{aligned}
$$

Clearly we have here $f(u, v)=f(u) f(v)$ with ranges for u and v independent of each other, hence it immediately follows that u and v are independently distributed, an observation mode in the beginning of the 2 nd part of this chapter.
now $S=\frac{t_{1}-G_{0}}{t_{r}-t_{1}}=\frac{u}{v}$ gives

$$
\begin{aligned}
& -\frac{1}{\theta}[(n s+n-r+1) v] \\
& f(s, v)=\left\{\begin{array}{l}
r n!v \\
0, \text { otherwise. }
\end{array} \quad \cdot\left(1-e^{-\frac{v}{\theta}}\right)^{r-2}, \quad s, v>0\right.
\end{aligned}
$$

This finally gives the p.d.f. of s under null hypothesis as

$$
f(s)=\frac{n!}{(r-2)!(n-r)!\theta^{2}} \int_{0}^{\infty} v e^{-\frac{1}{\theta}[n s+n-r+1] v} \cdot\left(1-e^{-\frac{v}{\theta}}\right)^{r-2} d v
$$

which after integration can be written as

$$
f(s)=\left\{\begin{array}{l}
\left.\frac{n!}{(r-2)!(n-r)!} \sum_{r=0}^{n-2}\binom{r-2}{j}(-1) \frac{1}{(n i s+r i-r+i-j}\right)^{2} \text { for } s \geq 0 \\
0, \quad \text { otherwise. } \\
\int_{0}^{\infty} f(s) d s=1 \text { proves the following interesting lemma. }
\end{array}\right.
$$

Leman 1: $(n-1)\binom{n-2}{n-2} \underset{j=0}{2-2}\binom{n-2}{$\hdashline}
When $r=n, f(s)$ reduces to

$$
f(s)=\frac{n!}{(r-2)!0^{0}} \int_{0}^{\infty} v e^{-\frac{1}{\theta}(n s+1) v} \cdot\left(1-e^{-\frac{v}{\xi}}\right)^{n-2} d v
$$

which agrees with Carlson's [8] expression (2.5) where $\theta=\frac{1}{\alpha}$,

$$
v=\hat{w}_{n} \text {, and } f(s)=g_{4}\left(h_{n}^{*}\right) \text {. }
$$

To compute α percentage points of $s_{r, n}$ we derive an expression for $F(s)$, the c.d.f. of s, so that for given α_{0} we have the relaion, $1-\alpha_{0}=f\left(s_{0}\right)$ from which we determine s_{0}.
1

$$
\begin{aligned}
F(s) & =\int_{0}^{\beta} f(s) d s \\
& =\frac{n!}{(r-2)!(n-r)!\theta^{2}} \int_{0}^{\beta} \int_{0}^{\infty} r e^{-\frac{1}{\theta}(n s+n-r+1) \cdot} \cdot\left(1 e^{-\frac{v}{s}}\right)^{r-2} d!d s \\
& =\frac{(n-1)!}{(r-2)!(n-r)!\theta} \int_{0}^{\infty}\left(1-e^{-\frac{v}{\theta}}\right)^{r-2}\left[-\int_{0}^{\beta}-\frac{n v}{\theta} e^{-\frac{v}{\theta}(n s+n-r+1)} d s\right] d r \\
& =\frac{(n-1)!}{(r-2)!(n-r j!\theta} \int_{0}^{\infty}\left(1-e^{-\frac{v}{\theta}}\right)^{r-2}-e^{-(n-r+1) \frac{v}{\theta}}\left(1-e^{-n s \frac{v}{\theta}}\right) d r \\
& =1-\frac{B(n+n s-r+1, r-1)}{B(n-r+1, r-1)},
\end{aligned}
$$

where $B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x$ is known as obeta-function. Again $r=n$, gives $F(s)=1-(n-1) B(n s+1, n-1)$, which agrees with carlson's expression (2.6) where $s=h_{n}^{*}$ and $F(s)=G_{4}\left(n_{n}^{*}\right)$. Now we derive the expression for expected value of s. This is obtained as

$$
\begin{aligned}
& E S_{r, n}=\frac{n!}{(2-2)!(n-r)!\theta^{2}} \int_{0}^{\infty} \int_{0}^{\infty} \rho e^{-\frac{1}{\theta}(n s+n-r+1) v} \cdot v\left(1-e^{\left.-\frac{v}{\theta}\right) d v d s}\right. \\
& =\frac{(n-1)!}{n}(r-2)!(n-r)!\int_{0}^{\infty} \frac{1}{v} e^{-\frac{1}{\theta}(n-r+j \cdot v} \cdot\left(1-e^{-\frac{v}{\theta}}\right)^{r-2} d v .
\end{aligned}
$$

Dy making the transformation $y=e^{-\frac{v}{\theta}}$, we wite the above integral as

$$
E s_{r, n}=-\frac{(n-1)!}{n(r-2)!(n-r)!} \int_{0}^{1} \frac{y^{n-r}(1-y)^{r-2}}{\ln y} d y
$$

Using the standard integral given in [9], namely,

$$
\int_{0}^{1} \frac{x^{m}-x^{n}}{\ln x} d x=\ln \left(\frac{m+1}{n+1}\right), \text { for } m+1>0 \& n+1>0
$$

and

$$
\begin{aligned}
\text { writing }(1-y)^{r-2}= & (1-y)(1-y)^{r-3} \\
= & (1-y) \sum_{t=0}^{r-3}\binom{r-3}{t}(-1)^{t} y^{t}, \text { we get } \\
E_{S_{r, n}}= & \frac{(n-1)!}{n(r-2)!(r-r)!}\left[\sum_{t=0}^{r-3}\binom{r-3}{t}(-1)^{t} \ln (n-r+t+2)\right. \\
& \left.-\sum_{t=0}^{r-3}(r-3)(-i)^{t} \ln (n-r+t+1)\right],
\end{aligned}
$$

provided $r \geq 3$.

Letting $k=t+i$ in the first expression occurring in the above parentheses,

$$
\begin{array}{r}
E \dot{\beta}_{r, n}=\frac{(n-1)!}{n(r-2)!(r-r)!}\left[\sum_{k=1}^{\sum_{k-2}}\binom{r-3}{k-1}(-1)^{k-1} \ln (n-r+k+1)\right. \\
\\
\left.-\sum_{t=0}^{i-3}\binom{r-3}{t}(-1)^{t} \ln (n-r+t+1)\right]
\end{array}
$$

Mow renaming the index k as t and combining the sums,

$$
\begin{aligned}
& E S_{r, n}=\frac{(n-1)!}{n(r-2)!(n-r)!}\left[\sum_{t=1}^{r-3}\left\{\binom{r-3}{t-1}+\binom{r-3}{t}\right\}(t-1)^{t-1} \ln \left(r_{1}-r+t+1\right)\right. \\
&\left.+(-1)^{r-3} \ln (n-1)-\ln (n-r+1)\right]
\end{aligned}
$$

Using the famous identity, $\binom{r-3}{t-1}+\binom{r-3}{t}=\binom{r-2}{t}$,

$$
\begin{aligned}
& E S_{r, n}=\frac{(n-1)!}{n(r-2)!(n-r)!}\left[(-1)^{r-3} \ln (n-1)-\ln (n-r+i)\right. \\
& \left.+\sum_{t-1}^{t-1}\binom{r-2}{t}(-1)^{t-1} \operatorname{in}(n-2+t+1)\right] \\
& =\frac{(n-1)!}{r(r-2)}\left(n-r j!\sum_{t=0}^{r-2}\binom{r-2}{t}(-1)^{t-1} \operatorname{lin}^{r}(n-r+t+1),\right.
\end{aligned}
$$

This is a simple direct form for calculating the expectation of ${ }^{s} r, n$ Carlson's [8] expression (4.3) is a special case of the present expression for $E s_{r, n}$ when $r=n$. The variance and the higher moments of $s_{r, n}$ can be computed by mans of either of the two recurrence formulas established below.

Lena 2: For $k>1$ and $k+1<r \leq n$, the k th moment of $s_{r, n}$ can be expressed as follows:

$$
\begin{aligned}
& E \delta_{r, n}^{k}=\frac{k(n-i+1)}{r(k-i)}\left[E \delta_{, R-1, n}^{k-1}-E A_{R, n}^{k-1}\right]_{9} \text { ard also } \\
& =\frac{k(n-1)}{n(k-1)}\left[\left(\frac{n-1}{n}\right)^{k-1} E j_{n-1, n-1}^{k-1} E \sum_{i, n}^{k-1}\right] .
\end{aligned}
$$

Proof:

Wherever convenient we shall denote integral of the following type

$$
\int_{0}^{\infty} \frac{e^{-\frac{1}{\theta} n v}}{v^{k}}\left(1-e^{-\frac{v}{\theta}}\right)^{i} d v \quad \operatorname{c} d \quad((\eta, i ; k)
$$

Mow integrating by parts the integral $s(n-r+1, r-2 ; k)$ under the
assumption of $k>1$ and $k+1<r \leq n$, we get

$$
\begin{aligned}
& E d_{r, n}^{k}=\frac{(n-1)!k!g^{k-1}}{(r-2)!(n-r)!^{k}}\left[\frac{[(r-2)}{E\left(k^{k}-1\right)} S(n-r+2, r-3 ; k-1)\right. \\
& \text { noting that }
\end{aligned}
$$

$$
S(n-r+2, r-3 ; k-1)=\frac{(r-3)!(n-r+1)!n^{k-1}}{(n-1)!(k-1)!\theta^{k-2}} E \otimes_{r-1, n}^{k-1}
$$

$$
S(n-r+1, r-2 ; k-1)=\frac{(r-2)!(n-r) n^{k-1}}{(n-1)!(k-1)!\theta^{k-2}} E_{k, r}^{k-1} \text {. }
$$

finally get after simplification,

$$
E S_{r, n}^{k}=\frac{k(n-r+1)}{n(k-1)}\left[E \delta_{r-1, n}^{k-1}-S_{r, n}^{k-1}\right]
$$

To show another relationship between ($k-1$)th and kith moments of s,

$$
\text { wa write } e^{-\frac{1}{5}(n-r+2) v}=e^{-\frac{1}{9}\left(n_{1}-r+1\right) v}\left[1-\left(1-e^{\left.-\frac{v}{\theta}\right)}\right]\right.
$$

In the integrand of $5(n-r+2, r-3 ; k-1)$ which gives

$$
E S_{r, n}^{k}=\frac{(n-1)!k!\theta^{k-2}}{(k-1)(r-2)!(n-r)!r_{1}}=[(r-2) S(n-r+1, r-3 ; k-1)-
$$

$$
S(n-z+1 ; r-3 ; k-i)=\frac{(k-3)!(n-8 j)(n-1)^{k-1} E^{k-1}}{\left.(k-1)!(n-2)!\theta^{k-1}\right)^{k-1}, n-1}
$$

and

$$
S(n-r+1, r-2 ; k-1)=\frac{(r-2)!(n-r)!n^{k-1}}{(k-1)!(r-1)!\theta^{k-2} E s_{r, n}^{k-1} .}
$$

we finally get after simplification,

$$
E S_{r, n}^{k}=\frac{k(n-1)}{n(k-1)}\left[\left(\frac{n-1}{n}\right)^{k-1} E \hat{x}_{k-1, r-1}^{k-1}-E, k, n\right) \text {. }
$$

Q.E.D.

This investigation points out a slip in Carlson's lama ([8], p. 52). The correct expression of his lemme is found to be

$$
E h_{n}^{*^{k}}=\frac{k(n-1)}{n(k-i)}\left[\left(\begin{array}{c}
n-1
\end{array}\right)^{k-1} E h_{r_{1-1}^{*}}^{k-1}-E h_{n}^{*}\right]
$$

In addition to this, his Table 2. does not seem to record correct mumerical values. In particular, the correct value of $E h_{4}^{* 2}=0.196$ against the recorded value 0.131 . Further work shows that numerical error is not due to the typographical error in the formula.

Illustration: Compute $E s_{4,5}^{2}$ by two formulas established in the above leman and check them by direct evaluation of $\mathrm{Es}_{4,5}^{2}$ from integracion. The first formula gives

$$
\begin{aligned}
E S_{4,5}^{2} & =\frac{4}{5}\left[E A_{3,5}-E i_{4,5}\right] \\
& =\frac{4}{5}\left[\frac{12}{5}(2 \operatorname{lin} 2-\operatorname{in} 3)-\frac{12}{5}(2 \operatorname{in} 3-3 \operatorname{in} \hat{L})^{i}\right.
\end{aligned}
$$

$$
=\frac{48}{25}[5 \operatorname{tin} 2-3 \operatorname{tin} 3]
$$

The second formula gives

$$
\begin{aligned}
E \gamma_{4,5}^{2} & =\frac{8}{2}\left[\frac{4}{5} E i_{3,4}-E X_{4,5}\right. \\
& =\frac{8}{5}\left[\frac{4}{5}\left\{\frac{3}{2}(\ln 3 \cdots \ln 2)\right\}-\frac{2}{5}(2 \ln 3-3 \ln 2)\right] \\
& =\frac{48}{25}[5 \ln 2 \cdots 3 \ln 3] .
\end{aligned}
$$

$$
\begin{aligned}
E S_{4,5}^{2} & =\frac{24}{25} \theta S(2,2 ; 2) \\
= & \left.\frac{48}{25} \Gamma S(2,1 ; 1)-2 S(2,2 ; 1)\right] \\
& =\frac{48}{25}[5 \ln 2-3 \ln 3] .
\end{aligned}
$$

now immediately we get

$$
\begin{aligned}
& \operatorname{Var}\left(i_{4,5}\right)=\frac{48}{25}(5 \ln 2-3 \ln 3)-\frac{144}{25}(2 \ln 3-3 \ln 2)^{2} \\
&=0.2460
\end{aligned}
$$

We now proceed to derive the power function for the test function

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } 0 \leq \frac{t_{1}-\sigma_{0}}{t_{r}-t_{1}} \leq c \\
1, \text { otherwise }
\end{array}\right.
$$

which hes been suggested earlier for testing the $H: G=G_{0}$ against $A: 6 \neq G_{0}$ assuming 0 to be unknown. Writing u for $t_{r}-t_{1}$, the above test function is equivalent to

$$
\phi(t)= \begin{cases}0 & \text { if } c_{0} \leq t_{1} \leq c u+c_{0} \\ 1, & \text { otherwise. }\end{cases}
$$

Here we recall that t_{1} and u are independently distributed. The p.d.f. of t_{1} and u are

$$
f\left(t_{1}\right)=\left\{\begin{array}{l}
\frac{r_{1}}{\theta} e^{-\frac{n}{\theta}\left(t_{1}-G\right)} \\
0, \text { otherwise }
\end{array}\right.
$$

and,

$$
f(u)=\left\{\begin{array}{l}
(n-1)! \\
\frac{(r-2)!(n-r)!\vec{\theta}}{} e^{-(n-c+!)^{\frac{l}{\theta}}}\left(1-e^{-u}\right)^{u-2}, \quad u>0 \\
0, \text { otherwise. }
\end{array}\right.
$$

Now we are ready to derive expressions for power function by considering two cases.

$$
\begin{aligned}
& \begin{array}{l}
\text { Case is } 6 \leq \sigma_{0} \cdot \\
P(G)=1-\int_{0}^{\infty} f(u)\left[\int_{\sigma_{0}}^{c u+c_{0}} f\left(t_{1}\right) d t_{1}\right] d u
\end{array} \\
& =1-e^{\frac{n}{\theta}\left(G-G_{0}\right)} \int_{0}^{\infty}\left(1-e^{-\frac{n}{\theta} u \in}\right)-(i d j d u \\
& =1-\frac{(n-1)!e^{\frac{n}{6}\left(G-G_{n}\right)}}{\square 2-2)!(n-r)!}[B(n-r+1, r-1)-p(n+n e+1-r, r-1)]
\end{aligned}
$$

$$
=1-(1-\alpha)-c^{\frac{n}{\theta} \cdot\left(G_{1}-G_{10}\right)} \quad \text {, where }
$$

$\alpha=\frac{B(r+r e+1-r, r-1)}{B(r-r+5, r-1)}$ which follows from the expression of cumuladive distribution function given earlier. It may be noted that the power function for this simple test function is the sene under case 1. as for the likelihood ratio test. Furthermore for $\leq \leq \sigma_{0}$ it is clear that $P(G) \geq \alpha$ and $P\left(G_{0}\right)=\alpha$.

$$
\begin{aligned}
& \text { Case 11: } \boldsymbol{c} \geq \mathbf{6}_{0} \text {. } \\
& P(G)=1-\int_{\frac{G-G_{0}}{c}}^{c o s} f(u)\left[\int_{G}^{c u+G_{0}} f\left(t_{1}\right) d t_{1}\right] d u \\
& =1-\int_{\frac{G-G_{0}}{e}}^{\infty} f(u)\left[1-e^{-\frac{n}{\theta}\left(\left(u+G_{0}-G\right)\right.}\right] d u \\
& =1-I_{a}(n-m+1 ; r-i) \\
& +\alpha e^{\frac{n}{\theta}\left(G-\hat{G}_{0}\right)} I_{a}\left(r_{1}+\gamma_{1}-r_{+} ; \xi^{\prime}-1\right) \\
& \text { Where 1) } a=e^{G_{0}-G} \text { and }
\end{aligned}
$$

$$
I_{a}(p ; q)=\frac{\int_{0}^{a} x^{p-1}(1-x)^{q-1} d x}{\int_{0}^{1} x^{p-1}(1-;) d x}
$$

Is the Incomplete Beta function hose values are tabulated in [20]. This gives $P\left(\epsilon_{0}\right)=\alpha$ es expected. Here for the Case 11 ., the power function of the simple test function is different from the power function of the corresponding likelihood ratio test.

$$
\text { writing } P(G)=1+\int_{\frac{G-G_{0}}{c}}^{\infty}\left[e^{-\frac{n}{\theta}\left(c u+G_{0}-G\right)}-1\right] f(u) d u
$$

and taking its first derivative w.r.t. 6 we get

$$
P^{\prime}(G)=\frac{n}{G} \int_{\frac{G-G}{c}}^{\infty}-e^{-\frac{n}{\theta}\left(e u+G_{0}-G_{n}\right)} f(u) d u
$$

which is positive for $G \geq \sigma_{0}$ and $P\left(G_{0}\right)=\alpha$, hence $P(G) \geq \alpha$ for $c \geq \sigma_{0}$ and earlier we have seen that for $c \leq \sigma_{0}, P(G) \geq \alpha$ so, it Immediately follows that the simple test is unbiased. it may be mentioned that the Incomplete Beta function can be expressed as cumulative binomial probabilities.

Now that we hove shown that the simple test function is unbiased; it may be interesting to compute suitable power function tables and graphs to point out differences between the simple test function and the likelihood ratio test. In life testing situations, $H: \in \geq \boldsymbol{\epsilon}_{0}$ agelast A: $\quad 6<\epsilon_{0}$ is of interest and for this situation it is clear that both the likelihood ratio test and the simple test function are equally good

In terms of the power and the unblasedness of the test. Because the likelihood ratio provides uni unbiased test it follows that in the class of unbiased tests the power of the likelihood ratio test is uniformly better than that of the simple test.

For computing the moments and especially the variance of this simple test function we have established two recurrence formulas earlier. We mead not establish such recurrence formulas for computing moments of the likelihood ratio statistic, Z, since it has a mell-known F distribusion with 2 and $2 r-2$ degrees of freedom. Noting that

$$
f(z)=\left\{\begin{array}{l}
\frac{1}{\left(1+\frac{z}{r-1}\right)^{r}}, \quad z>0 \\
0, \text { otherwise }
\end{array}\right.
$$

we hove, $E Z^{k}=(r-1)^{k+1}$ e $(r-k-1, k+1)$, valid for $r>k+2$, which can be further simplified to

$$
E z^{k}=\frac{(r-1)^{k}}{\binom{r-2}{k}} \text {, where }\binom{r-2}{k}^{k} \text { is e Binomial coefficient. }
$$

This gives $E 2=\frac{r-1}{r-2}: E Z^{2} \cdots \frac{2(h-i)}{(r-2)(\lambda-3)}$ and
$\operatorname{var}(z)=\frac{(r-1)^{3}}{(r-2)^{2}(r-3)}=\frac{1}{\left(1-\frac{1}{r-1}\right)^{2}\left(1-\frac{2}{r-1}\right)}$
which is independent of sample size n. From the moment recurrence formulas for the simple test function it appears that its variance is not Independent of sample size, n.

Now we propose two simple test functions for testing the $H: \quad 0=0_{0}$ against A : $\bullet \not \theta_{0}$ assuming G to be known and unknown respectively and derive their power functions. For 6 known, say \boldsymbol{G}_{0}, we define a simple test function as

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } c_{1} \leq t_{r}-c_{0} \leq c_{2} \\
1, \text { otherwise; }
\end{array}\right.
$$

and for 6 unknown we define another simple test function as

$$
\phi(t)=\left\{\begin{array}{l}
0 \text { if } c_{1} \leq t_{r}-t_{1} \leq c_{2} \\
1, \text { otherwise. }
\end{array}\right.
$$

The p.d.f. of t_{r} for the case when G is known, is given by

$$
f\left(t_{r}\right)=\left\{\begin{array}{l}
n \vdots(r-1)!(n-r) ; \\
0, \text { otherwise. }
\end{array} e^{-\frac{1}{\theta}(n-r+1)\left(t_{r}-G_{0}\right)} \times e^{\left.-\frac{1}{\theta}\left(t_{r}-G_{0}\right)\right)_{t_{r}}^{r-1} g G_{0}}\right.
$$

$$
f(x)=\left\{\begin{array}{l}
\frac{n!}{(r-1)!(r-r)!\theta} e^{-\frac{1}{\theta}(n-r+1) x} \cdot\left(1-e^{-\frac{x}{\theta}, r-1}\right), x>0 . \\
0, \text { otherwise. }
\end{array}\right.
$$

Under null hypothesis we have

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{n!}{(r-1)!\left(n-g_{j}\right) \theta_{0}} e^{-\frac{1}{g_{0}}(n-r+j) x} \cdot\left(1-e^{-x} \theta_{0}\right)^{r-1}, \\
0, \text { otherwise. } & x>0\end{cases} \\
& \text { Letting } e^{-\frac{x}{\theta_{0}}=y, \text { we get }} \\
& f(y)= \begin{cases}\frac{n!}{(k-i)!(n-r)!} y^{n-r}(1-y)^{r-1}, & 0<y<1 \\
0, \text { otherwise. }\end{cases}
\end{aligned}
$$

We determine c_{1} and c_{2} from the equation

$$
\begin{align*}
& \int_{e^{-\frac{c_{1}}{\theta_{0}}}}^{f(y) d y}=1-\alpha \\
& e^{-\frac{e_{2}}{\theta_{0}}} \tag{6}\\
& \text { in conjunction with }\left[\frac{\partial}{\hat{\partial \theta}} \int_{e^{-\frac{e_{2}}{\theta}}}^{-f(y) d y}\right]=0 \\
& \theta=\theta_{0}^{-\frac{e_{1}}{\theta}}
\end{align*}
$$

The relation (6) yields

$$
\begin{aligned}
& e_{1} e^{-(n-r+1) \frac{e_{1}}{\theta_{0}}}\left(1-e^{-\frac{e_{1}}{\theta_{0}}}\right)^{r-1} \\
&=e_{2} e^{-(n-r+1) \frac{e_{2}}{\theta_{0}}}\left(1-e^{-\frac{c_{2}}{\theta_{0}}}\right)^{r-1}
\end{aligned}
$$

1

The relation (5) can be reduced to the Incomplete Beta function as

The numerical solution for c_{1} and c_{2} can be carried out by successive approximations or graphically. The power function is now given by

$$
P(\theta)=1-I_{-}-[n-r+i ; r]+-c_{i}[n-r+1 ; i]
$$

When G is unknown, the p.d.f. of $t_{r}-t_{1}=u$ is given by

$$
\begin{aligned}
& f(u)=\left\{\begin{array}{l}
\frac{(n-1)!}{\left.(r-2)!(r-r)!\theta e^{-\left(r-t_{1}+1\right.}\right)^{\frac{u}{\theta}}\left(1-e^{-\frac{u}{\theta}}\right)^{r-2},} u^{(n>0} \\
0, \text { otherwise. } \\
\text { Letting }-e^{-\frac{u}{\theta}}=v \text { we get }
\end{array}\right. \\
& f(v)= \begin{cases}(n-1)! \\
(\pi-2)!(n-9 j! & v^{n-9}(1-v)^{9+-2}, \\
0, \text { otherwise. } & 0<v<1 .\end{cases}
\end{aligned}
$$

We determine c_{1} and c_{2} from the equation

$$
\begin{equation*}
\int_{e^{-\frac{c_{2}}{\theta_{0}}}}^{e^{-\frac{e_{1}}{\theta_{0}}}} f(v) d v=1-\alpha \tag{7}
\end{equation*}
$$

In conjunction with

$$
\begin{equation*}
\left[\frac{\partial}{\partial \theta} \int_{-\frac{e_{1}}{\theta}}^{e^{-\frac{e_{2}}{\theta}}} \underset{f(v) d v}{t i v e s}=0\right. \tag{8}
\end{equation*}
$$

The relation (8) gives

$$
e_{1} e^{-(n-r) \frac{e_{1}}{\theta_{0}}}\left(1-e^{-\frac{e_{1}}{\theta_{0}}}\right)^{r-2}=e_{2} e^{-(n-r) \frac{e_{2}}{\sigma_{0}}}\left(1-e^{-\frac{e_{2}}{\varepsilon_{0}}}\right)^{r-2}
$$

The relation (7) can be expressed in terms of the Incomplete Beta Fundcion as

$$
\left.\alpha=1-I e^{-\frac{e_{1}}{\sigma_{0}}} r^{-\quad r-r+1 ; \pi-1}\right]+I \quad-\frac{e_{2}}{\theta_{0}}[n-r+i ; r-1]
$$

The power function of this test is given by

$$
\begin{aligned}
& \text { The power function of this test is given by } \\
& f(G)=1-\frac{\left.e^{-\frac{c_{1}}{\theta}}[n-r+1 ; r-1]+\right]}{e^{-\frac{e_{2}}{\xi}}[n-r+i ; r-1] .}
\end{aligned}
$$

IV. PERCENTILE ESTIMATORS FOR PARAMETERS OF EXPONENTIAL FAILURE LAW

The problem of obtaining percentile estimators for parameters of exponential failure laws and investigating some of their properties is taken up in this chapter. A percentile estimator for the shape parameter of the Weibull law is derived in the next chapter. Its expression being unwieldy, it has been thought useful to take up somewhat exhaustive investigation on percentile estimators of exponential laws first.

We write p.d.f. of exponential failure law as

$$
f(t)=\left\{\begin{array}{l}
\frac{1}{\xi} e^{-\frac{1}{\theta}(t-G)}, t>G \in(-\infty, \infty) \ell \\
0, \text { othemise. }
\end{array}\right.
$$

For a given cumulative probability p, the percentile τ_{p} is obtained from

$$
p=\int_{G}^{\tau_{b}} f(t) d t
$$

which gives

$$
r_{p}=G-\theta \ln (1-k), \quad p \in(0,1) .
$$

1

Corresponding to population percentile τ_{p}, we denote sample percentile by t_{p} and obtain the following percentile estimators for the parameters of the above failure law.

Case 1. If $\theta=\theta_{0}$ is known, a percentile estimator for G, denoted by g, is given by

$$
g=t_{p}+\theta_{0} \ln (1-p) \text { for any } p \in(0,1) \text {. }
$$

Case II. If $6=6_{0}$ is known, a percentile estimator for 0 , denoted by x, is given by

$$
x=\left(G_{0}-t_{p}\right)[\ln (1-p)]^{-1} \text { for any } p \in(0,1) \text {. }
$$

Case III. When both 6 and 9 are unknown, percentile estimators for 6 and 0 can be derived from the equations

$$
\begin{aligned}
& t_{p_{1}}=c-\theta \ln \left(1-p_{1}\right), \\
& t_{p_{2}}=c-\theta \ln \left(1-p_{2}\right),
\end{aligned}
$$

where P_{1} and P_{2} both belong to unit open interval and are chosen in such a member that $\mu_{1}=\left[n p_{1}\right]<\mu_{2}=\left[n p_{2}\right]$; n being the size of random sample drawn from the above exponential population and [np], as usual means the largest integer in np. clearly $\mu_{1}<\mu_{2}$ would mean
$P_{1}<P_{2}$. The above two equations give the following percentile estimators for 0 and 6 .

$$
\begin{aligned}
& x=a\left(t_{P_{2}}-t_{P_{1}}\right) \quad \text { where } \quad=\left[\ln \left(1-p_{1}\right)-\ln \left(1-p_{2}\right)\right]^{-1}>0 \text { and } \\
& g=b t_{P_{1}}+(1-b) t_{P_{2}} \quad b=-a \ln \left(1-p_{2}\right)>0 \text { where } \quad b=
\end{aligned}
$$

When $G=0$, the above failure law reduces to the commonly used one-parameter exponential failure law in which case the percentile estmotor for θ boils down to

$$
x=-t_{p}[\ln (1-p)]^{-1} \text { for } p \in(0,1) \text {. }
$$

$$
\text { we may note that for } 0 \leq p<1 \text {, we can write }-\ln (1-p)=\sum_{i=1}^{\infty} \frac{1}{1} p^{\prime} \text {. }
$$

How we proceed to derive the sampling distributions of the above percentile estimators of C and θ and investigate some of their properties. Following Cranmer ([10], pp. 367 ff), the p.d.f. of t_{p}, denoting for simplicity by t, in a random sample of size n is found to be

$$
f(t)= \begin{cases}\frac{n!}{\mu!(n-\mu-j)!\theta} e^{-\frac{1}{\theta}(n-\mu)(t-G)} & \left(1-e^{-\frac{1}{\theta}(t-G)}\right)^{\mu} \\ 0, \text { orlon } 1.0 & t>G .\end{cases}
$$

where $\mu_{1}=$ [np] and $n p$ is not an integer. if np is an integer me are in the indeterminate case and t_{p} may be any value in the interval

$$
\begin{aligned}
& \left(t_{n p}, t_{n p+1}\right) \text {. since } g=t+\theta_{0} \ln (1-p) \text {, weave } \\
& E g^{k}=E\left[t+\theta_{0} \ln (1-\dot{p})\right]^{k}=\sum_{j=0}^{k}\binom{k}{j} d^{k-j} E t^{j},
\end{aligned}
$$

where $d=o_{0} \ln ^{n}(1-p)$ and the expression for $E t^{j}$ is obtained from $f(t)$ either by direct computation or by means of characteristic functions. From the results of Chapter II., it follows that

$$
\left.E g^{k}=\frac{n!}{\mu!(n-\mu-1)!} \sum_{i=0}^{\mu} \sum_{j=0}^{k}\binom{\mu}{i} / \begin{array}{c}
k \\
\dot{\gamma}
\end{array}\right) \frac{(-1)^{j} j!\left[\left(n+\theta_{0} \ln (1+)\right]^{k-i} \cdot \dot{j}\right.}{(n-\mu+i) j+1}
$$

mich gives

$$
E g=G+\theta_{0} \ln (1-p)+\theta_{0} \sum_{i=0}^{\mu} \frac{1}{r-\mu+i}
$$

and,

$$
\operatorname{Varg}=\theta_{0}^{2} \sum_{i=0}^{\mu} \frac{1}{(n-\mu+i)^{2}}
$$

Hence an unbiased estimator of 6 based on percentile estimator g is

$$
t-\theta_{0} \sum_{i=0}^{\mu} \frac{1}{n-\mu+i}
$$

Recalling that $\mu=[n p]=n p-q$ where $0<q<1$, it is easy to see that

is asymptotically equal to $-\ln (1-p)$ and
$\sum_{i=0}^{\mu} \frac{1}{(r r-\mu+i)^{2}}$
is asymptotically equal to $\frac{p}{n(1-p)}$, which
imply that for large n, expectation of 9 approaches 6 and variance of g approaches $\frac{\theta_{0}^{2}}{n} \quad \frac{p}{1-p}$. Involing Cranmer's Theorem
([10], p. 369), the above unbiased estimator of 6 based on percentile estimator has asymptotically normal distribution with man G and varlance $\quad \frac{\theta_{0}^{2}}{n} \frac{p}{1-p}$

Now in order to obtain minimum variance unbiased percentile estimator of G, we keep n fixed and choose p such that for large n, the variance, $\quad \frac{\theta_{0}^{2}}{n} \frac{p}{1-p}$ is minimum. Clearly, any $p \in\left(\frac{1}{n}, \frac{2}{n}\right)$
provides such a percentile estimator of 6 . This means, $\mu=[n p]=1$, the first (or the smallest) sample observation out of an ordered sample of size n dram n from exponential population yields minimum variance unbiased percentile estimator of G. We note that the maximum likelihood estimator of 6 is the smallest sample observation.

Since for case $11 ., \quad x=\left(G_{0}-t\right) \ln ^{-1}(1-p)$, we have

This gives

$$
E x=\operatorname{co} \sum_{i=0}^{\mu} \frac{1}{n-\mu+i} \text { and } \quad \text { var } x=c^{2} \theta^{2} \sum_{i=0}^{\mu} \frac{1}{(n-\mu+1)^{2}} .
$$

Therefore, it is clear that $X\left[e \sum_{i=0}^{\mu} \frac{1^{l=0}}{n-\mu+i}\right]^{-1}$ is an unbiased
estimator of 0 with variance equal to

$$
\sum_{i=0}^{\mu} \frac{1}{n-\mu+i}
$$

and
 and
recalling that $c=-\ln ^{-1}(1-p)$ we see that expectation of x, percentile estimator of 0 , approaches θ and its variance approaches $\frac{\theta^{2} p}{n(1-p) \ln ^{2}(1-p)}$ - And Invoking Cramér's Theorem ([10], p. 369) it
follows that unbiased percentile estimator of θ has asymptotically normal distribution with mean θ and variance $\frac{\theta^{2} p}{n(1-p)} \ln ^{-2}(1-p)$. We may now attempt to choose p such that the variance of unbiased percentile estimator of θ is minimum. Considering expression for such variance as a function of P, and setting Its first derivative with respect to p equal to zero we find the equeion, $2 p+\ln (1-p)=0$. Now p_{0}, the solution of this equation would insure minimum variance of unbiased percentile estimator of 0. By Iterative procedure we obtain $P_{0}=0.797$. Hence $\mu=\left[n p_{0}\right]$ gives the appropriate ordered sample observation which we should take to form unbiased percentile estimator of θ in order to have an assurance of minimum variance.

For Case ll., percentile estimators of 0 and 6 have been derived earlier. They are $x=a\left(t_{P_{2}}-t_{p_{1}}\right)$ with

$$
\begin{aligned}
& =\operatorname{lin}_{\ln -1\binom{1-p_{1}}{1-p_{2}}>0 \quad \text { and } g=b t_{p_{1}}+(1-b) t_{p_{2}} \quad \text { with }}^{b=\left[1-\frac{\ln \left(1-p_{1}\right)}{\ln \left(1-p_{2}\right)}\right] \quad \text {-1 } \quad 0 \quad \text { where } p_{1} \in(0,1), p_{2} \in(0,1),} \\
& \left.\mu_{1}=\left[n p_{1}\right]<\left[n p_{2}\right]=\mu_{2} \quad \text { (implying } p_{1}<p_{2}\right) \text {. Noting that } \mu_{1}
\end{aligned}
$$

and μ_{2} are integers, for convenience, we replace μ_{1} by 1 and μ_{2} by \mathbf{j}, satisfying $\mathbf{i}<\mathbf{j}$. The Joint distribution of order statistics t_{i} and $t_{j}(i<j)$ in a random sample of size n dram from exponential population is given by

Now the suitable expression for percentile estimator of 0 in terms of i th and j th order statistics is $x=a\left(t_{j}-t_{i}\right)$ where $i<j$ and - as already defined above. The p.d.f. of x is derived from $f\left(t_{1}, t_{j}\right)$ by integrating out t_{j} over $t_{j}>6+\frac{x}{a}$, after expressing t_{i} in terms of x and t, . Thus, we get

$$
f(x)=\left\{\begin{array}{l}
\frac{n!}{(i-1)!(j-i-1)!(n-j)!a \theta} \\
x \sum_{k=0}^{i-1} \sum_{m=0}^{j-i-1}\binom{i-1}{k}\binom{j-i-1}{m} x \\
0, \frac{(-1)^{k+m}-e^{-\frac{x}{a \theta}}(n+m-i-j+1)}{(n+k-i+1)} \\
x>0
\end{array}\right.
$$

$$
\begin{aligned}
& E x^{r}=\frac{n!i!a^{r} \theta^{r}}{(i-i j!(j-i-1)!(n-j)!} \sum_{k=0}^{i-1} \sum_{m=0}^{j-i-1}\binom{i-1}{k}\binom{j-i-1}{r} \\
& \quad x^{(-1)^{k+m}(n+m-i-j+1)^{-(r+1)}\left(m+k-i^{i+1}\right)}
\end{aligned}
$$

where $0=l_{m}^{-1}\left(\frac{1-p_{1}}{1-p_{2}}\right)$. Since x is a linear function of t_{i} and t_{j}, it is clear that we can obtain moments of x in terms of joint moments of t_{j} and t_{j}. Thus

$$
E x^{k}=a^{k} E\left(t_{i}-t_{i}\right)^{k}=a^{k} \sum_{m=0}^{k}\binom{k}{m}(-1)^{m} E t_{i}^{m} t_{j}^{k-m}
$$

By this formula we get

and

where
$\operatorname{Var} t_{i}=\theta^{2} \sum_{k=0}^{i} \frac{1}{(n-i+k)^{2}}$, end so var is con bo orriteon
by replacing 1 by j in the expression for variance of $t_{;}$; and

$$
\operatorname{cov}\left(t_{i} t_{i}\right)=\theta^{2} \sum_{k=0}^{i} \frac{1}{(n-i+k)^{2}}
$$

which also follows from Sarhen [11]. Asymptotically expectation of x approaches 0 and its variance approaches

$$
\frac{\theta^{2}}{n} \frac{\left(p_{2}-p_{1}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)} l^{-2}\left(\frac{1-p_{1}}{1-p_{2}}\right)
$$

The above asymptotic results follow directly from the expressions given for expectation and variance of x. Alternatively these results could have been derived from Crandr's results ([10], pp. 369). Furthermore, Cramér's result mould imply that x, percentile estimator of 0 , has
asymptotically normal distribution with mean 0 and variance

$$
\frac{\theta^{2}}{n} \frac{\left(p_{2}-p_{1}\right)}{\left(1-p_{1}\right)\left(1-k_{2}\right)} \ln ^{-2}\left(\frac{1-p_{1}}{1-p_{2}}\right) .
$$

An unbiased percentile estimator of θ is clearly seen to be

$$
\begin{aligned}
& x\left[a\left(\sum_{k=0}^{j} \frac{1}{n-j+k}-\sum_{k=0}^{i} \frac{1}{n-i+k}\right)\right]^{-1} \\
& \quad=\left(t_{j}-t_{i}\right)\left[\sum_{k=0}^{j} \frac{1}{n-j+k}-\sum_{k=0}^{i} \frac{1}{n-i+k}\right]^{-1}
\end{aligned}
$$

whose variance can be written as

$$
\begin{aligned}
\theta^{2} & {\left[\sum_{k=0}^{j} \frac{1}{(n-j+k)^{2}}-\sum_{k=0}^{i} \frac{1}{(n-i+k)^{2}}\right] \times } \\
& \times\left[\sum_{k=0}^{i} \frac{1}{n-j+k}-\sum_{k=0}^{i} \frac{1}{n-i+k}\right]^{-2} .
\end{aligned}
$$

Again Invoking Cranmer's Theorem ([10], pp. 369 ff) the following is true: This unbiased percentile estimator of θ has asymptotically the same normal distribution as the biased estimator x.

An appropriate expression for percentile estimator of 6 in terms of i th and j th order statistic is: $g=b t_{j}+(1-b) t_{j}$ where

$$
b=\left[1-\frac{\ln \left(1-p_{1}\right)}{\ln \left(1-p_{2}\right)}\right]^{-1}>0 \text { and } 1<j \text {. we derive p.d.f. of } g \text { by }
$$

making the transformation $g=b t_{j}+(1-b) t_{j}, t_{j}=t_{j}$ and integrating out t_{j} over $t_{j}>\frac{9-b c}{-b}$. This gives

$$
f(g)=\left\{\begin{array}{l}
\frac{n!}{(i-1)!(j-i-1 j!(n-j)!b \theta} \sum_{k=0}^{i-1} \sum_{m=0}^{j-i-1}\binom{i-1}{k}\binom{j-i-1}{m} x \\
\times \frac{(-1)^{k+m} e^{-\frac{1}{\theta}\left[\left(\frac{n-i}{1-b}-\frac{1}{b}+j+i-m\right) g-\frac{n-i}{1-b} G\right]}}{n-i-(k+1)\left(\frac{1}{b}-1\right)} \quad g>G .
\end{array}\right.
$$

0 , otherwise.
Since g is a linear function of t_{i} and t_{j}, the formula for the ruth moment of g is given by

$$
\begin{aligned}
E g^{r}=E & {\left[b t_{i}+(1-b) t_{j}\right]^{r} } \\
& =\sum_{l=0}^{r}\binom{r}{l} b^{l}(1-b)^{r-l} E t_{i} t_{j}^{r-l}
\end{aligned}
$$

where product moments of t_{i} and t_{j} of various orders can be computed.
Thus

$$
\begin{aligned}
E g & =b E t_{i}+(1-b) E t_{j} \\
& =G+\theta\left[b \sum_{k=0}^{i} \frac{1}{n-i+k}+(1-b) \sum_{k=0}^{j} \frac{1}{n-j+k}\right]
\end{aligned}
$$

and,

$$
\begin{aligned}
\operatorname{Var} g & =b^{2} \operatorname{Var}_{i}+(1-b)^{2} \operatorname{Var} t_{j}+2 b(1-b) \operatorname{Cov}\left(t_{i} t_{j}\right) \\
& =b(2-b) \theta^{2} \sum_{k=0}^{i} \frac{1}{(n-i+k)^{2}}+(1-b)^{2} \theta^{2} \sum_{k=0}^{j} \frac{1}{(n-j+k)^{2}}
\end{aligned}
$$

Asymptotically expectation of \mathbf{g} approaches \mathbf{c} and variance of g approaches

$$
\frac{\theta^{2}}{n}\left[\left(2 b-b^{2}\right) \frac{p_{1}}{1-p_{1}}+(1-b)^{2} \frac{p_{2}}{1-p_{2}}\right] \quad \text { where } b=\left[1-\frac{\ln \left(1-p_{1}\right)}{\ln \left(1-p_{2}\right)}\right]^{-1}
$$

On the basis of expectation of g it is clear that

$$
q-\theta\left[b \sum_{k=0}^{i} \frac{1}{n-i+k}+(1-b) \sum_{k=0}^{j} \frac{1}{n-j+k}\right]
$$

is an unbiased percentile estimator of G, if O is known. In case θ is unknown we need to replace θ by the unbiased percentile estimetor of θ. For θ known, by use of Cranmer's Theorem again g hos asymptotically normal distribution with mean 6 and variance

$$
\frac{\theta^{2}}{n}\left[\frac{p_{2}}{1-p_{2}}+\frac{p_{2}-p_{1}}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \cdot \ln \left(1-p_{2}\right) \ln \left(\frac{1-p_{1}}{1-p_{2}}\right)\left\{2+\ln \left(1-p_{2} \sin ^{\ln }\left(\frac{1 p_{1}}{1-p_{2}}\right)\right\}\right]\right.
$$

$$
1
$$

which is the same as given earlier except that b has been expressed in terms of P_{1} and P_{2} -

Now we proceed to derive joint distribution of x and g from joint distribution of $t_{\mathbf{i}}$ and t_{j}. The percentile estimators, $x=a\left(t_{j}-t_{j}\right)$ and $g=b t_{j}+(1-b) t_{j}$ for 0 and 6 respectively can be conveniently expressed as

$$
\begin{aligned}
& x=\left(t_{1}-t_{j}\right) \ln ^{-1}\left(\frac{1-p_{2}}{1-p_{1}}\right), \quad \text { and } \\
& g=\left[t_{1} \ln \left(1-p_{2}\right)-t_{j} \ln \left(1-p_{1}\right)\right] \ln ^{-1}\left(\frac{1-p_{2}}{1-p_{1}}\right)
\end{aligned}
$$

Making the above transofrmetions we get the following joint distribution of x and g from joint distribution of t_{1} and t_{j} -

$$
\begin{aligned}
& \int \frac{n!\ln \left(\frac{1-b_{2}}{-2}\right)}{(l-1)!(j-i-1)!(n-j)!\theta^{2}} x \\
& e^{-\frac{1}{\theta}\left[g-x \ln \left(1-p_{1}\right)-G+(n-j+1)\left\{g-x \ln \left(1-p_{2}\right)-G_{j}\right)\right]} \\
& f(x, y)= \\
& \times\left[1-e^{-\frac{1}{\theta}\left[g-x \ln \left(1-b_{1}\right)-G\right]}\right]^{i-1} \\
& {\left[\begin{array}{l}
{\left[e^{-\frac{1}{\theta}\left[g-x \ln \left(1-p_{1}\right)-G\right]}-e^{-\frac{1}{\theta}\left[g-x \ln \left(1-p_{2}\right)-G\right]}\right]^{--i-1},} \\
g>G+x \ln \left(1-p_{1}\right) \& x>0 .
\end{array}\right.}
\end{aligned}
$$ 0 , otherwise.

From the joint distribution of x and g it does not seem convenient to obtain expression for covariance between x and g. However, since both x and g are linear functions of t_{i} and t_{j} we can compute covariance of x and g by knowing covariance of t_{f} and t_{j}. Thus,

$$
\begin{aligned}
& \operatorname{Cov}(x, y)=\operatorname{Cov}\left[a\left(t_{j}-t_{i}\right), b t_{i}+(1-b) t_{j}\right] \\
& =a(1-b) \operatorname{Var} t_{j}-a b \operatorname{Var} t_{i}+a(2 b-1) \operatorname{Crv}\left(t_{i}, t_{j}\right) .
\end{aligned}
$$

Noting that in the present case expression for $\operatorname{Cov}\left(t_{i}, t_{j}\right)=\operatorname{Var} t_{i}$, the above expression reduces to

$$
\begin{aligned}
\operatorname{Cov}(x, g) & =a(1-b)\left[\operatorname{Var} t_{j}-\operatorname{Var} t_{i}\right] \\
& =a(1-b) \theta^{2}\left[\sum_{k=0}^{j} \frac{1}{(1-j+k)^{2}}-\sum_{k=0}^{i} \frac{1}{\left((1-i+k)^{2}\right.}\right]
\end{aligned}
$$

which is asymptotically equal to

$$
\ln \left(1-p_{1}\right) \ln ^{-2}\left(\frac{1-p_{1}}{1-p_{2}}\right) \frac{b^{2}}{n}\left[\frac{b_{2}-p_{1}}{\left(1-p_{1}\right)\left(1-p_{2}\right)}\right]
$$

V. WEIBULL FAILURE LAWS

The probability density function (p.d.f.) of the 3-parameter Melbull failure law is given by

$$
f(t)=\left\{\begin{array}{l}
\frac{m(t-G)^{m-1}}{\theta} e^{-\frac{1}{\theta}(t-G)^{m}}, t \geq G \in(-\infty, \infty) \varepsilon \theta, m \in(0, \infty) . \\
0, \text { otherwise }
\end{array}\right.
$$

where 6 is the location parameter, known as guarantee time, 0 , the scale parameter and m the shape parameter. When $m=1$, the 3-parameter Weibull law reduces to the 2-parameter exponential law. When 6 is known we have the 2-parameter weibull law and when both G and 0 are known we have the I-parameter Weibull law. Even here the shape parameter, m , being unknown, presents rather a difficult problem of estimotion.

In the present investigation we shall work with the 3-parameter Heibull law. The results will, of course, remain valid for special cases of this law. It will also be possible to obtain some more interesting results in special cases.

The r th moment of the 3-parameter Weibull law is given by

$$
E t^{r}=\sum_{k=0}^{r}\binom{r}{k} G^{r-k} \theta^{\frac{k}{m}} \Gamma\left(\frac{k}{m}+1\right) .
$$

This gives

$$
\begin{aligned}
& E t=G+\theta^{\frac{1}{m}} \Gamma\left(\frac{1}{m}+1\right) ; \\
& \operatorname{Var} t=\theta^{\frac{2}{m}}\left[\Gamma\left(\frac{2}{m}+1\right)-\Gamma^{2}\left(\frac{1}{m}+1\right)\right] \\
& =\frac{\beta_{1} \text { (measure of skewness) }=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}}{\left\{\Gamma\left(\frac{3}{m}+1\right)-3 \Gamma\left(\frac{1}{m}+1\right) \Gamma\left(\frac{2}{m}+1\right)+2 \Gamma^{3}\left(\frac{1}{m}+1\right)\right\}^{2}} \\
& \left\{\Gamma\left(\frac{2}{m}+1\right)-\Gamma^{2}\left(\frac{1}{m}+1\right)\right\}^{3}
\end{aligned}
$$

and β_{2} (measure of Kurtosis) $=\frac{\mu_{4}}{\mu_{2}^{2}}$

$$
=\frac{\left\{\Gamma\left(\frac{4}{m}+1\right)-4 \Gamma\left(\frac{3}{m}+1\right) \Gamma\left(\frac{1}{m}+1\right)+6 \Gamma\left(\frac{2}{m}+1\right) \Gamma\left(\frac{1}{m}+1\right)-3 \Gamma^{4}\left(\frac{1}{r}+1\right)\right\}}{\left\{\Gamma\left(\frac{2}{m}+1\right)-\Gamma^{2}\left(\frac{1}{m}+1\right)\right\}^{2}}
$$

where μ_{2}, μ_{3} and μ_{4} are the second, third and the fourth central

$$
1
$$

variable ($r \cdot v_{0}$) is a function of 0 and m and its β_{1} and β_{2} functons of . Recalling that β_{1} and β_{2} are measures relating to the shape of a frequency curve it seems appropriate to call m the shape parameter of Weibull law. The following relationship between the eth moment and the eth power of the first moment can be of use in investigateIng properties of the 3-parameter Weibull law.

then

$$
E t^{r}=E_{B} \frac{\Gamma\left(\frac{J}{m}+1\right)}{\Gamma\left(\frac{1}{m}+1\right)} \cdot(E t)^{r} .
$$

$$
\begin{aligned}
& \text { Proof: } E t^{r}=\sum_{j=0}^{r}\binom{r}{\dot{\gamma}} G^{r-j} \theta^{\frac{j}{m}} \Gamma\left(\frac{j}{m}+1\right) \\
& =\sum_{j=0}^{\pi}\binom{r}{j} \frac{\Gamma\left(\frac{j}{m}+1\right)}{\Gamma\left(\frac{1}{m}+1\right)} p^{\dot{j}}(1-p)^{r-j} \cdot(E t)^{r}, \\
& = \\
& E_{B} \frac{\Gamma\left(\frac{J}{m}+1\right)}{\Gamma^{J}\left(\frac{1}{m}+1\right)}(E t)^{r} .
\end{aligned}
$$

From the above recurrence relationship, we have the following interesting results.

For $r=1, \quad E_{B}\left(\frac{\Gamma\left(\frac{J}{m}+1\right)}{\Gamma J\left(\frac{1}{m}+1\right)}\right)=1$.
Writing $\Gamma\left(\frac{\dot{\delta}}{m}+\right)=\frac{j}{m} \Gamma\left(\frac{\dot{\zeta}}{m}\right)$ and $\Gamma\left(\frac{1}{m}+i\right)=\frac{1}{m} \Gamma\left(\frac{1}{m}\right)$ we get,
for $r=1, E_{B} \frac{\Gamma m}{\Gamma J}\left(\frac{J}{m}\right)$
$E t^{k}=\frac{1}{r_{m}} E_{B}\left(\frac{J m^{J} \Gamma\left(\frac{J}{m}\right)}{\Gamma^{J}\left(\frac{1}{m}\right)}\right)(E t)^{i c}$ The following lame is
true.
Leman 2: $\frac{\left[\left(\frac{\dot{j}}{m}+1\right)\right.}{\Gamma \dot{\gamma}\left(\frac{1}{m_{m}}+1\right)}=\frac{\dot{j} m^{j}-1}{\frac{1}{j}\left(\frac{\dot{\gamma}-l}{m_{m}} \cdot \frac{1}{m}\right)}$, where

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \quad \text { for } \quad>0, b>0,
$$

is Beta function.

Proof:

$$
\begin{aligned}
& \Gamma\left(\frac{\dot{j}}{m}+1\right)=\frac{\dot{\gamma}}{m} \Gamma\left(\frac{\dot{\gamma}}{m}\right)=\frac{\gamma}{m} \Gamma\left(\frac{\dot{\gamma}-1}{m}+\frac{1}{m}\right)=\frac{\gamma}{m} \frac{\Gamma\left(\frac{\dot{\gamma}-1}{m}\right) \Gamma\left(\frac{1}{m}\right)}{B\left(\frac{k-1}{m}, \frac{1}{m}\right)}, \\
& \text { since } B(a, b)=\frac{\Gamma(0) \Gamma(b)}{\Gamma(0+b)} \text {. writing } \Gamma\left(\frac{j-1}{m}\right)=\Gamma\left(\frac{j^{2}-2}{m}+\frac{1}{m}\right)
\end{aligned}
$$

and repeating this process several times we finally get

$$
\begin{aligned}
& \Gamma\left(\frac{\dot{\gamma}}{m}+1\right)=\frac{\dot{j}}{m} \frac{\Gamma \dot{\gamma}\left(\frac{1}{m}\right)}{\prod_{i=1}^{-1} B\left(\frac{\dot{j}-i}{m}, \frac{1}{m}\right)} \\
& \text { and we hove } \Gamma \dot{\gamma}\left(\frac{1}{m}+1\right)=\left(\frac{1}{r_{m}} \Gamma\left(\frac{1}{m}\right)^{j}\right. \text {, hence } \\
& \frac{\Gamma\left(\frac{j}{m}+1\right)}{\Gamma^{j}\left(\frac{1}{m}+1\right)}=\frac{j m^{j-1}}{\prod_{i=1}^{j-1} B\left(\frac{j-i^{\prime}}{m}, \frac{1}{m}\right)} . \\
& \text { Q.E.D. }
\end{aligned}
$$

Mow we can write the above recurrence relationship as

$$
E t^{r}=E_{B}\left\{\frac{J m^{J-1}}{\frac{J-1}{\frac{1}{i=1}} B\left(\frac{J-i}{m}, \frac{1}{r_{m}}\right)}\right\} 0(E t)^{r}
$$

From the above results it also follows that

$$
\frac{\left[\left(\frac{\dot{j}}{m_{m}}\right)\right.}{\Gamma \dot{j}\left(\frac{1}{m}\right)}=\frac{1}{\frac{1}{i=1} B\left(\frac{j-i}{m_{m}}, \frac{1}{m_{m}}\right)}
$$

The quantities β_{1} and β_{2} can be expressed in terms of beta function 38

$$
\beta_{1}=\frac{8\left(\frac{1}{m}, \frac{1}{m}\right)\left[3 m^{2}-2 m\left(\frac{2}{m}, \frac{1}{m}\right)+2 B\left(\frac{1}{m}, \frac{1}{m}\right) B\left(\frac{2}{m}, \frac{1}{m}\right)\right]^{2}}{s^{2}\left(\frac{2}{m}, \frac{1}{m}\right)\left[2 m-8\left(\frac{1}{m}, \frac{1}{m}\right)\right]^{3}}
$$

and,

$$
B_{2}=\frac{B\left(\frac{1}{m}, \frac{1}{m}\right)\left[4 m^{3}-12 m^{2} B\left(\frac{3}{m}, \frac{1}{m}\right)+12 m 8\left(\frac{3}{m}, \frac{1}{m}\right) B \frac{2}{m}, \frac{1}{m}, \frac{3}{1=1}\left(\frac{4-1}{m}, \frac{1}{m}\right)\right]}{\frac{\pi}{1-1} B\left(\frac{4-1}{m}, \frac{1}{m}\right)\left[2 m-8\left(\frac{1}{m}, \frac{1}{m}\right)\right]}
$$

When $\frac{1}{m}=c \quad$ is a positive integer, it is cure [21] that

$$
B\left(\frac{1}{m}, \frac{1}{m}\right)=8(c, c)=\left[c\binom{2 c-1}{c-1}\right]^{-1}
$$

For the 2-parameter Meibull law whose p.d.f. is given by

$$
f(t)=\left\{\begin{array}{l}
\frac{m t^{m-1}}{\theta}-e^{-\frac{1}{\theta} t^{m}}, t>0 \& \theta, m \in(0, \infty) . \\
0,0 \text { oummt. }
\end{array}\right.
$$

we hove

$$
E t^{r}=0^{\frac{r}{m}} \Gamma\left(\frac{r}{m}+1\right)
$$

This gives

$$
\begin{aligned}
& E t=0^{\frac{1}{m}} \Gamma\left(\frac{1}{m}+1\right), \quad \text { and } \\
& \operatorname{Var} t=0^{\frac{2}{m}}\left[\Gamma\left(\frac{2}{m}+1\right)-\Gamma^{2}\left(\frac{1}{m}+1\right)\right]
\end{aligned}
$$

In this case the recurrence relation between moments is relatively simple. In fact,

$$
E t^{r}=0^{\frac{r}{m}} \Gamma\left(\frac{r}{m}+1\right)=e^{\frac{r}{m}} \Gamma^{r}\left(\frac{1}{m}+1\right) \cdot \frac{\Gamma\left(\frac{r}{m}+1\right)}{\Gamma^{r}\left(\frac{1}{m}+1\right)}=\frac{\Gamma\left(\frac{r}{m}+1\right)}{\Gamma^{r}\left(\frac{1}{m}+1\right)} \cdot(E t)^{r} .
$$

This is a special case of Levine 1 . Here we define

$$
P(J=j)=\left\{\begin{array}{lc}
1 \text { if } j=r \\
0, & \text { otherwise. }
\end{array}\right.
$$

The above recurrence formula yields the following identities.

$$
E t^{r}=\frac{\Gamma\left(\frac{k}{m}+1\right)}{\Gamma^{r}\left(\frac{1}{m}+1\right)} \cdot(E t)^{r}=\frac{r m^{n-1}}{\prod_{i=1}^{\pi-1} B\left(\frac{r-i}{m}, \frac{1}{m}\right)}(E t)^{r}=\frac{r^{r} m^{r-1}\left(\frac{l}{m}\right)}{\Gamma^{r}\left(\frac{1}{m}\right)}(E)^{r} .
$$

Now without loss of generality, assuming $6=0$ and $0=1$, the p.d.f. of l-parameter Neibull law is given by

$$
f(t)=\left\{\begin{array}{l}
m t^{m-1} e^{-t^{m}}, \quad t>0, m>0 \\
0, \text { otherwise. }
\end{array}\right.
$$

Here $E t^{r}=\Gamma\left(\frac{r}{m}+1\right)=\frac{r}{m} \Gamma\left(\frac{r}{m}\right)$.
This gives

$$
\begin{aligned}
& E t=\frac{1}{m} \Gamma\left(\frac{1}{m}\right) \quad \text { and } \\
& \operatorname{Var} t=\Gamma\left(\frac{2}{m}+1\right)-\Gamma^{2}\left(\frac{1}{m}+1\right)
\end{aligned}
$$

The recurrence formula for moments is

$$
E t^{r}=\Gamma\left(\frac{\pi}{m}+1\right)=\frac{\Gamma\left(\frac{r}{m}+1\right)}{\Gamma^{r}\left(\frac{1}{m}+1\right)} \cdot \Gamma^{R}\left(\frac{1}{m}+1\right)=\frac{\Gamma\left(\frac{r}{m}+1\right)}{\Gamma^{n}\left(\frac{1}{m}+1\right)} \cdot(E t)^{k}
$$

which is identical with the recurrence formula established earlier in case of the 2-parameter Weibull law. This recurrence formula is also a special case of Lemme 1 with degenerate probability law at $J=r$. Now we proceed to discuss the problem of the estimation of the parameters of Weibull laws. It is clear from the functional representation of Weibull laws that if m, the shape parameter of Heibull laws is known, the transformation, $u=(t-G)^{(1)}$ reduces the 3-parameter Weibull law to l-parameter exponential law. With G also known, the above transformation being a parameter free transformation causes no difficulty in getting the maximum likelihood estimator (m.l.e.) of 0 , the scale
parameter of the Weibull law, based on the first $r(\leq n)$ ordered observeions cut of random sample of size n. In fact, such mole. of θ is found to be

$$
\hat{\theta}_{r, n}=\frac{\sum_{\mid=1}^{r}\left(t_{1}-\sigma\right)^{m}+(n-r)\left(t_{r}-\sigma\right)^{m}}{r}
$$

It possesses all desirable properties of a good estimator, namely, consistency, unbiasedness, sufficiency, completeness and asymptotic normality. The proofs are exactly the same as given by Epstein and Sobel [I] and [19]. In case 6 is unknown but m known we suggest that G be estimated by the smallest sample observation (mole.) which in life testIng case is the first sample observation. The melee. of 0 is now found to be

$$
\hat{\theta}_{r, n}=\frac{\sum_{i=2}^{r}\left(t_{i}-t_{1}\right)^{m}+(n-r)\left(t_{r}-t_{1}\right)^{m}}{r}
$$

It may be added that the mole. of 0 in case of the scale parameter Weibull lam is a unique minimum variance unbiased estimator which follows from a theorem of Lehmann and Scheffe ([3], p. 61). In this case a single-observation minimum variance unbiased percentile estimator of θ can be obtained in exactly the same manner as has been explained in Chapter IV. of this work. When $m=1$ and $G=G_{0}$, the 1 -parameter Weibull law can be immediately reduced to the l-parameter exponential law.

In this case the parameter of the Weibull ian can be estimoted most efficiently by the maximum likelihood method. And a single-observation minimim variance unbiased parcentile estimator of the parameter has been the subject matter of discussion in Chapter iv. Mien $m=1$ and G unknown, the 3-parameter Weibull law becomes the 2-parameter exponential law. The most efficient estimators for the parameters of the 2-parameter exponential law based on the first $r(\leq n)$ observations have been found by Epstein and Sobel [19]. But again if we wish to derive estimators of 6 and 0 based on only two observations, percentile unblased estimators for them have been obtained in Chapter iV. and we can Insure minimum varlance for this type of estimation by proper choice of cumulative probabilities. However when m, the shape parameter, is unknown and we are interested in getting good estimntors for all the 3-parameters of Wibull law we face several difficultles. The likelihood equations to obtain m.l.e. for 6,0 and m fall to provide explicit solutions for them. Kac [12], assuming $6=0$, proceeds to derive m.l.e. for 0 and m on the basis of the first $r(\leq n)$ ordered observations from a random sample of size n. His likelihood equations, nemely,

$$
\hat{\theta}=\frac{1}{r}\left\{\sum_{i=1}^{r} \hat{t}_{i}+(n-r) \hat{t}_{r}^{n}\right\}
$$

and

$$
\hat{\theta}=\frac{\sum_{i=1}^{r} t_{i}^{\hat{m}} \ln t_{i}+(n-r) t_{r}^{\hat{m}} \ln t_{r}}{\frac{r}{\hat{m}}+\sum_{i=1}^{r} \ln t_{i}}
$$

clearly reveal the meed for use of the successive approximation method. Of course, the similar situation will arise in case of the 3-parameter Meibull law. Here we shall first estimate C by the smallest sample observation which is the m.l.e. for 6 and then the mule. for 0 and m can be obtained in the above manner.

Duggen [13] has worked out the moment estimators for G, 9 and m of the Weibull law. Again we do not have explicit solutions for 6,0 and a. However his table scans to be convenient for computing such moment estimators. His numerical example based on the data pertaining to $1 i$ fe of 34 automobile batteries provides negative estimate for 6 .

The recurrence formulas for moments of Neibull laws established earlier appear to throw more lIght on obtaining moment estimators for the parameters of Neibull laws. In case of the 1-parameter Neibull law our recurrence formula is:

Equating population moments to sample moments we get, for $r=1$,
i) $\bar{t}\left(\right.$ sample mans $=\frac{1}{m} \Gamma\left(\frac{1}{m}\right)$.

For $r=2$,
ii) $\frac{\bar{t}^{2}}{(\bar{t})^{2}}$ (sample estimate) $=\frac{2 m}{B\left(\frac{1}{m}, \frac{1}{7 m}\right)}=\frac{2 m \Gamma\left(\frac{2}{m}\right)}{\Gamma^{2}\left(\frac{1}{2 m}\right)}$, where

$$
\bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i} \quad \text { and } \quad \bar{t}^{2}=\frac{1}{n} \sum_{i=1}^{n} t_{i}^{2}, \text { and so on. }
$$

Thus for every r we have an equation in moth provides moment estimator for m, the shape parameter of the I-parameter Weibull law. This raises a problem of investigating the effect of properties of moment estimator with respect to (w.r.t.) r, the order of moment an investigation which we do not intend to take up at the present time. While Investigating this problem it seems fruitful to consider the consequences of directly computing moment estimator for the shape parameter from the expression of the r th moment since $E t^{r}=\Gamma\left(\frac{r}{m}+1\right)=\frac{r}{m} \Gamma\left(\frac{r}{m}\right)$. For instance, if the 200 moment is found to provide a better estimator for the shape parameter then the lst moment, in that case the moment estimator should be computed from the equation, $\bar{t}^{2}=\frac{2}{m} \Gamma\left(\frac{2}{m}\right)$, a relatively simpler expression to handle than ili) mentioned above.

From the p.d.f. of the 3-parameter Meibull law we obtain the
following expressions for median and mode.

$$
\begin{aligned}
& \lambda(\operatorname{modian})=6+0^{\frac{1}{m}}(\ln 2)^{\frac{1}{m}}, \quad \text { and } \\
& \eta(\operatorname{mode})=\left\{\begin{array}{l}
6+0^{\frac{1}{m}}\left(1-\frac{1}{m}\right)^{\frac{1}{m}} \quad \text { when } m>1 \\
6, \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

This gives the following expressions for median and mode for the l-parameter Weibull law.

Equating population median to sample median we get

$$
t_{\text {mad }}\left(\text { sample median }-(\ln 2)^{\frac{1}{m}} \quad \text { which gives } \quad \hat{m}=\frac{\ln \ln 2}{\ln t_{\text {mad }}} .\right.
$$

This is indeed a simple estimator for m whose exhaustive investigation should be taken up on a subsequent occasion. Equating population mode to sample mode does not provide such an explicit estimator for m as we have with the median. Here we have

$$
t_{\text {mode }}(\text { sample mode })=\left(1-\frac{1}{m}\right)^{\frac{1}{m}}
$$

Since the recurrence formula for the moments of the 2-parameter Weibull law is identical with that of the l-parameter Maibull law we shall obtain the moment estimator of its shape parameter in a similar
fashion and then proceed to derive moment estimator of its scale parameter. As for instance, if m is the moment estimator of its shape parameter then one moment estimator of the scale parameter, derived from the expression of its first moment, is found to be

$$
\hat{\theta} \text { (moment estimator) }=\left[\frac{\bar{t}}{\Gamma\left(\frac{1}{\hat{m}}+1\right)}\right]^{\hat{m}}=\frac{\hat{m}^{\hat{m}} \hat{t}^{\hat{m}}}{\Gamma^{\hat{m}}\left(\frac{1}{m_{m}}\right)}
$$

In case of the 2-parameter Meibull law,

$$
\begin{aligned}
& \lambda(\operatorname{modian})=0^{\frac{1}{m}}(\ln 2)^{\frac{1}{m}} \quad \text { and } \\
& m(\text { mode })=\left\{\begin{array}{lll}
0^{\frac{1}{m}}\left(1-\frac{1}{m}\right)^{\frac{1}{m}} & \text { if } \quad m>1 \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Equating population median and mode to sample median and mode we get

$$
\begin{equation*}
\left.\left.\frac{(-\ln }{40}\right)_{2}\right)^{\frac{1}{4}} \tag{1}
\end{equation*}
$$

This gives, $\quad\left(\ln _{\text {mad }}-\ln t_{\text {mode }}\right)-\ln \left(\frac{m}{m-1}\right)-\ln \ln 2=0$. Solving the above equation for we have $\hat{\theta}=\frac{t \hat{m}_{n-1}^{n}}{\ln 2} \quad$.

From the relation (1) it is clear that the median and the mode of the Meibull law are quite apart provided m is less than two and away from
one. In this situation it seems reasomable to use sample median and sample mode to estimate the parameters, 0 and m of the Weibull law. When m is large it is not desirable to obtain estimators from sample median and mode for the perameters of weibull law. Because in that case modian and mode are very close to each other.

Recognizing the fact that the moment estimators are usually not as good as maximum likelihood estimators and furthermere realizing that both moment and maximm likelihood estimators have falled to provide equations explicitly solvable for the estimetors of the parameters of Heibull laws, we proceed to present some other estimators for the parameters of Weibull laws in formula form so that it moy be possible to improve these estimators by following the technique of generating BAN estimators from them. In Chapter IV., we heve taken up the problem of deriving percentile estimators for the parameters of the exponential law and have investlgated their properties. There we have mentioned that the subject motter of Chapter IV. has been the consequence of getting percentile estimator of the shape parameter of Heibull laws. Here me give such percentile estimetors of the parameters of Weibull laws.

Corresponding to the given cumulative probability P, the populetion percentile \mathcal{F}_{p} for the 3-parameter Heibull law is found to be

$$
\tau_{p}=6+0^{\frac{1}{m}}\left[\ln (1-p)^{-1}\right]^{\frac{1}{m}}
$$

In case of the i-parameter Weibull law where $6=0$ and $0=1$, we have

$$
\tau_{p}=\ln ^{\frac{1}{m}}(1-p)^{-1}=\ln ^{\frac{1}{m}}\left(\frac{1}{1-p}\right)
$$

Equating population percentile to sample percentile we hove

$$
\begin{aligned}
& t_{p}(\text { sample percentile })=\ln ^{\frac{1}{m}}\left(\frac{1}{1-p}\right) \quad \text { which gives } \\
& \hat{m}^{(\text {percentile estimator })}=\frac{\ln \ln \left(\frac{1}{1-p}\right)}{\ln t_{p}} .
\end{aligned}
$$

We may note that $p=\frac{1}{2}$ corresponds to sample median in which case we
have shown earlier that $\frac{\ln 2}{\ln t}$, which follows from the above percentile estimator when we put $p=\frac{1}{2}$.

The 1 -parameter Neibull law admits any positive known value of scale parameter. If scale parameter is known 0_{0}, the percentile estimator of the shape parameter is given by

$$
=\frac{\ln \theta_{0}+\ln \ln \left(\frac{1}{-p}\right)}{\ln t_{p}}
$$

Here $0_{0}=1$ reduces this $\hat{\text { m }}$ to the former $\hat{\hat{m}}$ which provides check on the accuracy of the expression. In case of the 2-paraneter Weibull law we have population percentile τ_{p} given by

$$
\tau_{p}=0^{\frac{1}{m}} \ln ^{\frac{1}{m}}\left(\frac{1}{1-p}\right)
$$

probabilities p_{1} and p_{2} such that $\left[n p_{1}\right]<\left[n p_{2}\right]$ where n is the number of sample observations. When population percentiles $\tau_{p_{1}}$ and $\tau_{P_{2}}$ are equated to sample percentiles $t_{P_{1}}$ and $t_{P_{2}}$ we get

$$
\hat{m}=\frac{\ln \ln \left(\frac{1}{1-p_{1}}\right)-\ln \ln \left(\frac{1}{1-p_{2}}\right)}{\ln t_{p_{1}}-\ln t_{p_{2}}}
$$

and $\hat{\theta}=\hat{t}_{P_{1}} \cdot \ln ^{-1}\left(\frac{1}{1-p}\right)$.

In case of the 3-parameter Weibull law let us pick up three cumulative probabilities, namely, P_{1}, P_{2} and P_{3} such that $\left[n p_{1}\right]<\left[n p_{2}\right]<\left[n p_{3}\right]$. Equating population percentiles to sample percentiles we get the following equations,

$$
\begin{aligned}
& t_{P_{1}}=6+0^{\frac{1}{m}}\left[\ln \left(1-p_{1}\right)^{-1}\right]^{\frac{1}{m}} \\
& t_{p_{2}}=6+0^{\frac{1}{m}}\left[\ln \left(1-p_{2}\right)^{-1}\right]^{\frac{1}{m}} \\
& t_{P_{3}}=6+0^{\frac{1}{m}}\left[\ln \left(1-p_{3}\right)^{-1}\right]^{\frac{1}{m}}
\end{aligned}
$$

These equations give

$$
\frac{t_{p_{3}}-t_{p_{2}}}{t_{p_{2}}-t_{p_{1}}}=\frac{\left[\ln \left(1-p_{3}\right)^{-1}\right]^{\frac{1}{m}}-\left[\ln \left(1-p_{2}\right)^{-1}\right]^{\frac{1}{m}}}{\left[\ln \left(1-p_{2}\right)^{-1}\right]^{\frac{1}{m}}-\left[\ln \left(1-p_{1}\right)^{-1}\right]^{\frac{1}{m}}}
$$

which provides estimator for m by the successive approximation procedure. Then.

$$
\hat{0}=\left(t_{p_{3}}-t_{p_{2}}\right)^{\hat{m}}\left(\left\{\ln \left(1-p_{3}\right)^{-1}\right\}^{\frac{1}{\Delta}}-\left\{\ln \left(1-p_{2}\right)^{-1}\right\}^{\frac{1}{\hat{m}}}\right)^{-\hat{m}}
$$

and

$$
\hat{G}=t_{p_{1}}-\hat{\theta}^{\frac{1}{d}}\left[\ln \left(1-p_{1}\right)^{-1}\right]^{\frac{1}{\hat{a}}}
$$

It is clear that the above percentile estimator of m can be obrained by successive approximations. This may not be convenient in many instances. But, we can derive a modification of the percentile estimator for m in formula form if we use an indirect satisfactory estimator for 6. The smallest sample observation is the sufficient statistic for 6 and can be used as its estimator. Denoting a satisfactory estimator for 6 by $6^{*}, \operatorname{modified}$ percentile estimators for m and θ are

$$
\hat{n}=\frac{\ln \ln \left(1-p_{1}\right)^{-1}-\ln \ln \left(1-p_{2}\right)^{-1}}{\ln \left(t_{p_{1}}-c^{*}\right)-\ln \left(t_{p_{2}}-c^{*}\right)}
$$

and

$$
\hat{\theta}=\frac{\left(t_{p_{1}}-G^{*}\right)^{\hat{m}}}{\ln \left(1-p_{1}\right)^{-1}}
$$

respectively with $t_{P_{1}}$ and $t_{P_{2}}$ as sample percentiles corresponding ta predetermined cumulative probabilities P_{1} and P_{2} satisfying $\left[n p_{1}\right]<\left[n p_{2}\right]$ -

Now we present some other estimators for the parameters of Melbull laws. In case of the 3-parameter Weibull law, the expression for the cumulative density function (c.d.f.) is found to be

$$
F(x)=1-e^{-\frac{1}{6}(x-6)^{m}}
$$

which gives

$$
m \ln (x-6)=\ln 0+\ln \ln (1-F(x))^{-1}
$$

Noting that, $1-F(x)$ is the probability that an item will survive beyond x, we call $1-F(x)=R(x)$, the reliability of the item. The equation,

$$
\ln \ln R^{-1}(x)=m \ln (x-6)-\ln 0
$$

is a linear function of $(x-6)$. it is known that any sample distribucion function of a continuous random variable obeys the uniform law on the unit interval. For the sake of convenience, we denote $\ln \ln R^{-1}(x)$ by y. On the basis of sample observations: $t_{1}<t_{2}<\ldots<t_{n}$, we define

$$
\begin{equation*}
g(m, \theta, \theta)=\sum_{i=1}^{n}(y,-m \ln (t,-\epsilon)+\ln \theta)^{2} \tag{2}
\end{equation*}
$$

mow, $\frac{\partial g}{\partial m}=0, \frac{\partial g}{\partial \theta}=0, \frac{\partial g}{\partial G}=0$
yield 3 equations,
$m \sum_{i=1}^{n} \ln ^{2}(t,-6)-\ln \theta \sum_{i=1}^{n} \ln (t,-6)=\sum_{i=1}^{n} y_{i} \ln (t,-6)$
$m \sum_{i=1}^{n} \ln (t,-\theta)-n \ln \theta=\sum_{i=1}^{n} y_{i}$
and,

Here it is easy to get expressions for m and θ in terms of 6 . The real difficulty is in obtaining estimator for 6 . We can overcome this difficulty if we use an indirect satisfactory estimator for \mathbf{C}. One such estimator for 6 has been pointed out earlier.

Dy mons of the equations (2) and (3) we derive estimators for the parameters of weibull laws under various situations.
i) I-parameter Meibull law:
a) Special case: $6=0$ and $0=1$.

$$
\hat{m}=\frac{\sum_{i=1}^{n} y_{i} \ln t_{i}}{\sum_{i=1}^{n} \ln ^{2} t_{i}}
$$

b) General: $G=G_{0}$ and $0=\theta_{0}$.

$$
\hat{m}=\frac{\sum_{i=1}^{n} y_{i} \ln \left(t_{i}-\epsilon_{0}\right)+\ln 0_{0} \sum_{i=1}^{n} \ln \left(t_{i}-\epsilon_{0}\right)}{\sum_{i=1}^{n} \ln ^{2}\left(t_{i}-\epsilon_{0}\right)}
$$

ii) 2-parameter Neibull law:
a) Special Case: $6=0$

$$
\hat{m}=\frac{\sum_{i=1}^{n}(y,-y) \ln t_{i}}{\sum_{i=1}^{n}\left(\ln t_{i}-\overline{\ln },^{n}{ }^{2}\right.}
$$

and,

$$
\hat{\theta}=e^{-\bar{y}+\hat{\omega} \overline{\ln t}}
$$

where

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}, \quad \bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i} \quad \text { and } \quad \overline{\ln t}=\frac{1}{n} \sum_{i=1}^{n} \overline{\ln t_{i}}
$$

$$
\begin{aligned}
& \text { b) General: } \quad=\sigma_{0} \\
& \hat{n}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) \ln \left(t_{i}-\sigma_{0}\right)}{\sum_{i=1}^{n}\left[\ln \left(t_{i}-\epsilon_{0}\right)-\overline{\ln \left(t-\sigma_{0}\right)}\right]^{2}}
\end{aligned}
$$

and,

$$
\hat{r}_{\theta}=e^{-\bar{y}+\hat{m} \overline{\ln \left(t-c_{0}\right)}}
$$

iii) 3-parameter Weibull law:

Here using \mathbf{c}^{*} as a satisfactory indirect estimator for G, have

$$
m=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) \ln \left(t_{i}-\sigma^{*}\right)}{\sum_{i=1}^{n}\left[\ln \left(t_{i}-\sigma^{*}\right)-\overline{\ln \left(t-\sigma^{*}\right)}\right]^{2}}
$$

and,

$$
\hat{o}=e^{-\bar{y}+\hat{m} \overline{\ln \left(t-\sigma^{*}\right)}}
$$

In case of the 2-parameter Weibull law we can derive estimators for m and 0 in formula form from another consideration as well. In the field of life testing, the concept of intensity function, $\lambda(t)$ (also called force of mortality or hazard rate) plays a very useful role. This is defined as

$$
\lambda(t)=\frac{f(t)}{R(t)}=\frac{\text { probability density at } t \text { of a failure time random variable }}{\text { reliability function at time } t \text { of the item under consider- }}
$$

Now for the 2-parameter Woibull law with $6=0, \lambda(t)=\frac{m t^{m-1}}{0}$. This gives $\ln \lambda(t)=\ln (m)+(m-1) \ln t-\ln 0$ which is a in ear function in t. We can convert sample observations te the data on intensity function by following Lomax [18]. Lat us denote $\ln \lambda(t)$ by 2 . On the basis of sample observations: $t_{1}<t_{2}<\ldots<t_{n}$, we define

$$
n(m, \theta)=\sum_{i=1}^{n}\left(z_{1}-\ln (m)-(m-1) \ln t_{1}+\ln \theta\right)^{2} .
$$

Here $\frac{\partial h}{\partial m}=0$ and $\frac{\partial h}{\partial \theta}=0$ yield

and

$$
\hat{0}-\hat{\theta}_{e}(-1) \ln t-\bar{z}
$$

where

$$
\bar{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i}
$$

VI. INTENSITY FUNCTION: CEMERATOR OF FAILLURE LANS

The statistical analysis of data pertaining to life, death or failure time of inanimate and animate objects (e.g. i. length of life of electric bulbs, electron tubes etc. which are specimens of industrial production and, il. reaction time observed while determining the effect of drugs on mice, rats etc.) and also fatigue of mon, mechimes etc. can be successfully conducted only when we correctly know the probability density function (p.d.f.) of the random variable (r.v.) concerned. The problem of actual determination of the p.d.f. of a r.v. arising in the field of Ilfe testing has not yet received due attention from the statisticians. On the basis of empirical evidence of Davis [15], the exponentiel law mas taken as good first approximation to the distribution of length of life. Epstein, Sobel and others have made useful statistical contributions which are valid under the assumption of exponentiality. Realizing the Iimitations of this assumption, some work has been done with the Meibuil Iaw [12]. The argments put formerd in favor of the use of the meibull Iaw appaar in observing that the intensity function, defined in Chapter V. of the r.V. representing length of ilfe can change with time in contrast to the exponential law whose intensity function is constant in time. Since several industrial products show aging offect, it becomes appareat that the intensity function of such r.v. must essentially be a function of time. The matter does not saem to and here. The intensity
function, as a matter of fact, appears to be very useful tool in genaerating a large number of p.d.f.'s appropriate to life testing data.

The term, intensity function, is due to Gumbel [17]. it is synonymons to hazard rate or force of mortality in actuarial statistics. For the sake of convenience to the readers we restate the definition of the intensity function, $\lambda(t)$.

$$
\lambda(t)=\frac{f(t)}{-F(t)}=\frac{f(t)}{R(t)}, \quad \text { provided } \quad t>6,
$$

where $f(t)$ is the p.d.f. of a riv. representing length of 11 fe of an item and $R(t)=1-F(t)$ is the reliability function of the item which is the probability that an item will survive beyond a given time, t. Before we proceed further, it may be proper to list some of its simple properties.
i) $\lambda(t) \geq f(t) \quad$ since $0 \leq f(t) \leq 1$

This implies that $\lambda(t)$ is always non-megative.
ii) The reciprocal of the intensity function is called Mils' ratio. It has been studied by Mills, Cordon, 8 irmbeum, Desk Raj etc. In different connections.
iii) $\lambda(t)$ may be independent of t it may increase with t without limit; it may converge toward a constant.
iv) $\lambda(t)=\frac{f(t)}{R(t)} \quad$ with $t>c, \quad$ gives
a) $f(t)=\lambda(t) e^{-\int_{0}^{t} \lambda(x) d x}$ and
b) $f(t)=-R^{\prime}(t)$
where
$t>6$.

The proofs for a) and b) are immediate and hence we omit them. Unless otherwise specified 6 will, for convenience, generally be taken as zero in the following.

The intensity function of the 3-parameter Meibuli- law whose p.d.f. is

$$
f(t)=\left\{\begin{array}{l}
\frac{m(t-6)^{m-1}}{0} e^{-\frac{1}{0}(t-6)^{m}}, t>\in \in(-\infty, \infty) \in 0, m \in(0, \infty) . \\
0, \text { otherwise }
\end{array}\right.
$$

is found to be

$$
\lambda(t)=\frac{m(t-6)^{m-1}}{\theta}
$$

When $m=1, \quad \lambda(t)=\frac{1}{6}$ which is the intensity function for the 2-parameter exponential law. The simplicity of the intensity function for these failure laws, which have been found to agree well with empirical data in many cases, and the appeal of the idea that the intensity function, an instantaneous propensity to failure in an object with has survived to time t, should be a simple function of t, suggests that forms derived from other simple assumptions about the behavior of the intensity funccion may find application in a wider class of cases than those covered by
the Heibull distributions. One naturally considers using a polynomial in t for the intensity function. if

$$
\begin{aligned}
& \lambda(t)=\sum_{i=0}^{p} a_{i} t^{i} \text { then } \\
& f(t)=\left\{\begin{array}{l}
p, \sum_{i=0}^{p}, t_{i=0}^{i} i_{i+1}^{p}, \\
0, \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Unless the polynomial is restricted, we have the trouble of too many parameters to be able to tell without a large amber of date whether the fit is good because of the appropriateness of the form or because of the number of parameters.

In some applications it is reasonable to assume that the intensity function is a decreasing function of time. Lomax [18] has pointed out that $\lambda(t)=\frac{a}{b+t}$ appears to be more appropriate for the data relating to retail, craft and service groups in business failure and $\lambda(t)=e^{-b t}$ for manufacturing trades. Corresponding to $\lambda(t)=\frac{a}{b+t}$ wet

$$
f(t)=\left\{\begin{array}{l}
\frac{a}{b}\left(1+\frac{t}{b}\right)^{-(a+1)}, \\
0, \text { otherwise, }
\end{array}\right.
$$

and corresponding to $\lambda(t)=e^{-b t}$ we have

$$
f(t)=\left\{\begin{array}{l}
-e^{-\left[b t+\frac{a}{b}\left(1-e^{-b t}\right)\right]} \\
0, \text { otherwl se. }
\end{array}\right.
$$

It is clear that $\frac{1}{\lambda(t)}=\frac{b}{a}+\frac{t}{a}$ is a linear function of t. Denoting $\frac{1}{\lambda(t)}$ by z we obtain some estimators for and ban the basis of sample observations: $t_{1}<t_{2}<\ldots<t_{n}$ in the following manner.

Let $g(a, b)=\sum_{i=1}^{n}\left(z_{i}-\frac{b}{a}-\frac{t_{i}}{2}\right)^{2} \quad$.
mow $\frac{\partial g(a, b)}{\partial a}=0 \quad$ and $\quad \frac{\partial g(a, b)}{\partial b}=0 \quad$ yield two
equations hose solutions are

$$
\hat{a}=\frac{\bar{z} \sum_{i=1}^{n} t_{i}^{2}-\bar{z} \sum_{i=1}^{n} t_{i} z_{i}}{\sum_{i=1}^{n} t_{i} z_{i}-\bar{z} \sum_{i=1}^{n} t_{i}}
$$

and

$$
\hat{b}=\frac{\hat{e}+\bar{I}}{\bar{z}}
$$

where $\bar{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i}$. Similarly from $\lambda(t)=a e^{-b t}$ we set $\ln \lambda(t)=\ln a-b t \quad$ which is a linear function of t. Here let $h(a, b)=\sum_{i=1}^{n}\left(y_{i}-\ln a+b t_{i}\right)^{2}$, where $y=\ln \lambda(t)$ and $t_{1}, t_{2}, \ldots, t_{n}$ are sample observations. Now $\frac{\partial h}{\partial t}=0$ and $\frac{\partial_{h}}{\partial b}=0$ yield two equations whose solutions are

$$
\hat{a}=\bar{y}+\hat{b} \bar{z}
$$

and

$$
\hat{b}=\frac{\sum_{i=1}^{n}\left(t_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(t_{i}-\bar{z}\right)^{2}}
$$

where \bar{t} and \bar{y} are arithmetic mans.
Finally we generate failure law from the consideration of growth cruses. Here $\lambda(t)=\frac{1}{1+e^{-(\alpha+\beta t)}}$, which is known as - logistic function, gives

$$
f(t)=\left\{\begin{array}{l}
\frac{e^{\alpha+\beta t}\left(1+e^{\alpha} f^{\frac{1}{\beta}}\right.}{1+\frac{1}{\beta}} \\
\left(1+e^{\alpha+\beta t}\right. \\
0, \text { otherwise. }
\end{array}\right.
$$

Furthermore, $\quad \ln \left(\frac{\lambda(t)}{1-\lambda(t)}\right)=\alpha+\beta t$ is a linear function of
t. Hence letting

$$
\phi(\alpha, \beta)=\sum_{i=1}^{n}\left(u_{i}-\alpha-\beta t_{i}\right)^{2}
$$

where $u=\ln \left(\frac{\lambda(t)}{1-\lambda(t)}\right) \quad$ and observations, $\frac{\partial \phi}{\partial \alpha}=0$ and $\frac{\partial \phi}{\partial \beta}=0$ yield
$\hat{\alpha}=\bar{u}-\hat{\beta} \overline{\mathbf{t}}$, and

$$
\hat{B}=\frac{\sum_{i=1}^{n}\left(t_{i}-\bar{t}\right)\left(u_{i}-\bar{u}\right)}{\sum_{i=1}^{n}\left(t_{i}-\bar{t}\right)^{2}}
$$

where $\overline{\mathbf{z}}$ and \bar{u} are arithmetic mans.

The transformation $u=\int_{0}^{t} \lambda(x) d x \quad$ is helpful in reducing unwieldy expressions of fallure laws to relatively simple forms provided the parameters involved in the intensity function are known. In particular, with extreme value distributions which have possibility of applications in life testing problems the above transformetion mey prove of immense value.
[1] Cenjamin Epstein and Milton Sobel, "Life Testing," Journal of the American Statistical Association, Vol. 48(1953), pp. 486-50).
[2] E. L. Lehmenn, Testing Statistical Hypotheses, John Wiley and Sons, 1959.
[3] D. A. S. Fraser, Monparametric Mathods in Statistics John Wiley and Sons, 1957.
[4] Edmerd Paulson, "On Certain Likelihood-Ratio Tests Associated with the Exponential distribution," Annals of Mathematical Statistics, Vol. 12, (1941), pp. 301-306.
[5] K. Pearson (Editor), Tables of the Incomplete came Function, Blametric Laboratory, London, 1922.
[6] J. Meyman and E. S. Pearson, "Sufficient Statistics and Uniformily Most Pomerful Tests of Statistical Hypotheses," Statistical Research Momolrs, Vol. I(1936), pp. 113-137.
[7] Benjamin Epstein and Chia Kuel Tsa0, "Some Tests Based on Ordered Observations from Two Exponential Populations," Amols of Mathemetical Statistics, Vol. 24 (1953), Pp. 458-466.
[8] Phillip G. Carlson, "Tests of Hypothesis on the Exponential Lower Limit," Skandinovisk Aktcarietidskrift, 1958- Mäft 1-2 (pp. 47-54).
[9] 8. O. Peirce, A Short Table of Integrals, $6 i m$ and Co., 1929 (page 65, formula 514), 3d rev. ed.
[10] Marald Cramér, Mathematical Mathods of Statistics, Princeton University Press, 1957.
[11] A. E. Sarhan, "Estimation of the Maen and Standard Deviation by Order Statistics," Amols of Mathemetical Statistics, Vol. 25(1954), pp. 317-320.
[12] John H. K. Kao, "The Waibull Distribution in Life Testing of Electron Tubes," Unpublished peper.
[13] John A. Duggan, "Utilizing the Weibull Distribution in Life Testing," Engineering Mmorandem Mo. 20, Beadix Aviation Corporation.
[14] B. Epstein, "Estimates of Mean Life Eased on the rth Smallest Value In a Smple of Size n Dram from en Expomential Population," Mame University Technical Report No. 2, prepared under ONR Contract Monr451 (00), MR-C42-017, Suly 1952.
[15] D. J. Dovis, "An Analysis of Some Fallure Data," dournal of the American Statistical Association, Vol. 47(1952), pp. IB-150.
[16] Paul Cunther, "Techniques for Statistical Analysis of Life Test Data," Cemeral Electric Report No. 456cl278, Mov. 23, 1956.
[17] E. J. Gumbel, Statistics of Extremes, Columbia Uaiversity Press, 1958.
[18] K. S. Lomax, Musiness Fallures: Another Example of the Analysis of Fallure Data," Lournal of the American Statistical Association, Vol. 49(1954), pp. 847-652.
[19] B. Epstein and M. Sobel, "Some Theorams Relevant to Life Testing from an Exponential Population," Amals of Mathematical Statistics, Vol. 25(1954), Pp. 373-381.
[20] K. Pearsen (Editor), Tables of the Incomplete Eeta-Function Biometric Laboratory, London, 1933.
[21] Bateman Manuscript Project, Higher Transcapdeatal functions, Vol. 1, Mebraw-Hill look Compeny, Ince, 1953.
[22] E. T. Copson, Theory of Functions of a Complex Variable, Oxford University Press, 1935.
[23] 8. Epstein, "simple Estimators of the Parameters of Exponential Distributions When Samples Are Censored, "Anals of the Institute of Statistical Mathematics Vol. 111 (No. 1, Pp. I5-25).
[24] Charles E. Clark and G. Trevor Williams, Dilstributions of the Nambers of an Ordered Sample," Amals of Mathematical Statistics, Vol. 29(1928), Pp. 862-870.
[25] Cumar Blom, Statistical Estimates and Transformed Eeta-Variables, John Milicy and Sons, 1958.
[26] F. M. David and M. L. Johnson, "statistical Treatment of Censored Data, " Blomatrike, Vol. 41 (1954), Pp. 228-240.
[27] Charies E. Clark and G. Trevor Williams, Distributions of the Mamo bers of an Ordered Sample--An Addendung "Amels of Mathemetical Statistics, Vol.30(1959), p. 610.
[28] M. G. De Bruijn, Asymptotic Methods in Amelysis, Morth-Holland Publishing Co. - Amisterden, l958.

ROC: USE CRY

, ••

[^0]: * Members in parentheses refer to the bibliography.

