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ABSTRACT

REDUCTION OF BACKSCATTERING FROM THE INFINITE
CONE AND THE SPHERE BY IMPEDANCE LOADING

by Carl Kenneth Dudley

The theoretical study on the reduction of the backscattering of
the infinite cone and the sphere by the impedance loading method is
presented. An infinite cone is assumed to be illuminated by a plane
wave at the nose-on incidence. The backscattering of the cone is
minimized by loading the cone surface with (1) a circumferential slot
backed by an impedance, (2) a radial slot backed by an impedance and
(3) a patch impedance. The sphere is given a similar treatment with
the impedance area being in the shape of the wedge and the patch. For
both the infinite cone and the sphere, it is shown that the optimum
impedance for each case can be found to make the backscattering

vanish.
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INTRODUCTION

Interest is being shown lately in the reduction of Radar back-
scattering of metallic objects. The sphere and the cylinder have
already been analyzed.

In this work the infinite cone and some further aspects of the
sphere are investigated and in each case an expression is found
for various impedances which will eliminate the backscattering
from the structure. Both the circumnferential and longitudinal slot
are used separately and other forms of impedances are also dealt with.

A loaded cone such as shown in Figure 1 is illuminated by a
plane wave normal to the axis of the cone. The surface of the cone is
considered as an ideal conductor except for an area in which an imped-
ance is placed. The presence of the impedance causes the radar echo
to be zero in the direction from which the incident wave is coming.

In the method used here the problem is divided into parts. In
the first part the cone is illuminated with no impedance in its sgrface
and both the surface current IS and the scattered field ES are noted.
Then in the second part the cone is considered without illumination but
with the area in which the impedance is to be placed having a specified

arbitrary field EO. Again the surface current I, and the radiation

R
field ER are noted as functions of Eo' Next the field EO is specified
in such a way as to make ER = - ES in the direction from which the

incident wave is coming. Finally the two situations are combined
using the super position principle to give the desired condition of zero
back scattering. The value of the impedance is the ratio of the field

Eo in the area of the impedance to the total surface current there.
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The impedance thus found may have to be active. It has the

expression

zZ = —2 (1)

An advantage of this method is that it incorporates existing

solutions as parts of the overall problem.

E

incident
plane
wave

ool

impedance

Figure 1. A loaded cone illuminated by a plane wave.



CHAPTER I
SCATTERING FROM A PERFECTLY CONDUCTING
UNALTERED CONE SURFACE

1.1. Spherical Mode Functions

Consider first the illumination of a cone surface without the
impedance. The incident wave is a plane wave traveling in the nega-
tive z direction with the electric field in the y - z plane. The cone
surface is at an angle 60 from the z axis. The geometry of the prob-
lem is shown in Figure 2. A surface current IS is induced and a
scattered field ES is produced. The cone is a coordinate surface of
the spherical coordinate system so the spherical mode functions are
used (see equations (35) in Appendix I).
1. 2. Boundary Conditions

In the equations (35) of Appendix I the constants A, B‘mv’
Cmv" and Dmv' are all zero except for m = 1. This is seen by the
geometry of the problem.

Also the only radial functions used are the spherical Bessel

1
hv

functionsjv and jv' since the region includes the origin where n,,

and hy2 are singular. The boundary conditions on the surface of

the cone which is considered an ideal conductor are

Equation (2) applies to the total of both the incident and reflected
parts of the electric field intensity.
Examination of equations (35) of Appendix I,specifically the

equations for Er and E

b

(2)
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Figure 2. A conducting unaltered cone illuminated
by a plane wave.
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shows that equation (2) is satisfied if

d

1
30 P (cosOo) = 0 (3)

(cos 60) =

Equations (3) determine the eigenvalues v, and l/'.l which are

a countable set and may be ordered v , v., v,,... and v' , V',
o 1 2 o 1
V'Z,... respectively.
With these changes equations (35) become
< Ui(viﬂ) 1
Er = Z — i, PV. [Ai cos ¢ + Bi sm¢__|
i=0 ! :
o0}
1 d . d 1 7 .
EG"Z T ar (Arjy_:|-d? Pv, A.l cos¢+B.Lsm¢’
i=0 - ! bos
@
. Z 1 b1l TG siné -D 5
JwH sin® Jur. T, j Sin® - D cos
i.=0 1 1
@
E-Z L _ 4 PlA'cb B. cos ¢
¢ rsin® dr rJvi v, i S1n® -5y
i=0

@
. . 1 T .
+ jwH z i d% Pv'. lC.Lcos<1>+Dism<1{l

1 L -



@
vi (v' o+ 1) L F
H = z — i P, lf:i cos ¢ + D, sin¢]
i=0 L i
@
1 d : d 1 .
Hg = 2 T dr l:rJU,;I 30 Py,‘l [C.l cos ¢ + D, smqa_J
i=0

@
. - 1 . 1 .
-jwe Z =nd Iy Pv, I:A.l sin¢ - B.L cos ¢]

@
- -1 d . 1 .
Hd)- z r sin® dr EJU'J pl/'.1 |’Cism¢ -Di cos ¢

-

@
- jwe z jv. gdg Pyll [A.1 cos¢+Bisin¢>:'
. i
i=0

1

(4)

1.3. Determination of the Expansion Coefficients

The expansion coefficients B.1 and C.l must be found using the
condition that as r becomes very large the total field approaches the
incident field. This condition is actually only true for sharp cones.
For example if the cone angle 60 approaches 90° the cone becomes
an infinite sheet the field of which is a standing wave everywhere.
This problem is eliminated later however and need not be a matter
of concern here.

The fact that the incident wave is oriented with the electric
field intensity in the y - z plane and that the remainder of the geometry
is independent of ¢ indicates that in the x - z plane the radial com-

ponent of electric field intensity is zero, and in the y - z plane the
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radial component of magnetic field intensity is zero. Examination of
equations (4) reveals that this can be true only if A.l = Di = 0.

The scalar functions Il and II* for the total field from equations

(25) and (34) in Appendix I are

. (kr) PVI' (cos®) sin ¢
i i

Bijv

=
I
.Me

....
1]
o

(5)

=
*
"
N8

. 1
Ci _]y,i (kr) Py,i (cos®) cos ¢
0

,...
1}

The incident electric field intensity is expressed by the equation

E - Kz 4 (6)

In spherical coordinates the radial components of electric and

magnetic field intensities from equation (6) are

eJkr cos 6 sin O sin ¢
Ir

(7)

jkr cos 6
e

Y sin 6 cos ¢

Ir ~

where Y = N =

In order to find the expansion coefficients B, and C.l the
orthogonality property of PVl (cos©) and -d%- Pu,l (cos9) in the
i i

interval (O, 60) are used. (See Appendix II, equation (37) ).
Using equations (5) the radial components of the total field

are found to be



< 1% (u.l +1)
Er - E Bi r v, Pv sin ¢
2o i i
(8)
- v.: (ufl +1) ]
Hr = Z Cl = Iy PV'. cos ¢
i=0 ' :

For very large r the radial components of the total field as
expressed by equation (8) approach the radial components of the in-
cident field as expressed by Equation (7).

Equating the right-hand sides of equations (7) and (8) and
multiplication by Py1 sin® or Py,1 sin® and integrating over

i i
8=0 to 0= 60 for large r yields
%
S elkrcos 0 . 24 P, (cos ©) do
o i
1 o 2
= = I/i(vi +1)B.l iy (kr) g [Pv. (cose):l sin® do
i o i
(9)

0

- o .
\/-S S elkr cos 6 s’m2 6 P ,1 (cos6) de6
K o V'L

vt (v + 1) %
i i 1 2
st ¢, ko [Pv,_ (cose)J sin8 do
r 1 (o] 1

The dots above the equal signs in equations (9) indicate that
the relations are only approximate. On the left-hand side is the

expression for the incident field for large r, while on the right-hand
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side is the expression for the total field for large r. This approxima-
tion may be improved upon by using the asymptotic forms for jv and
recognizing which part is the incident field and which part is the
reflected field. Equating only the incident parts will eliminate the
problem referred to previously which occurs for cone angles 90 not
greater than 90°.

For large r the asymptotic form for jy is

1
Jv(kr)—> — cos (kr-y‘*'1 TI’)

kr 2
(10)
kr >> v
In another form relation (10) is
. v+l . v+l
. L1 j(kr = —5— ) -j(kr - )
iy (kr) T Le 2 + e 2
(11)

kr >> v

The integrals on the left-hand sides of equations (9) can be evaluated

by the method of stationary phase and the results are given here as

e0
. v, (v +1) .
§ eJkr cos ® 1n29 P (cos 6) dé = +—ﬁ_ eJkr
(jkr)
r > @ (12)
% e 5 > 1 v(v' +1) ‘K
€ :
GS‘ T %% ¥ sin“0 P | (cos 6)d6—+~/—————2-—e3 r
o i (jkr)
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When equations (12) are combined with equations (9) and

replacing jv with its asymptotic form the result is

v,L+1 v.l+1
U1 ej(kr- 211')+ -j(kr—Tn)
(jkr)z T r Ti 2kr ¢
o 1 2
. g [Pv (cose)] sin® d6 ,
o i
(13)
- V'.l+l v'l+l
»\/E e_]kr L1 c 1 J(kr- > 'rr>+ -J(kr- ) w)
Ger)2 T b Zkx © N
)
o n
S‘ [p . (cos©) sin6 db6
o i .

Reducing equations (13) gives

v.+1 V.+1
. 1 . 1

_ jkr B. . -j T r tj——
e . i eJkr 2 +e jkr 2

o 1 2
. ‘S‘ |;PU (cose):i sinB® d6 |
o i

v 41 v 41
e T L S ke T2 T ke T
TYw k2
0

° 1 2
§ [P, (coseﬂ sin 6 d6
v'.
o

r —» o (14)
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Here in equations (14) the incident parts are identified by

observing the terms with r dependence. The left-hand side is a

function of e']kr and is strictly due to the incident wave. The

bracket on the right contains two terms ejkr, which compares with
the left-hand side and therefore is dueto the incident part, and

e KT which is due to the reflected part.

Equating only the incident parts of equations (14) gives an
accurate statement in the limit as r - ®, Thus the expansion

coefficients Bi and C.1 are found.

. au
-Ze‘](yl‘*'l)i
B. =
i 6,
1 2 .
k PV (cos 0)| " sin 6 d6
i
(15)
. ™
j(v'.+1) 5
-2 '\/i— e ' 2
C.l =
o 1 2
k y [Pv,‘ (cos 6):] sin 6 d6
o i
1.4. Total Field Components
It can be shown that
0 . m m
o om (cos ) > o6 d6 - . smeo de,l (cos 6) dPV (coseo)
v, 2v.+1 de dv
° ! . 0 v,
o i

0 . ,
° 0
S p™ (cos 9)1 Zsinede—sm o Pm(cose) 0 Pv (cos 0) o6
v - ZU'.-*-]_ v, o - A
0 i J i i 96 v o
i

(16)



In equation (15) m =1,
definitions will be given for the following constants.

will be used throughout the remainder of this work,

mi

Ul
mil

vl

mi

W'
mi

1

12

'J’E

u
2V . +1
1
m
d Pv (cos 60)
dv V.
i
2v' +1
1

0693 v

2
[3 le'/n (cos O)J
6=6
o

v=1',
1

1/.1(1/.l + 1)
1 1
v i(V ; +1)
Uu_.
mi
d m .
l:-a? PV‘ (cose)] sin 60
i
0
o
Ul
mi
m .
PU,‘ (cos 90) sin 60

1

In order to facilitate the notation, new

These definitions

(17)
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With substitutions from equations (16) and (17) equations (15)
become

jr.+1) 2
i 2
2e w“/ k

1) 3
C. =-2Ye ! W/ k

The total field components can now be found using these
coefficients in equations (4). The total field components for the

illuminated infinite cone are

-2 sin ivi+l) =
Er = o ¢ Viwli e JU.(kr) Py. (cos 8)
i=0 1 L
o ™
1) 5
-2 sin¢ iwitl) 5 g
Eg = %rsin® Z sin® W, e 7 [Fiy (kr)
i=0 i
a0 T
d 1 w.s 1
30 F‘vi (cos6 ) + kr W'l.l e ! JV'i(kr)pV'i (cos )
< (v.+1)
-2 cos ¢ W7 a [
E¢> kr sin 6 Wll dr [rJv_(kr):l P, (cos 0)
i=0 1 1
M
Wiz

- kr sin 6 Wii e jpr (kr) (—i% Pv,l' (cos 6)
i i



m .
2Y cos i(vi+l)
H = T Z v w! € jyr (kr) P (cos9)
i=0 .
@ . ™
' 4])=
_2Y cos¢ . v i 2 d .
Hg = kr sinb sin® W'y; e ar |[Fy (k1)
i=0 :
d 1 j”i’Tz1
* 30 Py,i(cose)+krW1.l e (kr)P l(cose)
<o) 1 l ks
2Y sin¢ J(V 'L+ )E d . 1
Hd: = " kr sinb z dr r_]y,i(kr) pl/'.l (cos ®)
. s
jv. 5
. 12 . d 1
+ kr sin®© W'l.l e iy (kr)aﬁ Pv. (cos 0)

L L

(18)

For the distant field components with r - © the asymptotic

form may be substituted for jV(kr) and hv(z) (kr) as follows.

jv(kr) — k—lr- cos <kr _..ﬂ/_iz.l_)_ﬂ_>

r— o (10)
v+ 3

() Tk
hv (kr)— e €

kr




CHAPTER II

RADIATION FROM AN APERTURE ON A
CONDUCTING CONE

2.1. Procedure

In this chapter the field equations due to a specified electric
field intensity over an arbitrary portion of the surface of a conduct-
ing cone are sought.

To begin with a point generator is assumed which occupies
no area and lies on the surface of the cone. After the fields due to
the point generator are found they are used as differential elements
of the fields due to the active aperture area and integration yields
the fields due to the entire aperture. The point generator Eo is
located at (r!', 60, ¢') and consists of components tangential to the

cone surface.

06

2.2. Boundary Conditions
The cone is considered as an ideal conductor and thus the
homogeneous boundary conditions still apply, and require that except

1 1
for (r', 0., ¢')
E =E, =0 at 6 = 6
o

To represent the fields due to this point generator both TM
and TE modes are used. The scalar potentials from equations (25)

and (34) in Appendix I are

15
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II= Z Z z, (kr) P:;n (cos 6) [Amu cos mo + Bml/ sin m¢]
m VvV

(19)

m
™ = z Z zy,(kr) PV, (cos 0) [Cmv' cos m¢ + D_ ,i8in m¢]

m V!

As in the case of the illuminated cone the boundary conditions

on the surface of the cone again require that

m
Pvi (cos 90)

I
o

(20)

m
d Pl/,_l (cos 90)

do

Thus if m =1 v, and l/'.l are defined the same as in Chapter I.
In Appendix II it is shown that Vo i=0, 1, 2,... are a different set
for each m. For this reason there should be two subscripts on v as

Vi when the boundary conditions (20) are used. The m subscript

will be dropped however for the sake of simpler notation. When
these v, are to be found it must be known to which m they belong.

In the case considered in this chapter there is r;o incident
field and therefore the radiation condition is satisfied. That is, for
large r the outgoing wave approaches a spherical wave with no radial

component and the r dependence becomes
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e-Jkr
kr

2,3, Lorentz Reciprocity Theorem
The exterior of the cone is divided into two regions as shown

in Figure 3

Region I : r

(21)
Region II : r>r

In statement (21) above r is assumed less than r'. Since
the origin is in region I the radial function z (kr) is replaced with
jv(kr) and in region II the radiation condition requires the use of

(2)
hv (kr).
The expansion coefficients will be different in each region.

Region I is bounded by surfaces S, and S1 and region II is

0

bounded by SO’ S,, and S_, the infinite sphere.

2’
Now the Lorentz reciprocity theorem is applied to region

II which is

gs (EIX?I'Z) - dS = §s (EZXﬁl) . dS (22)

In equation (22) the integral is over the entire bounding surface, and

dS is an element of that surface in the outward normal direction.

S=SO+S + S (23)

2
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Figure 3.
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A point generator on the cone surface.
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Equation (22) with (23) becomes six integrals

Ss (E, XH,) - (-7) ds, . (8) as,

0 2

+
m(_/-)
<
I
N

EAS as,

1]
U)L/j
Gl
N
>

—_— — N
+§ (E, X H,)- (r) ds,
S, 0

o A o A
+§ (EZXHI)- (6) ds, + y (E, KH)) * (r) a5,
S, Se,
(24)

Performing the triple products in equation (24) yields

- { -
55 (Eyy Hpg - EjgHyy) 55 + S; (E) oHpy - By Hpg) 45,
0 2

+S; (E16H2¢ - ElchZO) dScn ‘L (EZCleO - E28H1¢) dSO
) 0

+S; (EZd)le - EZrHICP) dSZ + ‘S; (E26H1¢ - EZchlO) dSm
2 ®

(25)

At this point the fields El and ﬁl are considered to be the

actual fields due to the point generator while EZ and ﬁz are the fields
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of one mode with unit coefficient. Referring to equations (19)
-E.Z and ﬁz will be due to each of the scalar potentials listed

below in turn.

zvi(kr)PVrin(cose)cosmcb ; i=0,1,2,...;m=20,1,2,...
zvi(kr)PVT(cosG)sinmd) ; i=0,1,2,...;m=1,2,3,...
zy,i(kr)Py,rin(cose)cosmqa ; 1=0,1,2,...;m=20,1,2,...
zv,i(kr) Pv,rin(cose)s'mmd) ; i=0,1, 2,...;m=1,2,3,...

The integration of equation (25) will allow the orthogonal properties

of the Legendre and sinusoidal functions to eliminate all but one

coefficient. Thus an expression for each coefficient can be found.
In equation (25) it is noticed that two integrals cancel each

other. For very large r it is possible to use the relations

- JE
,, - NE 5

2¢

e

I
=i

=

20 260

2¢
(26)

H =\/_§E

1¢

TIm

16 16

14
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The integrals over the S surface become equal when equations

(26) are used and they are dropped, leaving

S; (E1gHpg - E|4Hpg) 45 '5\ (ExgH) 4 - EpgHyg) 45 = K
0 So
(27)

where K is defined as

K= SS (E)gHop - B Hpg) 95, -Ss (EyeHyp - Bz Hyg) 45,

2 2
(28)
Because of the manner in which Vi and 1/'.l were chosen
EZr = E2¢ = 0 on surface S, making the second integral in equation
(28) zero. For the same reason E, and E are zero over all of

Ir 1¢
S2 except at the point generator where they are EOr and EO¢ which

will be expressed as a Dirac delta function. The eigenvalues v,
and 1/'.l were chosen to make the tangential components of electric
field intensity zero on the cone surface but a discontinuity exists
in the scalar p(otentials at the point generator making it possible
for the integrals to be non-zero. The value of K may be found by

integrating only over the source point since the integrand is zero

elsewhere on SZ' Thus equation (28) becomes

K = - S\ (EerZCb— ElthZr) r sin 6d¢dr (29)

source
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2.4. Evaluation of the Unknown Coefficients, Region I
Equation (27) will be used to evaluate the expansion coef-

ficients. It is convenient to break this equation into parts, defining

K,, K

1’ 2 K and K, as follows.

3’ 4

K, = Ss E19H2¢dSo
0

K, = 'S; E| 4Hz95,

0
(30)
K3 = -S\ EZGHI ¢>dSO
SO
K4 =S\ EZcleSdSO
S
0
Thus equation (27) becomes
K=K1+KZ+K3+K4 (31)

The components of El and El are expressed in the most
general terms and are taken from equations (35) in Appendix I with

the radial function jy(kr) replacing zy(kr).

2.5. The TM Modes, Even Terms
In order to find each coefficient EZ and T{-Z are considered

to be due to one mode having unit coefficient. For example to
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find a particular A y the scalar potentialsIl and II* are chosen
m

as

II = h (2) (kr) Pym' (cosB) cos m'¢

Y4 ’
(32)
™ = 0
Using equations (32) in equations (33) in Appendix I gives the
components of fz and ﬁz as follows.
v
N (2) m!
EZr == hv (kr) Pv (cosB6) cosm' ¢
£ £
=L d (2) 4 pm! '
Ee T 3¢ [r by, (kr)] a0 [p% (°°Se)] cos m'¢
1 d 2 1 m' .
E2¢ = -m' T I [r h”f( ) (kr)] o pV1 (cos8) sinm'¢
HZr =0
. 2 1 ! .
HZG = - jwe m!' hvl( ) (kr) Pl Pvr;l (cosB) sinm!' ¢
1
qu> = - jwe hvl(Z) (kr) E% [P;; (cose)} cosm' ¢
(33)

In the manner just described equations (30) become
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Z -Jwer h()(kr) {v]
2 i i

r
o

d m| d m'| . . '

* 30 [Pv }de [PVI} sin® [Am,lcos mo+ Bm.lsmm} cosm'¢
2 2 (2) . m d m'

+ w Me mr hv (kro) ipn (kro) Pv, - [Pvl J

£ i ide

. _ . 0
lCmiSLn me¢ Dmi cos m¢] cos m'¢)do d¢

S(.) S,o i i -jwemm!' r_ ad?[rjvi] hV(IZ) (kr )
m=0 i= r,

1 m _m' . . .
S0 Pv- Pv [Ami sin m¢ - Bm.L cos m] sinm'é

2 L2 (2) 4 m | pm
-Ww MemM ro JV'.L (kro) hyl (kro) do [Pyll] PUI

. [C . cos mo+ D ,sinm} s'mm'?dedcb
mi “mi

j
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2T %o % | d (2) d
f L Z ™3 [fhyl] a?[riw.l]
r

0m=0 i=0 ry o

—_—
%o
|

. _ . .
[Ami sin m¢ B'rni cos m } sin m'¢$ yd6 d¢

(34)
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2.6. Application of Orthogonality to the Sum
In equations (34) the orthogonal properties of the sine and

cosine functions eliminate all the coefficients except Am"l and

i i=0, 1, 2,... and the orthogonal property of the Legendre

functions (see Appendix II) eliminate all the Dm'i (m' #0) and all

the A_|. except A . Ifm'=0thenD_ ,, is eliminated by the
m'i m'd m'f

fact that in equations (34) each term containing Dmi has a factor

either m or m'.

With these changes equations (34) become

. (2) d .
Ky =-jwed 1] hul (kr ) g7| T Iy,
r
o
2
eo( 2
d m' . 2 _,
30 Pv (cos 0) sin® 46 cos m'¢ dé¢
0 £ 0
. 2 (2) d .
K2 = -jwe Am'l m' ry hU1 (kro) P [rJUI:I
r

(o]

90 2w
1
. S;) sine [Pym (cos Gﬂz de g sin2 m'eédeo
£ 0
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- af, @] .
K3 = jwe A r [rhvl } _]Vl (kro)

To

eo ) . > 21 >
05; [dT (Pvl (cose)):} sin6d6 yo cos” m'¢d¢

90 2 2t
1
S; —= |:P;;1 (cosG)J 46 S;sinz m' $dé

(35)
In equations (35) the quantities
2w 2w
5 sin® m'é¢d ¢ and S cos® m' ¢ dé (36)
0 0

may be replaced by their equivalent values w (1 - éom') and

m(l +6 ,) respectively where 6§ _ , is the Krondecker delta
om om

I if m'=0

1
om 0 if m#ZO0

Upon examination of the equations (35) it is seen that there is

2 .
a factor m' where ever the quantity
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2n

. 2 .
S sin m'¢ do is found.
0

This makes it possible to use = (1 + éom) for both the integrals (36)

since for each value of m'

mZa(l-6_)=m2a(l+6 )
om om

o
0 m' 2
(2) df_. o )| a
- th (kro) P [r ij S l:de (Pyj (cos 9))]
r 0
o
 pm! 2
m PV (cos 0)
+[ lﬂne 1 sin 6 d6 (37)

The bracket which contains the r dependence of equation (37) may be

expressed as



. d (2) (2) d
o Jvl (kr ) ar [r hvl ] o hvl (kry) g [r ‘]VI]
r r
o o
_ .2 d (3 (2) A,
=% [Jvl (kr) 3 (hvl) hvl (k) dr(Jvl)]
r=r
o
-r tw (jvl, hyiz)) = -4 (38)
rO

where W(jv ) hv(z)) is the Wronskian of the functions j and
5 t Y1
n (8
Y1
The integral of equation (37) can be reduced as follows (see

equation (46) in Appendix II).

2
ml
60 4 . 2 m' Pvl (cos 6)
S;) 30 I:PUI (cos 9{' + e sin 6 d6
6, >
ml
= VI S‘ I:P (cos 9):] sin ©d 6
v
0 1
A%
_ £
TOW_ (39)
£

With the substitutions indicated in equations (38) and (39) equation

(37) becomes
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K=A Yol +8 ) (40)

1
m'L )

It is convenient to abbreviate equation (40) by defining constants

V.
N = ml + & )_W_—‘-_ (41)

With the use of definition (41) the coefficients Ami are found to be

KY

5
n
4

m £ Jm
i

This coefficient is for region I defined by relation (21) as
r= ry and represents the even term of the TM mode part of the
field set up by the point generator. This can be seen from the fact
that IIis an even function of ¢ and it produces no r component of
magnetic field intensity (see equations (32) and (33)).

To evaluate K the same set of fields defined by equations
(33) should be used, and since in these equations Hz,r = 0 the K

becomes
K = ‘S - HZC'P Elr sin 0 do dr
source

At this point it becomes clear that the & component of the E field

of the point generator does not maintain a TM mode field.
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The source point is located at (r', 60, ¢' ) and if the Dirac

delta function for Elr is defined as

E &6(r-r')6(¢-9")
or
Elr=

r sin 6
(o]

and HZcb is taken from equations (33), then K becomes

K= S\ jw €E_ &(r-r') 6(¢;¢') bv(.lZ) (kr)-die [P:,r:(cos e)}e

r sin 6
source o

cos moé r sin 6 d¢ dr (42)
When the integration in equation (42) is carried out the result is

K= jue E__ hy(.z) (kr') d% [PIJ: (cos © )] ., c° mé' (43)

L

The final expression for Ami for region I is found by using equations
(43) and (41).

kE U h{%) (kr') cos m ¢
a l- i (44)

The definitions for U_ ., V. and W_ = were given in
mi L mi

definitions (17), Section 1. 4.

2.7. Remaining Coefficients
The procedure for finding the remaining coefficients is

precisely the same as it was for A | and it is not necessary to show
mi
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all the steps involved for each of the other three coefficients. For
comparison purposes the four resulting expressions for K are shown

as follows

. 200 i 1 (2)
mi i i r
o
m 2 m 2
‘S:) —5 tH—=57 sin 6 d 6
2 . 2
Kp =jweByrr W (j,, hv(. ) )
mi i i r
o
m 2 m 2
. ‘S;) —d—e— + m sin 6 d 0
o 2 (2)
Kc . - = Jw leTT(l + 6Orrl) ro W (Jl/', hU'. )r
mi i i o
m 2 m 2
60 I:d PU,.l :] l:m PV'{ ]
5; o s ryrua sin 6 d 6
. 2 ) 2
KDm' = - JWM D rs w (Jl/!’ hv('.) )r
i i i o
m 2 m ‘
g . + 0 sin 646

7

(45)
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If may be observed that in equations (45) the factor

(1 +6 ) is not in the equations for K and K . The reason
om B . D .
mi mi

for this is that Bm.l and Dmi need not be defined for m = 0 since in

the expressions for the field components, equations (35) Appendix

I, each of these coefficients are multiplied by either m or sin m¢

and both of these are zero when m = 0. However for the sake of
uniformity in the equations the factor (1 + 60m) will be included. This
will not change the values of the coefficients for m = 0 but will give

the convenient relations

A Kg
mi mi
— = "B
mil mil
m=01,2... (46)
Ke . Kp
mi mi
mi mil

It is also seen in equations (45) that the first two equations as a
pair are similar in form to the last two. If in the last two the u
factors were replaced with (~€) and V'.l with l/.l , then the forms
would be the same. This change in v, would not affect the values
of
w (jv'. ’ hv'.(Z) )
i i
but it does change the values of the integrals. The values of the

integrals of equations (45) can be shown to be



m 2 2
0 dPp m p ™
][R
S a0 + STh 6 sin 6 d 6
0
0
°© m
= v, (v. +1) 5 [P (cose):] sinf® d©
i v,
0 i
Vi
=W (47)
mi
2 2

60 d PU,.l mpy,.l
S —a8 4t L7 sme sin 0.d 0
0

I

<
—

<

+

—

OG)
1
gs)
<

- ' (48)

Because of the similarity between the first two equations
in (45) it is possible to make them into a single combined expression.

If the pair A and B . are designated as
mi mi
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where the '""e'' and the "o'' indicate that the coefficient is associated
with the cos m ¢ and sin m ¢ which are even and odd functions
respectively, then the expression for the scalar potential II from

equation (25) in Appendix I becomes

@ o0}
cos m¢
I I m
n = A iy (kr) Pl/ (cosB) sin mo (49)
m=0 i=0 mig i i
where
N,
. (2) cos m¢'
I Ik Eor mi hl/.l (kr') sin mo'
Amig = (50)

(1 +6 ) V. sin 6
om’ i o

In equation (50) the bracket

cos mao'

sin m¢o'

is due to the fact that the integral over the source point corresponding

to equation (42) becomes

(2)
K = g jwc E & (r -r'")6(d~9'") h '(kr)
Amie . or V'l
o source
d m - cos mo
o [Du (cosB)J sin mo deédr
! =6

(51)
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2.8. The TE Modes
IfC .and D . are treated in a similar manner as A . and
mi mi mi

Bmi were they will be combined as one expression

o
= ¢ 1,
I mi§
D .
mi
and the resulting expression for KC is found by combining the
pe
mi &
last two equations of (45) to give
v
_ i
KC .e Cmie Yom(l+ 6om) w' . (52)
mi o o mi
The constants KC are also found by integrating over the
ie
mig
source point as indicated by equation (29)
K = ‘S‘ (Elcp H, - Eer2¢) r sin 90 dé¢dr (29)
source
point
It was found while working with KA that equation (29) was
mi €
o
reduced by the fact that if II* = 0 then H2r = 0. Here however, both

components H2r and Hch are present and integration of equation (29)

gives two parts.
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E ., V', b ke P, (cos o)
i i cos m¢'

C_.e \
o r

sin mo'

d 2 m
EOI‘ m ar [:r hl/'(, ) (kr)}r' Pv,. (cos 90) ' '
+ i i sin m¢

r' sin 60 -cos m¢'

(53)

This implies that both ¢ and r components of the E field of the
point generator contribute to maintain a TE mode of wave.
Equating the right hand sides of equations (52) and (53) and

. I .
solving for Cmig gives

d 2
Eor mY U’mi ir |:r hv,( ) (kr):l
C I i r' sin m¢

e
o r' sinze V'. w(l + 6 ) cos m¢d
o i om

| (2)
Egp Y U' i by (kr)

i cos m¢

) sin mo

r'sin® w(l +6
o om

(54)

2.9. Determination of Expansion Coefficients, Region II

The expressions for the expansion coefficients for region I
are now found, and next the expressions for the coefficients for region
II are to be sought. Before they are, however, it will be convenient
to let the value of r become equal to r' making the point source on the
boundary of the two regions. Since ro does not appear in the expression

for the coefficients they will be unaffected.
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In order to determine the coefficients for regionII it is only
necessary to apply the condition of continuity of the scalar potentials

at the boundary between the two regions. This condition is stated as

r=r (55)

The only way in which condition (55) can be fulfilled for all

values of 6 and ¢ is to make the coefficients satisfy the conditions

I . . 3 1I (2) .
Amie v, (kr') = Amice, hv. (kr')
o i i

(56)

o= 1l (2) '

C ie Jy:. (kr') Crnig hV'i (kr')

i
. . II II s
Solving equations (56) for A "o and C_".e and substituting for
mi g mi
A :-[e and C, I, from equations (50) and (54) gives the expressions
mig mi g
. . .
I jk Eor Umi Jvi(kr ) cos m¢o'
mi€ ~ sin m¢' (57)
o ™ (l +6 ) V. sin®
om’ i o
. d (2)
1 1) —
I EorrnYU m‘LJl/’.L(kr )dr l:r hl/'.l (kr)} o sin mo'
leg = L + 8 v i 26 'h(z) ky! .
a( om) ; sin® r v’i (kr') -cos mo
E YU .j, (kr")

+ o9 mi=vh cos mo' (58)

m(l + & ) r' sin@ sin mde'
om o
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2.10. Scalar Potentials Due to the Point Source

Substitution of equations (50), (54), (57), and (58) into equation

(25) and (34) in Appendix I for II and n gives

[e0] @
n=z z
m=0 i

=0

. . (2) m .
jk Eor Urni-]v.l(kr<)hvi (kr>) Py.l (cos B)cos m (¢ - ¢')

(1 + 6om) V.L sin 60

(59)

2
o E _myu' . & |:r h (%) (kr)] |y ler) hy(,i)(kr>)

[0}

£

I "'Z - ——
= n(1+60m)V.lsm Gor hV"l (kr')

Pyr'n (cos 8) sin m (¢ - ¢')
i

Egg ¥ Upnidy: (6 byi™) (ke ) BT (cos 0) cos m (¢ - &)

m(l +6 ) r' sin©
om o

(60)

In equations (59) and (60) the notations r_ and ry have been
introduced which are defined as follows. The quantity r_ is the lesser

of the two quantities r and r' while r 1s the greater of the two.

2.11. The Non-Infinitesimal Active Source

With the finding of the completed expressions for II and n*
the field components due to a point generator at (r', 90 , ¢') may be
found from equations (33) in Appendix I. If however, instead of a

point source the fields are due to a specified electric field intensity
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over an arbitrary area on the surface of the cone, then the I and I
of equations (59) and (60) are used as differential elements of the total
scalar potential and integration yields the total fields. If the field over

the active area is expressed as
E(r'e') = E _(r'¢)) r+E , (r', ¢') (61)
o or oo ’

3
then the final expression for the total scalar potentials I' and Mare

as follows.

E,_ (¢, $')sinm(¢' - 6)3o [r'hlf,zi)(kr')] hv(,"j) (kr )jv,i(kr<)dr'd¢'

1

BN

Active hf}z,) (kr')
Area i

. 't : (2)

S S E_ (r', ¢")cosm(9' -d)j. , (kr b | “"(kr_)dr'de'

Active °° Vi <V 2
Area



m=0 1i=0 (1 + 6o )V
SS + @) cosm(@’ - ) J,, (k. )h(? )(kg) r'dr'dg’
Source (62)

2.12. Field Components due to a Specified Electric Field Intensity
in an Aperture on a Cone.

(cos 0)
E_(r,0, ¢) = Z Z i [ &, re0c0s mior-0)
m=01i=0 m(l + 5 )r Source
r'j, (kr ) b (kr)) dr' dg
i i
d m
Umi 0 [ PV‘l (cos 9)]
Ee(r’e ¢) = z . Z m(l 4 o m)r V.
m=01i=0 i

d
S S Eor/(r!, d)')COS mlrb'-d)) r' E [rjyi(kr< )hsz.)(kr> )jl dr'dcb'

1
Source

m U'_ .rP ,m (cos ©) kr )h( )(kr )

mi v'. J.1./‘ *
l 55 :
: : , 2
sin © sin 6_ V', n!{%) (kr')

1 Source

<+

i

. [Eor(r', ¢') m cos m (9 - o) Zl% <r‘hu(,2) (kr‘))

i

- V' Egelr's ¢') sinm (' - ) sin 0 hE/Z) (kr'):] dr' dé¢'
1
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© © mU smG P (cos 0)
E.(r, 0, ¢) = z Z jk mi Vi
¢\ e m(l + Gom)r sin 0 'sin 60 Vi
g S L, (Fs $sinm(é’ -4)r’ -gd; [rjv (kr )h( I (ir )] dr' d¢'

Source

+ rU' mi sin © L) [ 1/' (cos 9)] ‘S‘S Jv, (kr ) hv(,zi) (kr>)

Source

[Eor(r'. #')m sinm(¢' - ¢) 77 ( ) (kr'))

v, B4 (ir!)

i

+ Ey(r',¢') sin 0 cos m (¢ - ¢) | dr' d¢’
(63)

YU' Pvr‘n (cos 0)

m .
ml .
z i
0 i=0 'rr(1+5°

Hr(r» 6, ¢) =
)r

%Me

Sy v,(kr )h (kr>)

Source

[mEor(r', é) sinm(é' - ) %,— (r'h(z) (kr' ))

sin 6_ h(Z) (kr')

+ E°¢(r', ¢') V‘.Dcos m (¢'-¢)} dr' d¢'



E

“o
—~

]
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Hg(r, 6, ¢) =. Z Z S‘S’ dr'd¢' {U' a%-[ v' (cos 9)}

m=0 i=0 (1 + 6 Source

d 2 ) mE_ (', ¢') sin m(¢'-4) gor [ 'h(z) (kr' )J
: rj, (kr " (kr EI .
T [ > sin eo vli hff) (kr')

i

+ E°¢(r'. ¢') cos m(¢' - 4:)}

2 m
mk Umi eri (cos 6) @)

- - ' E (r', 4') sin m(¢'-¢)r'j, (kr_)h, (krg)

sin 0 v, or i i

. m
© © v - mU mipv'.l (cos 8)

H¢(r: 0, ¢) = T ™ dr'd¢ "
m=0i=0 m(l + som)r Source sin 8

- %[l’ju.i(kri)h( (e )] [qu,(rw) sinm (¢'-4)

L

1 B ! ._fl._ 1 (2) [
mEor(r » ¢') cos m(¢' - 9) 3 [ r' h," (kr )} ]

sin 9 A\ h(Z) (kr')

+ k2 U rr d_G[ ,7 (cos e):l _(r', ¢') cos m(¢'-9) jvi(kr<)hffjl‘)(kr>)

(64)



CHAPTER III

SCATTERING FROM A CONE WITH A CIRCUMFERENTIAL
SLOT IMPEDANCE

3.1. Combination of Previous Results

In the Introduction it was shown that the problem of finding an
impedance which, when placed on the surface of a cone, would make
the nose-on echo vanish, can be divided into parts. In the first chapter
the illuminated unaltered cone was analyzed while in the second chapter
the cone was analyzed with an active aperture of arbitrary shape.

In this chapter the results will be taken from the first two
chapters and they will be combined to give the desired condition using a
circumferential slot active area. The equation for the impedance was

shown in Equation (1) to be

zZ = — % (65)

The quantities involved in equation (65) are defined as follows:

Eo is the aperture field necessary to make
ER (®,0,9) = - Eg(®,0,9) (66)
ER is the electric field intensity due to Eo on the aperture.
ES is the scattered field due to illumination.
IS is the surface current across the position of the aperture due to
illumination.
IR is the surface current across the aperture due only to the aperture

source field 'I—*:'O.

The direction of TEJ_O is the same as that of TS'

44
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Figure 4. A cone with a circumferential slot.
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The surface currents are both found from the tangential compo-
nents of magnetic field intensity at the location of the aperture. For the
circumferential slot the only pertinent current is the radial component
at (r;eo. ¢') and this is due to the magnetic field component

- H¢(r'n eO’ ¢')'

3.2. The Circumferential Slot ag an Active Area

Equations (63) and (64) in section 2.12 give the fields due to a
specified electric field intensity in an arbitrary active area on the
surface of the cone.

Here the area is specified as a slot around the axis of the cone
having width & and located at a distance r_ along a radial line from the
apex of the cane.

The equations (63) and (64) for Eq and H¢ require integration
over the slot area before they can be used. In this case the slot area
is described as

¢'= 0 to 2w

67)
5 5 (
r'=r°-§ toro+-2—

The field in the gap will be proportional to the surface current
due to the illuminating wave. Examination of the equations (18) for
H¢ shows that the current across the gap is proportional to sin ¢ so

it is reasonable to call the voltage across the gap

= v_ sin ¢!
v o ¢

The field Eo in the gap accordingly is
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- v vosincb'r
E =-—= = z (68)

At this point it is convenient to introduce certain new functions
which will assist the manipulation of quantities which would otherwise

be somewhat cumbersome. These functions are as follows:

p = kr

§,(p) ph,,(z) (p) (69)

b,lp) = pij, (p)

3.3. Surface Current Due to the Active Slot

The surface current in the area of the slot is radial and is
found to be equal to - H¢(r°, 90, ¢) from equation (64).

Substitution of equation (67) into equation (64) with only the
¢ component considered gives H,. With substitutions from definitions

¢
(69) this is found for region I to be

Hrg Z Z 61r(l+6 )95 S dp' d¢!

m=0i=0

Ummi @8 Py, (cos O)sing’ cosm (4'- 44, (1S, (p')

V.
i

m®u' . PJ,?(coa 0) sin¢' cos m (¢' - By (p)éi,.i (p')

V'i sin 0 sin Go
(70)



48

the integral in equetion (70 is

Because of the orthogonality of the sine and cosine functions
of the ¢' dependent Lurts gives

zero foem £ 1 and for m

l integration

en 0
S sin ' cos m(e!' - &) do' =
"0

(71)
(v sin @ form =1

forra #1

The integration of the p' dependent parts of equation (70) will

be done with the aid of the fact that for vanishingly small § and a
continuous fun~tion {(p') that

16

AR
Cpo 3
B kS

fp') dr' = f(p ) ké
p - —

o 2

With the aid orf relations (71) and (72) equation (70) becomes

m N PR Y
k YVO Bin (t) S\ Ull dO pl}i (‘-'Ob 6)§7‘(p O) J!,ri (p)
e I T —— S -
HR¢(r’ ,CP) p - .
‘ . V.
i=0 i
UL P (eos B)4 ., ()8 ()
1 i i
V'i s5in 8 sin 0
- (73)
The current across

in sign to :HR(;(T , F_fu, ®)

the gap is equal in magnitnde and opposite
(9]

. If the point (r
equation (73) it takes the fnrm

I+,

y 7 ,®) is substituted into
o 0

v

0 . -
1 = .-2 sino ¥
R &

(74)
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In equation (74) the quantity YR is the admittance of the gap

and from equation (73) has the expression

1
u',.P e gL, (p)
li ‘,,_l(cos%w,,i(po §,,i P

[ ]
Y. = z k§Y
R P 2
i=0 0 V'. sin“ 6
1 o

6
o

Ui ;F{pvl. (cos 0)] Yy, (po) &, (PO)]
8 1 1

- Vi J (75)

3.4. The Distant Field on the Cone Axis

In order to find the distant field due to the slot source E it
is necessary to use the 8 component of E from equation (63). This
equation must be integrated over the slot area as was done in finding

IR and then the substitution must be made

r - @©

8 —+0 (76)
™
=z

The result of the integration of equation (63) is

U\, g Py, (c0s 0) 4, (o) &, ()
1 1 1

Ee(r, 0, ¢) = jkvo sin ¢ z

i=0 PV,

1

U' Py (08 0) by (0 ) &y () EL (R)
1 1 1 1

+
poV'.1 sin 0 sin Go §v, (p) (77)
i O
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Substitution of the point (@, 0,¢) into equation (77) yields the

distant radiated axial field E_ of equation (66) as

R

kv_sin¢ eIP
ER (m, 0,¢) = )

P p—vm

v.!

G U e )6
L L

sin 6_ gv,i (b))

< v+l
¢ z (J) Uli qJV.(pO) -
i=0 t

(78)
In equation (78) the fact was used that
1 1
Pv (cos 0) d Pv (cos 0) v(ir+1l) Vv
~ sin@ = = 2 =z
sin 8=0 de 8=0 2

3.5. Cancellation of the Distant Fields

In order to find the surface current and the radiation field due
to the illuminated cone it is necessary to substitute the points
(ro, 90, ¢) and (v, 0, ¢) into the equations for H¢ and Eq respectively

from equations (18) in section 1.4. With this done the result for

Is(ro, 90, ¢) and Ee(m, 0, ¢) are
2Ysind < J(V'-l+ 1%
Is = Z P lvl.(po)
Py sin 6 - i
m

jV. -Z-
+ U e ! sin 6 ¢vi(po)]
(79)
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& TURSR
Ee(°°. 0,¢) = sin¢ z W“V.le
i=0

jur. 3 v, o+ 1
-W'l.lV'.le i 2 |:% cos (p-——i-z—— 'rr)
(80)

Where W_ . and W' _. are defined in definitions (17).
mi mi

The 6 component of electric field intensity of equation (80) is
for the total of both the incident and reflected parts. In this section
only the reflected part is desired. In equation (80) the sinusoidal
asymptotic forms were used for the radial functions. If these are
replaced by their exponential forms then the reflected part of the
expression is easily recognized as that part having the factor
-ip

e Thus the scattered distant axial field E_. is

S

j N i, -3
. -jp =) T
_ sin ¢ e i 2
Eg = 2o Z [Wuvi e
p—® i=0
(V' +l) 81
jwh ) (81)
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Equating the right-hand side of equation (78) to the negative of

the right hand side of equation (81) according to equation (66) which is

E, = -E

R (66)

S

and solving for Vo gives the slot voltage required to give a cancellation
of the two fields when they both are present. The expression for this

slot voltage is

6 (82)

where the constants M and N have been introduced for convenience.

They are taken from equations (78) and :(81) as follows.

- jv.m ju'm (83)
M = z W, V. e Ly WV e
1 1 1 1

1
i=0

j(v'.ﬁl)%
U';e by (p )€, (o)
1 1

sin 0, £, (p,) (84)

3. 6. Circumferential Slot Impedance

Equation (79) is the expression for the surface current IS due

to illumination of the cone by an incident wave of unit magnitude. For
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convenience the constant YS is introduced as follows.

8
(VE]

2Y iz
YS = Z U,; e . sin 90 by (po)

_j(v'.l + 1) %
+ U’y e ' (py)
li l/'.l o (85)
W ith the use of definition (85) the expression (79) for IS
becomes
Ig = sin ¢ Yg (86)

Equatijon (65) gives the expression for the slot impedance Z
which is defined as the ratio of the electric field intensity in the slot
divided by the surface current density across the slot and has for its
unit the ohm. If substitution is made into equation (65) for E, from

equation (68), IR from equation (74), and I_ from equation (86) then

S

the impedance takes the form

v _sin ¢
Z = ° (87)

v
o . .
6[—6— s1n¢YR+ sm¢Ys]

After substitution for v, s indicated by equation (82), and
cancellation of the sin ¢, the final expression for the circumferential
slot impedance which willeliminate the nose-on echo from the cone is

as follows.



2 - (88)

= jv.m jvtw
M = z W..V.e ' +W..V'.e ! (83)
li'i 1i° i
i=0
AR LY
© jU. ug U'l.le LPi/,.(Po)g'ul.(Po)
N = ké Z[U“e Y2y, e, + : : (84)
o i sin @ y'i 5
1
oy O | Uni Py (eos §) Wy (pg) &'y (pg)
YR= z i i i
[
° i=0 AAN sinze
i o

1
U“[a-dé- Pyi (cos © ):l tllyi(po) gyi(Po)

8
- ° (75)

V.

e 3
t Ulhe 4"u'.("o):l (85)
1
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The quantity 6 of equations (75) and (84) is the width of the

slot and is considered very small compared to the wave length and the
quantity r, which is the r coordinate of the slot impedance. The other
quantities used in the above equations are defined in equations (17)
and (89).

If the quantities in above equations can be found and if the
impedance found by using these quantities according to equation
(88) is realizable it will eliminate the backscattering from the infinite

cone along the axis of the cone.



CHAPTER IV

SCATTERING FROM A CONE WITH A
RADIAL SLOT IMPEDANCE

4.1. The Radial Slot Source

The radial slot impedance will not be as easy to work with as
the circumferential slot impedance. The reason is that since the
radial slot does not lie entirely in the plane transverse to the incident

wave the impedance in the radial slot will be a function of its position.

Ad
¢ "2

¢o° +£2$ so that its width at r is r sin 6, A¢ and it is centered at ¢0.

The slot will be defined as existing between and
It is bordered by radial lines on the cone. The geometry is shown in
Figure 5.

From equation (81) in section 3.5 the reflected field from an

unaltered illuminated cone was found to be

. -jp
_ sin¢ e
ES (Q’ OJ ¢) - 2 p
p——OJ
. 1 . 1
J(U'L' ?)Tr J(U'i.+-2-)ﬂ
: W V. e SW LV e (81)

The radiation from a cone with a radial slot source is found
by integrating the 8 component of E of equation (63) over the slot
area using Eo = qu)(p') $ and substituting as the point of obser-
vation the point («, 0, ¢).

This field is

56
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r Adsin 90

ey

Figure 5. A cone with a longitudinal slot.



jp RN v 3
N Ao C 2
ER (m: Os¢) - = z Z Uln'llvl €

sin m(¢-9) S~°°

(1+60 )

- Ese () J'vl_l (p)dp

(89)

In equation (89) the r dependent part is the same as that of

equation (81), namely

e~ JP
p p—~
Thus when the condition ES(GD, 0,¢) = - Ex (», 0, ¢) is imposed

the r dependence will drop out. This must also be true with respect
to the ¢ dependence. The boundary condition for the 6 dependent

parts at 6 = 0 is discussed in Appendix II and is such that the following

condition is true.

m 1/'.l (1/'.L +1)
Pv'. (cos 0) ifm=1

0 ifm#1

This condition is necessary in order that the field components
are single valued and finite on the axis of the cone. For this reason
it is necessary only to carry one term in the sum over m in equation

(89) with6=0, that term being the one for which m = 1.
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Even with this condition the ¢ dependent parts still will not
match for an arbitrary ¢O. The ¢ dependent part of Es(m, 0, ¢) is
sin ¢ while the ¢ dependence of ER (o0, 0, ¢) is sin(¢ - ¢o) which
equals sin ¢ only if ¢oo = 0. It is therefore necessary in using the
radial slot to place it at ¢, = 0 when the incident field is polarized
in the /)} direction. Now with all this in mind if the condition
ES(O, 0,¢) = - ER (0,0, ¢) is imposed one obtains the following

result in terms of Eo¢(p) .

™ @
L

< jV'.E

1 1 3
Z e UL v S; Eoe (P) iy (p) dop
i=0 !

@ . 1 A |
J(Ul - '2—) ™ J(Vi" '2—)1T
e W.. V. + e W' .V
1171 1i 1

(90)

It is necessary to obtain the qu)(p) which is sufficient to
satisfy equation (90). This Eo¢ may not be unique but it must be such
that the integral can be evaluated. It is sufficient here to say that

Eocb(p) is any function such that F.l exists if F.l is defined as follows.

F, = ‘S; E,4(P) jy.i(P)d P (91)

4,2, The Surface Currents

The surface current across the slot will be found from the

tangential magnetic field intensity.

Ig = H_ (r,0,,0)
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For the illuminated unaltered cone equation (18) of section 1.4

gives

j(u'.l+1)-’21
© 2Y U') . e iy ()

I = . ‘ (92)
iz 0 p sin 90

After the proper slot source Eocb(r') is chosen the surface
current in the slot will be found using equation (64) of section 2.12

as follows.

® ® V'U'rnl (cosB )
[ = B9Y Z z i
R Tp ,

m=0i=0 (l+6m)

kr
h, % (p) S (e )iy (P10 45, (p)SK E g0 ’(p')dp'

(93)
4,3, The Radial Slot Impedance
Equation (65) of section 3.1 shows how the expressions (90),

(92), and (93) are to be used to find the impedance which will eliminate

the radar echo from the cone along the cone axis.

e (65)

The choice of Eo determines the type of impedance which will

result, It would be convenient if Z could be a positive constant or
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perhaps an imaginary constant. Since this requires that the total
current across the slot be proportional to the slot voltage the form
of E°¢ must be the same as that for IR + IS. While IS is

independent of Eocb it is seen that I_ depends on qu). Pursuing

R
this kind of solution leads to an equation for the unknown Z as a

power series.

in which the Ai are an increasingly complicated mixture of integrals
and infinite sums. If Eo¢ is assumed to be constant then it may

be taken out of the integral and summation signs of equation (90)

to give:
M
Eocb ~ (94)
where
S jv- Hm -
M= Z W“V.l e + W'“V'.l e (95)
i=0
@ . i [e0]
Ad vy o7
N = = }: Ull'lV'i e yo Jy'i(p) dop (96)

If YR and YS are defined here in a similar manner as was

done for the circumferential slot impedance then equation (65) takes

the form as follows.



Z = M (97)

The constants M and N are defined in equations (95) and (96)
while the quantities YS and YR are obtained from equations (92) and

{93) to give

© . T
. __2Y LA TR o
¥s = p sin 6 Z Uhie iy (P) (98)
o] . 1
i=0
© © U _.V.P (cos 8)
y =A¢Y z Z mtotTy
R pw
m=0 1i=0 1+ 6c)rn)
(2 P . ® 5
5200 7 5, enaer 43y 00 [ 0 (o0 ap (99)
i 0 i i p i

4, 4. The Finite Radial Slot Impedance
It is possible to modify equations (96) and (99) to make them
apply to the finite radial slot as shown in Figure 6.
If the slot extends from r, tor,then E =0 forr< r
1 2 o¢ 1
and r > r, making the limits on the integrals Py = kr1 and (P kr2

instead of 0 and infinity. With this change the impedance is as follows.

M

= T
NYS+MYR

Z

where N' and Y'Rare as follows.
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[oo] - ™
A Wiz (P2
N = A Z U Ve ! S‘ i (p") dp! (100)
\ . . 1
i=0 Pl
© © U'mivli Pv, (cos 60)
y _A¢Y i
YR Z Z (1+6 )
m=0 i=0 om

(101)

Figure 6. A cone with a finite slot.



CHAPTER V

PATCH IMPEDANCE ON THE CONE

5.1. The Isotropic Impedance

The patch impedance discussed in this section is like the finite
radial slot discussed at the end of the preceding section except that
its width is not made infinitesimal. An attempt will be made to let
its position and size be completely arbitrary. Only the shape will be
prescribed as shown in Figure 7.

It is bounded on the sides by radial lines at ¢ = t:,bl and ¢2
and on the ends by circle segments at r = r, and r, or in terms of

p = kr the patch lies between Py and P respectively.

The electric field intensity in the patch area will be designated

— A A
Eo = Eor T+ Eo¢ ¢
= E li? + K $]
or
E
_ _o¢
where K = E
or

The components of fo are assumed to be constant and the
constant K will be used to make the impedance have its current in the
same direction as its electric field so that an 1sotropic impedance can
be used. Because of the need for considerable manipulation of
cumbersome expressions a set of new admittance symbols will be
used.

If -ﬁR is the tangential magnetic field intensity at the surface

of the cone and is due to the patch source .E-o then each component of

64
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st
—

Figure 7. A cone with a paich impedance.
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HR can be subdivided into two parts, one due solely to Eor and the

other due to Eo The last division will be indicated by the middle

¢
subscript thus

— A

r

Hp = (HRrr + HR¢r)

N
R + (Hppg+ Hpey) ¢

In dealing with the currents and electric field intensities on
the surface there are four admittances which are important. They

are

-
3}
-
" |
" fH o
o] ]

In terms of these admittances the current TR has the

expression

- A
T = (B Y gt E Yy) T

>

H(E Y +E Y, )9

A A
E_. [- (Yr¢+ KY¢¢) T + (Yrr + KY¢r)¢ ]

(102)
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The total current, 1., in the impedance is the sum of the

T
currents TR due to Eo and I_S due to the radar illumination of the
unaltered cone.
IT = IS + IR
I
_ Sr A
= Eor[ Eor -YI'd) KY¢¢>r

(103)

This total current will be made to have the same direction as
the total electric field intensity in the area of the impedance which is
as it should be for a simple isotropic impedance. This is done by

causing the following condition to hold.

Te - o0 - g (104)

Substitution into condition (104) from equation (103) and after

rearrangement gives.

I I
2 Sr S -
K" Y, +K<Yr¢+ Yoo - Eor>+ o +Y =0 (105)

Next an expression for Eor will be obtained from the ¢ ndition
that the field_}:'_,‘o cancels the backscattered field due to the incident

radar wave. This condition is stated below.
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Ese (0,0,9) = - ERe (0, 0,9) (106)

= ERrG (‘Do 0, ¢) - ER¢9 (m» o, q)) (107)
“The two terms on the right hand side of equation (107) are due

to Eor and E°¢ separately.
The expressions for ER are found from section 2.12, equation

(63), the two parts of which will be abbreviated as follows

-E _C

ERrG @,0¢9) or 3

(108)

ERch (©,0,9) E C = Eor KC

o 1 1

Where Cl and C3 are defined later in definitions (111). Substitution

of equations (108) into condition (107) and solving for Eor gives
E S A— (109)

Equation (109) must now be combined with equation (105) and the two
solved simultaneously for both K and Eor'
The result is a quadratic equation in K which when solved may

be expressed as follows.

3 (CICZ + C3C4 -Y

K - or - Yro)

2(C Cy + Yy ,)

2
+ f (C1C2+ C3C4 - Y¢r - Yr¢) '4(C1C4+Y¢¢)(CZC3+Yrr)

)

2(C.C. +Y
174~ "¢ (110)
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where:

1= ER¢9 (CD, O’ ‘b) /EOCP

@]
i

2= Igy/ Eg (@ 0, ¢) = Hg / Eg (=, 0, ¢)

C3= -ERrS (@, 0, 9) / Eor

C,= ISr/ES(m’ 0, ¢) ='Hs¢/ES(°°’ 0, ¢)
(111)

Having obtained condition (104) the impedance is isotropic and
may now be expressed as
E

zZ = I°r (112)
Tr

Using equations (103), (109) and (111) it is possible to express

the impedance of equation (112) as

1
Z = (113)
C3C4 - Yr(b - K(C1C4+ Y¢¢)

Of the two possible values for K the best one is that which makes Z
more easy to realize.

The expressions for the symbols (102) and (111) may be found
in a similarway as the necessary quantities were found for Z in
Chapters IllandIV. The work is straight forward and the results are

listed as follows.
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From section 3.5 equation (81),

s‘mcbe“‘jp N j(”i‘li)“
Es(m, 0: ¢) = —'Tp‘_ Z [Wllvl e
i=

0

p—bCD

-3
FW Ve (114)

From section 2,12 equation (63),

e-jp .
C].:ER¢9(Q’ 0, ¢)/EO¢= P sin ¢

p~®

* (sin ¢2 - sin ¢l) + cos ¢ (cos ¢2-C°S¢1)]Sl

-jp
e .
C3—ERr9(m,0,¢) /EOr = 5 l:smcb

p—»m

+ (cos ¢] - cos ¢2)+cos ¢ (sin d)z - sind,)l)] S3

(115)

where
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. ™
jw.+1) 5
2 e ! ZUli 592
- ! 1
i=0 S
i I
i2 g, (p)E"  (p') dp'
e Y g‘ P2 VYT VY
. . :
2w smeo o\ gv,i(p)

(117)

Equations (115), (116) and (117) complete the definitions of
Cl and C3. In these equations were used the definitions (69) and

the relationships developed in Appendix II shown below.

1 1
Pyi (cos 6) d Pvi (cos 0) V'l
- = = — (118)
sin 6 6=0 do 6=0 2
From section 1. 4 equation (18),
@ . T
. t+1) =
_ 2Ycos¢ ) J(UI. 2
Hgp (10 #) = —5—= E Uivie by (P)
p SLneo Z 0 i
(119)
[e0] . m
. 1+41) X
2Y sin . Jwh 2
Hs¢(r» 60’ $) = - — d z [Ulle . \IJ'VI.(P)
p sin 60 20 i

+ sin Go Ulie d"v.l (p) ] (120)
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From section 2.12 equation (64),

@

Yrr = 2 l:cos meo (cos mcbl - cos m¢2)

m=0

+ sin m¢ (sin m¢1 - sin m¢2):| Tlm

o¢]
Y¢r= Z [:cos mo (sin m¢>2 - s'mrnd)l)
m=

+ sin m¢ (cos m<b1 - cos mcbz)] sz

[cos m¢é (cos m¢, - cos m¢2)

+ sin mé¢ (sin m¢l - sin mcbz) ] T3m

Yr¢= Z [cos mo (sinmcb2 - sin m¢1)
m=20

+ sin m¢ (cos md)l - cos m¢~2) jl T4m

(121)

Where the factors Tim , i=1,2,3,4; are defined:



m Y
2
(1 +6°m) p

Tlm =

P ll}l,.(p)«‘:.'l,.(p)dp

. [ " (p)5 (;')

v'.
i

u'_. v
mi i
1r(1+60m)p 20
yl(P)
[V.(p)f —
@
T _ Y m
3m w(l +6_ _)p sinb
om o

P2
+ \py,i(p)fp g',,,im')dp'J

m
P, (cos® )

Py €,,. (p') dp'
+¢,,.(p) 5

I(P) p' ,(p)dp
l/ V',
. [ w‘P’S vy (p)S\ :}
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2 m
2 ( miu By (cost
T, =—pt Z l
4m  n(l +60m)p . V'. sin 2 0
i=0 i o

’ o T +4¢' ), (p talp! p'
Vi p pl gyll(p ) Vi. P Vi

Umi d .m P
TV, [39' P, (cos 9)] &, (p) S by, (') dp!
1 pl 1
%

P2
t¢, (p) Sp €, (p") dp'
[} L

(122)

5.2. Polarity Rotation by Impedance Loading
A careful examination of equations (114), and (115) shows that

the r dependent parts as r—® are equal as they should be to satisfy

the condition

ES ='E at (0:)’ 0s¢)

The ¢ dependence however, does not match unless some condi-

tion is enforced so that E and E

R0 R0 are proportional to sin ¢.

If all that is necessary is to eliminate the component of back-
scattered field which is polarized in the same direction as the incident
radar field then one needs only to use that part of ER at (<, 0, ¢)

which has sin ¢ as a factor.
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¥ or this purpose C1 and C3 are redefined as Cl' and C3' as

indicated below.

C,'= P (sin ¢, - sin &.) sin ¢ S

1 T, 2 - ®n % 1
p>

C '=E—:J—pr (cos ¢, - cos ¢,) sin ¢ S

3 . 1 2 3

(123)

Equations (110) and (113) should be used with the indicated
sub s t itutions, and the result is that the backscattered field will contain
onlyr the component whose polarity is rotated 90° from that of the

incident field. Since the incident electric field was polarized in the

G dix ection the field reflected back will be entirely polarized in the

9: dir e ction.

This uncancelled backscattered field will be

A .
— x Es(m: 0: ¢) .e'JP
E -
C3' - KCI' p

|: (sin ¢2 - sin ¢1 )+ K(cos 4)2 - cos ¢1)]

p—bm

(124)

5.3. Complete Cancellation using Symmetric Patch Impedances

If it is necessary to eliminate entirely all components of the
backscattered field then the position and size of the impedance cannot

be kept completely arbitrary. There may be many sets of conditions

on gize and position which will make ERG proportional to sin ¢ but

all are not easily obtained.
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For example, if the impedance is symmetric across the
4= 0 line then

Ze'jp . .
C1 = > sin ¢2 sin ¢ S1
p—~®
Ze-'ip .
C3- 5 sin ¢2 cos ¢ S3
p—=@

(125)

Now if Py and p, can be found such that S3 = 0 then the

impe dance so placed will accomplish the desired result. Since these
value s for Pl and p, are difficult to find, a more desirable method

for elixninating the total backscattering is needed. Such a method

might be obtained by the use of more than one patch area. For

examp> le consider the case of two patch impedances placed symme-

trical Ly on either side of the ¢ = m/2 plane, bordered by the lines

P=Py and Py the first lying between ¢ = ¢1 and ¢2 and the second

between ¢ = (v - d>2) and (m - 4)1)

Equations (119) and (120) reveal that the radial currents in
the a rea of patch 1 and 2 are the same while the ¢ component of
current in patch 1 is opposite in sign to that of patch 2. It is
reaSonable therefore in order that the impedance be the same for
the two patches to make Eo¢ be opposite in sign in the two areas
while Eor is made to have the same sign. This is a slight departure

from the specifications given for Eo(b prior to this time since, it will

be remembered, that qu> and Eor were formerly considered constant
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over thhe impedance area. Here Eo has two constant values. Thus

¢

the electric field intensities Eo and Eoz in the two areas are

1

— A
Eol -Eorr+Eo¢¢
A N\

= E_ (T+K?9) (126)
- A N
02 Eorr-Eo¢¢

= E A KA 127

- E__(F-KJ | (127)

Using equations (115) for each patch area and combining the

reswu lts gives

eJp

ERB(Q’ 0, ¢) =

Eor S3 ’:sin ) ( cos ¢1 - cos ¢2

p—um

+ cos (m - ¢2) - cos (m - ¢l)) + cos ¢(sin ¢2 - sin cbl

+

sin (v - ¢,) - sin (r - q:z))] + SlK[sin é (sin s,

sin 4:1 - sin (mw - ¢1) + sin (w - cbz)) + cos ¢ (cos ¢2 - cOs ¢1

cos (mw - 4>1) + cos (m - ¢2) )J
(128)

Equation (128) may be reduced by applying the following

identities
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cos (m -¢) = -cos ¢
(129)

sin (v -¢) = sin ¢

This makes ERG independent of cos ¢.
L . ‘

ERO = 5 Eor sin ¢ S3 (cos 4)1 - cos cbz)

p—bm

+ KS, (sin ¢, - sin ¢1):| (130)

F r oxm equation (130) it is noticed that Cl and C3 for the present case

are ZC'l and ZC'3 which are

Ze"jp . . .
1= 5 sm<1>S1 (sin ¢2—sm ¢~l)
p—»CD
(131)
Ze-jp .
C3 = 5 sin ¢ S3 (cos ¢l - cos 4:2)
p—»m

The four admittances corresponding to equations (121) must

be changed as follows.

@
Yrr = 2 z cos mo (cos rr1¢>1 - cos m¢2) Tim
m-=

@
Y¢r = 2 Z cos mo¢ (sin mcbl - sin mqbz) sz
m=
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[eo]
Y¢¢. = 2 E sin m¢ (sin m¢, - sinme,) T,

m=0

Y ,=2 )
m=

sin m¢ (cos mzbz - cos mtbl) T4m

0 (132)

5. 4. Generalization and Conclusions

Of all the impedances discussed thus far only one has the
adv a mtage of being constant over the impedance area, that being

the < ircumferential slot discussed in Chapter III. All others were

founnaAa to be functions of the variables r or ¢ or both. Another

adva mtage possessed by the circumferential slot impedance is that due
to it s axial symmetry as seen in Figure 4 page 45 the back-
scattered field will vanish for any polarization of the incident wave.

A rotation of the cone doesn't change the problem and therefore leaves

the solution unchanged.

The patch impedance has the advantage that it leaves the cone

structurally more sound. If the impedance is produced by a cavity

it wouldn't interfere with the strength of the structure as much as
the circumferential slot especially if the patch area is small and it
could be more easily produced and adjusted,

By using small patches it may be possible to obtain all the
advantages mentioned for both the circumferential slot and the patch.

If the patch is made narrow enough in the ¢ direction so that the ¢
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-~

depend ence of thie Linpadance is nearly constant in the area of the
patch then it mmay be replaced with its average value. Four such
patches equalily spaced in a circumferential band coulid be used to
cause the backscattering to vanish regardless of the polarity of the
incid ent wave. Tkat this is truemay be seen from the following
logic. With four identical constant patch impedances placed at

ni - .

=z > m= 1, 3, 5,and 7; there is symmetry across both the x axis

and the y axis. If the incident wave is expressed as the swn of two

cormponents

— E A'E A
EI— I.XXT IYy

and the value of the impedance is found using only the y component,
EIy > as if it existed alone, each of the four impedances would be
half the magnritude of that found for the two impedances discussed

in thh @ preceding section. Examination of equations (119), (120)

. om
and (132) reveals that the two patches centered at ¢ = = and
K& 4 ks
¢ = 3 have exactly the same ecifect as the two placed at ¢ = -
a 3w . . -
an ¢ = T - It is as though each pair cancelled half of the y

COm porent of the backszattzred fleld. Now to see that the x com-

POnent is automatizally carncelled by the presence of theze tonr
im pedances cne may rotate the cone by ‘)()0 about itg axis and it
is found that nothing is changed. The transformation fromn ¢ to

¢ +_12_r_ leaves the Unpedance expression and locations unchanged and
Consequently the sclution is good for both components. Ii the

impedance could not be considered as being independent of ¢ over

its area thea th= transformation would not in general leave the
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imped ance expression unchanged and even though symmetry existed
acros 8 both the x axis and the y axis complete cancellation is not
guaranteed. It is noted here that either the finite or the infinite
longi tudinal slot impedance discussed in Chapter IV could be used
in such an arrangement.

If the patch area is also small in the r direction the impedance
may be constant over the entire area in which case it may be possible
to alter the shape of the patch from that shown in Figure 7 on page
65 to a more desirable shape such as a square or a circle provided
the area is kept the same. This would facilitate both construction
and adjustment of the cavity impedance. A simple plunger can be
used to adjust the depth of the cavity and thus the impedance. This
type of arrangement usually requires that the impedances be reactive
and 1i{ they are centered on the circle p = Po with Py chosen so as to
inswa xe the reactive nature of the impedances then LN must be found
by s etting the real part of Z equal to zero. The solution of the
re s \lting equation in P, Pre sents an extremely difficult task and one
may find that the experimental method for determining Py is more

desirable. In such a method a change in frequency would effectively
change the value of P
Experimentation in this problem of backscattering reduction
from the infinite cone is complicated by at least two difficulties, the
first being the need for the spherical mode functions with non integer
expansion parameters. This difficulty is discussed in more detail in
Appendix II. The second is that of approximating the infinite cone with
some kind of finite structure. Both of these difficulties are eliminated

if the structure being examined is the sphere.



CHAPTER VI

THE FIELDS OF THE ILLUMINATED
UNLOADED SPHERE

In this and the next three chapters the sphere will be
analyzed in a similar manner as was the cone. Since the sphere
i 8 a coordinate surface of the spherical coordinate system the
= pherical mode functions will again be used. Here, however,
b € cause both polar axis are included in the region of consideration
t}x e subscripts v, and v'i are integers and the letter n will be used

ira their place.

v, = V' = n (129)

In xmmany respects the analysis of the sphere is similar to that
of +tThe cone in the preceding chapters. The scalar potentials II

and II* giving T.-M. and T. E. modes respectively have the form

@ @

I = m i

Z z zn(kr) Pn (cos 6) [Amn cos mo + ansmm¢ ]
m=0 n=0

K @
II Sk _ m .
= Z z zn(kr) Pn (cos ©) [Cmn cos m¢ + Drnn sin m¢]

m=0 n=0

The field components consequently have the form shown in

AP pendix I equation (35) with the substitution indicated by eguation

82
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(129) above.
The expression for the impedance located on the surface of

the sphere will be of the same form as that of the cone

~~”ith EQ , the aperture source, adjusted so that its radiated
field ER is equal to -ES the scattered field on the positive z axis.
In this chapter the unloaded sphere of radius ry is examined

~x~ Jarile being illuminated by a plane wave incident from the positive

= = xis as shown in Figure 8.

The current IS on the surface of the sphere and the scattered
e le ctric field ES (0, 0,9) are found for use in the expression for

the impedance.
6. 1 -~ The Incident Field

The incident electric and magnetic fields are expressed as

0 A jkr cos ©
y e

|
1
i

(130)

A ikr cos ©
XYe!

"
-
[

»S

i

{

The subscript I irdicates the incident nature of the field.

jkr cos ©

é
Stratton * las shown that the factor e can be

€ >Xpanded in terms of the spherical mode functions.

[
jkr cos 6 _ Xx ! .
e =/ () (2n + 1) _]n(kr) Pn (cos 9) (131)
=0
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Fipure 8, The unleadoed sphere as a scetterer,
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and H of the incident field
Ir Ir

can be found from equations (130) as follows.

The radial comporenrts E

_ jkr cos ©
e

EIr = sin O sin ¢
_ _sin¢ _2_( jkrcose)
- jkr 00 \ ©
(132)
HIr = Y cos ¢ sin 6 eJkr cos 8

cos ¢ K] ( JJkr cos ef)
3 30

U s 1ing equation (131) in the expressions (132) gives the expanded

fo xxn for the radial components.

[eo]

i S . 1
Elr - s11:j1k¢; Z (J)n (2n + 1) Jn(kr) Pn (cos 9)

n=1

(133)

«

_ Y cos ¢ Z .\n . 1,

I—lIr T T kr (j) " (2n + 1) Jn(kr) Pn (cos 9)
=1

n

In equations (133) the fact was used that

3% P (cos 0) = - Pnl(cos 0) n £ 0
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By comparing equation (133) with the radial components of the

general field components expressed in terms of the expansion

coefficients A, B, C_, and D in Appendix I equation
mn’ “Tmn mn mn

(35), these coefficients can be determined for the incident field

as follows. From Appendix I the radial components are

@
EIr: Z
m =

n(n + 1)
r

e

m
zn(kr) Pn (cos 9)
0

0 n
. I:Amn cos mo + an sin mq>:|

m=0 n=0

. l:cmn cos mé + Dmn sin m¢]
(134)

The orthogonality of the ¢ and © dependent parts show that
the radial functions zn(kr) must be jn(kr) and the expansion

< O efficients must be

A =D =0 (135)
mn mn
.n-1 ,
mn 6m1’] k (2n + 1) "
Ban v ~ n(n + 1) (136)

F ollowing the convention established in the previous chapters
C e rtain quantities will be grouped and defined as new functions as

follows
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V_=n(n +1)

- @ntl)(n-m).

Wmn - (n +m)!
p = kr
£ (P)= phn(z)(p)

o) =pj (p)
(137)

The coefficients (136) may be expressed in terms of
d « finitions (137) to give

B =c /Yy =35 i"w
mn

mn ml 1n

U sing the definitions (137) the components of the incident electric

2. 1nd magnetic fields are found to be

<
= _ sin ¢ Z .n 1
Ir . 2 J Wlnvn¢n(p) pn (cos ©)
JP n=1

@ 1
. dP v (p) P
E_-sine Z W ) —— T — 2
I6 jP In\ ¥ n do sin ©
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© 1 1
U P dp
_cos ¢ .n, .pn(p) n . n
R R Nln( o IO
n=
‘D‘
Y .
HIr - ?OZS ? anlnvnwn(p) Pnl(cOs ©)
JP n=1
@ 1 1
dp ¢ _(p) P
_ Y cos ¢ .n . n . 'n n
07— Z ) W1n<4’n(P)Tﬂ Tl —=me >
n=1
® 1 1
. ' (p) P dpP
H -.Xeimy E wy (T n ) T +ib (p) —gg—
I jp / In sin n
. n=1

(138)

6© . 2. The Scattered Field
The subscript S is used to indicate the scattered field and

th e boundary condition at r = T

"
o

Egglr,,0,9) + Eglr ,0,4)

(139)

1]
o

ES¢(ro’ 0, $) + EI‘?(I‘O’ 0, %)
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is now used to find the unknown coefficients for this field. Since

E must satisfy the radiation condition as r-—+ « the radial functions
S

L (2)

n (p) must replace the functions zn(p) of equations (35) in Appendix

I. Using definitions (137) one obtains

K dp "
B; g|n(po) do

s

m=0 n

0

. . jwu m m
[Amn cos m¢ + an sin m¢] + W §n<po) Pn

[Cmn sin m¢ - Dmn cos m¢]

_ -mk . m
ES¢(ro. 0,9) = z Z B sm T g (p,) P

m=0 n=0

Jw M dprx;n
[Amn sin m¢ - an cos mrb] + —B: gn(po) o —

. [C cos mo¢ + D sin m¢]
mn mn

(140)

Substitution of equations (138) and (140) into equation (139) and
A P plying the orthogonal property of the ¢ dependent parts shows that

A11 of the coefficients are zero except B and Cln(n =1,2,...) which

In

™M ust be found from the following equations which are obtained in the

™M anner just described. For p = Py
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1

2 dP
Z Tén— < jn Wln lwn(po) tik Bln g"n (po)>

sin O < jn Wln“‘bn(po) *twu Clngn(po)> =0

8
—

.n , . .
sin O ( J W1n4’ n(po)qr']k Bln € n(po)>

dP1

t) __d%—<jn Wlann(po) +_jqu1n§n(Po)> =0
(141)

T « coefficient Bln (and cln) is found by multiplying the first (second)

e g va ation of (141) by Pn,1 and the second (first) by

1

1

dP

n
dob

sin ©
and adding the two equations thus obtained.
0 —

Integration over the range

O to w causes all terms in the sumn to be zero except the n'th term

dwue tothe fact that

1

T /4P . | dP |
SO__—%-G-P,+P 0 dé = 0

n n do

T /p ! ap! ap!
S L oy - sin 0 dO

O sinze do

2n?(n + 1) g aVh
nn' (2n + 1) - Wln

= 8

(142)
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One must conclude that the cofactor of the above expression
must be zero if n = n' to satisfy equation (141). Thus one arrives

at the result,

(J‘nwlann(po) + jk Blng'n(po)> = (jnwlann(po) + juu Clngn(po))
= 0

which gives

(n+1) ,
B - J Wln‘l’n(po)
1 1
" kg (pg)
L v w66
1n

k ¢ (p))
(143)

The scattered field components are as follows

(o0} | 1

E - 58ind (n+1) Vnw1n¢ n(Po)ﬁn(P) Pn [cos 60)
Sr ~ 2 J )
P n=1 g n(po)
[¢0] , 1
_sin ¢ - (n+1) g' (P ) ' dP

Fse T Z : Vin| T 8P —ae

n=1 gn(Po)

b o) (o) P !

t ]
gn(po) sin ©
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@ . . 1
g ='woso N J.(n+1) W $aP e P) P
5¢ P Ll in 3 'n(po) sin ©

v _(p ) dP
+ 2 £ _(p) —2
£ _(p)) de

Sr

1
g, - Ycoso § (n+1) VnW1n¢n(po)§n(p) P~ (cos 8)
2 J

P n=1 £ ()

_ Y cos ¢
HSB P

8

(p)
g ) 0 de

n

1
(n+1) kbn(Po) ' dP
. Wlnl:* 3 2
1

1 1
L U P)E () P
g'n(po) sin ©

1

> P n= gn(po) sin ©

H =. Ysing Z j(““) Wln[dln(po)gnn(to) P

(144)



93

6.3. The Backscattered Field

The backscattered electric field intensity on the positive

Z axis as r - ® is ES (0, 0,¢) and from equations (144) is seen to

be
e o]
_ -jp - N (I g (P )
Eg ("°'°'¢)=j§p QZ (-1)"(2n + 1) n o .-n2°
1
n=1 gn(po) gn(po)
p-—»OD
(145)
In equation (145) the facts used were
dp_? p ! 0
n _|Tn (cos 6) _ n(n +1) (146)
do sin 6 2
0=0 6=0
&' (p) £ _(p) -jp
S
lim —% = .jlim -2 = ()" & (147)
p—> JP p JP Jp

p - O
Equation (145) can be reduced still farther by using the fact

that the Wronskian of the two functions {-’,n(p) and .pn(p) is

v
Wieae ) =| % L= (148)

En ¥n

Using equation (148) in equation (145) gives
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1) (2n + 1)

£ (b )" ()

Eg (=,0,¢) = (149)

<>
o
)
ol —w
el
78

o}
1
ot

p—>®

6.4. The Surface Current

In order to find the current _I_S on the surface of the sphere

it is necessary to examine the tangential H fields due to both the

incident and the scattered fields.

at r = r (150)

Substitution from equations (144) and (138) gives

«Q
- _Ycos ¢ .(n+1)
Ise Pe Z / Win
n=1
) p! ap !
n +j 1 n
: :
g'n(po) sin O gn(poT do
0]
[ ._Ysinso z jatl) 1 P,
S0
Po & Inj¢g () do
p 1
]

n
g',(P,) sin ® (151)



CHAPTER VII

THE FIELDS RADIATED FROM AN APERTURE
ON THE SPHERE

7.1. The Expansion Coefficients

Following the procedure outlined by Bailin and Silver! the fields

due to an aperture source

'1-_30 = Eoe S +Eo¢> 3 (152)
are expressed in terms of expansion coefficients as in Appendix I
equation (35) but with hn(zlkr) replacing zv(kr) since the ﬁeldg due
to the aperture source must satisfy the radiation condition for large
r.
The coefficients A .. D_ for the radiation field _ER

are found by applying the condition that at r = T

Eoe = on the aperture
ERe = .
0 = elsewhere
(153)
Eo¢ on the aperture
ER¢ =
0 elsewhere

In order to take advantage of the orthogonal properties of the
0 dependent parts one cannot apply directly the conditions (153)

but rather these conditions are applied in the following identities.
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S‘S E _, (6,¢) sin 8 P ( ein
oe(,, ) sin —30 ! cos mo

Active
Area

tm!E 0 ¢) Pn?'{.zﬁf} m'¢:' dode

g 2w dP m'
- . n' gin .
= f S [ERe(ro, 0,%) sin © —go— gcos E m'd

, m' cos ,
tm ER¢(ro' ©, @) Pn‘ g-sin§ m ¢:‘ dd6

(154)

ap ™'
9 - n' cos :
A}ES Eocp( »¢) sin 0 —— g cin p ™'
tive
Area

-COSs

+ m'E_g(8,¢) Pnr,n'g Sini m'¢:| dode

g 2w de'
_ . n' cos :
) SO SO [ER¢(r0’e’¢) sin © —do g sin E m ¢

#m! Epglr: 8 ¢) PV gi:f;; m'¢:l d¢de

(155)
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If the expanded expressions for E and E are used in

RO R¢
equations (154) and (155) integration will give

ap ™'
1
in 0 n sin |
SS [E p S1M - do cos m'e
Active
Area

!
+mLE g S e rn'cb:ldedd)

1
kw S an dPrrln
= — 1 +6 g! S\
o (e ) . AP ) R —m
n=0 m'n
muz m' !
+ P P, sin 6d6
sin_ © n n

In obtaining equation (156) the following facts were used.

2

" sin (1-6 m)
S' sin mo m'édd = w§ , ©

cos mm
0 0
2T
_ (1 +6 )

5 "cos mo €S\ mi'ode = w§ ' om

0 sin mm 0

(156)

(157)

(158)
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m(l-6_ ) =m(l+5 ) (159)
m , ap ™' ., dP™

m' S (P;n —I— + P _d%—> de = 0 (160)
0

Equation (156) can be reduced further by using the Legendre

associated equation in the integrand on the right-hand side as follows.

t 1 1 !
S~" (dpnr,n ap™ m'® p™ p T )
+ sin 6d6
0 d® d® sin” ©
w '
1

= n(n + 1) y P P, sin 6d6

0 n

LA
i 2 6nn' nn+1)(n+m')!
(2n + 1)(n - m') !
2§86 , V
- nn n
W 1
m'n

(161)

where V. and W are defined by equations (137).
. n mn

After relation (161) is used in equation (156) one may solve

mn'

for and by a similar process equation (155) vyields the

mn'
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expression for Dmn and thus all the coefficients are found as

mn
follows.
Arnn pOW p™ cos
- 2m(1 + )r.;lnk ' o) 5S |: o0 6 sin mé
mn h 6om n € n po Source
mE o p™ - sin
+ _0—5‘_— m¢:| sin 6 dOdé
sin cos
Cmn -jYp W dp™ cos
- O mn 55 E o n . méb
o do sin
Drnn Zm(l + éom) Vnk gn(po) Source
mkE Pm sin
09 " n ..
+ . mdp:l sin 6 d6d¢
sin O - cos
(162)

7. 2. The Surface Currents and the Radiation Field

Using these expansion coefficients the components of the field

due to a source placed on the surface of the sphere are found to be,
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) Z z mnpoén(p)P ™ (cos 6)
- ' 2w(l + aom)p g'n(po)

dP™(cos 0')
S\S Eoe (6',¢') n dg| Sin el cos m (4) - ¢')

Source

+ m qu, (6',4") Prrln (cos 0') sinm(¢ - ¢'):‘ dé'de!
(163)

i w__e (enie dP™ (cos )
2n(T + 6 )V P £ p.) do

de(cos 0')
SS‘ [Eoe(e'.cb') ndB' sin®'cosm (¢ -¢"')

Source

+ m Eo¢, (6',¢") P;n (cos 8') sinm (¢ - ¢'):] d¢ 'do!

£, (P)P_ ™ (cos 0) de(cose')
&S‘ (661 —n
Eos o’

+m

0
gn(Po) sin Source

sin ' sin m($¢ - ¢') + m Eoe(e',dp') Prrln(cose') cosm(¢-¢')}d¢'d9'§

(164)
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i i P, g p)  dP “(cos®)

do
L0 nZ0 217(1 +6 m) v.e E (o)

- - dPIrln(cos 6")
AS‘S [Eocb(e',ct')sin 0! qo7 cos m(¢ - ¢')
Source

o0 (CAR ¢)P (cose ysinm(¢ - ¢):] de' do!

g (p) P ™ (cos 8) g‘ . dP_ M (cos 0")
5 [moaerensins
g'n(po) sin ©

el
Source d

- m

sinm(¢ - ¢') -m E_ (9' ¢>')P ™M (cosB') cos m(d - dp)jldcb'de'i

(165)

- IW_,YPE (P)P " (cos 0)

o
of
Ef.b/Ja
e

o
o)
1]
o

2m(l +8 ) % £, (Py)

dPrn(cos 0')
51 mane

307 cosm (¢ - ¢')
Source

-mE 6(9' o) P M (cos08') sinm (o - ¢'):| do'de!

(166)
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mn O
T, Jo

<, i iYW p g' () dP;n(cos 0)
2w(l + 6om)vnp

de(cos 6')
. S‘S‘ [Eo¢(9',¢')sin o' —=2 cosm (- $')

1
Source do

-m Eoe(e'.¢') P;n(cos 0') sinm (¢ - ¢>'):| do'de!

+m

£ (p) P ) dap™ Y
A §§ [Eoe(e’,¢')sin or on (0271
g"n (po) sin © Source de:

* sinm(¢ - ¢') - m Eo¢(9',¢') P;n(cos 9')Cosm(¢-¢'):l d¢'d9'§

(167)
o i i JYW_ e m¢e' (p) P (cos 6)
R¢ Lo L 2n(l + éom)Vnp E—'n(po) sin 6
dP;n(cos 0r)
. S‘g |:E ¢(9',¢') sin 6! sinm (¢ - ¢')
© 4o

Source

+mEoe(9'.¢') Prrln(cos 8') cos m(¢ - ¢‘)] do'de’

£ _(p) dP™(cos 6) dP™(cos 0')
gy - de \YS‘ ':Eoe(e"‘*")sme' -

1 ]
g'n(po) Source d®

- cosm(¢ -¢')+mEO¢(e'.¢')P:1n(cos 0') sin m(¢-¢'):| d¢'d6'§
(168)



103
The radiation field may be found by letting p »o in

ERO( ©,0,%) and noting that

£,(p) g',P) n  e-dP
- = = as p =~ @
P P P
(160)
Prl;n(cos 0) d Prrln(cos 0) v
sin © = do =61m_2— as 6> 0
. @ .n
-Jjp W. p ]
— _e In"o
By (2,0,¢) = & E o
p—+© n=0
1 !
1 dP (cos 07)
TEGLT Ego(®h @) —qgr— sin 0
n (o]

Source

. (R cosd' +7sind) - Eo¢(e',¢')Pnl(cose')(Qsin¢'-§>cos¢')] d'de"

1
. dP “(cos9')
-—d SS [E 6',9') — 2 sin®' (Xsind'- $cos o)
od do
E,Py)

Source

+ Eoe(e',¢')Pnl(Cos 0') (Qcos ¢'+9 sinqb'):l do'doe!

(170)

The surface currents on the sphere are expressed by letting
P =P, in the tangential components of the magnetic field. Since

there is no significant reduction in the equations by making p = Po
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the result will not be rewritten here but will be left to the next chapters
where the shapes of the impedances to be placed on the surface of the

sphere are specified.



CHAPTER VIII

THE WEDGE IMPEDANCE ON THE SPHERE

8.1. The Shape of the Impedance Area

In considering the problem of elimination of radar back-
scattering from a sphere by the placement of an impedance on the
surface one must decide the shape, size and location of the
impedance before much further progress can be made. There are
an infinite number of choices that could be made and one must be
guided by several factors in making this choice. These factors
include such things as construction, realizability, and ease in
computation. Since other information as to overall function and
purpose of the object being treated must be known in order to
validate a choice based on the first two factors this work will be
mainly concerned with the last mentioned factor, namely, ease in
computation. If the impedance is limited to that class which have
such a shape as to be bounded by coordinate surfaces then the limits
on the integrals of equations (163) to (170) can be constants rather
than functions. Such shapes include circumferential slots, being
bounded by surfaces of constant 6, wedges, being bounded by surfaces
of constant ¢, and patches being bounded by segments of both types.
Liepa and Senior2 have examined the circumferential slot
impedance on the sphere and have validated the method by experi-
mental verification, so this work will be limited to the investigation
of the wedge and patch impedances in this and the next chapters

respectively.
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Since the wedge is only a special case of the more general
patch impedance it should seem unnecessary to give it particular
attention as in a separate chapter, but for the wedge of small width
the analysis is sufficiently simplified as to merit special handling.
Thus this chapter deals with only the narrow wedge being bordered

by ¢1 and ¢>2 where

kr (¢,-¢)) = k_A¢ <<l (171)

8.2. Location of the Wedge Impedance

In order to eliminate the backscattering from an object the

condition is imposed that

E E = 172
Eg +Ep 0 (172)

Examination of equations (149) and (170) shows that _E—o must be chosen

= _ A .
so that ER = ERyY which means that
qbZ
1 ! 1 N1 -—
&Eoe“’ ,4') cos ¢'de’ = 0
1
(173)
n¢2
jfp E,,(0',¢') sin¢'de’ = 0
1
If Eoe and Eocp are both non-zero constants, equations (173)

lead to the contradictory conclusion:

by, o, =
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This dilemna is easily resolved by making A¢ sufficiently small
as indicated in statement (171) so that EOe may be considered to be
zero, and requiring that ¢>2 + 4)1 = 0.

The wedge impedance on the sphere is analogous to the radial
slot impedance on the cone and the same problem appeared in the
analysis of that case. In both cases it is necessary to center the
impedance at ¢ = 0 or wm. This is the most logical location anyway
since the incident EI field being polarized in the gr\direction would
tend to give maximum current across an impedance in that position
as may be seen from equations (151). Now allowing for the approxi-

mation

sinA—qg— - %— for small Ad¢

the equation (170) may be reduced to give

A -Jp @
f = YA¢ E0¢poe W .n
R 41p . 1n’
n=1
p - 0
i

. [———1— S Pnl(cos S Ye [ pa—

£'hp,) 0 Enfo

AT aP Ycos 0)
. 5 2 FE sin 6'd0!’
0

(174)
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Equation (174) can be reduced further by carrying out the

indicated integration using the facts that

1 dp)
- P “(cos 8) = —g5— (cos 9)
1
5 Pg (x)d<x =0
-1
0 0 n
Pn(l) = 1 Pn(-l) = (-1)

and integrating by parts. The result is

QA ¢E P e".]p (_n‘
Ep = o o Z iTw
R 4mp In

[:—é—,— (-0 - o 0 +(-1)“)]
(175)

Equation (175) can also be written

A -Jp
5 VAP EPoC i (_1)n<w1,2n+1 Wl,Zn)
- - - =
R 2mp 52n+ l(po) an(po)

n=1
p~

(176)

Substitution from equations (149) and (176) into condition

(172) and solving for Eo¢ gives the expression
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[s5]

TRV )
Z £ P )E ()

ob ~

o W w
p _A_?. Z (_]_)n ( 1, 2n _ 1,2n +1 >
o m EntPo) € ons1lPo)

n=1 n
(177)
Continuing the use of the notation adopted in earlier chapters the
sought impedance may be given the expression
M
Z (178)
NYs + MYR

with M and N being the numerator and denominator of the expression

(177) for Eo¢’ YS being found from the expression (151) for the

surface current of the unloaded sphere, and YR being found from

expression (167) for the surface current of the sphere with the appropriate
source Eo¢ in the wedge area. Due to the orientation of the impedance
only the ¢ component of the current is used in finding the admittances

YS and YR and these currents I¢ come from the ® components of the

r¥rnagnetic fields at the surface of the sphere. The integrals to be

evaluated in order to find YR are seen from equation (167) to be

Ad
Z

S cos m¢' do' = Ad
8¢

(179)

2
™
S Pm(cos 8') do'
n
0

(180)



110

sin 0'd9" (181)

4 dP:l(cos 0')
§ —m
0

Thus the impedance is found by substitution of the fqQllowing

quantities into equation (178),

[oe]
' . 2n + 1
M= ) D" . (182)
L INCREINCIN)
«Q
_ PA? n (W, 2n Wi, 2n+1
N= = -1) Gy " E ) (18
2 E-’?.n o 2n+1%o
= p!l 0
v oY ; J.(n+1)W I:n(°°s )
S P, :: , In &'n(po) sin ©
1
1 dPn(cos 0)
T ao
gn O
(184)
° g
v --iYA e Z > mn
R 2T L. (1 + éon?v
m=0 n=0 n
~ m m
e S SJ T e sin0'do’
NCN] do do’
0
w

m%g (o )P (cos 0)
g'n(po) sin O

S P;n(cos 0') do!
0

(185)



CHAPTER IX

THE PATCH IMPEDANCE ON THE SPHERE

The analysis of the patch impedance on the surface of the
sphere is analogous to the analysis of the patch impedance on the cone
which was discussed in Chapter V. The problems encountered
there are similar to those which will arise in this chapter. Such
problems as that of complete cancellation of both Q and 9 com-
ponents of the radar echo, and that of obtaining an isotropic
impedance will be handled in this chapter in the samne manner as they
were in Chapter V. In fact where the work is repetitious much of it
will be omitted. As was mentioned in the previous chapter the patch
area is bounded by coordinate curves on the sphere. Specifically it

is described by the relations,

The electric field intensity in the patch area will be designated

—_ N N
E = E_g(0+ K9 (186)

where again K is used to make the impedance isotropic and

K = 2% (187)
E_q
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The four admittance symbols corresponding to those of section

5.1 equation (102) are

v - RO®
89 Eoe
y, - RO
0 E’oe
(188)
N
%0 " TE_,
¢ - Roo
%0 " E_,

It will be remembered that the middle subscript on H in
equations (188) indicates the sole cause for that component. For

. N = L
RO is that part of the ¢ component of HR which is due

solely to EoG and not to Eo . One must also remember that these

¢

fields are to be found at p = Por

example H

In terms of these admittances and the components of_is obtained
from equation (151), one is able to write the expression for the total

surface current TT on the loaded sphere as

T Lty

=
1]

A
Eoe [(Ise/Eoe - Ye¢ - KY¢¢> 0

A
+ (184)/Eoe ¥4+ KY¢6) q{l
(189)
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There are two conditions which must be applied to provide
that (1) the impedance is isotropic and that (2) the radar echo is

eliminated. These conditions precisely stated are as follows.

E_XTp = 0 (190)

ER+ ES =0 (191)

Applying these conditions simultaneously will give an expression

for K independent of .Eo analogous to equation (110) in section 5. 1.

K =
+.[ 2
(C1C2+C3C4-Y¢9-Ye¢)— (C1C2+C3C4‘Y¢9'Ye¢) '4(CIC4+Y¢¢)(CZC3+YGG)
2(C1C4+Y¢¢)
(192)
Where
C1 = ERq,e(‘D. 0,¢)/Eo¢
C, = Isq)/Es(oo,O,cb)
(193)

C3 = - ERee(w’OsQ)/Eoe

Cy = Ige/Eg(®,0,9)

In equations (193) the three subscripts on E have the same

meaning as that given to those on H of equation (188). It was found in
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section 5. 3 that in order to eliminate both X and 9 components
of the radar echo it was necessary to place two impedances sym-
metrically across the $ = /2 plane on the cone with the two
electric fields Eo and —E-o

1 2 given in equations (126) and (127).

In this section the same approach will be taken and the fields are

- A A o

E =E | =E0 tKe) 5 ¢, = ¢=¢,

T -F _-E _(6-K$) ; =¢=m-¢ (194)
O_ 02 - oe( = ¢) ) ™ - ¢Z_ - 1

ffo =0 elsewhere

These conditions make ER (0, 0,%) have only a Q component
as may be seen fram equation (170). Carrying out the integration of
the ¢' dependent parts of this equation involves two sets of integrals

the first having limits ¢1 to ¢2 the second set having limits w - c’pz

and m - ¢  and having a sign change if the integral contains E0

1 ¢

as a factor. As a result the expression for -E_IR(m, 0,%) becomes

N _-Jp
b ) :l_e__ - i - i
ER(cL,O,qD) s [Eoe(cos¢l cos¢2)S3+Eo¢(Sm¢2 s1n¢1)Sl:|
p—> (195)
where
0.
S Le2[plcos e ;  dP_(cosO))
1 nzzl In"o" Jo, [ CN) NN do
0
® .2 dPl(cose') Pl(Cose')
s =Z p J“S : n - j de'
1
3 ) In" o el Enzpo; do gn(Po)

(196)
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Equations (195) and (196) make it possible to identify the

constant expressions for C1 and C, as follows

3
e P . .

C1 = - . (sin ¢2 - 8in ¢1) S1

p-,w

(197)
_enJP

C3=7m " (cos &,-cos¢)) S,

p-be

The quantities CZ and C, are not constants but are dependent

on both ¢ and 6 and they are found from the equations (151) for the

surface current and (149) for the back scattered field far the unlpaded
sphere.

1 1
2Y cos ¢ Z (n+1) P _(cos 6) . dP_(cos ©)
o L7 In | T em® T6 Gy T av
C, =
. [+0]
e P Z (-7 (2n+1)
[
P - gl e’ P )
p—> n-
N dP’(cos ©) Pl(cos®)
2Y sin¢ Y .(n+l)W 1 nlcos . ,(cos
Po L | J In gn(po) do J g;l(po)sinﬂ
ns=
C, = -
e P Z (1) (2n + 1)
P E )T (p)
n=1
p—~

(198)
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In expressing the four admittance quantities the equations
(167) and (168) are used and the integration over the source involves

® from 0. to 0, and two ranges for ¢, namely ¢1 to ¢2 and

1 2
(mw - ¢Z) to (w- ¢1). Since the symmetry across the ¢ = n/2
plane causes certain terms to be zero in the integration for ¢ it

is convenient to introduce two new symbols defined as follows

1 ' ' even
) = if m is
m, ev
0 odd
(199)
1 odd
6 od = if m is
m, 0 even
In terms of these symbols the four admittances are found to be
\ N -jYwmn
YGG = Z Z T 7 5om)Vn [:Bm’ev(s1nm¢)(s1nm¢2-s1nm¢1)

m=0 n=0

6m, od(COS mo)(cos m¢2 - cos mcpl)J

¢)
g'n(po) dP:l(cos 0) 2

gn(pp Jo Se Pn(COS e') do’
1

m 3] m .
§n(Po) Pn (cos 6) 5 2 dPn (cos ')
6

£, ) sin® go sin 01 dO!

+

1
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0 a) jW
Y¢e = Z Z T I‘g‘lnjv — l:&m ev(sinm¢)(cos rn¢2- cos rn¢l)
m=0 n=0 om- 1 ,

- 6m, od(cos mé)(sin m¢2 - sin mcbl):l

£ (p) dP™(cos8) 2 dP™(cosb')
n o n S‘ n ' sin 0' do!
E ) dg 0, av
: 0
m%t (p )P (cos 8) ( °
n_o n 5 P (cos 6') dO"
[}
3 nTpo) sin © 61 n
C < jYWmn
Y6¢ = 2 Z = 50m)Vnm |:6m’ ev(cosm¢)(s1nm¢2-s1nm¢l)

m=0 n=0

- 6m’ od(sin moé)(cos m¢2 - cos m¢l)]

2
m 1 1
£ (P )sin® ( P, (cos 01) dO

[ng'n(Po) Pl:(cos 0)

9
9
€ (p) dP™(cos®) 2 dP(cosO')
n o n n : 0! 0!
" T ) 39 L) sin d
> nvo

°)
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\ '; JYWnln
Z L w(T+5 IV, [5m’ev(cosm¢)(cosm¢2-cosm¢l)

m=0 n

+ 6m od(Sin mo)(sin m¢)2 - sin m¢1)]

' m ) m .
én(Po)Pn (cos ©) S‘ 2 dPn (cos©') im0 do

gn(pJ sin O do'

°

0

En(Po) dpt;n(cose)gz P™(cos 0') d6"

g,e) db A n
1

(200)

The expression for the impedance may be found from these

9 v antities to have the same form as it had in section 5.1 equation

(1 1 3).

1
z = , . (201)
C3C4 - &Bqu - K(C1C4 +Y¢¢)

It ~xrillbe noticed that Ci never appears in Z or K except as a product

Ci Cj where ij is an odd number. Examination of equations (197) and

(19 8 ) will show that in this product the factor

-JP
p—®

111 cancel out so that Z is dependent only on the var ables 0 and ¢.
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It will be remembered that at the conclusion of Chapter V
a di s cussion was offered concerning the possibility of using four
pat «h impedances spaced m/2 apart around the z axis on the surface
of te cone to eliminate the radar backscattering of arbitrary
inc i dent polarization. The same discussion would apply to the case
of tXxe sphere as also would the discussion about using small patch
are a&as so as to allow the use of a constant impedance in the patch
are a. Since these considerations would only be a repetition and
w o wald offer nothing essentially new they will be omitted from this
ch a pter.

The analysis of the sphere has two obvious advantages over
t Inat of the infinite cone. The first is seen in the fact that the values
of the functions P;n(cos 0) and zn(kr) are more easily found, and the
S € cond is in the fact that the sphere, being a finite structure offers

I ©Ore in the way of practical application.
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APPENDIX I

SPHERICAL MODE FUNCTIONS

1 . The Radial Vector Potential for the TM Modes
The general magnetic and electric fields may be expressed in
the spherical coordinate system in terms of two independent scalar

potentials as follows.

From Maxwell's equations the electric field intensity in a

homogeneous charge free medium is

WH €

TJ sing the vector potential A defined in part by

B=VXA
= L wves
-—__' —_—
E-—'Lw“€ VXV XA (1)

"I Fxre condition is arbitrarily imposed on A that it is a radial vector

>l
"
>
>

Tl e results of this limitation is dealt with later. The components of

—

E> in terms of Ar are then found by expansion of equation (1).

aAr 1 BZAr
(s'm 0 ) + > :' (2)
00 sin 6 9¢

E_ = . [—
T ouer’sin® Lo6

121
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82A
- r

6 "Wuer 0orod

(3)

Q)
]

. 2°A
E, = = -

¢ WM E T sinb oroo (4)

2. The Gauge Condition
An alternative expression also from Maxwell's equations for

the electric field intensity is

E = -ij-V@ (5)

"I he components of which are

Er = —ijr - 'a-? (6)
1 b

Eg = -7 %0 (7
) ] 9d

Ey = -TSind 39 (8)

“I" I e gauge condition compatible with equations (3), (4), (7), and (8),

is
. 8Ar
¢ = WM € Or (9)
- The Scalar Wave Equation

Equating the right-hand sides of equations (2) and (6) gives

the Jifferential equation for A |
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2
. 0A 9 A
-jwA _8% *12 2 (sine r) - -3
T or wMe T sin B |36 96

sin 6 8¢>2

~which when rearranged and with ¢ eliminated with the use of equation

(9), becomes

2

0 A 1 5 aAr 1 82Ar 2
21”+.2 -—-(sine )+ —| +k"A_ =0
or r sin6 |96 a0 sin 6 0¢

(10)
where k = w NU €

Now by letting Ar = rII where II is a scalar function equation

(10) becomes

r——z-an+28—l-[+ 1 X2 (sme——

or or r sin® 86 00
2

+ 1 8H+k2rn - 0

(11)

X £ equation (11) is divided by r the first two terms are identical to the

€« =< pansion oflZ LN ( r2 ﬂ) Thus equation (11) becomes
r Odr or

1 0 2 0Il 1 o] . oIl
- — rt = S = sin 6 —
r or or r sin © 096 96

2
1 8H+k21'[:0

S (12)
r2 s'mze 8¢>2

Equation (12) is the scalar wave equation in spherical coordi-

13 t es and is separable. Multiplication by r2 and regrouping yields
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2
s L2320 -0 (13)
sin 0 98¢

<1. Separation of Variables

If Il is assumed to be the product of three functions fl(r),
fz(e) and f3(¢), each of which is dependent on only one coordinate

t hen after division of equation (13) by Il the result is
1oa (2%, 22] T T L
[, ar \' Tor r sin6f, 90 |°'"° 738

+ 3 =0 (14)

Separation constants ¥ and m are used as follows. The first
> = =acket in equation (14) is the only part of the equation which has any
¥ «dependence, and it has only r dependence so it must be equal to a

<= o rastant which for reasons to be seen later will be designated

rr (v +1).

af .
'8%‘ (rz ai) FoRS ot 1) [ =0 (15)

Since only one variable is involved equation (15) may be rewritten using

furl derivatives.
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df
£ ,:r?' drl] ¥ [kzrz-v(vu)}fl =0 (16)

In order to obtain a differential equation of a familiar form from

equation (16) the substitution

_ Z(kr)
L N kr

is made and after simplification the result is

2 dr

2
28z, 4z [kzrz-(w%)z:lz: 0 (17)
dr

From equation (17) it is seen that Z must be a cylinder function

o f half order.

£ (r) = 1 z (kr)

N kr v+

N —

Equation (16) is satisfied then by a spherical Bessel function

«d fined as follows

2 (p) = N 3= 2 | (p) ipe) = Nz T ()

n+-2— n+7
_ ™ (2) _ ™ (2)
n_ (p) = Zp N (p) h = Zo H " (p)
n+E n+z

T"h e function f, (r) may be expressed as

fl(r) = zv(kr) (18)

e re f1 is redefined to absorb a constant factor.
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The remaining part of equation (14) gives

‘ o9f 9 f
[s;ne 5% (s'me —aez> +tv(v+1) sin%} +fL —‘Z = 0 (19)
2 3 0%

FHere again in equation (19) separation of variables is used with the

s eparation constant m2 which gives two differential equations.

1 d df2 mzfz
S5n0 a6 (Sme g )t a2 0 (20)
sin_ ©
d2f3 2
—5 + mf; =0 (21)
d¢

Upon substitution of £ = cos 6 equation (20) is

2 2
d’f df m
2 2 2
1 - ¢ —_— - 26— + V(v +1) c—— f, = 0 (22)
( ) dg.2 at ( l-§2> 2

The solutions of equation (21) are the family of sinusoidal
fua i ctions., In order for f3 to be single valued in ¢ the constant, m,

Txrxu st be an integer m=0, £ 1, £+ 2
£,o0= 15" 0me (23)

The solutions to equation (22) are the associated Legendre

Ta nictions

£, = PT(g) (24)
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The values of both m and vV are restricted to the positive
numbers and zero. The constant m is an integer whereas the values
of V are to be determined by the bounderies of the region considered.
For the conducting sphere the points £ = %1 corresponding to 6 = 0,
180° are both in the region and this requiresV to be an integer. For
the cone the 6= 180° point is excluded so v will not be an integer. The
possible values of v will be determined by the fact that the tangential
electric field on the surface of the cone is zero.

Combining the results of equations (18), (23), and (24) the
solution to the differential equation (12) is found to be of the form

si
n m¢

m
II = z, (kr) PV (cos 0) cos

The general solution is the infinite series summed over all

possible values of m and v

I = Z z z, (kr) Pll;n (cos 6) [Aml/ cos m¢ + B, sin mﬁ
m 14

(25)
5. Field Components for the TM Modes
Returning now to the problem of expressing the fields in
terms of I, the substitution is made
A = rl (26)

r
into equations (2), (3), and (4) and using equation (10) to simplify the

expression for Er the components of E are



128

. 2
E = —l [3 (rZH) +k2rl'I_I

r WH € 5r B

2
_ -] a_ (rT0)
Eg = W eEr [ orob :l (27)

. 2
E, = -J 9 (rm
¢ wMer sin® 9roo

With the use of the relations

B =pHd = VX A

The components of H are

H =0

r
_ 1 9 (r1)

HG T MUrsinb 09 (28)
I W TE3 )

Hq:‘ Hr 96

From the equations (28) it is seen that the radial component of
magnetic field intensity is zero. This fact implies that the scalar
potential Il gives only the TM modes and is the result of the condition

imposed that

6. The TE Modes
In order to have a completely general field there must be

Soxmne non-zero expression for Hr' This may be obtained from
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another scalar potential.

Let & * be defined by the relation

D¥ =V XA~ (29)

with the imposed condition

A% =A% 2 (30)

Equations (29) and (30) make the radial component of the electric

field intensity zero.

—_ -
The potential A gives rise to the TM part of the field and A
gives rise to the TE part. The total field is the sum of the two parts.

3 —
Following a procedure for A analogous to that for A it is found that

o* = Z Z z,, (kr) pvr,n (cos 8) [cmy, cos m ¢

m V'

+ Dy sin m¢] (31)

The resulting field components are as follows

P

¥ 1 9 (rII')
0 €r sin 6 d ¢

* 1 9 (rI™)

$ = €r 96
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. 2 *
_ . 9 (rIl')
H¢ T WM Er sin © drd ¢

(32)

7. The General Field Components
The general fields are expressed as a linear combination of
the two sets of equations. Since the equations are homogeneous it is
convenient to absorb the constants -—J— and +—L—— into the
Wu € WH €
scalars II and I respectively and redefine them accordingly. The

general field components are then

2
-9 (rIN) 2
Er———z—— + k rlII
or
2 . %
g o120 0m _jou 8 (r1I*)
® r 0raob r sin© 0¢
E o] 9% (r 1) Y 9 (rII)
¢ r sinb or 9¢ r 96
2 %
H =a ril ) + kZ rH*
r 2
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bool 25y  jue 5 (rI)
0 r or 96 r sin 0 9 ¢
2 * .
H. = 1 o (rll") _Jwe 9 (rIl)
¢ r sin B dr 3¢ r FL)

where

z Z (kr)P (cose) [

ycos mo + B

and

(33)

, sin mqﬂ (25)

* z Z 2, (kr) py‘,n (cosB) [cmv, cos mé + D_, sin mdﬂ (34)

m V'

W ith the substitution of equation (25), and (34) into equations

(33) the general expressions for the field components with both TM

and TE modes are as follows:

- v(v+l) m )
E = Z z — z (kr) P~ (cos6) [Amv cos m¢ + B_, sin md)]
m v
1 d d .
EG - Z Z r dr [r zv(krﬂ d6 p;n E‘*my cos mé + B_ ., sin mcpj
m vV
tiww Z Slne Zp [Cmy' sin m¢ - my' €°8 m¢]
m V'



132

- -m d m .
E‘b- Z Z r sin® dr [r ZUJ P, |A,,sinmé-B  cos mqil
m v

+ ) W Z Z,0 die Pur;n [Cmv, cos mo + Dmv, sin m¢]
m

r 14 v

. m m .
-jwe Z Z o6 Zv PV [Amv sin mo - Bmy cos m¢J
m vV

- m d m X
H¢ B Z Z r sin® dr [r zl/':l pv' [le/' sin m¢ - Dmv' cos m¢]

m V'

. d m .
- jwe Z Z z, 36 Pu P‘mv cos mo + Bmv sin mcb]
m VvV (35)

In equations (35) use was made of the fact that
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9 (r 1) 2 - viv + 1)IT (36)

as may be seen from equation (15).



APPENDIX II

PROPERTIES OF THE ASSOCIATED LEGENDRE FUNCTIONS

In order to facilitate the following derivations the operator

L;n will be introduced as follows

2
m,, — . y ) . m
Lv (f) = sin 6f" + cos 6f' + V(v + 1) sin Of - R f (37)
Thus if Llf“(f) =)
then (38)

f = Pm(cos 0)
v

Another abbreviation will also be used as follows
(39)

1. Proof of the Orthogonality of the Associated Legendre Functions
in the Range 6 = 0 to 60

The relation to be proved is as follows

0 0
°© m m ° m 2
S P P, sin0de = & g p sin 6 d6 (40)

0 i j 1 Jo Yi

m

"I he symbol 6ij is the Krondecker delta. Since Lym (Pv ) = 0 the
i i
I~ elation holds,
m. m'[om!' mi m m) _
PV_l Lyj (Pyj ) - p,‘,j LVi (pyi ) -0 (41)
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R e lation (41) can be put into the form

1
dp. ™ dP
1%

. v
d . m j m' i
d [s”‘e<pu.l 30 ‘pvj de')]

[e0)

2 2. Y% ' m _m'
= (m' -m)———L + (V.l-VJ.) Pv. Pv sin 6

L ]
(42)

Integration of equation (42) over the range 6 = 0 to 90 yields

0
1 (o]
dPUm dap ™
. m m' i
smG(P. g6 — " Py ao )
1
0
6o pTmp™ 0
2 2 © Vi Vi © m_ m
= (m'° - m°) —L J de+ (V.-V)) P P ™ sin0d6
sin 6 i j V. T v,
0 0 i
(43)
If m' = m the equation (43) becomes
ap ™ dap ™
. m v, m Yi
sin8 \P," —g6— -P, —go
i
0
o
0
° m _ m
= (V,-V)S‘ P P sin6d 6
i 1 Jyg v, l/j

(44)
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The orthogonality of the associated Legendre functions depends
on the fact that the bracket on the left hand side is zero. If the boundary

condition at 6 = 60 requires that

dpv,fn (cos 6)
m 1
Pyi (cos 90) = 30 =0

i=0,1,2,...

‘m=0,1,2,...

(45)

then the functions Pvm and Py,rn are orthogonal in the set over
i i
i=0,1,2,..., and equation (40) holds.
Two further properties of the Legendre associated functions

were used in section 2.5 to reduce the expression for K, they are

shown below as equations (46) and (47).

m _ m m m
60 , PUl P d Pyl dP,,
5‘ m L4 J sin 6d6
0 sin” 6 do de
90 >
= 6.V S (P ) sin6do
joiJg v,
(46)
) dPp ap ™
o m 1/[ m v
P, + P, J e = 0
0 i ade i de
(47)
Expansion of the equation P, LVm (Pym ) = 0 gives
i J J



4% P ap™
sin© Pvm -——Jz-— + cos 6 —- Pm
i dae ae Vi
m2 m . m
+ i - =
V. sin (3] m Pl/. PV. 0
i j (48)

Rearranging and combining terms in equation (48) yields

m m

m
d | . m dp"j . dp”i dP”j m? :
36 |sin 6 Pvi 30 - sin® ) 39 =\ 38 —VJ. sin ©

(49)

Integration of equation (49) and application of either of the

boundary conditions gives

2 m m m m
90 m Pl/. PV. dpl/ dpl/ .
S ! J 1 ) sin 0 d6

0 sin_ 0 d6é do
3]
" m - m .

= V_] .\ Pv. PU. sin 6 d6

0 i j (50)

Equation (50) could also have been obtained with V'j replacing Vj’
It has already been shown that if i # j the right hand side of equation

(50) is zero. Thus equation (50) becomes the desired result (46).
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The left hand side of equation (47) may be rewritten as follows

90 d m m m m 90
\S\ d6 < Py, Pv'.) d6 = P~ P, (51)
0 i j i j
6=0
Letting 6 = 0 in the expression sin 8 L;n (Pvm) = 0 shows
i i
that
2 m
m PV (cos 6) = 0 (52)

Boundary condition (45) with equation (52) which, incidentally,
also holds for 1/'.l , make the right hand side of equation (51) vanish
and consequently equation (47) holds for m # O.

2. Finding the Eigenpairs V.L and Pym

i
The boundary conditions (45) cause the set l/.L ;1=0,1,2,...,
to be different for each m, necessitating the use of a double subscript
onVas V_ .. This means that one must find each Vi independently.
The problem of finding the Vi and V'mi is of considerable difficulty.

If in equation (37) v = vm and (m + 1) is used for m while the

+1,1

function f is

dB, m
f=mcos?  p m __ m#li
- sin 6 1% . de
m+1l,i
where PV ™ is the solution of I"v m (P) = 0 then the result
m+l,i m+1l,i

reduces identically to zero and in accordance with statement (38)
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dP, ™M (cos6)

p m+1 (cos 6) = w@_ p m (cos 8) - m+l,i
v . sin © v . de
m+1l,i m+1l,i
(53)

From equation (53) it is possible to obtain the familiar expres-

sion for Pv m
mi
m
2 m
m 2 d o
Pl/ = (1 -x7) = PV
mi dx mi
(54)
X = cos 6
This Pym must satisfy the boundary condition
mi
m
PV ' (cos 60) =0 (55)
mi
The differential equation for P, ° s
mi
o
a°p  ° dP,
LVO<PV°> = sin @ M 4 cos® ml
mi mi de de
tv_(v_.+1)sin0P ° =0
mi (56)

Equation (56) may be written in terms of x = cos 6 as



a’p. ° (x) dP. °x)
2 vV . vV . o
(1 - x°) mt - 2x m!l Lty (v_.+1)P (x) = 0
2 it mi V.
dx dx mi

In order to find the proper values er which satisfy the
boundary conditions of the problem the Vm = vm(vm + 1) will be
considered as a variable and on (x) will be considered as a power

m
series as follows.

P (x) = Z a.xd (58)

The standard procedure shows that

. v
) j
aj+2'aj<j+2°(j+1)r8+2)> (59)

For each j it is possible to obtain a polynomial expression in

powers of Vm for aj with a, and a, arbitrary.

355 T 39 Qy (V)
(60)

= 3 541 V)

225+1
Where Qk(vm) is a polynomial of degree k - 1 or less.
At this point it is necessary to consider the boundary conditions.
One was mentioned in equation (55) and according to equation (56) is

satisfied if
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e = 0 (61)

. . . o . - s
Using the series expression for Pl, from equation (58) this condition

m
(61) may be written

(m + j)d J o )
Z — 7 (G +m) 0 "~ (62)

Using the polynomial expressions (60) the equation (62) takes the

a / } V j + a l) \Y ) = 0 () 3

Condition (61) i3 not sufiicient to fix the values of V[_ since

ni

both a, and 2, are left arbitrary.

| Another boundary condition is

needed to completely determine the roots V ; of equation (63).
’ m

This other boundary condition applies at 8 = 0

ard is
expressed as iollows for both v, and v!
nl mi
o
Pv (1) = 1 (64)
mi

The seccond boundary condition (64) may be treated in the same

manner as was the firet to give an expression similar to expression

(63) as follows.
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@
J AR
a ( z cOj Vm> +a; ( Z clj Vm> = 1 (65)
. =0

Now the two equations (63) and (65) are sufficient to fix the values of
v ., i=0,1,2,..., which are the values of the variable V__ such
mi m
that the two equations are satisfied. With Vmi found the definition
(39) for V__ . may be used to find the v_ .. The V__. are used in
mi mi mi
expression (60) to obtain the coefficients aj which are used in turn
to give Pv ° using equation (58). Finally Pym are obtained by
mi mi
substitution of P, ° in equation (54). The same procedure must be
mi
followed for each vm and l/‘m , m=20,1,2,...) with the latter having

the boundary condition

dP
mi
do 0

substituted for the condition (55) in the case of v‘m
The above discussion is not intended either to be complete or
to imply the best method for finding the needed functions but simply

to indicate some of the difficulties involved.

3. Continuity at the 6 = 0 axis.

Condition (64) insures that the field components such as those
mentioned in equation (35) Appendix I are continuous and single valued

at ® = 0. On this axis the © and ¢ components of E can be written
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=
n

EX cos ¢ + Ey sin ¢
at 6 =0 (66)

E = -Exs1n¢ + Ey cos ¢

with Ex and EY independent of ¢. An examination of equations (35)

in Appendix I will show that if equation (66) is to hold then

m m
dPy.l Pv.l (cos 0)
—35 = ) = 0 ifm#lI1, (67)
6=0 6=0
and ifm =1
1 1
dPUi Pl/.1 (cos 6)
T = Sin © 70 (68)
6=0 6=0
. . m+l . . .
Consider the function Pv which satisfies the equation
mi
mi mi

(m+1)% p =0 (70)
mi
6=0
Thus Pym+l (1) =0 for m = 0. If the following substitution (71) is

mi
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made for Pva in the left hand side of (69) expansion reveals it to

m

be identically zero. According to statement (38) this proves the

equation.

d PV
m+1 m cos 6 m mi
P, = —sme_ Py . - a0 (71)

By letting © = 0 in equation (71) while using equation (70) the

left hand side is zero and it is seen that

P, (cos 6) d pvm (cos )
. mi . mi
m é‘_{no sin O _J" elfr(‘) do (72)

Applying L' Hopital's Rule to the left hand side of equation (72) yields

dP, ™ (cos9)

mil

(m - 1) lim
80 de

]
o

(73)

Equations (72) and (73) combine to prove equation (67).
Relation (68) remains yet to be proved. This can be done by using

equation (53) and its first derivative both with m = 0 obtaining

ap © d P
v, . V..
li - li
dez de
(74)
o
de.
1i - _p 1
deé - v
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(o}

If substitutions are made from equations (74) into Lv (PV )=20
11 li
one obtains after division by sin 0
d Pvl
li cos 6 1 o
de snd ‘v, - ViiPy (75)
Ii 1i
Using equation (72) while letting 6 = 0 gives
1 1 o
d P, Py Vii By ()
li li _ 1i (76)
de “  sin 6 - 2
6=0 6=0
The boundary condition at 6 = 0
P,° ) =1 (64)
mi

guarantees the validity of relation {68) and with the help of definition

(39) one obtains the following useful result which also holds for l/'l.l

dP ! P . v,. (v,. + 1)
Vli Vli li 1
—30 * S 3 (77)






