BAH i): '! Date \ Q 1r 1‘ ' 333*, k 6 ‘3 ‘2‘? 3* t' .. - v~ l‘vaflfi This is to certify that the thesis entitled ANALYSIS OF PERIODIC REACTOR OPERATION A CASE STUDY presented by Eden Yee Tang T. Dionne has been accepted towards fulfillment of the requirements for M . S - degree in QhemicaLEng . AM I Dull/M Major professor 2/.)(9/ 0-7 639 MS U is an Affirmative Action/Equal Opportunity Institution MSU LIBRARIES .m— BEIURNING MATERIAL§: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. fi— = “TL—.7- 'r— .r_.. ANALYSIS OF PERIODIC REACTOR OPERATION A CASE STUDY By Eden Yee Tang T. Dionne A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemical Engineering 1983 ABSTRACT ANALYSIS OF PERIODIC REACTOR OPERATION A CASE STUDY By Eden Yee Tang T. Dionne The Van de Vusse reaction scheme, represented as AtA-—E2a-D is considered as a case study for investigating the effects of periodically controlling the volumetric rate of through- put to an isothermal CSTR and PFR. It is shown that a se- lectivity shift to an enhanced production of the intermedia- te product B is encountered when large fluctuations of the cycling frequency is implemented in the CSTR. An adverse effect to the yield of B is obtained for the periodic con- trol of the volumetric flow rate in a PFR. The effects‘of large cycling frequencies can not be surmised for a PFR oPerating under a periodic control of the volumetric flow rate because the physics describing the flow and mixing Patterns are no longer similar to the plug flow behavior. LIST OF FIGURESS . . . . . . . TABLE OF CONTENTS . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . vii NOTATIONS--CHAPTER 1 . . . . . . . . . . .viii NOTATIONS--CHAPTER 2 . . . . . . . . . . x Chapter 1. SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN AN ISOTHERMAL CSTR WITH A VAN DE VUSSE KINETICS I I I I I I I I I I I I I I I I I I 1 IntrOduction I I I I I I I I I I I I I I I I I I 2 Basic Equations . . . . . . . . . . . . . . . . 6 Optimal Steady state . . . . . . . . . . . . . . 10 Perturbation SolutionzPeriodic Process . . . . 11 Di ScuSSi on I I I I I I I I I I I I I I I I I I I 15 Conclusion . . . . . . . . . . . . . . . . . #0 2. SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN AN ISOTHERMAL PFR WITH A VAN DE I VUSSE LINETICS I I I I I I I I I I I I I I I I I I [+4 Introduction . . . . . . . . . . : . . . . . . . 45 Basic Equations and The Perturbation Model . . . A9 Perturbation Solution and Optimal Periodic Process I I I I I I I I I I I I I I I I I I I 52 Discussion . . . . . . . . . . . . . . . . . . . g6 Conclusion . . . . . . . . . . . . . . . . . . . 2 APPENDICES Appendix . DERIVATION OF THE CLOSED FORM SOLUTION FOR REACTANT A (A PERTURBATION SOLUTION) . . . . . . . 97 B. THE INITIAL CONDITIONS FOR THE PERTURBATION CAI'CULATION I I I I I I I I I I I I I I I I I I I 113 D- AVERAGE YIELD CALCULATION OF THE INTERMEDIATE PRODUCT I I I I I I I I I I I I I I I I I I I I I 120 ii Appendix E. THE SECOND VARIATION IN THEFREQUENCY DOMAIN I I I I I I I I I I I I I I I I I I I I I 121 F. CALCULATION OF THE VELOCITY PROFILE IN THE PLUG FLOW TUBULAR REACTOR . . . . . . . . 126 G. GLOBAL SOLUTION TO x1 AND x2 IN A PLUG FLOW TUBULAR REACTOR (PERTURBATION SOLUTION) . . 132 H. ASYMPTOTIC SOLUTION TO x1 AND x2 IN THE PLUG FLOW TUBULAR REACTOR AT em . . . . . . . . . . . 149 I. EVALUATION OF BOUNDARY CONDITIONS FOR 1 2 P1 AND P1 I I I I I I I I I I I I I I I I I I I 155 J. EVALUATION OF BOUNDARY CONDITIONS FOR 1 2 P2 AND P2 I I I I I I I I I I I I I I I I I I I 158 K. PROOF OF THE DERIVATIVE OF THE BOUNDARY CONDITIONS FOR P: AND Pg . . . . . . . . . 161 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . 162 iii LIST OF FIGURES Chapter 1 1. Phase plane plot of a periodic controlled isothermal CSTR with a Van de VDsse kinetics. i2 and 1-2 are time-average yield and contersion, respectively. . . . . . . . . . . . 4 2. Phase plane plot of a sine-wave control of the.reactant feed concen- tration in an isothermal CSTR wit a Van de Vusse kinetics . . . . . . . . . . . . 7 3.(a-b) Perturbation solution versus nu- merical solution with k1=k2=k3Aref =t=1I ' A=2I €=OI5 I I I I I I I I I I I I I I I 16 4.(a-b)Perturbation solution versus nu; merical solution with K1=1, K2=K2=5, A:OI5’ €=OI25~ I I I I I I I I I I I I I I I I 19 5- Deviation of perturbation solution from numerical simulation for (a) K1=1, K2=R2=5, A;O.5, e=o.25 (b) K1=u.928, K2=24.642, fi2=o.493,.A=10., 6:0.1 (c) K1=K2=§2=1, Azio, 6:0.8 (d) K1=K2=K2=1, A=10, 6:0.5 (e) K1=20, K2=2, K2=30, A=1, e=O.5 (f) K1=20, K2=2, fi2=3o, Asl, 6:0.8 . (g) K1=20, K2=2, K2=30, A:1, 6=O.1 (h) K1=1, K2=R2=5,.A=O.5, 6:0.025 (i) K1=1, K2=k2=5, A;0.05, 6:0.0495 . . . . . . . . 22 iv 6a. 6b. Chapter 2 1. (a) (b) (a) (b) AA Frw- l I l—Ju. vv (m-n) A O "U V x2-x1 phase plane for K1=K2=K2=1, A=1. with varyingé. . . . . . . . xz-x1 phase plane for K1=K2=K2=1. 5:0-5. withvaryingA. Comparison between perturbation solution and Pi-criterion method with k =k =k A =1 94.=0.005 1 2 3 ref e/A =0I01 I I I I I I I I I I I I I I I I I I Velocity profile at £=1.0 E=A=0.05 e:OI01' A=OI]. I I I I I.I I I I I I I I I I I Deviation of perturbation solution from numerical simulation for the velocity profile at 5:1.0 6=A=0.05 6:0.01, A?O.1 . . . .... . . . . . . . . . . Behavior of Van de Vusse system for =K2=K3=O.515, 6:0.01, A;0.05 at =O.2 H avior of Van de VUsse system for =K3=O.515. 6:0.01, A;O.2 at wwwm pqw wonmm p: (D Kn II II II IIH HOOO OVU‘NN Behavior of Van de Vusse system for _ = = = . , = I t K1- 2 K3 0.515. e 0 05 A.0 2 a 5:0.2 5=0-5 $=0-75 3:100 o o o o o o o o o o o o o o I 0 O 0 0 0 Deviation of perturbation solution from numerical simulation at §=O.5, 6:0.01, A30.05 for the velocity profile . for Van de VUsse system With K1=K2=K3=0.515 . 33 35 38 58 60 63 . 68 73 78 3. Deviation of perturbation solution from numerical simulation at '5 =1.0, 6:0.01, A=0.05 (c) for the velocity profile. (d) for Van de Vusse system with K1=K2=K3=O.515 . . 8O 3. Deviation of perturbation solution from numerical simulation at 5:0.5, 6:0.01, AFO.2 (e) for the velocity profile. (f) for Van de Vusse system with K1=K2=K3=O.515 . . 82 3. Deviation of perturbation solution from numerical simulation at 3:1.0, €=O.01,.AFO.2 (g) for the velocity profile. (h) for Van de Vusse system with K1=K2=K3=O.515 . . 84 1+. x2-x1 phase plane for K1=K2=K3=O.515. €=A=0ol at (a) §=O.2 (b) i=0-75 (c)'$=1.0 . . . . . . . . . . . . . . . . . . . . 86 4. xz-x1 phase plane for K1=K2=K3=O.515, €=0.01, A=O.05 at (d) 3:0.2 (e) i=0-75 (f) 3:1.0 . . . . . . . . . . . . . . . . . 88 4. x2-x1 phase plane for K1=K2=K3=O.515, €=0.01, fF0.2, at (g) S=O.2 (h)'$=0-75 O (i)3=1.o .....9 Appendix F * F-1. Characteristic transformation for the independent variables . . . . . . . . . . . . 128 vi LIST OF TABLES Chapter 1 1. Yield enhancement . . . . . . . . . . . 2. Yield enhancement as predicted by the pi-criterion and 8-D perturbation method . Chapter 2 1. Percent yield and conversion enhancement with varying reaction rate constants . . 2. Percent yield and conversion enhancement with varyingJ\. . . . . . . . . . . . vii 13 . 41 92 . 9h Greek Symbols 6 NOTATIONS--CHAPTER 1 Reference concentration for species A Hamiltonian Objective function Kinetic constants 0 (Ski k2/}‘1 o (sk3Aref k3Aref/k1 kZ/kl or K2 Periodic functions in the 8-D perturbation me- thod Optimal cycle time =-%; A/Aref, B/Aref - dimenSIOnless concentration V/Vref - dimensionless reaction volume Dimensionless optimal steady state concentra- tion and reaction volume Dimensionless residence time Dimensionless reactant feed concentration Dimensionless optimal steady state residence time and reactant feed concentration Perturbation amplitude viii 1.2,):5, 1;, Multipliers evaluated at the optimal steady s a e A 001‘; , dimensionless cycling frequency I?“ 72 Defined in table 2. T; Optimal steady state resifence time 75.. , dimensionless lime (at) 3 Cycling frequency ix NOTATIONS--CHAPTER 2 AC Denotes the change in conversion of reactant A E Enhancement of the yield of the intermediate pro-- duct B in the'Van de Vusse kinetic scheme. J Objective function K K3/K1 Ki Dimensionless reaction rate constants Pl Periodic terms in the asymptotic sequences for the perturbation solutions to Xj r Independent variable in the application of the method of characteristics S Independent variable in the application of the method of characteristics T One cycle time u Control variable V Dimensionless fluid velocity V Periodic terms in the asymptotic sequence for the perturbation solution to v X1 Dimensionless concentration for reactant (A) in the Van de Vusse kinetic scheme X2 Dimensionless concentration for the intermediate product B in the Van de Vusse kinetic scheme 3 x as a function of r and s Superscripts 0 Denotes the optimum state X Subscripts S m Denotes the steady state Approaching infinity Greek Symbols K/(K+1) Defined in Appendix H Perturbation amplitude Dimensionless time Dimensionless cycling freqency Dimensionless reactor distance Dimensionless reaction residence time (K; 20(Ko_./_1)<2K °__ _) 8—K, (KIWI w d: " I , 0 TA; E: (g; R, ) ”37: ‘K' "a «Doc/l ‘° ex. "a e . . Ngz(€ +—Rg_’_) Sflgz-(cflflg 2 (mm. [12. ~12... +127.- +12.. -.a,.- +3.] L=O A’+O<,')’ g: H; _ 3, 2 (H ’28 :2) Z1 = o and H is the Hamiltonian defined earlier. The value of w(A) is presented in table 1. 13 TABLE 1. Yield enhancement 14 Q ...sr<...s .< + m 3 CT is a ”a ”£5.28 . a .A.<...S«.<...S.< AF< ...SP<+..S~.< l .. ~.s.s-.e.e..<§s~-sreset??? + mi. nine wee?are?s.$...s-e§§-seisximfii C we {a ...s.< + Q. ..§.e..s.< Q. «.52 as? - 3.x... 2 E + 2.5 JS 4. .S r 4... ends + EL 3.4x 11.2 F 3.39.1. .3 We. ”a. Teena.-e._gi.s-e we: - Easiness a: M2 .8 3.1 M.x-_:.<..e...§- . a; “Cowpmfifig wcooom was. sun :53. AS: 2.2+. mar . mxm.u~+..xi m .r < ~\ r fid<+fl_~xv<. fil<$fl~§v< AN>75. , the asymptotic sequence zc=x§+eE'(e,s>+e’£’(o.5) . a»); <13) can be assumed. P1 and P2 are periodic functions obtained from the solution to equation (4) and, in the region 6>>>5 . . . l _0 has initial (or boundary) conditions given by‘g (s- ) P2(s=0)=0. s is a ground characteristic variable. The development of these initial conditions assumes that the zero order term at 5:0 has the same value as 5(0,9). A dis- cussion of the initial conditions is found in Appendices I and J. Furthermore, here, the second order term 15 account- ed because -!-. ' ,5)Ae,=o . ems <14) "PI-3‘9“ 54 Hence, the first order terms do not contribute any informa— tion about the yield enhancement. Such is typical of the 8-D perturbation method [12]. In the 6>zr§ region, 3; and}:2 satisfies the following set of ordinary differential equations along a ground charac- teristic s. 23' 2d. 2*" ' ace-'4‘ I<.°5.‘mir ° l+-—-s P,=-———:-=—'ACOSAY+—"‘V] (15) M i K' [ 14.5“] k(I-a<.e"")[ we“ 1 o no " 2-?!- " '91:]; -’ ' 4—11; %+ K. ((+2sz,)Pf=’V'(N)[”5] Flag] 1,20,0[015 LY ,sr NY “’ 1‘21 —k° '1 (16) -x15 )3 5(Pl) AW 4P, l o ' 406' "a —_5 °g= P - 2‘ s.’ “Aw/1V1; (17) M +K2 K4 1 [AS ]’;Ynl\. 5 a v ’ 0 3 3 1x % + K, P, - ~5l'ru‘LY [332—] .. 955‘. s.h2Ar[A-—;’] +AP3' eta/w ,6; ’3f f -[%S""W‘ M’cosw]i:, + «73’ (18) 55 where x0 = optimal steady state concentration profile. ‘5 N. 75, = 26:06“) )6 = 3 and Y=9‘5 K do = —_’+ K The solution to equations (15) to (18) is found in Appendix G. Thus, the average conversion and yield is expressed as -K, 2 — o(. e . («7cI = I“ T—e—HW-[T 1- m[flrflgi-flgg + Fading” (19) , if K20: KIOU‘J.) o ' 0 ' _. K. *2 “‘1 = —- o( x: K 8 1:20 0 K:-I(:(‘fj) I ~ , otherwise Kl.- K|.( "1.) 0 40 I3 +6 8 [5,3- + 2,? + K..[ 98 1,; (fl'fihfl (20) where the 52's are defined in the notation section and the 9's are defined in Appendix H. 56 DISCUSSION The periodic cycling of the input volumetric flow rate in an isothermal tubular reactor would certainly create fluctuations in the flow field within the tubular reactor. In what manner can the fluid velocity inside the reactor be mathematically described is a matter of how much refinement is needed to adequately model the flow field. If only small perturbations from an optimal steady state is desired perhaps a simple perturbation model as described earlier would suf- fice. Clearly, the enhancement is a function of the nature of the flow field. Even in an already optimal steady state regime, the differences in the steady state flow patterns or the steady state flow models have created different maximum yield [18, 19, 20]. Among different steady state flow pat- terns that were investigated, the optimal yield corresponds to an absolute maximum. In this work, the velocity fluctuation is regarded as smooth, regular and when random shock—discontinuities could be present, is eliminated by assuming quasi—steady state. The description of the quasi-steady state fluid velocity is afforded by the limiting Burger's differential equation (i.e.,/u-vO). A decomposition of the fluid velocity into two fluctuating functions in terms of time and spatial coor- dinate is necessary because the time-average of the periodic functions 3} do not produce information regarding the yield enhancement. Such result is typical of the 8-D perturbation 57 method. Hence, in retrospect the present work would assess a properly local optimal yield in an isothermal tubular reactor whereby the flow field response to a periodic disturbance in the reactor is described by equation (12). The sensitivity of the perturbation solution was tested against the numerical simulation of the hyperbolic differen- tial equations as suggested by Acrivos [21]. The numerical solution to the material conservation equations employed the perturbation equation for v. This was implemented here be— cause of the good matching between the perturbation solution for v and the numerical implementation of equation (2.1). Hence, the numerical solution to the conservation equation is partly simplified. For the parameters that were used in the calculations (e.g. small A. and small 9 ), the percent deviation between perturbation and numerical was generally small (for example Figures la-ld). The absolute maximum percent deviation is 0.02 at 6 =0.1 and A.=0.l. Usually the sensitivity is largely influenced by the magnitude of 6 . Hence, in subsequent calculations for the material balance equations, particularly small values of € were chosen. The requirement of small values of.A is imposed, not from a standpoint of numerical matching of solution, but from a standpoint of the required physics. However, the magnitude Of.A somehow affects the matching between the numerical simulation and the perturbation solution. Although the per- cent deviation is yet small for the same value of E , an in- crease in the cycling frequency leads to increase in the 58 ( :.:5 a) .O (b) 6:0.01 A . =0 .1 59 :8 :ON mmqowo mo mmmzbz MON NON Es: Puma mMHOWU mo mmmzbz MON NON 85: Puma .H MMDUHE HON HON OON , l 3.0 mm.o ooé HO.H OON om.o 3.0 OO.H mo.H I'P' 3O A3 60 FIGURE 1. Deviation of perturbation solution from numerical simulation for the velocity profile at §=4.0 (c) €=A= 0.05 (d) €=0.0l, A=O.1 61 mousse mo mmmssz new mom How I ‘ ‘ OON JON mmqoso mo mmmzsz mom mom How 1 HOO.OI OO0.0 HO0.0 NO0.0 OON A .H mmDOHm j HO.OI O0.0 H0.0 N0.0 IHHd SA WON AHG 033d IHHd SA WON AHO 333d 3: 3v 62 percent deviation (for example Figures 2a-2x and Figures 3a-3h). Furthermore, the large A. has percent deviation propagating along 5 as compared to a more uniform percent deviation along 3 for smaller values. In the x1( 9 ; S) - x2( 6 :3 ) phase plane (Figures 4a- 4i), the size of the limit cycle increases from the reactor entrance to the exit. Such is caused by the fluctuations in the fluid velocity along the reactor. Finally, the impor- tance of these effects render the yield enhancement to achieve negative values but achieve positive values for con- version enhancement (Tables 1 and 2). It appears that in- creasing A creates a larger negative yield enhancement and increasing conversion enhancement (Table 2). Hence increas- ing A would tend to shift, in a way, the reaction to the side reaction (A+A-*>D), and thus favoring a higher yield for species D. CONCLUSION When an isothermal tubular reactor is allowed to undergo a quasi-steady state periodic control of the input volumetric flow rate, the time-average yield of B is less than the corresponding optimal steady state yield with plug flow behavior of the fluid. It appears that implementation of larger frequencies would shift the direction of enhanced selectivity to the side reaction. Finally, the result presented here is not general for all classes of forced input volumetric flow rate oscillation. 63 FIGURE 2. Behavior of Van de Vusse system for K1=K2=K3=0.515, €=0.01,‘A=0.05 at (a-b) 5:0.2 (c—d) 5:0.5 (e-f) S=O-75 (g-h) 3:1.0 new mom 64 mmgowo mo mmmzbz 55C NON Puma mmflowo mo mmmEDZ eom mom A . ESQ NON ' .N MMDUHm HON HON Puma oom smo.o mw0.0 owo.o OO0.0 oom OHm.o ONw.O .HNw.O NNw.O .mmm.o lJNmO ADO Amv 65 mmnowo mo mmmspz eom mom mom Hom oom . . . oufi.o muH.o l me.o Nx . ONH.O 83g PHGQ oma.o Aev mmqowo mo mmmzbz JON MON NON HON OON on .m mmouHm 66 mmgowo mo mmmzaz eom mom mom How oom w . . . emm.o .mmm.o Nun .omm.o a it Lam . 0 SC AHV mmnowo mo mmmspz eom mom mom aom an ESQ . Amv m mmome 67 mmgowo mo mmmzbz eom mom mom How oom . . . . nmm.o Nun A5 mmqowo mo mmmzoz :ON MON NON HON CON 1» . . . mme.o l dmjoo tome—duo fix .336 852 (\.\\ Puma . omJ.O Amv .m mmsuHm 68 FIGURE 2. Behavior of Van de Vusse system for K =K =K =0.515, e=0.01,.A=0.2 at 1 2 3 (i-j) S: 0.2. (k-l) 5= 0-5 (m-n) S: 0.75 (o-p) S: 1.0 69 JON JON mom MON ”\ESC ESQ wMHOwO mo mmmzbz NON Puma mmqowo mo mmmzbz NON Puma .N mmeHm HON HON OON mmo.o ww0.0 mmo.o .omo.o OON “Hw.o .Nw.o Nw.o \Nw.O Nw.o JNm.O A: A3 7O JON JON mmqowo mo mmmzbz MON NON HON 85C Puma mmaowo mo mmmzbz MON NON HON as: when .N mMDOHm OON tho mmHo 02.0 OOH.O A3 3: 71 MMHowo mo mmmEDz O MO O O 00 J N .N NqN H.N NJNN.O mmm.o mx. ONN.O wmm.o ESQ Puma Adv mmqowo mo mmmzpz MON NOW HON 4 ‘3 1N oom o~m.o l mam.o 320 wam.o l mam.o omm.o \ C 85: Puma l Asv .m mmouHm 72 JON mmHOMO mo mmmzbz mom mom HON ESQ (1| mmqoso mo mmmssz mom mom How Puma #909 .N mmDOHm oommmm.o l J emm.o mm~.o L 00 l A t—H OMN.O N NNJ.O JNJ.O ONJ.O mNJ.O one.o A3 on 73 FIGURE 2. Behavior of Van de Vusse system for K1=K2=K3=0.515, e=0.05, A=0.2 at (q-r) 5==0.2 (s-t) 5= 0»5 (u-V) 5= 0.75 (w-x) 5:1.0 7H mmqowo mo mmmzbz sow . .mom mom How . com . . .. mo.o mo.o mx OH.O Anv mmHONO mo mmmsbz ewm mom mom _ How oom . . om.o Hm.o 85C“ N .. mm.0 Pawn “so .N mmDUHm 75 mmHOMO mo mmmSDz eom mom) Now How oom Q q u I “H00 mH.O ESQ thm OH.O mmgowo mo mmmEDZ sow mom mom How oom . q . 3.0 .36 IMO-O $0.0 .36 ESE thm .N mMDUHm G; Am; 76 mmgowo we mmmEDz - , mom How oom mom mom . . Hm.o NN.o mm.o :N.o A>v WMAUMU mo mmmzbz new mom mom How com a» . . 4 03.0 .om.o Hm.o H mm.o . fl .. . 3.0 ESQ Phwg L . Asv m mmpme 77 mmqowo mo mmmzsz :om mom mom mom oom 858 Puma AXV mmqowo mo mmmzbz :ON mom NON HON OON . I q G 0:00 1H:.o de.o . fix 0 o o o Mdoo .. . . . x .. . .. ..::.o cnfifi\\ puma .md.o “av .m mmpmHm 78 FIGURE 3. Deviation of perturbation solution from numerical simulation at 5:0.5, 6:0-01. A:0.05. (a) for the velocity profile. (b) for Van de Vusse system with K1=K2=K3=O.515- 79 mmgowo mo mmmzbz new mom Hom oom [AJ-‘V. . . H0.0- 4" 4v. Av 4'. A-‘-v oo.o Ho.o H N Nun mmqowo mo mmmzpz :om mom mom Hom oom . . . q moo.o- .fioo.ou ooo.o .Hoo.o .m mmDUHm lHHd SA WHN AHU 083d $Hfld SA WHN AHG 083d 3v A3 80 FIGURE 3. Deviation of perturbation solution from numerical simulation at 3:1.0, 6:0.01, AP0.05. (c) for the velocity profile (d) for Van de Vusse system with K1=K2=K3=0o515 81 mmgoso mo mmmzsz . sow: Allmbm mom How com a}??? imAWW mmgowo mo mmmzpz 3mm mom mom How oom . . moo.o- 1Hoo.oa j000.0 L Hoo.o P Noo.o .m mmDUHm lHHd SA WHN AHU 083d lHHd SA WflN AHG 083d 2: A3 82 FIGURE 3. Deviation of perturbation solution from numerical simulation at 5:0.5, 6:0.01. A=O.2. (e) for the velocity profile. (f) for Van de Vusse system with K1=K2=K3=Oo515- 83 dON MON mmqowo mo mmmzbz NON HON OON dON mom . xiv mmqowo mo mmmzbz NON .m mmDUHm HON 3.0.. \woé- .ao.o- No.0- .oo.o 20.0 00.0 OON NOO.OI HOO.OI OO0.0 PHOO.O IHH& SA WHN AHG 033d Lflfla SA WflN AHG 083d CV 8h FIGURE 3. Deviation of perturbation solution from numerical simulation at 5:1.0. €P=0.01. A=O.2. (g) for the velocity profile. (h) for Van de Vusse system with K =K =K =0-515- 1 2 3 85 dON dON MON O.) MON Hx mmqowo mo mmmzbz NOm mmqomo mo mmmEDz NON .m mmDUHm HON Co- H.OI S O IHHd SA wnN AHG 388d A5 OON NO0.0| HOO.OI JOO0.0 .HO0.0 NO0.0 iHHd SA WfiN AHG 033d Amv 86 FIG - URE 4. x2 x1 phase plane for K =K =K =O.515 6=A=O.1 at 1 2 3 ' (a) 5:0.2 (b) i=0-75 (c) i=1.0 87 (a) FIGURE 4. 0.10, 0.09- x2 0.08. 0.07 . . . is 0.80 0.81 0.82 0.83 0.84 X1 (b) 0.2h{ 0.23 I X2 0.22- 0021 n l l _J 0.4 0.50 0.52 0.50 0.56 X1 (e) 0.27 r 0.26 - X2 0.25 - 0.24 . . - . _. 0.39 0.u1 0.u3 0.45 o.u7 88 FIGURE 4. x2-x1 phase plane for K =K =K =O.515. 1 2 3 6:0.01, A=0.05 at (0) 5:0.2 (e) 5:0.75 (f) 8:1.0 (d) (e) (f) 89 FIGURE 4. .090F .089- .088 .. .087 l j l _; 0.820 0.821 0.822 0.823 0.824 X1 '227F .226- .225, .224 , . . 4 0.510 0.512 0.514 0.516 0.518 x1 .256 F .255- .254- 0.2 - - - __. g?423 0.425 0.427 0.429 0.431 X 1 9O FIGUR E 4 . x - 2 x ph 6:0 5 ase plane f .1,A=02 orK=K . at 1 2=K3=0.515 (8') 8:0 2 (h) S=O.75 ('1) 5:1 0 (g) (h) (i) 0.090 0.089 0.088 91 FIGURE 4. V 0.087 0 0.227 0.226 0.225 0.822 0.823 0.824 X1 fi U 0.224 0.510 0.51 0.256 0.255 0.254 A 0.514 0.516 0.518 X1 ‘- 0.253 ‘ l ‘J 0.423 0.425 0.427 0.429 0.431 X1 92 TABL E 1 . Per . cent ' With ylel varyingdrand conv eaction iriion enh a e an const cement ants 93 . AN PCMPmeh wSP mo sonno>soo map CH mmswno may mmPoCop o¢t mmm.m mos:.«- ooamo.o oodmm.o Ho.o Ho.o wmmm.o .H .NH .m Hm8.o mmfio.m- mom:~.o mmmom.o Ho.o Ho.o om:H.o .m .m .NH me.H mmmo.m- mammfi.o omomm.o H.o Ho.o .momm.o .H .m .m cum.fi :an.N- mmmom.o womfis.o H.o 06.6 mmmo.o .H .H .m w:m.~ m:mo.m- mmfimm.o nmfimm.o H.o Ho.o om:s.o .H .m .H mma.H momm.m- mm:mm.o mmnmfi.o H.o Ho.o :mom.o .m H .H mum.fi mmom.m- o:mmm.o w:msm.o H.o Ho.o oflmm.o .H .H .H 6H.ocoo map CH mwcwno map mmPoGwU.o¢ * m666.H 666m.~- mm666.6 wm66H.6 H66.6 H6.6 :mom.6 .m .H .H m666.H momm.m- mmsmm.6 mmnmfi.6 H6.6 H6.6 666m.6 .m .H .H m666.H 666m.m- mm6mm.6 mmmmfi.6 m6.6 «6.6 :mmm.6 .N .H .H 6Hm6.H 666m.m- mmsmm.6 6NR6H.6 H.6 «6.6 666m.6 .m .H .H “H66.” 6m66.m- mm666.6 mmmmfi.6 m.6 H6.6 666m.6 .m .H .H 0 mx mH mm m mop H 2 as 63 me 0.. 6.. < 6 .6. x «E x .N mgm¢a 96 Once the value of J\ is allowed to assume larger magnitudes, another flow model which would allow the formation of shock- discontinuity should be built into the flow model, even if internal mixing can be neglected. The latter is obviously more complex to handle because the material conservation equation would have to include dispersion effects super- imposed on convective material flow. The 8-D perturbation method proved to be very reliable even for problems involving a hyperbolic partial differen- tial equation which does not, along with the boundary and initial conditions, induce the presence of shock- discontinuity. A similar conclusion was obtained for the isothermal CSTR which is subjected under the same periodic control of the input volumetric flow rate [22]. APPENDICES APPENDIX A DERIVATION OF THE CLOSED FORM SOLUTION FOR REACTANT A (A PERTURBATION SOLUTION) APPENDIX A DERIVATION OF THElQLOSED FORM SOLUTION FOR T NT PERT T 0 SO UTION The material balance for reactant A (species 1) in the Van de Vusse kinetic scheme A—ah’ B—-r"’ c . IVA—5’ D has a form of _-— _ 2 3 1" 393 _ 3M, $.41 (k,A+k5A)V A2t*V2t (A 1.1) with the initial condition A(O)=Aref' where t=time qf= the feed volumetric flow rate which is subjected to perturbation. §=the outlet volumetric flow rate which is controlled at a fixed rate. V=the reactor volume A=concentration of species 1. k1,k3=reaction rate constants. Assuming the reaction solution density is independent of composition, the following expression is true, 04"??? (IX-1'2) 97 98 integrating equation (A-1.2) from initial pointst=0 and V=V yields t V=Vp+£(3f-§)dt (A-1.3) For a sinusoidal perturbation of the inlet volumetric flow rate, we specify fif=§(l+esina)t) (A-1.4) where €=perturbation amplitude 50 =cycli c frequency . Combining equations (A-1.3) and (A-1.4) gives the following result: =\7—-:)—e-casa)t (A‘1.5) or, g. «gesinwt mix-1.6) Upon substituting equations(A-1.4), (A-1.5). (A-1.6) to equa- tion (A-1.1) and introducing the following dimensionless va- riables: — A ; K'sfkl; K3: kgATEJfC '1 xg=m (A-107) rmkr f‘ 3A=f0;6= =P¢<| with some rearrangements, the dimensionless material balance equation for species 1 is expressed as e dx 6 ' a-meAa Z-él-(I’ KCQSA 9)+ XI[(‘+K')+(AGS'"A )A] =/.esmAe-szf(I-x¢m9) (A-2.1) 99 with initial condition x1(0)=1. An analytic solution to (A-2.1) is obviously not possible. In order to develop an approximate one, the solu- tion is assumed to be composed of a non-periodic term and a sum of periodic terms: 70(9): F(9)+ 6P.(e>+ e’P.(e> (A-2.2) This requires that 6be small enough so that terms of the order eacan be neglected. Substituting equation (A-2.2) into equation (A-2.1) and collecting terms of same order in 6 yields the following three differential equations: d 1 EOE-.d'l‘gF—(HKOF (#34) fl--'— 9”“: (I+K)P+J— $3011- 46 Am“ 3* ' . A011 a memo); =smA9-2K.FP,+ £3 605/1an (A-3.2) LEE. - .L cos/19 aL’P. + (1+ map: A (AsinAO-K:¢0$A9)R .19 A Z? M = -k (2FP+P‘>+2K:-°-93—-Ffi _ ’ ‘ ' ' A (A 3.3) with the initial conditions F(0)=1 and P1(O)=P2(0)=0. Solution to F(9) Equation (A—3.1) can be rewritten as 100 A HKI I Eg=-K3(F2+—Ka-F'T<3) =-!<:(F-F-) (14-4-1) where F: are readily obtained, thus F1= mm): (I+K0‘+4k, (A42) 2k; Integrate equation (A-4.1) by partial fraction from 0 to 0 yields 0)‘F .- A-u'o ) ' ML;_MF(9) F— =-K39 ( 3 F.—F. F(o)- F+ F(0)- F. define o< , 5%.. (A-4.4) F(o)- FL and substituting equation (A-4.2) for F+ and F_ into equation (A-4.3) gives W -(X exp[-‘\/(I+Kc)a+4K5 9 ] (A-Ll' . 5) F(6)=F+ I K3 (1- K-exP [" (Hsz‘KJ 6]) Notice that F+ is indeed the steady state solution that sa- tisfies z (A—4.6) O: |— (1+Kn)f;,” kbfss For convenience, we let CD=2K can 1’ (H'va‘f‘ug and 2 5 (A-4.7) 101 hence equation (A-4.5) simpifies to 2C3“ 9"? {-Cge) Hen} + _ - s: Cz[l~o(€xP(-C50)] (A 4.8) Furthermore, using the binomial series and a little rearrange- ment, equation (A-4.8) can be equivalently written as 2C3 a) . {304359 F‘+4n‘ _ c -2659 let 2" 3,“ 2A9+A605A9 — ' CShAD+ACoSAD ( 5 n ) ACC’9A’)( 3 + 2503(0)) 49* - 9 {rye C5 CRSAB * A 4,0999 0" 1e 1 be +2724 (QM-911‘ -6, (247') 9 1P, 9 [C3(j4g)s€nl\9 4' Ame] -A[c32(jflf+ [1’] +{Ce -C, (I93 )9 [65624775991119 + [1645119] _______[C 93 5,},A9 + AGOSAb] Ch 9 A 107 49 (33(93):? 3 ii! c'bém)‘ A [cngnrmemcosnv] 3 ~ 5 - -'—;—-— [03(j+1+|)s€nA9 mama] A[c5(391+lf+ll’] 1 «#392909 + '18 a cagmsinhe +AcasA9 63 (3909 A” 4‘39 6'91‘5 {we - __ 2 MAQ‘AQn/w ‘ ' 4693-": (c, )+Z ”(65645119 AsmAe) 8-1659 ‘CQB + ( 0,605A6-Asm/19) - {’9 e Sin/19 (6:11“) , 430'?” 'f' Zid1"581[ca(2fa) COS/l9 A5mfi9] 1:: 05(2' 3% .sz oC3<2f2>9 + ——_‘Re [Lama'MoSAe-Ay‘nw] (31(Hj)1+ A: “(30")9 . + —7—————-‘{ e (C,jcoSA9-A5'"A9> (if A w w 1+1 {e 43([93909 + 2' 24—15—— [6,(193'92) coma—Ashlie] 3:: 1:: c; (143' +2)’+ Az ’C3(jf1+2) 9 the 91(1.+£+01A‘ ~c5C3 91+!)9 + {I95 I C3(3+1)C05A9 «SM/‘9] [51 (rv‘l’ A1 1 4‘59 (D . 4931709 a a +E(P‘(O»J [Lg—+2206)? +ZZ{£— £5 1; l (#39!) 3-, 1., (5 (1+lf I) [043119 I) 605 A9 - A Ssh/L9] -C,( 19192) 9 -2: a . i IP,0"1€; —A)€ (6,9th + 2115052119) ¢,(:+2C,A)(gshzfaqaaasmgl 2 c;‘+4A c,'+4A 4: T)eo522__l_l_9 €439] 4”Wk-4' 108 . ' 9 + i c95'"ZA9-2AMSZA9 + “8-65 “IQ-26,9 ' 2A can 4A? A GOSZAO F—IZ—(casnnzlwflllcosmo) 6 -C39 é2C59 a“ 6 0052A9_ _a(__ +7111 *[——_2A c5341” 11’ (c35mZA99 menu/19)] 2‘39 -— +§___'”ZA9 “*9 92(qu )e lib“? T)e 63+ 4A1 (C5 COShO+ASm2A9-7A __3_ C 4““ 5A z)'(Catuft/w+AszAQ+--—z):l +C;2+4A 2J3 ‘ fuc [C1605 MfASM2A9+_ CL S__m2.A9 e450 1 L144“ 4A )9 A C5 + 4A 18’265: at - C C $2119 ~A$fnjA9+ _ “1+4 ( 5 O 1f)] 4659 &;[Q+M Lug) 9459+ ”(e (C coma “ma-4}] _CA (‘53 411‘ c '2 ’9 ‘ +W,(§_s____m2/19)e-C,9+ 1W“,- fle’ (c,&hf/19+As.th9-r if!) +A 2 4A (”-9 4A " 3 C 7 _L ((+4 :IM -L-—(c,s.'n A9 A szA9+ 7%) 03+ 5 - o -— C(P(0))(S—’————"M — 91511—12 96’ (A-6.2) where C(P2(O)).is the constant of integration which has the following form: C(PW»: K _ 2___:___‘{,A 21A ‘D/A >511 2 3 C,“ 44111) 353 (759+ 4119+ C ,(‘§+4A’)+ K9199) w 3 2 {A 2 t A: 2 15A ”1;“ [92691)94AJCXHJ) [<2 (1 cm M199?" 199*“ 14"?" 109 211’ Jig/l: _ ‘J [6371—02 4117] (a (2' .1) (6; 31+ 4A’) 43,3 "I 9': I 4. 0 I 0”) 01‘)th +§idé*‘[- . 212”. . ; - 3”!" 13! 1:! ('59-'11'08" (aflfl)+4A] 9(2+1‘5)[c;(j+1’3)’+mt] 27M + 214," C, (74* 01’ 597 74* 1)? 4A2] grid) [c,’g+z)’+ 411’] __ 2 {5'11 c, (fix-03510414)? 4.47 76 2A 1 A‘)__13_—_ fro ______ + 2“ - _ -9c;+4/1’ (at, 5‘4) 4053 411’ ( 5 (5) 6 +411 (CHM 7;) 241———-——f ( )+ 1 J}...— C . + 2A3 + 22"“ 5910*;"41‘ C, M 6(97’] C‘(2'u)’+4A‘ "7”) 43(ij {a F , :Nlz _ {9 c .+ 2,1‘ - (flag)? 411’ (4"?) * c,(/+,")] 2).—33* M. ( 92 91) 2 I C (‘4)4 211 . 'H C;(j-I)’+4A’ 57 (5 (3‘4) I 'f 3 J o I Miami“ 0 0 3‘ 16 [I ' + 2A: 1- 17 [C (' +z)+-2—A-: + 2):}? [- g‘qwafim‘ LCM“ 52+ [5 (2""5’J QzéwzfiM’Lfid 6W |——J -/ "I; 14’ 99“" ")*4A [96“ I) 6492:") —:—-J 55‘} 4‘0“” aPM”) 6,742] '0’» 2A’ _] ( C, (1144f +411 ”[6 3" H) (5(71‘1") :l 2AM _ 1(le _ 211(ilai'irc) _ {I4 + 995-4342 4633+ 4-113 91+ 411’ 24 110 +2 a“; 21m _ 24,11 _ 24M _ 2ij 3:1 C52 (911' )‘1 4A2 Ca (3'12f4 411’ (3310413)? 4/13 can M’ 211 fife-W 4A2 , if 3* f -1" .L 2’1 , o/Mrwise ”Liif, 2 {M 2 ”A film 211,41 21,541 ‘I f! l= C56 (7212”) +441 C3(3+1+2)’+ 4A (5"(3'4u1y44 63"(711) ”+4.1? 5' (741—1), 4/! J 115A 4! 1 26 . - .. __L._ _ _'1 + (PW) 46;”, 63,”, A +2 if. _ __16_A_ _ ‘A _ full f' 9’0*;')’+A’ o’ljw)’+A* agar D i «11" _ '{ILA + ll), - '1" A T I“ (fwflfi A. c;(;‘+1+,;’+A= 6724!)? A' + 31!: C, _ l/jC, 46324542 €3+A1 I +zfdé[ {I my ) ’ 4W5“ .) - .1769? c;(2*j): A: (52[/*z.)2+Aa (322-14; ”9 a 1‘4 dagmja) 4c, (14+!) 13‘3”“) ] +1212: C,’(1+1+2)‘+ A ('3 (111“) +11 Ca"2l*""‘ N [am] Li; +2.8 1' . . “+11 1652:”) +1421; (3(220‘0] +117 [ng(/-2c,—A"’) 2991\(/+2C,—A)_ JAN!" ipgfl a", 44’ 9’4 +‘4A was A a ___:_]+cz c__;« (“23% _.-v_[$ira+A‘>(e‘+2A‘)0/z-so] - 2A C;+4A’-X 63’4“ A (63544196, +(1'fss)(C;+ZA1)(I'0(’) _ Maw/15+ ZA‘zfl-Cfi-M’cha) + “5“”) (A—6.2) A’c,(c;+ 411’) E,A (g’uA’) c,(c,’+4A’) A 111 Other terms, such as 11,(i=1,19) appear in the P2(e) solu- tion are defined as 1.=%+2%A’0«c;) (Ix-6.4.1) 73:43120’9" (xx-6.11.2) 79‘2““‘9’ (Ia—6.4.3) 4‘44““) (xx-6.11.4) “WE/’7'“; (A-6.A.5> is= ‘E’WA’Y (xx-6.4.6) {7"MK’MZ) (A-6.u.7) 48:41:24,113 (Ci-1‘) H-648) 1,:2marf) (ls—6.4.9) {mng’zgm’f (46.4.10) 1,: tg’Aa-gxcsm’) (AA-6.111) 163-4341 (MUELQA) (xx-6.4.12) 43:4(garz—c3119-A’1—gi-MA(”exam") (IX-6.4.13) 45-41; (fie-21-91) (Ix—6.11.14) 7% 1/3’1 (Mum-A“) (A-6.u.15) tut/£11019) (A-6.’+.16) 1,7440%) (14611.17) 112 1,5: ¢,(c,+4‘) (A-6.4.18) 1w VJC‘J‘A') (xx-6.4.19) Substituting the solution to F(9), P1(e) and P2(e) into equation (A-2.2) gives the approximate global solution to x1 as a function of e. APPENDIX B THE INITIAL CONDITIONS FOR THE PERTURBATION CALCULATION APPENDIX B THE INITIAL CONDITIONS EOE THE PEBTURBATION CALCULATION In order to obtain the initial conditions for F, P1 and P2, we evaluate equations (A-2.1). (A-2.2), derivative of equations (A-2.2), (A-3.1), (A-3.2) and (A-3.3) at 9=O. However these six equations consist of a total of seven un- knowns,viz., F(O), F'(O), P1(O), Pi(0), P2(o). Pé(0) and Xi(0) which make the problem not well posed. So an "ad hoc" assumption is then. attempted by imposing x1(0)=F(O) and P1(O)=P2(O)=O, and thus achieve self-consistency of the pro- blem. Of course, the validity of this assumption needs to be verified by comparing the perturbation solution based on these initial conditions against the full numerical solution. As shown in figures 3, 4 and 5, the results are very satis- factory and the error is large only at the initial transients because if the initial conditions are important the error could propagate in the limit cycle. Such were not observed in the present work. But as clearly seen in the perturbation solution at e, , the initial conditions vanish. 113 APPENDIX C ASYMPTOTIC SOLUTION TO X AND X APPENDIX C ASYMPTOTIC SOLUTION TO x1 AND x2 AT eno The objective function in the present work is the optimization of the yield of the intermediate product B (species 2) in the Van de Vusse kinetic scheme. The compo- nent B material balance is 7;,6;«§5v(k25vk.A)V=5%+Vfi—f— (c— 1.1) assuming there is no product B in the inlet stream, then, B(O)=O. Introducing the dimensionless variables 5 A ’ _ X‘SE‘} ’ thsz (C 1.2) (where fi2=K1K2 and K2=k2/k1), and substituting (A—1.A), (A-1.5). (A-1.6), (A—1.7). (C-1.2) into (c-1.1) yields the dimensionless material balance for species 2 (or B): (I- fees/ta) if; = -(1+es;nA9)xz —(12,x,-K.x,)(1-J§iwsne) (C— 2 . 1) The global solution to (C-2.1) is not necessary for calculation the average yield of B at the limit cycle. Therefore, an asymptotic solution for B is sufficient. 11h 115 It is clear from (C-2.1) that the asymptotic solution to A(species 1) is required. Referring to Appendix A, and substituting F(9), P1(G), Pé(9) into (A-2.2) and then eva- luating the resulting equation at 6=r&.yields the following expression ( Sadenoting large reaction time). where, me...) =F(0..)+ eB(6..>+e"B(e..) (c— 3. 1) F(9m)=f.ss (CZ-3'2) P (e )= (I-fss) [(53 ’A’) “We *A(’*Ca)5"""9o] (c- 3. 3) l O A (C3’+A‘) . . 2A“ P2(6a.)= C;+4A’ 1,(c,3;nA90—As.n2AeO+-§) + 1°(c,ca5519b +1154) 2110., + 35’?) + 1,, (game, ’ZAcaSZABQ) __ 12!; (”2:3 -AI) (13342118, -24 6.03211 0,) 4Léééiégsmzna,-2Acwqug _ W) (c, as?! a. +A51h2/19a“ 3211;) . 24’ + -—-”Af;‘ (c,w’/16.+A5'"M9a +2.; )] (c—3.L)) Since equation (C—2.1) is structurally similar to equation (A-2.1), an analytic solution is again not possible. In order to obtain an approximate solution, the following asymptotic sequence is assumed: Xz(9a)=b.le.)+ eb.w.)+ flaw.) (c-A. 1) where bo=non-periodic term b and b2 = periodic terms E<<<1. 116 Substituting equations (C-A.1), (C-3.1) into (C-2.1) and collecting terms of the same orders in 6 yield the follow- ing three differential equations: b0 80) " AOL—9(a— + (1+ Kz)bo(an)=’<'fs5 (C'5'1) A @3119.» o ‘ dig?" +(1+1<.)b.(9.)=A (“(91) "17‘ss*’*"'3‘5a) (c-5.2) Q.15";44121416..)-“5"9‘1““‘d‘:"”--1<.m.)+1221:1619)“5""M"”'“""’*""”A(51») (c—5.3) It is obvious that the integrating factor for equa- - . , (”Kt) 8a: tions (0-5.1), (C-5.2) and (C-5.3) are identical, 1.6.(1 ; Notice that there is no need to specifiy the initial condi- tions for above three equations since at the limit cycle, the constants of integration vanish. Solution to bQ Equation (C-5.1) is readily integrated, at 6,. , bO yields the steady state solution, or mi. (046.1) :5 = ,. 5° ’5 MK, Solution to b1( 6..) Equation (C-5.2) can be equivalently written as dbl Cos/19’ EH! +k1)b,"-- “(fizhs'K'fis)’s'hA9°.b‘-$ + KM,[(6,713)C0$A6¢+A(I+C4)Sin110m] (C' 7 - 1) 117 the integration is straight forward and the solution is found to be A.(9.)=[1<. w, (9.1:). as] ('*Kz>we.msm, ("22ft A: +[ k: 43A (€34- ’) - bx] (H K031)”; 6,; 11945.4 9:: ([+IE2)1+ A: ((3-702) Solution to b2(e.) A similar calculational process applies for the solu- tion to equation (C-5.3). For convenience, we define the following variables 120=[K1‘&(C.5'A1)' 92%,]; + [mg/10¢.) 'b‘SJ I ("#5415 (Ii-[21ft]? b5: k‘:(l+£z) M 3 +I< (C'A’)---—-——"—- (C-A) [ '4” 3 A ]fl[(/+IE,)’+/lz] A :3 + the, __ K,¢,(c.-1’)c. + “LU-fat; (08.1.1) (51* 411’ A ( (3'4 4A”) A (‘3 * 41") A It ’2: 2" (6-3-5— A*C)'b __ 11' [ HP; .3 A) A ](/+K‘2)‘+A‘ +[K¢§ (’ 3 55] (1+,22)2+A2 - K1170.) + m¢5(/+C;)(a/1 (C-8.1.2) 118 (I+£1)z+A2(/sz;t K: (”'22) 2k'15'A + 2141.11 +2KF/I‘ica __ ("7(a)/(IQ) éz%%'m1$(‘a-A’)JLLW[K1¢5 (1+:,)- 5“]—— AZ—Kflfow‘g) 1) [ + 141131<1+s)—b,,] fl. _ A[(/H<.)+Af] C,‘+4A’ ('5‘ +421 C,‘+ 411‘ A(C,‘+4A’) - K196,(/+z(g-A’)C, _ ZK;5é(C;'/12) + 2K1(I' £15) + 2K1¢50+C§)A2 c;+ 4.42 c ,’+ 411’ A (1;. 4A“) c;+ 411‘ (0-80103) K 41/ (I+2C.}—A2)-2AK,75-k1(1-1§ ) 12,: ' 3 ’ ’ (C—8.1.L)) (‘3’+ 4112 23/4112 56(55'A’) "’ f“ —8.1. z4= [1,+ I...“ 3‘77" — ACHmM A. (C 5) (3(C;:+4A z) the solution to b2( 9..) is then expressed as: 2 A ( A )1 1 10F”K1)C°SIA90+A3I"2A8"+—(,_f—_Kz)] MK, 4411 F 31‘ 2A9,+ z 2 4 - 3 .. A .12: (’*Kz)s’"A0° A n ”K1 ] 79(009) = .1 121F011 [21)5131 2A9w-ZACOSZA940] 12: J +, . (C—8.2) + 115[(1+ 12,)cosznew + 2.43 in 2A 9‘) 119 By simply substituting equations (C-6.1), (C-7.2) and (C-8.2)into (C-u.1) will yield the solution to X2(9m). APPENDIX D AVERAGE YIELD CALCULATION OF THE INTERMEDIATE PRODUCT APPENDIX D AVERAGE YIE D CA C TION F THE INTERMEDIATE PRODUCT The average yield of B at the limit cycle is obtained by carrying out the cyclic integration of x2(9~). The cycle time is defined as T27? (D-1.1) hence, Qfiq‘ ¢X2(eo) = ‘L' Xz(6¢,) (16¢, (D7' 1 . 2) "r an From equation (C-8.2) of Appendix C, the cyclic in- tegration of sine and cosine functionSvanish and also the terms that contain squares of sine and cosine will remain, hence I 1 -1)(IH32_+_2_4:) + ————1“ (D-2.1) ¢Xz(6m);(l*lzz)‘+4fi’ ( 2° 2’ 2 H K: "* ’21 where 120, 12,, I“ are defined in Appendix C. 120 APPENDIX E THE SECOND VARIATIONAL IN THE FREQUENCY DOMAIN APPENDIX E THE SECOND VARIATIONAL IN THE EREQUENCY DOMAIN Consider a system whose dynamics is given by x=f(_>_<.u) (E-1.1) 2(0) =3 where _x = state variable, u = a control vector. Here, we wish to determine whether or not a control vector .u in a periodic mode (x(6);x(9+T)) would yield a local opti- mal of the objective function J =-',':¢e(x.u)d6 (E-2.1) In this work, g x u)=x2 or the yield of B. Let J: = objective function at the optimal steady state, hence for a small variation in u _ o (E-3-1) 3 ~38 +82 . . _ _ 0 then 5;; will yield a local optimum if AJ—J JS>O. Hence we wish to determine Maxm13J 363 my 121 122 subject to the limit cycle dynamics 25 = £25.52) (E-4.1) 25(9...) =2<(6..+T) (E-5.1) 1w hLu)d6 = constant (E-6.1) Now, by imposing $13, a priori we can relax equation (PS-6.1). Now, define the Hamiltonian Hum,» = sung) +AT(9>5<2<.2). H and f are twice differentiable and continuous in_xez, peg. The Optimal staedy state is determined from ( H25: = 0 (E-8.1) J0 , J H = o (Ii-8.2) =g(Xg .Q :)<T5(_>5.2>] de (E-9.2) J°= -+'¢H(2$O .28 °.2°)d9 (3‘10-1) 8 therefore, . T J-Jg =+¢[H(x.g.&g)-H(xg.yg22?] de.-(2.9 #:mnm (E—11.1) 123 but, =f(25_ u) Qt Q: ollx hence, the last term in equation (E-9.2) becomes d fiqameffi-‘Egew 25(0)-25(T)=0. (342.1) Therefore, J-J° =1. [H(25 u._S)-H(25‘S’..gl_1§.>.x )] d6... =§¢[H(X 113552 .l°)-H(258._L1:.6252)]d 29922—3. §x+zi—:L§ %[:Z§Z.,; z__’H *5st +ij_ 3“an 5X15“ J' l T — ~ h has,D AJ‘TXVHX LOBEHBE 6.2)] de‘” +“I” “ =“ = BJJX-i-SZJ (E-13.1) clearly'§J=O and SZJ is a quadratic form. Here: 11 =[525 5.1.4] LT [(525)T GMT] 124 E = [ Hxx(-)5:’B:’A(s))] LO II T . . _ o o 0 Q (a symmetric matrix) - [ quLxS,uS,AS)] um ll [ 151.152.2222] Now, the condition that gives rise tOAAJ>O should depend on au as well as E and ax. However, in order to derive a cri- terion for the sgnQAJ), the relationship between 5; and.au should be known. Such can be determined from linear con- trol theory. So, if we perform the first variation of the process dynamics, dX _ d.— ___ ' = _ o 0 8dt “ (14°52 53 i(2§9.§) ELISSLBS) = 2(2.2‘;+22>—2<2<;.2g> = f(2_ +(EB)TQT(6)_<) +<32<>Tg<52> +(811)T§(5_12)] de.. a) w m o — T T T T +2 T c _ ‘Zgfi-kgl‘fz ¥k9-kg 3k+2;#-kggk ng-kB—k (E 19.1) replacing.xk by using equation (E—18.2) AJ = $124311 kw)_9k . APPENDIX F CALCULATION OF THE VELOCITY PROFILE IN THE PLUG FLOW TUBULAR REACTOR APPENDIX F CALCULATION OF THE VELOCITY PROFILE IN THE PLUG FLOW TUBULAR REACTOR Here, the momentum conservation equation leads to W N _ ——— Ifl——= (F 1.1) at + 33 O The disturbance in the inlet velocity, thus a disturbance in the inlet volumetric flow rate, is assumed to be in the form of a sine wave and is given as Vfl’o) = [1+c-5inwt] (F- 1 , 2) where e is a small positive number indicating the degree of disturbance away from its steady state and a>is the frequen- Cy of the input disturbance. Defining the residence time of the reactor as (....L -' Where L is the reactor length. Introducing the folowing dimensionless variables: -1: ’=—‘{—o S: 9—? 8 v (V), A=w’c (F-1-3) when equation (F-1.3) is substituted into equation (F-1.1), We obtain the dimensionless equation of motion 126 127 20 75 " (F-2.1) with the initial and boundary conditions 0(9=°,‘5)=l (F-3.1) W6.3=0)= ”53MB (F'3'2) It is obvious that an analytic solution to equation (F-2.1) is not possible. In order to obtain an approximate solution, we assume v to have a form composed of a steady state or a non-periodic term and a sum of periodic terms such that 0=l7(e=qs>+et'r,+e‘fi, (F-4.1) where e is very small so that terms with 6 of order 3 or higher are neglected. Substituting (F-4.1) into equations (F-2.1) and (F-3) and collecting terms of the same degree of 6 yield Zi+flgo (F’Sol) 9D 25 with the following initial and boundary conditions 171(6=0,S)=o (F—5.1.1) [Z(O,S=O)=5inA9 (F-5.1.2) 21-13 903 - 26,, (p-502) and 33' 33 '23 128 with initial condition 171(9=0,S)=0 (F-5.2.1) boundary condition 1?;(6.‘S=o)=0 (F-5.2.2) Notice that 0th order term of e in the equation yields the steady state velocity. The method of characteristic is applied here to solve the partial differential equations (F-5), where the dependent variable is treated along its characteristic path. As a result, the partial differential equations for 91 and $2 in 9 and’S are transformed into ordinary differential equations in terms of the variables r and s. The transformation of the independent variables 6 and S into the characteristic variables r and s is depicted in the figure below Y P Y 3 FIGURE F-l. Characteristic transformation for the independent variables It is clear that for a fixed r, e and 3 can be related to s. 129 Transforming;equation (F-5.1) into the new independent varia- ’. 1i} air ", <::>=—'=‘J<‘§'>+ fl<fl =R (F-6.1) where R is the right hand side of equation (F-5.1). Compar- bles yields ing equations (F—6.1) and (F-5.1) we have, at a fixed r, 25 3% (F-7.1) fl- 2A " (F-7-2) 29 , hence a—S-sktanp org-45' Integration yields 6-60==S-$O (F-8.1) where'eO and 50 are some arbitrary initial condition for 9 and S , respectively. Referring to figure F-l, two regions can be classified. The variable r, in the lower region, represents an arbitrary initial value for S , while in the region above OY, the para- meter r represents an arbitrary initial value for 6. Mathe- matically, the following relations for each region can be written as Region below OY: 9.2’6-81'np (F-9°1) 3=r+,5-ws‘9 (F-9.2) 130 Region above OY: 9=T+A-sin§ (F-10.1) 52AM? (F-10.2) As far as the limit cycle is concerned, only the upp- er region is used in the solution to 5. Furthermore, the initial transient (i.e., 6(3) is washed out at 9=’C (or reaction residence time) and does not provide information for the solution at 6”. Hence, only the boundary condition (5:0) is significant at this region. It follows that;O =0 and GO =r in equation (F-8.1). As a conclusion, the foregoing calculations will be only for this upper region (67!), therefore the integration of equation (F—7.1) from 50:0 to 5 and sO=O to 8 yields 5:; (F‘llol) while equation (F-8.1) gives {gs-3 (F-11.2) It is clearly seen that equations (F-ll) provide the trans- formation between independent variables. Here, the trans- formation of the partial differential equations (F—5) and onditions can be easily implemented. The After their boundary c solutions to the resulting ODE's are straight forward. back transformation and using equations (F-11) yields the solution in terms of the original independent variables. 131 Thus, air. 36 =0 or, 71(S.r)=f(r). Applying the boundary condition (in terms of r and 8) yields 17'. (f, 15:0) = Sin/1f or 17', (if, ,5) = Sin/W Upon back transformation, the above equation is 17. (6.§)=5£nA(e-$) (F-12.1) Equation (F-5.1) is solved in a similar fashion. Substituting v1(r,s) and [335912] , an ODE similar to (F-6.1) fit is obtained except, here R(s,r)= sinArcosAr. Integrating the equation and using the boundary condition at 30:0 gives V2(s,r). Back transformation yields — g ' - (F-12 2) v.(6,%)= —§-As.n2/l(6 S) . Substituting equations (Fle) into (F-h.1), we obtain the perturbation solution for V 0(ag)=l+e5inA(9—s)+ e‘%‘-s€n2/l(9'$). (F-13.1) APPENDIX G GLOBAL SOLUTION TO X1 AND x2 TUBULAR REACTOR (PERTURBATION SOLUTION) IN A PLUG FLOW APPENDIX G GLOBAL SOLUTION TO x1 AND X2 IN A PLUG FLOW TUBULAR REACTOjoPERTURBATION SOLUTION) For the proposed Van de Vusse kinetic scheme, ALBE-C , A+A—"—’—D the material balance for A (species 1) and B (species 2) are, respectively: fiz-L . - - A: (G—l'l) at ”(VA) k.A k, and 715 9 _ _ fiz—é—j-(IFB)+IQ|A kza (G 102) using the same T'as defined in Appendix F and introducing the following dimensionless variables: . -.Ei _ . x'=_ 3 xiii—S; ; KFkaTi Kz'gkz'ci K5=k3AV4C' K‘ K, (G 1 3) where A f is the inlet concentration of reactant A. Sub- re stituting equations(G-1.3) and (F-1.3) of Appendix E into equations (G-1.1) and (G-1.2) yields the dimensionless ma- terial balance equations for A and B as (C—2.1) 132 133 and 31.2 9 '- fl 4- 3;(VX.Z)=K1X.'K2X2 (CI-2'2) respectively, where the solution to v can be found in Appen- dix F. It is clear the analytic solutionsto equations (G-2) are not possible, and in order to obtain an approximate solu- tion, we assume the following asymptotic sequences: X.= X.,+eP.'+e’P.‘ (cs-3.1) 1. X1=LS+GQI+EP3 (G-3.1) E is restricted to small values in order to have the equa- tions (G-3) meaningful. Furthermore, x1 and x2 satisfy 8 s dxu 2 G-H'.1 Z75} ="K:7CIS-K;X:$ ( ) and 33“: KKK—K1705 (G-4.2) Solution to x1(O.S) Substituting equations (F+4.1) and (G-3.1) into equa- tion (G-2.1), collecting terms of similar order in.6 gives the following equations ' I 32-2- + %(Pu'*filx's):'K' P"-2I<3P,1C,5 (G'5'1) 13A 7.1 _ ' _ 1 :1 3&4. 50—5“); MP,+1&X.s)=-KIPI“K3[2P|2x15+(fi>] (G-5.2) the boundary conditions (from Appendix I) are: x1 (e,§=o)=1 (G-6.1) S Pi(e,s=o)=o (G-6.2) Pi(9,$=0)=0 (G-6.3) The solution to equation (G-4.1) is very simple, thus, doe—ms 7‘ = - (G—7 . 1) 5(5) KO" “0 8 K15) where “oz—fiFE_' , where K=K3/K1 The method of characteristics is applied again to solve for equations (G-5). Notice from the similarity of the mathematical structure between equations (G-5) and equations (F-5), we eXpect them to have the same ground characteristic path, thus the transformations between independent variables are 5-; (F—11.1) Y‘G‘S (F—11.2) The transformation in (s;r) converts the hyperbolic O O O S equations (i.e..(G-5)) into ordinary differential equation vflfixfli have the independent variables given in terms of the ground characteristic path, 8. The boundary conditions are 135 also transformed into (s;r). The solution to the ordinary differential equations (in Pi and P?) are straight forward but heavy handed, unfortunately. The transformed equation in terms of ground charac- teristic for equation (G-5.1) has the form 61?, 2d éKJ d 644.: K“ e-m -—' I+—-—L—- 605A r———:——+s‘mr—'—3—— (G-8.1) M +K’[ I- “01.9.42 A I<(I— we“) " I<(,—a."")‘ some clever manipulations are necessary on equation (G-8.1) to Obtain the right integrating factor. Also using the bi- nomial series expansion, the integrating factor, I, is (G-9-1) Completing the integration, and evaluating the constant of integration using (G-6.2) yields, 'KM ! e “GA 4“ 8'“ do +Kld016 _____S‘. [W Pl (Alf) (I‘doe K,’)3 (K K back transformation yields —KS ' 3 4° CosA(6-$)+KISIM(9‘S)]§ ,(3,9 .. —[A f’ .)= O—M ”m: K -K, - 93: _AwA(e-§)+ fig/1605MB S) e ( G" 10 . 1 ) A procedure similar to the above can be implemented, 2 . . . . thus. in the transformed P1 differential equation. 2 am 212(05) 1%. L8 4’"! “+2 K115”), r170.“ )HAT. -IW’ )[ 2; L; ”:2“; 451“ A» _x .56.» .[Jééai’] - K,[P.'W)]z (G- 1 1 . 1 ) AX 136 comparing equations (G-11.1) and (G-8.1) yields an identi- cal integrating factor for both equations. Therefore equa— tion (G-11.1) can be readily integrated. Defining the following groups for convenience: (6': %€[AwSA(e—$)+K.anj\(9'$)] (G-12- 1) a.” , (62: ——K;AcosA(9 S) (G-12-2) o<.’ ,1 35: Elias/HOG) (cg-12.3) with patience and care, the solution to PE was found. After back transformation, the solution to PE is expressed as «.5 P.2(fi5)*( e «.s. -sinA(9—s)[IP,(9,s)+4;(as)+@(35)“mama/#35) I’doe -HP65(9,$)] . +A wsA(9-€)Ip.,,(e,5) fig [42,- (6,5)+Ig,a-(6.S)+ Igzj(e,s)+ 1.932(96) +5Q4j(915)*‘I°/;a‘(55)] (G‘13-1) where ,_fis 2 2 d 1 01(6 ‘4) 03—92. _ . 13(33)=A$I'nfl(6"$)[-21%--2327§3—“ K3] (G 13.1 1) Ip.(0,s>=Aw$M9'5> (G-13.1.2) °‘°’=-I<.[-glsz—%(€ —I)+3.S] (Ii-13.1.4) 137 «.5 .. LP,(0.1)= midi-KR '(‘56 fig :14) $3 4193‘) gig“; )] K .(ew-j) - 4%ffi «xx-I3)! e L, 3, 6190.3); 6 "KI g —- '9‘“ 1): 3;,”[14668 + KAI-13') )*k.(1+y(e I2,-e (¢.,+¢23-*¢.J) (G-18.1) where, KS n [We gszSm/MO 5)](——-§)—§.‘nfi(o “Me _') ,lf R lf-(O gb,.(9.s)=—— {423a, 3 [WE-5)“?K35MA(9 3)];- - Sub/[(G'S) , otherwise (G-18.1.1) 3.34313 ’ ' if R1:0 ”(9' 3)'K'Z('*3>°<°3 (G-18.1.2) 3:0 &9 Z'IIe &(5-l)+RJ,J%(e q) r otherwise 8-K: ‘ ' I if R1=O . if R2=O (G-18.1.3) fice. $)= M35; (ijxo I otherwise with R1=K2-K1(1+j) and hRZ=K2-K1(2+j)o The first order term in the x2 solution dose not con- tribute any information about the enhancement of x2 at the limit cycle. This forces us to calculate the second order term, presumably some insights can be obtained. The compexity of the PS solution is directly related to the number of terms in P: and Pi. It is found that the 2 single summation terms in the P1 solution generate double summation terms, i.e., expansion involving binomial series. In a more compact fashion, define the following terms: lfil I do 8 ~ 3, = 7(— [jl SnnA(9—g)-k.A comm-3)] (G-19.1) 32’“ $112 sa'nMe—s) : (G-19.2) 351g Sn'nMevS) (919.3) R1=K2—K1(1+j) (G-20.1) R2=K2-K1(2+j) (G-20.2) R3=K2-K1(1+i+j) (G-20.3) R4=K2-K1(2+i+j) (G—20.4) R5=K2-K1(3+i+j) (G-20.5) R6=K2-K1(u+i+j) (G-20.6) R7=Kli (G-20.7) R8=K1(i+1) (G-20.8) R9=K1(i+2) (G'20°9) R10=K1(i+3) (G-20.10) Integrating with great care, and after back transforming, the resulting equation for P3 , in terms of the original inde- pendent variables, is 2 4‘25 P2 (6, S) = e {swim-QM; (6.5)+0(21' (9.9ng (9.5)} $15!?! 2A (9-?) “@189 + A comm-9M; (Rindqlflfiydyj (615)14‘0‘0; (BISH H0§g'(9.5)} (G- 21 . 1) 142 where 5 ( .5; [(A’—K{)sinA(a-;) -2K1Aco$A(9'§i +s‘[AcosA(9-€> +K25M(9'S)] ' ~gsrnme—s) . if R =0 “1‘95"? K “3:4”?4 1 £5 2 e -l S \k-I-IKT-R—p -i)[(A——K1)Sm/1(9' $)~'2K2AC05A(9 3)] +26”,z g '- . R" . S)[AC¢SA(9'%)+Kzs.nA(e-$)]-(e «Mme-S) , otherwise (G-21.1.1) { L (%'-I< 53 I 5’ - - ' ’3')? +<3:+Zz-Kzg,)-; +325 ' 1‘5 Rfo 093mg)— «2:00.31... 5 65K. 2(efi's...) K05 ] ' I’;[($u- HEX-z“! +) -T]+$:[€ (5‘EV75J +32(€R "')* (32” K232)eR[R “fl ’ otherwise (G-21.1.2) l , ePS-v -n$ . f I. (as-K22.)(T+s)-$a=K';°("1)°‘°334 '2i ’1f 2 ( __ fie :—' ,otherwise RZ( mu 1 I . A SA[Z-szA(9*$)-35WA(6-§)] , if R :0 dam) --—_Zo< ’ ‘ 330 I A 636 em 52 E,[;&h2A(e-${‘_K—L-s]-AZ%COSZA(9J5)[ (3’ R”) El-E—H ' otherwise (G-21.1.8) 49.3(95) =°I—,,—z:‘- - ' f’flfl] (Hi-1.10am) J: E G-21.1.10b) Meg): 5 [HSs'nMa—sHAcosvagfl (3,, ——+ /< +23) ( 2 K' 5 £2. G-21.1.10c) 73(915)=OLA‘33'5""2A(9'3)( 77% -' 37‘- + ’9 ( 5‘ do (G-21.1.10d) mas): 54.21160: 2AIo-s>( '27?- 2,72,) 1145 1 M e A’ e“; —- (:k; ‘:T(5-i;>>(%- 3%)] x, WM i"?— : i. K. .gt Mi) (kRn (;-E)+KKII)(I- Z) - ZKRI - [(le ] (G-21.1.10e) RI; ‘@ 8 2; 3 753(Q$)=[K'Sa'nA(9'S)*A¢U$N9'3):| ‘2."[1—(71 1 R, ;,"3)"€?]+m 9 _TR(e 4) eRIS “(2,34 (5 12.)“? ,} (G-21.1.10f) an! 2 773(64):“ 2“,? [—‘$a'nzA(9 --‘§)+A0052A(9 J$)][ ——($“:; -— +75)- %] (G-21.1.10g) 2 6R6” p h) 723(9,§)=%° [é— co52A(e-S)- é srnzA(9~s)]—,;,,— (J’ 21- 1 ~ 10 $5 . _ «ammo-9r e _,_;__ L , 793(9’S)- 2K L K! (6 R;)+Rf] (G‘21.1.101) (45W 6 _ 8 " »o(9,$)_ dbl/‘2 _ ’Kl . _ ( x. mg ”52"“ ”[9 (9%,)13 . 1f Rl-o “113(94)::(prfiag toms) 3+“: coswe~5)5 . if R2=O 3:0 M 22 14s 8 4 d e . \Tme) R, + :3 Comm-9b?“ -é-+-—] othermse (G-21.1.11) with 1&6 Twmsk Sf‘nnw W34 K K '55-"N9 9- ifcowa -.3) 3,]-Acom(e 5),; $3 o< N171 WOT —-'C«2A(9 $)--— K’sinzMe- i) (G-21.1.11a) S oif R120 1; L» 2 , , ( ). d. , G-21.1.12 093(65):}:“1 3:: [R Fe '47] M ( ) 6 -| . —ET— ,otherw1se 5 .if R1=O “M3168)=ZCHjfloZd:fl[—g—}+£3 3;] (G‘21-1-13) 1-0 L30 ‘3 R9 +R6 RI; . ___. ,otherw1se RI 427; C I 3' '2; 2 "R (M. K1 (€+é'v)*/z,='xz] ”,7“ 19'? 3 (e ’9 if R1=O (as): —Z( 5—5-23! Hi if R =0 d141,; ’ 33° "3)“ F4 2 5 R7 +3195 3 352 \%,[e—R—;(g -E';+) R'M] 3'1 (8" ____'_E) 1133‘” __,) Ks otherwise (G-21.1.11+) 0(I‘i7(91$)= -X(H”d.1Z—R:J i}; 91f Ruzo (G’Zl - 1 ° 15) ?’° is! \ 2(3’2‘59 ,otherwise . m d C?! “I61"(als): -:(Hj)dzz -.—' a 3:0 in R8 . w 1 “17,2“ (61$) = 'Z("j)do J 0997(9'5) _ (50 i=0 4 147 e. M- l 5 £3 “9 0 - a i =Z(Hj)a(]Z(H'i) %< Z! 4253 , . (E[é,-e (5+fi-a)]-—R:-(%+gz) , 1f R1=O ;’ , . Z,;+ §(%+gz) , 1f‘-RL,=O R45 K43 \3, [£05749 1' é] +(,-§-;+zz)(ek;') , otherwi se (G-21.1.16) 33 '55 . _ Hiya! -a)'1f Rl—O - = (G-21.1.17) ,1f RL, 0 4 353 £ \ %(€ 75:) ,otherwise if R1=O 2. ‘52 5 2 S J_ z . _ 5%: (;+,2;+zg)+zz:525(z+g,)+zzs .lf Ru-O 5:3 K}! e “3.5+; 3... £2. ,1. K3 [2: 124 £491? +16%“ fly as as 2 8 ‘0 8 _1_ *‘EZ’J*’3‘3‘[Z“'i>*/zz* 2 KKK: , s 81%;” ]+32 (8&4). K; otherwise (G—21.1.18) 1 I 148 “mam: ‘5): ‘Zdzofiéo-{U (14°— (‘3'71’2' ”it ( o(10;j(9,6)= 42W. Zw— R—° { 23.39% 3+ it) + 231335 PO K5 0917(915): 5: ('fjfloagofl) %2K 984K444; Km 092.4,(919-442("3MozflW—35 s em-I Rs 4 5 w 4 1'0 d: z 095.} (ens)= {awa- ZW— ’33 3.30 4:444) RIO AS 8 -4 R: %+3€) 44 6 S“; +—-.__._ 9'4”" _2*a -293 79)”; R9 2:, 8-9 ,if R =0 1 (G-21.1.19) ,otherwise if R1=O , if R5=O \ [% 8%? 2 (5 1+ ‘ 335 72;) R 4 444 otherwise (G_2101020) if R1=O (CT-2101.21) otherwise if R1=O if R6=O (G-21.1.22) otherwise if R1=O (G—21.1.23) otherwise Substituting equations (G-16.1 ), (G-18) and (G-21) into equation (G-3.2) yields the global solution for x2(6.3). APPENDIX H ASYMPTOTIC SOLUTION TO x1 AND X2 PLUG FLOW TUBULAR REACTOR AT Ow IN THE APPENDIX H ASYMPTOTIC SOLUTION TO X1 AND x2 IN THE PLUG FLOW TUBULAR REACTOR AT4§Q With the closed form solution to x1 and x2 available, long time behavior of the concentration of species A and B can be determined. This is done for comparison with res— pect to a steady state (i.e., optimal or non-optimal). Here it is assumed that at infinite time the process dynamics is a limit cycle. So the comparison should be the time-average at the limit cycle, i.e.. 1 I"? 3 (19.. (The notations are described in chapter 2) Recalling equations (G-7.1), (G-10.1), (G-13) and equations (G-16.1), (G-18), (G—Zl) from Appendix G, the in- dependent variable 6 appears only in the trigonometric func- tions. Hence, these equations at 9. yields the exact equa- tions with 6 replaced by Be . The length of each time pe- riod is €%f for both x1 and x2 equations. With the asymptotic form for equations (G-7.1), 13). (G-16.1). (G-18) and (G-21), the first 10.1) and (G—18)) are all composed (CV-1001), (G— order terms (equations (G- of only sines and cosines. Their integrals over a period 1A9 150 vanish, and hence no information about enhancement can be provided. The second order terms,as shown in equations (G-13) and (G-21) contain sines and cosines which drOp out after time-averaging. However, those same second order terms in the perturbation solution also contain squares of sine and cosine which do not vanish upon time-averaging. In addition to this, there are other terms which are 9 independent that are non-zero after time-averaging. Consequently, the con- tribution of these terms in 62 makes the final solution to the time-average x1 and x2 different from their respective steady state solution. The solutions to time-average x1 and x2 yield, after “K. simplifi cati on , (with ARG= l-doe 'KS _ d.4 Xl($) Mq—[K+e Are—1(fll "alb- -9304’KJMD‘JI where 12: lag—KM ___;(___ Kc; _,) 44K‘am do ’34”; 947;" I 0 *g?’ e 7 < 7 ) .0 4 Zktiuollf «0&(8‘K8; + e. 'I 3' 2k 5.. K: S ) .044 =Z('+‘)°(° (125i —_a‘.-+_a-,, +123; qu-flm) cm with for convenience), (H—1.1) (H-1.1.1) (H-1.1.2) (H-1.1.3) (H-1.1.4) (H-1.1.5) Sfi_f'i-§‘ 151 _du1 4i KaK _o(_q_A 4(948 ____") 2 K: £8 83 4-094 4: do]? K” e kak x[ 9:4: (5f 72:) 2;] 4.4, ”7] 4a 44 «4.4,. 84271, ( ,2, ) 9t .— K43 — 1 «.A‘ (e 29") .0,“ 5; and 4 S , if R =0 , otherwise where ,0 [,[éf‘i—L 1.2%)- ("—2—- > I I; at.» @223“ Kg20(__92:(,+4)d4 3:0 72-[ 2H6? “033:? (H-1.1.6) (H-1.1.7) (H-1.1.8) (H-1.1.9) (H-1.1.10) (H—2.1) , if R1=O 412.5 T],otherwise (Ii-2.1.1) , if 31:0 30] _[e&S(S__4'_)+_4L]],otherwise I I (H-2.1.2) 152 5.? 5.5.. K“ 2 ( 9 D . if R1=O $313: T‘K.zz(+3)d°1 I K K" 2 25 2 2 2.; EH‘? -z:2]—[e (5-22.23. otherwise (PI-2.1.3) , S , if R1=O I. ‘64.1=O(ok.z(Ha)doZd. RS (H’Zolou‘) K7 I 3R" , otherwise . g , if R1=O M 5-4' -d°K——-'—-:(H3)doz 0“ (H-2.1.5) {'1' L‘0 K: 6&5" Ra , otherwise ‘7; —2(6 "-J 55275 , if.R1=O K7 37 _zdoKa an s _L , = _ 593-2 —-Z( ng42— [uh—m) , 11" R3 0 (H 2.1.6) ’98 “>5 LL R(S_§’5)+— -—,’+§_’_'. ,otherwise 4,5 - _2(e —:)_ 56 2’5 , if R1=o ( KI:z K3 2 0 D ‘2" 3 5-1%, and] 0.5;. 45+“) . = _ P7? 1K% 3 gfle 2 R3 , 1f Ru 0 (H 2.1.7) 1'45 L_%:g(g-i)+é+is " , otherwise 153 ““3 nu, v2; (5+2'")+.4.- 56 245 22-021 22:82 flake x,‘ g; ifR= . 2'; 1 Kai—AEKV 3” S3 51; 2; 2(62 _—|) 2222232222 “‘2 2212222222222§22222E 77:2? £51. .if 124:0 ’36 em i<§i£_£z)+2 _(§_J_ _) 2 22‘ R4 A To: R‘ 2212:0124 + 2(ek‘g") 2C6 222-1) . T“ , , otherw1se Rah z”. (H-2.1.8) "-333 s g - (_2%__)__(€Z 2+1) , if R1=O a 5 2‘” 2 ‘2 RS _doA +_9w‘0&_g g, L—I . :0 67,3.- K 320mg Ks 5(379) K37. , 1f Ru 5 ‘8" £1.22: . 2%(57'2; +4272 5/24 Rafi, , otherW1se (Ii-2.1.9) 42$ _(igl)-; if Rl- =0 / 12,, (€222; ) .. . - - fioi—“j‘z’éZcmmZOMZ 222? , 11‘ 34.0 (H 2.1.10) [ s 12.8 \8 -' _C -l R4 R , otherwise I 2(6 I) § - 1 "_‘(e +IolfR—O 2 £9 g, ) 1 A” 2 i KS do 5 1. e 4 . (”90“ (Ht)—— §(——+ - . = - fi’dzd’i Kf. 2:; .1492 2 I.) M, .11" R5 0 (H 2.1.11) ‘65 m e, Kr i2; 752,294-13}? . otherwise "75 I . -——- , fR O ( K9 1 1 0‘42!!! ‘ g2 =2 0222—222 (’ 2)0( L ——J 22-! 2225...:1ZQ2'3 3;:("2)fl; '3’?— , if R5: (H_2.1.12) RS. 2,3 2 2 -e “2, otherwise R7 RI C'RIDS .: . _ __Z;_n.3 , if R1-O _L ° eflgS' 0“A 3 - ' = .. €0,3- 2K, :(Hgfiozmfl-o-C RID 3-7 . 1f R6 0 (H 2.1.13) &3 8 -4 6&i4 g‘ ‘T , otherwise The equation for average conversion of A can be readily obtained by subtracting equation (H—1.1) from unity. r- “wk-11 APPENDIX I 2 EVALUATION OF BOUNDARY CONDITIONS FOR Pi AND P1 APPENDIX I EVALUATION OF BOUNDARY CONDITIONS FOR Pi AND Pi In the succeeding derivation of the boundary condi- 2 tions for Pi and?1 ..all perturbation terms are evaluated at 3:0. f““‘““' - -e-.[ From Appendix G, X.(3.6)=X.5(6)+6P,2(5,9)+ e’F.’(S,9) (G-3.1) At the reactor entrance, only pure A is present, x.(3=o,e)=¢.o= x3). eP.'(S=0, 9) +e’P.’ (5:19) [when there is no perturbation, i.e., €==O, we recover 795 (0) =1] o= (4720.9) +6’P.’(0.9) (I-1.1) evaluate equations (G-S) at 5:0: 2911+” 2E (-)<.'+r)5m/19 -AM$A9=-(K:+2K5)Pv2 (I—2.1) 3 z I ' z 2 - 3g+g§l+smnegg—p,onsA9+§-lsmm9=""afi""Ka[1Pv*€Pc2)2] (I 2'2) evaluate equation (G-2.1) at S>=O yields: (1+ wig-r1119) :21"(A3_2222 5‘"ZA9— 611609119)- - —;<, K, (1—3 . 1) Differentiate equation (G-3.1) with respect to 3 and then 155 156 evaluate at 5 =0, thus, UXI 7‘15 6262622182? 5‘5 3* ag“ 25 (141.1) but 2 I}? = "K1X15- K3145 ax . . substitute this into equation (1-4.1) for 3a? and multiplying the resulting equation by (1+6sinA9), thus P2 (l*€&nAe)—g"(K.+k,)(l+és:h/19)+e(He-5.21119)23§2222+€('*€'$5M9)%J2; (I-th-l) Rearranging equation (I-3.1) and equating to (I-N.1.1). Upon neglecting terms of 3rd or higher order in e , thus 1 . 3P2 "’(Ktth) ’6 gSmflai-GACOSAG =- (K1146)- €[(K'*"3)§mAD "" 5—5'] +9252" “2232222“? 7222) (14.1.2) Collecting terms of similar order in.€, we obtain 2P2 2?. —{2i312n2A6=SuhA05'$'2+ 3g (I-5.1) aP.’ . AMA9=-(K:+K3)5fn/le+ 5:5- (I-6.1) :> 26% =AcagA9+(/<,+K9)Sa2nA9 (I—7.1) Substitute equation (I-7.1) into euqation (1-6.1). thus 722‘:- A 9."..er - (KHL HEW/10 " A92" “-9 “5A9 — i - 157 or, 222?, ——--(K.fK,)5f-nA9 AS'2’12A0 (I-8'1) Multiply equation (I-2.2) by (-6) and then add to equation (I-2.1). Yields 1 9' 2 ,g- ""(K.+K.)5f—nA9 Ame-mesmeg-SPJ-egg ”5211051194125":er =~ (k.+zk.)R'-*el<.n +6K.[2B‘+ “X.5(0)=O. 1 2 _ => P2(O,e)=-eP2(O,G) (J 1.1) 2?. e2?. (J-2.1)1 -—(o,9)=-€ ——-(o,9) Evaluate equation (G-2.2) at 5 =0, LX91+(‘+GS'°%EnA9) 23K| (J—Bol) 99 5 . 1 2 _ th evaluate equations for x%;' P2 and P2 at 5 -0, us dxn._K (J-4.1) T I 3?: ”2‘2 m, ‘=-K ._ 5.5 game 5—9 .F.2 (J 5.1) 2 2 ' 2 l {’32. . 2.". .s.-..A9}‘;’=— 19?, +AcosAeP. (J-6.1) 99 25 1see Appendix K 158 5‘6 "‘ 99 39 (J—7.1) I 2 2X , ZEI 293* _ . fifik|+e35+e as (J 8 1) 212 But equation (J-2.1) implies that 55 =0, thus, (HGSmAG) 3 =)<. substitute this into equation (J-8.1) yields Bf: 93' 3228 2F.2 .. l I e I +€3 5"S'IA KGSHAQ-t 3‘) +€$nA9—- 23 35% 9“ 35 collecting terms in like ordersof e , g—E=—K.s;nzxe (J-9.1) 2 9.3“ =Ksin’Ae (J-10.1) 25 ‘ Multiplying equation (J-6.1) by 6 and then adding to equa- tion (J-5.1), 9‘5 substituting equations (J-9.1) and (J-10.1) into the above €L§+o+e§1nne>~ + K~SmA9=- K272 €K2F21*€A¢°‘A9' P2. equation, yields: 1 2 I 6K.Sin"A9 - (H es.'nAe)(K.s.'nAe)-+ K.Su'nA 9 =—K. P, -ek.P. 4 e/LcosAoP, or, I 0= "(1%! “ é szza'tGA-USAQ' P1 1_ 2 160 I o=eACISA9-P. (J-11.1) T . . . 1_ _nW _ his implies PZ-O or .AQ—-§- ; n—O,1,2...... To sufficiently satisfy equation (J-11.1) for all 6, P: must be zero. Hence, P:(e, g=o>=p§(e, 3 =o)=o APPENDIX K PROOF OF THE DERIVATIVE OF THE BOUNDARY CONDITIONS FOR P; AND Pg APPENDI X K PROOF OF THE DERIVATIVE OF THE BOUNDARY CONDITIONS FOR P: AND P: I For a linear partial differential operator, 01H) L . P,‘(s.e>=g.m3,<9) (K-1.1) thus, at 5 =0, P,'(o,e)= 2.00%.(6) (K-2.1) and differentiating equation (K-2.1) with respect to 6 I AP.(0,9)_ A «9) (K-3. 1) 7F"?‘” .9 For equation (J—2.1) to be valid, we follow the proof given below. Ame) 453:9» 75— : at“) 16 (rue df’z'wfi) ._._ 3‘(0) .1452 LI, “,9 5:0 (K’ o 1) But the right hand side of equation (K-u.1) is identically equal to that of equation (K-3.1), hence 9P7<°'°’... 2.8: 49 39 5‘0 161 LIST OF REFERENCES REFERENCES--CHAPTER 1 1. Bailey, J.E., Chem. Eng. Commun. 1973.; 111. 2. Douglas, J.M. and Rippin, D.W.T., Chem. Eng. Sci., 1966 .21 305- 3. Doiowala, T.G. and Douglas, J.M., AICHE Jl., 1971 12 97 - 4. Ritter, A.B. and Douglas, J.M., Ind. Eng. Chem. Fundls., 1970 ,2 21. 5- Bouglas, J.M., Ind. Eng. Chem. Proc. Des..Dev., 1967 6 3. 6. Renkan, A., Chem. Eng. Sci., 1972_2z 1925. 7. gandery, C., and Renken, A., Chem. Eng. Sci., 1977 32 #8. 8. Farhadpour, F.A., and Gibilaro, L.G., Chem. Eng. Sci., 1981 36 183. 9. Beek, J., AICHE Jl., 1972.18 228. 10. Sinéié, D., and Bailey, J.E., Chem. Eng. Sci., 198o_15 1153 11. Watanabe, N., Onogi, K., and Matsubara, M., Chem. Eng. Sci., 1981 36 809. 12. Skeirik, R.D., and DeVera, A.L., Chem. Eng. Sci., 1982 .32 1015. 13. Van de Vusse, J.G., Chem. Eng. Sci., 1964.19 99#. 1A. GilleSpie, B.M., and Carberry, J.J., Chem. Eng. Sci., 1966,21 472. 15. DeVera,.A.L., and Varma, A., Chem. Eng. Jl.,1979,12 163. 16. Lee, H., Chem. Eng. 801.. 1977.32 332- 17. Riddlehoover, G.A., and Seagrave, R.C., Ind. Eng. Chem. Fundls., 1973.12 “A“. 18. Lund, M., and Seagrave, R.C., #98. Ind. Eng. Chem., 1971 19 162 19. 20. 21. 22. 23. 163 DeVera, A.L., and Varma, A., Chem. Eng. Sci., 1979 33 1377. Bittanti, S., Foranza, G., and Guardabassi, G ., IEEE Trans. Auto. Control, 1973 59-18 451. J . Sinéic, 1)., and Bailey, J.E., Int. J. Control, 1978 _22 547- DeVera,A.L., and Varma, A., Chem. Eng. Jl., 1979 12 163. DeVera, A.L., and Varma, A., Proc. Ninth Ann. Pitt. Conf. on Math Mod. Simul., 1978 9 1425. 10. 11. 12. 13. 14. 15. 16. REFERENCES--CHAPTER 2 Bittanti, S., Foranza, G..and Guardabassi, G., IEE Trans Auto. Control.l973 AC-18.451. Michelsen, M. L., Valeil, H. B.,and Foss, A. 8., Ind. and Eng. Chem. Fundam.,13, 323 (1973). Chen, C. C..and J. C. Friedley, Ind. Eng. Chem. Fundam.. _13, 121 (1974). Strangeland, B. B.,and Foss, A. S., Ind. and Eng. Chem. Fundam.,2, 38 (1970). Sinai, J.,and Foss, A., AIChEng, 658 (1970). Chang, K. S" and Bankoff, S. G., AIChEhlé, 410 (1969). Sirazetdinov, T. K., Auto. Remote Control, 25, 431 (1964). Kardos, P. W.,and Stevens, W., AIChELlZ, 1090 (1971). Koppel, L. B.,and Shih, Y. P., Ind. and Eng. Chem. Fundam" Z, 414 (1968). Koppel, L. B., Ind. and Eng. Chem. Fundam.hg, 269 (1965). Fjeld, M..and Kristiansen, T., Int. J. Controlhlg, 601 (1969). Skerik, R. D..and DeVera, A. L., Chem. Eng. Sci" 16, 1015 (1981). Burgers, J. M., Proc. Acad. Sci.,(Amsterdam).g;, 2 (1940). . Burgers, J. M., Proc. Acad. Sci.,(Amsterdam) 5;, 247 (1950). Kida, 5., J.,Fluid Mech.,_9_}_, 337 (1979). Lighthill, M. J., Surveys in Mechanics, (ed. G. K. Batchelor and R. M. Davies) pp. 250-351, Cambridge University Press, 1956. 161+ 17. 18. 19. 20. 21. 22. 165 Tatsumi, T..and Tokunaga, J.,F1uid Mech.,65, 581 (1974). gnu—_- DeVera, A.,and Varma, A., Chem. Eng.,l7, 163 (1979). _— DeVera, A.,and Varma A., Proc. Ninth Ann. Pitt. Conf. on Math. Mod. Simul. 9_, 1425 (1978). Lee, H., Chem. Eng. Sci.,gg, 332 (1977). Acrivos, A., Ind. Eng. Chem.,jfi, 703 (1956). Dionne, E. T..and DeVera, A. L., submitted for publication. Elli: . V-..