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ABSTRACT

ANALYSIS OF PERIODIC REACTOR OPERATION
A CASE STUDY
By

Eden Yee Tang T. Dionne

The Van de Vusse reaction scheme, represented as
k k
A-—Ji-B-—g*-C

AfA——EQ*-D

is considered as a case study for investigating the effects
of periodically controlling the volumetric rate of through-
put to an isothermal CSTR and PFR. It is shown that a se-
lectivity shift to an enhanced production of the intermedia-
te product B is encountered when large fluctuations of the
cycling frequency is implemented in the CSTR. An adverse
effect to the yield of B is obtained for the periodic con-
trol of the volumetric flow rate in a PFR. The effects_of
large cycling frequencies can not be surmised for a PFR
operating under a periodic control of the volumetric flow

rate because the physics describing the flow and mixing

Patterns are no longer similar to the plug flow behavior.
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CHAPTER 1

SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN
AN ISOTHERMAL CSTR WITH A VAN DE VUSSE KINETICS



INTRODUCTION

Numerous investigations[l-lzj. both theoretical and
experimental studies, have shown that forced periodic opera-
tion of chemical reactors in some cases lead to improved

conversion, enhanced selectivity, improved selectivity, and

reduced parametric sensitivity. Recently, Skerik and DeVera

[12] applied periodic control modes to an isothermal CSTR

with a selectivity reaction system that is described by a

Van de Vusse kinetic scheme [13] yi.e.,

ARy g R

k3

AtA — o

This scheme exhibits interesting selectivity aspects. First,

from a reactor selection point of view, Gillespie and Carber-
ry [14] and DeVera and Varma [15] have demostrated that a
level of macromixing, simulated by a PFR with recycle, in
some cases provides a maximum yield of B greater than can be
realized with the CSTR or the PFR modes of flow. Lee [16]
treated a similar partial mixing model of the steady state
‘tubular reactor and have shown that when the recycle is fed

within the reactor length instead of the exit, the yield of

B is further enhanced. Second, from a periodic process view-

point, Riddlehoover and Seagrave [17] and Lund and Seagrave

[18] have demonstrated that via simulated intermediate levels



of mixing, a superior yield of the desired product B compared

to the CSTR and PFR can be obtained.

In the dynamic but not periodic mode, the intermediate
B exhibits an absolute maximum concentration even though it

is already above the steady state it is approaching [19] .
Hence periodic operation provides an inviting method to capi-

talize on this phenomena. The objective is to determine a

control mode, certainly a periodic one, that will maintain
the reactor in a dynamic mode which is characterized by a

stable 1limit cycle. Such limit cycle should provide a time-

average yield of B greater than the corresponding optimal

steady state yield. In the phase plane formalism, we re-

quire an (xl,xz) trajectory similar to trajectory 2 as depic-

ted schematically in figure 1. Trajectory 2 is characterized

by an unknown control vector u which is a function of a per-
turbation amplitude€ and a cycling frequency A. Trajectory 1

is an unperturbed transient state which exhibits a transient
maximum yield. Now, Skeirik and DeVera [12] demonstrated
that, when the isothermal CSTR was subjected under the bang-
bang and sine-wave control modes of the reactant feed con-
centration, the time-average yield of B, regardless of pro-

cess parameters, is always less than the corresponding steady

state (optimal and non-optimal). However, the sine-wave con-

trol mode led to an enhancement of conversion, regardless
of the magnitude of the perturbation amplitude and cycling

frequency. By applying the second variation in the frequency

domain method [20], a similar conclusion to the latter can



FIGURE 1. Phase plane plot of a periodic controlled
isothermal CSTR with a Van de Vusse kinetics.

X, and 1-21 are time-average yield and
conversion, respectively.



Xy, yield of B

FIGURE 1.

locus of steady states
and transient yield

extrema
7
7
P
7
7
- 1,u(€=0)
-
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2,u(en)

Xq0 fraction of reactant remaining




6
be obtained, as in Sindié and Bailey [10] calculations for
the second order kinetics. Figure 2 dipictes schematically
some of Skeirik and DeVera's [12] results. The shaded area
represents the region of the time-average X, and Xq. More-
over, the limit cycle which has a perturbation amplitude at
its maximum, (i.e., € =1) envelopes the transient maximum
yield. Although a negative enhancement of the yield was
observed for both bang-bang and sine-wave controls, a diffe-
rence in these two control modes was observed: a square-wave
control mode is more effective in shifting the product distri-
bution than a sine-wave control mode, and in almost every
case, the effect of the cycling mode increases as the osci-
llation increases.

In this work, we present an approximation to the glo-
bal dynamics of an isothermal CSTR which is subjected under
a sinusoidal control of the volumetric throughput. From the
approximate solution, we conduct a sensitivity analysis and
derive a predictive equation for the objective function.
Here, the objective function is the maximum yield of the in-
termediate product in a periodically controlled isothermal

CSTR. Finally, we compare the yield enhancement values ob-

tained from a perturbation method [11] and the enhancement

prediction from the second variational in the frequency do-

main method [10,20.21].
BASIC EQUATIONS

The isothermal CSTR material balance for component A



FIGURE 2. Phase plane plot of a sine-wave control of
the reactant feed concentration in an iso-
thermal CSTR with a Van de Vusse kinetics.
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(species 1) and B (species 2) in the Van de Vusse kinetic

scheme are expressed as

-Z—;’:%-%—(Kv’xl+x;xb- %(u,-l)sfl (1.1)

% 2 ° 0 X2

roz=- %}—(K,szz'xlxr)—z ('ur")':'fz (1.2)
X

A i o, (1.3)

with initial conditions
e = O:x1=x1(0)=1; X5=0; x3=1 (1.4)

Equations (1.1-1.3) consider a constant output volumetric
flow rate and negligible composition variation of the reac-
tion solution density. The time derivative of X4 (2dimension-
less dynamic reaction volume) accounts for the changes in the
reaction volume due to the controlled volumetric throughput.
For the periodic process, the following integral constraints
are imposed as a basis of comparison with an optimal steady

state condition.

Jﬁgguaud9=u;u; P T=n (2.1)
T

s P wde = U (2.2)
Eqn. (2.1) requires the values of u, and u, should be chosen
Such that the amount of reactant input is equal to the opti-
mal steady state. Eqn. (2.2) requires the residence time for
both periodic and time-invariant processes should be the

Same. When u2=ug =1, equations (2.1) and (2.2) collapse to
s

F‘.ﬁu'dg-;u;:‘ (2-3)

Here, we chose
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U= |+ €SinA°e (2.4)
OPTIMAL STEADY STATE

The objective function for the time invariant process
is the yield maximization of the intermediate product with
respect to residence time and amount of reactant entering

the reactor; thus

objective function = J° = xgs (3.1)

xJ is obtained from

S

H, (22, ug, 23) =0 (3.2)
H, (%3, ug, 2g) =0 (3.3)
£ (22, ugs A3) =0 (3.4)
where H Hamiltonian = x, + ATI (x, u, ) (3.5)
Hence, x5 = B[ Vir R R (3.6)
Xop = kS Xey (14KIKa) (3.7)
X3 =1 (3.8)
= [kt ko] (3.9)
A= KXy (KK (=) (3.10)
A= (14K7K;)”" (3.11)
Ay = 0 (3.12)

A similar conclusion can be found in_[22, 23]-
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PERTURBATION SOLUTION: PERIODIC PROCESS

The time-average yield of B at the limit cycle is

5(2 = -r,':,gng (%, 4)dBa (4.1)

and thus, J, = Max ?cz (4.2)
XeX
ueu

When the perturbation method developed by Skeirik and DeVera
[12] is applied to equations (1.1) and (2.4), the following
set of moderately nonlinear and non-autonomous differential

equations is obtained:

:E"”‘;F -(1+K)F (5.1)
% _ LosAB 2_: - (1+KP - % (A%’ - Kicosn'8)F
AO
+Sinn’e - zK,FP.+ Ks 2 ces N8 F (5.2)
a8 _cosp’e AR A’Sin (1) - ki'cosAD p
8" s Ao (+K) P, + ye
_K;(2Fﬁ+ﬂz)+%?-(cos/\'9)FR (5.3)

where P, and P, are periodic functions while F satisfies

X, = fi(%,U;) , Fo)=%) (5.%)
The closed form solution to equations (5.1 - 3) is given in
Appendix A and has a structure described by
= F(8) + €R (0)+ €°F, (B) (5.5)
Eqn. (5.5) is valid only for values of -ﬁ-<1. Hence the sen-

sitivity of x, strongly depends on this ratio. Moreover,
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€ .
for +>1, the reactian volume assumes negative values and

thus the model loses its physics.

The time-average conversion is
- ° e’
=Xy = 1= X~ ?ygf’zd@o (5.6)

As in [12] » only the second order term contributes to ;1

and F reduces to xg + Once the global dynamics for X4 is
known, the solutionsto X, is readily obtained by substituting
eqn. (5.5) into eqn. (1.2). Such results lead to a closed
form solution structure similar to eqn. (5.5). Thus, the
enhancement is calculated and is presented in table 1. A
sensitivity analysis of the forced periodic CSTR is also pre-
sented here using the second variation of the objective func-
tion in the frequancy domain. The latter technique was ini-
tially developed by Guardabassi and colleagues [20] and was
extended by Sinéid and Bailey [21] for variable time delay

process. The second variation of the objective function is

2

I 2 € .
F 8T =<1 (5.7)
where m(A)=g'inpgGn) + QGGG CIN @R, §m - (5.8)
§o=[sI-41"8

A= [ (X, 4]
8= [fu (£, 8]
£ = [Ha (%, 4], 1))
Q= [Hyw (%, 4], A7)
B = [Hu (%, 4,25 =0
and H is the Hamiltonian defined earlier.

The value of W(A) is presented in table 1.
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TABLE 1. Yield enhancement
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DISCUSSION

The perturbation method developed by Skeirik and De-
Vera [12] for the sine-wave control of the reactant feed con-
centration was numerically verified. They have concluded,
that, regardless of the process parameters and frequency of
cycling, their perturbation method is a very reliable appro-
ximation to the global dynamics, even up to a perturbation
amplitude close to unity and any magnitude of the cycling
frequency. However, in applying the Skeirik-DeVera (or S-D)
perturbation method to our present work, we found that the
5% ratio characterizes the error sensitivity from the numeri-
cal simulation (vis IMSL's DGEAR implementation). Figures 3
and 4 illustrate the comparison of the dynamic profile using
the S-D solution and the numerical simulation. Figures 5a-
51 exhibit the percent deviation of the S-D perturbation so-
lution from the numerical simulation. The process parameters
chosen are not necessarily those that pertain to an optimal
steady state yield, since the S-D perturbation solution gene-
rally holds for any process parameters. It is clear from
such plots that the deviation is strongly influenced by the
£ close to unity, regardless of the € value, and the devia-

A

tion is very small whenuf-is near zero. Furthermore, the

deviation for N at the limit cycle is slightly less than the

deviation for Xq with almost any process parameters. For {%

value close to 1/2, the deviation is in the vicinity of 3 to

4 percent absolute when Ki is moderately large but the devia-

tion tend to approach a maximum of 13 percent absolute for
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FIGURE 3(a-b). Perturbation solution versus numerical

zgéuglon with k1=k2=k3Aref=f=1.,A;2.
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FIGURE 4(a-b). Perturbation solution yersus numerical
solution with K1=1,K2=K2=5, A=0.5,
€=0.25
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"FIGURE 5. Deviation of perturbation solution from
numerical simulation for

(a) K,=1, K,=K,=5, A=0.5, €=0.25

(b) K,=4.928, K,=24.642, K,=0.493, A=10.,€=0.1
(¢) K,=K,=K,=1, A=10, €=0.8

(d) K =K,=K,=1, A=10, €=0.5

(e) K;=20, K,=2, K,=30, A=1, €=0.5

(f) K,=20, K,=2, K,=30, A=1, €=0.8

(g) K,=20, K,=2, K,=30, A=1, €=0.1

(h) K, =1, K2=f<2=5, A=0.5, €=0.025

(1) K;=1, K,=K,=5, A =0.05, €=0.0495
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very large values of Ki.

Figures 6(a) and 6(b) show a limit cycle in the X5"Xg
phase plane and a trajectory relative to a time-invariant
process at the optimal steady state. The trajectory in fi-
gures 6(a) and 6(b) which starts at Xy = 1.0 corresponds to
the dynamics of the system at zero perturbation amplitude.
Unlike in the reactant feed concentration cycling, the limit
cycle trajectory which oscillates about the optimal steady
state, has Xq~X, boundaries less than those encountered for
the unperturbed transient maximum. Further, the limit cycle
patterns for various cycling frequencies are somewhat skewed.
(Figure 6(a)) compared to the more regular pattern found for
the system with amplitude variation (Figure 6(b)). An
increase of the cycling frequency produces a more profound
effect of shifting the trend of selectivity enhancement than
an increase in the magnitude of the perturbation amplitude.
In almost all kinetic and optimal steady state process para-
meters, increasing further the cycling frequency will change
a negative selectivity enhancement to positive. However, an
increase in the magnitude of the perturbation amplitude only
augments the selectivity enhancement, so that an already po-
sitive enhancement at some large cycling frequency is further
improved

Recently, Sincic and Bailey [10] and Watanabe et al
[11] have extended Guardabassi's technique [20] for local
optimal periodic operation of an isothermal CSTR. (For bre-

vity, such technique is referred to as the pi-criterion.)
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FIGURE 6a. X,~X; phase plane for K1=K2=K2=1, A=1,
with varying €.
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FIGURE 6b. Xy~ X4 phase plane for K1=K2=K2=1, € =0.5,

with varying A .
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The pi-criterion, which uses a variational approach to the
objective function is limited by very small magnitudes of
the perturbation amplitude. Such restriction is required in
order to linearize the system dynamics with respect to an
optimal steady state, otherwise the second variation would
be difficult to evaluate. Characteristically, the pi-cri-
terion is generally useful in predicting only a locally im-
proper or proper optimal periodic process without excessive
calculations. Here, the pi-criterion is applied to the pre-
sent case and examine, as a function of 6%, the extent of
its deviation from the enhancement predicted by the S-D per-
turbation solution. For comparison,-%-=0.005 and 0.01 were
chosen, since such values yield very small deviation of the
S-D perturbation solution from numerical simulation. These
results are presented in Figures 7(a) and 7(b). In the per-
turbation method, both-%-values yield a similar selectivity
enhancement trend, i.e., negative to positive with increas-
ing values of the cycling frequency and perturbation amplitu-
de. However, in contrast to the perturbation method, the
pi-criterion predicts a selectivity enhancement trend of pro-
ceeding from negative to positive and finally back to nega-
tive enhancement with increasing values of cycling frequency
and perturbation amplitude. It appears that the predictabi-
lity of the pi-criterion fails at A somewhere between 0.01
and 0.03. Nevertheless, even at such small amplitudes, the
shift in selectivity enhancement is consistent with the per-

turbation method. However, for perturbation amplitude
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FIGURE 7. Comparison between perturbation solution and

Pi-criterion method with k1=k2=k3Aref=1,

(a) €/A=0.005
(b) €/r=0.01
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greater than 0.03 (with —=0.005 to 0.01), the selectivity
enhancement results from the pi-criterion is less to be con-
fided. Furthermore, the € and A values at which the switch
from negative to positive enhancement occurs, lies ahead of
the €-A values obtained from the S-D perturbation method.
Finally, when the pi-criterion is applied to the case
presented by Skeirik and DeVera [12] » the selectivity en-
hancement trend was correctly predicted for all values of
cycling frequencies and for small to moderately large values
of the perturbation amplitude. These results are presented

in table 2.
CONCLUSION

In general, for an isothermal CSTR subjected under a
sinusoidal control of the volumetric throughput, the yield
of the intermediate product in the Van de Vusse kinetic
scheme is improved via implementation of large magnitude of
the cycling frequency. The magnitude of the yield enhance-
ment is further improved by imposing large magnitudes of the
perturbation amplitude. Regardless of the size of the per
turbation amplitude, negative yield enhancement results from
small cycling frequency.

The application of the S-D perturbation method yields
a good approximation to the global dynamics, and hence the
calculated trend of yield enhancement is reliable. The per-
turbation solution is sensitive to 5% such that large devia-

€

tions from the numerical simulation is encountered when-X-is
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TABLE 2. Yield enhancement as predicted by the pi-
criterion and S-D perturbation method.
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TABLE 2.

B enhancement B enhancement

A € pert. method Pi-criterion
0.2 0.025 -0.0019219 -0.00068700
0.075 -0.0172934 -0.00061838
1.0 0.100 -0.0001263 -0.00009820
0.25 -0.0007828 -0.00061380
0.75 -0.0070416 -0.00552420
5.0 0.25 -0.0001678 -0.00Q16740
0.75 -0.0015057 -0.00150660




close to unity.

k3



CHAPTER 2

SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN

AN ISOTHERMAL PFR WITH A VAN DE VUSSE KINETICS
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INTRODUCTION

The study of periodic operation in tubular reactors
with plug flow model has not been as thoroughly investigated
as its counterpart, i.e., continuous stirred tank reactor.
Mainly, the reason is the lack of sufficient theory for
assessing whether or not a certain periodic control policy
is a locally proper optimal. Moreover, the specific case
of a persistent disturbance in the volumetric flow rate,
imposes a difficult description of the flow field, espe-
cially for cases where the disturbances are substantial.

The first chapter has set forth two techniques which in some
ways had advanced our understanding of periodic reactor
operation involving a lumped parameter system, e.g. an
isothermal CSTR with a mildly nonlinear kinetics. The tech-
niques discussed there had to utilize some approximation.
The Skeirik-DeVera (S-D) perturbation method assumes that
when a transient state is disturbed because of an advertent
control of the input stream, the response to such a con-
trolled disturbance should produce a state dynamics that can

be characterized by the nature of the disturbance. Such

assumption led them to assume the structure of the closed

form solution which entails a perturbation over an unper-

turbed transient state. The success of the S-D perturbation
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method lies on the determination of a closed form solution
for the unperturbed dynamics of the yield of the inter-
mediate product in a Van de Vusse reaction scheme. The zero
order correction solution (or the unperturbed dynamic solu-
tion) along with the structure of the initial value are
important in obtaining the periodic terms in the perturba-
tion solution. Hence, the S-D perturbation solution can be
extended to any control mode of an isothermal CSTR with a
quadratic nonlinearity in the kinetic rate expression.

The second method due to Guardabassi [1] is a varia-
tional approach requiring limitations on the magnitude of
the perturbation amplitude. It was shown in Chapter 1 the
extent of applicability of Guardabassi's variational method.
Indeed the variational approach is restrained by very small
variations in the amplitude (i.e. only local fluctuations),
regardless of the cycling frequency. While the same
restrictions appeared to be innocuous for the S-D perturba-
tion method, the variational method, unlike the S-D pertur-
bation method, can be used for a host of different periodic
control of CSTR's, including periodic heating and cooling
rates, and CSTR's with kinetic rate expressions other than
a quadratic nonlinearity, e.g. Langmuir-Hinshelwood type.

The sets of research on distributed parameter systems,
for which the dynamics of a tubular reactor is a subset are
classified into two categories, viz (i) model systems that
involve a linear operator with a nonlinear nonhomogeneous

part and (ii) model systems described by a nonlinear
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operator, e.g. a tubular reactor where the flow field is
characterized by a nonlinear hyperbolic partial differential
operator. Much of the mathematical analysis and actual con-
trol simulation have been done on the first category. Such
topics include state-space approximation of fixed-bed reactor
dynamics using collocation techniques [2]; approximate linear
dynamics of packed tubular reactors [3]; analysis of the
thermal and concentration traveling waves within a fixed bed
chemical reactor that yields optimal control policies [4];
experimental measurements of the temperature response of a
fixed bed reactor to sinusoidal disturbances in the feed
concentration, temperature and flow rate [5]; and, simula-
tion and control of a packed-bed tubular reactor which ex-
hibits the existence of hot spots [8].

In other areas typical of the first category, the
usual concern involves the establishment of criteria and
computational schemes of control and optimal control (non-
periodic control). For instance, Chang and Bankoff [6] has
extended Sirazetdinov's formulation [7] of determining the
necessary conditions for optimization. They have included
general objective functionals and boundary conditions such
as the recycle of an unconverted reactant with an appropri-
ate time delay for separation and a free choice of final
time. Chang and Bankoff's technique underlies a variational
approach which provides conditions (usually in terms of boun-
dary and final conditions of an adjoint partial differntial

equation) for the maximum of an objective functional. The
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computational scheme that arose from their analysis involves
the simultaneous solution to an adjoint variable using the
method of characteristics, and the gradient method for estab-
lishing the minimal or maximal of the objective function.
This approach is different from a periodic operation, be-
cause the nature of the latter problem is concerned with
determining the optimal control such that when a new optimal
steady state is obtained, an objective functional is satis-
fied. Chang and Bankoff [6] has also provided a review of
optimal control in distributed parameter systems. Along the
same goal as the works earlier mentioned, Koppel and Shih [9]
has derived a strong minimum principle by converting a vec-
tor of linear hyperbolic partial differential equation to a
vector of ordinary differential equation and then defining a
performance index along a ground characteristic (i.e., t-z
plane). Unlike the rest, they accounted for the time fluc-
tuation of the fluid velocity over a certain steady state
velocity, i.e. plug flow. 1In an earlier paper, Koppel [10)
treated a similar differential operator but he aimed at com-
paring the exact solution and the solution from a linearized
dynamics of an isothermal tubular reactor with an nth order
irreversible reaction. Finally, for a completely periodic
operation, Fjeld and Kristiansen [11] applied a variational
method to establish conditions for local optimality of dis-
tributed parameter systems with a linear space-time differ-
ential operator matrix e.g. transient plug flow and axial

dispersion tubular reactors. The search for the optimal
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periodic control involves the solution to the process
equations and the associated adjoint differential equations.
The thrust of this work is twofold, viz, to find an
appropriate model description of an isothermal plug flow
tubular reactor under periodic perturbations of the volu-
metric flow rate and to compare the yield enhancement of
periodically forced plug flow tubular and continuous flow
stirred tank reactors. In this work, the local optimality
of an isothermal tubular reactor which is subjected under a
forced periodic volumetric throughput is determined by
employing a perturbation method developed earlier by Skerik-
DeVera [12]. It will be illustrated in the ensuing discus-
sions that the Skerik-DeVera perturbation method provides a
very reliable approximation of the state variable response
for small perturbation amplitudes and cycling frequencies.
Such results can be rationalized by comparing the equivalent
lumped parameter system (expressed in terms of a ground
characteristic variable, s) and the process dynamics equation

of an isothermal CSTR.
BASIC EQUATIONS AND THE PERTURBATION MODEL

Consider a one-dimensional model of the plug flow tubu-
lar reactor. The material conservation equations for the
tubular reactor with a homogeneous Van de Vusse reaction

scheme is expressed as
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for species A,

'07(- [} Y — 1’y 1v? =
_a‘e—"’gg‘(vx‘)— K.X, k;X, —6, (101)

for species B,

ZXQ ? =
2 (vxz = kix,-KaX; =h, (1.2)

The mean fluid velocity which is associated in the material
conservation equations has space and time dependencies
caused by the continuous flow disturbance at the reactor
entrance. The flow disturbance is treated as small enough
so as to maintain the plug flow behavior and avoid the for-
mation of eddies which would transform the prescribed mass
conservation equations to one containing dispersive effects.
The velocity field is obtained by a momentum conser-

vation which assumes that pressure, viscous and gravity

effects are insignificant, hence

(2.1)

Q)
22
Q)
\)'\| |
]
Q

Perhaps, a rather general and yet simpler description of the
velocity field is due to Burger's equation [13, 14]. But the
simplified model given by equation (2.1) would temporarily
suffice since the present investigation is solely concerned
with local fluctuations to an already established velocity,

i.e. plug flow velocity at the steady state. These local
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fluctuations arise because the input volumetric flow rate is
continuously perturbed by some periodic control. Here, the
local fluctuations, unlike in Koppel's work [9, 10], would
assume not only time but also spatial dependency. Such
formulation will be discussed later. Actually equation (2.1)
is a subclass of Burger's equation and thus the solution
contains a limiting function whose properties, in general,
contains shock-discontinuities. The limiting function is
derived from the solution to Burger's equation at the asymp-
totic limit of vanishing reaction mixture viscosity. There
is a number of both analytical and numerical investigations
of Burger's turbulence and a most recent review is found in
(15]. A very important contribution to the analysis of
Burger's turbulence is the description of formation and
decay of weak shock waves in a compressible flow [16, 17].
Here, the existence of these weak shock waves will be disre-
garded in spite of the continuous change in the mean velo-
city at the reactor entrance. Such assumption is tenacious
only at very small magnitudes of the perturbation amplitude
and the cycling frequency (or quasi-steady state). Hence,
the velocity field which is regular and smooth can be repre-

sented as

U=1+EU +€V, (2.2)

and where Vl and v2

the solution of equation (2.1), and where € ( <<< 1) denotes

are fluctuation functions obtained from

the perturbation amplitude.
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Finally, the reactor is initially void of reactants and
some inerts are already flowing inside the reactor at a mean
velocity corresponding to an optimal steady state residence

time.
PERTURBATION SOLUTION AND OPTIMAL PERIODIC PROCESS

The objective function which seeks for the optimal
yield of the intermediate product via a periodic control of

the input volumetric flow rate is expressed as
J=%.9§Xz(l,6)d.9 (3)

where T° is a dimensionless cycle time relative to an opti-

mal steady state residence time. The optimal function X, is
subject to the following:
X _ 2
<=1 (2.350%),h0) (4)
A _ =27
—_— =yl
20 25 (5)
I for x4
7_C(o.a)={ (6)
0 for X,
x(50)=0 (7)
u(s,0)=1 (8)

T(0,0)=u(6;¢)=Us+3u

= a control variable (9)
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|?.55"\)%0,6)0(9 = (10)

Here the yield enhancement is defined relative to an optimal
steady state (J;) i.e.,
E=J-2J° (11)
s
The optimal steady state can be found in [18, 19].

Now, in the region 6>>>% , the velocity field accord-

ing to the perturbation model is expressed as

V= r+egnA(9—§)+e’?;ggth(e-s) ) 6>77% (12)

for Su= €SinAe . Since the limit cycle exists in the

same region 6>»>>% , the asymptotic sequence

X=X+ ePO+ELOS) , 075 (13)

can be assumed. Pl and P2 are periodic functions obtained

from the solution to equation (4) and, in the region 6>»%
o . 1, v o
has initial (or boundary) conditions given by P (s=0) =
P2(S=0)=0. s is a ground characteristic variable. The
development of these initial conditions assumes that the
zero order term at %=0 has the same value as x(0,6). A dis-
cussion of the initial conditions is found in Appendices I

and J. Furthermore, here, the second order term is account-

ed because

_'_. ' ,S)dga-.-o , 0>>5% (14)
Lz
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Hence, the first order terms do not contribute any informa-
tion about the yield enhancement. Such is typical of the

S-D perturbation method [12].
In the 6>>>% region, 2} and 22 satisfies the following

set of ordinary differential equations along a ground charac-

teristic s.

: 3 -K4 ..
éﬂ . 2% € = 'ﬁg—.—"l:ACOSAY + M] 1
Tl - LT e (15)

5 Y

2 ° ~0 y 2& - '?_\?i -V ; 4_5‘;
i.‘_ﬂ_‘_ K| ('+2KX'6)ﬁ =—V;(;'-Y)[ 35])', R[zi]ﬁ' IIZ(A,Y)[AS ]['.f

%% s (16)
b0

! 4 o

S b Y

) ) °
i s $] - eran ]
e =~ SinAY| == | — ==5%n2Ar +Af tasAY
PYRAL 2% by 43 1.,

-[’%sinmf - AA’CoszAr] 77.,'3 +Kp (18)
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where x° = optimal steady state concentration profile.
s
X, = X4
A =35 and Tr=6-5
K
%o = 1+ K

The solution to equations (15) to (18) is found in Appendix

G. Thus, the average conversion and yield is expressed as

24 ———e_kj[,ﬂ,-'_{),; -5 + k;d:.(h;]]

(19)

Jif KZ=KT)
. o ® :
- K —K‘ lfd
=K «
Xz K € ; o K;"(l‘(‘fj) '
¢ - , otherwise

Ke- K1)
t-K;[ . 13
te e ﬁ,a + P,, +K'[P’j +kz.‘(P'j)k]] ( 20)

where the (2 's are defined in the notation section and the

f's are defined in Appendix H.
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DISCUSSION

The periodic cycling of the input volumetric flow rate
in an isothermal tubular reactor would certainly create
fluctuations in the flow field within the tubular reactor.
In what manner can the fluid velocity inside the reactor be
mathematically described is a matter of how much refinement
is needed to adequately model the flow field. If only small
perturbations from an optimal steady state is desired perhaps
a simple perturbation model as described earlier would suf-
fice. Clearly, the enhancement is a function of the nature
of the flow field. Even in an already optimal steady state
regime, the differences in the steady state flow patterns or
the steady state flow models have created different maximum
yield [18, 19, 20]. Among different steady state flow pat-
terns that were investigated, the optimal yield corresponds
to an absolute maximum.

In this work, the velocity fluctuation is regarded as
smooth, regular and when random shock-discontinuities could
be present, is eliminated by assuming quasi-steady state.
The description of the quasi-steady state fluid velocity is
afforded by the limiting Burger's differential equation
(i.e., 4—+0). A decomposition of the fluid velocity into
two fluctuating functions in terms of time and spatial coor-
dinate is necessary because the time-average of the periodic
functions gl do not produce information regarding the yield

enhancement. Such result is typical of the S-D perturbation
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method. Hence, in retrospect the present work would assess
a properly local optimal yield in an isothermal tubular
reactor whereby the flow field response to a periodic
disturbance in the reactor is described by equation (12).

The sensitivity of the perturbation solution was tested
against the numerical simulation of the hyperbolic differen-
tial equations as suggested by Acrivos [21]. The numerical
solution to the material conservation equations employed the
perturbation equation for ¥. This was implemented here be-
cause of the good matching between the perturbation solution
for ¥ and the numerical implementation of equation (2.1).
Hence, the numerical solution to the conservation equation
is partly simplified. For the parameters that were used in
the calculations (e.g. small A and small € ), the percent
deviation between perturbation and numerical was generally
small (for example Figures la-1d). The absolute maximum
percent deviation is 0.02 at € =0.1 and A =0.1l. Usually the
sensitivity is largely influenced by the magnitude of € .
Hence, in subsequent calculations for the material balance
equations, particularly small values of € were chosen. The
requirement of small values of A is imposed, not from a
standpoint of numerical matching of solution, but from a
standpoint of the required physics. However, the magnitude
of A somehow affects the matching between the numerical
simulation and the perturbation solution. Although the per-
cent deviation is yet small for the same value of € , an in-

Crease in the cycling frequency leads to increase in the
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FIGURE 1. Velocity profile at $=1.0
(a) e:A:0.0S

(b) €=0.01, A=0.1
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FIGURE 1. Deviation of perturbation solution from
numerical simulation for the velocity
profile at %=1.0

(c) €=A= 0.05

(d) €=0.01, A=0.1
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percent deviation (for example Figures 2a-2x and Figures
3a-3h). Furthermore, the large A has percent deviation
propagating along ¥ as compared to a more uniform percent
deviation along % for smaller values.

In the xl(e ; S) - x2(9 ;% ) phase plane (Figures 4a-
4i), the size of the limit cycle increases from the reactor
entrance to the exit. Such is caused by the fluctuations in
the fluid velocity along the reactor. Finally, the impor-
tance of these effects render the yield enhancement to
achieve negative values but achieve positive values for con-
version enhancement (Tables 1 and 2). It appears that in-
creasing A creates a larger negative yield enhancement and
increasing conversion enhancement (Table 2). Hence increas-
ing A would tend to shift, in a way, the reaction to the

side reaction (A+A—=D), and thus favoring a higher yield

for species D.

CONCLUSION

When an isothermal tubular reactor is allowed to
undergo a quasi-steady state periodic control of the input
volumetric flow rate, the time-average yield of B is less
than the corresponding optimal steady state yield with plug

flow behavior of the fluid. It appears that implementation

of larger frequencies would shift the direction of enhanced

selectivity to the side reaction.

Finally, the result presented here is not general for

all classes of forced input volumetric flow rate oscillation.
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FIGURE 2. Behavior of Van de Vusse system for
K1=K2=K3=0.515, €=0.01, A=0.05 at

(a-b) 5=0.2
(c-d) 5=0.5
(e-f) %=0.75
(g-h) $=1.0
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FIGURE 2. Behavior of Van de Vusse system for
K.=K_=K_=0.515, €=0.01, A=0.2 at

172773
(i-§) 3=o0.2
(k-1) 3= 0.5

(m-n) %= 0.75
(o-p) 3%=1.0
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FIGURE 2. Behavior of Van de Vusse system for

K,=K,=K;=0.515, €=0.05, A=0.2 at
(g-r) 5=0.2
(s-t) %=0.5

(u-v) %=0.75
(w-x) %=1.0
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FIGURE 3. Deviation of perturbation solution from
numerical simulation at §=0.5, €=0.01,
A=0.05.

(a) for the velocity profile.

(b) for Van de Vusse system with K1=K2=K3=0-515-
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FIGURE 3. Deviation of perturbation solution from

numerical simulation at ¥=1.0, €=0.01,
A=0.05.

(c) for the velocity profile

(d) for Van de Vusse system with K1=K2=K3=0-515
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FIGURE 3. Deviation of perturbation solution from

numerical simulation at %=0.5, €=0.01,
A=0.2.

(e) for the velocity profile.

(f) for Van de Vusse system with K1=K2=K3=0-515~
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FIGURE 3. Deviation of perturbation solution from
numerical simulation at %=1.0, € =0.01,
A=0020

(g) for the velocity profile.

(h) for Van de Vusse system with K,6=K_=K_=0.515.

1723



85

SHTOXD 40 ¥HAMWAN

©02

£02

SETOAD A0 ¥YIGWNAN
202

102

‘€ TINDIJ

002
¢00°0-

T00°0-

B

000°0

JT00°0

c00°0

LJ¥dd SA WAN AZAd D¥HEd

L¥dd SA WAN AZQ O¥dd

(u)

(%)



86

FIGURE 4. X,mXy phase plane for K1=K2=K =0.515,

3
€E=A=0.1 at
(a) %=0.2
(b) %=0.75

(e) 3=1.0
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FIGURE 4. X,mXy phase plane for K1=K2=K3=0.515,
€=0,01, A=0.05 at

(d) 5=0.2
(e) %=0.75
(f) %=1.0
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FIGURE &4,
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FIGURE 4. X,-X; phase plane for K1=K2=K3=0.515,
€=0.01, A=0.2 at

(g) S—"Ooz
(h) $=0.75
(i) s5=1.0
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FIGURE 4.
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TABLE 1. Percent yield and conversion enhancement
with varying reaction rate constants.
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Once the value of A is allowed to assume larger magnitudes,
another flow model which would allow the formation of shock-
discontinuity should be built into the flow model, even if
internal mixing can be neglected. The latter is obviously
more complex to handle because the material conservation
equation would have to include dispersion effects super-
imposed on convective material flow.

The S-D perturbation method proved to be very reliable
even for problems involving a hyperbolic partial differen-
tial equation which does not, along with the boundary and
initial conditions, induce the presence of shock-
discontinuity. A similar conclusion was obtained for the
isothermal CSTR which is subjected under the same periodic

control of the input volumetric flow rate [22].
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DERIVATION OF THE CLOSED FORM SOLUTION FOR
REACTANT A (A PERTURBATION SOLUTION)



APPENDIX A

DERIVATION OF THE CLOSED FORM SOLUTION FOR

TANT PERT T UTION

The material balance for reactant A (species 1) in
the Van de Vusse kinetic scheme
kR
' Bkzc , A'*A—hi’D

A
has a form of

- v
§h-3A- (ki A+iesp®y V= AT+ v 2 (A-1.1)

with the initial condition A(O)=Aref.
where

t=time

Qp= the feed volumetric flow rate which is subjected

to perturbation.
=the outlet volumetric flow rate which is controlled
at a fixed rate.

V=the reactor volume

A=concentration of species 1.

kl,k3=reaction rate constants.

Assuming the reaction solution density is independent
of composition, the following expression is true,

43 T (hte®)
97
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integrating equation (A-1.2) from initial pointst=0 and V=V

yields

¢
Vz‘?*j;(%f”i)”“ (A-1.3)

For a sinusoidal perturbation of the inlet volumetric flow

rate, we specify
%f=i'(l+ e.ﬁna)t) (A—1.1+)

where
€ =perturbation amplitude
w=cyclic frequency.
Combining equations (A-1.3) and (A-1.4) gives the following

result:

Vﬂ-’“ﬁ,—éwwt (A-1.5)

or,

dv %es»nwt (A"l.é)

Upon substituting equations (A-1.4), (A-1.5), (A-1.6) to equa-

tion (A-1.1) and introducing the following dimensionless va-

riables:

= A
t‘ i klsz| H k3= k’Am{T M x'=m (A"lo?)

A

iA=TW; @=

eﬁll<|

with some rearrangements, the dimensionless material balance

equation for species 1 is expressed as

dx’(/- ~CosNB)+ X, [(¢+k.)+(AsnA6 K.casz\e);(]
= [+ €SinAB -Ks X (1- % CrsAB) (A-2.1)
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with initial condition x1(0)=1.
An analytic solution to (A-2.1) is obviously not
possible. In order to develop an approximate one, the solu-
tion is assumed to be composed of a non-periodic term and a

sum of periodic terms:
X,(8)= F(8)+ €P(8)+ €*F2(0) (A-2.2)

This requires that € be small enough so that terms of the
order eacan be neglected.

Substituting equation (A-2.2) into equation (A-2.1)
and collecting terms of same order in € yields the following

three differential equations:

dF =1-K; F-— (+KDF

a5 (A-3.1)
:g' /{ sne% + (14 K:)P,*A-'— (ASINAB-K,cosNQ)F
= Sin0\ B - 2IGFR + %’ CosnBF”
(A-3.2)
1 Ry dP | k3Pt X (Asinh0-KicosA0) P,
a8 A @ cosA 6
0
= —Ky (2FRt P+ 2K~ F (4-3.3)

with the initial conditions

F(0)=1 and P1(0)=P2(0)=0.

Solution to F(0)

Equation (A-3.1) can be rewritten as
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4 1+ K !
(P S - %) = k(R )(F-F. ) (A-b.1)

where Ft are readily obtained, thus

F-—UtKO® UGLOLEL (A-4.2)

2'(3

Integrate equation (A-4.1) by partial fraction from 0 to €

yields
e)—F - A-LP. )
IR Ol S ()1 iy IV (A-4.3
F+ - F. F(0)- F, F(0)- F.
define
X = F(9-F. (A-b4.4)
F(o)- F-

and substituting equation (A-4.2) for F  and F_ into equation

(A-4.3) gives

'\/(’*"0)24'4"; X exp[- () +4% 6 ] (A-Y4.5)
k3 (l- oKenp [-'\/(Iﬂ(,)‘-ﬂ”{, 6 ])

Notice that F_ is indeed the steady state solution that sa-

Fe) =F, +

tisfies

2 (A-4.6)
O= |-(|-0 Kl)f‘s" k){'ss

For convenience, we let

C,=2K (A-4.7)
Can’\/(lle)z'f*K) and 27253
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hence equation (A-4.5) simpifies to

2€3 e#p (-(36)
¢, [l-o(exp(-c,e)]

Fe =1, + (A-4.8)

Furthermore, using the binomial series and a little rearrange-

ment, equation (A-4.8) can be equivalently written as

203 & W G144 6
F(e)= {'ss'f' ? X € (A-4.9)

2 45

Solution to P1(9)

Equation (A-3.2) is rearranged and rewritten as

-:—: +[(c+ k) + ZK;F] {

= o (esn8+ASnA8) - + (CosAD +ASINAG) F (A-5.1)
the integrating factor needed to solve the above equation is

found to be
36 -C360
T=e - za+4%€ (A-5.2)
substituting equation (A-5.2) into equation (A-5.1) and carry-

ing out the integration, we obtain along with the following

definition of terms,

24 K _
LH: —jL—(H»l—;?;') (A 5.3.1)

(A-5.3.2)

“2 ""KF‘C; !
lkz:x["l' 2"5 ] Az_',c;
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- l'ﬁs
v A(AC)) (A-5.3.3)

solution to Pl(e) is found to be

=30 /600 0
(R cnng) | Yfncrcosno-ort )

fi)= - -
' (/ -o€e cw)z (r- o(e-c’ O)z
€10
+ l)é [(Q’A’)Came-r/l(ﬁc’)sﬁma] e 3
(CG+a?)( € Pt * 6, CCP©)
3 1- ) O—qe /f (A-5.4)

where C(P1(0)) is the constant of integration evaluated at

P1(0)=o, thus

CCPO)= -+ (C+ AP, ~(G-A) Y, (A-5.5)

Solution to P2(9)

The process of solving equation (A-3.3) is similar to
the solution of equation (A-3.2). (A-3.3) is equivalently

written as

af,
Y] + (14K t2K3E) Po
ASinA @ -KGsNp_  cosnp 4P,
<Kt 2k R pp - AACIEp TR (4069

by comparing eugation (A-6.1) with (A-5.1), it is clear that

the integrating factor for solving equation (A-6.1) is simi-

lar to equation (A-5.1). The integration can be readily

performed. The procedure is straight forward but quite
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lengthy. Hence, the solution to P2(8) is expressed as

£6) ! CCB e—C;e
= s ( (RO
T (ae Sy )
230
€ Ssinjp -20,0
+K 1[ ———— (€, sinA8+ 21 21
240 Cf+ 4’ (a nAg+ CaSA9)+Ca«’fM’)

. -466
€ sindo 24%e”*% J

+ Spp+2AC3NO )+ T
1"[9‘:;* “w % ) 33(9e5 447)

'9%0 Iy
-1 [SmAO (2€ysinA 6+ 21 CosA0 )+ —]
4‘5 ¢
6 9"21\9 ‘549
*i 2 )
%
-—- (L‘ Sin’Ap - -Asn20p+ 22 )
C;M Cs
(24470
® 3{244 2
J Ie { cyer2 . 20
t2) & C3(1t§)SinAD + Asin240 + - :’
J‘[7 GGt “p
~C3(4+§)0 ,
e inerd . 2A
+ — (5(3t§)SNAD +ASIN2N0+ =
(o 4A% | 21 G
—C,(’f?)a 2
_‘_/2____.. rc’(z¢3‘)s;n’,te+ ASin2A0 + cz:z\ )]
¢ 4n®| s(4
_h€ C4jSHAG + ASin2A0 + 5—33]
e e L
-€330 20 o
c,ta-u)s.'n’AwAsmzAG'r ol if g%
C3 (;-c) YTy 3G
+75
(o2 b
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+ _{_7_6— (C,)‘COSAB‘A—S""A9>
G+ 4’ |

. _/ ‘5(103*3)9
o( [C’(ltjﬂ) tosA® -—ASMAOJ
R 05 (14 +23 A
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-C3(31142)0
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- c}(jdﬁ)g
+ .{WTC_—[C;(]}!)CDSAG -A Sl'n/w]
(s (/4 A*

-(.)( 4 +£¢2) @

[c,gmcosm-mmM]

-2, . “0()t2)0 ® o

ol [ Govap e SR

by g G54+ Py Cy(741¢1)

-20
+3 oseae (¢;5im208+202052009) - 26K )5S0 209- 2 0200)
‘2 e +40" Cx'+407

cos200 48
- ) e ]



108

. s [Q&hzno-zmszne . de""’w e
20 e al A 200 - VT (c,s,nzao,z/\cm,up

-2(,6
bt | € r,osma «@
" C,A[ 2A c& 2 (C35m2A0 + zAOSZAa)

)
-1 5’"2A9)e i -Z—_..'P (Gta)e (Cseasn0+ ASIn2A0- Zﬁi-)
/| 3+ 40* €3
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tp (ACLY (C, eoSAG+ASin200 + -—)]

c,+4
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o - Fs [Gtach0+ Asinang+ gD ¢ 1248 S
AL s+ an roM
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- oz f?4 (¢scos'40 -Asin208+ —)]
) -2G,8
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2
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- (R (Shae - 220 % (-6.2)

where C(PZ(O)),is the constant of integration which has the

following form:

_ _2{'A1 i ZizA’- _faAa . ;sAz
C(R0) = Ka L(AT) 3y (3G #07) T LU GGhen?)

2
271* 2044 + 203/

> 3. -— = 2 ; 2 .3
ﬂag' X7 GGoeaalon  [6'Gsren1609) (S
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Other terms, such as % ,(1=1,19) appear in the P2(e) solu-

tion are defined as
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2

7= % +2 I/Izl&jia(l—(;)

L=yK (¢ f

B=2¢¥ 4-G)

Ta= 244 (1+¢s)

Ts = Yn Oees)’

ANNCUD

7,= 2% (G4 47)

fo= Y1244 (G-2%

Tyz 244 (¢3-47)

1o= % (-1

fo= WAG-G) (GeaY)
Bum P (204 2 -61)
1= %% A0-G) (G-1") - ,-‘fiz- YA (1) (Ge17)
fu=-h (- 24-5)
Tis = %' (1#6)(5-4")
Ti= R4 0)

fnct/"ﬁ (1+65)
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Ta= W, (G447 (A-6.4.18)
9 = ¢ (G-2% (A-6.4.19)
Substituting the solution to F(e), Pl(e) and Pz(e)

into equation (A-2.2) gives the approximate global solution

to x1 as a function of 6.
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APPENDIX B

THE INITT ONDITIONS FOR THE
PERTURBATION CALCULATION

In order to obtain the initial conditions for F, P,
and P,, we evaluate equations (A-2.1), (A-2.2), derivative
of equations (A-2.2), (A-3.1), (A-3.2) and (A-3.3) at ©=0.
However these six equations consist of a total of seven un-
knowns,viz., F(0), F'(0), Pl(O), Pi(O). PZ(O){ Pé(o) and
x;(0) which make the problem not well posed. So an "ad hoc"
assumption is then attempted by imposing x1(0)=F(0) and
P,(0)=P,(0)=0, and thus achieve self-consistency of the pro-
blem. Of course, the validity of this assumption needs to
be verified by comparing the perturbation solution based on
these initial conditions against the full numerical solution.
As shown in figures 3, 4 and 5, the results are very satis-
factory and the error is large only at the initial transients

because if the initial conditions are important the error

could propagate in the limit cycle. Such were not observed

in the present work. But as clearly seen in the perturbation

solution at 6, , the initial conditions vanish.
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APPENDIX C

ASYMPTOTIC SOLUTION TO X4 AND x, AT €

The objective function in the present work is the
optimization of the yield of the intermediate product B
(species 2) in the Van de Vusse kinetic scheme. The compo-

nent B material balance is

85 -8 -(kaB kA =B 5 1V I (c-1.1)

assuming there is no product B in the inlet stream, then,

B(0)=0.
Introducing the dimensionless variables
B A -

X R = Tk,

(c-1.2)

(where K2=K1K2 and K2=k2/k1), and substituting (A-1.4),

(A-1.5), (A-1.6), (A-1.7), (c-1.2) into (C-1.1) yields the

dimensionless material balance for species 2 (or B):

(/'/%COSAO) % =—(He$fnl\9)xz —(szz—){'x')(i-%wma) (c-2.1 )

The global solution to (c-2.1) is not necessary for

calculation the average yield of B at the limit cycle.

an asymptotic solution for B is sufficient.

114
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It is clear from (C-2.1) that the asymptotic solution
to A(species 1) is required. Referring to Appendix A, and
substituting F(8), P1(9). P2(6) into (A-2.2) and then eva-
luating the resulting equation at 6= 6. yields the following

expression ( ©pdenoting large reaction time).

X, (0w) =F(60)*+ EP(O) +€ R (6n) (c-3.1)
where,
F (6w) = fs (C-3.2)
P (6) = (1= ) [(C -A) cash 8 * A (1#C5)5inNG, ] (c-3.3)
[} A (C_;"A‘)

2

a . 2
T, (¢;Sin NGy =N Sin20 6 + 7))

Pz (62)=

¢+4n°
y ' RIS 7 ' -2AC82A B,
+ 7, (G eas 16, +ASin 20 G, )+ T, (€35n246, 24 )
- g-? (1+2€3-1%) (€350 208 - 21.C0S24 O

+.é£?§635mzAa,-2Acmdmao ,
2/
- l/’;(j':-/l’) (€305 B+ ASN2A B+ A )

- 2 7 2n? _
+ ,/{’“ (c3cas/18,+Ason2A9¢+ z, )] (C-3.4)
Since equation (C-2.1) is structurally similar to

equation (A-2.1), an analytic solution is again not possible.

In order to obtain an approximate solution, the following

asymptotic sequence is assumed:

Xz(8a) = bo(6a)+ € b, (B) + €°b(6n) (C-4.1)

where bo=non-periodic term
b, and b, = periodic terms

€<,
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Substituting equations (C-4.1), (C-3.1) into (C-2.1)
and collecting terms of the same orders in € yield the follow-

ing three differential equations:

4b6(80) A
o6, T (I K2)by(Be) = Kifsg (C-5.1)

b, (6w I
d_L__+(;+;<,)b(e¢)-w % (4 —L”‘(B;-) kn‘g*'ﬁb (0¢)>-S:nA0.b,(e,)+K.P(B¢) (C-5.2)

%E_‘_(H,K )bz(ao) (p.S/lea(db,( a)_klﬁ(a.)”’ézb.(oc))—Sin/\.onb,(a.)ﬂ(l&(q‘) (C-5.3)

It is obvious that the integrating factor for equa-

. ) ) (14K2) O
tions (C-5.1), (C-5.2) and (C-5.3) are identical, i.e.e .
Notice that there is no need to specifiy the initial condi-
tions for above three equations since at the limit cycle,

the constants of integration vanish.

Solution to bQ

Equation (C-5.1) is readily integrated, at 6a, b
yields the steady state solution, or

K fss (c-6.1)

= bsg = 2
bo = bss I+ Ky

Solution to bl(am)

Equation (C-5.2) can be equivalently written as

dbl COSABQ A ’
TRY R b= = (Kabs = Kifyg) = SinA By by

+Ki¥y [(c,«/f) cosAa,+A(/+c4)sima,,] (c-7.1)
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the integration is straight forward and the solution is

found to be

bu(Ba) = Y, (c5-a) - B (14 Rs) cas Gy + Asinp 6,
(’*’22)1*' n?

H[ it (010 by,] Lo EedSPABe Aoty (c-7.2)

(/*'Ez)z* A

Solution to bz(e,)

A similar calculational process applies for the solu-
tion to equation (C-5.3). For convenience, we define the

following variables

bl - ] rah] —

(1+ 'éz)“’ A (/+12,)z+ A
bgs /2:(’”;2) Elibg 2
ki (G-AD- 2= | =5~ 2 (GmA7)
nem-3 ]A[(/*E,)'m‘] a2
Kloly kit Grt)G | k()G (C-8.1.1)
Geqn* A (G4 4) A (G+4n)
bss A I+ izz
- G4 -] —— -by| ———
72' [K'lk(i A7) A ](/4-[23)‘*/[‘ 4["" %A(”Ct) SS] (I* K42)2+Az
_ kTG | k(146 GA (c-8.1.2)

Cy+ 44° €+ 40°
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bss _ 2] 2+ K, 2/
—[ A (Ca - )] (1+ I?:)‘-r N ¥ [k' %A ("C;) -b"] (/,,2 )2+A’_ K'%(H’c’)

[k crres>- b] ReGeke)  2BA | kTt | 2kTCs  (-hdKiGy
AR Jf Glean®  Glran®  CRedAt A(Grant)

_ Klk(lt‘zfi‘Az)C) _ 2/‘!‘;4 (C)".Az) . 2kl(l' 7‘;5) + JK)%(H'C.)AZ
Cs'+ 447 €™+ 447 A(G+40?) o5’ 4%

(C-8.1.3)

7 K;A’#;(I-I-ZC;‘AZ)-ZAK, Ts-ki (,-7(“)

23~ (C-8.1.4)
(‘,’+ 44?
C;-Nn* /- 1
1,.= _Z’ﬁ_[1f+ Ts- _‘fa_%*_/‘__) Y rea A:s ] (c-8.1.5)
G(G+40%)

the solution to b2( 0.) is then expressed as:

X,(8,) = ! T/ [(HK,)CofAG ot N.SN21 Op + —— HKZ)J

(+ f(,)’+ a1*
2

24
. “AWN2A6a Tt -
% r(lH;‘)SIn’AeQ A 8in24 6> 1K, ]

:
WAL é,)s:thQ,-ZACoSZABQJ

724

F(Ifk‘z)USZAga*ZASinJAgD] + 1+, (c-8.2)

23
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By simply substituting equations (C-6.1), (C-7.2) and
(c-8.2)into (C-4.1) will yield the solution to xz(e,).
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APPENDIX D

AVERAGE YIELD CALC TION OF
THE INTERMEDIATE PRODUCT

The average yield of B at the limit cycle is obtained
by carrying out the cyclic integration of xz(B,). The cycle

time is defined as

T:—?j{‘— (D-1.1)
hence,
G+T
¢X2(eo) = = X2(6) A6 (D-1.2)
T O

From equation (C-8.2) of Appendix C, the cyclic in-
tegration of sine and cosine functions vanish and also the

terms that contain squares of sine and cosine will remailn,

hence
J 1,.- 7. )(Lil‘;..,_z-ﬂ':-) +—-154— (D-2.1)
¢Xz(0~)$m, (20 2 2 1+K, 1+ Ry

where 12,, fz, , 124 are defined in Appendix C.
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APPENDIX E

THE SECOND VARIATIONAL IN THE FREQUENCY DQOMAIN

Consider a system whose dynamics is given by

X = £f(x,u) (E-1.1)

x(0) = x (E-1.2)

where

X = state variable, u = a control vector.
Here, we wish to determine whether or not a control vector
U in a periodic mode (x(8)=x(8+T)) would yield a local opti-

mal of the objective function

J =-#%fg(z.y)d6 (E-2.1)

In this work, g(;zg)=x2 or the yield of B. Let

Jg = objective function at the optimal steady state, hence

for a small variation in u

= y° (E-3.1)
u =ug + 3

. . _1_10
then Juy will yield a local optimum if AJ=J-J > 0. Hence we

wish to determine
Max® AJ
xeX

uey
121
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subject to the 1limit cycle dynamics

X = I(x,u) (E-4.1)
X(6p) = x(BOptT) (E-5.1)
'%a h(u)d6 = constant (E-6.1)

Now, by imposing §u a priori we can relax equation (E-6.1).

Now, define the Hamiltonian

H(x,u.2) = g(x,u) + AT(0)£(x,u). (E-7.1)
H and f are twice differentiable and continuous in xeX, uel.

The optimal staedy state is determined from

( 352 =0 (E-8.1)

Jg g(x » U )454 HMg =0 (E-8.2)
o _ -
\ Is =0 (E-8.3)
therefore,
J = els.u)as (E-9.1)

At the cycle, we assume that A(fe) becomes time independent.

; %%[H(x.y.a -0 2 (x.w)] a6 (5-9.2)

S

J° = #:95H(x o Lz°)d9 (E-10.1)

therefore,

. T
J-Jg =%[H(_}£'Bobg)’1{(2§gﬂ_}-gvz‘g)] 'deo'(}.‘.g) _\14.1_‘(5'2”90

(E-11.1)
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but,

XX - of(x,u)
dé

hence, the last term in equation (E-9.2) becomes

d
éi(}_{,g)d@,=¢€%ﬁi9m=1((0)-1(('[‘):0. (E-12.1)

Therefore,

3-39 = H(x.u,2)-H(x2,u2.22) ] ab,

=%¢[H(l(vﬂl+3l3 '_S) H(l(sr.l_ls l\g)] d 6,

-t M +5 50 2 IS5 2R o 50 55 2H [ s
T ¢ Low i +§ 0 LSM. *2 ['ZJZ i “?'jz i ;X'S"J
¢ s 3 s

oH
R

auﬁqﬂ'*éf dBy

30

LA
p= (Hz |505_)g+HBg 3u)] a6, +'T hTFhab,,

= 30+527 (E-13.1)

clearly 5J=0 and SZJ is a quadratic form.

Here:

h =[5_3s 514]

p' = [(3x)" (w)T]
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P = [ H (xo,uo,Ag)]

XX'—=s'—

Q = QT(a symmetric matrix) = [ qu(lgnﬂgxlg)]
R = [ H,(x2,u%,29) ]

Now, the condition that gives rise to AJ>0 should depend on
5u as well as F and 3x. However, in order to derive a cri-
terion for the sgn(AJ), the relationship between §x and 3u
should be known. Such can be determined from linear con-

trol theory. So, if we perform the first variation of the

process dynamics,

dx _ d e _ o O
34t = gpo¥ = 8x = f(x,u) £(xgmg)
= I(.)_( ,.l.lg"'z_‘_l)'_f(l(g ,_1_,12
= i(zsvﬂg"'zﬂ)“"és_)_( + gs_l_-l +oooao.
0.0 _
"i(_l.(s,}és) (E-14.1)
Hence,
X = Asx + Bsu (E-15.1)
where
a = £,(x3.u3)
_ o 0
B = fy(zsms)

Now, from linear control theory; if

k=-

where g, =0 for k=0, ¢, =2 constant, j =\ -1 ,®= cycling
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frequency such that 3u forms a Fourier trigonometric series,
hence the solution to equation (E-16.1) should have a form

expressed by

ke kwe (E-17.1)
3X = x, e JtW% T
X Z..,,—ke
and where,3k=0 for k=0.

When equation (E-17.1) is substituted into egquation
(E-15.1), the value of x, is determined. Hence

or,

X, = G(jka)cy (E-18.2)

k

. s 2. .
with equations (E-18) the second variation 3°J is now eva-

luated, thus,
' T
52J=$§6[<55)T1;<u)+(w)TgT<u>+(53)T@<5.u>+<w> B(su)] d6e
o -] [ @®
T T,T T T _
222;195-1(3’-%*2 ;ﬁ-kg 5k+2§1:k}—(-kggk+2;k9—k@9k (E-19.1)
replacing x, by using equation (E-18.2)

ad = 121#-?:3( koley,
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APPENDIX F

CAICULATION OF THE VELOCITY PROFILE IN THE

PLUG_FLOW TUBULAR REACTOR

Here, the momentum conservation equation leads to

ov v
— tV—= F-1.1
at | [} 4 ° ( )

The disturbance in the inlet velocity, thus a disturbance in
the inlet volumetric flow rate, is assumed to be in the form

of a sine wave and is given as

u{go)=<v>[nesmwt] (F-1.2)

where € is a small positive number indicating the degree of
disturbance away from its steady state and w is the frequen-

cy of the input disturbance.

Defining the residence time of the reactor as

L
Lv

n

T

where L is the reactor length. Introducing the folowing

dimensionless variables:

A:(A)’C (F'l.j)

1 -V _1
e=7'c‘ H V"<\’>’ 3 L

when equation (F-1.3) is substituted into equation (F-1.1),
we obtain the dimensionless equation of motion
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26 3 (F-2.1)

with the initial and boundary conditions

v (8=0,%) =1 (F-3.1)

U (8, 3=0)= [+ €SinAB (F-3.2)

It is obvious that an analytic solution to equation
(F-2.1) is not possible. In order to obtain an approximate
solution, we assume ¥ to have a form composed of a steady

state or a non-periodic term and a sum of periodic terms

such that

U=07(8205)+€0+ €Y, (F-%.1)

where € is very small so that terms with € of order 3 or

higher are neglected.

Substituting (F-4.1) into equations (F-2.1) and (F-3)

and collecting terms of the same degree of € yield

W, W, (F-5.1)
0 2%

with the following initial and boundary conditions

v,(6=0,8) =0 (F-5.1.9
U, (8,$=0=5inAB (F-5.1.2)
2w Wi - 20 (F-5.2)

and 20 3 ' s
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with
initial condition U;(0=0,%)=0 (F-5.2.1)
boundary condition V2 (9, $=0)=0 (F-5.2.2)

Notice that Oth order term of € in the equation yields the

steady state velocity.

The method of characteristic is applied here to solve
the partial differential equations (F-5), where the dependent
variable is treated along its characteristic path. As a
result, the partial differential equations for v, and Vo in
© and $ are transformed into ordinary differential equations
in terms of the variables r and s. The transformation of
the independent variables © and 5 into the characteristic

variables r and s is depicted in the figure below

Y

p

Y 3
FIGURE F-1. Characteristic transformation for the
independent variables

It is clear that for a fixed r, 6 and 3§ can be related

to s.
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Transforming equation (F-5.1) into the new independent varia-

6au}.>=w_‘7.=if.<£>+ a_(»_a “R (F-6.1)
o4/, 25 2% 2/ 20 \2/y |

where R is the right hand side of equation (F-5.1). Compar-

bles yields

ing equations (F-6.1) and (F-5.1) we have, at a fixed r,

25

25 (F-7.1)

247! (F-7.2)

20 ,
hence 2%° =tanp orﬁupy

Integration yields

6-86, =%-3%, (F-8.1)
Where’6o and 50 are some arbitrary initial condition for ©
and § , respectively.
Referring to figure F-1, two regions can be classified.
The variable r, in the lower region, represents an arbitrary

initial value for ¢ , while in the region above OY, the para-

meter r represents an arbitrary initial value for ©. Mathe-

matically, the following relations for each region can be

written as

Region below 0Y:

0=A-sinﬂ (F‘9°1)

$=7+ feosp (F-9.2)



130

Region above 0Y:

6=r+bsmp (F-10.1)

$=preosp (F-10.2)

As far as the limit cycle is concerned, only the upp-
er region is used in the solution to V. Furthermore, the
initial transient (i.e., ©<3%) is washed out at =T (or
reaction residence time) and does not provide information
for the solution at 6. Hence, only the boundary condition
(§=0) is significant at this region. It follows that3 =0
and eo =r in equation (F-8.1).

As a conclusion, the foregoing calculations will be
only for this upper region (6>%), therefore the integration

of equation (F-7.1) from §o=0 to % and s =0 to s yields

524 (F-11.1)

while equation (F-8.1) gives

Y=0-3% (F-11.2)

It is clearly seen that equations (F-11) provide the trans-

formation between independent variables. Here, the trans-

formation of the partial differential equations (F-5) and

their boundary conditions can be easily implemented. The

solutions to the resulting ODE's are straight forward. After

back transformation and using equations (F-11) yields the

solution in terms of the original independent variables.
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Thus,

o,

25 0
or, Vl(s.r)=f(r). Applying the boundary condition (in terms
of r and s) yields

V, (Y, 4=0) = SinAY
or U, (Y, 8) = SinAY

Upon back transformation, the above equation is

U (6,%) = 5inA(6-%) (F-12.1)

Equation (F-5.1) is solved in a similar fashion.

Substituting Vl(r,s) and Faggéq , an ODE similar to (F-6.1)
YA

is obtained except, here R(s,r)= sinArcosAr. Integrating

the equation and using the boundary condition at §o=0 gives

¥,(s,r). Back transformation yields

\—a (6,%)= -;.AS{nzA(G‘S) (F-12.2)

Substituting equations (F-12) into (F-4.1), we obtain the

perturbation solution for ¥

U(g%)=+@sinA(6-3)+ e’—’;’la'nzﬁ(O-S). (F-13.1)
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APPENDIX G

GLOBAL SOLUTION TO Xq AND x, IN A PLUG FLOW

TUBULAR REACTOR (PERTURBATION SOLUTION)

For the proposed Van de Vusse kinetic scheme,

Afegbkec | A+A LD
the material balance for A (species 1) and B (species 2) are,
respectively:
2A — _ 2 (1A -k A -ksA® (G-1.1)
at n( A) ~k A ks
and
B__2 (v A-k:8 -1.2
e 33(V5)+k| 2 (G )

using the same T as defined in Appendix F and introducing the

following dimensionless variables:
K -
= ; x;—i—i k=R 5 Ke=kiCs KsekoreCs k=& (G-1.3)

where Aref is the inlet concentration of reactant A. Sub-
stituting equations@3-1.3) and (F-1.3) of Appendix F into
equations (G-1.1) and (G-1.2) yields the dimensionless ma-

terial balance equations for A and B as

- (G-Z.l)
L] + -?—(VX,)="K:7(1"KJX‘1
20 2%
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and
X2 9 -
ﬁ + 3—5(\’)6;):&7(."‘37‘: (G—Z.Z)

respectively, where the solution to ¥ can be found in Appen-
dix F.

It is clear the analytic solutionsto equations (G-2)
are not possible, and in order to obtain an approximate solu-

tion, we assume the following asymptotic sequences:

X,= Xyt eP+ E€F (G-3.1)
2
Xo=Xagt eB +€R (G-3.1)

€ is restricted to small values in order to have the equa-

tions (G-3) meaningful. Furthermore, xls and xzs satisfy

A% 2 G-4.1
7;‘ ==Ky %Ki — ks Xig ( )
and AXag

-E = K,Xk-&ij (G'L}.Z)

Solution to xl(G.S)

Substituting eguations (F-4.1) and (G-3.1) into equa-

tion (G-2.1), collecting terms of similar order in €& gives
the following equations

%El + ?{(ﬂ'«‘ﬁ.xus):-lﬂ Pi- 2K P (G-5.1)
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W 5045 )
a—g*' ;T(P.ﬁv.P.+v¢7€.s)=-K'F"z"ﬁ[’ﬂ’"k"m)] (G-5.2)

the boundary conditions (from Appendix I) are:

xls(e,§=o)=1 (G-6.1)

Pi(e,3=o)=o (G-6.2)
2

P1(0,%=0)=0 (G-6.3)

The solution to equation (G-4.1) is very simple,

thus,
%l
X = —Tre. G" .1
W)= e (G-7.1)
where 4027%%?_ , wWhere K=K3/K1

The method of characteristics is applied again to
solve for equations (G-5). Notice from the similarity of the
mathematical structure between equations (G-5) and equations
(F-5), we expect them to have the same ground characteristic

path, thus the transformations between independent variables

are

A=% (F-11.1)

Y=6-% (F-11.2)

The transformation in (s;r) convgrts the’hyperbolic

equations (i.e.,(G-5)) into ordinary differential equations

which have the independent variables given in terms of the

ground characteristic path, s. The boundary conditions are
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also transformed into (s;r). The solution to the ordinary
differential equations (in Pi and P?) are straight forward
but heavy handed, unfortunately.

The transformed equation in terms of ground charac-

teristic for equation (G-5.1) has the form

- -K, ~K4
d.P:' 2o(.€m 1 = g iy Kikol (G-8.1)
s e e M '
0

some clever manipulations are necessary on equation (G-8.1)
to obtain the right integrating factor. Also using the bi-

nomial series expansion, the integrating factor, I, is
KA “lby\2
I=e (1-%e ™) (G-9.1)

Completing the integration, and evaluating the constant of

integration using (G-6.2) yields,
-k 4

ole Kl‘ do KI“’A )
mz—)‘[ e 5 "]

back transformation yields
-Ki$

P,'(‘S,e) ———.,73)7

1- o€

Pl(pr)=

%[Acom(e-s)»rk.sim(e-v]s

2 dz 'K’S
- pesn o9+ TAsAOSrE " (G-10.1)
3

A procedure similar to the above can be implemented,

2 .. . .
thus, in the transformed P1 differential equation:

2 . - ap'( 2u,(68) 4%
B, x, (142K K)P =, 1) f""" [a;] ;v dd
m

~Xftis) [’—‘;:5‘19] -|<,[P,'(A.r)]z (G-11.1)
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comparing equations (G-11.1) and (G-8.1) yields an identi-
cal integrating factor for both equations. Therefore equa-
tion (G-11.1) can be readily integrated. Defining the

following groups for convenience:

§,= S neasa(6-5)+ KisinA(6-9) (G-12.1)
5= -%M"A(G"?) (G-12.2)

Ko E
§o= T, pemn (6-%) (c-12.3)

with patience and care, the solution to Pi was found. After

. 2 3
back transformation, the solution to P1 is expressed as

K5
P @9- (fm’ —san(o-s>[w,(as>+ta(as>+ng(as)+4;(e,s)+.%(@5)
+ALOSA(6-5) P, (65)+ Ps(85)1 P5(6:5)
+K; [q;,,}. (8,%)+ %msH c,o“j(e,s)«« ‘333'(9'5)
*50/43(@5)“8;3(9'%)] (G-13.1)
where o ,
2 d’o((e-') Ao a1,
P, (83)=NosA(6-5) (G-13.1.2)
OéeKs PN -5)- 5 (G-13.1.3)
Paingy= Bssmen- 5 osnes 5]

-X$
w4(e,s>=-k.[-§-’s’— %’(e —0)*313] (G-13.1.4)
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3 e s -n.(nps 2, K4S
lP; (9’) K:j.: o [ (Se * Kn} ) |(“1) l) * k%(e -‘)] (G— 13.1. 5)

4%4%
& il 3 k(g8 o 45 -k.(zo;,)s kg8

Pai(6%) = K}};’ o [K«("a) (se ‘4 & o T k.(ﬂy( )k‘w)(e )| (G-13.1.6)

lﬂ,w,s)hﬁff'—” (G-13.1.7)
A ks e
Pe(0.5) = A sinzn (0-9)+ [se r— ] (G-13.1.8)
[}
Bog)= — XL smm(as){’ “ e -.)] “’Aswsm(a %) (G-13.1.9)
'N("J)s
7 (25,2 »
oj(B5)= gZZ(NJHo[K(Hﬂ 5+ il "(”j)) k"("i’] (G-13.1.10)
-k,(n;)g
,7(9;) 23312(”3)“0[’('(’43) (g KI("?)) KZ(HJ)] (G‘lj-l.ll)
® . e—&(nj)!_'

‘,Q,-(a,i)--%;z(’*’.)d"[W] (G-13.1.12)

) #°

K
P, (89) =2 i(:#j)do’[e Wﬁ(i* Ly (G-13.1.13)
l;’(alg)’ 3'83:0 "'("'3’ kl{z’1> K"(Z*‘j)’ .1
. @ i e""“ (213')5—,
%43(0,5) =28‘?5;(H1)0‘. [ K (113’) ] (G‘13. 1. 14)
j e«(mﬁ _)
le,a(w Z’ Z(M [—W] (G-13.1.15)

1:0
Substituting equations (G-7.1), (G-10.1) and (G-13) into
equation (G-3.1) yields the complete global solution to xl(e,s)

Solution to xz( 0,%)

The solution to X, is done in a similar fashion as
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for solution to X Substituting the global solution to Xy

together with equations (F-13.1), and (G-3.2) into equation

(G-2.2), collecting terms with similar orders in € yields:

vd
d"szs = K.X.,-K{Xz, (G-Ll'. 2)
d& ap ! :
s LOz meA(G'S) ‘K,Pz +ACsA(0-3) 7(1, + X, (G-14.1)
A& a4 4B A Azs

45 "9 +Sin A(G S) ‘5 +-—§Sm2A(9 §) —= A%

2
=K, + AcosA(8-9) Py [lz‘-s.'m(e-s)- g?x’coszﬁ(o—s)]x,; k7

(G-14.2)
with the following boundary conditions:
X, (8,%=0)=0 (G-15.1)
S
P3(8,3=0)=0 (6-15.2)
pZ(6,3=0)=0 (G-15.3)

For convenience, we can rewrite equation (G-7.1) equi-

valently by applying the binomial series as

=Ki$, 144 _
"3(”“:2;6"’6 )" (G-16.1)

substituting equation (G-16.1 ) into equation (G-4.2), with

b ; ; with the
the integrating factor of € . The integration,

condition given in equation (c-15.1) yields the solution to

Xzs s
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) if K, =K, (1+])

X, (%)= o("j -
2(8)= e 3{0 ﬁ o) (G-16.1)
e

\ - , otherwise
Ka—ki(143)

The solutions to partial differential equations (G-14)
again apply the method of characteristics, since there is a
similarity in form of differential equations (G-14) and (F-5),
the ground characteristic transformation, i.e.,(s,r) can
also be applied here, with the transformation, the following
ordinary differential equations for P% and Pg in r and s are

obtained, respectively, as:

! ]
ﬁ’ +Kafy = ASAY X, (1,8) —sfn/w%‘]n: K, P, (4%) (G-17.1)
&P’ "'KzP, = 'Smjx([—@q - "A SIN2AY [ 4;‘] + Awf-f;(l:f)
y%%
_[ ./2‘_5,',, V= A A‘coszm] X U)K i(sv) (G-17.2)
Kb

The integrating factor for equations (G-17) is e .
Theoretiéally, the solutions to equations (G-17) are
simple to solve. Upon applying the binomial series and
other manipulations, the actual number of terms in each equa-

tion increases as integration is carried out.

Integrating equation (G-17.1) and imposing the condi-

. 1 .
tion that P%(s=o)=o , and then, back transforming P; in terms

of © and § gives
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! -Kz%
= + .+ .
fa6:5)= & Gﬁ? ¢% ﬁ) (G-18.1)
where,
RS
AusA(a “$)4Kz SinA(B-S) S](—'S)-Gm/t(o-z)(e _,)] yif R #0
<¢(95)-
s AC«M{B )+ K2SinA (b gili-s.nA(e-SJ yotherwise
(G-18.1.1)
42+ 4.8 , if R,=0
‘3(6;),n2¥ﬁz)do (G-18.1.2)
a:
RS
[e ( )+i]+%(€ -1) » otherwise
-k
e - .
r if R1=O
é,;0.9= K,z,Z(,q),x, » if R,=0 (G-18.1.3)

¢+ otherwise

with R, =K,-K,(1+]) and R2=K2-K1(2+j).

The first order term in the X, solution dose not con-
tribute any information about the enhancement of x, at the
limit cycle. This forces us to calculate the second order
term, presumably some insights can be obtained.

The compexity of the Pg solution is directly related
to the number of terms in P} and P4, It is found that the
2

single summation terms in the P1 solution generate double

summation terms, i.e., expansion involving binomial series.

In a more compact fashion, define the following terms:
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’

do .
§, = = [A*SnA (-5 -k CosA(6-%)]

3/__ A
2= T $inA(6-%)

2,2

/_obA
25' Ks SinA(9-%)

Ry=Ko-Kq(1+5)
RpKp7Kq(249)
R3=K2-K1(1+i+j)
R4=K2-K1(2+i+j)
Rg=K,-K, (3+i+])
Rg=Ko-K  (4+i+j)
R,=K,1
Rg=K,(i+1)
Ry=K;(1+2)

R =K1(i+3)

10

(G-1901)

(G-19.2)

(G-19.3)

(G-20.1)

(G-20.2)

(G-20.3)

(G-20.4)

(G-20.5)

(G-20.6)

(G-20.7)

(G-20.8)

(G-20.9)

(G-20.10)

Integrating with great care, and after back transforming, the

resulting equation for Pg y in terms of the original inde-

pendent variables, is

2 ;%
R (e%)=€ {"ShMa‘S)[“oi (O,S)w(,,' (6,5)+ 0(3)'(9,5)] - 2—1513) 21(0-%) '0‘4;'(@5)

+.6o31.0-) Lot ()15 0t (55 oy (55 K,og.;,-(a,s)} (6-21.1)
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where

, %[(/\ -K7)sinA(g- S)-zszCosA(e-gi +5’[Aas!\(9 -$) +K2 SmA (D S)]

@ | ~%5mAB-%) , if R, =0
%,s(0,9)= -,’?j{o("’ 4 .
=0

RS
\ K_"[(.e_';'_ _5_ iz)[(n Ky IS A\(B-S)-2K: ACosA (B i)]

f*
+2 ( -3) ACTSA(0-8)+ KpSin A (- 9)] (e .)smme s)]

, otherwise

(5-21.1.1)

! 3 2
(Z,'K,g,).sz +(8.,+Z,’-Kzgz)-; +4.5 , if R1=0
X55(6%)= Kg(:fgy,
5 kn 2(€K's-l) RS, J
7@ x,g)[ - S +ee (5r) ]
*zz(e “') (iz K2{, [""‘—"5]] » Otherwise
(G-21.1.2)
o 55, ks '
g e s
d-(w*f("a')dw s[3+( gs) 3 i =
losr ki (pa: 3+ (§5-K85) 3 » if R,=0

hs
[g,(e =)+ (§5- kzs)[ s]] , otherwise

(G-21.1.3)
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o4;(6,5)= —Zo(

1| RS e
z[e 5R)E MR R

@ i
dra(e,s)-—;o( {

r

| Aesn(6-5)tKaSinao-3)

143

K. 3
>

)s

RS

3 2

-3
2

3
)

£S
e -
(%

Ri

g
Tt sz;

o 1
dgj(e,s»xgj (4%

® 4 {
°(73'(915)‘Kv;°("3)°(° 33

ik

2(€ -l) iz
e

y» if R, =

2
; ]J ,otherwise

(G-21.1.4)

, 1f R1=o

RS

g e-r 5
-2—> SlnA(B S)( R|g R

otherwise

(G-21.1.5)

, if Ry=0

" ;] ,otherwise

R
(G-21.1.6)
PR if R,=0
(K.( E) 1 1
iz
5 ,if R,=0 (G-21.1.7)
! e —l .
\Rz -g) ,otherwise
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201 . A
g/\[IS"‘?—MG’S)"gS'«'ﬂ!»-"A(e-\;)] , if R,=0

oy (%) = K13 1"
a.o R\5 R-S

A 2

E[—MZA(G g{e——-s] -ACOSZA(O'S)[ (- R r)* Ez' '2-]

] .

otherwise

(G-21.1.8)

°(9i3' 6% =°(,oj(0/§) +0g (6,834 Ky Sin . (6- s)[ooz;j (8%)+ i (6:5)+ o,y (09

#00s 3 (B15)+ Kiag (B,8)+ o (6:5))

3L [ g,a (6,%)+ o(/9:i (915)*“@7 (915)"' z,,i(ﬁzi)m(z,d(o,{)w(w] (9;)]

(G-21.1.9)

where

T.(0,9) +T2(6,5)+T3(8,5)+ Te(B,%) » 1f Ry =0

SN
0<wj(9:€)=2('fj)do
7-0
Tsa(e,g)f Tba-(B,S% 773-[0, S)-T,j o, S)—ng (6,5) ,otherwise

(G-21.1.10)
with

T )‘-‘SdoSlM(G-‘S){Sm!t(O'O[(‘E"_)1 ;k o

3)
encosn0-5) [ o ’72; - ZEJ} (G-21.1.102)

14

7:(6.5)= 5 [KisinA(e-5) + MesA(6-%) (%% i = * —S) (G-21.1.10Db)

K ; oo -
7;(915)=o(.,13;—.s.b2/ll9-$)(-z-,§' “3x*t % (G-21.1.10c)

A (G-21.1.104)
T2(0/5)= Sx.nCos 20 (0-8) (TE " KK )

.
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A’ek' 2 25 2 A ot :(e&
Tfa.(g,g)=-((»Sl"A(Q"g){S"\A(a'S)[ (5 R gl) KR. Ki K3 R,

(Bt S -2 K

A Mo oy ke s aE
5009 (S (s-hye ) (- ) -HEE k) ]}

(G-21.1.10e)

RS
[ i
T(,a‘(O,S)=[K|Sn'nA(e-S)wasz\lﬂ)]{%[—"( 22 R’)— ] 39 (e ")
RIS
11[ (5-%)* &2 } (G-21.1.10f)
“ 2% 2
T5i(08)=5% i‘ﬁ [——snm{a-s)mwm(e g)][ ——(5’— = tR)" %]

(G-21.1.10g)

RS
2 . e - -
Toj(0g) 28 T & cosanp-s)- § sah 6-9] =7 = (G-21.1.10h)
#$
Lo Ko ASN2AB-E) € Lt .
Toilos)= 2o S (8- )+ ) (G-21.1.101)
e -:)Tw,s) a{oA .
( w - “52’1‘9'5)[3 (5+%)- kL] » if R =0
i(019)= f(wa)d.’é T,omsys»r";’f tos3(0-5)-5 » if Rp=0
w1 s
c,sA(g g)[ (;-— +—] ,otherwise

(G-21.1.11)
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Ti0(6,5)=SinA(D- ;)[ A SmN9 s)- i‘“ay\w “$)- 3,] -NLosA(B-5) = 7”
ole
',’?fmm(e $)-3 AS'»zA(e %) (G-21.1.11a)
5 'if R1=O
p,a(e,s)-}:(wp -t;:a(o[-kz; Z" Z:] N (G-21.1.12)
€ -1 ,otherwise
Ry
5 ’ if R1=0
O (0,8)=3. )xoZo(“'[Lhi’Ji] (6-21.1.13)
PR ETRLT TR k)| s
€ -1 ,otherwise
R
-#%
v 11 & 2, RS
R T I SCIR 1O
if R1 =0
Ghigi(8,5)= 'Z'W'Z LY é E’;i (%'\«3‘)5 if Rq=0
21
€ ey, (C D b. M8
N G | Rt AR
otherwise

3 (G-21.1.1k)
’(e-K‘g) cif R1=0

o(i
,;,a(e,i) Z(“i)“'z Rs J i}g

° i=

»if Ry,=0 (G-21.1.15)

\ lf(ek",o ,otherwise
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Biri ks e
(&[k‘"e (S-r;lz‘s)]‘—K;-(%#SJ) y 1f R =0
.o (¢ 2
ol = - 4 3 d; E— .z'_ i
wij(69) ;:Uw 25 \87 (36 » 1T R, =0
s
(€05 Lye LT urbegy € -
IAGAL R:]+(K’+&)(T-!),otherw1se
(G-21.1.16)
-;3:(&'”’5.) 'if Ry =0
tosl69 el e
04 6:%)=- ) (1f)cs —- i = G-21.1.1
TSNS Ry { 8>3 11T Ry =0 ( 7
\%(8"’{») ,otherwise
-Re$ 4
_g_,f[_-ﬂgi 228 2. 2 2 1, 2 28
R
215, - e -|_4
4-—&&-[—8 (g*kﬁ)+é—é-—ég—1}-%(ek’f’)
A i - if Rl‘—‘O
Kg.(6,9)= ISy o Sz 5.2
o008 20000 3 (g2 (3+ 2 B)raggs G+ A) a5 it Ry=0
X ReS
al€ 225 2, 2 267 1., 2
A Sl

RS, RS RS 1 9.6
+ z@_.?]+zz’x;[% (;' i)"‘éi"" e ']4'.3’(& I).

otherwise

(G-21.1.18)
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$ ,if Ry=0
3 do __Z'_
6,5) =) ol (14 L
( ) = Zo'a)é’(“ ( +$z) i (G-21.1.19)
e - ,otherwise
_x_z_ -%;- 2% -Ry$
e (5 &)+"' ] : &t"
Ks if R1=O
2
0(30i3(61%) prd.z;(m),z <2§.5,s(§+ é)uwg , if R0
\ &S
2 -
33{ (5%, k”’ﬂ (e -,)
otherwise

217 (6,8)= Z('flb(o i("")i;

20 =0

éfwi

Reo '
21.3(9,9 Z(uz)«o Z('")—'Za g

)
Re '
S ’
CKaij (B%) Z('fz)do Z(w— %
7o A
Ry '

(G-2101t20)
if R,=
(G-21.1.21)

otherwise
if R1=O

if R6=O (G-21.1.22)
otherwise

if R1=0
(G-21.1.23)

otherwise

Substituting equations (G-16.1 ), (G-18) and (G-21)

into equation (G-3.2) yields the global solution for xz(e,S).
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APPENDIX H

ASYMPTOTIC SOLUTION TO Xy AND Xy IN THE

PLUG FLOW TUBULAR REACTOR AT 6o

With the closed form solution to X4 and X, available,
long time behavior of the concentration of species A and B
can be determined. This is done for comparison with res-
pect to a steady state (i.e., optimal or non-optimal). Here
it is assumed that at infinite time the process dynamics is

a limit cycle. So the comparison should be the time-average

at the limit cycle, i.e.,

T 446

(The notations are described in chapter 2)
Recalling equations (G-7:1), (G-10.1), (G-13) and

equations (G-16.1), (G-18), (G-21) from Appendix G, the in-

dependent variable © appears only in the trigonometric func-

tions. Hence, these equations at e yields the exact equa-

tions with 6 replaced by €= . The length of each time pe-

riod is _av/_\'r_r for both x4 and X, equations.
With the asymptotic form for equations (G-7.1),
16.1), (G-18) and (G-21), the first

) are all composed

(G-10.1), (G-13), (G-

order terms (equations (G-10.1) and (G-18)

of only sines and cosines. Their integrals over a period
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vanish, and hence no information about enhancement can be
provided.

The second order terms,as shown in equations (G-13)
and (G-21) contain sines and cosines which drop out after
time-averaging. However, those same second order terms in
the perturbation solution also contain squares of sine and
cosine which do not vanish upon time-averaging. In addition
to this, there are other terms which are € independent that
are non-zero after time-averaging. Consequently, the con-
tribution of these terms iﬁ 62 makes the final solution to

the time-average x, and X, different from their respective

1
steady state solution.

The solutions to time-average Xy and X, yield, after

-K$ .
simplification, (with ARG=/-&.€ for convenience),
_ éni o
X,(§)= M6 [K Aké (‘QI -aZy—Qab+k’d"An"")]' (H"lol)
where
o H-1.1.1
-a’—kvd/i __ ) ( )
KA & o) RS e—Rﬁ-f
R - H-1.1.2
2= Tk £, (e S+ - ) ( )
D (3, A gt
o S E L, £
o 8 Ry
2 1
2y, =) Utidly (261 24+ 27, + Lgi - Qg +.0107) (H-1.1.4)
(=0
with
1 -Re$
A?“K' e—i(s{f 354.3.)_ 3—] (H'lnlos)
= T 2 3
2k, Re s R! Re

N Ay



oA’ LR _
5= [ (5t ) g;] (H-1.1.6)
-£gS
Q. - %t *?—-'—') (H-1.1.7)
7 2": Rg
-Ro%
_Qe‘,':doﬁz[gi-(s+§">-—,;] (H—10108)
kyx Rg Ry R’
2,2 42,3—
0 %l & ) (H-1.1.9)
Ky Rg
2 -p9§
o, % (e (H-1.1.10)
PT ook Ry
3
and . _
% , if Rl—O
- Sk, &
=€ prdy
9 e
— , otherwlse
e 6, P=,+»<'z<,,,,] (#-2.1)
where
2.2
%('.“L.S—x,su) , if R,=0
o
_ kg W
p'a. - _K—'.:odc . RS RS
! ’[E‘.(e "-5-%) ,_(eR-'- )+ ez-'],otherwise
Rl 2\ R} ] ]
(H"’z.l-l)
HER g
2 ©
A N
‘@za = K :( ;’(”J)do o (eK.5 %S | |
U Y 7 Gl -=y+~]{,otherwise
E[Kz[?p@ * R [8 (s Rl)+Rr]] ©

(H-2.1.2)
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'ifR'—'O

1

1™ 2
[ [eﬂg(-;_ st R,)——] [e (5-7)+ R]] ,
otherwise

(H-2.1.3)

5 , if R,=0

i d"k'Z(n)a{.Z“‘ » (H-2.1.4)

e - , otherwise

z , if Ry =0
" (H-2.1.5)

, otherwise

o(.x. > .
@‘, =- Z( 9»{.’2“ ﬁs(-f-r,é—,) , if Ry=0 (H-2.1.6)

=1

) RS
ke (S’k;)* ,+%_E;. ,otherwise

S -
(_?_(‘-’_:i)_ i@_is , if Ry=0
Rg Rsg

|
P7 =—JS'£°Z(~3)¢.Z°°’ ﬂ S(%*E‘,) , if R, =0 (H-2.1.7)

k Bk;(; -'—)-oéﬁe g:’ , otherwise
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b Jﬁﬁ—zo o

L=o

3,20 . 0y
> i Z(upo&if‘:_ {; 5,1, el

153

ke o Res  Rg

Ly, 4 Je X ") 2%
AT T
if R1=O

RS
25 z(e -1)
Z lﬂkl N if R4=0
$
& Kl ‘4 R4

3 5
3t

zzs 2
Re (3 & &’) X
+2(8 —r_)_ 2(e" _,)
RgRy Rg K

, otherwise

(H-2.1.8)

-Re5

_T_CC____) - _;_( lgi,)

if R4=0
/Zg ' : 1
RS
, if R, =0
ﬁh) ‘%ﬁ * 4

$ RS
1y égl € -
+—+ 2——-——— | otherwise

RCR)E RE T ReR

(H—2.1-9)
8¢5
_(E__‘l)_; , if Ry=0
[ R
e
S-%ﬁ , if Ry=0  (H-2.1.10)
)
s 49
\é&'l e -

- , otherwise



267) s e
-l -
2 e +1) if R,=0
( Rg Rq ) 1
P i <'+1’)d°2(”0 _. g (é + _’_) _ eR'E' . _
hij = k’ﬁ 2R om if R5—0 (H-2.1.11)
KSR
\6—;(54)4-’—--} 8_; e
Re RITRE T Rk R, otherwise
-Ro$
€ - .
- ] f R -O
( Rg S
4,:0
Pasi =" 2eLS” (g i ‘_'J 4
I'a 12’:0 3 OZ(“) i? §~T , if R5: (H’2.1.12)
eﬂqi_' R
' 'é-;L. otherwise
Rs R
e'R'oS
_—Z:——S , if R1
.Y . 4 eﬁs,
°A 3 - 3 = -
boij= e, Z(de.Z(m) s-— o i Rg=0  (H-2.1.13)
(3] £
\e = é 5’, .
R, - z, , otherwlse

The equation for average conversion of A can be

readily obtained by subtracting equation (H-1.1) from unity.
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APPENDIX I

EVALUATION OF BOUNDARY CONDITIONS FOR Pi AND P?

In the succeeding derivation of the boundary condi-

2

tions for Pi and_P1 , - all perturbation terms are evaluated

at $=0.

From Appendix G,

X, (5,0)= X, (5)+€P(5,8)+ €P(5,0) (G-3.1)

At the reactor entrance, only pure A is present,

s K(30,0)=(0% X+ €P(520,0) + EF (5=0.0)
[when there is no perturbation, i.e., € =0, we recover
7((5 (O) =1]
0= €7, (0.6) +€*F'(2,0) (1-1.1)

evaluate equations (G-5) at %=0:

a_e_n'+2_&l -(Kd’K,)S"ﬂAe‘AMSAG '-'-(KH'ZKg)P: (1’2.1)
2 2%

A Gn209=-KsP, - KRS (1-2.2)

2 !
?E+”;Pl +Sin0 %g' -placesnb t 5

b 25
evaluate equation (G-2.1) at % =0 yields:

2
(1+ ESinAB) %’+ (%_-e 8in2/0 - EAGSAP) = ~Ki- K3 (1-3.1)

Differentiate equation (G-3.1) with respect to $ and then
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evaluate at $ =0, thus,

) aPI ’-3P2
a;; =y €2t €3 (I-%.1)

but

2:; ==X X‘S_ K;'Xq:

X . .
substitute this into equation (I-4.1) for %’ and multiplying
the resulting equation by (1+€ésinA®), thus

\ 2

v e ey 2B
(1+€SinA) %% == (K+ky) (1+€sinrg)+€ (1€ SnAB) %% + €(1+ €SinAB) 75 (I-4.1.1)
Rearranging equation (I-3.1) and equating to (I-4.1.1). Upon

neglecting terms of 3rd or higher order in € , thus

. 2R’
—(kitk) - € Bsinh0 € ACasnp = (1K)~ [(KimK)inAD - 0_2 ]

P.

?
+¢°(sin Ab 5 ) (1-4.1.2)

Collecting terms of similar order in €, we obtain

W of
—ASMZA.@ SmAO;S' a;' (I'501)
‘ oh' .
Ao =- (Ki+ks)SinN B+ 5¢ (I-6.1)

$ 2‘& = ACospB + (K,+K,)S:'n1\9

o5 (1-7.1)

Substitute equation (1-7.1) into eugation (1-6.1), thus

ZE:- fi‘s.'nzAO - (KitKs)Sin A6 - ASnADcosAB
G
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or, P:

——--(K.fK,)J,nAO Nsin2A0 (1-8.1)

Multiply equation (I-2,2) by (-€) and then add to equation

(I-2.1), yields

A ' af?
28 ~(KitKs) Sinp G - ACosnB -€ Sinpg op 3% 6’5 +efAusng-¢ Bimang

== (kit2k) R4+ e Ky 295 Y] (I-9.1)
substitute equations (I-7.1) and (I-8.1) into equation (I-9.1),

ALosAB P= ~(Kt25) P+ €K R € Ky [2P ™+ (BY)
but from equation (I-1.1),
1 .22
Pl— €P1
k]
~€ACosn® Py = (Kit2k) B4 3K; 4+ €k P2

0= P (eacosnp +Ki+5is + €%, P,))

thus, Pf(o,e)=o and Pi(0,6)=0

or,

ENCsAB + K 15K,

P 0)=- v
3

This root is disgarded because the periodic functions

do not explicitly and implicitly contain ¢ dependency.
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APPENDIX J

1 2

EVALUATION OF BOUNDARY CONDITIONS FOR P2 AND P,

At the reactor entrance, x2(0,6)=0, or

X2(0,8) = X5 (0)+€ F5 (0,8) +€°P5 (0,8) =0.
from Appendix I, x,(0)=0,

= X,,(0)=0.
1 2
=> P,(0,6)=-€P;(0,6)

3?1 (0'9)- i ?Fe’z(o 8)

Evaluate equation (G-2.2) at $ =0,

ZX:+(l+es.nAe) % ? =K,

1 2 -
evaluate equations for Xz , P, and P, at $ =0,

dXag
a5

[}
2 2P ?Xzg
3% ‘+SnA9 30 --Kzﬂ

—-—1‘

|
221 2 1 sinp = Kafl e Acmtof)

1see Appendix K
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(J-1.1)

(7-2.1)1

(J-3.1)

thus

(J-4.1)

(J-5.1)

(J-6.1)



NI EL (J-7.1)
| 2
2%z _ ®, 22k _
%-K‘*e)s‘*e 9-5 (J 8-1)
'D’on

But equation (J-2.1) implies that 3y =0, thus,

(1+eSinnB) —g =K
substitute this into equation (J-8.1) yields

7E aB B -

K.eSinAo+€ P’+€SmA9 +€ SnAO %

2% 3 35

collecting terms in like ordersof € ,

%%:-K.sm/\e (3-9.1)
2

9’E"H( aner (J'lO.l)

DS !

Multiplying equation (J-6.1) by € and then adding to equa-

tion (J-5.1),

?Z’ + (HéSunllO) _‘3 + KiS'tnAD=- KzP,_'—Cszz24eAu$Ae. pz'

substituting equations (J-9.1) and (J-10.1) into the above
equation, yields:

! 2 ]
exsine - (14€sn A8)(KisinAB)+ KiSInA® =Kz, —€kaFa+ eAcosAOF,

or,

|
0=-Kaf) - €Kz, +€NCISAG-Fs

2
but, —P§=eP2, thus,
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[
0=€eALSAD- P, (J-11.1)
. . . 1_ _nm -
This implies P5=0 or A== ; n=0,1,2......

To sufficiently satisfy equation (J-11.1) for all ®,

P% must be zero. Hence,

PL(8, §=0)=P5(0, 3 =0)=0
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APPENDIX K

PROOF OF THE DERIVATIVE OF THE BOUNDARY

CONDITIONS FOR P% AND Pg

|
For a linear partial differential operator.di‘ﬁ)]z ’

Pr(5,8)29:(5)4,6) (K-1.1)
thus, at % =0,

P (0,0=4(94.(0) (K-2.1)
and differentiating

equation (K-2.1) with respect to ©
{
B0.0_, o 41O

(K-3.1)
d.e =3|(0) 4.9
For equation (J-2.1) to be valid, we follow the proof
given below.
AL I
40 '3\ 4.0
491(0)
o8| - goLy
4B lg=0 (K-4.1)

But the right hand side of equation (K-

4,1) is identically
equal to that of equation (k-3.1), hence

?Puz(o)e):_ 1&2_
40 26

$=0
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