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ABSTRACT

ANALYSIS OF PERIODIC REACTOR OPERATION

A CASE STUDY

By

Eden Yee Tang T. Dionne

The Van de Vusse reaction scheme, represented as

AtA-—E2a-D

is considered as a case study for investigating the effects

of periodically controlling the volumetric rate of through-

put to an isothermal CSTR and PFR. It is shown that a se-

lectivity shift to an enhanced production of the intermedia-

te product B is encountered when large fluctuations of the

cycling frequency is implemented in the CSTR. An adverse

effect to the yield of B is obtained for the periodic con-

trol of the volumetric flow rate in a PFR. The effects‘of

large cycling frequencies can not be surmised for a PFR

oPerating under a periodic control of the volumetric flow

rate because the physics describing the flow and mixing

Patterns are no longer similar to the plug flow behavior.
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CHAPTER 1

SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN

AN ISOTHERMAL CSTR WITH A VAN DE VUSSE KINETICS



INTRODUCTION

Numerous investigations[1-12], both theoretical and

eXperimental studies, have shown that forced periodic opera-

tion of chemical reactors in some cases lead to improved

conversion, enhanced selectivity, improved selectivity, and

reduced parametric sensitivity. Recently, Skerik and DeVera

[12] applied periodic control modes to an isothermal CSTR

with a selectivity reaction system that is described by a

Van de Vusse kinetic scheme [13] ,i.e.,

ALB—3C

AVA—k—a—u-D

This scheme exhibits interesting selectivity aspects. First,

from a reactor selection point of view, Gillespie and Carber-

ry [1A] and DeVera and Varma [15] have demostrated that a

level of macromixing, simulated by a PFR with recycle, in

some cases provides a maximum yield of B greater than can be

realized with the CSTR or the PFR modes of flow. Lee [16]

treated a similar partial mixing model Of the steady state

tubular reactor and have shown that when the recycle is fed

within the reactor length instead of the exit, the yield of

B is further enhanced. Second, from a periodic process view-

Point. Riddlehoover and Seagrave [17] and Lund and Seagrave

[18] have demonstrated that via simulated intermediate levels



of mixing, a superior yield of the desired product B compared

to the CSTR and PFR can be obtained.

In the dynamic but not periodic mode, the intermediate

B exhibits an absolute maximum concentration even though it

is already above the steady state it is approaching [19] .

Hence periodic operation provides an inviting method to capi-

talize on this phenomena. The objective is to determine a

control mode, certainly a periodic one, that will maintain

the reactor in a dynamic mode which is characterized by a

stable limit cycle. Such limit cycle should provide a time-

average yield of B greater than the corresponding Optimal

steady state yield. In the phase plane formalism, we re-

quire an (x1,x2) trajectory similar to trajectory 2 as depic-

ted schematically in figure 1. Trajectory 2 is characterized

by an unknown control vector g which is a function of a per-

turbation amplitudeE and a cycling frequency/L. Trajectory 1

is an unperturbed transient state which exhibits a transient

maximum yield. Now, Skeirik and DeVera [12] demonstrated

that, when the isothermal CSTR was subjected under the bang-

bang and sine-wave control modes of the reactant feed con-

centration, the time-average yield of B, regardless of pro-

cess parameters, is always less than the corresponding steady

state (optimal and non-optimal). However, the sine-wave con-

trol mode led to an enhancement of conversion. regardless

Of the magnitude of the perturbation amplitude and cycling

frequency. By applying the second variation in the frequency

domain method [20], a similar conclusion to the latter can



FIGURE 1. Phase plane plot of a periodic controlled

isothermal CSTR with a Van de Vusse kinetics.

x2 and l-il are time-average yield and

conversion, respectively.



X
2
,

Y
l
e
l
d

O
f

B

FIGURE 1.

 

 

locus of steady states

and transient yield

extrema

,/

/'

/

/

/

/ 1.D(€=O)

,/

x1,

/’

/’ s.s.

/

/’

amen

 

X1, fraction of reactant remaining

 



6

be obtained, as in Sinéié and Bailey [10] calculations for

the second order kinetics. Figure 2 dipictes schematically

some of Skeirik and DeVera's [12] results. The shaded area

represents the region of the time-average x2 and x1. More-

over, the limit cycle which has a perturbation amplitude at

its maximum, (i.e.,€5=1) envelopes the transient maximum

yield. Although a negative enhancement of the yield was

observed for both bang-bang and sine-wave controls, a diffe-

rence in these two control modes was observed: a square-wave

control mode is more effective in shifting the product distri-

bution than a sine-wave control mode, and in almost every

case, the effect of the cycling mode increases as the osci-

llation increases.

In this work, we present an approximation to the glo-

bal dynamics of an isothermal CSTR which is subjected under

a sinusoidal control of the volumetric throughput. From the

approximate solution, we conduct a sensitivity analysis and

derive a predictive equation for the objective function.

Here, the objective function is the maximum yield of the in-

termediate product in a periodically controlled isothermal

CSTR. Finally, we compare the yield enhancement values ob—

tained from a perturbation method [11] and the enhancement

Prediction from the second variational in the frequency do-

main method [10.20.21].

BASIC EQUATIONS

The isothermal CSTR material balance for component A



FIGURE 2. Phase plane plot of a sine-wave control of

the reactant feed concentration in an iso-

thermal CSTR with a Van de Vusse kinetics.



 

 
 

FIGURE 2.

K2=K3=Kg=1.o

A°=1.0

/

/

2,e=1 / /

1

€=O.1

S. S.

1,t=o

X

 



9

(species 1) and B (species 2) in the Van de Vusse kinetic

scheme are eXpressed as

dXJ_lluuz x o 0 2 7C,fi-‘£~“x—;_(lel+K5xI)-75(ul-')£f'

(101)

41
o 9 X

29—2:- i-(‘I “17‘2”" 7")"21‘: (""0552 (1 - 2)

X

with initial conditions

9 = Ozx1=x1(0)=1; x2=0; x3=1 (1.4)

Equations (1.1-1.3) consider a constant output volumetric

flow rate and negligible composition variation of the reac-

tion solution density. The time derivative of x3 (3dimension-

less dynamic reaction volume) accounts for the changes in the

reaction volume due to the controlled volumetric throughput.

For the periodic process, the following integral constraints

are imposed as a basis of comparison with an optimal steady

state condition.

027T

_L9)u.uzde=u;u; ? 7"}? (2-1)
W'

 
“gémewg

(2.2)

Eqn. (2.1) requires the values of u1 and u2 should be chosen

such that the amount of reactant input is equal to the opti-

mal steady state. Eqn. (2.2) requires the residence time for

both periodic and time-invariant processes should be the

same. When u2=ug =1, equations (2.1) and (2.2) collapse to

s

 

+fmwgzl (2.3)

Here, we chose
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u.=l+esin/\°6 (2.4)

OPTIMAL STEADY STATE

The objective function for the time invariant process

is the yield maximization of the intermediate product with

respect to residence time and amount of reactant entering

the reactor; thus

objective function = J0 = x38 (3.1)

x3 is obtained from

S

FX (25:. 12:. 1:) = o (3.2)

Hu (kg. 1.1:: 2.2) - 0 (3-3)

.1: (22.112.13) = o (3.2+)

where H Hamiltonian = x2 + ATI (25. D. 2‘.) (3-5)

Hence, 1;: PJWfi/Ezr (3.6)

X20, = K? xi, (1+K7K,)-' (3'7)

x55=1
(3-8)

T;=[kz+(ku‘kz)xI;]-‘ (3.9)

At; xix; (I+K.'K.)'z(I-7<f,)-' (3.10)

2.2}: Cumin)" (3.11)

A}, = o (3.12)

A similar conclusion can be found in_[22. 23]-
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PERTURBATION SOLUTION: PERIODIC PROCESS

The time-average yield of B at the limit cycle is

'22 = 34,552 (75.14MB...
(4.1)

and thus, J, = Max}2
(4.2)

,xeX

ueU

When the perturbation method developed by Skeirik and DeVera

[12] is applied to equations (1.1) and (2.4), the folloWing

set of moderately nonlinear and non-autonomous differential

equations is obtained:

2—95:--I- K,’F- (HKDF
(5'1)

0U). 605A9 :F (H“DP” é(A°$t‘nA°9 ~ K7 Cos/('6) F

__ -h

—
-

 

AG .A°

+SI'nA°9—2:;FP.+ E-f-oosll'e-Fa (5.2)

’3‘ 11’9) - K.’co5A'9
%=——"$6-§efl—u“mm A "( A, -P.

-K;(2Fa+gz)+3f!-(cos/l'9)FR
(5.3)

Where P1 and P2 are periodic functions while F satisfies

x,={-.(z<,u.;) , F(0)=7C.(0) (5-4)

The closed form solution to equations (5.1 - 3) is given in

APPendix A and has a structure described by

e He) + 6?, my e’?. (e) (5.5)

Eqn. (5.5) is valid only for values of j%-<1. Hence the sen-

sitivity of x1 strongly depends on this ratio. Moreover,
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£—
.

.
for E:71, the reaction volume assumes negative values and

thus the model loses its physics.

The time-average conversion is

.. 0 ea

l-x.=l-XIS~ ‘Fégdem
(506)

As in [12] , only the second order term contributes to;1

and F reduces to X? . Once the global dynamics for x1 is

known, the solutionsto x2 is readily Obtained by substituting

eqn. (5.5) into eqn. (1.2). Such results lead to a closed

form solution structure similar to eqn. (5.5). Thus, the

enhancement is calculated and is presented in table 1. A

sensitivity analysis of the forced periodic CSTR is also pre-

sented here using the second variation of the objective func-

tion in the frequancy domain. The latter technique was ini-

tially developed by Guardabassi and colleagues [20] and was

extended by SinCiC and Bailey [21] for variable time delay

process. The second variation of the objective function is

’ 2 6 (5.7)Zgjezwwm

where V(A)Egr(-1A)fé(tfl)*§T§(1A)*ET('3M 3+ 8: ' 1': -’ (5. 8)

ew= £51111";

42 H, or, 1.5;)1

Q5 [in (52,119]

EEIH..(2.’.F;.A;)J

6,2 2 [qu (5.12:. 13)]

8 =-. [H... (3;, y;,3;>1 = o

and H is the Hamiltonian defined earlier.

The value of w(A) is presented in table 1.
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TABLE 1. Yield enhancement
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DISCUSSION

The perturbation method developed by Skeirik and De-

Vera [12] for the sinecwave control of the reactant feed con—

centration was numerically verified. They have concluded,

that, regardless of the process parameters and frequency of

cycling, their perturbation method is a very reliable appro-

ximation to the global dynamics, even up to a perturbation

amplitude close to unity and any magnitude of the cycling

frequency. However, in applying the Skeirik-DeVera (or S—D)

perturbation method to our present work, we found that the

5% ratio characterizes the error sensitivity from the numeri-

cal simulation (vis IMSL's DGEAR implementation). Figures 3

and 4 illustrate the comparison of the dynamic profile using

the 5-D solution and the numerical simulation. Figures 5a-

51 exhibit the percent deviation of the 8-D perturbation so-

lution from the numerical simulation. The process parameters

chosen are not necessarily those that pertain to an optimal

steady state yield, since the 8-D perturbation solution gene-

rally holds for any process parameters. It is clear from

such plots that the deviation is strongly influenced by the

iclose to unity, regardless of the Evalue, and the devia-
A.

tion is very small when fi-is near zero. ‘Furthermore, the

deviation for x2 at the limit cycle is slightly less than the

deviation for x1 with almost any process parameters. For é?

value close to 1/2, the deviation is in the vicinity of 3 to

4 percent absolute when K2 is moderately large but the devia-

tion tend to approach a maximum of 13 percent absolute for
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FIGURE 3(a—b). Perturbation solution versus numerical

Egéugion With k1=k2=k3Aref=f=1.,A;2.
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FIGURE 4(a-b). Perturbation solution yersus numerical

solution with K1=1,K2=K2=5,.A=O.5,

€=0.25
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FIGURE 5. Deviation of perturbation solution from

numerical simulation for

(a) K1=1, K2=R2=5, A:O.5, 5:0.25

(b) K1=4.928, K2=24.642, R2=0.493, A:10.,E=O.1

(c) K1=K2=K2=1, A=10, 6:0.8

(d) K1=K2=K2=1, A=10, 6:0.5

(e) K1=20, K2=2, fi2=30, A=1, 6:0.5

(f) K1=20, K2=2, fi2=30,.A=1, e=0.8

(g) K1=20, K2=2, fi2=30,.A=1, 6:0.1

(h) K1=1, K2=k2=5, J\=0.5, e=0.025

(i) K1=1, K2=fi2=5, /\=0.05, 5:0.0495
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very large values of K2.

Figures 6(a) and 6(b) show a limit cycle in the x2—x1

phase plane and a trajectory relative to a time-invariant

process at the optimal steady state. The trajectory in fi-

gures 6(a) and 6(b) which starts at x1 = 1.0 corresponds to

the dynamics of the system at zero perturbation amplitude.

Unlike in the reactant feed concentration cycling, the limit

cycle trajectory which oscillates about the optimal steady

state, has xl-xz boundaries less than those encountered for

the unperturbed transient maximum. Further, the limit cycle

patterns for various cycling frequencies are somewhat skewed.

(Figure 6(a)) compared to the more regular pattern found for

the system with amplitude variation (Figure 6(b)). An

increase of the cycling frequency produces a more profound

effect of shifting the trend of selectivity enhancement than

an increase in the magnitude of the perturbation amplitude.

In almost all kinetic and optimal steady state process para-

meters, increasing further the cycling frequency will change

a negative selectivity enhancement to positive. However, an

increase in the magnitude of the perturbation amplitude only

augments the selectivity enhancement, so that an already po-

sitive enhancement at some large cycling frequency is further

improved

Recently, Sinéié and Bailey [10] and Watanabe et al

[11] have extended Guardabassi's technique [20] for local

optimal periodic operation of an isothermal CSTR. (For bre-

Vity, such technique is referred to as the pi-criterion.)
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FIGURE 6a. x2-x1 phase plane for K1=K =K =1,.A=1,
2 2

with varying e
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FIGURE 6b. xz-x1 phase plane for K1=K2=K2=1, 6 =0.5,

with varying A .
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The pi-criterion, which uses a variational approach to the

objective function is limited by very small magnitudes of

the perturbation amplitude. Such restriction is required in

order to linearize the system dynamics with reSpect to an

Optimal steady state, otherwise the second variation would

be difficult to evaluate. Characteristically, the pi-cri-

terion is generally useful in predicting only a locally im-

prOper or proper optimal periodic process without excessive

calculations. Here, the pi-criterion is applied to the pre-

sent case and examine, as a function of 5%, the extent of

its deviation from the enhancement predicted by the 8-D per-

turbation solution. For comparison,-%-=0.005 and 0.01 were

chosen, since such values yield very small deviation of the

8-D perturbation solution from numerical simulation. These

results are presented in Figures 7(a) and 7(b). In the per-

turbation method, both-%—values yield a similar selectivity

enhancement trend, i.e., negative to positive with increas-

ing values of the cycling frequency and perturbation amplitu-

de. However, in contrast to the perturbation method, the

pi-criterion predicts a selectivity enhancement trend of pro-

ceeding from negative to positive and finally back to nega-

tive enhancement with increasing values of cycling frequency

and perturbation amplitude. It appears that the predictabi—

lity of the pi-criterion fails at.A somewhere between 0.01

and 0.03. Nevertheless, even at such small amplitudes, the

shift in selectivity enhancement is consistent with the per—

turbation method. However, for perturbation amplitude
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FIGURE 7. Comparison between perturbation solution and

PI-criterion method w1th k1=k2=k3Aref=1'

(a) eA'A=0.005

(b) e[A=0.01



(a)

39

FIGURE 7.
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greater than 0.03 (with.é%=0.005 to 0.01), the selectivity

enhancement results from the pi-criterion is less to be con-

fided. Furthermore, the E and A values at which the switch

from negative to positive enhancement occurs, lies ahead of

the 61A values obtained from the 8-D perturbation method.

Finally, when the pi-criterion is applied to the case

presented by Skeirik and DeVera [12] , the selectivity en-

hancement trend was correctly predicted for all values of

cycling frequencies and for small to moderately large values

of the perturbation amplitude. These results are presented

in table 2.

CONCLUSION

In general, for an isothermal CSTR subjected under a

sinusoidal control of the volumetric throughput, the yield

of the intermediate product in the van de Vusse kinetic

scheme is improved via implementation of large magnitude of

the cycling frequency. The magnitude of the yield enhance-

ment is further improved by imposing large magnitudes of the

perturbation amplitude. Regardless of the size of the per-

turbation amplitude, negative yield enhancement results from

small cycling frequency.

The application of the 8-D perturbation method yields

a good approximation to the global dynamics, and hence the

calculated trend of yield enhancement is reliable. The per-

turbation solution is sensitive to 5% such that large devia-

tions from the numerical simulation is encountered when fi-is
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TABLE 2. Yield enhancement as predicted by the pi-

criterion and 8-D perturbation method.



42

 

 

TABLE 2.

B enhancement B enhancement

A. 6 pert. method Pi-criterion

0.2 0.025 -0.0019219 -0.00068700

0.075 —0.0172934 -0.00061838

1.0 0.100 -0.0001263 -0.00009820

0.25 -0.0007828 —0.00061380

0.75 —0.0070416 -0.00552420

5.0 0.25 —0.0001678 -0.000167uo

0.75 -0.0015057 -0.00150660   
 



close to unity.

43



CHAPTER 2

SINE-WAVE CONTROL OF INPUT VOLUMETRIC FLOW RATE IN

AN ISOTHERMAL PFR WITH A VAN DE VUSSE KINETICS
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INTRODUCTION

The study of periodic operation in tubular reactors

with plug flow model has not been as thoroughly investigated

as its counterpart, i.e., continuous stirred tank reactor.

Mainly, the reason is the lack of sufficient theory for

assessing whether or not a certain periodic control policy

is a locally proper optimal. Moreover, the specific case

of a persistent disturbance in the volumetric flow rate,

imposes a difficult description of the flow field, espe-

cially for cases where the disturbances are substantial.

The first chapter has set forth two techniques which in some

ways had advanced our understanding of periodic reactor

operation involving a lumped parameter system, e.g. an

isothermal CSTR with a mildly nonlinear kinetics. The tech-

niques discussed there had to utilize some approximation.

The Skeirik-DeVera (S-D) perturbation method assumes that

when a transient state is disturbed because of an advertent

control of the input stream, the response to such a con-

trolled disturbance should produce a state dynamics that can

be characterized by the nature of the disturbance. Such

assumption led them to assume the structure of the closed

form solution which entails a perturbation over an unper-

turbed transient state. The success of the S-D perturbation
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method lies on the determination of a closed form solution

for the unperturbed dynamics of the yield of the inter-

mediate product in a Van de Vusse reaction scheme. The zero

order correction solution (or the unperturbed dynamic solu-

tion)along with the structure of the initial value are

important in obtaining the periodic terms in the perturba-

tion solution. Hence, the 8—D perturbation solution can be

extended to any control mode of an isothermal CSTR with a

gpadratic nonlinearity in the kinetic rate expression.
 

The second method due to Guardabassi [l] is a varia-

tional approach requiring limitations on the magnitude of

the perturbation amplitude. It was shown in Chapter 1 the

extent of applicability of Guardabassi's variational method.

Indeed the variational approach is restrained by very small

variations in the amplitude (i.e. only local fluctuations),

regardless of the cycling frequency. While the same

restrictions appeared to be innocuous for the S-D perturba-

tion method, the variational method, unlike the 8-D pertur-

bation method, can be used for a host of different periodic

control of CSTR's, including periodic heating and cooling

rates, and CSTR's with kinetic rate expressions other than

a quadratic nonlinearity, e.g. Langmuir-Hinshelwood type.

The sets of research on distributed parameter systems,

for which the dynamics of a tubular reactor is a subset are

classified into two categories, viz (1) model systems that

involve a linear operator with a nonlinear nonhomogeneous

part and (ii) model systems described by a nonlinear
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operator, e.g. a tubular reactor where the flow field is

characterized by a nonlinear hyperbolic partial differential

operator. Much of the mathematical analysis and actual con-

trol simulation have been done on the first category. Such

topics include state-space approximation of fixed—bed reactor

dynamics using collocation techniques [2]; approximate linear

dynamics of packed tubular reactors [3]; analysis of the

thermal and concentration traveling waves within a fixed bed

chemical reactor that yields optimal control policies [4];

experimental measurements of the temperature response of a

fixed bed reactor to sinusoidal disturbances in the feed

concentration, temperature and flow rate [5]; and, simula-

tion and control of a packed-bed tubular reactor which ex-

hibits the existence of hot spots [8].

In other areas typical of the first category, the

usual concern involves the establishment of criteria and

computational schemes of control and optimal control (non-

periodic control). For instance, Chang and Bankoff [61 has

extended Sirazetdinov's formulation [7] of determining the

necessary conditions for optimization. They have included

general objective functionals and boundary conditions such

as the recycle of an unconverted reactant with an appropri-

ate time delay for separation and a free choice of final

time. Chang and Bankoff's technique underlies a variational

approach which provides conditions (usually in terms of boun-

dary and final conditions of an adjoint partial differntial

equation) for the maximum of an objective functional. The
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computational scheme that arose from their analysis involves

the simultaneous solution to an adjoint variable using the

method of characteristics, and the gradient method for estab—

lishing the minimal or maximal of the objective function.

This approach is different from a periodic operation, be-

cause the nature of the latter problem is concerned with

determining the optimal control such that when a new optimal

steady state is obtained, an objective functional is satis-

fied. Chang and Bankoff [6] has also provided a review of

optimal control in distributed parameter systems. Along the

same goal as the works earlier mentioned, Koppel and Shih [9]

has derived a strong minimum principle by converting a vec-

tor of linear hyperbolic partial differential equation to a

vector of ordinary differential equation and then defining a

performance index along a ground characteristic (i.e., t-z

plane). Unlike the rest, they accounted for the time fluc-

tuation of the fluid velocity over a certain steady state

velocity, i.e. plug flow. In an earlier paper, Koppel [10]

treated a similar differential operator but he aimed at com-

paring the exact solution and the solution from a linearized

dynamics of an isothermal tubular reactor with an nth order

irreversible reaction. Finally, for a completely periodic

operation, Fjeld and Kristiansen [11] applied a variational

method to establish conditions for local optimality of dis-

tributed parameter systems with a linear space-time differ-

ential Operator matrix e.g. transient plug flow and axial

dispersion tubular reactors. The search for the optimal
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periodic control involves the solution to the process

equations and the associated adjoint differential equations.

The thrust of this work is twofold, viz, to find an

appropriate model description of an isothermal plug flow

tubular reactor under periodic perturbations of the volu-

metric flow rate and to compare the yield enhancement of

periodically forced plug flow tubular and continuous flow

stirred tank reactors. In this work, the local optimality

of an isothermal tubular reactor which is subjected under a

forced periodic volumetric throughput is determined by

employing a perturbation method developed earlier by Skerik-

DeVera [12]. It will be illustrated in the ensuing discus-

sions that the Skerik-DeVera perturbation method provides a

very reliable approximation of the state variable response

for small perturbation amplitudes and cycling frequencies.

Such results can be rationalized by comparing the equivalent

lumped parameter system (expressed in terms of a ground

characteristic variable, 5) and the process dynamics equation

of an isothermal CSTR.

BASIC EQUATIONS AND THE PERTURBATION MODEL

Consider a one-dimensional model of the plug flow tubu-

lar reactor. The material conservation equations for the

tubular reactor with a homogeneous Van de Vusse reaction

scheme is expressed as
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for species A,

3X.+ o __. 2:

for species B,

3X¢+ ‘3 ° ° .5
3—5 25——(0x,—=t<.x.—sz. h, (1.2)

The mean fluid velocity which is associated in the material

conservation equations has space and time dependencies

caused by the continuous flow disturbance at the reactor

entrance. The flow disturbance is treated as small enough

so as to maintain the plug flow behavior and avoid the for-

mation of eddies which would transform the prescribed mass

conservation equations to one containing dispersive effects.

The velocity field is obtained by a momentum conser—

vation which assumes that pressure, viscous and gravity

effects are insignificant, hence

3V.+-2g_:0 (2-1)

Perhaps, a rather general and yet simpler description of the

velocity field is due to Burger's equation [13, 14]. But the

simplified model given by equation (2.1) would temporarily

suffice since the present investigation is solely concerned

with local fluctuations to an already established velocity,

i.e. plug flow velocity at the steady state. These local
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fluctuations arise because the input volumetric flow rate is

continuously perturbed by some periodic control. Here, the

local fluctuations, unlike in KOppel's work [9, 10], would

assume not only time but also spatial dependency. Such

formulation will be discussed later. Actually equation (2.1)

is a subclass of Burger's equation and thus the solution

contains a limiting function whose prOperties, in general,

contains shock-discontinuities. The limiting function is

derived from the solution to Burger's equation at the asymp-

totic limit of vanishing reaction mixture viscosity. There

is a number of both analytical and numerical investigations

of Burger's turbulence and a most recent review is found in

[15]. A very important contribution to the analysis of

Burger's turbulence is the description of formation and

decay of weak shock waves in a compressible flow [16, 17].

Here, the existence of these weak shock waves will be disre-

garded in spite of the continuous change in the mean velo-

city at the reactor entrance. Such assumption is tenacious

only at very small magnitudes of the perturbation amplitude

and the cycling frequency (or quasi-steady state). Hence,

the velocity field which is regular and smooth can be repre-

sented as

_, c- 2'

II=I+EM+€\& (2.2)

and where v and V are fluctuation functions obtained from
1 2

the solution of equation (2.1), and where e ( <c<l) denotes

the perturbation amplitude.
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Finally, the reactor is initially void of reactants and

time.

some inerts are already flowing inside the reactor at a mean

velocity corresponding to an Optimal steady state residence

PERTURBATION SOLUTION AND OPTIMAL PERIODIC PROCESS

The objective function which seeks for the optimal

yield of the intermediate product via a periodic control of

the input volumetric flow rate is expressed as

J=—+-,9§xz(l,9)49 (3)

where T° is a dimensionless cycle time relative to an opti-

mal steady state residence time.

subject to the following:

The optimal function x 2 is

X 3 _

%=f(§.-,-§<v2_<),_fi<o) (4)

12-32236 v33 (5)

l for x1

z§(o,e)={

o for x2

(6)

z(s,o)= 0 (7)

06.0)=l
(8)

6(o,e)=u(6;e)=u;+3u

a control variable (9)
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Tlf'ggmo’eme =' (10)

Here the yield enhancement is defined relative to an optimal

steady state (Jg) i.e.,

E=J-J° (11)

s

The optimal steady state can be found in [18, 19].

Now, in the region 9>>>5 , the velocity field accord-

ing to the perturbation model is expressed as

17: HesinMQ-SHe’a-sznzMe‘S) ' 97775 (12)

for Sus=eghAe . Since the limit cycle exists in the

same region. 9>>75. , the asymptotic sequence

zc=x§+eE'(e,s>+e’£’(o,5) . a»); <13)

can be assumed. P1 and P2 are periodic functions obtained

from the solution to equation (4) and, in the region 6>>>5

. . . l _0

has initial (or boundary) conditions given by‘g (s- )

P2(s=0)=0. s is a ground characteristic variable. The

development of these initial conditions assumes that the

zero order term at 5:0 has the same value as 510,9). A dis-

cussion of the initial conditions is found in Appendices I

and J. Furthermore, here, the second order term is account-

ed because

-!-. ' ,5)Ae,=o . ems <14)

"FY-3‘9“
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Hence, the first order terms do not contribute any informa—

tion about the yield enhancement. Such is typical of the

8-D perturbation method [12].

In the 6>zr§ region, 3; and}:2 satisfies the following

set of ordinary differential equations along a ground charac-

teristic s.

23' 20!. 8-44; ' ate-'4‘ I<.°5.‘mir

° l+-—-s P,=-———:-=—'ACO
SAY+—"‘V] (15)

M + K' [ 14.5“] k(,-..,e"")[ we“

1 o no I 2f!- " '91:]; -’ ' 4—11;

%+K. (n+2sz,)Pf=’V'(N)[”5]
Flag] 1,20,0[015 LY

 

fir NY

“’ 1‘21 —k° '1 (16)
-x15 )3 5(Pl)

AW

4P, l o ' 406' "a

—_5 °g= P - 2‘ s.’ “Aw/1V1; (17)
M +K2 K4 1 [AS ]’;Ynl\. 5

a v ’

0 3 3 1x

% + K, P, - 25mm [332—] .. 955‘. s.h2Ar[A-—;’] HIP; mas/w

,6; ’3ff

-[%S""W‘ M’cosw]i:, + «73’ (18)
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where x0 = optimal steady state concentration profile.

‘5

N.

75, = 26:06“)

)6 = 3 and Y=9‘5

K
do = —_’+K

The solution to equations (15) to (18) is found in Appendix

G. Thus, the average conversion and yield is expressed as

-K, 2

— ac. é’ .

(«7cI = I“ TL—W-[T 1- m[flrflgi-flgg + Fading”

(19)

, if K20: KIOU‘J.)

o ' 0 '

_. K. *2 “‘1

= —- o(
x: K 8 1:20 0 K:-I(:(‘fj) I

~ , otherwise 

Kz.’ K|.( "1)

0

40
I3

+6 8 [5,3- + '9” + K..[ (’0 1,; {[391]} (20)

where the 52's are defined in the notation section and the

9's are defined in Appendix H.
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DISCUSSION

The periodic cycling of the input volumetric flow rate

in an isothermal tubular reactor would certainly create

fluctuations in the flow field within the tubular reactor.

In what manner can the fluid velocity inside the reactor be

mathematically described is a matter of how much refinement

is needed to adequately model the flow field. If only small

perturbations from an optimal steady state is desired perhaps

a simple perturbation model as described earlier would suf-

fice. Clearly, the enhancement is a function of the nature

of the flow field. Even in an already optimal steady state

regime, the differences in the steady state flow patterns or

the steady state flow models have created different maximum

yield [18, 19, 20]. Among different steady state flow pat-

terns that were investigated, the optimal yield corresponds

to an absolute maximum.

In this work, the velocity fluctuation is regarded as

smooth, regular and when random shock—discontinuities could

be present, is eliminated by assuming quasi—steady state.

The description of the quasi-steady state fluid velocity is

afforded by the limiting Burger's differential equation

(i.e.,/u-vO). A decomposition of the fluid velocity into

two fluctuating functions in terms of time and spatial coor-

dinate is necessary because the time-average of the periodic

functions 3} do not produce information regarding the yield

enhancement. Such result is typical of the 8-D perturbation
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method. Hence, in retrospect the present work would assess

a properly local Optimal yield in an isothermal tubular

reactor whereby the flow field response to a periodic

disturbance in the reactor is described by equation (12).

The sensitivity of the perturbation solution was tested

against the numerical simulation of the hyperbolic differen-

tial equations as suggested by Acrivos [21]. The numerical

solution to the material conservation equations employed the

perturbation equation for v. This was implemented here be—

cause of the good matching between the perturbation solution

for v and the numerical implementation of equation (2.1).

Hence, the numerical solution to the conservation equation

is partly simplified. For the parameters that were used in

the calculations (e.g. small A. and small 9 ), the percent

deviation between perturbation and numerical was generally

small (for example Figures la-ld). The absolute maximum

percent deviation is 0.02 at 6 =0.1 and A.=0.l. Usually the

sensitivity is largely influenced by the magnitude of 6 .

Hence, in subsequent calculations for the material balance

equations, particularly small values of € were chosen. The

requirement of small values of.A is imposed, not from a

standpoint of numerical matching of solution, but from a

standpoint of the required physics. However, the magnitude

Of.A somehow affects the matching between the numerical

simulation and the perturbation solution. Although the per-

cent deviation is yet small for the same value of E , an in-

crease in the cycling frequency leads to increase in the
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( :.:5a)

.O

(b) 6:0.01 A. =0 .1
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FIGURE 1. Deviation of perturbation solution from

numerical simulation for the velocity

profile at §=1.0

(c) €=A= 0.05

(d) 6:0.01, A=0.1
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percent deviation (for example Figures 2a-2x and Figures

3a-3h). Furthermore, the large A. has percent deviation

propagating along 5 as compared to a more uniform percent

deviation along 3 for smaller values.

In the x1( 9 ; S) - x2( 6 :3 ) phase plane (Figures 4a-

4i), the size of the limit cycle increases from the reactor

entrance to the exit. Such is caused by the fluctuations in

the fluid velocity along the reactor. Finally, the impor-

tance of these effects render the yield enhancement to

achieve negative values but achieve positive values for con-

version enhancement (Tables 1 and 2). It appears that in-

creasing A creates a larger negative yield enhancement and

increasing conversion enhancement (Table 2). Hence increas-

ing A would tend to shift, in a way, the reaction to the

side reaction (A+A-*>D), and thus favoring a higher yield

for species D.

CONCLUSION

When an isothermal tubular reactor is allowed to

undergo a quasi-steady state periodic control of the input

volumetric flow rate, the time-average yield of B is less

than the corresponding Optimal steady state yield with plug

flow behavior of the fluid. It appears that implementation

of larger frequencies would shift the direction of enhanced

selectivity to the side reaction.

Finally, the result presented here is not general for

all classes of forced input volumetric flow rate oscillation.
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FIGURE 2. Behavior of Van de Vusse system for

K1=K2=K3=0.515, €=0.01,‘A=0.05 at

(a-b) 5:0.2

(c—d) 5:0.5

(e-f) S=O-75

(g-h) 3:1.0
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FIGURE 2. Behavior of Van de Vusse system for

K =K =K =0.515, e=0.01,.A=0.2 at
1 2 3

(i-j) S: 0.2.

(k-l) 5= 0-5

(m-n) S: 0.75

(o-p) S: 1.0
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FIGURE 2. Behavior of Van de Vusse system for

K1=K2=K3=0.515, e=0.05. A=0.2 at

(q-r) 5==o.2

(s-t) 5= 0.5

(u-V) 5= 0.75

(w-x) 5:1.0
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FIGURE 3. Deviation of perturbation solution from

numerical Simulation at 5:0.5. 6:0-01.

AzOOOSO

(a) for the velocity profile.

(b) for Van de Vusse system with K1=K2=K3=0.515-
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FIGURE 3. Deviation of perturbation solution from

numerical simulation at 3:1.0, 6:0.01,

A?0.05.

(c) for the velocity profile

(d) for Van de Vusse system with K1=K2=K3=0o515
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FIGURE 3. Deviation Of perturbation solution from

numerical Simulation at 5:0.5, €=0.01,

A=0.2.

(e) for the velocity profile.

(f) for Van de Vusse system with K1=K2=K3=Oo515-
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FIGURE 3. Deviation of perturbation solution from

numerical simulation at 5:1.0, €P=0.01.

A=0.2.

(g) for the velocity profile.

(h) for Van de Vusse system with K =K =K =0-515-

1 2 3
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FIG -URE 4. x2 x1 phase plane for K =K =K =0.515

6=A=0.1 at 1 2 3 '

(a) 5:0.2

(b) i=0-75

(c) i=1.0
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FIGURE 4. x2-x1 phase plane for K =K =K =0.515.
1 2 3

6:0.01, A=0.05 at

(0) 5:0.2

(e) 5:0.75

(f) 8:1.0
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FIGURE 4 . x -2 x ph6:0 5 ase plane f.1,A=02 orK=K. at 1 2=K3=0.515
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Once the value of J\ is allowed to assume larger magnitudes,

another flow model which would allow the formation of shock-

discontinuity should be built into the flow model, even if

internal mixing can be neglected. The latter is obviously

more complex to handle because the material conservation

equation would have to include dispersion effects super-

imposed on convective material flow.

The 8-D perturbation method proved to be very reliable

even for problems involving a hyperbolic partial differen-

tial equation which does not, along with the boundary and

initial conditions, induce the presence of shock-

discontinuity. A similar conclusion was obtained for the

isothermal CSTR which is subjected under the same periodic

control of the input volumetric flow rate [22].
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APPENDIX A

DERIVATION OF THE CLOSED FORM SOLUTION FOR

REACTANT A (A PERTURBATION SOLUTION)



APPENDIX A

DERIVATION OF THEIQLOSED FORM SOLUTION FOR

T NT PERT T 0 SO UTION

The material balance for reactant A (species 1) in

the Van de Vusse kinetic scheme

A—ah’ B—-r"’ c . IVA—5’ D

has a form of

_-— _ 2 3 1" 393 _
3M, 3A (k,A+k5A)V A4t*V4t (A 1.1)

with the initial condition A(O)=Aref'

where

t=time

qf= the feed volumetric flow rate which is subjected

to perturbation.

§=the outlet volumetric flow rate which is controlled

at a fixed rate.

V=the reactor volume

A=concentration of species 1.

k1,k3=reaction rate constants.

Assuming the reaction solution density is independent

of composition, the following expression is true,

lyri’g' (IX-1'2)
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integrating equation (A-1.2) from initial pointst=0 and V=V

yields

t

V=Vy+£(3f-§)dt (A-1.3)

For a sinusoidal perturbation of the inlet volumetric flow

rate, we specify

fif=§(l+esina)t) (ll-1.1+)

where

€=perturbation amplitude

50 =cycli 0 frequency .

Combining equations (A-1.3) and (A-1.4) gives the following

result:

=\7—-:)—e-casa)t
(A‘1.5)

or,

g. get-mt (A-1.6)

Upon substituting equations(A-1.4), (A-1.5). (A-1.6) to equa-

tion (A-1.1) and introducing the following dimensionless va-

riables:

— A

; K'sfkl; K3: kgATEJfC '1 xg=m (A-107)

r
m
k
r

f‘ 3A=f0;6=

=
P
¢
<
1

with some rearrangements, the dimensionless material balance

equation for species 1 is expressed as

e

dx 6 ' a-meAa
Z-él-(I’ KCQSA 9)+ XI[(‘+K')+(AGS'"A )A]

=/.esmAe-szf(I-xm/‘9) (A-2.1)
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with initial condition x1(0)=1.

An analytic solution to (A-2.1) is obviously not

possible. In order to develop an approximate one, the solu-

tion is assumed to be composed of a non-periodic term and a

sum of periodic terms:

we): F(9)+ 6P.(e>+ e’PAe) (A-2.2)

This requires that 6be small enough so that terms of the

order eacan be neglected.

Substituting equation (A-2.2) into equation (A-2.1)

and collecting terms of same order in 6 yields the following

three differential equations:

d 1
EOE=PK3F—(I+K:)F

(#34)

fl--'— 9”“: (I+K)P+..'. 5m-

46 Am“ 3* ' . Am: a memo);

=SinA9-2K3FP,+ £3 €05A9F2

(A-3.2)

LEE. - .L cos/19 aL’P. + (1+K,)P3+ J'i (AsinAO-K:¢0$A9)
R

AB A Z? M

= -k (2FP+P‘>+2K:-°-93—-Ffi
_

’ ‘ ' ' A
(A 3.3)

with the initial conditions

F(0)=1 and P1(O)=P2(O)=O.

Solution 39 F19)

Equation (A—3.1) can be rewritten as
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A
HKI I

Eg=-K3(F2+—Ka-F'T<3) =-!<:<F—F.>(F-F-) (A-LF-l)

where F: are readily obtained, thus

 

F1= mm): (I+K.)‘+4k, (A42)

2k;

 

Integrate equation (A-#.1) by partial fraction from O to e

 

yields

6)‘F .- A'Li'. )
A ML;_MF(9) F— =-K39 ( 3

F.—F. F(o)- F+ F(0)- F.

define

o< , 5%.. (1141.4)

F(o)- FL

and substituting equation (A-4.2) for F+ and F_ into equation

(A-h.3) gives

W -(X exp[-‘\/(I+Kc)a+4K5 9 ] (A-Ll' . 5)

F(6)=F+ I
K3 (1- K-exP [" (,meK, 6])

Notice that F+ is indeed the steady state solution that sa-

tisfies

z
(A-4.6)

O: |— (1+Kn)f;,” kbfss

For convenience, we let

CD=zK

can 1’ (I+K0)3+4'K§ and 2 5

 (A-4.7)
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hence equation (A-4.5) simpifies to

2C3“ 9"? {-Cge)

Hen} + _ -
s: Cz[l~o(€xp(-C50)] (A 4.8)

Furthermore, using the binomial series and a little rearrange-

ment, equation (A-4.8) can be equivalently written as

2C3 a) . {304359

F(e)= fis’r '5— «we

2 j=0

(A-h.9)

Solution to P1(9)

Equation (A-3.2) is rearranged and rewritten as

“it—g: +[0+ “O + “(sf-1P:

-.- 71-(CaSA9+AanA9)" 711' (005219 +ASn'nA9) F (A-S. 1)

the integrating factor needed to solve the above equation is

found to be

C36 , -C59 (A-5 2)

I: e —2a(+a<

substituting equation (A‘S-Z) into equation (A’5-1) and carry-

ing out the integration, we obtain along with the following

definition of terms.

20( K! ..
41: ‘11—(“L21Ffl (A 5.3.1)

(ll-5.3.2)
 

«2 ”4041; I

{I} :2 —' [If ] 1 2

2 A. 2k; A*C3



102

= "is;

4’5 A(A‘+c;)
(A-5-3-3)

solution to P1(9) is found to be

‘C39 . 6

47,6 (fi—XA’ "' 603119) Lg[A(I-C5)Sl'nfi.e"(C5+A2)CO5A9]

 
 

 

F.(6)= ' -C 9 z + _

(I—exe ’) (,_ “690):

-c 9

+ 4’, [((3‘A2)C05A9+A(Hc,)s,‘,mg]
e a

((14-112) 6-901 + 4:62 C(P.(0))

’ 0’“ } (I-de J (ll-5.1+)

where C(P1(O)) is the constant of integration evaluated at

P1(0)=o, thus

C(fito))=-\g+(c,+A’)¢,—(c5—A’
)w’

(A—5.5)

Solution to PZ(9)

 

The process of solving equation (A-3.3) is similar to

the solution of equation (A-3.2). (A-3.3) is equivalently

written as

 

d6
1.7+ (/+K.+2K5F)Fz

A3; A9-K.CosA9 come 4?.

=-K:P.’+ ziggsfgm- " A P.+ ‘71—‘23 (A'6-1)

by comparing euqation (A-6.1) with (A—5.1), it is clear that

the integrating factor for selving equation (A-6.1) is simi—

lar to equation (A-5.1). The integration can be readily

performed. The procedure is straight forward but quite
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Hence, the solution to P2(6) is expressed as
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Other terms, such as 11,(i=1,19) appear in the P2(e) solu-

tion are defined as

1.=%+2%A’0«c;) (Ix-6.4.1)

73:43120’9" (xx-6.11.2)

79‘2““‘9’ (Ia—6.4.3)

4‘44““) (xx-6.11.4)

“WE/’7'“; (A-6.A.5>

is= ‘E’WA’Y (xx-6.4.6)

{7"MK’MZ) (A-6.u.7)

48:41:24,113 (Ci-1‘) H-648)

1,:2marf) (ls—6.4.9)

{mng’zgm’f (46.4.10)

1,: tg’Aa-gxcsm’) (AA-6.111)

163-4341 (MUELQA) (xx-6.4.12)

43:4(garz—c3119-A’1—gi-MA(”exam") (IX-6.4.13)

45-41; (fie-21-91) (Ix—6.11.14)

7% 1/3’1 (Mum-A“) (A-6.u.15)

tut/£11019) (A-6.’+.16)

1,7440%) (14611.17)
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1,5: ¢,(c,+4‘) (A-6.4.18)

1w VJC‘J‘A') (xx-6.4.19)

Substituting the solution to F(9), P1(e) and P2(e)

into equation (A-2.2) gives the approximate global solution

to x1 as a function of e.



APPENDIX B

THE INITIAL CONDITIONS FOR THE

PERTURBATION CALCULATION



APPENDIX B

THE INITIAL CONDITIONS EOE THE

PEBTURBATION CALCULATION

In order to obtain the initial conditions for F, P1

and P2, we evaluate equations (A-2.1). (A-2.2), derivative

of equations (A-2.2), (A-3.1), (A-3.2) and (A-3.3) at 9=O.

However these six equations consist of a total of seven un-

knowns,viz., F(O), F'(O), P1(O), Pi(0), P2(o). Pé(0) and

Xi(0) which make the problem not well posed. So an "ad hoc"

assumption is then. attempted by imposing x1(0)=F(O) and

P1(O)=P2(O)=O, and thus achieve self-consistency of the pro-

blem. Of course, the validity of this assumption needs to

be verified by comparing the perturbation solution based on

these initial conditions against the full numerical solution.

As shown in figures 3, 4 and 5, the results are very satis-

factory and the error is large only at the initial transients

because if the initial conditions are important the error

could propagate in the limit cycle. Such were not observed

in the present work. But as clearly seen in the perturbation

solution at e, , the initial conditions vanish.
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APPENDIX C

ASYMPTOTIC SOLUTION TO x1 AND x2 AT eno

 

The objective function in the present work is the

optimization of the yield of the intermediate product B

(species 2) in the Van de Vusse kinetic scheme. The compo-

nent B material balance is

7;,6;«§5v(k25vk.A)V=5%+Vfi—f—
(c— 1.1)

assuming there is no product B in the inlet stream, then,

B(O)=O.

Introducing the dimensionless variables

5 A ’
_

X‘SE‘} ’ thsz
(C 1.2)

(where fi2=K1K2 and K2=k2/k1), and substituting (A—1.A),

(A-1.5). (A-1.6), (A—1.7). (C-1.2) into (c-1.1) yields the

dimensionless
material balance for species 2 (or B):

(I- fees/ta) if; = -(1+es;nA9)xz —(12,x,-K.x,)(1-J§iws
ne) (C— 2 . 1)

The global solution to (C-2.1) is not necessary for

calculation
the average yield of B at the limit cycle.

Therefore, an asymptotic solution for B is sufficient.

11h
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It is clear from (C-2.1) that the asymptotic solution

to A(species 1) is required. Referring to Appendix A, and

substituting F(9), P1(G), Pé(9) into (A-2.2) and then eva-

luating the resulting equation at 6=r&.yields the following

expression ( Sadenoting large reaction time).

where,

 

 

me...) =F(0..)+ eB(6..>+e"B(e..) (c— 3. 1)

F(9m)=f.ss (CZ-3'2)

P (e )= (I-fss) [(53 ’A’) “We *A(’*Ca)5"""9o] (c- 3. 3)
l O A (C3’+A‘)

. . 2A“
P2(6a.)= C;+4A’ 1,(c,3;nA90—As.n2AeO+-§)

+ 1°(c,ca5519b +1154) 2110., + 35’?) + 1,, (game, ’ZAcaSZABQ)

__ 12!; (”2:3 -AI) (13342118, -24 6.03211 0,)

4Léééiégsmzna,-2Acwqug

_ W)(c, as?! a. +A51h2/19a“ 3211;)

. 24’

+ -—-”Af;‘ (c,w’/16.+A5'"M9a +2.; )] (c—3.L))

Since equation (C—2.1) is structurally similar to

equation (A-2.1), an analytic solution is again not possible.

In order to obtain an approximate solution, the following

asymptotic sequence is assumed:

Xz(9a)=b.le.)+ eb.w.)+ flaw.)
(c-A. 1)

where bo=non-periodic term

b and b2 = periodic terms

E<<<1.
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Substituting equations (C-A.1), (C-3.1) into (C-2.1)

and collecting terms of the same orders in 6 yield the follow-

ing three differential equations:

 

b0 80) "

AOL—9(a— + (1+ Kz)bo(an)=’<'fs5
(C'5'1)

A @3119.» o ‘

dig?" +(1+1<.)b.(9.)=A (“(91) "17‘ss*’<zbo(9w)) ’5""A0obo<°a>*"'3‘5a) (c-5.2)

 

Q.15";44121416..)-“5"9‘1““‘d‘:"”--1<.m.)+1221:1619)“5""M"”'“""’*""”A(51») (c—5.3)

It is obvious that the integrating factor for equa-

- . , (”Kt) 8a:

tions (0-5.1), (C-5.2) and (C-5.3) are identical, 1.6.(1 ;

Notice that there is no need to specifiy the initial condi-

tions for above three equations since at the limit cycle,

the constants of integration vanish.

Solution to bQ

Equation (C-5.1) is readily integrated, at 6,. , bO

yields the steady state solution, or

mi. (046.1):5 = ,.
5° ’5 MK,

Solution to b1( 6..)
 

Equation (C-5.2) can be equivalently written as

dbl Cos/19’

EH!+k1)b,"-- “(fizhs'K'fis)’s'hA9°.b‘-$

+ KM,[(6,713)C0$A6¢+A(I+C4)Sin110m] (C' 7 - 1)
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the integration is straight forward and the solution is

found to be

A.(9.)=[1<. w, (9.1:). as] ('*Kz>we.msm,

("22ft A:

 

+[k: 43A (€34- ’) - bx] (H K031)”;6,; 11945.4 9::

([+IE2)1+ A: ((3-702)

Solution to b2(e.)

 

A similar calculational process applies for the solu-

tion to equation (C-5.3). For convenience, we define the

following variables

120=[K1‘&(C.5'A1)' 92%,]; + [mg/10¢.) 'b‘SJ I

 

("#5415 (Ii-[21ft]?

b5: k‘:(l+£z) M 3

+I< (C'A’)---—-——"—- (C-A)

[ '4” 3 A ]fl[(/+IE,)’+/lz] A :3

+ the, __ K,¢,(c.-1’)c. + “LU-fat; (08.1.1)

(51* 411’ A ((3'4 4A”) A (‘3 *41")

 

A
It ’2:

2" (6-3-5— A*C)'b __
11' [ HP; .3 A) A ](/+K‘2)‘+A‘ +[K¢§ (’ 3 55] (1+,22)2+A2

- K1170.) + m¢5(/+C;)(a/1
(C-8.1.2)
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(I+£1)z+A2(/sz;t

K: (”'22) 2k'15'A + 2141.11 +2KF/I‘ica __ ("7(a)/(IQ)
 
 

éz%%'m1$(‘a-A’)JLLW[K1¢5 (1+:,)-5“]——AZ—Kflfow‘g)

1)

[

 

 
 

 

 

 

 

+ 141131<1+s)—b,,]fl. _

A[(/H<.)+Af] C,‘+4A’ ('5‘+421 C,‘+ 411‘ A(C,‘+4A’)

- K196,(/+z(g-A’)C, _ ZK;5é(C;'/12) + 2K1(I' £15) + 2K1¢50+C§)A2

c;+ 4.42 c ,’+ 411’ A (1;. 4A“) c;+ 411‘

(0-80103)

K 41/ (I+2C.}—A2)-2AK,75-k1(1-1§ )

12,: ' 3 ’ ’ (C—8.1.L))

(‘3’+ 4112

23/4112 56(55'A’) "’ f“ —8.1.

z4= [1,+ I...“ 3‘77" — ACHmM A. (C 5)

(3(C;:+4Az)

the solution to b2( 9..) is then expressed as:

2

A

( A )1 1 10F”K1)C°SIA90+A3I"2A8"+—(,_f—_Kz)]

MK, 4411

F 31‘ 2A9,+ z 24 - 3 .. A

.12: (’*Kz)s’"A0° A n ”K1 ]

79(009) =

 

 
.1 121F011 [21)5131 2A9w-

ZACOSZA940
]

 

12:

J +, . (C—8.2)+ 115[(1+ 12,)cosznew + 2.43 in 2A 9‘)
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By simply substituting equations (C-6.1), (C-7.2) and

(C-8.2)into (C-u.1) will yield the solution to X2(9m).
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AVERAGE YIE D CA C TION F

THE INTERMEDIATE PRODUCT

The average yield of B at the limit cycle is obtained

by carrying out the cyclic integration of x2(9~). The cycle

time is defined as

T27?
(D-1.1)

hence,

Qfiq‘

¢X2(eo) = ‘L' Xz(6¢,) (16¢,
(D7' 1 . 2)

"r an

From equation (C-8.2) of Appendix C, the cyclic in-

tegration of sine and cosine functionSvanish and also the

terms that contain squares of sine and cosine will remain,

hence

I 1 -1)(IH32_+_2_4:) + ————1“ (D-2.1)

¢Xz(6m);(l*lzz)‘+4fi’
( 2° 2’ 2 H K: "* ’21

where 120, 12,, I“ are defined in Appendix C.
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APPENDIX E

THE SECOND VARIATIONAL IN THE EREQUENCY DOMAIN

Consider a system whose dynamics is given by

x=f(_>_<.u) (E-1.1)

2(0) =3 <E-1.2>

where

_x = state variable, u = a control vector.

Here, we wish to determine whether or not a control vector

.u in a periodic mode (x(6);x(9+T)) would yield a local opti-

mal of the objective function

J =-',':¢e(x.u)d6
(E-2.1)

In this work, g x u)=x2 or the yield of B. Let

J: = objective function at the optimal steady state, hence

for a small variation in u

_ o (E-3-1)
3 ~38 +82

. . _ _ 0

then 5;; will yield a local optimum if AJ—J JS>O. Hence we

wish to determine

Maxm13J

363

my

121
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subject to the limit cycle dynamics

25 = £25.52) (E-4.1)

25(9...) =2<(6..+T) (E-5.1)

1w hLu)d6 = constant (E-6.1)

Now, by imposing $13, a priori we can relax equation (PS-6.1).

Now, define the Hamiltonian

Hum,» = sung) +AT(9>5<2<.2). <E-7.1>

H and f are twice differentiable and continuous in_xez, peg.

The Optimal staedy state is determined from

 

( H25: = 0 (E-8.1)

J0 , J H = o (Ii-8.2)
=g(Xg .Q:)<<F5 .3:

\ i: = o (E-8-3)

therefore,

J =-.i.'- g(25._u)d9 (E‘9-1)

At the cycle, we assume that A(6,) becomes time independent.

J =7r‘—.9§[H(x.u.2° )- (22>T5(_>5.2>] de (E-9.2)

J°=-+'¢H(2$O .28°.2°)d9 (3‘10-1)
8

therefore,

. T

J-Jg =+¢[H(x.g.&g)-H(xg.yg22?] de.-(2.9 #:mnm

(E—11.1)
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but,

=f(25_u)

Q
t

Q
:

o
l
l
x

hence, the last term in equation (E-9.2) becomes

d

fiqameffi-‘Egew 25(0)-25(T)=0. (342.1)

Therefore,

J-J° =1. [H(25u._S)-H(25‘S’..gl_1§.>.x )] d6...

=§¢[H(X113552 .l°)-H(258._L1:.6252)]d

29922—3.§x+zi—:L§ %[:Z§Z.,; 
z__’H

*5st +ij_3“an5X15“J'

 

  

 

 

l T
— ~ h has,D

AJ‘TXVHX LOBEHBE 6.2)] de‘” +“I” “ =“

= BJJX-i-SZJ (E-13.1)

clearly'§J=O and SZJ is a quadratic form.

Here:

11 =[525 5.1.4]

LT [(525)T GMT]
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E = [ Hxx(-)5:’B:’A(s))]
L
O II

T . . _ o o 0
Q (a symmetric matrix) - [ quLxS,uS,AS)]

u
m ll

[ 151.152.2222]

Now, the condition that gives rise tOAAJ>O should depend on

au as well as E and ax. However, in order to derive a cri-

terion for the sgnQAJ), the relationship between 5; and.au

should be known. Such can be determined from linear con-

trol theory. So, if we perform the first variation of the

process dynamics,

dX _ d.— ___ ' = _ o 0

8dt “ (14°52 53 i(2§9.§) ELISSLBS)

= 2(2.2‘;+22>—2<2<;.2g>

= f(2_<s._u:+zu)+g52< + @512 +.....

o o _

£958,128) (E 14.1)

Hence,

25 = 5325 + 25.1.2 (3-15.1)

where

_ o o

g " ill-{(38938)

_ o o

g ' fB(l§SoBS)

Now, from linear control theory; if

Its-lo
.

Where-gk=0 for k=0"£k = a constant, J =\/-1 ,GJ- cycling
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frequency such that 62 forms a Fourier trigonometric series,

hence the solution to equation (E-16.1) should have a form

expressed by

53 = Z Xkejkwew (E-17.1)

and where xk=0 for k=0.

When equation (E-17.1) is substituted into equation

(E-15.1), the value of;k is determined. Hence

‘0

or,

25 = §(jkao)§k (E-18.2)
k

. . 2 .

with equations (E-18) the second variation 5 J is now eva-

luated, thus,

22J=%§5[<52)Tg(52> +(EB)TQT(6)_<) +<32<>Tg<52> +(811)T§(5_12)] de..

a) w m o

— T T T T +2 T c _

‘Zgfi-kgl‘fz ¥k9-kg 3k+2;#-kggk ng-kB—k (E 19.1)

replacing.xk by using equation (E—18.2)

AJ = $124311 kw)_9k .



APPENDIX F

CALCULATION OF THE VELOCITY PROFILE IN THE

PLUG FLOW TUBULAR REACTOR



APPENDIX F

CALCULATION OF THE VELOCITY PROFILE IN THE

PLUG FLOW TUBULAR REACTOR

Here, the momentum conservation equation leads to

W N
_

——— Ifl——=
(F 1.1)

at + 33 O

The disturbance in the inlet velocity, thus a disturbance in

the inlet volumetric flow rate, is assumed to be in the form

of a sine wave and is given as

Vfl’o) = <v>[1+c-5inwt] (F- 1 , 2)

where e is a small positive number indicating the degree of

disturbance away from its steady state and a>is the frequen-

Cy of the input disturbance.

Defining the residence time of the reactor as

(....L

-'<v>

Where L is the reactor length. Introducing the folowing

dimensionless variables:

-1: ’=—‘{—o S:

9—? 8 v (V),

A=w’c (F-1-3)

when equation (F-1.3) is substituted into equation (F-1.1),

We obtain the dimensionl
ess equation of motion

126
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20 75 " (F-2.1)

with the initial and boundary conditions

0(9=°,‘5)=l (F-3.1)

W6.3=0)= ”53MB
(F'3'2)

It is obvious that an analytic solution to equation

(F-2.1) is not possible. In order to obtain an approximate

solution, we assume v to have a form composed of a steady

state or a non-periodic term and a sum of periodic terms

such that

0=l7(e=qs>+et'r,+e‘fi, (F-4.1)

where e is very small so that terms with 6 of order 3 or

higher are neglected.

Substituting (F-4.1) into equations (F-2.1) and (F-3)

and collecting terms of the same degree of 6 yield

Zi+flgo
(F’Sol)

9D 25

with the following initial and boundary conditions

171(6=0,S)=o
(F—5.1.1)

[Z(O,S=O)=5inA9
(F-5.1.2)

21-13 903 - 26,,
(p-502)

and 33' 33 '23
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with

initial condition 171(9=0,S)=0 (F-5.2.1)

boundary condition 1?;(6.‘S=o)=0 (F-5.2.2)

Notice that 0th order term of e in the equation yields the

steady state velocity.

The method of characteristic is applied here to solve

the partial differential equations (F-5), where the dependent

variable is treated along its characteristic path. As a

result, the partial differential equations for 91 and $2 in

9 and’S are transformed into ordinary differential equations

in terms of the variables r and s. The transformation of

the independent variables 6 and S into the characteristic

variables r and s is depicted in the figure below

Y

 P

Y 3

FIGURE F-l. Characteristic transformation for the

independent variables

It is clear that for a fixed r, e and 3 can be related

to s.
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Transforming;equation (F-5.1) into the new independent varia-

’. 1i} air ",

<::>=—'=‘J<‘§'>+ fl<fl =R (F-6.1)

where R is the right hand side of equation (F-5.1). Compar-

bles yields

ing equations (F—6.1) and (F-5.1) we have, at a fixed r,

25

3% (F-7.1)

fl-

2A " (F-7-2)

29 ,
hence a—S-sktanp org-45'

Integration yields

6-60==S-$O (F-8.1)

where'eO and 50 are some arbitrary initial condition for 9

and S , respectively.

Referring to figure F-l, two regions can be classified.

The variable r, in the lower region, represents an arbitrary

initial value for S , while in the region above OY, the para-

meter r represents an arbitrary initial value for 6. Mathe-

matically, the following relations for each region can be

written as

Region below OY:

9.2’6-81'np (F-9°1)

3=r+,5-ws‘9 (F-9.2)
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Region above OY:

9=T+A-sin§
(F-10.1)

52AM?
(F-10.2)

As far as the limit cycle is concerned, only the upp-

er region is used in the solution to 5. Furthermore, the

initial transient (i.e., 6(3) is washed out at 9=’C (or

reaction residence time) and does not provide information

for the solution at 6”. Hence, only the boundary condition

(5:0) is significant at this region. It follows that;O =0

and GO =r in equation (F-8.1).

As a conclusion, the foregoing calculations will be

only for this upper region (67!), therefore the integration

of equation (F—7.1) from 50:0 to 5 and sO=O to 8 yields

5:;

(F‘llol)

while equation (F-8.1) gives

{gs-3
(F-11.2)

It is clearly seen that equations (F-ll) provide the trans-

formation between independent variables. Here, the trans-

formation of the partial differential equations (F—5) and

onditions can be easily implemented.
The

After

their boundary c

solutions to the resulting ODE's are straight forward.

back transformati
on and using equations (F-11) yields the

solution in terms of the original independent
variables.
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Thus,

air.

36 =0

or, 71(S.r)=f(r). Applying the boundary condition (in terms

of r and 8) yields

17'. (f, 15:0) = Sin/1f

or 17', (if, ,5) = Sin/W

Upon back transformation, the above equation is

17. (6.§)=5£nA(e-$)
(F-12.1)

Equation (F-5.1) is solved in a similar fashion.

Substituting v1(r,s) and [335912] , an ODE similar to (F-6.1)

fit

is obtained except, here R(s,r)= sinArcosAr. Integrating

the equation and using the boundary condition at 30:0 gives

V2(s,r). Back transformation yields

— g ' - (F-12 2)

v.(6,%)= —§-As.n2/l(6 S)
.

Substituting equations (Fle) into (F-h.1), we obtain the

perturbation solution for V

0(ag)=l+e5inA(9—s)+ e‘%‘-s€n2/l(9'$). (F-13.1)
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APPENDIX G

GLOBAL SOLUTION TO x1 AND X2 IN A PLUG FLOW

TUBULAR REACTOjoPERTURBATION SOLUTION)

For the proposed Van de Vusse kinetic scheme,

ALBE-C , A+A—"—’—D

the material balance for A (species 1) and B (species 2) are,

respectively:

fiz-L . - - A: (G—l'l)at ”(VA) k.A k,

and

715 9 _ _
fiz—é—j-(IFB)+IQ|A kza (G 102)

using the same T'as defined in Appendix F and introducing the

following dimensionless variables:

. -.Ei _ .

x'=_ 3 xiii—S; ; KFkaTi Kz'gkz'ci K5=k3AV4C' K‘ K, (G 1 3)

where A f is the inlet concentration
of reactant A. Sub-

re

stituting equations(G-1.3
) and (F-1.3) of Appendix E into

equations (G-1.1) and (G-1.2) yields the dimensionless
ma-

terial balance equations for A and B as

(C—2.1)

132
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and

31.2 9 '-

fl 4- 3;(VX.Z)=K1X.'K2X2
(CI-2'2)

respectively, where the solution to v can be found in Appen-

dix F.

It is clear the analytic solutionsto equations (G-2)

are not possible, and in order to obtain an approximate solu-

tion, we assume the following asymptotic sequences:

X.= X.,+eP.'+e’P.‘ (cs-3.1)

1.

X1=LS+GQI+EP3 (G-3.1)

E is restricted to small values in order to have the equa-

tions (G-3) meaningful. Furthermore, x1 and x2 satisfy

8 s

dxu 2 G-H'.1

Z75} ="K:7CIS-K;X:$
( )

and 33“: KKK—K1705
(G-4.2)

Solution to x1(O.S)

 

Substituting
equations (F+4.1) and (G-3.1) into equa-

tion (G-2.1), collecting terms of similar order in.6 gives

the following equations

'
I

32-2- + %(Pu'*filx's):'K'
P"-2I<3P,1C,5

(G'5'1)
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7.1 _ ' _ 1 :1

3&4. 50—5“); MP,+1&X.s)=-KIPI“K3[2P|2x15+(fi>]
(G-5.2)

the boundary conditions (from Appendix I) are:

x1 (e,§=o)=1 (G-6.1)

S

Pi(e,s=o)=o (G-6.2)

Pi(9,$=0)=0 (G-6.3)

The solution to equation (G-4.1) is very simple,

 

thus,

doe—ms

7‘ = - (G—7 . 1)
5(5) KO" “0 8 K15)

where “oz—fiFE_' , where K=K3/K1

The method of characteristics is applied again to

solve for equations (G-5). Notice from the similarity of the

mathematical structure between equations (G-5) and equations

(F-5), we eXpect them to have the same ground characteristic

path, thus the transformations between independent variables

are

A-g
(F—11.1)

Y‘G‘S
(F—11.2)

The transformation
in (s;r) converts the hyperbolic

O

O

O
S

equations (i.e..(G-5)) into ordinary differential equation

vflfixfli have the independent variables given in terms of the

ground characteristic
path, 8. The boundary conditions are
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also transformed into (s;r). The solution to the ordinary

differential equations (in Pi and P?) are straight forward

but heavy handed, unfortunately.

The transformed equation in terms of ground charac-

teristic for equation (G-5.1) has the form

61?, 2d éKJ d644.: K“ e-m

-—' I+—-—L—- 605Ar———:——+s‘mr—'—3—— (G-8.1)

M +K’[ I- “01.9.42A I<(I—we“) " I<(,—a."")‘

some clever manipulations are necessary on equation (G-8.1)

to Obtain the right integrating factor. Also using the bi-

nomial series expansion, the integrating factor, I, is

(G-9-1)

Completing the integration, and evaluating the constant of

integration using (G-6.2) yields,

 

'KM
! e “GA 4“8'“ do +Kld016_____S‘. [W

Pl (Alf) (I‘doe K,’)3 (K K

back transformation yields

—KS

' 3 4° CosA(6-$)+KISIM(9‘S)]§
,(3,9 .. —[Af’ .)= O—M”m: K

-K,

- 93:_AwA(e-§)+ fig/1605MBS) e ( G" 10 . 1 )

A procedure similar to the above can be implemented,

2 . . . .

thus. in the transformed P1 differential equation.

2 am 212(05) 1%.

L8 4’"! “+2 K115”),r170.“)HAT.-IW’)[2; L;”:2“; 451“

A»

_x.56.».[Jééai’] - K,[P.'W)]z (G- 1 1 . 1 )

AX
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comparing equations (G-11.1) and (G-8.1) yields an identi-

cal integrating factor for both equations. Therefore equa—

tion (G-11.1) can be readily integrated. Defining the

following groups for convenience:

(6': %€[AwSA(e—$)+K.anj\(9'$)] (G-12- 1)

a.” ,
(62: ——K;AcosA(9 S) (G-12-2)

o<.’ ,1

35: Elias/HOG) (cg-12.3)

with patience and care, the solution to PE was found. After

back transformation, the solution to PE is expressed as

«.5

P.2(fi5)*( e «.s. -sinA(9—s)[IP,(9,s)+4;(as)+@(35)“mama/#35)

I’doe

-HP65(9,$)] .

+A wsA(9-€)Ip.,<a,s)+ W,(as)+¢>,(e,5)

fig [42,- (6,5)+Ig,a-(6.S)+ Igzj(e,s)+ 1.932(96)

+5Q4j(915)*‘I°/;a‘(55)] (G‘13-1)

where
,_fis 2

2 d 1 01(6 ‘4) 03—92.
_ .

13(33)=A$I'nfl(6"$)[-21%--2327§3—“
K3] (G 13.1 1)

Ip.(0,s>=Aw$M9'5>

(G-13.1.2)

°‘°’<I - -.4. - . ‘ (G-13.1.3)

IP:(9.S)= T[55‘W\(9 ” 2 awe 5) 5]

«.1

W4(e.s>=-I<.[-glsz—%(€ —I)+3.S] (Ii-13.1.4)
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«.5 ..
LP,(0.1)= midi-KR'(‘56 fig:14) $3 4193‘) gig“;)]

K.(ew-j)

 

- 4%ffi
«xx-I3)! e L, 3, 6190.3);

6 "KI g —-

'9‘“ 1): 3;,”[14668 + KAI-13') )*k.(1+y(e

I2,<a.s)= - Lia")

 

 

, KS

lPo(0£)= °(°K'A 35-32211 (649+ “K”A6052MB'§)[SeK +

NH;13(4‘

 

Laws): - flsInzA(es)[1+‘-‘3 (e4]+ -z§ooszA(9-s)

4“”)3

2 1
3 2; ' Z

2
mug-(6.5)= g, :('*3)°‘o[ KW) (5*km) Mup)K’O‘fl’]

 
 

 

e-Mflfj);

lpflj (9. $)'—'7% 31;%(’*J)0‘°[“—K (112') (5+W K!2110—73.)

a . e—Wjfi’.

Lag-(95):: %; 3200”)“: I 100*?) ]

  

 

e'KI(2+a)S

I

I8:j<6.€)==1$3aZ"*J""[ new (5 WI) WW)”

1 6.4401335,

‘8 10. =2 . ’0"[ - T
‘2 S) 8 3.51220 (”1

K. (2ft)

 

1 845.071)! 4

905/”): 3’1:01“°[ K013) ]

J

(G-13.

)(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

(G-13.

Substituting equations (G-7.1), (G-10.1) and (G—13) into

.
.
.
s

-5)

.6)

.7)

.8)

.9)

.10)

.11)

.12)

~13)

.1LI)

-15)

equation (G—3.1) yields the complete global solution to x1(9,5)

Solution to x2(9.5)

 

The solution to x2 is done in a similar fashion as
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for solution to x1. Substituting the global solution to x1

together with equations (F-13.1), and (G-3.2) into equation

(G-2.2), collecting terms with similar orders in e yields:

dis

T; =I<x., “2X2:
(94.2)

it? +d_P3

A? +‘9—1'SMA(9’g)i—:'23‘K1P2+AW(9
$)XZS+K'PI,(G-1Llr,1)

AV}: Ly}; 4—P2'
‘x25

43 4-” +SmnA(9-S)-6++-—5sin2A(9 S)-—-—45

"'- 2. ' A ' - — 22 ' X *KIPI

- k,g+AcO$A(9-$)P,-[-Z-Smnle$) gamma] 1, .

(G-14.2)

with the following boundary conditions:

x2 (e,3=o)=o
(c—15.1)

s

P:(e,$=o)=o
(G-15.2)

P§(e,5=o)=o
(G-15.3)

For convenience,
we can rewrite equation (G-7.1) equi-

valently by applying the binomial series as

flow 1:<,.,e)"""a
(G-16.1)

16.1 ) into equation (G-h. 2), with

‘25

the integrating factor of e .

15.1) yields the solution to

substituting equation (G-

The integration,
with the

condition given in equation (G—

X253
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s
' if KzzK1(1+j

)

-K’gm '.

7C (9:195 «:3
G_ 6.

25 K jg, [ K2‘K:(‘*1)] S

( 1 1 )

e
.—

4—— , otherwise

k:"‘: (”1)

 

The solutions to partial differential equations (G-14)

again apply the method of characteristics, since there is a

similarity in form of differential equations (G-1#) and (F-5),

the ground characteristic transformation, i.e.,(s,r) can

also be applied here, with the transformation, the following

ordinary differential equations for P: and P3 in r and s are

obtained, respectively, as:

 

l I

{at

fl; 7.. . 73h“) .. £1 ' 5.725] r. ’(AJ
M +19% --SMA’[_3filx 2A-Sln2AY[ 45 A: AW fl. )

_[ 13-5.": mr- A-A‘cosznr] 7615 (m) + “810:0 ( G’ 1 7 ° 2)

a;

The integrating factor for equations (G-17) 1s 8, .

Theoretically,
the solutions to equations (G-17) are

Simple to solve. Upon applying the binomial series and

other manipulations
, the actual number of terms in each equa-

tion increases as integration is carried out.

nd imposing the condi-

. 1 .

tion that P%(s=o)=o , and then, back transform1ng
P2 in terms

Integrating equation (G-17.1) a

of 9 and 3 gives



1ho

 

I 4‘23

R.(9.s>-e (¢.,+¢23-*¢.J)
(G-18.1)

where,

KS

n [WegszSm/MO5)](——-§)—§.‘nfi(o“Me_') ,lf R lf-(O

gb,.(9.s)=——{423a,

3 [WE-5)“?K35MA(93)];- - Sub/[(G'S) , otherwise

(G-18.1.1)

3.34313 ’ ' if R1:0
”(9' 3)'K'Z('*3>°<°3

(G-18.1.2)

3:0

&9
Z'IIe&(5-l)+RJ,J%(e q) r otherwise

8-K: ‘

' I if R1=O

. if R2=O (G-18.1.3)
fice. $)= M35; (ijxo

I otherwise

with R1=K2-K1(1+j) andhRZ=K2-K1(2+j)o

The first order term in the x2 solution dose not con-

tribute any information about the enhancement of x2 at the

limit cycle. This forces us to calculate the second order

term, presumably some insights can be obtained.

The compexity of the PS solution is directly related

to the number of terms in P: and Pi. It is found that the

2
single summation terms in the P1 solution generate double

summation terms, i.e., expansion involving binomial series.

In a more compact fashion, define the following terms:



lfil

I
do 8 ~3, = 7(— [jl SnnA(9—g)-k.A comm-3)]

(G-19.1)

32’“ $112 sa'nMe—s)
: (G-19.2)

351g Sn'nMevS)
(919.3)

R1=K2—K1(1+j)
(G-20.1)

R2=K2-K1(2+j)
(G-20.2)

R3=K2-K1(1+i+j)
(G-20.3)

R4=K2-K1(2+i+j) (G—20.4)

R5=K2-K1(3+i+j)
(G-20.5)

R6=K2-K1(u+i+j) (G-20.6)

R7=Kli (G-20.7)

R8=K1(i+1) (G-20.8)

R9=K1(i+2)
(G'20°9)

R10=K1(i+3)
(G-20.10)

Integrating with great care, and after back transforming, the

resulting equation for P3 , in terms of the original inde-

pendent variables, is

2 4‘25

P2 (6, S) = e {swim-QM;(6.5)+0(21' (9.9ng(9.5)} $15!?!2A (9-?) “@189

+ A comm-9M; (Rindqlflfiydyj (615)14‘0‘0; (BISH H0§g'(9.5)} (G- 21 . 1)
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where

5

( .5; [(A’—K{)sinA(a-;) -2K1Aco$A(9'§i +s‘[AcosA(9-€> +K25M(9'S)]

' ~gsrnme—s) . if R =0

“1‘95"?K“3:4”?4 1

£5 2

e -l S
\k-I-IKT-R—p -i)[(A——K1)Sm/1(9'$)~'2K2AC05A(93)]

+26”,zg'- . R" .

S)[AC¢SA(9'%)+Kzs.nA(e-$)]-(e «Mme-S)

, otherwise

(G-21.1.1) {

L

(%'-I< 53 I 5’ - -
' ’3')? +<3:+Zz-Kzg,)-; +325 ' 1‘5 Rfo

093mg)—«2:00.31...

5 65K. 2(efi's...) K05 ] '

I’;[($u- HEX-z“! +)-T]+$:[€ (5‘EV75J

+32(€R"')* (32” K232)eR[R“fl ’ otherwise

(G-21.1.2)

l , ePS-v -n$ .

f I. (as-K22.)(T+s)-$a<e ’0] '1f Bro.

I '5

«31(9129 kagoffldo3! S[%3+ (SJ-«1%) I] a if R2=O

{15

I ‘25 ~
L583“ ")+(33I-k‘3’)[e}21 ' —g]] , otherwise

(G-21.1.3)
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{($531}; .ifR =0

“43(915)’ —;/:0(+3fl

 Kl;

I R" |
2k '12—»[8 (5.73)), i. -Kl[%l- (ng-L'y k1?- is :0 ,otherwise

(G—21.1.4)

u
|
m

“4-3 (9, = ——“20m

  

 \Ammqynamw—s) elf, --§- 5 -s'nn(e-S)(e fl")
Kn Kl: R1 .2— 2

otherwise

(G-21.1.5)

‘5’ 2 if R =0

r&7§*32%7 ’ - 1

'° é
d5j(915)=K3: (”jflo é

 g R5 zflféO $19”_g’ ,otherwise
I, _—e(R+v)————-—-+ Ru

 

K, R.

(G—21.1.6)

49$ . =0
/ N(%W)‘ ,1f R1

°" . 1 2 ° R =0 G-21.1.7)

“75(9,S>=K';°("1)°‘°334 '2i ’1f 2 (

__ fie:—' ,otherwise
   

RZ(



mu

1 I . A

SA[Z-szA(9*$)-35WA(6-§)] , if R :0

dam) --—_Zo<’‘
330 I A 636 em 52

E,[;&h2A(e-${‘_K—L-s]-AZ%COSZA(9J5)[ (3’R”)El-E—H '

otherwise

(G-21.1.8)

49.3(95) =°<wj(015)+0<uj(6155* rosin/1(6- 9592;]- (6 S) + mag (96% 094.3- (6.5)

F
4
2
4
!
—

+ «,5»,- (9,3) +00% (6, s) + 097,; (96)]

+ got[dM (9,;)+ 009,3 (9,§)+o(4,l (9,S)+0(2,7(6/S)+dpd(9,i)+0‘37 (9,3)]

(G-21.1.9)

where

T.(9,$)+Tz(e,s)+1,(e,g)+ WM)
.. if R1=O

a, .

- - 1
moi-(agrgmm

T%(elg)+T6j(elS)+ 771/6:5)‘733' (915)-ng (9,5) , otherwi s e

(G-21.1.10)

with

T(91$):~5do$lm(9‘5)[9hm0~$)[(‘E’1%
2;:me

K's).

+mm.s>I—,,—z:‘-- 'f’flfl] (Hi-1.10am)

J: E G-21.1.10b)

Meg): 5 [HSs'nMa—sHAcosvagfl
(3,,——+ /< +23) (

2

K' 5 £2. G-21.1.10c)

73(915)=OLA‘33'5""2A(9'3)(
77% -' 37‘- + ’9 (

5‘ do
(G-21.1.10d)

mas): 54.21160: 2AIo-s>( '27?- 2,72,)
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1 M
e A’ e“;—-

(:k; ‘:T(5-i;>>(%- 1334)] x,

WM i"?— : i. K. .gt Mi)
(kRn (;-E)+KKII)(I- Z) - ZKRI - [(le ]

 

(G-21.1.10e)

 

 

 

 
 

RI;

‘@ 8 2; 3

753(Q$)=[K'Sa'nA(9'S)*A¢U$N9'3):| ‘2."[1—(711 R, ;,"3)"€?]+m9_TR(e4)

eRIS

“(2,34 (5 12.)“?,} (G-21.1.10f)

an! 2

773(64):“2“,? [—‘$a'nzA(9 --‘§)+A0052A(9J$)][——($“:;-— +75)- %]

(G-21.1.10g)

2 6R6” p h)

723(9,§)=%° [é— co52A(e-S)- é srnzA(9~s)]—,;,,— (J’ 21- 1 ~ 10

$5

. _ «ammo-9r e _,_;__ L ,

793(9’S)- 2K L K! (6 R;)+Rf] (G‘21.1.101)

(45W 6_ 8 " »o(9,$)_ dbl/‘2 _ ’Kl . _

( x. mg ”52"“ ”[9 (9%,)13 . 1f Rl-o

“113(94)::(prfiag toms)3+“:coswe~5)5 . if R2=O

3:0

M 22 14s
8 4 d e .

\Tme) R, + :3 Comm-9b?“-é-+-—]othermse

(G-21.1.11)

with



1&6

 

 

TwmskSf‘nnwW34K K'55-"N99- ifcowa-.3) 3,]-Acom(e 5),;$3

o<N171

WOT—-'C«2A(9$)--—K’sinzMe- i) (G-21.1.11a)

S oif R120

1; L» 2
, , ( ). d. ,

G-21.1.12

093(65):}:“1 3:: [R Fe '47] M ( )

6 -| .
—ET— ,otherw1se

5 .if R1=O

“M3168)=ZCHjfloZd:fl[—
g—}+£3 3;] (G‘21-1-13)

1-0 L30 ‘3 R9 +R6 RI;
.

___. ,otherw1se

RI

427;

C I 3' '2; 2 "R

(M. K1 (€+é'v)*/z,='xz]”,7“ 19'?3(e ’9

if R1=O

(as): —Z( inf—EU! Hi
if R =0

d141,; ’ 33° "3)“ F4 2 5 R7 +3195 3

 352

\%,[e—R—;(g-E';+) R'M]
3'1 (8"____'_E)1133‘”__,)

Ks

otherwise

(G-21.1.11+)

0(I‘i7(91$)= -X(H
”d.1Z—R:J i};

91f Ruzo (G’Zl - 1 ° 15)

?’° is!

 
\ 2(3’2‘59 ,otherwise



. m d C?!

“I61"(als): -:(Hj)dzz -.—'

a 3:0 in R8

. w 1

“17,2“ (61$) = 'Z("j)do

J

0997(9'5) _

(50i=0

4
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e.M- l

 

5 £3

“9

0 - a i

=Z(Hj)a(]Z(H'i) %<

Z! 4253 , .

(E[é,-e (5+fi-a)]-—R:-(%+gz) , 1f R1=O

;’ , .
Z,;+ §(%+gz) , 1f‘-RL,=O

R45
K43

\3, [£05749 1' é] +(,-§-;+zz)(ek;') , otherwi se

 

(G-21.1.16)

33 '55 . _

Hiya! -a)'1f Rl—O

- = (G-21.1.17)
,1f RL, 0

4 353

 £

\ %(€ 75:) ,otherwise

if R1=O

2. ‘52 5 2 S J_ z . _

5%: (;+,2;+zg)+zz:525(z+g,)+zzs .lf Ru-O

5:3 K}!

e “3.5+; 3... £2. ,1.

K3 [2: 124 £491? +16%“ fly

as as
2 8 ‘0 8 _1_

*‘EZ’J*’3‘3‘[Z“'i>*/zz*

2

KKK:

, s
81%;” ]+32 (8&4).

K;

otherwise

(G—21.1.18)

1

I
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“mam: ‘5): ‘Zdzofiéo-
{U (14°— (‘3'71’2'

”it(

o(10;j(9,6)=42W.Zw—R—°{ 23.39% 3+ it) + 231335
PO

 K5

0917(915): 5: ('fjfloagofl) %2K

984K444;

 

Km

092.4,(919-442("3MozflW—35 s

 

 

em-I

Rs

4 5

w 4 1'0 d: z

095.} (ens)= {awa- ZW— ’333.30 4:444) RIO AS

8 -4

R:

%+3€) 44

6 S“; +—-.__._9'4”" _2*a -293

79)”; R9 2:, 8-9

,if R =0
1

(G-21.1.19)

,otherwise

if R1=O

, if R5=O

\ [% 8%?

2 (5 1+ ‘335 72;)R 4444

 

otherwise

(G_2101020)

if R1=O

(CT-2101.21)

otherwise

if R1=O

if R6=O (G-21.1.22)

otherwise

if R1=O

(G—21.1.23)

otherwise

Substituting equations (G-16.1 ), (G-18) and (G-21)

into equation (G-3.2) yields the global solution for x2(6.3).
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APPENDIX H

ASYMPTOTIC SOLUTION TO X1 AND x2 IN THE

 

PLUG FLOW TUBULAR REACTOR AT4§Q

With the closed form solution to x1 and x2 available,

long time behavior of the concentration of species A and B

can be determined. This is done for comparison with res—

pect to a steady state (i.e., optimal or non-optimal). Here

it is assumed that at infinite time the process dynamics is

a limit cycle. So the comparison should be the time-average

at the limit cycle, i.e..

1

I"? 3(19..

(The notations are described in chapter 2)

Recalling equations (G-7.1), (G-10.1), (G-13) and

equations (G-16.1), (G-18), (G—Zl) from Appendix G, the in-

dependent variable 6 appears only in the trigonometri
c func-

tions. Hence, these equations at 9. yields the exact equa-

tions with 6 replaced by Be . The length of each time pe-

riod is €%f for both x1 and x2 equations.

With the asymptotic
form for equations

(G-7.1),

13). (G-16.1).
(G-18) and (G-21), the first

10.1) and (G—18)) are all composed
(CV-1001

), (G—

order terms (equations (G-

of only sines and cosines.
Their integrals

over a period

1A9
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vanish, and hence no information about enhancement can be

provided.

The second order terms,as shown in equations (G-13)

and (G-21) contain sines and cosines which drOp out after

time-averaging. However, those same second order terms in

the perturbation solution also contain squares of sine and

cosine which do not vanish upon time-averaging. In addition

to this, there are other terms which are 9 independent that

are non-zero after time-averaging. Consequently, the con-

tribution of these terms in 62 makes the final solution to

the time-average x1 and x2 different from their respective

steady state solution.

The solutions to time-average x1 and x2 yield, after

“K.

simplifi cati on , (with ARG= l-doe
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for convenience),

(H—1.1)

(H-1.1.1)

(H-1.1.2)

(H-1.1.3)

(H-1.1.4)

(H-1.1.5)

S
fi
_
f
'
i
-
§
‘



151

_du1

4i KaK
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S , if R =0

, otherwise

where

,0 [,[éf‘i—L1.2%)-("—2—>

I I;

at.»

@223“ Kg20(__92:(,+4)d4

3:0

72-[2H6?“033:?

 

 

(H-1.1.6)

(H-1.1.7)

(H-1.1.8)

(H-1.1.9)

(H-1.1.10)

(H—2.1)

, if R1=O

412.5

T],otherwise

(Ii-2.1.1)

, if 31:0

30] _[e&S(S__4'_)+_4L]],otherwise

I I

(H-2.1.2)
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K“ 2 ( 9 D
. if R1=O

$313: T‘K.zz(+3)d°1

I K K" 2 25 2 2 2.;

EH‘? <s-z+z,z>-z:2]—[e (5-22.23.
otherwise

(PI-2.1.3)

, S , if R1=O

I.

‘64.1=O(ok.z(Ha)doZd.

RS

(H’Zolou‘)

K7 I

3R" , otherwise

. g , if R1=O

M

5-4'-d°K——-'—-:(H3)doz
0“

(H-2.1.5)

{'1'
L‘0 K: 6&5"

Ra , otherwise

‘7;

—2(6 "-J 55275 , if.R1=O

K7 37

_zdoKa an s _L
, = _

593-2—-Z(ng42—[uh—m)
, 11" R3 0 (H 2.1.6)

’98 “>5

LLR(S_§’5)+—-—,’+§_’_'. ,otherwise

4,5 -

_2(e —:)_ 56 2’5 , if R1=o

( KI:z K3

2 0 D ‘2" 3

5-1%, and] 0.5;. 45+“) . = _

P7? 1K% 3 gfle 2 R3 , 1f Ru 0 (H 2.1.7)

1'45
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, otherwise

The equation for average conversion
of A can be

readily obtained by subtracting equation (H—1.1) from unity.
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APPENDIX I

EVALUATION OF BOUNDARY CONDITIONS FOR Pi AND Pi

In the succeeding derivation of the boundary condi-

2

tions for Pi and?1 ..all perturbation terms are evaluated

at 3:0.

f
“
“
‘
“
“
'
-

-e
-.
[

From Appendix G,

X.(3.6)=X.5(6)+6P,2(5,9)+ e’F.’(S,9) (G-3.1)

At the reactor entrance, only pure A is present,

x.(3=o,e)=¢.o= x3). eP.'(S=0, 9) +e’P.’ (5:19)

[when there is no perturbation,
i.e., €==O, we recover

795 (0) =1]

o= (4720.9) +6’P.’(0.9)
(I-1.1)

evaluate equations (G-S) at 5:0:

2911+”2E (-)<.'+r)5m/19-AM$A9=-(K:+2K5)Pv2 (I—2.1)

3

z I '
z 2 -

3g+g§l+smnegg—p,onsA9+§-
lsmm9=""afi""Ka[1Pv*€Pc2)

2] (I 2'2)

evaluate equation (G-2.1) at S>=O yields:

(1+ wig-r1119
):21"(A3_22225‘

"ZA9— 611609119)--
—;<, K,

(1—3 . 1)

Differenti
ate equation (G-3.1) with respect to 3 and then

155
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evaluate at 5 =0, thus,

UXI 7‘15 6262622182
?

5‘5 3* ag“ 25 (141.1)

but

2

I}? = "K1X15- K3145

ax . .

substitute this into equation (1-4.1) for 3a? and multiplying

the resulting equation by (1+6sinA9), thus

P2

(l*€&nAe)—g"(K.+k,)(l+és:h/19)+e(He-5
.21119)23§2222+€('*€'$5M9)%J2; (I-th-l)

Rearranging equation (I-3.1) and equating to (I-N.1.1). Upon

neglecting terms of 3rd or higher order in e , thus

1
. 3P2

"’(Ktth) ’6 gSmflai-GACOSAG =- (K1146)- €[(K'*"3)§mAD
"" 5252]

+9252" “2232222“?7222) (14.1.2)

Collecting terms of similar order in.€, we obtain

2P2 2?.
—{2i312n2A6=SuhA05'$'2+ 3g (I-5.1)

aP.’ .

AMA9=-(K:+K3)5fn/le+ 5:5- (I-6.1)

:> 26% =AcagA9+(/<,+K9)Sa2nA9 (I—7.1)

Substitute equation (I-7.1) into euqation (1-6.1). thus

722‘:- A 9."..er - (KHL HEW/10 " A92" “-9 “5A9
— i

-
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or, 222?,

——--(K.fK,)5f-nA9 AS'2’12A0
(I-8'1)

Multiply equation (I-2.2) by (-6) and then add to equation

(I-2.1). Yields

1
9'

2

,g-""(K.+K.)5f—nA9 Ame-mesmeg-SPJ-egg ”5211051194125":er

=~ (k.+zk.)R'-*el<.n +6K.[2B‘+<P.')’J ”‘9'“

substitute equations (I-7.1) and (I-8.1) into equation (I-9.1),

éACosAO P.’= ~(A+zz,m'+ e K. R’+ e [9082+ (Pb’J

but from equation (I-1.1).

P =-€P
1 2

1 1

, 2

Amman“ = (mm P. + BK»? + 679??

0: 320211on + 1mm. + 6% F3)

thus, P§(O,6)=O and Pi(0,6)=0

or,

éAcasA9+ K. +619

226.6% - W

3

 

This root is disgarded because the periodic functions

do not explicitly and implicitly contain é dependency.
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EVALUATION OF BOUNDARY CONDITIONS FOR P: AND P:

At the reactor entrance, x2(0,6)=0, or

12(0. 9) =X2,(o)+e g'(o,9) +e’P:(0, 9) :0.

from Appendix I, x.5(0)=0,

=> “X.5(0)=O.

1 2 _
=> P2(O,e)=-eP2(O,G) (J 1.1)

2?. e2?. (J-2.1)1
-—(o,9)=-€ ——-(o,9)

Evaluate equation (G-2.2) at 5 =0,

LX91+(‘+GS'°%EnA9)23K| (J—Bol)

99 5

. 1 2 _ th

evaluate equations for x%;' P2 and P2 at 5 -0, us

dxn._K (J-4.1)

T

I

3?: ”2‘2 m,‘=-K ._5.5 game 5—9 .F.2 (J 5.1)

2 2 ' 2 l

{’32. . 2.". .s.-..A9}‘;’=— 19?, +AcosAeP. (J-6.1)

99 25

 

1see Appendix K
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5‘6 "‘ 99 39 (J—7.1)

I 2

2X , ZEI 293*
_ .

fifik|+e35+
e as

(J 8 1)

212

But equation (J-2.1) implies that 55 =0, thus,

(HGSmAG) 3 =)<.

substitute this into equation (J-8.1) yields

Bf: 93' 3228 2F.2 ..

l I e I +€3 5"S'IA

KGSHAQ-t 3‘) +€$nA9—-23 35% 9“35

collecting terms in like ordersof e ,

g—E=—K.s;nzxe
(J-9.1)

2

9.3“ =Ksin’Ae
(J-10.1)

25 ‘

Multiplying equation (J-6.1) by 6 and then adding to equa-

tion (J-5.1),

9‘5

substituting equations (J-9.1) and (J-10.1) into the above

€L§+o+e§1nne>~
+ K~SmA9=- K272 €K2F21*€A¢°‘A9' P2.

equation, yields:

1 2
I

6K.Sin"A9 - (H es.'nAe)(K.s.'nAe)
-+ K.Su'nA 9 =—K. P, -ek.P. 4 e/LcosAoP,

or,

I

0= "(1%! “ é szza'tGA-USAQ'
P1

1_ 2
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I

o=eACISA9-P. (J-11.1)

T . . . 1_ _nW _
his implies PZ-O or .AQ—-§- ; n—O,1,2......

To sufficiently satisfy equation (J-11.1) for all 6,

P: must be zero. Hence,

P:(e, g=o>=p§(e, 3 =o)=o
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PROOF OF THE DERIVATIVE OF THE BOUNDARY

CONDITIONS FOR P: AND P:

 

 

I

For a linear partial differential operator, 01H) L .

P,‘(s.e>=g.m3,<9)
(K-1.1)

thus, at 5 =0,

P,'(o,e)= 2.00%.(6)
(K-2.1)

and differentiat
ing equation (K-2.1) with respect to 6

I

AP.(0,9)_ A «9)
(K-3. 1)

7F"?‘” .9

For equation (J—2.1) to be valid, we follow the proof

given below.

Ame) 453:9»

 

75— : at“) 16

(rue

df’z'wfi) ._._ 3‘(0) .1452
LI,

“,9 5:0

(K’ o 1)

But the right hand side of equation (K-u.1) is identically

equal to that of equation (K-3.1), hence

9P7<°'°’... 2.8:
49 39

  

5‘0
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