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ABSTRACT

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS
OF TRANSIENT FLOW AND TRACER MOVEMENT
IN CONFINED AND PHREATIC AQUIFERS
By

Sirous Haji-Djafari

In this study the movement of a tracer in an
aquifer with transient flow conditions is investigated,
both on a regional as well as local scale. For the
regional scale the two-dimensional horizontal plane is
considered, while for the local scale a vertical cross
section of a site is chosen. Special emphasis is placed
upon solving the flow and mass transfer phenomena in a
phreatic aquifer with a time variable boundary.

Finite element formulation of the flow and
convective-dispersion equations leads to a set of first
order partial differential relations. In addition, with
use of the finite element concept, higher order time
approximations for the system of equations are derived.
In order to obtain continuous flow across elements and at
the nodes, the Galerkin formulation of the Darcy law is
constructed and velocity vectors are calculated simul-

taneously at the nodes. These transient velocities are
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subsequently used in shifting the phreatic surface and
in computing dispersion coefficients and convective terms
of the mass-transport equation. A procedure is adapted
which locates the phreatic boundary of an aquifer without
repositioning the nodal coordinates of the elements.

The validity of the proposed techniques is estab-
lished by first comparing the numerical flow results with
existing analytical, experimental, and field data. Upon
verification of the solution of the flow equation, the
prediction of the movement of a tracer in an unconfined
aquifer with a time-variable phreatic boundary, and in a
confined aquifer with a transient flow condition, is con-
ducted. Numerical examples are presented to demonstrate
the capability of the proposed techniques.

It is shown that the Galerkin finite element
method can be used to solve the flow and convective-
dispersion equations, both in confined and phreatic

aquifers under time-dependent flow situations.
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CHAPTER I
INTRODUCTION

1.1 Motivation

In recent years the demand for fresh water has
increased drastically due to population increase, indus-
trial growth, and agricultural expansion. However,
fresh water sources are limited and the bulk of this
vital resource lies underground in the form of ground-
water. It is now more or less generally accepted that
man's future will depend on his ability to conserve this
valuable resource for human consumption.

Almost every pollutant that leaves a sewage plant
or is part of runoff from rural lands or urban areas will
reach some water basin such as a lake or an aquifer.
Besides the customary disposal of treated effluent in
nearby streams, rivers and lakes, irrigation of farmlands
with secondary and tertiary wastewater is being sought as
one of the possible ways to replenish groundwater sources
while maintaining their high quality. 1In one type of
system, treated sewage effluent is passed through a
series of ponds before transferal to farmlands for use

as irrigation water [see, e.g., Bahr 1974]. The tertiary






wastewater slowly infiltrates into the soil while pro-
viding intake water and nutrients for the plants. Dur-
ing this passage the constituents are mixed, dispersed,
and diffused through the flowing mass, and some of them
such as phosphate, sulfate, and certain heavy metals are
adsorbed by the soil [Ellis 1973]. After the water
leaves the biologically active zone of the soil it enters
the groundwater reservoir and eventually appears in wells
and springs in the region.

Although studies of nutrient intake by plants and
studies of pollutants deposited along the course of the
water's flow deserve great attention, it is important to
know the concentration of the dissolved chemicals which
travel easily with the water through the porous medium
at different stages of the movement. The analysis of the
effects of possibly contaminated recharged effluent on
the quality and quantity of the transient groundwater is

extremely worthwhile and beneficial.

1.2 Objective and Plan

The objective of this thesis is to investigate
the effects of treated wastewater recharge on the quality
and quantity of the groundwater resources. Consideration
is given to regional problems, but primary emphasis is
focused upon the local region, that is, the region

beneath and in the vicinity of the recharge site. This



will be done by considering a two-dimensional horizontal
plane for the regional scale (on the order of one

square kilometer) and a vertical cross section for the
local scale (one hundred square meters). For the purpose
of this study the pollutants of concern are dissolved
chemical substances such as chloride and chromium, which
remain unaltered during the transport process. The dis-
persion and convection of a tracer through a confined or
unconfined aquifer with transient conditions are simula-
ted by a Galerkin formulated finite element method.
Calculated transient velocity vectors are used to obtain
the dispersion coefficient, and they are introduced into
the convective-dispersion equation. The specific objec-
tives include:

1. Calculating the location of a transient
phreatic surface in unconfined aquifers.

2. Investigating the tracer movement in a

confined and an unconfined aquifer with
a time-dependent flow domain.

1.3 Scope of Study

The scope of the study presented in this thesis
includes a detailed description of the mathematical
equations for both flow and convective-dispersion in
confined and unconfined aquif .r s, solutions of the above
equations by the finite element method, comparison of the

numerical results of this investiation with existing






data, and finally the application of the employed tech-
niques for more complex problems.

The mathematical equation describing the magni-
tude of the piezometric head in an unconfined aquifer is
nonlinear, because of the existing phreatic boundary.

The difficulties of solving related equations will
increase when the boundary is transient due to accretion
or other events. Furthermore, the mass transport equation
is also a nonlinear equation because of the dependence of
the convective terms and dispersion coefficients on the
velocity components. Both the dispersion and flow equa-
tions have to be solved simultaneously or consecutively
for each time step in order to predict mass distribution
in a porous medium. It is customary to modify the
numerical grid systems such that the movement of the
phreatic surface can be handled. However, because of the
changing location of the nodes, it is difficult to obtain
the values of velocity components within the grid system
so that they might be used in computing the convective
terms and dispersion coefficients. In this study this
difficulty has been overcome by adapting a technique pro-
posed by France [1971] which can locate the phreatic sur-
face within the grid system without repositioning the
nodal coordinates. The method provides a feasible way

to solve the convective-dispersion equation for uncon-

fined phreatic aquifers.






The velocity vectors play a dominant role in the
accuracy of the predictions governed by the dispersion
model. A simplified procedure for solving velocity com-
ponents is introduced; this procedure provides continuous
velocity values at the nodes. The technique also enables
one to predict the tracer movement with a transient flow
condition.

The finite element formulation of the field prob-
lem leads to a set of ordinary differential equations

of the form

[a){C(t)} + [H] {g—i} = {F(t)}

where C(t) is an unknown variable such as concentration
or piezometric head. Discretization of the time deriva-
tive of this equation is one of the major concerns for
many investigators. With the finite element concept,
recurrence formulae for the above equation for three
different orders of time approximation are derived. In
this process a simple procedure to obtain the finite dif-
ference relation for a variable and its first and second
derivatives is also shown.

In this study the validity of the proposed tech-
niques is established by first comparing the numerical
flow results with existing analytical, experimental, and

field data. Upon verification of the solution of the






flow equation, the prediction of the movement of a tracer
in an unconfined aquifer with a transient phreatic
boundary is conducted. Numerical examples are presented
to demonstrate the capability of the proposed techniques.
Sensitivity analyses are made to explore the effects of
time steps and element size on the accuracy of the

numerical results.
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CHAPTER II
LITERATURE REVIEW

2.1 Introduction

The major objective of this study is to investi-
gate the movement of a tracer in a confined or an uncon-
fined aquifer which is experiencing a transient flow
regime. The piezometric head and the velocity of ground-
water flow must be known in order to predict the rate
and direction of movement of dispersive substances. The
simulation of mass transport through porous media in two-
dimensional horizontal flow in a confined aquifer has
received considerable attention, but little attention
has been given to the solution of the dispersion equa-
tion for an unconfined aquifer with a phreatic boundary.
The difficulties associated with calculation of the
convective term and dispersion coefficient with a time-
dependent phreatic boundary might be considered the
major obstacles in the way of progress in this area.
There is a vast number of publications available concern-
ing the solutions of the flow equation and the convective-
dispersion equation; only those publications relevant to

this study are referenced herein.



2.2 Mechanics of Flow

2.2.1 cConfined Aquifer

The finite element solution of the differential
equation describing flow in a two-dimensional horizontal
plane for a nonhomogeneous and anisotropic confined aqui-
fer is well-established and is available in the literature.
Zienkiewicz et al. [1966] employed the method to obtain
a steady-state solution for the heterogeneous and aniso-
tropic seepage problem. Javandel and Witherspoon [1968]
used the Rayleigh-Ritz procedure to solve groundwater
problems with linear triangular elements. Pinder and
Frind [1972] utilized Galerkin's technique to analyze
groundwater problems with isoparametric elements. The
numerical model developed in this study to calculate the
piezometric head in a confined aquifer is similar to the
procedure presented by Pinder and Frind.

2.2.2 Unconfined Aquifer
With Phreatic Surface

The equations governing boundary and initial
value problems of the phreatic surface for liquid flow
through porous media are known [Polubarinova-Kochina
1962, Bear 1972]. The exact analytical solutions of
these equations are extremely complex. To simplify the
treatment of such problems, Dupuit in 1863 assumed that
the gradient of the phreatic surface in the vertical

plane away from the wells and mounds is very small, thus






the groundwater flow is essentially horizontal and can
be considered as a uniform flow. This assumption led to
the well-known Boussinesq equation. Because of the
nonlinearity of the Boussinesq equation, only a small
number of analytical solutions are known to date [e.g.,
Polubarinova-Kochina 1962, and Bear 1972]. An approach
to overcome the problem is to linearize either the par-
tial differential equation describing the phreatic sur-
face boundary or the Boussinesq equation. Bear [1972]
has outlined several linearization techniques with rela-
ted references. Marino [1967], following Hantush [1963,
1967], employed a linearization method to solve the
problem of the rise and decay of a groundwater mound
below a spreading site, and justified the solution with
experimental study. All analytical solutions are limited
to flow systems in which the boundary conditions are
simple, the porous medium is relatively uniform, and the
Dupuit approximation is valid, i.e., the vertical gradi-
ents throughout are not too large and hence are negligible.
Models and analogues are tools for achieving the
solutions of problems where the direct analytical solu-
tion is not possible because of the complexity of the
system. The Hele-Shaw or viscous flow analog and resist-
ance network analogues are most commonly used. Bear
[1960] discussed the scales of viscous analog models for

groundwater studies. Bear [1972] presents extensive
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bibliographies of past applications of the Hele-Shaw
model to studies of groundwater flow. Marino [1967]
used the viscous analog model to study the growth and
decay of groundwater ridges. Tinsley and Ragan [1968]
employed the Hele-Shaw model to investigate the response
of an unconfined aquifer to localized recharge. Herbert
[1968] used a resistance network analog to study the
time-variable movement of the water table in unconfined
saturated strata. His work is based on the assumption
that for any time-variant system of water, the flow can
be approximated as a series of steady-state solutions,
each of slightly varying shape and satisfying the Laplace
equation. In his technique the location of the water
table is known at a given time, and the new position of
the free surface is predicted for a chosen finite time
interval. This process is repeated for several time
intervals until the maximum required time has been
reached or the system has reached the steady state.

In the solution of groundwater flow problems, the
digital computer offers enormous advantages and has become
a dominant computational tool. There are several numeri-
cal techniques available for solving the governing equa-
tion for groundwater flow. Of these, the finite
difference and the finite element techniques are most
commonly used. Todsen [1971] used the finite difference

method for solving the free surface flow problems. Amar
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[1975] investigated the two-dimensional hydrodynamic
behavior of recharge of an unconfined aquifer with the
finite difference technique.

The finite difference technique is simple to
program, but manipulation of curved boundary conditions
which most likely appear in nature is difficult. The
finite element technique eliminates this problem and
the computer model can be developed in such a way that
it can be used for any type of boundary without modifi-
cation of the program.

Taylor and Brown [1967] presented finite element
solutions of steady seepage through dams using a network
of triangular elements. In their technique, the location
of the phreatic surface was guessed and subsequently
adjusted until the free surface boundary conditions were
satisfied. Neuman and Witherspoon [1970, 1971] improved
and extended their technique to problems of steady-state
and transient seepage with a free surface using linear
triangular elements. Desai [1972] used the finite ele-
ment procedure with isoparametric elements to analyze
transient unconfined seepage under drawdown conditions
in porous media. Sandhu et al. [1974] introduced the
variable time step analysis of unconfined seepage. France
et al. [1971], following Herbert [1968], used the finite

element method with isoparametric elements to analyze
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the free surface seepage problem. France [1974] has
extended this work to three-dimensional problems.

In all numerical solutions it is necessary to
modify the elements to accommodate the movement of the
phreatic surface. Based on the characteristics of
curved isoparametric elements, France [1971] introduced
a new method which permits one to locate the phreatic
surface without altering the position of the nodes for
each element. This procedure will be called "location
of the phreatic surface by use of fixed nodes." The
technique is adopted and modified in this study to
determine the location of the free surface with transient
recharge. This method will provide a tool to solve the
convective-dispersion equation in unconfined aquifers
with a time-dependent phreatic boundary.

2.3 Mechanics of Convective-
Dispersion Phenomena

The analytical solution of the convective-
dispersion equation, except for a small number of simple
one- and two-dimensional cases, is not easy to determine.
Ogata and Banks [1961] used Laplace transforms to obtain
the solution of the one-dimensional longitudinal disper-
sion equation. Harleman and Rumer [1963] gave a steady-
state solution for two-dimensional dispersion. Bruch
and Street [1967] formulated the analytical solution for

unsteady dispersion in an idealized study of
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one-dimensional seepage flow through an isotropic porous
medium. Hoopes and Harleman [1967] introduced an expres-
sion for the distribution of dissolved concentration
substances which were added to the steady-state flow
between a recharging and pumping well in a homogeneous,
isotropic aquifer of infinite, horizontal extent. Marino
[1974d] gave a mathematical solution to predict the
distribution of concentration in saturated porous media
resulting from a variable source concentration.

Much experimental work has been attempted to
investigate the behavior of dispersion coefficients and
their relation to the seepage velocity, porous structure,
and concentration gradient; literature concerning this
subject is given by Bear [1972]. Numerous investigators
such as Bear [1961], and de Josselin de Jong and Bossen
[1961], showed that the dispersion coefficient is a
function of true velocity and medium properties. Rumer
[1962] experimentally determined the longitudinal dis-
persion coefficient for one-dimensional transient flow
within a certain range of values of the Reynolds number.
Harleman and Rumer [1963] investigated the dependency of
the dispersion coefficient upon the Reynolds number and
porous structure. They conducted laboratory experiments
to study the convection and dispersion of salt water in
a two-dimensional confined aquifer. Shamir and Harleman

[1967] developed an analytical solution for two problems
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of dispersion in layered porous media and verified their
results experimentally. Fattah [1974] investigated and
verified a model of the dispersion coefficient tensor

in flow through anisotropic and homogeneous porous media.

The conclusion that can be made from the results
of these investigations is that the dispersion coeffi-
cient is a second-rank tensor and is a function of the
true velocity vectors, porous media properties, and the
Peclet number. However, there is still no universal
agreement regarding the degree of dependency of the dis-
persion coefficient on these parameters.

In the simulation of the movement of a tracer in
a porous medium, the flow and convective-dispersion
equations are solved simultaneously or consecutively.
The following paragraphs concern only those techniques
which are used to solve the partial differential equa-
tion describing the dispersion of a dissolved-chemical
constituent in a medium.

The finite difference method is the most com-
monly used scheme in attempting the numerical solutions
of the mass transport equation. Douglas et al. [1959]
employed an alternating direction-implicit procedure to
solve a two-dimensional, two-phase, incompressible flow
model. A similar technique was used by Peaceman and
Rachford [1962] in calculating the multidimensional

miscible displacement. The Crank-Nicolson approximation
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is frequently used in the area of mass displacement.
Fried and Combarnous [1971] summarize some of the ana-
lytical and numerical methods of resolution of the
convective-dispersion equation.

Pinder and Cooper [1970], and Reddell and
Sunada [1970], applied the characteristics approach to
solve salt water intrusion including the effect of dis-
persion. Bredehoeft and Pinder [1973] used similar
concepts to investigate the groundwater contamination
at Brunswick, Georgia. Konikow and Bredehoeft [1974]
used the method of characteristics to investigate the
chemical quality changes in an irrigated stream-aquifer
system. Robertson [1974] used the same approach to
model the transport of radioactive and chemical waste in
the Snake River Plain Aquifer. The method of character-
istics involves placing several moving particles in each
cell of the finite difference grid. The location and
concentration associated with each particle varies with
time. Although this method gives good results compared
to the analytical solution and is simple in concept, it
is tedious to program and is suitable only for specific
situations commonly encountered in the field [Pinder
1973]. 1In an effort to circumvent difficulties associ-
ated with the method of characteristics, Price et al.

[1968] introduced a Galerkin-based variational method to






16

approximate the solution of the dispersion equation, in
which various different base functions were used.

The finite element technique has been used
recently as a numerical tool to solve the convective-
dispersion equation. Guymon et al. [1970] and Nalluswami
et al. [1972] employed a finite element integration scheme
with triangular elements. Cheng [1973] solved the
convective-dispersion equation based on the Galerkin
procedure, using a family of triangular elements or
quadrilateral isoparametric elements. Pinder [1973]
also used the Galerkin-finite element formulation to
simulate the groundwater contamination in Long Island,

New York. Wang and Cheng [1975], using Dupuit's assump-
tion, solved the convective-dispersion equation by
quadratic isoparametric elements for homogeneous and
isotropic media with uniform horizontal flow and constant
dispersion coefficients. Segol et al. [1975] realized
that the velocity vectors used in the mass transport
equation should be continuous across elements. Thus,

they solved three equations (two components of Darcy and
one of mass conservation) simultaneously, and investigated
the distribution of salt concentration with steady flow.

In the present work the technique for solving the
convective-dispersion equation in unconfined aquifers with
a transient phreatic surface is presented, and higher order

approximations of time-dependent variables are introduced.



CHAPTER III

MATHEMATICAL REPRESENTATION

OF PHYSICAL SYSTEM

3.1 Background

In this study the dispersion of a tracer on a
regional as well as a local scale is investigated. For
the regional scale the two-dimensional horizontal plane
is considered, while for the local scale a vertical
cross section of a site is chosen. To predict the move-
ment of a tracer in a porous medium, the flow regime and
its behavior in the medium should be well understood.

In this chapter the system is defined, the mathematical
descriptions of flow in the aquifers with and without a
phreatic boundary are given, the convective-dispersion

equation is presented, and the initial and boundary con-

ditions are discussed.

3.2 Darcy Equation
Darcy established a linear relationship between
the seepage velocity and the gradient of the piezometric
head. This law, which is a consequence of the equation

of motion neglecting inertia effects, can be generalized

17
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for either a two- or a three-dimensional situation. It
is given by:
q. K.. 3¢
3! ij o e
V. = SRS T i,j=1,2,3 (3.2.1)
e e 3j
where Vi is the seepage velocity, a; is the specific

discharge, K is a second order tensor whose elements

ij
are called the hydraulic conductivities, ng is the effec-
tive porosity of the aquifer, ¢ is the piezometric head,
and xj are the Cartesian coordinates. The hydraulic
conductivity is a scalar coefficient which depends on
both solid matrix and fluid properties. It is defined

as

=odges i

Kij 5 i,j=1,2,3 (3.2.2)
where kij is the intrinsic permeability of the porous
matrix and depends solely on the properties of the solid
matrix, g is the acceleration due to gravity, and Vv is
the kinematic viscosity of the fluid.

From purely physical considerations, it would
seem that the hydraulic conductivity tensor must be sym-
metric [Eagleson 1970], in which case K12 = K21' Kl3 =

and K = K and its components reduce to six.

LSVE) 23 = K32r
Since the principal axes of the symmetric permeability

tensor will be orthogonal, it is possible to orient the
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coordinate axes (xl, X0 x3) parallel to the principal

axes so that only the three orthogonal terms remain.

Thus
DAL ) A4
1 ng le
Y ¢
V2= T n 3%
e 2
K ¢
33
Vy = = —= — (3.2.3)
3 ng 3x3

For incompressible fluid, the piezometric head

is defined (see Figures 3-1 and 3-2)

= B
¢ og T X (3.2.4)

3

where p is the pressure deviation from atmospheric pres-
sure, p is the fluid density, and X3 is the elevation
above datum. In Equation (3.2.4) the term p/pg is called
the pressure head, and X3 is known as the elevation head.
For confined aquifers the piezometric surface is
an imaginary surface to which water rises in a tapped
well (Figure 3-1). 1In unconfined aquifers the piezo-
metric surface coincides with the upper surface of the
zone of saturation, called the water table or phreatic

surface, where the pressure is atmospheric (Figure 3-2).
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Figure 3-1l.--Definition of Piezometric Head in a Confined
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Figure 3-2.--Vertical Cross Section of a Phreatic
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3.3 Regional Groundwater Flow

For regional problems, two-dimensional horizontal
flow is considered. The governing equations are well

established [e.g., see Bear 1972, Pinder and Frind 1972].

3.3.1 Basic Assumptions

The following assumptions are valid for regional
groundwater flow:

(a) The flow is essentially horizontal in a two-
dimensional plane. This assumption is valid when the
variation of thickness of the aquifer is much smaller
than the thickness itself. This approximation fails in
regions where the flow has a vertical component.

(b) The fluid is homogeneous and slightly
compressible.

(c) The aquifer is elastic and generally non-
homogeneous and anisotropic. The consolidating medium
deforms during flow due to changes in effective stress
with only vertical compressibility being considered.

(d) For the two-dimensional horizontal flow
assumption, an average piezometric head is used where
the average is taken along a vertical line extending

from the bottom to the top of the aquifer, i.e.,

b
1L
bay (X r¥pit) = & b (x) 1%y, Xq,t)dxy

where b is the thickness of the aquifer.






22

3.3.2 Two-Dimensional
Horizontal Flow

The combined equation of motion and continuity

for flow in a two-dimensional horizontal plane may be

written
3 3¢ ) _ L) !
Wi— [Tij ’:TJ] P+1I=58zr i, j=1,2 (3.3.1)

where Tij is the transmissivity tensor equal to the
aquifer thickness multiplied by the hydraulic conduc-
tivity Kij' S is the storage coefficient, t is time,

I is the vertical recharge or infiltration into the
aquifer, and P is strength of a sink (or source) function

[Pinder and Frind 1972] defined by

M
P = mzl P L) o () 16 D%y = (%)) 1 [x= (x5) ]
where Py, is the discharge (or recharge) from the aquifer,
M is the number of nodes in one element (details are

given in Chapter IV), and 8 is the Dirac delta function.

3.3.3 1Initial and Boundary
Conditions

3.3.3.1 Boundary conditions.--In order to solve

a partial differential equation describing a physical
phenomenon, it is necessary to choose certain additional

conditions imposed by the physical situation at the
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boundaries (S) for the domain (D) under consideration.
In general the equation for the boundary condition can
be written

BT, 24+ 80+ 8= 0 i,3=1,2 (3.3.2)

13 oxy i

where li are the directional cosines, and Bl, BZ’ and
83 are given functions of position and possibly time.
For flow through an aquifer, three different boundary
conditions are applicable:

(a) Dirichlet or prescribed potential: In this
case the potential is specified for all points along the

boundary

w
w

By # 0

<
n
1
™
N

(b) Neumann or prescribed flux: Along a boundary
of this type, the flux normal to the boundary surface is
prescribed for all points of the boundary as a function

of position and time

w™

3¢ e 4
Tij 5}; li = Y on S ; By #0

A special case of the Neumann condition is the impervious
boundary where the flux vanishes everywhere on the

boundary, i.e.,

83
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(c) Cauchy boundary: This problem occuré when
the potential and its normal derivative are prescribed
on the boundary in the combined form, and the entire Equa-
tion (3.3.2) is used. Different forms of Equation (3.3.2)
for three types of boundary conditions are summarized in
Table 3-1.

In general, for a flow problem one will have
mixed boundary conditions in which the Dirichlet condi-
tion will apply over a part of the boundary and the
Neumann condition will be specified for the remaining

portion [Bear 1972].

3.3.3.2 Initial conditions.--At the initial

time, either the piezometric heads are known in the
entire domain (D) or the hydrologic stresses (such as
pumping and recharge) are specified and boundary condi-
tions are known. For the second case the system has
reached the steady state, so the solution of the equation
9 9 & - 0 A1
T {Tij 5;7] P+I=0 i,j=1,2 (3:3:3)
i J
will yield piezometric heads for the initial time. The
procedure of solving Equation (3.3.3) is discussed in

Chapter VI.
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3.4 Phreatic Aquifer With Accretion

A typical cross section of a phreatic aquifer
with accretion is illustrated in Figure 3-2. The govern-
ing equations are discussed in literature [e.g., Bear

1972, France 1974].

3.4.1 Basic Assumptions

1. Usually immediately above the water table
(p = 0) there is a zone that is saturated or nearly so.
This nearly saturated zone above the phreatic surface is
called the capillary fringe or capillary rise, where the
pressure is negative. In Figure 3-3 a typical saturation
curve and pressure distribution in the capillary fringe
at equilibrium are shown. The capillary rise might range
from 2-5 cm for coarse sand up to greater than 200 cm
for clay [Bear 1972]. In this study it is assumed the
aquifer is fully saturated and the capillary fringe can
be ignored. The resulting idealized diagram is given in
Figure 3-3b.

2. When the saturated soil is being drained,
the free surface gradually descends and some water is
removed from the soil profile. In practice, the amount
of water removed per unit volume of soil depends upon
the water level, rate of drawdown, temperature, and
atmospheric pressure; but for theoretical analysis it

is usually taken as a constant and equal to the specific
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Figure 3-3.--Saturation Curve and Pressure Distribution
in the Capillary Zone. (a) Actual form,

(b) idealized form.
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yield. The specific yield Sy is thus defined to be the
volume of water drained over the gross volume of the
porous medium. Quantitative information on specific
yield is given by Todd [1959, pp. 23-26]. Because of
the assumptions made in the above paragraph, in this
study the magnitude of the specific yield is assumed
constant and equal to the effective porosity which is
defined to be the volume of water drained by gravity
from a unit volume of saturated soil.

3. In unconfined aquifers the amount of water

released from storage is usually small compared to the
water available from normal movement through the aquifer
and accretion, thus elastic specific storage (SS) can

be ignored [Herbert 1968; Neuman and Witherspoon 1971].

3.4.2 Governing Differ-
ential Equations

Consider an unconfined aquifer with its phreatic
surface depicted schematically in Figure 3-2. The
governing differential equation can be written

3 30 ) _ 39 e?
X [Kij ax.J =8 3¢  1.371.3 (3-4:1)
1 )
where S is the elastic specific storage, and the other
terms are defined previously. As discussed above, if By
can be neglected then Equation (3.4.1) will have the

form:
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e [Kij %] =0 i,5=1,3 (3.4.2)
3

1

3.4.3 Bounda and
Initial Conditions

Let D represent the flow region, which in general
may possess up to four kinds of boundary conditions: in
addition to the Dirichlet and Neumann conditions, a
phreatic (free surface) boundary and a seepage face.
Referring to Figure 3-2, the following boundary condi-
tions can be written:

1. At x, = 0 and x, = L, the piezometric heads

1 ol
are known functions of time (Dirichlet)

60, x3, t) =0
¢(L, x5, t) = 0 (3.4.3)

2. On the impervious boundary B, the normal flow

is zero

3¢ (x1,0,t)

14 ————5;;——— Ly =0 i,3=3 0<x;<L (3.4.4)

1

3. In the concept of successive changes of
steady-state values, it is assumed the flow at each
instant is steady but its boundary condition is time
variable [Polubarinova-Kochina 1962]. Therefore, the

flow rate for a small time increment is equal to the
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change of volume filled with fluid divided by the time
interval. Consider Figure 3-4 where the position of the
phreatic surface at times t and t + At is shown. In
represents the rate of accretion normal to the phreatic
surface. By taking a control volume in the direction of
the unit normal between two successive positions of

the boundary at times t and t + At, and writing the

continuity relation, one arrives at

Uirnis =9qe S0k (3.4.5)

Un is the propagation of the phreatic surface, a, is the

seepage flux, both along the unit normal, and ng is the

ﬂ_,r_,k__ﬂ—‘ Ground surface

e 4

Figure 3-4.--Phreatic Boundary With Accretion
[Adapted from Todsen 1971].
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effective porosity. Equation (3.4.5) is a nonlinear
boundary condition for Equation (3.4.2) because it con-
tains an unknown dependent variable, i.e., ¢, in the
flux term. As will be discussed in detail in Chapter VI,
by assuming that at the beginning of each time increment
the piezometric heads are known at the phreatic surface,
Equation (3.4.5) is linearized. Equation (3.4.5) after

multiplying by At can be written as

- - At 99 - I.
Us8; 8t = U At = (<K, . . - I°%3) (3.4.6)

i,j=1,3

where I is the accretion (positive downward), and Uj is
the velocity of propagation of the free surface at the
point of consideration on which the pressure is maintained
atmospheric. Todsen [1971] has also derived Equation
(3.4.5).

4, On the seepage face,

Initially, the surface configuration and the

boundary conditions are known.

3.5 Convective-Dispersion Phenomena

In this study the movement of a solute in a

saturated flow through a porous medium is considered.
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This solute will be referred to as a "tracer." The
symbol C will be used to denote the concentration of a
tracer, i.e., mass of tracer per unit volume of solution.
The term tracer will be used to represent any species of

interest in a solution.

3.5.1 Basic Assumptions

1. It is assumed that no chemical reactions
occur between the water and the aquifer or soil material
that affect the tracer concentration.

2., The porous medium is homogeneous and iso-
tropic with respect to dispersivity.

3. The flow regime is laminar.

4. In general, variations in tracer concentra-
tion cause changes in the density and viscosity of the
liquid. These in turn affect the flow regime (i.e.,
velocity distribution). At relatively low concentrations
it is assumed that the concentration does not affect the
liquid properties [Bear 1972]. This assumption leads to
the following conclusions:

a. the viscosity is constant,
b. the concentration does not affect the

velocity distribution.
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3.5.2 Hydrodynamic Disper-
sion Coefficient in a
Porous Medium

Hydrodynamic dispersion is the macroscopic out-
come of the actual movements of individual tracer parti-
cles through the pores and includes two processes [Bear
1972]. One mechanism is mechanical dispersion, which
depends on both the flow of the fluid and the character-
istics of the porous medium through which the flow takes
place. The second process is molecular diffusion which
basically results from variations in tracer concentration
within the liquid phase, and is more significant at low
velocities (e.g., less than 1 cm/hr). Thus the coeffi-
cient of hydrodynamic dispersion Dij includes the effect
of both the mechanical (or convective) dispersion Dij and

*
molecular diffusion (Dd)ij. Hence

*
=D + (D) (3.5.1)

2
Dij = Dij alij

2 * g0 a1 B
In Equation (3.5.1), (Dd) = Tide' where D. is the

d

*
molecular diffusivity and Tij is the medium's tortuosity.

ij

For homogeneous and isotropic media the value of T;j is
approximately equal to 2/3 [Bear 1972, pp. 109-112].
For most situations the contribution of molecular diffu-
sion to hydrodynamic dispersion is negligible when

compared to the mechanical dispersion coefficient. For

example, for a gravel with seepage velocity ranging from
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0.1 to 0.45 cm/sec, the magnitude of the dispersion
coefficient varies from 0.01 to 0.08 cmz/sec [Rumer
1962]. The molecular diffusivity for solutes in water
is very small and in the range of 0.5 to 4.0 x 10-5
cmz/sec [Welty 1969, p. 461].

Many investigators have attempted to model the
dependence of the hydrodynamic dispersion coefficient on
media, fluid properties, and flow characteristics, in
order to understand the dispersion process in flow
through porous media. A comprehensive discussion of the
factors affecting the dispersion coefficient can be
found in Bear [1972, pp. 605-616].

The mechanical dispersion coefficient for an iso-
tropic medium in Cartesian coordinates can be written

[Bear 1972] as:

Dyy=argbiV+ (apmapy) Vi ViV 15,98152,,3: i3:542)

In Equation (3.5.2) ap and ap; are the longitudinal and
transversal dispersivities of the medium, respectively,
Vi and Vj are components of the seepage velocity in the
i and j directions, V is the magnitude of the velocity,
and 6ij is the Kronecker delta. Its value is one when

i = j and is zero, otherwise. Equation (3.5.2) is com-

monly used by investigators to calculate the mechanical
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dispersion coefficient and hence is utilized in this
study. It includes the major parameters causing the
mechanical dispersion, and for any practical study it
is assumed adequate.

3.5.3 Convective-Dispersion

Equation in Cartesian
Coordinates

The equation describing the mass transport and
dispersion of dissolved chemical constituents in a

saturated porous medium may be written as

c , 3 )
l:a'E R Tad z|' [Bx.
r: B 1

2)

(1) (

ac
p. &
EF
[13 5

+ ‘3ch 0 (3.5.3)

(3) (4)

i,j=1,2,3
where C is the mass concentration of the tracer; Dij is
the coefficient of hydrodynamic dispersion, discussed in
Section 3.5.2; Vi is the component of seepage velocity;
éc is the mass flux of source or sink; and x5 is the
Cartesian coordinate. The theoretical basis and the
derivation of the diffusion-convection equation are dis-
cussed in detail by Reddell and Sunada [1970], Bear
[1972], and Bredehoeft and Pinder [1973]. In Equation
(3.5.3) the first term represents the time rate of
change of the tracer concentration. The second term
describes the convective transport of C in the X~

direction, which is proportional to the seepage velocity.






36

The third term is the transport (redistribution) of C
due to dispersion and molecular diffusion. Finally,
the last term represents the time rate of production or
decay of C.

The convective-dispersion equation is a nonlinear
partial differential equation of parabolic type. The
relation is nonlinear because of the convective term, and
because of the transport coefficient which is a function
of the dependent variable V. The convective term
&a/axg(vic)] is nonsymmetric and has been a principal
source of difficulty in the numerical solution of the
convective-dispersion equation [Guymon et al. 1970].

3.5.4 1Initial and Boundary
Conditions

3.5.4.1 Boundary conditions.--The general equa-

tion of the boundary conditions for the mass transfer
equation is similar to the flow equation. As discussed
in Section 3.3.3, it can be written:

y oC =
alDij T Ki + azc + oy = 0 (3.5.4)

where o and o, are known functions. Three differ-

e Fa s 3
ent boundary conditions are:
(a) Dirichlet or prescribed concentration

boundary condition:






37

(b) Neumann or prescribed flux:

DIy 95— % = - &
J i 1

for g = 0, one has the no-flow boundary.

(c) Cauchy boundary:

a
3C 2
' — — — — —
Dij T li + 3 C ] and 0y # 0
J 1 1
Again, as in the flow situation, usually along the
boundary one has mixed boundary conditions, i.e., the
Dirichlet condition applies over a part of the boundary

and the Neumann condition applies over the remaining

part.

3.5.4.2 Initial conditions.--As an initial con-

dition, the concentration distribution at some initial
time t = 0 at all points of the flow domain must be

specified:

C(x;,0) = £,(x;)

where fl is a known function of X, -
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3.6 Closure

In this chapter the mathematical description of
flow and dispersion phenomena in porous media is pre-
sented, and basic assumptions are introduced. Using the
concept of successive changes of steady-state values, the
nonlinear boundary condition for an unconfined aquifer
with a phreatic surface is linearized. For practical
purposes the hydrodynamic dispersion coefficient can be
replaced by the mechanical dispersion coefficient in
predicting the tracer movement. Finally, the flow and
convective-dispersion equations can be solved consecu-
tively. In the following chapter, the finite element
formulation of the flow and mass transfer equations is

given.






CHAPTER IV

FINITE ELEMENT FORMULATION

The finite element method is a numerical tech-
nique which is used to approximate a continuous partial
differential equation in a given domain D with specified
boundary conditions along boundaries S. The key features
of the finite element concept are [Norrie and de Vries
19737 ¢

1. The domain is divided into subdomains

or finite elements, usually of the
same form.
2. The trial solution is prescribed (func-

tionally) over the domain in a piecewise
fashion, element by element.

Domain D€ s
4/ (element)
Nodes
Domain D

Figure 4-1.--Domain Divided Into Finite Elements.
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A detailed formulation of the finite element method is
given by Zienkiewicz [1971], Norrie and de Vries [1973].
This technique has been utilized by several investiga-
tors [Javandel and Witherspoon 1968; Pinder and Frind
1972; Neuman and Witherspoon 1971; Desai 1972; Cheng and
Li 1973; and France 1971, 1974] to solve transient flow
problems in a confined or unconfined aquifer. Recently
the finite element procedure was also used to solve the
convective-dispersion equation [Cheng 1973, Pinder 1973,
and Segol et al. 1975].

In this chapter a brief discussion of the
Galerkin based finite element technique is given and the
method is used to discretize the space derivatives of the
flow and dispersion equations. The simultaneous solution
of velocity vectors is also described, that is, the
Galerkin formulation of the Darcy law is constructed and

velocity components are calculated at the nodes.

4.1 The Galerkin Finite Element Method

While the approximate minimization of a func-
tional is the most widely accepted means of arriving at
a finite element representation, it is by no means the
only possible approach. The Galerkin method offers an
alternative way to formulate a problem for the finite
element solution without using variational principles.

In the finite element technique the domain D is

divided into subdomains D which are called elements.
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Each element is designated by nodes. 1In this chapter
NELS represents the number of elements, M is the number
of nodes in each element, and NNDS stands for the total
number of nodes in domain D (Figure 4-1).

Consider a problem of solving approximately a set
of differential equations inwhich the unknown function {C}
has to be satisfied in the domain D with the boundary
conditions specified along S. The governing equation

can be written

f({cl) =0

A

Let the trial solution for this equation be C

N M

c = [N]{c} = nzl N C, (4.1.1)
where [N] = [N(Xi)] are shape functions (prescribed func-
tions of coordinates) and {C} = {C(t)} is a set of M

unknown parameters. In general, the equation of residual
(or error) is formed in the following way:
R=f ({ch) - £ _({c}) =-f _({C}) #0 (4.1.2)
D D D
The best solution will be one in which the residual R
has the least value at all points in the domain DS. Aan
obvious way to achieve this [Zienkiewicz 1971] is to

make use of the fact that if R is identically zero else-

where, then
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f _WRAD =0 (4.1.3)
De

where W is any function of the coordinates. If the num-
ber of unknown parameters {C} is NNDS and NELS linearly

independent functions W, are chosen, one can write a

k

suitable number of simultaneous equations as

j'De W, R dD = fDe w, £(IN]{chHdp = {0} (4.1.4)

where Wy is called the weighting function. If the shape

function Ny is to be chosen as the weighting function,
the process is termed the Galerkin procedure. The ele-

ment equations can be assembled by

NELS

jeWRdD =0 (4.1.5)
e=1 D
to yield the global relations for domain D.

4.2 Finite Element Formulation
of Flow Equation

The residual equation for flow in a confined

horizontal aquifer (Equation 3.3.1) can be written

as

99

T, .

17 9x.
J j

9 oL
3t gq ] 1,]—1,2 (4.2.1)
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The symbol " represents the numerical approximation of ¢.
Substituting Equation (4.2.1) into Equation (4.1.4),

one obtains

3 33) _
I:,g-+1> xi[ljaxJ]deD‘o k=1,...M (4.2.2)

By use of the Green theorem, the third term can be modi-

fied

3%
+ [se Nk Tij axj zi ds (4.2.3)

The last term in Equation (4.2.3) is nonzero only for

elements which contain the Neumann flux boundary condition

ij ox. i

.. 29 g dS=I N. Q. ds (4.2.4)
; e Tk 92

_IN
g® k
where Q, is known flux along the boundary. Substituting
Equation (4.2.3) and Equation (4.1.1) into Equation

(4.2.2) and rearranging the terms, one obtains

3Nk aN I
D k

¢
[De o Tij 5%, 35; ap + | S N N £ dD + IDe N, P dD
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Since ¢n and its time derivatives are independent of the
coordinates, they can be taken out of the integrals.

Equation (4.2.5) can be written in matrix form

(B1%{¢}€ + [u]€ % {01 = (F}€ (4.2.6)
where
N, ON
[B]e=3§n=Je[Ti. &NE -ax_“]do (4.2.7a)
D I F Ky
k,n=1,...M
m® = & =[ SN N dD > (4.2.7b)
Hkn De Nk n
i,9=1,2
{F}e=F§=—[eNkQ2dS—[ePdeD (4.2.7¢)
S D

It is assumed that the storage coefficient is
constant throughout the element and that the element
coordinate axes coincide with the principal direction of
the transmissivity tensor: the transmissivity can be
defined either at the nodes or at each element. Evalu-
ation of Equation (4.2.7) for different types of elements
is discussed in Appendix II. Upon evaluation of Egquation
(4.2.7) for all elements and transformation to a global
coordinate system, they are assembled by virtue of Equa-

tion (4.1.5) into a global relationship

[B] (¢} + I (2L} = (F) (4.2.8)
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The parameter {¢}, matrices [B] and [H], and force vector
{F} are the summation of the corresponding terms in
Equation (4.2.7) over all the elements in the domain D.
[B] and [H] are banded symmetric matrices. Equation
(4.2.8) is a set of first order linear differential equa-
tions with unknowns {¢} and can be solved simultaneously at
the given nodes in the space domain. The solution of
Equation (4.2.8) and a similar equation which is genera-
ted from the finite element formulation of the convective-
dispersion equation is presented in Chapter V.

The governing equation for the unconfined aquifer

with phreatic surface is

ij 9x.

5 3 .
L [K _q;J =0 i,5=1,3 (3.4.2)
i j

The finite element formulation has the form

B'1%{$1¢ = {F)€ (4.2.9)
where
ON, ON i,3=1,3

e _k_n
(B*1" = ]eKij %, %, L k,n=l,...m (4-2-10a)

D 1 )

e

{r} _-’Se Nk Q, ds (4.2.10b)

Assembling the element matrices leads to a system of equa-

tions in the form

(B1{¢} = {F} (4.2.11)
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4,3 Finite Element Formulation of
Convective-Dispersion Equation

The residual of Equation (3.5.3) for each ele-

ment can be written

>

5 vy o @ [m ) _2 . .

‘QJ

R =

QL

1

A

Again, C represents the numerical approximation of C.

In this development it is assumed that at every
small time step the velocity vectors Vi and the dispersion
coefficient Dij are known functions which are either
determined independently or are replaced by values of Vi
and Dij from the previous time step. Using Equation

(4.1.1), 6 and éc can be written

A M

C = nzl N, C, = [Nn]{Cn} (4.3.2)
» M . .

q, = nzl N (q.), = N T{(qa) } (4.3.3)

A

In order that C be an exact solution of Equation (3.5.3),
Equation (3.5.3) must be identically zero when 6 is sub-
stituted into it. To minimize the errors of residuals

as discussed in Section 4.1, the orthogonality condition

requires that

JDe R(C) Ny dDp = jDe R([Nn]{Cn})Nk dD= 0 (4.3.4)
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where D% represents the integral over the domain of an
element. Substituting Equation (4.3.1) into Equation

(4.3.4) yields

£, 0 dyy_d [p X)_¢ ’
. at+axi €v) e [Dij | " 9N D=0 (4.3.5)

By use of the Green theorem,

2 aN. 2
d [D. ec] N GaDhe j b k o€
fDe {axi ij axj k p® 13 8x; axj

i oG
+ Ise Ny Dij % %y 98 (4.3.6)

o

where li is the directional cosine of the boundary at the
node under consideration. Substituting Equation (4.3.6)

into Equation (4.3.5), one arrives at
A ~ . N
aC 3 G k 2aC
—+—(cv,)—q:‘N dap + D!. =— == dD
JDe It axi i c |k pe i axi axj

' aC
Jse Nk Dij 5;; li ds (4.3.7)

Expanding Equation (4.3.7) and substituting Equations

g

(4.3.2) and (4.3.3) yields

V.

(BNn
3xi

+ V.
Vlank {axi

ac

n
N N —= dD + N _N.
’De WMk T ]De[cnnk
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oN

n NnNk dD (4.3.8)

As discussed in Section 3.5.4, the general equation for

the boundary condition can be written as

Y.
0Dy 3x; Xyt oC *
j
Q
~ _ 93
If OLl—O,C—@

This boundary is the "Dirichlet" boundary.

al, the Galerkin formulation
3¢
N, D!. — &, d4s = N
fse k 7i3 axj i ]Se k
AOL2
- N, C — ds - N
Se k ul Se k

Substituting Equation (4.3.9)

aC
. n
N N, =—— dDb + C_ N
JDe n k ot JDe [ n n
ON, OdN
e ij Bxk §§E C,db=
D i J

3 0

a (3.5.4)

= f(xi» provided o, #0
For nonzero

of Equation (3.5.4) will be

o

a
__2.C_.&édS=
1 1
%3
2 4ds (4.3.9)
%1

into Equation (4.3.8) yields

9X. D
i

Y4+ v.c N
xl i n 'k
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o
3 0
- ]Se Nk ¥ ds + [De (qc)n Nn Nk dD

(4.3.10)

Equation (4.3.10) may be written in matrix form [Cheng

1973]

T
[1%(38} + (x1%+1s1%){c} + (81 [1]{C} =

m1%{q} + (F)°

where
e _ e _
[H]T = Hk,n = IDe Nk Nn dD
N, 3N
k1€ = K _ = [ o Dl 3 522 ap
Vv, oN
e _ .e _ 1 _n
[s1= = sk,n IDe [#nNk [Bxi + ViNk [Bxi[]dD
{E}® = g = iz-N as o, # 0
k g€ al k 1
e e O‘3
{F}=- = Fo=-| gz N ds o #0
S 1
If al = 0, then Ek = Fk = 0.

T

(4.3.11)

(4.3.12a)

(4.3.12b)

(4.3.12c)

(4.3.124)

(4.3.12e)

[I] is the identity matrix, and [E]e is the transpose of

the vector {E}€.
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It is assumed that the velocity vectors are known at the
nodes and that the dispersion coefficients are calculated
for each integration point using Equation (3.5.1).
Calculation of Equation (4.3.12) for different types of
elements is given in Appendix II. Upon evaluation of
Equation (4.3.11) for all elements, they are assembled

to obtain the global relations

135} + ([KI+[s]){c} + [(E)T(T]{C} = [mI{q_}+ (F}
(4.3.13)

[H] and [K] are banded symmetric matrices, while [S] is

a nonsymmetric matrix.

4.4 Finite Element Computation
of Velocity Vectors

Mathematical equations of velocity vectors are
discussed in Section 3.2. When the coordinate axes coin-
cide with the principal direction of the hydraulic con-

ductivity matrix, the Darcy equation can be written:

“i3 80
Vi = - H;— Y i,j3=1,2,3 ; Kij=0 when i#j
(4.4.1)
In two-dimensional Cartesian coordinates,
K
= - _11 3¢
vy = a X (4.4.2a)

e 1
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K
22 3¢
i iilhr 109 (4.4.2b)
2 ng 9%,

Velocity components play an important role in predicting
the tracer movement in a porous medium, because they
appear in the convective term and are used in the calcu-
lation of dispersion coefficients. Special attention
thus has to be given for the evaluation of the velocity
vector. Two techniques are discussed below:

1. Direct calculation in this study is defined
as the technique in which the velocity vectors are cal-
culated using only the gradient of the shape functions
multiplied by the corresponding piezometric heads, ele-
ment by element, and is outlined in Section 4.4.1.

2. Simultaneous calculation is defined to be a
procedure where the continuity of the velocity vectors
is maintained and the gradient of the piezometric heads
is multiplied by a weighted coefficient, as it will be
shown in Section 4.4.2. The conjugate function concept

is also used when referring to a similar method.

4.4.1 Direct Calculation

One of the most common methods to calculate the
velocity vectors is to substitute Equation (4.1.1) into

Equation (4.4.2). The resulting equation will be
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K N,

v, = - nll = o (4.4.3a)
e 1
K N

v, = - n_22 = (4.4.3b)
e 2

where ¢n's are piezometric heads at the nodes and are
known. In Equation (4.4.3), BNn/axl and aNn/ax2

are first derivatives of the shape functions and are
evaluated at the point of interest. Subscripts for x
represent the coordinates, and subscripts for shape

functions represent the node numbers. For example, for

the element in Figure 4-2 with four nodes, Vl and V2 at
point A are
4 3
%2
2!

X

Figure 4-2.--A Typical Finite Element.

Bl s S §EE'¢1 *ZEE 92 2N3 ?3 ;Ei %4
A e | 51 % %1
N
V2| - -z ?_l“’l*ziq’z*s_:;%*:l%
A 23 %2 ) %2 %2
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with the BNn/axl and BNn/ax2 computed at point A. This
procedure is easy to apply and provides accurate results
at the centroid of the element, but the velocity compo-
nents become discontinuous along the element edge as
will now be demonstrated.

Consider linear rectangular elements as shown in
Figure 4-3a. The piezometric head ¢ and its first deriva-
tive with respect to x

along lines AB, and Bf:areplotted

1 1
in Figure 4-3. Figure 4-3b shows that the piezometric
heads are continuous between two elements, and Figure 4-3C
demonstrates how 8¢/3xl is discontinuous between the
elements. The gradient of ¢ takes different values
depending on which element is used to compute its value.
The discontinuity of the first or higher derivatives is
also discussed by Zienkiewicz [1971]. To overcome the
difficulties associated with discontinuity of the first
derivative at the nodes, different techniques such as
the conjugate function concept [Gallagher 1975] and
Hermitian shape function [Zienkiewicz 1971] are used.

In the next section the technique of simultaneous
calculation of the velocity vectors at the nodes is pre-
sented.

4.4,2 Simultaneous Calcula-
tion of Velocity Vectors

In order to provide continuous velocity functions

between elements at the nodes, a smoothing technique,
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Axl
B I

A By B, S
!
||
B ?
!

7
I
| |
| | - x,
[l (b)
Il
[ 30
| 1 le
|
|
[
I
| | - x
| 1
I

Figure 4-3.--Interelement Zone Depicting How Continuous
Function ¢ May Have Discontinuous Gradients
as Axl -~ 0.
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namely, the Galerkin-based finite element formulation
of Equations (4.4.2), is developed. The concept is
similar to that presented by Zienkiewicz [1971, pp. 44-
46] and also used by Segol et al. [1975]. 1In the pro-
posed technique which is outlined below, the computer
storage and the complication of the solution process are
reduced considerably.

Let Vi, Vg represent the simultaneous calculation

of V1 and V2. The piezometric head and velocity vectors

can be written in terms of nodal parameters.

M
$ = N1 {6} = ] N_ o (4.4.4a)
n=1
v = N1 {vE) = 1\24 N (VS) (4.4.4b)
1~ 1° - ney1 D 1'n te
vS = INI{VS) = »24 N (VS) (4.4.4c)
2 27 L %n 2'n 3.8

Equation (4.4.4) will assure that continuity of the vari-
ables is maintained along the element boundaries, regard-
less of the type of elements used (by definition of the
shape function). The technique of calculating the

velocity vector along the x,-coordinate is presented

1

below. The residual of Equation (4.4.2a) is

= yS 4 L1 239 (4.4.5)
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The definition of V. is given by Equation (4.4.2a)

1

where Kll’ n and ¢ are known parameters. Substi-

el
tuting Equation (4.4.5) into Equation (4.1.4) yields

[ N [vS + 11 2 dap = 0 (4.4.6)
De k 1 ne 5xl

Expanding Equation (4.4.6),

N K N
c 11 9¢
N, Vo7 dD + N, —
’De k 1 IDe k n Bxl

db =0 (4.4.7)

Introducing Equation (4.4.4) into Equation (4.4.7) gives

Kll BNn
N, N (Vy) dDb = - N, —— —— ¢_dD (4.4.8)
De kn 1'n De k ne axl n

Since (Vi)n is independent of the space coordinate, it

can be taken out of the integral
K ON
C _ _ 11 n
{(Vl)n}( NN dD = - == IDe N, 55— ¢, dD (4.4.9)

The right-hand side of Equation (4.4.9) is known and

becomes a column matrix. Thus

[H]e{<v‘l:)}e = {Fl}e (4.4.10)

H]® = 8¢ = 1 o Ny N_ dD (4.4.11)
D
k,n=1,2,...M
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N
F,1% = (F)g = - —ll-]'Nk§§2-¢ aD (4.4.12)
D

)
1l'k ne o 1 n
k,n=1,2,...M

Constructing a global matrix yields
c _ .
(m1{v]} = {F;} (4.4.13)

[H] is a banded square symmetric matrix, and {Ff'is a
known column force. The solution of Equation (4.4.13)

will give the x,-component of velocity at each node

1
simultaneously. Similarly, for the xz—component of
velocity the resulting equation will be

[H]{Vg} = {F,} (4.4.14)

e e K22 8Nn
{F£'= (Fz)k = - == | o N 5 ¢n dp (4.4.15)
D

ng k 3x2
The similarity of this method to the conjugate function
concept is shown below. Let {Vi} be the simultaneous

solution of the x,-component of velocity and {Vl} be the

1
values of the velocity defined by Equation (4.4.3a) at
specified points. Substituting Equation (4.4.3a) into

Equation (4.4.8) yields
C —
{vl} [De N N dD = IDe {vl} N, dDp

Constructing the global relations and solving for {Vi} yields
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-1
'{v‘l’} = U vy} N dD] U N N dD] (4.4.16)
D D

This expression is identical to Oden's conjugate function
concept [see Gallagher 1975, pp. 261-268]. Oden employed
this concept to calculate the stress field. He used
superscript c to represent the conforming of the stress
field.

Oden states that the stress calculated by the
above mentioned method minimizes the mean square error
between the nonconforming stress field (in our case, Vi
i.e., direct calculation of the velocity vector) and the
conjugate stress field (in our case, Vi, i.e., simulta-

neous calculation of the wvelocity vector).






CHAPTER V

FINITE ELEMENT FORMULATION OF

TIME DERIVATIVE

5.1 Introduction

The variation of transient field variables
described by the finite element method results in a sys-

tem of first order linear differential equations:

[A]{C(t)} + [H]{agét)} = {F(t)} (5.1.1a)
{co)} = CO a known function (5.1.1b)

where [A] and [H] are usually banded symmetric or nonsym-
metric matrices and {C(t)} the unknown variable such as
temperature, piezometric head, or mass concentration.
In Equation (5.1.1), {é%éEl} is the time derivative of
{c(t)}, and {F(t)} is the known force vector. The symbol
{ } represents a column matrix, and [ ] represents a
square matrix. In Equation (5.1.1), t also can be
replaced by other independent variables such as xl, Xy
and Xq.

The differential Equation (5.1.1) is normally

integrated numerically using a finite difference method

with the aid of a digital computer [Donea 1974]. 1In the

59






60

derivation of finite difference relations it is customary
to expand the first or second order derivatives by the
Taylor series expansion, and then by truncating higher
order terms, find an approximation for the desired
derivative [Carnahan et al. 1969]. 1In this chapter the
finite element concept is used to obtain the finite dif-
ference relations for unknown C and its first and second

derivatives. The results will have the following form:

0
]

alC(t+At) + aZC(t) + a3C(t-At) + .

+ arC(t+[l—m]At) (5.1.2)

= 1 ‘
3t Bt I:Blc(t+At) + B,C(t) + BC(t=0t) + - -

+ BrC(t+[l—m]At{} (5.1.3)
32c = 1 [} C(t+At) + v,C(t) + y,C(t-At) + - = -
3t2 (At)z 1 2 3

+ ¥, Cler Lol o) | (5.1.4)

In Equations (5.1.2) through (5.1.4), o, B, and y are
coefficients which will be evaluated; r and m are
defined below. Using Equations (5.1.2) and (5.1.3) the
recurrence formula for Equation (5.1.1) will take the

form
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222

a
(ay; [A] + 722 [HD) {C(t+at)} = (ay, [A] + 722 [H]){C(t)}

532
& (331[1\] 4 o [H]) {C(t-At)} + - - -
ar2
+ (a  [2a] + 2 {c(e-(m-1)at)} + a)4{F(t+at)}

+ay3{F(6)} + ag {F(t-a6)} + + + + + a J{F(t-(m-1))at}
(5415

The second order time derivative usually appears in
dynamic problems and thus its approximation is given in
this chapter. But no recurrence formula which involves
the second derivative is derived in this study. In Equa-
tion (5.1.5), {C(t+At)} is a set of unknown variables and
the right-hand side of the equation are all known values.
The integer r = m+ 1, m =1, 2, ..., MA, where MA is the
order of approximation. For example, for first order
approximation MA is one, i.e., only one previous value

of the unknown variable is used. If one uses two previ-
ous values of the unknown variable it is termed second
order approximation and MA will be two. In this chapter
the related equations up to MA = 3 have been developed
and in Chapters VIII and IX the effects of using first
and second order approximations on the accuracy of the

numerical results are discussed.
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5.2 Finite Element Formulation

In the finite element technique the unknown
variable within an element can be evaluated by

M
c() = ] ¢ N () (5.2.1)

n=1

where C is the unknown variable, Cn is the value of C at
node n, M is the number of nodes at each element, Nn is
called the shape function, and X is the independent
variable such as time or Xyr Xy, X3 First and second

derivatives of C with respect to A are

2 M AN,
ac(y) ) n
= c 0 (5.2.2)
X ol Cn 3
2
24 M a%N
LSS0 T (5.2.3
N n=1 ™ 3

In the following sections the basic relations will be

derived in terms of A and then replaced by t.

5.3 First Order Approximation

The simplest one-dimensional finite element is a
linear element (Figure 5-1) with two nodes. Let the

distance between these nodes be AX.
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P- AX -4
- e —» )
A Ay

Figure 5-1.--One-Dimensional Finite Element.

The shape functions for this element are

A-Az Ay—A

2
N = =
1 Al-Az AX
(5.3.1)
o = A—Al _ A-Xl
2 kz-kl AX

where Al and kz are the values of the independent vari-

ables at nodes 1 and 2. Let Cl and C2 be the values of

the dependent variable at nodes 1 and 2, respectively.

Substituting Equation (5.3.1) into Equations (5.2.1) and

(5.2.2) yields

aC 1

DN X -C.) (5.3.3)

Il

In order that this development be consistent and might
be compared with existing methods in the literature,

define the variable 0:
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f = —0mm——— (5.3.4)

such that

8 =0 for X =2

and 0

In
(a»)
In
-

Introducing 6 in Equations (5.3.2) and (5.3.3) yields

C = 6C2 + (l—G)Cl (5.3.5)

aC 1
FoN AN [C2—Cl] (5.3.6)

Equations (5.3.5) and (5.3.6) can be written in the form

C = alcz + azcl (5.3.5a)

oC _ 1

3% - 5x [B1C2*B,Cy] (5.3.6a)
where al = 0, 0y = 1-6, Bl =1, 82 = -1, and the values

of y are zero. The variations of a and B with respect
to 6 are shown in Figure 5-2.

Equations (5.3.5a) and (5.3.6a) in terms of time

have the form

C = alC(t+At) + aZC(t) (5.3.7)
oC _ 1
T~ AE [BlC(t+At) + BZC(t)] (5.3.8)
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Figure 5-2.--Variation of o and B With 6 for First
Order Approximation.
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Substituting Equations (5.3.7) and (5.3.8) into
Equation (5.1.1) yields the first order recurrence
formula for Equation (5.1.1). Some of the possible dis-
cretizations of Equation (5.1.1) for different 0 are

given below.

(a) A =+t +At; 6 =1
1 1
([A]l + 7% [H]) {C(t+At) } = X3 [H]I{Cc(t)} + {F(t+At)} (5.3.9)

In Equation (5.3.9), {C(t+At)} is unknown and {C(t)} and
{F(t+At)}, the forces at time t + At, are known. Equation
(5.3.9) is a simple form of the pure implicit approxima-

tion of Equation (5.1.1).

% [HT{C (t+At)} = (le (H] - [A]){c(t)} + {F(t)}  (5.3.10)

Equation (5.3.10) is an explicit approximation of Equa-

tion (5.1.1).

(c) X = t+(At)/2; ©6 =1/2 (i.e., at the center

of the element)

1

[-2— (A] + Zl€ [H]]{C(t+At)} = [~ [H] - % (a]{c(t)}

({F<t+At>} + {F(t)}] (5.3.11)

+
N+
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This relation is identical to the Crank-Nicolson recur-

rence formula [Donea 1974].

- 2 At. =2 _
(@) X =t+5SA0t; 0=%=0.6667
2 1 _ (1 1
3 [A] + At [H]J{C(t"rAt)} = 12t [H] - 3 [A]]{C(t)}
1 2
+ 3 {F())} + 5 {F(t+at)} (5.3.12)

This equation is identical to the Galerkin recurrence
linear interpolation given by Donea [1974], except that
the coefficients of the related formula given by Donea
[Equation 4] need to be multiplied by two.

The recurrence formulas introduced by Equations
(5.3.9) through Equation (5.3.12) are based on the back-
ward approximation. Moreover, with changing 6 one can

derive a different recurrence relation for Equation

(5.1.1).

5.4 Second Order Approximation

In a quadratic element (Figure 5-3) there are

three nodes with positions Al, xz, and A3 such that X, =

2
Al + AX and A3 = Az + AX.
F-——-AA ——-{-&——-Ak ——aﬁ
2 3
f )\' —Q - Y
1 2 As

Figure 5-3.--One-Dimensional Quadratic Element.
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The shape functions for this element can be written

Again define

such that
9 =
0 =
and
0 <

(A=2,) (A=23) } (A=25) (A=A 3)
2
(Al—kz)(kl-x3) 2(AX)
(A-Al)(k—k3) _ _(A-Al)(l—k3)
2
(Az—kl)(kz—k3) (AX)
(A—Al)(k—kz) _ (A—Al)(l—kz)
2
(A3—Xl)(k3—A2) 2(AX)

the variable

x—xz

A3=A,
0 for A = AZ
l for X = A3
8 <1

The shape functions in terms of 6 can be written

N[

N[

(6

(6

- 6)

+ 1)

(5.4.1)

(5.4.2)

(5.4.3)
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Substituting the shape functions and their derivatives

in Equations (5.2.1) through (5.2.3) yields

C = a1C3 + u2C2 + a3Cl (5.4.4)
oC _ 1
52c 1
= [y,Cy + v,C, + v,C.] (5.4.6)
812 (AX)Z 173 272 371

The values of o, B, and Yy in terms of 6 are given in

Table 5-1.

TABLE 5-1.--Values of a, B, and y for Second Order
Approximation in Terms of 6.

n dn Bn Yn

1 5 (82 + 0) o + .5 1

2 1 - g2 -26 -2
2

3 5 (6% - 9) o - .5 1

Equations (5.4.4) through (5.4.6) represent the finite
difference approximation for C, 3C/3X, and 82C/8A2,
respectively, which have been derived using the finite
element technique. The variations of a and 8 with
respect to 6 are shown in Figure 5-4. For any given 6,
the values of the coefficients can be read directly from

Figure 5-4 and substituted in the desired equation.
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[}
1.5 F B
1: P
5] ”’,_——”’83
o S SN S g : p
0. v s ) 5k by sl ve8e GO0 A
-.5
= e
-1.5 [
-2, r 32

Figure

5-4.--Variation of a and B With 6 for Second Order
Approximation.
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For the case where the independent variable is time, Cs,
C2, Cl' and A can be replaced in Equations (5.4.4)
through (5.4.6) by C(t+At), C(t), C(t-At), and t, respec-

tively. Thus

C = alC(t+At) + aZC(t) + a3C(t-At) (5.4.7)
3C _ 1 g c(t+At) + B.C(t) + B.C(t-At)] (5.4.8)
5t - AE P 2 3 -4.
32c 1
= [y C(E+AE) + Y,C(£) +y4C(t=At) ] (5.4.9)
2 eyl 2 3

With the aid of Equations (5.4.7) and (5.4.8), it is pos-
sible to obtain a second order time approximation for
Equation (5.1.1). The recurrence formula has the form

of Equation (5.1.5), and values of the coefficients for
the first and second order time approximation for differ-
ent 6 are given in Table 5-2. It is possible to obtain a
set of recurrence formulas for Equation (5.1.1) by chang-
ing the 6 value.

An interpretation can be made from Figure 5-4 by
noting that the coefficients of C(t+At), C(t), and
C(t-At) vary with respect to 6. At 6 = 0, C(t) plays a
dominant role, and as 6 increases the effect of C(t)
decreases while that of C(t+At) increases. At 6 = 2/3,
the value of o, is equal to Oy This means that at

1
this 6, C(t+At) and C(t) are almost equally weighted.
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TABLE 5-2.--Values of the Coefficients of Equation
(5.1.5) for the First and Second Order
Time Approximation.

Method (0) 3811 212 213 31 3y 33 &3 23

First Order

8 = = (Crank-Nicolson) .5 1. .5 -5 1. .5 0. 0O,
2 . 2 2 1 1
6 = 3 (Galerkin) § 1. § 3 1. § 0. 0.
6 =1 (Implicit) 1. 1. 1. O. 1. 0. 0. 0.
Second Order
1 3 3 3 3 1
6 = -5- § l. § _Z l Z —8- O. =
g2 5 7 > 5 &8 5 1 1 _
-3 9 6 9 9 6 9 9 6
3 1
6 =1 l. E l. 0 2 O 0 —5
Steady State 1. 0. 0. 0. 0. 1. 0. 0.

C(t-At) also appears in the calculation. For 6 =1, oy
and 05 both are zero, and all B values are nonzero. In
Chapters VIII and IX, the numerical results obtained by

using different 0's are compared.

5.5 Third Order Approximation

For the cubic element with four nodes as shown

in Figure 5-5, the shape functions are:
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@ —m )

1 2 Aq Ay

‘~—A)\—+— AA—*’<—A)\ —"l
B! .2 é 4
A A

Figure 5-5.--One-Dimensional Cubic Element.

N - (X—Xz)(X-l3)(X—l4) _ (A-lz)(X-K3)(X—X4)
1 3
(Al-kz)(kl—k3)(kl—k4) -6 (A))
. (X—Al)(A-A3)(A—A4) _ (A—Al)(k—k3)(A-A4)
2 3
(Az—kl)(Az—AB)(xz—A4) 2 (AXN)
. (A—Al)(A—AZ)(A—A4) _ (A-Al)(A—AZ)(A—A4)
3 3
(A3—Al)(A3—A2)(A3—A4) =2 (AX)
_— (A-Al)(x—xz)(x—x3) ) (A—Al)(k—xz)(x—k4)
4 3
(A4-Al)(x4—A2)(A4—A3) 6 (AN)
(5.5.1)
Define the variable 6:
A= A
g = — 3 (5.5.2)
A4 - A3
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such that

) 0 for XA =X

6 =1 for A = A4

and

0 01
The shape functions in terms of 6 can be written

_ 1
N1 =z [6(6+1) (1-6)]

[6(6+2) (6-1)]

z
N

I
N =

[(6+1) (6+2) (1-86)]

2
w
]
N|

N, = % [6(6+1) (642) ] (5.5.3)

The value of C and its first and second derivatives with

respect to A can be written in the following form:

C = alc4 + a2c3 + a3C2 + a4cl (5.5.4)
LI [g.C, + B,C, + B,C, + B,C,] (5.5.5)
ERN AN 174 273 372 4-1 T

BZC = 1 [y.C, +y.C,+Yv,C,+Y,C.] (5.5.6)
22 an2 Y154 TYRE3 T Y35 T Y -

The values of a, B, and Yy in terms of 6 are given in

Table 5-3.
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TABLE 5-3.--Values of o, B and y for Third Order
Approximation in Terms of 6.

n % Bn Yn

1 3 6(0+1) (1-0) $ (1-30%) -

2 3 0(0+2) (6-1) 2 (30%+20-2) (36+1)
1 1 .02

3 3 (6+1) (6+2) (1-6) - % (36%+40-1) - (36+2)

4 £ 0(6+1) (8+2) T (30%+60+2) (6+1)

The variations of a and B with respect to 6 are given in
Figure 5-6.
For a time-dependent variable, Equations (5.5.4)

through (5.5.6) can be written

C = alC(t+At) + a2C(t) + a3C(t—At)
+ 0,C(t-2At) (5.5.7)
aC _ 1 _
5t~ AE [BlC(t+At) + 62C(t) + B3C(t At)
+ B4C(t—2At)] (5.5.8)
and
o’c _ 1 [Y.C(t+ht) + Y.C(t) + y.C(t-At)
8t2 (At)? 1 2 3

+ v ,4C(t-24t)] (5.5.9)
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Figure 5-6.--Variation of o and B With 6 for Third Order
Approximation.
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To obtain a third order recurrence formula for a set of
first order partial differential equations, Equations
(5.5.7) and (5.5.8) need to be substituted in Equation
(5.1.1). The coefficients of Equation (5.1.5) for dif-
ferent 6 for third order time approximation are given

in Table 5-4.

5.6 Summary

In this chapter the recurrence formula for the
first, second, and third order approximations for a
system of first order differential equations is derived,
and the procedure of obtaining the finite difference
relations using the finite element concept is presented.
In this study the first order approximation was used in
the solution of the flow equation, while the first and
second orders were employed for solving the convective-
dispersion equation. The third order was not examined
in this work but for sake of completeness it was intro-
duced.

It will be shown in Chapters VIII and IX that
& = 2/3 provides less oscillatory and more reasonable
results for the flow and mass transport equations.
However, choosing the value of 0 depends on the nature
of the equation, the numerical technique, and the
required use of previous known values. Giving any
specific value for 0 at this stage would be premature.

More work needs to be done in this area.
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CHAPTER VI

SOLUTION OF SYSTEM EQUATIONS CONCERNING
THE FLOW IN CONFINED AND

UNCONFINED AQUIFERS

In this chapter the procedure of solving the sys-
tem of equations concerning the flow in confined and
unconfined aquifers and the alternate methods, i.e.,
direct and simultaneous, of calculating the velocity
vectors will be discussed. For locating the free surface
in the unconfined aquifers two procedures, namely, modi-
fication of the elements and use of fixed nodes, are
presented. The latter technique will provide a tool to
solve the convective-dispersion equation in the phreatic

aquifers.

6.1 Regional Groundwater Flow

Finite element formulation of the combined equa-
tion of motion and continuity for flow in a two-
dimensional horizontal plane leads to a set of first-

order partial differential equations of the form

(B] {¢} + [HI(ZH = (r) (4.2.8)

79
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with the unknowns {¢}, which is to be solved simultane-
ously at a given time for a series of nodes in the (xl,
x2) domain. The [B] and [H] matrices and {F} vectors are
known; their definitions are given in Section 4.2, and
methods of evaluating these functions are outlined in
Appendix I.

6.1.1 Computation of Piezo-
metric Heads

The discretization of the time derivative of Equa-
tion (4.2.8) and similar equations is discussed in detail

in Chapter V. Equation (4.2.8) can be written as

[Bl1{o(t + At)} = {G} (6.1.1)
where

= 212

[B] = a;,[B] + = [H] (6.1.2)
and

{Gg} = [B]+i£2[H] + a, {F(t+At)}

= %21 At 13
+ a23{F(t)} (6.1.3)

The values of the coefficients are given in Table 5-2.
Typical boundary conditions are discussed in Sec-
tion 3.3.3. From these conditions the lateral recharge
Q2 as well as the Dirichlet boundary are assumed to be
time invariant. For many applications, time variable

pumping must be considered at various nodes throughout
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the flow domain. In the computation it is convenient

to handle the pumping as a series of step functions dis-
cretized with respect to time as shown in Figure 6-1.
Thus at any time interval recharge or discharge will be
constant.

There are different numerical techniques which
can be employed to solve the system of Equations (6.1.1).
Since [B] is a banded symmetric matrix with nonzero terms
in the diagonal, it is possible to use Cholesky's square
root procedure to decompose the matrix [B] (upper band)
and solve with the companion subroutine for the unknown
{¢} as outlined by Weaver [1967], and employed by Pinder
and Frind [1972] for groundwater flow. The required
storage space for [B] in the computer will reduce to
NNDS x MAXBW, where NNDS is the number of unknowns {¢}
and MAXBW is equal to the upper bandwidth plus one.

The parameters such as transmissibility, storage
coefficient, and time step participate in the construction
of the [B] matrix. Thus if one desires to change any of
the above mentioned parameters, it will be necessary to
regenerate the [B] matrix again.

Equation (6.1.1) can also be considered to be a
"steady-state" problem if the coefficients for the steady-
state condition from Table 5-2 are used. The resulting

equation for this state is
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Representative discharge curve

yd

a T
| |
| | [
| | |
o I l
o | |
H I
o I | |
Step |
@ ! o |
o ! change | I
A I | | I :
| ' | | I
| ' | | I
l | 1 . :_ t
Time

Figure 6-1.--Dividing the Actual Discharge Curve Into
a Series of Step Functions.
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[B1{¢} = {F} (6.1.4)

6.1.2 TIntroducing the
Dirichlet Boundary
Condition

The placement of the Dirichlet boundary condition
into the global equations can be accomplished by the
deletion of rows and columns [Norrie and de Vries 1973].
Assume in Equation (6.1.1) that the piezometric head at
node k is known. Equation (6.1.1) in expanded form can

be written

- ~ N N
B B B r<1> G

(6.1.1a)

Since ¢k is known, all coefficients in the [ﬁ] matrix at
the kth row can be set equal to zero except the diagonal
terms (i.e., Ekk) which will remain unchanged. The G
is replaced by Ekk¢k’ Equation (6.1.la) will have the

following terms:







f_ _ _ ~~ r\ — ~
Bll « o Blk o o e Bln ¢l Gl
0 « . . Bkk . . .0 < ¢k >==§ Bkk¢k >(6.l.5)
Bnl .« e . Bnk o o . Bnn ¢n Gn
~~ — ~ —~— J
Usually B has a positive value. In the computer pro-

kk
gram a check has to be made to be certain that the value

of Ekk does not fall below a certain small value, e.g.,
one. Otherwise Ekk can be changed to any large value.
In the computer program, ékk is replaced by the average
value of the diagonal terms. Equation (6.1.5) can
handle the Dirichlet boundary condition, but the matrix
is then banded and nonsymmetric. Since Cholesky's
method is used to solve the system of equations, the
matrix of Equation (6.1.5) must be symmetric. This

can be accomplished by subtracting Eik¢k7 k,i=1. . .n,
i # k from both sides of Equation (6.1. ). The final

form becomes
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(_ _ ~ — S~ — _ ~
Big = -0 - - Byy 41 G1 Bk %
0 R . < S > =< By, i >(6.1.6)
Bnl . « . 0 e e . Bnn ¢n Gn—Bnkd)k

This procedure is carried out for all specified piezo-

nmetric heads prior to decomposition of the [B] matrix.

6.2 Solution of Flow Vectors

The mathematical equation of the velocity vectors
is discussed in Section 3.2 and the methods of solution
are described in Section 4.4. Once the piezometric
heads have been determined, flow (or velocity) vectors

can be computed.

6.2.1 Direct Calculation

In the direct method, Equation (4.4.3), i.e.,

Kij aNn
Vit n 3w, %
e °%y

i,9=1,2 (4.4.3)

is employed to compute the velocity vectors. This tech-
nique provides accurate results at the centroid of each

element, but the velocity components calculated by this
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procedure are discontinuous across element boundaries.

The magnitude and direction of the velocity vectors

(Figure 6-2) can be obtained by

lv.| = W2 + v2 j=1,2

Jj 1 2

<
I

(6.2.1)

R
]

arctan (V2/V1)

6.2.2 Simultaneous Calculation
of Velocity Vectors

Simultaneous calculation provides continuous
velocity components at the nodes. The finite element
formulation of this technique is presented in Section

4.4.2. For example, for Vi the element equations are

f
e
H = N, N_ 4D (4.4.11)
kn Jpe k n
e [ xn1 N,
JDe e 1

The global matrix is

[H]{Vi} = {F.} (4.4.13)

1

Integrated forms of Equation (4.4.11) and feaNk(aNn/axl)dD
D

for different types of elements are given in Appendix IT.

A similar global relation is obtained for ng
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Vi

Xy

Figure 6-2.--Velocity Vectors in the x Xy Plane.

1’

H1{V3) = (F,} (4.4.14)

The [H] matrix is a banded symmetric matrix. Cholesky's
square root procedure (see Section 6.1.1) is used to
decompose the matrix. As long as the nodal coordinates
are fixed, the [H] matrix can be decomposed and
stored with no need to recalculate it.

If piezometric heads and velocity vectors
were to be calculated at the same time in a computing
scheme, the size of both the [H] and [B] matrices
would increase up to 3NNDS x 3NNDS with many zero
terms, NNDS being the number of nodes in the system.

This procedure requires a great amount of computer
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memory, and the transient solution of the problem is
tedious. In this method, besides the boundary conditions
for the piezometric heads the conditions for the velocity
vectors need to be specified. But the procedure out-
lined in the preceding paragraph, based on the simple
realistic assumption that the piezometric heads can be
calculated independently of the velocity vectors, pro-
vides great simplification. With the construction of
the [H] matrix which requires only MAXBW x NNDS storage
core, the velocity vectors can be calculated at the nodes.
Equation (4.4.12) can be calculated for each element and
added to {Fl}, a column matrix with NNDS rows. Similarly,
'{Fz} will be evaluated. The [H] matrix for Vi and Vg
is identical. Thus the solution of Equation (4.4.13) and
Equation (4.4.14) will provide the velocity vectors at
each node. Equation (6.2.1) can be used to obtain the
magnitude of the velocity and its direction at each node.
Known velocities at the node can be handled by deletion
of rows and columns, as outlined in Section 6.1.2. 1In
Section 8.2 the two methods for calculation of velocity
vectors are compared.

6.3 Solution of System Equation for Flow

in Unconfined Aguifer With Transient
Phreatic Surface

In this study the flow in porous media on a

regional as well as local scale is studied. For a
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regional scale the two-dimensional horizontal flow is
considered and the solution of related equations is given
in Section 6.1. For a localized scale a vertical cross
section of an unconfined aquifer is chosen and the solu-
tion of the system of equations is presented in this
section. A technique of locating the phreatic surface

with fixed nodes is also shown.

6.3.1 Background

Based on the assumption made in Chapter III, if the
specific storage coefficient can be neglected, Equation

(3.4.1) will be reduced to
0 a¢ | _ .
5%, [Kij 5;;] =0 i,3=1,3 (6.3.1)

The finite element formulation of Equation (6.3.1) leads
to the global matrix of the form

[B'1{¢} = {F} (6.3.2)

with its element components defined as

e aNk aNn
[B'] = o Kl] BT E{—dD (6.3.3a)
D r 3
and
e
{F} = —[e N, Q, ds (6.3.3b)
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Equation (6.3.2) is solved with the related boundary
conditions discussed in Section 3.4.3. In addition to
the known potential and known flux boundary, there is
the phreatic boundary condition which is described as

At U8, =us =581k, 3%y 14| i,5=1,3 (3.4.6)
j i n n ij axj i 3 i the
Equation (3.4.6) contains a time derivative of the free

surface and can therefore be used to determine the height

at the later time when the other terms in the egquation
are known [France 1971]. An iterative technique is

used to replace the original transient problem by a
discrete number of steady-state problems, based on the
assumption that the flow at each instant is steady but
the boundary of the flow is time variable [Poluborinova-
Kochina 1962, p. 572]. At the beginning of each time
interval the position of the free surface and boundary
conditions are known. Using Equation (3.4.6), the phre-
atic surface is then shifted along its normal to a

new position. Two possible methods are considered
below. One technique most commonly used (e.g., Desai
1972 and France 1974) requires the modification of the
elements such that the free surface always is the

upper boundary of the grid system. Another method,
presented by France [1971] and modified and improved

herein, accomplishes the movement of the phreatic
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surface within the grid system without repositioning
the nodal coordinates of the elements.
6.3.2 Locating the Phreatic

Surface by Modifying the
Elements

The movement of the phreatic surface is deter-

mined in the following manner:

Step 1. At the beginning of each time interval
the surface configuration and boundary conditions are
known. Equation (6.3.2) is used to find the value of
the piezometric heads for all nodal points except those
at the phreatic surface. If there is a known flux from
boundaries other than the phreatic surface, the values
of {F} in Equation (6.3.2) are calculated; otherwise
{F} will be zero. At this step the nodal points at the
phreatic surface act as the Dirichlet boundary. In Sec-
tion 6.1.3 it is shown how to introduce the known
potential into the global equations. Equation (6.3.2)
is similar to Equation (6.1.4) and is solved the same
way, as outlined in Section 6.1.1.

Step 2. At the beginning of each time the piezo-
metric heads are known in the system, and from Equation
(3.4.6) it is possible to compute the location of the
phreatic surface at a time t + At. The distance a
point on the phreatic surface will propagate in the

direction of the normal to this surface at that point
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is equal to UnAt. If P(xl,x3) in Figure 6-3 is a point
of the phreatic surface at time t and P'(xi,xé) is the
location of that point at time t + At, then the shifting
distance along the normal to the free surface dn’ PP'

in Figure 6-3, is
_ At 3 7 3 7 ~ A ~
=2 g . 994 _ 99 x - .
d [ 11 i-K k-1 k] [211 + %k] (6.3.4)

A

A
where i and k are unit vectors along x, and X3, respec-

1

tively; and Rl and 23 are directional cosines. I 1is the

accretion term, positive downward. If 6 is the angle
that the tangent to the phreatic surface makes with

the positive x,-direction, then

1

=
il

1 sin 6 & 2, = cos 6

d = At (Vl sin 6 + V, cos 6 - I cos e/ne) (6.3.5)

3

Thus dn can be evaluated by Equation (6.3.5). It is

Convenient to calculate the shifting distance along the

nodal 1lines (dl)‘ Let w, be the angle that the nodal
line (i) makes with the positive xl-direction, and
define B = 7m/2 - w + 06 [Desai 1972]. Then
d,
d = (6.3.6)

2 cos R
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d, = d, cos W (6.3.7a)

Qu
Il

3 dz sin w (6.3.7b)

In Equation (6.3.7), d, and d, are the shifting distances

1 3

in the x, and X3 directions, respectively. Summarizing,

1

(Vi sin 6 + V3 cos B - I cos e/he)At cos w
d, = (6.3.8a)
cos B

(Vi sin 06 + V3 s 6 - I cos e/ne)At sin w
d, = (6.3.8b)

cos B

Thus the location of the phreatic surface at time t + At

will be

X! =x, +4d (6.3.9a)

x) = x, +d (6.3.9b)

In order to complete step 2, one has to know the velocity
components and the angle 6 at each phreatic node. As
discussed in Section 6.2, direct calculation of the
velocity vectors usually does not provide continuous
results at the nodes. Most authors, e€.g9.,France et al.
[1971] and Desai [1973], have realized this deficiency
and have used the average velocity components at the node
calculated from two adjacent elements. Although this

procedure reduces the errors significantly, because of
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discontinuity of the velocity functions it is still not
the best way to evaluate the velocity vectors at the
nodes (see Section 4.4.1 for details). The proposed
simultaneous calculation of the velocity components pro-
vides continuity at the nodes and is used in this study.
The slope of the element lines along the phreatic
boundary is usually discontinuous at the nodes. For
example, at node 8 the slope of line 4-8 in Figure 6-4
differs from line 8-12. 1In order to obtain a better
estimate of 6 at the phreatic nodes, a polynomial of
degree n is passed through the phreatic nodes of two

elements while the node under consideration is almost

Phreatic surface

@ 8\32\ =
—9 | ®

16
5
Ol eer
2
__—_—""‘E“‘—————~————__~
10 14
S NCRNONEO

1 5 9 13

X1

Figure 6-4.--Simple Linear Quadrilateral Isoparametric
Elements.
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the middle point. When the polynomial is passed through
the nodes the slope of the free surface is evaluated at
the node. The value of n is dependent on the type of
element. For linear and quadratic quadrilateral elements
n = 2 will be sufficient, while for a cubic element n = 3
is recommended. For corner nodes (e.g., nodes 4 and 16
in Figure 6-4) the slope of the phreatic line is used.
Because the phreatic nodes might not be equally spaced,
Newton's divided-difference method [see Carnahan et al.
1969, pp. 9-26] is used to pass a polynomial for the
desired points.

Step 3. Equation (6.3.8) assures that the shifted
points always lie along the nodal line. 1In this case,
Equation (6.3.9) represents the location of the new
nodes at a new time. In some instances the nodal lines
cannot be straight and the value of w changes along the
line, such as for quadratic or cubic elements. Then

*

*
the new point X% will be calculated by

3
* N
xl = xl - dn sin 6 (6.3.10a)
*
Xy = x3 - d, cos 6 (6.3.10b)

* *
where X and X4 represent the temporary location of the

nodes at time t + At, and dn is defined in Figure 6-3.
To find the location of the actual nodes, it is necessary

to fit a polynomial to these temporary nodes and then
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find the location of new points with the given xl—values
(Figure 6-5). Polynomial curve-fitting procedures such as
Newton's divided-difference method (Carnahan et al. 1969],
or other methods such as the Newton-Raphson iteration
technique or the least square curve-fitting [Pennington
1970, pp. 408-417], can be used. 1In this study the first
method is employed, and the second technique is used by
France et al. [1971].

Step 4. At the start of this step the location
of the phreatic surface is known and can act as the
Dirichlet boundary condition for solving Equation (6.3.2)
to compute the piezometric heads in domain D. But since

the free surface has moved, the nodes on the phreatic

Phreatic surface at
time t + At

Phreatic surface at
time t
O Temporary nodes

@ Actual nodes

Figure 6-5.--Location of the Temporary and Actual Nodes
[After France 1971].
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surface do not coincide with the nodes of elements.
There are two possible ways to handle this problem:

(a) modify the elements such that the phre-
atic surface becomes the upper boundary
of the grid system, or

(b) define a new Dirichlet boundary condi-

tion for the nodes above the phreatic

surface such that it is not necessary to
modify the elements.

Procedure (a) is discussed below, and details con-
cerning procedure (b) are postponed until Section 6.3.3.

The location of the phreatic surface is known, so
the upper nodes of the phreatic elements are transformed
to coincide with the phreatic surface. Since the coor-
dinates of some nodes have changed, it is necessary to
re-evaluate the [B'] matrix (Equation 6.3.3a). 1In
order to reduce computation time the whole grid system
can be divided into two groups (Figure 6-6):

(a) fixed elements--their nodal coordinates
will not alter during the entire calcu-
lation,
moveable elements--their nodal coordi-

nates will be affected by changing the
phreatic surface.

(b

Another important point is that the rise or fall
of the phreatic surface is not uniform, and in some
nodes the phreatic surface moves several times more than
other nodes. 1In order to keep the elements in reasonable
shape it is recommended that all moveable elements be

modified rather than only shifting the nodes of phreatic
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elements. When the nodal points are shifted the program
is ready to start a new time step.

Steps 1 to 4 are repeated until the system reaches
the maximum specified time or the steady state.

6.3.3 Location of Phreatic
Surface Using Fixed Elements

As discussed in Section 6.3.2, it is possible to

handle the movement of the phreatic surface without

altering the nodal coordinates of the elements. In the
following method the phreatic surface travels within a

fixed finite element grid system.

6.3.3.1 Computation of piezometric heads at the

nodes above phreatic surface.--In order to illustrate

the method, a plane linear element, Figure 6-7, is
employed. The first part of this development is adopted
from France [1971]. Referring to Figure 6-7 which simu-
lates a small portion of the flow domain, the phreatic
surface represented by the broken line cuts through ele-
ments numbered (1), (3), and (4) at points a, b, c,
and 4.

For element number (1) the piezometric head ¢ at

any point within or along its boundaries is given by:

b = Nl¢l + N2¢2 + Ng¢g + N4¢4 (6.3.11)
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1 2 3
E o
T C
- \\l'”c‘l
\\
4 5 ‘E z 6
n 1k
: i
3 3
X3 <:) <:>

Figure 6-7.--Phreatic Surface Passing Through the Elements

[After France 1971].

The shape function for a plane linear element can be

written [Zienkiewiez 1971, p. 109]

1
Noo=F (L+ g (1+ng)
where
&0 = § Ej and Ng =N nj

For element number (1) the shape functions are

Ny = & (1-E) (1+n) N, = § (1+E) (1+n)
N, = £ (1-€) (1-n)  Np = = (1+£) (1-n)
4 = 7 n 5 =1 n

(6.3.12)
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At point (a) along line 1-4 (£ = -1), the piezometric

head is

¢a = %-{2(1+A)¢l + (0)(1+A)¢2 + 2(1—A)4>4 + (0)(1—A)¢5} (6.3.13)

where A is the value of n at point (a), and -1 < A < 1.

Finally,

=1 -
¢, = 5 L(1+A) ¢, + (1-A)¢,} (6.3.14)

Similarly for point (b) along line 2-5,
¢, =3 {(14B)o, + (1-B)¢;}, -1 <B <1 (6.3.15)

For element number (3) the piezometric head is given as
¢ = Nyo, + N3¢3 + N6¢6 + Neog (6.3.16)

At point (c¢) on line 5-6 the head is

1

¢, = 5 ((1+C) ¢, + (1-C)¢g}, -1 <C <1 (6.3.17)
For element number (4) the head is given by
¢ = Ngbg + Ngdg + Ngbg + Ngoobg (6.3.18)
At point (d) on line 6-9,
05 = % {(1+D) ¢ + (1-D) ¢y}, -1 <D <1 (6.3.19)
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The objective is to determine the piezometric head
distribution on and below the phreatic surface. How-
ever, the finite element method yields values only at
the nodal points, including those points above the phre-
atic surface. It is therefore necessary to define the
values of ¢l, ¢2, ¢3, and ¢6 in terms of ¢a, ¢b, and
¢d. Since ¢3 does not affect values along 2-5 and 5-6,
it can be determined arbitrarily as will be discussed
later. The piezometric head at node 6, ¢6' can be speci-
fied either in terms of ¢c or ¢d'

From Equations (6.3.14), (6.3.15), and (6.3.19);

¢1, ¢2, and ¢6 can be derived:

0 = (26, = (1-A)¢,1/(1+a)

¢2 = [2¢b - (l-B)¢5]/(l+B) (6.3.20)
6 = [204 - (1-D) 941/ (1+4D)

It is necessary to know the values of ¢a' ¢b' and ¢d‘
This presents no difficulty since on the phreatic surface
the piezometric head equals the elevation head. Thus
Equation (6.3.20) can be used to interpolate the values
of the piezometric heads at the nodes above the phreatic
surface, based on the location of the free surface and
known piezometric head at the nodes beneath the surface.

Equation (6.3.20) which has been derived by France [1971]







104

is simply a linear interpolation between three points
where the distance between the nodes and the values of
two nodes are known. It is desired to find the unknown
value at the third point. This can easily be shown

using a one-dimensional, two-node element.

A
L12

Tp

1

Figure 6-8.--One-Dimensional Linear Element.

In Figure 6-8, let ¢l and ¢A be known with the intent to
find ¢2. The distances between the nodes are defined in

the above figure. Shape functions for nodes 1 and 2 are

12 A
N, = ; N, =
1 le 2
By definition,
by = Nl¢l + Ny, (6.3.21a)

or
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by = (6, = NypI/N, (6.3.21b)

Substituting the shape functions into Equation (6.3.21)

yields

Lisdy = (Ly, =Ly ¢

. H12% 12 = a0
¢2 R P (6.3.22)
A

2LA
Define B = T 1 such that -1 < B < 1.

12

Substituting A in Equation (6.3.22) and simplifying,

26, - (1 - B)¢
e F 08 1
¢, = T 5 (6.3.23)

Equation (6.3.23) is identical to Equation (6.3.20)

which has been derived using the properties of an iso-
parametric element. Usually, ¢A represents the piezo-
metric head at the phreatic surface, ¢1 is a known head
within the system, and calculated b, is a Dirichlet
boundary condition. The problem associated with Equation
(6.3.21b) or Equation (6.3.23) is that it is singular
when N, + 0 or B+ -1, i.e., when the point A is close

to point 1. In practice, when the phreatic surface rises
due to infiltration or other hydraulic stresses, Equation

(6.3.23) does not provide a reasonable estimate for ¢2.
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One way to obtain a better estimate for phreatic
nodes (Figure 6-10) is to use two interior nodes besides
¢A to evaluate unknown ¢. Let ¢1 and ¢2 be known and
¢A represent the value of the piezometric head at the
phreatic surface. It is desired to find ¢3 (Figure 6-9).
Using the properties of a one-dimensional quadratic ele-
ment (see Section 5.4),

¢3 = fé—:—flfl-:—ggfg ; N3 #0 (6.3.24)

93

where

Ly = L1p) Iy = Iy3)

Ny =
e @) Ty3)
i = (L) (L, - L13)
2 (T13) (Ty3)
I 3
La3
L13 A
2
L
L
12 j
ot i &

Figure 6-9.--One-Dimensional Quadratic Element.
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I (accretion)

t + + +*‘ /Nodes above the
8

o phreatic nodes
12] 1ef

<

4

Phreatic nodes

\ | Phreatic surface
\\\\\\4:::
Interior nodes
»

L Nodal line

Figure 6-10.--Location of the Phreatic Surface and
Definition of the Terms.
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o = (Lp) (Ly = Lyy)
3 (Ly3) (Ly3)

Although Equation (6.3.24) provides justifiable
results it still becomes singular when N3 > 0. A possi-
ble way to compensate for the singularity of N, in

Equation (6.3.21) or N, in Equation (6.3.24) is to use

3

the node below point 1 of Figure 6-8, when point A is

close to point 1. The scheme will be similar to Figure

6-9 but
¢, - N!¢
by = A 171 (6.3.25)
N,
where
qr o 13~ ta g - A
1 T L5 2 7 I,

Equation (6.3.25) will never be singular, but since it is
using ¢1 rather than ¢2 it underestimates ¢3 because
usually ¢, < ¢,.

Returning to Figure 6-8, there is a third way to

compute ¢2 and it is based on Darcy's Law:

3 3¢
V, = - —= —~
3 ng 8x3

or
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(6, = 6p) vy
Paitr DS (AR o
(x3)5 = (x3)p K33 e

Since (x3) then

a =

sk b iiGie . (6.3.26)
2.5 dainlxas ((x3)5 = 05)

V3 and K33 are known values at point A.

In Equation (6.3.26), éq is calculated based on
the location of the phreatic surface. If the values of
V3 and K33
that Equation (6.3.26) will provide accurate results for

are evaluated correctly, then it is believed

by without under or overestimating its values. When the

phreatic surface is horizontal, V3 is zero and thus

Equation (6.3.26) is not applicable. In this case, for
the first time interval Equation (6.3.25) is employed

to compute the value of the piezometric head at the
points above the phreatic surface. For the second time
interval and later times, one will instead use Equation
(6.3.26). It can be concluded that among the Equations
(6.3.23) through (6.3.26), Equation (6.3.25) gives a
reasonable value at the first time interval and Equation

(6.3.26) provides a better estimate at later times.

6.3.3.2 Computation of velocity vectors at

phreatic surface.--When calculating the shifting distance

for the phreatic surface (Equation 6.3.8), it is necessary
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to know the velocity components on that surface. Since
the phreatic surface moves within fixed nodes, in most
cases it will intersect the element line as shown in
Figure 6-7. The velocity components are known at the
nodes. Consider again Figure 6-8 to calculate Vl and

V3 at point A between nodes 1 and 2. Using an equation
similar to Equation (6.3.2la) to compute velocity vectors,

one will have

(1-B) (V,), + (1+B) (V)
i 171 152
(Vl)A = > (6.3.27)
where
2L
B=E—A-l
12

Ly = M) = ()17 + [(xg) ;- (x3) 17

2 2
Ly = /lixp) o= (x)) 17 + Llxy) 5= (x3) )]

Similar equations can be written for (VB)A'

6.3.3.3 The procedure for solving piezometric

heads with fixed nodes.--The procedure for solving the

piezometric heads in an unconfined aquifer with this
method is as follows:
Step 1. The phreatic surface is initially chosen

to coincide with the element boundaries. It is not
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necessary that this boundary be the upper limit of the
grid system, i.e., the phreatic surface might be speci-
fied within the system. This is especially important
when a rise of the water table is expected. For example,
in Figure 6-6 it is expected that the phreatic surface
will rise, and line 2-6-10-14-18-22 can represent the
free surface at the initial time. A finite element
solution is performed, velocity components are calcula-
ted, and the phreatic surface is shifted as in the fixed
element method.

Step 2. The piezometric head values at points
such as a, b, and d of Figure 6-7 are stored. Their
values are simply the elevation heads at the respective
points. The piezometric head values at nodes 1, 2, and
6 are calculated using Equation (6.3.25), and an arbi-
trary value is assigned to node 3 as will be discussed
later.

Step 3. Since the element stiffness matrices
are unaltered, all that is necessary is to insert these
new Dirichlet boundary values in the governing set of
simultaneous equations and solve for a new set of piezo-
metric heads.

Step 4. The velocity components are evaluated
and the phreatic surface is shifted as mentioned in Sec-

tion 6.3.3.2, using Equation (6.3.5).







112

Steps 2, 3, and 4 are repeated until the maximum
required time is achieved or until the system has
reached the steady-state condition. For the second time
interval or later times Equation (6.3.26) is used in

step 2.

6.3.3.4 Assigning the value of piezometric

heads above phreatic nodes.--Assigning an arbitrary

value of piezometric head to node 3 (Figure 6-7) or to
similar nodes is an important task. To clarify the dis-
cussion consider Figure 6-10 where the position of the
water table is shown, and the phreatic nodes and the
nodes above the phreatic nodes are defined. The piezo-
metric heads at the phreatic nodes, i.e., nodes 3, 7,
11, and 15, are calculated using Equation (6.3.26) based
on the location of the phreatic surface. The task now
is to assign the values of the piezometric heads to
nodes above the phreatic nodes, i.e., nodes 4, 8, 12,
and 16. In the calculation of the piezometric heads
within the system, these values do not play any major
role. But they have a great importance particularly
when the velocity vectors are calculated simultane-
ously. It is assumed that there is no capillary fringe
above the water table, that an abrupt interface exists
between the saturated and unsaturated soil, and the

Pressure above the phreatic surface is atmospheric. Due
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to the physical characteristics of the porous media

there is little or no flow movement above the phreatic
surface, except the infiltration due to recharge which

is assumed to travel directly to the water table. This
concept, together with the above assumptions, directs

one to assign the piezometric heads above the nodes such
that the physical conditions are satisfied. This is done
by equating the piezometric heads in the nodes above the
phreatic nodes to the piezometric heads of the phreatic
nodes along each nodal line. For example, ¢16 = ¢15 and

¢12 ¢ll' etc. This technique will provide the desired
condition for velocity vectors along X3, i.e., V3 above
the phreatic node will be zero, but there will be a

gradient along x This situation will not cause any

1-
major problem since the slope of the phreatic surface is
small and its effect will be minimal in calculating the
shifting distance (Equation 6.3.8). However, to improve
the technique it is possible to equate the velocity com-
ponents at and above the phreatic nodes (Figure 6-10) to
zero, which is done in this study. Summarizing, the
piezometric head at and above the phreatic nodes will be
the same for each nodal line; refer to Figure 6-10.
After the velocity components are calculated simultane-
ously, the velocity vectors along Xy at and above the
phreatic nodes will be set to zero.
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6.3.4 sSteady-State Condition

When the system has reached the steady-state
condition the phreatic surface will not move considerably,
i.e., the normal velocity will approach zero. From Equa-

tion (3.4.6),

This means that at steady state, normal discharge is
equal to the normal component of accretion. 1In the com-
puter program Equation (6.3.5) is used. The average

shifting distance is defined by

NNFS
3= kgl(dn)k
NNFS
where NNFS is the number of nodes in the phreatic surface.
When d is less than or equal to a small value the steady-

state condition is reached and the program is halted.

6.3.5 Reasonable Time Step

There is no general agreement for choosing the
time step. Rushton and Herbert [see France 1974] have
suggested that if the time interval is chosen so that the
velocity at which the phreatic surface moves changes by
less than 30 percent between successive steps, then it

is not necessary to iterate within the time step.
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Based on the Lipschitz criteria [Isaacson and
Keller 1966, pp. 86-91], Sandhu et al. [1974] have intro-
duced the variable time step. They state that in

choosing At the following criteria should be satisfied:

( )]. =24 3)].
max X3 X
= A(At) <1 (6.3.28)

max ‘(x3)i = (x3)]i‘-l

where k = 1, 2, ..., NNFS, i represents the number of
iterations (see Section 6.3.6), and the value of A is
dependent upon At. If A exceeds one, the time step will
be reduced by some factor until the time interval satis-
fies Equation (6.3.28). If, on the other hand, ) is
found to be very small compared with one, At will be
increased by the factor. In the computer program (xs)ﬁ
is estimated, the value of the previous time is used,
and only two computations of Xy are required to obtain
an estimate for )X and to choose the proper time step.

6.3.6 Iteration Within
Time Step

Usually, if one chooses a small time step there
will not be any need to iterate within a time step,
especially when the rise or fall of the phreatic surface

is small compared to the size of the system, such as with
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actual field problems. However, Sandhu et al. [1974],
by using the mean value theorem and assuming a smooth
change of geometry in the time domain, have introduced
the following equations for iteration within the time

step:

ey (400015 = ey (011, + 3 {a g 01, w000
+ a, [xg (t40t) x3(t+At)]i"1}k
(6.3.29)

ey (er00)15 = g0, + 3{ay 0 01, w0001
i-1
+ d, [x, (t+4t) , x,(t+At)] }
254, 3 X

i and k are defined in Section 6.3.5. The inside bracket
means that dl and dz [see Equation (6.3.8)] are calcula-
ted at [xl(t), x3(t)] and [x) (t+At), x3(t+At)]. Since
the change of X3 is greater than the xl—value after every
iteration, a check is made where
ok i-1

[(x3)k o (x3)k )/J(X3)kl
is less than or equal to e (say, 10_5). If this condi-
tion is satisfied the iteration is complete. Usually
One or two iterations will be sufficient. The same tech-

nique is used in this study.
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6.3.7 Comparison Between the
Two Methods of Locating the
Phreatic Surface

Figures 6-11 and 6-12 depict the schemes for
solving the piezometric heads in an unconfined aquifer
with the method of modifying elements (method one) and
the method of fixed nodes (method two). It is extremely
difficult to compare the two methods comprehensively.
However, each technique has specific advantages as out-
lined below.

(a) In the first method the locations of nodal
points are changing and the system is shrinking or
expanding with time, in the second procedure the grid
system is fixed and the coordinates of nodes are time
invariant. The second method enables one to introduce
convective-dispersion equations into the system, a major
advantage of this technique.

(b) In the first method it is necessary to
reconstruct the global matrices and decompose them for
every time step, while it is not required in the second
method. Thus the fixed node procedure needs less com-
puter time than the method of modifying elements.

(c) Another advantage of using the fixed grid
technique is that the position of the nodal point is
fixed and the shape of each element does not change with
time. Thus it is possible to calculate the location of

the phreatic surface in any anisotropic and heterogeneous
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Input data

rBuild up global matriceq

[‘Lnsert Dirichlet boundary condition]

Solve for ¢ (with Dirichlet boundary on
upper nodes along phreatic surface)

IPrint piezometric head of the systeml

I

Igalculate velocity vectors at the nodes]

shift phreatic surface along its normal and
find new coordinates of the free surface

lPrint the location of the phreatic surface]

Check if system has reached steady state or
required maximum time, stop

Based on new location of free surface,
modify elements such that phreatic surface
coincides with upper element boundaries

Figure 6-11.--Scheme for Solving the Piezometric Heads
in Unconfined Aquifers With the Movable Node
Technique.
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Input data

lBuild up global matricg%]

IInsert Dirichlet boundary conditioﬁ]

[]

Solve for ¢ (with Dirichlet boundary
above phreatic surface)

|Print piezometric heads of the systenq

1

Calculate velocity vectors at the
phreatic surface

Shift phreatic surface along its normal and
find new coordinates of the free surface

IPrint the location of the phreatic surface]

required maximum time, stop

1

Based on new location of the free surface,
assign piezometric head values at the nodes
above phreatic surface

lf?eck if system has reached steady state orl

Figure 6-12.--Scheme for Solving the Piezometric Heads in

Unconfined Aquifers With the Fixed Node
Technique.







120

porous media. But in the modifiable element method,
nonhomogeneity can be handled only for fixed node sec-
tions or between the columns of nodal lines.

(d) In the first method the boundary condition
is evaluated once to yield the location of the phreatic
surface. In the second method the Dirichlet boundary
condition at the nodes above the free surface is computed
based on the position of the phreatic surface. As dis-
cussed in Section 6.3.3.1 there is no concrete method to
evaluate the piezometric heads above that surface. Among
the equations which are presented, Equation (6.3.26)
gives reasonable results. Still, interpolation of the

values of V3 and K and assigning the value of piezo-

38
metric heads for nodes above the phreatic nodes, need to

be investigated more.

6.3.8 Summary

The calculation of the piezometric heads in confined
and unconfined aquifers is discussed. A modified tech-
nique of calculating the phreatic surface with fixed nodes
is presented, and it is shown that the velocity vectors
can be calculated simultaneously to provide continuous
functions at the nodes without using large computer memory.
The feasibility of modeling the dispersion phenomena in an
unconfined aquifer with a transient phreatic surface, which

has become of universal interest, is apparent.



CHAPTER VII

SOLUTION OF SYSTEM EQUATIONS FOR

CONVECTIVE-DISPERSION PHENOMENA

7.1 Introduction

In this chapter the procedure of describing the
convective-dispersion phenomena is discussed. Related
mathematical equations are described in Section 3.5 and
the finite element formulation is given in Section 4.3.
For most practical purposes at relatively low concentra-
tions, it can be assumed that the concentration of a
tracer does not affect the velocity distribution [Bear
1972]. Hence the solution of a dispersion problem is
made up of two independent subproblems. First, the
velocity distribution is determined for all points of
the flow domain. Second, the resulting velocity distri-
bution is inserted into the dispersion equation, which
in turn is solved to yield the concentration distribution
in the flow domain. Velocity vectors play a dominant
role in the convective-dispersion equation. They appear
in the convective term and dispersion coefficients, and
hence realistic and accurate evaluation of the velocity
components is very important. Proposed simultaneous

solution of the velocity vectors from piezometric heads
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(Section 4.4.2) provides continuous velocities at each
node. The concept is also presented by Segol et al.
[1975], where the pressure and velocity components are
computed simultaneously. For an almost homogeneous
liquid, the proposed method (in Section 4.4) has some
advantages over their procedure: (1) the required
storage space in the computer program is significantly
reduced; (2) the transient solution of the velocity vec-
tors is feasible; and (3) the boundary conditions are

simple to apply.

7.2 Calculation of Dispersion Coefficients

The hydrodynamic dispersion coefficient defined
in Section 3.5.2 regulates the degree of spreading of
the contact zone between two miscible fluids. For most
practical purposes the molecular diffusion coefficient
is negligible compared with the mechanical dispersion
coefficient. The dispersion coefficient is given by
Equation (3.5.1). The longitudinal and transversal dis-
persivities are the two components of the mechanical
dispersion coefficient, and are considered as porous
media properties. In this study they are assumed to be
constant over the entire domain. The reported values
of a. and a both range between 4 and 135 meters

I II
[Pinder 1973, Robertson 1974].
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Dispersion coefficients can be either evaluated
at a node or assumed to be constant over each element at
a given instant. For a transient flow where velocity
components are also time variant, it is necessary to
compute the dispersion coefficient at each node for
every time step and reconstruct the global matrices (see
Section 4.3). Consequently, the time dependency of the
dispersion coefficient will increase the computation

time considerably.

7.3 Computation of Tracer Concentration

The finite element formulation of the convective-
dispersion equation leads to a system of ordinary differ-

ential equations of the form

w131 + (xi+isn et + (E1TIIIC) = (m1{G,) + (¥}

(4.3.13)

The two most common boundary conditions, namely, the
Dirichlet and the Neumann boundary conditions, are used

in solving tracer concentration. The Dirichlet boundary
condition is handled by specifying the known con-
centration at the appropriate boundary nodes and factoring
out rows and columns in the coefficient matrix associated
with those nodes as discussed in Section 6.1.2. The

known mass flux along the boundary line is incorporated

in the {F} vector. The procedure of the allocation of
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a constant line source to nodal points is given in
Appendix I. Since it is assumed that at the boundaries
either the concentration or the flux of the tracer is
defined, the matrix [E] in this study is assumed to be
zero. In order to construct Equation (4.3.13), three
parameters (i.e., dispersion coefficient, velocity vec-
tors, and velocity gradients) should be known. Velocity
vectors are calculated at the nodes, and the other two
parameters are evaluated at the integration point. All
three are then introduced into Equation (4.3.12).

The dispersion equation for flow in a confined
or an unconfined aquifer is similar. With the fixed
node technique described in Section 6.3.3, the piezo-
metric heads in a phreatic aquifer can be obtained without
repositioning the nodal coordinates of the elements;
thus the velocity vectors are known for a given point at
any time step. The movement of a tracer is predicted by
introducing the calculated velocity vectors in the
convective-dispersion equation. The nodal coordinates
of the grid system for the tracer will coincide with the
nodal points of flow. Thus, either the grid system for
flow and dispersion will be identical, or the grid
system for predicting the tracer concentration will lie
within the grid system of flow prediction. The procedure
for calculating the tracer concentration in a confined

or unconfined aquifer is given in Figure 7-1.
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7.4 Discretization of Time Derivatives
and Solution of System Equation

Equation (4.3.13) is a set of first order ordinary
differential equations. Different methods to discretize
the time derivative of the family of equations similar
to Equation (4.3.13) were discussed in detail in Chapter
V. Using Equation (5.1.5), Equation (4.3.13) takes the

following form:
[Bl{c(t+At)} = {G} (7.4.1)

where [ﬁ] is a nonsymmetric banded matrix, C is the
unknown concentration for time t + At, and {G} is a known
force vector. Since [B] is nonsymmetric, the Cholesky
method (see Section 6.1.1) is not applicable. The Gauss
elimination technique [Carnahan 1969, pp. 270-272] is
used to solve the system of simultaneous equations. The
subroutine GELB [IBM Application Program, 1968] has been
adopted for solving the system of equations for the dis-
persion equation. Initially, a two-point backward
finite-difference scheme is used, where the initial con-
dition of C at time t is given and C(t + At) is sought.
As the computation progresses, solutions of C at a few
prior time steps become known and they may be stored in
the core. Then a higher order time approximation of
Equation (4.3.13) is used as derived in Chapter V, to

give a more accurate solution or to permit a larger time
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step without additional penalty of excessive computer
time. As can be seen from Equation (5.1.5) the [A] and
[H] matrices are fixed, and only their coefficients will
change if the order of approximation or the time step
changes. The additional required memory for each
increased ofder of approximation will be 2 x NNDS, where
NNDS is the number of nodes. The results of using dif-
ferent methods of discretization of the time step are

discussed in Chapter IX.

7.5 Stability and Convergence Criteria

There are two important concepts closely associ-
ated with the convergence of a particular numerical pro-
cedure, namely, those of consistency and stability.
Carnahan et al. [1969] define the stability and consist-
ency as the following: "In general, a solution is said
to be unstable if errors introduced at some stage in the
calculation . . . are propagated without bound throughout
subsequent calculations." The term consistency means
that the numerical procedure may in fact approximate the
solution of the partial differential equation under con-
sideration and not the solution of some other equations.
There is no definite rule for defining stability criteria
by the finite element method. For the finite difference

explicit scheme, Fried and Combarnous [1971] give a
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relation for the stability of longitudinal dispersion

which can be written as follows:

V2 DL At < Ax; £ 2 DL/Vl (7:.5::2)

1

The stability function for the two-dimensional dispersion
equation solved by the explicit finite difference method
was obtained by Reddell and Sunada [1970], and is sum-

marized as

Dll i Dy, > 0 (7.5.3a)
4 Dy Dy, > (Dy, + Dyy) (7.5.3b)
Daa A, Dy A

11 22 Ak
e g =< 7 (:725::3¢)

2
(Axl) (sz)

Although Equation (7.5.3) was derived for finite differ-

ences, it reveals the limitation of choosing Ax, and At.

1
As discussed in Chapter VIII, for 6 > 1/2 (Chapter V) the
result of exceeding the time step restriction is a stable
but oscillatory solution, and as 6 approaches 2/3, the
oscillation decreases substantially. However, giving any
specific 6 for stability criteria will be premature.
Using the higher order time derivative approxima-
tion of Equation (4.3.13) will improve the convergence

of the finite element solution.







CHAPTER VIII

NUMERICAL RESULTS FOR SIMULATION

OF GROUNDWATER FLOW

In this chapter the validity of the finite element
numerical simulation of the flow in confined and uncon-
fined aquifers with a phreatic surface is discussed. The
mechanisms of locating the free surface with fixed nodes
and with modifiable elements are verified. Also, the
results of the two methods for velocity calculation, i.e.,

direct and simultaneous procedures, are presented.

8.1 Flow in a Confined Aquifer

The finite element solution of the flow equation
for a confined aquifer has been accomplished successfully
many times and will not be the subject of detailed review
in this study. Since success of the convective-dispersion
model is highly dependent on the hydrologic simulation
model, one has to be certain that the hydrodynamic simu-
lator provides accurate results.

8.1.1 Pumping in a Single
Well Field

Consider a single well pumping from a confined

aquifer of nearly infinite area (Figure 8-1). The

129
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analytical solution for transient radial flow in an
isotropic nonleaky artesian aquifer with fully penetrat-

ing well and a constant-discharge condition is:

e
s = g7 [FE; (Fu)]
(8.1.1)
2
_rs
U= 7T

where s is drawdown, r is the distance from pumped well
to the observation point, P is discharge, t is time, T is
transmissibility, S is the storage coefficient, and
-Ei(-u) is the exponential integral [Davis and DeWiest
19661 .

Due to symmetry of the flow field, it is suffi-
cient to model only one-fourth of the aquifer, shown in
Figure 8-2. No-flow boundaries are taken 4,800 meters
from the well located at point W, and initially the
drawdown s is zero. The following parameters are used
in the modeling: T = 929 mz/day, S = 0.01, and P =
946 ma/day. Figure 8-3 shows dimensionless drawdown
versus dimensionless time at locations A and B (Figure
8-2), at distances of 1,697 and 2,163 meters from the
well, respectively. Numerical results compare favorably
with the analytical solution, and the deviation of
numerical results from the theoretical curve is within

acceptable range. It has been observed that the size
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w

Figure 8-2.--Grid System Which Is Used in Simu-
lating a Single Well Field.
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and type of elements affect the accuracy of the numerical
results.
8.1.2 Effects of Various Time

Approximations on the Accuracy
of the Results

In order to examine the effects of the kinds of
time approximation on the results of the numerical simu-
lator, a small confined aquifer, 1828.8 x 1219.2 m
(6000 x 4000 ft), was modeled (Figure 8-4). Initially,
the system is at the steady state with zero piezometric
heads. Along boundary lines AC and BD the system is
maintained at zero potential, while no-flow boundary con-
ditions are assumed along the AB and CD sides. A well
is located at the center of the medium at point W. The
following parameters were used in simulating the ground-
water movement: P = 556.4 m3/day (2.0E + 4 ft3/day),

S =0.01, and T = 929.6 mz/day (10,000 ftz/day).

Three different 6's, i.e., 6 = 1/2, 6 = 2/3, and
6 = 7/12 which is the average of & = 1/2 and 6 = 2/3,
were used for first order time approximation (see Equa-
tion 5.1.5). The related coefficients for 6 = 2/3 and
1/2 are given in Table 5-2, and the coefficients for 6=

7/12 are as follows:

=1l., a |

S 21 "

1 s
132 =2 1512

[
I
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22 °
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The other coefficients of Equation (5.1.5) will be zero.
The results of the calculated piezometric heads at
point W with different 6's for At = 0.05 day are
depicted in Figure 8-5. For 6 = 1/2, the piezometric
heads oscillate substantially when compared with the
results of 6= 2/3. Although 6 = 7/12 is the average of
the two previously mentioned 6 values, the observed
oscillation is less than for 6 = 1/2. All three 6's
provide the same results for steady state as one might
have anticipated. To see the effects of 6 more clearly,
the time interval is increased 20 times to At = 1.0 day.
The piezometric heads for a maximum time of 50 days for
point W are shown in Figure 8-6. As can be observed,
piezometric heads oscillate at an early time for 6 =

2/3 and 7/12; however, the oscillations diminish very
rapidly and converge to steady-state condition. In
contrast, for 6 = 1/2, the piezometric heads oscillate
about the mean but the oscillation does not vanish.
From this example and similar studies that have been
carried out, it is believed that for groundwater problems,
6 = 2/3 provides fewer oscillations when compared with

6 = 1/2 and 7/12. The 6 = 2/3 and 7/12 solutions con-
verge, but 6 = 1/2 oscillates about the mean for con-

tinued time.






cm,

Piezometric Head,

22
23

24

25

26

27

N
O

w
o

w
=

w
N

w
w

w
>

35

36

37

38

137

Ll | Lot

0.05 0.1 0.5 1.0

Time, days

Figure 8-5.--Calculated Piezometric Heads Versus Time at
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8.2 Comparison of Two Different Methods
of Solution of the Velocity Vectors

As discussed in Section (6.2), the velocity vec-

tors can be calculated either simultaneously or by the

direct method. To show the discontinuity of velocity
vectors at element interfaces or nodes calculated by the
direct method, a regional aquifer is taken and shown in
Figure 8-4. The area and applied boundary conditions
are shown in the figure, with a well located at point W.
The system has reached a steady-state drawdown condition
due to pumping and the piezometric heads are known.
Equation (4.4.3) is used to calculate the velocity vec-
tors at the nodes and at the centroid of the elements
for the direct method, while Equations (4.4.11) and
(4.4.13) provide simultaneous calculation of the velocity
vectors at the nodes.

Figures 8-7 and 8-8 show the velocity vectors at
the nodes, computed by direct and simultaneous methods
for the aquifer depicted in Figure 8-4. The numbers in
each box represent the velocity vectors calculated simul-
taneously, while the ones in the corner of the elements
are obtained by the direct method. It is obvious that
direct calculation does not provide continuous velocities
at the nodes. For example, if one takes element number

11 and evaluates V., at node 18, a value of 7.6 will be

il
obtained. But vy for the same node from element number 15
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2.8 7 2R m el m _gilked
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Figure 8-7.--Computed Values of V] at the

Nodes by Direct and Simultaneous

Methods.
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Figure 8-8.--Computed Values of V, at the
Nodes by Direct and Simultaneous
Methods.
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wili be -7.6. The true velocity at that node is zero,
which is obtained by simultaneous calculation. Averag-
ing the velocity vectors computed by the direct method
might yield the values obtained by the simultaneous
method, but the procedure is not valid for every location.
The computation time for both methods is almost the same.
The simultaneous method requires more core for storing

the capacitance matrix [H] and force vectors {Fx} and
{Fy}. It is believed that the Galerkin formulation of

the Darcy law will yield a reasonable estimate of velocity
vectors (or flux) at the nodes, provided the calculated
piezometric heads are good representations of the actual
field conditions.

An important point which has been observed in the
different numerical results is that the value of the
velocity vectors at the boundaries might depart slightly
from the true answer. The deviation might be due to the
construction of the element matrices, because some nodes
along the boundary are weighted less in the formation of
the global matrix and force vectors. In practice this
would not cause any problem if the hydrodynamic model is
used in the prediction of the tracer concentration. The
grid system for the dispersion model might be placed
within the hydrodynamic model, or taken slightly smaller

in order to minimize the effect of this discrepancy.
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In this study, simultaneous velocity vectors

are used in the convective-dispersion program to calcu-
late convective terms and dispersion coefficients.
Simultaneous and direct calculated velocity vectors are

used for locating the phreatic surface.

8.3 Flow in a Phreatic Aquifer

The mechanisms of locating the phreatic surface
with movable and fixed node techniques are presented in
detail in Chapter VI. 1In this section the existing
experimental and field observation data is used to
verify the validity of the two methods. In all numerical
examples illustrated hereafter, linear isoparametric
quadrilateral elements are employed, and DTMAX stands for
the maximum specified time step.

8.3.1 Transient Buildup of a
Mound Due to Accretion

Using the linearized technique, Marino [1967],
following Hantush [1963], gives the analytical solution
for growth and decay of a mound due to recharge. He
verified the analytical solution with a Hele-Shaw model.
A strip of finite height and infinite length was chosen
for numerical studies as shown in Figure 8-9. Due to
symmetry, only half of the system was modeled with linear
isoparametric quadrilateral elements. The following

data is employed in the computer program: NELS = 54,
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Figure 8-9.--Simulation of Transient Buildup of a Mound
Due to Accretion. (a) Grid system repre-
sentation; (b) scheme of the vertical cross
section. The phreatic surface is shifted
along the vertical lines.
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NNDS = 70, K11 = K22 = 25.2 cm/min, n_ = 1.0, and I =

e
3.36 cm/min. At the beginning, a small time step equal
to 0.01 minute was chosen and increased to DTMAX = 0.2
minute within several time intervals. Both the movable
technique (MNT) and the fixed node technique (FNT) were
analyzed, and the location of the phreatic surface at
different times is shown in Figure 8-10. The results
obtained by FNT and MNT compare favorably with existing
analytical and experimental results. At early times,
both methods provide almost the same results. As time
increases, they differ to some extent, but it can be
seen that the results are within a reasonable range.

In these runs the velocity vectors are computed simul-
taneously.

The effects due to the use of simultaneous and
direct calculated velocity vectors are also examined in
this study. Velocity vectors are calculated and averaged
at each node using the results obtained from two adjacent
elements. For example, consider Figure 8-11 which shows
a portion of a grid system which might be used to locate
the phreatic surface. For node 6, (Vl)6 = 0.5 (Vi + Vi)
where the superscripts represent the element numbers.
Similarly, (V2)6 = 0.5 (V% + Vg). The velocity vectors
computed in this manner are introduced to FNT. The cal-
culated location of the phreatic surface is also compared

with the observed curve as shown in Figure 8-12. The
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Figure 8-10.--Prediction of Transient Buildup of a Mound
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results follow the expected curve and are slightly higher
than those obtained using the simultaneous velocity
solution.

Depending on the technique chosen for calculating
the velocity vectors and locating the phreatic surface,
one might arrive at slightly different results. However,
employed techniques provide reasonable solutions which
are within an acceptable range with FNT giving the best
results for this case of study. It is also shown in the
literature that MNT has the capacity to simulate flow
field problems which involve a phreatic surface [France
et al. 1971, Desai 1972]. It can be observed that FNT
is also capable of solving similar problems, if not with
greater accuracy, at least with the same degree of
accuracy.

8.3.2 Numerical Modeling
of a Field Problem

Recently, Bianchi and Haskell [1975] presented
a series of field observation data on the shape of
groundwater mounds produced by artificial recharge water
spreading. Detailed descriptions of the experimental
recharge ponds and the location of the observation wells
are presented by the authors. In one of the experiments
a square pond, 90 x 90 m (295 x 295 ft), was chosen and
the rise of the mound due to recharge was measured. The

initial position of the water table was determined from
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well observations prior to flooding, and corrected for
barometric fluctuation. The recharge rate (I) was
taken to be the rate that water enters the surface of
the pond, and was assumed constant. The aquifer perme-
ability and the "fillable void" were evaluated based on
a single pumping test at the pond. In the remainder of
this section effective porosity or specific yield is used
instead of the term fillable void. The water table was
7.62 m (25 ft), and the impeding layer of lower perme-
ability was observed between 5.18 and 5.49 m (17-18 ft)
below the ground surface.

Although information regarding the numerical
simulation of the system is not sufficient, it is modeled
to show the capability of the proposed FNT. A vertical
cross section of the site is chosen. The constant head
boundary is assumed to be 244 m away from the center of
the pond as shown in Figure 8-13a. Smaller elements are
used in the recharge zone and its vicinity. Initially,
the water table is horizontal at 22.9 m from the datum.

A small time step equal to0.01 day is chosen and increased
gradually until it reaches 0.2 day, and is kept constant
until 25 days have elapsed. Taking this cross section
implies that the pond is rectangular and its longitudinal
length is long enough to make the two-dimensional assump-
tion valid. However, this assumption does not really

represent the actual field situation.
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The numerical results obtained for this model
after 5.15 and 25 days are shown in Figure 8-13b. The
results compare favorably with observed data in the pond
area, but deviate further away from the pond. This devi-
ation might have been caused by a number of factors.

Some of the apparent reasons for the discrepancy between
the numerical results and field observation data are as
follows:

1. Aquifer parameters: Only a single measure-
ment for hydraulic conductivity and specific yield is
available. The specific yield is dependent upon moisture
content, degree of saturation, and temperature; thus its
value will differ in and outside the pond with respect
to position and time. This subject is discussed in detail
by Bear [1972] and has also been recognized by Bianchi
and Haskell [1975]. The value of hydraulic conductivity
has to be known in the recharging zone as well as outside
the pond in order to obtain a reasonable estimate for the
rise of the water table. The hydraulic conductivity
appears in Equations (6.3.8) and (6.3.26), where it par-
ticipates in locating the phreatic surface and defining
the new Dirichlet boundary condition for piezometric
heads, respectively. The value of hydraulic conductivity
is highly dependent upon moisture content. It follows
that in order to predict the location of the phreatic

surface it is logical to replace K,. by K,.K_, where K
ij ij’r r
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(0 < K_ < 1) is the relative hydraulic conductivity

r
[Neuman 1973] and its variation with respect to moisture
content for a typical situation is given in Figure 8-14.
2. Observed data: At the time that was taken
to be t = 0, the water table was not horizontal and a
rise of 0.04 to 0.39 m at the wells was recorded. The
field data shown in Figure 8-13 are the average values
of head rise of four wells which are located an equal
distance from the center of the pond. The recorded
values for each distance have some fluctuation.
3. Other factors: The boundary conditions,

absence of instantaneous uniform recharge, and size of

the elements might also be considered as additional

r

Relative Conductivity, K

.1 .2 .3 Sand
0 .2 .4 .6 Clay

Moisture Content

Figure 8-14.--Variation of the Relative Conductivity
With Moisture Content for Two Soils
[After Neuman 1973].
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reasons for the discrepancy of numerical results from
observed data.

In summary, although some deviation exists
between observed field data and simulated results in the
region away from the recharge pond, the rise of the water
table beneath the pond compares favorably with recorded
data. It is believed that the fixed node technique is
capable of predicting the rise of the free surface due
to accretion in unconfined aquifers, provided sufficient

information concerning the field parameters is available.

8.3.3 Steady-State Solution

In Section 6.3.4 it was stated that the system
will reach the steady-state condition when the velocity
normal to the phreatic surface approaches zero. To show
this condition, a vertical cross section of an unconfined
aquifer is taken (Figure 8-15). The height of the phre-
atic surface was kept constant at 126 m (413 ft) away
from the center of the recharge zone in order to obtain
a rapid steady-state condition. The computer run
started with a time step equal to 0.01 day and gradually
increased to DTMAX = 0.2 day. When the average shifting
distance d (Section 6.3.4) was less than 5.0E-6 m the
steady-state condition was assumed to be satisfied. This
condition was reached after 19 days. The location of the

phreatic surface at this state is shown in Figure 8-1l6a.
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The rise of the water table at the center line with
respect to time is shown in Figure 8-16b. The free
surface at first rises very rapidly, and then gradually
slows while approaching the steady state. In Figure 8-17
the equipotential lines and calculated velocity vectors at
the nodes are shown. One observes from this figure that
beneath the recharge zone and in its immediate vicinity
the vertical velocities play'an important role; but far
from the accretion area the velocity components are
almost horizontal, and thus the Dupuit approximations

can be used in this region.

8.3.4 Two-Layer Aquifer

To investigate the effects of two-layer aquifers
on the flow regime and location of the water table, an
aquifer with the following characteristics is chosen and
its vertical cross section is depicted in Figure 8-18.
Initially, the water table is horizontal with a height
of 20 m and located 10 m below the ground surface. The
size of each element is 20 m along the X and 5 m along
the x3-direction. At zero time the recharge with 0.1 m/
day intensity is introduced, along the first 60 m of the
center line of the system. A constant piezometric head
is assumed at the other end.

Four different cases are examined as shown in

Table 8-1. At the beginning of each run a small time
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TABLE 8-1.--Different Combinations of Hydraulic Conduc-
tivities for Aquifer Shown in Figure 8-18
and Maximum Specified Time Step.

Hydraulic Conductivity (m/day)

case No. DIUAX
Zone 1 Zone 2
1 30 30 0.2
2 75 75 0.1
3 75 30 0.0625
4 30 75 0.1

step equal to 0.01 day was chosen. Depending on the
kinds of materials, the time step was gradually increased
to a maximum specified time step as presented in Table
8-1. 1In all of these cases the effective porosity is

assumed constant and equal to 0.3. The rise of the phre-

atic surface corresponding to these conditions after
5.10 days is shown in Figure 8-19. From this figure, it
can be observed that with the same effective porosity
the rise of the water table at the recharge site and in
its immediate vicinity is greater for less permeable
aquifers. At early times, in the area away from the
recharge zone the water table rises faster in the highly
conductive than in the less conductive soil. As time
increases this process reverses (not shown in Figure
8-19). At any time the phreatic surface remains higher

for smaller K at the recharge zone. The equipotential
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lines and discharge vectors for a two-layer aquifer
(Case No. 4) are shown in Figure 8-20. As expected,

the discharge vectors are greater in the zone possessing
high hydraulic conductivity.

8.3.5 Change of the Effec-
tive Porosity

To show the influence of the effective porosity
on the rise of the water table due to the recharge, an
aquifer similar to the one described in Section 8.3.4 is
chosen. Case No. 4 of Table 8-1 represents the hydraulic
conductivities employed in this section. Three different

effective porosities, namely, n_ = 0.20, 0.25, and 0.3,

e

were examined. The rise of the water table for these

effective porosities is shown in Figure 8-21. With simi-
lar conditions, the height of the water table is greater
for the aquifer with a small effective porosity. The
obvious reason for this occurrence can be seen by exam-
ining Equation (6.3.5).

8.3.6 Effect of the Depth
of the Water Table

The depth of the water table also has a major
influence on the location of the phreatic surface. 1In
order to observe this effect an aquifer similar to the
one described in Section 8.3.4 is selected, except that
the height of the initial phreatic surface is lowered to

10 m. The rise of the water table after 10 days for two






162

"sfep (T°G I93Je uMmoys oIe soneA oyg *x93Tnby 19keq
-OML ® X0 s10309\ 8bieyostd oT3Toads (q) pue ‘sautT Tet3uajzodtnby (e)--°0z-8 2anbtg
(q)

Jalll‘ll!.‘].'ll’l'."lICI'lu'llll‘ll4'1"'"“'1'?""!"’"""1'!6_
_
_
H L -* -« - L 4 - - - - - - - - - - - -+ - - - a_
|
N 3 |
© 0_ - - - - - o < - - - P -« - - - — — - - L-8 ®
8 _ | _
F h . - - - - - - -« > - - - - @ L. - - - w ® L
| _
Ji x L : _
_ v - L L .8 v > v > 1\ v v L4 bl - & - - [IJ
| 9orJaINS OT3ELIYd |
_ _
_ _
(e)
T w 00
- T """ "1 T ~— T [ "
| _
|
*
| |
_
_ |
_ |
_ _
"0 " s20°  so° ° st1° z* € y*  5° 9 L
|
|

—






163

*S9T3TSOIOJ DATIODIIT FIUSISDIITA
103 skeq T°G I93JV 90BIANS OT3ILAIYd 9Y3l JO UOTIROOT--'TZ-8 oINnbBTg

sIo3sW ‘SUTT ID9IUS) WOIF SdoULISTI(

00% 00¢ 00¢ 00T 0
| | | |

|
o

o
.

Kep/u gL

Kep/u 0g = %% = [ty —o-1

sI9j38w ‘sTde] I23eM JO OSTH







l64

different initial depths is given in Figure 8-22. As
one might have expected, the mound in the recharge zone
and its vicinity will be more pronounced for a shallow
aquifer than for a deep one.

8.3.7 Decay of a
Groundwater Mound

The investigation of the decay of a mound is an
interesting subject in groundwater hydrology. To show
the capability of the proposed technique of handling
such cases, an aquifer similar to Figure 8-18 is taken
and recharge is applied up to 4.9 days before being
halted. The rise and fall of the water table and the
location of the phreatic surface at the center line, up
to 9.9 days, are shown in Figures 8-23 and 8-24, respec-
tively. 1In this example the hysteresis and variation of
the specific yield with time are neglected. It can be
observed that more time is required for the water table
to decay to the initial steady-state condition than the
time necessary to build the mound.

8.3.8 Maximum Applicable
Time Interval

Specifying the time interval is an important task
in solving transient phreatic problems. There is no par-
ticular rule for selecting the time step. A general
procedure which is useful for defining At is given in

Section 6.3.5. 1In all the different examples illustrated
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in Section 8.4 a small time step was chosen, and using
Equation (6.3.28) it was increased to a maximum specified
time step and maintained constant thereafter. Defining
the maximum time step requires some experience which might
be obtained after a few runs for a specific problem. In
general, for highly conductive porous media or nonhomof
geneous aquifers, a smaller maximum time interval should
be employed. Usually, the rise of the water table fol-
lows a trend similar to that depicted in Figure 8-16b.
When it starts to oscillate with respect to time, the
maximum time step should be decreased.

For example, consider a phreatic aquifer repre-

sented by Figure 8-15, in which Kll =K,y = 31.7 m/day.
In Section 8.3.3 it is stated that 0.2 day was used to
obtain steady-state conditions for this specific problem.
To show the sensitivity of the numerical solution to the

time step, the hydraulic conductivities were increased

2.5 times. For the first time, DTMAX equal to 0.2 day
was used to find the location of the phreatic surface at
the steady-state condition. As expected, this value was
too large and the results were not correct. Then DTMAX
was reduced to 0.1 day. Although the numerical results
were realistic for early times, after 4 days the values
of the piezometric heads started to fluctuate. The
oscillation increased with time as shown in Figure 8-25.

By further reduction of DTMAX to 0.05 day, the oscillation
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was eliminated. It can be concluded that 0.05 day is an

appropriate DTMAX for this specific example.

8.4 Summary

In this chapter it was shown that the finite ele-
ment technique is capable of solving flow problems, both
in confined and unconfined aquifers. Under transient
conditions the fixed node technique (FNT) was tested and
it was verified that this method can predict the location
of the phreatic surface and can yield piezometric heads
and velocity vectors with a reasonable degree of accuracy.
It was shown that the simultaneous solution of velocity
functions at the nodes is continuous and acceptable.
Finally, the effects of the order of time approximation

on the accuracy of the predicted results were examined.







CHAPTER IX

NUMERICAL RESULTS FOR PREDICTION

OF CONCENTRATION OF A TRACER

The computer model developed in this study solves
a set of partial differential equations. One equation
is the combined equation of motion and continuity of flow
which describes the piezometric head distribution of the
agquifer; in turn, the velocity components and hence
the dispersion coefficients are computed. Then the sec-
ond partial differential equation, the mass-transport
equation (convective-dispersion equation), is solved to
yield the concentration distribution in the flow domain.

The numerical results for the flow equation were
discussed in Chapter VIII. In this chapter the finite
element model for simulating mass transport is verified
by comparing the numerical results with several existing
analytical solutions. If the results of a known analyti-
cal solution can be approximated, a great deal of confi-
dence in the numerical simulation can be gained. The
feasibility of the model to predict the concentration of
a tracer in field problems is shown. In this chapter

concentration is used as a synonym for dimensionless
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concentration, i.e., C/C Co being the initial tracer

o’
concentration. The DL and D, are longitudinal and trans-
versal dispersion coefficients, respectively, and are
assumed constant for the porous medium independent of
velocity.

9.1 Longitudinal Dispersion in Steady
Uniform One-Dimensional Flow

A semi-infinite cross section of a homogeneous

and isotropic porous medium with a plane source maintained

at X, = 0 is shown in Figure 9-1.

Figure 9-1.--Cross Section of a Homogeneous and Isotropic
Porous Medium With a Plane Source Maintained

at Xl = 0.

The flow is maintained at a constant flux q; in the X~
direction. For an isotropic medium, the axis of the
dispersivity tensor is assumed to coincide with the
velocity vector. Equation (3.5.1) reduces to

p. 2C _y, 3¢ _3C (9.1.1)

L 2
axl 1
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where DL is the longitudinal dispersion coefficient, and

V. 1s the velocity vector along the xl-direction = ql/ne.

1
The solution of Equation (9.1.1) with the following ini-

tial and boundary conditions,

c(0, t) = CO t>0
C(Xll 0) =0 Xl > 0
C(e, t) =0 t >0

is given [Bear 1972] as:

x.-V.t V. x x.+V. t
g— = % erfc |1 | + exp L1l erfc 1 1 (9.1.2)
o) 2vD_t D 2vD_t
L L L
where erfc(u) = 1 - erf(u).
® 2
erf(u) = =2 | e % ac¢ (9.1.3)
T o

The progress of a concentration front in an
infinite column of a porous medium is modeled numerically

on the computer, as shown in Figure 9-2. A constant

source is maintained at x = 0 and the following parameters
are employed in the finite element model: Axl = 0.4 cm,
Vl = 0.1 cm/sec, L = 10 cm, At = 2 sec, and DL = 0.01

cmz/sec.
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Figure 9-2.--Finite Element Model to Simulate One-
Dimensional Longitudinal Dispersion.

The results of runs using the above data are
shown in Figure 9-3. The numerical results compare
favorably with the analytical solution; however, in
some instances they are slightly higher. Reddell and

Sunada [1971] have solved one-dimensional longitudinal

dispersion with the method of characteristics using 2
and 4 moving points per grid. Since the finite element
technique used in this study does not employ moving

points per grid and since the Ax in this study is greater

than the one used by Reddell and Sunada, it is difficult
to compare the degree of accuracy of the two methods.

The order of time approximation has a great
effect on the accuracy of the numerical solution. A sec-
ond order approximation, introduced in Chapter V, was
used to obtain Figure 9-3. The first order time approxi-
mation provides poor results as shown in Figure 9-4. 1In

Figure 9-4 for 6 = 1 (implicit method), the numerical
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results fall below the curve close to the point source
and then move above the curve as the mass travels further
from the origin; 6 = 2/3 gives good results at high con-
centrations, but diverges later; 6 = 1/2 yields a higher
concentration than the analytical solution at every point.
The second order approximation provides a better estimate
for tracer concentration compared to first order. Pinder
[1974] examines the stability of the first order time

approximation by Fourier analysis of the mass-transport

equation. He concludes that 6 = 0 provides unstable
results for any spatial distance, but 6 = 0.5 and 6 = 1.0
give stable numerical results for any reasonable space
mesh. Cheng [1973] mentions using second and third order
implicit approximations of the time derivative in the

solution of the convective-dispersion equation. Although

third order approximations were derived in Section 5.5,

they were not examined in this study.

9.2 Sensitivity Analysis for Time
Step and Grid Size

To investigate the effects of the types of 6 on
the convergence of the numerical solution using larger
time steps, several At were chosen and the above data was
employed to solve the concentration distribution for a
porous medium 14 cm in length. Let the residual be the
difference between the analytical and numerical solutions

for a given x Then define 2T as the averaged sum of

1°

the squares of residuals, i.e.,
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NT

1 (¢ -0

gy = 0=l (9.2.1)
NT

where NT is the number of available data from time zero
to 90 seconds, and C* and C are the analytical and
numerical values of concentration at X = 2 cm, respec-
tively. The variations of 2T with respect to At for
different second order 6 values, namely, 1/2, 2/3, and 1,
are given in Figure 9-5. For small time steps up to At =
4 sec, 6 = 1 gives better results compared with the
other two 6's. For greater At, 6 = 2/3 is superior and
the best results for this 6 are obtained at At = 5 sec.
The value of ZT for 6 = 1/2 is always the highest, and
for At greater than 4 sec it increases very rapidly.

This means that for 6 = 1/2 at larger At the results
diverge and are not correct.

To see this effect very clearly the variation of
concentration using At = 7 sec at X, = 2 cm with differ-
ent 0 is given in Figure 9-6. It can be observed from
this figure that poor results are obtained using 6 = 1/2.
The'probable conclusion that one can make from Figures
9-5 and 9-6 is that for larger time steps 6 = 1/2 diverges
and the results oscillate, and as At increases the error
increases gradually for both 6 = 2/3 and 6 = 1, with 6 =

2/3 showing the least error.
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Figure 9-5.--Variation of ZT With Respect to At for Dif-
ferent 6. Second order time approximation
is used.
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To show the effect of the grid size on the
accuracy of the numerical solution for the convective-
dispersion equation obtained by the finite element
method, one can define ZX as the average sum of the
squares of residuals, i.e.,

NX
) (c* - C)

gx = o=l (9.2.2)
NX

2

*
In Equation (9.1.5) C and C are the analytical and
numerical values of the concentration, respectively, at

a specific time, and NX is the number of available data

between X, = 0 and x, = L. Different grid sizes from
Axl = 0.2 to Axl = 2 cm are employed, and second order
time approximation with 6 = 2/3 is used. The variation

of ZX with respect to Axl for t = 80 sec is given in

Figure 9-7. It can be observed that the error is reduced

as the size of the elements becomes smaller.

9.3 Two-Dimensional Dispersion
With Uniform Flow

For steady and uniform flow parallel to the
x—-axis in an isotropic and homogeneous porous medium, the
convective-dispersion equation can be written as

2 2

2~ = p ——9+D B_C—VBL (9.3.1)

2 T 2 1
1 3x2 axl

(%)
Q
(%)
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where D and D, are the longitudinal and transversal dis-
persivities, respectively. Consider a porous medium as
shown in Figure 9-8. The seepage velocity Vl is uniform

and constant throughout the medium.

Porous medium

.<"
=

c/c, =0

Q
~
Q
[l
=
:',<.':.-‘,~o'
|

Impervious boundary

Figure 9-8.--Two-Dimensional Dispersion With One-
Dimensional Flow.

At X < 0, the concentration is held constant and equal

to Co for x, < 0 and equal to zero for x, > 0. The medium
is confined by two impervious boundaries far apart from
each other, such that the concentration remains Cy and

zero at the bottom and top of the boundaries, respectively,
for all X - The following boundary conditions can be
stated for steady-state distribution of the tracer con-

centration:
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C(O,X2)=0 0<x2<oo
9aC _ _ .
§§; =0 X, = t for all X
(9.3.2)
For this special case Equation (9.3.1) reduces to
2
v, ¢ - p 2C (9.3.3)
1 90X T 3x2
1 2
The solution of Equation (9.3.3) with the indicated
boundary conditions is given by Harleman and Rumer
[1963]. The solution is
X
C -1 erfe|—»>_t— (9.3.4)
o 2¢DTxl/V1

In simplifying Equation (9.3.1) to Equation (9.3.3),
Harleman and Rumer assumed and experimentally justified
2 2 2 2
that 9 C/Bxl << 3 C2/8x2.
The movement of a tracer in two dimensions with
one-dimensional uniform flow is modeled numerically, as

shown in Figure 9-9a. The following parameters are

7 cmz/sec, D, =

employed: V., = 0.1 cm/sec, D, = 1 X 10~ T

1 L

0.01 cm2/sec, Ax, = 1.0 cm, and Ax3 = 0.5 cm. The

1
steady-state solution of the problem by the finite
element technique is obtained using the coefficients

given in Table 5-3.
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Distance Along X,,cm

Analytical solution
[0} Numerical solution

(b)

Figure 9-9.--Steady State Solution of Two-Dimensional

Dispersion With One-Dimensional Flow.

(a) Representative sketch, (b) concentration
at different xp. Cubic quadrilateral ele-
ments with NELS = 14 and NNDS = 98 are used.






186

The numerical results using cubic elements are
compared with the analytical solution in Figure 9-9b.
The results compare quite well with the analytical
solution except in the vicinity of X, = 0, where the
results are slightly lower than those obtained by the
approximate analytical solution. This slight deviation
from the analytical solution for small x might be due
to neglecting 82C/8xi in Equation (9.3.3). The type and
size of the elements may be considered other reasons for

this small discrepancy.

9.4 Point Source With Uniform Flow

In this example a source is maintained at a
constant concentration for t > 0 at point A in a porous
medium, as shown in Figure 9-10a. The parameters used
in this example are: DL = 0.01 cm2/sec, Dp = 0.001
cmz/sec, Vl = 0.1 cm/sec, V2 = 0, At = 5 sec, Axl =1 cm,
and Ax2 = 0.5 cm. The concentration distribution of the
tracer at Xy = 0.0, X, = 0.5, and Xy = 1.0 cm after 180
seconds is depicted in Figure 9-10b. Although V, in this

example is zero and D, is smaller than DL’ tracer move-

T
ment along the x2—direction is evident. This implies
that velocity components facilitate the spreading of
chemical substances, but in the absence of a velocity

component the tracer will move due to the dispersion

phenomenon.
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Figure 9-10.--Two-Dimensional Dispersion With a Point
Source. (a) Sketch of the system, (b) con-
centration distribution at time 180 sec.
along x; at different x,. Linear quadri-
lateral elements with NELS = 120 and NNDS =
147 are used.
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9.5 Two-Dimensional Dispersion
With Transient Flow

To show the capability of the numerical model in
solving the convective-dispersion problems with transient
flow conditions, two examples are given in this section.
In the first example a porous medium is taken with
boundary conditions and employed parameters shown in
Figure 9-11. Water is withdrawn at a constant rate at
point W to produce the piezometric gradient. The vari-
ation of the piezometric head, magnitude of the velocity
vector, and concentration for point A with time is given
in Figure 9-12, and the concentration distribution
for the system after 100 seconds is depicted in Figure
9-13. An important observation which can be made (see
Figure 9-12) is that the simultaneous solution of the
velocity vectors is sensitive to the fluctuation of
the piezometric heads. Even so, the concentration dis-
tribution is a smooth curve. In this study the first
order time approximation was used to solve the flow equa-
tion, while the second order time approximation was used
for dispersion. It is believed that the employment of
a higher order time approximation helps in the smoothing
process and it might have been used in the hydrodynamic
problem. However, this idea needs to be investigated

further before any concrete conclusion can be drawn.
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Figure 9-12.--Variation of the Piezometric Head, Velocity,
and Concentration With Time at Point A.







191

*SpuUoOO3aS (00T I23FV PIOTJd MOTJ JUDTSURIJ

® U3TM UMTPSW © JIOJ SSUTT UOTIRIFUIDUOD-OSI--'€T-¢ 2Inb1g

‘o £

WO ——————







192

In the second example a confined aquifer, 80 x
80 m, is chosen. The concentration and the piezometric
head at point C are held constant, and a well is located
at point W, of Figure 9-14. A high pumpage value is
chosen to produce a steep gradient in order to obtain
high velocity vectors. This in turn will cause a tracer
buildup at a lesser time. 1Initially, the system is at
zero potential, and after three days of pumping a constant
source of tracer is introduced at point C. The variations
of concentration at points A and B, 10.00 and 14.14 meters
away from the point source, respectively, are shown in
Figure 9-15. The concentration distribution at the aqui-
fer after 10 and 20 days of initial pumping is shown in
Figure 9-16. Since dispersivity along the xl-direction
is greater than along the X,-direction, the tracer will
advance more in the X, - than in the xz—direction. The
curves are non-symmetric as one might have anticipated.
As time increases the asymmetry becomes more pronounced.

As far as it is known by the author, no published
results are available to compare with the obtained
numerical results. The only conclusion that can be made
at present is that the simultaneous calculation of the
velocity vectors and the use of higher order time
approximations can be considered to be a step in predict-

ing tracer concentration in transient groundwater flow

problems.
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= Kyy = 30 m/day

900 m2/day
0.005
a; = 20 m
5m
o = 0.3
P = 100 m3/day
NELS = 64

80 m

NNDS 81
D]

AA

IORT-

10 m

80 m

Figure 9-14.--Domain of Two-Dimensional Dispersion
With a Transient Flow Field.
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Figure 9-16.--Iso-Concentration Lines After 10
and 20 Days.
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9.6 Dispersion in a Phreatic
Aquifer With Accretion

To investigate the capability of FNT (fixed node
technique) in solving the convective-dispersion equation,
a portion of a phreatic aquifer was taken. A sketch of
a vertical section of the chosen model is depicted in
Figure 9-17. Initially, the water table is maintained

horizontal at 20 m, and both ends of the system are kept

at a constant piezometric head. It is assumed that the
recharge site is a continuous source of a tracer with
constant concentration, and the tracer maintains the same
concentration until it reaches the water table. The rea-
son for choosing this model is to develop the conditions
such that piezometric heads and velocity components vary
considerably within the period of interest and trends of
velocity components will differ in the system.

The procedure outlined in Section 6.3 was used
to locate the phreatic surface and define the velocity
vectors at the nodes above the free surface. It was
assumed that recharge directly reaches the phreatic sur-
face. 1In calculating the location of the phreatic sur-
face the primary interest was to find the velocity
vectors on the surface, and the above assumption was
perfectly applicable. 1In the dispersion process the
primary source of the pollutants is located on the

ground surface and the material is washed and carried
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Figure 9-17.--Representative Model Used in Simulating
Tracer Movement in a Phreatic Aquifer.
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downward by infiltration. This event suggests that in
the dispersion model at the accretion zone, the value of
Vs has to be equal to the recharge rate. This modifica-
tion of the assumption is realistic for the dispersion
phenomena and improves the numerical model.

The following parameters are used in the system:
NELS = 120, NNDS = 147, K = K

11 22

0.25, I = 0.1 m/day, ar = 20 m, ary

0.2 days. As outlined in detail in Chapter VII, velocity

= 30.0 m/day, n, =

= 5 m, and DTMAX =

vectors and hence dispersion coefficients are calculated
and then used in the convective-dispersion equation. A
constant concentration of a tracer is introduced at the
end of the second day. The reason for choosing the
second day is that usually at most sites prior to
recharge a potential gradient exists in the porous media,
and secondly, it takes some time for a tracer to travel
from the ground surface to the water table beneath the
recharge site. However, the starting time for computing
the dispersion of a tracer can be any time, including

t = 0.

The discharge vectors at t = 2 and t = 8 days and
the iso-concentration lines at t = 4, 8, and 12 days are
depicted in Figures 9-18 and 9-19, respectively. From
the consideration of physical aspects, a solute cannot
move in a completely dry soil. This condition in turn

implies that the concentration of a tracer at the nodes
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Recharge = 0.1 m/day
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Figure 9-19.--Iso-Concentration Lines in a Phreatic
Aquifer After (a) 4 Days, (b) 8 Days,
and (c) 12 Days.
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above the phreatic surface should remain constant. To
investigate the capability of the proposed numerical
technique for handling such conditions, two different
computer runs are examined. In both tests all condi-
tions are kept the same, except that in one run the con-
centration is set equal to zero at the nodes above the
phreatic surface, while in the second run the computer
is allowed to calculate the concentration at these nodes.
The numerical results for concentration distribution at
the interior nodes are the same for both runs (see
Figure 6-10 for definitions). But it is observed that

a slight concentration of the tracer appears at the nodes
above the phreatic surface for the second run. The
numerical technique might account for this slight devi-
ation. At each element adjacent to the recharge zone
the concentration is kept equal to 1 at two nodes, so
the numerical solution will compute a small concentra-
tion at the other two nodes. Since the computing of the
concentration distribution beneath the phreatic surface
is the major concern, the deviation discussed above will
not contribute any error. As far as it is known by the
investigator, no other results exist to compare with the
computed velocity vectors and tracer distribution. How-

ever, the results are promising and seem realistic.
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9.7 Reasonable Time Step for Calculating
Tracer Concentration 1in
a Phreatic Aquifer

As discussed in Section 9.2, the numerical solu-
tion of the mass transfer equation is sensitive to the
time step. Usually, an allowable time step for the solu-
tion of the convective-dispersion equation in confined
aquifers is smaller than that for flow. In the process
of calculating the location of the phreatic surface,
choosing the proper time step is very important and
instability and oscillation occur for larger time inter-
vals (see Section 8.3.8). Experience shows that in
phreatic aquifer problems, the same time step can be
used for the solution of both flow and mass transfer
phenomena. For example, it was found that DTMAX = 0.2
days is adequate for obtaining the location of the phre-
atic surface in the study of the previous section, and
the same time step can be used for the solution of the
mass transfer equation. Reduction of the time step to
0.1 day does not have any effect on the results, as shown
in Figure 9-20. 1In this figure the concentration distri-
bution at point A (of Figure 9-17) versus time for two
different time steps is given and the results are identi-
cal. It is obvious that the time step for the solution
of the convective-dispersion equation should not exceed

the DTMAX.
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9.8 Summary

In this chapter numerical examples are presented
to show the applicability of the employed techniques in
predicting tracer movement, both in confined and phreatic
aquifers with a transient flow domain. The sensitivity
of the numerical results to time steps and orders of time
approximation was examined. Primary results reveal that
the fixed node technique is capable of solving the
convective-dispersion equation in an unconfined phreatic

aquifer.






CHAPTER X

SUMMARY AND CONCLUSIONS

In this study the movement of a tracer in an
aquifer is investigated. The tracer may be introduced as
a constituent of artificial recharge, for example, a
chloride ion present in treated sewage water. It is
assumed that the tracer remains unaltered in the aquifer.
Both two-dimensional regional (horizontal) and two-
dimensional local (vertical) flows are considered.

In order to accomplish the movement of the free
surface within the grid system without repositioning the
nodal coordinates of the elements, a procedure for locat-
ing a phreatic boundary of an unconfined aquifer is
adapted. 1In order to obtain continuous flow across ele-
ments and at the nodes, the Galerkin formulation of the
Darcy law is constructed and velocity vectors are calcu-
lated simultaneously at the nodes. These transient
velocities are subsequently used in shifting the phreatic
surface as well as computing dispersion coefficients and
convective terms of the mass-transport equation. Finite
element formulation of the flow and convective-dispersion
equations leads to a set of first order partial differ-
ential relations. Using the finite element concept,

205
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higher order time approximations for the system of
equations are derived. The validity of the proposed
techniques is established by first comparing the numeri-
cal flow results with existing analytical, experimental,
and field data. Upon verification of the solution of
the fléw equation, the prediction of the movement of a
tracer in an unconfined aquifer with a transient phre-
atic boundary and in a confined aquifer with a transient
flow condition is conducted. Numerical examples have
been presented to demonstrate the capability of the
proposed techniques.

It is shown that the Galerkin finite element
method can be used to solve the flow and convective-
dispersion equations, both in confined and phreatic
aquifers under time-variable flow conditions. On the
basis of the present study the following conclusions can
be made:

1. The fixed node technique is capable of
locating the transient phreatic aquifer due to accretion.
The numerical results compare favorably with experimental
and analytical solutions. The major advantage of this
method is that the solution of the convective-dispersion
equation for an unconfined aquifer with a movable free
surface is possible. The primary results of predicting

the tracer movement seem realistic. Much work yet







207

remains to be done in order to complete this investiga-
tion and cover all related aspects of the problems.

2. The Galerkin formulation of the Darcy law
provides continuous velocity vectors across element
boundaries. Calculation of the transient velocity vec-
tors based on known piezometric heads becomes straight-
forward.

3. The time approximation of equations describ-
ing the transient behavior of the field problems is an
important factor on the stability and convergence of the
numerical results. A second order time approximation
gives more accurate results for convective-dispersion
problems than a first order one.

4. The finite element numerical technique pro-
vides facility for solving field problems related to
flow and mass-transport situations. It yields accurate
and realistic results provided that the physical behavior
of the phenomena under investigation is well understood,
and related parameters and initial and boundary condi-

tions are properly specified.







CHAPTER XI

RECOMMENDATIONS FOR FUTURE STUDIES

1. This study is the first step in predicting
the tracer movement in an unconfined aquifer with a
transient phreatic surface. The fixed node technique is
used to find the location of the phreatic surface. The
flow solution of this technique agrees favorably with
experimental and analytical results and field data, and
is believed to provide reasonable results particularly
when the rise of the water table is caused by accretion.
The calculated tracer distributions appear to be realistic.
Still there is more to be done, especially in the areas
outlined below:

a. Equation (6.3.26) was used to obtain the
value of the piezometric head at the phreatic
nodes (see Figure 6-10) with constant effective
porosity and hydraulic conductivity. In Section
8.5 it was stated that one of the possible ways
to reduce the error is to modify the Darcy law
for unsaturated flow. This means that in order
to improve the technique, especially for the area

away from the recharge zone, it is required to

208
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extend the work for saturated and unsaturated
porous media.

b. Assigning the value of the piezometric
heads at nodes above the phreatic nodes needs to
be further pursued until more realistic condi-
tions can be obtained. As was already discussed,

this task becomes more important when the velocity

vectors are calculated simultaneously and used in
shifting the phreatic nodes, calculating the dis-
persion coefficients, and evaluating the convec-
tive term of the dispersion equation.

c. Extending this work to three dimensions
will be a significant contribution and will
reduce the errors that are associated with two-
dimensional assumptions.

d. Obtaining field and laboratory data
regarding the movement of dissolved chemical sub-
stances in unconfined aquifers will help to
verify the numerical models, so that increased
confidence will be gained in more sophisticated
problems dealing with convective-dispersion
phenomena.

2. It was shown that the second order time
approximation provides more accurate results than the

first order approximation. Investigating the effects of
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second and third order time approximations on flow and
third order time approximation on dispersion is highly
recommended .

3. It was observed that the accuracy of the
numerical results depends on the type and size of ele-
ments. Further investigations regarding both size and

type of elements will be very useful.
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APPENDIX I

FINITE ELEMENT DEVELOPMENT

I.1 Introduction

In the finite element technique, a continuum is
divided into a finite number of subdomains which are
called "elements." Each element is designated by
"nodes." It is possible to define a functional such
that it will describe uniquely the state of a parameter
within an element based on its values at the nodes.
Polynomials are most commonly used in deriving such
functionals, which are termed "shape functions" [Segerlind,
in press]. A detailed formulation of the finite element
method is given in the literature, e.g., Zienkiewicz
[1971], Norrie and de Vries [1973].

Let the dependent variable C in the domain D¢

be approximated by

e_.e (I.1.1)

where Nn are the approvoriate shape functions defined
piecewise, element by element; Cn are the nodal values

of C in the discretized domain; and M is the number of
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the degree of freedom (number of nodes in each element).

For example, for an element with three nodes

C
e
N3] C

C = [N, N
1 c

1
2 2
3
where [ ]e and { }€ denote a row matrix and a column
vector respectively, which contain properties of the
three nodes associated with one element.

In this section the shape functions for the
different types of elements used in this study are
described, and the numerical integration of element
matrices for isoparametric elements is discussed. The
integrated element matrices for one-dimensional quadratic
and two-dimensional triangular elements are given in
Apvendix II. Finally the procedure for allocation of a
constant line source to the boundary nodes is given.

I.2 Types of Finite Elements and
Their Shape Functions

One cannot subdivide a continuum into elements
without first knowing what general shapes are permissible.
In this part some of the more common finite elements
which are used in the analysis of flow and dispersion
phenomena are given. For the derivation of the shape

functions, the reader is referred to Zienkiewicz [1971].
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I.2.1 One-Dimensional
Element

a. Simple element.--The simplest one-dimensional

element has two nodes, one at each end (Figure I-1).

o
\
b

&

Xl—"‘ L

X2

Figure I-1l.--Simple One-Dimensional Finite Element.

The shape functions for this element are

X
I f] (I.2.1)

N =1-[£] ana = |

b. Quadratic element.--This element has three

nodes, two nodes at each end and one in the center of

the element (Figure I-2).

lﬂ——— I, —————
%j 2 3
— » —— X
‘Xl—"
- X2
el - x3 o

Figure I-2.--One-Dimensional Quadratic Element.
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The shape functions for a quadratic element are

O

[1 - 35] (I.2.2)

c. Quadratic element for axisymmetric case.--

This element also has three nodes, but the shape func-
tions are written with respect to the origin of the

global coordinate (Figure I-3).

— L L

«— - » —r
—&TI-
sl r2
pl)———— r3 —_—

Figure I-3.--Quadratic Element for One-Dimensional
Axisymmetric.

The shape functions can be written

N, = 2(r - 1) (¢ - r3)/L2

N, = 4(r - r) (r - r3)/L2

z
Il

2(r - r)) (x - r2)/L2 (1.2.3)
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I.2.2 Two-Dimensional
Simplex Element

The two-dimensional simplex element is the tri-
angle shown in Figure I-4. The triangular element has
rightly become more popular due to the ease with which
the subdivision can be graded and the boundary shapes
approximated. The evaluation of the element matrices is

simple.

A v

(X3 lY3)
Centroid
(Xz ryZ)
=
Figure I-4.--Simple Triangular Element.

The shape functions for the triangular element

are given below:

1
Ny = 33

[y
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N, = L (a, + b.x + c,.v)
2 2 2 2Y

_ 1
N, = 5 (a, + b,x + c3y) (1.2.4)

a) T X¥37X3¥y i by =Yy ¥z i ) =X37X,
8y T X3Y¥) "Y3Xy i Py=y3-y) i Cp=X) 7 Xg
a = xlyz-xzyl H b3=yl-y2 i C3=Xy - X (I.2.5)

1
> (blxl + b2x2 + b3x3)

= area of triangle (I.2.6)

I.2.3 Two-Dimensional Iso-
parametric Elements

The use of a curvilinear coordinate system has
definite advantages when considering two- and three-
dimensional elements, because it allows the boundaries

of these elements to be distorted.

a. Linear quadrilateral isoparametric element.--

Consider Figure I-5, and define &, n such that -1 < ¢ <1
and -1 < n £ 1. The shape functions for the linear

quadrilateral element are

(1 - & (1 -n)

Z
I
N

— e ——
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n
Ay
(x_,vy.)
(x4,y 3 3'°3
4
—— E
1 2
(x ,y ) / (leyz)
- x
Global
!
(-1,+1)97 —39 (+1,+1)
*’g
L |
(-1,-1) (+1,-1)

Local

Figure I-5.--Linear Quadrilateral Isoparametric
Finite Element on Global and Local
Planes.
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N, =3 (L+8 (1-=-n)

2

N, =% (L+& (L+n)
3° 3 n

N, =% (1-¢) (L+n) (I.2.7)
4 4 n ol o

b. Quadratic quadrilateral element.--The shape

functions for the quadratic quadrilateral element

(Figure I-6) are given [Zienkiewicz 1971, p. 109]:

N, = - %»(1—&) (1-n) (&n+l) ; N, = %—<l-€2> (1-n)

N, = %.(1+a> (1-n) (&-n-1) ; Ny = %—<l-n2> (1+8)

N, = %—(1+£) (1+n) (&4n-1) ; Ne = %-(1-€2> (1+n)

N, =1 -8 ) em-n) ;0w =1 a®) a-p (1.2.8)
7 4 ! 8 2 T

c. Cubic quadrilateral element.--The shape

functions for the cubic quadrilateral element (Figure

I-7) are given [Zienkiewicz 1971, p. 109]:

N =43 (1L-8) (L-mn) [-10 +9 (62 +n?)]
Ny =55 (1-n) (1-£%) (- 38
Ny = a5 (L=n) (1= £%) (1+ 36

- .
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Figure I-6.--Quadratic Quadrilateral Element.

2
8
n 6
119 o
- £
12i >
\
2 3 4

Figure I-7.--Cubic Quadrilateral Element.
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N4=%(I+E) (L -n) [—10+9(€2+n2)1

Ny =5 (L+8) (1-0n%) (-3

Ng = o5 (L+8) (1-0% (1+3n)

Ny =gy (L+6) (Lam (=10 +9 (62 + %)

Ng = a5 (Lem (1= @+ 38

Ng = a5 (L+m) (1= 8% (-3

Nig =2 (1-8 (L+m [-10 +9 (€2 +n?)]

Ny =3 (1= B (-0 @+

N, =5 (1-8 -nd) @-an (1.2.9)

I.3 Numerical Integration

Usually the element matrices are in the integral
form which has to be evaluated. For example, the element
matrices for fow in a two-dimensional horizontal plane

are:

81 = [ |r alka&dn (4.2.7a)
pe ij axi X S






232

e —
[H]® = ée S N N dD (4.2.7b)
: e
{F}® = ée N, Q, ds - ée P N, dD (4.27¢)

Integration of Equation (4.2.7) or similar equations for
simple elements is straightforward, and some of the inte-
grated forms are given in Appendix II. For isoparametric
elements, shape functions are described in the local

(£, n) coordinates, but Equation (4.2.7) is written in
global (x, y) coordinates. To perform the transformation
of the shape function derivatives BNk/ax and aNk/By, the

following relationship is used.

_ -
N, ON,
X _1 |9¢

= [J] (I.3.1)
ANy 3N,
9y _| [on _|

In which [J] is the Jacobian matrix:

— - ~ -
ax By 3N, 3N, o Ny | [%; ¥y
& 0 05,  9& o0& Xy Y,
(gl = = A (1.3.2)
ax oyl M0 Mo My '
on 0] [on on_| ' Tu
where X170 Xor o o oy Xy and Yyr Yyr « - -4 yy are the

nodal coordinates. Another transformation required is
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the replacement of the element of area, dxdy(dD), by

the expression:
ap‘®) - axdy = det [J] dtan (I.3.3)

The limits of integration in the local coordinate system
become -1 and +1. For example, Equation (4.2.7a) will

change to

+1 +1 .
Be=f J'Ta_l\‘]i%.q.rr ai_?.N_n
kn XX 90X  0X Yy 9y oy

-1 -1

det [J] dndg (I.3.4)

Similar expressions are developed for the remaining terms
of Equation (4.2.7), Equation (4.3.13), and Equation
(4.4.7), etc.

Equation (I.3.4) and similar equations are inte-
grated by the Gaussian quadrature integration technique
[e.g., see Zienkiewicz 1971, pp. 144-149]. For a poly-
nomial of degree 2n = 1, the number of sampling points

will be n.

I.4 Parameter Definition

The parameters such as hydraulic conductivity,
dispersion coefficients, storage coefficient, resistivity
of aquitard, etc., can be specified either for each node
or each element. Because the numerical solution requires
slightly less computation time when parameters are

assumed constant over an element, usually the parameters






234

such as storage coefficient which do not change con-
siderably are specified for each element. Since
velocity components vary within the element, dispersion
coefficients are specified at each node.

I.5 Allocation of a Constant Line
Source to Boundary Nodes

Dirichlet (specified head or concentration) and
Neuman (specified flux) conditions are the two boundary
conditions generally encountered in field problems.
Introducing the Dirichlet boundary condition was dis-
cussed in Section 6.1.2. When the normal flux a, is
assumed constant along an elément face of length L, the

integration of

ée qusds (r.5.1)
will result in the constant flux to allocated at the
boundary nodes. The results for elements with two,
three, and four nodes along the boundary line are given
in Figure (I-8). One-dimensional linear, quadratic, and

cub shape functions are used in this integration.
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APPENDIX II

INTEGRATED ELEMENT MATRICES FOR ONE-
DIMENSIONAL QUADRATIC AND TWO-

DIMENSIONAL TRIANGULAR ELEMENTS

In this section some of the integrated terms that

are used in the construction of the element matrices for

flow and dispersion phenomena are provided.

II.1 One-Dimensional Quadratic Element

The one-dimensional quadratic element is depicted

in Figure I-2. 1Its shape functions are given by Equation

(I.2.2), and can be written as

Ny =1 - 3K 2
L L
N2‘4’)3'4L2
L L
_ 2x2 X
Ny = — - =
L L
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(IT.1.1)
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N3 _ax _1
9X L2

238

(IT.1.2)

In Equations (II.1l.1l), (II.1.2), and in the following

equations, L represents the length of an element.

TaNl aNy oN, 3N, 8N AN,
oxX ox 9xX ox oxX oxX
1 f BNn ?_N]idx =f BNl 3N2 BNZ 8N2 oN 3N3
: X 0x X X oxX ox oxX ox oxX oxX
BNl 8N3 8N2 8N3 oN 3N3
[0X 99X oX 9ox 0X  0X |
7 -8 1
_ 1 | -
=31 8 16 8
1 -8 7
-
NlNl NlNZ NlN
2. [ NN dx =[ NN, NN, NN, |dx
X X
l\]3Nl N3N2 N3N
[ 4 2 -1
= L
=35 2 16 2
-1 2 4]

(IT.1.3)

(IT.1.4)
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X X
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N ON
1 2
NN 5% NN 5%
N 9N
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NN ax N2k
=10 g -1]
-6 0 6
| 1 -8 10|
. BNl . 8N2
ox 1 9x
. N, . 3N,
0X 2 9x
. 3N, . 3N,
i 0X 3 0x
-3 4 -1]
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X X 2 99X
X ox 2 9X
B 9X 9x 2 9oX

ON. ]
3
NlNB X
8N3
NN; 5% | &
9N
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NJN3 5%
(I1.1.5)
. 8N3
1 9x
3N3
N:Z I dx
. 8N3
3 SX_J
(ITI.1.6)
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Two-Dimensional Simplex Element

(I1.1.7)

dx

(IT.1.8)

(IT.1.9)

The two-dimensional simplex element shown in

Figure I-4 and the shape functions and related terms are

defined in Section I.2.2.

The first derivatives of the shape function

with respect to x and y are
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byc,

be,

(I1.2.1)

(IT1.2.2)

(IT1.2.3)

(I1.2.4)

(IT.2.5)
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oN
. n .
5. Ewvaluation of £ Nk 5% dA:

T ON 9N, aNg“
N N N
1 9x 1 9x 1 9x
oN ON oN oN
n _ 1 2 3
Mg aa=t N, 5= Ny Ny @
. BNl y 3N2 . 3N3
73 9x 3 9x 3 9x |
N by N, b, N,bJ
1
= > i N,b, N,b, N,b,| dn  (II.2.6)
N3by N3b, Nybs3

Each term in Equation (II.2.6) can be integrated

separately, e.g.,

1 !
ﬁz-i NlbldA-ZZ7-£ (a; +byx +cyy) by dx dy  (II.2.7)

[ dx dy = A = area of triangle
A

[ xdxdy = [ ydx dy =0
A

™

Then equation (II.2.7) is reduced to
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dx dy = (I1.2.8)

1
— [ a

b
4A 171

If it is assumed that the origin of the coordinates

is taken at the centroid of the element, i.e.,

X, + x, + X

1t Xt Xy
; =0
Y, *y, +y
1 "2 “3_5, (II.2.9)
3
Th =2 _ L, = [Zienkewicz 1971, Eq. 4.8]
en al = 3 = a2 = a3 lenkewlcCcz ’ q. - -

Substituting the value of a, into Equation (II.2.8)

1
yields

by by by
aNn 1
£ Ny 5% =z |bg b, b, (I1.2.10)
P1 P2 Py

Note that the assumption leading to Equation (II.2.9)
is automatically satisfied in the computer program,

regardless of whether local or global coordinates are

used.






244

Ny¢
/ BN 1
N dA = N,C
A k Ty 28 5 [72°1
N3C;
€1 €,
_ 1 c
=% 1 2
€1 )
2 1
[N, N da =5 |1 2
k "'n 12
A
1 1

Evaluation of é Nk a, ds:

2

)

N3c2

If q, is

Nycs3

33

(I1.2.11)

(II.2.12)

the constant flux

along the line 2-3, as shown in the following figure,

then

where L is the length of line 2-3.
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DEVELOPED COMPUTER PROGRAMS
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APPENDIX ITII

DEVELOPED COMPUTER PROGRAMS

For the numerical investigation of this thesis,

several computer programs have been developed for use on

a CDC 6500 computer with FORTRAN IV Extended language.

The finite element technique is used in formulating all

of the programs. Some of these programs will be docu-

mented and available. The more pertinent programs are

as follows:

1.

One-dimensional plane or axisymmetric
medium ;

a. flow

b. tracer movement with uniform or
transient flow

Two-dimensional horizontal plane medium,

a. flow with mixed elements (triangu-
lar or quadrilateral elements)

b. dispersion with simplex triangular
elements

c. dispersion with quadrilateral ele-
ments

Two-dimensional vertical plane medium
with transient phreatic surface;

a. flow MNT gquadrilateral alements
b. flow FNT linear quadrilateral elements
c. dispersion linear quadrilateral elements
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In all programs, options are provided to obtain
the velocity vector either directly or simultaneously.
Different 6-values (see Chapter V) can be used in
approximation of time-dependent functions, with a first
or second order time approximation available for the
convective-dispersion solution. Uniform, steady-state,
or transient flow can be used in the calculation of

mass-transfer phenomena.

























