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ABSTRACT

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

OF TRANSIENT FLOW AND TRACER MOVEMENT

IN CONFINED AND PHREATIC AQUIFERS

BY

Sirous Haji—Djafari

In this study the movement of a tracer in an

aquifer with transient flow conditions is investigated,

both on a regional as well as local scale. For the

regional scale the two-dimensional horizontal plane is

considered, while for the local scale a vertical cross

section of a site is chosen. Special emphasis is placed

upon solving the flow and mass transfer phenomena in a

phreatic aquifer with a time variable boundary.

Finite element formulation of the flow and

convective-dispersion equations leads to a set of first

order partial differential relations. In addition, with

use of the finite element concept, higher order time

approximations for the system of equations are derived.

In order to obtain continuous flow across elements and at

the nodes, the Galerkin formulation of the Darcy law is

constructed and velocity vectors are calculated simul—

taneously at the nodes. These transient velocities are
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subsequently used in shifting the phreatic surface and

in computing dispersion coefficients and convective terms

of the mass-transport equation. A procedure is adapted

which locates the phreatic boundary of an aquifer without

repositioning the nodal coordinates of the elements.

The validity of the proposed techniques is estab-

lished by first comparing the numerical flow results with

existing analytical, experimental, and field data. Upon

verification of the solution of the flow equation, the

prediction of the movement of a tracer in an unconfined

aquifer with a time—variable phreatic boundary, and in a

confined aquifer with a transient flow condition, is con-

ducted. Numerical examples are presented to demonstrate

the capability of the proposed techniques.

It is shown that the Galerkin finite element

method can be used to solve the flow and convective—

dispersion equations, both in confined and phreatic

aquifers under time-dependent flow situations.
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CHAPTER I

INTRODUCTION

1.1 Motivation

In recent years the demand for fresh water has

increased drastically due to population increase, indus-

trial growth, and agricultural expansion. However,

fresh water sources are limited and the bulk of this

vital resource lies underground in the form of ground-

water. It is now more or less generally accepted that

man's future will depend on his ability to conserve this

valuable resource for human consumption.

Almost every pollutant that leaves a sewage plant

or is part of runoff from rural lands or urban areas will

reach some water basin such as a lake or an aquifer.

Besides the customary disposal of treated effluent in

nearby streams, rivers and lakes, irrigation of farmlands

with secondary and tertiary wastewater is being sought as

one of the possible ways to replenish groundwater sources

while maintaining their high quality. In one type of

system, treated sewage effluent is passed through a

series of ponds before transferal to farmlands for use

as irrigation water [see, e.g., Bahr 1974]. The tertiary



 



wastewater slowly infiltrates into the soil while pro-

viding intake water and nutrients for the plants. Dur-

ing this passage the constituents are mixed, dispersed,

and diffused through the flowing mass, and some of them

such as phosphate, sulfate, and certain heavy metals are

adsorbed by the soil [Ellis 1973]. After the water

leaves the biologically active zone of the soil it enters

the groundwater reservoir and eventually appears in wells

and springs in the region.

Although studies of nutrient intake by plants and

studies of pollutants deposited along the course of the

water's flow deserve great attention, it is important to

know the concentration of the dissolved chemicals which

travel easily with the water through the porous medium

at different stages of the movement. The analysis of the

effects of possibly contaminated recharged effluent on

the quality and quantity of the transient groundwater is

extremely worthwhile and beneficial.

1.2 Objective and Plan
 

The objective of this thesis is to investigate

the effects of treated wastewater recharge on the quality

and quantity of the groundwater resources. Consideration

is given to regional problems, but primary emphasis is

focused upon the local region, that is, the region

beneath and in the vicinity of the recharge site. This



will be done by considering a two—dimensional horizontal

plane for the regional scale (on the order of one

square kilometer) and a vertical cross section for the

local scale (one hundred square meters). For the purpose

of this study the pollutants of concern are dissolved

chemical substances such as chloride and chromium, which

remain unaltered during the transport process. The dis—

persion and convection of a tracer through a confined or

unconfined aquifer with transient conditions are simula—

ted by a Galerkin formulated finite element method.

Calculated transient velocity vectors are used to obtain

the dispersion coefficient, and they are introduced into

the convective—dispersion equation. The specific objec-

tives include:

1. Calculating the location of a transient

phreatic surface in unconfined aquifers.

2. Investigating the tracer movement in a

confined and an unconfined aquifer with

a time-dependent flow domain.

1.3 Scope of Study 

The scope of the study presented in this thesis

includes a detailed description of the mathematical

equations for both flow and convective-dispersion in

confined and unconfined aquif.rs, solutions of the above

equations by the finite element method, comparison of the

numerical results of this investiation with existing





data, and finally the application of the employed tech-

niques for more complex problems.

The mathematical equation describing the magni-

tude of the piezometric head in an unconfined aquifer is

nonlinear, because of the existing phreatic boundary.

The difficulties of solving related equations will

increase when the boundary is transient due to accretion

or other events. Furthermore, the mass transport equation

is also a nonlinear equation because of the dependence of

the convective terms and dispersion coefficients on the

velocity COmponents. Both the dispersion and flow equa—

tions have to be solved simultaneously or consecutively

for each time step in order to predict mass distribution

in a porous medium. It is customary to modify the

numerical grid systems such that the movement of the

phreatic surface can be handled. However, because of the

changing location of the nodes, it is difficult to obtain

the values of velocity components within the grid system

so that they might be used in computing the convective

terms and dispersion coefficients. In this study this

difficulty has been overcome by adapting a technique pro-

posed by France [1971] which can locate the phreatic sur-

face within the grid system without repositioning the

nodal coordinates. The method provides a feasible way

to solve the convective-dispersion equation for uncon-

fined phreatic aquifers.



 



The velocity vectors play a dominant role in the

accuracy of the predictions governed by the dispersion

model. A simplified procedure for solving velocity com-

ponents is introduced; this procedure provides continuous

velocity values at the nodes. The technique also enables

one to predict the tracer movement with a transient flow

condition.

The finite element formulation of the field prob-

lem leads to a set of ordinary differential equations

of the form

[A]{C(t)} + [H] {g—E} = {F(t)}

where C(t) is an unknown variable such as concentration

or piezometric head. Discretization of the time deriva—

tive of this equation is one of the major concerns for

many investigators. With the finite element concept,

recurrence formulae for the above equation for three

different orders of time approximation are derived. In

this process a simple procedure to obtain the finite dif-

ference relation for a variable and its first and second

derivatives is also shown.

In this study the validity of the proposed tech—

niques is established by first comparing the numerical

flow results with existing analytical, experimental, and

field data. Upon verification of the solution of the





flow equation, the prediction of the movement of a tracer

in an unconfined aquifer with a transient phreatic

boundary is conducted. Numerical examples are presented

to demonstrate the capability of the proposed techniques.

Sensitivity analyses are made to explore the effects of

time steps and element size on the accuracy of the

numerical results.





CHAPTER II

LITERATURE REVIEW

2.1 Introduction
 

The major objective of this study is to investi-

gate the movement of a tracer in a confined or an uncon—

fined aquifer which is experiencing a transient flow

regime. The piezometric head and the velocity of ground—

water flow must be known in order to predict the rate

and direction of movement of dispersive substances. The

simulation of mass transport through porous media in two-

dimensional horizontal flow in a confined aquifer has

received considerable attention, but little attention

has been given to the solution of the dispersion equa-

tion for an unconfined aquifer with a phreatic boundary.

The difficulties associated with calculation of the

convective term and dispersion coefficient with a time-

dependent phreatic boundary might be considered the

major obstacles in the way of progress in this area.

There is a vast number of publications available concern-

ing the solutions of the flow equation and the convective-

dispersion equation; only those publications relevant to

this study are referenced herein.



2.2 Mechanics of Flow 

 

2.2.1 Confined Aquifer 

The finite element solution of the differential

equation describing flow in a two-dimensional horizontal

plane for a nonhomogeneous and anisotropic confined aqui-

fer is well-established and is available in the literature.

Zienkiewicz et a1. [1966] employed the method to obtain

a steady-state solution for the heterogeneous and aniso—

tropic seepage problem. Javandel and Witherspoon [1968]

used the Rayleigh—Ritz procedure to solve groundwater

problems with linear triangular elements. Pinder and

Frind [1972] utilized Galerkin's technique to analyze

groundwater problems with isoparametric elements. The

numerical model developed in this study to calculate the

piezometric head in a confined aquifer is similar to the

procedure presented by Pinder and Frind.

2.2.2 Unconfined Aquifer

With Phreatic Surface

 

 

The equations governing boundary and initial

value problems of the phreatic surface for liquid flow

through porous media are known [Polubarinova-Kochina

1962, Bear 1972]. The exact analytical solutions of

these equations are extremely complex. To simplify the

treatment of such problems, Dupuit in 1863 assumed that

the gradient of the phreatic surface in the vertical

plane away from the wells and mounds is very small, thus





the groundwater flow is essentially horizontal and can

be considered as a uniform flow. This assumption led to

the well-known Boussinesq equation. Because of the

nonlinearity of the Boussinesq equation, only a small

number of analytical solutions are known to date [e.g.,

Polubarinova-Kochina 1962, and Bear 1972]. An approach

to overcome the problem is to linearize either the par—

tial differential equation describing the phreatic sur-

face boundary or the Boussinesq equation. Bear [1972]

has outlined several linearization techniques with rela—

ted references. Marino [1967], following Hantush [1963,

1967], employed a linearization method to solve the

problem of the rise and decay of a groundwater mound

below a spreading site, and justified the solution with

experimental study. All analytical solutions are limited

to flow systems in which the boundary conditions are

simple, the porous medium is relatively uniform, and the

Dupuit approximation is valid, i.e., the vertical gradi-

ents throughout are not too large and hence are negligible.

Models and analogues are tools for achieving the

solutions of problems where the direct analytical solu—

tion is not possible because of the complexity of the

system. The Hele-Shaw or viscous flow analog and resist-

ance network analogues are most commonly used. Bear

[1960] discussed the scales of viscous analog models for

groundwater studies. Bear [1972] presents extensive
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bibliographies of past applications of the Hele-Shaw

model to studies of groundwater flow. Marine [1967]

used the viscous analog model to study the growth and

decay of groundwater ridges. Tinsley and Ragan [1968]

employed the Hele-Shaw model to investigate the response

of an unconfined aquifer to localized recharge. Herbert

[1968] used a resistance network analog to study the

time-variable movement of the water table in unconfined

saturated strata. His work is based on the assumption

that for any time-variant system of water, the flow can

be approximated as a series of steady-state solutions,

each of slightly varying shape and satisfying the Laplace

equation. In his technique the location of the water

table is known at a given time, and the new position of

'the free surface is predicted for a chosen finite time

interval. This process is repeated for several time

intervals until the maximum required time has been

reached or the system has reached the steady state.

In the solution of groundwater flow problems, the

digital computer offers enormous advantages and has become

a dominant computational tool. There are several numeri-

cal techniques available for solving the governing equa-

tion for groundwater flow. Of these, the finite

difference and the finite element techniques are most

commonly used. Todsen [1971] used the finite difference

method for solving the free surface flow problems. Amar
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[1975] investigated the two—dimensional hydrodynamic

behavior of recharge of an unconfined aquifer with the

finite difference technique.

The finite difference technique is simple to

program, but manipulation of curved boundary conditions

which most likely appear in nature is difficult. The

finite element technique eliminates this problem and

the computer model can be developed in such a way that

it can be used for any type of boundary without modifi—

cation of the program.

Taylor and Brown [1967] presented finite element

solutions of steady seepage through dams using a network

of triangular elements. In their technique, the location

of the phreatic surface was guessed and subsequently

adjusted until the free surface boundary conditions were

satisfied. Neuman and Witherspoon [1970, 1971] improved

and extended their technique to problems of steady—state

and transient seepage with a free surface using linear

triangular elements. Desai [1972] used the finite ele—

ment procedure with isoparametric elements to analyze

transient unconfined seepage under drawdown conditions

in porous media. Sandhu et a1. [1974] introduced the

variable time step analysis of unconfined seepage. France

et a1. [1971], following Herbert [1968], used the finite

element method with isoparametric elements to analyze
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the free surface seepage problem. France [1974] has

extended this work to three-dimensional problems.

In all numerical solutions it is necessary to

modify the elements to accommodate the movement of the

phreatic surface. Based on the characteristics of

curved isoparametric elements, France [1971] introduced

a new method which permits one to locate the phreatic

surface without altering the position of the nodes for

each element. This procedure will be called "location

of the phreatic surface by use of fixed nodes." The

technique is adopted and modified in this study to

determine the location of the free surface with transient

recharge. This method will provide a tool to solve the

convective—dispersion equation in unconfined aquifers

with a time-dependent phreatic boundary.

2.3 Mechanics of Convective-

DispersIon Phenomena

 

 

The analytical solution of the convective—

dispersion equation, except for a small number of simple

one- and two-dimensional cases, is not easy to determine.

Ogata and Banks [1961] used Laplace transforms to obtain

the solution of the one—dimensional longitudinal disper-

sion equation. Harleman and Rumer [1963] gave a steady—

state solution for two—dimensional dispersion. Bruch

and Street [1967] formulated the analytical solution for

unsteady dispersion in an idealized study of
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one-dimensional seepage flow through an isotropic porous

medium. Hoopes and Harleman [1967] introduced an expres-

sion for the distribution of dissolved concentration

substances which were added to the steady-state flow

between a recharging and pumping well in a homogeneous,

isotropic aquifer of infinite, horizontal extent. Marino

[l974d] gave a mathematical solution to predict the

distribution of concentration in saturated porous media I

resulting from a variable source concentration.

Much experimental work has been attempted to

investigate the behavior of dispersion coefficients and ‘

their relation to the seepage velocity, porous structure,

and concentration gradient; literature concerning this

subject is given by Bear [1972]. Numerous investigators

such as Bear [1961], and de Josselin de Jong and Bossen

[1961], showed that the dispersion coefficient is a

function of true velocity and medium properties. Rumer

[1962] experimentally determined the longitudinal dis-

persion coefficient for one—dimensional transient flow

within a certain range of values of the Reynolds number.

Harleman and Rumer [1963] investigated the dependency of

the dispersion coefficient upon the Reynolds number and

porous structure. They conducted laboratory experiments

to study the convection and dispersion of salt water in

a two—dimensional confined aquifer. Shamir and Harleman

[1967] developed an analytical solution for two problems
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of dispersion in layered porous media and verified their

results experimentally. Fattah [1974] investigated and

verified a model of the dispersion coefficient tensor

in flow through anisotropic and homogeneous porous media.

The conclusion that can be made from the results

of these investigations is that the dispersion coeffi-

cient is a second-rank tensor and is a function of the

true velocity vectors, porous media properties, and the

Peclet number. However, there is still no universal

agreement regarding the degree of dependency of the dis-

persion coefficient on these parameters.

In the simulation of the movement of a tracer in

a porous medium, the flow and convective-dispersion

equations are solved simultaneously or consecutively.

The following paragraphs concern only those techniques

which are used to solve the partial differential equa-

tion describing the dispersion of a dissolved—chemical

constituent in a medium.

The finite difference method is the most com—

monly used scheme in attempting the numerical solutions

of the mass transport equation. Douglas et a1. [1959] 
employed an alternating direction—implicit procedure to

solve a two-dimensional, two-phase, incompressible flow

model. A similar technique was used by Peaceman and

Rachford [1962] in calculating the multidimensional

miscible displacement. The Crank—Nicolson approximation
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is frequently used in the area of mass displacement.

Fried and Combarnous [1971] summarize some of the ana-

lytical and numerical methods of resolution of the

convective-dispersion equation.

Pinder and Cooper [1970], and Reddell and

Sunada [1970], applied the characteristics approach to

solve salt water intrusion including the effect of dis—

persion. Bredehoeft and Pinder [1973] used similar

concepts to investigate the groundwater contamination

at Brunswick, Georgia. Konikow and Bredehoeft [1974]

used the method of characteristics to investigate the

chemical quality changes in an irrigated stream-aquifer

system. Robertson [1974] used the same approach to

model the transport of radioactive and chemical waste in

the Snake River Plain Aquifer. The method of character-

istics involves placing several moving particles in each

cell of the finite difference grid. The location and

concentration associated with each particle varies with

time. Although this method gives good results compared

to the analytical solution and is simple in concept, it

is tedious to program and is suitable only for Specific

situations commonly encountered in the field [Pinder

1973]. In an effort to circumvent difficulties associ-

ated with the method of characteristics, Price et a1.

[1968] introduced a Galerkin-based variational method to
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approximate the solution of the dispersion equation, in

which various different base functions were used.

The finite element technique has been_used

recently as a numerical tool to solve the convective—

dispersion equation. Guymon et a1. [1970] and Nalluswami

et a1. [1972] employed a finite element integration scheme

with triangular elements. Cheng [1973] solved the

convective—dispersion equation based on the Galerkin

procedure, using a family of triangular elements or ;

quadrilateral isoparametric elements. Pinder [1973]

also used the Galerkin-finite element formulation to

simulate the groundwater contamination in Long Island,

New York. Wang and Cheng [1975], using Dupuit's assump—

tion, solved the convective-dispersion equation by

quadratic isoparametric elements for homogeneous and

isotropic media with uniform horizontal flow and constant

dispersion coefficients. Segol et a1. [1975] realized

that the velocity vectors used in the mass transport

equation should be continuous across elements. Thus,

they solved three equations (two components of Darcy and

one of mass conservation) simultaneously, and investigated

the distribution of salt concentration with steady flow.

In the present work the technique for solving the

convective-dispersion equation in unconfined aquifers with

a transient phreatic surface is presented, and higher order

approximations of time—dependent variables are introduced.



 

CHAPTER III

MATHEMATICAL REPRESENTATION

OF PHYSICAL SYSTEM

3.1 Background

In this study the dispersion of a tracer on a

regional as well as a local scale is investigated. For

the regional scale the two-dimensional horizontal plane

is considered, while for the local scale a vertical

cross section of a site is chosen. To predict the move-

ment of a tracer in a porous medium, the flow regime and

its behavior in the medium should be well understood.

In this chapter the system is defined, the mathematical

descriptions of flow in the aquifers with and without a

phreatic boundary are given, the convective—dispersion

equation is presented, and the initial and boundary con—

ditions are discussed.

3.2 Darcy Equation 

Darcy established a linear relationship between

the seepage velocity and the gradient of the piezometric

head. This law, which is a consequence of the equation

of motion neglecting inertia effects, can be generalized

17
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for either a two— or a three—dimensional situation. It

is given by:

qi Ki. a¢ . .

Vi = H; = ‘ 5;; 5;; 1,J=l.2.3 (3.2.1)

where Vi is the seepage velocity, qi is the specific

discharge, Kij is a second order tensor whose elements

are called the hydraulic conductivities, ne is the effec-

tive porosity of the aquifer, ¢ is the piezometric head,

and xj are the Cartesian coordinates. The hydraulic

conductivity is a scalar coefficient which depends on

both solid matrix and fluid properties. It is defined

as

= .11.. - -=Kij V 1,3 1,2,3 (3.2.2)

where kij is the intrinsic permeability of the porous

matrix and depends solely on the properties of the solid

matrix, g is the acceleration due to gravity, and v is

the kinematic viscosity of the fluid.

From purely physical considerations, it would

seem that the hydraulic conductivity tensor must be sym-

metric [Eagleson 1970], in which case K = K21, K13 =
12

and K = K and its components reduce to six.
K31' 23 32'

Since the principal axes of the symmetric permeability

tensor will be orthogonal, it is possible to orient the
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coordinate axes (x1, x2, x3) parallel to the principal

axes so that only the three orthogonal terms remain.

Thus

_ Kll 3¢

Vl _ - n 3x
e 1

K22 3¢

V2 = ' n— Dx—
e 2

K 8¢

V3 = - Iii QT (3.2.3)

e 3

For incompressible fluid, the piezometric head

is defined (see Figures 3—1 and 3-2)

¢ =—P—+ x (3.2.4)

where p is the pressure deviation from atmospheric pres—

sure, p is the fluid density, and X3 is the elevation

above datum. In Equation (3.2.4) the term p/pg is called

the pressure head, and X3 is known as the elevation head.

For confined aquifers the piezometric surface is

an imaginary surface to which water rises in a tapped

well (Figure 3-1). In unconfined aquifers the piezo—

metric surface coincides with the upper surface of the

zone of saturation, called the water table or phreatic

surface,where the pressure is atmospheric (Figure 3—2).
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3.3 Regional Groundwater Flow 

For regional problems, two-dimensional horizontal

flow is considered. The governing equations are well

established [e.g., see Bear 1972, Pinder and Frind 1972].

3.3.1 Basic Assumptions 

The following assumptions are valid for regional

groundwater flow:

(a) The flow is essentially horizontal in a two—

_dimensional plane. This assumption is valid when the

variation of thickness of the aquifer is much smaller

than the thickness itself. This approximation fails in

regions where the flow has a vertical component.

(b) The fluid is homogeneous and slightly

compressible.

(c) The aquifer is elastic and generally non—

homogeneous and anisotropic. The consolidating medium

deforms during flow due to changes in effective stress

with only vertical compressibility being considered.

(d) For the two—dimensional horizontal flow

assumption, an average piezometric head is used where

the average is taken along a vertical line extending

from the bottom to the top of the aquifer, i.e.,

b
_ l

where b is the thickness of the aquifer.





 

3.3.2 Two-Dimensional 
Horizontal Flow

The combined equation of motion and continuity

for flow in a two-dimensional horizontal plane may be

written

3 23¢ _ _ 23¢ . ._

where Tij is the transmissivity tensor equal to the

aquifer thickness multiplied by the hydraulic conduc-

., S is the storage coefficient, t is time,

3

I is the vertical recharge or infiltration into the

t1v1ty Ki

aquifer, and P is strength of a sink (or source) function

[Pinder and Frind 1972] defined by

M

P = mgl Pw[(xl)m,(x2)m]6[xl-(xl)m][x2-(x2)m]

where Pw is the discharge (or recharge) from the aquifer,

M is the number of nodes in one element (details are

given in Chapter IV), and 6 is the Dirac delta function.

3.3.3 Initial and Boundary

Conditions

 

3.3.3.1 Boundary conditions.—-In order to solve 

a partial differential equation describing a physical

phenomenon, it is necessary to choose certain additional

conditions imposed by the physical situation at the
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boundaries (S) for the domain (D) under consideration.

In general the equation for the boundary condition can

be written

BlT.. 39— A. + 32¢ + 33 = o i,j=l,2 (3.3.2)
13 xj 1

where 9i are the directional cosines, and 81, 82, and

B3 are given functions of position and possibly time.

For flow through an aquifer, three different boundary

conditions are applicable:

(a) Dirichlet or prescribed potential: In this

case the potential is specified for all points along the

boundary

¢=_I5—; 82#0

(b) Neumann or prescribed flux: Along a boundary

of this type, the flux normal to the boundary surface is

prescribed for all points of the boundary as a function

of position and time

A special case of the Neumann condition is the impervious

boundary where the flux vanishes everywhere on the

boundary, i.e.,

83:0





24

(c) Cauchy boundary: This problem occurs when

the potential and its normal derivative are prescribed

on the boundary in the combined_form, and the entire Equa-

tion (3.3.2) is used. Different forms of Equation (3.3.2)

for three types of boundary conditions are summarized in

Table 3-1.

In general, for a flow problem one will have

mixed boundary conditions in which the Dirichlet condi—

tion will apply over a part of the boundary and the

Neumann condition will be specified for the remaining

portion [Bear 1972].

3.3.3.2 Initial conditions.-—At the initial 

time, either the piezometric heads are known in the

entire domain (D) or the hydrologic stresses (such as

pumping and recharge) are specified and boundary condi-

tions are known. For the second case the system has

reached the steady state, so the solution of the equation

3 8¢ _ _ . ._
W [Ti]. 3X] P + I — O l,j—l,2 (3.3.3)

1 3

will yield piezometric heads for the initial time. The

procedure of solving Equation (3.3.3) is discussed in

Chapter VI.
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3.4 Phreatic Aquifer With Accretion 

A typical cross section of a phreatic aquifer

with accretion is illustrated in Figure 3—2. The govern-

ing equations are discussed in literature [e.g., Bear

1972, France 1974].

3.4.1 Basic Assumptions 

1. Usually immediately above the water table

(p = 0) there is a zone that is saturated or nearly so.

This nearly saturated zone above the phreatic surface is

called the capillary fringe or capillary rise, where the

pressure is negative. In Figure 3—3 a typical saturation

curve and pressure distribution in the capillary fringe

at equilibrium areshown. The capillary rise might range

from 2-5 cm for coarse sand up to greater than 200 cm

for clay [Bearl972]. In this study it is assumed the

aquifer is fully saturated and the capillary fringe can

be ignored. The resulting idealized diagram is given in

Figure 3-3b.

2. When the saturated soil is being drained,

the free surface gradually descends and some water is

removed from the soil profile. In practice, the amount

of water removed per unit volume of soil depends upon

the water level, rate of drawdown, temperature, and

atmospheric pressure; but for theoretical analysis it

is usually taken as a constant and equal to the specific
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Figure 3-3.--Saturation Curve and Pressure Distribution

in the Capillary Zone. (a) Actual form,

(b) idealized form.
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yield. The specific yield Sy is thus defined to be the

volume of water drained over the gross volume of the

porous medium. Quantitative information on specific

yield is given by Todd [1959, pp. 23-26]. Because of

the assumptions made in the above paragraph, in this

study the magnitude of the specific yield is assumed

constant and equal to the effective porosity which is

defined to be the volume of water drained by gravity

Wfrom a unit volume of saturated soil.

3. In unconfined aquifers the amount of water

released from storage is usually small compared to the

water available from normal movement through the aquifer

and accretion, thus elastic specific storage (SS) can

be ignored [Herbert 1968; Neuman and Witherspoon 1971].

3.4.2 Governing Differ—

ential Equations

 

Consider an unconfined aquifer with its phreatic

surface depicted schematically in Figure 3-2. The

governing differential equation can be written

3 23¢ _ 23¢ . ._
— [KN —_] — sS E 1,3—1,3 (3.4.1)

where SS is the elastic specific storage, and the other

terms are defined previously. As discussed above, if Ss

can be neglected then Equation (3.4.1) will have the

form:

 

 



 



 

3 29¢ _ . ._
'Wi [Kij E] — 0 l,j—l,3 (3.4.2)

3.4.3 Boundary and

Initial Conditions

 

Let D represent the flow region, which in general

may possess up to four kinds of boundary conditions: in

addition to the Dirichlet and Neumann conditions, a

phreatic (free surface) boundary and a seepage face.

Referring to Figure 3—2, the following boundary condi—

tions can be written:

1. At x = 0 and x = L, the piezometric heads
1 l

are known functions of time (Dirichlet)

¢(OI X3; t) = (I)

¢(L, x3, t) = CI) (3.4.3)

2. On the impervious boundary B, the normal flow

is zero

8¢(Xl,0,t) . .

Kij ————§§f——— ti = 0 1,j=3 nglgL (3.4.4)

‘ J

3. In the concept of successive changes of

steady—state values, it is assumed the flow at each

instant is steady but its boundary condition is time

variable [Polubarinova—Kochina 1962]. Therefore, the

flow rate for a small time increment is equal to the
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change of volume filled with fluid divided by the time

interval. Consider Figure 3-4 where the position of the

phreatic surface at times t and t + At is shown. In

represents the rate of accretion normal to the phreatic

surface. By taking a control volume in the direction of

the unit normal between two successive positions of

the boundary at times t and t + At, and writing the

continuity relation, one arrives at

I (3.4.5)

Un is the propagation of the phreatic surface, qn is the

seepage flux, both along the unit normal, and ne is the

—zs'—ps“’1RF"‘Z“"7§7"'757_~ Ground surface

 

X1

Figure 3-4.--Phreatic Boundary With Accretion

[Adapted from Todsen 1971].
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effective porosity. Equation (3.4.5) is a nonlinear

boundary condition for Equation (3.4.2) because it con-

tains an unknown dependent variable, i.e., ¢, in the

flux term. As will be discussed in detail in Chapter VI,

by assuming that at the beginning of each time increment

the piezometric heads are known at the phreatic surface,

Equation (3.4.5) is linearized. Equation (3.4.5) after

multiplying by At can be written as

U.9.. At = U At = A—t— (-K.. E— 9.. - I-IL) (3.4.6)
3 n 1 1 31 n .

e 3

i,j=l,3

where I is the accretion (positive downward), and Uj is

the velocity of propagation of the free surface at the

point of consideration on which the pressure is maintained

atmOSpheric. Todsen [1971] has also derived Equation

(3.4.5).

4. On the seepage face,

Initially, the surface configuration and the

boundary conditions are known.

3.5 Convective-Dispersion Phenomena
 

In this study the movement of a solute in a

saturated flow through a porous medium is considered.
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This solute will be referred to as a "tracer." The

symbol C will be used to denote the concentration of a

tracer, i.e., mass of tracer per unit volume of solution.

The term tracer will be used to represent any species of

interest in a solution.

3.5.1 Basic Assumptions

1. It is assumed that no chemical reactions

occur between the water and the aquifer or soil material

that affect the tracer concentration.

2. The porous medium is homogeneous and iso-

tropic with respect to dispersivity.

3. The flow regime is laminar.

4. In general, variations in tracer concentra-

tion cause changes in the density and viscosity of the

liquid. These in turn affect the flow regime (i.e.,

velocity distribution). At relatively low concentrations

it is assumed that the concentration does not affect the

liquid properties [Bear 1972]. This assumption leads to

the following conclusions:

a. the viscosity is constant,

b. the concentration does not affect the

velocity distribution.

 





 

 

3.5.2 Hydrodynamic Disper— 
siOn Coefficient in a

Porous Medium

 

Hydrodynamic dispersion is the macroscopic out—

come of the actual movements of individual tracer parti-

cles through the pores and includes two processes [Bear

1972]. One mechanism is mechanical dispersion, which

depends on both the flow of the fluid and the character—

istics of the porous medium through which the flow takes

place. The second process is molecular diffusion which

basically results from variations in tracer concentration

within the liquid phase, and is more significant at low

velocities (e.g., less than 1 cm/hr). Thus the coeffi-

cient of hydrodynamic dispersion Dij includes the effect

of both the mechanical (or convective) dispersion Dij and

*

molecular diffusion (Dd)ij' Hence

*

' =

Dij Dij + (Dd)ij (3.5.1)

- * * n

In Equat1on (3.5.1), (Dd)ij — Tide’ where Dd 15 the

molecular diffusivity and Tij is the medium's tortuosity.

. is

3

approximately equal to 2/3 [Bear 1972, pp. 109-112].

*

For homogeneous and isotropic media the value of Ti

For most situations the contribution of molecular diffu-

sion to hydrodynamic dispersion is negligible when

compared to the mechanical dispersion coefficient. For

example, for a gravel with seepage velocity ranging from
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0.1 to 0.45 cm/sec, the magnitude of the dispersion

coefficient varies from 0.01 to 0.08 cmz/sec [Rumer

1962]. The molecular diffusivity for solutes in water

is very small and in the range of 0.5 to 4.0 X 10"5

cmz/sec [Welty 1969, p. 461].

Many investigators have attempted to model the

dependence of the hydrodynamic dispersion coefficient on

media, fluid properties, and flow characteristics, in

order to understand the dispersion process in flow

through porous media. A comprehensive discussion of the

factors affecting the dispersion coefficient can be

found in Bear [1972, pp. 605-616].

The mechanical dispersion coefficient for an iso—

tropic medium in Cartesian coordinates can be written

[Bear 1972] as:

<3 .v+ (a -aII) vi Vj/V 1,3=1,2,3 (3.5.2)
Dij =aII 13 I

In Equation (3.5.2) aI and aII are the longitudinal and

transversal dispersivities of the medium, respectively,

Vi and Vj are components of the seepage velocity in the

i and j directions, V is the magnitude of the velocity,

and Gij is the Kronecker delta. Its value is one when

i = j and is zero, otherwise. Equation (3.5.2) is com—

monly used by investigators to calculate the mechanical
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dispersion coefficient and hence is utilized in this

study. It includes the major parameters causing the

mechanical dispersion, and for any practical study it

is assumed adequate.

3.5.3 Convective-Dispersion

Equation in Cartesian

Coordinates

 

 

The equation describing the mass transport and

dispersion of dissolved chemical constituents in a

saturated porous medium may be written as

 

3c 2) 8 . 3C ' -
[D—t + 5;.— “’1' 1. [fix— [Di]. 5?: + qc]— 0 (3.5.3)

1 l j

(l) (2) (3) (4)

i,j=l,2,3

where C is the mass concentration of the tracer; Dij is

the coefficient of hydrodynamic dispersion, discussed in

Section 3.5.2; Vi is the component of seepage velocity;

go is the mass flux of source or sink; and xi is the

Cartesian coordinate. The theoretical basis and the

derivation of the diffusion—convection equation are dis—

cussed in detail by Reddell and Sunada [1970], Bear

[1972], and Bredehoeft and Pinder [1973]. In Equation

(3.5.3) the first term represents the time rate of

change of the tracer concentration. The second term

describes the convective transport of C in the xi-

direction, which is proportional to the seepage velocity.
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The third term is the transport (redistribution) of C

due to dispersion and molecular diffusion. Finally,

the last term represents the time rate of production or

decay of C.

The convective-dispersion equation is a nonlinear

partial differential equation of parabolic type. The

relation is nonlinear because of the convective term, and

because of the transport coefficient which is a function

of the dependent variable V. The convective term

“3/3XB(ViC)) is nonsymmetric and has been a principal

source of difficulty in the numerical solution of the

convective-dispersion equation [Guymon et a1. 1970].

3.5.4 Initial and Boundary

Conditions

 

3.5.4.1 Boundary conditions.--The general equa— 

tion of the boundary conditions for the mass transfer

equation is similar to the flow equation. As discussed

in Section 3.3.3, it can be written:

I BC + _

alDij 5;; 2i d2C + d3 — 0 (3.5.4)

where al, a2, and a3 are known functions. Three differ-

ent boundary conditions are:

(a) Dirichlet or prescribed concentration

boundary condition:
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C=-——,0L=0;0I27‘0

(b) Neumann or prescribed flux:

'99.. =__§_ =
Dij ax. £1 a ' 0‘1 I 0 ' 0‘2 0

j l

for G3 = 0, one has the no-flow boundary.

(c) Cauchy boundary:

, ml and d2 # 0

Again, as in the flow situation, usually along the

boundary one has mixed boundary conditions, i.e., the

Dirichlet condition applies over a part of the boundary

and the Neumann condition applies over the remaining

part.

3.5.4.2 Initial conditions.--As an initial con-
 

dition, the concentration distribution at some initial

time t = 0 at all points of the flow domain must be

specified:

C(xi,0) = fl(xi)

where fl is a known function of Xi'
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3.6 Closure

In this chapter the mathematical description of

flow and dispersion phenomena in porous media is pre-

sented, and basic assumptions are introduced. Using the

concept of successive changes of steady-state values, the

nonlinear boundary condition for an unconfined aquifer

with a phreatic surface is linearized. For practical

purposes the hydrodynamic dispersion coefficient can be

replaced by the mechanical dispersion coefficient in

predicting the tracer movement. Finally, the flow and

convective—dispersion equations can be solved consecu—

tively. In the following chapter, the finite element

formulation of the flow and mass transfer equations is

given.





 

 

CHAPTER IV

FINITE ELEMENT FORMULATION

The finite element method is a numerical tech—

nique which is used to approximate a continuous partial

differential equation in a given domain D with specified

boundary conditions along boundaries S. The key features

of the finite element concept are [Norrie and de Vries

 

 
 

1973]:

1. The domain is divided into subdomains

or finite elements, usually of the

same form.

2. The trial solution is prescribed (func-

tionally) over the domain in a piecewise

fashion, element by element.

4

4

Domain De S

\4 / (element)

Nodes

Domain D

Figure 4-l.-—Domain Divided Into Finite Elements.

39





 

 

40

A detailed formulation of the finite element method is

given by Zienkiewicz [1971], Norrie and de Vries [1973].

This technique has been utilized by several investiga—

tors [Javandel and Witherspoon 1968; Pinder and Frind

1972; Neuman and Witherspoon 1971; Desai 1972; Cheng and

Li 1973; and France 1971, 1974] to solve transient flow

problems in a confined or unconfined aquifer. Recently

the finite element procedure was also used to solve the

convective-dispersion equation [Cheng 1973, Pinder 1973,

and Segol et a1. 1975].

In this chapter a brief discussion of the

Galerkin based finite element technique is given and the

method is used to discretize the space derivatives of the

flow and dispersion equations. The simultaneous solution

of velocity vectors is also described, that is, the

Galerkin formulation of the Darcy law is constructed and

velocity components are calculated at the nodes.

4.1 The Galerkin Finite Element Method
 

While the approximate minimization of a func—

tional is the most widely accepted means of arriving at

a finite element representation, it is by no means the

only possible approach. The Galerkin method offers an

alternative way to formulate a problem for the finite

element solution without using variational principles.

In the finite element technique the domain D is

divided into subdomains De which are called elements.
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Each element is designated by nodes. In this chapter

NELS represents the number of elements, M is the number

of nodes in each element, and NNDS stands for the total

number of nodes in domain D (Figure 4—1).

Consider a problem of solving approximately a set

of differential equationsixlwhich the unknown function {C}

has to be satisfied in the domain D with the boundary

conditions specified along S. The governing equation

can be written

f({c}) = 0

A

Let the trial solution for this equation be C

A M

c = [N]{c} = 2 N (2 (4.1.1)
n=1 n n

where [N] = [N(xi)] are shape functions (prescribed func-

tions of coordinates) and {C} = {C(t)} is a set of M

unknown parameters. In general, the equation of residual

(or error) is formed in the following way:

R = f e({Cl) - f each = -f eucn ;é 0 (4.1.2)
D D D

The best solution will be one in which the residual R

has the least value at all points in the domain De. An

obvious way to achieve this [Zienkiewicz 1971] is to

make use of the fact that if R is identically zero else-

where, then
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f WRdD= 0 (4.1.3)
De

where W is any function of the coordinates. If the num-

ber of unknown parameters {c} is NNDS and NELS linearly

independent functions W are chosen, one can write a
k

suitable number of simultaneous equations as

fDe wk R dD = fDe wk f([N]{C})dD = {0} (4.1.4)

where Wk is called the weighting function. If the shape

function Nk is to be chosen as the weighting function,

the process is termed the Galerkin procedure. The ele-

ment equations can be assembled by

NELS

[I e w R dD = 0 (4.1.5)

D

 

e=l

to yield the global relations for domain D.

4.2 Finite Element Formulation

of Flow Equation

 

 

The residual equation for flow in a confined

horizontal aquifer (Equation 3.3.1) can be written

as

A

: i + — __a__ 3d.) . .2R s p axi [Tij ij] 1,3 1,2 (4.2.1) 
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The symbol A represents the numerical approximation of ¢.

Substituting Equation (4.2.1) into Equation (4.1.4),

one obtains

¢ 3
_

Ll:5—+P’?T[ua
x[hk®-0 k4“.M (L22)

By use of the Green theorem, the third term can be modi—

fied

 

+ I N T.. 351 A. as (4.2.3)
Se k 1] 8x 1

The last term in Equation (4.2.3) is nonzero only for

elements which contain the Neumann flux boundary condition

a$
_ 52, =Ise Nk Tij 3Xj 1 d8 [Se Nk Q2 dS (4.2.4) 

where O2 is known flux along the boundary. Substituting

Equation (4.2.3) and Equation (4.1.1) into Equation

(4.2.2) and rearranging the terms, one obtains

3Nk BNn

IDe ¢n T13 Di? 3x. a” + I e S Nk Nn DE dD + I e Nk P d0
1 j D D

+ [s9 Nk QW d5 = 0 (4.2.5)
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Since ¢n and its time derivatives are independent of the

coordinates, they can be taken out of the integrals.

Equation (4.2.5) can be written in matrix form

[B]e{¢}e + [H]e §% {D}e = {F}e (4.2.6)

where

e e 8Nk BNn

[B] =Bkn= e Ti.5—X— 6):— 6D (4.2.7a)

D 3 i 3'

k,n=1,...M

e_ e _

[H] -—Hkn—!DeSNandD > (4.2.7b)

i,j=1,2

{F}e=F}eW=—[eNkQ2dS-[ePdeD (4.2.7c)

s D

) 
It is assumed that the storage coefficient is

constant throughout the element and that the element

coordinate axes coincide with the principal direction of

the transmissivity tensor: the transmissivity can be

defined either at the nodes or at each element. Evalu—

ation of Equation (4.2.7) for different types of elements

is discussed in Appendix II. Upon evaluation of Equation

(4.2.7) for all elements and transformation to a global

coordinate system, they are assembled by virtue of Equa-

tion (4.1.5) into a global relationship

IBIIAI + [Hugh = {F} (4.2.8)
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The parameter {¢}, matrices [B] and [H], and force vector

{F} are the summation of the corresponding terms in

Equation (4.2.7) over all the elements in the domain D.

[B] and [H] are banded symmetric matrices. Equation

(4.2.8) is a set of first order linear differential equa—

tions with unknowns {¢}amuican be solved simultaneouslyeu:

the given nodes in the space domain. The solution of

Equation (4.2.8) and a similar equation which is genera-

ted from the finite element formulation of the convective-

dispersion equation is presented in Chapter V.

The governing equation for the unconfined aquifer

with phreatic surface is

351] = o i,j=l,3 (3.4.2)

3

3

DR? [K13 3x.
1

The finite element formulation has the form

[B']e{<I>}e = {F}e (4.2.9)

where

8N 8N i,j=l,3

I e _ k___Il

“3 I - IeKij Wax. k,n=l,...M (4.2.10.4)
D 1 3

e

{F} __Ise Nk Q2 dS (4.2.10b)

Assembling the element matrices leads to a system of equa-

tions in the form

[B]{¢} = {F} (4.2.11)
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4.3 Finite Element Formulation of

Convective-Dispersion Equation

 

 

The residual of Equation (3.5.3) for each ele-

ment can be written

__3C 3
+_.__(cvi) -—8—.[D' 3C] ~83 i,j=1,2 (4.3.1)R-——— ..———

3t Dxi Bxi 13 ij c

Again, C represents the numerical approximation of C.

In this development it is assumed that at every

small time step the velocity vectors Vi and the dispersion

coefficient Dij are known functions which are either

determined independently or are replaced by values of Vi

and Dij from the previous time step. Using Equation

(4.1.1), C and qc can be written

A M

c = nil Nn cn = [Nn]{Cn} (4.3.2)

4 M .

qC = nil N (qc)n = [Nn]{(qc)n} (4.3.3)

In order that C be an exact solution of Equation (3.5.3),

Equation (3.5.3) must be identically zero when C is sub-

stituted into it. To minimize the errors of residuals

as discussed in Section 4.1, the orthogonality condition

requires that

IDe R(C) Nk dD = [De R([Nn]{Cn})Nk dD= 0 (4.3.4)
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where De represents the integral over the domain of an

element. Substituting Equation (4.3.1) into Equation

(4.3.4) yields

A A

ac -AIE‘if _
D? 3t+ 7(c vi ) axi [Dij axj qC Nk dD — 0 (4.3.5)

By use of the Green theorem,

 

A 3N A

_8-[D. £INdD='I D. ._k_a.<'.dD
[De {axi 1] axj k De 1] sxi axj

. 36
+ [Se Nk Dij axj Ni ds (4.3.6)

where Ni is the directional cosine of the boundary at the

node under consideration. Substituting Equation (4.3.6)

into Equation (4.3.5), one arrives at

A A DN A
8C a - k 3C
—— + ——— (C vi ) — q JN dD + DI. ——— ——— dD

[De 8t axi c k De 1j axi axj

—[ N DI. 3C 4. as (4.3.7)
Se k 1 8x.1

j 1

Expanding Equation (4.3.7) and substituting Equations

BNn

+ ViCnNk 5;: dB

(4.3.2) and (4.3.3) yields

BCn avi

N N ——— dD + C N N ———

De n k at De n n k 8X1
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SN 3N
A

+ D' k ——E C dD = N DI. 39— R. as
e . e X .

D S J

+ JDe (qc)n NnNk dD (4.3.8)

As discussed in Section 3.5.4, the general equation for

the boundary condition can be written as

3C
' —— =alDij ij 2i + NZC + d3 0 (3.5.4)

If ul = O, C = a; = f(xiL provided d2 # O

This boundary is the "Dirichlet" boundary. For nonzero

al, the Galerkin formulation of Equation (3.5.4) will be

A G’—

e Nk Di. 3: 2i as = e Nk - c - W3. as =

s 3 3 s 1 1

A 0‘2 0‘3
- e Nk C 5‘ as - e Nk 5‘ as (4.3.9)

5 1 s 1

 

Q
I
Q

N

Substituting Equation (4.3.9) into Equation (4.3.8) yields

_ DCn avi 3Nn

e Nn Nk 8t dD + e Cn Nn Nk 8x. + viCnNk 8x. D

D D 1 1
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a3 .

- Se Nk —— dS + De (qc)n Nn Nk dD (4.3.10)

Equation (4.3.10) may be written in matrix form [Cheng

1973]

T

IHIe{%E—} + ([K]e+[S]e){C} + [Ele IIIIC} =

  

[H]e{éc} + {F}e (4.3.11)

where

[H]e = H: n = I e Nk Nn dD ' (4.3.12a)

I

D

e e 8Nk 3Nn

[K] = Kk n = e 1311.? 5.)?— dD (4.3.12b)

’ D 3 i '

e e avi 3Nn

[S] = Sk n = e NnNk §§_ + ViNk ax dD (4.3.12c)

’ D i i

{E}e = Ee = 33-N dS d # O (4 3 12d)

k Se a1 k 1 ‘ °

{ }e _ e _ 0L3

F _— Fk — — e d— Nk d8 d1 # 0 (4.3.12e)

S 1

If d1 = 0, then Ek = Fk = O.

T

[I] is the identity matrix, and [E]e is the transpose of

the vector {E}e.





F1".- '
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It is assumed that the velocity vectors are known at the

nodes and that the dispersion coefficients are calculated

for each integration point using Equation (3.5.1).

Calculation of Equation (4.3.12) for different types of

elements is given in Appendix II. Upon evaluation of

Equation (4.3.11) for all elements, they are assembled

to obtain the global relations

[Hug-E} + ([K]+[S]){c} + [E]T[I]{C} = [H]{<§1c}+ {F}

(4.3.13)

[H] and [K] are banded symmetric matrices, while [S] is

a nonsymmetric matrix.

4.4 Finite Element Computation

of Velocity Vectors

Mathematical equations of velocity vectors are

discussed in Section 3.2. When the coordinate axes coin-

cide with the principal direction of the hydraulic con—

ductivity matrix, the Darcy equation can be written:

Kij 23¢
Vi = - H—_ 5;? 1,3=l,2,3 ; Kij=0 when 1%]

e 3

(4.4.1)

In two-dimensional Cartesian coordinates,

K

_ _1_1 ELL
V1 — n 8x (4.4.2a)





 

.Velocity components play an important role in predicting

the tracer movement in a porous medium, because they

appear in the convective term and are used in the calcu—

lation of dispersion coefficients. Special attention

thus has to be given for the evaluation of the velocity

vector. Two techniques are discussed below:

1. Direct calculation in this study is defined

as the technique in which the velocity vectors are cal—

culated using only the gradient of the shape functions

multiplied by the corresponding piezometric heads, ele-

ment by element, and is outlined in Section 4.4.1.

2. Simultaneous calculation is defined to be a

procedure where the continuity of the velocity vectors

is maintained and the gradient of the piezometric heads

is multiplied by a weighted coefficient, as it will be

shown in Section 4.4.2. The conjugate function concept

is also used when referring to a similar method.

4.4.1 Direct Calculation 

One of the most common methods to calculate the

velocity vectors is to substitute Equation (4.1.1) into

Equation (4.4.2). The resulting equation will be





 

 

_ ___ ¢ (4.4.3b)

2 ne 8x2

where ¢n's are piezometric heads at the nodes and are

known. In Equation (4.4.3), BNn/axl and BNn/sz

are first derivatives of the shape functions and are

evaluated at the point of interest. Subscripts for x

represent the coordinates, and subscripts for shape

functions represent the node numbers. For example, for

the element in Figure 4—2 with four nodes, V1 and V2 at

point A are

4 3

X2

2

Xll

Figure 4—2.—-A Typical Finite Element.

 

K EN EN EN EN

V1l = ' l a l ¢1'*a 2 d’2 a $3 a ¢4A ne Xl X Xl X

V =_KE_NI¢+W_2¢+E“_3¢+3N4¢
2‘A 113 8x2 1 8x2 2 8x 3 8x 4
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with the BNn/Bxl and BNn/ax2 computedau:point A. This

procedure is easy to apply and provides accurate results

at the centroid of the element, but the velocity compo-

nents become discontinuous along the element edge as

will now be demonstrated.

Consider linear rectangular elements as shown in

Figure 4—3a. The piezometric head ¢ and its first deriva-

tive with respect max along lines AB and BZC are plotted
l 1

in Figure 4-3. Figure 4—3b shows that the piezometric

heads are continuous between two elements, and Figure 4-3C

demonstrates how Sch/3xl is discontinuous between the

elements. The gradient of ¢ takes different values

depending on which element is used to compute its value.

The discontinuity of the first or higher derivatives is

also discussed by Zienkiewicz [1971]. To overcome the

difficulties associated with discontinuity of the first

derivative at the nodes, different techniques such as

the conjugate function concept [Gallagher 1975] and

Hermitian shape function [Zienkiewicz 1971] are used.

In the next section the technique of simultaneous

calculation of the velocity vectors at the nodes is pre—

sented.

4.4.2 Simultaneous Calcula-

tion of Velocity Vectors

 

 

In order to provide continuous velocity functions

between elements at the nodes, a smoothing technique,
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9‘2

Axl

41'.—

B B C X1A
l 2 (a)

II

II
CD

II

[I

II

II

I' $Xl

I' (b)

II

II 23¢

IL “1

I,II

III

II

lI

l1, ==x

" (c) 1
ll

Figure 4-3.-—Interelement Zone Depicting How Continuous

Function ¢ May Have Discontinuous Gradients

as Axl + O.
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namely, the Galerkin-based finite element formulation

of Equations (4.4.2), is developed. The concept is

similar to that presented by Zienkiewicz [1971, pp. 44-

46] and also used by Segol et a1. [1975]. In the pro-

posed technique which is outlined below, the computer

storage and the complication of the solution process are

reduced considerably.

Let Vi, VS represent the simultaneous calculation

of V1 and V2. The piezometric head and velocity vectors

can be written in terms of nodal parameters.

M

4 = [m1 {4} = nil Nn 4n (4.4.4a)

GO - [N {vc} - § N (VC) (4 4 4b)
1‘ 11“_ n 1n '°

n—l

9C - [N1{vc} — § N (vc) (4 4 4 1
2" 2‘n=1n 2n "0

Equation (4.4.4) will assure that continuity of the vari-

ables is maintained along the element boundaries, regard-

less of the type of elements used (by definition of the

shape function). The technique of calculating the

velocity vector along the x -coordinate is presented

1

below. The residual of Equation (4.4.2a) is

K A

_ “c 11 So

1) ‘ V1 + n ax
e 1

(4.4.5)
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The definition of V is given by Equation (4.4.2a)
l

where K and ¢ are known parameters. Substi-
11' ne’

tuting Equation (4.4.5) into Equation (4.1.4) yields

{ N 6C + El— 3$ dD = o (4 4 6)
De k l ne 5x1

A K A

c 11 3¢ _

D D e 1

Introducing Equation (4.4.4) into Equation (4.4.7) gives

Kll BNn

C ""— —_.._

{De Nan(Vl)ndD — [De Nk n 3x
¢ dD (4.4.8)

e l n

Since (V$)n is independent of the space coordinate, it

can be taken out of the integral

c K11 8Nn

{(vl)n} De NandD = — 5;_ De Nk SE“ ¢n dD (4.4.9)

The right-hand side of Equation (4.4.9) is known and

becomes a column matrix. Thus

[H]e{<v§)}e = {Fl}e (4.4.10)

where

[H]e = He 2 I e Nk Nn dD (4.4.11)

D
k,n=1,2,...M
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K

{F}e=(F)e=--—1i N234) dD (4412)
1 1 k ne lcaxl n ° ’

De

k,n=l,2,...M

Constructing a global matrix yields

C _ .

[H]{Vl} — {Fl} (4.4.13)

[H] is a banded square symmetric matrix, and {Ffl'is a

known column force. The solution of Equation (4.4.13)

will give the x -component of velocity at each node
1

simultaneously. Similarly, for the x2—component of

velocity the resulting equation will be

[H1{v§} = {F } (4.4.14)
2

{F e— (F )e — - 523 N 3E2 4 dB (4 4 15)
§'_ 2 k — De k 3x n ' °

The similarity of this method to the conjugate function

concept is shown below. Let {Vi} be the simultaneous

solution of the xl—component of velocity and {V1} be the

values of the velocity defined by Equation (4.4.3a) at

specified points. Substituting Equation (4.4.3a) into

Equation (4.4.8) yields

C}{vl - NNdD= {V}NdD
[De k n [De 1 k

Constructingtflmeglobal relationsamuisolving for {Vi} yields
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-1

'{V:} = [I {V1} Nk an] [I Nk Nn dD] (4.4.16)

D D

This expression is identical to Oden's conjugate function

concept [see Gallagher 1975, pp. 261-268]. Oden employed

this concept to calculate the stress field. He used

superscript c to represent the conforming of the stress

field.

Oden states that the stress calculated by the

above mentioned method minimizes the mean square error

between the nonconforming stress field (in our case, V1,

i.e., direct calculation of the velocity vector) and the

conjugate stress field (in our case, Vi, i.e., simulta-

neous calculation of the velocity vector).





CHAPTER V

FINITE ELEMENT FORMULATION OF

TIME DERIVATIVE

5.1 Introduction
 

The variation of transient field variables

described by the finite element method results in a sys-

tem of first order linear differential equations:

8C(t)
[A]{C(t)} + [H]{ at } = {F(t)} (5.1.la)

 

{C(O)} = C0 a known function (5.1.1b)

where [A] and [H] are usually banded symmetric or nonsym-

metric matrices and {C(t)} the unknown variable such as

temperature, piezometric head, or mass concentration.

{§%%EL} is the time derivative of

{C(t)}, and {F(t)} is the known force vector. The symbol

In Equation (5.1.1),

{ } represents a column matrix, and [ ] represents a

square matrix. In Equation (5.1.1), t also can be

replaced by other independent variables such as Xl’ x2,

and x3.

The differential Equation (5.1.1) is normally

integrated numerically using a finite difference method

with the aid of a digital computer [Donea 1974]. In the
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derivation of finite difference relations it is customary

to expand the first or second order derivatives by the

Taylor series expansion, and then by truncating higher

order terms, find an approximation for the desired

derivative [Carnahan et a1. 1969]. In this chapter the

finite element concept is used to obtain the finite dif-

ference relations for unknown C and its first and second

derivatives. The results will have the following form:

C = alC(t+At) + a2C(t) + a3C(t-At) + ° °

+ arC(t+[1-m]At) (5.1.2)

39 = 4L- B C(t+At) + B C(t) + B C(t-At) + - '

3t At 1 2 3

+ BrC(t+[l-m]At)] (5.1.3)

82C = 1 Y C(t+At) + y C(t) + y C(t-At) +

3:2 (4t)2 1 2 3

+ YrC(t+[l-m]At{] (5.1.4)

In Equations (5.1.2) through (5.1.4), a, B, and Y are

coefficients which will be evaluated; r and m are

defined below. Using Equations (5.1.2) and (5.1.3) the

recurrence formula for Equation (5.1.1) will take the

form





 

a

[A] + KE— [H]){C(t+At)} =

a

[A] + 17272 [H]){C(t)}
12

(all (a21

a32
+ (a31[A] + F [H]){C(t-At)} + : - :

a

+ (arl[A] + BE—2){C[t-(m-1)At)} + al3{F(t+At)}

+ a23{F(t)} + a33{F(t—At)} + - - - + ar3{F(t—(m—1))At}

(5.1.5)

The second order time derivative usually appears in

dynamic problems and thus its approximation is given in

this chapter. But no recurrence formula which involves

the second derivative is derived in this study. In Equa—

tion (5.1.5), {C(t+At)} is a set of unknown variables and

the right—hand side of the equation are all known values.

The integer r = m + 1, m = 1, 2, ..., MA, where MA is the

order of approximation. For example, for first order

approximation MA is one, i.e., only one previous value

of the unknown variable is used. If one uses two previ—

ous values of the unknown variable it is termed second

order approximation and MA will be two. In this chapter

the related equations up to MA = 3 have been developed

and in Chapters VIII and IX the effects of using first

and second order approximations on the accuracy of the

numerical results are discussed.
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5.2 Finite Element Formulation 

In the finite element technique the unknown

variable within an element can be evaluated by

M

C(l) = n: cn Nn()) (5.2.1)

where C is the unknown variable, Cn is the value of C at

node n, M is the number of nodes at each element, Nn is

called the shape function, and A is the independent

variable such as time or x1, x2, x3. First and second

derivatives of C with respect to A are

 

A M 3N
8C(A) _ n
—§7——-— E cn 5—— (5.2.2)

n—l

2
2A M a N

§_91%l = E c 2“ (5.2.3)

3) n=1 n a)

In the following sections the basic relations will be

( derived in terms of A and then replaced by t.

5.3 First Order Approximation 

The simplest one-dimensional finite element is a

linear element (Figure 5-1) with two nodes. Let the

distance between these nodes be AA.
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F-————.AA ————4.4

of 1. h— A

A1 A2

Figure 5—1.——One-Dimensiona1 Finite Element.

The shape functions for this element are

 

 

N = 1-12 _ 12-1

1 Al-AZ AA

(5.3.1)

N = A-Al : A-Al

2 12-11 A1

where 11 and 12 are the values of the independent vari—

ables at nodes 1 and 2. Let C and C2 be the values of

l

the dependent variable at nodes 1 and 2, respectively.

Substituting Equation (5.3.1) into Equations (5.2.1)and

(5.2.2) yields

 

)2-1 1-11

EN EN
ac _ 1 2 _ J- _

51 ‘ 51" C1 + 51“ C2 ’ KI (C2 C1) (5’3’3)

In order that this development be consistent and might

be compared with existing methods in the literature,

define the variable 6:
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(5.3.4)m ll
such that

6 = 0 for A = A

and 0 M C
D

M H

Introducing 6 in Equations (5.3.2) and (5.3.3) yields

C = 9C2 + (1-9)Cl (5.3.5)

ac_1 _
ET - KI [c2 C1] (5.3.6)

Equations (5.3.5) and (5.3.6) can be written in the form

C = dlCZ + dzcl (5.3.5a)

3C _, 1
57 _ KI [81C2+82C1] (5.3.6a)

where a1 = 6, d2 = 1-9, 81 = l, 82 = -1, and the values

of Y are zero. The variations of a, and B with respect

to e are shown in Figure 5—2.

Equations (5.3.5a) and (5.3.6a) in terms of time

have the form

c = dlC(t+At) + d2C(t) (5.3.7)

ac _ 1
5E _ XE [BlC(t+At) + 82C(t)] (5.3.8)
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Figure 5-2.--Variation of a and 8 With 6 for First

Order Approximation.
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Substituting Equations (5.3.7) and (5.3.8) into

Equation (5.1.1) yields the first order recurrence

formula for Equation (5.1.1). Some of the possible dis-

cretizations of Equation (5.1.1) for different a are

given below.

(a) 1 = t +At; G = 1

1 __ 1
([A] + FE [H]){C(t+At)} — It [H]{C(t)} + {F(t+At)}(5.3.9)

In Equation (5.3.9), {C(t+At)} is unknown and {C(t)} and

{F(t+At)}, the forces at time t + At, are known. Equation

(5.3.9) is a simple form of the pure implicit approxima-

tion of Equation (5.1.1).

f%-[H1{c(t+4t)} = (5% [H] - [A]){C(t)} + {F(t)} (5.3.10)

Equation (5.3.10) is an explicit approximation of Equa-

tion (5.1.1).

(c) A = t+(At)/2; 6 = 1/2 (i.e., at the center

Of the element)

1. 1 _ 1 _ 1
[2 [A] + 'A—‘t— [H]]{C(t+At)} - [E [H] E [A] {C(t)}

+ % [{F(t+At)} + {F(t)}] (5.3.11)
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This relation is identical to the Crank—Nicolson recur-

rence formula [Donea 1974].

_ 2 . _ 2 _.
(d) A—t+§At, e—-3-—0.6667

2 1 __ 1 1

3 [A] + E [H] {C(t+At)} — [E [H] - 3 [A] {C(t)}

1 2
+ 3 {F(t)} + g {F(t+At)} (5.3.12)

This equation is identical to the Galerkin recurrence

linear interpolation given by Donea [1974], except that

the coefficients of the related formula given by Donea

[Equation 4] need to be multiplied by two.

The recurrence formulas introduced by Equations

(5.3.9) through Equation (5.3.12) are based on the back—

ward approximation. Moreover, with changing 6 one can

derive a different recurrence relation for Equation

(5.1.1).

5.4 Second Order Approximation

In a quadratic element (Figure 5-3) there are

three nodes with positions 1

 

1’ 12, and 13 such that 12 =

A1 + AA and 13 = 12 + AA.

2 3

A} A; . =.- A

1 2 A3

Figure 5-3.--One-Dimensiona1 Quadratic Element.
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The shape functions for this element can be written

  

  

  

l 2

(Al-A2)(Al-A3) 2(AA)

N = (A-Al)(A-A3) = —(A-Al)(A-A3)

2 2

(A-A )(A-A ) (A-A )(A-A )
N3 = 1 2 = l 2 2 (5.4.1)

(AB-Al)(A3-A2) 2(AA)

Again define the variable

 

1-12

6 = (5.4.2)

A3'A2

such that

e = 0 for A = 12

and

0 g 9 g l

The shape functions in terms of 6 can be written

N =§<e -e)

N = % (e + 1) (5.4.3)
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Substituting the shape functions and their derivatives

in Equations (5.2.1) through (5.2.3) yields

C = alC3 + “2C2 + a3Cl (5.4.4)

3c._ 1

SI ‘ KI [81C3 + Bzcz + B3C1] (5'4’5)

32c 1
= —————-[y C + y C + y C ] (5.4.6)

3A (AA)2 1 3 2 2 3 l

The values of a, B, and Y in terms of 6 are given in

Table 5-1.

TABLE 5-1.--Va1ues of a, B, and y for Second Order

Approximation in Terms of G.

 

 

n an 8n Yn

2
1 5 (e + e) e + 5 1

2 1 - 92 -2e —2

2
3 5 (e - e) e - 5 1

 

Equations (5.4.4) through (5.4.6) represent the finite

difference approximation for C, BC/Bl, and 82C/312,

respectively, which have been derived using the finite

element technique. The variations of a and B with

respect to 6 are shown in Figure 5—4. For any given 6,

the values of the coefficients can be read directly from

Figure 5-4 and substituted in the desired equation.





 

 

 

 

5—4.—-Variation of a and 8 With 8 for Second Order

Approximation.





71

For the case where the independent variable is time, C3,

C2, C1’ and A can be replaced in Equations (5.4.4)

through (5.4.6) by C(t+At), C(t), C(t-At), and t, respec-

tively. Thus

C = a1C(t+At) + a2C(t) + a3C(t-At) (5.4.7)

$39 = —1— [B C(t+At) + B C(t) + B C(t—At)] (5 4 8)
at At 1 2 3 ° °

32c 1
= __ [y C(t+At) +y C(t) +y C(t-AtH (5-4-9)

3? (41-32 1 2 3

With the aid of Equations (5.4.7) and (5.4.8), it is pos—

sible to obtain a second order time approximation for

Equation (5.1.1). The recurrence formula has the form

of Equation (5.1.5), and values of the coefficients for

the first and second order time approximation for differ-

ent 6 are given in Table 5—2. It is possible to obtain a

set of recurrence formulas for Equation (5.1.1) by chang—

ing the 6 value.

An interpretation can be made from Figure 5—4 by

noting that the coefficients of C(t+At), C(t), and

C(t-At) vary with respect to 9. At 6 = 0, C(t) plays a

dominant role, and as 6 increases the effect of C(t)

decreases while that of C(t+At) increases. At 6 = 2/3,

the value of a is equal to a2. This means that at
1

this 6, C(t+At) and C(t) are almost equally weighted.
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TABLE 5-2.--Va1ues of the Coefficients of Equation

(5.1.5) for the First and Second Order

Time Approximation.

 

Meth°d (6) a11 a12 a13 a21 a22 a23 a31 a32 a33

 

First Order

 

 

 

e =% (Crank-Nicolson) .5 1. .5 -.5 1. .5 o. o. o.

2 . 2 2 -1. .16 = S-(Galerkin) 3- 1. 3- 3 1 3 0 0 O

6 = 1 (Implicit) 1. 1. 1. 0. l. 0. 0. 0. 0.

Second Order

1 3 3 3 3 l l

9 = ‘5 3 1° 5 4 1 4 5 0 ‘2

e_.1 1 Z 1 -1 1 1 1 -1 -1
- 3 9 6 9 9 6 9 9

3 l

6 = 1 1 2. 1 0. 2 O 0 2. 0.

Steady State 1. 0. 0. 0. 0. 1. 0. 0. 0.

C(t-At) also appears in the calculation. For 6 = 1, a2

and a3 both are zero, and all 8 values are nonzero. In

Chapters VIII and IX, the numerical results obtained by

using different 6's are compared.

5.5 Third Order Approximation
 

For the cubic element with four nodes as shown

in Figure 5-5, the shape functions are:
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 O——-—’-)\

1 2 A3 A4

l-o—AA—O-l-é— AA—+—AA —"l

.1 .2 .3 4
A A

Figure 5-5.-—One-Dimensional Cubic Element.

  

  

  

  

N = (4-42H4-43H4-44) = (4-42)(4->\3)(>\->\4)

1 3
(ll-12)(Al-l3)(ll-l4) -6(Al)

N = (A—Al)(A-13)(A-X4) : (A-Al)(A—l3)(A-A4)

2 3

(42-41)(12-13)(12-14) 2(A1)

N = (A-Al)(A-12)(A-A4) : (A-Al)(A-12)(A-A4)

3 3

(AB—ll)(l3-12)(A3-A4) —2(Al)

N = (l-Al)(1-12)(A-l3) = (l-Al)(A-12)(A-l4)

4 3

(A4-Al)(A4-A2)(A4—A3) 6(AA)

Define the variable 9:

A - A

9 = 3

l4 - 13

(5.5.1)

(5.5.2)
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such that

9 = O for A = A3

and

0 g 6 I
A

[
.
1

The shape functions in terms of 6 can be written

_ 1
N1 — g-[9(9+1)(l'9)]

N = i [e(e+2)(e-1)]
2 2

_ 1
N3 — f [(e+1)(e+2)(1-e)]

N4 = % [e(e+1)(e+2)] (5.5.3)

The value of C and its first and second derivatives with

reSpect to A can be written in the following form:

 

C = alC4 + d2C3 + d3C2 + a4Cl (5.5.4)

39 = 3L [8 c + B c + B c + B C J (5 5 5)
3A AA 1 4 2 3 3 2 4 1 ° °

2

3—9 = l [y C -+y C -+y C -+y C ] (5 5 6)
3A2 (AA)2 1 4 2 3 3 2 4 1 ° °

The values of a, B, and y in terms of 8 are given in

Table 5—3.
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TABLE 5-3.--Va1ues of a, B and Y for Third Order

Approximation in Terms of 8.

 

n a B Y

 

 

 

n n n

1 % e(e+1)(1—e) % (1-392) -e

2 % e(e+2)(e-1) % (392+2e-2) (3e+1)

3 % (9+1)(e+2)(1-e) -% (362+46—1) -(3e+2)

4 % e(e+1)(e+2) % (382+68+2) (9+1)

 

The variations of a and B with respect to 6 are given in

Figure 5-6.

For a time-dependent variable, Equations (5.5.4)

through (5.5.6) can be written

C = alC(t+At) + a2C(t) + a3C(t—At)

+ a4C(t-2At) (5.5.7)

8C __ 1 _
5E - A? [BlC(t+At) + 82C(t) + B3C(t At)

+ B4C(t-2At)] (5.5.8)

and

82c 1
——— = [Y C(t+At) + y C(t) + y C(t—At)

atz (At)2 1 2 3

+ y4C(t-2At)] (5.5.9)
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V (
D

 

 

  

 
  

 
Figure 5-6.--Variation of d and 8 With 6 for Third Order

Approximation.
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 To obtain a third order recurrence formula for a set of

first order partial differential equations, Equations

(5.5.7) and (5.5.8) need to be substituted in Equation

(5.1.1). The coefficients of Equation (5.1.5) for dif—

ferent 6 for third order time approximation are given

in Table 5-4.

5.6 Summary
 

 

In this chapter the recurrence formula for the

first, second, and third order approximations for a

system of first order differential equations is derived,

and the procedure of obtaining the finite difference

relations using the finite element concept is presented.

In this study the first order approximation was used in

the solution of the flow equation, while the first and

second orders were employed for solving the convective-

dispersion equation. The third order was not examined

in this work but for sake of completeness it was intro-

duced.

It will be shown in Chapters VIII and IX that

8 = 2/3 provides less oscillatory and more reasonable

results for the flow and mass transport equations.

However, choosing the value of 8 depends on the nature

of the equation, the numerical technique, and the

required use of previous known values. Giving any

specific value for 8 at this stage would be premature.

More work needs to be done in this area.
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CHAPTER VI

SOLUTION OF SYSTEM EQUATIONS CONCERNING

THE FLOW IN CONFINED AND

UNCONFINED AQUIFERS

In this chapter the procedure of solving the sys—

tem of equations concerning the flow in confined and

unconfined aquifers and the alternate methods, i.e.,

direct and simultaneous, of calculating the velocity

vectors will be discussed. For locating the free surface

in the unconfined aquifers two procedures, namely, modi-

fication of the elements and use of fixed nodes, are

presented. The latter technique will provide a tool to

solve the convective—dispersion equation in the phreatic

aquifers.

6.1 Regional Groundwater Flow

Finite element formulation of the combined equa—

tion of motion and continuity for flow in a two-

dimensional horizontal plane leads to a set of first-

order partial differential equations of the form

[B] {4} + [Hnfih = {F} (4.2.8)

79  
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with the unknowns {¢}, which is to be solved simultane—

ously at a given time for a series of nodes in the (x1,

x2) domain. The [B] and [H] matrices and {F} vectors are

known; their definitions are given in Section 4.2, and

methods of evaluating these functions are outlined in

Appendix I.

6.1.1 Computation of Piezo-

metric Heads

 

 

The discretization of the time derivative of Equa-

tion (4.2.8) and similar equations is discussed in detail

in Chapter V. Equation (4.2.8) can be written as

[1'3]{(>(t + 446)} = {6} (6.1.1)

where

[E] - [B] + a” [H] (6 1 2)
" a11 —A_t_ ° °

and

{G} - a [B]+EEE[H] + a {F(t+At)}
‘ 21 At 13

+ a23{F(t)} (6.1.3)

The values of the coefficients are given in Table 5-2.

Typical boundary conditions are discussed in Sec-

tion 3.3.3. From these conditions the lateral recharge

Q2 as well as the Dirichlet boundary are assumed to be

time invariant. For many applications, time variable

pumping must be considered at various nodes throughout
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the flow domain. In the computation it is convenient

to handle the pumping as a series of step functions dis-

cretized with respect to time as shown in Figure 6-1.

Thus at any time interval recharge or discharge will be  
constant.

There are different numerical techniques which

can be employed to solve the system of Equations (6.1.1).

 

Since [E] is a banded symmetric matrix with nonzero terms

in the diagonal, it is possible to use Cholesky's square

root procedure to decompose the matrix [8] (upper band)

and solve with the companion subroutine for the unknown

I{¢} as outlined by Weaver [1967], and employed by Pinder

and Frind [1972] for groundwater flow. The required

storage space for [E] in the computer will reduce to

NNDS X MAXBW, where NNDS is the number of unknowns {4}

and MAXBW is equal to time upper bandwidth plus one.

The parameters such as transmissibility, storage

coefficient, and time step participate in the construction

of the [8] matrix. Thus if one desires to change any of

the above mentioned parameters, it will be necessary to

regenerate the [E] matrix again.

Equation (6.1.1) can also be considered to be a

"steady-state" problem if the coefficients for the steady—

state condition from Table 5—2 are used. The resulting

equation for this state is
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'
'
0

Representative discharge curve

/

 

 

 
 

‘4 \\_;’/,/’7

| I

' I I
l I l

m l l

U1 l l

H l
g l l l

o l Step’J I

-2 ' r‘Changel I I

Q l l l l |

I II . , I

I I I l l
l J L 1 :7 t

Time

Figure 6—l.--Dividing the Actual Discharge Curve Into

a Series of Step Functions.
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[B]{¢} = {F} (6.1.4)

6.1.2 Introducing the

fiIrichlet Boundary

Condition

 

 

 

The placement of the Dirichlet boundary condition

into the global equations can be accomplished by the

deletion of rows and columns [Norrie and de Vries 1973].

Assume in Equation (6.1.1) that the piezometric head at

node k is known. Equation (6.1.1) in expanded form can

be written

K \ \ K \

E E 15 rd) G

 
Ekl . . . Bkk . . . Bkn J ¢k >=< Gk f (6.1.la)

E
D
I

m
l

C
H
I

'
9
-

Q

nk nn n n      
Since ¢k is known, all coefficients in the [E] matrix at

the kth row can be set equal to zero except the diagonal

terms (i.e., gkk) which will remain unchanged. The Gk

is replaced by Ekk¢k’ Equation (6.1.la) will have the

following terms:

 

 





84

 

o . . . Bkk . . . o <¢k >=< Bkk¢k >(6.1.5)

      

 

Bnl ° ° Bnk ' ' Bnn ¢n Gn

Usually Ekk has a positive value. In the computer pro-

gram a check has to be made to be certain that the value

of E k does not fall below a certain small value, e.g.,
k

one. Otherwise Ekk can be changed to any large value.

In the computer program, Ekk is replaced by the average

value of the diagonal terms. Equation (6.1.5) can

handle the Dirichlet boundary condition, but the matrix

is then banded and nonsymmetric. Since Cholesky's

method is used to solve the system of equations, the

matrix of Equation (6.1.5) must be symmetric. This

can be accomplished by subtracting Eik¢k7 k, i= 1. . . n,

i # k from both sides of Equation (6.1. ). The final

form becomes
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K \ /\ / \

B11 ' ° ' 0 ° ° ‘ B1n ¢1 G1‘B1k¢k

o . . . Bkk . . . o < ¢k >==< Bkk¢k >(6.1.6)

Bnl . . . o . . . Bnn 4n Gn—Bnk¢k

\ —--—-J \/ J\ /
     

This procedure is carried out for all Specified piezo-

metric heads prior to decomposition of the [E] matrix.

6.2 Solution of Flow Vectors
 

The mathematical equation of the velocity vectors

is discussed in Section 3.2 and the methods of solution

are described in Section 4.4. Once the piezometric

heads have been determined, flow (or velocity) vectors

can be computed.

6.2.1 Direct Calculation
 

In the direct method, Equation (4.4.3), i.e.,

Kij aNn

Viz-T725..— (bi l,j=l,2 (4.4.3)

e 3

is employed to compute the velocity vectors. This tech—

nique provides accurate results at the centroid of each

element, but the velocity components calculated by this
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procedure are discontinuous across element boundaries.

The magnitude and direction of the velocity vectors

(Figure 6-2) can be obtained by

< ll

j 1 2

9 ll arctan (VZ/vl)

6.2.2 Simultaneous Calculation

of Velocity Vectors
 

IV I = /V2 + V2 j=1,2

 

(6.2.1)

 

Simultaneous calculation provides continuous

velocity components at the nodes. The finite element

formulation of this technique is presented in Section

C

4.4.2. For example, for V1 the element equations are

K 8N

=[ 111.4,...
e xn

D

The global matrix is

[H]{v‘l’} = {F }
1

Integrated forms of Equation (4.4.11) and feaN

D

(4.4.11)

(4.4.12)

(4.4.13)

(aNn/axl)dD

for different types of elements are given in Appendix II.

A similar global relation is obtained for V
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 ‘

r—xl

Figure 6—2.--Velocity Vectors in the x x Plane.

1' 2

C

[H]{V2} = {F2} (4.4.14)

The [H] matrix is a banded symmetric matrix. Cholesky's

square root procedure (see Section 6.1.1) is used to

decompose the matrix. As long as the nodal coordinates

are fixed, the [H] matrix can be decomposed and

stored with no need to recalculate it.

If piezometric heads and velocity vectors

were to be calculated at the same time in a computing

scheme, the size of both the [H] and [B] matrices

would increase up to 3NNDS X 3NNDS with many zero

terms, NNDS being the number of nodes in the system.

This procedure requires a great amount of computer
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memory, and the transient solution of the problem is

tedious. In this method, besides the boundary conditions

for the piezometric heads the conditions for the velocity

 vectors need to be specified. But the procedure out-

lined in the preceding paragraph, based on the simple

realistic assumption that the piezometric heads can be

calculated independently of the velocity vectors, pro—

 

vides great simplification. With the construction of

the [H] matrix which requires only MAXBW x NNDS storage

core, the velocity vectors can be calculated at the nodes.

Equation (4.4.12) can be calculated for each element and

added to {F1}, a column matrix with NNDS rows. Similarly,

'{FZ} will be evaluated. The [H] matrix for Vi and v:

is identical. Thus the solution of Equation (4.4.13) and

Equation (4.4.14) will provide the velocity vectors at

each node. Equation (6.2.1) can be used to obtain the

magnitude of the velocity and its direction at each node.

Known velocities at the node can be handled by deletion

of rows and columns, as outlined in Section 6.1.2. In

Section 8.2 the two methods for calculation of velocity

vectors are compared.

6.3 Solution of System Equation for Flow

in Unconfined Aquifer With Transient

Phreatic Surface

In this study the flow in porous media on a

regional as well as local scale is studied. For a
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regional scale the two-dimensional horizontal flow is

considered and the solution of related equations is given

in Section 6.1. For a localized scale a vertical cross

section of an unconfined aquifer is chosen and the solu—

tion of the system of equations is presented in this

section. A technique of locating the phreatic surface

with fixed nodes is also shown.

6.3.1 Background
 

Based on the assumption made in ChapterIELI,if the

specific storage coefficient can be neglected, Equation

(3.4.1) will be reduced to

8 8¢

332‘; ij 53?; = 0 i,j=l,3 (6.3.1)

The finite element formulation of Equation (6.3.1) leads

to the global matrix of the form

[B']{¢} = {F} (6.3.2)

with its element components defined as

e BNk aNn

[B 1 : Kij ST WdD (6.3.3a)

De 1 3

and

e

{F} — ~[e Nk Q2 dS (6.3.3b)
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Equation (6.3.2) is solved with the related boundary

conditions discussed in Section 3.4.3. In addition to

the known potential and known flux boundary, there is

the phreatic boundary condition which is described as

At Uj-zi = UnAt.= ——- -K j2£_2. - I 23] i,j=l,3 (3.4.6)
ne ij ij 1

Equation (3.4.6) contains a time derivative of the free

surface and can therefore be used to determine the height

at the later time when the other terms in the equation

are known [France 1971]. An iterative technique is

used to replace the original transient problem by a

discrete number of steady-state problems, based on the

assumption that the flow at each instant is steady but

the boundary of the flow is time variable [Poluborinova-

Kochina 1962, p. 572]. At the beginning of each time

interval the position of the free surface and boundary

conditions are known. Using Equation (3.4.6), the phre-

atic surface is then shifted along its normal to a

new position. Two possible methods are considered

below. One technique most commonly used (e.g., Desai

1972 and France 1974) requires the modification of the

elements such that the free surface always is the

upper boundary of the grid system. Another method,

presented by France [1971] and modified and improved

herein, accomplishes the movement of the phreatic
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surface within the grid system without repositioning

 

the nodal coordinates of the elements.

6.3.2 Locating the Phreatic

Surface by Modifying the

Elements

 

 
The movement of the phreatic surface is deter-

mined in the following manner:

 

Step 1. At the beginning of each time interval

 

the surface configuration and boundary conditions are

known. Equation (6.3.2) is used to find the value of

the piezometric heads for all nodal points except those

at the phreatic surface. If there is a known flux from

boundaries other than the phreatic surface, the values

of {F} in Equation (6.3.2) are calculated; otherwise

{F} will be zero. At this step the nodal points at the

phreatic surface act as the Dirichlet boundary. In Sec-

tion 6.1.3 it is shown how to introduce the known

potential into the global equations. Equation (6.3.2)

is similar to Equation (6.1.4) and is solved the same

way, as outlined in Section 6.1.1.

Step 2. At the beginning of each time the piezo-

metric heads are known in the system, and from Equation

(3.4.6) it is possible to compute the location of the

phreatic surface at a time t + At. The distance a

point on the phreatic surface will propagate in the

direction of the normal to this surface at that point





92

is equal to UnAt. If P(xl,x3) in Figure 6-3 is a point

of the phreatic surface at time t and P'(xi,x5) is the

location of that point at time t + At, then the shifting

distance along the normal to the free surface dn’ PP'

in Figure 6-3, is

_— —— — I: __ — —_ — . + . .

A

where i and k are unit vectors along x and x3, respec-

1

tively; and £1 and £3 are directional cosines. I is the

accretion term, positive downward. If 6 is the angle

that the tangent to the phreatic surface makes with

the positive x —direction, then
1

2
o

ll1 sin 6 & 2 = cos 8

dn = At (Vl Sln 8 + V3 cos 8 - I cos e/ne) (6.3.5)

Thus dn can be evaluated by Equation (6.3.5). It is

Convenient to calculate the shifting distance along the

nodal lijxs (d2). Let mi be the angle that the nodal

line (i) makes with the positive x -direction, and

1

define B = N/2 - w + e [Desai 1972]. Then

d
n

dg = cos 8 (6.3.6) 
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d = d cos w (6.3.7a)

D
; II3 d2 Sln w (6.3.7b)

In Equation (6.3.7), d and d are the shifting distances

 

 

l 3

in the x1 and x3 directions, respectively. Summarizing,

(V' sin 6 +rV' cos 6 - I cos G/h.)At cos w

_ l 3 e

d1 - (6.3.8a)

ast

(Vi sin 8 + V: cos 6 - I cos e/ne)At sin w

d3 = (6.3.8b)

cmsB

Thus the location of the phreatic surface at time t + At

will be

x = x + d (6.3.9a)

X = X3 + d3 (6.3.9b)

In order to complete step 2, one has to know the velocity

components and the angle 6 at each phreatic node. As

discussed in Section 6.2, direct calculation of the

velocity vectors usually does not provide continuous

results at the nodes. Most authors, e.g.,France et a1.

[1971] and Desai [1973], have realized this deficiency

and have used the average velocity components at the node

calculated from two adjacent elements. Although this

procedure reduces the errors significantly, because of
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discontinuity of the velocity functions it is still not

the best way to evaluate the velocity vectors at the

nodes (see Section 4.4.1 for details). The proposed

simultaneous calculation of the velocity components pro—

vides continuity at the nodes and is used in this study.

The slope of the element lines along the phreatic

boundary is usually discontinuous at the nodes. For

example, at node 8 the slope of line 4-8 in Figure 6-4

differs from line 8—12. In order to obtain a better

estimate of 6 at the phreatic nodes, a polynomial of

degree n is passed through the phreatic nodes of two

elements while the node under consideration is almost

Phreatic surface

 

(9 8X "

3\Q o

     

14

7

11\

GD .15
2—~——~_____~______d

6 10““14

.3 <9 69 o
l 5 9 13

X1

Figure 6-4.-—Simp1e Linear Quadrilateral Isoparametric

Elements.
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the middle point. When the polynomial is passed through

the nodes the slope of the free surface is evaluated at

the node. The value of n is dependent on the type of

element. For linear and quadratic quadrilateral elements

n = 2 will be sufficient, while for a cubic element n = 3

is recommended. For corner nodes (e.g., nodes 4 and 16

in Figure 6-4) the slope of the phreatic line is used.

Because the phreatic nodes might not be equally spaced,

Newton‘s divided-difference method [see Carnahan et a1.

1969, pp. 9—26] is used to pass a polynomial for the

desired points.

Step 3. Equation (6.3.8) assures that the shifted

points always lie along the nodal line. In this case,

Equation (6.3.9) represents the location of the new

nodes at a new time. In some instances the nodal lines

cannot be straight and the value of w changes along the

line, such as for quadratic or cubic elements. Then

**

the new point xl,x will be calculated by

3

* -

xl — xl - dn Sln e (6.3.10a)

*

x3 — x3 — dn cos 6 (6.3.10b)

* *

where x1 and x3 represent the temporary location of the

nodes at time t + At, and dn is defined in Figure 6-3.

To find the location of the actual nodes, it is necessary

to fit a polynomial to these temporary nodes and then

. ._h
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find the location of new points with the given xl-values

(Figure 6-5). Polynomial curve-fitting procedures such.as

Newton's divided—difference method (Carnahan et a1. 1969],

or other methods such as the Newton-Raphson iteration

technique or the least square curve-fitting [Pennington

1970, pp. 408-417], can be used. In this study the first

method is employed, and the second technique is used by

France et al. [1971].

Step 4. At the start of this step the location

of the phreatic surface is known and can act as the

Dirichlet boundary condition for solving Equation (6.3.2)

to compute the piezometric heads in domain D. But since

the free surface has moved, the nodes on the phreatic

Phreatic surface at

time t + At
   

  

Phreatic surface at

time t

0 Temporary nodes

0 Actual nodes

Figure 6-5.——Location of the Temporary and Actual Nodes

[After France 1971].
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surface do not coincide with the nodes of elements.

There are two possible ways to handle this problem:

(a) modify the elements such that the phre-

atic surface becomes the upper boundary

of the grid system, or

(b define a new Dirichlet boundary condi-

tion for the nodes above the phreatic

surface such that it is not necessary to

modify the elements.

v

Procedure (a) is discussed below, and details con—

cerning procedure (b) are postponed until Section 6.3.3.

The location of the phreatic surface is known, so

the upper nodes of the phreatic elements are transformed

to coincide with the phreatic surface. Since the coor-

dinates of some nodes have changed, it is necessary to

re-evaluate the [B'] matrix (Equation 6.3.3a). In

order to reduce computation time the whole grid system

can be divided into two groups (Figure 6-6):

(a) fixed elements--their nodal coordinates

will not alter during the entire calcu-

lation,

moveable elements—-their nodal coordi—

nates will be affected by changing the

phreatic surface.

(b v

Another important point is that the rise or fall

of the phreatic surface is not uniform, and in some

nodes the phreatic surface moves several times more than

other nodes. In order to keep the elements in reasonable

shape it is recommended that all moveable elements be

modified rather than only shifting the nodes of phreatic
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elements. When the nodal points are shifted the program

is ready to start a new time step.

Steps 1 to 4 are repeated until the system reaches

the maximum specified time or the steady state.

6.3.3 Location of Phreatic

Surface Using Fixed Elements

 

 

As discussed in Section 6.3.2, it is possible to

handle the movement of the phreatic surface without

altering the nodal coordinates of the elements. In the

following method the phreatic surface travels within a

fixed finite element grid system.

6.3.3.1 Computation of piezometric heads at the
 

nodes above phreatic surface.——In order to illustrate
 

the method, a plane linear element, Figure 6—7, is

employed. The first part of this development is adopted

from France [1971]. Referring to Figure 6—7 which simu-

lates a small portion of the flow domain, the phreatic

surface represented by the broken line cuts through ele-

ments numbered (1), (3), and (4) at points a, b, c,

and d.

For element number (1) the piezometric head ¢ at

any point within or along its boundaries is given by:

4 = N141 + N242 + N5¢5 + N4¢4 (6.3.11)
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1 2 3

Q) n*__a_____\. o

1&- \‘\\ T—

‘TDKLB: 5
~\ \‘\.ET1:H1

\\

4 5 C .\ 6

‘~d

1; ” :1
E 6

x3 (:2 (:2

9

Figure 6-7.--PhreatL:Surface Passing Through the Elements

[After France 1971].

The shape function for a plane linear element can be

written [Zienkiewiez 1971, p. 109]

1

4 )2

ll (1+ 60) (l +n0

where

50 E Ej and no = n n.

J

For element number (1) the shape functions are

N1 = % (1-6)(1+n) N2 = % (l+€)(l+n)

N—ll- 1 N-ll+ 14 — 4 ( €)( -n> 5 — 3 ( €>< -n>

(6.3.12)
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At point (a) along line 1-4 (5 = -l), the piezometric

head is

_.1
4a — Z-{2(1+A)¢l + (0)(1+A)¢2 + 2(1-.A)¢4 + (0)(14A)¢5} (6.13.13)

 
where A is the value of n at point (a), and —l g A g 1.

Finally,

 

-1 _
4a — 7 {(1+A)<I>l + (1 A)¢4} (6.3.14)

Similarly for point (b) along line 2-5,

4b = % {(1+B)¢2 + (l-B)¢5}, -1 g B 5 1 (6.3.15)

For element number (3) the piezometric head is given as

¢ = N2¢2 + N3¢3 + N6¢6 + N5¢5 (6.3.16)

At point (c) on line 5-6 the head is

40 = % {(1+C)<I>6 + (l-C)¢5}, -1 g c g 1 (6.3.17)

For element number (4) the head is given by

¢ = N5¢5 + N6¢6 + N9¢9 + N8¢8 (6.3.18)

At point (d) on line 6-9,

¢d = % {(1+D)q>6 + (1—D)¢9}, -1 g D g 1 (6.3.19)
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The objective is to determine the piezometric head

distribution on and below the phreatic surface. How-

ever, the finite element method yields values only at

the nodal points, including those points above the phre-  
atic surface. It is therefore necessary to define the

values of ¢l’ ¢2, ¢3, and ¢6 in terms of ¢a’ ¢b’ and

¢d‘ Since ¢3 does not affect values along 2—5 and 5—6,

 

it can be determined arbitrarily as will be discussed

later. The piezometric head at node 6, ¢6’ can be Speci-

fied either in terms of ¢c or ¢d'

From Equatfbns (6.3.14), (6.3.15), and (6.3.19);

¢l' ¢2, and $6 can be derived:

41 I24a - (l-A)¢4]/(1+A)

e
-

M

II I24b — (l-B)¢5]/(1+B) (6.3.20)

46 = I24d - (1—D)491/(1+D)

It is necessary to know the values of ¢a’ ¢b’ and ¢d‘

This presents no difficulty since on the phreatic surface

the piezometric head equals the elevation head. Thus

Equation (6.3.20) can be used to interpolate the values

of the piezometric heads at the nodes above the phreatic

Surface, based on the location of the free surface and

known piezometric head at the nodes beneath the surface.

Equation (6.3.20) which has been derived by France [1971]
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is simply a linear interpolation between three points

where the distance between the nodes and the values of

two nodes are known. It is desired to find the unknown

value at the third point.

using a one—dimensional, two—node element.

This can easily be shown

 01
Figure 6-8.--One—Dimensional Linear Element.

In Figure 6—8, let $1 and ¢A be known with the intent to

find ¢2. The distances between the nodes are defined in

the above figure. Shape functions for nodes 1 and 2 are

_ 12"LA LA

Nl _ L ’ N _—_
12 12

By definition,

¢A = N1¢1 + N2¢2 (6.3.21a)

or
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(>2 = (4A - N1<I>l)/N2 (6.3.21b)

Substituting the shape functions into Equation (6.3.21)

 

yields

L ¢ ' (L -L )4
_ 12 A 12 A 1

$2 — L (6.3.22)

A .

2LA

Define B = E—_ — 1 such that —l g B 5 l.

12

Substituting A in Equation (6.3.22) and simplifying,

(1) _ 2¢A - (l - B)¢l

, 2 -W (6.3.23)

Equation (6.3.23) is identical to Equation (6.3.20)

which has been derived using the properties of an iso-

parametric element. Usually, ¢ represents the piezo—
A

metric head at the phreatic surface, $1 is a known head

within the system, and calculated $2 is a Dirichlet

boundary condition. The problem associated with Equation

(6.3.21b) or Equation (6.3.23) is that it is singular

when N2 + 0 or B + -l, i.e., when the point A is close

to point 1. In practice, when the phreatic surface rises

due to infiltration or other hydraulic stresses, Equation

(6.3.23) does not provide a reasonable estimate for $2.
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One way to obtain a better estimate for phreatic

nodes (Figure 6-10) is to use two interior nodes besides

¢A to evaluate unknown ¢. Let ¢l and ¢2 be known and

¢A represent the value of the piezometric head at the

phreatic surface. It is desired to find $3 (Figure 6—9).

Using the properties of a one—dimensional quadratic ele—

ment (see Section 5.4),

¢A ' N1¢1 ' N2‘1’2

 

 

¢3 = ——-—-—-fi;—-————— ; N3 # 0 (6.3.24)

where

N (LA )(LA L13)

1 (L12 (L13)

(L )(LA - L13)

N2“ () )
12 23

L13 ’3

L1311A

I .2

L
1L

.1_ 12 A1“ 1

Figure 6—9.--One-Dimensional Quadratic Element.
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I (accretion)

9 * H++i
/Nodes above the

8

,‘ phreatic nodes

I\
)

 

4

Phreatic nodes

 

—\

g~§~¥1\\~‘
r/Phreatic surface

Y

Interior nodes
/

 

I Nodal line

     

Figure 6-10.——Location of the Phreatic Surface and

Definition of the Terms.
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3 (L13) ”‘23)

Although Equation (6.3.24) provides justifiable

results it still becomes singular when N3 + 0. A possi-

ble way to compensate for the singularity of N2 in

Equation (6.3.21) or N3 in Equation (6.3.24) is to use

the node below point 1 of Figure 6-8, when point A is

close to point 1. The scheme will be similar to Figure

 

6+9 but

¢ - N'¢

43 = A l 1 (6.3.25)
NI

2

where

._ L13 - LA ._ LA

N1 ’ L ' N2 ‘ L
13 13

Equation (6.3.25) will never be singular, but since it is

using $1 rather than ¢2 it underestimates ¢3 because

usually 91 < $2-

Returning to Figure 6-8, there is a third way to

compute $2 and it is based on Darcy's Law:

V3="r%3’—a:¢
e 3

or

V
3(1) __ 3 n

 

 



 



 

 

(42 - 4,) v3

 

“‘3’2 ' (X3)A K33 9

Since (x3)A E ¢A’ then

V n

_ _ 3 e _ (6.3.26)

¢2”¢A K (”3’2 1’21)
33

V3 and K33 are known values at point A.

In Equation (6.3.26), $2 is calculated based on

the location of the phreatic surface. If the values of

are evaluated correctly, then it is believedV and K
3 33

that Equation (6.3.26) will provide accurate results for

¢2 without under or overestimating its values. When the

phreatic surface is horizontal, V3 is zero and thus

Equation (6.3.26) is not applicable. In this case, for

the first time interval Equation (6.3.25) is employed

to compute the value of the piezometric head at the

points above the phreatic surface. For the second time

interval and later times, one will instead use Equation

(6.3.26). It can be concluded that among the Equations

(6.3.23) through (6.3.26), Equation (6.3.25) gives a

reasonable value at the first time interval and Equation

(6.3.26) provides a better estimate at later times.

6.3.3.2 Computation of velocity vectors at

phreatic surface.--When calculating the shifting distance

for the phreatic surface (Equation 6.3.8), itis necessary
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to know the velocity components on that surface. Since

the phreatic surface moves within fixed nodes, in most

cases it will intersect the element line as shown in

Figure 6-7. The velocity components are known at the

nodes. Consider again Figure 6-8 to calculate V1 and

V3 at point A between nodes 1 and 2. Using an equation

similar to Equation (6.3.21a) to compute velocity vectors,

one will have

(l—B) (v + (1+B) (v1)2

 

 

)
_ 11

(V1)A — 2 (6.3.27)

where

2L

B=L—A—l

12

LA /I(xl)l—(xl)AI2 + [(x3)l-(x3)A]2

 

2 2

L12 = /1(xl)2—(xl)l] + [(x3)2-(x3)11

Similar equations can be written for (V3)A.

6.3.3.3 The procedure for solving piezometric

heads with fixed nodes.--The procedure for solving the

piezometric heads in an unconfined aquifer with this

method is as follows:

Step 1. The phreatic surface is initially chosen

to coincide with the element boundaries. It is not
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necessary that this boundary be the upper limit of the

grid system, i.e., the phreatic surface might be speci-

fied within the system. This is especially important

when a rise of the water table is expected. For example,

in Figure 6-6 it is expected that the phreatic surface

will rise, and line 2-6—10-14-18-22 can represent the

free surface at the initial time. A finite element

solution is performed, velocity components are calcula-

ted, and the phreatic surface is shifted as in the fixed

element method.

Step 2. The piezometric head values at points

such as a, b, and d of Figure 6-7 are stored. Their

values are simply the elevation heads at the respective

points. The piezometric head values at nodes 1, 2, and

6 are calculated using Equation (6.3.25), and an arbi—

trary value is assigned to node 3 as will be discussed

later.

Step 3. Since the element stiffness matrices

are unaltered, all that is necessary is to insert these

new Dirichlet boundary values in the governing set of

simultaneous equations and solve for a new set of piezo-

metric heads.

Step 4. The velocity components are evaluated

and the phreatic surface is shifted as mentioned in Sec-

tion 6.3.3.2, using Equation (6.3.5).
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Steps 2, 3, and 4 are repeated until the maximum

required time is achieved or until the system has

reached the steady-state condition. For the second time

interval or later times Equation (6.3.26) is used in

step 2.

6.3.3.4 Assigning the value of piezometric

heads above phreatic nodes.-—Assigning an arbitrary
 

value of piezometric head to node 3 (Figure 6—7) or to

similar nodes is an important task. To clarify the dis—

cussion consider Figure 6-10 where the position of the

water table is shown, and the phreatic nodes and the

nodes above the phreatic nodes are defined. The piezo—

metric heads at the phreatic nodes, i.e., nodes 3, 7,

11, and 15, are calculated using Equation (6.3.26) based

on the location of the phreatic surface. The task now

is to assign the values of the piezometric heads to

nodes above the phreatic nodes, i.e., nodes 4, 8, 12,

and 16. In the calculation of the piezometric heads

within the system, these values do not play any major

role. But they have a great importance particularly

when the velocity vectors are calculated simultane—

ously. It is assumed that there is no capillary fringe

above the water table, that an abrupt interface exists

between the saturated and unsaturated soil, and the

.pressure above the phreatic surface is atmospheric. Due
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to the physical characteristics of the porous media

there is little or no flow movement above the phreatic

surface, except the infiltration due to recharge which

is assumed to travel directly to the water table. This  
concept, together with the above assumptions, directs

one to assign the piezometric heads above the nodes such

that the physical conditions are satisfied. This is done

by equating the piezometric heads in the nodes above the

phreatic nodes to the piezometric heads of the phreatic

nodes along each nodal line. For example, $16 = ¢15 and

¢12 = ¢ll’ etc. This technique will provide the desired

condition for velocity vectors along x3, i.e., V3 above

the phreatic node will be zero, but there will be a

gradient along x This situation will not cause any1'

major problem since the slope of the phreatic surface is

small and its effect will be minimal in calculating the

shifting distance (Equation 6.3.8). However, to improve

the technique it is possible to equate the velocity com—

ponents at and above the phreatic nodes (Figure 6—10) to

zero, which is done in this study. Summarizing, the

piezometric head at and above the phreatic nodes will be

the same for each nodal line; refer to Figure 6—10.

After the velocity components are calculated simultane-

ously, the velocity vectors along x at and above the

1

phreatic nodes will be set to zero.
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6.3.4 Steady-State Condition 

When the system has reached the steady-state

condition the phreatic surface will not move considerably,

i.e., the normal velocity will approach zero. From Equa-

tion (3.4.6),

-Kij gg? 2i - I 23 = o

This means that at steady state, normal discharge is

equal to the normal component.0faccreti0n- In the com—

puter program Equation (6.3.5) is used. The average

shifting distance is defined by

NNFS

k§1(dn)k

d = NNFS

where NNFS is the number of nodes in the phreatic surface.

When 5 is less than or equal to a small value the steady—

state condition is reached and the program is halted.

6.3.5 Reasonable Time Step 

There is no general agreement for choosing the

time step. Rushton and Herbert [see France 1974] have

suggested that if the time interval is chosen so that the

velocity at which the phreatic surface moves changes by

less than 30 percent between successive steps, then it

iS not necessary to iterate within the time step.
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Based on the Lipschitz criteria [Isaacson and

Keller 1966, pp. 86-91], Sandhu et a1. [1974] have intro-

duced the variable time step. They state that in

choosing At the following criteria should be satisfied:

i+1 i

max 1(x3)k - (x3)k)

= A(At) < 1 (6.3.28) 

i i-l

where k = l, 2, ..., NNFS, i represents the number of

iterations (see Section 6.3.6), and the value of A is

dependent upon At. If A exceeds one, the time step will

be reduced by some factor until the time interval satis-

fies Equation (6.3.28). If, on the other hand, A is

found to be very small compared with one, At will be

increased by the factor. In the computer program (x3)£

is estimated, the value of the previous time is used,

and only two computations of x3 are required to obtain

an estimate for A and to choose the proper time step.

6.3.6 Iteration Within

Time Step

 

Usually, if one chooses a small time step there

will not be any need to iterate within a time step,

especially when the rise or fall of the phreatic surface

is small compared to the size of the system, such as with
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actual field problems. However, Sandhu et a1. [1974],

by using the mean value theorem and assuming a smooth

change of geometry in the time domain, have introduced

the following equations for iteration within the time

step:

i _ 1

+ dl[xl(t+At), x3(t+At)]i—l}£

(6.3.29)

[x3(t+At)]: = [x3(t)]k + %~{d2[xl(t), X3(t)]

+ d2[xl(t+At), x3(t+At)]i-1}L

i and k are defined in Section 6.3.5. The inside bracket

means that dl and d2 [see Equation (6.3.8)] are calcula—

ted at [xl(t), x (t)] and [xl(t+At), X3(t+At)]. Since
3

the change of x3 is greater than the xl-value after every

iteration, a check is made where

i i—l

[(x3)k - (x3)k ]/|(X3)k|

is less than or equal to e (say, 10-5). If this condi-

tion is satisfied the iteration is complete. Usually

One or two iterations will be sufficient. The same tech-

rnique is used in this study.
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6.3.7 Comparison Between the

Two Methods of Locating the

Phreatic Surface

 

 

Figures 6hll and 6-12 depict the schemes for

solving the piezometric heads in an unconfined aquifer

with the method of modifying elements (method one) and

the method of fixed nodes (method two). It is extremely

difficult to compare the two methods comprehensively.

However, each technique has specific advantages as out-

lined below.

(a) In the first method the locations of nodal

points are changing and the system is shrinking or

expanding with time, in the second procedure the grid

system is fixed and the coordinates of nodes are time

invariant. The second method enables one to introduce

convective-dispersion equations into the system, a major

advantage of this technique.

(b) In the first method it is necessary to

reconstruct the global matrices and decompose them for

every time step, while it is not required in the second

method. Thus the fixed node procedure needs less com—

puter time than the method of modifying elements.

(c) Another advantage of using the fixed grid

technique is that the position of the nodal point is

fixed and the shape of each element does not change with

time. Thus it is possible to calculate the location of

the phreatic surface in any anisotropic and heterogeneous
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Input data

[Build up global matricesl

 

 

[Insert Dirichlet boundary condition]

Solve for ¢ (with Dirichlet boundary on

upper nodes along phreatic surface)

[Print piezometric head of the systeml

1
ICalculate velocity vectors at the nodes]

 

 

 

 

Shift phreatic surface along its normal and

find new coordinates of the free surface

[Erint the location of the phreatic surface]

 
Check if system has reached steady state or

required maximum time, stop

 
Based on new location of free surface,

modify elements such that phreatic surface

coincides with upper element boundaries

Figure 6—ll.——Scheme for Solving the Piezometric Heads

in Unconfined Aquifers With the Movable Node

Technique.

  
 



 



 

 

119

Input data

 

[Build up global matriceg]

[Insert Dirichlet boundary conditionl

 

 

 

 

above phreatic surface)

 

Solve for ¢ (with Dirichlet boundary]

 

 

IPrint piezometric heads of the system

Calculate velocity vectors at the

phreatic surface

 

 

 

 

Shift phreatic surface along its normal and

find new coordinates of the free surface

[Print the location of the phreatic surfaCE]

Check if system has reached steady state or

required maximum time, stop

Based on new location of the free surface,

assign piezometric head values at the nodes

above phreatic surface

 

 

 

 

 

  
 

 

Figure 6-12.——Scheme for Solving the Piezometric Heads in

Unconfined Aquifers With the Fixed Node

Technique.
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porous media. But in the modifiable element method,

nonhomogeneity can be handled only for fixed node sec—

tions or between the columns of nodal lines.

(d) In the first method the boundary condition

is evaluated once to yield the location of the phreatic

surface. In the second method the Dirichlet boundary

condition at the nodes above the free surface is computed

baSed on the position of the phreatic surface. As dis-

cussed in Section 6.3.3.1 there is no concrete method to

evaluate the piezometric heads above that surface. Among

the equations which are presented, Equation (6.3.26)

gives reasonable results. Still, interpolation of the

values of V3 and K and assigning the value of piezo-
33’

metric heads for nodes above the phreatic nodes, need to

be investigated more.

6.3.8 Summary

The calculation of Unapiezometric headstlconfined

and unconfined aquifers is discussed. A modified tech-

nique of calculating the phreatic surface with fixed nodes

is presented, and it is shown that the velocity vectors

can be calculated simultaneously to provide continuous

functions at the nodes without using large computer memory.

The feasibility of modeling the dispersion phenomena in an

unconfined aquifer with a transient phreatic surface, which

has become of universal interest, is apparent.



 

 

CHAPTER VII

SOLUTION OF SYSTEM EQUATIONS FOR

CONVECTIVE-DISPERSION PHENOMENA

7.1 Introduction 

In this chapter the procedure of describing the

convective-dispersion phenomena is discussed. Related

mathematical equations are described in Section 3.5 and

the finite element formulation is given in Section 4.3.

For most practical purposes at relatively low concentra—

tions, it can be assumed that the concentration of a

tracer does not affect the velocity distribution [Bear

1972]. Hence the solution of a dispersion problem is

made up of two independent subproblems. First, the

velocity distribution is determined for all points of

the flow domain. Second, the resulting velocity distri-

bution is inserted into the dispersion equation, which

in turn is solved to yield the concentration distribution

in the flow domain. Velocity vectors play a dominant

role in the convective-dispersion equation. They appear

in the convective term and dispersion coefficients, and

hence realistic and accurate evaluation of the velocity

components is very important. Proposed simultaneous

solution of the velocity vectors from piezometric heads
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(Section 4.4.2) provides continuous velocities at each

node. The concept is also presented by Segol et a1.

[1975], where the pressure and velocity components are

computed simultaneously. For an almost homogeneous

liquid, the proposed method (in Section 4.4) has some

advantages over their procedure: (1) the required

storage space in the computer program is significantly

reduced; (2) the transient solution of the velocity vec-

tors is feasible; and (3) the boundary conditions are

simple to apply.

7.2 Calculation<3fDispersion Coefficients
 

The hydrodynamic dispersion coefficient defined

in Section 3.5.2 regulates the degree of Spreading of

the contact zone between two miscible fluids. For most

practical purposes the molecular diffusion coefficient

is negligible compared with the mechanical dispersion

coefficient. The dispersion coefficient is given by

Equation (3.5.1). The longitudinal and transversal dis-

persivities are the two components of the mechanical

dispersion coefficient, and are considered as porous

media properties. In this study they are assumed to be

constant over the entire domain. The reported values

of a and a both range between 4 and 135 meters
I II

[Pinder 1973, Robertson 1974].
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Dispersion coefficients can be either evaluated

at a node or assumed to be constant over each element at

a given instant. For a transient flow where velocity

components are also time variant, it is necessary to

compute the dispersion coefficient at each node for

every time step and reconstruct the global matrices (see

Section 4.3). Consequently, the time dependency of the

dispersion coefficient will increase the computation

time considerably.

7.3 Computation of Tracer Concentration
 

The finite element formulation of the convective—

dispersion equation leads to a system of ordinary differ—

ential equations of the form

[HM—3%} + ([K]+[s1){c} + [E]T[I]{C} = {mac} + {F}

(4.3.13)

The two most common boundary conditions, namely, the

Dirichlet and the Neumann boundary conditions, are used

in solving tracer concentration. The Dirichlet boundary

condition is handled by specifying the known con—

centration at the appropriate boundary nodes and factoring

out rows and columns in the coefficient matrix associated

with those nodes as discussed in Section 6.1.2. The

known mass flux along the boundary line is incorporated

in the {F} vector. The procedure of the allocation of

 



 



 

a constant line source to nodal points is given in

Appendix I. Since it is assumed that at the boundaries

either the concentration or the flux of the tracer is

defined, the matrix [E] in this study is assumed to be

zero. In order to construct Equation (4.3.13), three

parameters (i.e., dispersion coefficient, velocity vec-

tors, and velocity gradients) should be known. Velocity

vectors are calculated at the nodes, and the other two ‘

parameters are evaluated at the integration point. All 1

three are then introduced into Equation (4.3.12).

The dispersion equation for flow in a confined

or an unconfined aquifer is similar. With the fixed

node technique described in Section 6.3.3, the piezo—

metric heads in a phreatic aquifer can be obtained without

repositioning the nodal coordinates of the elements;

thus the velocity vectors are known for a given point at

any time step. The movement of a tracer is predicted by

introducing the calculated velocity vectors in the

convective—dispersion equation. The nodal coordinates

of the grid system for the tracer will coincide with the

nodal points of flow. Thus, either the grid system for

flow and dispersion will be identical, or the grid

system for predicting the tracer concentration will lie

within the grid system of flow prediction. The procedure

for calculating the tracer concentration in a confined

or unconfined aquifer is given in Figure 7—1.
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7.4 Discretization of Time Derivatives

and Solution of System Equatibn

 

 

Equation (4.3.13) is a set of first order ordinary

differential equations. Different methods to discretize

the time derivative of the family of equations similar

to Equation (4.3.13) were discussed in detail in Chapter

V. Using Equation (5.1.5), Equation (4.3.13) takes the

following form:

[E](C(t+At)} = {G} (7.4.1)

where [E] is a nonsymmetric banded matrix, C is the

unknown concentration for time t + At, and {G} is a known

force vector. Since [E] is nonsymmetric, the Cholesky

method (see Section 6.1.1) is not applicable. The Gauss

elimination technique [Carnahan 1969, pp. 270—272] is

used to solve the system of simultaneous equations. The

subroutine GELB [IBM Application Program, 1968] has been

adOpted for solving the system of equations for the dis-

persion equation. Initially, a two—point backward

finite-difference scheme is used, where the initial con-

dition of C at time t is given and C(t + At) is sought.

As the computation progresses, solutions of C at a few

prior time steps become known and they may be stored in

the core. Then a higher order time approximation of

Equation (4.3.13) is used as derived in Chapter V, to

give a more accurate solution or to permit a larger time
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step without additional penalty of excessive computer

time. As can be seen from Equation (5.1.5) the [A] and

[H] matrices are fixed, and only their coefficients will

change if the order of approximation or the time step

changes. The additional required memory for each

increased order of approximation will be 2 x NNDS, where

NNDS is the number of nodes. The results of using dif-

ferent methods of discretization of the time step are

discussed in Chapter IX.

7.5 Stability and Convergence Criteria
 

There are two important concepts closely associ-

ated with the convergence of a particular numerical pro-

cedure, namely, those of consistency and stability.

Carnahan et a1. [1969] define the stability and consist—

ency as the following: "In general, a solution is said

to be unstable if errors introduced at some stage in the

calculation . . . are propagated without bound throughout

subsequent calculations." The term consistency means

that the numerical procedure may in fact approximate the

solution of the partial differential equation under con-

sideration and not the solution of some other equations.

There is no definite rule for defining stability criteria

by the finite element method. For the finite difference

explicit scheme, Fried and Combarnous [1971] give a
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relation for the stability of longitudinal dispersion

which can be written as follows:

72 DL At_g Axl s 2 DL/Vl (7.5.2)

The stability function for the two—dimensional dispersion

equation solved by the explicit finite difference method

was obtained by Reddell and Sunada [1970], and is sum—

marized as

Dll ; D22 > 0 (7.5.3a)

4 D D > (D + D )2 (7 5 3b)
11 22 12 21 ' '

D At D At

11 + 22 5 1 (7.5.3c)
2 2 2

(4X1) (4X2)

Although Equation (7.5.3) was derived for finite differ-

ences, it reveals the limitation of choosing Ax and At.
1

As discussed in Chapter VIII, for 6 3 1/2 (Chapter V) the

result of exceeding the time step restriction is a stable

but oscillatory solution, and as 6 approaches 2/3, the

oscillation decreases substantially. However, giving any

specific 6 for stability criteria will be premature.

Using the higher order time derivative approxima—

tion of Equation (4.3.13) will improve the convergence

of the finite element solution.





 

 

CHAPTER VIII

 
NUMERICAL RESULTS FOR SIMULATION

OF GROUNDWATER FLOW

In this chapter the validity of the finite element

numerical simulation of the flow in confined and uncon-

fined aquifers with a phreatic surface is discussed. The

mechanisms of locating the free surface with fixed nodes

and with modifiable elements are verified. Also, the

results of the two methods for velocity calculation, i.e.,

direct and simultaneous procedures, are presented.

8.1 Flow in a Confined Aquifer 

The finite element solution of the flow equation

for a confined aquifer has been accomplished successfully

many times and will not be the subject of detailed review

in this study. Since success of the convective-dispersion

model is highly dependent on the hydrologic simulation

model, one has to be certain that the hydrodynamic simu-

lator provides accurate results.

8.1.1 Pumping in a Single

Well Field

 

Consider a single well pumping from a confined

aquifer of nearly infinite area (Figure 8—1). The
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analytical solution for transient radial flow in an

isotropic nonleaky artesian aquifer with fully penetrat-

ing well and a constant-discharge condition is:

P

S = W ['Ei ('u)]

(8.1.1)

= r2_S
u 4Tt

where s is drawdown, r is the distance from pumped well

to the observation point, P is discharge, t is time, T is

transmissibility, S is the storage coefficient, and

-Ei(—u) is the exponential integral [Davis and DeWiest

1966].

Due to symmetry of the flow field, it is suffi-

cient to model only one—fourth of the aquifer, shown in

Figure 8-2. No-flow boundaries are taken 4,800 meters

from the well located at point W, and initially the

drawdown s is zero. The following parameters are used

in the modeling: T = 929 mz/day, s = 0.01, and p =

946 m3/day. Figure 8-3 shows dimensionless drawdown

versus dimensionless time at locations A and B (Figure

8—2), at distances of 1,697 and 2,163 meters from the

well, respectively. Numerical results compare favorably

with the analytical solution, and the deviation of

numerical results from the theoretical curve is within

acceptable range. It has been observed that the size
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lating a Single Well Field.
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and type of elements affect the accuracy of the numerical

results.

8.1.2 Effects of Various Time

Approximations on the Accuracy

of the Results

 

 

In order to examine the effects of the kinds of

time approximation on the results of the numerical simu-

lator, a small confined aquifer, 1828.8 X 1219.2 m

(6000 X 4000 ft), was modeled (Figure 8-4). Initially,

the system is at the steady state with zero piezometric

heads. Along boundary lines AC and BD the system is

maintained at zero potential, while no-flow boundary con—

ditions are assumed along the AB and CD sides. A well

is located at the center of the medium at point W. The

following parameters were used in simulating the ground-

water movement: P = 556.4 m3/day (2.0E + 4 ft3/day),

S = 0.01, and T = 929.6 m2/day (10,000 ftz/day).

Three different 0's, i.e., 6 = 1/2, 9 = 2/3, and

0 7/12 which is the average of 6 = 1/2 and 6 = 2/3,

were used for first order time approximation (see Equa-

tion 5.1.5). The related coefficients for 0 = 2/3 and

1/2 are given in Table 5-2, and the coefficients for 9:

7/12 are as follows:

a11 = 12' a12 = 1" a13 = 1" a = ' 12'
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The other coefficients of Equation (5.1.5) will be zero.

The results of the calculated piezometric heads at

point W with different 6's for At = 0.05 day are

depicted in Figure 8-5. For 8 = 1/2, the piezometric

heads oscillate substantially when compared with the

results of 6= 2/3. Although 6 = 7/12 is the average of

the two previously mentioned 6 values, the observed

oscillation is less than for 6 = 1/2. All three 6's

provide the same results for steady state as one might

have anticipated. To see the effects of 6 more clearly,

the time interval is increased 20 times to At = 1.0 day.

The piezometric heads for a maximum time of 50 days for

point W are shown in Figure 8—6. As can be observed,

piezometric heads oscillate at an early time for 0 =

2/3 and 7/12; however, the oscillations diminish very

rapidly and converge to steady-state condition. In

contrast, for e = 1/2, the piezometric heads oscillate

about the mean but the oscillation does not vanish.

From this example and similar studies that have been

carried out, it is believed that for groundwater problems,

0 = 2/3 provides fewer oscillations when compared with

0 = 1/2 and 7/12. The 0 = 2/3 and 7/12 solutions con—

verge, but 9 = 1/2 oscillates about the mean for con-

tinued time.

_ . .
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8.2 Comparison of Two Different Methods

of Solution of the Velocity Vectors

 

 

As discussed in Section (6.2), the velocity vec-

tors can be calculated either simultaneously or by the

 direct method. To show the discontinuity of velocity

vectors at element interfaces or nodes calculated by the

direct method, a regional aquifer is taken and shown in

Figure 8—4. The area and applied boundary conditions

are shown in the figure, with a well located at point W.

The system has reached a steady-state drawdown condition

due to pumping and the piezometric heads are known.

Equation (4.4.3) is used to calculate the velocity vec-

tors at the nodes and at the centroid of the elements

for the direct method, while Equations (4.4.11) and

(4.4.13) provide simultaneous calculation of the velocity

vectors at the nodes.

Figures 8-7 and 8—8 show the velocity vectors at

the nodes, computed by direct and simultaneous methods

for the aquifer depicted in Figure 8—4. The numbers in

each box represent the velocity vectors calculated simul—

taneously, while the ones in the corner of the elements

are obtained by the direct method. It is obvious that

direct calculation does not provide continuous velocities

at the nodes. For example, if one takes element number

11 and evaluates V at node 18, a value of 7.6 will be

1

obtained. But V1 for the same node from element number 15
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will be -7.6. The true velocity at that node is zero,

which is obtained by simultaneous calculation. Averag-

ing the velocity vectors computed by the direct method

might yield the values obtained by the simultaneous

method, but the procedure is not valid for every location.

The computation time for both methods is almost the same.

The simultaneous method requires more core for storing

the capacitance matrix [H] and force vectors {FX} and

{Fy}. It is believed that the Galerkin formulation of

the Darcy law will yield a reasonable estimate of velocity

vectors (or flux) at the nodes, provided the calculated

piezometric heads are good representations of the actual

field conditions.

An important point which has been observed in the

different numerical results is that the value of the

velocity vectors at the boundaries might depart slightly

from the true answer. The deviation might be due to the

construction of the element matrices, because some nodes

along the boundary are weighted less in the formation of

the global matrix and force vectors. In practice this

would not cause any problem if the hydrodynamic model is

used in the prediction of the tracer concentration. The

grid system for the dispersion model might be placed

within the hydrodynamic model, or taken slightly smaller

in order to minimize the effect of this discrepancy.
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In this study, simultaneous velocity vectors

are used in the convective-dispersion program to calcu—

late convective terms and dispersion coefficients.

Simultaneous and direct calculated velocity vectors are

used for locating the phreatic surface.

8.3 Flow in a Phreatic Aquifer
 

The mechanisms of locating the phreatic surface

with movable and fixed node techniques are presented in

detail in Chapter VI. In this section the existing

experimental and field observation data is used to

verify the validity of the two methods. In all numerical

examples illustrated hereafter, linear isoparametric

quadrilateral elements are employed, and DTMAX stands for

the maximum specified time step.

8.3.1 Transient Buildup of a

Mound Due to Accretion

 

 

Using the linearized technique, Marino [1967],

following Hantush [1963], gives the analytical solution

for growth and decay of a mound due to recharge. He

verified the analytical solution with a Hele-Shaw model.

A strip of finite height and infinite length was chosen

for numerical studies as shown in Figure 8-9. Due to

symmetry, only half of the system was modeled with linear

isoparametric quadrilateral elements. The following

data is employed in the computer program: NELS = 54,

 



 



144

 

 

(a) I

Recharge = 5.6 E-2 cm/sec
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Figure 8-9.—-Simulation of Transient Buildup of a Mound

Due to Accretion. (a) Grid system repre-

sentation; (b) scheme of the vertical cross

section. The phreatic surface is shifted

along the vertical lines.
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NNDS = 70, Kll = K22 = 25.2 cm/min, ne = 1.0, and I =

3.36 cm/min. At the beginning, a small time step equal

to 0.01 minute was chosen and increased to DTMAX e 0.2

minute within several time intervals. Both the movable

 
technique (MNT) and the fixed node technique (FNT) were

analyzed, and the location of the phreatic surface at

different times is shown in Figure 8-10. The results

obtained by FNT and MNT compare favorably with existing

analytical and experimental results. At early times,

both methods provide almost the same results. As time

increases, they differ to some extent, but it can be

seen that the results are within a reasonable range.

In these runs the velocity vectors are computed simul-

taneously.

The effects due to the use of simultaneous and

direct calculated velocity vectors are also examined in

this study. Velocity vectors are calculated and averaged

at each node using the results obtained from two adjacent

elements. For example, consider Figure 8-11 which shows

a portion of a grid system which might be used to locate

the phreatic surface. For node 6, (V1)6 = 0.5 (Vi + V?)

where the superscripts represent the element numbers.

Similarly, (V2)6 = 0.5 (V3 + V3). The velocity vectors

computed in this manner are introduced to FNT. The cal-

culated location of the phreatic surface is also compared

with the observed curve as shown in Figure 8-12. The
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results follow the expected curve and are slightly higher

than those obtained using the simultaneous velocity

solution.

Depending on the technique chosen for calculating

the velocity vectors and locating the phreatic surface,

one might arrive at slightly different results. However,

employed techniques provide reasonable solutions which

are within an acceptable range with FNT giving the best

results for this case of study. It is also shown in the

literature that MNT has the capacity to simulate flow

field problems which involve a phreatic surface [France

et al. 1971, Desai 1972]. It can be observed that FNT

is also capable of solving similar problems, if not with

greater accuracy, at least with the same degree of

accuracy.

8.3.2 Numerical Modeling

of a Field Problem

 

 

Recently, Bianchi and Haskell [1975] presented

a series of field observation data on the shape of

groundwater mounds produced by artificial recharge water

spreading. Detailed descriptions of the experimental

recharge ponds and the location of the observation wells

are presented by the authors. In one of the experiments

a square pond, 90 x 90 m (295 x 295 ft), was chosen and

the rise of the mound due to recharge was measured. The

initial position of the water table was determined from
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well observations prior to flooding, and corrected for

barometric fluctuation. The recharge rate (I) was

taken to be the rate that water enters the surface of

the pond, and was assumed constant. The aquifer perme—

ability and the "fillable void" were evaluated based on

a single pumping test at the pond. In the remainder of

this section effective porosity or specific yield is used

instead of the term fillable void. The water table was

7.62 m (25 ft), and the impeding layer of lower perme—

ability was observed between 5.18 and 5.49 m (l7-18 ft)

below the ground surface.

Although information regarding the numerical

simulation of the system is notsufficient,it is modeled

to show the capability of the proposed FNT. A vertical

cross section of the site is chosen. The constant head

boundary is assumed to be 244 m away from the center of

the pond as shown in Figure 8-13a. Smaller elements are

used in the recharge zone and its vicinity. Initially,

the water table is horizontal at 22.9 m from the datum.

A small time step equaltx)0.01 day is chosen and increased

gradually until it reaches 0.2 day, and is kept constant

until 25 days have elapsed. Taking this cross section

implies that the pond is rectangular and its longitudinal

length is long enough to make the two—dimensional assump-

tion valid. However, this assumption does not really

represent the actual field situation.
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The numerical results obtained for this model

after 5.15 and 25 days are shown in Figure 8-13b. The

results compare favorably with observed data in the pond

area, but deviate further away from the pond. This devi-

ation might have been caused by a number of factors.

Some of the apparent reasons for the discrepancy between

the numerical results and field observation data are as

follows:

1. Aquifer parameters: Only a single measure-

ment for hydraulic conductivity and specific yield is

available. The specific yield is dependent upon moisture

content, degree of saturation, and temperature; thus its

value will differ in and outside the pond with respect

to position and time. This subject is discussed in detail

by Bear [1972] and has also been recognized by Bianchi

and Haskell [1975]. The value of hydraulic conductivity

has to be known in the recharging zone as well as outside

the pond in order to obtain a reasonable estimate for the

rise of the water table. The hydraulic conductivity

appears in Equations (6.3.8) and (6.3.26), where it par-

ticipates in locating the phreatic surface and defining

the new Dirichlet boundary condition for piezometric

heads, respectively. The value of hydraulic conductivity

is highly dependent upon moisture content. It follows

that in order to predict the location of the phreatic

surface it is logical to replace K.. by K..K , where K
13 l] r r
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(0'< K 5,1) is the relative hydraulic conductivity
— r

[Neuman 1973] and its variation with respect to moisture

content for a typical situation is given in Figure 8-14.

2. Observed data: At the time that was taken

to be t = 0, the water table was not horizontal and a

rise of 0.04 to 0.39 m at the wells was recorded. The

field data shown in Figure 8-13 are the average values

of head rise of four wells which are located an equal

distance from the center of the pond. The recorded

values for each distance have some fluctuation.

3. Other factors: The boundary conditions,

absence of instantaneous uniform recharge, and size of

the elements might also be considered as additional

r
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reasons for the discrepancy of numerical results from

observed data.

In summary, although some deviation exists

between observed field data and simulated results in the

region away from the recharge pond, the rise of the water

table beneath the pond compares favorably with recorded

data. It is believed that the fixed node technique is

capable of predicting the rise of the free surface due

to accretion in unconfined aquifers, provided sufficient

information concerning the field parameters is available.

8.3.3 Steady-State Solution
 

In Section 6.3.4 it was stated that the system

will reach the steady-state condition when the velocity

normal to the phreatic surface approaches zero. To show

this condition, a vertical cross section of an unconfined

aquifer is taken (Figure 8-15). The height of the phre-

atic surface was kept constant at 126 m (413 ft) away

from the center of the recharge zone in order to obtain

a rapid steady-state condition. The computer run

started with a time step equal to 0.01 day and gradually

increased to DTMAX = 0.2 day. When the average shifting

distance d (Section 6.3.4) was less than 5.0E-6 m the

steady-state condition was assumed to be satisfied. This

condition was reached after 19 days. The location of the

phreatic surface at this state is shown in Figure 8-l6a.
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The rise of the water table at the center line with

respect to time is shown in Figure 8—l6b. The free

surface at first rises very rapidly, and then gradually

slows while approaching the steady state. In Figure 8—17

the equipotentialljxmusand calculated velocity vectors at

the nodes are shown. One observes from this figure that

beneath the recharge zone and in its immediate vicinity

the vertical velocities play an important role; but far

from the accretion area the velocity components are

almost horizontal, and thus the Dupuit approximations

can be used in this region.

8.3.4 Two-Layer Aquifer
 

To investigate the effects of two-layer aquifers

on the flow regime and location of the water table, an

aquifer with the following characteristics is chosen and

its vertical cross section is depicted in Figure 8-18.

Initially, the water table is horizontal with a height

of 20 m and located 10 m below the ground surface. The

size of each element is 20 m along the x1- and 5 m along

the x3-direction. At zero time the recharge with 0.1 m/

day intensity is introduced, along the first 60 m of the

center line of the system. A constant piezometric head

is assumed at the other end.

Four different cases are examined as shown in

Table 8-1. At the beginning of each run a small time
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TABLE 8-l.--Different Combinations of Hydraulic Conduc-

tivities for Aquifer Shown in Figure 8-18

and Maximum Specified Time Step.

 

Hydraulic Conductivity (m/day)

 

 

Case No. ?§:§f

Zone 1 Zone 2

l 30 30 0.2

2 75 75 0.1

3 75 30 0.0625

4 30 75 0.1

 

step equal to 0.01 day was chosen. Depending on the

kinds of materials, the time step was gradually increased

to a maximum specified time step as presented in Table

8-1. In all of these cases the effective porosity is

assumed constant and equal to 0.3. The rise of the phre-

atic surface corresponding to these conditions after

5.10 days is shown in Figure 8-19. From this figure, it

can be observed that with the same effective porosity

the rise of the water table at the recharge site and in

its immediate vicinity is greater for less permeable

aquifers. At early times, in the area away from the

recharge zone the water table rises faster in the highly

conductive than in the less conductive soil. As time

increases this process reverses (not shown in Figure

8-19). At any time the phreatic surface remains higher

for smaller K at the recharge zone. The equipotential
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lines and discharge vectors for a two-layer aquifer

(Case No. 4) are shown in Figure 8-20. As expected,

the discharge vectors are greater in the zone possessing

high hydraulic conductivity.

8.3.5 Change of the Effec-

tiVe Porosity
 

To show the influence of the effective porosity

on the rise of the water table due to the recharge, an

aquifer similar to the one described in Section 8.3.4 is

chosen. Case No. 4 of Table 8-1 represents the hydraulic

conductivities employed in this section. Three different

effective porosities, namely, ne = 0.20, 0.25, and 0.3,

were examined. The rise of the water table for these

effective porosities is shown in Figure 8-21. With simi-

lar conditions, the height of the water table is greater

for the aquifer with a small effective porosity. The

obvious reason for this occurrence can be seen by exam-

ining Equation (6.3.5).

8.3.6 Effect of the Depth

of the Water Table

 

 

The depth of the water table also has a major

influence on the location of the phreatic surface. In

order to observe this effect an aquifer similar to the

one described in Section 8.3.4 is selected, except that

the height of the initial phreatic surface is lowered to

10 m. The rise of the water table after 10 days for two
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different initial depths is given in Figure 8-22. As

one might have expected, the mound in the recharge zone

and its vicinity will be more pronounced for a shallow

aquifer than for a deep one.

8.3.7 Decay of a

Groundwater Mound

 

 

The investigation of the decay of a mound is an

interesting subject in groundwater hydrology. To show

the capability of the proposed technique of handling

such cases, an aquifer similar to Figure 8-18 is taken

and recharge is applied up to 4.9 days before being

halted. The rise and fall of the water table and the

location of the phreatic surface at the center line, up

to 9.9 days, are shown in Figures 8—23 and 8-24, respec-

tively. In this example the hysteresis and variation of

the specific yield with time are neglected. It can be

observed that more time is required for the water table

to decay to the initial steady-state condition than the

time necessary to build the mound.

8.3.8 Maximum Applicable

Time Interval

 

 

Specifying the time interval is an important task

in solving transient phreatic problems. There is no par-

ticular rule for selecting the time step. A general

procedure which is useful for defining At is given in

Section 6.3.5. In all the different examples illustrated
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in Section 8.4 a small time step was chosen, and using

Equation (6.3.28) it was increased to a maximum specified

time step and maintained constant thereafter. Defining

the maximum time step requires some experience which might

be obtained after a few runs for a specific problem. In

general, for highly conductive porous media or nonhomof

geneous aquifers, a smaller maximum time interval should

be employed. Usually, the rise of the water table fol-

lows a trend similar to that depicted in Figure 8-l6b.

When it starts to oscillate with respect to time, the

maximum time step should be decreased.

For example, consider a phreatic aquifer repre-

sented by Figure 8-15, in which Kll = K22 = 31.7 m/day.

In Section 8.3.3 it is stated that 0.2 day was used to

obtain steady—state conditions for this specific problem.

To show the sensitivity of the numerical solution to the

time step, the hydraulic conductivities were increased

2.5 times. For the first time, DTMAX equal to 0.2 day

was used to find the location of the phreatic surface at

the steady-state condition. As expected, this value was

too large and the results were not correct. Then DTMAX

was reduced to 0.1 day. Although the numerical results

were realistic for early times, after 4 days the values

of the piezometric heads started to fluctuate. The

oscillation increased with time as shown in Figure 8—25.

By further reduction of DTMAX to 0.05 day, the oscillation
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was eliminated. It can be concluded that 0.05 day is an

appropriate DTMAX for this specific example.

8.4 Summary
 

In this chapter it was shown that the finite ele-

ment technique is capable of solving flow problems, both

in confined and unconfined aquifers. Under transient

conditions the fixed node technique (FNT) was tested and

it was verified that this method can predict the location

of the phreatic surface and can yield piezometric heads

and velocity vectors with a reasonable degree of accuracy.  
It was shown that the simultaneous solution of velocity

functions at the nodes is continuous and acceptable.

Finally, the effects of the order of time approximation

on the accuracy of the predicted results were examined.

 



 

 



CHAPTER IX

NUMERICAL RESULTS FOR PREDICTION

OF CONCENTRATION OF A TRACER

The computer model developed in this study solves

a set of partial differential equations. One equation

is the combined equation of motion and continuity of flow

which describes the piezometric head distribution of the

aquifer; in turn, the velocity components and hence

the dispersion coefficients are computed. Then the sec-

ond partial differential equation, the mass-transport

equation (convective—dispersion equation), is solved to

yield the concentration distribution in the flow domain.

The numerical results for the flow equation were

discussed in Chapter VIII. In this chapter the finite

element model for simulating mass transport is verified

by comparing the numerical results with several existing

analytical solutions. If the results of a known analyti-

cal solution can be approximated, a great deal of confi-

dence in the numerical simulation can be gained. The

feasibility of the model to predict the concentration of

a tracer in field problems is shown. In this chapter

concentration is used as a synonym for dimensionless
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concentration, i.e., C/Co, CO being the initial tracer

concentration. The DL and DT are longitudinal and trans-

versal dispersion coefficients, respectively, and are

assumed constant for the porous medium independent of

velocity.

9.1 Longitudinal Dispersion in Steady

Uniform One-Dimensional Flow

 

 

A semi—infinite cross section of a homogeneous

and isotropic porous medium with a plane source maintained

at x1 = 0 is shown in Figure 9-1.

C(oo,t) = 0

..".“-‘V =

11...n

—‘>Xl

Figure 9-l.-—Cross Section of a Homogeneous and Isotropic

Porous Medium With a Plane Source Maintained

at x1 = 0.

The flow is maintained at a constant flux ql in the x1-

direction. For an isotropic medium, the axis of the

dispersivity tensor is assumed to coincide with the

velocity vector. Equation (3.5.1) reduces to

D ——-—-V __:___ (9.1.1)
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where DL is the longitudinal dispersion coefficient, and

V is the velocity vector along the xl-direction = ql/ne.
l

The solution of Equation (9.1.1) with the following ini-

tial and boundary conditions,

C(xl, 0) - 0 x1 3 O

C(°°, t) = 0 tZO

is given [Bear 1972] as:

 

x-Vt Vx x+Vt

%— = % erfc —£——l— + exp erfc —l;—l—- (9.1.2)

o 2/D t D 2/D t

L L L

where erfc(u) = l - erf( ).

°° 2

erf(u) = —2— e a d a (9.1.3)

/? O

The prOgress of a concentration front in an

infinite column of a porous medium is modeled numerically

on the computer, as shown in Figure 9-2. A constant

source is maintained at x = 0 and the following parameters

are employed in the finite element model: Ax = 0.4 cm,
1

0.01Vl = 0.1 cm/sec, L = 10 cm, At = 2 sec, and D

cmz/sec.

L
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—*1 Axi I._—

3C _

.' ..I WI ' °

nut L fi’I

Figure 9-2.--Finite Element Model to Simulate One-

Dimensional Longitudinal Dispersion.

 
 

 

The results of runs using the above data are

shown in Figure 9-3. The numerical results compare

favorably with the analytical solution; however, in

some instances they are slightly higher. Reddell and

Sunada [1971] have solved one-dimensional longitudinal

dispersion with the method of characteristics using 2

and 4 moving points per grid. Since the finite element

technique used in this study does not employ moving

points per grid and since the Ax in this study is greater

than the one used by Reddell and Sunada, it is difficult

to compare the degree of accuracy of the two methods.

The order of time approximation has a great

effect on the accuracy of the numerical solution. A sec-

ond order approximation, introduced in Chapter V, was

used to obtain Figure 9—3. The first order time approxi-

mation provides poor results as shown in Figure 9-4. In

Figure 9-4 for 0 = l (implicit method), the numerical
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results fall below the curve close to the point source

and then move above the curve as the mass travels further

from the origin; 8 = 2/3 gives good results at high con-

centrations, but diverges later; 8 = 1/2 yields a higher

concentration than the analytical solution at every point.

The second order approximation provides a better estimate

for tracer concentration compared to first order. Pinder

[1974] examines the stability of the first order time

approximation by Fourier analysis of the mass-transport

equation. He concludes that 8 = 0 provides unstable

results for any spatial distance, but 8 = 0.5 and 8 = 1.0

give stable numerical results for any reasonable space

mesh. Cheng [1973] mentions using second and third order

implicit approximations of the time derivative in the

solution of the convective—dispersion equation. Although

third order approximations were derived in Section 5.5,

they were not examined in this study.

9.2 Sensitivity Analysis for Time

Step and Grid Size

 

 

To investigate the effects of the types of 8 on

the convergence of the numerical solution using larger

time steps, several At were chosen and the above data was

employed to solve the concentration distribution for a

porous medium 14 cm in length. Let the residual be the

difference between the analytical and numerical solutions

for a given x Then define ZT as the averaged sum of1'

the squares of residuals, i.e.,
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NT

2 (c* - c)

ZT = “=1 (9.2.1)

NT

 

where NT is the number of available data from time zero

to 90 seconds, and C* and C are the analytical and

numerical values of concentration at x1 = 2 cm, respec-

tively. The variations of ZT with respect to At for

different second order 8 values, namely, 1/2, 2/3, and l,

are given in Figure 9-5. For small time steps up to At =

4 sec, 8 = 1 gives better results compared with the

other two 8's. For greater At, 8 = 2/3 is superior and

the best results for this 8 are obtained at At = 5 sec.

The value of ZT for 8 = 1/2 is always the highest, and

for At greater than 4 sec it increases very rapidly.

This means that for 8 = 1/2 at larger At the results

diverge and are not correct.

To see this effect very clearly the variation of

concentration using At = 7 sec at x1 = 2 cm with differ-

ent 8 is given in Figure 9—6. It can be observed from

this figure that poor results are obtained using 8 = 1/2.

The‘probable conclusion that one can make from Figures

9-5 and 9-6 is that for larger time steps 8 = 1/2 diverges

and the results oscillate, and as At increases the error

increases gradually for both 8 = 2/3 and 8 = l, with 8 =

2/3 showing the least error.

 

 





 

10 I I I I I I I I I I

I
I

I
I
I
I

L
J
1
!

l
l

 

l
l
l
l
l
]

\

l
l
l
l
l
l

I 1

x
.

I I

l
l
l
l
l
l

1
1
1
1
1
1

N
T

n
:

T
V

I

\

I  

I

  
.001
  

At, seconds

Figure 9-5.--Variation of ZT With Respect to At for Dif-

ferent 8. Second order time approximation

is used.





180

 

01.4.. d

C
o
n
c
e
n
t
r
a
t
i
o
n
,

C
/
C

  l l 1 l l l L L

0 20 40 60 80 100

Time, sec.

 
 

0 8 = 1/2

.A 0 = 2/3

E] 9=l

Figure 9-6.--Effects of Different 8 on the Accuracy of the

Concentration Distribution at x = 2 Cm. With

At = 7 Sec. Second order time approximation

is used.





181

To show the effect of the grid size on the

accuracy of the numerical solution for the convective-

dispersion equation obtained by the finite element

method, one can define ZX as the average sum of the

squares of residuals, i.e.,

NX *

2 (c - C)

zx = “=1 (9.2.2)

NX

2

 

*

In Equation (9.1.5) C and C are the analytical and

numerical values of the concentration, respectively, at

a specific time, and NX is the number of available data

between x1 = 0 and x1 = L. Different grid sizes from

Axl = 0.2 to Axl = 2 cm are employed, and second order

time approximation with 8 = 2/3 is used. The variation

of ZX with respect to Axl for t = 80 sec is given in

Figure 9-7. It can be observed that the error is reduced

as the size of the elements becomes smaller.

9.3 Two—Dimensional Dispersion

With Uniform Flow
 

For steady and uniform flow parallel to the

x-axis in an isotropic and homoqeneous porous medium, the

convective-dispersion equation can be written as

2 2

39 = D é—E + D 3—9 — v 39— (9.3.1)
T 2 1 a

2 X1
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where DL and DT are the longitudinal and transversal dis-

persivities, respectively. Consider a porous medium as

shown in Figure 9-8. The seepage velocity V is uniform
l

and constant throughout the medium.

 

 

 

 

x2 ,

+’ Porous medium

= :2 "_..'. .0 ."_~.'.'....-‘.‘._... . ... . n" I '- '1... ~ “I

m. o —~>-.Vl- -

‘ - >- X1

C/CO l _gj-jfjrffj:]:..

Impervious boundary

Figure 9-8.—-Two—Dimensional Dispersion With One-

Dimensional Flow.

At x1 = 0, the concentration is held constant and equal

to CO for x2 < O and equal to zero for x2 > 0. The medium

is confined by two impervious boundaries far apart from

each other, such that the concentration remains CO and

zero at the bottom and top of the boundaries, respectively,

for all XI. The following boundary conditions can be

stated for steady-state distribution of the tracer con-

centration:



fi"_—‘~~- '- '--~:::.;:z
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C(O, x2) = O 0 < x2 < w

EE— = 0 x = i w for all x
3x2 2 1

(9.3.2)

For this Special case Equation (9.3.1) reduces to

2

v 33—: D 33—9 (9.3.3)

1 8x T 8x2

1 2

The solution of Equation (9.3.3) with the indicated

boundary conditions is given by Harleman and Rumer

[1963]. The solution is

 

X

g_.:%erfc 2 (9.3.4)

0 21/DTxl/Vl

In simplifying Equation (9.3.1) to Equation (9.3.3),

Harleman and Rumer assumed and experimentally justified

2 2 2 2
that 8 C/8xl << 8 C2/8x2.

The movement of a tracer in two dimensions with

one-dimensional uniform flow is modeled numerically, as

shown in Figure 9-9a. The following parameters are

7 cmz/sec, D =employed: V = 0.1 cm/sec, D = l x 10- T
l L

0.01 cm2/sec, Axl = 1.0 cm, and Ax3 = 0.5 cm. The

steady—state solution of the problem by the finite

element technique is obtained using the coefficients

given in Table 5—3.
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Figure 9-9.-—Steady State Solution of Two—Dimensional

Dispersion with One—Dimensional Flow.

(a) Representative sketch, (b) concentration

at different x2. Cubic quadrilateral ele—

ments with NELS = 14 and NNDS = 98 are used.
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The numerical results using cubic elements are

compared with the analytical solution in Figure 9-9b.

The results compare quite well with the analytical

solution except in the vicinity of X1 = 0, where the

results are slightly lower than those obtained by the

approximate analytical solution. This slight deviation

from the analytical solution for small x might be due

to neglecting 82C/8xi in Equation (9.3.3). The type and

size of the elements may be considered other reasons for

this small discrepancy.

9.4 Point Source With Uniform Flow

In this example a source is maintained at a

constant concentration for t > 0 at point A in a porous

medium, as shown in Figure 9-10a. The parameters used

in this example are: DL = 0.01 cmz/sec, DT = 0.001

cmz/sec, Vl = 0.1 cm/sec, V2 = 0, At = 5 sec, Axl = 1 cm,

and Ax2 = 0.5 cm. The concentration distribution of the

tracer at x2 = 0.0, x2 = 0.5, and x2 = 1.0 cm after 180

seconds is depicted in Figure 9-10b. Although V2 in this

example is zero and DT is smaller than D tracer move-
LI

ment along the x2-direction is evident. This implies

that velocity components facilitate the spreading of

chemical substances, but in the absence of a velocity

component the tracer will move due to the dispersion

phenomenon.
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9.5 Two-Dimensional Dispersion

With Transient Flow

 

 

To show the capability of the numerical model in

solving the convective—dispersion problems with transient

flow conditions, two examples are given in this section.

In the first example a porous medium is taken with

boundary conditions and employed parameters shown in

Figure 9-11. Water is withdrawn at a constant rate at

point W to produce the piezometric gradient. The vari—

ation of the piezometric head, magnitude of the velocity

vector, and concentration for point A with time is given

in Figure 9—12, and the concentration distribution

for the system after 100 seconds is depicted in Figure

9-13. An important observation which can be made (see

Figure 9-12) is that the simultaneous solution of the

velocity vectors is sensitive to the fluctuation of

the piezometric heads. Even so, the concentration dis-

tribution is a smooth curve. In this study the first

order time approximation was used to solve the flow equa-

tion, while the second order time approximation was used

for dispersion. It is believed that the employment of

a higher order time approximation helps in the smoothing

process and it might have been used in the hydrodynamic

problem. However, this idea needs to be investigated

further before any concrete conclusion can be drawn.
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In the second example a confined aquifer, 80 x

80 m, is chosen. The concentration and the piezometric

head at point C are held constant, and a well is located

at point W, of Figure 9-14. A high pumpage value is

chosen to produce a steep gradient in order to obtain

high velocity vectors. This in turn will cause a tracer

buildup at a lesser time. Initially, the system is at

zero potential, and after three days of pumping a constant

source of tracer is introduced at point C. The variations

of concentration at points A and B, 10.00 and 14.14 meters

away from the point source, respectively, are shown in

Figure 9-15. The concentration distribution at the aqui-

fer after 10 and 20 days of initial pumping is shown in

Figure 9-16. Since dispersivity along the xl—direction

is greater than along the xz—direction, the tracer will

advance more in the x1- than in the xz—direction. The

curves are non—symmetric as one might have anticipated.

As time increases the asymmetry becomes more pronounced.

As far as it is known by the author, no published

results are available to compare with the obtained

numerical results. The only conclusion that can be made

at present is that the simultaneous calculation of the

velocity vectors and the use of higher order time

approximations can be considered to be a step in predict-

ing tracer concentration in transient groundwater flow

problems.
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Figure 9-14.--Domain of Two—Dimensional Dispersion

With a Transient Flow Field.
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9.6 Dispersion in a Phreatic

Aquifer With Accretion

 

To investigate the capability of FNT (fixed node

technique) in solving the convective-dispersion equation,

a portion of a phreatic aquifer was taken. A sketch of

a vertical section of the chosen model is depicted in

Figure 9—17. Initially, the water table is maintained

horizontal at 20 m, and both ends of the system are kept

at a constant piezometric head. It is assumed that the

recharge site is a continuous source of a tracer with

constant concentration, and the tracer maintains the same

concentration until it reaches the water table. The rea-

son for choosing this model is to develop the conditions

such that piezometric heads and velocity components vary

considerably within the period of interest and trends of

velocity components will differ in the system.

The procedure outlined in Section 6.3 was used

to locate the phreatic surface and define the velocity

vectors at the nodes above the free surface. It was

assumed that recharge directly reaches the phreatic sur-

face. In calculating the location of the phreatic sur-

face the primary interest was to find the velocity

vectors on the surface, and the above assumption was

perfectly applicable. In the dispersion process the

primary source of the pollutants is located on the

ground surface and the material is washed and carried
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Figure 9—17.——Representative Model Used in Simulating

Tracer Movement in a Phreatic Aquifer.
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downward by infiltration. This event suggests that in

the dispersion model at the accretion zone, the value of

V3 has to be equal to the recharge rate. This modifica-

tion of the assumption is realistic for the dispersion

phenomena and improves the numerical model.

The following parameters are used in the system:

NELS = 120, NNDS = 147, K11 = K22

0.25, I = 0.1 m/day, aI = 20 m, aII

0.2 days. As outlined in detail in Chapter VII, velocity

= 30.0 m/day, ne =

= 5 m, and DTMAX =

vectors and hence dispersion coefficients are calculated

and then used in the convective-dispersion equation. A

constant concentration of a tracer is introduced at the

end of the second day. The reason for choosing the

second day is that usually at most sites prior to

recharge a potential gradient exists in the porous media,

and secondly, it takes some time for a tracer to travel

from the ground surface to the water table beneath the

recharge site. However, the starting time for computing

the dispersion of a tracer can be any time, including

t = 0.

The discharge vectors at t = 2 and t = 8 days and

the iso-concentration lines at t = 4, 8, and 12 days are

depicted in Figures 9-18 and 9-19, respectively. From

the consideration of physical aspects, a solute cannot

move in a completely dry soil. This condition in turn

implies that the concentration of a tracer at the nodes
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Days.
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above the phreatic surface should remain constant. To

investigate the capability of the proposed numerical

technique for handling such conditions, two different

computer runs are examined. In both tests all condi-  
tions are kept the same, except that in one run the con-

centration is set equal to zero at the nodes above the

phreatic surface, while in the second run the computer

is allowed to calculate the concentration at these nodes.

The numerical results for concentration distribution at

the interior nodes are the same for both runs (see

Figure 6-10 for definitions). But it is observed that

a slight concentration of the tracer appears at the nodes

above the phreatic surface for the second run. The

numerical technique might account for this slight devi-

ation. At each element adjacent to the recharge zone

the concentration is kept equal to l at two nodes, so

the numerical solution will compute a small concentra-

tion at the other two nodes. Since the computing of the

concentration distribution beneath the phreatic surface

is the major concern, the deviation discussed above will

not contribute any error. As far as it is known by the

investigator, no other results exist to compare with the

computed velocity vectors and tracer distribution. How-

ever, the results are promising and seem realistic.
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9.7 Reasonable Time Step for Calculating

Tracer Concentration in

a Phreatic Aquifer

 

 

 

As discussed in Section 9.2, the numerical solu-

tion of the mass transfer equation is sensitive to the

time step. Usually, an allowable time step for the solu-

tion of the convective-dispersion equation in confined

aquifers is smaller than that for flow. In the process

of calculating the location of the phreatic surface,

choosing the prOper time step is very important and

instability and oscillation occur for larger time inter-

vals (see Section 8.3.8). Experience shows that in

phreatic aquifer problems, the same time step can be

used for the solution of both flow and mass transfer

phenomena. For example, it was found that DTMAX = 0.2

days is adequate for obtaining the location of the phre-

atic surface in the study of the previous section, and

the same time step can be used for the solution of the

mass transfer equation. Reduction of the time step to

0.1 day does not have any effect on the results, as shown

in Figure 9-20. In this figure the concentration distri-

bution at point A (of Figure 9-17) versus time for two

different time steps is given and the results are identi-

cal. It is obvious that the time step for the solution

of the convective-dispersion equation should not exceed

the DTMAX .
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9.8 Summary
 

In this chapter numerical examples are presented

to show the applicability of the employed techniques in

predicting tracer movement, both in confined and phreatic

aquifers with a transient flow domain. The sensitivity

of the numerical results to time steps and orders of time

approximation was examined. Primary results reveal that

the fixed node technique is capable of solving the

convective—dispersion equation in an unconfined phreatic

aquifer.





CHAPTER X

SUMMARY AND CONCLUSIONS

In this study the movement of a tracer in an

aquifer is investigated. The tracer may be introducedeus 3

a constituent of artificial recharge, for example, a

chloride ion present in treated sewage water. It is

assumed that the tracer remains unaltered in the aquifer.

Both two-dimensional regional (horizontal) and two-

dimensional local (vertical) flows are considered.

In order to accomplish the movement of the free

surface within the grid system without repositioning the

nodal coordinates of the elements, a procedure for locat-

ingeaphreatic boundary of an unconfined aquifer is

adapted. In order to obtain continuous flow across ele-

ments and at the nodes, the Galerkin formulation of the

Darcy law is constructed and velocity vectors are calcu-

lated simultaneously at the nodes. These transient

velocities are subsequently used in shifting the phreatic

surface as well as computing dispersion coefficients and

convective terms of the mass-transport equation. Finite

element formulation of the flow and convective-dispersion

equations leads to a set of first order partial differ-

ential relations. Using the finite element concept,
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higher order time approximations for the system of

equations are derived. The validity of the proposed  
techniques is established by first comparing the numeri-

cal flow results with existing analytical, experimental,

and field data. Upon verification of the solution of

the flow equation, the prediction of the movement of a

tracer in an unconfined aquifer with a transient phre-

atic boundary and in a confined aquifer with a transient

flow condition is conducted. Numerical examples have

been presented to demonstrate the capability of the

proposed techniques.

It is shown that the Galerkin finite element

method can be used to solve the flow and convective-

dispersion equations, both in confined and phreatic

aquifers under time—variable flow conditions. On the

basis of the present study the following conclusions can

be made:

1. The fixed node technique is capable of

locating the transient phreatic aquifer due to accretion.

The numerical results compare favorably with experimental

and analytical solutions. The major advantage of this

method is that the solution of the convective—dispersion

equation for an unconfined aquifer with a movable free

surface is possible. The primary results of predicting

the tracer movement seem realistic. Much work yet
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remains to be done in order to complete this investiga-

 
tion and cover all related aspects of the problems.

2. The Galerkin formulation of the Darcy law

provides continuous velocity vectors across element

boundaries. Calculation of the transient velocity vec-

tors based on known piezometric heads becomes straight—

forward.

3. The time approximation of equations describ-

ing the transient behavior of the field problems is an

important factor on the stability and convergence of the

numerical results. A second order time approximation

gives more accurate results for convective-dispersion

problems than a first order one.

4. The finite element numerical technique pro-

vides facility for solving field problems related to

flow and mass-transport situations. It yields accurate

and realistic results provided that the physical behavior

of the phenomena under investigation is well understood,

and related parameters and initial and boundary condi-

tions are properly specified.



  



CHAPTER XI

RECOMMENDATIONS FOR FUTURE STUDIES

1. This study is the first step in predicting

the tracer movement in an unconfined aquifer with a

transient phreatic surface. The fixed node technique is

used to find the location of the phreatic surface. The

flow solution of this technique agrees favorably with

experimental and analytical results and field data, and

is believed to provide reasonable results particularly

when the rise of the water table is caused by accretion.

The calculated tracer distributions appear to be realistic.

Still there is more to be done, especially in the areas

outlined below:

a. Equation (6.3.26) was used to obtain the

value of the piezometric head at the phreatic

nodes (see Figure 6-10) with constant effective

porosity and hydraulic conductivity. In Section

8.5 it was stated that one oftflmapossible ways

to reduce the error is to modify the Darcy law

for unsaturated flow. This means that in order

to improve the technique, especially for the area

away from the recharge zone, it is required to

208
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extend the work for saturated and unsaturated

porous media.

b. Assigning the value of the piezometric

heads at nodes above the phreatic nodes needs to

be further pursued until more realistic condi-

tions can be obtained. As was already discussed,

this task becomes more important when the velocity

 

vectors are calculated simultaneously and used in

shifting the phreatic nodes, calculating the dis-

persion coefficients, and evaluating the convec-

tive term of the dispersion equation.

c. Extending this work to three dimensions

will be a significant contribution and will

reduce the errors that are associated with two—

dimensional assumptions.

d. Obtaining field and laboratory data

regarding the movement of dissolved chemical sub-

stances in unconfined aquifers will help to

verify the numerical models, so that increased

confidence will be gained in more sophisticated

problems dealing with convective-dispersion

phenomena.

2. It was shown that the second order time

approximation provides more accurate results than the

first order approximation. Investigating the effects of
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second and third order time approximations on flow and

third order time approximation on dispersion is highly

recommended.

3. It was observed that the accuracy of the

numerical results depends on the type and size of ele—

ments. Further investigations regarding both size and

type of elements will be very useful.
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APPENDIX I

FINITE ELEMENT DEVELOPMENT

1.1 Introduction
 

In the finite element technique, a continuum is

divided into a finite number of subdomains which are

called "elements." Each element is designated by

"nodes." It is possible to define a functional such

that it will describe uniquely the state of a parameter

within an element based on its values at the nodes.

Polynomials are most commonly used in deriving such

functionals, which are termed "shape functions"[Seger1ind,

in press]. A detailed formulation of the finite element

method is given in the literature, e.g., Zienkiewicz

[1971], Norrie and de Vries [1973].

Let the dependent variable C in the domain De

be approximated by

e (1.1.1)

where Nn are the appropriate shape functions defined

piecewise, element by element; Cn are the nodal values

of C in the discretized domain; and M is the number of
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the degree of freedom (number of nodes in each element).

For example, for an element with three nodes

_ e

2 C3

where [ ]e and { }e denote a row matrix and a column

vector respectively, which contain prOperties of the

three nodes associated with one element.

In this section the shape functions for the

different types of elements used in this study are

described, and the numerical integration of element

matrices for isoparametric elements is discussed. The

integrated element matrices for one-dimensional quadratic

and two-dimensional triangular elements are given in

Appendix II. Finally the procedure for allocation of a

constant line source to the boundary nodes is given.

1.2 Types of Finite Elements and

Theif Shape Functions

 

 

One cannot subdivide a continuum into elements

without first knowing what general shapes are permissible.

In this part some of the more common finite elements

which are used in the analysis of flow and dispersion

phenomena are given. For the derivation of the shape

functions, the reader is referred to Zienkiewicz [1971].





 

224

£.2.l One-Dimensional

Element

 

a. Simple element.--The simplest one-dimensional
 

element has two nodes, one at each end (Figure I-l).

 

 

 

 

  

Figure I-1.--Simp1e One-Dimensional Finite Element.

The shape functions for this element are

xE] (I...)

b. Quadratic e1ement.--This element has three
 

nodes, two nodes at each end and one in the center of

the element (Figure I-2).

L————L—-l

a; 2

I '——-’-—X 

  

  

Figure I—2.--One-Dimensiona1 Quadratic Element.

H-“_—‘-.L:l_l"'-E '-
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The shape functions for a quadratic element are

N=[———] [Hg-1

[1 - 35] (1.2.2)

o. Quadratic element for axisymmetric case.--
 

This element also has three nodes, but the shape func-

tions are written with respect to the origin of the

global coordinate (Figure I-3).

(«_———-(

11.4rzj

r3 F.

 

 

 
 

  

Figure I-3.--Quadratic Element for One-Dimensional

Axisymmetric.

The shape functions can be written

N1 = 2(r - r2)(r - r3)/L2

N — 4 - ) - 22 — (r rl (r r3)/L

N3 = 2(r - rl)(r - r2)/L2 (1.2.3)
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1.2.2 Two-Dimensional

Simplex Element

 

 

The two-dimensional simplex element is the tri—

angle shown in Figure I-4. The triangular element has

rightly become more popular due to the ease with which

the subdivision can be graded and the boundary shapes

approximated. The evaluation of the element matrices is

simple.

1y

 
 

(X31173)

Centroid

(X21172)

’X

Figure I-4.--Simple Triangular Element.

The shape functions for the triangular element

are given below:

_1

Nl_7\—N
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N = —1— (a + b x + c y) (1.2.4)
3 2 3 3 3

a1 = X231’3‘X3Y2 ’ b1:3’2‘3’3 ’ C1="3‘X2

a ==xy -y)< ;b =y -y ;c =x -x
2 3 1 31 2 3 1 2 1 3

a3 = xly2-x2yl ; b3==yl--y2 ; C3==x2--Xl (I.2.5)

_ 1

A — 3(le1 + b2x2 + b3x3)

= area of triangle (1.2.6)

1.2.3 Two-Dimensional Iso-

parametric Elements

 

 

The use of a curvilinear coordinate system has

definite advantages when considering two- and three-

dimensional elements, because it allows the boundaries

of these elements to be distorted.

a. Linear quadrilateral isoparametric e1ement.--
 

Consider Figure I—5, and define 8,11such that —1 fi E i 1

and -1 i n i l. The shape functions for the linear

quadrilateral element are

(1-82) (1-0)

e
w
e

N :
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,5 X

Global

7]

(-l.+l)¢4 j!) (+1,+1)

""'E

0i ii(-l,-l) (+l.-l)

Local

Figure I—5.-—Linear Quadrilateral Isoparametric

Finite Element on Global and Local

Planes.

— “- rd-whigflfi'
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1
N2 = I (1 + a) (1 - n)

N—-1—(1+t:)(1+)
3‘4 ”

N=l-(l-E)(l+) (127)4 4 n ..

b. Quadratic quadrilateral element.--The shape
 

functions for the quadratic quadrilateral element

(Figure I-6) are given [Zienkiewicz 1971, p. 109]:

_ 1 . _ 1 _ 2 _

N1 - " Z (17g) (1‘0) (i+n+l) I N2 - 2 (l E ) (1 T1)

N3 = j—(1+a) (1-n) (5—0-1) ; N4 = %-(l-02) (1+4)

N5 = §-(1+§> (1+0) (€+0-l) ; N6 = %-(1-42) (1+0)

N = 1-(1-5) (1+0) (-€+n-l) - N = l-(1-n2) (1-4) (1: 2 8)
7 4 ' 8 2 ° °

c. Cubic quadrilateral element.--The shape
 

functions for the cubic quadrilateral element (Figure

I-7) are given [Zienkiewicz 1971, p. 109]:

1 g, (1 — a) (1 - n) {-10 + 9 (£2 + 02)]

_ 9 2
N2 — 32 (l - 0) (l ‘ E ) (l - 3E)

N =—9—(1-n)(1-g2)(1+3g)

L
A
)

L
1
)

2
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Figure I-6.--Quadratic Quadrilateral Element.

 

 

 

7

8
1 9 +

n 6

11 _____

”"— a

12 5

\

1 ' A
2 3 4

Figure I-7.--Cubic Quadrilateral Element.
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__ 1 _ _ 2 2

N4 - 35 (l + E) (1 n) [ 10 + 9 (E + n )1

_ 9 _ 2 _
N5 — 32— (1 + E) (l n ) (1 3n)

_ 9 2
N6 - 3‘2- (1 + 5) (l ' T] ) (l + 30)

_ 1 _ 2 2
N7 _ 33 (1 + E) (l + n) I 10 + 9 (E + n )]

_ 9 2
N8—3—2—(l+n)(l-€)(l+3€)

_ 9 _ 2 _
N9 - 37 (1 + 71) (l E) (l 32:)

_ l 2 2

N10 — 3—2 (1 "' E) (l + Ti) ['10 + 9 (E + n )1

N =3—(1—6) (1-n2) (1+3n)
11 32

N = 1(1 - 6) (1 - 02) (1 — 3n) (I-2—9)
12 32

1.3 Numerical Integration
 

Usually the element matrices are in the integral

form which has to be evaluated. For example, the element

matrices for fow in a two-dimensional horizontal plane

are:

e aNk BNn

[B] = ge rij 5;; 5;? dD (4.2.7a)





[H]e

'{F}e =

Integration of
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Ie s Nk Nn dD

D

ée Nk Q2 d5 -
D

fe P Nk dD

(4.2.7b)

(4.27c)

Equation (4.2.7) or similar equations for

simple elements is straightforward, and some of the inte-

grated forms are given in Appendix II. For isoparametric

elements, shape functions are described in the local

(6, n) coordinates, but Equation (4.2.7) is written in

global (x, y) coordinates. To perform the transformation

of the shape function derivatives BNk/BX and aNk/By, the

following relationship is used.

0
9
1

Nk

Q
.
) “I

W

  [
w

‘
<

L

In which [J] is

 

8x

BE

KN =

8x

80

where x1, x2, .

[J]—

0
) ml
W

I

W i

  [
m
J

the Jacobian matrix:

_—

fix

a

22

30  a—4

nodal coordinates.

m
1

-
2
H

 

O
)

\
f
‘
‘
1

80
.— 

Another transformation

BN

2

3E

8N2

n8

., XM and yl, y2,

. M

8n_

_

8N

BS

EN

  

° I

 

(1.3.1)

_

y1

Y

2 (1.3.2)

3’14.

yM are the

required is
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the replacement of the element of area, dxdy(dD), by

the expression:

dD(e) dxdy = det [J] dEdn (1.3.3)

The limits of integration in the local coordinate system

become -1 and +1. For example, Equation (4.2.7a) will

change to

+1 +1 ,

Be=f I T 33324.11 3%.

kn xx'ax 3x yy3y 3y

-1 -1

det EH dndE (1.3.4)

Similar expressions are developed for the remaining terms

of Equation (4.2.7), Equation (4.3.13), and Equation

(4.4.7), etc.

Equation (1.3.4) and similar equations are inte-

grated by the Gaussian quadrature integration technique

[e.g., see Zienkiewicz 1971, pp. 144—149]. For a poly-

nomial of degree 2n = l, the number of sampling points

will be n.

1.4 Parameter Definition
 

The parameters such as hydraulic conductivity,

dispersion coefficients, storage coefficient, resistivity

of aquitard, etc., can be specified either for each node

or each element. Because the numerical solution requires

slightly less computation time when parameters are

assumed constant over an element, usually the parameters
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such as storage coefficient which do not change con-

siderably are specified for each element. Since

velocity components vary within the element, dispersion

coefficients are specified at each node.

1.5 Allocation of a Constant Line

Source to Boundary Nodes

 

 

Dirichlet (specified head or concentration) and

Neuman (specified flux) conditions are the two boundary

conditions generally encountered in field problems.

Introducing the Dirichlet boundary condition was dis-

cussed in Section 6.1.2. When the normal flux qn is

assumed constant along an element face of length L, the

integration of

£8 qusds (1.5.1)

will result in the constant flux to allocated at the

boundary nodes. The results for elements with two,

three, and four nodes along the boundary line are given

in Figure (1—8). One—dimensional linear, quadratic, and

cub shape functions are used in this integration.
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APPENDIX II

INTEGRATED ELEMENT MATRICES FOR ONE-

DIMENSIONAL QUADRATIC AND TWO-

DIMENSIONAL TRIANGULAR ELEMENTS

In this section some of the integrated terms that

are used in the construction of the element matrices for

flow and dispersion phenomena are provided.

11.1 One-Dimensional Quadratic Element
 

The one-dimensional quadratic element is depicted

in Figure 1—2. Its shape functions are given by Equation

(I.2.2), and can be written as

2

Nl‘l‘EEJ'giz"
L L

4x 4X2

N2=—"7
L L

2

N32357—5 (11.1.1)

L L
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312:4-

3x L

3N3 _ 4x

3x L2
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(11.1.2)

In Equations (11.1.1L (11.1.2), and in the following

equations, L represents the length of an element.

1.

I.

BNn EM&.dX

3x 8x

I NnNk dx

N
I
B

1.

 

 

 

 

8N2

x3

 

 

8N1

x3

 

3Nl

x3

3N2

x8

3N3

x8  

(11.1.3)

(11.1.4)
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1 2

Nf%.5§‘ NflMzFi‘

3N SN
1 2

N2111 3_x. N2112 3‘?

EN BN
1 2

fiffié?‘ N955}

F10 8 -fl

-6 0 6

_ 1 -8 10‘

1; 8N1 N 3N2

1 5x 1 8x

N 3N1 N 3N2

2 5x 2 5x

N 3N1 N 3N2

_3 5x 3 5x

F—3 ~17

-4 4

_1 -4 1.

[; 0Nl 0Nl N 8N1

1 3x 8x 2 8x

1 0x 3x 2 8x

__1 0x 0x 2 8x 

aug'

N1MB x

3N3

N21"3a'x 51"

M 313.
3 3 3x_(

(11.1.5)

N BN3

1 3x

3N3

N2 6;— dx

N BN3

3 5Xd

(11.1.6)

‘78N2 N 8Nl 3N}—

8x 3 3x x

8x 3 8x 8x

3N2 N ZEN—3 3N3

8x 3 8x 3X_J
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-32

16

192

16

 

7

-44

3zj

1N2N2

2N2N2

3N2N2

-3

20

39

1

L

g 4
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(11.1.7)

N1N3N3

N2N3N3 dx

1x13113113-J

(11.1.8)

(11.1.9)

11.2 Two-Dimensional Simplex Element
 

The two-dimensional simplex element shown in

Figure I-4 and the shape functions and related terms are

defined in Section I.2.2.

The first derivatives of the shape function

with respect to x and y are
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1, 2, 3 (11.2.1)

blb2 blb§1

bzbz b2b3 (11.2.2)

b2b3 b3b%_

Clc2 ClC3

c2c2 c2c3 (II.2.3)

C203 °3Cq_ 

 

blc2 blcil

b2c2 b2c3 (11.2.4)

b302 b3cg_

b2C1 b301—

b2C2 b3c2 (II.2.5)

b2c3 b3c3‘ 
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BN
. n .

Evaluation of i Nk 5§—~dA.

—' "1

N 3N1 N 3N2 N BN3

1 5x 1 5x 1 5x

8N 3N 3N 3N3

  
8N EN EN

N ——$ N 2 N 3
L_3 3x 3 3X 3 5x_‘

N1b1 N1102 N1133

1
= 7K f szl sz2 sz3 dA (II.2.6)

A

N3bl N3b2 N3b%J  

Each term in Equation (II.2.6) can be integrated

separately, e.g.,

l _ 1
2K 1 Nlbl(fl\_ __§.f (al-+blx-+cly) bl dx dy (11.2.7)

A 4AA

f dx dy = A = area of triangle

A

f X dX dy = f y dx dy = 0

A A

Then equation (II.2.7) is reduced to





 
' ‘Cv'JVVn.- ...,“ L1: 1‘ ; . .
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 _Lfab

4A2 l
1 dx dy = (II.2.8)

If it is assumed that the origin of the coordinates

is taken at the centroid of the element, i.e.,

 

 

3 = 0

y + y + y

l 2 3 = 0 (11.2.9)
3

Th - 39 - — [2' k ' 1971 E 4 8]en a1 — 3 — 32 -‘ a3 len erCZ , q. o .

Substituting the value of a into Equation (II.2.8)
1

yields

albl _ b_1
4A ‘ 6
 

1 2 3

aNn 1

i Nk §§— dA = g- bl b2 b3 (11.2.10)

b b b
J_1 2 {J  

Note that the assumption leading to Equation (11.2.9)

is automatically satisfied in the computer program,

regardless of whether local or global coordinates are

used.
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Nlcl NlCZ Nlc3

3Nn 1

6. I}; Nk Ey— dA = fl; NZCl N2C2 N2C3

.P3C1 N3c2 N3c%_

r -(

Cl C2 C3

= i c c c (II 2 ll)

6 1 2 3 ' °

f1 C2 C3‘

12 1 1‘

._ A
7. £ Nk Nn dA — 12 1 2 1 (11.2.12)

  

8. Evaluation of g N qn ds: If qn is the constant flux
k

along the line 2—3, as shown in the following figure,

then

where L is the length of line 2-3.
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APPENDIX III

DEVELOPED COMPUTER PROGRAMS

For the numerical investigation of this thesis,

several computer programs have been developed for use on

a CDC 6500 computer with FORTRAN IV Extended language.

The finite element technique is used in formulating all

of the programs. Some of these programs will be docu-

mented and available. The more pertinent prOgrams are

as follows:

1. One-dimensional plane or axisymmetric

medium;

a. flow

b. tracer movement with uniform or

transient flow

Two-dimensional horizontal plane medium;

a. flow with mixed elements (triangu-

lar or quadrilateral elements)

b. dispersion with simplex triangular

elements

c. dispersion with quadrilateral ele-

ments

Two-dimensional vertical plane medium

with transient phreatic surface;

a. flow MNT quadrilateral alements

b. flow FNT linear quadrilateral elements

c. dispersion linear quadrilateral elements
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In all programs, options are provided to obtain

the velocity vector either directly or simultaneously.

Different G-values (see Chapter V) can be used in

approximation of time-dependent functions, with a first

or second order time approximation available for the

convective-dispersion solution. Uniform, steady-state,

or transient flow can be used in the calculation of

mass-transfer phenomena.  
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