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ABSTRACT
PRINCIPAL IDEAL JORDAN ALGEBRAS
By

Robert Melvin Anderson

The purpose of this paper is to study the structure
of certain classes of principal ideal Jordan algebras.

A Jordan algebra J over a commutative ring with identity

is said to have property A ( property B ), if J satisfies
the polynomial identities 2(x,y,xz) + (z,y,x?) = 0 and
(w,x,yz) + (z,x,yw) + (y,x,wz) = 0, J has an identity,

and each ideal A of J contains an element x such that A
is equal to the intersection of all the quadratic ideals
which contain x ( such that A = JUx ). The main results

of this paper are:

Theorem. If J is a Jordan algebra with property A, then
n
J =9 Z Ji where each Ji has property A and is either a
i=1
u-prime algebra or a u-primary algebra containing a nonzero

nilpotent ideal.
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Theorem. A Jordan algebra J has property B if and only
n
if J=e Z J; where each summand is a simple Jordan
i=1

algebra with identity.

Theorem. Let J be a Jordan algebra over a field. J

n
has property A if and only if J = Oizlai where each
summand has property A, all but at most one of the summands
are simple Jordan algebras, and each summand is either a
simple Jordan algebra or contains only one proper u-prime

ideal, which is nilpotent.
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INTRODUCTION

Let R be a commutative ring with identity. J is
a Jordan algebra over R if J is an R-module with a product
defined which satisfies the distributive laws, the polynomial
identities xy - yx = 0 and (x?,y,x) = (x’y)x - x%(yx) =0,
and r(xy) = (rx)y = x(ry) for all x,y€ J and r € R.

For any Jordan algebra J, the operator U is

X,y

defined to be zU _ = {x,z,y} = x(zy) + (x2)y - z(xy) for

'y

X,y,z€J. Ux,x is denoted by Uy Ux and Ux,y are related

by the equation U il U 2U If A and B are

Y Y x,y°
subsets of J, then AUB is defined to be the set of all
finite sums of elements of the form auy, where a< A and
b€ B.

In a Jordan algebra J, a subset A is called a
quadratic ideal if A is an R-module and JUAQ A. For any
x€J, JUx is a quadratic ideal denoted by [x]. Rx + JUx
is a quadratic ideal equal to the intersection of all the
quadratic ideals which contain x and is denoted by <x>.
For example, if one considers the polynomial ring F[X] as
a Jordan algebra over a field F, then [X] is equal to the
principal ideal generated by X?, and <X> is equal to the

principal ideal generated by X.
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A special Jordan algebra is a subspace of an
associative algebra over a field of characteristic not
equal to two which is closed under the Jordan product
xy = $(xy + yx).

In order to use the polynomial identities which
arise from the study of Jordan algebras over a field of
characteristic not equal to two, one could study Jordan
algebras which have no elements of order two or, less

restrictively, those which satisfy the polynomial identities

h(x,y,z) = 2(x,y,xz) + (z,y,x*) = 0 and d(w,x,y,2z) =
(w,x,zy) + (z,x,yw) + (y,x,wz) = 0 where (x,y,z) = (xy)z -
x(yz) ( see appendix ). In this paper it shall be

assumed that all Jordan algebras satisfy the polynomial
identities h(x,y,z) = 0 and d(w,x,y,z) = 0. Thus identities
such as UbUa = UanUa ([2], p.52), and identities proved

by Macdonald's theorem for Jordan algebras over fields

hold in any Jordan algebra ([2], pp.40-47).

Macdonald's theorem. Any identity in three variables
which is of degree of at most one in one of these variables,
which holds for all special Jordan algebras, holds for

all Jordan algebras.

This paper deals with finding results for Jordan
algebras similar to the well known result for commutative,
associative rings with identity that a ring is a principal

ideal ring if and only if it is a finite direct sum of
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principal ideal domains and special principal ideal rings
([5], pp.242-247). This result was generalized to
noncommutative principal ideal rings, where it is assumed
that each right ideal is principal [1]. In Jordan algebras,
quadratic ideals seem to correspond with the one-sided
ideals in the associative case; thus it would seem that a
similar result for Jordan algebras could be obtained if
it were assumed that each quadratic ideal were principal,
but actually one only need assume that each ideal is a

principal quadratic ideal of the form <x>.






CHAPTER I

JORDAN ALGEBRAS WITH PROPERTY A

In this chapter it will be understood that all
Jordan algebras are over an arbitrary commutative ring R

with identity.

Lemma 1l-1. In a Jordan algebra ny’zU = ZUy,xU for any
v 4 Y
X,¥,2€ J.

Proof. If J is a special Jordan algebra then:

XUy oy = {y,z,y},x,y}

}(yzyxy + yxyzy)

(yz(xu ) + (xU )z

tHy y v y)
= zuy,xU .
By Macdonald's theorem the identity holds in any Jordan

algebra.

Lemma 1-2. If C is an ideal in a Jordan algebra J and

an€ C for any a,b€J, then aU<b>Q C. If A is a quadratic

ideal and AUbQ C, then AU
Proof. For J an algebra over R, let rb + dUb be

<b>9 C.

an arbitrary element of <b>, where d€¢ J and re¢ R.

= au + au + 2au
rb dUb rb,dub

|
=r an & anUdUb + ZaUrb,dUb

4

Urbrau,






5
o2 5
=r (an) + (an)UdUb + 21:dUb'an by lemma 1-1.

Thus aU C, and aU<b>§ C. The second statement

rb+dUbE
follows from the first.

Lemma 1-3. In a Jordan algebra, bn(an) = (abn)Ub for neN.
Proof. Let Rx be the operator which multiplies on
: n = 2
the right by x. b (aUy) = a(2Ry Ry2)Ryn
= aRbn(Zsz - R.2) since
ijin = RyiR . for any i,j €N by ([3], p.92). Thus

n =
b (auy) = (ab“)Ub.

Lemma l1-4. In a Jordan algebra with identity,
— p2n
(ann)(cUbn) =b Ua,cUb“ where a,b,c€J and n€ N.

Proof. If J is a special Jordan algebra then:
U =3 -u = b
an,cUb (a+b)Ub an cUb

1 2 -
H(UpU,4cUp ~ UpUaU, - UpUcly)

1 2 =
oo, + U, + 20, Uy - UpUU UL U U)

n

= UbUa,CUb'
Thus in any Jordan algebra Uan,cUb = UbUa,cUb and
= = e
(an)(cUb) = anUb,CUb lUbUa,cUb b Ua,cUb‘ Assume the
statement is true for all n < k.
(alpx+1) (€Upk+1) = ((an)Ubk)((cub)Ubk]
= ek
N UaU ,au, Ubk
i b b
=b (UbUa,cUb)Ubk
= p2 (k+1)
b Ua,cubk+" Thus the lemma

holds by induction.
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Lemma 1-5. If J is a Jordan algebra then (anJc =

2aU, (ac)Ub for any a,b,c €J.

b,cb

Proof. (aUp)c - 2au + (ac)uy

b,cb

2((ab)b)c - (ab?)c - 2(ba)(cb) - 2((cb)a)b + 2((cb)b)a
+ 2((ac)b)b - (ac)b?

2(((ab)b)c + ((cb)b)a + ((ac)b)b) - (ab®*)c - 2(ba) (cb)
- 2((cb)a)b - (ac)b?

2(2(ab) (bc) + b2(ac)) - 2(ba)(cb) - (ab?*)c - 2((cb)a)b
- (ac)b? by the polynomial identity d(a,b,b,c) = 0,
= 2(ab) (bc) + b?(ac) - (ab?)c - 2((cb)a)b = 0 by the

identity d(b,a,b,c) = 0.

Corollary 1-6. If A and B are ideals of a Jordan algebra
J, then AUB is an ideal of J.
Proof. For any a€ A, b €B, and c€ J, then

(an)c = -(ac)Ub +2au by lemma 1-5. 2

b,cb aly, op =

auy -aUg € AUB. Therefore (an)c €AUB and

3Vpteb ~ 3V

AU, is an ideal of J.

B
Lemma 1-7. Let J be a Jordan algebra and A be an ideal
of the form A = <a>. If b€J, then ba™ € A" when n is an
odd positive integer, and ba"e A"! when n is an even
positive integer.

Proof. If n is an odd integer then n = 2m + 1
ym

for some integer m. a’ = au_m€ A(U,)" which is an ideal

n

by corollary 1-6. Therefore ba" € A(UA)mQ A If n is

an even integer then n = 2r for some integer r. a?¥~le
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A(UA)r_l where A(UA)’C'l is an ideal by corollary 1-6.

ba® = ((a®T"1a)b € ((A(U)TT)a)bCA(U,)TT1C AR,

Lemma 1-8. Let J be a Jordan algebra and C be an ideal
of J of the form <c> for some c€C. If m and n are
positive integers such that n > 2, then (aUcm)cne
n »
U m - (aUgm+r) 7L
Proof. Suppose J is a special Jordan algebra.
(aUcm)cn » %(cmacm+n + R,
= M(cra) MO 4 D1 (cug) M
- %(cm+’acm+n'1 + cMn-15om+1y
= ((a-c)Ucm)c“"l + c“_‘((a-c)Ucm)
i ‘}((aUcm+1)Cn'2 + Cn_z(aUcm+l))
= 2((arc)ugm) +e™! - (aUmy) +cPTEL
Thus (aUcm)cn = 2((ac)Ucm)cn" - (aU(.:mh)c""2 in any
Jordan algebra by Macdonald's theorem. Therefore
n _ n-1 n-2
(aU _p)e” = 2((ac)c JUm - (alU m+1)c by lemma 1-3,

n n-2
€ U - (aUm+i)e .

Let §:N - N be a function defined as 6 (n) equal to the
greatest integer function of 4(n + 2). For example

§(1) = 1; 6(2) = 2: 6(3) = 2; 6(4) = 3, and §(5) = 3.

Lemma 1-9. If J is a Jordan algebra and C is an ideal
of J of the form <c> for some c €(C, then (aucs(n))cme

CmUCG(n) + [cé(m+n)] for any positive integers n and m.
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Proof. If m is an odd integer then:
(aUc5(n))cm = (acm)ch(n) by lemma 1-3,
€ " s (n) by lemma 1-7,
€ cMu_s (n) + (cd (mn)
If m is an even integer where m = 2t then:

(aU s (n)) ™€ CMU s () + CTTPUS (n)+1 + oen + CPULS (n)+em

6(n)+t]

+ [c by lemma 1-8,

§(n)+t

e(Cc™ + c’“"uc ool + CzUct_;)ch(n) + [c ]

€CmUc5(n) + [cd(m+n)]‘

Lemma 1-10. Let J be a Jordan algebra with identity
and C be an ideal of J of the form <c>. For any positive

@

odd integer n, if c"c [Cé(n)] + ) ReP*i-l  then c” is
i=1

an ideal.

o
Proof. If x¢€ C" then x = aUCS(n) + z ricn+1—1'
i=1

@

For any b€ J, xb = (aU_g(n))b + 7 ribc"""i'l 3

(ach(n))b 2 by lemma 1-7, since n is an odd integer.

8{n) Uhich is an ideal by corollary 1-6,

§ (n)

au_s(n) € J(Up)
and thus (aU_s (n))b€ J(Up)
§(n)-1
€30 (Ue)
€ c2(8(n)-1)+1
€ 28 (n)-1
€ch

Therefore xb € Cn, and C" is an ideal.
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Lemma 1-11. Let J be a Jordan algebra with identity
and C be an ideal of the form <c> for some c € C. Let
i and m be positive integers such that 1 < i < m. If

cn§[c5(n)] 4 ¥ ReP+i-1 for all n < m, then
i=1

m

26 (1)
c UarbUCS(m)—s(i)E c.

P £, 26 (1)
roo. c Ua,bUcé(m)-s(i)

(cza(i)a)(bucc(m)-a(i)) + (czs(i)(bch(m)-s(i)))a
. YR E6! (a(bU_5 (m)-6 (1))
28 (i) -1

= - (((bu_s(m)-s(i))c)a)e
(((bUc5 (m)_ﬁ(i))czs(i)_’)a]c

+ 28 (au s (m)-5 (1)) + (ac) (BU s m)-s (1))e*® ) 71)

+ (ac?$ )= (bu_s m)-s (1)) + (c2* () (oU_s (m)-5(1)))a
- czs(i)[a(buc5(m)_5(i))) by the use of the identity

d(bucd(m)_d(i),a,c,czs(i)") =0,
28 (i)-1

(((be)U s (m)-5 (i))a)e
- (e @Iy g m)-s (5))a)e

+ (ac) ((bc?8 H)1yy s (m)-s (i)

+

(ac?® (1) =1) ((0e) U s (my -5 (1)) + (e W)U s (m)-6(i))a
by lemma 1-3,
€c26(m) =1 by lemma 1-7 and lemma 1-10,

ec:

Theorem 1-12. If J is a Jordan algebra with identity
and C is an ideal of J of the form <c> for some c€ C, then
28 (n)-n

e g[c“")] % E Ren+i-1,
i=1
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Proof. The statement is true for n = 1 since
C = <c> = [c] + Rc. Assume that the statement is true
for all n < k. Let i and m be positive integers such
that 1 < i <mandi+m=%k+ 1. Let weC> and zeC™,

25 (i)-i ,
By the induction hypothesis, w = aU_g (i) *+ 1 1.'“<:"“"1'l
n=1
26 (m) -m
and z = bU_g(m) + n£l seninls
28(i)-1i i 26 (m)-m S
wz = (aU_6 (i) + nzl re ) (bU_6 (m) + nzl s.c )
2808)-1
€ (aU s (1)) (BUs (m)) + | nzl ¥ M7 (BU 5 (m))
26 (m) -m ©
+ (au_s (i) ( ) spettmtl) + ] Re
n=1 n=1
26(i)-1i s
u i) + r_((bu )c )
a,bch(m)_é(i) <8 (1) nZl n <8 (m)
28 (m) -m ©
+ J s ((au_g(i))c™™Y) + | Re
n=1 " £ n=1

k+n
ec?8lily
k+n

by lemma 1-4, where U_s(m)-5(i) is the

identity operator when §(m) = §(i),

C&(m+i)] + k+n

€ Cmch(i) * ClUcé(m) & ] Rc
n=1
by lemma 1-9 and lemma 1-11,

268 (m) -m
G(m)] i

e(le L R™PTHU s (4)
n=1 bt
" 26 (i)-1i .
e S % I ReMTNU s ()
n=1 b
i [cﬁ(m+i)] 5 2 Rck+n
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by the induction hypothesis,

e [SmMFS(), J ReM*28(i)4n-1 4 ] Rei+28(m)+n-1
n=1 n=1

s o
+ [cs(m+1)] & X RCk+n

n=1

. d J ©
€[c6(m+l)] + ] Reptmtl-l 4 7 reK*D
n=1 n=1

€[‘:G(mﬂ'.)] + ) Rck+n
n=1

268 (k+1) - (k+1
E[cd(k+l)] + ¢ % ¢ )Rc(k+‘)+““.
n=1

3 26 (k+1) - (k+1)
Thus Clc“‘c[cs(k*l)] + z Rc(k+l)+n-1'
n=1
1 28 (k+1) - (k+1)
<:k+1 o clemc [cé(k+1)] % z Re

i+m=k+1 n=1

(k+1)+n-1

Therefore the theorem holds by induction.

Corollary 1-13. If J is a Jordan algebra with identity;
A and C are ideals of J; C is of the form <c> for some

c€C, and c"€ A, then C2PCA,

Lemma 1-14. If J is a Jordan algebra with identity and
A is an ideal of J of the form <a>, then A" is an ideal
of J for any odd positive integer n.

Proof. The lemma follows immediately from

lemma 1-10 and theorem 1-12.

Lemma 1-15. If B is an ideal of a Jordan algebra J,

and B is of the form <b> for some b € B, then Zan cb€
’
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aUB for any a,c€J.

Proof. b Hicb esBisincerby chiciBlRs2al =
bi, cb
Al aUcbe aUB.

3Uh+chb b

Lemma 1-16. Let C and Bi be ideals of the Jordan algebra
J for i =1,2,...,n, where Bi is of the form <bi> for

€
some bi Bi. IE anxubz"'UbnE C, for some a € J then

AUB Ug ...Ug C C, where A is the principal ideal generated
1 P2 n

by a. 1In particular if B is an ideal of the form <b>

and aUyn € C then AU & C.

Proof. For n =1, an € C implies (an )a =
1 1
2an“dbl - (ad)UblG C for any d€J by lemma 1-5.

2aU, aUB C C by lemma 1-15 and lemma 1-2. Therefore
1

€
b,,db,

(ad)u, € C and AUy € C. Thus by lemma 1-2, AU; S C.
1 1 1

Assume the lemma holds for all n < k and aUy Uy ...U,
1

€
b, bk+\
Cs (anlU R 0]

)U € C and by the case n =1,
1

b, by Vb

AU € C where A, is the principal ideal generated by
kK By k

& i 3
an‘sz...Ubk. anlsz...Ubk Ak and by the induction

c

hypothesis AU, U, ...U, S A . Therefore AU, U, ...U S
YP B, B, B B, B, Brsr

x k

(AU Ug «..U C. Thus the lemma holds
1 B2

)U S AU <
By "Br4y k7Byyy

by induction.

Lemma 1-17. If J is a Jordan algebra and A is an ideal

of the form A = <a>, then [a] is an ideal of J.






1L3)
Proof. [a] is closed under addition by definition
and under multiplication by lemma 1-4. If x € [a], then
= 5 € € i
X dUa€ JUA For any b€ J, xb JUA since JUA is an

ideal by corollary 1-6. Thus:

n
xb = ) (a,u J
jop i (rja+ c;U,)
n
= .2 (diur.a g diUc.U ca ZdiUr.a,c.U ]
i=1 i i“a i i“a
n
= J (r,%a,u_ +4,UU_ U_+ 2r.d.U )
A T i“ae; a

i a,c.U
1 1 et

m

[a] since A?2C [a] by theorem 1-12. Therefore xb € [a],

and [a] is an ideal of J.

An ideal of a Jordan algebra is said to be
irreducible if it is not equal to a finite intersection

of ideals strictly containing it.

Theorem 1-18. 1In a Jordan algebra with the ascending chain
condition on ideals, every ideal is a finite intersection
of irreducible ideals.

Proof. Let C be the family of ideals which are
not the finite intersection of irreducilbe ideals. Suppose
C # @, then there is a maximal element A in C. Since A

n

cannot be irreducible, A = jiHAi where the Ai are ideals
of J strictly containing A. By the maximality of A in C,

nj
A, = (] A,. where the A,. are irreducible ideals. A =
i ja1. A i3
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n.

Aij contradicting A belonging to C. Therefore

D))

i=1 =1
C = @ and every ideal of J is a finite intersection of

irreducible ideals.

Lemma 1-19. If J is a principal ideal Jordan algebra with
identity, then J has the ascending chain condition on ideals.

Proof. If A‘Q A,S ... is any ascending chain of

s

ideals, then A = Ai is an ideal. Therefore A is gen-

i=1

erated by some element a. a¢€ U Ai which implies that
i=1

a€ A for some n. Thus A_ = A for k > n.
n n k =

An ideal C in a Jordan algebra J is said to be
u-primary if for any ideals A and B such that AUBC C
then ACC or B"CSC for some positive integer n. A Jordan
algebra is said to be u-primary if the ideal (0) is
u-primary. A Jordan algebra is said to have property A
if the algebra has identity and every ideal is of the form

<x> for some element x in the ideal.

Theorem 1-20. If a Jordan algebra J has property A,
then any irreducible ideal of J is u-primary.

Proof. Let C be any irreducible ideal and A and
B be any ideals of J such that AUBQ C. A=<a> and B =
<b>. Let Mi ={ye€J: VUbiQ C where Y is the principal

n $ i =
ideal generated by y }. Mi is an ideal of J and Mi"Mi+l'
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Therefore there exists a positive integer k such that
M = M, for n > k since J has the ascending chain condition
on ideals by lemma 1-19.
g2k+1 g [pkt1] 4 Rp2K+! by theorem 1-12,

SIok*!] + RbUk

cipky.
Let z € (B2X*!1 4+ )\ (A + C). Therefore z = auk + ¢ =
a' + c' where c,c'€C, a'€ A, and d€ J. zUb = dUbk+1 +
cuy = a‘Uh + c'Ub, but (@', + c'Ub), cuy € C. Therefore
dUbk+1e C. By lemma 1-16, DUbk+,§ C where D is the
principal ideal generated by d. Thus d¢€ Mk+1 = Mk’
au k € C. Therefore C = (82K*! + ¢)M(A + C), but B2KH!

and

is an ideal by lemma 1-14. Since C is irreducible,

B2ktlc ¢ or ACC, and C is u-primary.

Lemma 1-21. If J is a Jordan algebra, then sz(Uan;)“Ua =
2n+1

(szUa) .
Proof. For n =0, szUa = szUa. Assume the

statement holds for n = k, that is sz(Uanz)kUa =

2k+1
(szUa) .
= U,

U2 k+1U 2 k U
b (Uanz) a b (Uanz) Uanz a

U,.2U0 2 Xk Up2U
b*"b (UaU Ua b*~a

b2)
= szUanz(UanQJkUanzUa
= szua(UbZUa)2k+lUb2Ua

- (szua)z(k+1)+{

Therefore the lemma holds by induction.
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Lemma 1-22. If J is a Jordan algebra then (an)zn =

b2 (U_U, 2) Pu_U, where r. = 201 - 1
a b? a“b n 2

Proof. For n = 1, (au_)? = 1U =l e =
y : : b an b a’b
b Uan =b (Uanz) Uan. Assume the statement holds for
k r
= i 2® _ p2 3
n = k, that is (aUp) b* (U Uy2) "U U
k+1 k
2 o
(auy) = ((ay)2")?

& 2 Tk 2
= (b? (U Up2) “uuy)
= b%U, , Tk, U
b? (U U 2) U "D

= b2U_U, » TkU_U,
a'b (Uanz) a b
= sza(szUa)zrk+’Ub by lemma 1-21,
= 2 2rp+1

b* (U, U 2) *Tk¥ U Uy
] Tk+1 3 -
=b (Uanz) U, U, since 2r, + 1 =1 4.
Therefore the lemma holds by induction.

An ideal C of a Jordan algebra J is said to be a
u-prime ideal if for any ideals A and B such that AUBQ ¢
then either ACC or BCC. A Jordan algebra is said to
be u-prime if (0) is a u-prime ideal. For any ideal A
of J, the u-prime radical P(A) of A is defined to be the

intersection of all the u-prime ideals in J which contain A.

Lemma 1-23. Let A and C be ideals of a Jordan algebra
with identity, and let A be of the form <a>. If aec

for some positive integer n then ACP(C).
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Proof. By corollary 1-13, A2Rgcc. %2R = (D)
in § = J/C. Since it is proved in [4] that P ((D))
contains all nilpotent ideals, XCSP((0)). Therefore

AcP(C).

Theorem 1-24. If J is a Jordan algebra with property A
and C is a u-primary ideal, then P(C) is a u-prime ideal.
In particular, the u-prime radical of an irreducible
ideal is u-prime.

Proof. Suppose P(C) is not a u-prime ideal,
therefore there exists ideals A and B such that AUBC P(C)
while neither A nor B is contained in P(C). Let A = <a>
and B = <b>. au, € P(C). (an)zne C for some integer 20
by theorem 7 in [4].

b? (Uanz)rnUane C by lemma 1-22,

10, (U_U,,) Uy, € C

b '"a’b a’b

1ub(uaubub)inuaube e

JUg (U,UgUs) PU,UZ S C by lemma 1-16.
Now JUB(UAUBUB) nUA is an ideal of J by corollary 1-6.
Therefore JUB(UAUBUB)rnUAQC or B"CC for some positive
integer m since C is a u-primary ideal. B"‘¢C for if
B™C C then BCP(C) by lemma 1-23, contradicting the choice
of B. Therefore JUB(UAUBUB)rnUAQ C. By repeating this
argument and by using the fact that no power of A or B
can be contained in C, one obtains JSC. This contradicts
the fact that P(C) is not a u-prime ideal. Therefore

P(C) is a u-prime ideal.






18
Lemma 1-25. Let J be a Jordan algebra; P be a u-prime
ideal, and B be an ideal of the form <b>. If a€J such
that au € P then a€P or b€ P,
Proof.: "If au, € P then Aubc P where A is the
principal ideal generated by the element a, by lemma 1-16.
AUBC P by lemma 1-2. Therefore ACP or BCP and a€ P or

bl€P:

Lemma 1-26. If { Ai }?=1 is a set of ideals of a Jordan
algebra J such that fj A, = (0) and Ai +3;, =4 where
i=1

i
n
J, = rj.Ak’ then J = @ Z Ji‘
k#i i=1

Proof. For any x€J, x = x, + ¥y where xie Ji’

n
v €A x - k£1xk = (x - x;) - k;ixk =¥y - ; A
n
since xk€ JkS Ai for i # k. Thus x - le ID = (0),
n n
and x = | X+ Therefore J = .E Jse The sum is direct

since 7, k;zeiJk c3,MA = (0.

Lemma 1-27. Let J be a Jordan algebra with identity, B
and { Ay }2=1 be ideals of J. If B is comaximal with each
n

A; then B is comaximal with [0 Ai.
i=1
n
Proof. J TT(B+A)<;B+‘|TA;B+0A

J. Therefore B is comaximal with rj Age
i=1






aLs
Lemma 1-28. Let J be a Jordan algebra with identity and

n
o L

4551 be a set of pairwise comaximal ideals. If

n n
() A, = (0), then J =@ J

i Jis where I =y /AR
i=1 Seall % s

Proof. By lemma 1-26 and lemma 1-27, Ai + Ji M

n n
Jand J =e | J. where J, = N Ap. Let 1= I ey
{=1n k#i i=1 *
where eie Ji' Let Yi(a) = ae;, which is a homomorphism
of J onto J,. The kernel of v,, K, = { x€¢J : xe, =0 } =
i i 21 4

KiiJkg Ai’ but AiFWJi = (0) and Yi(Ai) = (0). Therefore

K, = A;, and J; = J/A.

Lemma 1-29. Let J be a Jordan algebra with identity and

T Ay }2=l be a set of ideals of J. The A, are pairwise

comaximal if and only if the P(Ai) are pairwise comaximal.
Proof. If Ai + Ak = J, then P(Ai) + P(Ak) = J

since an ideal is contained in its u-prime radical. TIf

P(Ai) + P(Ak) =J, then 1 = a; + ag where ais P(Ai) and
ay € P(Ak). a.le Ai for some positive integer n. 1" =

3

n n 3
(ai + ak) =a; + a for some a € P(Ak). There exists
a positive integer m such that a™ EAk. 16 A

n

(a,® + a)Me (Ai + a)™c Ai + amQAi + A Therefore

X

Lemma 1-30. Let J be a Jordan algebra with property A.
If P is a u-prime ideal of J, and P& A, where A is an
ideal of the form A = <a>, then PC () [a®
i=1

1.
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Proof. Let P = <p> and p = ra + dua.

ap = ra? + (du)a = U, + (da)u_ by lemma 1-3,
= (r + da)Uae B

a¢P, for if a€ P then A CP contradicting PGA. Therefore
by lemma 1-25, r + da€PCA, and r€ A, Let r = sa + bUa.
Thus p = (sa + bU_)a + dU,

= sa? + (bUa + dau,

=sU, + (ba)Ua + (wé1 by lemma 1-3,

= (s + ba + d)Ua

€ [a].
Therefore P € [a]. Assume PC [ak], then p = CUak for some
c€J. cUx = c(Ua)kE P, therefore by lemma 1-16, C(UA)kg
P where C is the principal ideal generated by c. Since
P is a u-prime ideal and AZP then CCP. c€PC [a].
Thus ¢ = eU,. p = cU,k = eU Uk = eU k+1 € [ak+1y,

© "

Thus P C[ak*!] and by induction Pgir_]l[all.
Lemma 1-31. Let J be a Jordan algebra with property 2,
and let PI,T»’2 be u-prime ideals of J. If P1¢ P, and
P,& P, then P + P, =J.

Proof. Let P, + P, =P =<p>. P &P and P, &P
since P,¢ P, and P,¢ P,. By lemma 1-30, P,< [p] and P,S
[pl. Thus P, + P,S[plS<p> =P, + P,, and [p] = <p>.
p = aUp for some a€ J. 1Up = 1U =1y U U = p*UaU

au pap

o
P
Thus (1 - p’Ua)UD =0€P,. p¢P,, for if p€P, then

PSP, contradicting P, ¢P,- Therefore by lemma 1-25,

1 - p’Uae P, €SP, and 1€ P =P + P,. Therefore P, +
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Lemma 1-32. Let J be a Jordan algebra with property A.

n
If { C, 1}

T is a set of u-primary ideals of J such that

n
P =pP(C;) for i =1,2,...,n, then C = () C, is a

u-primary ideal and P = P(C).
n:
Proof. Let P = <p>, thus p Tie Ci for some
positive integer ny where i = 1,2,...,n. Let m =

n
max { n; 5o

,- Thus pt€C and PCP(C) by lemma 1-23.
Therefore P = P(C). Let A and B be any ideals of J such
that AUzCC. Let A = <a> and B = <b>. If AQCi for
33 L8y veeety Ehen ARD, TE Agtcj for some je
{1,2,...,n}, then BXC CjQ P, implying that B SP, since
Cj is a u-primary ideal and P is a u-prime ideal. Since
ptec, PPMCC by corollary 1-13. Thus bX(2m) e p2mc

C, and B*XMc(C by corollary 1-13. Therefore C is a

u-primary ideal.

Lemma 1-33. If J is a Jordan algebra with property A,
and CZ,C are u-primary ideals such that P(Cl) S P(C),
then C, & C.

Proof. Let P(C,) = P, and P(C) = P = <p>.
P, and P are u-prime ideals by theorem 1-24. There

exists and integer m > 2 such that pm €C. By theorem 1-12,
P2M C [pM+1] 4 Rp2M 4+ Rp2M*ic ¢, But cerc [p*) <

[p2™] S P?MCC by lemma 1-30. Suppose €, =C, then
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pm€ P,. By lemma 1-23, PCP contradicting Bt

Therefore C,& C.

Lemma 1-34. Let J be a Jordan algebra with property A.
If A is an ideal of J, then there exists a finite set of

pairwise comaximal, u-primary ideals { Ci }2=l such that

Proof. By theorem 1-18 and theorem 1-20, A =

m
A. where the A, are u-primary ideals. Let M =
5 i P Y
i=1

{2172 deaim oYy and TS GE M P(Ai) = P(A‘) }. Let

2, = .KJI Ai' D) is a u-primary ideal with P(Al) = P(D,)
i
by lemma 1-32. Let r€M - I, and H= { i€ M : P(Ai) =

P(A) }. Let D, = () A;. D, is a u-primary ideal with
i€H

P(Dz) = P(Ar) # P(D,) by lemma 1-32. In this manner, one

m k
can construct from { Ai )i=l the set { Dy }i=l such that
k
A= (1 D, and the D, are u-primary ideals with the P(D,)
i=1

distinct. Let { ¢; }]_; be the set of all minimal ideals

=1

n
Therefore A = [ C;. Suppose

of the set { D, }k
i ;
i=1

i=1°
P(Ci) + P(Cj) # J for some i # j, then without lose of
generality one may assume by lemma 1-31 that P(Ci)g P(Cj).
By lemma 1-33, Ci;Cj contradicting the choice of the Cj
being minimal in the set { Di }E=1. Therefore P(Ci) +

is a set

. ¢ . v n
P(Cj) =J for i # j. By lemma 1-29, { Ci }i=l
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of pairwise comaximal ideals.

Theorem 1-35. If J is a Jordan algebra with property A,
n
then J =o | J, where each J; has property A and is
i=1
either a u-prime algebra or a u-primary algebra containing
a nonzero nilpotent ideal.

n
Proof. By lemma 1-34, (0) = [ C; where the C;
i=1

are pairwise comaximal, u-primary ideals. Thus J =

n
Oizl Ji where Ji = J/Ci by lemma 1-28. Each Ji has
property A since it is a homomorphic image of J. If Ci =
P(Ci), then Ji is a u-prime algebra, if not then Ji is a

u-primary algebra with a nilpotent ideal P(Ci)/Ci.

Lemma 1-36. Let J be a u-prime Jordan algebra with
property A. If the u-prime ideals are pairwise comaximal,
then J is simple.

Proof. Suppose J is not simple, then J contains

a nontrival ideal A. A = C; where the Ci are u-primary

o
S

ideals by lemma 1-34. Thus J contains a nontrival
u-primary ideal C. P(C) is a u-prime ideal by theorem
1-24, but J has (0) and J as its only u-prime ideals.
If P(C) = (0), then C = (0) contradicting C being non-
trivial. If P(C) = J, then 1 = 1" €C for some positive

integer n: thus C = J contradicting C being nontrivial.
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Therefore J is simple.

A Jordan algebra J is said to have property B,
if J has an identity and every ideal is of the form
[x] for some x in the ideal. Property B is a special

case of property A.

Lemma 1-37. If J is a Jordan algebra with property B,
then the u-prime ideals are pairwise comaximal.
Proof. Suppose that P,, P, are distinct u-prime

ideals. Suppose P, + P, # J. By lemma 1-31, one may

assume without loss of generality that P, ¢P2. P, = Ipl
€ = € = =
for some p€P . p aUp for some a€J. 1U 1UaUp
e - p? = €
lUpUaUp P UaUp. Thus (1 P Ua)Up 0 P2. By lemma

1208, 8P, or (1= p‘Ua)E Pyv PP P, for if pe€P, then
P,S P, which is a contradiction. Thus (1 - p’Ua)€ P
and P1 + Pz = J. Therefore the u-prime ideals of J

are pairwise comaximal.

Lemma 1-38. If J 1s a Jordan algebra with property B,
then J contains no nonzero nilpotent ideals.

Proof. Suppose A is a nilpotent ideal of J.

A = [a] for some a€A. Thus a = bU_ and a™ = 0 for some
positive integer n. a = bUa = bUbUa = bUanUa =

= 2 = = 2ng e AR o
bU_U U b(Uan) Ua ces b(Uan) Ua A (0)

ab bUa

by theorem 1-12. Therefore A = (0).
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Theorem 1-39. A Jordan algebra J has property B if and
n
only if 3 = ) J; where each summand is a simple
i=1
Jordan algebra with identity.

n
Proof. If J has property B, then J = @ | I,
i=1

where each summand is either a u-prime algebra or contains
a nonzero nilpotent ideal by theorem 1-35. Since each
summand has property B, it must be a u-prime algebra by
lemma 1-38. Thus by lemma 1-37 and lemma 1-36, each

summand is a simple Jordan algebra with identity. If
n

J=e z Ji where each summand is a simple Jordan algebra
i=1

with identity, then J has identity. Let A be any ideal,

n
then A= ] A, Lete=oeo
i=1

Il =53

e, where e, = 1, if A, =
i i a i

i=1

J, and e, = 0 if A, = (0). Thus e€A. [e] = A since
i i 4

n

if a€ A then a = oizlbiue. where b; € J,, and a =
n

)

b.)U_¢€ [e].
i - 4 e

1

An element z of a Jordan algebra J is said to be

an absolute zero divisor if JU, = (0).

Lemma 1-40. If J is a Jordan algebra with property A
and J contains a nonzero nil ideal, then J contains a

nonzero absolute zero divisor.
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Proof. If A = <a> is a nonzero nil ideal then

a” = 0 for some positive integer n, and A2D = (0) by
corollary 1-13. By lemma 1-14, A™ is an ideal for
any positive odd integer m. Thus J contains a nilpotent
ideal of index 2 or 3, since either AK™! or AK~2 ig an
ideal of J where k is the nilpotent index of A. Let
B = <b> be any nilpotent ideal of J of nilpotent index
2 or 3. If b® =0 and c€J then:
cU, = 2(chb)b - cb?

= 2(cb)b since b? = 0,

= 2(rb + dUb)b since cb € B = <b>,

= 2(ab)uy + 2rb? by lemma 1-3,

= Z(db)Ub since b? = 0,

= 2(sb + eUb)Ub since db € B = <b>,

= 2sb® + 2eU U

= 2sb® + 2eUb2

= 0 since b? = 0.
Therefore b is an absolute zero divisor. 1If b® = 0,
and b? # 0 then for c€J:
cUpz = 2(cb®)b? - cb*

€8 = (0).

Therefore b? is an absolute zero divisor. Thus J contains

a nonzero absolute zero divisor.

Theorem 1-41. Let J be a Jordan algebra with property A.
If J contains no nonzero absolute zero divisors, then

J is a direct sum of u-prime algebras.
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n
Proof. By theorem 1-35, J = e ] J, where
i=1

each Ji is either a u-prime algebra or a u-primary
algebra containing a nonzero nilpotent ideal. By lemma
1-40, J contains a nonzero absolute zero divisor if

some Ji is not a u-prime algebra. Therefore if J contains
no nonzero absolute zero divisors, then J is a direct

sum of u-prime algebras.

Any associative, commutative principal ideal ring
with identity is a Jordan algebra with property A when
it is considered as an algebra over itself, and thus it
could appear as a summand in theorem 1-35.

Another example of a possible summand can be
constructed from the vector space J over a field F, of
characteristic not two, with a basis { e,,,e,,,e, +e,,,2 }.
Under the multiplication given below, which is obtained

by putting the Jordan product on the noncommutative

€ €12 €21 €22 3

i L 1

€1 €1 2€12 2€2, 0 22

€32 1€, 0 z(ey te,,) 78,2 0
i

€2, tey,  fle  +ey,) 0 7€2, 0

1 i i

€2 0 2©12 282, €22 22
1 1

2 22 0 0 22 0
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Jordan algebra described in ([3], p.147), J becomes
a Jordan algebra over F. The ideals of J are: (0) <
<z> € <e  +e,,> = J, and thus J is a u-primary Jordan
algebra with property A. Also the subalgebra generated
by the set { e

e e + e

.77 Ciavs i 2 } has property A,

B 4
and its ideals are: (0) S<z>C<e , + e,,>.

The subalgebra T of the preceeding example,
generated by the set { 1, e, z }, where 1 = e, + e,,
and e = e,, + e,,, is a principal ideal Jordan algebra
without property A. 1Its ideals are (0), N, C, D, and
T generated by the elements 0, z, l+e, l-e, and 1
respectively ( the ideals C and D are not of the right
form for T to have property A ). (0) is an irreducible
ideal of T, and P((0)) = N, which is not u-prime since
CUDQ N and no power of either C or D is contained in N.

In view of this example, theorem 1-24 cannot be generalized
to include all principal ideal Jordan algebras.

Consider the Jordan algebra obtained by putting
the Jordan product on the upper triangular 2x2 matrices
over a field F of characteristic not two. This algebra 1is
a principal ideal algebra, but does not have property A
since the ideals A = Fe  + Fe , and R =TFe,, + Fe ,
are not of the right form. (0) is not a finite
intersection of ideals properly containing it, and thus
it is irreducible. AUB = BUA = (0), but neither A nor

B is nilpotent. Thus (0) is irreducible but not

u-primary. In view of these last two examples, the






all principal ideal Jordan







CHAPTER II
JORDAN ALGEBRAS WITH PROPERTY A OVER A FIELD

In this chapter it will be understood that all
Jordan algebras are over an arbitrary field F of
characteristic not two. Let J be a Jordan algebra and A
an ideal of the form <a>. It was proved in Chapter I
that A? < [a], and a question which arises is whether or
not [a]S€ A%, If [a] CA? then all the powers of A are
ideals which would simplify many of the proofs. When J
is an algebra over a field, this question is partially

answered in the following lemma.

Lemma 2-1. If J is a Jordan algebra with property A,
and A is an ideal of J of the form A = <a>, then either
a?€ [a?] or A* = [a] which is an ideal of J.

Proof. By lemma 1-17, [a] is an ideal of J;
therefore [a] = <cU,>. Let J = J/A*. Thus TUg =22 =
foug + I?UEUg = fcUz + bUzUSUz = £cUy since bU,U U, €
A*. If £ # 0, then cUz = £7'a%, and cU € £7'a® + A*C A%,
Thus [a]C€ A?2. A%C [a] by theorem 1-12. Therefore A? =

[a] which is an ideal of J. If £ = 0, then a’€ A®,

30
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a? = du_, + ra® by theorem 1-12,

au_a + ra(a?)

=4du_, + ra(duaz + ra?)

=dU_: + r(ad)U,z + rZUaz by lemma 1-3,
€ [a%]s

Lemma 2-2. Let J be a Jordan algebra with an ideal A
of the form A = <a>. If a?¢ [a%], then a?€ A" for any

n > 1. In particular, if A is a nilpotent ideal, then

2 = 2 = =
Proof. Let a‘ = bUag. Thus a bUbuaz

B = 1 = 2y , = =
b(UazUb) Uaz = b(UazUb) UbUaz b(UazUb) Ua‘ P

n, n
b(U_2Up ) U 2 € AT

Lemma 2-3 Let J be a Jordan algebra with property A.
If A is a nilpotent ideal of J then A* = (0).
Proof. Let A = <a>. If a%e€ [a%?], then a* =0

by lemma 2-2, and A’ = (0) by theorem 1-12. 1In view
of lemma 2-1, it suffices to show that the lemma holds in
the case when [a] = A? is an ideal. Let n be the smallest
positive integer such that a” = 0. Suppose n > 4.
Without loss of generality it may be assumed that n = 5,
since one could pass to the quotient algebra J = J/AS,
since A® is an ideal by lemma 1-14.
A* € Fa’ + [a?] by theorem 1-12,

cFa' + A* since [a?]S A" when [a] = A? is an ideal,

CFa® + Fa' by theorem 1-12 and by the fact that






32
a® = 0. A? = <f,a’ + f,a*> since J has property A.
4e A3 g 3 4
a A® thus a B (CE AR ER G B bUfla3+fza"

£,£,2° + £,£,a" since bU WEAT = (0). 0=

f,a’+f,a
a® = f,f,a"* + £,f,a° = £,f,a%, thus £f,£, = 0 and £, =
0 since a* # 0. Therefore A® = <f,a*>, a®€A? and
;P
a’ = £,f,a* + cU

= f,f,a" since cU AS = (0).

€
£,a" f,a"
a* = (a’)a = (£,f,a%)a = £,f,a® = 0, contradicting the
choice of n. Therefore n < 4. By theorem 1-12,
A% = [a®] + Fa* + Fa®, but [a’]S A% = (0), when [a] = A2,

A% = Fa* + Fa® = (0) since a“ = 0.

Corollary 2-4. Let J be a Jordan algebra with property A.
If A is an ideal of J, then A* = A for n > 4.

Proof. Let J = J/A™ where m is an odd integer
greater then n. A is a nil ideal of J, and by lemma 2-3

K% = (0). Therefore A*C A™MCA™CA*, and A* = A",

Lemma 2-5. Let J be a Jordan algebra with property A,
and let A be an ideal of J. If a" = 0, then AR = (0)
where A = <a>.
Proof. If n=1, A =<0>= (0). Ifn-=2,

A2g Fa? + A® by theorem 1-12,

CFa? + Fa® + [a?] = (0) by theorem 1-12.
In view of lemma 2-1 and lemma 2-2, it may be assumed that
A? = [a] is an ideal of J. If n = 3,
A® € Fa® + [a?] by theorem 1-12,

=

Fa’ + A* since [a?] € A* when A% = [a] is an ideal,
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CFa® + Fa* + Fa® + [a’] = (0) by theorem 1-12.

If n > 4, then A" = (0) by lemma 2-3.

Theorem 2-6. If J is a Jordan algebra with property A,
then all the u-prime ideals are pairwise comaximal.
Proof. Let P) and P, be any distinct u-prime
ideals of J. Without loss of generality one may assume
that P,EP,. Let P, =<p,>. P % =P °clp ] + Fp,°c
[p,*1SP,* by theorem 1-12 and corollary 2-4. Thus
[p] = P,* and p = aUp where p = p,*. lUp =, =
pZUaUP. (1 - sza)Up = 0€P,. By lemma 1-25, p €P, or
1 - p2Ua€ P, If p=p "€P,, then P.SB(P,) =P, by
lemma 1-23, which contradicts P,¢ P,. Thus 1 - p®U¢
‘P

2 and P1 + Pz EHITS

Theorem 2-7. Let J be a Jordan algebra. J has property

=]

A if and only if J = e ] J; where each summand has property
1

A, all but at most one of the summands are simple Jordan
algebras, and each summand is either a simple algebra or
contains only one proper u-prime ideal, which is nilpotent.

Proof. If J has property A, then by theorem
n
1-35, J = @ Z Ji where each summand is either u-prime
i=1

or contains a proper u-prime ideal which is nilpotent.

Suppose that there are two summands Ji, Jk which do not

have property B. There exist ideals A of Ji and B of Iy
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which are not of the form [x] for some x in the ideal.
A ® B is an ideal of J, thus A ® B = <a & b> for some
a€A and b€EB. a€A e B, therefore a = r(a ® b) +
du(aob)' (1 -ria= du, and -rb = dUy since the sum is
direct. 1 - r # 0 or r # 0, without loss of generality
assume r # 0. Thus b = r"dUb and B = [b] contradicting
the choice of B. Therefore all but at most one of the
summands have property B, and by theorem 1-39, they are
a direct sum of simple Jordan algebras. If the remaining
summand is u-prime, then it is simple by lemma 1-36
and theorem 2-6, otherwise it has only one proper

n

u-prime ideal, which is nilpotent. If J = oiZl Ji where
the summands satisfy the conditions given in the statement
of the theorem, then J has identity since each summand

does. Let Ji for i = 2,3,...,n have property B. If C

n
is any ideal then C = e ) Ci where Ci is an ideal of Ty

i=1
Thus C, = <c,>, Ck = [ck] for k = 2,3,...,n and ci€ Ci'
n
Let c = ]} Che There exist elements dks Iy such that
i=1
deck =cy FOr K =123 % pNe Thus dec = cké <c> for
n
k=2,3,...,n, and ¢; = c - E cié <c>. Therefore
i=2

<c> = C and J has property A.
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Theorem 2-8. Let J be a Jordan algebra with property A.
If 2(J) = { x€J : JU =0 }, then 2(J) is an ideal of J
of the form Fx for some x € J.

Proof. Let A = <a> be the nil radical of J.
Kevin McCrimmon has shown that Z(J) SA. Let n be the
smallest positive integer such that a" = 0. Ifn-= 1
A=<0>= (0) =2(3). Ifn=2, A2G[a]l = Ju, = (0) as
in lemma 1-40, and Zz(J) = A = Fa. For n > 2, one may
assume [a] = A? in view of lemma 2-1 and lemma 2-2. If
n=3, A* = (0) by lemma 2-5. For x€2z(J), x = ra + bU_

and 0 = lUx = lUra+bUa

o 2
=r Ua + lUbU + 2Ura,bU
a a

AR 2 2
=r Ua + a UbUa + 2r(ba)Ua by lemma 1-3,
2.2

= r?a? since a’U U, + 2r(ba)u, € A = (0).

b

Since a? # 0, r = 0 and 2(J) S[a] = A?. Therefore z(J)

A% = <a'> = Fa' for some a'€ [a].

If n =4, A* = (0) by lemma 2-5. For x€2(J),

0 = 1U_ = r2a? + aly
X b

n = 3. Thus r?a?€ A®. If r # 0 then a2€ A® and a®e€ A"

U, + 2r(ba)U, as in the case for

(0), which contradicts the choice of n. Therefore r =0

and Z(J) S [a] = A%. For d€[a], d = cU_, then eUy =

= j 4= = = 2 o
eUcUa = eUU U, € A (0). Therefore Z7(J) [a) A

<a'> = Fa' for some a' € [a].
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POLYNOMIAL IDENTITIES IN JORDAN ALGEBRAS OVER

A COMMUTATIVE RING WITH IDENTITY

For any set X, let N(X)' be the free monad
generated by X ([2], pp.23-25), then the free module FR(X)
over Z generated by N(X)' is the free nonassociative ring
generated by X. Let T(X) be the ideal generated by all
the elements of tie form f(x,y) = (x,y,x?) = (xy)x? -
x(yx?) and g(x,y) = xy - yx where x,y € FR(X), then FJR(X) =
FR(X) /T (X) is the free Jordan ring generated by X.

Define h(x,y,z) = (x,y,xz + zx) + (z,y,x?) and
d(w,x,y,z) = (w,x,2zy) + (z,x,yw) + (y,x,wz). Let A(X) =
{ hix,y,2z) : x,y,z€ N(X)' YU{ d(w,x,y,2) : w,X,y,Z2¢€
N(x)' }, and W(X) = A(X)UL g(x,y) : x,y€ N(X)' }. Let

M(X) be the ideal of FR(X) generated by W(X).

Lemma A-1l. FR(X) = M(X) ® P as modules, where P is a
free module over Z.

Proof. Let L(X) = { R, :yeN(X)' UL L,
ye€ N(x)' }U{ identity operator }. where R, anf L, are
right and left multiplication by y respectively. Let

B(X) = { wIT,...Tp ¢ WEW(X), T;€ L(X), and neN }.
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B(X) generates M(X) as a Z-module. Let Q(X)' be the
free nonassociative algebra over the rational numbers Q
( the vector space over Q with N(X)' as a basis ).
FR(X) S Q(X)'. Let M(X)' be the subspace of Q(X)'
generated by B(X). Let H(X) be a basis of M(X)' such
that H(X) & B(X). Extend H(X) to a basis V(X) of Q(X)'
by elements of N(X)'. H(X) is a basis over Z for FR(X).
Thus M(X) is spanned by H(X), and if P is the free
Z-module generated by V(X) - H(X), then FR(X) = M(X) e

P as modules.

Lemma A-2. If w,x,y,z €FR(X), then d(w,x,y,2), g(x,y) €
M(X) .
Proof. The lemma holds by multilinearity of

d(w,x,y,z) and g(x,y) and by the definition of M(X).

Lemma A-3. If y€ FR(X) and z €N(X)', then f(y,z)€
M(X) .

n
Proof. Let y = X n,y. where n.€ 2 and y.€ N(X)'.
15 171 i i

For n = 1, f(n,y,,2) = n,*f(y,,z) € M(X). Assume that
the statement holds for n < k. Then for n =k + 1:
£(y,2z) = (X + Ng41¥k+1/2, (X + Ngy1¥k41)?) where x =
k
izlniyi,
= (x,2,%%) + ng41(X,2,XYk41 + Yk+1X)
+ e (%,2,¥5412) + g (Vg1 ,2,%x%)

+ Oyt (Vi 20X¥ppy + Vi XD + My (Vyep 020y, D)
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= £(x,2) + By, 02) + 0 2hiy,,,2,x)

+ npg hix,z,y4,)
= £(x,2) + Ny, £ (¥ye,02) + npy, *hilypy, . 2,%)

+ Ny ned (Yo 20 ¥4 /W) + Dy imthi(yy, z,¥54,)

+ Ny @ (Y2, W ¥ey,) + ey hwoz,ypy,)

k-1
where w = izlniyi,

k
= f(y,z) +np flyg,,,2) + .Zlnk+,znih(yk+l,z,yi)
i=

+ 0y nkd (Vi 20 Ve W)+ My R Yy, 2 yys)
+ "k+xnkd(yk'z'"'yk+x) + f(nk+lyk+l + w,z)
g k-1
- fWez) =gy (g e2) - .Zlnk+,’nih(yk+A,z,yi)
i=
€ M(X) by lemma A-2, the induction hypothesis, and
by the definition of M(X). Therefore the lemma holds

by induction.

Lemma A-4. If x,y €FFR(X) then f(x,y) € M(X).
n

- '
Proof. Let y izlniyl where yi€ N(X)' and n; € Z.

n n
£(x,y) = £(x, | nyy;) = ] n;f00y;) € M(X) by lemma A-3.
i=1 i=1

Lemma A-5. Let J be any nonassociative ring with a
generating set X. If the polynomial identities g(x,y) =
0, £f(x,y) = 0, h(x,y,z) = 0, and d(w,x,y,2z) = 0 are
satisfied on X, then J is a Jordan ring. In particular

if J is an algebra over a field of characterstic not
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two or three, with the polynomial identities g(x,y) = 0
and d(w,x,y,z) = 0 being satisfied on X, then J is a
Jordan algebra.

Proof. FR(X)/M(X) is a Jordan ring by lemma A-2
and lemma A-4. Since g(x,y) =0, f(x,y) =0, h(x,y,z) =
0, and d(w,x,y,z) = 0 are satisfied on the generating
set X of J, then J is a homomorphic image of FR(X)/M(X)
and is a Jordan ring. If J is an algebra over a field
of characteristic not two or three then: f(x,y) =
%d(x,y,x,x) = 0 and h(x,y,z) = d(x,y,2z,x) = 0 for x,y,z€ x.

Thus by the first part of the lemma, J is a Jordan algebra.

Lemma A-6. If w,x,y,ze€ FR(X), then 2h(x,y,z), 2d(w,x,y,2z)e
T(X).

Proof. Let h'(x,y,z) = h(x,y,z) + h(z,y,x).
For a,b,c € FR(X), h'(a,b,c) = f(a + ¢,b) - £(a,b) - f(c,b)€
T(X). Therefore 2d(w,x,y,z) = h'(w + y,x,z) - h'(w,x,2) -

h'(y,x,z) + gly,x)L,

e g(y,X)Lsz + g(x,z)Lyw -

g(x,z)L L+ g(z,y)Lx N g(z,y)LWLxé T(X). For ne€N,

Wy W

nh(a,b,c) + n*h(b,c,a) = f(a + nb,c) - f(a,c) - f(nb,c)e¢
T(X). Therefore 2h(z,y,x) + 4h(x,y,z), h(z,y,x) +
h(x,y,z)€ T(X), and 2h(x,y,z) = 4h(x,y,z) + 2h(z,y,x) -

2(h(z,y,x) + h(x,y,2)) € T(X).

Lemma A-7. Let S be any Jordan ring, if t(xl,xz,...,xn) =
0 is a polynomial identity for FR(S)/M(S), then

2t(xl,x2,...,xn) = 0 is a polynomial identity for S.
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If in addition h(x,y,z) = 0 and d(w,x,y,z) = 0 are
polynomial identities for S, then t(x ,%,,...,xy) = 0
is also a polynomial identity for S.

Proof. By lemma A-2 and lemma A-4, FR(S)/M(S)
is a Jordan ring, therefore there is a homomorphism
Y:FJR(S) > FR(S)/M(S) such that y(s) = s for s€S. By
lemma A-6 and by the definition of T(S), it follows that
f(x,y), 9(x,y), 2d(w,x,y,z), and 2h(x,y,z) € T(S) for
wW,X,Y,Z € FR(S). Thus the kernel K of y is the Z-module
generated by { aT T,...T : a€ A(S) and Tj€ L(S) } for
L(S) defined in lemma A-1. In FJR(S), t(xl,xz,...xn)e K
and 2t(xl,x2,...xn) = 0. Since S is a homomorphic image
of FJR(S), then 2t(x,,x‘,‘..,xn) = 0 is a polynomial
identity for S. If h(x,y,z) = 0 and d(w,x,y,z) = 0 are
polynomial identities for S, then there is a homomorphism
o:FJR(S) + S such that a(s) = s, and K is contained in
the kernel of a. Therefore there is a homomorphism
B:FR(S)/M(S) + S such that By = a. Since S is a
homomorphic image of FR(S)/M(S), t(x,,x;,...,xy) =0

is a polynomial identity for S.

Lemma A-8. If t(xl,xz,...,xn) = 0 is a polynomial
identity, with integral coefficients, for every Jordan
algebra over the rational numbers 0, then it is a
polynomial identity for FR(X)/M(X) for any set X.
Proof. Since h(x,y,z) = 0 and d(w,x,y,z) = 0

are polynomial identities for Jordan algebras over fields
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of characteristic not two ([3], p.91), there is a
homomorphism B:FR(X)/M(X) + FJ(X)' where B(x) = x for
x € X ( where FJ(X)' is the free Jordan algebra over 0
generated by X ). Let y € FR(X) such that B(y) = 0.
FR(X) is contained in Q(X)', and FJ(X)' = Q(X)'/M(X)"'

where M(X)' is the subspace generated by M(X). Since

n
B(Y) =0, yeM(X)' and y = } r;z; where r;€ Q and
i=1

z; € M(X). Let m be a common denominator of the ri's,
s
thus r; = ni/m for m,niE Z. Therefore my = ;lniz.e

M(X), and my = 0. By lemma A-1, FR(X)/M(X) is isomorphic
to a free module over Z, but this implies y = 0., Thus
8 is a monomorphism, and any polynomial identity with

integral coefficients for FJ(X)' holds in FR(X)/M(X).

Theorem A-9. Let S be any Jordan ring or Jordan algebra
over a commutative ring with identity. If
t(xl,x,,...xn) = 0 is a polynomial identity, with

integral coefficients, for every Jordan algebra over Q,

then Zt(x‘,xx,,..,xn) = 0 is a polynomial identity for
S. If in addition h(x,y,z) = 0 and d(w,x,y,z) = 0 are
polynomial identities for S, then t(x,,%x,,...,xy) =0

is a polynomial identity for S.
Proof. Since any Jordan algebra over a commuta-
tive ring with identity is a Jordan ring, the theorem

follows immediately from lemma A-7 and lemma A-8.
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