
ABSTRACT

NONLINEAR PERTURBATIONS OF

SPECIAL-FUNCTION OPERATORS

BY

Larry Charles Andrews

A systematic perturbation theory is presented for the analysis

of nonlinear forms of boundary-value problems. In particular, those

equations are considered whose unperturbed form belongs to the class

of linear special-function equations. The nonlinear terms are then

regarded as perturbations of the special-function operators. A matrix

representation is obtained for the perturbed operator utilizing the

coordinate (Schrodinger) representation of quantum mechanics, trunca-

tion and diagonalization of which will determine the perturbed eigen-

values and eigenvectors. In most cases the method is applicable even

when the perturbation term is of the same order of magnitude as the

remaining terms, or perhaps even larger. To illustrate this point the

nonlinear Legendre-like equation (d/dx)(l - x2)(du/dx) + Au + ox2u2==0

is solved for those cases when a = l and a = 5. Other examples include

the Hartree equations for the helium atom where a qualitative compar-

ison of the ground state energy is made with experimental data, and a

detailed analysis of the van der Pol equation for a = 0.5 and a = l.
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1. INTRODUCTION

From the theory of representations it is known that a linear

operator L that transforms a Hilbert space into itself gives rise to

a matrix representation of that operator.1 The matrix elements can

be defined by the inner product,

ij = (¢j. L CAR). Cl-l)

where {¢k} represents a complete set of orthonormal vectors over the

space.

We shall extend such representations to certain nonlinear

forms Of special-function Operators, the matrix elements of which can

be computed by algebraic manipulations instead of utilizing ex-

pressions like (1.1). The type of nonlinear Operator to be considered

is represented by the hypergeometric-like form

8 = .9. (1 - x2) _51_ - 2(u + vx) _gl_+ax2uk, (1.2)

dx dx dx

from which we obtain the nonlinear eigenequation

(S + Ak)uk = O. (1.3)

The term axzuk is regarded as a perturbation of the linear hyper-

geometric Operator

L=_£l.(1-x2)_§_-2(u+vx)_‘_l.. (1.4)

dx dx dx

Thus a will serve as the perturbation parameter, but will be treated

as a positive constant of arbitrary magnitude in contrast to the usual



restriction that<1 remain small.2 The Operator S can now be written

S = L + N, (1.5)

where N =(1x2uk. Note that we can further represent N as the product

of a linear perturbationax2 with a nonlinear perturbation uk. For

a = 0, Equation (1.3) becomes a hypergeometric equation with known

eigenvalues and eigenvectors.3 We shall seek an eigenvalue-eigen-

vector solution for Equation (1.3) with a f 0 that will reduce to the

unperturbed solution when we again let a = O.

The perturbation method is of fundamental importance in quantum

theory. The mathematical description of noninteracting particles is

governed by the (nonrelativistic) SchrOdinger equation or by the

(relativistic) Klein-Gordon equation.4 The separation of variables

technique applied to these equations often leads to extended forms of

special-function equations. Because direct solution of these equations

is usually not possible, approximation methods such as perturbation

techniques have proved to be most valuable. In general, though, any

basic field equation of the elementary particles cannot be linear

since it must define interactions between the particles. Heisenberg

suggests that the mathematical form Of such an equation should be

given by

i av §x_.+ 22 0V: x(x* 0v x): = 0, (1.6)

BXV

where x(x) is a local field Operator, the 0V are the conventional

Pauli matrices, and 2 is an arbitrary constant with the dimension of

S .

a length. (The dots :: in the second term refer to the definition
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of a product of three field operators at the same space-time point.)

The anharmonic oscillator defined by the equation of motion

O + aQ3 = 0, where each dot designates a time derivative, is a simpli-

fied representative of (1.6). When equations such as that for the

anharmonic oscillator define a conservative holonomic system with

time-independent constraints which possesses a kinetic energy that is

homogeneous-quadratic, then the system may equally well be described

by a linear SchrOdinger equation through an application of the

Hamilton equations Of motion. De Broglie has also suggested the

existence of a nonlinear wave equation like (1.6) in accordance with

his double solution theory.6

Thus it seems natural to consider perturbation methods for

approximating solutions Of these nonlinear equations. However, the

nonlinear terms are Ordinarily of the same order of magnitude as the

linear terms, so that conventional perturbation theory is not appropriate.

It is for this reason, and because of the possible area of application

cited, that we present our perturbation method from a quantum mechanical

point of view, although this is not essential.

It is most convenient to write differential Operators in terms

of dynamical variables (observables such as position, momentum, and

energy), but these variables must be treated as operators which are

generally noncommutative.7 The commutations of such operators are

proportional to the classical Poisson brackets, i.e.,

[Q: R] = QR " RQ = j-{QaR} 3 (1°7)

where Q and R represent two quantum mechanical operators and { , }

denotes the Poisson brackets.8
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We wish to write the differential equation (1.3) entirely in

terms of dynamic variables. This involves the transformation of the

functions uk(x) of the differential equation to the vectors w(k)(q)

of the Operator equation. Such a transformation can be represented

by9

_. ' (k)

”k(X) = w(0) e1px 1 (q). (1 8)

where x is treated as an unrestricted coordinate variable and where

p and q satisfy qp - pq = i (with‘fi = 1). In addition to (1.8) we

shall also find it useful to establish the two relations

x URCX) = TAO) eipx qw(k). (1 9)

d (0)
- i a.)_(.uk(x) = $' eipx pw(k). (1.10)

To verify (1.9) we first note that since

x e1px = eipx q - q eipx, (1.11)

it follows that

E{O) x eiPx W(k)
x uk(x)

_ ETD) eipx qw(k) (1.12)
1

where it is assumed that qwco) = 0. We verify (1.10) merely by

differentiating (1.8). Thus, using (1.8), (1.9), and (1.10) it is

easily deduced that

(k)
Tm) e11px pa - q21p w , (1.13)

d _ 2

a§'(1 x )

9
-
0
-

>1
:



201 + vx) $13 = "(7(0) eiPx 2101 + vq1p W), (1.14)
X

1kuk = ITO) eiPX 1(k) ((k). (1.15)

The nonlinear term in (1.3) requires further analysis in its trans-

formation to Operational form. We write

N l

(XX u -<1x2 $10) eiPx ¢(k) ETC) eiPx (Ck)

(k)-(0) 'W 1px

e aq2 W(q,w ) w(k) (1.16)

where W(q, wck)) = u(k) 6(0) eipx is in general some operator function

of q and u(k). For most of the applications we have in mind, however,

(k)
we can express this operator as V(q) w where, as will be shown in

Section 2, V(q) is automatically absorbed in the process of forming

the matrix elements of the nonlinear operator. Hence, (1.16) becomes

_. . .. 2

axzui = w(0) e1px <1q2 V(q) w(k) ; (1.17)

and combining our results we may now rewrite (1.3) in the operational

form

(A - 1(k3)w(k) = o, (1.18)

where

A -- pa - q2)p + 2101 + vq)p - mq2 V(q) 10‘). (1.19)

In general, the Operator A may be taken to have the form

A = I‘(P, q)B(p. q) + Mp. q)ch. q. W”). (1.20)

where B represents an unperturbed self-adjoint linear operator, T



and A represent non-singular linear perturbations, and Z is a non-

linear perturbation. For the above case

B = p(1 - q2)p + ZiCu + vqlp.

r = 1,

A = - aqz,

2=meWL (Lu)

Thw30ther examples of differential equations with their Oper-

ational forms are:

2

(l) §_%k + (Ak - x2)uk + axuufi = 0,

x

_ 2

[p2 + q2 - an ch) w(k) - A‘k)] w(k)= o.

B = P2 + qz.

r = 1,

A = - aq“,

Z = V(q) v(k)2.

_ 2 41_ _ 2 du _ 2 £23 =
(2) (l ax ) dx (1 x ) E;k + 2a(l x )xuk dx +Akuk 0,

[(1 - aq2)p(1 - qzlp - ia(1 - qzlqp VIq) w(k) - A(k)]w(k)==0,

B = p(1 -_q2)p.

T = l - aqz,

A = - iacl - q21qp,

Z = VIq) v(k).



The unperturbed form (a = O) of Equation (1.18) is given by

k k

(B - bc ))U( ) = o, (1.22)

where bck) and u(k) denote the unperturbed eigenvalues and eigen-

vectors, respectively. A factorization method for solving linear

eigenequations was suggested by SchrOdinger, developed in the differ-

ential equation form by Infeld and Hull,10 and given its more recent

operational form by Green and Triffet.9 The method is also a power-

ful tool for studying recurrence relations obeyed by the special

functions.11

In the factorization method it is generally assumed that for

some self-adjoint Operator M, whose eigenvalues m we wish to determine,

there exist mutually adjoint (adjoint as used here refers to the

complex conjugate transpose) linear Operators J+, J-, satisfying

[M, J*] = MJ+ - J+M

= J*, (1.23)

[M, J‘] = - J”. (1.24)

If, in addition, they satisfy certain other conditions we say the

Operator B admits a factorization. In particular, if a transformation

can be found such that B has the form

B=p2+wm. man

then Equation (1.22) can be factorized into the two equations

O) ' .

[K(q, M + 1) - 1p] um = [b‘33 _ ,(m , 1)]a U(J)
m+1 (1.26)
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[K(q. M) + 1p] ”#3) = [bcj3 - a(m)] Ufiii (1.27)

with

3* = K(q, M + 1) - ip, (1.28)

J- = K(q. M) + ip- (1.29)

We should point out that Equations (1.26) and (1.27) were originally

presented in the differential equation form

m+1

,
1.30j ( )[K(x, m + l) 5;) uj [bj a(m 1)] u

_d_ m- _ 1: m-1
[1((x, m) + dx] uj — [bj a(m)] uj . (1.31)

It has been shown that a necessary and sufficient condition for

factorization is that §_and a_satisfy the equation

Ji.[K(x, m + 1) + ch, m)] + K2(X. m + 1)
dx

- x2(x, m) + a(m + 1) — a(m) = o. (1.32)

Miller has also shown that Riccati equations similar to (1.32) are

sufficient to determine the 4-dimensional Lie algebras£3(a, b), whose

representations correspond to a study of the special functions of

. ll
hypergeometrlc type.

The factorizations (1.26) and (1.27) now permit us to obtain

the eigenvalues and eigenvectors of the Operator B in a simple and

+ - .
elegant manner. However, the step Operators J , J are not unique,

as more than one factorization is often possible. In addition,

Coulson and Joseph have exploited the use of self-adjoint step
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operators.

Green and Triffet have recently introduced a more systematic

procedure for determining the step Operators.9 They have shown that

construction of a sequence of linearly independent Operators, which do

not commute with the unperturbed Operator B, will ultimately lead to

an apprOpriate form of the Operators. Step Operators determined in

this fashion will usually not be mutually adjoint. However, they re-

tain their most useful properties and are more general than those

defined by the Infeld and Hull factorization technique. Also featured

is the basic notational scheme utilized here and an algebraic method

for finding matrix representations of linear operators which has been

adapted to the present purpose.



2. GENERAL DEVELOPMENT

A. Formulation

A nonlinear differential equation of the form

(L + 0N + Ak)uk = 0, (2.1)

where L is a linear differential Operator, N is a nonlinear differ-

ential operator, and a is a constant of arbitrary magnitude, can be

treated as a perturbation problem. The boundary conditions will be

generally based on physical considerations and referred to as

"physical boundary conditions" as opposed to the more common arti-

ficially imposed boundary conditions related to the Sturm-Liouville

equation.14 For the special case when a = 0 Equation (2.1) becomes

linear, so that we Shall regard a as the perturbation parameter.

Writing (2.1) in the Operational form displaying the quantum

mechanical conjugate variables p and q we arrive at

(A - 100M“) = (1‘3 + AZ - 100w“) = o; (2.2)

thus we make the associations PB + L and AZ + N. The linear operator

L consists of a self-adjoint operator, designated by B, multiplied by

a perturbation T (ordinarily unity in the examples to be considered).

The nonlinear Operator N is decomposed so as to separate out the

(k)
dependency on the eigenvectors w

(k)
function of w . Introducing the distinct Operators A and Z is not

; consequently, only Z will be a

necessary but is a convenience for calculating the matrix elements,

since A may then be interpreted as a linear perturbation.

10
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We seek a matrix representation for A,

A. = Z (T. B

Jk n jn nk + Ajnznk)’ (2'3)

diagonalization of which by numerical methods will determine the

perturbed eigenvalues. Hence, we find separate matrix represen-

tations for each of the operators T, B, A, and 2. For each choice of

a basis which defines our Hilbert space we expect a different, but

equivalent, representation. The most convenient basis to select is

the set of normalized eigenvectors belonging to the unperturbed

Operator B; thus the representation for B is the diagonal matrix

- (j)
Bjk — b sjk, (2.4)

where the ch) are the eigenvalues of B and 6jk = 0 for j # k while

5jk = l for j = k. We then proceed to determine the matrix repre-

sentations for F, A, and 2 with respect to this basis.

B. The Operator B

The Operator 8 need be self-adjoint only in the sense that

3': nB*n'1 = B, where 8* denotes the Hermitian conjugate and n is a

positive-definite linear operator. We shall assume that the eigen-

values of B are distinct, nondegenerate and bounded below, but not

above, with b(1) as the first eigenvalue. Certain properties are

characteristic of such an Operator, and these we now list; proofs

15

can be found in the references. ’16
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(1) A linear Operator of the second order in p is

self-adjoint if and only if it has the form

8 = pF(q)p + Gm)-

(2) For a finite domain the eigenvalues form a

denumerably infinite sequence.

(3) The eigenvalues are real.

(4) There exists a complete system of associated

eigenvectors satisfying the orthonormal relations

mm. W”) = 6.
Jk’

We wish to define the step operators JCI), ch) associated

with B that give the recurrence formulas

J(1)u(k) = uCk+1), (2.5)

J(2)U(k) = u(k-l), (2.6)

and obey the commutation rule

[3, J(n)] = A(n)J(n), n = 1, 2 (2.7)

where A(n) designates operators to be determined.

A set of linearly independent Operators J1, J2, ., can be

considered as a basis for some linear vector space. Hence, any

arbitrary operator defined on the space can be represented as a linear

combination of the base vectors, and the Operators J(n) will have

the expansions

(n) = (n) =J 2kagk , n 1, 2 (2.3)
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(n) (n)

k

(2.8) will define the step Operators once the Jk and sin) are

where the 5 are components of J in the given basis. Equation

determined.

Employing (2.8) we note that

[3, .100] = 330‘) - 3003

(n)
£k(BJk - JkB)£k . (2.9)

Since the Jk form a basis for a linear vector space they must satisfy

BJ — J B = X.J.c , 2.10

k R J J jk ( )

where the cjk are either numerical constants or Operators which

commute with B. This is a consequence of the condition that the

Operator [B, Jk] must be representable as a linear combination of the

base vectors. Substituting (2.10) into (2.9) yields

(n) (n)
B, J = X E J, , . 2.11

Comparing (2.11) with (2.7) indicates that the Operators Cjk must

comply with the relation

0‘) (n) (n)
= A 2.12

(n) (n)
which identifies A as the eigenvalues of the matrix cjk and g

as the right-eigenvectors. Accordingly, Equation (2.11) becomes

(11) = (n) (n)
[B,J ] A 23.33.53.

= 10‘) 3‘"). (2.13)
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Usually there will only be two nonvanishing eigenvalues A(n), a

,0)
positive one designated by and a negative one indicated by

AC2).

Equation (2.10) is the defining relation for the sequence of

linearly independent Operators J1, J Experience indicates2’...

that J1 should be chosen as an elementary function of the coordinate

q and then, forming the commutations

8J1 - J18 = chll + J2c21’

BJ2 - J28 ch12 + ch22 + J3c32,

BJ - J B = Z.J.C.k k J J Jk’ (2.14)

successive Operators J2,..., can be determined. In the examples

presented here, where the Operator B is a special-function operator,

such a sequence will always terminate.

In many cases it is desirable to introduce an Operator M,

(k)
where B = B(M), whose eigenvalues m are separated by unity, i.e.,

m(k) = m(1) + k - 1. Such a device usually simplifies the algebra,

as the Operator M satisfies the relations

MJ(1) = J(1)(M + 1), (2.15)

MJ(2) = J(2)(M - 1). (2.16)

When B is a special-function Operator it will be at most a quadratic

function in M,

3 = a0 + alM + a2M2, (2.17)
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where a1 and a2 are numerical constants that may be determined from

the relations

(1) [a1 + a2(2M + 1)]J(1), (2.18)

F
—
.

a
s

b

C
.
)

h
i l
l

- [a1 + a2(2M - 1)]J(2), (2.19)

and (2.7). These give

>

l
l a1 + a2(2M + 1), (2.20)

>

A

II - [a1 + a2(2M - 1)], (2.21)

which can be solved for a1 and a2. Usually the constant a may be

0

placed equal to zero, but in other cases may be determined from the

form of the basic operator B.

Suppose for eXample B = p2 + qz. Selecting Jl = q we have

[8. J1] = pzq - qu

= - 2ip

= 2J2,

[B, J2] = - iqu + ipq2

= Zq

= 2J1,

l

where J2 = - ip. The eigenvalues of the matrix cjk are A( ) = 2 and

(2) . . (1) (2)
A = - 2; the right-eigenvectors are E, = (l, 1) and E! = (l, -l).

. (1) . (2) _ .
Thus we obtain the step operators J = q - 1p and J — q + 1p.

(2)
Substituting A(1) and A into Equations (2.20) and (2.21) suggests

that a1 = 2 and a2 = 0. Here we have a0 = 0 so that B = 2M.
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(1) (2)
Having the desired step Operators J and J , we next apply

them to the calculation of the eigenvalues and eigenvectors of B.

If u(l) denotes the first eigenvector of B then multiplying by J(2)

must give

J(2)U(1) = 0, (2.22)

which follows from Equation (2.6). Multiplying by JCI) yields

J(1)J(2)U(1) = 0. (2.23)

(1) (2) . . .
The operator J J 15 express1ble as a funct1on of B (or M),

J(1)J(2) = f(B). (2-24)

Therefore the first eigenvalue of B or M is determined from (2.23),

which gives

f(b(1)) = 0. (2.25)

Successive eigenvalues of B can be determined from the relations

m(k) = m(1) + k - l and B = B(M).

To illustrate the above for the operator B = p2 + q2 we

observe that

f(3) = J(1)J(2)

= q2 + iqp - ipq + 32

= B - 1

= 2M - 1. (2.26)

Hence, mCl) = l/2 with m(k) = k - 1/2. It follows that the
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eigenvalues of B are

(k)
b = 2m(k)

2k - 1. (2.27)

We will also be interested in the matrix elements for the

(1) (2)
operators J and J . These can most easily be obtained by

writing them as unit step Operators multiplied by their respective

magnitudes. This is analogous to the prOperty that a vector in

Euclidean space can always be written as a unit vector in the

direction of the given vector multiplied by its magnitude. The unit

step Operators will be designated by 3+ and 6 with matrix elements

(8+)jk = 63' k+1, (9-)jk = 6j+1 k (2.28)

Th . (1.) (2) .
e magnitude of J and J can be calculated from

1 l -l

|J( )I = (J‘ )J( 5%. (2.29)

|J(2)l = (3(2)J(2))15, (2.30)

where 3(n) denotes the adjoint of J(n), e.g., the adjoint of

J = a(q) + ib(q)p is 3': a(q) - ipb(q). It can be shown that a

_. . 9 .

relation between J(1) and JCZ) must exist, thus we conjecture

3(1) = (2)
J g(B). (2.31)

Note that 3(1) and J(2) are mutually adjoint only if g(B) = 1. This

distinguishes these Operators from the similar ones referred to in

Section 1 where it was assumed such operators are mutually adjoint.
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Now

J(1)3{1) = f(B)g(B)

= [11mm - 1)]2, (2.32)

and

395(2) = f(B)/g(B)

= [h(2)(M - 1)]2, (2.33)

where h(1) and h(2) are introduced here for notational convenience.

We may therefore express the step operators in the form

3(1) = h(1)(M — 1)e+ = 6+h(1)(M), (2.34)

(2) 31(2)
J a h(2)(M)e_. (2.35)(M-l)

The matrix elements of J(1), J(2) are now clearly given by

(1) 1 k
(J )jk 6 k+1 h( )(m( )), (2.36)

i

(J(2)) 6 h(2)(m(j)). (2.37)

jk j+1 k

For the Operator B = p2 + q2 we have already determined that

f(B) = 3 - 1. Also,

3(1) = q + ip = J(2) (2.38)

so that g(B) = 1, thus Jcl) and J(2) are mutually adjoint in this

particular case. We next resolve
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h(1)(M - 1) = h(2)(M - 1)

%
(2M - 1) , (2.39)

or replacing M by M + l

h(1)(M) = h(2)(M)

= (2M + 1)%. (2 40)

Consequently,

JCI) = 6+(2M + 1)%, (2.41)

3(2) = (2M + 1);2 e_, (2.42)

so explicitly displaying the matrix elements we have

0 /fi' 0 o ...

J(1) = , (2.43)

o o 45 o

o o o /8
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J(2) = . (2.44)

  
C. The Operators F and A

The Operators F and A are not required to be self-adjoint

although we will presume that F is positive-definite. The matrix

representations of both operators can be handled similarly so that

we will only display A in the following discussion.

We denote by A(0) the diagonal matrix whose nonzero elements

are identical with the center diagonal elements of A. Similarly, we

denote by ACr)ef and B:A('r) the matrices whose elements are identical

with those of A in the r-th diagonal above and below the center

diagonal respectively, and zero elsewhere. Hence

A = A(0)+ Z (9:A('r) + A(r)6f), (2'45)

r=l

Mr) = A“) (M).

with matrix elements
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. 6 A(‘r)6 ACT)6 , 2.46

3k 1 1k i til ( k j k+r * j j+r k) ( )

Air) = A(r3(m(k)).

(1)
Also we suppose that A can be represented as a function of J ,

J(2), and M,

+ E (J(1)r3('r) + ECT)J(2)T), (2.47)

g(r) = 50‘) (M).

From Equations (2.34) and (2.35) it follows that

J(1)r = 6:h(1)(M)h(1)(M + 1) ... h(1l(M + r - 1), (2.48)

flnr=flmmm9MM+n.HhQMM+r-nq, 94%

so that upon comparison of (2.45) with (2.47) we identify

Am) = 3(0) (M), (2.50)

A(’r) = B(‘r)(M)h(1)(M)h(1)(M + 1) ... h(1)(M + r ~ 1), (2.51)

a(r) = 3(r)(M)h(2)(M)h(2)(M + 1) ... h(2)(M + r - 1). (2.52)

From these relations the matrix representation of appropriate pertur-

bation terms can now be obtained. This is explicitly illustrated in

Section 3.
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D. The Operator Z

There is an inherent difficulty present in the form of the

operator Z that does not occur for the linear Operators, viz., it is a

function of the unknown perturbed eigenvectors w(k). However, this

difficulty can be alleviated by applying the same techniques character-

(k)
istic of the standard theory. It is assumed that w is a continuous

function of the parameter a (when such a parameter does not explicitly

appear in the eigenequation it can be introduced and later set equal

to one) so that we can form the Taylor expansion about a = 0,

k k k

w( )(a) = ¢( ) + 40f ) + ... , (2.53)

k k

where wf ) is the derivative of w( ) with respect to 0, evaluated at

k

a = 0, and ¢( ) is a normalized eigenvector of the Operator B.

Assuming that Z is analytic we may also expand it about a = 0,

(k)
2(6, 0 )= Y + 021+ , (2.54)

where we define

(R)

Y = 2(09 ¢ )1
(2'55)

and

32 (k)

21 = (k) w) . (2.56)

am 0:0

For first-order perturbations we shall henceforth approximate the

operator Z by Y. The validity of such an approximation will, of

course, depend on the convergence properties of (2.54).

From (2.55) we note the dependence of Y on the index k.
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Since this index will refer to the k-th column in the matrix represen-

tation, we must calculate the matrix elements of Y by columns, i.e.,

for each column, Y is essentially a different operator. It is this

column selection for the matrix elements of Y that constitutes the

primary function of the operator V(q) defined in the Introduction.

For present purposes we have absorbed this operator in the expansion

(2.54).

The Operator Y can be represented in a manner analogous to that

for A. We shall denote by Y(O), 6:Y(-r), and YCr)ef matrices similar

to those defined by the corresponding expressions containing the Oper-

ator A. Thus we write

Y = Y(O) + Z (0:Y('r) + Y(r)ef), (2.57)

with matrix elements

Also if we assume that Y, like A, can be expressed as a function of

2

J(1), J( ), and M, then

Y=E(0)+ Z (J

r l

(1)rE(-r) + B(r)J(2)T) (2.59)
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which, with the aid of Equations (2.48) and (2.49), allows us to make

the associations

3“” = Emcm. (2.60)

Y(’r) = 3("r)(M)h(1)(M)h(1)(M + 1) ... h(1)(M + r - 1), (2.61)

Y(r) = B(r) (M)h(2) (3011(2) (M + 1) ... 11(2) (M + r - 1). (2.62)

Because of the operator V(q), the above representation must be

repeated for each column of the matrix Y, but only those elements that

occur in the given column need be calculated. For example, suppose

that we wish to calculate the matrix elements in the third column of Y

3

¢( ). Utilizing the above Equations (2.57) -

(3)
(2.62) we would Obtain the matrix expression for ¢ ,

that correspond to Y =

P (3) (3) (3) (3) T

¢11 12 13 ¢14 '°°

(3) (3) (3) (3)

3 ¢ ¢ ¢ ¢ ...
¢( ) = 21 22 23 24 . (2.63)

(3) (3) (3) (3)

31 ¢32 33 ¢34 "'

(3) (3) (3) (3)

$41 ¢42 ¢43 44 "'

  
However, out of this matrix representation we only select those elements

in the third column for the representation for Y. Therefore, it becomes

unnecessary to calculate the remaining elements.

To help eliminate other unnecessary calculations in computing

the matrix elements of Y we note that whenever the coordinate q has a
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symmetric matrix representation then

E(r) (2) (2) h(2)
(M)h (M)h (M + 1) ... (M + r - 1)

(-r) (1) (1) h(1)
= E (M)h (M)h (M + l) (M + r - 1). (2.64)

This property means that we need not calculate any of the coefficients

(2 r

of J ) in Equation (2.59), as utilization of the coefficients of

(1)r
J will determine all matrix elements in a given column.



3. A NONLINEAR LEGENDRE-LIKE EQUATION

A. Formulation

For the special case of Equation (1.3) when u = v = 0 we Obtain

the nonlinear Legendre-like equation

-£L 1 - x2 ii.+ axzu + A u = 0 3.1

which in Operational form featuring p and q becomes

[3(1 - q2)p - aqzVIq)w(k) - A(k)]w(k) = 0. (3.2)

Expanding w(k) in a Taylor series about a = 0 yields

w(k) = ¢(k) + awgk) + ... (3.3)

where 6(k) again represents the normalized eigenvectors of the un-

perturbed Operator. Hence we may write

[p(1 - qzlp - aqzVIq)(¢(k) + awfk) + ...) - A(k)]w(k) = 0, (3 4)

and, upon retention of linear terms only in a, we finally Obtain

[3(1 - q2)p - aqzVIq)¢(k) - A(k)]v(k) = 0. (3 5)

Thus we can identify the Operators

B = 3(1 - qzlp.

r = 1,

A = - aqz.

Y = V003“). (3.6)

26
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Next we must find the eigenvalues and eigenvectors of the un—

perturbed Operator B, then the matrix representations of the operators

A and Y can be constructed.

B. The Operator B

The unperturbed form of Equation (3.5) is given by

[p(l — q2)p - b(k)]U(k) = 0. (3.7)

To determine the associated step operators J(1), J(2) it is convenient

to select J1 = q; then

[8. J1] [32. q] - q2[p2, q] + Ziq[p. q]

- 21(1 - q2)p + 2q

2(J1 + J2), (3.8)

{- ip(1 - q2) + 1(1 - q2)p} p(1 - q2)p[8. J2]

i[p. q2]p(1 - q2)p

ZJlB, (3-9)

where J2 - 1(1 - q2)p. The eigenvalues of the matrix cjk are

A(1) = l + (l + 4B)%, A(2) = 1 - (l + 4B)%. To avoid the square root

M(M + 1) so that A(1) = 2(M + 1) and A(2) = - 2M. Thewe set B

right-eigenvectors of cjk are 2(1) = (M + 1, 1), 2(2) = (M, - 1),

hence

J(1)

J(2)

q(M + 1) - 1(1 - q2)p. (3 10)

QM + 1(1 - q2)p. (3 11)

where we have made use of Equation (2.8).
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Now

f(B) = J(1)J(2)

[q(M + l) - i(l - q2)p]J(2)

qJ(23M - 1(1 - q2)pJ(2)

szz + iqCI - q2)pM - 1(1 - q2)qu

+ (1 - q2)p(1 - q2)p

M2 - (1 - q2)M(M + 1) + (1 - q2)p(1 - q2)p

M2. (3.12)

from which we conclude the first eigenvalue of M is m(1) = 0.

Therefore, m(k) = k - l and by applying the relation b(k)= m(k)(m(k)+1)

we then have

b(k) = k(k - 1). (3.13)

The first eigenvector u(l) satisfies

J(2)U(1) = 0. (3.14)

or in differential equation form

(1 - x2)9§l-= 0, (3.15)

where v1 corresponds to the unperturbed eigenfunction. Therefore, v1:

constant is a solution of (3.15). Successive eigenvectors are de-

termined from

U(k+1) = J(1)ku(1), (3.16)
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which in differential equation form becomes

vk+1 = [(k + 1)x + (x2 - 1) j§.]kv1

k

= Ck _9_k_ (x2 - 1)]" (3.17)

dx

where the C 's are constants. Normalization of the eigenfunctions Vk
k

yields

_ 1 y -
Vk(x) " (k ' 3).? pk_1(X), (3 18)

1 dk k
where Pk(x) = -———--——-(x2 - l) are the well-known Legendre poly-

k . k
2 k. dx

nomials.17 The normalized eigenvectors Of (3.7) are then given by

1

8(k) = (k - l.)é Pk_1(q). (3.19)

2

The function g(B) is easily determined from the relation

3T1) = J(2)g(B). (3.20)

We have

3(1) = (M + 1)q + ip(1 - qz)

(M + 1)q + 1(1 - q2)p - 2q

(M - 1)q + 1(1 - q2)p. (3.21)

From (3.10) and (3.11) it follows that

q = (3(1) + J(2))/(2M + 1) (3.22)

and

- 1(1 - q2)p = [J(l)M - J(2)(M + 1)]/(2M + 1). (3.23)
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Inserting (3.22) and (3.23) into Equation (3.21) gives

3(1)

= [J(1)M + J(2)(M - 2) - J(1)M + J(2)(M + 1)]/(2M + 1)

= J(2)(2M - 1)/(2M + 1),

from which we see that

g(B) = (2M — l)/(2M + 1).

Thus

h(1)(M - 1) [f(B)g(B)]*

M(2M - 1)x/(2M + 1);5

and

h(2)(M - 1) = [fan/g(B)];é

M(2M + l)%/(2M - 1)%.

Summarizing results for the Operator B we have:

(‘0- B = P(1- q2)p. n =1

(b). B = M(M + 1)

(°)- J, = q = (J(1) + J(2))/(2M + 1)

J2 =-i(1 - qzlp

[J(1)M - J(Z)(M + 1)]/(2M + 1)

(d). f(8) = M2. g(B) = (2M - 1)/(2M + 1)

(M -1)(J(1) + J(2))/(2M + 1) - [J(1)M — J(2)(M + 1)]/(2M + 1)

(3.24)

(3.25)

(3.26)

(3.27)
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(e). m(k) = k - 1, 6(k3 = k(k - 1)

(k) = ' - l(f). 4 (k 2);: Pk_1(q)

(g). h(1)(M) = (M + 1)(2M + 1);‘/(2M + 3);‘

h(2)(M) (M + 1)(2M + 3);5/(2M + 1);”

(h). J(2)J(1) = h(2)(M)h(1)(M) = (M + 1)2

C. Matrix Representation for A

The matrix representation for A = - aq2 can readily be obtained

from the expression

q2 = M2[(2M + 1)(2M - 1)]'1 + (M + 1)2[(2M + 1)(2M + 3)]'1

+ J(1)2[(2M + 1)(2M + 3)]'1 + [(2M + 3)(2M + 5)]‘1J(2)2, (3.28)

derived by employing (c), (d), and (h) from the above list of properties.

From Equation (2.47)

A . E(0) . E (J(1)rE(-r) . B(r)J(2)r) (3.29)

r=1

so that we may also identify

3(0) (M) = - a(M2[(2M + 1)(2M - 1)]-1+ (M + 1)2[(2M + 1)(2M + 3)]'1}

(3.30)

E(’2)(M) = - a[(2M + 1)(2M + 3)]‘1, (3.31)

B(2)(M) = - O[(2M + 3) (2M + 5)]‘1, (3.32)
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while all other Ecr)(M) are zero. Hence, from Equations (2.50) -(2.52)

and

h(1)(M) = (M + l)[(2M + 1)/(2M + 3)]%, (3.33)

h(2)(M) = (M + l)[(2M + 3)/(2M + 1)]%, (3.34)

we have upon simplification

A(O)(M) = - a(2M2 + 2M - 1)[(2M - 1)(2M + 3)]‘1, (3.35)

A(-2)(M) = 3(2)(M)

= - a(M + 1)(M + 2)[(2M + 1)(2M + 3)2(2M + 5)]‘5. (3.36)

Since m(k) = k - 1, we obtain for the matrix elements

A. = A(0)(m(j))6. + A(‘2)(m(k))5. + A(2)(m(j))6 (3.37)

Jk 3k 3 k+2 j+2 k

or finally

D

I
I

- 2. 2 _ _ l_ + l _ 3 .

kk 2 (k k 2)/[(k E-)(k i9]. (3 38)

Ak k+2 ‘ Ak+2 k

- 2.1(k + 1)/[(k + l)2(k - 1)(k + §)]%, (3.39)
4 2 2 2

and all other Ajk = 0.
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D. Matrix Representation for Y

The results of the two preceding sections are among those tabu-

lated for linear operators by Green and Triffet.9 However, by making

use of the relation q = (J(1) + J(2))/(2M + 1) we can now extend these

results to include certain nonlinear operators by formulating the

2)
normalized eigenvectors of the Operator B as functions of Jcl), J( ,

and M, i.e.,

<1“) = (1/2)? (3.40)

4‘” = (3/2)3°-q

= (3/2)%(J(1) + J(2))/(2M + 1), (3.41)

4“) = % (5/2);§(3c12 - 1)

.1 (5/2)%{3[(J(1) + 3(2))/(2M + 1)]2 - 1}, (3.42)

2

Keeping in mind that the matrix elements for Y must be calcu-

lated by columns as determined by V(q), we have for the first column

(Y = 3(1))

B(O)(M) = (1/2)%. (3.43)

Therefore

5“” (0) (1/2)$5 (3.44)

and the only nonzero matrix element in this column is
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Y11 = (1/2)%. (3.45)

For the second column (Y = 3(2))

E(0)(M) = 0,

E('1)(M) = (3/2)%/(2M + 1), (3.46)

so that by Equations (2.57) (2.62) the only nonzero matrix elements

must be

= 3(4) (0)h(1) (0)
12

= (1/2)%, (3.47)

Y22 = 3(°)(1)

= 0, (3.48)

v32 = 3(‘1)(1)h(1)(1)

g-(5/2)%. (3 49)

For the third column

= §.(5/2)%{M2[(2M + 1)(2M - 1)]"1 + (M + 1)2[(2M + 1)(2M + 3)]‘1- %.

+ J(1)2[(2M + 1)(2M + 3)]-1 + [(2M + 3)(2M + 5)]'1J(2)2}. (3.50)

Thus

E(0)(M) = %.(5/2)%{M2[(2M + 1)(2M - 1)]”1
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+ (M + l)2[(2M + 1)(2M + 3)]‘1 - é),

3(‘2)(M) = ;.(5/2)%[(2M + 1)(2M + 3)]‘1, (3.51)

and the matrix elements become

Y13 = E('2)(0)h(1)(0)h(1)(1)

= (1/2)%, (3.52)

v33 = 3(0)(2)

= .3. (5/2)? (3.53)

Y53 = 3('2)(2)h(1)(2)h(1)(3)

= g (1/2);§. (3.54)

Again, the elements not listed in a given column are to be taken as

zero. Following the same procedure for ¢(4)3 ¢(S)3 ..., will de-

termine as many columns of Y as may be needed.

E. Summary of Results

The first few matrix elements calculated for B, A, and Y as

they appear in the nonlinear Legendre-like equation (3.1) are dis-

played below:

.1

F3 0 0 0

0 1 o ...

3 = 0 6 o ... . (3-55)

0 0 12

__............... J)  
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. 1/3 0 2/3/5' ...q

A = - o 0 3/5 0 , (3.56)

2/3/5 0 11/21

’1/72 1/72 1/72 ...1

0 0 0

Y = 0 2//1_0 2/577/‘2' . (3.57)

0 0 0

0 0 6/75

  
Combining these results gives the desired matrix representation for

A,

Ajk = b(J)5jk + ZnAannk. (3.58)

A FORTRAN program, described in the Appendix, was used to find the

eigenvalues and eigenvectors of the resulting nonsymmetric matrix.

The eigenvalues corresponding to a = 1 were computed by truncating

A to 10 rows and columns. These are listed in Table 1, along with

comparable values computed by the standard perturbation method as

presented, for example, by Saaty and Bram.

The reason that every other value agrees exactly is that the

nondiagonal elements of A are zero for every other row, hence the

diagonal element is itself an eigenvalue. This is a peculiarity of

the particular matrix being considered. The difference in the other
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Table 1. A comparison Of eigenvalues for

Equation (3.1) obtained by standard and

matrix perturbation methods with a = 1.

 

 

 

 

Standard Method Matrix Method

k 10‘) k 10‘)

1 - 0.23570 1 - 0.24990

2 2.0000 2 2.0000

3 5.3977 3 5.3943

4 12.000 4 12.000

5 19.631 5 19.638

6 30.000 6 30.000

7 41.703 7 41.709

8 56.000 8 56.000

9 71.744 9 71.750

10 90.000 10 90.000  
 

eigenvalues can be accounted for by the fact that standard pertur-

bation theory presumes that the matrix A is essentially a diagonal

matrix from the beginning, i.e., all nondiagonal elements are either

zero or negligible in comparison with the diagonal elements. For

such a matrix the eigenvalues can be approximated by the diagonal

elements themselves. To assure that the nondiagonal elements are small

conventional theory requires that the perturbation parameter a be

small, thus forcing the desired condition. When a = l the nondiagonal

elements of the matrix (3.58) are relatively small so that the two

methods of computing eigenvalues give nearly the same results. But,

as 6 increases in magnitude a great deal more error is introduced by

neglecting these nondiagonal elements of A.

To present a qualitative comparison of the two methods we shall

examine how accurately the eigenvalues and eigenfunctions satisfy the

original equation. The first eigenvalue and eigenfunction (k = 1)
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computed by the standard theory are

A1 = - 0.23570 (3.59)

and

u1(x) = v1(x) + 0.0351 v3(x), (3.60)

where vk(x) is defined by Equation (3.18). Substituting these ex-

pressions into Equation (3.1) yields the inequality

|Ji.(1 - x2) 921 + Alul + x2u§| :_0.069, [x] :_1, (3.61)

dx dx

whereas an exact solution would reduce the right-hand side to zero.

The corresponding eigenvalue and eigenfunction for the matrix method

are

A1 = - 0.24990 (3.62)

and

u1(x) 2 vl(x) + 0.0374 v3(x) + 0.0008 v5(x) + 0.0001 v7(x). (3.63)

Substituting these values into Equation (3.1) yields

|j%.(1 — x2) g?) + Alul + x2u§| :_0.004, |x| :_1. (3.64)

Equation (3.60) has been limited to the sum of two unperturbed eigen-

functions because that is all the standard theory predicts. On the

other hand, the matrix method generates an infinite series of terms,

the first four of which have been used for this calculation.

To provide an example where the perturbation term dominates

the remaining linear termswe have chosen the case where a = 5.

Table 2 contains the eigenvalues obtained by truncating A to 25 rows



and columns.
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computed into Equation (3.1) gives

d

dx X

I——-(l - x2) £21 + Alul + 5x2u§l :_0.44, le 5.1.

Substituting the first eigenvalue and eigenfunction

(3.65)

This represents substantially more error than for the case when

a = l, but it still may be considered a fair approximation for a

first-order perturbation. NO attempt at comparison with standard

perturbation theory is made, since the latter is not expected to

give even a qualitative solution for such a large perturbation.

In general the amount of error will increase with an increase

in the magnitude of a, Additionally, for the nonlinear theory a

significant amount of this error can be introduced when we approxi-

mate equations like (3.2) with equations like (3.5). No similar

approximation occurs in the linear perturbation theory, and it is

this point that most clearly sets the one apart from the other.

Table 2.

given in Equation (3.58) with o = 5.

Eigenvalues for the matrix

 

 

 

 

k 1(k) k 1(k)

1 - 1.6896 14 182.00

2 2.0000 15 209.04

3 3.0686 16 240.00

4 12.000 17 271.08

5 18.309 18 306.00

6 30.000 19 341.07

7 40.591 20 380.00

8 56.000 21 418.97

9 70.758 22 462.00

10 90.000 23 504.78

11 108.88 24 552.00

12 132.00 25 598.51

13 154.97   
 



4. GENERAL NONLINEAR SPECIAL-FUNCTION OPERATORS

A more generalized form of the nonlinear Legendre-like

equation, as well as other types of nonlinearities, may appropriately

be treated by the perturbation method. It is not essential to re-

strict considerations to equations Of the special-function type, but

when other kinds of equations are featured expressions like (1.1)

generally must be used for computing the matrix elements. This can

sometimes result in a computational disadvantage.

A. A Nonlinear Hypergeometric-like Equation

Again consider the nonlinear hypergeometric-like equation

introduced in Section 1,

d 2 d d 2—_. l - x .__ - 2 + vx __.+ ax u + A u = 0. 4.1
[dx ( ) dx (U ) dX k k] k ( )

For first-order perturbations the Operational form becomes

[p(1 - q2)p + 2101 + 14011 - aq2V(q)¢(k) - 1m] 10‘) = o (4.2)

with

B = 3(1 - qzlp + 21(u + vq)p.

r = 1,

A = - 9612.

y = V(q)¢(k). (4.3)

Since most Of the special-function equations can be Obtained

from the hypergeometric equation we feature it as a general example,

the results of which may be applied to many other equations through

appropriate transformations.

40
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Following procedures similar to those of the last section we can

obtain for the unperturbed Operator B the relations

B = 3(1 - q2)p + 21(u + vq)p.

n = (1 - q)'(“*v)(1 + q)'(V'“).

3 = (M - v)(M + v + 1),

J = q = (J(1) + J(2))/(2M + 1) - uv/[M(M + 1)].

J2 = - i(1 - q2)p

=[J(1)(M - 0) - J(2)(M + \) + 1)]/(2M + 1)

+ “(M - V)(M + 6 + l)/[M(M + 1)],

f(B) = M2 + u262/M2 - 02 - 62,

8(3) = (2M - 1)/(2M + 1),

6(k) = (m(1) + k + v)(m(1) + k - v - 1),

where m(1)2 + 3262/m(132 = “2 + V2.

Details Of computing the matrix elements of A and Y will be

omitted since they are analogous to those given in Section 3. To

represent A = - aqz, however, we note that

q2 = R1(M) + J(1)2R2(M) + R2(M + l)J(2)2

1. J(1)33(M) + R,(M)J(2) (4.4)

where the following have been defined for notational convenience:



31(M)

R2(M)

Rch)

R.(M)

Thus we

By setting M = m

element
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f(B)/[(2M + 1)(2M - 1)] + h(2)(M)h(1)(M)/[(2M + 1)(2M + 3)]

+
32v 2/[M2(M + 1)2],

[(2M + 1)(2M + 3)]-1,

- uv{[M(M + 1)]”1 + [(M + 1)(M + 2)]'1}/(2M + 1),

- uv{[M(M + 1)]"1 + [(M + 1)(M + 2)]‘1}/(2M + 3).

identify

3(0) = — GR1(M),

A(1) . A(-1)

= - 0R3(M)h(1)(M),

A(2) . A(~2)

(k) m(k) = m(1) , k _ 1,
9

5

_ (k)
Akk -"aR1(m ),

A = A

k k+l k+1 k

01R:‘3(m(k))[m(k+'1)2 + pzvz/mowl)2 - “2 - v2]$2

x [(2ka) + l)/(2m(k) + 3)]5

-OR2(M)h(1)(M)h(1)(M + 1).

(4.

(4

(4.

(4

(4.

(4

(4.

we calculate the matrix

(4.

(4.

5)

.6)

7)

.8)

9)

.10)

11)

12)

13)
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A A

k k+2 k+2 k

_ OR2(m(k))[m(k+1)2 + u2v2/m(k+1)2 _ u2 _ v2]%

x [m(k+2)2 + quZ/m(k+2)2 _ u2 _ vzfg

x [(2m(k) + l)/(2m(k) + 5)]%. (4.14)

All elements not listed are to be taken as zero.

For the Operator Y we start by assuming that the normalized

.
i
‘
“
t
—
r
fi
W
-
I
N
D
-
t
n
.
”

ieigenvectors of B are of the polynomial form

N

((1‘) = Z Cmq“. (4.15)
n=0 n

where the Cik) are constants. When this is not the case the eigen-

vectors can always be approximated by a polynomial through the use

of a truncated Taylor series. For the first column (Y = ¢(1))we

have

E(O)(M) = 031) (4.16)

so that the only nonzero element in the first column is

_ (1)Y11 _ c0 . (4.17)

The second column has

Y .__ ,(2)

C52) + C£2)q

cgz) + cf2){- uv/[M(M + 1)] + J(1)(2M + 1)‘1

+ (2M + 3)'1J(2)}, _ (4.18)
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from which we identify

E(0)(M) - C52) - Cf2){uv/[M(M + 1)]},

E(’1)(M) = Cf2)(2M + 1)'1. (4.19)

Thus the matrix elements are

Y12 '

= Cf2)[m(2)2 + quZ/m(2)2 _ u2 _ 021%

x [(2m‘1) + 1)(2m(1) + 3)]“2. (4.20)

YZZ = E(0)(m(2))

= ng) - Cf2)[uv/m(2)m(3)], (4.21)

Y32 = 5"1)(m(2))h(1)(m(2))

(31(2) [m(3)2 + 1J2V2/m(3)2 _ U2 _ v2];§

x [(2m(2) + 1)(2m(2) + 3)]'%. (4.22)

Subsequent columns can be computed in the same manner.

B. Other Forms of Nonlinearity

Theoretically, matrix representations can be found for any

nonlinear perturbation for which a Taylor series expansion like (2.54)

exists. Listed below are more examples of nonlinear special-function

operators illustrating certain other forms of nonlinearities. In

addition to the first few matrix elements of the perturbations, we have

tabulated the operator relationships essential for obtaining the

matrix elements. Details of the calculations are omitted since they

are analogous to those already presented.
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1. Nonlinear Legendre-like Harmonics
 

d 2 du 2 du
-—- l - x + 20 l - x u + A u = 0,

dx ( ) dkk ( ) Eik k k k

_. (k
p(1 - 42)p - 14(1 - q2)pch)¢ ),>

*

H

a
!

H

p(1 - q2)p = M(M + 1),

F = 1,

- 10(1 ' q2)P3D
)

H

V(q)¢(k),.
.
<

H

+q = (J(1) + 1(2))/(2M 1),

- i(1 - q2)p = [J(1)M - J(Z3(M + 1)]/(2M + 1),

3(3) = M2. g(B) = (2M - 1)/(2M + 1).

b(k) = k(k - 1), m(k) = k - 1,

(k) _ _ )_3
¢ ‘ (k 2) Pk_1(Q)3

where Pj(q) is the j-th Legendre polynomial,

ak(k - 1)/[(2k - 1)(2k + 1)]%,
Ak+1 k

__ _ 16
AR k+l — ak(k + l)/[(2k 1)(2k + 1)] .

The matrix elements of Y are exactly those given in Section 3 for the

nonlinear Legendre-like equation discussed there.
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2. Nonlinear Hermite-like Harmonics
 

2

d u 2x 22k

2k
dx dx

+ OXUE + Akuk = 0,

(k)2

2 aqVIq)¢ .A p + Ziqp

2

C
1
7

l
l 2M,3 + 2199

r = 1,

A='aq:

Y = VIQ)¢(k)23

ip = ch),

f(B) 2M, g(B) = 1,

(k) (k)
b 2(k - 1), n) = k — 1,

k- -9

4(k) [2 11550 - 1):) zuk_1(q).

where Hj(q) is the j-th Hermite polynomial,

Ak+1 k = Ak 3+1

L

= " “(k/2) 2,

_ ;2 -
Y11 - (l/n) , le — 0, ...

'8
Y21 = 0, Y22 = (9/n) , ...

Y31= 0, Y32 = 0, 000
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The above unperturbed Operator B = p2 + Ziqp is related by a similarity

transformation to the familiar harmonic oscillator Operator B' -

p2 + q2, which we have featured as an illustrative example in Section 2.

3. Nonlinear Laguerre-like Harmonics

 

x $211 + (1 -x) 533;). + 01qu sin (uk) + Akuk = 0,

A = 932 - i(1 - q)p - <1qu sin (41m). "

:.

B=qu-i(1-q)p=M,

r = 1,

A = - 99.

Y = V(q) sin (40”),

q = (3(1) + 3(2)) + 2M + 1,

{(3) = M, g(B) = 1.

13m =k-1,m(k)=k-l,

¢(k) = Lk_1(q),

where L. (q) is the j-th Laguerre polynomial,

J

Akk = - 01(2k - 1),

Ak+1 k = Ak k+1

= - “1‘35,

 



0.0,
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-1- sin (1),

2

0,

l
- -2- cos (l),

.00,

 

  



5. OTHER EXAMPLES

A. The Hartree Equations for the Helium Atom

Thelkutree equations for the helium atom are classic examples

of nonlinear equations arising because of the interactions between

particles. They follow from applying the theory of the self-con—

. .18 . .
Sistent field to the Ham1lton1an

H=— V2+V2 -.i-i+__za Sol(1 91.11.21,”. ()

where};1 and}:2 are the coordinates of the two electrons relative to

the nucleus, r12 = r21 represents the distance between the electrons,

and a is a parameter related to the strength of the Coulomb repul-

sion between the electrons. Spin-dependent forces are neglected.

The central-field postulate is the general principle under-

lying the Hartree selfeconsistent field. It is assumed that each

electron moves independently of the other in a central potential

representing the Coulomb potential of the nucleus and the averaged

Thus the time-independentpotential field of the remaining electron.

wave function of the helium atom is written as

1165,. 5,) = u(1)(;,)u(23(3,), (5.2)

where

(j) (J') (J') - _
u (£J.)~Rm (rjnrm (ej. 4j). 3 - 1. 2 (5.3)

designates the one-electron orbitals. Here r, e, (p are the standard

49
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spherical coordinates, the Y3!) are the spherical harmonic functions

18
and the R0) are radial functions.

n2

Applying the principles of the calculus of variations to the

total energy of the atom we obtain the two nonlinear radial equations

 

u
: 7'

.‘
b. 1
L

(. . .

[— d2 +££LLll - i + 39 S(r , n, 1)] 3n? = 33))13), (5.4)

O??- 1‘? I'. I‘. i

J 3 J J E

for j - l, 2, (L.-

(J') (3')
Pn1 (rJ) rjan (rj), (5.5)

and

1'. - 0° . r.

8(rj. n. 1) = ((3123 (rinzeu-i + 1[(13%) (111)]2 (i) dri. (3.6)

J

where i = l, 2, but i 75 j.

When a = 0 Equations (5.4) both become hydrogenic radial

equations with the Operational form

[p2 + 2(2 + 1)q'2 - 4q'1 - b(k)]U(k) = 0. (5.7)

The operator B = p2 + 2(2. + l)q’2 - 4q"1 does not lend itself to the

calculation of the step operators J0) and J(2) as we have defined

them. This is a consequence of the fact that the discrete eigenvalues

of B are bounded above, as will soon be made clear. We consider the

transtrmation

k _()3. _ _ (10) a p (M)
,
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Q? - P0 = i, which transforms the operator B to

3' = ()32 + Q + 2(2 + 1)Q'1, (5-9)

with the associated eigenequation

3'u(k) = 4(- (300)-1/2 u(k). (5.10)

Hence, the eigenvectors of B' in the coordinate Q are the same as

for B in the coordinate q. Following the procedure of Section 2 the

step operators of B' are determined to be

J(1) Q - iQP - M, (5.11)

J(2) Q + iQP - M. (5.12)

Utilizing these we may obtain the relations

3' = 2M,

J1: Q = 10(1) + J(2)) + M,

2

J2 = - iQP = %.(J(1) - J(2)),

f(B) = M(M - 1) - 2(9. + l), g(B) = l,

b'(k) = 4(- b(k))’% = 2(k + 1),

(k) 1+1 -Q 2£+1

U = 2 , 5.13(29) e 1M (Q) ( )

m . 17

where n = k + 2 and the L.(x) are generalized Laguerre polynomials.

Thus, the eigenvalues and normalized eigenvectors of B are given by

 

i
.
‘
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b(k) = - 4/“2, n = 1, 2, 000, (5.14)

2+1

(k)__ 2(n - R. - 1)! 1(1) -2q/n 2£+1

" L 4 . 5.15

¢ “2““ 4' 2):]3 n e n+2. ( q/n) ( )

The perturbing operators A and Y for Equations (5.4) also

have similar forms defined by

A = zoq'l, (5.16)

and

Y = V(q)S(q. 11. 1). (5.17)

Because the discrete eigenvalues b(k) have the upper limit

(k), of the operator B, do not formzero the discrete eigenvectors 6

Therefore, as suggesteda complete system of orthonormal vectors.

above, they do not provide a suitable basis for a matrix representa-

tion. The eigenvectors associated with the operator B' do form a

complete orthonormal system, however, and it is this set that we

shall utilize for our matrix representations, even though the Operator

B will no longer be diagonal.

To calculate the ground state energy of the helium atom we

seek to diagonalize the matrix

A = B + AY, (5.18)

where B represents the energy of one electron due only to the Coulomb

potential of the nucleus and AY expresses the energy of interaction of

the electrons. To the first eigenvalue Of A must be added the energy
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(1)
b of the other electron due to the potential of the nucleus alone.

Our matrix representation will be based upon the condition that 2 = 0

even though this is not entirely correct whenever n > 1; there is a

degeneracy in the 2 quantum number but the major contribution to the

energy occurs for 2 = 0. Also for 2 = 0, the operator Y can be approxi-

mated by18

Y = 1 — (1 + 2q/n)e-uq/n. (5.19)

Because the form of the perturbation does not lend itself to

the operator method of computing matrix elements in this case we have

utilized an analytical technique, a general discussion of which is

presented in Section 6. The matrix representations for B and AY can

then be defined by

G) , k

3. = f ¢(J)B¢( ) dq (5.20)

Jk o

and

” (') -1 (k)
(AY)jk = 26 I ¢ J q S(q, k, 0)¢ dq, (5.21)

o

k) . .
where 9 represents the norma11zed eigenvectors of the operator B'.

To be explicit, the first matrix elements of (5.20) and (5.21) are

given by (a = l),

w

p
—
a

H

I- - 4 f e'2q(q2 + 2q) dq
O

= - 3, (5.22)
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(AY)11 = 8 J [e-qu - e-6Q(2q2 + q)] dq

0

a
t

1.6296. (5.23)

Continued calculations will finally yield the representations

-3.0000 1.1550

3 = , (5.24)

1.1550 -l.6667

and

1

1.6296 -0.3512

AY = . (5.25)

-0.6842 1.0000

The first eigenvalue of A = B + AY is

E(1)
10 = - 1.724 Rydbergs, (5.26)

so that the total ground state energy becomes

(1) (1)

E10 = E10 + b

= - 5.724 Rydbergs. (5.27)

Compared with the experimental value of - 5.807 Rydbergs, this rep-

resents an error of 0.083 Rydbergs. If larger matrix representations

are desired, then the approximation (5.19) should probably not be

used, as its validity beyond n = 2 is questionable. The calculation

of Y from expressions like (5.6), however, is extremely tedious.

Millman and Keller19 have computed the ground state energy for

the helium atom by applying a modified form of the standard pertur-

bation method to the Hartree equations. They obtained a value of
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- 5.500 Rydbergs, representing an error of 0.307 Rydbergs with the

experimental value. In addition, they made a comparison of results

with those achieved by applying conventional perturbation techniques

to the SchrOdinger equation and showed that the eigenvalues agree

up to first-order terms, but that the eigenvectors agree only up to

zero-order terms. ’ E?

15.3.2,-

By the present method, however, it can easily be shown that

the matrix representation for the (radial) SchrOdinger equation, whose F

b -

Hamiltonian is given by (5.1), becomes

Hr = 23 + AY, (5.28)

where B, A, and Y are the same as defined for the Hartree equations

and 1 = 0. Clearly, the eigenvalues of (5.28) will not yield the

same values as for the Hartree equations since the sum of the eigen-

values of two matrices is not the same, in general, as the eigen-

values Of the sum of the same two matrices.

B. The van der Pol Equation

An equation of frequent occurrence in the field of nonlinear

oscillations is the van der Pol equation. A general form of this

equation is given by

H

u - a(l - u2)u' + Au = 0, A > 0, (5.29)

where the primes indicate derivatives with respect to time. Up

to this point we have concentrated entirely on the problem of finding

those values of the parameter A for which nontrivial solutions of the
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differential equation exist, subject to certain boundary conditions.

In nonlinear oscillation theory equations such as (5.29) are treated

as initial-value problems, where one seeks periodic solutions for a

fixed value of A. Because of this distinction, the matrix perturba-

tion method featured here must be applied in a slightly different way.

To be precise, we look for solutions of (5.29) with A = l

satisfying

u(t + 2n/w) = u(t) (5.30)

and subject to the initial conditions

u(O) = 2, u'(0)= 0. (5.31)

The existence of such solutions is guaranteed by the theorem of

Liénard;20 and stability requirements indicate that the amplitude of

u(t) varies between +2 and -2.

The unperturbed solution of (5.29) subject to the initial con-

ditions (5.31) is given by

uo(t) = 2 cos wot, (5.32)

where ”o = /A'= l is the angular frequency. The effect of the non-

linear term in the van der Pol equation is to change the angular

frequency “0 to a new value m, but we can calculate w by expanding A

in a Taylor series about a = 0,

A=wg + 0101+ ... , (5.33)

then setting A = l to obtain

01=V1 - cpl, (5.34)

”
I
.
m

 



57

where 01p1 represents the first-order perturbation in the eigenvalues

of (5.29).

In order to obtain a complete set of eigenfunctions, from which

appropriate matrix representations can be derived, we reformulate

(5.29) as a boundary-value problem. Choosing 0 :_t :_n as the funda-

mental domain Of the Hilbert space and imposing the boundary condi-

tions

u(O) = 2, u(n/w) = - 2, (5.35)

which are consistent with stability requirements and the initial

conditions (5.31), then the eigenvalues and normalized eigenfunctions

of the unperturbed equation are

13k = k2 (5.36)

and

vk(t) = C cos kt, C = VZ/n , (5.37)

respectively.

The nonlinear Operator Of‘(5.29) is identified as

2) .9. (5.38)N0 = (l - v

kdt

to a first-order perturbation. To compute the matrix elements of N0

it is again most convenient to apply the method discussed in Section

6. Thus, we write

71’

Ngk = - kC2 f [cos jt(l - C2 coszkt) sin kt] dt, (5.39)

0

which upon evaluation yields

0 o _

Nkk = N3k k - 0. (5.40)

 

I
‘
-
n
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and for j # k or 3k,

0 k2C2 i+k 4 - 02 302

JR 4 32 .. k2 9k2 _ j2

where C2 = 2/n.

Diagonalization of the matrix A_ = b,6_ + ON? will produce

Jk J JR Jk

an infinite set of eigenvalues A(k) and associated eigenvectors, from

which we can extract solutions to the van der Pol equation for all

cases where the fixed parameter A = k2. The first eigenvalues are

,(1)
1.0539 (5.42)

and

1(1) = 1.2161 (5.43)

for a = 0.5 and o = 1, respectively. From these, the first-order

perturbations are determined to be

op1 0.0539 (5.44)

and

0.2161; (5.45)061

hence, by applying (5.34) the perturbed angular frequencies become

0.9726 (5.46)E

I
I

and

0.8854 (5.47)E I
I

for a = 0.5 and a = 1.

T
a
.

.
‘
m
n
—
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Since in this case it has been specified that A = l, the desired

solution can be expressed in the form

u(t) = D0 + D1u(1)(t), (5.48)

l

where u( )(t) is the perturbed eigenfunction belonging to the first

(1)
eigenvalue A , while D0 and D1 are two constants to be evaluated from

the boundary conditions (5.35). Solutions corresponding to a = 0.5 and

a = 1.0, respectively, are given by

u(t) 3 0.1599 + 1.9921 cos wt - 0.1585 cos 2wt

+ 0.0095 cos 3wt + 0.0006 cos 4wt

+ 0.0013 cos Smt - 0.0004 cos 6wt (5.49)

and

u(t) 2 0.3121 + 1.9582 cos wt - 0.3095 cos Zwt

+ 0.0371 cos 3wt - 0.0005 cos 4wt

+ 0.0053 cos Smt ~ 0.0014 cos 6mt

- 0.0005 cos 7wt - 0.0005 cos 8mt, (5.50)

again retaining only the first few terms of the infinite series.

These solutions give values of u(t) and u'(t) which are comparable

with those obtained through the use of time-consuming numerical

techniques.20 This comparison is presented for half a period in

Table 3; by periodic extension the entire solution can be constructed.

Attempts were made to obtain solutions for larger values of the

parameter a, but it was discovered that the error in the perturbed

angular frequency w grew very rapidly for o > 1. However, if one

extended to second-order perturbations, qualitative results for larger
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Table 3. Approximations of u(t) and u'(t) for the van der Pol

equation obtained by numerical and matrix techniques.

 
 

 

 

  

 

 

 

 

 

    
 

 
 

    

w ‘“ . ' “r"‘‘‘‘ =.===-a

a = 0.5 a = 1.0

Numerical Matrix Numerical Matrix

Method Method Method Method

t u(t) u'(t) u(t) u'(t) t u(t) u'(t) u(t) u'(t)

0.0 2.00 0.00 2.00 0.00 0.0 2.00 0.00 2.00 0.00

0.1 1.99 -0.19 1.99 -0.14 0.1 1.99 -0.17 1.99; -0.09

0.2 1.96 -0.34 1.97 -0.28 0.2 1.97 -0.30 1.98 -0.18

0.3 1.92 -0.48 1.93 -0.42 0.3 1 1.93 -0.40 1.96. -0.26

0.4 1.87 -0.60 1.89 —0.55 0.4 1.89 -0.47 1.93 -0.35

0.5 1.80 -0.71 1.82 -0.68 0.5 1.84 -0.53 1.89 —0.43

0.6 1.73 -0.80 1.75 -0.81 0.6 1.78 -0.59 1.85 -0.51

0.7 1.64 -0.89 1.66 -0.94 0.7 1.72 -0.64 1.79 -0.59

0.8 1.55 —0.98 1.56 -1.07 0.8 1.65 -0.68 1.73 -0.67

0.9 1.45 -1.07 1.45 -1.19 0.9 1.58 -0.73 1 1.66; -0.75

i

1.0 1.33 -1.15 1.33 -1.31 1.0 1.51 -0.78 1.58 -0.84

1.1 1.21 -1.24 1.19 -1.43 1.1 1.43 -0.83 1.49 -0.92

1.2 1.09 —1.34 1.04 -1.54 1.2 1.34 -0.89 1.39 -1.02

1.3 0.95 —1.44 0.88 -l.65 1.3 1.25 -0.96 1.28 -1.12

1.4 0.80 -1.54 0.71 -1.75 1.4 1.15 -1.04 1.17 -1.24

1.5 0.64 -1.65 0.53 -l.83 1.5 1.04 -1.12 1.04 -1.35

1.6 0.47 —1.77 0.35 -1.91 1.6 0.92 —1.23 0.89! -1.47

1.7 0.28 -1.88 0.15 -l.96 1.7 0.80 -1.35 0.74 -l.58

1.8 0.09 -2.00 -0.04 -2.00 1.8 0.65 -1.49 0.58 -1.69

1.9 -0.11 -2.10 -0.24 -2.01 1.9 0.50 -l.65 0.40 -1.78

2.0 -0.33 -2.18 -0.44 -2.00 ‘2.0 0.32 -l.83 0.22 -l.86

2.1 -0.55 -2.22 -0.64 -1.97 2.1 0.13 -2.04 0.04 -1.91

2.2 -0.77 -2.22 -0.84 -1.91 2.2 -0.08 -2.25 -0.15 —1.94

2.3 -0.99 -2.15 -1.03 -l.83 32.3 -0.32 -2.46 -0.35 -1.95

2.4 -1.20 —2.02 -1.20 -1.72 2.4 -0.58 42.62 -0.54 -1.94

2.5 -1.39 -l.83 -1.37 -1.59 2.5 -0.84 -2.68 -0.74 -1.91

2.6 -l.56 -l.58 -1.52 -1.43 2.6 -1.11 -2.59 -0.93 -1.85

2.7 -1.71 -1.29 -1.65 -1.25 2.7 -1.35 -2.34 -1.11 -1.77

2.8 -l.82 -1.00 -1.77 -1.05 2.8 -1.57 -1.95 -l.28 ~l.67

2.9 -1.91 -o.71 -l.86 -0.82 2.9 -1.74 «1.48 -1.45 -1.54

-l.96 -0.43 -1.93 -0.59 -1.87 -1.02 -1.59 -l.38

-1.99 -0.19 -1.98 -0.33 -1.95 -0.62 —1.72 -1.19

-2.00 0.02 -2.00 -0.08 -1.99 -0.29 -l.83 -0.97

-1.99 0.20 -1.99 0.18 -2.00 -0.04 -1.91 -0.71

-1.96 0.36 -1.96 0.44 -2.00 0.14 -1.97 -0.44

-1.92 0.50 -1.91 0.68 -1.98 0.28 -2.00 -0.14

 



l
l
l
l
l
l
l
'
i
l
'
l
l
l
.
.
.
.
.

 



61

values of a could be obtained. Higher-order perturbations are dis-

cussed in Section 6, but extensive calculations would be required to

yield the additional matrix elements.

As a final comment it could also be mentioned that the results

given here for the van der Pol equation were calculated by treating

only first-order perturbations, whereas for the standard method the

second-order perturbation must be included before a change in angular

frequency is detected.

“
a
i
r
l
i
n
e
r
,

 



6. GENERAL REMARKS

A. Higher-Order Perturbations

So far we have concerned ourselves only with first-order per-

turbation effects. For most of the applications we have in mind, where

the nonlinear term is of the same order of magnitude as the linear

terms (a = l), first-order corrections obtained by this particular

method are probably sufficient. However, when the perturbing term be-

comes large in comparison to the other terms (a > 1), a second-order

correction to the unperturbed solution may be necessary in the interest

of accuracy. This second-order correction will appear in the form of

another operator added to A,

A=B+A(Y+Q), (6.1)

where B still designates the unperturbed linear operator, AY is the

first-order nonlinear perturbation of B, and A0 represents the second-

Order perturbation. Here F is assumed to be unity, since it is not

essential to the following discussion.

To obtain the explicit form of the operator 9 from which its

matrix elements can be calculated, we reconsider the general nonlinear

equation

(B + AZ - A(k))w(k) = 0. (6.2)

As before in Section 2(D) we expand the operator Z in a Taylor series

about a = 0,

62
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N

l
l

Y + 021 + 0222 + one , (603)

where again

_ 3’}. (k)
21 — 30m ()1 a , , (6.4)

II

C

and insert this into Equation (6.2),

(k)
(k)] d) = 0. (6.5)[B + A(Y + OZ1 + 012Z2 + ...) - A

Retaining not only Y but also the term 0Z1, Equation (6.5) becomes

[3 + A(Y + 0121) - 1m] ((1‘) = 0, (6.6)

so that 0 = OZ Assuming the first-order perturbation problem to be

(M
solved, we will know 61 , hence 21, and can therefore write

1.

(k) (A) 32
0 = Z .3—(k) , (6.7)

2#k 2 W a=0

where yik) represents the vector components (normalized in such a way

that yfik) = l) of the eigenvectors u(k). In Obtaining (6.7) we have

used the expansion

1(k) = ¢(k) , awfk)

= ¢(k) + Z Y(10,01) (6.8)

2#k 1

for the first-order terms. A matrix representation for Q can now be

(Obtained in a manner similar to that defined for Y. Hence, A can be

eXpressed as

jk jk + nAjn(Ynk + an)‘ (6'9)
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There is, of course, one form of Z which simplifies some of the

computations required to obtain the matrix elements of O. This occurs

when Z = V(q)w(k) so that

 

_. 2

Q = 2 Y£(k)V(Q)¢( ); (6°10) I
R.#k l

in particular,

91k = O,

A.

(1) .

Qj1=Yj //2—9]#19

(k)
= . 6.11

Qkk 2§k Y9. Yik ( )

Some of the matrix elements of 0 for the nonlinear Legendre-

like equation discussed in Section 3 are displayed below; for the case

when O = 1 we obtain:

  

0 O 0 one

" O 00.Q - 0 0.0592 (6.12)

- 0.0264 0 -0.0303 ...

n- d)

To compare the results of first-order to second-order perturba-

tions we will treat 3 x 3 matrix representations for the nonlinear

Legendre-like operator. The first eigenvalue and eigenfunction are

A1 = - 0.2495

and

u1(x) = v1(x) + 0.0373 v3(x),



I
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l
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i
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for the first-order perturbation, while for the second-order pertur-

bation Obtained by diagonalizing (6.9).

A1 = - 0.2579

and

u1(x) = v1(x) + 0.0396 v3(x).

Substituting these values into Equation (3.1) gives

(1 2 du 22
... l - x ——J + A u + x u

ldx ( ) dx 1 1 1|

I
A 0.042, IxI_<_ 1

and

.39; (1 - x2) 3.31 + Alul + x2u§| _<_ 0.018, |x| _<_1

for first-order and second-order perturbations, respectively.

Following similar procedures one can in principle define third-,

fourth-, and higher-order perturbations. However, obtaining the matrix

elements in such cases may well take too long to be practical.

B. Analytical Methods

As we have seen there are certain differential equations for

which the operator technique of computing matrix elements is not con-

venient. In these cases the usual analytical method has been applied.

Perhaps a few comments on the latter approach and its relation to the

Operator technique would be helpful.

Again consider the nonlinear equation (2.1),

(L + ON + A)u = 0. (6.13)
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Assuming that u = u(x) is also a continuous function of O, we form

the Taylor expansion about O = 0,

L1 = U0 + GT1+ 0.. (6.14)

where uo represents the unperturbed solution of Equation (6.13) and

OT1 is the first-order perturbation. Thus it follows that

Mu,u,..J =N0.agflrl+ ”,, (613

1.1

where we define N0 = N(x, uo, ...). Substituting (6.15) into (6.13)

and retaining only terms linear in O we have

(L + ONO + A)u = 0. (6,16)

Suppose that the unperturbed form (O = 0) of Equation (6.16)

has eigenvalues and normalized eigenfunctions given by

)0 = bk, (6.17)

u0 = vk(x), (6.18)

respectively. Expanding the perturbed eigenfunctions u(x) in terms

of the unperturbed eigenfunctions vk(x) yields

u = kckvk. (6-19)

Substitution of (6.19) into (6.16) then gives

0 _Zk(L + on + A)ckvk- 0. (6.20)

Multiplying (6.20) by vj and forming an inner product over the
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fundamental domain we get

0 .

- N = A 6 .2zk[(vj, ka) + O(vj, vk)]ck ck jk (6 l)

or

— L N0 = A 6.22Zk( jk + a jk)ck cj. ( )

where

ij - (vj, ka) (6.23)

and

o

Njk — (vj, Novk). (6.24)

However, L has the diagonal representation

ij = - bjsjk’ (6.25)

so that (6.22) becomes

0 =Zk(bj8jk - onk)ck ch. (6.26)

Thus diagonalization of the matrix A, = b ONO will

3k )‘Sjk' jk

yield the perturbed eigenvalues A. The matrix A referred to here is

the same as that Obtained by the operator method. It is the form of

the differential equation that will generally determine which method

should be adopted for the computation of the matrix elements.

A comparison with the standard perturbation theory can easily

be made at this point. If, instead of multiplying Equation (6.20) by

vj, we multiply by Vk and form the inner product then (6.21) becomes
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Ek[(vk’ ka) + a(vk, Novk) + A]ck = 0 (6.27)

or

{kwk — onik - A]ck = 0. (6.28)

Thus

A = 6k — onik, (6.29)

which clearly defines the perturbed eigenvalues A, for the standard

perturbation method, as the diagonal elements Of the matrix A.
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APPENDIX

Computer Program

Listed below is a modification of a FORTRAN prOgram originally

developed by Green and Triffet for computing the eigenvalues and eigen-

vectors of a real matrix.9 Either symmetric or nonsymmetric matrices

may be entered; once the matrix has been introduced, a check is made

to determine whether it is symmetric or not, then the appropriate

branch of the program is automatically selected.

The original program was written for a CDC 6400 computer, and

some difficulties with accuracy arose when the program was run on an

IBM 360 computer. To compensate for this, double precision calculations

were introduced. Computation time was lengthened, but a 25>(25 matrix

still only requires about 5 minutes.

A critical point in the program is the estimate of the largest

eigenvalue. This appears to be even more important when multiple

eigenvalues exist. An estimator technique, based on an iteration

method for computing the magnitude of the largest eigenvalue, is built

into the program. Before printout, a check is made of the largest

eigenvalue by means of the estimator. If these values are not suffi-

ciently close, the largest eigenvalue becomes the estimator and the

procedure is repeated until convergence is reached - a process which

may be accelerated, if necessary, by reducing the tolerance in FUNCTION

DLEIG.
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