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ABSTRACT

ROBUSTNESS OF THE TOBIT ESTIMATORS TO

HETEROSKEDASTICITY AND NON-NORMALITY

BY

Abbas Arabmazar

It is known that the estimates of the parameters

in the Tobit Model and other limited, Truncated and

Censored dependent variable models are not robust against

the misspecification of the model. The inconsistency of

the censored Tobit estimator when the errors are heter-

oskedastic is shown. To investigate the severity of this

inconsistency, a simple model of a constant-term-only

regression is utilized, and the value of the asymptotic

bias (inconsistency) is calculated for a variety of

prameter values. Using the Lagrangian multiplier test

principle, a test of heteroskedasticity is derived for

both the truncated and censored Tobit models. It is also

shown that the usual Tobit MLE which assumes normality

is inconsistent when the disturbances are in fact non—

normal. For the simple Tobit model with a constant term

as the only regressor, the asymptotic bias of the normal

MLE is calculated for a variety of non-normal errors.
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CHAPTER I

INTRODUCTION

1.1 Reivew of Literature and

Statement of the Problem

The estimation of models with qualitative and

limited dependent variables has received considerable

theoretical and empirical attention. The appealing fea-

ture of these models is that they allow one to answer a

variety of questions based on an incomplete sample, which

could not previously be answered. Although our study is

primarily concerned with what is known in the econometric

literature as the Tobit model, it should be noted that

similar considerations apply for a wide range of models

with qualitative and limited dependent variables which

might loosely be grouped under the heading of ”sample

selection models."

In the case of the ordinary regression model,

there exists a substantial literature on the violation of

basic assumptions, such as heteroskedasticity, non-

normality, autocorrelation, etc., whereas there is rela-

tively little corresponding analysis for the case of

limited dependent variable models. A selection of papers

which apply the Tobit model to economic problems includes

1



Tobin (1958), Cragg (1971), Gronau (1973, 1974), Heckman

(1974, 1976), Lee and Trost (1978), Hausman and Wise (1977),

Nelson (1977). Other related papers are MacFadden (1974)

and Schmidt and Strauss (1975).

Before I formally define the model, it is neces-

sary to define two statistical terms, which are used

throughout the study. The term censored is applied to a
 

sample in which some observations are recorded only as

below (or above) some threshold, the exact value in such a

case not being observed (having been censored). The term

truncated is applied to the samples in which such obser-

vations, i.e., below some threshold, are excluded entirely.

Note that in the econometric literature, however, the term

truncated is often applied to the censored sample case,

apparently in reference to the variable rather than sample.

Censored Tobit model.--Consider the regression
 

model defined by

yi xi 8 + Si if RHS > 0

(1.1.1)

ifRHS_<_0(ik=l,2,...,T)II

0

where B is a k-component column vector of unknown para-

meters, xi is a k-component row vector of known constants,

and the 81's are independent with distribution N(0, 02).

This model was first suggested by Tobin (1958). Amemiya



(1973) points out that any non-zero known constant can be

considered as a censoring point of the model, without much

extra complication, so the zero censoring point is not as

restrictive as it may seem.

Truncated Tobit model.--Consider the regression
 

model defined by

y1 = xi 8 + 6i if and only if RHS > 0 (1.1.2)

where all the variables are defined as above. Note that

the observations on y are truncated to the left of zero.

The Tobit model is a special case of the sample

selection model of Heckman (1976), while the Probit model

(binary dependent variable) is a special case of the Tobit

model. See Goldberger (1980).

It is well known that ordinary least squares will

produce biased and inconsistent estimates of the regres-

sion parametersixithe Tobit model. Maximum likelihood

estimation is being used with increasing frequency to

avoid this inconsistency. There are other procedures sug-

gested by Heckman (1976, 1979) and Amemiya (1973). The

strong consistency and asymptotic normality of the maximum

likelihood estimators of the regression parameters in the

Tobit model has been proved by Amemiya (1973).



In this study we investigate the robustness of

Tobit Normal maximum likelihood estimators to two types

of misspecification; heteroskedasticity and non-

normality.

From what is known so far, it seems that the

assumptions required of these models are quite strong, and

any violation, such as heteroskedasticity or non-normality,

may result in an asymptotic bias as severe as in the naive

ordinary least square (OLS) formulation. This is in con-

trast with OLS estimators in ordinary regression models,

which are consistent when disturbances are heteroskedastic

or the assumption of normality of the error terms is vio-

lated.

Maddala and Nelson (1975) show that the Tobit esti-

mators are inconsistent when the model is misspecified to

be homoskedastic. This is in unfavorable contrast with com-

plete sample least square estimators which are consistent

under heteroskedasticity. Hurd (1979) proves that the

MLE's of the truncated Tobit model are inconsistent under

heteroskedasticity in the simple case in which the only

right-hand variable is the constant; i.e., estimating the

mean of a truncated normal random variable. He introduces

heteroskedasticity into the model by assuming that one

subset of the observations has a disturbance variance

different from the rest. In other words, the sample comes

from two normal populations, with equal location parameters



and different scale parameters, with equal probabilities.

Taking the probability limits of the first order condi-

tions, he is able to get an implicit form of the asymp-

totic bias or inconsistency. By numerically solving for

the bias, rue comes up with answers to the obvious ques-

tions of the direction and severity of the bias. Using

different sets of parameter values, he concludes that the

bias is substantial even when the heteroskedasticity is

in the range to be expected in empirical work. He also

finds that the sign of the asymptotic bias is not generally

known; and he states that "it would be surprising" if these

results did not generally hold for the censored Tobit

model. The robustness of MLE's of the Tobit model is also

considered by Nelson (1979) and Maddala (1979).

Chapter II extends Hurd's analysis to the censored

Tobit model. The implicit form of the inconsistency of

the MLE's in the censored case is derived, and it is cal-

culated for a variety of parameter values. This turns out

to make a surprisingly large difference. The robustness

of the MLE's to heteroskedasticity is much greater in the

censored case than in the truncated case.

Chapter III contains a simple test for heteroskedas-

ticity based on the Lagrange multiplier (LM) test, which is

also known as Rao's efficient score test. In the Tobit

model defined in (1.1.1) or (1.1.2), we specify the nature



of heteroskedasticity as o: = zia, where a is a p-component

column vector unrelated to the coefficients 8, and 21 is a

p-component row vector (with first element unity). In

other words, the variance of disturbances is a linear

function of a set of exogenous variables (elements of 21).

This allows the null hypothesis of homoskedasticity to be

for then 210 = a1 = ozis constant. The LM test statistic

is obtained from the result of maximizing the likelihood

subject to the parameter constraints implied by the null

hypothesis and can be computed from the Lagrangian multi-

plier corresponding to the constraints or from the first

order conditions, as in Rao (1973). Silvey (1959) showed

that the LM test has the same asymptotic power as the

likelihood ratio nun test. For more on LM tests see,

for example, Silvey (1959), Rao (1973), and Breusch and

Pagan (1979, 1980). Breusch and Pagan pointed out several

applications of LM test to model specification in Econ-

ometrics and found that in many instances the LM statistic

can be computed by a regression using the residuals of the

fitted model. Lee (1981b) also suggests a LM test for

misspecifications in sample selection models, based on the

Pearson family of distributions.

The robusteness of the Tobit estimator to non-

normality is also a potentially important point since



there is typically not any compelling reason to believe

that the disturbances are normal. The MLE's based on the

normality assumption are inconsistent when the distur-

bances are non-normal; see Goldberger (1980) or Nelson

(1981). This is not true for least square estimators in

the standard linear regression model, which are unbiased

and consistent under violation of the distributional

assumptions. An obvious question here is the severity of

the inconsistency under different conditions.

Goldberger (1980) considers a simple case of esti-

mation of the mean of a truncated random variable, and

analyzes the asymptotic bias caused by violation of the

normality assumption. He considers some symmetric dis-

tributions (Student, Logistic, Laplace) to be the true

distributions that were misspecified as normal, and numeri-

cally calculates the inconsistency or asymptotic bias

of the estimator of the mean of each distribution, given

that their variances are known. He finds, not surprisingly,

that the bias is negligible when the truncation is mild,

and it is substantial when the truncation is extreme (less

than 15 percent of population is retained in selected pOpu-

lation). He concludes that the size of the bias for moder-

ate degrees of truncation is unexpected.

An obvious extension of Goldberger's work is to

consider the non-normality bias of the censored Tobit

model. It is also interesting to know what would be the



effect of estimating the variance on the size of the bias

of the estimate of the mean, both in the truncated and

the censored case; that is, it is worth knowing whether

the assumption of known variance matters.

Chapter IV considers the non-normality bias and

its severity in the Tobit model, both truncated and cen-

sored, while relaxing the assumption of known disturbance

variance. The implicit form of the inconsistency is

derived. The numerical values of the bias for different

symmetric distributions, under a variety of parameter

values, is calculated. Chapter IV also contains a cross-

distributional comparison and a comparison of different

estimators for each distribution. To generalize the

results, the Probit model (binary dependent variable model)

has also been considered in this analysis. Appendix A

includes the derivation of the first and second truncated

moments of some selected symmetric distributions, which

are necessary to evaluate the probability limits of the

first order conditions. Furthermore, the analysis is

extended to a regression with one dummy explanatory

variable, and the robustness of estimates of the slope

coefficients to violations of the normality assumption is

investigated.

There are other works on model specification and

related topics in Tobit model. For a general test of



misspecification in the censored Tobit model, see Nelson

(1981). His test for a univariate censored normal model

is based on the general specification test principle sug-

gested by Hausman (1978). Lee (1981c) introduces a

general LM test for selectivity bias, homoskedasticity

and normality, based on the Pearson family of distribu-

tions. For other specification error tests in limited

dependent variable models, see Olsen (1979) and Maddala

(1979).



CHAPTER II

ROBUSTNESS TO HETEROSKEDASTICITY

2.1 Introduction
 

One of the basic assumptions of the regression

model is that the disturbances have a common constant

variance. This is known as homoskedasticity and the

violation of this assumption is known as heteroskedastic-

ity. In many econometric studies, especially those based

on cross-section data, the assumption of a constant

variance for the disturbance term is unrealistic. In con-

sumer budget studies the variance of the error term very

likely increases with household income; see Prais and

Houthakker (1955). Likewise in cross-section studies of

the firm the disturbance variance probably increases with

the size of the firm. Heteroskedasticity also naturally

arises (1) when the observations are based on average

data, and (2) in a number of "random coefficient" models;

see Judge et al. (1980).

In the case of the ordinary regression model,

'there exists a substantial literature on the nature of

heteroskedastic disturbances, their consequences and

effects on inference and test procedures, and remedies

for the problem.

10
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It is well known that the consequences of heter-

oskedasticity are two-fold. The ordinary least square

estimates of the regression parameters are still unbiased

and consistent, but are inefficient, and the estimates of

the variances are biased. This will effect tests of

hypotheses and inferences on the regression parameters.

In most studies, a simple parametric form of heteroske-

dasticity has been assumed to simplify the problem. In

other words, it is assumed that the variance of distur-

bances is a pre-specified function of one or several

independent variables. For an up-to-date review of liter-

ature, see Judge et a1. (1980).

For limited dependent variable models, there has

been relatively little work on the problem of heteroskedas-

tic disturbances. Maddala and Nelson (1975) showed that

in limited dependent variable models, contrary to the com-

plete sample regression case, the estimators are not even

consistent when the error terms are heteroskedastic. To

illustrate the nature of the problem, following Maddala and

Nelson, consider a censored Tobit model, as defined in

equation (1.1.1). The locus of expected values of yi is

given by

E(yi) (xiB) 4 (xiB/G) + 0 ¢(xiB/c) (2.1.1)

where o and 4 are respectively the standard normal density

and cdf. Now suppose that the "true" model is



12

heteroskedastic with parameters Ooi and Bo and designate

the "true“ locus as Eo(yi). Then

Eo(yi) = (x. )1 Bo) <I>(xi B /o ) + 0 . ¢(X- B /o
o oi 01 1 o oi

(2.1.2)

It is immediately obvious that the presence of the vari-

ance term in the expected value locus is the source of

the difference in the two expressions and, in turn, of

the estimation bias.

The main questions to be answered are (1) what are

the consequences of heteroskedasticity; (2) how can we

detect it and test for it; and (3) what to do to correct

for it.

Hurd (1979) has presented some evidence on these

points, for the truncated Tobit model, as defined in

equation (1.1.2). For the simplified version of the model,

assuming that the constant term is the only regressor, he

proved that the maximum likelihood estimator is incon-

sistent when the error terms are heteroskedastic, and

derived an implicit form of the inconsistency of the

estimate of the mean of a normal random variable. His

assumption on the nature of heteroskedasticity is that

the sample comes from a mixture of two normal populations

with equal means but unequal variances. Assuming equal

pr0portions for each population, he calculated the
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asymptotic-bias (or inconsistency) of the estimated mean

for different sets of parameter values. He concludes that,

as one might expect, the bias depends on the degree of

heteroskedasticity, the scale of the problem, and the

amount of truncation. The bias increases with increase in

the degree of truncation as well as increase in the degree

of heteroskedasticity. He argues that the bias is extreme

for what seem like modest amounts of heteroskedasticity,

and so it may be a serious empirical problem.

In the rest of this chapter, Hurd's analysis is

extended to the censored Tobit model, and the asymptotic

bias is calculated for a variety of parameter values. The

results are surprisingly different than Hurd's. In par-

ticular, the results for the censored case are more

optimistic than for the truncated case. Heteroskedasticity

of given severity causes less inconsistency in the former

than latter. In the case considered here, moderate

amounts of heteroskedasticity do not cause serious incon-

sistency, except when the fraction of non-limit observa-

tions is very low.

2.2 Derivation of the

Inconsistency

In this section we derive (implicit) expressions

for the inconsistency of the censored Tobit estimator under

a simple form of heteroskedasticity. To keep things



14

tractable, we consider the case of estimation of only the

mean and variance of a censored normal; that is, the only

explanatory variable is a constant term.

In this case, the assumption underlying the cen-

sored Tobit model is that there is a random sample of

size T on an unobservable y which is distributed as

N(u,02), while we observe instead y = max (o,y*). Thus

negative y*'s are simple observed as zeroes. This con-

trasts with the case considered by Hurd, in which only

positive y's were observed and the fraction of limit

observations is unknown.

Let the number of positive y's be n, and index

these as yl, . . ., yn. (Thus there are T-n values of

zero for y, in the sample of size T.) The censored Tobit

log likelihood function is

n

L = constant - n inc - —l5- 2 (yi - u)

20 i=1

+ (T-n) 2n <I>(-u/o) (2.2.1)

where 4 is the cdf of the unit normal distribution. If

we let fl and 6 denote the MLE's, they satisfy the first-

order conditions for maximization of L, which can be

written as:

(yi - fl) - ~9- 8 m(-fi/8) = o (2.2.2a)
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1 n A 2 T-n AA A A
-o + 3' 2 (y. -u) + —H- om(-u/o) = 0 (2.2.28)

1 1

Here m(t) is defined as ¢(t)/¢(t), where ¢ is the density

of the unit normal distribution and 4 is (as above) the

corresponding cdf.

We now wish to take probability limits of (2.2.2)

under heteroskedasticity. Following Hurd, we assume that

there are two distinct variances, of and 0%. These are

sampled in proportions rl and r2 = l—rl. That is, with

probability rl we sample y* from N(u,oi) while with

probability r2, we sample y* from N(u,o§); then we observe

y = max (o,y*). Thus of the total of T observations, we

suppose that for T1 of these the underlying variable has

variance oi while for T2 it has variance 0%, where as

T + m, Tl/T + rl and TZ/T + r2. Correspondingly, of the

n positive observations, let nl and n2 represent the num-

bers of observations with underlying variances of and 0%,

respectively. Then we can note the facts:

©(t1) + r2 @(t (2.2.3a)2)

r <1>(-t) + r (Pb-1:)

T’—“ + l 1 2 2 (2.2.3b)

rl 4(t1) + r2 @(tz)
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23 = fling; / (E) + ri ¢(ti) = 3
r1 Ti T? T r1 4(t1) + r2 ©(t2) 1

i=1, 2 (2.2.3c)

n.

1. g .
_ + =
n. . yi u + Oj m(tj) , 3 1,2 (2.2.3d)

3 i

n.

-lh g (y. - u)2 + o? - no. m(t.), j = 1,2 (2.2.3a)
nj 1 1 J 3 J

In all of the above, t1 = u/ol, t2 = u/oz, and all limits

are taken as T (hence T1' T2, n, n1, n2) approaches

infinity.

To take probability limits of the first order con-

ditions (2.2.2), we first rewrite them slightly:

n n

T-n A A -

("5—) U m(-t) — 0 (2.2.4a)

n n

n l n 2

2 l 1 A 2 2 1 A 2

'6 +TH‘Z‘Y1‘U’ “‘a‘a—WYi 1"
l i 2 i

+ (335) 08 m(-E) = o (2.2.4b)

where t = 8/8. Now we use (2.2.3) to take the probability

/0.

~

limits in (2.2.4). Defining fi = plim u, 5 = plim 8, t==u
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we obtain:

~

rl ¢(t1) [u + 01 m(tl) - u]

~

+ r2 ¢(t2) [u + 02m(t2) - u]

G.

- [rl ¢(-tl) + r2 ¢(-t2)] o m(-t)

= 0 (2.2.5a)

-52 + 31 {of - uol m(tl) + 2(u - fi)[u + 01 m(t1)1

~2

+ (u - u2)} + s2 {03 - uoz m(tz)

+ 2(u - fi)[u + 02 m(t2)1 + (fiz - u2)}

r1¢(-tl) + r2 ¢(-t2)

r1¢(tl) + r2 ¢(t2)
0 (2.2.5b)t

:

o
:

B
A

I
a
:
v

I) 
+

Equation (2.2.5) implicitly defines the proba-

bility limits fl and 8 of the MLE's, in terms of the para-

meters u, 01’ 02, rl and r2. It is easy to see that when

01 = 02 (and hence t1 = t2), the solution fi = u 5 = 0

satisfies (2.2.5); the Tobit estimator is consistent under

homoskedasticity. It is also not difficult to verify that

i = u, 6 = a does not satisfy (2.2.5) when 01 # 02; the

Tobit estimator is inconsistent under heteroskedasticity.

Finally, although it is not obvious from (2.2.5), the
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inconsistency must depend strongly on the degree of

censoring of the sample (which depends on t1 and t2).

This must be so since in completely uncensored samples,

the Tobit estimator becomes least squares, which is robust

to heteroskedasticity.

2.3 Calculation of the

Inconsistency

 

For given parameter values (u, 01' 02, r1, r2) we

can calculate the inconsistency of the Tobit MLE's by

solving (2.2.5) numerically for fl and 6. We have done

so, holding 02 = l for all cases, for n = l, 0, -l, -2,

for 15 values of 01 between .1 and 10, and for three sets

of rl and r2. These results are given in Tables 2.1

(r1 = r2 = .5), 2.2 (r1 = .2, r2 = 8), and 2.3 (r1 = .8,

r2 = .2). It should be noted that setting 02 = l is

innocuous, since the results are invariant with respect

to scale; for example, the ratio fi/u is the same with

u = -l, 01 = 10, 02 = l as with u = -.2, 01 = 2, 02 = .2.

The solution of (2.2.5) was found using the Newton—

Raphson iterative scheme, from arbitrary starting values.

Many sets of starting values were tried. In all cases

precisely two sets of solutions to (2.2.5) were found,

with one set having 5 negative and the other having 6

-positive. Tables 2.1 to 2.3 give the solution corresponding

to positive 5, for obvious reasons.
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. We will first discuss the results in Table 2.1,

concentrating on the estimate of u, since under heteroske-

dasticity it is not entirely clear what consistency of 6

would mean. As would be expected, the degree of inconsis-

tency depends heavily on the degree of heteroskedasticity

and on the degree of truncation of the sample. For given

01 (degree of heteroskedasticity), the inconsistency of u

increases as the degree of truncation increases; that is,

as u decreases. This is entirely as expected, for the

reason given at the end of Section 2.2.

For given u, the inconsistency increases as the

degree of heteroskedasticity increases, that is, as 01

becomes further from one (the value of 02). This is

also as expected, though it should be recognized that

changing 02 for fixed u also alters the degree of trunca-

tion and the scale. This is why, e.g., the results for

= .1, = l are not identical to those for 01 = 10,

01 0‘2

c2 = 1.

It should be noted that our results for the Tobit

model are much more optimistic than Hurd's results for the

related truncated normal model. To pick a few examples:

with u = 0, 01 = .5 we find a bias of -.02 whereas in the

truncated normal model the bias is -1.47; with u = -l,

01 = 2 we bind a bias <xf -.31, whereas Hurd finds a bias

of - 11.74. This isaaconsiderable difference. We checked
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Hurd's calculations, and were able to reproduce all of

his Table 1, except for the entries for u = .1, 01 = .5

and 01 = 2, where we find probability limits for 0 of

-6.46 and -12.74 rather than -121.02 and -34.30. Thus,

although his most pessimistic cases may be too pessi-

mistic, it still remains that the effects of heteroske-

dasticity are much more severe in the truncated normal

model which he considers than in the censored normal model.

One possible explanation is that the inconsistency is

caused by the incorrect calculation of the probability of

truncation, and this enters every term of the likelihood

function for the truncated model, but only some of the

terms (those corresponding to the limit observations) of

the likelihood function for the censored model. In any

case the practical implication is that it is well worth

keeping the limit observations, if they are available, to

protect against duaworst effects of heteroskedasticity.

(Presumably there is also an efficiency gain to keeping

them.)

Finally, the bias of g is always of the same sign

as u, for u = -2, -l, and l. The bias of g is negative

for u = 0, which suggests that it would also be negative

for small positive u, but for larger u the bias is clearly

away from zero.
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Tables 2.2 and 2.3 given similar results for r1 =

.2, r2 = .8 and for r1 = .8, r2 = .2. The results are

quite similar to those found in Table 2,1, and need not be

discussed separately.

2.4 Conclusions

We have considered the implications of heteroske-

dasticity in the censored Tobit model. The specific cen-

sored Tobit model considered had only a constant term,

and the heteroskedasticity consisted of two distinct

variances for the underlying normal variable. Our princi-

pal conclusions are: (l) Heteroskedasticity causes incon-

sistency, the severity of which increases with the

severity of the heteroskedasticity and with the extent of

truncation of the sample; and (2) Heteroskedasticity

causes less inconsistency in the censored Tobit model than

in the corresponding truncated model (limit observations

missing). While it is dangerous to generalize from the

simple model used here to more general cases, our con~

jecture is that moderate heteroskedasticity (say, variances

differing by a factor of two) is not likely to cause sub-

stantial inconsistency unless the sample is heavily cen-

sored (say, more than half of the observations at the

limit). Of course, this Optimism must be tempered by the

recognition that heteroskedasticity invalidates the usual

test statistics, even in complete samples.
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CHAPTER III

TEST FOR HETEROSKEDASTICITY

3.1 Introduction

The robustness of the Tobit estimators to heteros-

kedasticity was considered in Chapter II. The Tobit esti-

mators are inconsistent when the error terms are heteros-

kedastic, with the severity of the inconsistency depending

on the degree of truncation of the sample and the severity

of the heteroskedasticity. The violation of the homosked-

asticity assumption in the Tobit model may have serious

consequences for inference about the regression coefficients.

Therefore, testing for heteroskedasticity in the Tobit

model is relevant.

For the complete sample regression case, several

methods of testing for heteroskedasticity have been sug-

gested in the literature; for a summary see Judge et a1.

(1980). One common characteristic of most tests is that

they are "constructive" or "nested" in the sense that a

specific form of heteroskedasticity is considered as an

alternative to the null hypothesis of homoskedasticity.

For example, it is generally assumed that the variance of

disturbances is (l) a linear function of some exogenous

25
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nonrandom variables, the set of which may or may not have

an intersection with the set of explanatory variables of

regression; (2) proportional to some power of the mean of

the dependent variable; or (3) an exponential function of

some exogenous variables (multiplicative heteroskedasticity).

Breusch and Pagan (1979) have suggested a test for

heteroskedasticity in the complete sample regression case,

using the framework of the Lagrangian multiplier (LM)

test. Assuming that the variance of the error terms is a

well-behaved function of a linear combination of some

exogenous variables, say 2.

3

that the LM statistic is one-half of the regression sum of

(j = 1. - . .. 9), they proved

squares from the regression of the standardized squared

OLS residuals on the zj's. This test statistic is asymp-

totically distributed as x2 with p-l degrees of freedom,

when the null hypothesis of homoskedasticity is true.

This is equivalent to an F-test of significance of the

regression coefficients in the regression of squared.residu-

als on z's because the denominator of the F statistic will

converge in probability to unity.

These usual tests are not applicable to the Tobit

model. However, we will use the Lagrangian multiplier

test principle to construct a similar test for heteros-

kedasticity in the Tobit model.

The Lagrangian multiplier test suggested by

Aitchinson and Silvey (1958, 1960) and Silvey (1959) is
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equivalent to Rao's efficient score test; see Rao (1973).

The LM statistic is obtained from the result of maxi-

mizing the likelihood function subject to the constraints

implied by the null hypothesis, and can be computed from

the Lagrangian multipliers corresponding to the constraints

as in Aitchison and Silvey (1960), or from the first

order conditions as suggested by Rao (1973). The LM test

has the same desirable asymptotic properties as the like-

lihood ratio test, as shown by Silvey (1959). Breusch

and Pagen (1980) applied the LM test procedure to several

specification problems in Econometrics, and found that in

many instances the LM statistic can be computed simply by

a regression, using the residuals of the fitted model.

The LM test statistic has been derived for a test of nor-

mality in the Tobit model by Lee (1981b). Lee (1981c)

also uses the LM test procedure to test for specification

error in sample selection models, including the joint test

of selectivity bias, heteroskedasticity and non-normality

based on the Pearson family of distributions.

In this chapter the LM test statistic has been

derived to test for heteroskedasticity in the Tobit model,

for both the truncated and censored cases. It is assumed

that the variance of the disturbances is a linear function

of some exogenous variables. For the special case of a

constant term as the only regressor, the LM statistic is



28

expressed as a function of the Tobit residuals, and can

be computed using a simple regression.

The organization of the chapter is as follows.

The model and a summary of LM tests are presented in

Section 3.2. Section 3.3 gives the derivation of the

test statistic for the truncated Tobit model. The censored

case is covered in Section 3.4; Section 3.5 contains the

conclusions.

3.2 The Model and the Test

Statistic

Consider the linear model

yi =xi B + 6i, (i = l, o o 0' T) (3.201)

where B is a (k x 1) vector of coefficients and xi is a

(l x k) vector of nonrandom explanatory variables. The

81's are normally and independently distributed with mean

zero and variance

02 = 2.8 (3.2.2)

in which a is a (p x 1) vector of unrestricted parameters

functionally unrelated to the coefficients 8, and the first

element of zi, a p-component row vector, is unity. We

assume that xi and 21 are exogenous and obeying the con-

ditions set out in Amemiya (1977). The null hypothesis of

homoskedasticity is



HO: dz = 83 = . . . = up = 0 (3.2.3)

since then

02 = a = 02
i l

is constant.

Let L(0) be a log likelihood function depending

on a (k x 1) vector of parameters 8, with d = aL/ae as

the first derivative (score) vector and I = E(%% x %%,),

as the information matrix. The hypothesis to be tested is

specified as qitk restrictions on 6

HO: hj (0) = 0, j = l, . . ., q

Setting up the Lagrangian function

L(e) +

j

A. h. 8133()

"
c
a
n

and differentiating with respect to the unknown parameters

0 and the Lagrangian multipliers lj, we obtain 0 and A as

the solutions of the first order conditions

:
1
2
:

w
e

u c
:

d +

h. (e)=0,j=1,...,q
3

~ 3h. ~ I

where H = { 351 (8)} is a k x q matrix and l is a (q x l)

i

vector of Lagrangian multipliers.
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As explained by Breusch and Pagan (1980), the

idea underlying the test is that when the null hypothesis

is true, the restricted estimates 8 will tend to be near

the unrestricted MLE's so that d will be close to the zero

vector, as will I. This leads to the LM test based on the

statistic

~-]_~..

H All

{
2
1
:

H D
.

II >
1
,

3
:
:

HLM

~

where I is information matrix when the null hypothesis is

true, evaluated at the restricted estimates 6. The LM

statistic is asymptotically distributed as x2 with q

degrees of freedom. The term d I d is the "score"

statistic, Rao (1973), while I, H, If' H I is called the

Lagrangian multiplier statistic, but the two test statis-

tics are identical. We employ the score test form because

it is based on the restricted model and the restricted

estimates, which are relatively simple to calculate in our

case.

3.3 The Statistic for the

Truncated Case

Adopting the linear model in (3.2.1) with the

heteroskedasticity assumption of (3.2.2), the truncation is

introduced into the model by assuming, as in (1.1.2) that

we observe yi if and only if yi is positive. That is, only

the observations with positive values, say i = l, . . ., n,

from a possible sample of size T are available for yi. To
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test for the null hypothesis of homoskedasticity, equation

(3.2.3), we follow the test procedure explained in Section

3.2. The log likelihood of the sample can be written as:

:
3

1 2 1 n
L(a,B) = Constant - 5 2 in 011 - 7 2 0.

i=1 i=

n

. 2

(yi-xiB) - iiltn 4 (xiB/oi)

where 4 is cdf of unit normal distribution. The first

order conditions are

    

n " o 2:1 ’v 3
_ 3L _ 4 -l 1 1i

d --—————- - Z (20.)

3(aIB) i=1 1 2 ’

20i xi 0 v2i

L— ..n L— _.J

v .

_ n 4 -1 11

i=1 v2.

1

  

where Ki is a (p+k) x 2 nonrandom matrix, and Vli’ vZi are

random variables, with zero mean conditional on sample

inclusion, defined as

V11 = $1 ‘ Oi m(xiB/Oi)

v = 82 4 02 + o (x B) m(x B/o-)

2i 'i i i i i 1

in which m(o) = ¢(-)/4(-), o is unit normal density and 4

is as above. The information matrix is
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= 3L 3L

I E ‘ETHTET 'STETETT’

n a. b. ,

= z (409)“1 K- 1 K-
. 1 1 1

i=1 - b c

i i

where I is a square matrix of dimension (p+k) and

_ 2
ai -' Oi - Oi m(xiB/Oi) [(xiB) + Oi m(xiB/Oi)]

bi = a1 m(xie/oi)[(xis)2 + Oi + (x18) Oi m(xiB/oi)]

_ 4 _ 2 2
ci — 20i (xiB) Oi m(xiB/oi)[(xiB) + Oi

+ (x18) oi m(xiB/Oi)]

The vector of first derivatives (score), evaluated

at the restricted MLE's (a, B, o),and denoted by d,is.

~ 2' G

a = (254) 1 2

  

where Z is a (n x p) matrix with zi as its ith row, X is

a (n x k) matrix having xi as its ith row, and

I = ~ ~ 1 '

vj (vjl, Vj2’ . . ., vjn) .

Note that the first element and the last k elements of d

are zeros; only the elements corresponding to
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oi, i = 2, . . ., p, are non—zero. The information matrix

evaluated at the restricted MLE's is

z'cz 282 Z'BX

I = (268) 1 ~2 ~4

20 x'Bz 4o X'AX

where c =-Diag (8i), B = Diag (Si), and A = Diag (Si).

The LM statistic, using the inverse rule for partitioned

matrices, is

1 ', ~
ZV2

Al, 1.

LM = v2 Z[a'cz-z'BX(x'AX)' x’szl‘ (3.3.1)

which is distributed asymptotically as x2 with p-l degrees

of freedom, given that the null hypothesis of homaskedastic-

ity is true. 1

Note that the complete sample heteroskedasticity

.test considered by Breusch and Pagan (1979) is a special

case of (3.3.1) in which B = 0, C = 264 In, and 421 =

E§-52. In this case, the test statistic is equal to

LM = —l—-G' 2(2'2)"l 2'4
.4 2 2

20

which is equal to one-half of the regression sum of squares

n o ~-2 ~2

in the regressron of o 81 on the 2's.

For the special case of only a constant regressor,

for which x = (l, l, . . ., l)’ is n x l and 5i = c for

every i, the test statistic can be reduced to



I
I
H

1~

LM = vé Z (2'2)-
c v2

which is equal to the regression sum of squares in the

%
regression of E— 621, the standardized Tobit residuals,

on the 2's.

3.4 The Statistic for the

Censored Case

Using the model in (3.2.1) and the assumption of

(3.2.2), we now assume that we observe not yi but Iiyi’

where Ii is an indicator defined as

1 if yi > 0

0 if yi : 0

which is equivalent to the model in (1.1.1). The log

likelihood function is

- T

_ _ l 2 _ l

L(a.B) - constant 2 in Ci 2 .:

“
M
I
-
i

H

i

"
M
r
-
3

2

(yi - x18) - (l - Ii) Rn ¢ (xiB/ci)

i l

where ¢ is unit normal cdf. Define

uoi = Ii - @(xiB/oi) = (Ii—l) + ¢(-xiB/oi)

u1i = Iiei - 01¢ (xiB/Oi)
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“21 = 116% - [0i ¢(xiB/oi) - oi(xiB)¢(xiB/oi)]

"11 = “11 + °im(’xiB/°i’ uoi

_ 2

w21 ‘ “21 ' [Oi + Oi (x15) m(-xiB/Oi)l uoi

where ¢ is the unit normal density, m (-) = ¢(-)/0(-),

and wli' w2i are zero-mean random variables. Then the

first order conditions and the information matrix can be

written as

  

I

o zi “11

T 4 -l w

d = 3L/3(a,8) = Z (ZOi) 2i

i=1 2 0

20. x!

l 1

L— .—

T w .

E Z (20:)-1 K1 11

1:1 w2i

T d.

I = z (4 a?) 1 K1 1 l K’

i=1 g. h
'l l

. . . , .

where Ki 13 as in Section 3.3, (Wli’ w2i) is a random

_ 2 _ _ 2

vector, di - E(wli), gi - E(wli WZi) and hi - E(w2i)' Let

a and 2 denote the first order conditions and information

matrix evaluated with restricted MLE's, (d, é, 6). Then
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Z' Q

~ ~4 -1 2
d = (20 )

252 x' “1

L... .—

where Z and X are as in Section 3.3, and wj = (wjl, . . .,

I

wjn) . Note that, as in the truncated case, the first

element and the last k elements of d are zeros. Also

F" 2 7

  

Z' HZ 25' Z'GX

I - (468)"1

252 x' GZ 454 X’DX

— ._J

where H Diag (hi), G = Diag (51), and D = Diag (di)'

The test statistic

1 1 2'6:
’ -

X GZ] 2LM = w ZIZ'HZ - Z'GX (x'DX)'
I

2

is asymptotically distributed as x2 with p-l degrees of

freedom.

For the Special case of only one constant regressor,

bi = h for every observation. Then the test statistic

will reduce to

1 ~

=1; “I I - I
LM H W2 Z(Z Z) Z wz

which is equal to the regression sum of squares in the

regression of h- a21 on the 2's.
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3.5 Conclusions
 

It is important to be able to test for heteros—

kedasticity in the Tobit model, because under heteroskedasti-

city the Tobit estimates are inconsistent and the usual

tests are invalid. The Lagrangian multiplier test prin-

ciple has been adopted, and the test statistic has been

derived for the null hypothesis of homoskedasticity (in

both the truncated and censored cases), against the alterna-

tive that the error variance is a linear function of

exogenous variables. The test statistics that result are

not too difficult to calculate, and thus should be useful

in applied work which uses the Tobit model.
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CHAPTER IV

ROBUSTNESS TO NON-NORMALITY

4.1 Introduction

In a standard linear regression model, the least

squares estimators are unbiased and consistent even when

the assumption of normality of the disturbances is vio-

lated. Normality (or some other distributional assumption)

is necessary for hypothesis testing in finite samples, but

does not affect the mean or probability limit of the least

squares estimates.

In the Tobit model, the situation is quite differ-

ent. The usual MLE which assumes normality (which we will

refer to as the "normal MLE“) is inconsistent when the

disturbances are non-normal. Thus estimates of the Tobit

model are not robust to violations of the distributional

assumption for the disturbances.

While this chapter is concerned specifically with

a special case of the Tobit model, it should be noted that

similar considerations apply in a wide variety of models

with qualitative and limited dependent variables which

might loosely be grouped under the heading of "sample

selection models." There has been a proliferation of such

38
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models in recent years, because they allow one to answer

questions that could not previously be answered. However,

virtually all of these models hinge on normality, or some

equally specific distributional assumption, and their

robustness has basically not been investigated. This is

a potentially important point, since there is typically

not any compelling reason to believe that disturbances

are normal.

The robustness of estimators of the Tobit model

to heteroskedasticity has been considered in Chapter II.

The general conclusions were that the MLE's are not con-

sistent under heteroskedasticity, and the bias has a

direct relationship with the degree of truncation and the

severity of the heteroskedasticity. In Chapter III we

developed a computationally simple test for heteroskedastic-

ity in the Tobit model based on the class of Lagrangian

multiplier (LM) tests. The LM tests, in general, have

the same asymptotic properties and power as likelihood

ratio (LR) tests, as proved by Silvey (1959).

As for robustness to non-normality, Goldberger

(1980) has considered the truncated version of Tobit model,

as defined in (1.1.1), under the assumption that the only

regressor is a constant term and that the disturbance

variance is known (i.e., estimating the mean of a truncated

random variable). He derives the asymptotic bias (incon-

sistency) of the normal MLE and calculates the numerical
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value of the bias for a variety of non-normal errors, by

assuming that the true distribution of disturbances is a

symmetric distribution (Student, Logistic, Laplace) other

than normal. His calculations suggest that bias is small

when the truncation is mild and substantial under

extreme truncation of the sample. He concludes that the

bias for moderate degrees of truncation is unexpectedly

large.

This chapter includes an obvious extension of

Goldberger's work, namely the non-normality bias in the

censored Tobit model. For the sake of tractability, the

simple case of only a constant regressor is considered.

To provide an insight into whether the assumption of known

variance matters, this assumption has been relaxed for

both the truncated and censored cases. To generalize the

results, the bias in the Probit (binary dependent vari-

able) model has also been investigated.

The organization of this chapter is as follows:

Section 4.2 contains the models and their estimators.

Section 4.3 includes the derivation of the (implicit form

of the) inconsistency for censored, truncated, and binary

cases when the variance of the error terms is unknown.

The numerical calculations are presented in Section 4.4.

The results are tabulated for different distributions in

Tables 4.2 to 4.6. Cross-distributional comparisons and



41

comparisons of different estimators for each distribution

can be seen in Figures 4.1 to 4.6.

Section 4.5 contains an extension of the above

analysis to the regression case with one dummy explanatory

variable. In Section 4.6 the inconsistency of the sloPe

coefficient is derived and numerical calculations of the

inconsistency have been illustrated. The results of the

regression case are tabulated in Tables 4.7 to 4.9.

Finally, Section 4.7 contains the conclusions.

The main conclusions are that (l) the bias is generally

less in the censored case than in the truncated case;

(2) the assumption of known variance makes a substantial

difference in the results; (3) the bias from non-normality

can be substantial, and in fact for severely truncated

samples can be larger than for the uncorrected least squares

estimators. Appendix A includes the derivation of the

first and second truncated moments of selected symmetric

distributions (Student, Logistic, Laplace) which are nec-

essary to evaluate the bias. A summary of the results in

Appendix A is presented in Table 4.1. Appendix B con-

tains the evaluation of some probability limits used in

the derivation of the bias in the regression case.

4.2 The Model and Its

Estimators

We will concentrate on the special case in which

the model contains only a constant term; that is, we are
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attempting to estimate the mean of a pOpulation. The

relevance of this case to more complicated models can be

questioned, but it seems to be an obvious starting point,

and it allows some results that would not otherwise be

possible.

Thus we suppose that we have (in principle) a

random sample, yg, i=1, 2, . . . T, from a distribution

with mean u and variance 02. If the y; were all observed,

the normal MLE would be the sample average, and it would

be robust to non-normality. However, we now consider

three alternative assumptions about what is observed.

 

l. Censored Case. Assume that we observe not yg,

but rather yi = max (0, yg). Letting the first n y's be

the positive observations, the normal log likelihood is

"
P
4
5

L = constant - nin c --—£§ (yi-u)2

20 i l

+ (T-n) £n¢ (-u/o) (4.2.1)

where 4 is the N(0,l) cdf. The normal MLE's fi, 8 satisfy

the first order conditions

n A A

l 2 (y.-fi) - 2.2 8 m(-u/o) = O (4.2.2a)

n ._ i n
i-l

“2 l n A 2 T-n “ A A A
'0' + a .: (yi-p) + T 1.1 0' m(-u/o) (4.2.213)

i l



Here m(-) = ¢(-)/®(-), where ¢ is the N(0, 1) density and

¢ is as above.

2. Truncated Case. Here we observe yi (=yz) if

and only if y; > 0. The normal log likelihood is

L = constant - n inc - l (yi-u)2

20 i I
I
M
S

l

- nfin ¢(u/o) (4.2.3)

so that the first order conditions which yield the normal

MLE's are

n A A AA

3 Z (yi-u) - o m(u/c) = 0 (4.2.4a)

i=1

A2 1n A2 AA AA-

-0 + H 2 (yi-u) + u c m(u/o) - 0 (4.2.4b)

3. Binary (Probit) Case. Suppose that we observe

11£y§>o

Y- ={ (4.2.5)

1 o if y; < o.

In this case only u/o is identified. Taking o=l as a

normalization, the normal log likelihood function is

L = min @(u) + (T-n) in ¢(-p) (4.2.6)

so that the first order condition for the normal MLE u is
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m(fi) - T713- m(-fi) = 0. (4.2.7)

For completeness, we also list as possible esti-

mators the sample means

- 1 n
y = - 2 Y.

(4.2.83)

n i=1 1.

T
_. 1 n ..

* g _ = _

The first is the mean of the truncated sample (positive

observations), and could be used in either the censored or

truncated case, while the second is the mean of the cen—

sored sample, and could be used in the censored case.

Clearly these are estimators which do not attempt to

correct for the bias due to censoring or truncation.

4.3 Derivation of the

InconSistency

We now assume that the true distribution is some

symmetric distribution other than normal. Let 2 be a

random variable with such a distribution, satisfying E(z)

= 0, and let f and F denote the density and cdf of z. The

variable y* is assumed to be related to 2 by y* = p + bz

where b2 = [var(z)]-l. Thus a E bz has mean zero and

variance one so that comparisons among distributions will

not be confused by differences in scale.
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To derive the inconsistency of the various normal

MLE‘s, we take the probability limits of the first order

conditions, and then solve the resulting equations for

the probability limits of the estimators. We note the

facts that as T + w,

_'1;_-_r_1__,P(y*_<_0) =F(- lb) _

n P(y* > 0) F(u7b5 ‘

 

(

3
,

(4.3.la)

n

% z y. + E(y*ly* > 0) = u + bE(zIz > 4 u/b)
. i
1=l

E B (4.3.lb)

1‘12 2 222
H E yi + E(y* Iy* > 0) = u + b E(z Iz > - u/b)

i:

+ 2buE(z|z > -u/b) E C, (4.3.lc)

- where F, A, B, and C are determined by the true distribu-

tion. Thus to evaluate the probability limits of the

first order conditions, we need the cdf and the first two

truncated moments of the distribution of 2. These are

given in Table 4.1 for the distributions which we use,

namely the Laplace, logistic and t distributions.

Let i and 5 represent the probability limits of

the MLE's fl and 8. Then taking probability limits of the

first order conditions, and using (4.3.1), we obtain the

following.
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Censored Case
 

fi.+ A 5 m(-fi/8) - B = o (4.3.2a)

~2 ~2 .. ~ .. ~ ~

)1 - o +- A u o m(-u/o) - 2Bu + C = O (4.3.2b)

Truncated Case

fi + 6 m(fi/a) - B = 0 (4.3.3a)

~2 ~2 ~ ~ ~ ~ ~

- o -r u c m(p/c) - 2 B u + C = 0 (4.3.3b)

Binary Case

m(fi) - A m(-fi) = 0 (4.3.4)

(Actually, (4.3.4) can be simplified to ¢(fi) = F(u/b),

but is written as above to maintain uniformity of nota-

tion.)

These can then be solved numerically for u or 6.

For example, in the censored case we would solve (4.3.2a)

and (4.3.2b) for u and 8. This solution will depend on

u and o and on the form of the distribution chosen. In

the case in which 0 is assumed to be known, we set 5 = o

and solve (4.3.2a) only for fi--that is, we ignore (4.3.2b).

Similar statements apply to the truncated and binary cases.

The inconsistency of the sample averages given by

(4.2.8) can be eXpressed explicitly. We have
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i? + E(y*ly* > 0) = B (4.3.Sa)

§* + P(y* > 0) E(y*|y* > 0) = F(u/b)B, - (4.3.5b)

and the inconsistency is just u minus this expression.

4.4 Calculations

In this section we report the results of our cal-

culations of the inconsistency of the estimators under

non-normality. The distributions considered are t (with

5, 10 and 20 degrees of freedom), Laplace (double exponen-

tial), and logistic. In all cases 0 = 1, while u varies

from -3.0 to 3.0.

The results are given in Tables 4.2 to 4.6, with

each table representing a different distribution. The

first and second columns give u and P(y* > O), the latter

being a measure of the degree of truncation or censoring

in the population. The next two columns give the asymp-

totic biases of the censored mean y* and the truncated

mean §, as defined in (4.2.8) above. The next three

columns present the asymptotic bias of the censored,

truncated and binary normal MLE's of u, when a is known;

the next two columns give the same information for the

case of unknown 0. Finally, the last two columns present

the probability limit 5 of the estimate of o, for the

truncated and censored cases (with unknown 0, obviously).

Our results for the truncated case and known 0 correspond



48

to the results of Goldberger (1980), though with sign

changes since he considered upper truncation.

Most of the results are qualitatively similar for

all distributions. First, the asymptotic biases of all

estimators except the binary estimator disappear as u gets

large (that is, as the sample becomes complete), as they

must. Second, it makes a considerable difference whether

one knows the disturbance variance. The estimators which

assume a known generally have a much smaller bias than

those which also estimate a. This is not uniformly true

(it can't be, since the biases change signs, and thus each

equals zero at some point), but for many values of u the

difference is huge. Since G will in practice never be

known, our results are more pessimistic than Goldberger's,

which were based on known 0.

Figure 4.1, which plots the biases for the t10

case, gives a good visual illustration of the two points

just made. ‘It also illustrates a third major conclusion,

that the bias of the censored estimator is generally con-

siderably less than that of the estimator from the trun-

cated sample. Again, this is not uniformly so, but for

many values of u the difference is quite considerable.

This can be seen perhaps more clearly in Figure 4.2, in

which the vertical axis is inflated.

A fourth point concerns the comparison of the

normal MLE's with the sample means_§ and §*, which do not
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correct for truncation or censoring bias. When 0 is

known, the bias of the normal MLE is less than the bias

of the sample mean, for both truncated and censored

samples, for all of the distributions and parameter values

we considered. Thus it is better to correct than not to

correct, even though the correction is biased, for all

cases we considered. (Whether this is true in general is

an interesting question.) However, this is not necessarily

the case when a is unknown; then the biased correction

can be worse than no correction. This can be seen in

tables for both the truncated and censored cases, or in

Figure 4.1 for the truncated case.

A comparison across distributions is illustrated

in Figure 4.3 for the case of a censored sample with

known variance, in Figure 4.4 for a truncated sample with

known variance, and in Figure 4.5 for a binary sample.

As would be expected, the bias is worse for distributions

which are more non-normal (e.g., t5 or Laplace vs. tzo).

Finally, Figure 4.6 illustrates a comparison of

the biases in the censored, truncated and binary cases.

The binary bias does not go to zero when u + m. It is

interesting that where any two of the bias curves inter-

sect, all three do; Goldberger has shown that this is so

for any distribution (personal communication). For the

distributions we consider the censored bias is always
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between the binary and truncated biases, though we have

not proved this as a general result.

4.5 Extension to the

Regression Case

 

 

In this section the robustness to non-normality

of the Tobit estimator of regression parameters is inves-

tigated. For a simple linear regression with one explana-

tory variable, the asymptotic bias of the s10pe coefficient

and constant term has been derived for both censored and

truncated Tobit models under the assumption that the

regressor is a dummy variable. Suppose we have (in prin-

ciple) a random sample of size T on the regression

# = a + x. + e.

'yl B 1 l

where ei's are iid as N(O, 02) and x1 is a non-random

variable with known values for T observations. If the

value of y* were known for all T observations, this would

be the ordinary regression case and the normal MLE's

(least squares) would be robust to non-normality. Let us

now consider two alternative assumptions about what is

observed.on yz, given that xi is always observed.

1. Censored Tobit Model. Assume that we observe

not y: but rather yi = max (0, y:). Assuming that the

first n y's are the positive observations, the normal log

likelihood function can be written as



n

L = Constant -n£no - —i— X (y. - (a+Bx.))2

. 1 i
20 1:1

T-n

+ 2 2n 4 (- 0‘ + 8x1) (4.5.1)

i=1 0

where 4 is the cdf of unit normal. -The normal MLE's

a, B, 0 can be computed from the first order conditions:

1 n A A 3 T-n d-réxi

H X (Yi - (c-eri)) - H 2 m(- A ) = 0 (4.5.2a)

i=1 i=1 0

n A A T-n

l A c
_, E x (y - (a + Bx.)) - - Z x.

n i=1 i 1 l n i=1 i

& +‘Bxi

m (- A ) = 0 (4.5.2b)

o

“ T-nA2 1 n A A 2 O. A A

--0 +3 .2 (yi '- (Oc + BXiH +3 '2 (a + 3X1)

i=1 i=1

a + Bx.

m(- l) = 0 (4.5.2c)

0

where m(-) ¢(°)/4(-), ¢ is the unit normal density, and

4 is the unit normal cdf.

* = ° ° *
yi ( Yi) if and only if yi > 0.

2. Truncated Tobit Model. Here we observe

In other words, only posi-

tive values of y; are observed, and therefore used in

estimation. The normal log likelihood is
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n

L = constant -nlno - —l3 2 (y - (a + Bx.))2

20 i=1 1 l

n a + Bxi

-' X 2n4 (—-—5——-) (4.5.3)

i=1

and the first order conditions which yield the normal

 

 

MLE's are

n A n A “

%z (yi- (a + BxiH -§- 2 m (0":8) = o (4.5.4a)
i=1

1:1 0’

n A n

Eli”: xi (y -(a+-Bxi))-% 2xl

i=1 i=1

a + é
m( A ) = 0 (4.5.4b)

o

A n A ’5 A n A A

-02+}- 2 (y - (01,-(-Bx.))2+g Z (a+Bx.)

n . 1 n . 1
i=1 1=l

a + éxi

m(-—:——-—) .= o (4.5.4c)

o

4.6 Derivation of the Incon-

sistency and Calculations

Now assume, as before, that the true distribution

of disturbances is a symmetric distribution other than

normal. Let 2 be a random variable with such distribution

' with zero mean, and let f and F denote the density and

cdf of 2. Furthermore, let bz be the error term, where
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b2 = [var(z)]-l, so that the errors have a variance of

one. Thus we have the regression

*—

.-a+x.+.
1 81 61

where e. = bz..

1 1

In this stage, in order to make the derivations

of the bias tractable, we assume that x is a dummy vari-

able which takes the value of unity p percent of the times

and therefore, the value of zero l-p = q percent of the

times (in the original hypothetical population). Putting

it differently, x can be assumed as a Bernoulli random

variable such that P(x = l) = p and P(x = 0) = q = l-p.

‘ Let a, g, and 5 denote the probability limits of

the MLE's a, g, and 8. Then taking Unaprobability limits

of the first order conditions in(4.5.2) and (4.5.4), and

using the results of Appendix B and rearranging the terms

we obtain the following.

Censored Case

~

5 + pl 8 + y p2 5 m(-tl) + yqz 5 m(- E0) - A = o (4.6.la)

p1 (a + 3) + y pz 6 m(-El) - p10 = o (4.6.lb)
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~2 ~2 _ ~2 ~ ~ ~ ~ ~ ~

4 + 91 B 0 + 2 pl 4 B + Y p2 (a + B) o m(’t1’

+ Y q2 a 5 m(-to) - 2A§ - 2 pl D g + C 0 (4.6.1c)

~

where to = d/E, t1 = (a + B)/6 and the values of

A = E (yzly; > 0), D = E(y;|y; > 0, xi = 1), c =

E(y*2Iy* > 0), p1 = (1-ql), p2 = (1 - qz) and Y depend

on the distribution of z.

Truncated Case
 

Q
!

+ pl E + pl 5 m(tl) ” m (E0) - A = o (4.6.2a)+

(
.
0

H

O

a + B + a m(tl) - D = o (4.6.2b)

~2 ~2 ~2 ~~ ~ ~ ~ ~

a + pl 8 - o + 2Pi a8 + p1 (a + B) o m(tl)

0 (4.6.2c)+ ql a6 m(to) - 2 A a - 2 plné + c

Calculations. To illustrate the calculation of
 

the inconsistency of the regression coefficients under

non-normality, the Student—t distribution with 5 degrees

of freedom is used. Then equations (5.6.la) and (5.6.lb)

are solved for d and 6, assuming the variance is known

(6 = 1). For the unknown variance case (5.6.1) is solved

to calculate the values of d, B and 6. As mentioned

earlier, the simple regressions model with a dummy vari-

able discussed above can be interpreted as a mixture of
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two random variables with the expected values “1 = a and

“2 = a + B, where “2 is selected p percent of the times.

The probability limits of estimates of the two means

‘54

~

are: fil = a, HZ = d + B, and so 8 = “2 - fil' The numer-

cal results are presented in Tables 4.7 to 4.9. Table 4.7

provides the asymptotic biases of the estimates of B,

a “l and “2' while moving the means of two random vari-

ables in opposite directions from zero. This keeps the

degree of truncation more or less constant. The case of

moving the means together in the same direction, keeping

their distance constant (=1), is presented in Table 4.8.

Both Tables 4.7 and 4.8 assume p = .5. Table 4.9 includes

the biases when only the degree of contamination (p) is

changed.

Table 4.7 presents the true values and biases of

B, “2 and ”l = a. For the case where o is known, the

results are identical to the non-regression case (constant

term as only regressor) considered earlier (e.g., for

“2 = -3, the bias of estimate of “2 is .55 here and in

Table 4.2). This is because we are in fact estimating the

two means separately. With variance unknown, the results

are different from the non-regression case because of the

extra restriction (same variance in both samples) which

is imposed here. This leads to smaller biases for the

estimates of pl, “2 and B. In general, the bias of the

MLE of 8 increases as the absolute value of 8 increases.
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Table 4.8 changes the degree of truncation, while

keeping the distance between the two means, 8, constant.

The results suggest that the inconsistency of B, as well

as of each mean, increases with an increase in the degree

of truncation, but at a smaller rate than the asymptotic

bias of separate estimates of each mean (as in Table 4.2).

Table 4.9 presents the biases as p increased (keep-

ing “1' ”2 and therefore 8 constant), where p is the pro-

portion of the sample with the larger mean. This may also

be viewed as decreasing the degree of truncation, and it

will reduce the asymptotic bias of the estimate of the

slope coefficient 8. It will also reduce the bias of the

estimate of “l = a, which is the same type of effect as in

Table 4.7, since the means of two samples have been chosen

to be symmetric with the equal unknown variance.

4.7 Conclusions

We have considered the asymptotic bias of the

normal MLE for censored, truncated and binary samples,

when the disturbances are, in fact, non-normal. We state

three practical conclusions.

1. The bias for non-normality can be substantial.

This is especially true in the realistic case in which the

disturbance variance is unknown. In fact, the bias of

the normal MLE can be larger than the bias of the uncor-

rected sample mean.
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2. The censored estimator is usually much less

biased then the truncated estimator. Therefore, the

limit observations should be used if they are available.

3. The bias due to non-normality depends on the

degree of censoring (or truncation) of the sample. For

example, for samples that are 75 percent complete (u =

roughly 1.2 above) there is virtually no bias. For sam-

ples that are 50 percent complete (u = 0), the bias is

substantial for truncated samples, though not for censored

samples. For samples that are largely incomplete, the

bias is substantial for all cases.

These results, if general, are of considerable

practical importance. For example, they give guidance

as to cases in which the approach of Lee (1981a, 1981b),

based on a less restrictive distributional assumption than

normality, may be worth considering. Therefore, it is

important to stress that our results may fail to be general

for at least two reasons. First, we have estimated only

a simple model, not a general regression. Second, for

reasons of tractibility we have considered only a limited

number of non-normal distributions, all of which are sym-

metric. Undoubtedly there exist distributions for which

one would obtain results that are more pessimistic.
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TABLE 4.7.--Asymptotic biases of regression coefficients,

Censored - t5 (p = .5)

 

True Values

 

Bias (o-known)

 

Bias (o-unknown)

 

 

B 02 “1 B 02 “1 B 02 “1 o

-6.0 -3.0 3.0 .55 .55 .00 .57 .57 .00 -.01

-2.0 -l.0 1.0 -.11 -.10 .01 -.ll -.10 .Ol -.00

-0.8 -0.4 0.4 -.08 -.08 .00 -.08 -.09 -.01 .01

0.0 0.0 0.0 .00 -.04 -.04 .00 -.05 -.05 .02

0.8 0.4 -0.4 .08 .00 -.08 .08 -.01 —.09 .01

2.0 1.0 -l.0 .ll .01 -.10 .ll .01 -.10 -.00

6.0 3.0 -3.0 -.55 .00 .55 -.57 .00 .57 -.Ol
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TABLE 4.8.-~Asymptotic biases of regression coefficients,

Censored - t5 (p = .5)

 

  

 

True Values Bias (o-unknown)

8 Hz “1 B 02 “1 0

1.0 -3.0 —4.0 .25 -5.30 -5.55 2.29

1.0 -2.0 -3.0 .22 -2.51 -2.73 1.28

1.0 -1.0 -2.0 .17 - .76 - .93 .51

1.0 0.0 -1.0 .14 - .08 - .22 .09

1.0 1.0 0.0 .04 .02 - .02 - .03

1.0 2.0 1.0 -.01 ' .01 .02 - .04

1.0 3.0 2.0 -.01 .00 .01 - .03

1.0 4.0 3.0 .00 .00 .00 - .01
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TABLE 4.9.--Asymptotic biases of regression coefficients,

Censored - t5 .

 

 
 

 

True Values Bias (0 unknown)

8 “2 ”1 p B 02 “1 0

2.0 1.0 —l.0 .l .34 .00 -.34 .18

2.0 1.0 -l.0 .2 .23 .01 -.22 .09

2.0_ 1.0 -1.0 .3 .17 .01 -.16 .05

2.0 1.0 -l.0 .4 .13 .01 -.12 .02

2.0 1.0 -l.0 .5 .11 .01 -.10 -.00

2.0 1.0 -l.0 .6 .10 .02 -.08 -.02

2.0 1.0 -l.0 .7 .08 .02 -.06 -.03

2.0 1.0 -l.0 .8 .07 .02 -.05 -.04

2.0 1.0 -1.0 .9 .06 .02 -.04 -.05
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APPENDIX A

TRUNCATED MOMENTS OF SELECTED DISTRIBUTIONS

1. Student distribution. Let 2 be distributed

as Student with n degrees of freedom and denote the density

and cdf of 2 as f and P. Then

f(2) = h(n) (1 +

2

§;)_8(n + 1), 28(-m. +w)

 

  

  

where h(n) = [/5 s(%. %)]’l, E(z) = 0 and Var(z) = 5%:

Z

P(z) =j' f(t)dt

E( l > _ ) n + x2 f(x)

2 z X n-l P(x)

( n IT (a! B)

2 (n-Z) 2F(x) ' x 3 o

E(z [z > -x) = J

2-I (a, B)
n T

\‘n-z 2F(x) ' x > 0 

n 3

Where a = -H-, B = 5

Proof:
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+oo 2

E(zlz > -x) = filgfl zf(z)dz = (11;); ’ 3%) (Note A1)

’3!

 

Using the results of Notes A8 and A9, we get

 

+00

E(zzlz > -x) = 5%;7 zzf(z)dz

-x

m 2 - % (n+1)

= h(n)f+ 22 (1 + 3;) dz

P(x) -x

0 2 -k(n+l)
.. h(n) 2 _z___
— P(x) LIX z (1 + n) d2

+00 2

_2__)-15(n + 1)dz]

n

+f’ 22 (l +

0

Using the results in Notes A3 and A4, we get

3

'hn) 1_ 5
$76“ 3(a,B)IT(a.B)],

x30

={ 2

h(n) 2 - l Ikm)- [n B(OLp B)(1 2 IT (0‘! B)”: X > O 

( n 3(0) 8)
 

 

 

I (a B) x < 0

2F(x) 1 a T . : _

" n am, 8)

2F(x) 1 n ‘2 ' IT ‘0" 8”r X > 0
K B“: '2")
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I (a. B)
n T

(3:5) ZFTXY_ g x i 0

= I (a B)
n 2- T ’

2. Logistic distribution. Let 2 be distributed

as logistic, and denote the density and cdf of 2 as f and F

respectively; Then

5(2) = e'z(1 + e‘z)’2 = ez(l + ez)‘2, ze(-m, +m)

7r2

where 13(2) = O and Var (z) = -§-

P(z) = (1 + e-z)"l = e2 (l + e2)".1

and so[1 - F(zfl== (1 + ez)’l = e‘2 (1 + e'z)'1

_ £n(l-F(x))
 E(zlz > - x) P(x)

 

f x2 + E%%T[x 2n (l-F(x))-g(-ex)], x i 0

E(zz|z > -x) = fl

2 2 _ -x
\X +fix—)[XKD(F(X))+9(G)

2 2
H x

+?'TL x>°

where g(t) = Z (tn/n2)
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Proof:

+00

E(z|z > -x) = 5713f zf(z)dz

'X

 

= fifi-hxmx) - inn-P(x)” (Note A6)

_ _ _ £n(1-F(x))

- x P(x)

00+

l 2
WI_ 2 f(Z)dzE(zzlz > ~x)

 

 

x

o +00
(Fix) (-fx 22f(z)dz +f0 zzf(z)dz), x _<_ 0

o +00
l 2 2km) (jozflz)dz +j; zf(z)dz),x>0

Using the results of Notes A5 and A7, we get:

 

‘——l—[- 33 + x2F( ) + 2x£n (l-F( )) - 2'(- x)
( P(x) 6 x x 9 e

2

= g ‘+ L], x _<_ 0

\J— [11: - x2 (l-F(x)) + 2x£n(F(x))

P(x) 5

H2
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X + ‘F—(2x—)'[Xln(l"F(X)) " g(-e‘x)] r X _<_ 0

2 2

x2 + F%%T[xln(F(x)) + g(-e-x) + %7 - ér], x > 0

3. Laplace (double exponential) distribution.

Let 2 be distributed as Laplace and denote the

density and cdf of 2 as f and P. Then,

f(z) =‘% e—lzl, 2€(-m, +m)

where E(z) = 0 and Var(z) = 2

éez , 2:0

mi“):

1 - % e'2 = 2e2 (2e2 - 1)‘1, z > o

 

l ; x ' x > 0

2e - 1

- 2
l + (l - x) , x i 0

E(22|x > -x) =

2
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Proof:

. +®

E(z|z > -x) = fif zf(z)dz

-x

f .2.... l X
F(X)l 2 e (l'X)] I

  

 

l l

k P(X) [Eex (1+X)] I

1 x

5:8 '

(1+x)

Zex- 1 '

E(22|z > -x) - 1 +w 2.FM [’1‘ zf(z)dz

l 1.

m ['3‘ ex (1 + (1 - X)2)]

1 .—

m [_12._ex (1+XH

1+(1-x)2

1-(1+x)2

2ex - l

 

2 +

I
A

I
A

|
A

|
A
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Note (Al)

+00

2-

f 2(1+%’ “n+l) dz

"X

= ngm — Biz—1 2 (1 + 3;)-;5(n + l)dz

-x

= 53—1. [(1 + 2:2) -%(n-l)1::

= 3%: (1 + 3Eli-"km - l)

= 9.57"; (1 + Elli-)4“n + 1)

Note (A2) on Integration

 

2 -%(n + 1)

22(1 + L) dz
n

24%: + 1) 2 2

=122 (1 + 33—) (“_En: ) dw, (w = -—3—-§)

n+2

22 (n + 22)2 (n_i_§3)-% (n + l)

-2nz n dw

 

2 -% (n + l)
n+2) dw

5

=j'- g; (n + 22)-8 (n + 22)2 ( n

[
0
1

n + zz)-;5 (n + 1)

2) n n dw



where a = -—-and B = %

O

= j. -.% n w (l - W)B- dw (Note A2)

1

m
m
~

H

= n] wa-l (1 - w)B-l dw

o

3

=-§-n73 (a. B)

where B(a, B) is complete Beta function. Also using the

 

properties

B(a, a) = %%§l£%%’ and F(a + 1) = aF(a), it follows that

n + 2 3

3(a) B) _ B( 2 ’ 2) _ l

- n-2l n l n
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Note (A4)

x

245 (n+1)

j. 22 (l + %T) dz

0

3 1

= % n2 ‘[ wa-l (1 - w)B_1 dw, (Note A2) (T = -_2——§)

T n + x

.3. '1'

= % 112 [3(0, 8) - j, wa-l (l - W8-l dw]

0

3.

=-]2:-n2 [ B(a, B) " B (a, 8) IT (a! 8)]

where IT (a, 8) is the incomplete Beta function ratio.

Eggg (A5) Some facts (summations are from n = l to n = +m)

2

Z (_1)n-l n-2 = E:

- - n -

Z (_l)n l n 2 e nlxl = _ Zn 2(-e lxl) 5 _ g (-e IX))

X (_l)n-l n-l e-nlxl 1n (1 + e (XI)

2 (_l)n 1 e-nlxl = e |x|(l + e |x|)-l

z (-1)“"’1 ne n'xl lx'(1 + e ixl)’2

+00

f 2 2 n2
z e 2(l + e 2) d2 ‘ 7f
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For the last statement, see Johnson and Kotz (1970),

Chapter 22, p. 4.

Note (A6)

+00

‘f ze“z (1 + e-zf-2 dz

“X

+00

.[ z 2 (-l)n"l n e-nz dz (Note A5)

-x

n-l +m -nz
Z(-l) ‘[ z e dz

-x

2 (-1)""1 (-x enx + n‘1 enx) (integration by parts)

-x Z (_l)n-1 enx + Z(-l)n-l n-l nx

= -x ex (1 + ex)-l + 2n (1 + ex) (Note A5)

Note (A7)

0

‘f 22 e"2 (l + eflz)“2 dz

-lx|

0 2 n-l -nz
=.[ z 2 (-1) n e dz (Note AS)

-|x|

0

- 2(-1)“'1 n"2 szesds (s = nz)
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l -2
Z (-l)n- n [2-e-nlxl(n2x2 + 2n|x| + 2)]

22 (“1)n-1 n-2 ~ x2 Z (-n)n"l e-nlxl

- 2|x| z (-1)“"1 n’1 e"nlxl - 22 (-1)“'1n‘2e"n)XI

Using the facts in Note A5, we get

2

= %? - xze'lxl(l + e-Jx|)-l - 2|x!£n (l + e-lxl)

+ 2 g (-e-le)

where g(t) = 2(tn/n2)

Note (A8) Assume x i 0 and use integration by parts

+m

1 -z _ 1 x _
.f 2 z e dz - 2 e, (1 x)

-x

+m

f%22e'zdz=%e"[1+(1-x)21

-x

Note (A9) Assume x > O and do integration by parts

+w

f%zezdz

-x

0 +w

=f%zezdz+I%zezdz
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-x 2

e (x+2x+2)

[4ex - (x2 + 2x + 2)]

[1 — (1 + x)2 + 2 (2ex - 1)]
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APPENDIX B

SOME PROBABILITY LIMITS

Let yi = a + Bxi + bzi

where 21's are iid symmetric random variables with E(zi)

= 0, and denote the density and cdf of 2 by f and F.

Assume that b2 = (Var(zi))'1, which makes the variance of

bz unity as a normalization, and xi is a dummy variable

(Bernoulli random variable) with P(xi = 1) = p and

P(xi = O) = q = l-p. Then

1) P(z > -
 P(y > le b ) =F(——B——) (Bl)

P(y > le 0) P(z > -%) = F(- (132)

P(y > 0) = P(y > le = l) P(x = 1) + P(y > le = 0)

_ ; _ -a:+8 g B3
P(x—0)—pF(——b)+qF(b) ‘)

See (El) and (82)

+

P(y < 0) = pF( -1—5—§) +qF (- %) (B4)
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P(y > 01x = 1) P(x = l)
 

 

 

P(x = lly > O) = P(y > 0)

pF(a+ B)

= 5' p

pF(—-———-——B;b) + q%F() l

pF(- 0 + B)

P(x-l)ly<0)= ‘- E

pF(- °‘ ; B) + qF(.- g) 

E(bz|y > 0, x = 1) = E(bz[a + 8 + bz > 0)

a + B

-—3——)
bE(z|z > -

E(bz[y > 0, x 0) = bE(zIz > - %)

 

(BS)

p2 (B6)

(B7)

(BB)

E(y|y > 0, x = l) = E(a + B + bzla + B + bz > 0)

= (a + B) + bE(z|z > - a g B

E(y|y > 0, x = 0) = a + bE(z[z > - —)

E(y2ly > o, x = 1) =E[(oc +s+ bz)2|a + s

a B= (a + e)2 + 2(a + B)bE(z|z >--————)
+

b

a + B)

+ b2E(zZIz > - b

E(y2|y > 0, x = 0) = a2 + 2abE(z[z >-%)

+ b2E(zzlz >-%)

) (B9)

(B10)

+ bz > 0]

(B11)

(1312)
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E(Y|y > 0) = p1E(Y(Y > 0, x = 1)

+ qlE(yly > 0. x = 0), (313)

(p1 + q1 = 1). See (B9) and (BIO)

2 2
E(y ly > 0) = plE(y ly > 0: x = l)

+ qlE(y2ly > o, x = o) (814)

The following are some probability limits.

Let a, B, 6 be probability limits of a, 8,

and 3. As T + + w (n + + 00), we have the following proba-

bility limits

1 n 2 1 n k1

LURE? xiE?+P(X=1|Y>O)=pl (315’
1=1 i=1

See (B5).

T-n T-n k

1 2 l 2

—:- Z x. = —:— Z x 5 -:— + p(X = lly > 0)

T n i=1 i T n i=1 1 T n

= P2 (B16)

See (36).

T-n_l_ _____l .. aw:

n 7 2 1 + p(y>>0) 1 P(y > 0) ' Y (Bl?)

T

See (B3) and (B4).



12 11:2 "2 .,
n n T-n YP2

T"““2 -22-?” -
n n n Y

1 g _ k1 1 k1
- x.y. -— _—
n._. 1 1 n k X

1-1 1 .

1=l

See (B9).

1 n A
— X (y. - (a + Bx.)) =
n i=1 1 1

+ E(Y)Y > 0) - p1 é

See (B15) and (B13).

1 n A
— £x.(y. - (62+Bx.))
n i=1 1 1 1

A 1 n

1=l

- a - 3]

See (B15) and (B20).

a
n
d
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(818)

"
U

N

I

_
<

5
.
:

I

"
O

N

V

I
I
)

qu (319)

+ p1E(ny > o, x = 1) (320)

n "ln A

Zy-B(-—Xx.)-o(

i=1 1 n i=1 1

& (321)

n n

l l
—Zx.y.-a(-—Zx)
ni=111 11:11

(1+8
 

(322)

$
-
4
I
L

_
_

L
.
-
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1 n . A 2 2 ~2
3 .2 (yi - (a + Bxi)) + E(y )y > 0) + p18

,1=l

~~ a + 8 ~
+2pla8 — 2 p1 [a + B + bE(zIz >- b )1 B

. ~2

- 2E(y[y > 0) a + a (323)

T-n & 4‘ 8x1 1 k2 a + B 1 T-n-kz "

3' 22 m(- A )’=—' X m(- ) + H X m(-%)

i=1 0 1:1 6 i= 9

k A A T-n-k

_‘_3 _ a + B 2 _ a
- n m ( T) + n m( 7;)

+ Y p2 m(- f B) + Yq2m(- %) (324)
0 0

See (318) and (B19).

3 Z X m(— -——x——") “‘5 2 m(- A )

i=1 0 1=l O

+ ypz m(- a t B) (325)
a

See (18B).

T-n A A + EX.

% Z (8 + Bxi)m(- A 1)

1-1 0

A T-n a + 8x. A T-n & + 8x.

1.3. Lame—1.1+; z xim- 1)
i=1 9 1=l °

+ a (324) + E (325) (B26)
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" k n-k
n 0L + Bx 1 A A 1 A

%2m( Al)=%2m(a18)+%£m(%)
.=1 0 i=1 0 i=1 0

a é “
~> pl m (———-1' ) + q1 m (91)

(327)
0 5

See (B15).

0 k
n o. + Bx. 1 A "

filem A'1)=%2m(°‘f5)
'=1 0 i=1. 0

+ p m (a f B) (328)
l o

l n A A a + 8x]: a n a + 8x1

; Z (O. + Bxi) m (---w—--) = E 2 m( )

é n 8 + 8x1 -

+ — - z m(-———A——-) -> 5: (B27) + B (328) (329)

n i=1 0

 



CHAPTER V

CONCLUSIONS

The Tobit model is being employed with increasing

frequency in economics and other areas. The assumptions

underlying the model are quite strong and more attention

must be paid to the effects of violating those assumptions

to avoid erroneous inferences.

The implication of heteroskedasticity in the Tobit

model is investigated in Chapter II. The model considered

has only a constant term, and heteroskedasticity is intro-

duced into the model by assuming two distinct subsamples,

each with a different variance of the normal random error.

Calculating the asymptotic mean of the estimator for a

variety of parameter values, the main conclusions can be

summarized as follows: (1) heteroskedasticity will lead

to inconsistent estimates of the coefficients, the severity

of which increases with severity of heteroskedasticity

and the degree of truncation or censoring of the sample:

and (2) heteroskedasticity of a given severity causes less

inconsistency in the censored Tobit model than in the

corresponding truncated model. While it is dangerous
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to generalize the results of our simple model, it is

reasonable to conclude that moderate heteroskedasticity

(say, variances differing by a factor of two) is not

likely to cause substantial inconsistency in the censored

Tobit model unless the sample is heavily censored (more

than half of the observations at the limit). The study '

of the truncated case by Hurd (1979) is less optimistic.

It should also be noted that heteroskedasticity invali-

dates the usual test statistics, even in the complete

sample regression case.

Considering these implications of heteroskedastic—

ity in the Tobit model, some general test for heteroskedas-

ticity would be useful. Such a test is developed in

Chapter III, using the Lagrangian multiplier test prin-

ciple. Assuming (asen1alternative to homoskedasticity)

that the variance of the error terms is a linear function

of some exogenous variables, the test statistics are given

for both the truncated and censored cases. Although an

interpretation of the form of the test statistics is not

simple, the test statistics are not difficult to calcu-

late, using the estimated Tobit residuals. This test has

the same asymptotic properties as the likelihood ratio

test. It should be added that if a theoretical specifi-

cation of the cause of heteroskedasticity can be made,

the model can be corrected for heteroskedasticity by
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taking it into account in the estimation. However, the

attraction of the Lagrangian multiplier procedure is that

one can test for heteroskedasticity first to see whether

or not the more cumbersome estimation procedure is neces-

sary.

The robustness of Tobit estimators to non-normality

is considered in Chapter IV. The asymptotic bias of the

estimate of the mean of a random variable, for censored,

truncated and binary samples, when normality is assumed

but the distribution is in fact non-normal, has been cal-

culated using a variety of parameter values. Our analysis

suggests that:

l. The bias for non-normality can be substantial.

This is especially true in the realistic case in which

disturbance variance is unknown. In fact, the bias of

the normal MLE can be larger than the bias of the uncor-

rected sample mean.

2. The censored estimator is usually much less

biased than the truncated estimator. Therefore, the limit

observations should be included if available.

3. The bias due to non-normality depends on the

degree of censoring (or truncation) of the sample. For

example, for samples that are 75 percent complete, there

is virtually no bias, while for the largely incomplete

samples, the bias is substantial. One practical signifi-

cance of our results is that, for largely incomplete
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samples, estimation methods based on less restrictive

distributional assumptions may be worth considering.

It is important to stress that our results may

fail to be general for two reasons. First, we have

estimated only a mean, not a regression. Second, for the

sake of tractibility, we have considered only a limited

number of non-normal distributions, all of which are

symmetric.
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