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ABSTRACT

SECOND ORDER SEQUENTIAL ESTIMATION OF THE MEAN EXPONENTIAL

SURVIVAL TIME UNDER RANDOM CENSORING

by

Girish A. Aras

We study in this work a sequential estimator of the

mean 9 of an exponential distribution when the data is

randomly right censored. The loss is measured by the sum of

squared error loss of estimation and a linear cost function

of the number of observations. Without any further

conditions, second order expansions are provided for the

expectation of the stopping time and for the risk. Also the

asymptotic normality of the stopping time is demonstrated.

Sequential interval estimation of 9 is also considered.
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CHAPTER 1

INTRODUCTION

In several survival studies pertaining to clinical

trials. lifetesting. reliability and epidemiological

investigations the estimation of the mean survival time 9

is of fundamental importance. This is usually based on the

data gathered from a sample of n(21) units as in a

reliability study or lifetest. An analysis of the estimator

3n constructed would now be necessary before its practical

application in a given situation. However, it is often the

case that an (with n held fixed) is very hard to analyse,

but its salient features become more apparent "in the limit

as n tends to infinity". The consideration of large

sample sizes is often inappropriate in many longitudinal

studies where ethical reasons. high per unit costs and

monitoring costs preclude implementation of statistical

procedures which require genuinely large sample sizes for

their proper utilization. This leads us to consider some

sequential or quasi-sequential schemes that may effectively

reduce the sample sizes required for efficient estimation of

9. Generally this would engender substantial savings in

costs and on-test time with a reduction in the loss of

experimental units and without serious loss of sensitivity

or efficacy of the statistical investigations.

A common feature of several survival studies is that

the lifetimes (or failure times) of the units under





observation may not be completely observable due to the

presence of censorship. This is typically the case in a

clinical trial in which patients under treatment may be lost

to follow up due to withdrawals from study. In some

situations competing risks. other than that under study.

curtails observation of the duration variable of interest.

Suppose that the true survival time X of a specimen

may be detered from complete observation by the action of a

censoring variable Y. so that the only datum available to

the investigator is (2.6). where Z = min (X.Y) and 5 is

1 or 0 according as X S Y or X > Y. The random

censorship model assumes that X and Y are independent

variables. Suppose X has exponential survival function F,

F(t) = exp(-t9-1 ), t ) O and Y has censoring distribution

G(G(') = P{Y > 0}). Both 6 and G are unknown and we

wish to estimate 9. If c(>0) is the per unit cost of

observation we place n items on test and record the data

{(21.61)= ISiSn}. For an estimator an of 9 we measure

overall loss incurred by

Ln(c) = (en—e)2 + on

and the preliminary objective is to minimize the expected

1038, called the risk Rn(c) = ELn(c). by optimal choice of

n. We exhibit this by obtaining the expansion

-1 2)

from which the optimal sample size Nc may be taken as the

-1/2c-1/2

Rn(c) = 92(E4‘5)-1 n + on + 0(n-

integer closest to 9(E6) The corresponding



optimal minimum risk is then RN . Since both 9 and G

C

are unknown. Nc and RN are not completely specified and

c

therefore we are led naturally to consider an alternative

sequential procedure for estimating 6. We propose such a

scheme with a stopping rule T(=Tc) and consequent

estimation of 6 by RT. The performance of the sequential

procedure is described by comparing its risk

RT = E(LT(c)). with that of the optimal "fixed sample

scheme" risk RN

c

We say that the procedure (T.6T) is asymptotically

risk efficient if R /R a 1 as c a 0. Since R

T N N
c c

= 2ch + 0(c-ll?). we will have that RT - RN = o(c-1/2).

c

The central thesis of this research is a careful

analysis of the regret function R(9,G.c) = RT - RN . which

c

may be viewed as the additional risk incurred in using the

sequential scheme given by Tc over the fixed sample scheme

Nc' We shall obtain the expansion

R(6.G.c) = Bc + o(c)

where the constant B will be explicitly computed. This

also shows that the procedure (T,8T) has bounded regret

i.e. R(6.G.c) = 0(c). Additionally we obtain an expanion

for the expected sample size ETc and the asymptotic

distribution of an appropriately normalized version of Tc

Gardiner and Susarla (1984) were first to consider the

above problem. They demonstrated the asymptotic risk



efficiency. Hence the present work is a second order

extension of their work.

The study of sequential point estimation of the

exponential mean in the absence of censoring is taken up in

Starr and Woodroofe (1972) and Woodroofe (1977). The

stopping time Tc = inf(n 2 m: n ) X c—ll2n } is considered.

Woodroofe (1977) obtains second order expansions for ETc

and the regret under the condition that m 2 3.

To place our results in proper perspective. we present

brief review of literature on sequential point estimation.

Sequential procedures analogous to the one outlined here

have been considered in the absence of censorship by several

researchers beginning with the pioneering work of Robbins

(1959) for the estimation of the mean of the normal

population.

Let Xn. n 2 1 be independent. identically distributed

normal random variables with mean u and standard deviation

0. both unknown. Consider the loss function

2
Ln(c) = (X? - u) + on. for estimation of u. The risk

Rn(c) = ELn(c) = azn-1 + en. The integer nearest to

ac-l/2 say Nc. minimizes the above risk. Since a is

unknown Nc is also unknown. Robbins suggested

T0 = inf {n2m=n>c-1/2; as an alternative for No and

conjectured that R(u.c) = RN - RT is 0(c) where

c c

- 2 2 -1
RT = E(XT - u) + cETc and RN _ 0 NC + ch.

C C C



Starr (1966) proved that the above procedure is

asymptotically risk efficient if and only if m 2 3. Later

Starr and Woodroofe (1969) showed that R(u.c) is 0(c)

under the same condition. Woodroofe (1977) gave the second

order expansions for R(u.c) and ETc' He showed that

R(u.c) = (l/2)c + 0(c) if m 2 4. This paper is a landmark

in the theory of sequential estimation in the sense that it

developed and applied entirely new techniques--those of

nonlinear renewal theory to obtain the necessary second

order expansions. A formulation and a proof of a general

nonlinear renewal theorem was given by Lai and Siegmund

(1977. 1979).

The above discussion strongly indicates the good

performance of the sequential procedure for the normal case.

But is this procedure good in general? Let P(X1 = 1) = u

= l - P(X1 = O). 0 < p < 1. Then for m 2 2

- 2
RTc(c) - E(xT - u) + cETc

c

2 I (xm- n)2 d?

(X1 = 1. . Xm = I)

~ 1/2
and RN ~ 2(cn(1-u)) 4 0 as c 9 0. Hence

0

lim (RN (c)/RT (0)) = O and T is not asymptotically risk

ceo c c

efficient. To remedy this situation. Chow and Robbins

(1965) suggested that the initial sample size should go to

infinity at an appropriate rate as c a O. Ghosh and



Mukhopadhyay (1979) exploited this fact and proved the

asymptotic risk efficiency of Tc in the estimation of the

mean (modified in view of the above fact) without the

normality assumption. in the general nonparametric context.

under the condition that the eighth moment is finite. Sen

and Ghosh (1981) consider sequential point estimation of

estimable parameters based on U-statistics under the

condition that EIgI2+6 < a for some 6 > 0. where g is

the symmetric kernel corresponding to the parameter of

interest. Estimation of the mean is a particular case with

g as the identity function. Note the drastic reduction in

the moment condition from 8 to 2 + 6. 6 > 0. Chow and Yu

(1981) proved asymptotic risk efficiency for the mean

problem independently of the above two references under the

condition that EX?+5 < N for some 6 > 0. Their result is

a special case of the result of Sen and Ghosh (1981).

Sequential point estimation of locaton based on some R-.

L-. and M-estimators is discussed in Sen (1980). Sen's book

(1981) has an excellent survey of the above mentioned

article.

None of these results in the nonparametric context go

beyond asymptotic risk efficiency. Chow and Martinsek

(1982) were first to show that R(u.c) is 0(c) for the

mean problem under the assumption that E X16+6 < 0 for

some 6 ) O. Martinsek (1983) obtains second order

expansions for R(u.c) in the nonlattice case and bounds in



the lattice case. under the condition that E X18+6 ( m for

some 6 > O. In the nonlattice case.

2 + 222 z?) c + 0(c).R(u.c) = (2 - (3/4)E(zf - 1)

where 21 = (XI - u)a-l. Thus if X1 is symmetric

R(u.c) S 2 c + 0(c). That is. in the limit. one loses at

most the cost of two observations when using the stopping

rule Tc instead of Nc

By way of contrast. it also follows that the regret can

take arbitrarily large negative values as the distribution

of the X ’s varies. even among symmetric distributions. To
1

illustrate this. let X X be i.i.d. with probability1. 2...

density function f.

-5

HM = 2|X| [IXI21]

where [A] denotes the indicator of set A. For M > 1

define

x”I = x1[|x1| g n].

Then for each M. X1“. X2“... are i.i.d. and their common

distribution is symmetric around zero. Thus R(u.c) = (2 -

(3/4) log(M)/(1-M-2)2 + 3/4) c + 0(c). Clearly. as M

tends to w. the coefficient of c in the above expression

approaches -¢. The above example is due to Martinsek (1983)

and it provides an answer to the question raised by Starr

and Woodroofe (1972) and discussed further by Woodroofe

(1977). as to whether the coefficient in the regret

expansion can ever take negative values. Although Woodroofe

(1977) got positive values in the gamma and normal cases. in



general it need not be positive. and in fact for

distributions with large fourth moments (as in the example

above) arbitrarily large negative values can be achieved.

In light of Martinsek (1983) there is a renewed hope

that second order efficiency could possibly be established

in other nonparametric problems reviewed above. The present

work is one such example.

In Chapter 2. we develop the necessary prerequisites of

nonlinear renewal theory and moments of randomly stopped

sums. Most of the results are taken from Chapter 4 of

Woodroofe's monograph (1982) and Chow. Robbins and Teicher

(1965). Hence proofs have been omitted.

Chapter 3 is divided in to many sections. First three

develop our model. In section 5 the main theorems are

stated. Theorem 1 gives the second order expansion for ETC.

Theorem 2 asserts the asymptotic normality of Tc and

Theorem 3 gives the second order expansion for the RT'

Proofs of these theorems are based on several lemmas. Some

of them. which are of independent interest are stated and

proved in section 4. Section 5 gives the proofs of the main

theorems.

In Chapter 4. a related but a different problem of

asymptotic fixed width sequential interval estimation for

9. is developed. Second order expansion for the stopping

time involved in achieved as a bonus from techniques

developed in Chapter 3.



CHAPTER 2

PRELIMINARIES

Most of the results in this chapter are taken from

Chapter 4 of Woodroofe's monograph (1982). Hence proofs

have been omitted.

Let (0.5.?) be a probability space. Let 3n. n 2 1

be an increasing sequence of sub-sigma-algebrae of 9.

Definition 2.1. A random variable t is said to be a

propep stopping gime (with respect to 3“. n 2 1) if and

only if t is positive integer valued and {t=n) e 3n for

all n 2 l.

Qofinition 2.2. The random variables Xn’ n 2 1 are

said to be independeotly adapteo to 3n. n 2 1 if and only

if Xn is 3n measurable and 3n is independent of the

sequence Xk k > n. for every n 2 1.

e re .1. (Wald's lemma) Let Xn. n 2 1 be

i.i.d. random variables which are independently adapted to

increasing sigma-algebras 3n. n 2 1. let Sn = XI +

X2+....Xn. n 2 1 and let t be a proper stopping time for

which E t < w. If X1 has a finite mean u. then

ES=uEti

and furthermore

E (st - cu)2 = 52 E c.

if Xl has a finite variance 62



10

Definition 2.3. (u.c.i.p.) A sequence Yn. n 2 1. of

random variables is said to be uniform continuous in

probability if and only if for every 5 > 0 there is a

6 > O for which

Max
P {O$k$n6lyn+k - Ynl 2 e} < e for all n 2 1.

Remark 2.1. If Yn’ n 2 l converges to a finite limit

with probability 1 as n 4 m. then it is u.c.i.p..

Definition 2.4. A sequence Yn. n 2 1 of random

variables are said to be stochastically bounded if and only

if for every e ) 0 there is a c ) O for which

P (IYnI > c) < e for all n 2 1.

In particular. if Yn converges in distribution. then Yn’

n 2 l. are stochastically bounded.

Example 2.1. Normalized partial sums. If X X1. 2....

are i.i.d. with finite mean u and finite positive variance

62. then Yn = 6.1n1/2(Sn - nu) n 2 1. is u.c.i.p..

Lomma 2.1. If Yn' n 2 1 and Zn. n 2 l are

u.c.i.p.. then so is Yn + Zn. n 2 1. If in addition Yn’

n 2 1. and Zn. n 2 l. are stochastically bounded. and if ¢

is any continuous function on R2. then ¢ (Yn. Zn). n 2 1.

is u.c.i.p..

Theorem 2.2. (Anscombe's theorem). Suppose that Y1.

Y2.... are u.c.i.p.; let ta. a ) 0. be integer valued

random variables for which a—1 ta converges to a finite

positive constant c in probability and let N8 = [ac].

a > 0. Then
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Yt - YN 4 0 in probability as a 4 w

a a

If in addition. Yn converges in distribution to a random

variable Y, then Yt converges in distribution to Y as

a

a 4 m

We need vonBahr’s (1965) extension of the central limit

which asserts:

Theorem 2.3. Let Xi' i 2 n be i.i.d. with finite

mean u. positive variance 62. and EIXlla < m where

a 2 2. then

a/2

-1 2
 EI6 n'1/2(sn-np)|“ » P (1/2 + a/2)

The convergence of moments in Anscombe’s theorem is

examined next. The most general theorem available is by

Chow and Yu (1981) which is as follows.

jheorem 2.1. Let Y1. Y2.... be independent random

variables with E Yn = O for all n 2 1. Assume that for

some p 2 2. {IYnIp. n 2 1} is uniformly integrable. Let

3n be a a-algebra generated by {Y1.Y2....Yn} for each

n 2 1. ’0 = {¢.n}. and let (M(b). beB} be proper

sn-stopplng times with BC(o.w) such that {(b'1M(b))P/2,

n

beB) is uniformly integrable. Let Wn = 2 Y1. Then

i=1

{lb’l/2 wu lp. beB)

(b)

is uniformly integrable.

Following result is a part of Theorem 7 of Chow.

Robbins. and Teicher (1965).
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Thoorem 2.5. If X1. X2.... are independent with

E Xn = O. E x: < m and t is a proper fin-stopping time

with E t2 < m. then B s: < a where 3n = x1 + x2....xn.

n 2 1 and 3n = o-algebra generated by (X1. X2.....Xn).

The rest of the chapter is a review of linear and nonlinear

renewal theory.

Let S = X + X .....X . n 2 1. be a random walk and

n 1 2 n

for a 2 0. let

Ta = inf(n 2 1: Sn ) a)

be the time at which the random walk first reaches the

height a. or m if no such time exists. Next. define

Ra on {Ta( on} by Ra = STa - a. Thus Ra is the excess

of the random walk over the boundary a at the time which it

first crosses a.

If u = E (X1) 2 0. then Sn 4 m with probability 1 by

the strong law of large numbers so Ta < a for all a 2 0

with probability 1. It can be shown that Ta < w for all

a 2 O with prob. 1 if u = 0. too. It can be verified that

Ta is a proper stopping time if u 2 0 and fin =

a-algebra generated by {X1.X2.....Xn).

The following is a corollary of the classical renewal

theorem.

Theorem 2.6. Suppose that 0 < u < m . If F is

nonarithmetic. then Ra has a limiting distribution H as

a 4 0. where

H(dr) = ET%_T P (Sr > r) dr r 2 O.

T
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and T = inf (n: Sn ) 0).

Theorem 2.7. If Xl has a finite variance 62. then

the mean of H is

2+ 2 w -1 _

p = E;———— - 2 k E( s )
2p k

k=l

where — denotes the negative part.

We have a following important corollary of Theorem 2.6

and 2.7.

C r lar 2. . Suppose u > O. that E{Max (O.Xl)2}<w.

and that F is nonarithmetic. Then

E (Ra) 4 p

and

E (Ta) = u_1 (a+p) + 0(1) as a 4 w

To study the counterparts of Theorem 2.6. 2.7 and

Corollary 2.1 in the nonlinear case. we have the following

set up. Let X1. X2.... denote i.i.d. random variables on

(0.3.P) with finite. positive mean u; and

SD = X + X
1 2"'

random variables for which (X1.§l).....(Xn.§

..Xn. n 2 1. In addition §n. n 2 1. denote

n) are

independent of Xk’ k > n. for every‘ n 2 1. The objective

is to extend aspects of renewal theory to

Z = S + § . n 2 1. under smoothness

n n n

conditions on §n. n 2 1. Define Zo = 0. $0 = (¢.D) and

’n = a {(X k S n}. n 2 1. Thus Xn. n 2 1. are
k'sk):

independently adapted to ,n' n 2 1. Next. let

Ta = inf (n 2 1: Sn 2 a).



l4

and

Ra=Zt-a 820.

These notations and assumptions are used throughout the

chapter.

efin t 2.5. The process §n' n 2 1. is said to be

slowly changing if and only if:

(i) i Max {|§1|,|§2|...|§n|} » o in probability as

n

n 4. w and

(ii) 5“. n 2 1. is u.c.i.p.

e ar . . Observe that (i) holds if §nln 4 0 with

probability 1 as n 4 w.

1 11
Remark 2.3. If §n. n 2 1. and §n . n 2 1 are two

slowly changing sequences. then 5n = §i + 5:1 n 2 1.

defines another slowly changing sequence.

Exam e 2.2. Let Y1. Y2...

mean u and a finite. positive variance. then §n =

be i.i.d. with a finite

n(Y§-v)2. n 2 1. is slowly changing.

Lomma 2.2. If (1) holds and N = N8 = the greatest

integer in au-l. a 2 0. then ta < m for all a 2 0 with

-1
probability 1 and t3 Na 4 1 in probability as a 4 m. In

particular. §n n—1 4 O with probability one. implies

t N.1 4 1 with probability 1 as a 4 m.
a a

Theorem 2.8 and Theorem 2.9 are generalizations of

Theorem 2.7 and Corollary 2.1 in the nonlinear context.
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Th rem .8. Suppose that X1 is nonarithmetic and

that Sn. n 2 1 are slowly changing. Then Ra = Zt - a

a

has a limiting distribution H. as a 4 m. where

1
H(dr) = ETS-—)

T

P (ST > r} dr. r ) O.

and T = inf (n: Sn ) 0}. That is Ra has the same

limiting distribution as ST - a.

a

Theorem 2.9. Let An. n 2 1 be Fn-measurable sets.

and Vn. n 2 1 be Fn-measurable random variables for which

following conditions hold.

0 Q .

(1) 2 P ( U Ak) ( m.

n=1 k=n

(2) gm = Vn on An. n 2 1.

Max

(3) {oSkSn lvn+k|' n 2 1} are uniformly integrable.

Q

(4) 2 P (Vn 5 us) ( m for some 5. O ( e < u.

n=1

(5) E (Vn) 4 E (V) where V is some random variable.

(6) p (ta 5 5 Na} = o(N;1) as a a a. e > o,

where N8 = largest integer in a u-l.

In addition. suppose Xl has finite. positive variance 62.

and that Vn. n 2 1 are slowly changing and F is

nonarthimetic. then

E (ta) = p-1(a+p-E(V)) + 0(1) as a 4 m. where

2 2+52 w _1 _

p = E (s1)/2 E (sf) = E§E_' - kil k E (sk).

Theorem 2.8 and a variant of Theorem 2.9 were first

proved by Lai and Siegmund (1977. 1979). Hagwood and

Woodroofe (1982) simplified the second theorem. Theorem 2.9
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as stated here is a slight modification of Theorem 4.5.

Woodroofe (1982). the proof being essentially the same.



CHAPTER 3

SEQUENTIAL POINT ESTIMATION

1. The Model

Let X and Y be nonnegative independent random

variables with survival functions F and C respectively

i.e. F(t) = P(X)t) and G(t) = P(Y)t) for all t 2 0. We

assume that X is exponential with mean 6 and G(O) # 0.

Consider Z = min (X.Y) and 6 = 1 whenever X S Y and 0

otherwise.

Suppose ((21.61): 1 S i S n} is a random sample of

size n. We wish to estimate 6 in presence of the

nuisance parameter G. Consider the sequence of estimators

9n. n 2 l. of 9 given by

G
)

— —_ 1 -

n - Zn 6D [6D x O] (3.1)

where the overscore denotes the corresponding sample mean

and [A] denotes the indicator of Set A.

The loss incurred in estimation of 9 by 9n is

‘ 2
Ln(c) — (9n - 9) + on. (3.2)

where c is the cost per observation.

2. Some Pre imi ar rmulae and esults

E 5 = P(X g Y) = 9'1 13 e'X/9 G(x)dx = b.

I; P (Z>z) dz = I; F (z))G(z)dz

= [3 e-)‘/9 G(x)dx

E (Z)

Thus. E(Z-96) = O.

2
Var (z - 95) = E (z - 95)2 = e E 5

l7
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The covariance matrix 2 for the vector (2.6) works out

to be

2 2 2
2 I; x e-)(/9 G(x)dx - 6 b 6-1[; xe-XBG(x)dx-6b

9-1 I; x e-XIG G(x)dx - Gb2 b(l-b)

Denote by (e1. e2) be a normal vector with mean 0 and

covariance matrix 2.

Observe that by the strong law of large numbers 9“. n 2 1

is a strongly consistent estimator of 9 and by the central

limit theorem we have.

47; (On - 9) converges in distribution to normal random

variable with mean 0 and variance 02 = 62 b—l.

Remark 3.1. Since P(6£ = 0) = bn 4 0 at an

exponential rate as n 4 m and all our scale factors will

be algebric powers of n.we shall suppress terms involving

[5n = 0].

—-k cu—

. . sup
Lemma 2 1 For any k 2 1 E n 6n [6n g 0]

a

g (2b‘1)k + 2 nk P(6n g b/2) < m

n=1

sup ‘ek ‘ _ sup -k -
Eroof. E D an [an a 0] - E n D [an > b/2]

sup ‘bk -1 ’
+ E n 6n [n S 5n S b/2]

l k ” k -
g (2b ) + z n P(6n g b/2) < m

n=1

Lemma 3.2. B (an - e)2 s azn-l

+ n'2 {-2 b'3 3(51 - b)(zl - 951)2

-4 2 2 -2
+ 3b Ee2 (e1 -9e2) } + o(n )
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Proof. By Taylor’s theorem in two variables. we have

— -2 —

an - e + b-1(2£ - 9 an) - b (an - b)(§£ - 9b)

9b"2 (3g - b)2 + (A53 (35 - b)2(2£ — eb)

- A1 A;4 (35 - b)3)

where A1 lies between in and 9b and A2 lies between

6; and b.

Thus E (6n - 6)

=E

Now we

2

-2 — _ _

an - b)(zn - 9b)b (2n - 93$)2 + E (b'2 (

2 — 2 -3 ‘
9b” (5n - b) - A2 (an - b)2 (E; - 9b)

-4 - 3 2
Al A2 (an - b) )

212(b’3 (3g - b)(§§ - 93g) (2g - 6b)

eb'3 (2g - 93g) (3£ — b)2}

2 Eb’1 (E; - e 3;) (Ag3 (3; - b)2 (E; - 9b)

-4 - 3
Alhz (6n - b) )

I + II + III + IV
11 n n n

be easily checked that ID = 02n—1

-3 - - - 2
2 b E (an - b) (2n - can)

n

-2b"3 n'3 2 E (51 - b) (zi - 951)2

1:1

--2b’3 n’2 B (51 - b) (21 - 951)2

shall consider IVn.

Let f(x.y) = 2b-4y2(x-9y)2 for any x.y real numbers. Let

Pn denote the random variable f(
1/2 _

n1/2 (Eg-eb), n (fin-b))



2O

2 -l -
and Qn = 2n b (E; - e 6;){A53 (an — b)2(2£ - 9b)

-4 ’ 3
- A1 A2 (6n-b) )-Pn.

Thus n21V = E P + E o .
n n n

By central limit theorem. Pn converges in distribution to

f(el.e2) and Qn converges to zero almost surely. Thus

2 -l ‘ - -3 - 2 ’ -4 ‘ 3
2n b (Zn-66D) {A2 (6n-b) (Zn-9b) - A1A2 (6n-b) )

converges in distribution to f(e1.e2).

Now to conclude that n21V converges to Ef(e1.e2). we

need to verify uniform integrability of {Pn+Qn. n21). which

follows from the following facts. Since 0 < A-p< b-p
2

+ 3;p [6; fl 0] by previous lemma. Agp is uniformly

integrable for every p ) 0. Similarly A? is uniformly

integrable for every p > 0. Also (111/2 (2g - 9b))p and

1
(n ,2 (En-b”p are uniformly integrable for every p > 0.

Similar computations for IIn gives the lemma.

3. ue r r

Using (3.2) and lemma (3.1) we have.

1 2
Rn(c) s E (Ln(c)) = azn’ + as + 0(n’

1/2

)

For large n. Nc = nearest integer to (c- a) which

minimizes the risk. Since a is unknown. Nc' the optimal

sample size is unknown and thus one is naturally led to

explore a sequential scheme to estimate 9. Define a
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stopping rule

c-1/2 “
Tc = min {n 2 n1c= n > an) (3.3)

1

where n = c‘2(1+a). a > 0.
1c

‘ - ‘43/2 - -
an _ Zn 6n [6n fl 0] + [6n — 0]

Note that an. n 2 1. is strongly consistent for a

4. Lemmas

Let 0 < e < 1 be fixed. Let n and be the

2c n3e

integer parts of Nc(1-e) and Nc(1+e) respectively. We

may write Tc and Nc without the subscript c in the

sequel. Also we shall freely write cml/2 a for N. Let

3n be the a-algebra generated by {(21.61).

(22.62).....(Zn.6n)}.

Romark 3.2. The terms involving the random variables

[6N = O]. [6% = 0] are left out without any further

indication since F(Efi = O) and P(6& = 0) go to zero at

an exponential rate as c 4 O and all our scale factors

Q

will be algebric powers of c. (P(6T = O) = 2 P(6n = 0.

n=m
1c

” - n1 1
T = n) g 2 P(6n = 0) = b c(l-b) .)

n=n
1c

-1/2. IIsup _ =
Lemma 3.3 'ln2m (an a)llp 0(m ) for all p > 0

and m 2 1.

Ereei- Slan - aI

31-3/2“”n fl 0] (Izn —9b| + 9b-1/2lgi/2 _ b3/2l)
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-3/2 - -
_ an [5n a 0]|zn ebl

-1/2 -3/2 - -l/2 1/2 —1 -
+ 9b an [an a 0] (5n + b ) (5n

+ 31/2 b1/2 + b) IE; - bl

—.3,2 - -
s an [an s cllzn - ebl

+ (39/2)(3 A b)’5/2 [3 a 0] |3 — b| (3.3)
n n n

-=3/2 - -
s an [5n x 0]|zn - ebl

+ (39/2) (3;5/2 + b'5/2) [35 a O]I6#-bl (3.4)

The Schwarz inequality. lemma 3.1. and the maximal

inequality for reverse martingales give the lemma.

Lemma 3.4. F(T g n20) = 0(cp) for all p > o

and

F(T 2 n26) = 0(cp) for all p > 0

Max ‘
Eroof. P(T g n2c) g P(n SnSn lan -aI > e 0)

1e 2c

3 P( "ax IE — ebl > n ) + P( “ax l3 - bl > )
n n 1 n Sn n 172

1cSn 10

(3.5)

for some n1. n2 2 0. The above inequality is obtained by

using (3.3) and a truncation argument similar to the proof

of lemma 3.1. With the reverse martingale inequality.

1

= c2(1+a)
1c and (3.5) imply the lemma.

0 11a .1. For all p > o, {TCN;1}_p: o < c < I}

is uniformly integrable.

Epooi. Let k = (1-e)‘p

[[(T/N)’p > k] (TN'1)'paP
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g NP [ [TIN > l-e] d? = NpP(T < N(1-e))

S 0(1) as c 4 o. by Lemma 3.4.

Lemma 3.5. {(TN-1)p: O < c < 1} is uniformly

integrable for all p > O.

opppg. TN" 3 1 + 0'1 (ST-l - a) + c1/2 0 +

[T = nlc] n1c

Lemma 3.1 and 3.3 imply the desired uniform integrability.

Lemma 3.6. For all p > o. ((N'1’2(r - N))p

O < c < 1) is uniformly integrable.

Proof. By definition of T. we have

-1/2 1 -1/2 A
c aT < r g c aT_1 P(T > n10) + nlc P(T = nlc) +1.

Hence

-1/2
IN (T - Nllp

-1/401/2( -1/401/2
s Haxilc -a)IP. Ic (0T 1 -allp

1/4
+ (e nlc P(T=n::)}p + 1}. (3.6)

Also

-1/4 ‘ - /4 - - l4 -
(c IaT-al)p S kp(c p a¥IZT - Gblp + c p b¥I6T -blp)

where an = [6; i O] 6‘3/2. and

bn = 9(En + 31/2 b1/2 + b)(61/2 + b1/2) 6-3/2b1/2 [ani 0].

Thus by the Schwarz inequality.

E(c-1/4l;T _ 0|)p S kP {El/2a2p E1/2(c-1/4|E& _ 9b“2p

+ E1/2b2p E1/2 (3% _ b)c-l/4)2p).

E(c-1/4I2& - Gbl)2p = 0(1) by Lemmas 3.5 and 2.4

and Corollary 3.1

E a?” = 0(1) by Lemma 3.1.
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The other term is treated similarly to obtain uniform

integrability of {(c-ll‘llaT - al)p = O ( c < 1 }. (3.7)

1/4
(c “1aP(T = nlc))p=o(l). (3.8)

Hence by [3.6]. [3.7]. [3.8] to prove the lemma. we only

Furthermore by Lemma 3.4.

need to show

BIC-1,401,2(0T_1-a)lp = 0(1) for all p > o (3.9)

Observe

-1/4 A ~ - /4 -
(c IaT_1 - al)p g kP(c p a¥_1|zT_1 -9b|p

— /4 -
+ c p b¥_1|5T_l-b|p) and

- l4 ‘ p ‘ -p/4
E p 2 -9b kc | 1-1 I s p(c

-p/4

Elzf - Gblp +

E T’p(zT - 9b)p c ) (3.10)

By Theorem 2.4 the first term on the right side off (3.10)

is bounded.

on

- p _ E _ p -ElzT Bbl - n=n Elzn ebl [T—n]

1c

00

g z Elzn - Bpr[T2n]

n=n

lo

a p
s nil E [Tsz E(lzn - ebl IFn_1)

= Elz1 - GprE T. (3.11)

Using (3.11). The Schwarz inequality and Corollary 3.1. we

have that the second term on the right hand side of (3.10)

is bounded. For all p > 0. E a¥_l = 0(1) by the Lemma

3.1. and similarly E b = 0(1). Hence the lemma.
T-l
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5. The Main Theorems.

Let w = b1/29-1+(3l2)(6b1/2)-1(61-b)-(62b1/2)—1(Zi—6b)
i

n _

and S = 2 W . Let S denote the negative part of S .

n i=1 i n n

Let A be a 2 x 2 matrix defined as follows:

(63b3/2)-1 -(3/4)(62b3/2)-1

A:

-(3/4)(92b3/2)-1 (3/8)(Gb3/2)-1

Define V = (e1. e2)A(e1.e2)'. In the sequel no distinction

in made between N and c-llza and Remark 3.2 applies.

Theorem73.l. E Tc = N + a (p-EV) + 0(1) as c a 0. where

1
p = (1/2){(3/4) a- + (9/~'1)a-1b"1 - (I-Bb-3 I xe-XI9G(x)dx}

on 1 _

- 2 K‘ E sK .

K=1

36

Theorem 3.2. Tc = N1]2 (T-N) is asymptotically normal

with mean zero and variance

(9/4)9"2 - 4'19'2b + 9’4b’11 xe-X/e G(x)dx.

Theorem43.3. R(9.G,c) = 30 + 0(c) where

3 2
B = -29’ b-2E {(z1 - 9b) - 3/29(5l - b))(z1 — 951)

-4 -3 2
-49 b {E(e1 - 3/29e2)(e1 - 9e2)}

—2e'2b'2 E(e1 - (3/2)6e2)2

+59‘4b‘3 E(el - 9e2)2 (e1 - (3/2)9e2)2

+39-3b-3 E(el - 9e2)2 ele2

--(15/4)9-10-1 E(e1 - 9e2)2 cg - 2a EV

-3 -3 2
+ 6 9 b Ee2 (e1 - 9e2) {el - (3/2)9e2}

—3 -3
- 4b 9 E e2(e1-9e2) E(e1-9e2)(el-3/29e2)

- 2b'29'1Ee2(a1-3/29a2).

Remark 3.3. We note that in the absense of censoring,
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the above results reduce to those given by Woodroofe (1977).

The constant B turns out to be 3.

6. Erggfg.

1/2 c-1/2
A _1 _ .

Let Dc = T(aT) -c and Tc = inf {n 2 nlc' Sn > }.

with Sn' V as defined in the previous section.

Lemma 3.7. As c 4 0. DC has a limiting distribution

H. where H(dr) = (1:37)‘1 F(sT > r) dr. r > o,

and T denotes the first ladder epoch of Sn' n 2 1. Thus

Dc has the same limiting distribution as ST - c-(1/2).

c

ELQQL. Using Taylor's theorem for two variables. we have

1/2 -1 -
1431“)"1 = n(a'1 + (3/2)(9b (an - b))

_ (92b1/2)-1(§g _ 9b)

1/2 -1 - 2
12 (an - b)+ (3/8) A;

- (3/2)Ai/2A;2 (3g - b)(2£ - 9b)

3/2
+ A1

-3 ‘ 2

where A1 and A2

‘ -1
respectively. Thus n(an) - Sn + 5n where

lie between b and 3;. 9b and Z#

-1/2 -1 - 2
sn = n{(3/8) A1 32 (an - b)

1/2 -2 - ’
- (3/2) A2 A2 (6n - b)(Zn - 9b)

3/2 -3 - 2
+ Al A2 (Zn - 9b) }.

The Wi's are independent. identically distributed. and

non-arithmetic. Also E W1 = a.1 > 0 and {§n. n 2 1} is a

slowly changing sequence. These follow from Example 2.1.

Remark 2.1. Lemma 2.1. and Remark 2.3. Hence by Theorem
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2.8. we have the result.

Remark 3.4. Though (Dc: 0 < c < 1} may not be

uniformly integrable. {(Dc 0T) 0 < c < 1} is. for all

K ) 0. Observe that

A ‘ -1/2
DcaT = T - aTc < T - (T—l)[T)nlc]

“ -1/2
- on c [T=nlc]

1c

‘ -l/2
= l + (T-l - anlc c )[T=n1c]'

Schwarz inequality and Lemmas 3.2. 3.4. 3.5 give us the

necessary uniform integrability.

-1/2
nLemma 3.8. (1) En 4 0 in probability as n 4 w

and (ii) En converges in distribution to V.

ELQQL, (ii) implies (i). Application of the bivariate

central limit theorem gives (ii).

1 _

Lemma 3.9. Let An = (ig > 2’ 6b and an > 2'1b) and

Vn = fn[An] .

Then (1) P( u Ag) < w.

n 1 k2n

(ii) Vn converges in distribution to V.

"
M
B

(iii) { Max IVn n21} are uniformly integrable.
+k|'

ogkgn

(iv) 2 F(vng-np) < m for some 3. o < p < a'l.

n=l

Proof. Note that u A;={ u (Egzz‘leb))U( u (Eggz’lb)}.

k2n k2“ k2n

Thus P( u AL) 3 P(Max|§k-eb|4 z 16’194b4)

an an

+ F(Maxlgg-bl4 > le‘lb)4).

k2n

By the reverse submartingale inequality.
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-2
P( u AL) 5 n(EIZ§ - ebl4 + EIEg-bi4) = 0(n )

an

where n is a constant. Hence (1) obtains.

Since [An] 4 1 almost surely. by Lemma 3.8. Vn converges

in distribution to V as n 4 m.. Hence (ii) obtains.

Let a > 1.

a - ‘ba/Z ‘-a —

E Max (n+k) [ n+kflo] 6n+k Zn+k|6n+k
OSkSn

2a

-b| [An+k]

_a/2E Max (n+k)alg -bl2a
-1 -a -l

S (2 9b) (2 b)
O$k$n n+k

-a/2

g (2'leb)‘“(2'1b) n'“ E Max (n+k)2“|3£+k-b|2a

OSkSn

k

(2 lab) “(2’1b)'“’2n’“ E Max |2(5 -b)|2“

0$k$n 1

By the martingale inequality. the right hand side of the

i

above inequality is bounded above by

-a/2 -2

2

(2’leb)‘“(2'lb) (2a)'2“(2a-1) “n"“EI2n(51—b)|2“.

1

By vonBahr’s (1965) extension of the central limit theorem.

(i.e. Theorem 3.2). E{(2n)1/2I3#-bl}2a » 2“ w-1/2F(2-1+a).

Hence

a "' "-a/2 J -

SUP E Max (n+k) [ n+k#0]6n+k zn+k|5n+k
n OSkSn

The above inequality implies that

2
—b| “[An+k] < m.

- -1/2 -1 - 2 ,

{Ogfign (n+k)[ n+k’035n+k Zn+kl5n+k-bl [An+k]° “21}

is uniformly integrable.

Dealing similarly with the other terms in Vn' (iii) can be

obtained. Finally.

F(vnsnn) s P(-(3/2)x}’23;2(3g-b)(§;-eb)[AnJ < -B)
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1/2 -2 - -
P((3/2)[An]hl AZ (an-b)(Zn-9b) > B)

V
\ P((3/2)[An]((eh)'2 + 2:2)Igg-bIIE£-9bl > B)

V
\ P((3/2)(9b)-2I(3$-blIZn-Gbl > 2‘15)

+ P{(3/2)2;2[An]IEg-bllag-9b] > 2’15)

s P{(3/2)(eb)‘2l(Kg-b)(E§-eb)I > 2‘13)

+ P(3/2)(9b/2)-2I3#-blIEg-Bbl > 2‘13)

By application of the Chebysev and Schwarz inequalities. we

have

1/2 4
P(vn g as) s K E (3%-b)4 E1|2(2£-9b) = 0(n’2)

Hence (iv) obtains.

Proof of Theogem 3.1. Lemmas 3.9. 3.4 and Theorem 2.9

imply the theorem.

Egoof of Theorem 3.2. Since sT + ET - D0 = e’1/2. we

have - (ST-0-1T) N-llza-a N-1/2(ET-Dc) = N-1/2(T-c-1/2a).

Since (Sn-a-ln)n-1/2a converges in distribution to normal

random variable with mean zero and variance (9/4)9-'2

l 2 1
- 4' 9’ b + 9‘4h'11xe'X/°c(x)dx, the fact that N“ T a 1

almost surely. and Anscombe's theorem imply (ST-a—IT)N1/2a

converges in distribution to above mentioned normal random

variable. Similarly Lemma 3.8 and Anscombe’s theorem imply

/2
that ETN-l converges to zero in probability. By Lemma

3.7. D n'l’z
C

converges to zero in probability. Thus

N1/2(T-N) converges to normal random variable as stated in

Theorem 3.2.
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Remark 3.5. For the proof of Theorem 3.3. we shall use

the following notation. Let P1 = G-lb-1/2(Zi-951).

a. n _

s e 2 P and U = (9b) 1{2 -(3/2)e(5 -b)} - 1. Also
n i=1 i i i i

A n

let S - 2 (51—h). It can be easily checked that the

variance of P1 = 1.

Lemma 3 10 E(3 -b)(2 -GE )2
' ' T T T

l 1

= ca-2{E(6l-b)(Z-951)2 - 3h” 9’

l

Ee2(e1-9e2)2(el-(3/2)9e2)

+ 29' h"1 3(51-b)(21-951) E(e1-9e2)(e1-3/29e2)

+ 9 Ee2(el-3/26e2)} + 0(c).

Eroof. In view of Remark 3.5.

- - - 2 2 -1* ~ 2
E(6T-b)(ZT-96T) = e b ET sT sT

2 -3 -3 . N2 2 -3 . ~2
_ a b E(T -N ) sTsT + a b N EST ST

a 92b N'3 ET'3(N-T)(N2 + NT + T2) sTs$ + 92hN'3EsTs¥

e 92bN’2£(T’1N)N‘1’2(N-T)(T'2N2+T'1N+l)(sTN’1/2)(§¥ N’l)

2 -3 . ~2 2 -3 A
+ e bN E sT(sT - T) + e bN E STT

= I + II + III. (3.12)

Using the facts that T a;1 - cll2 = Dc and 3T 0-1 - 1

b”1 (if - 9b - (3/2)e(3}-b) - (3/2)e'1b‘2(zT-eb)(3}-b)

+ (15/8)a’1§}(3}-b)25'7/2)

for some B between b and 3}. we have

1/2 A -l
N‘1’2(N-T) = -N (0T0 -1)

—N1/29-1b—1{Z&-9b-(3l2) 9(35-b)

-1 -2 - -
(3/2)e b (ZT-Gb)(5T-b)
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+ (15/8)a-12&(E&-b)2B-7/2}. (3.13)

Theorem 2.4. Remark 3.4. Anscombe's theorem. B-7/2 < b-7/2

“-7/2
+ 5T . Corollary 3.1 and (3.13) imply that

-2 -1 -l 2
I = -3ca {9 b E(e1-3/26e2) e2(el-9e2) } + 0(0). (3.14)

Computation of the term II is briefly scatched below since

it is similar to the proof of the lemma in Chow and

Martinsek (1982).

Note that (S .5 ) and (Sz-n.$ ) are martingales. Also
n n n n

- ~2 * ~2 2 *2 ~2 2
2EST(ST-T) = -(E(ST-ST + T) - EsT - E(ST-T) ). (3.15)

By Wald's lemma. Es: = E(61-b)2 ET (3.16)

Theorem 1 and lemmas 6.8 of Chow. Robbins and Teicher (1965)

imply

. ~2 2 2 2 2 T ~2
E(s -s + T) = E(6 -b) ET + (P -1) ET + 4 E s

T T 1 1 1:1 j-l

3 ~ 2
+ 4EP1 ETsT - 2E(51—b)(P1-1) ET

- 4E(6l-b)PlETST

and

~2 2 2 T ~2 3 ~
E(s -T) =E(P - l)ET + 42 2 s + 4E? ETs . (3.17)

T 1 1:1 1—1 1 T

(3.15). (3.16). (3.17) and Wald's lemma imply that

A

~2
EST(ST-T)

2 N

E(51-b)(P1-1)ET + 2E(61-b)PlETST

E(61-b)(P?-1)ET + 2E(5l-b)P1E(T-N)§T. (3.18)

Now (3.18). lemma 3.5. (3.13). Remark 3.4 and Anscombe’s

-7/2 7/2 - -7/2
theorem. B ( b + 6T and Theorem 2.4 imply that

II = ca-292b(E(61-b)(ZI-951)2

1
+ 26' b-1E(51-b)(21-961)E(e1-3/29e2)(e1—9e2)} + 0(c)
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e ca-2(E(61-b)(Zl-951)2

+ 29'16'1Ee1(el-ee2)E(el-3/2ee2)(el-eez)} + 0(c) (3 19)

By Wald’s lemma.

2 3
111 = 6 b N‘ EST(T-N).

Again. use of (3.13) and arguments similiar to (3.19) give

us

III = ca.2 9 Be2 (e1-3/2 9e2) + 0(c). (3.20)

The lemma is proved by (3.12). (3.14). (3.19) and (3.20).

The next lemma asserts that T-1S¥ and Dc are

asymptotically independent.

Lemma 3.11. P(T-1S¥ S x. Dc S y) 4 L(x)H(y) as c 4 0

for every x. y 2 0. where H is as described in Lemma

3.7 and L is the distribution function of a chisquare

random variable with one degree of freedom.

figooi. Proof is similar to the lemma in Martinsek

(1983).

Proof of Theorem 3.

-1 2 ’2
e'1R(e.c.e)=(c a E PT '1 '1 2—ET)+ 2(ET-N) - 2c b a E(E}-h)3¥

-1 - -3 ' 2 - -4 - 3
+ 2c aEPT (A2 (6T-b) (ZT-Bb) - Alkz (6T-b) )

+ c-l(b-2(3&-b)(E&-9b)-9b-2(3&-b)z-A;3(3&-b)2(2&-9b)

+

- - 3 2
Alhz (6T-b) )

(26'2h'2E(51-h)(zl-651)2 -3e‘2h'3Ee§(el-9e2)2)+o(l)q
.

I + II + III + IV + V + VI + 0(1).

II and III are given by theorem 1 and lemma 3.10

respectively.
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IV a 2 6’2b'3 E(e1-9e2)2e§ + 0(1) (3.21)

by lemma 3.5. the central limit theorem. Anscombe’s theorem

and by Theorem 2.4. Similarly

v = 6’2h‘3E(e1-6e2)2e§ + 0(1). (3.22)

Now I = E ST2{(N-1T)-2-1}. By Taylor’s theorem.

I = -2 E 8%(N-1T-1) + 3 E S¥A-4(N-lT-l)2. (3.23)

1
where A lies between 1 and N- T.

~

E sT h'4(N'1T-l)2

ETN'1 (T(E&-63&)29-2b-1} A’4{N'1/2(T-N)}2

_1_1)

ETN'1(T(§}-63§)29’2h’1)A'4(N1/2(3Ta

-1/2 “ 2
+ N DcaT) .

Using (3.13). Remark 3.4 and reasoning similar to

(3.21) gives us the convergence of the above term to

E 6’2b‘1(e1-6e2)2(e1-(3/2)6e2)2a’2h’3. (3.24)

Now consider the first term in the right hand side of

(3.23).

~2 -1 ~2 “ -1 ~ -1 A
E ST(N T-l) = E ST(aTa -1) + E ST N DTOT' (3.25)

Using (3.13) we have.

~2 “ -1
E ST(aTa -1)

~2 - 1 2
- ~2 —

b EST(ZT~9b)(5T-b)
-1 -1 - -

e b EST(ZT-3/29(6T-b)-9b}- 3/26

~2 -1- - 2 -7/2
(15/8) E STa ZT(6T-b) p+

(i) + (ii) + (iii)

By Wald’s Lemma.

~ T

E s¥( 2 u

i=1

" -1 ~2 -l
E(ST-T)(2 u1)N + E(ST-T)(2ui)(T -N

m )T"
i

-1)
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= I + II.

2

As in the lemma of Chow and Martinsek (1982). I can be

evaluated as

lN-IET(Eu¥-E(P¥-ul-l)2 + E(Pf-l)2)

1

I = 2-

+ 2E((ul+l)Pl)E(T-N)§TN’

Lemmas 3.4. 3.13 and the fact that

-1/2 A
Nl/2(T-N) = N1/2 a'l-l) + N DcaT. we have the

~

(CT

Iconvergence of to

1/2 {E uf-E(Pf-ul-l)2 + E(Pf—l)2)

-3|2
+ 9-2b E(u1+l)P1E(e1-3/29e2)(e1-9e

T -1 -1 -1 T
2 ui) N T - N E(N-T)(2 ui)

= 1

2)'

II = E §¥(N-T)(

i l

converges to

E(el-(3/2)ee2)2e’2b'2-E(el-6e2)2(el-(3/2)ee2)2e‘4h'3.

Thus

(1) = 1/2{E uf-E(ef-ul-l)2 + E(Pf-1)2)

+ 2E(ml+l)l:1(el-(3/2)6ez)(el-eez)6'4h“3

+ E(e1-(3/2)6e2)29’2h'2-E(tel-19e2)2(el--(3/2)6e2)29’4h’3

+ 0(1).

(11) = -(3/2)e’3h‘3(e1-6e2)2e1e2 + 0(1) and

(111) = (15/8)6’1a'1E(el-9e2)2e§ + 0(1).

Remark 3.4 and lemma 3.11 imply that

N -l A

EST N DTaT

Putting together all the above terms we have theorem 3.

= up + 0(1).



CHAPTER 4

SEQUENTIAL INTERVAL ESTIMATION

l. §eguential Procedure.

It can be easily checked that

n1’2(3n-8) 3 N(O.02(9)) (4.1)

where 02(9) = 92b-1. For a given d > O and ae(O.1). in

view of (4.1) let us take In = (9 - d. 9 + d) with n(d)
n n

defined by

n(d) = inf{k 2 1: k 2 22/2 a2d'2) (4.2)

where la is the upper 100a percentage point of the

standard normal distribution. Since a is unknown. the

specification of the 'optimal' sample size (4.2) can not be

made. We therefore led naturally to construct a sequential

procedure in which the sample size is a positive integer

valued random variable N = N(d) and the desired confidence

interval for 9 is IN = [9N - d. 9 + d]. The sequential
N

procedure (N’IN) is said to be osymototically consistent

if for every 9 positive.

11 P 6 I 2 1 - . 4.3d1: ( e N) a ( )

and is said to be asymptotically effioient if for all 6

positive

lim E9{N(d)ln(d)} g 1. (4.4)

dlo

Following stopping time N is a slight modification of the

stopping time defined by Gardiner. Susarla and VanRyzin

(1985).
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, -1 2 *2

16' k2(lat/2“ ) 0k}

1/2(1+A) for

N(d) = inf{k>k

where k1d = int (la/Z/d) A ) 0. They prove

the following theorem.

Theorem 4.1. (N.IN) is both asymptotically consistent

and efficient. In fact

P(GeIN) 4 l-a (4.5)

and

E {N(d)In(d)} 5 1 as d a o. (4.6)

In the spirit of Theorem 3.1 and 3.3 one expects to

achieve second order expansions for E N and P(9&IN).

Theorem (4.2) gives the second order expansion for E N.

The expansion of P(GeIN) remains an open problem.

In their paper. Chow and Robbins (1965) illustrate a

general methodology for the construction of the fixed width

sequential confidence intervals for the mean of the

population. Sen (1981) contains several refinements of

these methods that have been successfully applied to obtain

parallel results for the other functionals of the underlying

distribution. Woodroofe (1977) gives the second order

expansions for E N and P{GeIN} for the normal mean

problem. So far this is the only second order computation

available in the literature for the fixed width sequential

problem.
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2. The Theorem.

Let

-4 -1 3
39 b -36’ 1

b-

3 1 -2
-36’ h‘ 39 b

and (e1.e2) as defined in Chapter 3 section 2. Let

-1

W = (el.e2) B (e1.e2)'.

2 -2 2
Theoremo4ag. E N = a (d (la/2) + a - E W} + 0(1)

as d 4 0. where

p = 2’1(39'2h + 98‘2 - 46’4h'l )3 x eX/GG(x)dx)

co 1 _

- 2 k“ E(Sk)

k=l

Proof. Using Taylor’s Theorem for two variables. we

have

“-2 -2 —3 - -2 -
kak = k{a - 29 (2k - 6b) + 39 (6k - b)

-4 3 - 2
+ 3A1 A2(Zk - 9b)

-3 2 - ’
- 6A1 N2 (Zk - 9b)(5k - b)

-2 - 2
+ 3N1 A2 (6k - b) }

=Sk+§k.

where

s - g i 2 - a’2-26'3(z -9b) + 39‘2(6 -b)
k ’1_1 i' i ' i i

and

A -4 3 ‘ 2 -3 2 _ “
Ek = n(3)\1 A2(Zk-9b) - 6A1 h2(Zk-Bb)(6k—b)

-2 - 2
+ 311 hz (bk-b) }.

It can be easily checked that fk is slowly changing. Note
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that £1 is nonarithmetic and E Xi = 0-2 > 0. further

Xi's are independent identically distributed random

variables. Hence by the Lai and Siegmund theorem (Theorem

A-2 2 —2
2.8). we have the following result. Ud = NON - (la/2) d

has limiting distribution M. as d 4 0. Where H(dr)

= (E §,)-1 P(S'>r)dr. r>o and w is the first ladder epoch

of SR. k21. Lemmas similar to 3.4. 3.8. 3.9 can be proved

by exactly the same methods. Theorem 2.9 then implies the

theorem.

3. Concluoing Remarks.

It would be desirable to remove exponentiality

assumption from the above problem and in the point

estimation problem discussed in the previous chapter.

Gardiner and Susarla (1983) is an attempt in this direction.

They allow X to have any survival function P (not

necessarily the exponential) and under fairly general moment

conditions on F and G. they show the asymptotic risk

efficiency of their procedure. The problem in this set up

is very hard to work with since the estimator of the mean is

an integral with respect to product limit estimator of F.

Instead of a purely nonparametric approach. it may be

easier to study robust procedures with respect to

contamination of the exponential distribution.

Repeated significance testing in the context of the

censored model discussed in this dissertation will also be
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of interest. particularly from the point of view of clinical

trials and other applications in Medicine.

It is hoped that the techniques developed in Chapter 3

would be useful to show 'bounded regret' in other sequential

nonparametric problems such as procedures based on

U-statistics and also on L-. M-. R- estimators of location.
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