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ABSTRACT

SECOND ORDER SEQUENTIAL ESTIMATION OF THE MEAN EXPONENTIAL

SURVIVAL TIME UNDER RANDOM CENSORING

by

Girish A. Aras

We study in this work a sequential estimator of the
mean 6 of an exponential distribution when the data is
randomly right censored. The loss is measured by the sum of
squared error loss of estimation and a linear cost function
of the number of observations. Without any further
conditions, second order expansions are provided for the
expectation of the stopping time and for the risk. Also the
asymptotic normality of the stopping time is demonstrated.

Sequential interval estimation of 6 is also considered.
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CHAPTER 1
INTRODUCTION

In several survival studies pertaining to clinical
trials, lifetesting, reliability and epidemiological
investigations the estimation of the mean survival time 6
is of fundamental importance. This is usually based on the
data gathered from a sample of n(21) wunits as in a
reliability study or lifetest. An analysis of the estimator
Sn constructed would now be necessary before its practical
application in a given situation. However, it is often the
case that En (with n held fixed) is very hard to analyse,
but its salient features become more apparent "in the limit
as n tends to infinity”. The consideration of large
sample sizes is often inappropriate in many longitudinal
studies where ethical reasons, high per unit costs and
monitoring costs preclude implementation of statistical
procedures which require genuinely large sample sizes for
their proper utilization. This leads us to consider some
sequential or quasi-sequential schemes that may effectively
reduce the sample sizes required for efficient estimation of
0. Generally this would engender substantial savings in
costs and on-test time with a reduction in the loss of
experimental units and without serious loss of sensitivity
or efficacy of the statistical investigations.

A common feature of several survival studies is that

the lifetimes (or failure times) of the units under






observation may not be completely observable due to the
presence of censorship. This is typically the case in a
clinical trial in which patients under treatment may be lost
to follow up due to withdrawals from study. In some
situations competing risks, other than that under study.
curtails observation of the duration variable of interest.
Suppose that the true survival time X of a specimen
may be detered from complete observation by the action of a
censoring variable Y, so that the only datum available to
the investigator is (Z,6), where Z = min (X,Y) and 6 is
1 or O according as X (Y or X > Y. The random
censorship model assumes that X and Y are independent
variables. Suppose X has exponential survival function F,

F(t) = exp(-tfl“1

), t >0 and Y has censoring distribution
G(G(*) = P{Y > *}). Both 6 and G are unknown and we
wish to estimate 6. If <¢(>0) 1is the per unit cost of
observation we place n 1items on test and record the data
{(21.61)2 1<{i{n}. For an estimator Sn of 6 we measure
overall loss incurred by

L (c) = (8.-0)% + en
and the preliminary objective is to minimize the expected
loss, called the risk Rn(c) = ELn(c). by optimal choice of
n. We exhibit this by obtaining the expansion
-1 2)

from which the optimal sample size Nc may be taken as the
-1/20—1/2

R (c) = 62(E6)™  n7! + cn + o(n”

integer closest to 6(Ed) The corresponding



optimal minimum risk is then RN . Since both 6 and G
c

are unknown, Nc and RN are not completely specified and
c

therefore we are led naturally to consider an alternative
sequential procedure for estimating 6. We propose such a
scheme with a stopping rule T(=Tc) and consequent
estimation of 6 by GT. The performance of the sequential
procedure 1is described by comparing its risk

RT = E(LT(c)). with that of the optimal "fixed sample

scheme” risk RN
c

We say that the procedure (T.BT) is asymptotically

risk efficient if R../R <+ 1 as ¢ =2 0. Since R

T°7N N
c c
= 2¢N_ + 0(c™1’?), we will have that Ry - Ry = o(c !/?).
c
The central thesis of this research is a careful
analysis of the regret function R(0,G,c) = RT - RN . which
c

may be viewed as the additional risk incurred in using the
sequential scheme given by Tc over the fixed sample scheme
Nc. We shall obtain the expansion
R(6,G,c) = Bc + ofc)

where the constant B will be explicitly computed. This
also shows that the procedure (T.aT) has bounded regret
i.e. R(6,G,c) = O(c). Additionally we obtain an expanion
for the expected sample size ETc and the asymptotic
distribution of an appropriately normalized version of Tc

Gardiner and Susarla (1984) were first to consider the

above problem. They demonstrated the asymptotic risk



efficiency. Hence the present work is a second order
extension of their work.

The study of sequential point estimation of the
exponential mean in the absence of censoring is taken up in
Starr and Woodroofe (1972) and Woodroofe (1977). The

stopping time Tc = inf{n 2 m: n > i;c-llz}

is considered.
Woodroofe (1977) obtains second order expansions for ETc
and the regret under the condition that m 2 3.

To place our results in proper perspective, we present
brief review of literature on sequential point estimation.
Sequential procedures analogous to the one outlined here
have been considered in the absence of censorship by several
researchers beginning with the pioneering work of Robbins
(1959) for the estimation of the mean of the normal
population.

Let Xn. n 2 1 be independent, identically distributed

normal random variables with mean pu and standard deviation

o, both unknown. Consider the loss function

Ln(c) = (i; - p)z + cn, for estimation of pu. The risk
Rn(c) = ELn(c) = azn-l + cn. The integer nearest to
acﬂl/2 say Nc' minimizes the above risk. Since o is

unknown Nc is also unknown. Robbins suggested

Tc = inf {n2m=n>c-1/2; as an alternative for Nc and
conjectured that R(p.c) = RN - RT is O0(c) where
c c
vy 2 2 -1
RT = E(XT - u) + cETc and RN =0 Nc + ch.

C C C



Starr (1966) proved that the above procedure is
asymptotically risk efficient if and only if m 2 3. Later
Starr and Woodroofe (1969) showed that R(m,c) is 0O(c)
under the same condition. Woodroofe (1977) gave the second
order expansions for R(m.,c) and ETc' He showed that
R(p.c) = (1/2)c + O(c) 1if m 2 4. This paper is a landmark
in the theory of sequential estimation in the sense that it
developed and applied entirely new techniques—--those of
nonlinear renewal theory to obtain the necessary second
order expansions. A formulation and a proof of a general
nonlinear renewal theorem was given by Lai and Siegmund
(1977, 1979).

The above discussion strongly indicates the good
performance of the sequential procedure for the normal case.
But is this procedures good in general? Let P(X1 =1) = p

=1-P(X; =0), 0<p<1. Then for m 2 2

- 2
RTc(c) = E(Xp - m)° + cET_

c
> (x_- u)? ap
{Xl =1, ..., xm = 1}
= (1 - u)2 u™ > o,
~ 172
and RN X 2(cu(1-u)) - 0 as c¢ - 0. Hence

(]

lim (RN (c)/RT (c)} =0 and T 1is not asymptotically risk
c-0 c c

efficient. To remedy this situation, Chow and Robbins
(1965) suggested that the initial sample size should go to

infinity at an appropriate rate as c¢ - 0. Ghosh and



Mukhopadhyay (1979) exploited this fact and proved the
asymptotic risk efficiency of Tc in the estimation of the
mean (modified in view of the above fact) without the
normality assumption, in the general nonparametric context,
under the condition that the eighth moment is finite. Sen
and Ghosh (1981) consider sequential point estimation of
estimable parameters based on U-statistics under the
condition that E|g|2+6 { ® for some &6 > O, where g is
the symmetric kernel corresponding to the parameter of
interest. Estimation of the mean is a particular case with
g as the identity function. Note the drastic reduction in
the moment condition from 8 to 2 + 6, 6 > O. Chow and Yu
(1981) proved asymptotic risk efficiency for the mean
problem independently of the above two references under the

f+6  ® for some 6 > 0. Their result is

condition that EX
a special case of the result of Sen and Ghosh (1981).
Sequential point estimation of locaton based on some R-,
L-, and M-estimators is discussed in Sen (1980). Sen's book
(1981) has an excellent survey of the above mentioned
article.

None of these results in the nonparametric context go
beyond asymptotic risk efficiency. Chow and Martinsek
(1982) were first to show that R(p,c) 1is O(c) for the
mean problem under the assumption that E X16+6  » for

some &6 > 0. Martinsek (1983) obtains second order

expansions for R(u,c) 1in the nonlattice case and bounds in



8+6

1 o for

the lattice case, under the condition that E X
some 6 > O. In the nonlattice case,

2 2 .3

R(p.c) = (2 - (3/9)E(Z3 - 1)® + 2E® 23) ¢ + o(c).

where Z1 = (X1 - u)a_l. Thus if X1 is symmetric
R(p.c) € 2 c + O(c). That is, in the limit, one loses at
most the cost of two observations when using the stopping
rule T instead of N
c c

By way of contrast, it also follows that the regret can
take arbitrarily large negative values as the distribution
of the X,'s varies, even among symmetric distributions. To

i

illustrate this, let X X be 1.1.d. with probability

1* Xg---

density function f,
-5
£(x) = 2|x|™° [Ix]21]
where [A] denotes the indicator of set A. For M > 1
define
X,y = xi[lxil < M].

Then for each M, X qu... are 1.1i.d. and their common

1M’
distribution is symmetric around zero. Thus R(p.c) = (2 -
(374) log(M)/(1-M2)2 + 3/4) ¢ + o(c). Clearly, as N

tends to ®, the coefficient of ¢ 1in the above expression
approaches -®. The above example is due to Martinsek (1983)
and it provides an answer to the question raised by Starr
and Woodroofe (1972) and discussed further by Woodroofe
(1977), as to whether the coefficient in the regret

expansion can ever take negative values. Although Woodroofe

(1977) got positive values in the gamma and normal cases, in



general it need not be positive, and in fact for
distributions with large fourth moments (as in the example
above) arbitrarily large negative values can be achieved.

In light of Martinsek (1983) there is a renewed hope
that second order efficiency could possibly be established
in other nonparametric problems reviewed above. The present
work is one such example.

In Chapter 2, we develop the necessary prerequisites of
nonlinear renewal theory and moments of randomly stopped
sums. Most of the results are taken from Chapter 4 of
Woodroofe’'s monograph (1982) and Chow, Robbins and Teicher
(1965). Hence proofs have been omitted.

Chapter 3 is divided in to many sections. First three
develop our model. In section 5 the main theorems are
stated. Theorem 1 gives the second order expansion for ETc.
Theorem 2 asserts the asymptotic normality of Tc and
Theorem 3 gives the second order expansion for the RT.
Proofs of these theorems are based on several lemmas. Some
of them, which are of independent interest are stated and
proved in section 4. Section 5 gives the proofs of the main
theorems.

In Chapter 4, a related but a different problem of
asymptotic fixed width sequential interval estimation for
0, is developed. Second order expansion for the stopping
time involved in achieved as a bonus from techniques

developed in Chapter 3.



CHAPTER 2
PRELIMINARIES
Most of the results in this chapter are taken from
Chapter 4 of Woodroofe's monograph (1982). Hence proofs
have been omitted.
Let (0.%3.P) be a probability space. Let $n. n 21
be an increasing sequence of sub-sigma-algebrae of &.

Definition 2.1. A random variable t 1is said to be a

proper stopping time (with respect to $n. n2 1) 1if and

only if t 1is positive integer valued and {t=n} e $n for
all n 2 1.

Definition 2.2. The random variables Xn. n 21l are
said to be independently adapted to 3n' n 21 if and only

if Xn is Sn measurable and $n is independent of the

sequence Xk k > n, for every n 2 1.
eore .1. (Wald's lemma) Let Xn. n21 be
i.i.d. random variables which are independently adapted to

increasing sigma-algebras $n. n 21, let Sn = Xl +

X2+....Xn. n 2 1 and let t be a proper stopping time for

which E t ( o, If X has a finite mean u, then

and furthermore

2

E(s, - w)?=6%Er,

if X has a finite variance 62

1
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Definjtion 2.3. (u.c.i.p.) A sequence Yn' n 21, of

random variables is said to be uniform continuous in
probability if and only if for every € > O there is a

6 » 0 for which

Max
P (OSkSnGIYn+k - Ynl 2 e} e for all n 2 1.
mark 2.1. If Yn’ n 2 1 converges to a finite limit

with probability 1 as n - ©, then it is u.c.i.p..
Definition 2.4. A sequence Yn. n 21 of random
variables are said to be stochastically bounded if and only
if for every € > O there is a ¢ > O for which
P (IYnI >c}) ¢e for all n 2 1.
In particular, if Yn converges in distribution, then Yn'

n 2 1, are stochastically bounded.

Example 2.1. Normalized partial sums. If Xl. X2....
are 1.1i.d. with finite mean u and finite positive variance
62. then Yn = 6-1n1/2(Sn -nu)n21, 1is u.c.i.p..

Lemma 2.1. If Yn' n 21 and Zn' n2 1 are

u.c.i.p., then so is Yn + Zn' n 2 1. If in addition Yn’
n 2 1, and Zn' n 2 1, are stochastically bounded, and if ¢
is any continuous function on R2. then ¢ (Yn. Zn). n2l1,
is u.c.i.p..

Theorem 2.2. (Anscombe’'s theorem). Suppose that Yl,
Y2.... are u.c.i.p.; let ta' a > 0, be integer valued
random variables for which a-1 ta converges to a finite

positive constant ¢ 1in probability and let Na = [ac],

a > 0. Then
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Yt - YN - 0 1in probability as a -» @
a a

If in addition, Yn converges in distribution to a random
variable Y, then Yt converges in distribution to Y as
a

a - o
We need vonBahr's (1965) extension of the central limit
which asserts:
Theorem 2.3. Let Xi. i 2n be i.1.d. with finite
mean M, positive variance 52. and E|X1|a { ® where
a 2 2, then

a/2
E |5_1n—1/2(sn-nu) |a - 2

I (172 + a/2)

The convergence of moments in Anscombe’'s theorem is
examined next. The most general theorem available is by
Chow and Yu (1981) which is as follows.

eorem 2.4. Let Yl. Y2.... be independent random
variables with E Yn = 0 for all n 2 1. Assume that for
some p 2 2, {|Yn|p. n 2 1} 1is uniformly integrable. Let
,n be a o-algebra generated by (YI.Y2....Yn} for each

n2l, 30 = {$.0)., and let {M(b), beB} be proper

$n-stopping times with BC(0,®) such that ((b-IM(b))plz.
n
beB} 1is uniformly integrable. Let Wn = 2 Yi' Then
i=1
{(1b"12 5. |P, beB)

M
(b)
is uniformly integrable.

Following result is a part of Theorem 7 of Chow,

Robbins, and Teicher (1965).
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Theorem 2.5. If Xl. Xz.... are independent with
E Xn = 0, E X: (o and t 1is a proper $n-stopping time
with E t2 (@, then E S? ¢ @ where S_ =X, + X,....X_.
t n 1 2 n

n 2 1 and $n = o-algebra generated by {Xl. X2.....Xn}.
The rest of the chapter is a review of linear and nonlinear
renewal theory.
Let S =X, + X,,...,.X., n 2 1, be a random walk and
n 1 2 n
for a 2 0, let
Ty = inf{n 2 1: Sn > a}
be the time at which the random walk first reaches the

height a, or ® {f no such time exists. Next, define

Ra on (Ta( ©} by Ra = STa - a. Thus Ra is the excess
of the random walk over the boundary a at the time which it
first crosses a.

If pu=E (Xl) > 0, then Sn - o with probability 1 by
the strong law of large numbers so L ¢ @ for all a 2 0
with probability 1. It can be shown that T, < ® for all
a 2 0 with prob. 1 if u = 0, too. It can be verified that
Ta is a proper stopping time 1if u 2 0 and $n =
o-algebra generated by (xl.xz.....xn).

The following is a corollary of the classical renewal
theoren.

Theorem 2.6. Suppose that 0 < p < ©» . If F |is

nonarithmetic, then Ra has a limiting distribution H as

a - ®, where

1

H(dr) = E ST)

P (ST > r) dr r 2 0,
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and 7T = inf {n: Sn > 0}.
Theorem 2.7. If X1 has a finite variance 62, then

the mean of H 1is

2+ 2 © -1 -
p=l‘—2——-zk E( S,)
n - k
k=1
where a denotes the negative part.

We have a following important corollary of Theorem 2.6
and 2.7.
Cor ar .1. Suppose p > 0, that E{Max (0.X1)2}<“.
and that F 1is nonarithmetic. Then
E(R)) »p
and
E (Ta) = u-l (a+p) + o(1) as a 2 o
To study the counterparts of Theorem 2.6, 2.7 and
Corollary 2.1 in the nonlinear case, we have the following
set up. Let Xl. X2.... denote {.1.d. random variables on
(2.9.P) with finite, positive mean p; and

Sn = X1 + X2.....Xn. n 2 1. In addition §n. n 2 1, denote

random variables for which (X1.§1).....(Xn.§n) are
independent of Xk. k > n, for every n 2 1. The objective
is to extend aspects of renewal theory to

Z =S + § , n 2 1, under smoothness
n n n

conditions on §n. n 2 1. Define ZO = 0, 30 = {$.0)} and

,n =0 {(X k {n}, n2 1. Thus Xn. n 2 1, are

k' 5K)°
independently adapted to ’n' n 2 1. Next, let

T, = inf {n 2 1: Sn > a},
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ot
n

inf {(n 2 1: Zn > a},
and

Ra = Zt - a a 2 0.
a

These notations and assumptions are used throughout the
chapter.

efinit 2.5. The process §n. n 21, 1is said to be

slowly changing if and only if:

(1) 1 Max {|§l|.|§2|...|§n|} - 0 1in probability as
n

n -». ® and
(11) Sn. n 21, is u.c.i.p.
emar :2. Observe that (i) holds if §n/n - 0 with

probability 1 as n = o,

1 11

Remark 2.3. If §n. n 2 1, and §n ., n 2 1 are two
slowly changing sequences, then §n = §i + 531 n2l,

defines another slowly changing sequence.

Example 2.2. Let Yl' Y2.

mean v and a finite, positive variance, then §n =

be 1.1.d. with a finite

n(?£-u)2. n 2 1, is slowly changing.
Lemma 2.2. If (i) holds and N = Na = the greatest

integer in au-l. a 2 0, then ta ¢ » for all a 2 0 with
-1

probability 1 and ta Na - 1 1{in probability as a = ®. In
particular, Sn n-l - 0 with probability one, implies
t N-1 < 1 with probability 1 as a = o,

a a

Theorem 2.8 and Theorem 2.9 are generalizations of

Theorem 2.7 and Corollary 2.1 in the nonlinear context.
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rem 2.8. Suppose that Xl is nonarithmetic and

that §n. n 2 1 are slowly changing. Then Ra = Zt - a
a

has a limiting distribution H, as a - «, where

1
H(dr) = ET§:T P (ST > r} dr, r >0,
and T = inf {n: Sn > 0}. That is Ra has the same
limiting distribution as ST - a.
a

Theorem 2.9. Let An. n 21 be Fn-measurable sets,

and Vn. n21 be Fn—measurable random variables for which

following conditions hold.

[ [ ] '
(1) 2 P (U Ak) ( o,
n=1 k=n
(2) §n = Vn on An’ n2l1,
Max

(3) (0$k$n Ivn+k|' n 2 1} are uniformly integrable,
0

(4) = P (Vn { ne} < ®» for some e, O < e < pu,
n=1

(5) E (Vn) - E (V) where V 1is some random variable,
(6) P {ta { e Na}

where Na = largest integer in a pu

o(N;l) as a =2 ®, ¢ > 0,
1

In addition, suppose Xl has finite, positive variance 62.

and that Vn. n 21 are slowly changing and F |{is
nonarthimetic, then

E (ta) = u_l(a+p-E(V)) + o(1) as a = o, where
—E(S2/2E(S)-P—2-tﬁ—2-;k-lE(S_)
p = T) T 7 2u k=1 k’°
Theorem 2.8 and a variant of Theorem 2.9 were first
proved by Lai and Siegmund (1977, 1979). Hagwood and

Woodroofe (1982) simplified the second theorem. Theorem 2.9
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as stated here is a slight modification of Theorem 4.5,

Woodroofe (1982), the proof being essentially the same.



CHAPTER 3
SEQUENTIAL POINT ESTIMATION

1. The Model

Let X and Y be nonnegative independent random
variables with survival functions F and G respectively
i.e. F(t) = P(X>t) and G(t) = P(Y>t) for all t 2 0. VWe
assume that X 1s exponential with mean 6 and G(O) # O.
Consider Z = min (X.Y) and 6 =1 whenever X (Y and O
otherwise.

Suppose {(Zi.bi): 1 {1 {n} is a random sample of
size n. We wish to estimate 06 1in presence of the
nuisance parameter G. Consider the sequence of estimators

A

Gn. n2 1, of 6 given by

~ -— —_1 —

Gn = Zn 6n [bn # 0] (3.1)
where the overscore denotes the corresponding sample mean
and [A] denotes the indicator of Set A.

The loss incurred in estimation of 6 by 6n is
2 2
Ln(c) = (Bn - 6)" + cn, (3.2)

where ¢ 1is the cost per observation.

2. Some Prelimina mulae a esults
Es=PX<Y)=0"/[5 e*%c(x)ax = ».
E (Z) = /8 P (2>z) dz = f; F (2))G6(z)dz
=[5 e*® ¢(x)ax
Thus, E(Z-66) = O.
Var (Z - 06) = E (Z - 856)2 = 62 E &

17
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The covariance matrix 23X for the vector (Z,6) works out
to be

2,2

2 ]: X e x/8 G(x)dx - 6b 2

9-1]3 xe-xec(x)dx—eb

2 b(1-b)

07! f5 x e*/® ¢(x)ax - ob
Denote by (el. e2) be a normal vector with mean O and
covariance matrix 2.

Observe that by the strong law of large numbers En. n2l1
is a strongly consistent estimator of 6 and by the central
limit theorem we have,

vn (9n - 6) converges in distribution to normal random

variable with mean O and variance 02 = 02 b_l.

Remark 3.1. Since P(E; = 0) = b" - 0 at an
exponential rate as n - ® and all our scale factors will

be algebric powers of n,we shall suppress terms involving

[bn = 0].
—-—k ——
1. sup
Lemma 3.1 For any k 2 1 E n én [Gn # 0]
[}
¢ @ hH¥ s 3 aX PG (br2) <o
n=1
sup -k o _ sup F-k T
Proof. E P s ¥ [6 £0]=E°P 5[5 >br2]

+E S 5 ¥ a7l <5 ¢ br2]

n n
(-]
<@ hH¥+ 3 oK PG < br2) <@
n=1
Lemma 3.2. E (6_ - 9)2 = o%n”!
+n2 (=273 E(5, - b)(Z, - 06))°

-4 2 2 -2
+ 3b Ee2 (e1 -9e2) } + o(n %)
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Proof. By Taylor's theorem in two variables, we have
8 =0 +b 3 Z -05)-b2 (5 - b)(Z - 6b)
n n n n n
-2 5 2 -3 /5 2,5
+68b°° (6 - b)) + (A7 (8 - b)S(Z_ - 6Db)
-4 T 3
- Al k2 (Gn - b)7}
where Al lies between E; and 6b and k2 lies between
E and b.
n
Thus E (8_ - 0)°
-2 = T .2 -2 .7 =
=ED (Zn - ean) + E (b (Gn - b)(Zn - 6b)
-2, 2 -3 .5 2 >
- 6b (6n - b)” - Az (6n - b) (Zn - 6b)
-4 = 3,2
- kl A2 (bn - b))
-3 = - - -
- 2E{b (Gn - b)(Zn - an) (Zn - 6b)
-3 .5 Y = 2
eb (Zn - Gbn) (bn - b))%}
-1 = -3 ,5 2 .7
+ 2 Eb (Zn -0 bn) (A2 (6n - b) (Zn - 6b)
-4 = 3
- Alkz (6n - b)7}
=1 <+ II_ + III_+ 1V
n n n n
It can be easily checked that In = azn“1
-3 = > T 12
III. = -2 b E (bn - b) (Zn - 66n)
n
=-262 a3 3 E (5, - b) (2, - 05,)°
i=1
= -2b"3 02 E (5, - b) (2, - 65,)2
1 1 1
Now we shall consider IVn.
Let f(x,y) = 2b-4y2(x-6y)2 for any x,y real numbers. Let

P de
n

172,77

172 (5,-b))

note the random variable f( (Eg-eb). n
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2o~ (z_ - 0 5_){2;> (5

and Qn = 2n"b

9 —
_ - b)*(Z_ - eb)

-4 5 3
- Al k2 (Gn-b) )—Pn.
Thus n?IV_ =EP_+ E Q_.
n n n
By central limit theorem, Pn converges in distribution to
f(el.e2) and Qn converges to zero almost surely. Thus
2. -1, 7 -3 .5 2, -4 T 3
2n“b (Zn—BGn) {R2 (bn-b) (Zn-eb) - A1A2 (bn-b) }
converges in distribution to f(el.ez).
Now to conclude that n21V converges to Ef(el.ez). we

need to verify uniform integrability of {Pn+Qn. n2l1}, which

follows from the following facts. Since O < A-P¢ b7P

2
+ E;p [E; # 0] by previous lemma, A;p is uniformly
integrable for every p > o. Similarly AT is uniformly
integrable for every p > o. Also (nl/2 (E; - Gb))p and

1

(n /2 (EA—b))p are uniformly integrable for every p > o.

Similar computations for IIn gives the lemma.

3. Sequentjal Procedure.
Using (3.2) and lemma (3.1) we have,
R (c) = E (L (c)) = o2n" ! + cn + O(n_2)
For large n, Nc = nearest integer to (cml/2 g) which

minimizes the risk. Since o 1is unknown, Nc' the optimal
sample size is unknown and thus one is naturally led to

explore a sequential scheme to estimate 6. Define a
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stopping rule

-1/2 ~

T = min {n 2 n,.i n > o} (3.3)

c_2(l+a). a ) o.

"

where n
lc

o =1_ 6.
n
g

3/2 [5_# 01 + [5_ = 0]

Note that n' M 2 1, is strongly consistent for o
4. Lemmas

Let 0 (e {1 be fixed. Let n and n be the

2c 3c

integer parts of Nc(l-e) and Nc(l+e) respectively. We
may write Tc and Nc without the subscript c in the
sequel. Also we shall freely write c-ll2 o for N. Let
’n be the o-algebra generated by {(21.61).
62).....(Zn.6n)}.
Remark 3.2. The terms involving the random variables

(z,

[Eﬁ = 0], [6T = 0] are left out without any further

indication since P(Eﬁ = 0) and P(E} = 0) go to zero at

an exponential rate as ¢ - 0 and all our scale factors

(-]
will be algebric powers of c. (P(6T =0) = 2 P(6n = 0,
n=m
lc
it = RSl -1
T=n)¢ 3 P(6 =0) =b €(1-b)"".)
n=n
1c
-1/2
Lemma 3.3. :gz (a - o)l = O(m ) for all p > 0
and m 2 1.
Proof. |o - o]

< 5-3/2([6, # 0] (|Z -6b| + 6b

l/2|_3/2 _ b3/2|)
n
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= 5.3/2 [5_ # 0]|z_ - 6b]

-1/2 =-3/2 .= ~1/72 . . 1/2.-1 =
+ b 5372 (5 2 01 (512 + b1/2)71 (5
+ 51212 4 by |5 - b
< 532 [5_#0]lZ_ - ob|
+ (3672)(5. A b) 2’2 [5 201 |5 - b (3.3)

n n n

< 5372 [5_ % 01]Z_ - ob|
+ (3072) (5.°7% + v™/2) [5_ # 01]5_-b] (3.4)

The Schwarz inequality, lemma 3.1, and the maximal
inequality for reverse martingales give the lemma.

Lemma 3.4. P(T ¢ n2c) 0(cp) for all p > O

and
P(T 2 n, ) = 0(cP) for all p > o0
Max ~
Proof. P(T ¢ n2c) < P(nlcsnsnzclan -o| > e o)

Max 7 M =
$P(y 0z - ebl > my) + P(TRE T8 - b > my)
lc{n lc

(3.5)
for some Ny Mg > 0. The above inequality is obtained by
using (3.3) and a truncation argument similar to the proof

of lemma 3.1. With the reverse martingale inequality,
1

= c2(1+a)

le and (3.5) 1imply the lemma.

n
Corellary 3.1. For all p > 0, {TN.'}P: 0 ¢ e < 1)
is uniformly integrable.
Proof. Let k = (1-€e) P
JL(T/N)"P > k] (TN 1)7Pgp
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< NP [ [T/N > 1-e] dP = NPP(T < N(1-¢))
< o(1) as c = o0, by Lemma 3.4.
Lemma 3.5. {(TN-I)p= 0 <Cc <1} 1is uniformly
integrable for all p > O.

Proof. TN !
[T =n

- o) + cl/2 o+

..1 A
{1+ o0 (aT_1

lc] Ne
Lemma 3.1 and 3.3 imply the desired uniform integrability.
172

(T - N))P

0 < c <1} 1is uniformly integrable.

Lemma 3.6. For all p > 0, {(N~

Proof. By definition of T, we have

-1/72 ~ -1/72
c or <T¢(¢c or-1 P(T > nlc) + 0. P(T = nlc) +1.
Hence
-1/72
N5 (T - M) P
< Max{|c” 1/4 1/2 a)|p lc -1/4 1/2(°T . a)lp
174
+ {c 0 P(T=n1c}}p + 1}. (3.6)
Also

-1/74,~ -p/4 - -p/4 I’y
(c laT—al}p < kp(c P a%IZT - 6b|P + 7P b¥|6T -b|P)

372

where a = [E # 0] 5 . and
bn - 9(3 + 31/2 b1/2 + b)(gllz + b1/2) 3;3/2 172 [6 £ 0].
Thus by the Schwarz inequality,
E(c 1/4|a _ ol)p < k {21/2 %p E /2( 1/4|E& _ 0b|)2p
+ El/2b¥p E1/2 (3} _ b)c-1/4)2p}.
E(c"'/*|z; - 65])%P = 0(1) by Lemmas 3.5 and 2.4

and Corollary 3.1

E a2P = 0(1) by Lemma 3.1.
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The other term is treated similarly to obtain uniform

integrability of ((0-1/4|3T - a|)p : 0 <c <1}, (3.7)

Furthermore by Lemma 3.4, (cll4 nlcP(T = nlc))p=o(1). (3.8)

Hence by [3.6], [3.7]. [3.8] to prove the lemma, we only

need to show

-1/74_1/2
c o

E| (a.r_l--a)lp = 0(1) for all p > O (3.9)

Observe

-p/4

(c log_; = aD)P < kp(e a®_,1zp_, -ob|P

c-p/4

+ bR_165_;-b|P) and

-p/4,> P, 2, -p/4
E cP’*z. -6b

c l T-1 I < kp(c
-p/4

7 - P
ElzT ob|P +

E T“P(zT - 8b)P ¢ ) (3.10)

By Theorem 2.4 the first term on the right side off (3.10)

is bounded.

00
3
E|z, - ob|P = o, E|z - 6b|P[T=n]

©

< 3 Elz_ - 8b|P[T2n]

n=Nic
5 P
< nfl E [T2n] E(lZ_ - 6b|P|F__,)
= Elz, - eb|PE T. (3.11)

Using (3.11), The Schwarz inequality and Corollary 3.1, we
have that the second term on the right hand side of (3.10)
is bounded. For all p > O, E ag_l
0(1). Hence the lemma.

= 0(1) by the Lemma

3.1, and similarly E bT—l
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5. The Main Theorems.

Let W, = b1/20714(3/2)(0b!/2) 7 (5,-b)-(0%612) 7 (2, -0b)
n -
and S =3 W,. Let S_denote the negative part of S_.
n o i n n
Let A bea 2 x 2 matrix defined as follows:
A =
-(374)(6%6372)"1  (3/8)(ep3/2)!
Define V = (el. e2)A(e1.e2)'. In the sequel no distinction
in made between N and c-llza and Remark 3.2 applies.

Theorem 3.1. E Tc = N+ o (p-EV) + o(1) as c -» O, where

p = (172){(374) o~} + (974)a" b7 - 67373 [ xe ¥/ %G (x)dx)

[ ]
-3 K
K=1
%

Theorem 3.2. Tc = N1/2 (T-N) 1is asymptotically normal

l —
E SK .

with mean zero and variance
(974)872 - 471972, + 77l xe™*/8 G(x)dx.
Theorem 3.3. R(6,G,c) = Bc + o(c) where
B = -207°b7%E {(Z, - 6b) - 3/20(5, - b)}(Z, - 85,)°
-4 -3 2
-46 b {E(el - 3/29e2)(el - 9e2)}

2072672 E(e, - (3/2)0e,)?

+50 ™3 E(e, - 8e,)? (e, - (3/2)0e,)>
+3073b72 E(e; - 0ey)? e e,

~(1574)67 107! E(e, - 0e,)? 3 - 20 EV

+6 073072 Ee, (e, - 0ey)? (e, - (3/2)0e,)
- 4b73073E e (e,-0e,) E(e,-0e,)(e,-3/20e,)
- 267207 Ee, (e, -3/20e,) .

Remark 3.3. VWe note that in the absense of censoring,
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the above results reduce to those given by Woodroofe (1977).
The constant B turns out to be 3.

6. Proofs.

IR |
Let Dc = T(aT) -c

-1/72 -1/2

and T, = inf {n 2 n, ¢ S >c }.

n

with Sn. V as defined in the previous section.
Lemma 3.7. As ¢ = 0, Dc has a limiting distribution

H. where H(dr) = (ES_)”! P(S_)> r) dr. r> o0,

and T denotes the first ladder epoch of Sn' n 2 1. Thus

_ c-(1/2).

Dc has the same limiting distribution as ST
c

Proof. Using Taylor's theorem for two variables, we have

n(o )" = n{o™! + (3/2)(eb'%)71(5_ - b)

_ (92b1/2)—1(2; _ 6b)

-1/2 -1 ,T 2
+ (3/8) A] A, (5 - b)
1/2,-2 = =
- (372)A7°A° (5, - b)(Z_ - 6Db)
3/2 -3 .o 2
+ A5 A5° (Z, - ep)©),

where Al and Az lie between b and E , 6b and Z
n n

~ -1
respectively. Thus n(an) = Sn + Sn where

s_ = n{(3/8) A]1/2 2

-l -—
o Ay (5, - D)

172 ,-2 ¢ >
- (372) Az A2 (Gn - b)(Zn - 6b)
3/72,-3 5 2
+ kl A2 (Zn - 6b)7}.
The '1'5 are independent, identically distributed, and

non-arithmetic. Also E Wi = a-1 > 0 and {§n. n 2 1} 1is a

slowly changing sequence. These follow from Example 2.1,

Remark 2.1, Lemma 2.1, and Remark 2.3. Hence by Theorem
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2.8, we have the result.

Remark 3.4. Though {Dct 0 ¢ c <1} may not be

K:

uniformly integrable, {(Dc aT) 0 <c <1} 1is, for all

K > O. Observe that

~ ~ =172
Dop =T - ogc <T - (T-1)[T>n, ]
~ -1/2
" “n [T=n, ]
lc
~ -1/2
=1+ (T-1 - Onlc c )[T:nlc].

Schwarz inequality and Lemmas 3.2, 3.4, 3.5 give us the

necessary uniform integrability.

-1/72
n

Lemma 3.8. (i) £ - 0 in probability as n =

n
and (11i) fn converges in distribution to V.

Proof. (ii) implies (i). Application of the bivariate
central limit theorem gives (ii).

Lemma 3.9. Let A_ = {Z > 2 !6b and 5 > 2 !b} and
n n n

Vn = En[An].
Then (1) X P(U AY) < =
n=1 k2n

(i1) Vn converges in distribution to V.

(111) { Max 'vn+k|' n21} are uniformly integrable.

0<k<n
(iv) 3 P(Vns-nﬁ) ( ® for some B, 0 < B < a-l.
n=1
Proof. Note that U A ={ U (Z,227'eb)}u{ U (5,¢27'b)}.
k2n k2n k2n

Thus P( U Ay) < P(Max|Z -6b]* 2 16770%?)

k2n k2n

+ P(Max|5,-b|* > 1671b)%).
k2n

By the reverse submartingale inequality,



28

P(U A) < a(EIZ, - ob]* + E|5_-bl?) = o(n”
k2n

)

where 7 1is a constant. Hence (i) obtains.
Since [An] -1 almost surely, by Lemma 3.8, Vn converges

in distribution to V as n - ®». Hence (i1) obtains.

Let a > 1.
/2 2a
E Max (n+k) [a #0] 5. ¢ B b|“*[A_..]
0<k<n +k n+k n+k n+k~ n+k
¢ (27'6b)™*(27'b) " ?E Max (n+k)®|5_,, -b|?"
0<k<n
< (271eb) (27 )™ 2 1" E Max (n+k)2%|5_. -b|2®
n+k
0<k<n
K
= (27'05) (27 '5) ™20 E Max [3(5,-b)|%®
0<k<n 1

By the martingale inequality, the right hand side of the
above inequality is bounded above by

(2—leb)—a(2-lb)-al2

2n

(2a) "2%(22-1) 2% "%E |3 (5,-b) |27,
1

By vonBahr's (1965) extension of the central limit theorem,

(i.e. Theorem 3.2), E((2n)1/2|3;-b|}2a - 2% 7-1/2F(2—1+a).

Hence
/2 2
sup E Max (n+k)% [a k#O]Gn:k n+k|5n+k -b|“*[A_,, ] < ®.
n 0<k<n
The above inequality implies that
-1/2 2 .
{ Max (n+k)[5 k¢0]6n+k Mqursmk -b| [A 4 ): 21}

0<k<n
is uniformly integrable.

Dealing similarly with the other terms in Vn. (iii) can be

obtained. Finally,

P(V_<nB) < P(-(3/2)A172A;2(5_-b)(Z_-6b)[A_] < -B)
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1/2,-2, 5 =
P((372)[A_IN"“A;°(8_-b)(Z_-6b) > B)

P((3/2)[A,1{(6) 72 + Z_%}|5 -b|[Z -ob] > p)

A

P((372)(6b) 2| (5 -b||z_-8b| > 271p)

[%a

+ P{(3/2)Z72[A_115_-b|1Z_-6b| > 271p)
< P{(3/2)(8b) 2| (5 -b)(Z,-6b) | > 27'p)

+ P(3/2)(6b/2) 2|5 _-b||Z_-6b| > 27'p)
By application of the Chebysev and Schwarz inequalities, we
have

172 4

P(V_ < nB) < K EM2 (5_-b)* E1'2(2;-9b) = 0(n"2)

Hence (iv) obtains.
Pr f Theorem 3.1. Lemmas 3.9, 3.4 and Theorem 2.9

imply the theorem.

o . - =
Proof of Theorem 3.2 Since ST + ET D

(&
172 1/2 1.

-1/72
C » We

have - (ST-a-lT) N c—1/20

).
1 -1/72
n)n o converges in distribution to normal

o-o N-1/2(§T—Dc) = N
Since (S_-o
n

random variable with mean zero and variance (9/4)6"2

- 4719725 4 07% 1 xe */%(x)dx, the fact that N IT - 1

almost surely, and Anscombe’s theorem imply (ST-a-lT)N1/2a

converges in distribution to above mentioned normal random

variable. Similarly Lemma 3.8 and Anscombe’'s theorem imply

/72

that ETN—I converges to zero in probability. By Lemma

3.7, D N 1/2
C

converges to zero in probability. Thus
N1/2(T-N) converges to normal random variable as stated in

Theorem 3.2.
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Remark 3.5. For the proof of Theorem 3.3, we shall use

the following notation. Let Pi = G-Ib_1/2(21-961).
~ n -
S = 3 P, and U, = (8b) 1{z,-(3/2)8(5,-b)} - 1. Also
n 1=1 i i i i
- n
let Sn =3 (Gi—b). It can be easily checked that the
i=1
variance of P, =1

Lemma 3.10. E(E&-b)(z&-egf)z

= co 2(E(5,-b)(2-065,)2 - 3b" 167!

1

Ee,(e,-0e,)%(e,~(3/2)0e,)

-1, -1
+ 207 b " E(5,-b)(Z,-05,) E(e -6e,)(e,-3/20e

)
+ 0 Ee2(e1—3/29e2)) + ofc).

Proof. In view of Remark 3.5,

E(5,-b)(Z,-057)% = 0% ET”!S. 5 2
2 3 -3, a2 . 2 -3 A ~2
= 0% E(T>-8"%) 5,82 + o%b N3 s 82
= 0% N3 ET3(N-1) (8 + T + T?) 582 + o%bN"IES 52
= 02N 2E(TT NNV 2(n-T) (T72N2e T Ne 1) (SN /2y (52 N
2 -3 2 ~2 2 -3 A
+ 0%bN"3E 5.(52 - T) + 0%bN"3E ST
= I+ II + III. (3.12)
Using the facts that T a;l - 01/2 = Dc and ;T cr-1 -1

-1

= o7!p7! (Z, - 6b - (3/2)6(5;-b) - (3/2)07'b72(2,-0b) (5,-b)

+ (15/8)0”12(5,-b)%p77/?)

for some B between b and T Ye have

172~

N12(N-1) = -N2(a071-1)

_y172

-1,-1,3 =
6™ 'b {Z,-8b-(3/2) 6(5,-D)

(3/2)9_1b-2(2&-9b)(3&-b)
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2,-7T/2

+ (15/8)0” 'z, (5,-b)%p77/%}. (3.13)
Theorem 2.4, Remark 3.4, Anscombe’'s theorem, 5-7/2 < b.7/2
=-1/2
+ GT , Corollary 3.1 and (3.13) imply that

I = -3co 2{6” b 1E(e,-3/20e.) e.(e -Be.)2} + o(c). (3.14)
1 2 2'71 2
Computation of the term II is briefly scatched below since
it is similar to the proof of the lemma in Chow and
Martinsek (1982).

A ~2
Note that (Sn.$n) and (Sn-n"n) are martingales. Also

A~ A~ 2  _~2 ~3 2
2ES.(82-T) = -(E(S;-82 + T)% - E82 - E(52-1)%). (3.15)
By Wald's lemma. ES2 = E(5,-b)2 ET (3.16)

Theorem 1 and lemmas 6,8 of Chow, Robbins and Teicher (1965)

imply
A ~g 2 2 2 .2 T ~o
E(S.-S2 + T)2 = E(6,-b)2 ET + (P2-1)2 ET + 4 X S
TSt 1 1 2 Si1
3 .~ 2
+ 4EP] ETS, - 2E(5,-b)(P3-1) ET
- 4E(6,-b)PETS
and
~3 92 2 T ~ 3 .~
E(S3-T)®=E(P] - 1)ET + 4E 3 §;_, + 4EP] ETS[. (3.17)
3=1

(3.15), (3.16)., (3.17) and Wald’'s lemma imply that

~2
ES;(S1-T)

2 ~
E(5,-b)(P{-1)ET + 2E(5,-b)P ETS,

E(5,-b) (P3-1)ET + 2E(5,-b)P E(T-N)S;.  (3.18)

Now (3.18), lemma 3.5, (3.13), Remark 3.4 and Anscombe’s

theorem, 5_7/2 < b7/2

I1 = co”20%b(E(5,-b)(Z,-05,)>

1

+ 3*-7/2 and Theorem 2.4 imply that

+ 20717 1E(8,-b)(2,-05,)E(e,-3/20e,) (e;-0e,)} + o(c)
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co 2{E(5,-b)(2,-05,)>

+ 20717 'Ee, (e -0e,)E(e,-3/20e,)(e,-0e,)} + o(c) (3.19)

By Wald's lemma,

111 = 6% N3 ES_(T-N).

Again, use of (3.13) and arguments similiar to (3.19) give

us
I11 = eo > 0 Ee, (e,-3/2 Be,) + o(c). (3.20)
The lemma is proved by (3.12), (3.14), (3.19) and (3.20).
The next lemma asserts that T-l§¥ and D_ are

asymptotically independent.

Lemma 3.11. P(T-lgg ¢ x, D, y) > L(x)H(y) as c >0
for every X, Yy 2 0, where H 1is as described in Lemma
3.7and L 1is the distribution function of a chisquare
random variable with one degree of freedom.

Proof. Proof is similar to the lemma in Martinsek
(1983).

Proof of Theorem 3.

-1 2_ =2 -1

o%E P2-ET)+ 2(ET-N) - 2¢”'b"lo?

c-lR(O.G.c)=(c b ‘o E(E&-b)??

-1

= ,.-3,7 ..2,7 -4, .3
+ 2¢7 0EPy {A,”(65-b)“(Z;=6b) - A A %(65-b)7)

+ ¢ 1 (b72(5,-b) (Z;-8b)-0b"2(5,-b) 2253 (5,-b) 2 (Z-6D)

+

4,7 . .3,2
A (8-b)°)

(2072b72E(5,-b) (2,-05,)> -3072b73Ee2 (e, -0e,) %} +0(1)

+

n

I + II + III + IV + V + VI + o(1).
11 and III are given by theorem 1 and lemma 3.10

respectively.
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IV = 2 67273 E(e,-0e,)%e2 + o(1) (3.21)
by lemma 3.5, the central limit theorem, Anscombe’'s theorem

and by Theorem 2.4. Similarly

V = 072 3E(e,-0e,)%e2 + o(1). (3.22)
Now I = E §T2{(N-1T)-2—1). By Taylor's theorem,
1= -2 ESZ(N7IT-1) + 3 E ATt (v7lr-1)2 (3.23)

where A lies between 1 and N-lT.

~

E s2 A" {(v11-1)2

T
= e (1(Z-057)%07 27Ty AN/ 2(1-N)) 2
= ETN 1 {T(Z-085) 2072 1)t (812 (g071-1)
~1/2 A 2
+ N DcaT} .

Using (3.13). Remark 3.4 and reasoning similar to

(3.21) gives us the convergence of the above term to

2 2 -2 -3

E 072b7!(e,-0e,)%(e,-(3/2)0e,)%07 273, (3.24)

Now consider the first term in the right hand side of

(3.23).

E ST(N"'T-1) = E S5(0g0 -1) + E ST N ° Dpo. (3.25)

Using (3.13) we have,

2,0 -1
E ST(aTa -1)
2,7 1, -2

1, -1 = -
b~ EST(Z;-3/26(5,-b)-8b}- 3/20

- - ~2 —
=0 b~ “ESI(Zp-6b)(55-b)

2,-7/72

0" Z,(6,-b)°B

+ (15/8) E ST
= (1) + (11) + (1i1)

By Wald's Lemma,
o T
ES3(z u
i=1
E(S2-T)(Z u )N"! + E(S2-T)(3u, ) (T~
T 1 T 1

(1) )11

i

I_N-l)
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=1 + II.

As in the lemma of Chow and Martinsek (1982), I can be

evaluated as

I = 2 ' leT(Eu2-E(P2-u -1)2 + E(P2-1)%)
+ 2E{(u +1)P }E(T-N)SN™ 1.

Lemmas 3.4, 3.13 and the fact that

-1/2, =

NY/2(1-N) = N/2(0.071-1) + N D_or. we have the

~

(o
I

convergence of to

172 (E w2-E(P?-u -1)% + E(P2-1)?)

—2b-3|2

+ 6 E(u1+1)PlE(e1-3/29e2)(e1-6e

T T

2)°

11 = E Eﬁ(n-r)( > u) NI o NTIE(N-T) (3 u,)
i=1 1
converges to
2,-2, -2 2 2,-4, -3
E(e,-(3/2)0e,)“0 b “-E(e, -8e,) (e -(3/2)8e,)“8 b .
Thus
(1) = 1/72(E uwi-E(e2-u,-1)2 + E(P2-1)?)
-4 -3
+ 2E(ul+l)Pl(el-(3/2)9e2)(01-0e2)9 b
2,-2, -2 2 2,.-4. -3
+ E(el-(3/2)0e2) 0 “b -E(el-eez) (el-(3/2)9e2) 0 b
+ o(1).
-3, -3 2
(11) = -(372)6 "> (e1—9e2) e e, + o(1) and

(111) = (15/8)07 'o"E(e,-0e,)2%e2 + o(1).

Remark 3.4 and lemma 3.11 imply that
~ l ~

EST N Dpoy = ap + o(1).

Putting together all the above terms we have theorem 3.



CHAPTER 4
SEQUENTIAL INTERVAL ESTIMATION
1. equentia rocedure.

It can be easily checked that

n'/2(8_-0) % n(0.0%(0)) (4.1)
where 02(9) = 92b-1. For a given d > O and ae(0,1), in

view of (4.1) let us take In = (Gn - d, Sn + d) with n(d)
defined by
n(d) = inf{k 2 1: k 3 z2, o2d"%) (4.2)
a/2 )

where Za is the upper 100a percentage point of the

d-2
standard normal distribution. Since o 1is unknown, the
specification of the 'optimal’ sample size (4.2) can not be
made. We therefore led naturally to construct a sequential
procedure in which the sample size is a positive integer
valued random variable N = N(d) and the desired confidence

interval for 6 1is IN = [GN - d, 6, + d]. The sequential

N
procedure (N'IN) is said to be asymptotically consistent

if for every O positive,

lim P(0 e IN) 21 - a, (4.3)
dlo
and is said to be asymptotically efficient if for all 6
positive
lim Ee{N(d)ln(d)} < 1. (4.4)
dlo

Following stopping time N 1is a slight modification of the
stopping time defined by Gardiner, Susarla and VanRyzin
(1985).
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-1,2 ~2
N(d) = inf{kdk ¢ k2(Z ,od ")° oy}

_ 1/72(1+A)
where k,. = int (Za/2/d) for

A > 0. They prove
the following theorem.

Theorem 4.1. (N.IN) is both asymptotically consistent
and efficient. In fact

P{OeIN} - 1l-a (4.5)
and
E {N(d)|n(d)} = 1 as d -» 0. (4.6)

In the spirit of Theorem 3.1 and 3.3 one expects to
achieve second order expansions for E N and P(GeIN).
Theorem (4.2) gives the second order expansion for E N.

The expansion of P(GeIN) remains an open problenm.

In their paper, Chow and Robbins (1965) illustrate a
general methodology for the construction of the fixed width
sequential confidence intervals for the mean of the
population. Sen (1981) contains several refinements of
these methods that have been successfully applied to obtain
parallel results for the other functionals of the underlying
distribution. Woodroofe (1977) gives the second order
expansions for E N and P{BeIN} for the normal mean
problem. So far this is the only second order computation

available in the literature for the fixed width sequential

problem.
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2. The Theorem.

Let

39 41 -39 3p!

3,-1 -2

-30 b 36 “b
and (el.e2) as defined in Chapter 3 section 2. Let

-1

Vv = (el.ez) B (el.ez)'.
2, .-2 2
Theorem 4.2. E N = o0{d (Za/2) + 0 -E W} + o(1)

as d » 0, where

2 2

p = 27130672 + 96~

(-]
-3 k
k=1

Proof. Using Taylor’'s Theorem for two variables, we

- 49—4b—1 f: X eX/BG(x)dx)

L E(s))

have
~-2 -2 -3, -2, 7
kak = k{o - 206 (Zk - 6b) + 36 (6k - b)
-4 .3, 2
+ 3kl )\2(2k - 6b)
-3,2 > by
- 6A1 Az (Zk - Bb)(b‘k - b)
-2 - 2
+ 3A1 Rz (6k - b))}
=Sk+§k.
where
S. =3 %.. % = 0 2-2073(z,-6b) + 3672(5,-b)
k _i=1 > b S i i
and
o -4 3,5 2 -3,2,5 ry
fk = n{3k1 Az(Zk—Bb) - GAI Az(Zk-Bb)(bk—b)

-2, T .2
+ 3NN, (8,-b)%}.

It can be easily checked that fk is slowly changing. Note
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A

that Xi is nonarithmetic and E Xi

Xi’s are independent identically distributed random

= 0_2 > 0, further

variables. Hence by the Lai and Siegmund theorem (Theorem

~-2 2 .-
2.8), we have the following result. Ud = NaN - (Za/2) d

2
has limiting distribution M, as d -» 0. Where M(dr)
= (E S‘.,)-1 P(S')r)dr. r>0 and » is the first ladder epoch

of S k21. Lemmas similar to 3.4, 3.8, 3.9 can be proved

kl
by exactly the same methods. Theorem 2.9 then implies the

theorem.

3. Concluding Remarks.

It would be desirable to remove exponentiality
assumption from the above problem and in the point
estimation problem discussed in the previous chapter.
Gardiner and Susarla (1983) is an attempt in this direction.
They allow X to have any survival function F (not
necessarily the exponential) and under fairly general moment
conditions on F and G, they show the asymptotic risk
efficiency of their procedure. The problem in this set up
is very hard to work with since the estimator of the mean is
an integral with respect to product limit estimator of F.

Instead of a purely nonparametric approach, it may be
easier to study robust procedures with respect to
contamination of the exponential distribution.

Repeated significance testing in the context of the

censored model discussed in this dissertation will also be
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of interest, particularly from the point of view of clinical
trials and other applications in Medicine.

It is hoped that the techniques developed in Chapter 3
would be useful to show ‘bounded regret’' in other sequential
nonparametric problems such as procedures based on

U-statistics and also on L-, M-, R- estimators of location.
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