
PRIVACY AND INTEGRITY PRESERVING

COMPUTATION IN DISTRIBUTED SYSTEMS

By

Fei Chen

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2011

ABSTRACT

PRIVACY AND INTEGRITY PRESERVING COMPUTATION

IN DISTRIBUTED SYSTEMS

By

Fei Chen

Preserving privacy and integrity of private data has become core requirements for many

distributed systems across different parties. In these systems, one party may try to compute

or aggregate useful information from the private data of other parties. However, this party is

not be fully trusted by other parties. Therefore, it is important to design security protocols

for preserving such private data. Furthermore, one party may want to query the useful

information computed from such private data. However, query results may be modified by

a malicious party. Thus, it is important to design query protocols such that query result

integrity can be verified.

In this dissertation, we study four important privacy and integrity preserving problems for

different distributed systems. For two-tiered sensor networks, where storage nodes serve as

an intermediate tier between sensors and a sink for storing data and processing queries, we

proposed SafeQ, a protocol that prevents compromised storage nodes from gaining informa-

tion from both sensor collected data and sink issued queries, while it still allows storage nodes

to process queries over encrypted data and the sink to detect compromised storage nodes

when they misbehave. For cloud computing, where a cloud provider hosts the data of an

organization and replies query results to the customers of the organization, we propose novel

privacy and integrity preserving schemes for multi-dimensional range queries such that the

cloud provider can process encoded queries over encoded data without knowing the actual

values, and customers can verify the integrity of query results with high probability. For dis-

tributed firewall policies, we proposed the first privacy-preserving protocol for cross-domain

firewall policy optimization. For any two adjacent firewalls belonging to two different admin-

istrative domains, our protocol can identify in each firewall the rules that can be removed

because of the other firewall. For network reachability, one of the key factors for capturing

end-to-end network behavior and detecting the violation of security policies, we proposed

the first cross-domain privacy-preserving protocol for quantifying network reachability.

ACKNOWLEDGMENTS

I am extremely grateful to my advisor Dr. Alex X. Liu. He is not only an excellent

advisor, an outstanding researcher, but also a great friend. This thesis would not be possible

without his tremendous help. He always tries his best to guide me through every perspective

of my graduate study, and give tremendous support to make me successful in both study

and research. He not only teaches me how to identify problems, how to solve problems,

and how to build systems, but also helps me improve my writing skills, speaking skills, and

communication skills. Numerous times, he helps me set milestones together, and guides me

to make progress steadily. When I meet difficult problems in my research, his encouragement

help me to gain more confidence, and to come up with solutions.

I would like to thank other members in my thesis committee, Dr. Eric Torng, Dr. Richard

Enbody, and Dr. Hayder Radha. Dr. Torng not only guided my thesis, but also gave me

great help on finding travel funds such that I can present my papers in many conferences. Dr.

Enbody and Dr. Radha gave me many valuable suggestions and feedbacks on my qualifying

report and comprehensive proposal, which helped improve my thesis significantly.

I thank my collaborator and friend Bezawada Bruhadeshwar. He makes significant con-

tributions to this thesis work. My work with him is both happy and fruitful. He actively

discussed with me the works of privacy preserving firewall optimization and privacy preserv-

ing network qualifications and provide significant help to move the project forward.

I really thank my wife Xiaoshu Wu and my parents for her great love and tremendous

support in every aspect of my life in Michigan State University. They support me to pursue

my own goals with confidence and to overcome obstacles with courage. I extremely grateful

for my wife taking great care of me when I had serious health problems and stayed in hospital.

This thesis is dedicated to my wife and my parents.

iv

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Privacy and Integrity Preserving Queries for

Sensor Networks . 2

1.2 Privacy and Integrity Preserving Queries for

Cloud Computing . 3

1.3 Privacy Preserving Optimization for Firewall

Policies . 4

1.4 Privacy Preserving Quantification of Network

Reachability . 4

1.5 Structure of the paper . 5

2 Privacy and Integrity Preserving Range Queries in Sensor Networks 7

2.1 Introduction . 7

2.1.1 Motivation . 7

2.1.2 Technical Challenges . 8

2.1.3 Limitations of Prior Art . 9

2.1.4 Our Approach and Key Contributions 9

2.1.5 Summary of Experimental Results . 10

2.2 Models and Problem Statement . 10

2.2.1 System Model . 10

2.2.2 Threat Model . 12

2.2.3 Problem Statement . 13

2.3 Privacy for 1-dimensional Data . 13

2.3.1 Prefix Membership Verification . 14

2.3.2 The Submission Protocol . 16

2.3.3 The Query Protocol . 17

2.3.4 Query Processing . 18

2.4 Integrity for 1-dimensional Data . 19

2.4.1 Integrity Scheme Using Merkle Hash Trees 20

2.4.2 Integrity Scheme Using Neighborhood Chains 23

2.5 Queries over Multi-dimensional Data . 24

2.5.1 Privacy for Multi-dimensional Data 25

2.5.2 Integrity for Multi-dimensional Data 26

v

2.6 SafeQ Optimization . 29

2.7 Queries in Event-driven Networks . 32

2.8 Complexity and Security Analysis . 34

2.8.1 Complexity Analysis . 34

2.8.2 Privacy Analysis . 35

2.8.3 Integrity Analysis . 36

2.9 Experimental Results . 36

2.9.1 Evaluation Methodology . 36

2.9.2 Evaluation Setup . 37

2.9.3 Evaluation Results . 38

3 Privacy and Integrity Preserving Range Queries for Cloud Computing 47

3.1 Introduction . 47

3.1.1 Motivation . 47

3.1.2 Technical Challenges . 48

3.1.3 Limitations of Previous Work . 49

3.1.4 Our Approach . 49

3.1.5 Key Contributions . 50

3.1.6 Summary of Experimental Results . 50

3.2 Models and Problem Statement . 51

3.2.1 System Model . 51

3.2.2 Threat Model . 51

3.2.3 Problem Statement . 52

3.3 Privacy Preserving for 1-dimensional Data 52

3.3.1 The Order-Preserving Hash-based Function 54

3.3.2 The Privacy-Preserving Scheme . 56

3.3.3 Optimization of the Order-Preserving Hash-based Function 57

3.3.4 Analysis of Information Leakage . 58

3.4 Integrity Preserving for 1-dimensional Data 59

3.4.1 Bit Matrices and Local Bit Matrices 61

3.4.2 The Integrity-Preserving Scheme . 62

3.5 Finding Optimal Parameters . 64

3.5.1 Detection Probability . 65

3.5.2 Optimal Bucket Partition . 66

3.6 Query Over Multi-dimensional Data . 68

3.6.1 Privacy for Multi-dimensional Data 68

3.6.2 Integrity for Multi-dimensional Data 69

3.7 Evaluation . 72

3.7.1 Evaluation Setup . 72

vi

3.7.2 Results for 1-dimensional Data . 73

3.7.3 Results for Multi-dimensional Data 75

4 Privacy Preserving Cross-Domain Cooperative Firewall Optimization 78

4.1 Introduction . 78

4.1.1 Background and Motivation . 78

4.1.2 Limitation of Prior Work . 79

4.1.3 Cross-domain Inter-firewall Optimization 80

4.1.4 Technical Challenges and Our Approach 81

4.1.5 Key Contributions . 82

4.2 System and Threat Models . 83

4.2.1 System Model . 83

4.2.2 Threat Model . 84

4.3 Privacy-Preserving Inter-Firewall Redundancy Removal 84

4.3.1 Privacy-Preserving Range Comparison 85

4.3.2 Processing Firewall FW1 . 87

4.3.3 Processing Firewall FW2 . 90

4.3.4 Single-Rule Coverage Redundancy Detection 93

4.3.5 Multi-Rule Coverage Redundancy Detection 95

4.3.6 Identification and Removal of Redundant Rules 98

4.4 Firewall Update After Optimization . 100

4.5 Security and Complexity Analysis . 100

4.5.1 Security Analysis . 100

4.5.2 Complexity Analysis . 102

4.6 Experimental Results . 103

4.6.1 Evaluation Setup . 103

4.6.2 Methodology . 104

4.6.3 Effectiveness and Efficiency on Real Policies 105

4.6.4 Efficiency on Synthetic Policies . 111

5 Privacy Preserving Cross-Domain Network Reachability Quantification 113

5.1 Introduction . 113

5.1.1 Background and Motivation . 113

5.1.2 Limitation of Prior Art . 114

5.1.3 Cross-Domain Quantification of Network Reachability 116

5.1.4 Technical Challenges . 117

5.1.5 Our Approach . 118

5.1.6 Summary of Experimental Results . 119

5.1.7 Key Contributions . 119

vii

5.2 Problem Statement and Threat Model . 119

5.2.1 Problem Statement . 119

5.2.2 Threat Model . 121

5.3 Privacy-Preserving Quantification of Network Reachability 121

5.3.1 Privacy-Preserving Range Intersection 122

5.3.2 ACL Preprocessing . 124

5.3.3 ACL Encoding and Encryption . 126

5.3.4 ACL Comparison . 130

5.4 Security and Complexity Analysis . 133

5.4.1 Security Analysis . 133

5.4.2 Complexity Analysis . 135

5.5 Optimization . 136

5.6 Experimental Results . 137

5.6.1 Efficiency on Real ACLs . 137

5.6.2 Efficiency on Synthetic ACLs . 138

6 Related Work 145

6.1 Secure Multiparty Computation . 145

6.2 Privacy and Integrity Preserving in WSNs 146

6.3 Privacy and Integrity Preserving in DAS . 147

6.4 Firewall Redundancy Removal and Collaborative Firewall Enforcement in VPN150

6.5 Network Reachability Quantification . 151

7 Conclusions and Future Work 154

APPENDICES 156

A Analysis of SafeQ Optimization . 156

B Properties of f∗k and Their Proof . 159

C Calculation of Detection Probability . 160

D Proof of Theorems 3 and 4 . 162

BIBLIOGRAPHY 164

viii

LIST OF TABLES

2.1 Summary of notation . 12

2.2 Complexity analysis of SafeQ . 35

4.1 Redundancy ratios for 5 real firewall groups 105

ix

LIST OF FIGURES

2.1 Architecture of two-tired sensor networks . 11

2.2 The idea of SafeQ for preserving privacy . 14

2.3 Prefix membership verification . 16

2.4 Merkle hash tree for 8 data items . 20

2.5 Data integrity verification . 22

2.6 An example neighborhood chain . 23

2.7 Merkle hash trees for two-dimensional data 27

2.8 A 2-dimensional neighborhood chain . 28

2.9 An example Bloom filter . 31

2.10 Example idle periods and data submissions 34

2.11 Average power consumption per submission for a sensor (A) 41

2.12 Average power consumption per submission for a sensor (B) 42

2.13 Average power consumption per query response for a storage node (A) . . . 43

2.14 Average power consumption per query response for a storage node (B) . . . 44

2.15 Average space consumption for a storage node (A) 45

2.16 Average space consumption for a storage node (B) 46

3.1 The DAS model . 51

3.2 Basic idea of privacy-preserving scheme . 54

3.3 Basic idea of integrity-preserving scheme . 60

3.4 Example bit matrix and local bit matrices 61

3.5 The example 2-dimensional bit matrix and local bit matrices 70

3.6 Effectiveness of optimal partition algorithm 74

3.7 Correctness of integrity-preserving scheme 74

3.8 Data processing time . 76

x

3.9 Space cost . 76

3.10 Query processing time . 77

4.1 Effect of the number of rules on the throughput with frame size 128 bytes [2] 79

4.2 Example inter-firewall redundant rules . 81

4.3 Prefix membership verification . 86

4.4 The Conversion of FW1 . 88

4.5 The Conversion of FW2 . 91

4.6 Comparison of Two Firewalls . 94

4.7 Three largest rules generated from Figure 4.4(d) 96

4.8 Identification of redundant rules in FW2 . 99

4.9 Processing FW1 on real firewalls . 106

4.10 Processing FW2 on real firewalls . 107

4.11 Comparing two real firewalls . 108

4.12 Processing FW1 on synthetic firewalls . 109

4.13 Processing FW2 on synthetic firewalls . 110

4.14 Comparing two synthetic firewalls . 112

5.1 An example of end-to-end network reachability 115

5.2 Three resulting ACLs converted from Figure 5.1 117

5.3 Privacy-preserving range intersection . 124

5.4 The Conversion of A1 . 125

5.5 The example three adjacent ACLs . 126

5.6 Encoding and encryption of ACL A1 . 128

5.7 Encoding and encryption of ACL A3 . 130

5.8 Comparison of ACLs A2 and A3 . 132

5.9 Decryption process of the comparison result 133

5.10 Comp. & comm. costs for processing real ACL Ai (1≤i≤n−1) 139

xi

5.11 Comp. & comm. costs for processing real ACL An 140

5.12 Comp. & comm. costs for processing synthetic ACL Ai (1≤i≤n−1) 142

5.13 Comp. & comm. costs for processing synthetic ACL An 143

5.14 Comparison time of synthetic ACLs Ai and An 144

xii

CHAPTER 1

Introduction

For distributed systems across different parties, preserving privacy and integrity of private

data has become core requirements in the recent decade. In these systems, one party may not

be fully trusted by other parties, but tries to compute or aggregate useful information from

private data of other parties. Thus, it is very important to design security communication

and storage protocols for preventing the party from revealing such data of other parties.

Otherwise, one party would be reluctant to share its private data. For example, Google

and Facebook collect significant amount of personal data every day through the Internet,

while many persons want to preserve the privacy of such data due to the security concern.

Furthermore, one party may want to query the useful information computed from the private

data of other parties. However, query results may be modified by a malicious party. Thus,

it is very important to design query protocols such that the integrity of query results can be

verified.

In this dissertation, we study four important, yet under-investigated, privacy and integrity

preserving problems for different distributed systems, privacy and integrity preserving range

queries in sensor networks, privacy and integrity preserving range queries for cloud com-

puting, privacy preserving cross-domain cooperative firewall optimization, and privacy pre-

1

serving cross-domain network reachability quantification. Next, for each problem, we first

describe the motivation, present the challenges, and propose our solution.

1.1 Privacy and Integrity Preserving Queries for

Sensor Networks

Two-tiered sensor networks, where storage nodes gather data from nearby sensors and answer

queries from the sink, has been widely adopted due to the benefits of power and storage

saving for sensors and the efficiency of query processing. However, a compromised storage

node could disclose all sensitive data collected from nearby sensors and return forged data

to the sink. Therefore, on a storage node, the data received from sensors should have been

encrypted and the queries received from the sink should also have been encrypted.

Without decrypting the data and queries, the storage node needs to process encrypted

queries over encrypted data correctly and send encrypted data that satisfy the queries back

to the sink. Moreover, the sink needs to be able to verify the integrity of the query results

received from storage nodes. Seemingly impossible, this problem is very challenging to solve.

It is even more challenging to solve efficiently.

To preserve privacy, I proposed a novel technique to encode both data and queries such that

a storage node can correctly process encoded queries over encoded data without knowing

their values. To preserve integrity, I proposed two schemes, one using Merkle hash trees

and another using a new data structure called neighborhood chains, to generate integrity

verification information so that a sink can use this information to verify whether the result

of a query contains exactly the data items that satisfy the query. To improve performance,

I proposed an optimization technique using Bloom filters to reduce the communication cost

between sensors and storage nodes.

2

1.2 Privacy and Integrity Preserving Queries for

Cloud Computing

Outsourced database systems are one of the most important work in cloud computing, where

a cloud provider hosts the private databases of an organization and replies query results to the

customers on behalf of the organization. However, the inclusion of the outsourced database

systems also brings significant security and privacy challenges. As cloud providers cannot

be fully trusted and the data of an organization are typically confidential, the organization

always encodes the data before storing them in a cloud to prevent the cloud provider from

revealing the data.

However, it is difficult to process queries over encoded data. Furthermore, since cloud

providers serve as an important role for answering queries from customers, they may mis-

behave the query results, such as returning forged data for the query or not returning all

data that satisfy the query. I proposed the basic idea of the privacy and integrity preserving

protocol for processing range queries in outsourced databases.

To preserve privacy, I proposed an order preserving hash function to encode the data items

from the data owner and the queries from its customers such that the cloud provider can use

the encoded queries and encoded data items to find out the query results without knowing

the actual values. To preserve integrity, I propose the first probabilistic integrity preserving

scheme for range queries in outsourced database systems. This scheme allows a customer to

verify the integrity of a query result with a high probability.

3

1.3 Privacy Preserving Optimization for Firewall

Policies

Firewalls have been widely deployed on the Internet for securing private networks by checking

whether to accept or discard packets based on its policy. Optimizing firewall policies is

crucial for improving network performance. Prior work on firewall optimization focuses on

either intra-firewall or inter-firewall optimization within one administrative domain where

the privacy of firewall policies is not a concern. I explored inter-firewall optimization across

administrative domains for the first time.

The key technical challenge is that firewall policies cannot be shared across domains be-

cause a firewall policy contains confidential information and even potential security holes,

which can be exploited by attackers.

In this work, I proposed the first cross-domain privacy-preserving cooperative firewall

policy optimization protocol. Specifically, for any two adjacent firewalls belonging to two

different administrative domains, the protocol can identify in each firewall the rules that

can be removed because of the other firewall. The optimization process involves cooperative

computation between the two firewalls without any party disclosing its policy to the other.

1.4 Privacy Preserving Quantification of Network

Reachability

Network reachability is one of the key factors for capturing end-to-end network behavior

and detecting the violation of security policies. Many approaches were proposed to address

the network reachability problem. The main assumption in all these approaches is that the

reachability restriction information of each network device and other configuration state is

4

known to a central network analyst, who is quantifying the network reachability.

However, in reality, it is common that the network devices along a given path belong to

different administrative domains where the reachability restriction information cannot be

shared with others including the network analyst.

In this work, I will try to design the first cross-domain privacy-preserving protocol for

quantifying network reachability. The protocol enables the network analyst to accurately

determine the network reachability along a network path through different administrative

domains without knowing the the reachability restriction information of the other domains.

1.5 Structure of the paper

In Chapter 2, we present SafeQ, a protocol that prevents attackers from gaining information

from both sensor collected data and sink issued queries. we start with the system model,

threat model, and problem statement. Then, we present our schemes for preserving data

privacy and query result integrity, respectively. We also propose a solution to adapt SafeQ

for event-driven sensor networks. We show that SafeQ excels state-of-the-art scheme in both

privacy and performance.

In Chapter 3, we first propose an efficient privacy-preserving scheme that can process multi-

dimensional range queries without false positives. Then, we propose the first probabilistic

scheme for verifying the integrity of range query results. This scheme employs a new data

structure, local bit matrices, which enables customers to verify query result integrity with

high probability. We show that our scheme is effectiveness and efficiency on both real and

synthetic datasets.

In Chapter 4, we first introduce the problem, system model, and threat model. Then, we

present our privacy-preserving protocol for detecting inter-firewall redundant rules. Finally,

we give security analysis results of our protocol and present our experimental results.

5

In Chapter 5, we first propose the cross-domain privacy-preserving protocol to quantify

network reachability across multiple parties. Then, we propose an optimization technique to

reduce computation and communication costs. Finally, we show that our protocol is efficient

and suitable for real applications.

In Chapter 6, we first survey related work of secure multiparty computation, one of the

fundamental cryptographic primitives for designing privacy-preserving protocols. Then, we

discuss related work for each specific problem we investigate. in two parts.

Finally, in Chapter 7, we summarize this dissertation, discuss limitations, and outline

future research directions.

6

CHAPTER 2

Privacy and Integrity Preserving

Range Queries in Sensor Networks

2.1 Introduction

2.1.1 Motivation

Wireless sensor networks have been widely deployed for various applications, such as envi-

ronment sensing, building safety monitoring, and earthquake predication, etc.. In this work,

we consider a two-tiered sensor network architecture in which storage nodes gather data from

nearby sensors and answer queries from the sink of the network. The storage nodes serve as

an intermediate tier between the sensors and the sink for storing data and processing queries.

Storage nodes bring three main benefits to sensor networks. First, sensors save power by

sending all collected data to their closest storage node instead of sending them to the sink

through long routes. Second, sensors can be memory limited because data are mainly stored

on storage nodes. Third, query processing becomes more efficient because the sink only com-

municates with storage nodes for queries. The inclusion of storage nodes in sensor networks

7

was first introduced in [65] and has been widely adopted [26, 82, 70, 71, 69]. Several products

of storage nodes, such as StarGate [7] and RISE [6], are commercially available.

However, the inclusion of storage nodes also brings significant security challenges. As

storage nodes store data received from sensors and serve as an important role for answering

queries, they are more vulnerable to be compromised, especially in a hostile environment.

A compromised storage node imposes significant threats to a sensor network. First, the

attacker may obtain sensitive data that has been, or will be, stored in the storage node.

Second, the compromised storage node may return forged data for a query. Third, this

storage node may not include all data items that satisfy the query.

Therefore, we want to design a protocol that prevents attackers from gaining information

from both sensor collected data and sink issued queries, which typically can be modeled as

range queries, and allows the sink to detect compromised storage nodes when they misbehave.

For privacy, compromising a storage node should not allow the attacker to obtain the sensitive

information that has been, and will be, stored in the node, as well as the queries that the

storage node has received, and will receive. Note that we treat the queries from the sink as

confidential because such queries may leak critical information about query issuers’ interests,

which need to be protected especially in military applications. For integrity, the sink needs

to detect whether a query result from a storage node includes forged data items or does not

include all the data that satisfy the query.

2.1.2 Technical Challenges

There are two key challenges in solving the privacy and integrity preserving range query

problem. First, a storage node needs to correctly process encoded queries over encoded data

without knowing their actual values. Second, a sink needs to verify that the result of a query

contains all the data items that satisfy the query and does not contain any forged data.

8

2.1.3 Limitations of Prior Art

Although important, the privacy and integrity preserving range query problem has been

under-investigated. The prior art solution to this problem was proposed by Sheng and Li in

their recent seminal work [69]. We call it S&L scheme. This scheme has two main drawbacks:

(1) it allows attackers to obtain a reasonable estimation on both sensor collected data and

sink issued queries, and (2) the power consumption and storage space for both sensors and

storage nodes grow exponentially with the number of dimensions of collected data.

2.1.4 Our Approach and Key Contributions

In this work, we propose SafeQ, a novel privacy and integrity preserving range query protocol

for two-tiered sensor networks. The ideas of SafeQ are fundamentally different from S&L

scheme. To preserve privacy, SafeQ uses a novel technique to encode both data and queries

such that a storage node can correctly process encoded queries over encoded data without

knowing their actual values. To preserve integrity, we propose two schemes, one using Merkle

hash trees and another using a new data structure called neighborhood chains, to generate

integrity verification information such that a sink can use this information to verify whether

the result of a query contains exactly the data items that satisfy the query. We also propose

an optimization technique using Bloom filters to significantly reduce the communication cost

between sensors and storage nodes. Furthermore, we propose a solution to adapt SafeQ for

event-driven sensor networks, where a sensor submits data to its nearby storage node only

when a certain event happens and the event may occur infrequently.

SafeQ excels state-of-the-art S&L scheme [69] in two aspects. First, SafeQ provides sig-

nificantly better security and privacy. While prior art allows a compromised storage node to

obtain a reasonable estimation on the value of sensor collected data and sink issued queries,

SafeQ makes such estimation very difficult. Second, SafeQ delivers orders of magnitude bet-

9

ter performance on both power consumption and storage space for multi-dimensional data,

which are most common in practice as most sensors are equipped with multiple sensing

modules such as temperature, humidity, pressure, etc.

2.1.5 Summary of Experimental Results

We performed side-by-side comparison with prior art over a large real-world data set from

Intel Lab [4]. Our results show that the power and space savings of SafeQ over prior art

grow exponentially with the number of dimensions. For power consumption, for three-

dimensional data, SafeQ consumes 184.9 times less power for sensors and 76.8 times less

power for storage nodes. For space consumption on storage nodes, for three-dimensional

data, SafeQ uses 182.4 times less space. Our experimental results conform with the analysis

that the power and space consumption in S&L scheme grow exponentially with the number

of dimensions, whereas those in SafeQ grow linearly with the number of dimensions times

the number of data items.

2.2 Models and Problem Statement

2.2.1 System Model

We consider two-tired sensor networks as illustrated in Figure 2.1. A two-tired sensor network

consists of three types of nodes: sensors, storage nodes, and a sink. Sensors are inexpensive

sensing devices with limited storage and computing power. They are often massively dis-

tributed in a field for collecting physical or environmental data, e.g., temperature. Storage

nodes are powerful mobile devices that are equipped with much more storage capacity and

computing power than sensors. Each sensor periodically sends collected data to its nearby

storage node. The sink is the point of contact for users of the sensor network. Each time the

10

sink receives a question from a user, it first translates the question into multiple queries and

then disseminates the queries to the corresponding storage nodes, which process the queries

based on their data and return the query results to the sink. The sink unifies the query

results from multiple storage nodes into the final answer and sends it back to the user.

Data

Data

Data

Data

Storage Node

Sensor

Sensor

Query

Result

Sensor

Sink

Sensor

For interpretation of the references to color in this and

all other figures, the reader is referred to the electronic

version of this dissertation.

Figure 2.1. Architecture of two-tired sensor networks

For the above network architecture, we assume that all sensor nodes and storage nodes

are loosely synchronized with the sink. With loose synchronization in place, we divide time

into fixed duration intervals and every sensor collects data once per time interval. From a

starting time that all sensors and the sink agree upon, every n time intervals form a time

slot. From the same starting time, after a sensor collects data for n times, it sends a message

that contains a 3-tuple (i, t, {d1, · · · , dn}), where i is the sensor ID and t is the sequence

number of the time slot in which the n data items {d1, · · · , dn} are collected by sensor si.

We address privacy and integrity preserving ranges queries for event-driven sensor networks,

where a sensor only submits data to a nearby storage node when a certain event happens,

in Section 2.7. We further assume that the queries from the sink are range queries. A

range query “finding all the data items, which are collected at time slot t and whose value

is in the range [a, b]” is denoted as {t, [a, b]}. Note that the queries in most sensor network

11

applications can be easily modeled as range queries. For ease of presentation, Table 2.1

shows the notation used in this chapter.

si A sensor with ID i

ki The secret key of sensor si
t The sequence number of a time slot

d1, · · · , dn n 1-dimensional data items

D1, · · · , Dn n z-dimensional data items

H,G, E Three “magic” functions

F(x) The prefix family of x

S([d1, d2]) The minimum set of prefixes converted from [d1, d2]

N A prefix numericalization function

HMACg An HMAC function with key g

QR A query result

V O An integrity verification object

Table 2.1. Summary of notation

2.2.2 Threat Model

For a two-tiered sensor network, we assume that the sensors and the sink are trusted but

the storage nodes are not. In a hostile environment, both sensors and storage nodes can be

compromised. If a sensor is compromised, the subsequent collected data of the sensor will

be known to the attacker and the compromised sensor may send forged data to its closest

storage node. It is extremely difficult to prevent such attacks without the use of tamper proof

hardware. However, the data from one sensor constitute a small fraction of the collected data

of the whole sensor network. Therefore, we mainly focus on the scenario where a storage

node is compromised. Compromising a storage node can cause much greater damage to the

sensor network than compromising a sensor. After a storage node is compromised, the large

quantity of data stored on the node will be known to the attacker and upon receiving a

query from the sink, the compromised storage node may return a falsified result formed by

12

including forged data or excluding legitimate data. Therefore, attackers are more motivated

to compromise storage nodes.

2.2.3 Problem Statement

The fundamental problem for a two-tired sensor network is: how can we design the storage

scheme and the query protocol in a privacy and integrity preserving manner? A satisfactory

solution to this problem should meet the following two requirements: (1) Data and query

privacy : Data privacy means that a storage node cannot know the actual values of sensor

collected data. This ensures that an attacker cannot understand the data stored on a com-

promised storage node. Query privacy means that a storage node cannot know the actual

value of sink issued queries. This ensures that an attacker cannot understand, or deduce

useful information from, the queries that a compromised storage node receives. (2) Data

integrity : If a query result that a storage node sends to the sink includes forged data or ex-

cludes legitimate data, the query result is guaranteed to be detected by the sink as invalid.

Besides these two hard requirements, a desirable solution should have low power and space

consumption because these mobile devices have limited resources.

2.3 Privacy for 1-dimensional Data

To preserve privacy, it seems natural to have sensors encrypt data and the sink encrypt

queries; however, the key challenge is how a storage node processes encrypted queries over

encrypted data.

The idea of our solution for preserving privacy is illustrated in Figure 2.2. We assume

that each sensor si in a network shares a secret key ki with the sink. For the n data

items d1, · · · , dn that a sensor si collects in time slot t, si first encrypts the data items

using key ki, the results of which are represented as (d1)ki
, · · · , (dn)ki . Then, si applies a

13

“magic” function H to the n data items and obtains H(d1, · · · , dn). The message that the

sensor sends to its closest storage node includes both the encrypted data and the associative

information H(d1, · · · , dn). When the sink wants to perform query {t, [a, b]} on a storage

node, the sink applies another “magic” function G on the range [a, b] and sends {t,G([a, b])}

to the storage node. The storage node processes the query {t,G([a, b])} over encrypted

data (d1)ki , · · · , (dn)ki collected at time slot t using another “magic” function E . The three

“magic” functions H, G, and E satisfy the following three conditions: (1) A data item

dj (1 ≤ j ≤ n) is in range [a, b] if and only if E(j,H(d1, · · · , dn),G([a, b])) is true. This

condition allows the storage node to decide whether (dj)ki
should be included in the query

result. (2) Given H(d1, · · · , dn) and (dj)ki , it is computationally infeasible for the storage

node to compute dj . This condition guarantees data privacy. (3) Given G([a, b]), it is

computationally infeasible for the storage node to compute [a, b]. This condition guarantees

query privacy.

Storage NodeSensor si Sink

(d1)ki,…,(dn)ki, H(d1,…,dn) {t, G([a, b])}

dj [a, b] iff E(j, H(d1, …, dn), G([a, b])) is true

Figure 2.2. The idea of SafeQ for preserving privacy

2.3.1 Prefix Membership Verification

The building block of our privacy preserving scheme is the prefix membership verification

scheme first introduced in [23] and later formalized in [48]. The idea of this scheme is to

convert the verification of whether a number is in a range to several verifications of whether

two numbers are equal. A prefix {0, 1}k{∗}w−k with k leading 0s and 1s followed by w − k

∗s is called a k−prefix. For example, 1*** is a 1-prefix and it denotes the range [1000, 1111].

14

If a value x matches a k−prefix (i.e., x is in the range denoted by the prefix), the first k

bits of x and the k−prefix are the same. For example, if x ∈ 1*** (i.e., x ∈ [1000, 1111]),

then the first bit of x must be 1. Given a binary number b1b2 · · · bw of w bits, the prefix

family of this number is defined as the set of w + 1 prefixes {b1b2 · · · bw, b1b2 · · · bw−1∗, · · · ,

b1 ∗ · · · ∗, ∗ ∗ ...∗}, where the i-th prefix is b1b2 · · · bw−i+1 ∗ · · · ∗. The prefix family of x is

denoted as F(x). For example, the prefix family of number 12 is F(12) = F(1100) ={1100,

110*, 11**, 1***, ****}. Prefix membership verification is based on the fact that for any

number x and prefix P , x ∈ P if and only if P ∈ F(x).

To verify whether a number a is in a range [d1, d2], we first convert the range [d1, d2] to

a minimum set of prefixes, denoted S([d1, d2]), such that the union of the prefixes is equal

to [d1, d2]. For example, S([11, 15]) ={1011,11**}. Given a range [d1, d2], where d1 and

d2 are two numbers of w bits, the number of prefixes in S([d1, d2]) is at most 2w − 2 [39].

Second, we compute the prefix family F(a) for number a. Thus, a ∈ [d1, d2] if and only if

F(a) ∩ S([d1, d2]) 6= ∅.

To verify whether F(a) ∩ S([d1, d2]) 6= ∅ using only the operations of verifying whether

two numbers are equal, we convert each prefix to a corresponding unique number using a

prefix numericalization function. A prefix numericalization function N needs to satisfy the

following two properties: (1) for any prefix P , N (P) is a binary string; (2) for any two

prefixes P1 and P2, P1 = P2 if and only if N (P1) = N (P2). There are many ways to do

prefix numericalization. We use the prefix numericalization scheme defined in [20]. Given a

prefix b1b2 · · · bk ∗ · · · ∗ of w bits, we first insert 1 after bk. The bit 1 represents a separator

between b1b2 · · · bk and ∗ · · · ∗. Second, we replace every * by 0. Note that if there is no *

in a prefix, we add 1 at the end of this prefix. For example, 11 ∗ ∗ is converted to 11100.

Given a set of prefixes S, we use N (S) to denote the resulting set of numericalized prefixes.

Therefore, a ∈ [d1, d2] if and only if N (F(a)) ∩ N (S([d1, d2])) 6= ∅. Figure 2.3 illustrates

the process of verifying 12 ∈ [11, 15].

15

[11, 15]

⇓ Prefix conversion

1011

11**

⇓ Prefix numericalization

10111

11100

12 (=1100)

⇓ Prefix family construction

1100 11** ****

110* 1***

⇓ Prefix numericalization

11001 11100 10000

11010 11000

(a) (b)

Figure 2.3. Prefix membership verification

2.3.2 The Submission Protocol

The submission protocol concerns how a sensor sends its data to a storage node. Let

d1, · · · , dn be data items that sensor si collects at a time slot. Each item dj (1≤j ≤n)

is in the range (d0, dn+1), where d0 and dn+1 denote the lower and upper bounds, respec-

tively, for all possible data items that a sensor may collect. The values of d0 and dn+1 are

known to both sensors and the sink. After collecting n data items, si performs six steps:

1) Sort the n data items in an ascending order. For simplicity, we assume

d0<d1<d2<· · ·<dn<dn+1. If some data items have the same value, we simply represent

them as one data item annotated with the number of such data items.

2) Convert the n + 1 ranges [d0, d1], [d1, d2], · · · , [dn, dn+1] to their corresponding prefix

representation, i.e., compute S([d0, d1]), S([d1, d2]), · · · , S([dn, dn+1]).

3) Numericalize all prefixes. That is, compute N (S([d0, d1])), · · · , N (S([dn, dn+1])).

4) Compute the keyed-Hash Message Authentication Code (HMAC) of each numericalized

prefix using key g, which is known to all sensors and the sink. Examples of HMAC

implementations include HMAC-MD5 and HMAC-SHA1 [46, 66, 29]. An HMAC function

using key g, denoted HMAC g, satisfies the one-wayness property (i.e., given HMAC g(x),

16

it is computationally infeasible to compute x and g) and the collision resistance property

(i.e., it is computationally infeasible to find two distinct numbers x and y such that

HMAC g(x) = HMAC g(y)). Given a set of numbers S, we use HMAC g(S) to denote

the resulting set of numbers after applying function HMAC g to every number in S. In

summary, this step computes HMAC g(N (S([d0, d1]))), · · · , HMAC g(N (S([dn, dn+1]))).

5) Encrypt every data item with key ki, i.e., compute (d1)ki , · · · , (dn)ki .

6) Sensor si sends the encrypted data along with HMAC g(N (S([d0, d1]))), · · · ,

HMAC g(N (S([dn, dn+1]))) to its closest storage node.

The above steps show that the aforementioned “magic” function H is defined as follows:

H(d1, · · · , dn) = (HMAC g(N (S([d0, d1]))), · · · ,HMAC g(N (S([dn, dn+1]))))

Due to the one-wayness and collision resistance properties of the HMAC function, given

H(d1, · · · , dn) and the n encrypted data items (d1)ki
, · · · , (dn)ki , the storage node cannot

compute the value of any data item.

2.3.3 The Query Protocol

The query protocol concerns how the sink sends a range query to a storage node. When

the sink wants to perform query {t, [a, b]} on a storage node, it performs the following four

steps. Note that any range query [a, b] satisfies the condition d0 < a ≤ b < dn+1,

1) Compute prefix families F(a) and F(b).

2) Numericalize all prefixes, i.e., compute N (F(a)), N (F(b)).

3) Apply HMAC g to each numericalized prefix, i.e., compute HMAC g(N (F(a))) and

HMAC g(N (F(b))).

17

4) Send {t,HMAC g(N (F(a))),HMAC g(N (F(b)))} as a query to the storage node.

The above steps show that the aforementioned “magic” function G is defined as follows:

G([a, b]) = (HMAC g(N (F(a))),HMAC g(N (F(b))))

Because of the one-wayness and collision resistance properties of the HMAC function, the

storage node cannot compute a and b from the query that it receives.

2.3.4 Query Processing

Upon receiving query {t, HMAC g(N (F(a))), HMAC g(N (F(b)))}, the storage node pro-

cesses this query on the n data items (d1)ki
, · · · , (dn)ki received from each nearby sensor si

at time slot t based on the following theorem.

Theorem 1. Given n numbers sorted in the ascending order d1 < · · · < dn, where dj ∈

(d0, dn+1) (1 ≤ j ≤ n), and a range [a, b] (d0 < a ≤ b < dn+1), dj ∈ [a, b] if and only if

there exist 1 ≤ n1 ≤ j < n2 ≤ n+ 1 such that the following two conditions hold:

(1) HMAC g(N (F(a))) ∩ HMAC g(N (S([dn1−1, dn1]))) 6= ∅

(2) HMAC g(N (F(b))) ∩ HMAC g(N (S([dn2−1, dn2]))) 6= ∅.

Proof. Note that dj ∈ [a, b] (1 ≤ j ≤ n) if and only if there exist n1 and n2 (1 ≤ n1 ≤ j <

n2 ≤ n+1) such that a ∈ [dn1−1, dn1] and b ∈ [dn2−1, dn2]. Further, a ∈ [dn1−1, dn1] if and

only if HMAC g(N (F(a))) ∩ HMAC g(N (S([dn1−1, dn1]))) 6= ∅ and b ∈ [dn2−1, dn2] if and

only if HMAC g(N (F(b))) ∩ HMAC g(N (S([dn2−1, dn2]))) 6= ∅

Based on Theorem 1, the storage node searches for the smallest n1 and the largest n2

(1 ≤ n1, n2 ≤ n + 1) such that a ∈ [dn1−1, dn1] and b ∈ [dn2−1, dn2]. If n1 < n2, the data

items dn1, dn1+1, · · · , dn2−1 are in the range [a, b]; if n1 = n2, no data item is in the range

[a, b].

18

In fact, there is another privacy preserving scheme. First, sensor si converts each data

value dj to a prefix family F(dj), and then applies the numericalization and hash functions

HMACg(N (F(dj))). Second, the sink converts a given range query [a, b] to a set of prefixes

S([a, b]), and then applies the numericalization and hash functions HMACg(N (S([a, b]))).

Finally, the storage node checks whether HMACg(N (F(dj))) has a common element with

HMACg(N (S([a, b]))). However, this privacy preserving scheme is not compatible with

the integrity preserving scheme that we will discuss in Section 2.4. Because this privacy

preserving scheme does not allow storage nodes to identify the positions of a and b (from the

range query [a, b]) among d1, · · · , dn if no data item satisfies the query. While our integrity

preserving scheme requires storage nodes to know such information in order to compute

integrity verification objects.

2.4 Integrity for 1-dimensional Data

The meaning of data integrity is two-fold in this context. In the result that a storage node

sends to the sink in responding to a query, first, the storage node cannot include any data

item that does not satisfy the query; second, the storage node cannot exclude any data item

that satisfies the query. To allow the sink to verify the integrity of a query result, the query

response from a storage node to the sink consists of two parts: (1) the query result QR,

which includes all the encrypted data items that satisfy the query; (2) the verification object

V O, which includes information for the sink to verify the integrity of QR. To achieve this

purpose, we propose two schemes based on two different techniques, Merkle hash trees and

neighborhood chains.

19

2.4.1 Integrity Scheme Using Merkle Hash Trees

Our first integrity preserving mechanism is based on Merkle hash trees [58]. Each time a

sensor sends data items to storage nodes, it constructs a Merkle hash tree for the data items.

Figure 2.4 shows a Merkle hash tree constructed for eight data items. Suppose sensor si

wants to send n = 2m encrypted data items (d1)ki , · · · , (dn)ki to a storage node. Sensor si

first builds a Merkle hash tree for the n = 2m data items, which is a complete binary tree.

The n terminal nodes are H1, · · · , Hn, where Hj = h((dj)ki
) for every 1 ≤ j ≤ n. Function

h is a one-way hash function such as MD5 [66] or SHA-1 [29]. The value of each nonterminal

node v, whose children are vl and vr, is the hash of the concatenation of vl’s value and vr’s

value. For example, in Figure 2.4, H12 = h(H1|H2). Note that if the number of data items

n is not a power of 2, interim hash values that do not have a sibling value to which they

may be concatenated are promoted, without any change, up the tree until a sibling is found.

Note that the resulting Merkle hash tree will not be balanced. For the example Merkle hash

tree in Figure 2.4, if we remove the nodes H6, H7, H8, H78, and let H58 = H56 = H5, the

resulting unbalanced tree is the Merkle hash tree for 5 data items.

H18

H1=h((d1)ki)

H12=h(H1|H2)

H14=h(H12|H34)

H18=HMACki (H14|H58)

H4H3

H34

H14

H2H1

H12

(d1)ki (d2)ki (d3)ki (d4)ki (d5)ki (d6)ki (d7)ki (d8)ki

H8H7

H78

H58

H6H5

H56

Figure 2.4. Merkle hash tree for 8 data items

20

The Merkle hash tree used in our solution has two special properties that allow the sink to

verify query result integrity. First, the value of the root is computed using a keyed HMAC

function, where the key is ki, the key shared between sensor si and the sink. For example, in

Figure 2.4, H18 = HMAC ki
(H14|H58). Using a keyed HMAC function gives us the property

that only sensor si and the sink can compute the root value. Second, the terminal nodes are

arranged in an ascending order based on the value of each data item dj .

We first discuss what a sensor needs to send to its nearest storage node along its data

items. Each time sensor si wants to send n encrypted data items to a storage node, it first

computes a Merkle hash tree over the n encrypted data items, and then sends the root value

along with the n encrypted data items to a storage node. Note that among all the nodes in

the Merkle hash tree, only the root is sent from sensor si to the storage node because the

storage node can compute all other nodes in the Merkle hash tree by itself.

Next, we discuss what a storage node needs to send to the sink along a query result, i.e.,

what should be included in a verification object. For the storage node that is near to sensor

si, each time it receives a query {t, [a, b]} from the sink, it first finds the data items that

are in the range [a, b]. Second, it computes the Merkle hash tree (except the root) from the

data items. Third, it sends the query result QR and the verification object V O to the sink.

Given data items (d1)ki ,· · · ,(dn)ki in a storage node, where d1<· · ·<dn, and a range [a, b],

where dn1−1<a≤dn1<· · ·<dn2≤b<dn2+1 and 1≤n1 − 1<n2 + 1≤n, and the query result

QR = {(dn1)ki , · · · , (dn2)ki}, the storage node should include (dn1−1)ki
and (dn2+1)ki

in

the verification object V O because (dn1−1)ki
and (dn2+1)ki

ensure that the query result does

include all data items that satisfy the query as the query result is bounded by them. We

call (dn1−1)ki the left bound of the query result and (dn2+1)ki the right bound of the query

result. Note that the left bound (dn1−1)ki and the right bound (dn2+1)ki may not exist. If

a ≤ d1, the left bound (dn1−1)ki
does not exist; if dn ≤ b, the right bound (dn2+1)ki

does

not exist. The verification object includes zero to two encrypted data items and O(logn)

21

proof nodes in the Merkel hash tree that are needed for the sink to verify the integrity of

the query result. Taking the example in Figure 2.5, suppose a storage node has received 8

data items {(2)ki , (5)ki , (9)ki, (15)ki , (20)ki , (23)ki, (34)ki, (40)ki} that sensor si collected

at time t, and the sink wants to perform the query {t, [10, 30]} on the storage node. Using

Theorem 1, the storage node finds that the query result includes (15)ki , (20)ki, and (23)ki

which satisfy the query. Along with the query result (i.e., the three data items), the storage

node also sends (9)ki
, (34)ki

, H12, H8, and H18, which are marked grey in Figure 2.5, to the

sink as the verification object.

H18

Range [10, 30]

Query result Verification object

H14 H58

H34H12 H56

H1

H78

H2 H3 H4 H5 H6 H7 H8

(2)ki (5)ki
(9)ki

(15)ki
(20)ki

(23)ki
(34)ki

(40)ki

Figure 2.5. Data integrity verification

Next, we discuss how the sink uses Merkle hash trees to verify query result integrity. Upon

receiving a query result QR = {(dn1)ki , · · · , (dn2)ki} and its verification object, the sink

computes the root value of the Merkle hash tree and then verifies the integrity of the query

result. Query result integrity is preserved if and only if the following four conditions hold: (1)

The data items in the query result do satisfy the query. (2) If the left bound (dn1−1)ki exists,

22

verify that dn1−1 < a and (dn1−1)ki is the nearest left neighbor of (dn1)ki in the Merkle

hash tree; otherwise, verify that (dn1)ki is the leftmost encrypted data item in the Merkle

hash tree. (3) If the right bound (dn2+1)ki
exists, verify that b < dn2+1 and (dn2+1)ki

is

the nearest right neighbor of (dn2)ki
in the Merkle hash tree; otherwise, verify that (dn2)ki

is the rightmost encrypted data item in the Merkle hash tree. (4) The computed root value

is the same as the root value included in V O.

Note that sorting data items is critical in our scheme for ensuring the integrity of query

result. Without this property, it is difficult for a storage node to prove query result integrity

without sending all data items to the sink.

2.4.2 Integrity Scheme Using Neighborhood Chains

We first present a new data structure called neighborhood chains and then discuss its use in in-

tegrity verification. Given n data items d1, · · · , dn, where d0 < d1 < · · · < dn < dn+1, we call

the list of n items encrypted using key ki, (d0|d1)ki , (d1|d2)ki , · · · , (dn−1|dn)ki , (dn|dn+1)ki
,

the neighborhood chain for the n data items. Here “|” denotes concatenation. For any item

(dj−1|dj)ki in the chain, we call dj the value of the item and (dj|dj+1)ki the right neighbor

of the item. Figure 2.6 shows the neighborhood chain for the 5 data items 1, 3, 5, 7 and 9.

Range [2, 8]

(d0|1)ki
(1|3)ki

(3|5)ki
(5|7)ki

(7|9)ki
(9|d6)ki

Query result Verification object

Figure 2.6. An example neighborhood chain

Preserving query result integrity using neighborhood chaining works as follows. After

collecting n data items d1, · · · , dn, sensor si sends the corresponding neighborhood chain

(d0|d1)ki , (d1|d2)ki , · · · , (dn−1|dn)ki , (dn|dn+1)ki
, instead of (d1)ki

, · · · , (dn)ki , to a stor-

23

age node. Given a range query [a, b], the storage node computes QR as usual. The

corresponding verification object V O only consists of the right neighbor of the largest

data item in QR. Note that V O always consists of one item for any query. If QR =

{(dn1−1|dn1)ki , · · · , (dn2−1|dn2)ki}, then V O = {(dn2|dn2+1)ki
}; if QR = ∅, suppose

dn2 < a ≤ b < dn2+1, then V O = {(dn2|dn2+1)ki}.

After the sink receives QR and V O, it verifies the integrity of QR as follows. First, the

sink verifies that every item in QR satisfies the query. Assume that the sink wants to perform

the range query [2, 8] over the data items in Figure 2.6. The storage node calculates QR

to be {(1|3)ki,(3|5)ki , (5|7)ki} and V O to be {(7|9)ki}. Second, the sink verifies that the

storage node has not excluded any item that satisfies the query. Let {(dn1−1|dn1)ki , · · · ,

(dj−1|dj)ki , · · · , (dn2−1|dn2)ki} be the correct query result and QR be the query result from

the storage node. We consider the following four cases.

1. If there exists n1 < j < n2 such that (dj−1|dj)ki /∈ QR, the sink can detect this error

because the items in QR do not form a neighborhood chain.

2. If (dn1−1|dn1)ki /∈ QR, the sink can detect this error because it knows the existence

of dn1 from (dn1|dn1+1)ki
and dn1 satisfies the query.

3. If (dn2−1|dn2)ki /∈ QR, the sink can detect this error because it knows the existence

of dn2 from the item (dn2 |dn2+1)ki
in V O and dn2 satisfies the query.

4. If QR = ∅, the sink can verify this fact because the item (dn2|dn2+1)ki in V O should

satisfy the property dn2 < a ≤ b < dn2+1.

2.5 Queries over Multi-dimensional Data

Sensor collected data and sink issued queries are typically multi-dimensional as most sensors

are equipped with multiple sensing modules such as temperature, humidity, pressure, etc.

24

A z-dimensional data item D is a z-tuple (d1, · · · , dz) where each dl (1 ≤ l ≤ z) is the

value for the l-th dimension (i.e., attribute). A z-dimensional range query consists of z sub-

queries [a1, b1], · · · , [az, bz] where each sub-query [al, bl] (1 ≤ l ≤ z) is a range over the l-th

dimension.

2.5.1 Privacy for Multi-dimensional Data

We extend our privacy preserving techniques for one-dimensional data to multi-dimensional

data as follows. Let D1, · · · , Dn denote the n z-dimensional data items that a sensor

si collects at time slot t, where Dj = (d1j , · · · , d
z
j) (1 ≤ j ≤ n). First, si encrypts

these data with its secret key ki. Second, for each dimension l, si applies the “magic”

function H and obtains H(dl1, · · · , d
l
n). At last, si sends the encrypted data items and

H(d11, · · · , d
1
n), H(d21, · · · , d

2
n), · · · , H(dz1, · · · , d

z
n) to a nearby storage node. For example,

sensor si collects 5 two-dimensional data items (1,11), (3,5), (6,8), (7,1) and (9,4) at time

slot t, it will send the encrypted data items as well as H(1, 3, 6, 7, 9) and H(1, 4, 5, 8, 11)

to a nearby storage node. When the sink wants to perform query {t, ([a1, b1], · · · , [az , bz])}

on a storage node, the sink applies the “magic” function G on each sub-query [al, bl] and

sends {t,G([a1, b1]), · · · ,G([az , bz])} to the storage node. The storage node then applies the

“magic” function F to find the query result QRl for each sub-query [al, bl]. Here the three

“magic” functions H, G, and F are the same as the “magic” functions defined in Section 2.3.

Finally, the storage node computes QR = QR1 ∩ · · · ∩QRz as the query result. Considering

the above example, given a range query ([2,7],[3,8]), the query result QR1 for the sub-query

[2,6] is the encrypted data items of (3,5),(6,8) and the query result QR2 for the sub-query

[3,8] is the encrypted data items of (9,4),(3,5),(6,8). Therefore the query result QR is the

encrypted data items of (3,5),(6,8).

25

2.5.2 Integrity for Multi-dimensional Data

We next present two integrity preserving schemes for multi-dimensional data: one builds a

merkle hash tree for each dimension; another builds a multi-dimensional neighborhood chain.

Integrity Scheme Using Merkle Hash Trees

To preserve integrity, sensor si first computes z Merkle hash trees over the n encrypted

data items along z dimensions. In the l-th Merkle hash tree, the n data items are sorted

according to the values of the l-th attribute. Second, si sends the z root values to a storage

node along with the encrypted data items. For a storage node that is near to sensor si,

each time it receives a query {t, ([a1, b1], · · · , [az, bz])}, it first finds the query result QRl

for each range [al, bl]. Second, it chooses the query result QRl′ that contains the smallest

number of encrypted data items among QR1, · · · , QRn. Third, it computes the Merkle hash

tree in which the data items are sorted according to the l′-th attribute. Finally, it sends

QRl′ and the corresponding verification object V Ol′ to the sink. For example, suppose a

sensor si collects 4 two-dimensional data items {(12, 5), (15, 6), (23, 4), (45, 3)} in a time

slot. Sensor si computes a Merkle hash tree along each dimension. Figure 2.7 shows the

two Merkle hash trees. Given a two-dimensional range query {[16, 23], [3, 5]}, the storage

node can find the query results QR1 = {(23, 4)ki} based on the first attribute and QR2 =

{(45, 3)ki, (23, 4)ki, (12, 5)ki} based on the second attribute. Since QR1 only contains one

encrypted data item, the storage node sends to the sink the query result QR1 = {(23, 4)ki}

and the corresponding verification object V O1 = {(15, 6)ki, (45, 3)ki, H
1
1 , H

1
14}.

Note that the query result of a multi-dimensional range query may contain data items

that do not satisfy the query. After decryption, the sink can easily prune the query result

by discarding such data items.

26

[16, 23]

Query result Verification object

H14
1

H34
1H12

1

H1
1 H2

1 H3
1 H4

1

(12,5)ki
(15,6)ki

(45,3)ki
(23,4)ki

(45,3)ki
(23,4)ki

(15,6)ki(12,5)ki
[3, 5]

H14
2

H34
2H12

2

H1
2 H2

2 H3
2 H4

2

Figure 2.7. Merkle hash trees for two-dimensional data

Integrity Scheme Using Neighborhood Chains

The basic idea is for each of the z values in a data item, we find its nearest left neighbor along

each dimension and embed this information when we encrypt the item. Such neighborhood

information is used by the sink for integrity verification.

We first present multi-dimensional neighborhood chains and then discuss its use in integrity

verification. Let D1, · · · , Dn, where Dj = (d1j , · · · , d
z
j) for each 1 ≤ j ≤ n, denote n z-

dimensional data items. We use dl0 and dln+1 to denote the lower bound and the upper bound

of any data item along dimension l. We callD0 = (d10, · · · , d
z
0) andDn+1 = (d1n+1, · · · , d

z
n+1)

the lower bound and upper bound of the data items. For each dimension 1 ≤ l ≤ z, we

can sort the values of n data items along the l-th dimension together with dl0 and dln+1

in an ascending order. For ease of presentation, we assume dl0 < dl1 < · · · < dln+1 for

every dimension 1 ≤ l ≤ z. In this sorted list, we call dlj−1 (1 ≤ j ≤ n + 1) the left

neighboring value of dlj . We use Ll(dlj) to denote the left neighboring value of dlj along

dimension l. A multi-dimensional neighborhood chain for D1, · · · , Dn is constructed by

encrypting every item Dj as (L1(d1j)|d
1
j , · · · ,L

z(dzj)|d
z
j)ki , which is denoted as MNC (Dj).

27

We call Dj the value of MNC (Dj). Note that when multiple data items have the same value

along the l-th dimension, we annotate Ll(dlj) with the number of such items in MNC (Dj).

The list of n + 1 items encrypted with key ki, MNC (D1), · · · , MNC (Dn), MNC (Dn+1),

forms a multi-dimensional neighborhood chain. The nice property of a multi-dimensional

neighborhood chain is that all data items form a neighborhood chain along every dimension.

This property allows the sink to verify the integrity of query results. Considering 5 example

2-dimensional data items (1,11), (3,5), (6,8), (7,1), (9,4) with lower bound (0, 0) and upper

bound (15, 15), the corresponding multi-dimensional neighborhood chain encrypted with key

ki is (0|1, 9|11)ki, (1|3, 4|5)ki, (3|6, 5|8)ki, (6|7, 0|1)ki, (7|9, 1|4)ki and (9|15, 11|15)ki. Figure

2.8 illustrates this chain, where each black point denotes an item, the two grey points denote

the lower and upper bounds, the solid arrows illustrate the chain along the X dimension,

and the dashed arrows illustrate the chain along the Y dimension.

Query

X dimension

Y
 d

im
en

sio
n

(1,11)

(3,5)

(6,8)

(7,1)

(9,4)

(15,15)

(0,0)

Figure 2.8. A 2-dimensional neighborhood chain

Next, we discuss the operations carried on sensors, storage nodes, and the sink using

multi-dimensional chaining.

Sensors: After collecting n z-dimensional data items at time slot t, sensor si computes

28

the multi-dimensional chain for the items and sends it to a storage node.

Storage nodes: Given a z-dimensional query ([a1, b1], · · · , [az, bz]), a storage node first

computes QR = QR1 ∩ · · · ∩QRz . Second, it computes V O = (QRl −QR) ∪ {R([al, bl])},

where QRl is the smallest set among QR1, · · · , QRz (i.e., |QRl| ≤ |QRi| for any 1 ≤ i ≤ z)

and R([al, bl]) is the right bounding item of the range [al, bl]. Given a multi-dimensional

chain MNC (D1), · · · , MNC (Dn), MNC (Dn+1) and a sub-query [al, bl] along dimension l,

the right bounding item of [al, bl] is the item MNC (Dj) where Ll(dlj) ≤ bl < dlj . Figure

2.8 shows a query ([2,6],[3,8]) with a query result QR = {MNC (3, 5), MNC (6, 8)} and

V O = {MNC (7, 1)}.

The Sink: Upon receiving QR and V O, the sink verifies the integrity of QR as follows.

First, it verifies that every item in QR satisfies the query. Second, it verifies that the

storage node has not excluded any item that satisfies the query based on the following three

properties: (1) The items in QR∪V O should form a chain along one dimension, say l. Thus,

if the storage node excludes an item whose value in the l-th dimension is in the middle of

this chain, this chaining property would be violated. (2) The item in QR ∪ V O that has

the smallest value among the l-th dimension, say MNC (Dj), satisfies the condition that

Ll(dlj) < al. Thus, if the storage node excludes the item whose value on the l-th dimension

is the beginning of the chain, this property would be violated. (3) There exists only one item

in V O that is the right bounding item of [al, bl]. Thus, if the storage node excludes the item

whose value on the l-th dimension is the end of the chain, this property would be violated.

2.6 SafeQ Optimization

In this section, we present an optimization technique based on Bloom filters [15] to reduce

the communication cost between sensors and storage nodes. This cost can be significant

because of two reasons. First, in each submission, a sensor needs to convert each range

29

[dj , dj+1], where dj and dj+1 are two numbers of w bits, to 2w − 2 prefix numbers in the

worst case. Second, the sensor applies HMAC to each prefix number, which results in a 128-

bit string if we choose HMAC-MD5 or a 160-bit string if we choose HMAC-SHA1. Reducing

communication cost for sensors is important because of power consumption reasons.

Our basic idea is to use a Bloom filter to represent HMAC g(N (S([d0, d1]))), · · · ,

HMAC g(N (S([dn, dn+1]))). Thus, a sensor only needs to send the Bloom filter instead

of the hashes to a storage node. The number of bits needed to represent the Bloom filter

is much smaller than that needed to represent the hashes. Next, we discuss the operations

that sensors and storage nodes need to perform in using this optimization technique.

Sensors: Let A be a bit array of size c representing the Bloom filter for

HMAC g(N (S([d0, d1]))), · · · , HMAC g(N (S([dn, dn+1]))) that a sensor computes after col-

lecting n data items d1, · · · , dn assuming d1 ≤ · · · ≤ dn. Let B be an array of c pointers.

For every 0 ≤ j ≤ n and for every number v in HMAC g(N (S([dj , dj+1]))), the sensor

applies k hash functions on v, where each hash function hi (1 ≤ i ≤ k) hashes v to an

integer in the range [1, c], and then sets A[hi(v)] to be 1 and appends the index j to the

list that B[hi(v)] points to. In each submission, the sensor sends A and B to its closest

storage node. For example, HMAC g(N (S([10, 11]))) and HMAC g(N (S([11, 15]))) can be

represented as the two arrays in Figure 2.9, where “-” denotes an empty pointer. Note that

N (S([10, 11])) = {10110} and N (S([11, 15])) = {10111, 11100}.

The logical meaning of B is an array of pointers, each pointing to a list of indices from 0

to n. To reduce the space used for storing pointers, we implement B as a concatenation of

all these lists separated by delimiters. For example, we can represent the array B in Figure

2.9 as a list 〈1, \0, 1, \0, 1, 2, \0, 2, \0, 2, \0, 2, \0, 2, \0, · · · , \0, 2〉.

Storage nodes: Recall that a ∈ [dj, dj+1] if and only if HMAC g(N (F(a))) ∩

HMAC g(N (S([dj , dj+1]))) 6= ∅. If HMAC g(N (F(a))) ∩ HMAC g(N (S([dj , dj+1]))) 6= ∅,

then there exists at least one number v in HMAC g(N (F(a))) such that the following two

30

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

- - - - - - -

h1 h2
h3

h1
h2

h3

1 1 22 2 2

HMACg(10110) HMACg(10111)

1

2

2

A

h1
h2

h3

HMACg(11100)

B

Figure 2.9. An example Bloom filter

conditions hold: (1) for every 1 ≤ i ≤ k, A[hi(v)] is 1; (2) for every 1 ≤ i ≤ k, index j

is included in the list that B[hi(v)] points to. For example, to verify whether 12 ∈ [11, 15]

using the Bloom filter in Figure 2.9, a storage node can apply the 3 hash functions to each

number in HMAC g(N (F(12))). For one number HMAC g(11100) in HMAC g(N (F(12))),

the storage node verifies that HMAC g(11100) satisfies the above two conditions, therefore

12 ∈ [11, 15].

Although using our optimization technique QR may contain data items that do not satisfy

the query, they can be easily pruned by the sink after decryption. Given a query [a, b], using

this optimization technique, a storage node may find multiple ranges that contain a and

multiple ranges that contain b due to false positives of Bloom filters. In this case, the storage

node uses the first range that contains a and the last range that contains b to compute the

query result.

Bloom filters introduce false positives in the result of a query, i.e., the data items that

do not satisfy the query. We can control the false positive rate by adjusting Bloom filter

parameters. Let ǫ denote the average false positive rate and wh denote the bit length

of each number in HMAC g(N (S([dj , dj+1]))). For simplicity, we assume that each set

HMAC g(N (S([dj , dj+1]))) contains the same number of values, which is denoted as q. The

31

upper bound of the average false positive rate ǫ is shown in Formula 2.1, the derivation of

which is in Appendix A.

ǫ <
1

3

(n+ 2)(n+ 3)

(n+ 1)k−1
(1− e−k(n+1)q/c)k (2.1)

To represent HMAC g(N (S([d0, d1]))), · · · , HMAC g(N (S([dn, dn+1]))), without Bloom

filters, the total number of bits required is wh(n+ 1)q; with Bloom filters, the total number

of bits required is at most c+2k(n+1)q⌈log2 (n+ 1)⌉, the calculation of which is in Appendix

A. Therefore, our optimization technique reduces the communication cost if

wh(n+ 1)q > c+ 2k(n+ 1)q⌈log2 (n + 1)⌉ (2.2)

Based on Formula 2.1 and 2.2, assuming wh = 128 and n ≥ 3, to achieve reduction on

the communication cost of sensors and the small false positive rate of ǫ < 1%, we choose

c = 1
ln 2k(n + 1)q and k to be 4 ≤ k < 128

1.44+2⌈log2 (n+1)⌉
. Note that only when n ≥ 215,

which is unlikely to happen, such k does not exist.

2.7 Queries in Event-driven Networks

So far we have assumed that at each time slot, a sensor sends to a storage node the data

that it collected at that time slot. However, this assumption does not hold for event-driven

networks, where a sensor only reports data to a storage node when certain event happens.

If we directly apply our solution here, then the sink cannot verify whether a sensor collected

data at a time slot. The case that a sensor did not submit any data at time slot t and the

case that the storage node discards all the data that the sensor collected at time slot t are

not distinguishable for the sink.

32

We address the above challenge by sensors reporting their idle period to storage node each

time when they submit data after an idle period or when the idle period is longer than a

threshold. Storage nodes can use such idle period reported by sensors to prove to the sink

that a sensor did not submit any data at any time slot in that idle period. Next, we discuss

the operations carried on sensors, storage nodes and the sink.

Sensors: An idle period for a sensor is a time slot interval [t1, t2], which indicates that

the sensor has no data to submit from t1 to t2, including t1 and t2. Let γ be the threshold

of a sensor being idle without reporting to a storage node. Suppose the last time that sensor

si submitted data or reported idle period is time slot t1− 1. At any time slot t ≥ t1, si acts

based on three cases:

1. t = t1: In this case, if si has data to submit, then it just submits the data; otherwise

it takes no action.

2. t1 < t < γ + t1 − 1: In this case, if si has data to submit, then it submits data along

with encrypted idle period [t1, t−1]ki
; otherwise it takes no action. We call [t1, t−1]ki

an idle proof.

3. t = γ + t1 − 1: In this case, if si has data to submit, then it submits data along with

the idle proof [t1, t− 1]ki
; otherwise, it submits the idle proof [t1, t]ki

.

Figure 2.10 illustrates some idle periods for sensor si, where each unit in the time axis is a

time slot, a grey unit denotes that si has data to submit at that time slot, and a blank unit

denotes that si has no data to submit at that time slot. According to the second case, at

time slot t2 + 1, si submits data along with the idle proof [t1, t2]ki
. According to the third

case, at time slot t4, si submits the idle proof [t3, t4]ki
.

Storage nodes: When a storage node receives a query {t,G([a, b])} from the sink, it first

checks whether si has submitted data at time slot t. If si has, then the storage node sends

the query result as discussed in Section 2.3. Otherwise, the storage node checks whether si

33

t1 t2 t3 t4

[t1, t2]ki
[t3, t4]ki

… …

Time axis

Figure 2.10. Example idle periods and data submissions

has submitted an idle proof for an idle period containing time slot t. If true, then it sends

the idle proof to the sink as V O. Otherwise, it replies to the sink saying that it does not have

the idle proof containing time slot t at this moment, but once the right idle proof is received,

it will forward to the sink. The maximum number of time slots that the sink may need to

wait for the right idle proof is γ − 1. Here γ is a system parameter trading off efficiency and

the amount of time that sink may have to wait for verifying data integrity. Smaller γ favors

the sink for integrity verification and larger γ favors sensors for power saving because of less

communication cost.

The Sink: Changes on the sink side are minimal. In the case that V O lacks the idle

proof for verifying the integrity of QR, it will defer the verification for at most γ − 1 time

slots, during which benign storage nodes are guaranteed to send the needed idle proof.

2.8 Complexity and Security Analysis

2.8.1 Complexity Analysis

Assume that a sensor collects n z-dimensional data items in a time slot, each attribute of

a data item is a wo-bit number, and the HMAC result of each numericalized prefix is a

wh number. The computation cost, communication cost, and storage space of SafeQ are

described in the following table. Note that the communication cost denotes the number of

34

bytes sent for each submission or query, and the storage space denotes the number of bytes

stored in a storage node for each submission.

Computation Communication Space

Sensor
O(wozn) hash

O(wowhzn) –
O(n) encryption

Storage
O(woz) hash O(zn) O(wowhzn)node

Sink O(woz) hash O(woz) –

Table 2.2. Complexity analysis of SafeQ

2.8.2 Privacy Analysis

In a SafeQ protected two-tiered sensor network, compromising a storage node does not allow

the attacker to obtain the actual values of sensor collected data and sink issued queries.

The correctness of this claim is based on the fact that the hash functions and encryption

algorithms used in SafeQ are secure. In the submission protocol, a storage node only receives

encrypted data items and the secure hash values of prefixes converted from the data items.

Without knowing the keys used in the encryption and secure hashing, it is computationally

infeasible to compute the actual values of sensor collected data and the corresponding pre-

fixes. In the query protocol, a storage node only receives the secure hash values of prefixes

converted from a range query. Without knowing the key used in the secure hashing, it is

computationally infeasible to compute the actual values of sink issued queries.

Next, we analyze information leaking if HMACg() does not satisfy the one-wayness prop-

erty. More formally, given y, where y = HMACg(x) and x is a numericalized prefix, suppose

that a storage node takes O(T) steps to compute x. Recall that the number of HMAC hashes

sent from a sensor is O(wozn). To reveal a data item dj , the storage node needs to reveal

all the numericalized prefixes in HMAC g(N (S([dj−1, dj]))). Thus, to reveal n data items,

the storage node would take O(woznT) steps. Here T = 2128 for HMAC.

35

2.8.3 Integrity Analysis

For our scheme using Merkle hash trees, the correctness of this claim is based on the property

that any change of leaf nodes in a Merkle hash tree will change the root value. Recall that

the leaf nodes in a Merkle hash tree are sorted according to their values. In a query response,

the left bound of the query result (if it exists), the query result, and the right bound of the

query result (if it exists) must be consecutive leaf nodes in the Merkle hash tree. If the

storage node includes forged data in the query result or excludes a legitimate data item from

the query result, the root value computed at the sink will be different from the root value

computed at the corresponding sensor.

For our scheme using neighborhood chains, the correctness is based on the following three

properties that QR and V O should satisfy for a query. First, items in QR ∪ V O form a

chain. Excluding any item in the middle or changing any item violates the chaining property.

Second, the first item in QR ∪ V O contains the value of its left neighbor, which should be

out of the range query on the smaller end. Third, the last item in QR ∪ V O contains the

value of its right neighbor, which should be out of the range query on the larger end.

2.9 Experimental Results

2.9.1 Evaluation Methodology

To compare SafeQ with the state-of-the-art, which is represented by S&L scheme, we imple-

mented both schemes and performed side-by-side comparison on a large real data set. We

measured average power and space consumption for both the submission and query protocols

of both schemes.

36

2.9.2 Evaluation Setup

We implemented both SafeQ and S&L scheme using TOSSIM [8], a widely used wireless

sensor network simulator. We measured the efficiency of SafeQ and S&L scheme on 1, 2,

and 3 dimensional data. For better comparison, we conducted our experiments on the same

data set that S&L used in their experiment [69]. The data set was chosen from a large real

data set from Intel Lab [4] and it consists of the temperature, humidity, and voltage data

collected by 44 nodes during 03/01/2004-03/10/2004. Each data attribute follows Gaussian

distribution. Note that S&L only conducted experiments on the temperature data, while we

experimented with both SafeQ and S&L schemes on 1-dimensional data (of temperature),

2-dimensional data (of temperature and humidity) and 3-dimensional data (of temperature,

humidity, and voltage).

In implementing SafeQ, we used HMAC-MD5 [46] with 128-bit keys as the hash func-

tion for hashing prefix numbers. We used the DES encryption algorithm in implementing

both SafeQ and S&L scheme. In implementing our Bloom filter optimization technique, we

chose the number of hash functions to be 4 (i.e., k = 4), which guarantees that the false

positive rate induced by the Bloom filter is less than 1%. In implementing S&L scheme,

we used the parameter values (i.e., VARp = 0.4 and EN p = 1), which are corresponding

to the minimum false positives of query results in their experiments, for computing optimal

bucket partitions as in [69], and we used HMAC-MD5 with 128-bit keys as the hash func-

tion for computing encoding number. For multi-dimensional data, we used their optimal

bucket partition algorithm to partition multi-dimensional data along each dimension. In our

experiments, we experimented with different sizes of time slots ranging from 10 minutes to

80 minutes. For each time slot, we generated 1,000 random range queries in the form of

([a1, b1], [a2, b2], [a3, b3]), where a1, b1 are two random values of temperature, a2, b2 are two

random values of humidity, and a3, b3 are two random values of voltage.

37

2.9.3 Evaluation Results

The experimental results from our side-by-side comparison show that SafeQ significantly

outperforms S&L scheme for multi-dimensional data in terms of power and space consump-

tion. For the two integrity preserving schemes, the neighborhood chaining technique is better

than Merkle hash tree technique in terms of both power and space consumption. The ratio-

nale for us to include the Merkle hash tree based scheme is that Merkle hash trees are the

typical approach to achieving integrity. We use SafeQ-MHT+ and SafeQ-MHT to denote

our schemes using Merkle hash trees with and without Bloom filters, respectively, and we

use SafeQ-NC+ and SafeQ-NC to denote our schemes using neighborhood chains with and

without Bloom filters, respectively.

Figures 2.11(a), 2.11(b), and 2.12(a), show the average power consumption of sensors for

3-dimensional, 2-dimensional, and 1-dimensional data, respectively, versus different sizes of

time slots. Figures 2.13(a), 2.13(b), and 2.14(a), show the average power consumption of

storage nodes for 3-dimensional, 2-dimensional, and 1-dimensional data, respectively, versus

different sizes of time slots. We observe that the power consumption of both sensors and

storage nodes grows linearly with the number of data items, which confirms our complexity

analysis in Section 4.5.2. Note that the number of collected data items is in direct proportion

to the size of time slots. For power consumption, in comparison with S&L scheme, our

experimental results show that for 3-dimensional data, SafeQ-NC+ consumes 184.9 times

less power for sensors and 76.8 times less power for storage nodes; SafeQ-MHT+ consumes

171.4 times less power for sensors and 46.9 times less power for storage nodes; SafeQ-NC

consumes 59.2 times less power for sensors and 76.8 times less power for storage nodes;

SafeQ-MHT consumes 57.9 times less power for sensors and 46.9 times less power for storage

nodes. For 2-dimensional data, SafeQ-NC+ consumes 10.3 times less power for sensors and

9.0 times less power for storage nodes; SafeQ-MHT+ consumes 9.5 times less power for

38

sensors and 5.4 times less power for storage nodes; SafeQ-NC consumes 2.7 times less power

for sensors and 9.0 times less power for storage nodes; SafeQ-MHT consumes 2.6 times less

power for sensors and 5.4 times less power for storage nodes. Our experimental results

conform with the theoretical analysis that the power consumption in S&L scheme grows

exponentially with the number of dimensions, whereas in SafeQ it grows linearly with the

number of dimensions times the number of data items.

Figures 2.12(b) and 2.14(b) show the average power consumption for a 10-minute slot

for a sensor and a storage node, respectively, versus the number of dimensions of the data.

We observe that there are almost linear correlation between the average power consumption

for both sensors and storage nodes and the number of dimensions of the data, which also

confirms our complexity analysis in Section 4.5.2.

Our experimental results also show that SafeQ is comparable to S&L scheme for 1-

dimensional data in terms of power and space consumption. For power consumption, SafeQ-

NC+ consumes about the same power for sensors and 0.7 times less power for storage nodes;

SafeQ-MHT+ consumes about the same power for sensors and 0.3 times less power for stor-

age nodes; SafeQ-NC consumes 1.0 times more power for sensors and 0.7 times less power

for storage nodes; SafeQ-MHT consumes 1.0 times more power for sensors and 0.3 times less

power for storage nodes. For space consumption on storage nodes, SafeQ-NC+ and SafeQ-

MHT+ consume about the same space, and SafeQ-NC and SafeQ-MHT consume about 1.0

times more space.

Figures 2.15(a), 2.15(b) and 2.16(a) show the average space consumption of storage nodes

for 3, 2 and 1 dimensional data, respectively. For space consumption on storage nodes, in

comparison with S&L scheme, our experimental results show that for 3-dimensional data,

SafeQ-NC+ consumes 182.4 times less space; SafeQ-MHT+ consumes 169.1 times less space;

SafeQ-NC consumes 58.5 times less space; SafeQ-MHT consumes 57.2 times less space. For

2-dimensional data, SafeQ-NC+ consumes 10.2 times less space; SafeQ-MHT+ consumes 9.4

39

times less space; SafeQ-NC consumes 2.7 times less space; SafeQ-MHT consumes 2.6 times

less space. The results conform with the theoretical analysis that the space consumption in

S&L scheme grows exponentially with the number of dimensions, whereas in SafeQ it grows

linearly with the number of dimensions and the number of data items.

Figure 2.16(b) shows the average space consumption of storage nodes for each data item

versus the number of dimensions of the data item. For each 3-dimensional data item, S&L

consumes about over 104 bytes, while SafeQ-NC+ and SafeQ-MHT+ consume only 40 bytes.

40

0 10 20 30 40 50 60 70 80 90
1e+0

1e+2

1e+4

1e+6

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 3-dimensional data

0 10 20 30 40 50 60 70 80 90
0

200

400

600

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) 2-dimensional data

Figure 2.11. Average power consumption per submission for a sensor (A)

41

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 1-dimensional data

1 2 3
1e+0

1e+1

1e+2

1e+3

1e+4

Number of dimensions

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) for 10 minutes

Figure 2.12. Average power consumption per submission for a sensor (B)

42

0 10 20 30 40 50 60 70 80 90
1e+0

1e+1

1e+2

1e+3

1e+4

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 3-dimensional data

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) 2-dimensional data

Figure 2.13. Average power consumption per query response for a storage node (A)

43

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

Time slot size (minutes)

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 1-dimensional data

1 2 3
1e+0

1e+1

1e+2

1e+3

Number of dimensions

P
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(
m
W
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) for 10 minutes

Figure 2.14. Average power consumption per query response for a storage node (B)

44

0 10 20 30 40 50 60 70 80 90
1e+3

1e+4

1e+5

1e+6

1e+7

Time slot size (minutes)

S
p
a
c
e

C
o
n
s
u
m
p
t
i
o
n

(
k
B
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 3-dimensional data

0 10 20 30 40 50 60 70 80 90
1e+3

1e+4

1e+5

Time slot size (minutes)

S
p
a
c
e

C
o
n
s
u
m
p
t
i
o
n

(
k
B
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) 2-dimensional data

Figure 2.15. Average space consumption for a storage node (A)

45

0 10 20 30 40 50 60 70 80 90

2000

4000

6000

8000

10000

Time slot size (minutes)

S
p
a
c
e

C
o
n
s
u
m
p
t
i
o
n

(
k
B
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(a) 1-dimensional data

1 2 3
1e−1

1e+0

1e+1

1e+2

1e+3

Number of dimensions

S
p
a
c
e

c
o
n
s
u
m
p
t
i
o
n

(
B
y
t
e
s
)

SafeQ−NC+
SafeQ−MHT+
SafeQ−NC
SafeQ−MHT
S&L

(b) Each data item

Figure 2.16. Average space consumption for a storage node (B)

46

CHAPTER 3

Privacy and Integrity Preserving

Range Queries for Cloud Computing

3.1 Introduction

3.1.1 Motivation

Cloud computing has become a new computing paradigm of internet services, where cloud

providers host numerous hardware, software, and network resources, to store organizations’

data and perform computation over the data on demand of customers’ queries. Cloud com-

puting has three major advantages. First, organizations can instantly open business and

provide products or services to their customers without building and maintaining their com-

puter infrastructure, which significantly reduces costs. Second, the data stored in a cloud

are more reliable and can be accessed whenever a customer has internet connection. Third,

cloud providers have powerful computation capacity to process queries, which provides bet-

ter experience to customers. Many clouds have been successfully built, e.g., Amazon EC2

and S3 [1], Google App Engine [3], and Microsoft Azure [5].

47

The database-as-a-service (DAS) model, first introduced by Hacigumus et al. [40], is one

of the most important works in cloud computing. In the DAS model, a cloud provider

hosts the data of an organization and replies query results to the customers on behalf of the

organization. However, the inclusion of the DAS model brings significant security and privacy

challenges. As cloud providers cannot be fully trusted and the data of an organization are

typically confidential, the organization needs to encrypt the data before storing it in a cloud

to prevent the cloud provider from revealing the data. However, it is difficult to process

queries over encrypted data. Furthermore, since cloud providers serve as an important role

for answering queries from customers, they may return forged data for the query or may not

return all the data items that satisfy the query.

Therefore, we want to design a protocol for the DAS model that supports multi-dimensional

range queries while preserving the privacy of both data and queries and the integrity of query

results. Range queries are one of the most important queries for various database systems

and have wide applications. For data privacy, cloud providers cannot reveal the organization

data and customer queries. Note that the customer queries also need to be kept confidential

from cloud providers because such queries may leak critical information about query results.

For query result integrity, customers need to detect whether a query result includes forged

data or does not include all the data items that satisfy the query.

3.1.2 Technical Challenges

There are three challenges in solving secure multi-dimensional range queries problem in the

DAS model. First, a cloud provider needs to correctly process range queries over encrypted

data without knowing the values of both data and queries. Second, customers need to verify

whether a query result contains all the data items that satisfy the query and does not contain

any forged data. Third, supporting multi-dimensional range queries is difficult.

48

3.1.3 Limitations of Previous Work

Privacy and integrity preserving range queries have received much attention in database and

security community (e.g., [40, 41, 10, 31, 72, 17, 27, 62, 22]).

Four main techniques have been proposed in the privacy-preserving schemes: bucket parti-

tioning (e.g., [40, 41]), order-preserving hash functions (e.g., [31]), order-preserving encryp-

tions (e.g., [10]), and public-key encryption (e.g., [17, 72]). However, bucket partitioning

leads to false positives in query results, i.e., a query result includes data items that do not

satisfy the query. Existing order-preserving hash functions and order-preserving encryptions

require large amount of shared secret information between an organization and its customers.

The public-key cryptography is too expensive to be applied in realistic applications.

Three main techniques have been proposed in the integrity-preserving schemes: Merkle

hash trees (e.g., [27, 63]), signature aggregation and chaining (e.g., [62, 59]), and spatial

data structures (e.g., [22]). However, Merkle hash trees cannot support multi-dimensional

range queries. Signature aggregation and chaining requires a cloud provider to reply to the

customer the boundary data items of the query that do not satisfy the query. Spatial data

structures are computationally expensive because constructing such structures is compli-

cated. Furthermore, it is not clear how to search query results over such structures in a

privacy preserving manner.

3.1.4 Our Approach

In this work, we propose novel privacy and integrity preserving schemes for the DAS model.

To preserve privacy, we propose an order-preserving hash-based function to encode both data

and queries such that a cloud provider can correctly process encoded queries over encoded

data without knowing their values. To preserve integrity, we present the first probabilistic

integrity-preserving scheme for multi-dimensional range queries. In this scheme, we propose

49

a new data structure, called local bit matrices, to encode neighborhood information for each

data item from an organization, such that a customer can verify the integrity of a query

result with a high probability.

Comparing with the state-of-the-art, our schemes achieve both security and efficiency. In

terms of security, our schemes not only enable a cloud provider to correctly process queries

over encrypted data, but also leak only the minimum privacy information as we will discuss

in Section 3.3.4. In terms of efficiency, our schemes are much more efficient due to the use

of the hash function and symmetric encryption.

3.1.5 Key Contributions

We make three major contributions. First, we propose an efficient privacy-preserving scheme

that can process multi-dimensional range queries without false positives. Second, we propose

the first probabilistic scheme for verifying the integrity of range query results. This scheme

employs a new data structure, local bit matrices, which enables customers to verify query

result integrity with high probability. Third, we conduct extensive experiments on real and

synthetic datasets to evaluate the effectiveness and efficiency of our scheme.

3.1.6 Summary of Experimental Results

We performed extensive experiments on synthetic datasets and the Adult dataset [32]. Our

experimental results show that our schemes are efficient for preserving privacy and integrity of

multi-dimensional range queries in cloud computing. For a synthetic dataset with one million

1-dimensional data items, the one-time offline data processing time is about 50 minutes, the

space cost is 33MB, and the query processing time is 2 milliseconds. For the Adult dataset

with 45222 3-dimensional data items, the data processing time is 104 seconds, the space cost

is 1.5MB, and the query processing time is 3.5 milliseconds.

50

3.2 Models and Problem Statement

3.2.1 System Model

We consider the database-as-a-service (DAS) model as illustrated in Figure 3.1. The DAS

model consists of three parties: organizations, a cloud provider, and customers. Organiza-

tions outsource their private data to a cloud provider. A cloud provider hosts outsourced

data from organizations and processes the customers’ queries on behalf of the organizations.

Customers are the clients (of organizations) that query a cloud provider and retrieve query

results from the outsourced data in the cloud provider.

Organization Cloud Provider

Customer

Customer

Customer

Query

Result

Query

Result

Query

Result

Figure 3.1. The DAS model

3.2.2 Threat Model

In the DAS model, we assume that organizations and their customers are trusted but the

cloud provider is not. In a hostile environment, both customers and cloud providers may

not be trusted. If a customer is malicious, it may retrieve all the organization’s data and

distribute to other unauthorized users. Such attack is very difficult to be prevented and is

out of the scope of this work. In this work, we mainly focus on the scenario where a cloud

51

provider is not trusted and it may try to reveal organizations’ data and falsify the query

results. In reality, cloud providers and organizations typically belong to different parties, i.e.,

different companies. The organizations cannot share their private data with untrusted cloud

providers. A malicious cloud provider may try to reveal the private data of organizations,

and return falsified query results that include forged data or exclude legitimate data. In such

case, a cloud provider can disrupt the business and cause great lost of organizations.

We also assume that there are secure channels between the organization and the cloud

provider, and between the cloud provider and each customer, which could be achieved using

protocols such as SSL.

3.2.3 Problem Statement

The fundamental problem for the DAS model is: how can we design the storage scheme and

the query protocol in a privacy and integrity preserving manner? A satisfactory solution

to this problem should meet the following three requirements. (1) Data and query privacy :

Data privacy means that a cloud provider cannot reveal any data item from organizations.

Query privacy means that a cloud provider cannot reveal any query from customers. (2) Data

integrity : If a cloud provider returns forged data or does not return all the data items that

satisfy the query, such misbehavior should be detected by the customer. (3) Range Query

Processing : The encoded data from organizations and encoded queries from customers should

allow a cloud provider to correctly process range queries.

3.3 Privacy Preserving for 1-dimensional Data

In this section, we present our privacy-preserving scheme for 1-dimensional data. To preserve

privacy, it is natural to have an organization to encrypt its data items. Let d1, · · · , dn denote

n data items from the organization, the encryption results can be denoted as (d1)k, · · · , (dn)k,

52

where k is the shared secret key between the organization and its customers. However, the key

challenge is how can a cloud provider process queries over encrypted data without knowing

the values of data items.

The basic idea of our scheme is to design an order-preserving hash-based function to

encode the data items from the organization and the queries from its customers such that

the cloud provider can use the encoded queries and encoded data items to find out the

query results without knowing the actual values. More formally, let fk() denote the order-

preserving hash-based function, where k is the shared secret key between the organization

and its customers. To compute fk(), the organization and its customers also need to share

the secret information, the domain of the data items [x1, xN]. This function fk() satisfies

the following property: the condition fk(xi1) < fk(xi2) holds if x1 ≤ xi1 < xi2 ≤ xN .

To submit n data items d1, · · · , dn to a cloud provider, the organization first encrypts each

data item with the secret key k, i.e., (d1)k, · · · , (dn)k. Second, the organization applies the

function fk() to each data item, i.e., fk(d1), · · · , fk(dn). Finally, the organization sends the

encrypted data items (d1)k, · · · , (dn)k as well as the encoded data items fk(d1), · · · , fk(dn)

to the cloud provider. To perform a range query [a, b], the customer applies the order-

preserving hash-based function fk() to the lower and upper bounds of the query, i.e., fk(a)

and fk(b), and then sends [fk(a), fk(b)] as the query to the cloud provider. Finally, the

cloud provider can find out whether the data item dj (1≤j≤n) satisfies the query [a, b] by

checking whether the condition fk(a)≤fk(dj)≤fk(b) holds. Figure 3.2 shows the idea of our

privacy-preserving scheme.

In this section, we first present our order-preserving hash-based function and then discuss

its properties. Second, we propose the privacy-preserving scheme by employing this function.

Third, we propose an optimization technique to reduce the size of the results after applying

the hash-based function. Fourth, we analyze the minimum information leakage for any

precise privacy-preserving scheme of range queries and demonstrate that our scheme leaks

53

Cloud ProviderOrganization Customer

(d1)k,…,(dn)k
[fk(a), fk(b)]

dj [a, b] if and only if fk(a) fk(dj) fk(b)

fk(d1),…, fk(dn)

Figure 3.2. Basic idea of privacy-preserving scheme

only the minimum information.

3.3.1 The Order-Preserving Hash-based Function

Without loss of generalization, we assume that all possible data items are integers within

domain [x1, xN]. The order-preserving hash-based function fk() is in the form

fk(xi) =

j
∑

q=1

hk(xq) (3.1)

where xi ∈ [x1, xN] and hk() is a keyed hash function, such as keyed HMAC-MD5 and keyed

HMAC-SHA1. The intuition of designing such order-preserving hash-based function is two-

fold. First, we leverage a normal hash function hk() as the basic building block such that the

one-way property of hk() prevents the cloud provider from revealing the data items. Second,

we consider the result of hk() as a positive integer and then calculate fk(xi) by summing

the hash results of all values that are less than or equal to xi in the domain [x1, xN] such

that if x1 ≤ xi1 < xi2 ≤ xN , fk(xi1) is less than fk(xi2). In other words, fk() is an

order-preserving function for the values in [x1, xN].

More formally, the order-preserving hash-based function fk() satisfies two properties.

Order Preserving: Assume that any hk(xq) (xq ∈ [x1, xN]) is a positive integer. The

condition fk(xi1) < fk(xi2) holds if and only if xi1 < xi2 .

Proof. We first prove that if the condition fk(xi1) < fk(xi2) holds, then xi1 < xi2 . We

prove it by contradiction. If xi1 ≥ xi2 , we have

54

fk(xi1) = fk(xi2) +

i1∑

q=i2+1

hk(xq) ≥ fk(xi2) (3.2)

Second, we prove that if the condition xi1 < xi2 holds, then fk(xi1) < fk(xi2). Similar as

the proof of the property collision resistance, we have

fk(xi2) = fk(xi1) +

i2∑

q=i1+1

hk(xq) > fk(xi1)

Collision Resistance: Assume that any hk(xq) (xq ∈ [x1, xN]) is a positive integer. It

is impossible to find xi1 and xi2 where xi1 6=xi2 such that fk(xi1)=fk(xi2).

Proof. Without loss of generalization, we assume i1 < i2. Because any hk(xq) (xq ∈ [x1, xN])

is a positive integer, we have

fk(xi2) = fk(xi1) +

i2∑

q=i1+1

hk(xq) > fk(xi1)

In fact, the hash-based function fk() can preserve any given arbitrary order of values in

the domain [x1, xN] no matter whether the condition x1 < · · · < xN holds. For example,

if the order of 3 data items 3, 5, 7 is defined as 5, 3, 7, then fk(5) < fk(3) < fk(7). This

property allows an organization to revise any data item xi (xi ∈ [x1, xN]) arbitrarily while

still preserving the order. We will discuss how to leverage this property to prevent the

statistical analysis of multi-dimensional data in Section 3.6.1.

These two properties and the one-way property of hk() allow the cloud provider to process

the encoded range queries over the encoded data without revealing the values of the data

and queries.

55

3.3.2 The Privacy-Preserving Scheme

The privacy-preserving scheme includes three phases, data submission, query submission,

query processing.

The data submission phase concerns how an organization sends its data to a cloud provider.

Let d1, · · · , dn denote the data items of an attribute in the private data of the organization.

Recall that [x1, xN] is the domain of the attribute and is the shared secret between the

organization and its customers. For simplicity, we assume d1 < d2 < · · · < dn. If some data

items have the same value, the organization can simply represent them as one data item

annotated with the number of items that share this value.

To preserve data privacy, for each dj (1 ≤ j ≤ n), the organization first encrypts it with

its secret key k, i.e., (dj)k, and then applies the order-preserving hash-based function, i.e.,

fk(dj). Finally, the organization sends the encrypted data (d1)k, · · · , (dn)k as well as the

hash results fk(d1), · · · , fk(dn) to the cloud provider.

The query submission phase concerns how a customer sends a range query to the cloud

provider. When a customer wants to perform a range query [a, b] on the cloud provider, it

first applies the order-preserving hash-based function to the lower and upper bounds of the

query, i.e., fk(a) and fk(b). Note that a and b are also two values in [x1, xN]. Finally, the

customer sends [fk(a), fk(b)] as a query to the cloud provider.

Upon receiving the query [fk(a), fk(b)], the cloud provider processes this query on the

n data items (d1)k, · · · , (dn)k by checking which fk(dj) (1 ≤ j ≤ n) satisfies the condition

fk(a) ≤ fk(dj) ≤ fk(b). Based on the order preserving property of the function fk(),

dj ∈ [a, b] if and only if fk(a) ≤ fk(dj) ≤ fk(b). Thus, the cloud provider only needs to

return all encrypted data items whose hash values fk() are in the range [fk(a), fk(b)].

56

3.3.3 Optimization of the Order-Preserving Hash-based Function

We propose an optimization technique to reduce the communication cost for sending the

encoded data fk(d1), · · · , fk(dn) to the cloud provider. This cost can be significant for two

reasons. First, the result of the hash function hk() is long. For example, the result of the

keyed HMAC-MD5 is 128 bits, and the result of the keyed HMAC-SHA1 is 160 bits. Second,

the result of our order-preserving hash-based function fk() is even longer due to the sum of

multiple hash values of hk(). Let w denote the bit length of hk(). For any xi (xi ∈ [x1, xN]),

the condition hk(xi) ≤ 2w − 1 holds. Thus, we have

fk(xi) ≤ fk(xN) =
N∑

q=1

hk(xq) ≤
N∑

q=1

(2w − 1) < 2wN (3.3)

Therefore, the bit length of fk(xi) (1 ≤ i ≤ N) is less than log2 2
wN = w+log2N . Assume

that we use the keyed HMAC-MD5 as the hash function hk() and the number of possible

values is one million, i.e., N = 106. Any fk(xi) can be expressed by a 128 + log2 10
6 = 148

bit number.

To reduce the bit length of fk(xi) (xi ∈ [x1, xN]), the idea is to divide every fk(xi) by a

value 2w
′
if 2w

′
is less than or equal to any hk(xq) (xq ∈ [x1, xN]). Then, our order-preserving

hash-based function becomes

f∗k (xi) =

∑i
q=1 hk(xq)

2w
′ (3.4)

where 2w
′
≤ hk(xq) for any xq ∈ [x1, xN]. Such division can be easily done by deleting the

right w′ bits of fk(xi).

Similar as the analysis of the bit length of fk(xi), the bit length of any f∗k (xi) (xi ∈

[x1, xN]) can be reduced to w − w′ + log2N by the following calculation.

f∗k (xi) ≤ f∗k (xN) ≤

∑N
q=1 (2

w − 1)

2w
′ < (2w−w′)N (3.5)

57

The order-preserving function f∗k () also satisfies the two properties, order preserving and

collision resistance, the proof of which is in Appendix B.

3.3.4 Analysis of Information Leakage

Given n data items d1, · · · , dn and a range query [a, b], any precise privacy-preserving scheme

should enable the cloud provider to find out all the data items that satisfy the query [a, b]

without revealing the values of the data items from the organization and the query from its

customer. According to this requirement, we have the following theorem.

Theorem 2. Given any precise privacy-preserving scheme, if all possible results of range

queries have been found during the query processing phase, the cloud provider can reveal the

order of the encrypted data items.

Proof. Without loss of generalization, we assume d1 < d2 < · · · < dn. First, we show that

how to reveal the order of three consecutive data items dj−1, dj, dj+1. Among all possible

results of range queries, there should be two query results, QR1 = {(dj−1)k, (dj)k} and

QR2 = {(dj)k, (dj+1)k}. Assume that [a1, b1] and [a2, b2] are the two range queries whose

results are QR1 and QR2, respectively. Obviously, [a1, b1], [a2, b2], and dj−1, dj , dj+1 satisfy

two conditions.

1. dj−2 < a1 ≤ dj−1 < dj ≤ b1 < dj+1.

2. dj−1 < a2 ≤ dj < dj+1 ≤ b2 < dj+2.

Based on QR1, the cloud provider knows that (dj−1)k and (dj)k are two consecutive data

items. Similarly, based on QR2, the cloud provider knows that (dj)k and (dj+1)k are two

consecutive data items. Based on the common encrypted data item (dj)k in QR1 and QR2,

the cloud provider knows that dj is between dj−1 and dj+1. Thus, the cloud provider knows

58

the order of these three encrypted data items is either dj−1 < dj < dj+1 or dj−1 > dj >

dj+1. Repeat sorting other three consecutive items. Finally, the cloud provider knows the

order of all the encrypted data items is either d1 < · · · < dn or d1 > · · · > dn.

Theorem 2 describes the minimum information leakage for any precise privacy-preserving

scheme of range queries. That is, the cloud provider will reveal the order of the data items

received from the organization.

We argue that our privacy-preserving scheme achieves the minimum information leakage

for two reasons. First, the cloud provider cannot reveal the values of the data and queries

from the hash results due to the one-way property of hk(). Second, the cloud provider cannot

reveal these values by launching statistical analysis because for any two data items dj1 and

dj2 (1 ≤ j1 < j2 ≤ n), (dj1)k 6= (dj2)k and fk(dj1) 6= fk(dj2). Recall that if some data items

have the same value, the organization represents them as one data item with the number of

items that share this value.

3.4 Integrity Preserving for 1-dimensional Data

In this section, we present the first probabilistic integrity-preserving scheme for 1-dimensional

data. This scheme allows a customer to verify the integrity of a query result with a high

probability. The meaning of integrity preserving is two-fold. First, a customer can verify

whether the cloud provider forges some data items in the query result. Second, a customer

can verify whether the cloud provider deletes data items that satisfies the query.

The basic idea of the integrity-preserving scheme is to encrypt neighborhood information

for each data item such that the neighborhood information of the data items in a query

result can be used to verify the integrity of the query result. More formally, let (M(dj))k

denote the encrypted neighborhood information for each data item dj (1 ≤ j ≤ n). To

submit n data items d1, · · · , dn to a cloud provider, the organization not only sends the

59

encrypted data items (d1)k, · · · , (dn)k and the encoded data items fk(d1), · · · , fk(dn), but

also sends the encrypted neighborhood information (M(d1))k, · · · , (M(dn))k. Upon receiv-

ing a query [fk(a), fk(b)] from a customer, the cloud provider first finds out the query

result based on the privacy-preserving scheme. Suppose that the data items dj1, · · · , dj2

(1 ≤ j1 ≤ j2 ≤ n) satisfy the query. The cloud provider not only replies to the customer

the query result (dj1)k, · · · , (dj2)k, but also replies the encrypted neighborhood information

(M(dj1))k, · · · , (M(dj2))k. For ease of presentation, let QR denote the query result, which

includes all the encrypted data items that satisfy the query, i.e., QR = {(dj1)k, · · · , (dj2)k},

and V O denote the verification object, which includes the information for the customer to ver-

ify the integrity of QR, i.e., V O = {(M(dj1))k, · · · , (M(dj2))k}. To verify the integrity, the

customer first decrypts the query result and verification object, i.e., computes dj1, · · · , dj2

and M(dj1), · · · ,M(dj2). Second, the organization checks whether dj1 , · · · , dj2 satisfy the

query and the overlapping parts of the neighborhood information from every two adjacent

data items exactly match. If so, the customer concludes that the query result includes all

the data items that satisfy the query. Otherwise, the customer concludes that some data

items in the query result are forged or deleted by the cloud provider. Figure 3.3 shows the

basic idea of our integrity-preserving scheme.

Cloud ProviderOrganization Customer

(d1)k,…,(dn)k
[fk(a), fk(b)]

QR = {(dj1)k,…,(dj2)k}(M(d1))k,…,(M(dn))k

VO = {(M(dj1))k,…, (M(dj2))k}
Assume dj1,…,dj2 [a, b]

Figure 3.3. Basic idea of integrity-preserving scheme

Our integrity-preserving scheme can guarantee to detect the misbehavior of forging data

items because the cloud provider cannot insert fake data items into a query result without

knowing the secret key k. This scheme also allows a customer to detect the misbehavior of

60

deleting data items in a query result with a high probability.

Next we present new data structures, called bit matrices and local bit matrices, and then

discuss their usage in integrity verification.

3.4.1 Bit Matrices and Local Bit Matrices

To define bit matrices and local bit matrices, we need to first partition the data domain into

multiple non-overlapping buckets. For example in Figure 3.4, we partition domain [1, 15] to

five buckets, B1 = [1, 3], B2 = [4, 6], B3 = [7, 10], B4 = [11, 12], and B5 = [13, 15]. Second,

we distribute the data items into the corresponding buckets. Third, we assign a bit value 1

to the buckets which includes data items, and assign a bit value 0 to the buckets which does

not include data items. Let B(dj) denote the bucket that includes dj. A bucket is called the

left nonempty bucket of data item dj if the bucket is the left nearest bucket of B(dj) that

includes data items. Similarly, a bucket is called the right nonempty bucket of data item dj

if the bucket is the right nearest bucket of B(dj) that includes data items. For example, for

data item 7 in Figure 3.4, B2 and B5 are the left and right nonempty buckets of data item

7, respectively.

5

M(5)=2|011|1|1 M(7)=3|1101|2|1 M(13)=5|101|2|1

M(9)=3|1101|2|2 M(14)=5|101|2|2

1 3 6 10 12 15

7 9 13 14

0 1 1 0 1M=

B1 B2 B3 B4 B5

Figure 3.4. Example bit matrix and local bit matrices

Based on the above concepts, we define bit matrices and local bit matrices as follows. The

bit matrix of all data items, M , is formed by the bit values of all buckets. In Figure 3.4, the

bit matrix of the five data items is 01101, i.e., M = 01101. The local bit matrix of a data

item dj , M(dj), consists of four parts: (1) the bucket id of B(dj); (2) a subset of the bit

61

matrix, which is formed by the bit values from its left nonempty bucket to its right nonempty

bucket; (3) the number of data items in bucket B(dj); (4) a distinct integer to distinguish

the local bit matrix of dj from other data items in bucket B(dj). In Figure 3.4, the local

bit matrix of data item 7 is 3|1101|2|1, i.e., M(7) = 3|1101|2|1, where 3 is the bucket id,

1101 is the subset of the bit matrix, 2 is the number of data items in bucket B3, and 1 is

the integer to distinguish M(7) from M(9). Intuitively, the bit matrix denotes the abstract

information of all the data items, and the local bit matrix of a data item dj denotes the

abstract neighborhood information of dj .

Note that the usage of bucket partition in this work is different from that in previous

work (e.g., [40, 41, 10]). They leverage bucket partition to achieve privacy-preserving query

processing. While we use the bit values of buckets for verifying the integrity of query results.

3.4.2 The Integrity-Preserving Scheme

Our integrity-preserving scheme includes four phases, data submission, query submission,

query processing, and query result verification.

Let d1, · · · , dn denote the data items of an attribute from the organization. The orga-

nization first partitions the data domain to m non-overlapping buckets B1, · · · , Bm, and

then distributes d1, · · · , dn to these buckets. The bucket partition is a shared secret be-

tween the organization and its customers. Second, the organization computes the local bit

matrix for each data item and then encrypts them with its secret key k, i.e., computes

(M(d1))k, · · · , (M(dn))k. Third, the organization sends to the cloud provider the encrypted

local bit matrices (M(d1))k, · · · , (M(dn))k as well as encrypted data items (d1)k, · · · , (dn)k

and the encoded data items fk(d1), · · · , fk(dn).

To perform a range query [a, b], a customer sends [fk(a), fk(b)] to the cloud provider.

Upon receiving [fk(a), fk(b)], the cloud provider computes QR as in Section 3.3.2. Here

62

we consider how to compute V O. If QR = {(dj1)k, · · · , (dj2)k} (1 ≤ j1 ≤ j2 ≤ n),

V O = {(M(dj1))k, · · · , (M(dj2))k}; if QR = ∅, which means that there is a data item dj1

(1 ≤ j1 ≤ n) such that dj1 < a ≤ b < dj1+1, then V O = {(M(dj1))k, (M(dj1+1))k}.

Finally, the cloud provider replies QR and V O.

Upon receiving the query result QR and the verification object V O, the customer decrypts

them, and then verifies the integrity of QR as follows. First, the customer verifies whether

each item in QR satisfies the query [a, b]. Second, the customer verifies whether the cloud

provider deletes any data item that satisfies the query. Let {(dj1)k, · · · , (dj2)k} be the

correct query result and Bg1, · · · , Bgt be the buckets which include at least one data item

in the query result. Let QR be the query result from the cloud provider. Suppose the cloud

provider deletes a data item (dj)k that satisfies the query, i.e., (dj)k ∈ {(dj1)k, · · · , (dj2)k},

and dj ∈ Bgs (1 ≤ s ≤ t). We consider the following four cases.

Case 1: When QR 6= ∅, if Bgs ⊆ [a, b], the deletion can be detected for two reasons. First,

if Bgs only includes one data item dj, deleting (dj)k can be detected because the local bit

matrices of data items in Bgs−1 or Bgs+1 show that Bgs should include at least one data

item. Second, if Bgs includes multiple data items, deleting (dj)k can be detected because

the local bit matrices of other data items in Bgs have the number of data items in Bgs .

In Figure 3.4, given a range query [4,11], the correct query result is {(5)k, (7)k, (9)k}, and

the verification object is {(M(5))k, (M(7))k, (M(9))k}. Deleting (7)k in B3 can be detected

because based on M(9), the customer knows that B3 includes two data items.

Case 2: When QR 6= ∅, if Bgs 6⊆ [a, b], the deletion cannot be detected because the

customer does not know whether Bgs ∩ [a, b] includes data items. Considering the same

example in Case 1, deleting (5)k cannot be detected because the customer does not know

whether B2 ∩ [4, 11] includes data items.

Case 3: When QR = ∅, if B(dj1)∩ [a, b] = ∅ and B(dj1+1)∩ [a, b] = ∅, the deletion can be

detected because M(dj1) or M(dj1+1) shows that bucket Bgs between B(dj1) and B(dj1+1)

63

includes data items, and hence, condition dj1 < a ≤ b < dj1+1 does not hold. In Figure

3.4, given a range query [3,5], the correct query result is {(5)k}. If the cloud provider replies

QR = ∅ and V O = {(M(7))k}, deleting (5)k can be detected because the customer knows

that B2 includes data items based on M(7), and these data items are closer to the query

[3,5] than 7.

Case 4: When QR = ∅, if B(dj1) ∩ [a, b] 6= ∅ or B(dj1+1) ∩ [a, b] 6= ∅, the deletion cannot

be detected because the customer does not know whether B(dj1)∩ [a, b] or B(dj1+1)∩ [a, b]

includes data items. In Figure 3.4, given a range query [9,12], the correct query result is

{(9)k}. If the cloud provider replies QR = ∅ and V O = {(M(7))k, (M(13))k}, deleting (9)k

cannot be detected because the customer does not know whether B(3)∩ [9, 12] includes data.

The cloud provider can break integrity verification if and only if it can distinguish Cases

2 and 4 from other two cases. Distinguishing these two cases is equivalent to knowing

which data items belong to the same bucket. However, such information cannot be re-

vealed by analyzing the encrypted data items (d1)k, · · · , (dn)k, the encoded data items

fk(d1), · · · , fk(dn), and the encrypted local bit matrices (M(d1))k, · · · , (M(dn))k. Because

for any two data items dj1 and dj2 (1 ≤ j1 < j2 ≤ n), (dj1)k 6= (dj2)k, fk(dj1) 6= fk(dj2),

and (M(dj1))k 6= (M(dj2))k. Thus, the cloud provider can only randomly delete the data

items in the query result and hope that this deletion operation will not be detected.

3.5 Finding Optimal Parameters

Our integrity-preserving scheme needs to partition the data domain into multiple non-

overlapping buckets. However, how to partition the domain is still a problem. In this

section, we formalize the problem as an optimization problem and present an algorithm to

solve it. To simplify the problem, we assume that queries from customers follow uniform

distribution, i.e., all queries are equi-probable. Considering the N possible values in [x1, xN],

64

there are
N(N+1)

2 possible range queries. Thus, the possibility of any query from customers

is equal to 2
N(N+1)

.

3.5.1 Detection Probability

We first consider the detection probability of randomly deleting data items in a query result

by a cloud provider. This metric is very important to evaluate the effectiveness of our

integrity-preserving scheme. Let B1, · · · , Bm denotes the multiple non-overlapping buckets,

and [li, hi] denotes a bucket Bi (1 ≤ i ≤ m). A bucket Bi is called a single-value bucket if

li = hi. Let e(x) denote the frequency of the data item with value x. The probability that

a deletion operation of the cloud provider can be detected is

Pr =

∑m
i=1

∑hi
x=li

(li − x1 + 1)(xN − hi + 1)e(x)
∑n

j=1(dj − x1 + 1)(xN − dj + 1)
(3.6)

The calculation of this probability is in Appendix C. Next, we discuss the two theorems

regarding to Pr, the proofs of these two theorems are in Appendix D.

Theorem 3. Given any n data items d1, · · · , dn, the maximum detection probability of a

deletion operation is

Prmax = 100% (3.7)

if and only if each data item dj (1 ≤ j ≤ n) forms a single-value bucket, i.e., [dj , dj].

Theorem 4. Given n data items d1, · · · , dn, the minimum detection probability of a deletion

operation is

Prmin =
n

∑n
j=1(dj − x1 + 1)(xN − dj + 1)

(3.8)

if and only if there is only one bucket [x1, xN].

The intuition behind Theorems 3 and 4 is that the more secret information of data

items the organization shares with its customers, the higher detection probability customers

65

achieve. For Theorem 3, if each data item forms a single-value bucket, the customers know

all the data items before querying the cloud provider. Of course they can detect any deletion

operation and it is meaningless for organizations to outsource their data. For Theorem 4,

recall our privacy preserving scheme in Section 3.3. Customers need to know [x1, xN] for

converting a query [a, b] to [fk(a), fk(b)]. Thus, in our context, x1 and xN are the minimum

secret information needed to be shared. Knowing only x1 and xN allows customers to detect

deletion operations with the minimum probability.

If a cloud provider conducts t deletion operations, the probability that at least one of the

t deletion operations can be detected is

Prt = 1− (1− Pr)t (3.9)

In Figure 3.4, the probability that a deletion operation can be detected is 60.48%. If the

cloud provider conducts 5 deletion operations over the query results, customers can detect

at least one deletion with 99% probability.

3.5.2 Optimal Bucket Partition

We define the optimization problem as follows.

Given n data items from the organization and the domain of these items [x1, xN], we want

to find out the optimal partition with at most m buckets B1, · · · , Bm such that the detection

probability Pr is maximized. More formally, this problem can be defined as follows.

Input: (1) d1, · · · , dn
(2) [x1, xN]

(3) m

Output: B1, · · · , Bm

Objective: maxPr

This problem has the optimal substructure property [25]. Therefore, we can express the

optimal solution of the original problem as the combination of the optimal solutions of

66

two sub-problems. Let H(N,m) denote the problem of optimally partitioning the domain

[x1, xN] using at most m buckets. Let δ(i, j) denote the probability contributed by a bucket

[xi, xj]. We can compute δ(i, j) as follows.

δ(i, j) =
(xi − x1 + 1)(xN − xj + 1)

∑xj
x=xi

e(x)
∑n

j=1(dj − x1 + 1)(xN − dj + 1)
(3.10)

The optimal problem can be expressed as follows.

H(N,m) = max [H(N − i,m− 1) + δ(N − i+ 1, N)] (3.11)

Algorithm 1: Optimal Bucket Partition

Input: (1) n data items d1, · · · , dn;

(2) The domain [x1, xN];

(2) m.

Output: B1, · · · , Bm.

Initialize each element in matrices H and P to 0;1

for i := 2 to N do2

H [i][2] = max1≤k≤i−1 [δ(1, k) + δ(k + 1, i)];3

Store the left boundary value of the second bucket in P [i][2];4

for j := 3 to m do5

for i := j to N do6

H [i][j] = maxj−1≤k≤i−1 [H [k][j − 1] + δ(k + 1, i)];7

Store the left boundary value of the last bucket in P [i][j];8

Find the maximum value in H and output the corresponding partition in P ;9

We use dynamic programming to solve the problem. We first solve and store solutions

of the smaller sub-problems. Then, we employ their optimal solutions to solve the larger

67

problems. Finally, we solve the optimal problem of maximizing H(N,m). All intermediate

solutions are stored in an N ×m matrix H . The row indices of H are from 1, · · · , N and

the column indices are from 1, · · · , m. Note that H(i, j) = H [i][j]. Both the time and space

complexities of the computation of the matrix H are O(Nm). Along with the optimal value

H(i, j) (1 ≤ i ≤ N, 1 ≤ j ≤ m), we also store the lower bounds of its last bucket for each

sub-problem in another N ×m matrix P . Finally, we use the matrix P to reconstruct the

optimal bucket partition in O(m) time. This algorithm is shown in Algorithm 1.

3.6 Query Over Multi-dimensional Data

3.6.1 Privacy for Multi-dimensional Data

Organizations’ data and customers’ queries are typically multi-dimensional. For example, a

medical record typically includes patient’s name, birthday, age, etc. A z-dimensional data

item D is a z-tuple (d1, · · · , dz) where each dr (1 ≤ r ≤ z) is the value for the r-th dimension

(i.e., attribute). A z-dimensional range query consists of z sub-queries [a1, b1], · · · , [az, bz]

where each sub-query [ar, br] (1 ≤ r ≤ z) is a range over the r-th dimension.

We extend our privacy-preserving scheme for one-dimensional data to multi-dimensional

data as follows. LetD1, · · · , Dn denote n z-dimensional data items, where Dj = (d1j , · · · , d
z
j)

(1 ≤ j ≤ n). First, the organization encrypts these data with its secret key k, i.e., computes

(D1)k, · · · , (Dn)k. Second, for each dimension r, it applies our order-preserving hash-based

function fkr(), i.e., computes fkr(d
r
1), · · · , fkr(d

r
n), where kr is the secret key of the order-

preserving hash-based function for the r-th dimension. Last, it sends the encrypted data

items (D1)k, · · · , (Dn)k, and fk1(d
1
1), · · · , fk1(d

1
n), · · · , fkz (d

z
1), · · · , fkz (d

z
n) to the cloud

provider. When a customer wants to perform a query ([a1, b1], · · · , [az , bz]), it applies the

order-preserving hash-based function fkr() on the lower and upper bounds of each sub-query

68

[ar, br] and sends [fk1(a
1), fk1(b

1)], · · · , [fkz (a
z), fkz (b

z)] to the cloud provider. The cloud

provider then compares fkr(d
r
1), · · · , fkr(d

r
n) with [fkr (a

r), fkr(b
r)] for each dimension r, to

find out the query result QR. Considering 5 two-dimensional data items (1,11), (3,5), (6,8),

(7,1) and (9,4), given a range query ([2,7],[3,8]), the query result QR is {(3, 5)k, (6, 8)k}.

To prevent the attack of statistical analysis, the data sent from the organization to the

cloud provider should satisfy the following two conditions. First, for any 1 ≤ j1 6= j2 ≤ n,

(Dj1
)k 6= (Dj2

)k. To satisfy this condition, if multiple data items have the same value for

each dimension, the organization can simply represent them as one data item annotated

with the number of these items. Second, along each dimension r, for any 1 ≤ j1 6= j2 ≤ n,

fkr(d
r
j1
) 6= fkr (d

r
j2
). To satisfy this condition, the organization needs to revise the data items

with the same value for the dimension r. Recall the arbitrary order-preserving property of

fkr(). It allows the organization to arbitrarily revise data items while still preserving the

order of these items in the hash results. In our context, if drj1
= drj2

, the organization can

concatenate a distinct number for each of them, i.e., drj1
|0 and drj2

|1, and then apply the

hash-based function fkr().

3.6.2 Integrity for Multi-dimensional Data

To preserve the integrity of multi-dimensional data, the organization builds multi-

dimensional local bit matrices. We first present the data structures, multi-dimensional bit

matrices and local bit matrices, and then discuss the usage in integrity verification for multi-

dimensional data. Considering the example in Figure 3.5(a), we partition the data domain

into 4 × 6 = 24 buckets. Then, we distribute the data items, D1, · · · , D5, into the corre-

sponding buckets. We assign a bit value 1 or 0 to each bucket to indicate whether the bucket

includes data items or not. Let B(dj) denote the bucket that includes dj . A bucket is called

the r-th left nonempty bucket of data item dj (1 ≤ r ≤ z) if the bucket is the left nearest

69

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

1

0

1

D1

D4

D3

D2
D5

(a)

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

1

0

1

D1

D4

D3

D2
D5

(b)

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

1

0

1

D1

D4

D3

D2
D5

(c)

Figure 3.5. The example 2-dimensional bit matrix and local bit matrices

bucket of B(dj) that includes data items for the r-th dimension. Similarly, a bucket is called

the r-th right nonempty bucket of data item dj if the bucket is the right nearest bucket of

B(dj) that includes data items for the r-th dimension. In Figure 3.5(a), B(D2) is the 1-th

left nonempty bucket of data item D3.

Based on the above concepts, we define bit matrices and local bit matrices as follows. The

bit matrix of all data items, M , is formed by the bit values of all buckets. In Figure 3.5(a),

the bit matrix of the five data items

M =












0 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 1

0 0 0 0












The local bit matrix of a data item Dj , M(Dj), consists of four parts: (1) the bucket id

of B(Dj); (2) a subset of the bit matrix, which is formed by the bit values of the buckets

within a rectangle, which includes its left and right nonempty buckets for each dimension;

(3) the number of data items in bucket B(Dj); (4) a distinct integer to distinguish the local

bit matrix of Dj from other data items in bucket B(Dj). In Figure 3.5(b), the local bit

70

matrix of D3 is

M(D3) = ID|






0 0 1

0 1 0

1 0 1




 |1|1

where ID is the bucket id of B(D3).

The integrity-preserving scheme for z-dimensional data (z > 1) is similar as

that for 1-dimensional data. Here we only show an example. Consider the five

data items D1:(d
1
1, d

2
1), · · · , D5:(d

1
5, d

2
5) in Figure 3.5. The organization sends to

the cloud provider the encrypted data items (D1)k, · · · , (D5)k, encrypted local bit

matrices (M(D1))k, · · · , (M(D5))k, and the encoded data items fk1(d
1
1), · · · , fk1(d

1
5),

fk2(d
2
1), · · · , fk2(d

2
5). Given a range query that includes two data items D2 and D3 in Figure

3.5(c), the cloud provider replies to the customer the query result QR = {(D2)k, (D3)k} and

the verification object V O = {(M(D2))k, (M(D3))k}.

Next, we analyze the detection probability for multi-dimensional data. Let B1, · · · , Bm de-

note the multiple non-overlapping buckets, and ([l1i , h
1
i], · · · , [l

z
i , h

z
i]) denote a z-dimensional

bucket Bi (1 ≤ i ≤ m). A bucket Bi is called a single-value bucket if for each dimension r

(1 ≤ r ≤ z), lri = hri . Let [xr1, x
r
Nr

] denote the domain for each dimension r. Let e(X) de-

note the frequency of the data item X : (x1, · · · , xz). The detection probability of a deletion

operation by cloud providers can be computed as

Pr =

∑m
i=1

∏z
r=1(l

r
i − xr1 + 1)(xrNr

− hri + 1)
∑

X∈Bi
e(X)

∑n
j=1

∏z
r=1(d

r
j − xr1 + 1)(xrNr

− drj + 1)
(3.12)

Theorems 3 and 4 can also be extended for multi-dimensional data. We have the following

two theorems.

Theorem 5. Given any n z-dimensional data items D1, · · · , Dn, the maximum detection

probability of a deletion operation is

Prmax = 100% (3.13)

71

if and only if each data item Dj (1 ≤ j ≤ n) forms a single-value bucket, i.e.,

([d1j , d
1
j], · · · , [d

z
j , d

z
j]).

Theorem 6. Given n z-dimensional data items D1, · · · , Dn, the minimum detection prob-

ability of a deletion operation is

Prmin =
n

∑n
j=1

∏z
r=1(d

r
j − xr1 + 1)(xrNr

− drj + 1)
(3.14)

if and only if there is only one bucket ([x11, x
1
N1

], · · · , [xz1, x
z
Nz

]).

The calculation of the detection probability in Equation 3.12 and the proofs of Theorems

5 and 6 are similar to the 1-dimensional case. Finding optimal bucket partition for multi-

dimensional data is an interesting yet difficult problem and will be discussed in further work.

3.7 Evaluation

We evaluated the efficiency and effectiveness of our privacy and integrity preserving schemes

for both 1-dimensional and multi-dimensional data. In terms of efficiency, we measured the

data processing time for organizations, and the space cost and query processing time for

cloud providers. In terms of effectiveness, we measured whether the experimental detection

probability of deletion operations by cloud providers is consistent with the theoretically

analysis discussed in Sections 3.5.1 and 3.6.2. Our experiments were implemented in Java

1.6.0 and carried out on a PC running Linux with 2 Intel Xeon cores and 16GB of memory.

3.7.1 Evaluation Setup

We conducted our experiments on a real data set, Adult, and five synthetic datasets. The

Adult dataset is from the UCI Machine Learning Repository [32] and has been widely used

in previous studies. It contains 45222 records. We chose three attributes in this dataset,

72

Age, Education, and Hours-per-week. Note that Education is a categorical attribute and we

mapped each Education value to a distinct integer. The domains of these three attributes

are [17, 90], [1, 16], and [1, 99], respectively. The five synthetic datasets are generated by ran-

domly choosing 102, 103, · · · , 106 data items from five domains [0, 103], [0, 104], · · · , [0, 107],

respectively. For our order-preserving hash-based function fk(), we used HMAC-MD5 with

128-bit keys as the basic hash function hk(). We used the DES encryption algorithm to

encrypt both data items and local bit matrices.

3.7.2 Results for 1-dimensional Data

We employed the synthetic datasets to evaluate the efficiency and effectiveness of our schemes

for 1-dimensional data. For each synthetic dataset, given different number of buckets, we

first computed the optimal partition and the maximum detection probability, and then we

implemented our schemes using the optimal partition. We also generated 1,000 random

range queries to measure the total processing time for cloud providers and verify query

result integrity for customers. To process the query, we used the binary search algorithm to

find out the query result. Let n denote the number of data items in a dataset and m denote

the given number of buckets. According to Theorem 3, if all data items form single-value

buckets, the detection probability is 100%. The rest buckets are empty buckets and the

number of these buckets is n + 1. Thus, the total number of buckets can be computed as

2n + 1. In other words, given m = 2n + 1, the output of our optimal algorithm should be

these 2n + 1 buckets. Based on this observation, we define partition ratio as m/(2n + 1).

The partition ratio helped us to normalize the results of our optimal partition algorithm for

different datasets. Figure 3.6 shows the normalized results for the five synthetic datasets.

We observed that the detection probability increases with the partition ratio and if partition

ratio is equal to 1, i.e., m = 2n+1, the probability becomes 1, which confirms our discussion.

73

0.2 0.4 0.6 0.8 1
20

40

60

80

100

Partition ratio

D
e
t
e
c
t
i
o
n

p
r
o
b
a
b
i
l
i
t
y

(
%
)

n=1e+2
n=1e+3
n=1e+4
n=1e+5
n=1e+6

Figure 3.6. Effectiveness of optimal partition algorithm

20 40 60 80 100
20

40

60

80

100

Theoretic detection probability

E
x
p
e
r
i
m
e
n
t

d
e
t
e
c
t
i
o
n

p
r
o
b
a
b
i
l
i
t
y

Experimental results
Theoretical line

Figure 3.7. Correctness of integrity-preserving scheme

74

To check whether the experimental detection probability is consistent with the theoretical

analysis, for each dataset, we randomly deleted a data item in each query result and then

computed the percentage of query results that were detected by our integrity-preserving

scheme. Note that this percentage is the experimental detection probability. Figure 3.7

shows that the experimental detection probability is close to the theoretical line, which

demonstrates the correctness of our analysis.

Figures 3.8 and 3.9 show the data processing time and space cost for the five synthetic

datasets, respectively. Note that the horizonal and vertical axes in these figures are in

logarithmic scales. In Figure 3.8, we observed that the data processing time is less than 300

seconds for 105 data items. Although for one million data items, the data processing time

is about 50 minutes, which is reasonable for real applications because the data processing is

a one-time offline procedure. In Figure 3.9, we observed that the space cost grows linearly

with the number of data items in a dataset. A cloud provider needs 33MB to store one

million data items from an organization.

Figure 3.10 shows the total processing time of 1,000 queries for the five synthetic datasets.

Processing 1,000 queries over one million data items only takes 2 seconds.

3.7.3 Results for Multi-dimensional Data

We employed the Adult dataset to evaluate the efficiency and effectiveness of our schemes

for multi-dimensional data. The experimental results show that the data processing time

for this dataset is 104 seconds, the space cost is 1.5MB, and the total processing time of

1,000 random queries is 3.5 seconds. Due to the absence of the optimal partition algorithm

for multi-dimensional data, we arbitrarily partitioned the Adult dataset to different sets of

buckets. The results show that the experimental detection probability is consistent with the

theoretical analysis for multi-dimensional range queries.

75

1e+2 1e+3 1e+4 1e+5 1e+6
1e−1

1e+0

1e+1

1e+2

1e+3

1e+4

Number of data items

D
a
t
a

p
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Figure 3.8. Data processing time

1e+2 1e+3 1e+4 1e+5 1e+6
1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

Number of data items

S
p
a
c
e

c
o
s
t

(
K
B
)

Figure 3.9. Space cost

76

1e+2 1e+3 1e+4 1e+5 1e+6

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of data items

Q
u
e
r
y

p
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Figure 3.10. Query processing time

77

CHAPTER 4

Privacy Preserving Cross-Domain

Cooperative Firewall Optimization

4.1 Introduction

4.1.1 Background and Motivation

Firewalls are critical in securing private networks of businesses, institutions, and home net-

works. A firewall is often placed at the entrance between a private network and the external

network so that it can check each incoming or outgoing packet and decide whether to accept

or discard the packet based on its policy. A firewall policy is usually specified as a sequence

of rules, called Access Control List (ACL), and each rule has a predicate over multiple packet

header fields (i.e., source IP, destination IP, source port, destination port, and protocol type)

and a decision (i.e., accept and discard) for the packets that match the predicate. The rules

in a firewall policy typically follow the first-match semantics where the decision for a packet

is the decision of the first rule that the packet matches in the policy. Each physical interface

of a router/firewall is configured with two ACLs: one for filtering outgoing packets and the

78

other one for filtering incoming packets. In this work, we use firewalls, firewall policies, and

ACLs, interchangeably.

The number of rules in a firewall significantly affects its throughput. Figure 4.1 shows the

result of the performance test of iptables conducted by HiPAC [2]. It shows that increasing

the number of rules dramatically reduces the firewall throughput. Unfortunately, with ex-

plosive growth of services deployed on the Internet, firewall policies are growing rapidly in

size. Thus, optimizing firewall policies is crucial for improving network performance.

25 50 100 200 400 800 1600 3200 6400
0

10

20

30

40

50

60

70

80

90

100

Number of rules

T
h
r
o
u
g
h
p
u
t

(
P
e
r
c
e
n
t
a
g
e
)

Figure 4.1. Effect of the number of rules on the throughput with frame size 128 bytes [2]

4.1.2 Limitation of Prior Work

Prior work on firewall optimization focuses on either intra-firewall optimization [28, 50, 51,

52, 53, 55, 56, 57] or inter-firewall optimization [11, 81] within one administrative domain

where the privacy of firewall policies is not a concern. Intra-firewall optimization means

optimizing a single firewall. It is achieved by either removing redundant rules [50, 52] or

rewriting rules [28, 51, 53, 55, 56, 57]. Prior work on inter-firewall optimization requires

79

two firewall policies without any privacy protection, and thus can only be used within one

administrative domain. However, in reality, it is common that two firewalls belong to different

administrative domains where firewall policies cannot be shared with each other. Keeping

firewall policies confidential is important for two reasons. First, a firewall policy may have

security holes that can be exploited by attackers. Quantitative studies have shown that

most firewalls are misconfigured and have security holes [76]. Second, a firewall policy often

contains private information, e.g., the IP addresses of servers, which can be used by attackers

to launch more precise and targeted attacks.

4.1.3 Cross-domain Inter-firewall Optimization

To our best knowledge, no prior work focuses on cross-domain privacy-preserving inter-

firewall optimization. This work represents the first step in exploring this unknown space.

Specifically, we focus on removing inter-firewall policy redundancies in a privacy-preserving

manner. Consider two adjacent firewalls 1 and 2 belonging to different administrative do-

mains Net1 and Net2. Let FW1 denote the policy on firewall 1’s outgoing interface to

firewall 2 and FW2 denote the policy on firewall 2’s incoming interface from firewall 1. For

a rule r in FW2, if all the packets that match r but do not match any rule above r in FW2

are discarded by FW1, rule r can be removed because such packets never come to FW2. We

call rule r an inter-firewall redundant rule with respect to FW1. Note that FW1 and FW2

only filter the traffic from FW1 to FW2; the traffic from firewall 2’s outgoing interface to

firewall 1’s incoming interface is guarded by other two separate policies. For simplicity, we

assume that FW1 and FW2 have no intra-firewall redundancy as such redundancy can be

removed using the proposed solutions [50, 52].

Figure 4.2 illustrates inter-firewall redundancy, where two adjacent routers belong to dif-

ferent administrative domains CSE and EE. The physical interfaces connecting two routers

80

CSE

subnet

EE

subnet

SIP DIP SP DP PR Dec

r1' 1.2.*.* 192.168.*.* * * TCP d

r2' 2.3.*.* 192.168.*.* * * TCP a

r3' * * * * * d

SIP DIP SP DP PR Dec

r1 1.2.1.* 192.168.1.* * 25 TCP a

r2 1.2.1.* 192.168.*.* 80 * TCP d

r3 * * * * * a

I1 I2

FW1: filtering I1’s outgoing packets FW2: filtering I2’s incoming packets

Figure 4.2. Example inter-firewall redundant rules

are denoted as I1 and I2, respectively. The rules of the two firewall policies FW1 and FW2,

that are used to filter the traffic flowing from CSE to EE, are listed in two tables following

the format used in Cisco Access Control Lists. Note that SIP, DIP, SP, DP, PR, and Dec

denote source IP, destination IP, source port, destination port, protocol type, and decision,

respectively. Clearly, all the packets that match r1 and r2 in FW2 are discarded by r′1 in

FW1. Thus, r1 and r2 of FW2 are inter-firewall redundant with respect to r′1 in FW1.

4.1.4 Technical Challenges and Our Approach

The key challenge is to design a protocol that allows two adjacent firewalls to identify the

inter-firewall redundancy with respect to each other without knowing the policy of the other

firewall. While intra-firewall redundancy removal is complex [50, 52], inter-firewall redun-

dancy removal with the privacy-preserving requirement is even harder. To determine whether

a rule in FW2 is inter-firewall redundant with respect to FW1, Net2 certainly needs some

information about FW1; yet, Net2 cannot reveal FW1 from such information.

A straightforward solution is to perform a privacy preserving comparison between two rules

from two adjacent firewalls. Particularly, for each rule r in FW2, this solution checks whether

81

all possible packets that match rule r in FW2 match a rule r′ with the discard decision in

FW1. If rule r′ exists, r is inter-firewall redundant with respect to r′ in FW1. However,

because firewalls follow the first-match semantics and the rules in a firewall typically overlap,

this solution is not only incorrect but also incomplete. Incorrect means that wrong redundant

rules could be identified in FW2. Suppose this solution identifies r as a redundant rule in

FW2 with respect to r′2 in FW1. However, if some packets that match rule r also match rule

r′1 (r
′
1 is above r

′
2) with the accept decision in FW1, these packets will pass through FW1 and

then FW2 needs to filter them with r. In this case, r is actually not redundant. Incomplete

means that a portion of redundant rules could be identified in FW2. If all possible packets

that match rule r in FW2 are discarded by not only one rule but multiple rules in FW1, r is

also redundant. However, the direct comparison solution cannot identify such redundancies.

Our basic idea is as follows. For each rule r in FW2, we first compute a set of compact

predicates representing the set of packets that match r but do not match the rules above r in

FW2. Then, for each predicate, we check whether all the packets that match the predicate

are discarded by FW1. If this condition holds for all the predicates computed from rule r,

then rule r is redundant. To efficiently compute these predicates, we convert firewalls to

firewall decision diagrams [52]. To allow the two firewalls to detect the redundant rules in

FW2 in a privacy-preserving manner, we develop a protocol so that two firewalls can detect

such redundant rules without disclosing their policies to each other.

4.1.5 Key Contributions

We make two key contributions. First, we propose a novel privacy-preserving protocol for

detecting inter-firewall redundant rules in one firewall with respect to another firewall. This

work represents the first effort along this unexplored direction. Second, we implemented our

protocol and conducted extensive experiments on both real and synthetic firewall policies.

82

The results on real firewall policies show that our protocol can remove as many as 49% of

the rules in a firewall whereas the average is 19.4%. The communication cost is less than a

few hundred KBs. Our protocol incurs no extra online packet processing overhead and the

offline processing time is less than a few hundred seconds.

4.2 System and Threat Models

4.2.1 System Model

A firewall FW is an ordered list of rules. Each rule has a predicate over d fields F1, · · · , Fd

and a decision for the packets that match the predicate. Firewalls usually check five fields:

source IP, destination IP, source port, destination port, and protocol type. The length of

these fields are 32, 32, 16, 16, and 8 bits, respectively. A predicate defines a set of packets over

the d fields, and is specified as F1∈T1∧· · · ∧Fd∈Td where each Ti is a subset of Fi’s domain

D(Fi). A packet over the d fields F1,· · · ,Fd is a d-tuple (p1, · · · , pd) where each pi (1≤i≤d) is

an element of D(Fi). A packet (p1, · · · , pd) matches a rule F1∈T1∧· · · ∧Fd∈Td→〈decision〉

if and only if the condition p1∈T1∧· · · ∧pd∈Td holds. Typical firewall decisions include

accept, discard, accept with logging, and discard with logging. Without loss of generality,

we only consider accept and discard in this work. We call a rule with the accept decision

an accepting rule and a rule with the discard decision a discarding rule. In a firewall policy,

a packet may match multiple rules whose decisions are different. To resolve these conflicts,

firewalls typically employ a first-match semantics where the decision for a packet p is the

decision of the first rule that p matches. A matching set of ri, M(ri), is the set of all

possible packets that match the rule ri [50]. A resolving set of ri, R(ri), is the set of

packets that match ri but do not match any rule rj above ri (j<i), and R(ri) is equal to

M(ri)−M(r1)∪· · · ∪M(ri−1) [50].

83

Based on above concepts, we define inter-firewall redundant rules. Given two adjacent

firewalls FW1 and FW2, where the traffic flow is from FW1 to FW2, a rule r in FW2 is

inter-firewall redundant with respect to FW1 if and only if all the packets in r’s resolving

set are discarded by FW1.

4.2.2 Threat Model

We adopt the semi-honest model in [35]. For two adjacent firewalls, we assume that they

are semi-honest, i.e., each firewall follows our protocol correctly but each firewall may try to

reveal the policy of the other firewall. The semi-honest model is realistic and well adopted

[18, 78]. For example, this model is appropriate for large organizations that have many

independent branches as well as for loosely connected alliances composed by multiple parties.

While we are confident that all administrative domains follow mandate protocols, we may

not guarantee that no corrupted employees are trying to reveal the private firewall policies

of other parties. We leave investigation of privacy-preserving firewall optimization in the

model with malicious participants to future work.

4.3 Privacy-Preserving Inter-Firewall Redundancy

Removal

In this section, we present our privacy-preserving protocol for detecting inter-firewall re-

dundant rules in FW2 with respect to FW1. To do this, we first converts each firewall

to an equivalent sequence of non-overlapping rules. Because for any non-overlapping rule

nr, the matching set of nr is equal to the resolving set of nr, i.e., M(nr) = R(nr), we

only need to compare non-overlapping rules generated from the two firewalls for detecting

inter-firewall redundancy. Second, we divide this problem into two subproblems, single-rule

84

coverage redundancy detection and multi-rule coverage redundancy detection, and then pro-

pose our privacy-preserving protocol for solving each subproblem. A rule nr is covered by

one or multiple rules nr′i1
· · ·nr′ik

(k ≥ 1) if and only if M(nr)⊆M(nr′i1
)∪· · · ∪M(nr′ik

).

The first subproblem checks whether a non-overlapping rule nr in FW2 is covered by a

non-overlapping discarding rule nr′ in FW1, i.e., M(nr)⊆M(nr′). The second subproblem

checks whether a non-overlapping rule nr in FW2 is covered by multiple non-overlapping

discarding rules nr′i1
· · ·nr′ik

(k ≥ 2) in FW1, i.e., M(nr)⊆M(nr′i1
)∪· · · ∪M(nr′ik

). Finally,

after redundant non-overlapping rules generated from FW2 are identified, we map them back

to original rules in FW2 and then identify the redundant ones.

The problem of checking whether M(nr)⊆M(nr′) boils down to the problem of checking

whether one range [a, b] in nr is contained by another range [a′, b′] in nr′, which further boils

down to the problem of checking whether a ∈ [a′, b′] and b ∈ [a′, b′]. Thus, we first describe

the privacy-preserving protocol for comparing a number and a range.

4.3.1 Privacy-Preserving Range Comparison

To check whether a number a from FW2 is in a range [a′, b′] from FW1, we use a method

similar to the prefix membership verification scheme in [48]. The basic idea is to convert

the problem of checking whether a ∈ [a′, b′] to the problem of checking whether two sets

converted from a and [a′, b′] have a common element. Our method consists of four steps:

(1) Prefix conversion. It converts [a′, b′] to a minimum number of prefixes, denoted as

T ([a′, b′]), whose union is [a′, b′]. For example, T ([11, 15])={1011, 11**}.

(2) Prefix family construction. It generates all the prefixes that contains a including a

itself. This set of prefixes is called the prefix family of a, denoted as F(a). Let k be the

bit length of a. The prefix family F(a) consists of k + 1 prefixes where the i-th prefix is

obtained by replacing the last i− 1 bits of a by ∗. For example, as the binary representation

85

[11, 15]

⇓ Prefix conversion

1011

11**

⇓ Prefix numericalization

10111

11100

⇓ Encrypt by Net1

(10111)K1
(11100)K1

⇓ Encrypt by Net2

((10111)K1
)K2

((11100)K1
)K2

12 (=1100)

⇓ Prefix family construction

1100 11** ****

110* 1***

⇓ Prefix numericalization

11001 11100 10000

11010 11000

⇓ Encrypt by Net2

(11001)K2
(11100)K2

(10000)K2
(11010)K2

(11000)K2

⇓ Encrypt by Net1

((11001)K2
)K1

((11100)K2
)K1

((10000)K2
)K1

((11010)K2
)K1

((11000)K2
)K1

(a) (b)

Figure 4.3. Prefix membership verification

of 12 is 1100, we have F(12)={1100, 110*, 11**, 1***, ****}. It is not difficult to prove that

a ∈ [a′, b′] if and only if F(a) ∩ T ([a′, b′]) 6= ∅.

(3) Prefix numericalization. It converts the prefixes generated in the previous steps to

concrete numbers such that we can encrypt them in the next step. We use the prefix

numericalization scheme in [20]. Given a prefix b1b2 · · · bk*· · · * of w bits, we first insert 1

after bk. The bit 1 represents a separator between b1b2 · · · bk and *· · ·*. Then we replace

every ∗ by 0. For example, 11** is converted to 11100. If the prefix does not contain *s, we

place 1 at the end. For example, 1100 is converted to 11001.

(4) Comparison. It checks whether a ∈ [a′, b′] by checking whether F(a) ∩ T ([a′, b′]) 6=

∅, which boils down to checking whether two numbers are equal. We use commutative

encryption to do this checking in a privacy-preserving manner. Given a number x and

two encryption keys K1 and K2, a commutative encryption is a function that satisfies the

property ((x)K1
)K2

= ((x)K2
)K1

, i.e., encryption with keyK1 first and thenK2 is equivalent

86

to encryption with key K2 first and then K1. Example commutative encryption algorithms

are the Pohlig-Hellman Exponentiation Cipher [64] and Secure RPC Authentication (SRA)

[67]. Each domain chooses a private key. Let K1, K2 be the private keys chosen by Net1

and Net2, respectively. To check whether number v1 from Net1 is equal to number v2 from

Net2 without disclosing the value of each number to the other party, Net1 can first encrypt

v1 using key K1 and sends (x)K1
to Net2; similarly, Net2 can first encrypt v2 using key K2

and sends (x)K2
to Net1. Then, each party checks whether v1 = v2 by checking whether

((v1)K1
)K2

= ((v2)K2
)K1

. Note that ((v1)K1
)K2

=((v2)K2
)K1

if and only if v1 = v2. If

v1 6= v2, neither party can learn anything about the numbers being compared. Figure 4.3

illustrates the process of checking whether 12 from FW2 is in the range [11, 15] from FW1.

4.3.2 Processing Firewall FW1

To detect redundant rules in FW2, Net1 converts its firewall FW1 to a set of non-overlapping

rules. To preserve the privacy of FW1, Net1 first converts each range of a non-overlapping

discarding rules from FW1 to a set of prefixes. Second, Net1 and Net2 encrypt these prefixes

using commutative encryption. The conversion of FW1 includes nine steps:

(1) Net1 first converts FW1 to an equivalent firewall decision diagram (FDD) [36, 37].

An FDD for a firewall FW of a sequence of rules 〈r1, · · · , rn〉 over fields F1, · · · , Fd is an

acyclic and directed graph that has five properties. (a) There is exactly one node that has

no incoming edges. This node is called the root. The nodes that have no outgoing edge are

called terminal nodes. (b) Each node v has a label, denoted F (v). If v is a nonterminal

node, then F (v) ∈ {F1, · · · , Fd}. If v is a terminal node, then F (v) is a decision. (c) Each

edge e, u→v, is labeled with a non-empty set of integers, denoted I(e), where I(e) is a subset

of the domain of u’s label (i.e., I(e)⊆D(F (u))). (d) The set of all outgoing edges of a node

v, denoted E(v), satisfies two conditions: (a) consistency : I(e)∩I(e′)=∅ for any two distinct

87

dFFr

aFFr

dFFr

dFFr

 !"!
 !"!
 !"!
 !"!

]15,0[]15,0[: '
]8 ,0[]7 ,5[: '
]15,5[]7 ,5[: '
]15,7[]4 ,0[: '

214

213

212

211

FDD construction

FDD reduction

[0, 4] [8, 15]
F1

[0,15]

F2 F2

[0,4]

F2

[5,15] [0,15]

[5, 7]

a d dd

Extract non-overlapping rules

with the discard decision

dFFnr

dFFnr

dFFnr

 !"!
 !"!
 !"!

]15,0[]15,8[: '
]15,5[]7 ,5[: '
]15,0[]4 ,0[: '

213

212

211

Convert ranges to prefixes

d

d

d

 "
 "

 "

}*{*}*1{
**}*1*,011,0101{*}011,0101{

**}*{*}0100*,*00{

Extract and permute

the prefixes

#
$
%

&
'
(

***1 011*, 0101,
**** 0100, *,00*

Numericalize the prefixes

#
$
%

&
'
(

11000 01110, 01011,
10000 01001, 00100,

Encrypt by Net1

#
$
%

&
'
(

1K1K1K

1K1K1K

(11000) ,(01110) ,(01011)

(10000) ,(01001) ,(00100)

)
#

)
$

%

)
&

)
'

(

2K1K2K1K

2K1K2K1K

2K1K2K1K

)(11000) ,)(01110)

)((01011),)(10000)

)(01001) ,)((00100)

Encrypt by Net2

Reconstruct non-

overlapping rules

d

d

d

 "

)
#

)
$

%

)
&

)
'

(

"
#
$
%

&
'
(

 "
#
$
%

&
'
(

 }){(10000)}){(11000):45

)(11000)

)((01110)

)(01011)

)(01110)

)((01011)
 :13

 }){(10000)
)(01001)

)((00100)
 :27

2K1K2K1K

2K1K

2K1K

2K1K

2K1K

2K1K

2K1K
2K1K

2K1K

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

[8, 15]

F2

[0, 4]
F1

[0,6]

F2
[0,4]

F2
[7,15] [9,15]

[0,15]

[5, 7]

[5,8]

add d d d

Figure 4.4. The Conversion of FW1

88

edges e and e′ in E(v); (b) completeness :
⋃

e∈E(v) I(e)=D(F (v)). (e) A directed path from

the root to a terminal node is called a decision path. No two nodes on a decision path have

the same label. Each path in the FDD corresponds to a non-overlapping rule. A full-length

ordered FDD is an FDD where in each decision path all fields appear exactly once and in the

same order. For ease of presentation, we use the term “FDD” to denote “full-length ordered

FDD”. An FDD construction algorithm, which converts a firewall policy to an equivalent

FDD, is presented in [49]. Figure 4.4(b) shows the FDD constructed from Figure 4.4(a).

(2) Net1 reduces the FDD’s size by merging isomorphic subgraphs. An FDD f is reduced if

and only if it satisfies two conditions: (a) no two nodes in f are isomorphic; (b) no two nodes

have more than one edge between them. Two nodes v and v′ in an FDD are isomorphic

if and only if v and v′ satisfy one of the following two conditions: (a) both v and v′ are

terminal nodes with identical labels; (b) both v and v′ are nonterminal nodes and there is

a one-to-one correspondence between the outgoing edges of v and the outgoing edges of v′

such that every two corresponding edges have identical labels and they both point to the

same node. Figure 4.4(c) shows the FDD reduced from the FDD in Figure 4.4(b).

(3) Net1 extracts non-overlapping discarding rules. Net1 does not extract non-overlapping

accepting rules because the packets accepted by FW1 are passed to FW2. Note that a non-

overlapping rule from FW2 that is covered by these discarding rules from FW1 is redundant.

Figure 4.4(d) shows the discarding non-overlapping rules extracted from the reduced FDD

in Figure 4.4(c).

(4) Net1 converts each range to a set of prefixes. Figure 4.4(e) shows the prefixes generated

from Figure 4.4(d).

(5) Net1 unions all these prefix sets and then permutes the prefixes. Figure 4.4(f) shows

the resulting prefix set. Note that the resulting set does not include duplicate prefixes.

The benefits are two-fold. In terms of efficiency, it avoids encrypting and sending duplicate

prefixes for both parties, and hence, significantly reduces computation and communication

89

costs. In terms of security, Net2 cannot reconstruct the non-overlapping rules from FW1,

because Net2 does not know which prefix belongs to which field of which rule. However,

Net1 knows such information and it can reconstruct these non-overlapping rules.

(6) Net1 numericalizes and encrypts each prefix using K1, and then sends to Net2. Figures

4.4(g) and (h) show the numericalized and encrypted prefixes, respectively.

(7) Net2 further encrypts these prefixes with K2 and sends them back to Net1 as shown

in Figure 4.4(i).

(8) Net1 reconstructs its non-overlapping discarding rules from the double encrypted pre-

fixes because Net1 knows which prefix belongs to which field of which rule.

(9) For each reconstructed non-overlapping rule, Net1 assigns a distinct random index to

it. These indices are used for Net2 to identify the redundant non-overlapping rules from

FW2. For example, in Figure 4.6(a), Net1 assigns its three rules with three random indices:

27, 13, and 45. The detailed discussion is in Section 4.3.4.

4.3.3 Processing Firewall FW2

In order to compare two firewalls in a privacy-preserving manner, Net2 and Net1 convert

firewall FW2 to d sets of double encrypted numbers, where d is the number of fields. The

conversion of FW2 includes five steps:

(1)Net2 converts FW2 to an equivalent all-match FDD. All-match FDDs differ from FDDs

on terminal nodes. In an all-match FDD, each terminal node is labeled with a nonempty

set of rule sequence numbers, whereas in an FDD each terminal node is labeled with a de-

cision. For rule ri (1≤i≤n), we call i the sequence number of ri. The set of rule sequence

numbers labeled on a terminal node consists of the sequence numbers of all the rules that

overlaps with the decision path ending with this terminal node. Given a decision path P,

(v1e1 · · · vdedvd+1), the matching set of P is defined as the set of all packets that satisfy

90

dFFr

aFFr

dFFr

aFFr

 !"!
 !"!
 !"!
 !"!

]15,0[]15,0[:
]5 ,0[]15,6[:
]15,7[]5 ,0[:
]15,7[]2 ,0[:

214

213

212

211

Construct all-match FDD

Extract non-

overlapping rules

Convert values to

prefix families

Extract and permute

prefixes for each filed

#
#
$

##
%

&

#
#
'

##
(

)

#
#

$

#
#

%

&

#
#

'

#
#

(

)

**** **,***,10*
**11 *,*01 *,00*
111 011, 010*,

000* 1111, 0111,
0110 0101, 0000,

,

**** **,*1
**0* *,*11 *,*01
00 111*, 011*,

010* 001*, 000*,
1111 0110, 0101,
0011 0010, 0000,

Numericalize and

encrypt by Net2

Encrypt by Net1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

[0, 2] [6, 15]F1

[0,6]
F2 F2

[0,6]
F2

[7,15] [7,15]

[3, 5]

4 1,2,4 4 2,4

d a d d

[0, 5] [6,15]

3,4 4

d a

dFFnr

aFFnr

dFFnr

dFFnr

aFFnr

dFFnr

 !"!
 !"!
 !"!
 !"!
 !"!
 !"!

]15,6[]15 ,6[:
]5 ,0[]15 ,6[:
]15,7[]5 ,3[:
]6 ,0[]5 ,3[:
]15,7[]2 ,0[:
]6 ,0[]2 ,0[:

216

215

214

213

212

211

)}15(),6({)}15(),6({ :
)}5(),0({)}15(),6({ :
)}15(),7({)}5(),3({ :

)}6(),0({)}5(),3({ :
)}15(),7({)}2(),0({ :

)}6(),0({)}2(),0({ :

6

5

4

3

2

1

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

"
"
"
"
"
"

nr

nr

nr

nr

nr

nr

#
#
#

$

#
#
#

%

&

#
#
#

'

#
#
#

(

)

#
#
#

$

#
#
#

%

&

#
#
#

'

#
#
#

(

)

2K

2K

2K

2K

2K

2K

2K

(10000)

(11000)

(01110)

(01011)

,

(11000)

(00100)

(01011)

#
#
#

$

#
#
#

%

&

#
#
#

'

#
#
#

(

)

#
#
#

$

#
#
#

%

&

#
#
#

'

#
#
#

(

)

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

)((10000)

)((11000)

)((01110)

)((01011)

,

)((11000)

)((00100)

)((01011)

Figure 4.5. The Conversion of FW2

91

F (v1)∈I(e1)∧· · · ∧F (vd)∈I(ed). We use M(P) to denote the matching set of P. More for-

mally, in an all-match FDD, for any decision path P : (v1e1 · · · vdedvd+1), ifM(P)∩M(ri) 6=∅,

then M(P)⊆M(ri) and i∈F (vd+1). Figure 4.4(b) shows the all-match FDD generated from

Figure 4.4(a). Considering the terminal node of the fourth path in Figure 4.4(b), its label {2,

4} means that M(P)⊆M(r2), M(P)⊆M(r4), M(P)∩M(r1)=∅, and M(P)∩M(r3)=∅. An

all-match FDD not only represents a firewall in a non-overlapping fashion but also represents

the overlapping relationship among rules. The reason of converting FW2 to an all-match

FDD is that later Net2 needs the rule sequence numbers to identify inter-firewall redundant

rules in FW2.

(2) Net2 extracts all non-overlapping rules from the all-match FDD. Figure 4.5(c) shows

the non-overlapping rules extracted from Figure 4.5(b). For each range [a, b] of a non-

overlapping rule, Net2 generates two prefix families F(a) and F(b). Figure 4.5(d) shows the

result from Figure 4.5(c).

(3) For every field Fk, Net2 unions all prefix families of all the non-overlapping rules into

one prefix set and permutes the prefixes. Considering the first field F1 in Figure 4.5(d),

Net2 unions F(0), F(2), F(3), F(5), F(6) and F(15) to the first prefix set in Figure 4.5(e).

The benefits of this step are similar to those of Step (5) in FW1’s conversion. In terms of

efficiency, it avoids encrypting and sending the duplicate prefixes for each field, and hence,

significantly reduces the computation and communication costs. In terms of security, Net1

cannot reconstruct the non-overlapping rules of FW2, because Net1 does not know which

prefix belongs to which rule in FW2. However, Net2 knows such information, which will be

used to identify redundant non-overlapping rules later. Note that, the ordering of the fields

cannot be permuted because Net1 needs to perform comparison of the prefixes with only

those prefixes from the corresponding fields.

(4) Net2 numericalizes and encrypts the prefixes using its private K2, and sends them to

Net1. Figure 4.5(f) shows the prefixes.

92

(5) Net1 further encrypts these prefixes using key K1.

4.3.4 Single-Rule Coverage Redundancy Detection

After processing the two firewalls, Net1 has a sequence of double encrypted non-overlapping

rules obtained from FW1 and d sets of double encrypted numbers obtained from FW2. Let

(F1∈T1)∧· · · ∧(Fd∈Td)→discard denote a double encrypted rule, where Ti is a set of double

encrypted numbers. Let T1,· · · ,Td denote the d sets of double encrypted numbers from FW2.

Figure 4.6(a) shows the double encrypted non-overlapping rules generated from Figure 4.4

and Figure 4.6(b) shows the double encrypted numbers generated from Figure 4.5. For each

field Fi (1≤i≤d) and for each number a in Ti, Net1 checks whether there exists a double en-

crypted rule (F1∈T1)∧· · · ∧(Fd∈Td)→discard such that a ∈ Ti. If rule ri satisfies this condi-

tion, then Net1 associates the rule index i with a. As there maybe multiple rules that satisfy

this condition, eventually Net1 associates a set of rule indices with a. If no rule satisfies this

condition, Net1 associates an empty set with a. Considering the number ((01011)K2
)K1

,

only the rule with index 13 contains it because ((01011)K2
)K1

=((01011)K1
)K2

; thus, Net1

associates ((01011)K2
)K1

with {13}. Finally, Net1 replaces each number in T1,· · · ,Td with

its corresponding set of rule indices, and sends them to Net2.

Upon receiving the sets from Net1, for each prefix family, Net2 finds the index of the

rule that overlaps with the prefix family. For a non-overlapping rule nr from FW2, if all

its prefix families overlap with the same discarding rule nr′ from FW1, nr is covered by nr′

and hence, nr is redundant. For example, in Figure 4.6(d), nr1 is redundant, because F(0),

F(2), F(0) and F(6) overlap with rule 27 from FW1. Similarly, nr2 is redundant. Note that

F(v):j1, ..., jk denotes that F(v) overlaps with non-overlapping rules j1, ..., jk from FW1.

93

(a) (b)

(c)

Compare two reconstructed

firewalls by Net1

d

d

d

 !

"
#

"
$

%

"
&

"
'

(

!
#
$
%

&
'
(

 !
#
$
%

&
'
(

 }){(10000)}){(11000):45

)(11000)

)((01110)

)(01011)

)(01110)

)((01011)
 :13

 }){(10000)
)(01001)

)((00100)
 :27

2K1K2K1K

2K1K

2K1K

2K1K

2K1K

2K1K

2K1K
2K1K

2K1K

"
"
"

#

"
"
"

$

%

"
"
"

&

"
"
"

'

(

"
"
"

#

"
"
"

$

%

"
"
"

&

"
"
"

'

(

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

)((10000)

)((11000)

)((01110)

)((01011)

,

)((11000)

)((00100)

)((01011)

}45 27, 13, :)15(,45 27, 13, :)6({}45 :)15(,13 :)6({ :
}45 27, 13, :)5(,45 27, :)0({}45 :)15(,13 :)6({ :
}45 27, 13, :)15(,45 27, 13, :)7({}13 :)5(,27 :)3({ :
}45 27, 13, :)6(,45 27, :)0({}13 :)5(,27 :)3({ :
}45 27, 13, :)15(,45 27, 13, :)7({}27 :)2(,27 :)0({ :
}45 27, 13, :)6(,45 27, :)0({}27 :)2(,27 :)0({ :

6

5

4

3

2

1

FFFF
FFFF
FFFF
FFFF

FFFF
FFFF

!
!
!
!
!
!

nr

nr

nr

nr

nr

nr

(d)

Find corresponding prefix families

in FW2 by Net2

"
"
"

#

"
"
"

$

%

"
"
"

&

"
"
"

'

(

)))

)))

)))

"
"
"

#

"
"
"

$

%

"
"
"

&

"
"
"

'

(

)))

)))

)))

)))

45,27:)((10000)

 13:)((11000)
:

 13:)((01110)
:

 13:)((01011)
:

,

:

45:)((11000)
:

27:)((00100)
:

13:)((01011)
:

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

1K2K

*

*

*

*

*

*

*

Figure 4.6. Comparison of Two Firewalls

94

4.3.5 Multi-Rule Coverage Redundancy Detection

To detect multi-rule coverage redundancy, our basic idea is to combine all the non-overlapping

discarding rules from FW1 to a set of new rules such that for any arbitrary rule from FW2,

if it is covered by multiple non-overlapping discarding rules from FW1, it is covered by a rule

from these new rules. More formally, let nr′1, · · · , nr
′
l denote the non-overlapping discarding

rules from FW1 and s′1, · · · , s
′
g denote the set of new rules generated from nr′1, · · · , nr

′
l.

For any rule nr from FW2, if a non-overlapping rule nr from FW2 is multi-rule coverage

redundant, i.e., M(nr)⊆M(nr′i1
)∪· · · ∪M(nr′ik

) where nr′i1
· · ·nr′ik

(k ≥ 2) from FW1, there

is a rule s′j (1 ≤ j ≤ g) that cover nr, i.e., M(nr)⊆M(s′j). Thus, after Net1 computes

the set of new rules from FW1, we reduce the problem of multi-rule coverage redundancy

detection to single-rule coverage redundancy detection. Then, two parties Net1 and Net2

can cooperatively run our protocol proposed in this section to identify the non-overlapping

single-rule and multi-rule coverage redundant rules from FW2 at the same time. However,

the key question is how to compute the set of new rules s′1, · · · , s
′
g.

A straightforward method is to compute all possible rules that are covered by a single or

multiple non-overlapping discarding rules among nr′1, · · · , nr
′
l. All these rules form the set

of new rules s′1, · · · , s
′
g. However, this method incurs two major drawbacks. First, the time

and space complexities of this method can be significant because the number of all these

rules could be huge. Second, due to the huge number of these rules, the communication

and computation costs increase significantly. The relationship between these costs and the

number of rules is discussed in Section 4.5.2.

Our solution is to compute only the largest rules that are covered by a single or multiple

non-overlapping discarding rules among nr′1, · · · , nr
′
l. The term largest can be explained

as follows. Without considering the decision, a firewall rule with d fields can be denoted

as a hyperrectangle over a d-dimensional space. Then, l non-overlapping discarding rules

95

nr′1, · · · , nr
′
l are l hyperrectangles over a d-dimensional space. The new rules s′1, · · · , s

′
g

are also the hyperrectangles. The term largest means that if a hyperrectangle s∗j contains

the hyperrectangle s′j but is larger than s′j , s
∗
j has some parts which are not covered by

all the l hyperrectangles nr′1, · · · , nr
′
l. For example, the non-overlapping discarding rules

nr′1, nr
′
2, nr

′
3 in Figure 4.4(d) can be illustrated as three filled rectangles in Figure 4.7. Figure

4.7 also shows three new rules s′1, s
′
2, s

′
3 generated from nr′1, nr

′
2, nr

′
3, where s′1 is illustrated

in the dashed rectangle, s′2 is the same as nr′2, and s′3 is the same as nr′3. Note that the

values of two fields F1 and F2 are integers. Thus, we can combine three ranges [0, 4], [5, 7],

and [8, 15] to a range [0, 15] for the field F1 of s′1.

0 5 10 15

15

10

5

F1

F2

nr1'

(or s2')
nr2'

s1'

nr3'

(or s3')

Figure 4.7. Three largest rules generated from Figure 4.4(d)

More formally, we can define a largest rule s′j (1 ≤ j ≤ g) as follows.

1. M(s′j) ⊆ M(nr′1) ∪ · · · ∪M(nr′l).

2. For any rule s∗j that M(s∗j) ⊃ M(s′j),

M(s∗j) 6⊂ M(nr′1) ∪ · · · ∪M(nr′l).

Given the set of all largest rules s′1, · · · , s
′
g generated from nr′1, · · · , nr

′
l, for any rule nr, if nr

is covered by one or multiple rules in nr′1, · · · , nr
′
l, there exists a largest rule s′j (1 ≤ j ≤ g)

which covers nr. We have the following theorem.

96

Theorem 7. Given the set of all largest rules s′1, · · · , s
′
g generated from nr′1, · · · , nr

′
l, for

any rule nr, if M(nr) ⊆ M(nr′1) ∪ · · · ∪M(nr′l), there exists a largest rule s′j (1 ≤ j ≤ g)

which satisfies the condition M(nr) ⊆ M(s′j).

Proof. If nr is a largest rule, it is included in s′1, · · · , s
′
g. If nr is not a largest rule, we prove

it by contradiction. If there exists no largest rule among s′1, · · · , s
′
g which covers nr, we can

generate all possible rules which satisfy two conditions: (1) the matching set of each of these

rules is the superset of M(nr); (2) each of these rules is covered by nr′1, · · · , nr
′
l. Among all

these generated rules, there exists at least a largest rule otherwise the number of these rules

is infinite. However, M(nr′1) ∪ · · · ∪M(nr′l) is a finite domain.

Next, we discuss how to compute the set of all the largest rules S = {s′1, · · · , s
′
g} from the

non-overlapping discarding rules nr′1, · · · , nr
′
l. Our idea is to first compute the largest rules

for every two rules among nr′1, · · · , nr
′
l. Repeat computing the largest rules for every two

rules in the previous step until the resulting rules do not change. Finally, the resulting rules

is the set of all the largest rules s′1, · · · , s
′
g. Note that it is trivial to compute the largest

rules from two rules. This algorithm is shown in Algorithm 2.

For example, to identify the single-rule and multiple-rule coverage redundancy simulta-

neously, Net1 only needs to perform one more step between Figure 4.4(d) and (e). Net1

computes all the largest rules from the non-overlapping discarding rules in Figure 4.4(d),

which are

s′1 : F1 ∈ [0, 15] ∧ F2 ∈ [5, 15] → d

s′2 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 15] → d

s′3 : F1 ∈ [8, 15] ∧ F2 ∈ [0, 15] → d

Finally, Net2 can identify that nr4 : F1 ∈ [3, 15]∧F2 ∈ [7, 15] → d is redundant because nr4

is covered the by the rule s′1.

97

Algorithm 2: Computation of the set of largest rules

Input: l non-overlapping rules nr′1, · · · , nr
′
l.

Output: The set of all the largest rules S

Initialize S to {nr′1, · · · , nr
′
l};1

while S has been changed do2

for every two rules s′i, s
′
j (i 6= j) in S do3

remove s′i and s′j from S;4

compute the largest rules from s′i and s′j ;5

add the largest rules to S′;6

S = S′;7

return S;8

4.3.6 Identification and Removal of Redundant Rules

After single-rule and multi-rule coverage redundancy detection, Net2 identifies the redundant

non-overlapping rules in FW2. Next, Net2 needs to identify which original rules are inter-

firewall redundant. As each path in the all-match FDD of FW2 corresponds to a non-

overlapping rule, we call the paths that correspond to the redundant non-overlapping rules

redundant paths and the remaining paths effective paths. For example, in Figure 4.8, the

dashed paths are the redundant paths that correspond to nr1, nr2 and nr4 in Figure 4.5(c),

respectively. Finally, Net2 identifies redundant rules based on Theorem 8.

Theorem 8. Given firewall FW2:〈r1,· · · ,rn〉 with no intra-firewall redundancy and its all-

match FDD, rule ri is inter-firewall redundant with respect to FW1 if and only if two con-

ditions hold: (1) there is a redundant path whose terminal node contains sequence number i;

(2) there is no effective path whose terminal node contains i as the smallest element.

98

[0, 2] [6, 15]F1

[0, 6]
F2 F2

[0,6]
F2

[7, 15] [7,15]

[3, 5]

4 1,2,4 4 2,4

d a d d

[0, 5] [6, 15]

3,4 4

d a

Figure 4.8. Identification of redundant rules in FW2

Proof. Let {P1,· · · ,Pm} denote all paths in FW2’s all-match FDD. According to the the-

orems in [50, 52], the resolving set of each rule ri (1≤i≤n) in firewall FW2 satisfies the

condition R(ri)=∪k=t
k=1M(Pjk

) (1≤jk≤m), where Pj1
,· · · ,Pjt

are all the paths whose ter-

minal nodes contain i as the smallest element. Based on the definition of inter-firewall

redundant rules in Section 4.2.1, rule ri is inter-firewall redundant if and only if all the

packets in ∪k=t
k=1M(Pjk

) are discarded by FW1. Thus, each path Pjk
(1≤k≤t) is a redun-

dant path. In other words, all the paths Pj1
,· · · ,Pjt

whose terminal nodes contain i as the

smallest element are redundant paths.

Considering redundant paths in Figure 4.8, Net2 identifies that r1 and r2 are inter-firewall

redundant with respect to FW1.

Theorem 9. The privacy-preserving inter-firewall redundancy removal protocol is a com-

plete inter-firewall redundancy removal scheme.

Proof. Suppose that our proposed protocol is not a complete scheme and hence it cannot de-

tect all inter-firewall redundant rules in FW2. Assume that rule ri is inter-firewall redundant

in FW2 but it is not detected by our protocol. According to Theorem 8, R(ri)=∪k=t
k=1M(Pjk

)

(1≤jk≤m) and Pj1
,· · · ,Pjt

are redundant paths in FW2’s all-match FDD. Thus, some paths

in {Pj1
,· · · ,Pjt

} cannot be identified as redundant paths by our protocol. This conclusion

violates the fact that our protocol can identify all redundant paths in FW2’s FDD.

99

4.4 Firewall Update After Optimization

If FW1 or FW2 changes after inter-firewall optimization, the inter-firewall redundant rules

identified by the optimization may not be inter-firewall redundant anymore. In this section,

we discuss our solution to address firewall update. There are five possible cases.

(1) Net1 changes the decisions of some rules from discard to accept in FW1. In this case,

Net1 needs to notify Net2 that which non-overlapping rules (indices of these rules) from

FW1 are changed. Using this information, Net2 checks if there were any rules in FW2 that

were removed due to these rules, and then adds the affected rules back into FW2.

(2) Net1 changes the decisions of some rules from accept to discard in FW1. In this case,

Net2 can run our cooperative optimization protocol again to identify more inter-firewall

redundant rules in FW2.

(3) Net2 changes the decisions of some rules in FW2. In this case, neither party needs to

take actions because the inter-firewall redundancy detection does not consider the decisions

of the rules in FW2.

(4) Net1 adds or removes some rules in FW1. In this case, since the resolving sets of some

rules in FW1 may change, a rule in FW2 that used to be inter-firewall redundant maybe not

redundant anymore. It is important for Net2 to run our optimization protocol again.

(5) Net2 adds or removes some rules in FW2. Similar to the fourth case, since the resolving

sets of some rules in FW2 may change, it is important for Net2 to run our protocol again.

4.5 Security and Complexity Analysis

4.5.1 Security Analysis

To analyze the security of our protocol, we first describe the commutative encryption and

its properties. Let Key denote a set of private keys and Dom denote a finite domain. A

100

commutative encryption f is a computable function f :Key×Dom→Dom that satisfies the

following four properties. (1) Secrecy: For any x and keyK, given (x)K , it is computationally

infeasible to compute K. (2) Commutativity: For any x, K1, and K2, we have ((x)K1
)K2

=

((x)K2
)K1

. (3) For any x, y, and K, if x 6= y, we have (x)K 6= (y)K . (4) The distribution of

(x)K is indistinguishable from the distribution of x. Note that, for ease of presentation, in

the rest of this section, any x, y, or z is an element of Dom, any K, K1, or K2 is an element

of Key, and (x)K denotes f(x,K).

In the conversion of FW1, for each non-overlapping rule nr′ from FW1, let VFj (nr
′) denote

the prefix set for the field Fj , e.g., in Figure 4.4(e), VF1(nr
′
1) denotes {00**, 0100}. In the

conversion of FW2, let UFj
denote the prefix set for the field Fj after removing duplicate

prefixes, e.g., in Figure 4.5(e), UF1
denotes the first prefix set. Our cooperative optimization

protocol essentially compares VFj (nr
′) and UFj

in a privacy-preserving manner. We have

the following theorem.

Theorem 10. If both parties Net1 and Net2 are semi-honest, after comparing two sets

VFj (nr
′) and UFj

using our protocol, Net1 learns only the size |UFj
| and the intersection

VFj (nr
′)∩UFj

, and Net2 learns only the size |VFj (nr
′)| and the intersection VFj (nr

′)∩UFj
.

Proof. According to the theorems in multi-party secure computation [9, 34], if we can prove

that the distribution of the Net1’s view of our protocol cannot be distinguished from a

simulation that uses only VFj (nr
′), VFj (nr

′) ∩ UFj
, and |UFj

|, then Net1 cannot learn

anything else except VFj (nr
′)∩UFj

and |UFj
|. Note that Net1’s view of our protocol is the

information that Net1 gains from FW2.

Without loss of generality, we only prove that Net1 learns only the size |UFj
| and the

intersection VFj (nr
′) ∩ UFj

. The simulator for Net1 uses key K1 to create a set from

VFj (nr
′) and VFj (nr

′) ∩ UFj
as follows

101

YS = {(x1)K1
, · · · , (xm)K1

︸ ︷︷ ︸

xi∈VFj
(nr′)∩UFj

, zm+1, · · · , zn
︸ ︷︷ ︸

n−m=|VFj
(nr′)−UFj

|

}

where zm+1, · · · , zn are random values generated by the simulator and they are uniformly

distributed in the finite domain Dom. According to the theorems in [9], Net1 cannot dis-

tinguish the distribution of YS ’s elements from that in

YR = {(x1)K1
, · · · , (xm)K1

︸ ︷︷ ︸

xi∈VFj
(nr′)∩UFj

, (xm+1)K1
, · · · , (xn)K1

︸ ︷︷ ︸

xi∈VFj
(nr′)−UFj

}

The Net1’s view of our protocol corresponds to YR. Therefore, the distribution of the Net1’s

view of our protocol cannot be distinguished from this simulation.

Next, we analyze the information learned by Net1 and Net2. After implementing our

protocol, Net1 knows the converted firewalls of FW1 and FW2, e.g., Figure 4.4(j) and

Figure 4.5(g), and Net2 knows the comparison result, e.g., Figure 4.6(d). On Net1 side, for

each field Fj (1≤j≤d), it knows only |UFj
| and VFj (nr

′)∩UFj
, and it cannot reveal the rules

of FW2 for two reasons. First, in VFj (nr
′)∩UFj

, a numericalized prefix can be generated

from many different numbers. For example, a prefix of IP addresses (32 bits) b1b2· · · bk∗· · · ∗

can be generated from 232−k different IP addresses. Second, even if Net1 finds the number

for a prefix in VFj (nr
′)∩UFj

, Net1 doesn’t know which rule in FW2 contains that number.

On Net2 side, it only knows that the prefix x in F(x) belongs to which non-overlapping

rules in FW1. But such information is not enough to reveal the rules in FW1.

4.5.2 Complexity Analysis

Let n1 and n2 be the number of rules in two adjacent firewalls FW1 and FW2, respec-

tively, and d be the number of fields in both firewalls. For simplicity, we assume that the

102

numbers in different fields have the same length, say w bits. We first analyze the computa-

tion, space, and communication costs for the conversion of FW1. Based on the theorem in

[49], the maximum number of non-overlapping rules generated from the FDD is (2n1−1)d.

Each non-overlapping rule consists of d w-bit intervals and each interval can be converted

to at most 2w−2 prefixes. Thus, the maximum number of prefixes generated from these

non-overlapping rules is d(2w−2)(2n1−1)d. Note that the total number of prefixes cannot

exceed 2w+1 because Net1 puts all prefixes into one set. Thus, the computation cost of

encryption by Net1 is min (d(2w − 2)(2n1 − 1)d, 2w+1). Therefore, for the conversion of

FW1, the computation cost of Net1 is min (O(dwnd1), O(nd1 + 2w)), the space cost of Net1

is O(dwnd1), the communication cost is min (O(dwnd1), O(2w)), and the computation cost of

Net2 is min (O(dwnd1), O(2w)). Similarly, for the conversion of FW2, the computation cost of

Net2 is min (O(dwnd2), O(nd2 + 2wd)), the space cost of Net2 is O(dwnd2), the communication

cost is min (O(dwnd2), O(2wd)), and the computation cost of Net1 is min (O(dwnd2), O(2wd)).

4.6 Experimental Results

We evaluate the effectiveness of our protocol on real firewalls and evaluate the efficiency of

our protocol on both real and synthetic firewalls. We implemented our protocol using Java

1.6.0. Our experiments were carried out on a PC running Linux with 2 Intel Xeon cores and

16GB of memory.

4.6.1 Evaluation Setup

We conducted experiments over five groups of two real adjacent firewalls. Each firewall

examines five fields, source IP, destination IP, source port, destination port, and protocol.

The number of rules ranges from dozens to thousands. In implementing the commutative

encryption, we used the Pohlig-Hellman algorithm [64] with a 1024-bit prime modulus and

103

160-bit encryption keys. To evaluate the effectiveness, we conducted our experiments over

these five groups of adjacent firewalls. To evaluate the efficiency, for two firewalls in each

group, we measured the processing time, the comparison time, and the communication cost.

Due to security concerns, it is difficult to obtain a large number of real adjacent firewalls.

To further evaluate the efficiency, we generated a large number of synthetic firewalls based

on Singh et al. ’s method [74]. The synthetic firewalls also examine the same five fields as

real firewalls. The number of rules in the synthetic firewalls ranges from 200 to 2000, and

for each number, we generated 10 synthetic firewalls. To measure the efficiency, we first

processed each synthetic firewall as FW1 and then measured the processing time and com-

munication cost of two parties. Second, we processed each synthetic firewall as FW2 and

measured the processing time and communication cost. Third, we measured the comparison

time for every two synthetic firewalls. We did not evaluate the effectiveness of our proto-

col on synthetic firewalls because they are generated randomly and independently without

considering whether two firewalls are adjacent or not.

4.6.2 Methodology

In this section, we define the metrics to measure the effectiveness of our protocol. Given

our firewall optimization algorithm A, and two adjacent firewalls FW1 and FW2, we use

A(FW1, FW2) to denote a set of inter-firewall redundant rules in FW2. Let |FW | de-

note the number of rules in FW and |A(FW1, FW2)| denote the number of inter-firewall

redundant rules in FW2. To evaluate the effectiveness, we define a redundancy ratio

β(A(FW1, FW2)) =
|A(FW1,FW2)|

|FW2|
. This ratio β(A(FW1, FW2)) measures what percentage

of rules are inter-firewall redundant in FW2.

104

4.6.3 Effectiveness and Efficiency on Real Policies

Table 4.1 shows the redundancy ratios for 5 real firewall groups. Column 1 shows the names

of five real firewall groups. Columns 2 and 3 show the names of firewalls FW1 and FW2,

respectively. Column 4 shows the number of rules in firewall FW2. Figure 5.10 shows the

processing time and communication cost of two parties Net1 and Net2 when processing

FW1; Figure 5.11 shows the processing time and communication cost of the two parties

when processing FW2. Figure 4.11 shows the comparison time of each group.

Group FW1 FW2 |FW2| redundancy ratio

Econ Econ1 Econ2 129 17.1%

Host Host1 Host2 139 49.6%

Wan Wan1 Wan2 511 1.0%

Ath Ath1 Ath2 1308 14.4%

Comp Comp1 Comp2 3928 14.7%

Table 4.1. Redundancy ratios for 5 real firewall groups

Our protocol achieves significant redundancy ratio on four real firewall groups. For 5 real

firewall groups, our protocol achieves an average redundancy ratio of 19.4%. Particularly, for

the firewall group Host, our protocol achieves 49.6% redundancy ratio, which implies that

almost half of rules in Host2 are inter-firewall redundant rules. For firewall groups Econ,

Ath, and Comp, our protocol achieves 14.4%-17.1% redundancy ratios, which implies that

about 15% of rules in FW2 are redundant in these three groups. Only for one firewall group

Wan, our protocol achieves 1.0% redundancy ratio. We observed that most adjacent real

firewalls have many inter-firewall redundant rules. Thus, our protocol can effectively remove

inter-firewall redundant rules and significantly improve network performance.

Our protocol is efficient for processing and comparing two real firewalls. When processing

FW1 in the 5 real firewall groups, the processing time of Net1 is less than 2 seconds and the

processing time of Net2 is less than 1 second. When processing FW2 in those real firewall

105

Econ1 Host1 Wan1 Ath1 Comp1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Net1
Net2

(a) Processing time

Econ1 Host1 Wan1 Ath1 Comp1
0

10

20

30

40

50

60

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

Net1
Net2

(b) Communication cost

Figure 4.9. Processing FW1 on real firewalls

106

Econ2 Host2 Wan2 Ath2 Comp2
0

2

4

6

8

10

P
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Net1
Net2

(a) Processing time

Econ2 Host2 Wan2 Ath2 Comp2
0

50

100

150

200

250

300

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

Net2

(b) Communication cost

Figure 4.10. Processing FW2 on real firewalls

107

groups, the processing time of Net1 is less than 4 seconds and the processing time of Net2

is less than 10 seconds. The comparison time of two firewalls is less than 0.07 seconds. The

total processing time of two parties is less than 15 seconds.

Econ Host Wan Ath Comp
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Five groups of real firewalls

S
e
a
r
c
h
i
n
g

t
i
m
e

(
s
)

Figure 4.11. Comparing two real firewalls

Our protocol is efficient for the communication cost between two parties. When processing

firewall FW1 in the 5 real firewall groups, the communication cost from Net1 to Net2 and

that from Net2 to Net1 are less than 60 KB. Note that the communication cost from Net1

to Net2 and that from Net2 to Net1 are the same because Net1 and Net2 encrypt the

same number of values and the encrypted values have the same length, i.e., 1024 bits in our

experiments. When processing FW2 in those real firewall groups, the communication cost

from Net2 to Net1 is less than 300 KB. The total communication cost between two parties

is less than 500 KB, which can be sent through the current network (e.g., DSL network)

around 10 seconds.

108

200 400 600 800 100012001400160018002000
1e−1

1e+0

1e+1

1e+2

1e+3

Number of rules in FW1

P
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Net1
Net2

(a) Ave. processing time

200 400 600 800 100012001400160018002000
0

50

100

150

200

250

300

350

400

450

Number of rules in FW1

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

Net1
Net2

(b) Ave. communication cost

Figure 4.12. Processing FW1 on synthetic firewalls

109

200 400 600 800 100012001400160018002000
1e+0

1e+1

1e+2

1e+3

Number of rules in FW2

P
r
o
c
e
s
s
i
n
g

t
i
m
e

(
s
)

Net1
Net2

(a) Ave. processing time

200 400 600 800 100012001400160018002000
0

200

400

600

800

1000

1200

1400

1600

Number of rules in FW2

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

Net2

(b) Ave. communication cost

Figure 4.13. Processing FW2 on synthetic firewalls

110

4.6.4 Efficiency on Synthetic Policies

For the synthetic firewalls, Figure 5.12 and Figure 5.13 show the average processing time and

communication cost of two parties Net1 andNet2 for processing FW1 and FW2, respectively.

Figure 5.14 shows the average comparison time for every two synthetic firewalls. Note that

the vertical axis of two figures 5.12(a) and 5.13(a) are in a logarithmic scale.

Our protocol is efficient for processing and comparing two synthetic firewalls. When pro-

cessing the synthetic firewalls as FW1, the processing time of Net1 is less than 400 seconds

and the processing time of Net2 is less than 5 seconds. When processing the synthetic fire-

walls as FW2, the processing time of Net1 is less than 400 seconds and the processing time

of Net2 is less than 20 seconds. The comparison time of two synthetic firewalls is less than

4 seconds.

Our protocol is efficient for the communication cost between two synthetic firewalls. When

processing the synthetic firewalls as FW1, the communication cost from Net1 to Net2 and

that fromNet2 toNet1 grow linearly with the number of rules in FW1, and both costs are less

than 450 KB. Similarly, when processing synthetic firewalls as FW2, the communication cost

from Net2 to Net1 grows linearly with the number of rules in FW2, and the communication

cost from Net2 to Net1 is less than 1600 KB.

111

0
400

800
1200

1600
2000

0
400

800
1200

1600
2000

0

1

2

3

4

5

of rules in FW1# of rules in FW2

S
e
a
r
c
h
i
n
g

t
i
m
e

(
s
)

Figure 4.14. Comparing two synthetic firewalls

112

CHAPTER 5

Privacy Preserving Cross-Domain

Network Reachability Quantification

5.1 Introduction

5.1.1 Background and Motivation

Network reachability quantification is important for understanding end-to-end network be-

havior and detecting the violation of security policies. Several critical concerns like router

misconfiguration, policy violations and service availability can be verified through an accu-

rate quantification. Network reachability for a given network path from the source subnet

to the destination subnet is defined as the set of packets that are allowed by all network

devices on the path. Quantifying network reachability is a difficult and challenging problem

for two reasons. First, various complex mechanisms, such as Access Control Lists (ACLs),

dynamic routing, and network address translation (NAT), have been deployed on network

devices for restricting network reachability. Therefore, to perform an accurate analysis, ad-

ministrators need to collect all the reachability restriction information from these network

113

devices. Collecting such information could be very difficult due to the privacy and security

concerns. Second, the explosion of the Internet has caused an increase in the complexity and

sophistication of these devices, thus, making reachability analysis computationally expensive

and error-prone.

The current practice of reachability management is still “trial and error” due to the lack

of network reachability analysis and quantification tools. Such practice leads to significant

number of configuration errors, which has been shown to be the major cause of failure

for Internet services [61]. Industry research also shows that a significant percentage of

human effort and monetary resources are employed in maintaining the operational status

of the network [43]. Several critical business applications and sensitive communication are

affected severely due to network outages caused by misconfiguration errors. These events

place a tremendous amount of pressure on network operators to debug the problems quickly.

Thus, systematic analysis and quantification tools of network reachability are needed for

understanding end-to-end network behavior and detecting configuration errors.

5.1.2 Limitation of Prior Art

Performing network reachability analysis is a complex task that involves aggregating and

analyzing the reachability restriction information from all the devices along a given network

path. The current practice of verifying reachability is to send probing packets. However,

probing has two major drawbacks. First, probing is expensive to quantify network reacha-

bility because it needs to generate and send significant amount of packets. Second, probing

is inaccurate, e.g., it cannot probe the open ports with no server listening on them. Due

to these drawbacks of probing, many approaches were proposed to address the reachability

problem [12, 42, 44, 54, 75, 77]. The main assumption in all these approaches is that the

reachability restriction information of each network device and other configuration state are

114

known to a central network analyst, who is quantifying the network reachability. However, in

reality, it is common that the network devices along a given path belong to different parties

where the reachability restriction information cannot be shared with others including the

network analyst. Figure 5.1 shows a typical scenario of network reachability, where User1

wants to know what packets he can send to User2 through the given path. However, the

network devices deployed along this path belong to three different parties, i.e., S1 and FW1

belong to Subnet1, FW2, FW3, and R1 belong to ISP, FW4 and S2 belong to Subnet2.

Subnet
1

ISP Subnet
2

Firewall Router Switches

User
1

S
1

FW
1

R
1

FW
2

FW
3

FW
4 S

2 User
2

Figure 5.1. An example of end-to-end network reachability

Keeping the reachability restriction information private is important for two reasons. First,

such information is often misconfigured and has security holes that can be exploited by

attackers if it is disclosed. In reality, most firewall policies have security holes [76]. Disclosing

ACLs allows attackers to analyze and utilize the vulnerabilities of subnets along a given

path. For example, if ACLs along a path from Subnet1 to Subnet2 do not block some

worm traffic, attackers can break into Subnet2 from Subnet1. In practice, neither ISPs nor

private networks disclose their ACLs. Second, the reachability restriction information of a

network device contains private information, e.g., the ACLs of a network device contain the

IP addresses of servers, which can be used by attacker to launch more targeted attacks. If

such information of one device can be shared with other devices, an attacker needs to capture

115

only a single device (or a small subset) to know the security profile of the entire network,

i.e., the sensitive information in the ACLs can be abused for gaining profit or to disrupt

important services across the network. In practice, even within an organization, often no

employees other than the firewall administrators are allowed to access their firewall policies.

5.1.3 Cross-Domain Quantification of Network Reachability

To our best knowledge, no prior work has been proposed to address the problem of privacy-

preserving network reachability quantification. We proposed the first privacy-preserving

protocol for quantifying network reachability for a given network path across multiple parties.

First, for the network devices belonging to each party, we convert the reachability restriction

information of these devices to an access control list (ACL) by leveraging the existing network

reachability quantification tool [44]. This tool takes as the input the reachability restriction

information, including ACLs, all possible network transforms (e.g., NAT and PAT), and

protocol states (e.g., connection-oriented and state-less), and outputs an ACL. Note that

ACLs are the most important security component for network devices to filter the traffic.

Considering the example in Figure 5.1, Figure 5.2 shows the three resulting ACLs, A1, A2,

and A3, for Subnet1, ISP, and Subnet2, respectively. For ease of presentation, in the rest

of work, we use “ACL” to denote the resulting ACL converted from multiple ACLs as well

as other reachability restriction information in one party. Second, we calculate the set of

packets that are accepted by all the resulting ACLs on the given network path in a privacy-

preserving manner. This calculation requires the comparison of the rules in all the ACLs,

which is complex and error-prone.

Our proposed cross-domain quantification approach of network reachability can be very

useful for many applications. Here we give two examples. First, a global view of the network

reachability can help internet service providers (ISPs) to define better QoS policies. For

116

Subnet
1

ISP Subnet
2

A
1

A
2

A
3User

1
User

2

Figure 5.2. Three resulting ACLs converted from Figure 5.1

example, the knowledge of the different paths through which a particular type of traffic is

allowed by the ACLs can help the ISPs to maintain a rated list of the best-quality paths in

case of path failures. Second, since the network reachability is crucial for many internet

companies, performing a privacy-preserving computation of the network reachability could

become a new business for the ISPs and other parties that involve in this computation.

5.1.4 Technical Challenges

There are three key challenges in the privacy preserving quantification of network reachabil-

ity. (1) It is computationally expensive. An ACL may consist of many rules, and each rule

consists of multiple fields. Therefore, comparing multiple ACLs with a large number of rules

can be quite expensive, even if only a few ACLs are involved in the process. Furthermore,

the complexity of comparison can be expensive due to overlapping rules resulting in many

comparisons. (2) Communication cost is high as even calculating the intersection of a small

number of ACLs is a tedious process and requires a number of messages to be exchanged

among different parties. (3) Protecting the privacy of the ACL rules is crucial. Since a rule

has to be sent to other parties to enable comparison, it is necessary to propose a protocol

that will not reveal the rule but still allows the different ACLs to calculate the intersection.

117

5.1.5 Our Approach

In this work, we propose the first cross-domain privacy-preserving protocol for quantifying

network reachability. We consider n ACLs (n ≥ 2) in a given network path and each ACL

belongs to a distinct party. Starting with the destination ACL rules, our protocol calculates

the intersection of these rules with the rules of the adjacent ACL. Next, using the results

of this comparison, the adjacent ACL repeats the process with the next adjacent ACL until

the source ACL is reached. At this point, the source ACL obtains the intersection of the

rules from all ACLs along the given path. Briefly, our protocol consists of three phases: ACL

preprocessing, ACL encoding and encryption, and ACL comparison.

In the first phase, we transform all the ACLs into an equivalent representation, Firewall

Decision Diagram (FDD) [36], and then extract the non-overlapping rules with accept de-

cisions. In the second phase, to perform privacy preserving comparison, we first transform

the rules into a sequence of prefix numbers and then encrypt these numbers with secret

keys of different parties. This phase enables different parties to compute the intersection

of non-overlapping rules in their ACLs without revealing these rules. In the third phase,

the destination ACL computes the intersection of its non-overlapping rules with the rules

from its adjacent ACL, and then the adjacent ACL further repeats this computation with its

adjacent ACL until the source ACL is reached. Note that the comparison result of every two

adjacent ACLs is encrypted with multiple secret keys so that no party can reveal the com-

parison result independently. Finally, all the ACLs collaboratively decrypt the encrypted

intersection of the non-overlapping rules, but only the first party (with the source ACL)

obtains the result. This intersection represents the set of packets that are allowed by all

ACLs on the given path.

118

5.1.6 Summary of Experimental Results

We performed extensive experiments over real and synthetic ACLs. Our experimental results

show that the core operation of our protocol is efficient and suitable for real applications.

The online processing time of an ACL with thousands of rules is less than 25 seconds and

the comparison time of two ACLs is less than 5 seconds. The communication cost between

two ACLs with thousands of rules is less than 2100 KB.

5.1.7 Key Contributions

We make three key contributions. (1) We propose the first cross-domain privacy-preserving

protocol to quantify network reachability across multiple parties. Our protocol can accu-

rately compute the intersection of the rules among the ACLs along a given network path

without the need to share these rules across those parties. This is the first step towards

privacy-preserving quantification of network reachability and it can be extended to other

network metric measurements that are sensitive in nature. (2) We propose an optimization

technique to reduce computation and communication costs. It reduces the number of ACL

encryptions and the number of messages from O(n2) to O(n). (3) We conducted extensive

experiments on both real and synthetic ACLs and the result shows that our protocol is

efficient and suitable for real applications.

5.2 Problem Statement and Threat Model

5.2.1 Problem Statement

We focus on quantifying the end-to-end network reachability for a given network path with

multiple network devices belonging to different parties. The network devices are connected

with physical interfaces for filtering outgoing packets and incoming packets. A network path

119

is a unidirectional path for transferring packets from the source to the destination. Along the

given network path, there are multiple ACLs and other restriction information for filtering

these packets. Multiple ACLs and other restriction information may belong to the same

party. To convert them to a single ACL for one party, we first employ the existing network

reachability approach, Quarnet [44], to convert them to reachability matrices. Second, we

use the query language of Quarnet to obtain a set of packets that can pass through the

given path within the party. Finally, we convert the set of packets to a single ACL. Without

loss of generality, in the rest of work, we use the term “ACL” to denote the resulting ACL

converted from multiple ACLs as well as other reachability restriction information in one

party. Given an ACL A, let M(A) denote the set packets that are accepted by A. Given a

network path with n ACLs A1, A2, ..., An for transferring packets from A1 to An, where Ai

belongs to the party Pi (1 ≤ i ≤ n), quantifying the network reachability is computing the

intersection among M(A1), · · · ,M(An), i.e., M(A1) ∩M(A2) · · · ∩M(An).

In our context, we aim to design a privacy preserving protocol which enables the source

ACL A1 to compute the intersection of n ACLs (n ≥ 2), M(A1)∩M(A2) · · ·∩M(An) without

revealing rules in an ACL Ai (1 ≤ i ≤ n) to any other party Pj (j 6= i). We make the following

four assumptions. (1) The destination of the network path cannot be an intermediate network

device. In other words, the destination ACL An should filter the packets to end users but not

to another network device. (2) The source ACL A1 is not allowed to compute the intersection

of a subset of all ACLs along the given network path. Because A1 can easily reveal some rules

in one ACL Ai by three steps. First, compute M(A1) ∩ · · · ∩ M(Ai−1). Second, compute

M(A1) ∩ · · · ∩M(Ai). Third, compute M(A1) ∩ · · · ∩M(Ai−1)−M(A1) ∩ · · · ∩M(Ai).

Note that if one party does not want to involve in this process or only wants to provide

part of its ACL rules, the party P1 can still run the protocol to compute network reachability

among the remain ACLs. This requirement is very important especially for the party who

really cares about the security of its private network, e.g., a bank who will not share with

120

other parties the information that what packets can enter into its private network.

5.2.2 Threat Model

We consider the semi-honest model, where each party follows our protocol correctly but it

may try to learn the ACL rules of other parties [35]. For example, the party P1 may use

the intermediate results to reveal the ACL rules of other parties. The semi-honest model is

realistic in our context because a malicious party cannot gain benefits by providing a forged

ACL or not following our protocol.

5.3 Privacy-Preserving Quantification of Network

Reachability

To compute the network reachability from A1 to An, our privacy-preserving protocol consists

of three phases, ACL preprocessing, ACL encoding and encryption, and ACL comparison. In

the first phase, ACL preprocessing, each party converts its ACL to a sequence of accepting

rules. The union of the matching sets of these accepting rules is equal to the set of packets

that are accepted by the ACL. In the second phase, ACL encoding and encryption, each

party encodes and encrypts each field of its accepting rules for preserving the privacy of

its ACL. In the third phase, ACL comparison, all parties compare their ACLs and finally

the party P1 finds out the set of packets that are accepted by all ACLs. Particularly, Pn−1

compares the encoded and encrypted accepting rules from An−1 with those from An, and

finds out the multiple accepting rules whose union is equal to the intersection of M(An) and

M(An−1), M(An) ∩M(An−1). Then, Pn−2 compares the accepting rules from ACL An−2

with the resulting accepting rules in the first step, and finds out the multiple accepting rules

whose union is equal to M(An)∩M(An−1)∩M(An−2). Repeat this step until P1 finds out

121

the multiple accepting rules whose union is equal to M(A1) ∩ · · · ∩M(An). Note that, the

resulting accepting rules of each step are in an encrypted format which prevents any party

from revealing these rules by itself. To reveal the final accepting rules, P1 requires all other

parties to decrypt these rules with their private keys and then P1 decrypts these rules.

The basic problem of privacy-preserving network reachability is how to compute the in-

tersection among multiple range rules belonging to different parties in a privacy preserving

manner. This problem boils down to the problem of computing intersection of two ranges

[a, b] and [a′, b′], denoted as [a, b] ∩ [a′, b′]. Thus, we first describe the privacy-preserving

protocol for computing [a, b] ∩ [a′, b′], and then describe the three phases in our network

reachability protocol.

5.3.1 Privacy-Preserving Range Intersection

To compute the intersection of a range [a, b] from Ai and a range [a′, b′] from Aj , our basic

idea is to check which range among [min, a−1], [a, b], and [b+1, max] includes a′ or b′, where

min and max are the minimum and maximum numbers, respectively. Thus, the problem

of computing [a, b] ∩ [a′, b′] boils down to the problem of checking whether a number is in

a range, e.g., a′ ∈ [min, a − 1], which can be solved by leveraging the prefix membership

verification scheme in [48]. The idea of prefix membership verification is to convert the

problem of checking whether a number is in a range to the problem of checking whether two

sets have common elements. Our scheme consists of six steps:

(1) The party Pi converts range [a, b] to three ranges [min, a−1], [a, b], and [b+1, max],

where min and max are the minimum and maximum numbers of the corresponding field’s

domain, respectively. For example, [5,7] is converted to [0,4], [5,7], and [8,15], where 0 and

15 are the minimum and maximum numbers. Note that [min,a−1] and [b+1,max] may not

exist. If a=min, then [min, a−1] does not exist; if b=max, then [b+1,max] does not exist.

122

(2) The party Pi converts each range to a set of prefixes, whose union corresponds to the

range. Let S([min, a− 1]), S([a, b]), and S([b+1, max) denote the resulting prefixes for the

three ranges, respectively. For example, S([5, 7])={0101, 011*}, where “*” denotes that this

bit can be 0 or 1.

(3) The party Pj generates the prefix families of a and b, denoted as F(a) and F(b). The

prefix family F(a) consists of a and all the prefixes that contains a. Assuming w is the bit

length of a, F(a) consists of w + 1 prefixes where the l-th prefix is obtained by replacing

the last l − 1 bits of a by ∗. For example, as the binary representation of 6 is 0110, we

have F(6)={0110, 011*, 01**, 0***, ****}. It is easy to prove that a′ ∈ [a, b] if and only if

F(a′) ∩ S([a, b]) 6= ∅.

(4) Two parties Pi and Pj convert the resulting prefixes to numbers so that they can

encrypt them in the next step. We use the prefix numericalization scheme in [20]. This

scheme basically inserts 1 before ∗s in a prefix and then replaces every ∗ by 0. For example,

01** is converted to 01100. If the prefix does not contain ∗s, we place 1 at the end of

the prefix. For example, 1100 is converted to 11001. Given a set of prefixes S, we use

N (S) to denote the resulting set of numericalized prefixes. Thus, a′ ∈ [a, b] if and only if

N (F(a′)) ∩ N (S([a, b])) 6= ∅.

(5) Checking whether N (F(a′))∩N (S([a, b])) 6= ∅ is basically checking whether an element

from N (F(a′)) is equal to an element from N (S([a, b])). We use commutative encryption

(e.g., [64, 67]) to do this checking. Given a number x and two encryption keys Ki and Kj , a

commutative encryption satisfies the property ((x)Ki
)Kj

= ((x)Kj
)Ki

, i.e., encryption with

Ki and thenKj is equivalent to encryption withKj and thenKi. For ease of presentation, we

use (x)Kij
to denote ((x)Ki

)Kj
. In our scheme, to check whether N (F(a′))∩N (S([a, b])) 6=

∅, Pi first encrypts numbers in N (S([a, b])) with its private key Ki, then Pj further encrypts

them by its private key Kj and sends them back to Pi. Let N (S([a, b]))Kij
denote the result.

Second, Pj encrypts numbers in N (F(a′)) with Kj and then Pi encrypts them by Ki. Let

123

Numericalize the prefixes

Encrypt by P1

]7 ,5[

Generate three ranges

]15,8[],7 ,5[4], [0,

Convert ranges to prefixes

**}*{1,
*011

0101
,

0100
00

!
"

#
$
%

!
"

#
$
%

{11000},
01110
01011

,
01001
00100

!
"

#
$
%

!
"

#
$
%

}{(11000),
(01110)

(01011)
,

(01001)

(00100)

1K
1K

1K

1K

1K

!
"

#
$
%

!
"

#
$
%

Encrypt by P2

}{(11000)
(01110)

(01011)

(01001)

(00100)

12K
12K

12K

12K

12K

!
"

#
$
%

!
"

#
$
%

Numericalize prefixes

Encrypt by P2

]15 ,6[

Construct prefix family

&

&
!
"

&#

&
$
%

&

&
!
"

&#

&
$
%

***1 *,*11
*111 1111,

,

**0* *,*01
*011 0110,

Encrypt by P1

&

&
!
"

&#

&
$
%

&

&
!
"

&#

&
$
%

10000
11000 11100,
11110 11111,

,
10000

01000 01100,
01110 01101,

&

&
!

"

&
#

&
$

%

&

&
!

"

&
#

&
$

%

2K

2K2K

2K2K

2K

2K2K

2K2K

(10000)

(11000) ,(11100)

(11110) ,(11111)

,

(10000)

(01000) ,(01100)

(01110) ,(01101)

&

&
!

"

&
#

&
$

%

&

&
!

"

&
#

&
$

%

21K

21K21K

21K21K

21K

21K21K

21K21K

(10000)

(11000)(11100)

(11110)(11111)

(10000)

(01000)(01100)

(01110)(01101)

Figure 5.3. Privacy-preserving range intersection

F(a′)Kji
denote the result. Finally, Pi can check whether there is a common element in two

sets N (S([a, b]))Kij
and F(a′)Kji

.

Through the previous steps, Pi knows that which range among [min, a − 1], [a, b], and

[b+ 1, max] includes a′ or b′. Based on this information, Pi can compute [a, b] ∩ [a′, b′]. For

example, if a′ ∈ [min, a− 1] and b′ ∈ [a, b], [a, b] ∩ [a′, b′] = [a, b′]. Note that a′ and b′ are in

the form of F(a′)Kji
and F(b′)Kji

. Pi cannot reveal a
′ and b′ without knowing Pj ’s private

key Kj . Figure 5.3 illustrates the process of computing the intersection of [5, 7] (from A1)

and [6, 15] (from A2).

5.3.2 ACL Preprocessing

In the ACL preprocessing phase, each party Pi (1≤i≤n) computes the set of packets M(Ai)

that are accepted by its ACL Ai. Pi first converts its ACL to an equivalent sequence of

124

non-overlapping rules. Non-overlapping rules have an important property, that is, for any

two non-overlapping rules nr and nr′, the intersection of the two corresponding matching

sets is empty, i.e., M(nr)∩M(nr′)=∅. Thus, any packet p matches one and only one non-

overlapping rule converted from Ai and the decision of this non-overlapping rule is the

decision of Ai for the packet p. Therefore, instead of computing the set M(Ai), Pi only

needs to retrieve all the non-overlapping accepting rules because the union of the matching

sets of these rules is equal to M(Ai). The preprocessing of each Ai includes three steps:

(1) Pi converts its ACL Ai to an equivalent acyclic directed graph, called firewall decision

diagram (FDD) [36]. An FDD construction algorithm is presented in [49]. Figure 5.4(b)

shows the FDD constructed from Figure 5.4(a).

dFFr

aFFr

dFFr

aFFr

 !"!

 !"!

 !"!

 !"!

]15,0[]15,0[:
]8 ,0[]7 ,5[:
]15,5[]7 ,5[:
]15,7[]4 ,0[:

214

213

212

211

FDD construction

Extract non-overlapping

accept rules

aFFnr

aFFnr

 !"!

 !"!

]4 ,0[]7 ,5[:
]15,7[]4 ,0[:

212

211

[0, 4] [8, 15]

F1

[0, 6]
F2 F2

[0,4]
F2

[7,15] [9,15] [0,15]

[5, 7]

[5,8]

aad d d d

(a)

(b)

(c)

Figure 5.4. The Conversion of A1

(2) Pi extracts non-overlapping accepting rules from the FDD. We do not consider non-

overlapping discarding rules because the packets discarded by any ACL Ai cannot pass

through the path. Figure 5.4(c) shows the non-overlapping accepting rules extracted from

the FDD in Figure 5.4(b).

125

P1 (K1) P2 (K2) P3 (K3)

aFnr

aFnr

 !

 !

]7 ,5[:

]3 ,0[:

1
)1(

2

1
)1(

1

aFnr

aFnr

 !

 !

]51 ,6[:

]2 ,0[:

1
)2(

2

1
)2(

1

aFnr

aFnr

 !

 !

]8 ,4[:

]2 ,0[:

1
)3(

2

1
)3(

1

A1 A2 A3

Figure 5.5. The example three adjacent ACLs

After ACL preprocessing, the problem of privacy preserving quantification of network

reachability boils down to the problem of privacy preserving range intersection, which is in

fact the basic problem in this work. Next, P1 needs to compare its accepting rules from A1

with those from other n−1 ACLs. Without loss of generality, in the next two subsections, we

use a simplified example in Figure 5.5 to show that how to compute the network reachability

among three ACLs. Each ACL has only one field and the domain for the field is [0,15]. Note

that in Figure 5.5, nr
(i)
1 and nr

(i)
2 denote two non-overlapping accepting rules for ACL Ai

(1≤i≤3). Obviously, the network reachability among these three ACLs can be denoted as

two accepting rules F1∈[0, 2]→a and F1∈[6, 7]→a. Next, we will show that how to compute

these two rules in a privacy preserving manner.

5.3.3 ACL Encoding and Encryption

In the ACL encoding and encryption phase, all parties need to convert their non-overlapping

accepting rules to another format such that they can collaboratively compute the network

reachability while one party cannot reveal the ACL of any other party. To achieve this

purpose, each party first encodes its non-overlapping accepting rules and then encrypts

each field of these rules. Recall the privacy-preserving range intersection scheme in Section

5.3.1, two parties employ different encoding methods, one converts a range [a, b] to a set of

prefixes S([a, b]), and another converts a number a′ to its prefix family F(a′). Thus, in this

126

phase, there are two different encoding and encryption methods for different ACLs. Assume

that each party Pi (1≤i≤n) has a private key Ki. Each party Pj (1≤j≤n−1) encodes the

non-overlapping accepting rules from Aj by converting each range to a set of prefixes and

then encrypts each numericalized prefix by other parties Pj , Pj+1, · · · , Pn. Let H denote

the encoding function used by the party Pj (1≤j≤n−1). Let F1 ∈ [a1, b1] ∧ · · · ∧ Fd ∈

[ad, bd] denote the predicate of an accepting rule over d fields. The encoding and encryption

result of this accepting rule for Aj is HKj···n
([a1, b1]) ∧ · · · ∧ HKj···n

([ad, bd]). The party

Pn encodes the non-overlapping accepting rules from An by converting each range to two

prefix families and then encrypts each numericalized prefix by itself. Let L denote the

encoding function used by the party Pn. Considering the above accepting rule, the result

is LKn([a1, b1]) ∧ · · · ∧ LKn([ad, bd]). We discuss the procedure of these two encoding and

encryption methods in detail as follows.

Encoding and Encryption of ACL Aj (1 ≤ j ≤ n− 1)

(1) For each non-overlapping accepting rule F1 ∈ [a1, b1] ∧ · · · ∧ Fd∈[ad, bd], Pj converts

each range [al, bl] (1 ≤l≤d) to three ranges [minl, al − 1], [al, bl], [bl + 1, maxl], where minl

and maxl are the minimum and maximum values for the l-th field, respectively. Figure

5.6(b) shows the ranges generated from Figure 5.6(a).

(2) Pj converts each range to a set of prefixes. Figure 5.6(c) shows the prefixes generated

from Figure 5.6(b). That is, for the three ranges converted from [al, bl], compute S([minl, al−

1]), S([al, bl]), S([bl + 1, maxl]).

(3) Pj unions all these prefix sets and permutes these prefixes. Figure 5.6(d) shows the

resulting prefix set. This step has two benefits. First, it avoids encrypting and sending

duplicate prefixes, and hence, significantly reduces the computation and communication

costs for the next two steps. Second, it enhances the security, any other parties except Pj

cannot reconstruct the non-overlapping accepting rules, because it is difficult to correlate

the prefixes to their corresponding rules without the knowledge of the original ACL.

127

!
"

#
$
%

,010* ***1 011*,
0101 0100, *,00*

Numericalize the prefixes

!
"

#
$
%

01010 11000, 01110,
01011 01001, 00100,

Encrypt by P1

!
"

#
$
%

1K1K1K

1K1K1K

(01010) ,(11000) ,(01110)

(01011) ,(01001) ,(00100)

aFnr

aFnr

&'
&'
]7 ,5[:

]3 ,0[:

1
)1(

2

1
)1(

1

Compute complementary ranges

]15,8[],7 ,5[4], [0, :

]15,4[],3 ,0[:
)1(

2

)1(
1

nr

nr

Convert ranges to prefixes

**}*{1011*}, {0101,0100}, *,{00* :

**}*1 {010*, *},{00* :
)1(

2

)1(
1

nr

nr

Extract and permute the prefixes

!
"

#
$
%

123K123K123K

123K123K123K

(01010) ,(11000) ,(01110)

(01011) ,(01001) ,(00100)

Reconstruct rules

()

()
123K

123K

123K

123K

123K)1(
2

123K

123K
123K

)1(
1

(11000) ,
(01110)

(01011)
 ,

(01001)

(00100)
:

(11000)

(01010)
 , (00100):

!
"

#
$
%

!
"

#
$
%

!
"

#
$
%

nr

nr

Encrypt by P2 and P3

(a)

(c)

(d)

(f)

(b)

(e)

(h)

(g)

Figure 5.6. Encoding and encryption of ACL A1

128

(4) Pj numericalizes and encrypts each prefix using Kj . Figure 5.6(e) and 5.6(f) show the

numericalized and encrypted prefixes.

(5) Pj sends the resulting prefixes to Pj+1 which further encrypts them with its private

key Kj+1. Then, Pj+1 sends the result prefixes to Pj+2 which further encrypts them with

Kj+2. This process is repeated until Pn encrypts them. Finally, Pn sends to Pj the resulting

prefixes that are encrypted n−j+1 times. Figure 5.6(f) shows the result after encrypting by

P1 and Figure 5.6(g) shows the result after encrypting by P2 and P3.

(6) Pj reconstructs the non-overlapping accepting rules from the multiple encrypted pre-

fixes because Pj knows which prefix belongs to which field of which rule.

Based on the above steps, the encoding and encryption function used by Pj (1≤j≤n−1)

is defined as HKj···n
([al, bl]) = (N (S(minl, al − 1))Kj···n

, N (S(al, bl))Kj···n
, N (S(bl +

1, maxl))Kj···n
), where [al, bl] is the range in the l-th field of a rule in Aj . Figure 5.8(a)

illustrates the encoding and encryption result of ACL A2 in Figure 5.5. The only difference

between operations for A1 and A2 is that A1’s numericalized prefixes are encrypted by all

the three parties while A2’s numericalized prefixes are only encrypted by P2 and P3.

Encoding and Encryption of ACL An

(1) For each range [al, bl] of a non-overlapping rule, Pn generates two prefix families F(al)

and F(bl). Figure 5.7(b) shows the result from Figure 5.7(a).

(2) Pn numericalizes and encrypts the prefixes using its private key Kn. Figure 5.7(c)

shows the resulting prefixes.

Based on these steps, the encoding and encryption function used by An is defined as

LKn([al, bl]) = (N (F(al))Kn,N (F(bl))Kn)

where [al, bl] is the range in the l-th field of a rule.

129

)}8(),4({ :

)}2(),0({ :
(3)

2

(3)
1

FF

FF

nr

nr

Compute prefix

families

aFnr

aFnr

 !

 !

]8 ,4[:

]2 ,0[:

1
)3(

2

1
)3(

1
(a)

(b)

" # " #

" # " # })8(,)4({ :

})2(,)0({ :

3K3K
(3)

2

3K3K
(3)

1

FNFN

FNFN

nr

nr
(c)

Numericalize and

encrypt by P3

Figure 5.7. Encoding and encryption of ACL A3

5.3.4 ACL Comparison

After the first two phases, each party Pj (1≤j≤n−1) converts its ACL Aj to a sequence

of encrypted non-overlapping accepting rules and Pn converts its ACL An to a sequence

of encrypted numbers. Figure 5.8(a) shows the encrypted non-overlapping rules converted

from A2 in Figure 5.5 and Figure 5.8(b) shows the encrypted numbers converted from A3 in

Figure 5.5.

In the ACL comparison phase, we need to compare the n sequences of encrypted non-

overlapping accepting rules or encrypted numbers from every two adjacent ACLs. Without

loss of generality, we only present the comparison between An−1 and An. This comparison

includes four steps:

(1) Pn sends the resulting sequence to Pn−1 which further encrypts them with its pri-

vate key Kn−1. Let LKn([a
′
1, b

′
1]) ∧ · · · ∧ LKn([a

′
d, b

′
d]) denote the encoded and encrypted

result of the accepting rule nr′ from An. Pn−1 encrypts it with Kn−1, i.e., computes

LKn(n−1)
([a′1, b

′
1])∧ · · · ∧ LKn(n−1)

([a′d, b
′
d]). Figure 5.8(c) shows the encrypted result from

Figure 5.8(b).

(2) For each non-overlapping accepting rule nr from An−1, Pn−1 computes nr∩nr′. Let

HK(n−1)n
([a1, b1]) ∧ · · · ∧ HK(n−1)n

([ad, bd]) denote the encoded and encrypted result of

130

nr. To compute nr∩nr′, for each field l (1≤l≤d), Pn−1 compares HK(n−1)n
([al, bl]) with

LKn(n−1)([a
′
l, b

′
l]) where

HK(n−1)n
([al, bl]) = (N (S(minl, al − 1))K(n−1)n

,

N (S(al, bl))K(n−1)n
,N (S(bl + 1, maxl))K(n−1)n

)

LKn(n−1)
([a′l, b

′
l]) = (N (F(a′l))Kn(n−1)

,N (F(b′l))Kn(n−1)
). According to the privacy-

preserving range intersection, to check whether a′l ∈ [minl, al − 1], Pn−1 checks whether

N (S(minl, al − 1))K(n−1)n
∩ N (F(a′l))Kn(n−1)

= ∅. Similarly, Pn−1 checks whether

a′l ∈ [al, bl], a
′
l ∈ [bl+1, maxl], and whether b′l ∈ [minl, al−1], b′l ∈ [al, bl], b

′
l ∈ [bl+1, maxl].

Based on the above result, Pn−1 computes the intersection between [al, bl] and [a′l, b
′
l], i.e.,

[al, bl]∩[a
′
l, b

′
l]. Let Tl denote [al, bl]∩[a

′
l, b

′
l]. For example, if a′l ∈ [al, bl] and b′l ∈ [bl+1, maxl],

the condition al ≤ a′l ≤ bl < b′l holds and hence Tl = [a′l, bl]. If for any Tl (1 ≤ l ≤ d) the

condition Tl 6= ∅ holds, then nr ∩ nr′ = T1 ∧ · · · ∧ Td.

Note that the party Pn−1 cannot reveal a′l and b′l through this comparison because Pn−1

doesn’t know Pn’s private key Kn. Thus, if Tl = [a′l, bl], Pn−1 only knows N (F(a′l))Kn(n−1)

and bl. We denote the information that Pn−1 knows about Tl as {N (F(a′l))Kn(n−1)
, bl}.

Figure 5.8(d) shows the result after comparing A2 and A3. Note that the result may contain

the numbers from An−1’s non-overlapping accepting rules, which are not encrypted, e.g., the

number 6 in Figure 5.8(d).

(3) To preserve the privacy of An−1, the party Pn−1 encodes and encrypts the numbers

from An−1’s non-overlapping accepting rules, and then sends the result to Pn. For example,

for a number al, Pn−1 computes N (F(al))K(n−1)
. Figure 5.8(e) shows the result after

encoding and encrypting 6.

(4) To facilitate the next comparison with An−2, Pn−1 sends the comparison result to

Pn and then Pn encrypts the numbers from An−1’s non-overlapping accepting rules. Figure

5.8(f) shows the encryption result.

Repeat these four steps to further compare An−2 with the result stored in Pn. After

131

 ! !
 ! })8(6,{

})2(,)0({

32K

32K32K

FN

FNFN

Compute intersection

 ! !
 ! ! })8(,)4({ :

})2(,)0({ :

3K3K
(3)

2

3K3K
(3)

1

FNFN

FNFN

nr

nr

(a)

 ! !
 ! ! })8(,)4({ :

})2(,)0({ :

32K32K
(3)

2

32K32K
(3)

1

FNFN

FNFN

nr

nr

"
#
$

%
&
'

"
#
$

%
&
'

(
"

(
#

$

(
%

(
&

'

"
#
$

%
&
'

23K

23K

23K

23K)2(
2

23K

23K

23K

23K

23K)2(
1

(11000)

(01110)
 ,

(01010)

(00100)
 :

(11000)

(01100)

(00111)

 ,
(00101)

(00010)
 :

nr

nr

(b)

(d)

Encrypt by P2

Encoding and encrypt

numbers from A2 by P2
 ! !
 ! ! })8(,)6({

})2(,)0({

32K2K

32K32K

FNFN

FNFN

(c)

(e)

 ! !
 ! ! })8(,)6({

})2(,)0({

32K23K

32K32K

FNFN

FNFN
(f)

Encrypt numbers from A2 by P3

Figure 5.8. Comparison of ACLs A2 and A3

all parties finish the comparison, Pn has the comparison result. Let {N (F(al))K1···n
,

N (F(bl))K1···n
} denote the l-th field of an encrypted rule in the result. To decrypt this

rule, Pn first decrypts it with Kn and sends to Pn−1. Then, Pn−1 decrypts it with Kn−1

and sends to Pn−2. Repeat this step until P1 decrypts the rule. Finally, P1 have the

result F1∈[a1, b1]∧· · · ∧Fd∈[ad, bd]. The comparison result of three ACLs in Figure 5.5 is

{N (F(0))K123
,N (F(2))K123

}, and {N (F(6))K123
,N (F(7))K123

}. Figure 5.9 shows the

decryption process of the comparison result.

132

Recover the original

value by P1

]7 ,6[
]2 ,0[

 ! !
 ! ! })7(,)6({

})2(,)0({

123K231K

321K321K

FNFN

FNFN

 ! !
 ! ! })7(,)6({

})2(,)0({

12K21K

21K21K

FNFN

FNFN

 ! !
 ! ! })7(,)6({

})2(,)0({

1K1K

1K1K

FNFN

FNFN

 ! !
 ! !})7(,)6({

})2(,)0({
FNFN
FNFN

Decrypt by P3

Decrypt by P2

Decrypt by P1

Figure 5.9. Decryption process of the comparison result

5.4 Security and Complexity Analysis

5.4.1 Security Analysis

The security of our protocol is based on the two important properties of the commutative

encryption. (1) Secrecy : for any x and key K, given (x)K , it is computationally infeasible

to compute K. (2) Indistinguishability : the distribution of (x)K is indistinguishable from

the distribution of x. Based on the first property, without knowing Pj ’s secret key Kj , the

party Pi (i 6= j) cannot decrypt the encrypted numbers from Pi. Furthermore, one party

Pi cannot statistically analyze encrypted numbers from Aj (i 6= j) because each party Pj

(1 ≤ j ≤ n− 1) unions the encrypted prefix numbers into one set before sending them to Pi

for further encryption. Therefore, after the first and second phases of our protocol (i.e., ACL

preprocessing and ACL encoding and encryption), the party Pi cannot reveal the ACL of any

other party. Based on the second property, we can prove that after the third phase (i.e., ACL

comparison), the party Pi only learns the limited information of the ACLs of other parties,

133

but such information cannot help it reveal them. Without loss of generality, we consider

the comparison between ACLs An−1 and An. For each non-overlapping rule nr from An−1,

let VFl,h
(nr) denote the h-th (1 ≤ h ≤ 3) prefix set for the field Fl (1 ≤ l ≤ d), e.g., in

Figure 5.8(a), VFl,1
(nr

(2)
1) denotes {00010, 00101}. Let N (F(al)) denote one set of prefixes

for the field Fl, e.g., N (F(0)) in Figure 5.8(c). The basic operation of the third phase is

to compare whether two sets from different ACLs, e.g., VFl,h
(nr) and N (F(al)), have a

common element. According to the theorems in multi-party secure computation [9, 34] and

the theorem in [21], we can prove that after the three phases, the party Pn−1 only learns

VFl,h
(nr) ∩N (F(al)) and the size of N (F(al)).

To prove this claim, based on the theorems of multi-party secure computation [9, 34],

we only need to prove that the distribution of the Pn−1’s view of our protocol cannot be

distinguished from a simulation that uses only VFl,h
(nr), VFl,h

(nr)∩N (F(al)), and the size

of N (F(al)). The theorem in [21] proves that Pn−1’s view of our protocol

YR = {(x1)Kn−1
, · · · , (xm)Kn−1

︸ ︷︷ ︸

xi∈VFl,h
(nr)∩N (F(al))

, (xm+1)Kn−1
, · · · , (xt)Kn−1

︸ ︷︷ ︸

xi∈VFl,h
(nr)−N (F(al))

}

cannot be distinguished from the simulation

YS = {(x1)Kn−1
, · · · , (xm)Kn−1

︸ ︷︷ ︸

xi∈VFl,h
(nr)∩N (F(al))

, zm+1, · · · , zt
︸ ︷︷ ︸

t−m=|VFl,h
(nr)−N (F(al))|

}

where zm+1, · · · , zt are random values and uniformly distributed in the domain of encrypted

numbers.

Knowing VFl,h
(nr)∩N (F(al)) and the size ofN (F(al)), Pn−1 cannot reveal the rules inAn

for two reasons. First, a numericalized prefix in VFl,h
(nr)∩N (F(al)) can be generated from

many numbers. Considering a numericalized prefix of 32-bit IP addresses b1b2 · · · bk10 · · ·0,

the number of possible IP addresses that can generate such prefix is 232−k. Furthermore,

after the comparison, Pn−1 sends to Pn the comparison result which is encrypted with

134

Pn−1’s secret key Kn−1. Without knowing Kn−1, Pn cannot reveal the comparison result,

and hence, cannot reveal the values from An−1. Second, the size of N (F(al)) cannot be used

to reveal the rules in An because for any al or bl in the field Fl of An, the size of N (F(al))

or N (F(bl)) is constant.

At the end of our protocol, only P1 knows the intersection of n ACLs, which includes

some information (i.e., numbers) from other ACLs. However, our goal is to preserve the

privacy of ACLs, not the privacy of the intersection result. Knowing such numbers cannot

help P1 to reveal an ACL rule of other parties for two reasons. First, a real ACL typically

consists of hundreds of rules and no one consists of only one rule. Second, P1 does not know

which numbers belong to Aj (2 ≤ j ≤ n), which two numbers form an interval, and which

d intervals form a rule in Aj . The number of possible combinations can be extremely large.

Considering the intersection in Figure 5.9, P1 cannot know which ACL, A2 or A3, contains

the number 2 or the number 6.

5.4.2 Complexity Analysis

In this section, we analyze the computation, space, and communication costs in our pro-

tocol. Let mi be the number of rules in ACL Ai (1 ≤ i ≤ n) and d be the number of

fields. For ease of presentation, assume that different fields have the same length, i.e., w

bits. We first analyze the complexity of processing ACLs A1, · · · , An−1 and then analyze

the complexity of processing ACL An. The maximum number of non-overlapping rules

generated from the FDD is (2mi−1)d [49]. Each non-overlapping rule consists of d w-bit

intervals, each interval can be converted to at most three ranges, and each range can be

converted to at most 2w−2 prefixes [39]. Thus, the maximum number of prefixes generated

from these non-overlapping rules is 3d(2w−2)(2mi−1)d. Recall that Pi (1 ≤ i ≤ n − 1)

unions all prefixes into one set. Then, the number of prefixes cannot exceed 2w+1. There-

135

fore, for processing Ai (1 ≤ i ≤ n − 1), the computation cost of encryption by Pi, · · · ,

Pn is min (3d(2w − 2)(2mi − 1)d, 2w+1) = min (O(dwmd
i), O(2w)), the space cost of Pi is

O(dwmd
i), and the communication cost is min (O(dwmd

i), O(2w)). For processing Pn, each

interval of the non-overlapping rules is converted to two prefix families and each prefix fam-

ily includes w + 1 prefixes. Thus, the maximum number of prefixes converted from An is

2d(w+1)(2mn−1)d. Therefore, for processing An, the computation, space, and communica-

tion costs of Pn is O(dwmd
n).

5.5 Optimization

To reduce the computation and communication costs, we divide the problem of computing

reachability of n ACLs to the problem of computing reachability of two ACLs. Then the

intermediate results are aggregated hierarchically to obtain final reachability result. Let Qi

(1 ≤ i ≤ n) denote the set of non-overlapping accepting rules from ACL Ai. In the ACL

encoding and encryption phase, Qi is encrypted n− i+ 1 times, i.e., encrypted by Pi, Pi+1,

· · · , Pn. Thus, the number of encryptions for Q1, · · · , Qn is n + (n− 1) + · · ·+ 1 = O(n2).

Similarly, the number of messages in this phase is O(n2). To reduce the the number of

encryptions and messages, we first divide n ACLs into ⌊n/2⌋ groups. The j-th (1 ≤ j ≤

⌊n/2⌋) group includes two adjacent ACLs A2j−1 and A2j . The last group includes adjacent

ACLs A2⌊n/2⌋−1, · · · , An. For example, 5 ACLs can be divided into two groups {A1, A2} and

{A3, A4, A5}. Second, for the ACLs in each group, we run the proposed protocol to compute

the network reachability. The result for each group is actually a new set of non-overlapping

accepting rules. Therefore, we obtain ⌊n/2⌋ sets of non-overlapping accepting rules. Repeat

these two steps until we obtain the network reachability for all n ACLs. Through this

process, there are ⌊n/2⌋ + ⌊n/22⌋ + ... + 1 = O(n) groups, and for each group with two

ACLs, the number of ACL encryptions and messages is 2+1 = 3. Thus, the number of ACL

136

encryptions and messages is reduced from O(n2) to O(n).

5.6 Experimental Results

We evaluated the efficiency and effectiveness of our protocol on 10 real ACLs and 100 syn-

thetic ACLs. Both real and synthetic ACLs examine five fields, source IP, destination IP,

source port, destination port, and protocol type. For real ACLs, the number of rules ranges

from hundreds to thousands, and the average number of rules is 806. Due to security con-

cerns, it is difficult to obtain many real ACLs. Thus, we generated a large number of

synthetic ACLs based on Singh et al. ’s technique [74]. For synthetic ACLs, the number of

rules ranges from 200 to 2000, and for each number, we generated 10 synthetic ACLs. In

implementing the commutative encryption, we used the Pohlig-Hellman algorithm [64] with

a 1024-bit prime modulus and 160-bit encryption keys. Our experiments were implemented

using Java 1.6.0.

To evaluate the effectiveness, we verified the correctness of our protocol because we knew

all the ACLs in the experiments. The results show that our protocol is deterministic and

accurate with the given ACLs. Thus, in this section, we focus on the efficiency of our protocol.

Recall that processing ACL Ai (1≤i≤n−1) is different from processing the last destination

ACL An. Therefore, we evaluate the computation and communication costs of the core

operations of our protocol, processing ACL Ai (1≤i≤n−1), processing the destination ACL

An, and comparing Ai and An. Knowing this performance, we can easily estimate time and

space consumption for a given network path with n ACLs belonging to n parties.

5.6.1 Efficiency on Real ACLs

Our protocol is efficient for processing real ACL Ai (1 ≤ i ≤ n−1). Figure 5.10(a) shows for

processing Ai the computation cost of Pi and the average computation cost of other parties

137

Pi+1, · · · , Pn. The computation cost of Pi is less than 2 seconds and the computation cost

of Pj (i+1 ≤ j ≤ n) is less than 1.5 seconds. Note that, for processing Ai, the computation

cost of Pi is one-time offline cost because Pi knows Ai, while the computation cost of Pj

(i+1 ≤ j ≤ n) is online cost. Figure 5.10(b) shows the average communication cost between

any two adjacent parties Pj and Pj+1 (i ≤ j ≤ n) for processing ACL Ai, which is less than

60 KB. Note that, the computation costs of different parties Pj (i + 1 ≤ j ≤ n) are similar

because they encrypt the same number of prefixes from Ai. Hence, we only show the average

computation cost of parties Pi+1, · · · , Pn. Similarly, the communication costs between every

two adjacent parties Pj and Pj+1 are the same.

Our protocol is efficient for processing real ACL An. Figure 5.11(a) shows that for pro-

cessing An, the computation cost of Pn and the average computation cost of other parties.

The computation cost of Pn is less than 10 seconds. The average computation cost of other

parties is less than 6 seconds. Similarly, for processing An, the computation cost of Pn

is one-time offline cost, while the computation costs of other party is online cost. Figure

5.11(b) shows the average communication cost between Pn and Pi (1 ≤ i ≤ n− 1), which is

less than 410 KB.

Our protocol is efficient for real ACL comparison. The comparison time between two

ACLs is less than 1 second, which is much less than the computation cost of processing

ACLs. Because the commutative encryption is more expensive than checking whether two

sets have a common element.

5.6.2 Efficiency on Synthetic ACLs

To further evaluate the efficiency, we executed our protocol over every 10 synthetic ACLs

with the same number of rules, and then measured the computation and communication costs

of operations on synthetic ACLs A1 to An for different parties. Particularly, we measured

138

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Real ACL

C
o
m
p
u
t
a
t
i
o
n

c
o
s
t

(
s
)

Pi (1 ≤ i ≤ n−1)

Pj (i+1 ≤ j ≤ n)

(a) Computation cost

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

10

20

30

40

50

60

Real ACL

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

(b) Communication cost

Figure 5.10. Comp. & comm. costs for processing real ACL Ai (1≤i≤n−1)

139

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

2

4

6

8

10

Real ACL

C
o
m
p
u
t
a
t
i
o
n

c
o
s
t

(
s
)

Pn

Pi (1 ≤ i ≤ n−1)

(a) Computation cost

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

50

100

150

200

250

300

350

400

450

Real ACL

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

(b) Communication cost

Figure 5.11. Comp. & comm. costs for processing real ACL An

140

computation and communication costs for processing each synthetic ACL Ai (1 ≤ i ≤ n−1),

processing synthetic ACL An, and the comparison time for every two ACLs.

For processing synthetic ACL Ai (1 ≤ i ≤ n − 1), Figure 5.12(a) shows the computation

cost of Pi and the average computation cost of parties Pi+1, · · · , Pn and Figure 5.12(b)

shows the average communication cost between Pj and Pj+1 (i ≤ j ≤ n). The one-time

offline computation cost (i.e., the computation cost of Pi) is less than 400 seconds, and the

online computation cost (i.e., the average computation cost of other parties Pj) is less than

5 second. The average communication cost between any two adjacent parties Pj and Pj+1

is less than 450 KB.

For processing synthetic ACL An, Figure 5.13(a) shows the computation cost of Pn and

the average computation cost of other parties and Figure 5.13(b) shows the average com-

munication cost between Pn and Pi (1 ≤ i ≤ n− 1). The one-time offline computation cost

(i.e., the computation cost of Pn) is less than 550 seconds, and the online computation cost

(i.e., the average computation cost of other parties P1, · · · , Pn−1) is less than 25 seconds.

The average communication cost between Pn and Pi is less than 2100 KB.

Figure 5.14 shows the average comparison time for every two synthetic ACLs. The com-

parison time between any two synthetic ACLs is less than 5 seconds, which is much more

efficient than processing ACLs.

141

200 400 600 800 100012001400160018002000
1e−1

1e+0

1e+1

1e+2

1e+3

Number of rules in Ai

C
o
m
p
u
t
a
t
i
o
n

c
o
s
t

(
s
)

Pi (1 ≤ i ≤ n−1)

Pj (i+1 ≤ j ≤ n)

(a) Ave. computation cost

200 400 600 800 100012001400160018002000
0

50

100

150

200

250

300

350

400

450

Number of rules in Ai

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

(b) Ave. communication cost

Figure 5.12. Comp. & comm. costs for processing synthetic ACL Ai (1≤i≤n−1)

142

200 400 600 800 100012001400160018002000
1e+0

1e+1

1e+2

1e+3

Number of rules in An

C
o
m
p
u
t
a
t
i
o
n

c
o
s
t

(
s
)

Pn

Pi (1 ≤ i ≤ n−1)

(a) Ave. computation cost

200 400 600 800 100012001400160018002000
0

500

1000

1500

2000

2500

Number of rules in An

C
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
K
B
)

(b) Ave. communication cost

Figure 5.13. Comp. & comm. costs for processing synthetic ACL An

143

0
400

800
1200

1600
2000

0
400

800
1200

1600
2000

0

1

2

3

4

5

of rules in Ai# of rules in An

S
e
a
r
c
h
i
n
g

t
i
m
e

(
s
)

Figure 5.14. Comparison time of synthetic ACLs Ai and An

144

CHAPTER 6

Related Work

6.1 Secure Multiparty Computation

One of the fundamental cryptographic primitives for designing privacy-preserving protocols

is secure multiparty computation, which was first introduced by Yao with the famous “Two-

Millionaire Problem” [79]. A secure function evaluation protocol enables two parties, one

with input x and the other with y, to cooperatively compute a function f(x, y) without

disclosing one party’s input to the other. The classical solutions are Yao’s “garbled circuits”

protocol [80] and Goldreich’s protocol [60]. Other related work is privacy preserving set

operations, which enables n parties, each party with its private set si, to collaboratively

compute the intersection of all sets, s1 ∩ · · · ∩ sn, without disclosing more information of

one party’s private set beyond the intersection to other parties [33, 45, 68]. Although we

could apply these solutions to solve the problem of privacy preserving network reachability,

the computation and communication costs of these solutions is prohibitive due to the unnec-

essary requirement of secure multiparty computation for our problems. Secure multiparty

computation requires every party to know the result, while in our problems only one party

knows the result. This difference significantly affects computation and communication costs.

145

6.2 Privacy and Integrity Preserving in WSNs

Privacy and integrity preserving range queries in wireless sensor networks (WSNs) have

drawn people’s attention recently [69, 73, 84]. Sheng and Li proposed a scheme to preserve

the privacy and integrity of range queries in sensor networks [69]. This scheme uses the

bucket partitioning idea proposed by Hacigumus et al. in [40] for database privacy. The

basic idea is to divide the domain of data values into multiple buckets, the size of which is

computed based on the distribution of data values and the location of sensors. In each time

slot, a sensor collects data items from the environment, places them into buckets, encrypts

them together in each bucket, and then sends each encrypted bucket along with its bucket

ID to a nearby storage node. For each bucket that has no data items, the sensor sends an

encoding number, which can be used by the sink to verify that the bucket is empty, to a

nearby storage node. When the sink wants to perform a range query, it finds the smallest

set of bucket IDs that contains the range in the query, then sends the set as the query to

storage nodes. Upon receiving the bucket IDs, the storage node returns the corresponding

encrypted data in all those buckets. The sink can then decrypt the encrypted buckets and

verify the integrity using encoding numbers. S&L scheme only considered one-dimensional

data in [69] and it can be extended to handle multi-dimensional data by dividing the domain

of each dimension into multiple buckets.

S&L scheme has two main drawbacks, which are inherited from the bucket partitioning

technique. First, as pointed out in [41], the bucket partitioning technique allows compromised

storage nodes to obtain a reasonable estimation on the actual value of both data items and

queries. In comparison, in SafeQ, such estimations are very difficult. Second, for multi-

dimensional data, the power consumption of both sensors and storage nodes, as well as the

space consumption of storage nodes, increases exponentially with the number of dimensions

due to the exponential increase of the number of buckets. In comparison, in SafeQ, the power

146

and space consumption increases linearly with the number of dimensions times the number

of data items.

Shi et al. proposed an optimized version of S&L’s integrity preserving scheme aiming to

reduce the communication cost between sensors and storage nodes [73, 84]. The basic idea

of their optimization is that each sensor uses a bit map to represent which buckets have

data and broadcasts its bit map to the nearby sensors. Each sensor attaches the bit maps

received from others to its own data items and encrypts them together. The sink verifies

query result integrity for a sensor by examining the bit maps from its nearby sensors. In

our experiments, we did not choose the solutions in [73, 84] for side-by-side comparison for

two reasons. First, the techniques used in [73, 84] are similar to S&L scheme except the

optimization for integrity verification. The way they extend S&L scheme to handle multi-

dimensional data is to divide the domain of each dimension into multiple buckets. They

inherit the same weakness of allowing compromised storage nodes to estimate the values

of data items and queries with S&L scheme. Second, their optimization technique allows

a compromised sensor to easily compromise the integrity verification functionality of the

network by sending falsified bit maps to sensors and storage nodes. In contrast, in S&L and

our schemes, a compromised sensor cannot jeopardize the querying and verification of data

collected by other sensors.

6.3 Privacy and Integrity Preserving in DAS

Database privacy has been studied extensively in both database and security communities

(e.g., [40, 41, 10, 16, 31, 72, 17]). Based on whether query results include false positives,

i.e., data items that do not satisfy the queries but are included in the query results, we

can classify these schemes into the following two categories: approximate privacy-preserving

schemes [40, 41] and precise privacy-preserving schemes [10, 16, 31, 72, 17]. The approximate

147

privacy-preserving schemes reply query results with false positives but they are more efficient,

while the precise privacy-preserving schemes reply query results without false positives but

they are more expensive. Next, we discuss these two categories of privacy-preserving schemes.

Approximate Privacy-Preserving Schemes

Hacigumus et al. first proposed the bucket partitioning idea for querying encrypted data in

the database-as-service model (DAS) [40]. The basic idea is to divide the attribute domains

into multiple buckets and then map bucket ids to random numbers for preserving privacy.

Later, Hore et al. explored the optimal partitioning of buckets [41]. However, as pointed out

in [41], bucket partitioning incurs a tradeoff between privacy and efficiency. If the bucket sizes

are large, less privacy information is leaked, but query results include more false positives;

if the bucket sizes are small, more privacy information is leaked, but query results include

less false positives. In contrast, our scheme is a precise privacy-preserving scheme, which

returns query results without false positives. Furthermore, it leaks only the minimum privacy

information for any possible precise privacy-preserving scheme, which will be discussed in

Section 3.3.4.

Precise Privacy-Preserving Schemes

Previous work on order-preserving hash functions [31] and order-preserving encryptions

[10, 16] can be employed for constructing precise privacy-preserving schemes in cloud com-

puting. Fox et al. proposed an order-preserving minimal prefect hash function (OPMPHF)

for a domain with N possible values [31]. Agrawal et al. proposed an order-preserving en-

cryption (OPES) [10]. The basic idea of OPES is to transform data items to different values

such that the transformed values preserve the order of the data items without disclosing

the privacy of the data items to cloud providers. Specifically, this scheme first divides the

data domain into multiple buckets, i.e., m buckets, computes a transformation polynomial

function for each bucket, and then applies the corresponding transformation function to the

148

data items in each bucket. However, for z-dimensional data items, the OPMPHF function

requires O(zN logN) shared secret information between the organization and its customers,

and the OPES encryption requires O(zm) shared secret information. In contrast, our order-

preserving hash-based function only requires O(z) shared secret information.

Boneh & Waters proposed a public-key system for supporting conjunctive, subset,

and range queries on encrypted data [17]. Although theoretically it seems possible,

Boneh&Waters’ scheme cannot be used to solve the privacy problem in our context because

it is too computationally expensive for cloud computing. It would require an organiza-

tion to perform O(zN) encryption for submitting data to a cloud provider, where z is the

number of dimensions and N is the domain size (i.e., the number of all possible values) of

each dimension. Here N could be large and each encryption is expensive due to the use of

public-key cryptography. Shi et al. proposed another public-key system for supporting multi-

dimensional range queries on encrypted data [72]. However, this scheme has two drawbacks

in cloud computing. First, it is not practical to require an organization to stay online after it

outsourced the data to cloud providers. In Shi et al. ’s scheme, for each distinct range query,

a customer needs to retrieve a different decryption key from the organization. Second, it is

not efficient to process queries. In order to process a query, a cloud provider needs to scan

all the encrypted data from an organization. In contrast, our privacy-preserving scheme

not only can be computed efficiently due to the use of the hash function and symmetric

encryption, but also enables cloud providers to perform binary searches to process queries.

Database integrity has also been explored in prior work [27, 63, 62, 59, 24, 22], independent

of database privacy. Merkle hash trees have been used for the authentication of data items

[58] and they were used for verifying the integrity of range queries in [27, 63]. However, it is

difficult to extend Merkle hash trees for supporting multi-dimensional range queries. Pang

et al. [62] and Narasimha & Tsudik [59] proposed similar schemes for verifying the integrity

of range query results using signature aggregation and chaining. For each data item, Pang

149

et al. computed the signature of the data item by signing the concatenation of the digests

of the data item itself as well as its left and right neighbors [62]. Narasimha & Tsudik

computed the signature by signing the concatenation of the digests of the data item and

its left neighbors along each dimension [59]. However, signature aggregation and chaining

requires a cloud provider to reply to the customer the boundary data items of the query that

do not satisfy the query.

Chen et al. proposed Canonical Range Trees (CRTs) to store the counting information

for multi-dimensional data such that the counting information can be used for integrity

verification without leaking boundary data items of the query [22]. However, we argue that

the most important requirement in cloud computing is to preserve data privacy. CRTs

contain a lot of privacy information. Thus, we need to preserve the privacy of CRTs. As we

discussed before, preserving privacy of relational databases is already difficult. Preserving

privacy of CRT trees is much more difficult and no scheme has been proposed. Furthermore,

their scheme requires an organization to send a multi-dimensional CRT with O(n logz N)

overhead to a cloud provider, where n is the number of data items and N is the domain size of

each dimension. Therefore, it incurs too much communication cost between an organization

and a cloud provider.

6.4 Firewall Redundancy Removal and Collaborative

Firewall Enforcement in VPN

Prior work on intra-firewall redundancy removal aims to detect redundant rules within a

single firewall [38, 50, 52]. Gupta identified backward and forward redundant rules in a

firewall [38]. Later, Liu et al. pointed out that the redundant rules identified by Gupta

are incomplete, and proposed two methods for detecting all redundant rules [50, 52]. Prior

150

work on inter-firewall redundancy removal requires the knowledge of two firewall policies and

therefore is only applicable within one administrative domain [11, 81].

Prior work on collaborative firewall enforcement in virtual private networks (VPNs) en-

forces firewall policies over encrypted VPN tunnels without leaking the privacy of the remote

network’s policy [23, 48]. The problems of collaborative firewall enforcement in VPNs and

privacy-preserving inter-firewall optimization are fundamentally different. First, their pur-

poses are different. The former focuses on enforcing a firewall policy over VPN tunnels in a

privacy-preserving manner, whereas the latter focuses on removing inter-firewall redundant

rules without disclosing their policies to each other. Second, their requirements are different.

The former preserves the privacy of the remote network’s policy, whereas the latter preserves

the privacy of both policies.

6.5 Network Reachability Quantification

The challenges in network reachability include, misconfiguration of ACLs, changes of rout-

ing policies, and link failures, that could prevent accessibility to essential network services.

To estimate reachability, existing approaches analyze ACLs while considering other critical

parameters like dynamic routing policies, packet transforms, and variations in protocol op-

erations [12, 42, 44, 54, 75, 77]. To estimate the bounds on reachability, Xie et al. defined

union and intersection operations over ACLs while taking into account the routing decisions,

packet transforms, and link failures [77]. This approach, however, over approximates and

does not yield exact bounds. Ingols et al. used Binary Decision Diagrams (BDDs) to re-

duce the complexity of handling ACLs and to estimate reachability more accurately [42].

Matousek et al. described a formal model using Interval Decision Diagrams (IDDs) to an-

alyze network reachability under all possible network failure conditions [54]. However, the

approach is not scalable as it performs an exhaustive evaluation of failure scenarios that may

151

or may not occur. Al-Shaer et al. proposed a more accurate model using BDDs and applied

symbolic model checking techniques on properties specified in computation tree logic (CTL)

[30], to verify reachability across the network for any given packet [12]. Sung et al. studied

the effect of reachability constraints on class-of-service flows, where the packets are subjected

to an additional constraint based on their class-of-service [75]. Khakpour et al. used Firewall

Decision Diagrams (FDDs) to quantify reachability while considering all possible network

transforms like NAT, PAT as well as protocol states like connection-oriented, state-less and

so on [44]. They also described a query language to enable network operators to execute

reachability queries.

While most solutions operate on static configurations, some work has been proposed for

estimating reachability in an online manner. Bandhakavi et al. analyzed the network reach-

ability using a simulated routing environment, i.e., they constructed a routing graph which

represents the possible paths that could be taken by routing advertisements under the current

router configurations [13]. Analyzing the graph can identify violations in security policies

and in verifying reachability. Zhang et al. described a real-time monitoring and verifica-

tion system for network reachability [83]. A monitoring software runs on all the routers

and collects up-to-date ACL and forwarding state information, which enables the network

administrator to determine instantaneous reachability between any source destination pair.

This approach provides an insight into instantaneous reachability as it considers snapshots

of routing tables at the time of analysis.

Several other works have been proposed to reduce the complexity of managing networks

and to verify network configurations. Casado et al. described a novel architecture for en-

terprise, Secure Architecture for the Networked Enterprise (SANE), which comprises of a

centralized authentication server that allows authorized users to access services [19]. In

SANE, the ACLs can be specified in a natural way so as to capture the semantics clearly.

Le et al. used data mining techniques to analyze security policies and to detect possible

152

misconfigurations in the policies [47]. They considered the notion of association rule mining

to extract usable safe configurations of routers and detect anomalies in other routers us-

ing the extracted patterns. Benson et al. described complexity metrics to evaluate relative

complexity among alternate network designs [14]. The metrics allow network operators to

compare configurations with standard configurations and identify errors.

All these approaches are based on the same assumption, that is, there is a central network

analyst who has the complete knowledge of the network configuration and other critical

information. However, this assumption is not true for a network where network devices

belong to different parties whose network configuration cannot be shared with other parties.

Therefore, these approaches cannot quantify network reachability across different parties.

153

CHAPTER 7

Conclusions and Future Work

Preserving privacy and integrity of private data has become core requirements in the recent

decade for distributed systems across different parties. In this dissertation, we investigate

four important privacy and integrity preserving problems for different distributed systems.

For two-tiered sensor networks, we propose SafeQ, a effective and efficient protocol for

handling range queries in a privacy and integrity preserving fashion. SafeQ uses the tech-

niques of prefix membership verification, Merkle hash trees, and neighborhood chaining. In

terms of security, SafeQ significantly strengthens the security of two-tiered sensor networks.

Unlike prior art, SafeQ prevents a compromised storage node from obtaining a reasonable

estimation on the actual values of sensor collected data items and sink issued queries. In

terms of efficiency, our results show that SafeQ significantly outperforms prior art for multi-

dimensional data in terms of both power consumption and storage space. We also propose

an optimization technique using Bloom filters to significantly reduce the communication cost

between sensors and storage nodes.

For cloud computing, we propose novel privacy and integrity preserving schemes for multi-

dimensional range queries. To preserve privacy, we propose an order-preserving hash-based

function to encode the data from an organization and the queries from its customers such that

154

a cloud provider can process encoded queries over encoded data without knowing the actual

values. To preserve integrity, we propose the first probabilistic integrity-preserving scheme

for range queries. This scheme employs a new data structure, local bit matrices, which

allows customers to verify the integrity of query results with high probability. Our future

work will consider database updating and optimal bucket partitioning for multi-dimensional

data, which have not been solved in this paper.

For distributed firewall policies, we identify an important problem, cross-domain privacy-

preserving inter-firewall redundancy detection and propose a novel privacy-preserving proto-

col for detecting such redundancy. The results on real firewall policies show that our protocol

can remove as many as 49% of the rules in a firewall whereas the average is 19.4%.

For network reachability, we address the problem of privacy preserving quantification

of network reachability across different domains. Protecting the privacy of access control

configuration is important as the information can be easily abused. We propose an efficient

and secure protocol to quantify the network reachability accurately while protecting the

privacy of ACLs. We use the divide-and-conquer strategy to decompose the reachability

computation which results in a magnitude reduction of the computation and communication

costs. Our future work will consider dynamic routing information and topological variations

where links go down or new links get added to the network resulting in new paths for data

propagation. In our protocol, we have considered the routing information partially by taking

snapshots of the routing state and encoding it as an ACL rule. However, for a more fine-

grained analysis, the instantaneous forwarding information state along with the local routing

policies and other service level agreements also need to be considered.

155

APPENDICES

A Analysis of SafeQ Optimization

Let HMAC g(N (S([d0, d1]))), · · · ,HMAC g(N (S([dn, dn+1]))) be the sets of data items that

a sensor needs to represent in a Bloom filter. Let [a, b] be the range query over the n data

items d1, · · · , dn. Let wo denote the bit length of each dj , a, and b. Let wh denote the

bit length of the numbers after hashing in each HMAC g(N (S([dj , dj+1]))). Let k be the

number of hash functions in the Bloom filter.

Given two arrays A and B representing data in HMAC g(N (S([d0, d1]))), · · · ,

HMAC g(N (S([dn, dn+1]))), for any v of wh bits, a storage node searches the corresponding

index for v by applying the k hash functions to v and check whether two conditions hold:

(1) for every 1≤i≤k, A[hi(v)] = 1; (2) for every 1≤i≤k, index j (0 ≤ j ≤ n) is included in

the list that B[hi(v)] points to. Let X (v) denote the index that the storage node finds for

v: if the index exists (i.e., the above conditions hold), X (v) = j; otherwise, X (v) = null .

Based on the analysis of Bloom filters [15], the probability Pr(A[h1(v)] =

1, · · · , A[hk(v)] = 1) is (1 − e−k(n+1)q/c)k. The probability Pr(j ∈ B[h1(v)], · · · , j ∈

B[hk(v)]) is (
1

n+1)
k. Therefore, we have

Pr(X (v) = j) = (1− e−k(n+1)q/c)k(
1

n + 1
)k (7.1)

As Pr(X (v) = j) is the same for any 0 ≤ j ≤ n, let α denote the probability Pr(X (v) = j).

According to our discussion in Section 2.3.1, each of the two sets HMAC g(N (F(a))) and

HMAC g(N (F(b))) includes wo + 1 wh-bit numbers. For HMAC g(N (F(a))), there exists

a range [dn1−1, dn1] such that a ∈ [dn1−1, dn1]. Therefore, there exists one number va in

HMAC g(N (F(a))) such that X (va) = n1 − 1. Let v1, · · · , vwo denote the rest wo numbers

in HMAC g(N (F(a))) and Y denote the minimum index in {X (v1), · · · ,X (vwo)}. Without

loss of generality, we assume X (v1) is the minimum index. The probability of Y = j1 − 1

156

can be computed as follows:

Pr(Y = j1 − 1) = Pr(X (v1) = j1 − 1)

wo∏

i=2

Pr(X (vi) ≥ j1 − 1 or X (vi) = null)

= Pr(X (v1) = j1 − 1)

wo∏

i=2

(1− Pr(X (vi) < j1 − 1))

= α[1− (j1 − 1)α]wo−1

Similarly, for HMAC g(N (F(b))), there exists a range [dn2−1, dn2] such that b ∈

[dn2−1, dn2]. Therefore, there exists one number vb in HMAC g(N (F(b))) such that

X (vb) = n2 − 1. Let v1, · · · , vwo denote the rest wo numbers in HMAC g(N (F(b))) and

Z denote the maximum index in {X (v1), · · · ,X (vwo)}. Without loss of generality, we as-

sume X (v1) is the maximum index. We have

Pr(Z = j2 − 1) = Pr(X (v1) = j2 − 1)

wo∏

i=2

Pr(X (vi) ≤ j2 − 1 or X (vi) = null)

= Pr(X (v1) = j2 − 1)

wo∏

i=2

(1− Pr(X (vi) > j2 − 1))

= α[1− (n− j2 + 1)α]wo−1

Given a query {HMAC g(N (F(a))),HMAC g(N (F(b)))}, if the storage node can find Y =

j1 − 1 or Z = j2 − 1 where 0 ≤ j1 < n1 ≤ n2 < j2 ≤ n, the query result has false positives.

Therefore, the average false positive rate can be computed as follows:

ǫ =

n+1∑

n1=1

n+1∑

n2=n1

{

n1−1
∑

j1=1

n+1∑

j2=n2+1

[
(j2 − j1)− (n2 − n1)

n− (n2 − n1)
×

Pr(Y = j1 − 1)Pr(Z = j2 − 1)]

+

n1−1
∑

j1=1

[
n1 − j1

n− (n2 − n1)
×

Pr(Y = j1 − 1)Pr(Z < n2 or Z = null)]

+
n+1∑

j2=n2+1

[
j2 − n2

n− (n2 − n1)
×

Pr(Y > n1 − 2 or Y = null)Pr(Z = j2 − 1)]} (7.2)

157

Because [1−(j1−1)α]wo−1 ≤ 1, [1−(n−j2+1)α]wo−1 ≤ 1,
n1−j1

n−(n2−n1)
≤ 1,

j2−n2
n−(n2−n1)

≤ 1,

and
(j2−j1)−(n2−n1)

n−(n2−n1)
≤ 1, we derive Formula 2.1 from the following calculation.

ǫ <

n+1∑

n1=1

n+1∑

n2=n1

[n− (n2 − n1)]α

=
1

3

(n+ 2)(n+ 3)

(n + 1)k−1
(1− e−k(n+1)q/c)k

Typically, we choose the value c = 1
ln 2k(n+1)q ≈ 1.44k(n+1)q to minimize the probability

of false positive for Bloom filters. Thus, Formula 2.1 becomes

ǫ <
1

3
(
1

2
)k
(n+ 2)(n+ 3)

(n + 1)k−1

Next, we discuss under what condition our optimization technique reduces the commu-

nication cost between sensors and storage nodes. To represent data in the n + 1 sets

HMAC g(N (S([d0, d1]))), · · · , HMAC g(N (S([dn, dn+1]))), without Bloom filters, the total

number of bits required is wh(n+1)q; with Bloom filters, the total number of bits required is

at most c+2k(n+1)q⌈log2 (n+ 1)⌉. Note that the number of bits for representing array A is

c, the number of bits for representing array B is at most 2k(n+1)q⌈log2 (n+ 1)⌉. Therefore,

we derive Formula 2.2.

wh(n+ 1)q > c+ 2k(n+ 1)q⌈log2 (n + 1)⌉

In case that c = 1
ln 2k(n + 1)q, Formula 2.2 becomes

k ≤
wh

1
ln 2 + 2⌈log2 (n + 1)⌉

≈
wh

1.44 + 2⌈log2 (n + 1)⌉

158

B Properties of f∗
k and Their Proof

Order Preserving: Assume any hk(xq) ≥ 2w
′
(xq ∈ [x1, xN]). The condition f∗k (xi1) <

f∗k (xi2) holds if and only if xi1 < xi2 .

Proof. We first prove that if the condition f∗k (xi1) < f∗k (xi2) holds, then xi1 < xi2. We

prove it by contradiction. If xi1 ≥ xi2 , we have

f∗k (xi1) = f∗k (xi2) +

i1∑

q=i2+1

hk(xq)

2w
′ ≥ f∗k (xi2)

Second, we prove that if the condition xi1 < xi2 holds, then f∗k (xi1) < f∗k (xi2). Similar

as the proof of the property collision resistance, we have

f∗k (xi2) = f∗k (xi1) +

i2∑

q=i1+1

hk(xq)

2w
′ > f∗k (xi1)

Collision Resistance: Assume any hk(xq) ≥ 2w
′
(xq ∈ [x1, xN]). It is impossible to find

xi1 and xi2 where xi1 6= xi2 such that f∗k (xi1) = f∗k (xi2).

Proof. Without loss of generalization, we assume i1 < i2. Hence, we have

f∗k (xi2) =

∑i1
q=1 hk(xq)

2w
′ +

∑i2
q=i1+1 hk(xq)

2w
′

= f∗k (xi1) +

i2∑

q=i1+1

hk(xq)

2w
′ .

Because for any hk(xq), 2
w′ ≤ hk(xq), then

hk(xq)

2w
′ ≥ 1. Therefore, we have f∗k (xi2) >

f∗k (xi1).

159

C Calculation of Detection Probability

We first compute the number of choices for deleting a data item in all query results that

will be detected by customers. Recall Case 1 in Section 3.4.2. Given a range query [a, b],

deleting a data item in Bi will be detected by the customer if [a, b] is the superset of Bi, i.e.,

Bi ⊆ [a, b]. For ease of presentation, let [li, hi] denote a bucket Bi. A bucket Bi is called a

single-value bucket if li = hi. For the bucket Bi = [li, hi], there are li−x1+1 distinct values

which are less than or equal to li. Similarly, there are xN − hi + 1 distinct values which are

larger than or equal to hi. Thus, the total number of queries, which are the supersets of

[li, hi], can be computed as (li − x1 + 1)(xN − hi + 1). Let e(x) denote the frequency of the

data item with value x. The number of data items with different values satisfying a query

[a, b] can be computed as
∑b

x=a e(x). Thus, for deleting a data item in bucket Bi that will

be detected by customers, the number of choices can be computed as

π(Bi) = (li − x1 + 1)(xN − hi + 1)

hi∑

x=li

e(x) (7.3)

Therefore, for deleting a data item in all buckets B1, · · · , Bm that will be detected by

customers, the number of choices can be computed as

π =

m∑

i=1

π(Bi) =

m∑

i=1

hi∑

x=li

(li − x1 + 1)(xN − hi + 1)e(x) (7.4)

In our context, e(x) is either equal to 0 or 1 because if multiple data items have the

same value, the organization simply represents them as one data item annotated with the

number of items that share this value. If there is no data item satisfying the query [a, b],

∑b
x=a e(x) = 0. Similarly, the number of choices for deleting a data item in all query results

can be computed as

π∗ =

xN∑

a=x1

xN∑

b=a

b∑

x=a

e(x) (7.5)

160

Let Ij() (1 ≤ j ≤ n) denote an indicator function as

Ij(x) =

{

1 if x = dj
0 otherwise

We have e(x) =
∑n

j=1 Ij(x). Thus, π
∗ can be transformed to

π∗ =

xN∑

a=x1

xN∑

b=a

b∑

x=a

n∑

j=1

Ij(x) =

n∑

j=1

xN∑

a=x1

xN∑

b=a

b∑

x=a

Ij(x)

=

n∑

j=1

dj
∑

a=x1

xN∑

b=dj

1 =

n∑

j=1

(dj − x1 + 1)(xN − dj + 1) (7.6)

Thus, the probability that a deletion operation of the cloud provider can be detected is

Pr =
π

π∗
=

∑m
i=1 π(Bi)

π∗
(7.7)

=

∑m
i=1

∑hi
x=li

(li − x1 + 1)(xN − hi + 1)e(x)
∑n

j=1(dj − x1 + 1)(xN − dj + 1)

161

D Proof of Theorems 3 and 4

Proof of Theorem 3

Proof. First, we prove that if each data item dj (1 ≤ j ≤ n) forms a single-value bucket, then

Prmax = 100%. Obviously, Prmax = 100% is equivalent to π = π∗. Thus, we only need

to prove π = π∗. For each bucket [dj , dj] (1 ≤ j ≤ n), because
∑dj

x=dj
e(x) = 1, we have

π([dj , dj]) = (dj −x1+1)(xN −dj +1). For each empty bucket Bi, because
∑hi

x=li
e(x) = 0,

we have π(Bi) = 0. Thus, according to Equation 7.4, we have

π =

n∑

j=1

(dj − x1 + 1)(xN − dj + 1) = π∗

Second, we prove that if Prmax = 100%, each data item dj (1 ≤ j ≤ n) should form

a single-value bucket. We prove it by contradiction. If a data item dj does not form a

single-value bucket, Pr = π/π∗ < 100%, which is equivalent to π < π∗. Assuming that

B(dj) = [l∗, h∗] is not a single-value bucket, we consider the following two cases.

(1) If B(dj) includes only one data item dj , i.e.,
∑h∗

x=l∗ e(x) = 1, the condition l∗ < dj <

h∗ must hold. We have

π(B(dj)) = (l∗ − x1 + 1)(xN − h∗ + 1)

< (dj − x1 + 1)(xN − dj + 1)

Therefore, π <
∑n

j=1(dj − x1 + 1)(xN − dj + 1) = π∗.

(2) If B(dj) includes n2−n1+1 data items, dn1 , dn1+1, · · · , dj , · · · , dn2 , (1 < n2−n1+1 <

n), the condition l∗ ≤ dn1 < dn2 ≤ h∗ must hold. We have

π(B(dj)) = (l∗ − x1 + 1)(xN − h∗ + 1)
h∗∑

x=l∗

e(x)

<

n2∑

j=n1

(dj − x1 + 1)(xN − dj + 1)

Thus, π <
∑n

j=1(dj − x1 + 1)(xN − dj + 1) = π∗.

162

Proof of Theorem 4

Proof. Obviously, Prmin is equivalent to π = n. Thus, we only need to prove that π = n if

and only if there is only one bucket [x1, xN].

First, we prove that if there is only one bucket [x1, xN], then π = n.

π = π(B1) = (x1 − x1 + 1)(xN − xN + 1)

xN∑

x=x1

f(x) = n

Second, we prove that if π = n, then there is only one bucket [x1, xN]. We prove it

by contradiction. If there are multiple buckets B1, · · · , Bm (m ≥ 2), then π > n. Let

[li, hi] denote a bucket Bi (1 ≤ i ≤ m). All buckets must satisfy the following condition,

x1 = l1 ≤ h1 < l2 ≤ h2 < · · · < lm ≤ hm = xN . Thus, for each bucket Bi (1 ≤ i ≤ m),

π(Bi) = (li − x1 + 1)(xN − hi + 1)

hi∑

x=li

e(x) >

hi∑

x=li

e(x)

Thus, we have

π =

m∑

i=1

π(Bi) >

m∑

i=1

hi∑

x=li

e(x) = n

163

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Amazon web services, aws.amazon.com.

[2] Firewall throughput test, http://www.hipac.org/performance tests/results.html.

[3] Google app engine, code.google.com/appengine.

[4] Intel lab data. http://berkeley.intel-research.net/ labdata.

[5] Microsoft azure, www.microsoft.com/azure.

[6] Rise project. http://www.cs.ucr.edu/ rise.

[7] Stargate gateway (spb400). http://www.xbow.com.

[8] Tossim. http://www.cs.berkeley.edu/ pal/research/ tossim.html.

[9] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information shar-

ing across private databases. In Proc. ACM Inte. Conf. on Management of Data (SIG-

MOD), pages 86–97, 2003.

[10] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserv-

ing encryption for numeric data. In Proc. ACM Inte. Conf. on Management of Data

(SIGMOD), pages 563–574, 2004.

[11] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in distributed firewalls.

In IEEE INFOCOM’04, pages 2605–2616, March 2004.

[12] Ehab Al-Shaer, Will Marrero, Adel El-Atawy, and Khalid ElBadawi. Network config-

uration in a box: Towards end-to-end verification of network reachability and security.

In Proc. IEEE Inte. Conf. on Network Protocols (ICNP), 2009.

[13] Sruthi Bandhakavi, Sandeep Bhatt, Cat Okita, and Prasad Rao. Analyzing end-to-

end network reachability. In Proc. IFIP/IEEE Inte. Conf. on Symposium on Integrated

Network Management, 2009.

[14] Theophilus Benson, Aditya Akella, and David Maltz. Unraveling the complexity of

network management. In Proc. USENIX Symposium on Networked Systems Design and

Implementation, 2009.

[15] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of ACM, 13(7):422–426, 1970.

164

[16] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-

preserving symmetric encryption. In Proc. Inte. Conf. on Advances in Cryptology: the

Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages 224–241,

2009.

[17] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted

data. In Proc. Theory of Cryptography Conference (TCC), pages 535–554, 2007.

[18] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-

honest model. In Proc. Inte. Conf. on the Theory and Application of Cryptology and

Information Security (ASIACRYPT), pages 236–252, 2010.

[19] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan Boneh, Nick

McKeown, and Scott Shenker. Sane: A protection architecture for enterprise networks.

In Proc. Usenix Security Symposium, 2006.

[20] Yeim-Kuan Chang. Fast binary and multiway prefix searches for packet forwarding.

Computer Networks, 51(3):588–605, 2007.

[21] Fei Chen, Bezawada Bruhadeshwar, and Alex X. Liu. A cross-domain privacy-preserving

protocol for cooperative firewall optimization. In Proc. IEEE Conf. on Computer Com-

munications (INFOCOM), 2011.

[22] Hong Chen, Xiaonan Man, Windsor Hsu, Ninghui Li, and Qihua Wang. Access con-

trol friendly query verification for outsourced data publishing. In Proc. 13th European

Symposium on Research in Computer Security (ESORICS), pages 177–191, 2008.

[23] Jerry Cheng, Hao Yang, Starsky H.Y. Wong, and Songwu Lu. Design and implemen-

tation of cross-domain cooperative firewall. In Proc. IEEE Inte. Conf. on Network

Protocols (ICNP), 2007.

[24] Weiwei Cheng, HweeHwa Pang, and Kian-Lee Tan. Authenticating multi-dimensional

query results in data publishing. In Data and Applications Security 2006, pages 60–73,

2006.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms. MIT Press.

[26] Peter Desnoyers, Deepak Ganesan, Huan Li, and Prashant Shenoy. Presto: A predictive

storage architecture for sensor networks. In Proc. 10th Workshop on Hot Topics in

Operating Systems (HotOS), 2005.

165

[27] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G. Stubblebine. Au-

thentic data publication over the internet. Journal of Computer Security, 11(3):291–314,

2003.

[28] Qunfeng Dong, Suman Banerjee, Jia Wang, Dheeraj Agrawal, and Ashutsh Shukla.

Packet classifiers in ternary CAMs can be smaller. In Proc. ACM Sigmetrics, pages

311–322, 2006.

[29] D. Eastlake and P. Jones. Us secure hash algorithm 1 (sha1). RFC 3174, 2001.

[30] E. Allen Emerson. Temporal and modal logic. 1990.

[31] Edward A. Fox, Qi Fan Chen, Amjad M. Daoud, and Lenwood S. Heath. Order-

preserving minimal perfect hash functions and information retrieval. ACM Transactions

on Information Systems, 9:281–308, 1991.

[32] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[33] Michael Freedman, Kobi Nissim, and Benny Pinkas. Efficient private matching and

set intersection. In Proc. Inte. Conf. on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), pages 1–19, 2004.

[34] Oded Goldreich. Secure multi-party computations. Working draft. Version 1.4 edition,

2002.

[35] Oded Goldreich. Foundations of Cryptography: Volume II (Basic Applications). Cam-

bridge University Press, 2004.

[36] Mohamed G. Gouda and Alex X. Liu. Firewall design: consistency, completeness

and compactness. In Proc. 24th IEEE Inte. Conf. on Distributed Computing Systems

(ICDCS-04), pages 320–327, March 2004.

[37] Mohamed G. Gouda and Alex X. Liu. Structured firewall design. Computer Networks

Journal (Elsevier), 51(4):1106–1120, March 2007.

[38] Pankaj Gupta. Algorithms for Routing Lookups and Packet Classification. PhD thesis,

Stanford University, 2000.

[39] Pankaj Gupta and Nick McKeown. Algorithms for packet classification. IEEE Network,

15(2):24–32, 2001.

[40] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over en-

crypted data in the database-service-provider model. In Proc. ACM Inte. Conf. on

Management of Data (SIGMOD), pages 216–227, 2002.

166

[41] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range

queries. In Proc. 30th Inte. Conf. on Very Large Data (VLDB), pages 720–731, 2004.

[42] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph gen-

eration for network defense. In Proc. Annual Computer Security Applications Conf.

(ACSAC), 2006.

[43] Zeus Kerravala. As the value of enterprise networks escalates, so does the need for

configuration management. Enterprise Computing & Networking, The Yankee Group

Report, January 2004.

[44] Amir R. Khakpour and Alex X. Liu. Quantifying and querying network reachability.

In Proc. Inte. Conf. on Distributed Computing Systems (ICDCS), 2010.

[45] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Advances in Cryp-

tology (CRYPTO), pages 241–257, 2005.

[46] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for message

authentication. RFC 2104, 1997.

[47] Franck Le, Sihyung Lee, Tina Wong, Hyong S. Kim, and Darrell Newcomb. Detecting

network-wide and router-specific misconfigurations through data mining. 2009.

[48] Alex X. Liu and Fei Chen. Collaborative enforcement of firewall policies in virtual

private networks. In Proc. Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing (PODC), Toronto, Canada, August 2008.

[49] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 19(8), 2008.

[50] Alex X. Liu and Mohamed G. Gouda. Complete redundancy removal for packet clas-

sifiers in tcams. IEEE Transactions on Parallel and Distributed Systems (TPDS), in

press.

[51] Alex X. Liu, Chad R. Meiners, and Eric Torng. Tcam razor: A systematic approach to-

wards minimizing packet classifiers in tcams. IEEE/ACM Transactions on Networking,

to appear.

[52] Alex X. Liu, Chad R. Meiners, and Yun Zhou. All-match based complete redundancy

removal for packet classifiers in TCAMs. In Proc. 27th Annual IEEE Conf. on Computer

Communications (Infocom), April 2008.

167

[53] Alex X. Liu, Eric Torng, and Chad Meiners. Firewall compressor: An algorithm for

minimizing firewall policies. In Proc. 27th Annual IEEE Conf. on Computer Commu-

nications (Infocom), Phoenix, Arizona, April 2008.

[54] Petr Matousek, Jaroslav Rab, Ondrej Rysavy, and Miroslav Sveda. A formal model

for network-wide security analysis. In Proc. IEEE Inte. Conf. and Workshop on the

Engineering of Computer Based Systems, 2008.

[55] Chad R. Meiners, Alex X. Liu, and Eric Torng. TCAM Razor: A systematic approach

towards minimizing packet classifiers in TCAMs. In Proc. 15th IEEE Conf. on Network

Protocols (ICNP), pages 266–275, October 2007.

[56] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit weaving: A non-prefix approach to

compressing packet classifiers in TCAMs. In Proc. IEEE Conf. on Network Protocols

(ICNP), pages 93–102, October 2009.

[57] Chad R. Meiners, Alex X. Liu, and Eric Torng. Topological transformation approaches

to optimizing tcam-based packet processing systems. In Proc. ACM Inte. Conf. on

Measurement and Modeling of Computer Systems (SIGMETRICS), pages 73–84, August

2009.

[58] Ralph Merkle. Protocols for public key cryptosystems. In Proc. IEEE Symposium on

Security and Privacy, pages 122–134, 1980.

[59] Maithili Narasimha and Gene Tsudik. Authentication of outsourced databases using

signature aggregation and chaining. In Proc. Inte. Conf. on Database Systems for Ad-

vanced Applications (DASFAA), 2006.

[60] Silvio Micali Oded Goldreich and Avi Wigderson. How to play any mental game. In

Proc. nineteenth anual ACM Conf. on Theory of computing, May 1987.

[61] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do internet

services fail, and what can be done about it? In Proc. 4th USENIX Symposium on

Internet Technologies and Systems (USITS), March 2003.

[62] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying com-

pleteness of relational query results in data publishing. In Proc. ACM Inte. Conf. on

Management of Data (SIGMOD), pages 407–418, 2005.

[63] HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge computing. In

Proc. 20th Inte. Conf. on Data Engineering, pages 560–571, 2004.

168

[64] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing

logarithms over gf(p) and its cryptographic significance. IEEE Transactions Information

and System Security, IT-24:106–110, 1978.

[65] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan,

Li Yin, and Fang Yu. Data-centric storage in sensornets with ght, a geographic hash

table. Mobile Networks and Applications, 8(4):427–442, 2003.

[66] R. Rivest. The md5 message-digest algorithm. RFC 1321, 1992.

[67] David K. Hess David R. Safford and Douglas Lee Schales. Secure RPC authentication

(SRA) for TELNET and FTP. Technical report, 1993.

[68] Yingpeng Sang and Hong Shen. Efficient and secure protocols for privacy-preserving set

operations. ACM Transactions on Infomation and System Security, 13:9:1–9:35, 2009.

[69] Bo Sheng and Qun Li. Verifiable privacy-preserving range query in two-tiered sensor

networks. In Proc. IEEE Inte. Conf. on Computer Communications (INFOCOM), pages

46–50, 2008.

[70] Bo Sheng, Qun Li, and Weizhen Mao. Data storage placement in sensor networks.

In Proc. 7th ACM Inte. Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc), pages 344–355, 2006.

[71] Bo Sheng, Chiu C. Tan, Qun Li, and Weizhen Mao. An approximation algorithm for

data storage placement in sensor networks. In Proc. Inte. Conf. on Wireless Algorithms,

Systems and Applications (WASA), pages 71–78, 2007.

[72] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig.

Multi-dimensional range query over encrypted data. In Proc. IEEE Symposium on

Security and Privacy (S&P), pages 350–364, 2007.

[73] Jing Shi, Rui Zhang, and Yanchao Zhang. Secure range queries in tiered sensor networks.

In Proc. IEEE Inte. Conf. on Computer Communications (INFOCOM), 2009.

[74] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification

using multidimensional cutting. In Proc. ACM SIGCOMM, pages 213–224, 2003.

[75] Yu-Wei Eric Sung, Carsten Lund, Mark Lyn, Sanjay Rao, and Subhabrata Sen. Mod-

eling and understanding end-to-end class of service policies in operational networks. In

Proc. SIGCOMM, pages 219–230, 2009.

[76] Avishai Wool. A quantitative study of firewall configuration errors. IEEE Computer,

37(6):62–67, 2004.

169

[77] Geoffery G. Xie, Jibin Khan, David A. Maltz, Hui Zhang, Albert Greenberg, Gı́sli

Hjálmtýsson, and Jennifer Rexford. On static reachability analysis of ip networks. In

Proc. Annual Joint Conference of the IEEE Computer and Communication Societies

(INFOCOM), 2005.

[78] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-preserving classification

of customer data without loss of accuracy. In Proc. Inte. Conf. on Data Mining (SIAM),

2005.

[79] Andrew C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on

the Foundations of Computer Science (FOCS), pages 160–164, 1982.

[80] Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symposium

on Fundations of Computer Science, 1986.

[81] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and Prasant

Mohapatra. Fireman: a toolkit for firewall modeling and analysis. In IEEE Symposium

on Security and Privacy, May 2006.

[82] Demetrios Zeinalipour-yazti, Song Lin, Vana Kalogeraki, Dimitrios Gunopulos, and

Walid A. Najjar. Microhash: An efficient index structure for flash-based sensor devices.

In Proc. 4th USENIX Conf. on File and Storage Technologies (FAST), pages 31–44,

2005.

[83] Bo Zhang, T. S. Eugene Ng, and Guohui Wang. Reachability monitoring and verification

in enterprise networks. In Proc. SIGCOMM, 2008.

[84] Rui Zhang, Jing Shi, and Yanchao Zhang. Secure multidimensional range queries in

sensor networks. In Proc. ACM Inte. Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc), 2009.

170

