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ABSTRACT

HEAT CONDUCTION ACROSS A BENT PLATE

AND THE EFFECT OF CURVATURE ON THE

TEMPERATURE DISTRIBUTION

BY

Abbas Arjomandi

Due to the complicated geometry, the heat conduction.

across a bent plate and the effect of curvature on the tem-

perature distribution has never been studied before. The

corner of a bent plate is a fundamental structural element

which is susceptible to failure. By using the temperature

distribution, the thermal-stress can be determined.

In this paper, an intrinsic coordination system is

utilized in order to obtain a simpler form of the governing

differential equation when compared with the cartesian coor-

dinate formulation and then the equations are solved numeri-

cally. The results indicate the dependence of temperatures

on the curvature and angle of the bend. The temperatures are

decreased in the vicinity of the bend when compared to the

linear distribution for flat plate having the same thickness.

A discussion on the influence of these parameters on

the shape factor and rate of heat transfer is presented, and

the accuracy of the results has a confidence level of three

significant digits.



CHAPTER I

Introduction

1.1 Review of Literature
 

The steady-state heat conduction across a bent

plate and the effect of curavture on the temperature dis-

tribution is the tOpic of this study. This information

can be used in the design of pressure vessels or any sit-

uation where two different temperature fluids or gases

are separated by a given plate geometry. Since the bend

is most susceptible to failure, the results can also be

used to determine the limiting thermal stresses. Carslaw

[l] was the first to consider the effects of a bent

element on heat transfer. He studied "a right angled bend

in a wall" where both the interior and exterior angles of

the bend were 90°, with no bends or curves involved.

Figure 1 shows the details. Carslaw used the Schwarz-

Christoffel transformation during the solution of the

problem.

It was Ozisik [7] who was the first to solve the

same problem using a finite difference method. Ozisik

showed how to formulate the problem when all the boundaries

were straight lines.
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If the plate is flat or has the shape of a circular

cylinder, exact solutions for the problem exist [3]. The

present paper studies the case where the plate is neither

completely straight nor circular. Separation of variables

or conformal mappings are useless in this case. Further-

more, there has not been any analytical treatment of the

problem until recently. C.Y. Wang [5] has recently applied

an intrinsic coordinate system to the problem and solved it

analytically for small perturbations.

He concluded that in the vicinity of the bend, the

temperatures are decreased when compared to their corre-

sponding linearly distributed values for a flat plate. The

maximum decrease occurs at S=O, n=0 which corresponds to

the center of the bend. Wang noticed that as the length of

the bend (2b) is decreased, the temperatures tend toward

the linear values of a flat plate.

The decrease of temperatures also vanished as 2b

tended toward zero. He concluded that the local heat

transfer changed as the curvature (or 2b) changed, but to

the order that problem was solved the total heat transfer

is unchanged.

1.2 The Objective of this Study
 

The purpose of this study is to investigate the

effect of curvature on the temperature distributions and

heat transfer across a bent plate for steady-state heat

conduction using the finite difference method. An
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analytical method based upon a perturbation solution is

possible if ratio of the plate width to local radius of

curvature is very small. This restriction is not necessary

for the finite difference method.



(a)-Exterlor corner with convective boundary

2(hAX/k)Tw +(Tm_l'n°Tm'n_R-2((hAX/K)*I)Tm'n=0

 

m-I n r1010 m.n

- ‘\

t
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Ag . | h0,T

I

! m,n-l
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(b)—lntenor corner with convective boundarg.

2(hAX/K)T +2T *ZT :T T -2(3+nA></K)T =0
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m,n m+l,n

m-Ln TL :r -

. t

Ag \' nO-Tao

l

Ax ‘ mn-I

Fxgure I---"90 degree bend wnth straight boundanes."



CHAPTER II

Formulation of the Problem

2.1 Coordinate System
 

Let us assume the plate is of constant thickness 2a

and its centerline is given as

R=x'(s')1+Y'(s')3 (1)

Here, X' and Y' are Cartesian coordinates in the directions

i and j, respectively. Any point inside the plate wall can

then be expressed as

)2. = fus') + n'KHS') + 2'12 (2)

From the Frenet formulas [8] we find

ldfi'lz (l-K'n')2(ds'>2 + (dn')2 + (dz')2 (3)

where K' is the curvature and S', n', Z' constitute an

orthOgonal intrinsic coordinate system as shown in Figure

2. The boundary is described by n' = i a.

Let the temperature on both sides of the plate be

maintained at a constant value to produce the following

boundary conditions.

n' = a, T = To, and n' = -a, T = T1 (4)



 
Figure 2. --Tne Bent Plate and(n.s) Coordinate Sgstem.



7

Introducing the apprOpriate scale factors, Laplace's

equation becomes

  

1 3 1 3T

(i-K'n'){35T(1-K'n"as') +

g—n.—[(1-K'n')-§%.—]} — o (5)

where we will normalize all lengths by '3' and drop the

primes. The temperature field is normalized by intro-

ducing the following:

T = (To - T1)X(n) + T1 (6)

By using this representation of the temperature field, we

reduce the problem to one where we are solving for the

   

function X(n). Equation (5) thus becomes:

8 1 3X 8 , 3X _

a§(1-Kn as) + §fi[(l‘h”)an] ‘ O (7)

If the curvature K is constant (which corresponds to a

 

circular bend), the solution is found to be:

1-Kn 1-K

= 1 —X ln(l+K )/‘n(l+K) (9)

This result agrees with Reference [3].



2.2 Transformation to a Round Corner
 

For an arbitrary curvature K(S), a perturbation

solution is possible when the plate width is small compared

to the local radius of curvature, i.e.,

K'a E K(S) E ek(S) << 1 (10)

where e is a small number defined as max [K'a| and k(S) is

of order unity. Let us concentrate on the geometry shown

in Figure 2. The plate consists of two semi-infinite

straight sections joined by a circular section. The curva-

ture of the centerline is given as

k(S) ={ (11)

Substituting Equations (10) and (11) into (7), the final

governing equations are:

(aZX/anz) + (BZX/BSZ) = o

For k(S) = 0, or is] > b (12)

(aZX/asz) + e(en-l)(3X/8n) +

(l-en)2(32X/3n2) = o

For k(S) = l, or |S| g b (13)

Note that the first equation describes straight segments

while the latter refers to the curved section.



2.3 Parameters
 

The radius of curvature (R') and the thickness of

the plate (2a) are dimensional quantities. The dimension-

less parameters are 2b and 0, respectively, where 2b is

the total length of bend and which is divided into two

equal parts b by the n-axis. Facing the arc 2b is the

angle 6. See Figure 3f.

Equation (14) indicates how 6 is defined and equa-

tion (15) is the relation among these parameters.

5 = a/R (l4)

2b€ (15)C
D II

A value of zero for b indicates that the plate is

completely straight without any bend. If e = 0.0, then

according to Equation (14), R tends toward infinity which,

in turn, indicates that the plate is again straight. This

is because "a" can not be equal to zero.

Figures 3, 4 and 5 show how the different values

of these parameters affect the shape of the bent plate

because they are related to one another according to equa-

tions (14) and (15).
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Figure 3.--Bent Plates wun 024.0 and (a)e=n.(o)e=3n/2_

(C)9=2fi.(d)e=n/4.(e)e=11/2
and (r)e=3m4
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CHAPTER II I

Finite Difference Method

We will utilize the fact that the plate is symme-

tric about the n-axis to reduce our computational effort.

This will be used throughout the rest of the formulation.

3.1 Boundary Conditions
 

The inner surface, which corresponds to n = +1, has

the temperature of X = 1. On the outer surface, n = -l

and X = 0. Along the n-axis (corresponding to S = 0), sym-

metry will be used which yields an adiabatic surface with

aX/as 2 0. In the segments far away from the bend, the

temperature is assumed to approach the flat plate solution.

In other words, it changes linearly from X = l to X = 0

because: (i) there is steady-state condition, and (ii)

no curvature effects are involved in the geometry. Figure

6 shows these conditions.

Thus, two different forms of the governing differ-

ential equations are used: one in the curved and the

other one in the straight sections of plate. If the

curved and straight segments are separated as shown in

Figure 6, along the border line, not only the temperature

distribution is the same for both segments but the heat

13
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coming in s—direction from one side must go out through

the other side. If at a point (n,s) along this line the

temperatures are called X1 and X2 for the curved and

straight segments respectively, then the boundary condi-

tions along the line separating the two parts would be:

x1 = x2 (16)

(axl/aS) = (BXZ/BS) (17)

Figure 6 shows all the boundary conditions

involved. To clearly illustrate the two domains (straight

and curved sections), the whole plate is shown as two

separate pieces. The cut is at the shared boundary

between the two segments.

3.2 Formulation for the Interior Nodes
 

Equations (12) and (13) are converted into finite

difference form using a "Central-Difference" representation

and taking h and l as mesh lengths along n and S-axis,

respectively [2].

 

x. a- o I

1 _ . . 1+1, 1-1,

I§(Xi,j+l-2Xi'j-l+Xl'J_l)-+e(€h1-l) 2h 1

+ (l—ehi)2—-l-(x. . - 2x. . + x. .) = o
h2 1+1,j 1,3 1-l,j

For k = l (18)
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x is linear

f‘ ,

’\. x-o.0

XI, 3+1

 X36. 
 

X," 3.1“-

ax,/8s zaxz/as \m
2:— . / ' 2W

J N

I

l

T

X- .

x--"-\ ’Id

13-1 r

I   
\\. X:o 0

Figure 6.—-Representation of Boundaries and Boundarg Conditions.
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H

l—2(Xioj+l-2Xi,j+xi,j-l) +

H
For k = 0 (19)

The following relations were used in equations (18) and

(19):

n = hi (20)

S = lj (21)

axfih1= (Xi+1,j‘xi-1,j)/2h (22)

32X/852 = fi-(xi'jH—zxi’J X1,3-1) (23)

aZX/an2 = i2(xi+l,j_zxi,j 1-l,j) (24)

If

r = 12/h2 (25)

then Equations (18) and (19) become
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125(ehi-l)
 

 

(-2r(1-ehi)2-2)Xi,j-+(r(l-€hi)2‘* 2h )Xi+l.j

+ (r(1-ehi)2 ‘ lzeéfihi-l))xi-l,j

+ xi,j+1 + Xi,j-l = 0

when k = l

(26)

(-2r-2)Xi,j + rxi+1,j rXi-1,j +

Xi,j+l + Xi,j-l = 0

when k = 0

(27)

To further simplify the equations, the following substi-

tutions are made:

-2r(1-ehi)2-2 = 3(1) (28)

12€(€hi-1)
 

 

r(1-ehi)2 + 2h = F(i) (29)

2 --

r(l-ehi)2 + 1 Eéihl 1’ = G(i) (30)

The final form of Equations (12) and (13) for the interior

nodes in the curved and straight sections thus take the

following form:
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E(i)xi'j + F(i)Xi+l,j + G(i)Xi_l'j +

xi,j-1 + xi,j+l = 0

when k = 1 (31)

(-2r-2)Xi'j + rxi+l,j rXi—1,j +

Xi,j-1 + Xi,j+l = 0

when k = o (32)

Equation (31) holds for interior points when |S| < b, k = l

and Equation (32) holds for interior points having [S] > b,

k = 0.

3.3 Formulation for the Boundary Conditions
 

a) The first boundary to be discussed is the

adiabatic surface corresponding to the symmetry boundary.

 

ax/as z 0 (33)

x. . - x. .
1,j+1 1,3-1 -

21 — 0 (34)

xi,j+1 = xi,j-l (35)

If X is cancelled between Equations (35) and
i,j-l

(31), the equation which must be used for the adiabatic

boundary is:



E(i)xi . +F(i)XJ i+Lj-+G(1)X. .-+2x = o (36)
i-Lj Lj+l

b) As discussed earlier, the boundary separating

the curved and straight parts uses continuity arguments.

Equations (16) and (17) are the boundary conditions

(Bxl/Bs) = (BXZ/BS) (37)

and by using a central difference, Equation (37) becomes

Xi,j+l ' Xi,j-l _ Xi,j+l ' Xi,j-l

21 ‘ 21
  

-X.. =X
Xi,j+l 1,3-1 i,j+l ’ xi,j-l

where i and i are two fictitious points as shown in

Figure 6. Assuming fictitious points is the common

approach used in a finite difference method to handle the

nodes located on boundaries. The bars over X are used to

make a distinction between the two fictitious nodes.

Equations (3l) and (32) along this line become:

maxi,j + F(i)Xi+l’j + G<i)Xi-l,j

+.§i,j+l + xi,j-l = 0 '- (40)

(-2r-2)Xi,j + rXi+l,j + rXi-l,j

+ x ‘= = o (41)
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Since Xi,jis the same for both Equations (40) and (41),

the condition X1 = X2 has already been incorporated into

these equations. If Y and i are now eliminated from equa-

tions (39), (40) and (41), the following equation results

which is applicable only for the line separating two seg-

ment domains.

Z(i)xi,j + (F(i)+r)xi+l,j + (C(i)+r)Xi-1,j

+ zxi,j-l + 2xi'j+l = 0 (42)

where

Z(i) = E(i) - 2r - 2 (43)

All of the applicable equations for different sections can

be summarized below:

1) Equation (3l)--On1y for the points inside the

-curved segment.

2) Equation (32)--Only for the points inside the

straight part.

3) Equation (36)--Along the adiabatic surface

corresponding to the line of symmetry.

4) Equation (42)--Along the line separating the

curved and straight segments of the plate.

3.4 Node Generation
 

Along the n-axis, 11 points are uniformly

distributed. Along S-axis, 22 points are considered. The
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plate is thus divided into small meshes with a total of

nodes 242. Figure 7 shows this division. This number

represents a compromise between the increased accuracy

offered by more nodes and the constraints of memory size

and execution time. In dimensionless terms, the mesh

lengths are:

h 2/10 = .2 (44)

l = b/6 (45)

3.5 Computer Program
 

The system of equations for the nodal temperatures

are obtained from Equations (31), (32), (36) and (42) and

can be formulated as AX = B. The computer program is

organized in several routines. The first creates the

matrices A and B. A call is then made to the IMSL

libraries to solve AX = B using the subroutine "LEQTIF."

Figure 8 shows the flow chart of the program. The program

is included in an appendix.

3.6 Temperature Distribution along n-axis
 

The conduction equation across a cylinder [6] is

2nkL (Ti-TO)

q = ' 1n(RO/R) (46)
 

From this equation, the temperature distribution becomes

T.-T
_ _ i o
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Set the values

for h,I,e,D and 6

 

 
 

Assemble the

matrix A

(CALL SKY!)
   

 
 

Assemble (he

matrix B

(CALL

SKY2

Catt 'LEOTtF‘

 
 
7

Call OUNDUt

1
Figure 8.1“ Computer flowchart
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Substituting Equation (6) into (48)

1n(R/Ri)

-__
(48)

ln(Ro/Ri)

which is the dimensionless temperature along the n-axis for

a cylinder. The linear distribution of the dimensionless

temperature along the n-axis with respect to R is

R-R

_ O

X - 1.2—:1:— (49)
O l

The difference (dimensionless) between these two distribu-

tions is:

RO-R 1n(R/Ri)

AX=fi-1+W) (50)

and this difference is maximum at the point where

R -R.

O 1

R = W) ‘5“

When the plate thickness is small compared to the radius

of the centerline Rc' the maximum temperature deficiency

in this case is located at:

 

R = (52)

In his work, C.Y. Wang [4] refers to this point as

"The worst temperature deficiency" which occurs at S = O,

n = 0 along the n-axis only for small values of e. Figure
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9 shows that the temperature deficiency along n-axis can be

closely approximated as a parabolic distribution when the

plate thickness is small compared to Rc- Table 26 shows

the location and value of maximum temperature deficiency

along n-axis for different values of e and 9.

3.7 Heat-transfer and Shape Factor
 

In this section, Figure 7 will be very helpful to

and in the understanding of the equations and proofs.

From Equation (15), the radius of curvature for the center-

line where n = 0 is

. _ 2ba

RC—-—e— , (53)

, _ , _ _ 2ba _ _ _
R i - R c a — —§— a — a((2b 6)/6) (54)

where R'i is the radius of curvature for the interior ‘

curved boundary, and "a" is half of the plate thickness.

The following shows the calculation of the length of each

division along the n-axis and the interior boundary. See

Figure 7 for better understanding of the following calcu-

lations, which are divided into three parts.

1) The dimensional mesh length along the n-axis

N D
J

An = 0 = .2a (55)

f
—
J

2) The dimensional mesh length on the interior

boundary in the curved segment
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_ 6/2 _
a — €75 — 6/12 (56)

as' = R'ia = 31%;:9) (57)

3) The dimensional mesh length along the interior

boundary in the straight segment of the plate

as' = 93— (58)

The heat conduction equation is [6]

2

-l KA(AT/An') (59)Q

ll

r
m
n
m

From Equation (6), the temperature difference between

every two nodes on the same line is

AT = (TO-T1)AX = (ATovera11)(AX) = (ATO)(AX) (60)

Considering a unit depth in z'-direction and

dividing Equation (59) into two parts in order to take

care of the fact that the divisions along the interior

boundary are not the same in the curved and straight seg-

ments of the plate and also substituting Equation (60) for

AT, the result is

- 6 2b-6 ATOAX 22 ba ATOAX

q — i=1 Ka<—I§')(1)(UT§§')*‘§=7K‘676”1“ 0:25) (62)

or



2

=7H
'
M
N

5 b
————)E AX. + IT Axi (63)

KATO 2

The shape factor 8 is related to q according to [6]

q = KSATO (64)

or

_fl__.=

KAT S (65)

O

The temperatures along the line next to the inter—

ior boundary at the indicated nodes are tabulated in Tables

22 through 26 and the values of heat transfer in the form

of which is equal to the shape factor S, are shown in_3__.

KAT
0

Table 25.

3.8 Isotherms
 

For each different shape, the isotherms can be

found by linear interpolation for the temperatures between

adjacent nodes to obtain the desired temperature. As an

example, isotherms are shown on Figure 10 when 6 = n/Z and

b = 4. For other shapes, isotherms can be found in a sim-

ilar way. The location of the intersections of isotherms

with the n-axis are also shown in Figure 24 when 6 = n/2.

This picture illustrates the deviation of these isotherms

from the linear distribution for a flat plate with the

same thickness.
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3.9 Error Estimate
 

By considering two nodes at n +l/3 and n = -l/3

along the n-axis and another one at s b/2 along the 5-

axis, different mesh lengths h and l were considered to

see how many digits are valid and can be trusted. Results

showed that only three digits are valid. Table 27 shows

the results and Figure 25 through 27 are the plots of

these temperatures verses h. hz, l and 12. These figures

show that the temperature varies linearly when they are

plotted verses h2 and 12.

The error is due to two factors, the first is the

truncation error in central-difference formulation in the

finite difference method and the second is the computer

round off.
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Figure )0,-- The isotherms when ezn/Zanrt 0:4.0



CHAPTER IV

Results and Conclusions

4.1 Numerical Results
 

Temperature distributions were calculated for

selected values of 6, b and s using a finite difference

method expressed by Equations (31), (32), (36) and (42).

Tables 1 through 18 include all the results for

different values of these parameters. The results confirm

the statements made by C.Y. Wang [4] concerning the analy-

tical results. The results indicate that the temperatures

at any given (n,S) in the vicinity of the bend are less

than their corresponding values for the linear distribution

in a flat plate with the same thickness. This is attri-

buted to the difference in areas between the inner surface

and outer surface. Since the heat transfer rate is prOpor-

tional to this area, the area difference results in the

isotherms being closer together near the inner surface.

See Figure 10.

For a given angle of bend and bend length b (or

curvature), the temperatures along the centerline are less

than the linear value of 0.5, and the minimum temperature

along this line is located at S = 0, n = 0 since this

31
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point is the furthest point from the straight segments.

Figures 11 and 13 through 17 show the change of tempera-

tures along the S-axis and Tables 2 and 14 through 18 con-

tain the numerical values for different values of

parameters.

The temperatures in the vicinity of the bend have

decreased from their corresponding linear values even for

the adjacent straight sections. The temperatures do not

relax back to the linear temperature distribution until

one reaches a certain penetration depth along S-axis.

This is due to the effect of the bend on the neighboring

parts of straight sections. Table 19 shows the penetration

depth for different values of parameters.

As b decreases, the temperatures at any given (n,S)

in the vicinity of the bend increase due to the fact that

the bend length is being slowly reduced which, in turn,

makes the plate behave more like a flat plate. In the

limit, as b -+ o the temperature deficiency decreases and

temperatures reach their linear values.

Along the n-axis or S = 0, the temperatures are

less than their corresponding linear values and as dis—

cussed in Section 3.6, when the plate thickness is small

compared to radius of curvature RC, the temperature defi-

ciency is parabolic along this axis. The maximum tempera-

ture deficiency in this case occurs at S = 0, n = O.

This is an approximation which loses its validity as e
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increases to larger values, (i.e., the plate thickness is

not small compared to the radius of curvature RC). Table

26 shows the maximum temperature deficiency along n-axis

and its location.

As 8 decreases for a given value of b, the temper-

atures along n-axis are increased. This can be seen in

Figures 13 to 17. As 0 decreases (which means the angle of

bend increases and the plate becomes flatter), the tempera-

tures approach the linear values. The temperature distri-

butions are shown in Figure 18 through 22. Tables 1 and 3

through 13 also contain additional results.

For a given 5, the shape factors and the heat

transfer are increased as the angle of the bend increases

(6 decreases). For a given angle of the bend (or 6), the

shape factors and heat transfer are decreased as 8

increases. See Table 25.

4.2 Conclusion
 

Based on the results obtained and the discussion

in the previous section, it can be concluded that:

l) The temperatures are decreased in the vicinity

of the bend when compared with the linear dis-

tribution of a flat plate with the same

thickness.

2) For a given 9 (or angle of the bend) and bend

length b (or curvature) the temperatures



3)

4)

5)

6)

8)

9)

10)

11)
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along the S-axis are less than the linear

value of .5 for the centerline.

The maximum temperature deficiency along the

S-axis is observed at n = O, S = 0.

The maximum temperature deficiency along any

line parallel to S-axis is located at (n,0).

Moving along the S-axis, the linear tempera-

ture distribution is observed in the straight

segments up to a penetration depth that

depends on 2b and 6.

The temperature deficiency from linear distri-

bution along n-axis is parabolic when 6 << 1.

As b decreases, the temperatures for any given

(n,S) in the vicinity of the bend increase and

as b ++ 0 they reach the values of temperature

distribution in a flat plate with the same

thickness.

For a given angle 8, as 6 increases (b

decreases) the temperatures at any given point

(n,S) in the vicinity of the bend decrease.

For a given 8, as 6 increases, the heat trans-

fer and shape factors increase.

For a given 6 (or angle of the bend) as 8

increases, the heat transfer and shape factors

decrease.

The results are accurate only to three signifi-

cant digits.
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It is clear that the effect of curvature (bend)

cannot be ignored on the temperature distribution along a

bend plate. In his work, C.Y. Wang [4] assumed that the

plate thickness is very small when compared with the

radius of curvature of centerline, (i.e., 6 << 1). The

numerical results not only confirm the results of analyti-

cal solution, but also relaxes the restriction of being

a lot smaller than unity which is imposed upon the analyti-

cal solution.
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Table l: Dimensionless temperatures along n-axis when

 

 

 

b = 2.0.

n 6=w/4 0=fl/4 8=3n/4 0=n

-1 0.000 0.000 0.000 0.000

-4/5 0.084 0.071 0.059 0.048

-3/5 0.172 0.147 0.123 0.101

-2/5 0.262 0.227 0.193 0.159

-1/5 0.356 0.313 0.270 0.224

0.0 0.453 0.405 0.354 0.298

1/5 0.554 0.504 0.448 0.384

2/5 0.658 0.611 0.554 0.484

3/5 0.767 0.727 0.676 0.607

4/5 0.881 0.856 0.821 0.766

1 1.00 1.00 1.00 1.00
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Table 2: Dimensionless temperatures along s-axis when

b = 2.0.

1:1/3 8=n/4 6=n/2 8=3n/4 0=n

0 0.453 0.405 0.354 0.299

1 0.453 0.405 0.355 0.300

2 0.454 0.408 0.359 0.306

3 0.456 0.412 0.366 0.316

4 0.460 0.419 0.377 0.333

5 0.466 0.431 0.396 0.358

6 0.475 0.451 0.425 0.398

7 0.485 0.470 0.454 0.438

8 0.491 0.482 0.472 0.462

9 0.495 0.489 0.483 0.478

10 0.497 0.494 0.490 0.487

11 0.498 0.496 0.494 0.492

12 0.499 0.498 0.496 0.495

13 0.499 0.499 0.448 0.497

14 0.500 0.499 0.499 0.498

15 0.500 0.500 0.499 0.499

16 0.500 0.500 0.500 0.499

17 0.500 0.500 0.500 0.500

18 0.500 0.500 0.500 0.500

19 0.500 0.500 0.500 0.500

20 0.500 0.500 0.500 0.500

21 0.500 0.500 0.500 0.500
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Table 3: Dimensionless temlperatures along n-axis when

6 n/4 and e varies.

 

 

 

n €=0.1 e=0.2 e=0.5 e=1.0

-1 0.000 0.000 0.000 0.000

-4/5 0.091 0.084 0.072 0.066

-3/5 0.185 0.172 0.150 0.139

-2/5 0.280 0.262 0.232 0.219

-1/5 0.376 0.355 0.320 0.307

0 0.475 0.452 0.413 0.402

1/5 0.576 0.553 0.513 0.505

2/5 0.678 0.658 0.620 0.616

3/5 0.783 0.767 0.733 0.736

4/5 0.891 0.881 0.858 0.865

1 1.00 1.00 1.00 1.00
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Table 4: Dimensionless temperatures along s-axis when

 

 

 

6 = “/2 and e varies.

n €=0.1 €=0.2 e=0.5 s=l.0

-1 0.000 0.000 0.000 0.000

-4/5 0.091 0.084 0.066 0.054

-3/5 0.184 0.170 0.137 0.113

-2/5 0.280 0.260 0.213 0.179

-1/5 0.376 0.353 0.295 0.253

0 0.475 0.450 0.384 0.337

1/5 0.576 0.551 0.481 0.431

2/5 0.678 0.6555 0.588 0.530

3/5 0.783 0.765 0.707 0.665

4/5 0.890 0.880 0.842 0.815

1 1.000 1.000 1.00 1.00
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Table 5: Dimensionless temperatures along n-axis when

8 =3n/4 and e varies.

 

 

 

n €=0.1 €=0.2 €=0.5 €=1.0

-1 0.000 0.000 0.000 0.000

-4/5 0.091 0.0836 0.064 0.0456

-3/5 0.185 0.170 0.132 0.097

-2/5 0.280 0.260 0.206 0.154

-l/5 0.376 0.353 0.287 0.219

0 0.475 0.450 0.374 0.292

1/5 0.576 0.550 0.471 0.378

2/5 0.678 0.655 0.578 0.479

3/5 0.783 0.765 0.698 0.602

4/5 0.890 0.880 0.837 0.761

1 1.00 1.00 1.00 1.00
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Table 6: Dimensionless temperatures along s-axis when

 

 

 

6 = n and e varies.

n e=0.1 €=0.2 €=0.5 €=1.0

-1 0.000 0.000 0.000 0.000

-4/5 0.091 0.084 0.063 0.040

-3/5. 0.185 0.170 0.131 0.085

-2/5 0.280 0.260 0.204 0.136

-1/5 0.376 0.353 0.284 0.193

0 0.475 0.450 0.371 0.260

1/5 0.576 0.550 0.467 0.337

2/5 0.678 0.655 0.574 0.431

3/5 0.783 0.765 0.696 0.549

4/5 0.890 0.880 0.835 0.711

1.0 1.00 1.00 1.00 1.00
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Table 7: Dimensionless temperatures along s-axis when

0 =3n/2 and e varies.

n €=0.l €=0.2 e=0.5 e=l.0

-1 0.000 0.000 0.000 0.000

-4/5 0.091 0.084 0.063 0.033

-3/5 0.185 0.170 0.130 0.071

-2/5 0.280 0.260 0.203 0.112

-l/5 0.376 0.353 0.283 0.160

0 0.475 0.450 0.370 0.216

1/5 0.576 0.550 0.466 0.283

2/5 0.678 0.655 0.573 0.366

3/5 0.783 0.765 0.694 0.474

4/5 0.890 0.880 0.834 0.635

1 1.00 1.00 1.00 1.00
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Table 8: Dimensionless temperatures along n-axis when

 

 

 

8 = 2N and e varies.

n €=0.l €=0.2 e=0.5

-1 0.000 0.000 0.000

-4/5 0.091 0.084 0.063

-3/5 0.185 0.170 0.130

-2/5 0.280 0.260 0.203

-l/5 0.376 0.353 0.282

0 0.475 0.450 0.369

1/5 0.576 0.550 0.465

2/5 0.678 0.655 0.572

3/5 0.783 0.765 0.694

4/5 0.890 0.880 0.834

1 1.00 1.00 1.00
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Table 9: Dimensionless temperatures along n-axis when

6 =n/4 and b varies.

n b=0.5 b=l.0 b=2.0 b=3.0

-1 0.000 0.000 0.000 0.000

-4/5 0.068 0.075 0.084 0.089

-3/5 0.142 0.155 0.172 0.180

-2/5 0.222 0.240 0.262 0.274

-l/5 0.309 0.329 0.356 0.369

0 0.402 0.423 0.453 0.468

1/5 0.502 0.523 0.554 0.568

2/5 0.611 0.629 0.658 0.672

3/5 0.727 0.742 0.767 0.778

4/5 0.854 0.865 0.881 0.887

1 1.00 1.00 1.00 1.00
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Table 10: Dimensionless temperatures along n-axis when

6==n/2 and b varies.

n b=l.0 b=2.0 b=3.0 b=4.0

-1 0.000 0.000 0.000 0.000

-4/5 0.057 0.071 0.079 0.084

-3/5 0.119 0.147 0.162 0.171

-2/5 0.188 0.227 0.249 0.261

-1/5 0.263 0.313 0.339 0.354

0 0.347 0.405 0.435 0.451

1/5 0.440 0.504 0.535 0.551

2/5 0.546 0.611 0.641 0.656

3/5 0.667 0.727 0.753 0.766

4/5 0.811 0.856 0.872 0.880

1 1.00 1.00 1.00 1.00
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Table 11: Dimensionless temperatures along n-axis when

 

 

 

8 = 3n/4 and b varies.

n b=2.0 b=3.0 b=4.0 b=5.0

-1 0.000 0.000 0.000 0.000

-4/5 0.059 0.070 0.077 0.081

-3/5 0.123 0.145 0.157 0.165

-2/5 0.193 0.224 0.242 0.253

-l/5 0.270 0.309 0.331 0.345

0 0.3540 0.401 0.426 0.440

1/5 0.4480 0.499 0.526 0.541

2/5 0.554 0.606 0.632 0.647

3/5 0.676 0.724 0.746 0.758

4/5 0.821 0.854 0.868 0.875

1 1.00 1.00 1.00 1.00
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Table 12: Dimensionless temperatures along n-axis when

6 = n and b varies.

b=2.0 b=4.0 b=6.0 b=8.0

-1 0.000 0.000 0.000 0.000

-4/5 0.048 0.070 0.079 0.084

-3/5 0.101 0.144 0.162 0.171

-2/5 0.159 0.226 0.248 0.261

-1/5 0.224 0.308 0.339 0.354

0 0.299 0.400 0.434 0.451

1/5 0.384 0.498 0.534 0.551

2/5 0.485 0.605 0.640 0.656

3/5 0.607 0.723 0.753 0.766

4/5 0.766 0.853 0.872 0.880

1 1.00 1.00 1.00 1.00

 



48

Table 13: Dimensionless temperatures along s-axis when

 

 

 

0 = 3w/2 and b varies.

n b=3.0 b=4.0 b=5.0 b=6.0

-1 0.000 0.000 0.000 0.000

-4/5 0.045 0.057 0.048 0.070

-3/5 0.095 0.119 0.134 0.144

-2/5 0.150 0.187 0.209 0.223

-1/5 0.212 0.261 0.289 0.308

0 0.283 0.344 0.378 0.399

1/5 0.366 0.437 0.474 0.498

2/5 0.465 0.543 0.582 0.605

3/5 0.588 0.666 0.702 0.723

4/5 0.752 0.815 0.840 0.854

1 1.00 1.00 1.00 1.00
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Table 14: Dimensionless temperatures along s-axis when

 

 

 

0 = n/4.

s/l e=0.l €=0.2 €=0.5 e=1.0

1=n/4.8 1=n/9.6 1=n/2.4 =w/48.0

0 0.475 0.452 0.413 0.402

1 0.475 0.453 0.414 0.403

2 0.475 0.454 0.416 0.404

3 0.476 0.456 0.420 0.408

4 0.477 0.459 0.426 0.412

5 0.480 0.465 0.434 0.418

6 0.488 0.475 0.443 0.425

7 0.495 0.485 0.453 0.433

8 0.498 0.491 0.462 0.440

9 0.499 0.494 0.469 0.450

10 0.500 0.497 0.474 0.452

11 0.500 0.498 0.479 0.458

12 0.500 0.499 0.483 0.463

13 0.500 0.499 0.486 0.468

14 0.500 0.500 0.489 0.472

15 0.500 0.500 0.491 0.476

16 0.500 0.500 0.493 0.480

17 0.500 0.500 0.495 0.484

18 0.500 0.500 0.496 0.487

19 0.500 0.500 0.497 0.490

20 0.500 0.500 0.498 0.494

21 0.500 0.500 0.499 0.497
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Table 15: Dimensionless temperatures along s-axis when

 

 

 

8 = n/2.

5/1 €=0.1 e=0.2 €=0.5 =1.0

=n/2.4 =n/4.8 l=w/12.0 1=n/24.

0 0.475 0.450 0.384 0.337

1 0.475 0.450 0.385 0.338

2 0.475 0.450 0.388 0.343

3 0.475 0.451 0.394 0.350

4 0.475 0.453 0.403 0.361

5 0.477 0.459 0.417 0.375

6 0.488 0.475 0.437 0.393

7 0.498 0.490 0.457 0.412

8 0.500 0.496 0.471 0.428

9 0.500 0.499 0.481 0.441

10 0.500 0.500 0.487 0.452

11 0.500 0.500 0.492 0.461

12 0.500 0.500 0.494 0.468

13 0.500 0.500 0.496 0.474

14 0.500 0.500 0.498 0.479

15 0.500 0.500 0.498 0.483

16 0.500 0.500 0.499 0.487

17 0.500 0.500 0.499 0.490

18 0.500 0.500 0.500 0.492

19 0.500 0.500 0.500 0.494

20 0.500 0.500 0.500 0.496

21 0.500 0.500 0.500 0.498
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Table 16: Dimensionless temperatures along s-axis when

 

 

 

6 = 3n/4.

s/l e=0.1 e=0.2 e=0.5 e=1.0

l=3n/4.8 1=3n/9.6 l=3n/24.0 1=3n/48

0 0.475 0.450 0.374 0.292

1 0.475 0.450 0.375 0.294

2 0.475 0.450 0.378 0.301

3 0.475 0.450 0.383 0.311

4 0.475 0.451 0.392 0.327

5 0.476 0.456 0.408 0.350

6 0.488 0.475 0.437 0.379

7 0.499 0.494 0.465 0.410

8 0.500 0.498 0.481 0.432

9 0.500 0.500 0.489 0.450

10 0.500 0.500 0.494 0.463

11 0.500 0.500 0.497 0.473

12 0.500 0.500 0.498 0.480

13 0.500 0.500 0.499 0.485

14 0.500 0.500 0.499 0.489

15 0.500 0.500 0.500 0.492

16 0.500 0.500 0.500 0.494

17 0.500 0.500 0.500 0.496

18 0.500 0.500 0.500 0.497

19 0.500 0.500 0.500 0.498

20 0.500 0.500 0.500 0.499

21 0.500 0.500 0.500 0.499
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Table 17: Dimensionless temperatures along s-axis when

 

 

 

6 = W'

s/l e=0.1 €=0.2 €=0.5 e=1.0

l=n/l.2 l=n/2.4 l=n/6.0 =n/12.0

0 0.475 0.450 0.371 0.260

1 0.475 0.450 0.372 0.262

2 0.475 0.450 0.373 0.270

3 0.475 0.450 0.374 0.282

4 0.4750 0.450 0.385 0.302

5 0.476 0.454 0.402 0.331

6 0.488 0.475 0.437 0.372

7 0.499 0.496 0.471 0.413

8 0.500 0.499 0.487 0.412

9 0.500 0.500 0.494 0.461

10 0.500 0.500 0.497 0.474

11 0.500 0.500 0.499 0.482

12 0.500 0.500 0.499 0.488

13 0.500 0.500 0.500 0.492

14 0.500 0.500 0.500 0.495

15 0.500 0.500 0.500 0.497

16 0.500 0.500 0.500 0.498

17 0.500 0.500 0.500 0.499

18 0.500 0.500 0.500 0.499

19 0.500 0.500 0.500 0.499

20 0.500 0.500 0.500 0.500

21 0.500 0.500 0.500 0.500
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Table 18: Dimensionless temperatures along s-axis when

 

 

 

8 = 3n/2.

s/l e=0.l €=0.2 €=0.5 €=1.0

1=3n/2.4 l=3n/4.8 l=3n/12.0 l=3n/24.

0 0.475 0.450 0.370 0.216

1 0.475 0.450 0.370 0.219

2 0.475 0.450 0.370 0.228

3 0.475 0.450 0.372 0.243

4 0.475 0.450 0.377 0.268

5 0.475 0.452 0.393 0.3064

6 0.488 0.475 0.437 0.366

7 0.500 0.498 0.480 0.425

8 0.500 0.500 0.494 0.458

9 0.500 0.500 0.498 0.477

10 0.500 0.500 0.499 0.488

11 0.500 0.500 0.500 0.493

12 0.500 0.500 0.500 0.496

13 0.500 0.500 0.500 0.498

14 0.500 0.500 0.500 0.499

15 0.500 0.500 0.500 0.499

16 0.500 0.500 0.500 0.500

17 0.500 0.500 0.500 0.500

18 0.500 0.500 0.500 0.500

19 0.500 0.500 0.500 0.500

20 0.500 0.500 0.500 0.500

21 0.500 0.500 0.500 0.500
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Table 19: The dimensionless penetration depth along s-axis

to reach the linear values for flat plate.

 

 

 

3n/2 35.3 63495 11.8

e €=0.l €=0.2 €=0.5 e=1.0

n/4 9.16 7.53 3.27 1.83

n/Z 14.4 9.82 6.54 3.66

3n/4 19.6 12.8 8.25 5.50

n 26.2 14.4 8.90 7.33

9.82
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Table 20: The dimensionless temperatures at the indicated

nodes when 6 = n/4.

 

 

 

Node e=0.1 e=0.2 e=0.5 €=1.0

l .890 .881 .858 .865

10 .890 .881 .859 .865

19 .890 .881 .860 .866

28 .891 .882 .862 .867

37 .891 .883 .866 .869

46 .892 .886 .870 .872

55 .895 .890 .876 .875

64 .898 .895 .882 .878

73 .899 .897 .886 .880

82 .900 .898 .889 .882

91 .900 .899 .891 .884

100 .900 .899 .893 .886

109 .900 .900 .894 .888

118 .900 .900 .896 .890

127 .900 .900 .896 .891

136 .900 .900 .897 .892

145 .900 .900 .898 .894

154 .900 .900 .898 .895

163 .900 .900 .899 .896

172 .900 .900 .899 .897

181 .900 .900 .899 .898

190 .900 .900 .900 .899
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Table 21: The dimensionless temperatures at the indicated

nodes when 9 = n/2.

 

 

 

Node e=0.1 e=0.2 €=0.5 e=1.0

1 0.890 0.880 0.842 0.815

10 0.890 0.880 0.843 0.816

19 0.890 0.880 0.845 0.819

28 0.890 0.880 0.848 0.825

37 0.891 0.881 0.853 0.833

46 0.891 0.883 0.861 0.843

55 0.895 0.891 0.874 0.855

64 0.899 0.897 0.884 0.866

73 0.900 0.899 0.890 0.874

82 0.900 0.900 0.894 0.879

91 0.900 0.900 0.896 0.884

100 0.900 0.900 0.897 0.887

109 0.900 0.900 0.898 0.890

118 0.900 0.900 0.899 0.892

127 0.900 0.900 0.899 0.893

136 0.900 0.900 0.900 0.895

145 0.900 0.900 0.900 0.896

154 0.900 0.900 0.900 0.897

163 0.900 0.900 0.900 0.898

172 0.900 0.900 0.900 0.898

181 ‘ 0.900 0.900 0.900 0.899

190 0.900 0.900 0.900 0.900
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Table 22: The dimensionless temperatures at the indicated

nodes when 0 = 3fl/4.

 

 

 

Node e=0.1 e=0.2 e=0.5 e=l.0

1 0.890 0.880 0.837 0.761

10 0.890 0.880 0.837 0.763

19 0.890 0.880 0.839 0.770

28 0.890 0.880 0.842 0.781

37 0.890 0.880 0.847 0.797

46 0.891 0.882 0.856 0.818

55 0.895 0.891 0.874 0.844

64 0.900 0.898 0.888 0.864

73 0.900 0.900 0.894 0.875

82 0.900 0.900 0.897 0.883

91 0.900 0.900 0.898 0.888

100 0.900 0.900 0.899 0.891

109 0.900 0.900 0.899 0.894

118 0.900 0.900 0.900 0.895

127 0.900 0.900 0.900 0.897

136 0.900 0.900 0.900 0.898

145 0.900 0.900 0.900 0.898

154 0.900 0.900 0.900 0.899

163 0.900 0.900 0.900 0.899

172 0.900 0.900 0.900 0.899

181 0.900 0.900 0.900 0.900

190 0.900 0.900 0.900 0.900
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Table 23: The dimensionless temperatures at the indicated

nodes when 0 = n.

 

 

 

Node €=0.1 €=0.2 e=0.5 €=1.0

1 0.890 0.880 0.835 0.711

10 0.890 0.880 0.836 0.714

19 0.890 0.880 0.836 0.724

28 0.890 0.880 0.839 0.741

37 0.890 0.880 0.843 0.766

46 9.891 0.881 0.853 0.798

55 0.895 0.891 0.874 0.838

64 0.900 0.899 0.890 0.865

73 0.900 0.900 0.896 0.879

82 0.900 0.900 0.898 0.887

91 0.900 0.900 0.899 0.891

100 0.900 0.900 0.900 0.894

109 0.900 0.900 0.900 0.896

118 0.900 0.900 0.900 0.898

127 0.900 0.900 0.900 0.899

136 0.900 0.900 0.900 0.899

145 0.900 0.900 0.900 0.900

154 0.900 0.900 0.900 0.900

163 0.900 0.900 0.900 0.900

172 0.900 0.900 0.900 0.900

181 0.900 0.900 0.900 0.900

190 0.900 0.900 0.900 0.900
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Table 24: The dimensionless temperatures at the indicated

nodes when 6 = 3n/2.

 

 

 

Node e=0.1 €=0.2 e=0.5 €=1.0

1 0.890 0.880 0.834 0.635

10 0.890 0.880 0.834 0.640

19 0.890 0.880 0.835 0.654

28 0.890 0.880 0.836 0.679

37 0.890 0.880 0.839 0.715

46 0.890 0.881 0.848 0.767

55 0.891 0.891 0.875 0.835

64 0.895 0.900 0.893 0.871

73 0.900 0.900 0.898 0.886

82 0.900 0.900 0.899 0.892

91 0.900 0.900 0.900 0.896

100 0.900 0.900 0.900 0.898

109 0.900 0.900 0.900 0.899

118 0.900 0.900 0.900 0.899

127 0.900 0.900 0.900 0.900

136 0.900 0.900 0.900 0.900

145 0.900 0.900 0.900 0.900

154 0.900 0.900 0.900 0.900

163 0.900 0.900 0.900 0.900

172 0.900 0.900 0.900 0.900

181 0.900 0.900 0.900 0.900

190 0.900 0.900 0.900 0.900
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Table 25: The shape factors and heat transfer (q/KATO).

6 e=0.1 €=0.2 €=0.5 e=1.0

n/4 7.19 3.58 1.39 0.581

w/Z 14.4 7.16 2.78 1.18

3n/4 21.6 10.7 4.17 1.75

n 28.7 14.3 5.56 2.30

3n/2 43.3 21.5 8.33 3.38
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Table 26: The dimensionless maximum temperature deficien-

cies and their locations along the n-axis.

 

 

 

 

 

 

 

0 e n AX

0.1 0 0.025

“/4 0.2 0 0.048

0.5 1/5 0.087

1.0 0 0.098

0.1 0 0.025

”/2 0.2 0 0.050

0.5 1/5 0.119

1.0 1/5 0.169

0.1 o 0.025

0.2 0 0.050

3"/4 0.5 1/5 0.129

1.0 1/5 0.222

0.1 0 0.025

n 0.2 0 0.050

0.5 1/5 0.133

1.0 2/5 0.269

0.1 0 0.025

0.2 0 0.050

3"/2 0.5 1/5 0.134

1.0 2/5 0.334
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Table 27: Dimensionless temperatures at two locations

along n-axis when h varies and at s = b/2

along s-axis when l varies.

 

 

 

 

 

n h = 1/3 h = 1/6 h = 1/12

+1/3 0.62235 0.62226 0.62224

-1/3 0.29263 - 0.29256 0.29255

S 1 = b/4 1 = b/8 1 = b/l6

 

b/2 0.45588 0.45571 0.45568
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APPENDIX

THE COMPUTER PROGRAM

PROGRAM ATHENA

REAL A(l98,l98),B(198,1),E(9),G(9),U(5),WKAREA(198),

Z(9)

INTEGER L(11),M,N,MA,IB,IDGT,IER

OPEN(20,FILE='OUTPUT')

IN THIS PROGRAM, FIRST THE VALUES OF 5 , 1,h,b AND 9 ARE

CALCULATED AND THEN THE SUBROUTINES SKYl AND SKYZ

ARE CALLED TO FORM THE ELEMENTS OF A AND B MATRICES.

THEN THE SUBROUTINE 'LEQTlF' IS CALLED TO SOLVE THE

EQUATION AX=B.

VARIABLES:L (1) IS THE NUMBER OF DIVISIONS ALONG n-axis

L(2) IS THE NUMBER OF DIVISIONS ALONG s-axis IN THE

CURVED SEGMENT. L(3) IS THE NUMBER OF DIVISIONS ALONG

s-axis ONLY IN THE STRAIGHT SEGMENTS OF THE PLATE.

C REPRESENTS l WHICH IS THE LENGTH OF MESH ALONG

s—axis. H REPRESENTS h WHICH IS THE LENGTH OF MESH

ALONG n-axis. W STANDS FOR s=a/R.

L(1)=9

L(2)=5

L(3)=15

L(4)=L(l)*L(2)+L(l)

L(5)=L(1)*L(2)+L(l)*L(3)+2*L(l)

L(6)=L(l)+l

L(8)=L(1)*L(2)+L(1)+1

L(9)=L(l)*L(2)+2*L(l)

L(10)=L(5)-L(l)

L(1l)=L(2)+l

U(1)=L(11)

HERE THE MESH LENGTHS ARE CALCULATED.

C IS EQUAL TO SMALL 1

C=B/U(1)

U(2)=L(6)

H=2.0/Ut2)

W=0.5

NOW THE ELEMENTS OF THE A MATRIX ARE BEING FORMED.

R=(C**2)/(H**2)

U(3)=-(2.0+2.0*R)

D=((L(1)-l)/2)+l

DO 2 I=1,L(l)

80
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D=D-l.0

E(I)=-(2.0+R*2.0*((l.0-W*H*D)**2))

F(I)=(R*((l.0-W*H*D)**2)+w*(W*D*H-1.0)*(C**2)/(2.0*H))

G(I)=R*((l.0-W*H*D)**2)-W*(W*H*D—1.0)*((C**2)/(2.0*H)

Z(I)=E(l)-R*2.0-2.0

IF(I.EQ.1)THEN

U(4)=F(I)

U(5)=F(I)+R

ELSE

END IF

CONTINUE

HERE IT MAKESZXCALLTK)THE SUBROUTINE SKYl WHICH FORMS

ELEMENTS OF MATRIX A

CALL SKY1(A,L,E,G,F,Z,U)

SUBROUTINE SKY1

REAL A(l98,198),E(9),F(9),G(9),U(9),Z(9)

INTEGER L(lll

DO 3 I=1,L(1l)

D) 4 L=1,L(5)

IF(I.EQ.J)THEN

A(I,J)=E(l)

ELSE IF(I.EQ.L(1).AND.J.EQ.L(6))THEN

A(I,J)=0.0

ELSE IF(J.EQ.I+1)THEN

A(I,J)=G(i)

ELSE IF(J.EQ.L(1)+I)THEN

A(I,J)=2.0

ELSE IF(J.EQ.I-1)THEN

A(I,J)=F(I)

ELSE

A(I,J)=0.0

END IF

CONTINUE

CONTINUE

DO 8 I=L(6),L(4)

DO 9 J=1,L(5)

K=I/L(l)

M=1-K*L(1)

L(7)=K*L(1)+l

IF(I.EQ.J.AND.I.NE.K*L(1))THEN

A(K,J)=E(M)

ELSE IF (I.EQ.J.AND.I.EQ.K*L(1))THEN

N=L(l)

A(I,J)=E(N)

ELSE IF(I.EQ.L(7).AND.J.EQ.I-1)THEN

A(I,J)=0.0

ELSE IF(I.EQ.K*L(1).AND.J.EQ.I+1)THEN

A(I,J)=0.0

ELSE IF(J.EQ.I~1.ANDI.NE.K*L(1))THEN

A(I,J)=E(M)

ELSE IF(J.EQ.I-1.AND.I.EQ.K*L(1))THEN

N=L(l)

A(I,J)=E(N)
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ELSE IF(I.EQ.L(7).AND.J.EQ.I-1)THEN

A(I,J)=0.0

ELSE IF(I.EQ.K*L(1).AND.J.EQ.I+1)THEN

A(I,J)=0.0

ELSE IF(J.EQ.I-1.AND.I.NE.K*L(1))THEN

A(I,J)=E(M)

ELSE IF(J.EQ.I-1.AND.I.EQ.K*L(1))THEN

N=L(l)

A(I,J)=E(N)

ELSE IF(J.EQ.I+1)THEN

A(I,J)=G(M)

ELSE IF(J.EQ.I-L(l))THEN

A(I,J)=l.0

ELSE IF(J.EQ.I+L(1))THEN

A(I,J)=1.0

ELSE

A(I,J)=0.0

END IF

CONTINUE

CONTINUE

DO 12 I=L(8),L(9)

DO 13 J=1,L(5)

K=I-L(4)

IF(I.EQ.J)THEN

A(I,J)=Z(K)

ELSE IF(I.EQ.L(8).AND.J.EQ.I-1)THEN

A(I,J)=0.0

ELSE IF(I.EQ.L(9).AND.J.EQ.I+1)THEN

A(I,J)=0.0

ELSE IF(J.EQ.I+1)THEN

A(I,J)=G(K)+R

ELSE IF(J.EQ.I-1)THEN

A(I,J)=F(K)+R

ELSE IF(J.EQ.I-L(1))THEN

A(I,J)=2.0

ELSE IF(J.EQ.I+L(1))THEN

A(I,J)=2.0

ELSE

A(I,J)=0.0

END IF

CONTINUE

CONTINUE

DO 17 I=L(9(+1,L(S)

DO 16 J=1,L(5)

K=I/Lt1)

N=L(l)

IF(I.EQ.J)THEN

A(I,J)=U(3)

ELSE IF(I.EQ.N*K.AND.J.EQ.I+1)THEN

A(I,J)=0.0

ELSE IF(I.EQ.N*K+1.AND.J.EQ.I-1)THEN

A(I,J)=0.0

ELSE IF(J.EQ.I+1)THEN
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A(I,J)=R

ELSE IF(J.EQ.I-1)THEN

A(I,J)=R

ELSE IF(I.LT.L(10)+1.AND.J.EQ.I+L(1))THEN

155 A(I,J)=l.0

ELSE

A(I,J)=0.0

END IF

160 16 CONTINUE

17 CONTINUE

C HERE IT MAKES}1CALL1K)THE SUBROUTINE SKY2 WHICH FORMS

C THE ELEMENTS OF MATRIX B

CALL SKYZ

165 SUBROUTINE SKY2

REAL B(198,l),U(5)

INTEGER L(ll)

DO 25 I=1,L(11)

IF(I.EQ.J)THEN

170 D0 25 I=1,L(1)

IF(I.EQ.1)THEN

ELSE

B(I,l)=0.0

175 END IF

25 CONTINUE

DO 26 I=L(6),L(4)

M=I/L(1)

IF(I.EQ.M*L(1)+1)THEN

180 B(I,l)=-U(4)

ELSE

B(I,l)=0.0

END IF

27 CONTINUE

185 D0 28 I=L(9)+1,L(10)

M=I/L(1)

IF(I.EQ.M*L(1)+1)THEN

B(I,l)=-R

ELSE

190 B(I,l)=0.0

END IF

28 CONTINUE

D=L(6)

DO 29 I=L(lO)+1,L(5)

195 D=D-l.0

T=D/U(2)

IF(I.EQ.L(10)+1)THEN

B(I,l)=-(R+T)

ELSE

200 B(I,l)=-T

END IF

29 CONTINUE

C HERE THE DATA NEEDED FOR THE CALL FROM "IMSL" ARE SET UP

N=L(5)
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205 IDGT=3

IB=L(5)

IA=L(5)

M=1

C HERE THE CALL IS MADE TO THE ROUTINE "LEQTlF".

210 CALL LEQTlF(A,M,N,EA,B,IDGT,WKAREA,IER)

C NOW THE OUTPUT IS CALLED TO PRINT THE RESULT OF

C SOLUTION.

DO 31 J=l,L(5)

WRITE(20,30)B(J,1)

215 30 FORMAT(60X,F8.7)

31 CONTINUE

STOP

218 END
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