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ABSTRACT

ELECTRONIC STRUCTURE AND THERMOELECTRIC PROPERTIES OF NARROW BAND
GAP SEMICONDUCTORS AND PSEUDO-GAP SYSTEMS

By

Dat Thanh Do

The direct energy conversion from heat to electricity without any moving part using the thermo-

electric effects is attractive and has many promising applications in power generation and heat

pumping (refrigeration) devices. However, the wide use of thermoelectric materials in daily life is

still not practical due to its low efficiency. Presently, there has been renewed interest in thermo-

electrics with new strategies for improving the efficiency, mostly by controlling the morphology

and dimensionality, and manipulating the electronic structure of novel complex systems. There are

new questions arise and several old questions have not yet been answered. My group at Michi-

gan State University has been actively working on narrow band gap semiconductors and pseudo-

gap systems including BiTe, BiSe, SbTe, AgPbmSbTem+2 (LAST), III-VI compounds, Mg2Si,

Cu3SbSe4, Fe2VAl, ZrNiSn, etc. , focusing on their thermoelectrics related properties. This dis-

sertation tries to address some of the fundamental questions on the electronic structure and related

thermoelectric properties of narrow band gap semiconductors and pseudo-gap systems, employ-

ing the state-of-art density functional theory (DFT) and Boltzmanns transport equation. I focuses

on some well-known materials including Heusler compound, Fe2VAl, tetrahedrally bonded com-

pounds (Cu3SbSe4 and related systems) and a newly reported novel nanocomposite system of

Half-Heusler–Heusler (ZrNiSn–ZrNi2Sn). For the first two systems (Heusler and tetrahedrally co-

ordinated systems), the effects of correlated electrons in the system containing d-electrons, valency

of sp-elements, and the role of lone-pair electrons in band gap formation and effects on thermoelec-

tric properties are fully investigated. For the third system, Half-Heusler–Heusler nanocomposite, I

report a detailed energetics analysis of the nanostructure formation and its effects on the electronic

structures of the interested systems.
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CHAPTER 1

INTRODUCTION

1.1 Thermoelectrics

In this era of technology, energy is a key factor in any economy. In fact, our world runs on energy.

According to International Energy Agency (IEA) "World energy outlook 2012"[1], 81% of total

primary energy consumption is fossil fuel preserved in the form of coal, petroleum, and natural

gas. The energy consumption has increased about 35% from 1990 to 2010 and the same rate is

expected for the next tens years. This brings the world’s energy demand up to about 15 billions

tonne of oil equivalent (toe) (or about six hundred millions Watt-second) per year by 2035. The

reserve sources of fossil fuel are limited and will run out in the future. There is therefore an urgent

need to use energy more efficiently and to find other sustainable forms of energy such as solar,

wind power, bio fuel cell, etc. Among the ongoing directions, thermoelectric converters, with high

enough efficiency, can serve well for both purposes.

1.1.1 Brief history of thermoelectrics

Thermoelectric converter directly converts heat gradient into electrical current or vice versa. The

mechanism behind such devices is the thermoelectric effect which is usually referred to as Seebeck-

Peltier effect to honor the two physicist who discovered it almost two centuries ago.

In 1821, the Baltic German physicist Thomas Johann Seebeck discovered that a circuit of two

dissimilar metals could deflect the compass needle when exposed to a temperature gradient.[2]

Seebeck, however, first thought it was "Magnetism induced by the temperature difference". It

was quickly realized that the temperature difference produces a potential (voltage V) which drives

an electrical current through a closed circuit, and that current deflects the compass needle. It

was Hans Christian Ørsted, a Danish physicist, who first used the term "thermoelectricity". The
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references to color in this and all other figures, the reader is referred to the electronic version of
this dissertation.)

potential difference generated was found to be independent of the distribution of temperature but

proportional to the temperature difference (∆T ) between two junctions[3]

VAB = SAB∆T, (1.1)

where the proportional coefficient SAB is called thermopower or Seebeck coefficient. VAB and SAB

are positive if the current flows from A to B at the hot junction. This is the mechanism of a simple

thermo-couple as depicted in figure 1.1.

About a decade after Seebeck’s discovery, in 1834, the French physicist Jean Charles Athanase

Peltier discovered the reverse process when observing that an electrical current could heat or cool

the junction of two dissimilar metals.[4] In 1838, Lenz showed that depending on the direction of

the electrical current, heat could be removed or added to the junction.[5] The heat being transferred

in a unit of time is proportional to the current

Q̇AB = ΠABI, (1.2)

where ΠAB is called the Peltier coefficient. Similar to the equation of Seebeck effect, Q̇AB and

ΠAB are positive if heat is absorbed when the current flows from A to B.

2



Seebeck-Peltier effects are additive, meaning if there are two junction AB and BC the effective

proportionality coefficients of AC is the summation of the former

VAC =VAB +VBC = (SAB +SBC)∆T, (1.3)

Q̇AC = Q̇AB + Q̇BC = (ΠAB +ΠBC)I. (1.4)

This additive property implies that the the Seebeck(Peltier) coefficient of any pair AB is the differ-

ence between absolute Seebeck(Peltier) coefficients, S(Π),

SAB = SA−SB and ΠAB = ΠA−ΠB. (1.5)

These absolute quantities were formulated later by William Thomson (also known as Lord Kelvin).[4]

Thomson studied the Seebeck-Peltier effects and discovered a new effect called Thomson effect

Q̇A = τAI∇T (1.6)

predicting that the rate of heat absorption per unit length of a conductor is proportional to the elec-

trical current I and temperature gradient ∇T . The proportional coefficient τ is called Thomson

coefficient. He then derived the relation between the three thermoelectric coefficients by applying

the first and second laws of thermodynamics on the thermoelectric circuit. The first law of thermo-

dynamics requires that the work done by the Seebeck potential must equal to the thermal energy

absorbed from the surounding

V =VAB =VB−VA = Π1−Π2 +
∫ T0+∆T

T0
(τB− τA)dT (1.7)

or

dV = dΠ+(τB− τA)dT. (1.8)

This equation is called the first Thomson (or Kelvin) relation. The second law of thermodynamics

requires that the total change in entropy must be zero which give us

0 =
Π1
T0
− Π2

T0 +∆T
+
∫ T0+∆T

T0

τB− τA
T

dT. (1.9)
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From (1.8) and (1.9) one gets

S =
dV
dT

=
dΠ
dT

+ τB− τA (1.10)

0 =
dΠ
dT
− Π

T
+ τB− τA (1.11)

and obtains the second Thomson relation

Π = ST (1.12)

Differentiating (1.12) with respect to T and using (1.10), one gets

dS
dT

=
τA− τB

T
(1.13)

which give the expression for absolute Seebeck coefficient of A at given T

SA =
∫ T

0

τA
T

dT (1.14)

and the absolute Peltier coefficient of A

ΠA = T SA. (1.15)

1.1.2 Mechanisms of thermoelectric effects

Seebeck-Peltier effect involves two physical phenomena: (i) charge-carrier diffusion and (ii) phonon

drag. The former occurs when a conductor exposed to a temperature gradient. There is unbalance

in hot and cold carrier concentration at the two ends of a conductor, the hot carriers tend to diffuse

from the hot end to the cooler one to reach a steady state. The charge-carrier diffusion builds up a

net charge at the cold end, giving rise to an electrostatic potential counteracting the chemical poten-

tial of the diffusion and brings the system to equilibrium. In the beginning, thermocouple was made

of metals, however, more practical approach is using alternative n-type and p-type semiconductors

(figure 1.2) connected by metals. In these devices, charges flow through the n-type element, cross

the metallic connector and pass into the p-type one, creating a current. The diffusion of charges

(and so the mobility and the effective mass of carriers) is affected by scattering. There are two
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Figure 1.2: Schematics explain (a) the mechanism of Seebeck, temperature gradient drives the
movement of carriers, creating a current, and (b) Peltier effects, the current of carriers transfer the
heat from cool side to the hot side.

categories of scattering,[6] namely lattice vibrations or phonon and lattice imperfection, hence, the

thermopower of a material depends greatly on impurities, imperfections and structural changes.

In addition to charge-carrier diffusion, the latter effect, phonon drag, is found to produce large

thermoelectric effects in some semiconductors at low temperature (but not very low temperature).[6]

The physics is that in pure system, at low temperature, electron-phonon scattering is predominant.

Electrons have a very long relaxation time, and transfer their momentum to phonons in the direc-

tion of the electric current. This energy transport contributes to the Peltier heat which may be much

larger than the former effect. This happens for

T ≈ 1
5

θD, (1.16)

where θD is the Debye temperature. At higher temperature the phonon-phonon scattering sup-

presses the phonon-drag effect.

1.1.3 Thermoelectric applications

About 90 per cent of the world’s energy is generated by burning fossil fuel, and in the best scenario

the ratio of fossil fuel is still about 80 percent by 2035[1]. The efficiency of typical heat engines is

about 30 – 40 percent, leaving more than half of energy lost in form of waste heat. Thermoelectric
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devices can convert part of that waste into electricity and greatly improve the operating efficiency

of the engines. Moreover, the ability of operating without mechanically moving parts and with

very low maintaining requirement makes thermoelectric device greatly promising for a wide range

applications. They can fall into two categories: (i) power generation (using Seebeck effect), and

(ii) heat pumping or refrigeration (using Peltier effect).

The first commercial thermoelectric generator (TEG), made of ZnSb and constantan in USSR,

was dated back to 1948, produced electricity strong enough to power a radio.[7] Since then, the

field has been moving much further. Its applications ranges from big space missions[8–10] to

micropower harvesting.[11]

The thermoelectric module called Radioisotope Thermoelectric Generator (RTG) has played

a key role in many missions of the United States National Aeronautics and Space Administration

(NASA). The first use of RTGs was in the spacecraft "Transit 4A" launched in 1961 and then

in many other missions after. Recently an eighth RTG configuration, called the Multi-Mission

Radioisotope Thermoelectric Generator (MMRTG), has recently been used on the Mars Science

Laboratory rover, Curiosity. RTGs use radioactive isotope plutonium-238 decay as the heat source

and are preferable over other types of power generators because of its (i) long life time which

suitable a long mission in the deep space, (ii) ability to operate in an extreme environment such

as the high-radiation belts of Jupiter, extreme temperature on moon, or dust storm on Mars, (iii)

operational independence which guarantees to providing needed power regardless of the spacecraft

position or orientation and (iv) its reliability which has been proven to run for decades.

The most active area of thermoelectric application is in the automotive industry. Both ma-

jor automotive companies have thermoeletric development programs.[12] It is estimated that in

a vehicle using internal combustion engine, only 25 percent of provided energy is used to move

it, 75 percent is just wasted, in which about 40 percent can be used for a thermoelectric power

generator.[12] TEG can use the wasted heat to recharge the battery. This can help to reduce or

even eliminate the need for alternator, and as a result reduce the load on the engine, therefore,

improve fuel efficiency by the order of 10 percent.[11] Similar applications can be used in any

6



Figure 1.3: (Source: Zebarjadi et al. [14]) Power generation efficiency versus temperature of the
hot side, plotted for different energy conversion technologies. The cold side is assumed to be at
room temperature. The efficiency range of some of the other renewable energy technologies is
marked in a bar on the right-hand side of the graph. In this graph PV is photovoltaic; CSP denotes
concentrated solar power; SJ and MJ denotes single- and multiple-junction; and Org, TE, and
TPP denote organic, thermoelectric and thermionic devices, and thermal power plan respectively.

thermal power plan to recover wasted heat.

Along with the development of science and technology, small and portable applications need

power sources smaller and lighter than conventional batteries. A TEG using combustible fuel could

be a promising substitution. There is, however, one big challenge that it needs at least 500◦C in

order to reach desired efficiency.[11] Going to much smaller in size, TEG proves its strength since

other types are not scalable or at lease have much lower efficiency.[13] At small scale, TEG can

havest very small amount of heat for low power applications, such as wireless sensor networks,

mobile devices or medical applications.[11]

Despite the low efficiency in current thermoelectrics (< 10%), thanks to its unique properties

such as having no mechanical moving parts, fluid or refrigerants, flexible shape (they can be very

small), long life time and controllable, TE cooler and heater (heat pump) become common in daily
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life.[14] Such applications include portable mini cooler, refrigerator, coffee warmer. Thermoelec-

tric heat pumps are also found in temperature/weather control devices such as cooled seat, weather

vest, temperature regulators of semiconductor lasers, and medical.[14] However, for large scale ap-

plications involving higher powers, one need to develop (or discover) thermoelectrics with higher

efficiency (∼ 20%). This is the driving force behind current research in novel thermoelectrics.

1.1.4 Figure of merit and device efficiency

The maximum efficiency that any thermal process can have is the Carnot efficiency ηc of an adia-

batic circle. The efficiency of a TE device, usually referred as coefficient of performance (COP),

is given by

COP = ηc×M, (1.17)
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where M is the merit factor which is positive and smaller than unity. COPs are different for the

refrigerator and the power generator. This thesis is concerned mainly with the latter for which the

COP is given by

COPG = ηc×M =
∆T
Th
×
√

1+ZT −1√
1+ZT +Tc/Th

, (1.18)

where Th, Tc, and ∆T are temperatures of the hot (heat source) and the cold (heat sink) ends, and

the difference between them respectively, T = 1/2(Th + Tc) is the operating temperature. The

figure of merit Z is given by

Z =
1
T

S2σ
κ

, (1.19)

in which σ and κ are the electrical and thermal conductivity respectively and S is thermopower

(Seebeck coefficient). One often refers to ZT as the dimensionless figure of merit. Note that ZT

depends only on properties of materials such as S, σ , and κ . The larger the ZT , the higher is

the efficiency. The relation between efficiency and temperature for different ZT is given in figure

1.3. For comparison, the efficiency of other energy sources and their temperature range is also

given in the same figure. In automotive industry, the state of thermoelectric is currently at the first

generation of thermoelectric module with ZT =1 and the second generation with ZT =2 is under

progress.[16] To make thermoelectric applications economically viable, we need ZT of ∼3. Even

though, there is, in principle, no upper limit of ZT , obtaining high ZT , however, is not an easy job.

The history of thermoelectrics reveals that for almost a century after the Seebeck’s discovery of

thermoelectric effect, ZT barely reached unity (figure 1.4). It is during the last few decades that

the thermoelectric research has come with some break through ideas and new directions which can

improve ZT up to ∼ 2.5. According to equation 1.19, a good thermoelectric material needs (i)

large Seebeck coefficient, (ii) high electrical conductivity, and (iii) low thermal conductivity. The

difficulty in designing high ZT materials is the conflicting requirements of properties. An example

of this competing relation is given for a homogeneous conductor as followings.

(i) In order to get large Seebeck coefficient, which, for homogeneous conductor, is given by[17]

S =
8π2k2

B
2eh2 m∗T

( π
3n

)2/3
, (1.20)
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where kB and h are the Boltzmann, Planck constants respectively, one needs a low carrier

concentration n with large effective mass m∗, or low carrier mobility µ .

(ii) On the other hand, a high electrical conductivity requires large n and highµ since

σ = neµ, (1.21)

where e is the charge of the carriers.

(iii) The electronic part of the thermal conductivity can be related to electrical conductivity by

Wiedemann-Franz law

κ = κlatt +κelec (1.22)

= κlatt +LT σ = κlatt +LT neµ, (1.23)
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where κlatt and κelec are thermal conductivities due to lattice vibrations (phonons) and elec-

trons, and L is Lorentz number. It means in order to get low thermal conductivity one needs

small n and µ .

This conflicting relation is demonstrated in figure 1.5. Hence, a large ZT could be only found

with optimized value of S, σ , and κ , which is a challenging problem. It turns out that semicon-

ductors with small band gaps (∼0.2–0.5 eV) or pseudo-gap systems are the best candidates for

thermoelectric applications at room temperature.[18] For a brief discussion of semiconductors and

pseudo-gap systems see section 1.3.

1.2 Theoretical aid in pursuing better figure of merit (ZT )

Extensive works have been done in trying to maximize the magnitude of ZT . Approaches to im-

prove the performance of TE materials can be categorized into two types: (i) engineering electronic

structures to optimize S,σ and κelec, and (ii) engineering phonons to minimize κlatt . Following

the first approach (engineering electronic structures), Mahan and Sofo [17] on their quest to “The

11



best thermoelectric” predicted that the enhancement of S can be achieved in a system where exist

a rapid change in the density of states g(ε) near the Fermi level. This prediction can be easily

understood using the Mott’s formula for thermopower which is given by

S =
π2

3
kB
q

kBT
{

d[ln(σ(ε))]
dε

}
ε=εF

=
π2

3
kB
q

kBT
{

1
n

dn(ε)
dε

+
1
µ

dµ(ε)
dε

}
ε=εF

, (1.24)

where n(ε) = g(ε) f (ε) is the carrier density, f (ε) = 1/(Exp[(ε−µ)/kBT ] is the Fermi function,

µ(ε) is carrier’s mobility at energy ε , and εF is the Fermi level. The Mott’s equation predicts

that large S can be obtained when DOS (the first term in the bracket of Eqn. 1.24) or carrier’s

mobility (the second term in the bracket of Eqn. 1.24) varies rapidly at the Fermi level. One

approach on this direction is to find a material with a rapidly-varying region in DOS which is

accessible by doping. An example for this approach is the Heusler compoud Fe2VAl[19], which

has a steep DOS near the band edge. Chapter 3 will be dedicated for discussing the electronic and

thermoelectric properties of this system. Another approach to achieve a large change of DOS in

a small range of energy is to introduce a delta (resonant) states into the electronics structure of

the host materials (Fig. 1.6). This approach has been quite successful in improvement of ZT . For

example, in the classic thermoelectric material PbTe, theoretical calculations by Ahmad et al. [20]

(2006) predicted that doping of group III elements (Ga, In, Tl) creates resonant levels. Heremans

et al. [21] later reported a large enhancement of ZT in Tl-doped PbTe whose ZT = 1.5 was found

at 700 K compared to ZT = 0.7 for the host material PbTe.

Another effect which possibly improves thermoelectric performance and can be achieved by

engineering electronic structure is energy filtering. Detailed discussions of this effect can be found

in reference [22] and [14], and references therein. This effect can enhance the performance of ther-

moelectric materials by blocking low-energy electron, and thus increase the average heat transfer

by an electron. This effect can be achieved by nanostructure inclusion in the host materials. An

exciting example of this approach is the work on Half-Heusler–(Full) Heusler nanocomposites ini-

tiated by Makongo et al. [23] who reported a significant improvement of the powerfactor by∼25%.
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I will discuss more about this system in chapter 5 of this thesis.

Engineering phonons approach to lower the thermal conductivity of thermoelectric materials

was considered as early as 1974 by Rowe [24], and later by Slack and Hussain [25]. Following

this path, one looks for materials with complex structures and/or with large number of atoms per

unitcell since the thermal conductivity is predicted to be inversely proportional to the number of

atoms per unitcell[26]. This is the rationale for studying some of materials discussed in chapter

4 of this thesis. Recently, Skoug et al. [27], Zhang et al. [28] brought back the important relation

between lone-pair electrons and the aharmonicity of phonon spectrum of materials. Zhang et

al. calculated the phonon spectrum and suggested that lone-pair electrons created arharmonicity

of and softened phonon modes, producing large Grüneisen parameter, and thus lowing thermal

conductivity due to phonon-phonon scattering. Chapter 4 will discuss more on this mater for

tetrahedrally bonded compounds.

1.3 Narrow band gap semiconductors and pseudo-gap systems

The area of semiconductor is one of the fastest developing fields in both science, technology and

industry which totally change the life of the mankind. The first production of semiconductor tran-

sistor was announced just sixty years ago. Nowadays, it involves virtually every thing around us

from simple daily task to the way we communicate and work. It is hard to imagine how the world

would turn out to be if not for the development of semiconductor. The first recorded observation

of semiconductor dates back to 1833 when Michael Faraday reported that the electrical conductiv-

ity of sulphurette of silver (silver sulfide) increases with increasing of temperature[29] which he

thought to be related to the tension. The properties of semiconductor came to be understood about

a century later, thanks to the quantum mechanics study by Wilson in 1931.[30] Semiconductor

is now known to have a forbidden gap in the energy spectrum, in which the electronic states are

not allowed to exist. The increase in the conductivity of a semiconductor with increasing temper-

ature is known to be due to the excited electrical carriers when electrons jump from the valence

bands to the conduction bands. There is a thin line that distinguishes semiconductor from insulator
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since both have a forbidden band gap in the electronic structure. The gap of semiconductor is usu-

ally smaller than that of insulator (∼5.5 eV for diamond) so that the excitation occurs at ordinary

temperatures. Figure 1.7 shows values of band gap for several well-known semiconductors.

A vast amount of work has been devoted to the understanding of semiconductor or related

effects, covering from fundamental physics to technological application. Many aspects of semi-

conductor have been revealed and many more are being explored. Examples of the applications

and interesting phenomena in semiconductors can be found in overwhelming numbers of publi-

cations in the literature, including, but not limit to, thermoelectrics, spintronics, electronics, etc.

. Recently, a new phenomenon that has attracted a lot of attention lately is in the field of topo-

logical insulator (TI) discovered in 2005.[32]. Except for its misleading name, TIs are small band

gap semiconductors with topologically protected surface states. In this thesis, I only deal with

semiconductors for thermoelectric applications.

Semiconductors can be classified into two categories, direct and indirect band gap. In direct-
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band-gap semiconductors (for example, GaAS, InP, GaN, etc), the lowest of the conduction bands

and the highest of valence bands occur at the same symmetric point in the first Brillouin Zone

(IBZ), whereas in indirect-band-gap semiconductors, they occur at different symmetric points

(see Fig. 1.8). Another way to classify semiconductors is based on the magnitudes of their band

gaps, one has either large-band-gap, narrow-band-gap or pseudo-gap semiconductors. A diagram

demonstrate the different types of band gap in semiconductor is given in figure 1.8. The definition

of narrow-gap semiconductor is not quite strict. Since the history of narrow-band-gap semicon-

ductors (NBGS) came along with its application in infrared emitting and detecting, usually NBGS

is limited to those with the band gap (Eg) corresponding to an infrared absorption cut-off wave-

length over 2µm (∼0.6 eV).[33] However, one could also refer to NBGS as those having band

gap smaller than that of silicon (∼1.1 eV). The renewed interest in NBGS for its potential ther-

moelectric application was inspired by the works of Mahan and Sofo in from 1989–1994[18, 34]

who suggested that NBGS are the best candidates for TE application. Beside NGBS, pseudo-gap
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materials are also interesting systems which can be used in thermoelectric applications. Pseudo-

gap materials have an overlap between conduction bands and valence bands, giving rise to a small

but finite density of states at the Fermi level. Our group at Michigan State University has been

working extensively on the branch of narrow-band-gap (NBGS) and pseudo-gap semiconductors

with the focus on their thermoelectric (TE) application (an introduction on thermoelectrics is given

in section 1.1). We have been working on a wide range of materials including well known NBGS

such as BiTe, BiSe, SbTe, AgPbmSbTem+2 (LAST), III-VI compounds, Mg2Si, Cu3SbSe4, etc.

1.4 Outline of the dissertation

In this dissertation, I have used first principle calculations using density functional theory (DFT),

which is discussed in chapter 2, and reported the results of my works done in the last several years

on the electronic and thermoelectric properties of selected NBGS including Heusler compounds

(mainly Fe2VAl), tetrahedrally bonded I3-V-VI4 chalcogenides (I = Cu, V = P, As, Sb, and Bi, and

VI = S, Se, and Te), and ZrNiSn-ZrNi2Sn mixture.

The results can be divided into two parts: the first part includes chapter 3 and 4, and the second

part includes chapter 5. The first part focuses on understanding the fundamental properties of

Heusler compound Fe2VAl and the tetrahedrally coordinated compounds. I address the questions

about the band gap of these materials using different levels of approximation in DFT and study

their thermoelectric properties using Boltzmann’s transport equation. Most of the works in this

part have been published in references [35], [36], and [37]. The second part dedicates for studying

the formation of the Heusler phase nanostructures in the Half-Heusler matrix or vice versa, and

analyzing their electronic structures with a discussion on how they can affect the thermoelectric

properties of these materials.

In chapter 6, I will summarize my findings and propose some further works.

16



CHAPTER 2

THEORETICAL METHODOLOGY

Electronic structure plays a key role in understanding physical properties of materials, in particular,

their thermoelectric properties. The methods of calculating electronic structure, especially the

Density functional theory (DFT), have developed rapidly during the last quarter of the last century,

due to the development of computing techniques and the power of modern computers. There is a

large selection of available DFT-based computational codes (programs) which can be easily used

to calculate electronic structure of materials. DFT has become the most successful tool in studying

physical properties materials. Even though DFT is an exact theory, all the calculations are done

using, at least, some approximations. Each approximation is suitable for some specific cases,

thus, it is very important to understand the theoretical basis behind these calculations and their

limitations. In this chapter I shall review some of the fundamentals of electronic structure theory,

focusing on DFT, and discuss several approximations to it. The Boltzmann’s transport equation

will also be discussed as a bridge connecting calculated electronic structure to the thermoelectric

(transport) properties of a material.

Some of the contents of this chapter follow the spirit of the "Electronic Structure: Basic Theory

and Practical Methods" by Martin [38].

2.1 Basic equations

Electronic structure, following the discovery of electrons in the late 1800s, is the concept used for

the electron configuration, or the arrangement of electrons in atoms, molecules, and solids. Theory

of electronic structure is a combination of quantum mechanics and statistical physics.

The problem of dealing with a realistic electron system is that it is a many-body system. In or-

der to understand the behavior of such electrons, one has to start with the Hamiltonian for electrons
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and nuclei,

Ĥ =− h̄2

2me
∑
i

∇2
i −∑

i,I

ZIe2

|ri−RI |
+

1
2 ∑

i ̸= j

e2∣∣ri− r j
∣∣ −∑

I

h̄2

2MI
∇2

I +
1
2 ∑

I ̸=J

ZIZJe2

|RI−RJ|
, (2.1)

where electrons, with charge e and mass me, are denoted by lower case subscripts, and nuclei, with

charge ZI and mass MI , are denoted by upper case subscripts. For simplicity, we adopt the Hartree

atomic units where h̄ = me = 4π/ε0 = 1. Using the Born-Oppenheimer approximation[38], one

can neglect the kinetic energy of nuclei and rewrites the Hamiltonian as

Ĥ = T̂ +V̂ext +V̂int +EII , (2.2)

where the electron kinetic energy is

T̂ =−1
2 ∑

i
∇2

i , (2.3)

V̂ext is the potential due to the nuclei, given by

V̂ext = ∑
i,I

VI(|ri−Ri|) = ∑
i,I

ZI
|ri−Ri|

, (2.4)

V̂int is the electron-electron interaction,

V̂int =
1
2 ∑

i ̸= j

1∣∣ri− r j
∣∣ , (2.5)

and EII is the interaction between static nuclei. In general, EII can include other terms that con-

tribute to the total energy but does not directly affect the electronic behavior. Also, Eext can have

other "external potentials" acting on electrons, for instance, electric fields, magnetic fields, etc.

The wavefuntions describing electrons is the solution of the time-dependent Schrödinger equa-

tion

ih̄
dΨ({ri}; t)

dt
= ĤΨ({ri}; t), (2.6)

where the many-body state Ψ is a function of electron position ri and time t. It is noted that the

spin subscript is omitted and assumed to be included in the coordinate ri. The wavefunction can

be written as Ψ({ri } ; t) = Ψ({ri })e−iEt , and it also satisfies the time-independent Schrödinger

equation

Ĥ |Ψ⟩= E |Ψ⟩ , (2.7)
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where E is the energy associated with an eigenstate |Ψ⟩. The ground state wavefunction Ψ0 is the

state with the lowest energy and can be determined by minimizing the total energy with respect to

parameters appearing in |Ψ⟩.

The time-independent expression for an observable is given by the expectation value of the

corresponding operator Ô,

⟨Ô⟩=
⟨Ψ
∣∣Ô∣∣Ψ⟩
⟨Ψ|Ψ⟩

. (2.8)

Applying this equation to the density operator n̂(r) = ∑i=1,N δ (r− ri), one gets an important

quantity in the electronic structure theory, the density of particles,

n(r) =
⟨Ψ |n̂|Ψ⟩
⟨Ψ|Ψ⟩

= N

∫
d3r2 · · ·d3rN ∑σ1 |Ψ(r,r2,r3, ...,rN)|2∫

d3r1,d3r2 · · ·d3rN |Ψ(r1,r2,r3, ...,rN)|2
, (2.9)

where N is the total number of electrons, σ1 is the spin index associated with r. The integral

form of the density is obtained by tracing over all variables, taking into account the symmetry of

wavefunction over electron positions. If the σ1 index is omitted, one gets the density of one spin-

component. Similarly, the total energy of the system is obtained by calculating the expectation

value of the Hamiltonian,

E =
⟨Ψ
∣∣Ĥ∣∣Ψ⟩
⟨Ψ|Ψ⟩

= ⟨T̂ ⟩+ ⟨V̂int⟩+
∫

d3rVext(r)n(r)+EII , (2.10)

It is convenient to organize the terms in the energy into charge-neutral groups,

E = ⟨T̂ ⟩+
(
⟨V̂int⟩−EHartree

)
+ECC, (2.11)

where

EHartree =
1
2

∫
d3rd3r′

n(r)n(r′)
|r− r′|

, (2.12)

is the self-interaction energy of the density n(r) treated as a classical charge density, and

ECC = EHartree +
∫

d3rVext(r)n(r)+EII , (2.13)

is the classical Coulomb energy. The middle term in 2.11, ⟨V̂int⟩ − EHartree, is the difference

between the Coulomb energies of interacting, correlated electrons with density n(r) and that of a
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continuous classical charge distribution having the same density. This term defines the exchange-

correlation energy, Exc, which is an essential and perhaps the most problematic part in DFT. A

discussion of this term is the central focus of this chapter. It is noted that all the Coulomb and

Hartree terms are long-range interactions, whereas the exchange-correlation term is short-range,

since the long-range part is canceled in the difference.

2.2 Independent-electron – Hartree and Hartree-Fock approximation

It is impossible to solve the Schrödinger equation exactly, especially for a large many-electron

system. It is important to find an effective approximation. One approximation which is used

extensively till today is the independent-electron approximation (mean-field theory). This approx-

imation assumes that the electrons are uncorrelated except that they follow the exclusion principle

and an electron moves in an average potential provided by the others. There are two basic ap-

proaches which characterize independent-electron approximation, they are Hartree, and Hartree-

Fock approximations.

2.2.1 Hartree approximation

In the Hartree approximation, the effective potential includes the effect of real interactions in a

averaging way but does not include the Pauli principle explicitly in the wavefunction (Fermion

antisymmetry). The many-electron wavefunction can be considered as a multiple of the single-

particle wavefunctions,

Ψ({ri }) =
N

∏
i=1

ψi(ri), (2.14)

where N is the number of electrons. The many-body problem, thus, becomes an effective single-

electron equation,

Ĥe f f ψσ
i (r) =

[
−1

2
∇2 +V σ

e f f (r)
]

ψσ
i (r) = εσ

i ψσ
i , (2.15)

where V σ
e f f (r) is an effective potential acting on electrons of spin σ and position r. The ground

state for many non-interacting electrons is obtained by filling the lowest eigenstates obeying the
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exclusion principle. The use of this approximation is the core of DFT which will be discussed later

in this chapter.

At finite temperature, it is straight forward to apply statistical mechanics of non-interacting

fermions, with the Fermi-Dirac equilibrium distribution of electron,

f (εσ
i ) =

1

eβ (εσ
i −µ)

+1
, (2.16)

where µ is the chemical potential of the electrons. One can get the total energy by weighted sum

of the eigenvalues of 2.15

E(T ) = ⟨Ĥ⟩= ∑
i,σ

f (εσ
i )εσ

i (2.17)

And the one-electron density operator can be defined as

ρ̂ = ∑
i
|ψσ

i ⟩ f σ
i ⟨ψ

σ
i | , (2.18)

and one can get the density matrix for explicit spin and position representation,

ρ(r,σ ;r′,σ ′) = δσ ,σ ′∑
i

ψσ∗
i (r) f (εσ

i )ψσ
i (r′), (2.19)

the diagonal part gives the electron density,

nσ (r) = ρ(r,σ ;r,σ) = ∑
i

f (εσ
i )
∣∣ψσ

i (r)
∣∣2 . (2.20)

An example of the simplest model system in condensed matter is the homogeneous electron

gas. In this model the nuclei are replaced by a uniform positive charge. The system is specified by

its density n = N/Ω, which can be characterized by the parameter rs such that

4π
3

r3
s = Ω/N =

1
n
. (2.21)

The Hamiltonian for this system is given by

Ĥ =−1
2 ∑

i
∇2

i +
1
2

[
∑
i ̸= j

1
|ri− r j|

−
∫

d3rd3r′
n2

|r− r′|

]
(2.22)

which can be rewritten in terms of r̃ = r/rs as

Ĥ =

(
a0
rs

)2

∑
i

[
−1

2
∇̃2

i +
1
2

rs
a0

(
∑
j ̸=i

1
|r̃i− r̃ j|

− 3
4π

∫
d2r̃

1
|r̃|

)]
, (2.23)
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where a0 is the first Bohr radius. This expression shows that the properties of a system with

the density rs/a0 are equivalent to a system at fixed density but with scaled electron-electron

interaction e2→ (rs/a0)e2.

Applying the non-interacting approximation, the solutions of the Schrödinger equation are nor-

malized plane waves ψk = ( 1
Ω1/2 )e

ik·r with energy εk = 1
2k2, where k is the wavevector. The

density for each spin can be found

ρ(r,r′) = ρ(|r− r′|) = 1
(2π)3

∫
dk f (εk)e

ik·(r−r′) (2.24)

using r = |r− r′| one finds

ρ(r) =
k3

F
eπ2

[
3

sin(kF r)− kF r cos(kF r)
(kFr)3

]
, (2.25)

where kF is the Fermi wavevector given by

4π
3
(kF)

3 =
(2π)3

Ω
N. (2.26)

2.2.2 Hartree-Fock approximation (HFA)

In the Hartree-Fock approach, one starts from a properly antisymmetrized determinant wavefunc-

tion (satisfying Fermi statistics) with fixed number of electrons, N, and finds the single determinant

that minimizes the total energy for the full interacting Hamiltonian. In the absence of spin-orbit

interaction, the determinant wavefunction can be written as

Ψ({ri,σi }) =
1

(N!)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1,σ1) ϕ1(r2,σ2) · · · ϕ1(rN ,σN)

ϕ2(r1,σ1) ϕ2(r2,σ2) · · · ϕ2(rN ,σN)

...
... . . . ...

ϕN(r1,σ1) ϕN(r2,σ2) · · · ϕN(rN ,σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.27)
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where ϕi(ri,σi)=ψσ
i (r j)αi(σ j), αi(σi) is the spin eigenstate. The expectation value of the Hamil-

tonian is given by

⟨Ψ|Ĥ|Ψ⟩= ∑
i,σ

∫
drψσ∗

i (r)
[
−1

2
∇2 +Vext(r)

]
ψσ

i (r)+EII

+
1
2 ∑

i, j,σi,σ j

∫
drdr′ψσi∗

i (r)ψ
σ j∗
j (r′)

1
|r− r′|

ψσi
i (r)ψ

σ j
j (r′)

− 1
2 ∑

i, j,σ

∫
drdr′ψσ∗

i (r)ψσ∗
j (r′)

1
|r− r′|

ψσ
j (r)ψ

σ
i (r′), (2.28)

where the first term is the sum over the one-body expectation values, the second term is the in-

teraction energy between ions which can be neglected as discussed earlier, the third term is the

direct or Hartree energy, the forth term is the exchange or the Fock part. The Hamiltonian includes

unphysical self-interaction energy (i = j,σi = σ j), however, they are canceled between the Hartree

and the Fock terms. The exchange potential exists only between electrons with same spins and is

non-local, making it more difficult to calculate. Variation of ψσ∗
i (r) then leads to the Hartree-Fock

equation−1
2

∇2 +Vext(r)+ ∑
j,σ j

∫
dr′ψ

σ j∗
j (r′)ψ

σ j
j (r′)

1
|r− r′|

ψσ
i (r)

−∑
j

∫
dr′ψσ∗

j (r′)ψσ
i (r′)

1
|r− r′|

ψσ
j (r) = εσ

i ψσ
i (r). (2.29)

This equation can be written as

Ĥi
e f f ψσ

i (r) =
[
−1

2
∇2 +V̂ i,σ

e f f (r)
]

ψσ
i (r) = εσ

i (r), (2.30)

where

V̂ i,σ
e f f (r) =Vext(r)+VHartree(r)+V̂ i,σ

x (r), (2.31)

V̂ i,σ
x (r) =−∑

j

∫
dr′ψσ∗

j (r′)ψσ
i (r′)

1
|r− r′|

ψσ
j (r)

ψσ
i (r)

(2.32)

For the homogeneous electron gas, the Hartree-Fock equation can be solved analytically, lead-

ing to

εk =
1
2

k2 +
kF
π

f (x), (2.33)
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Figure 2.1: The factor f (x) in Hartree-Fock approximation for homogeneous electron gas.

where

f (x) =−

(
1+

1− x2

2x
ln
∣∣∣∣1+ x
1− x

∣∣∣∣
)
, (2.34)

with x = k/kF .

Figure 2.1 shows that f (x) is always negative with f (0) = −2 and f (x→ ∞) = 0. There is a

singularity at the Fermi level (x = 1), however the value of f (x) is well defined, f (x→ 1) = −1.

Thus, the band width is boarder (by ∆W = kF/π for homogeneous electron gas) in Hartree-Fock

than in Hartree approximation. The singularity at the Fermi level is due to the long-range Coulomb

interaction. This problem leads to zero density of state at the Fermi level. This failure of Hartree-

Fock approximation persists even for electron in a solid if the system is metallic. It can be avoided

if there is a finite band gap (i.e. insulator or semiconductor) or if the Coulomb interaction is

screened to be an effective short-range interaction.
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2.3 Exchange and correlation

As mentioned above, the key problem in electronic structure theory is the exchange-correlation

part. The interactions between electrons always involve pairs of electron, thus, the two-body

correlation function is sufficient to describe many properties. If we denote n(r,σ ;r′,σ ′) as the

probability of finding two electrons with spins σ and σ ′, at positions r and r′ respectively, and

n(r,σ) as the probability of finding an individual electron with spin σ at position r, the measure

of correlation function for a pair of electrons is given by

∆n(r,σ ;r′,σ ′) = n(r,σ ;r′,σ ′)−n(r,σ)n(r′,σ ′) (2.35)

The electron correlation is neglected in Hartree-Fock approximation, (except that required by the

exclusion principle) and must be distinguished from the exchange hole in HFA, which is given by

∆nHFA(r,σ ;r′,σ ′) =−δσ ,σ ′

∣∣∣∣∣∑i
ψσ∗

i (r)ψσ
i (r′)

∣∣∣∣∣
2

, (2.36)

with

nHFA(r,σ ;r′,σ ′) =
1
2! ∑

i, j

∣∣∣∣∣∣∣
ψi(r,σ) ψi(r′,σ ′)

ψ j(r,σ) ψ j(r′,σ ′)

∣∣∣∣∣∣∣
2

(2.37)

On the other hand, the exchange term explicitly appears in the Hartree-Fock approximation, it

includes two effects: Pauli exclusion and the self-term (i = j in eqn. 2.28) which must cancel the

unphysical self-term in the direct Coulomb Hartree energy. The exchange term lowers the total

energy, which may be interpreted as the interaction of each electron with a positive "exchange

hole" surrounding it. The exchange energy in HFA can be written in terms of the exchange hole as

Ex =
[
⟨V̂int⟩−EHartree(n)

]
HFA =

1
2 ∑

σ

∫
d3r

∫
d3r′

∆nHFA(r,σ ;r′,σ ′)
|r− r′|

(2.38)

As one can see from Eqn. 2.38, calculation of Ex involves computation of a non-local quantity

∆nHFA(r,σ ;r′,σ ′) which is computationally demanding. As we will see later, DFT dramatically

reduces this computational complexity.
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2.4 Fundamentals of density functional theory (DFT)

The original form of density functional theory was proposed by Thomas[39] and Fermi[40] in

1927, shortly after Schrödinger [41] (1926) published his paper marking the beginning of wave

mechanics. However it did not attract much attention due to the rough approximation which

missed essential physics and chemistry, such as shell structures of atoms and binding energy of

molecules. The modern formulation of DFT was formulated about 40 years later by Hohenberg

and Kohn (1964)[42], who considered the electron density a basic (fundamental) variable from

which other properties can be calculated. Later, Kohn and Sham (1965)[43] developed the theory

in terms of solving a set of single-particle equations, also known as Kohn-Sham equations. One

of the reasons which makes DFT a powerful tool in condensed matter theory, as Kohn put it in

his Nobel lecture[44], is that it breaks the exponential wall in many-electron wavefunction method

which makes it extremely difficult to calculate the electronic structure for a system with number

of electrons in the neighborhood of N0 ≈ 10 or larger. Thanks to the development in numerical

techniques as well as the improvement of modern computers, DFT can handle much larger number

of electrons.

The DFT is based upon two Hohenberg-Kohn theorems[42]. Here, only the theorems are

presented for the sake of completeness. The proofs of these theorems are fairly simple and can be

found in Hohenberg and Kohn’s original paper or in the reference [38] or [44].

Theorem 1. For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, except for a constant, by the ground state particle density n0(r).

Since the Hamiltonian is thus fully determined, except for a constant shift of the energy, it

follows that the many-body wavefunctions for all states (ground and excited) are also determined.

It naturally follows that

Corollary 1. All properties of the system are completely determined given only the ground state

density n0(r).
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This theorem, however, only states that in order to understand properties of a system, only the

ground state density is required but does not give any guidance on how to find that density, which

is given in the second theorem.

Theorem 2. A universal functional for the energy E[n] in terms of the density n(r) can be defined,

valid for any external potential Vext(r). For any particular Vext(r), the exact ground state energy

of the system is the global minimum value of this functional, and the density n(r) that minimizes

the functional is the ground state density n0(r).

This leads to a lemma

Corollary 2. The functional E[n(r)] alone is sufficient to determine the exact ground state energy

and density.

One can easily generalize these theorems to a system with several types of particles since they

only change the term
∫

d3rVext(r)n(r) in the Halmiltonian. Any such pair of external potential

and density will obey Hohenberg-Kohn theorems. For example, one can formulate the spin density

functional theory for a system under external magnetic field where spin up and spin down electrons

are treated as different types of particles. Within this theory, the particle density is the sum of up-

and down-spin density,

n(r) = n↑(r)+n↓(r), (2.39)

and the spin density is

s(r) = n↑(r)−n↓(r). (2.40)

The energy functional now becomes

E = EHK [n,s] = E ′[n], (2.41)

where n in E ′[n] is a function of both position r and spin σ .

Even with two Hohenberg-Kohn theorems and their lemmas, it is still difficult to solve the

Schrödinger equation to get the energy and the density of electrons. Another essential part in DFT
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is the Kohn-Sham ansatz[43] which, in principle, leads to exact calculation of electronic structure

for many-body system using independent-particle methods. Kohn and Sham proposed that the

ground state density of an interacting system is equal to that of a suitably chosen non-interacting

system, leading to soluble independent-particle equations, with all the many-body terms included

in a exchange-correlation functional of the density. This approach has proven to be very powerful

and has become the basis of most “first-principles” or “ab-initio” calculations.

The Kohn-Sham ansatz is based on two assumptions:

1. The exact ground state density can be represented by the ground state density of an auxiliary

non-interacting system.

2. The auxiliary Hamiltonian is chosen to have the usual kinetic term and an effective local

potential V σ
e f f (r).

Then, the density of particles and the ground state energy functional in Kohn-Sham approxi-

mation can be written as

n(r) = ∑
σ

n(r,σ) = ∑
σ

Nσ

∑
i=1
|ψσ

i (r)|2, (2.42)

EKS = Ts[n]+
∫

drVext(r)n(r)+EHartree[n]+EII +Exc[n], (2.43)

where Nσ is number of electrons with spin σ , Ts is the kinetic energy of the independent-electron

system, given by

Ts =−
1
2 ∑

σ

Nσ

∑
i=1
⟨ψσ

i |∇
2|ψσ

i ⟩=
1
2 ∑

σ

Nσ

∑
i=1

∫
d3r|∇ψσ

i (r)|2, (2.44)

the Hartree energy is given by

EHartree[n] =
1
2

∫
d3rd3r′

n(r)n(r′)
|r− r′|

. (2.45)

All the effects of many-body exchange and correlation are incorporated into Exc which can be

written as

Exc[n] = ⟨T̂ ⟩−Ts[n]+ ⟨V̂int⟩−EHartree[n]. (2.46)
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So, in principle, if Exc is known the the exact ground state energy and density of the particles can

be found.

Using variational method, one gets the Kohn-Sham equations

(Hσ
KS− εσ

i )ψσ
i (r) = 0, (2.47)

where

Hσ
KS(r) =−

1
2

∇2 +V σ
KS(r), (2.48)

=−1
2

∇2 +Vext(r)+VHartree(r)+V σ
xc(r). (2.49)

The eigenvalues of the Kohn-Sham equations have, in general, no physical meaning with only

one exception – the highest eigenvalue in a finite system, which is minus of the ionization energy

and is exact.[45]

In order to find the form of Exc and V σ
xc, one can approximate them as a local or nearly local

functional of the density. The exchange-correlation energy can be written as

Exc[n] =
∫

drn(r)εxc([n],r), (2.50)

where εxc is an energy per electron. Note that for simplicity only non-polarized case is considered.

εxc is related to the exchange-correlation hole and their relation can be found using the "adiabatic

connection" formula with the scaled electronic charge λe2, where λ varies from 0 (non-interacting)

to 1 (actual value),

Exc[n] =
∫ 1

0
dλ ⟨Ψλ |

dVint
dλ
|Ψλ ⟩−EHartree[n] =

1
2

∫
d3rn(r)

∫
d3r′

n̄xc(r,r′

|r− r′|
(2.51)

in which, n̄xc(r,r′) is called "coupling-constant-averaged hole",

n̄xc(r,r′) =
∫ 1

0
dλnλ

xc(r,r
′). (2.52)

Here nxc(r,r′) is the exchange hole, given in eqn. 2.37, summed over parallel and anti-parallel

spin. Finally one gets the expression for the exchange-correlation density

εxc([n],r) =
1
2

∫
d3r′

n̄xc(r,r′

|r− r′|
. (2.53)
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This equation shows that the exact exchange-correlation energy can be considered as the aver-

age of the exchange-correlation hole over the interaction from independent-particle (e2 = 0) to

fully interacting electrons (e2 = 1). This becomes an important rationale for improvements of the

approximation for Exc, i.e. the hybrid functional approach which will be discussed later in this

chapter.

The exchange-correlation potential V σ
xc now can be found from the functional derivative of Exc,

V σ
xc(r) = εxc([n],r)+n(r)

δεxc([n],r)
δn(r,σ)

. (2.54)

It is important to note that the second term in 2.54 (sometimes called the "response potential") is

discontinuous at a band gap. This leads to a "derivative discontinuity" that changes all the elec-

trons’ potential by a constant when a single electron is added to the system. Thus, even with exact

Kohn-Sham theory, the obtained band gap is not the same as the actual one. This discontinuity can

be understood by analyzing the kinetic energy of the independent-electron system Ts in Eqn. 2.44.

Since, ψσ
i are different for different bands, Ts changes discontinuously when going from an oc-

cupied to an empty band. Thus it has discontinuous derivative with respect to density for filled

bands. It can also be seen that the exact exchange-correlation functional must have discontinuous

derivative. This discontinuity, however, cannot be incorporated into simple functionals such as

local density (LDA) and generalized gradient (GGA) approximations (which are discussed later in

this chapter), leading to what has been known as "Band-gap problem" in semiconductors.

2.5 Functionals for exchange and correlation

The central problem in DFT is how to treat the exchange-correlation energy Exc or the exchange-

correlation potential V σ
xc(r). This has been an active field in the DFT in the last several decades.

All treatments of exchange-correlation functional are approximated and can be classified into two

main categories: (1) local and semi-local approximation, i.e. local (spin) density approximation

(LDA/LSDA), generalized gradient approximation (GGA), meta-GGA and (2) non-local approxi-

mation such as hybrid functional (hyper-GGA), random phase approximation, etc.
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Figure 2.2: The ladder of density functional theory. Notations on the left side represent the terms
added to the theory, i.e. only density n functional is considered in LSDA, GGA adds gradient
correction ∇n, meta-GGA adds kinetic energy density τ , hybrid GGA takes into account parts of
exact non-local exchange energy Eexact

x , RPA includes unoccupied orbital.

The improvement of exchange-correlation approximations can be visualized as climbing a lad-

der (sometimes called Jacob ladder)[46] – which can be sometimes slippery – of which the ground

is mean field Hartree system and the top is the exact Kohn-Sham exchange-correlation functional

(figure 2.2). As one climbs up the ladder, the exchange-correlation functionals become more com-

plicated, more sophisticated and, in general, more accurate (but not always). (list of some approxi-

mations are given in Table 2.1) The first three rungs of the ladder are local/semi-local approxima-

tions where the first rung of the ladder is L(S)DA in which exchange-correlation is functional of

only the local spin density nσ (r), the second rung is GGA which adds the gradient correction of the
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Table 2.1: Summary of approximations used in DFT

Rung Name Exchange Correlation %HF/screening
LDA PZa PZ PZ –
GGA PBEb PBE[47] PBE[47] –/–

PW91c PW91[48] PW91[48] –/–
EV93d EV93[49] LSDA –/–

WCe-PBE WC[50] PBE[47] –/–
Meta-GGA TPSSf TPSS[51] TPSS[51] –/–

mBJg mBJ[52] PBE[47] –/–
Hybrid B3LYP Bh[53] LYPi[54] 16-20/No[55]

B3PW91 B[53] PW91[48] 16-20/No
B1LYP B[53] LYP[54] /No[56]
B1WC WC[50] PW91[48] 16-20/No[57]
PBE0 PBE[47] PBE[47] 25/No[58]
HSEj PBE[47] PBE[47] 25/Yes[59–61]

aPerdew and Zunger
bPerdew, Burke and Ernzerhof
cPerdew and Wang
dEngel and Vosko
eWu and Cohen

fTao, Perdew, Staroverov and Scuseria
gmodified Becke-Johnson potential
hBecke
iLee, Yang and Parr
jHeyd, Scuseria and Ernzerhof

density, and the third rung is meta-GGA, where the kinetic energy dependence is included. These

semi-local approximations work well for many systems where the density varies slowly. They fail

where one has a non-uniform, high density and rapidly varying regions, or has an open systems

where the number of electrons fluctuates. The fourth and the fifth rungs of the ladder are non-local

approximations where the non-local exchange is included. Computationally, the difficulty of cal-

culations changes slightly at the first three rungs of approximation but then increases steeply by

the fourth rung. It is one of the reasons why the non-local approximation was not widely used until

last several years when the computing technologies became affordable for such calculations.

It is important to point out that while for the first three and the fifth rungs, the functionals do

not involve any fitting, for the forth one, empirical fitting is unavoidable.

The next section gives a brief introduction to some of the approximations including LSDA,

GGA, LDA+U and hybrid functional. These approximations have been used in my calculations of

electronic structures of complex multi-component systems. Descriptions of other approximation
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can be found in literature, such as in reference [38].

2.5.1 Local (spin) density approximation (LSDA) and the gradient correction (GGA)

The first local density approximation was proposed by Dirac [62] to be used with Thomas-Fermi

density functional[39, 40]. Later, in 1951, Slater [63], starting from Hartree-Fock approximation,

proposed the local spin density approximation (LSDA) which included spin-dependent functional.

Within LSDA the exchange-correlation can be written in general as

ELSDA
xc [n↑,n↓] =

∫
d3rn(r)εxc(n↑(r),n↓(r))

=
∫

d3rn(r)
[
εx(n↑(r),n↓(r))+ εc(n↑(r),n↓(r))(r)

]
, (2.55)

where εxc is assumed to be the same as in a homogeneous electron gas. In this equation the spin-

quantization axis is assumed to be the same everywhere (collinear spin). For the non-collinear

case, one can replace the density by the local spin density matrix

ραβ (r) = ∑
i

fiψα∗
i (r)ψβ

i (r). (2.56)

Now the Kohn-Sham hamiltonian becomes a 2×2 matrix. The only complication now is that one

has to find the local axis of spin quantization. The form of εxc is, however, the same.

LSDA works the best for systems close to a homogeneous gas (nearly free-electron metal) and

the worst for the inhomogeneous ones (atoms, molecules or localized-electron systems). The rea-

son is that, unlike in Hartree-Fock approximation, the unphysical self-term in Hartree interaction

is only approximately canceled by the exchange term. This error is negligible in a homogeneous

(delocalized) system. Furthermore, LSDA also misses the derivative discontinuity of energy func-

tional which generally underestimates the band gap in semiconductors and insulators.

The first step to improve LSDA is by taking into account the effect of spatially varying den-

sity (inhomogeneous) by including the gradient of density in the functional. There are various

approaches to achieve this goal, among which generalized gradient approximation (GGA) is the
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most successful and widely used. In GGA, the Exc can be written as

EGGA
xc [n↑,n↓] =

∫
d3rn(r)εxc(n↑,n↓, |∇n↑|, |∇n↓|, ...),

=
∫

d3rn(r)εhom
x (n)Fxc(n↑,n↓, |∇n↑|, |∇n↓|, ...), (2.57)

where εhom
x is the exchange energy of the unpolarized homogeneous electron gas and Fxc is a

dimensionless function.

For the exchange part, Fx, it is easy to show that only spin-unpolarized consideration is suffi-

cient. The expansion of Fx is given, to some lowest orders, by

Fx = 1+
10
81

s2
1 +

146
2025

s2
2 + · · · , (2.58)

where sm are dimensionless reduced density gradients defined as

sm =
1

(2kF)m
|∇mn|

n
(2.59)

The correlation part is more difficult and can be expanded in sm as

Fc =
εLDA

c
εLDA

x
(1−0.219.51s2

1 + · · ·). (2.60)

There are many forms for Fx(n,s), where only terms with order of s = s1 or lower are con-

sidered, higher terms (m ≥ 2) are neglected. Among those forms, there are three commonly

used forms proposed by Becke [53], Perdew and Wang [48] and Perdew et al. [47]. For small

s, (0 < s ≤ 3) – slowly varying density – which is relevant for most physical systems, different

GGAs give similar improvements. Even though GGA has been successfully used to predict prop-

erties of many system, its accuracy is still not enough and the improvement over LDA is modest.

2.5.2 Local treatment of strongly correlated electron systems: LDA+U

As discussed earlier, in LSDA, the self-interaction energy is only partly canceled, and the discon-

tinuity in derivative of energy with respect to density at integral values of n is not included. These

problems are severe for systems with localized electrons such as d of f electrons. There exist
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corrections to this problem within the local approximation including self interaction correction

(SIC)[64] and LDA+U[65]. While SIC can produce very well the nature of localized electrons, its

one-electron energies are usually in strong disagreement with experiments. Here we only discuss

the LDA+U approximation, which can be regarded as a first-principles method since U can be

calculated from ab-initio calculations, making it parameter-free.

LDA+U is the method that involve LDA- or GGA-type (more correctly GGA+U) calculations

with an additional orbital-dependent Hubbard-like interaction, 1
2U ∑i ̸= j nin j, where N = ∑i ni is

the total number of localized (says d) electrons. Here, U is an effective Coulomb repulsion energy

needed to place two electrons on the same orbital, and is given by

U = E(dn+1)+E(dn−1)−2E(dn), (2.61)

where d denotes localized orbitals such as those occupied by d and f electrons. One also has

to subtract the Coulomb energy which is already included in LDA, E = UN(N− 1)/2, to avoid

double counting. The energy in LDA+U , then , is given by

E = ELDA−
U
2

N(N−1)+
1
2

U ∑
i ̸= j

nin j. (2.62)

The orbital energies εi are derivatives of the total energy with respect to orbital occupations ni:

εi = εLDA +U(
1
2
−ni). (2.63)

This equation means that, if one neglects the hybridization between the localized and extended

states, the effect of U is to shift the LDA orbital energy by −U/2 for occupied bands (ni = 1) and

U/2 for unoccupied bands (ni = 0). Taking into account the exchange effect between the same

spin electrons, the energy becomes

E = ELDA−
U
2

N(N−1)− J
4

N(N−2)+
1
2

U ∑
i

nσ
i n−σ

i +
U− J

2 ∑
i ̸= j

nσ
i nσ

j , (2.64)
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where U and J can be obtained by using the Slater integrals Fk[66]

U = F0, (2.65)

U− J = F0− (F2 +F4), (2.66)

J =
F2 +F4

14
(2.67)

One can calculate U and J by from constrained DFT calculations using supercell model. In a

method proposed by Gunnarsson et al. [67] one removes the transfer integrals between the d or-

bitals and the other orbitals in a system and obtains U by using the equation U = δ 2E/δn2
d .[66, 68]

Various examples of LDA+U calculations are given in the reference [65]. A well-known ex-

ample is the case of CuO-based superconductors[65] which are found to be non-magnetic met-

als in LDA and GGA calculations whereas LDA+U calculations give the correct antiferromag-

netic insulators. Another example showing the severe errors in LDA/GGA which can be cor-

rected by LDA+U is the case of CoO Mott-insulator. CoO has a large band gap of 2.4 eV[38]

which is predicted to be a metal within LDA/GGA, with Co-d state located at the Fermi level[69].

LDA+U[65, 70] correctly opens a band gap in good agreement with experiment.

Anisimov et al. [65] brought up an important relationship between LDA+U and the Green

function (GF) method; GF correctly describes the frequency-dependent quasiparticle energies. A

simple approximation to the GF method is GW approximation (GWA)[71], where G and W stand

for Green and response functions respectively. The authors note that both GW approximation and

LDA+U are Hartree-Fock-like theories which give the corrections to the electron self-energy. The

only difference between the two methods is the procedure for calculating the screened Coulomb

interaction. In LDA+U , it can be done by using constrained DFT, whereas GWA requires the

computation of a much more difficult response function W. Thus, LDA+U can be considered, at

least for localized orbitals, an approximation of GWA.
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2.5.3 Non-local treatment of exchange-correlation in correlated electron systems: Hybrid
functional theory

In spite of the success of local DFT approximations, they fails in many cases where it is believed

that non-local effect of exchange-correlation are important. In chapter 4 I will discuss one of such

systems. To tackle this problem, hybrid functionals have been introduced. The rationale for the

hybrid functional theory arises from the equation 2.51 which can be written as

Exc =
∫ λ

0
dλExc,λ , (2.68)

where

Exc,λ = ⟨Ψλ |
dVint
dλ
|Ψλ ⟩−EHartree[n]. (2.69)

At λ = 0 the non-interacting Kohn-Sham system is recovered and at λ = 1 it is the fully interacting

system. The first formulation of hybrid function was proposed in 1993 by Becke [72] who assumed

a linear dependence on λ and approximated the integral by

Eh
xc =

1
2
(EHF

x +EDFA
xc ), (2.70)

where EHF
x = Exc,λ=0 is the exact exchange energy of Kohn-Sham orbital, EDFA

xc is the exchange-

correlation energy at λ = 1 in the density functional approximation (DFA), such as LDA or GGA.

Later Becke [55] parameterized the formulation including three fitting parameters (α0,αx,αc),

Eh
xc = ELDA

xc +α0(E
HF
x −EDFA

x )+αxEBecke
x +αcEc, (2.71)

where EBecke
x is the exchange energy in the form proposed by Becke himself[53]. For convenience,

each formulation of hybrid functional method is usually named in such a way that it indicates which

exact exchange and which correlation function used. For example, two popular formulations of

such three-parameter hybrid functional are B3PW91 and B3LYP (some of other formulations are

given in table 2.1), both of which use the exact exchange proposed by [55], the former uses the

GGA exchange-correlation by Perdew and Wang [48] while the latter uses that by Lee et al. [54].

This three-parameter formulation later was simplified to one-parameter with αx = 1−α0 = 1−α
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and αc = 1,[56] i.e.,

Eh
xc = EDFA

xc +α(Ex−EDFA
xc ). (2.72)

Perdew, Ernzerhof and Burke[58] suggest the use of α = 1/4. Combining with PBE[47] correla-

tion one ends up with the popular un-screened hybrid functional PBE0[58].

In all the approximation discussed above, the bare Coulomb interactions are considered which

include short-range and long-range parts. This greatly increases the demand of computational re-

sources for hybrid functional calculations. It is, however, known that the short-range exchange in-

teraction decays exponentially as a function of the distance. Furthermore, the long-range Coulomb

interaction causes a divergence near the Fermi level as discussed earlier. This problem can be

avoided by screening the interaction. The formulation for hybrid functionals based on a screened

Coulomb potential was proposed by Heyd, Scuseria and Ernzerhof (HSE) in 2003[59] which was

then amended in 2006[61] (HSE06). In this formalism the Coulomb operator is split into short-

range (SR) and long-range (LR) components:

1
r
=

er f c(ωr)
r

+
er f (ωr)

r
, (2.73)

where er f c(ωr) = 1− er f (ωr) and ω is an adjustable parameter. The short- and long-range parts

correspond to the er f c and er f terms respectively. At ω = 0, the long-range term vanishes and

a full range operator recovered, which is PBE0-type. At ω = ∞, the interaction is completely

screened so that it falls back to (semi)local approximation. In HSE06, the PBE correlation is used

and the energy functional can be written as

EPBEh
xc = αEHF,SR

x (ω)+(1−α)EPBE,SR
x (ω)+EPBE,LR

x (ω)+EPBE
c . (2.74)

Thus, in this formulation, the non-local HF exchange is included only in the SR term whereas the

LR term is that of PBE. This approach not only helps to reduce the computing demand but also

removes the Fermi surface singularity. HSE showed that screened-Coulomb-interaction hybrid

calculations greatly improved the DFT results[59–61] especially in obtaining the band gaps which

were in much better agreements with experiments. HSE-type calculations have proved to be suc-
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cessful in many systems[59–61] with "standard" values of parameters, α = 1/4 and ω = 0.2. In

this thesis, most of the HSE calculations were done using these values.

2.6 Boltzmann’s equation for transport

As discussed in chapter 1, Boltzmann’s equation of transport is the most successful and practical

approach to study thermoelectric properties of materials. Applying this approach, one can calculate

transport quantities, particularly thermoelectric properties, from the electronics structure obtained

from DFT or similar calculations. In this section, I give a brief introduction about Boltzmann’s

transport equation in the presence of temperature gradient, more comprehensive discussions can

be found in other textbooks on solid states physics, such as “Principles of the Theory of Solids” by

Ziman [73].

For a steady state, the Boltzmann’s equation is given by[
∂ fk(r, t)

∂ t

]
di f f

+

[
∂ fk(r, t)

∂ t

]
f ield

+

[
∂ fk(r, t)

∂ t

]
scatt

= 0, (2.75)

where the subscripts di f f , f ield and scatt denote the terms corresponding to diffusion, external

field and scattering respectively, fk(r, t) is the probability of having an electron (hole) with wave

vector k at position r in space at a given time t. Note that fk(r, t) is not for the equilibrium but for

the steady state. At equilibrium, f 0
k(r) is the single particle Fermi distribution,

f 0
k =

1

exp
( εk−µ

kBT (r)

)
+1

, (2.76)

where εk is the energy corresponding to the wavevector k, µ is the chemical potential and kB is the

Boltzmann constant. (The band index has been omitted for simplicity.) We assume that each state

k is two-fold spin degenerate and ignore the spin index since we do not consider magneto transport

in this thesis. The Boltzmann’s equation states that the net rate of change in fk(r, t) is zero for any

k at given point in space.
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In order to find the explicit solution to the Boltzmann’s equation we apply Liouville’s theorem

for r,

fk(r, t) = fk(r− tvk,0), (2.77)

where vk = ∂εk/∂k. The diffusion term in 2.75 can be written as[
∂ fk(r)

∂ t

]
di f f

=−∂ fk
∂T

∂T
∂r
· ∂r

∂ t
=−∂ fk

∂T
vk ·∇T. (2.78)

The derivative of fk with respect to T can be evaluated by using the definition of Fermi distribution,

∂ fk
∂T

=
exp
(εk−µ

kBT

)
[
exp
(εk−µ

kBT

)
+1
]2

εk−µ
kBT 2 =

(
−∂ fk

∂εk

)
εk−µ

T
. (2.79)

One, then, gets the rate of change of the distribution function due to diffusion:[
∂ fk(r)

∂ t

]
di f f

=

(
−∂ fk

∂εk

)
(εk−µ)

(
−vk ·∇T

T

)
. (2.80)

Similarly, one can apply Liouville theorem in k-space and consider only external electric field E,

where

h̄k̇ = eE, (2.81)

to get the formulation for the external field term,[
∂ fk
∂ t

]
f ield

= e
(
−∂ fk

∂εk

)
vk ·E. (2.82)

The scattering term in 2.75 is more complicated and in general is energy-dependent. Within the

scope of this thesis, we make relaxation time approximation which have been successfully applied

in many system.[74] Within this approximation the scattering term can be given by[
∂ fk
∂ t

]
scatt

=−
fk− f 0

k
τk

=−gk
τk

, (2.83)

where gk = fk− f 0
k , τk is the carrier’s relaxation time. Equation 2.75 can be rewritten as

gk = eτk

(
−∂ fk

∂εk

)
vk ·E+ τk

(
−∂ fk

∂εk

)
(εk−µ)

(
−vk ·∇T

T

)
(2.84)

40



In order to make use of this equation to get other transport properties of materials one can start

with the microscopic and macroscopic Ohm’s law which relate the current density to the applied

electric field and temperature gradient. The microscopic Ohm’s law is given by

J =
1
V ∑

k
e fkvk =

1
V ∑

k
egkvk, (2.85)

since there is no current at equilibrium,

∑
k

e f 0
k vk = 0, (2.86)

where V is the volume in real space.

Using the expression of gk and grouping out the common terms, one can rewrite J as

J =
1
V ∑

k
e2τk

(
−∂ fk

∂εk

)
vkvk ·

E+
1

eT

∑k τk
(
−∂ fk

∂εk

)
(εk−µ)vkvk

∑k τk
(
−∂ fk

∂εk

)
vkvk

· (−∇T )

 . (2.87)

Comparing with the macroscopic Ohm’s law in the presences of an external electric field and

temperature gradient, given by

J =←→σ E+←→σ ←→S (−∇T ) =←→σ
(

E+
←→
S (−∇T )

)
, (2.88)

one get the expressions for conductivity,←→σ , and thermopower (Seebeck coefficient),
←→
S , tensors,

←→σ =
e2

V ∑
k

τk

(
−∂ fk

∂εk

)
vkvk, (2.89)

←→
S = (←→σ )−1←→A , (2.90)

where
←→
A = e

V T ∑k τk
(
−∂ fk

∂εk

)
(εk−µ)vkvk.

For isotropic system electrical conductivity σ and thermopower S can be calculated using

σ = e2
+∞∫
−∞

dε
(
−∂ f0

∂ε

)
Σ(ε), (2.91)

S =
e

T σ

+∞∫
−∞

dε
(
−∂ f0

∂ε

)
Σ(ε)(ε−µ), (2.92)
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where µ is the chemical potential, e is the electron charge, f0 is the Fermi-Dirac distribution

function, and Σ(ε), called the transport distribution function, is given by

Σ(ε) =
1
3 ∑

n,⃗k

v(n,⃗k)2τ(n,⃗k)δ (ε− ε(n,⃗k)). (2.93)

In Eqn. (2.93), n is the band index and the summation is over the first Brillouin zone (BZ), v(n,⃗k)

is the carrier velocity of an electron in state (n,⃗k), and τ(n,⃗k) is the relaxation time.

By analogy, one can follow a similar procedure for electronic heat current and obtain the ex-

pression for zero-field electronic thermal conductivity due to electrons

←→κ elec =
1

V T 2 ∑
k

τk

(
−∂ fk

∂εk

)
(εk−µ)2vkvk. (2.94)

From the expression of conductivity and thermopower, one can easily see the inverse relation

between them, i.e. S decreases with increasing σ , whereas the opposite can be said for κelec. These

competing relations, which are discusses in Chapter 1, make the job of optimizing thermoelectric

properties a difficult and challenging one.

2.7 Computational details

In this thesis, most of the calculations were done using the projector-augmented wave (PAW)

method[75, 76] as implemented in the VASP code.[77–79] (exceptions will be noted). In all these

calculations we used a plane-wave energy cutoff of 400 eV and an energy convergence criterion

(between two successive self-consistent cycles) of 10−4 eV (total energy/unit cell). Perdew-Burke-

Ernzerhof (PBE)[47] formulation was used for the exchange-correlation functional.

For comparison, the meta-GGA called modified Becke-Johnson potential (m-BJ) is also con-

sidered for some systems. These calculations were carried out using linearized augmented plane

wave (LAPW) method as implemented in Wien2K[80] package, with a plane-wave cutoff param-

eter RKMAX=7.

For GGA+U calculations, we used the formalism proposed by Dudarev et al.[81], where the

on-site repulsion and exchange are incorporated through a parameter Ue f f =U − J, where U and
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J are the Coulomb and exchange terms (screened) respectively. In this approach, total energy is

rewritten as:

EGGA+U = EGGA +∑
i

Ue f f ,i

2 ∑
σ

[(
∑
m1

nσ
i,m1,m1

)
−

(
∑

m1,m2
nσ

i,m1,m2
nσ

i,m2,m1

)]
(2.95)

where EGGA and EGGA+U are the energies in GGA and GGA+U approximations, respectively;

m1 and m2 are the orbital quantum numbers (m = −2,−1,0,1,2 for the d states) and nσ
i,m1,m2

are

the matrix elements of the density operator n̂σ
i associated with spin σ and site i in this basis. For

simplicity, hereinafter, we will refer to Ue f f as U .

Boltzmann transport theory was used to calculate thermopower S as a function of carrier con-

centration (both n and p types) and temperature. For simplicity we used rigid band and constant

relaxation time approximations (for a justification see a recent paper by Lee and Mahanti, Phys.

Rev. B 2012) to calculate S. These calculations were done using the BoltzTrap pacakage of Mad-

sen and Singh[68]. For accurate computation of transport velocities (and hence S) we used dense

k-meshes (ranging from 21×21×21–41×41×41 for different systems).
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CHAPTER 3

HEUSLER COMPOUND – Fe2VAl: EFFECTS OF ON-SITE COULOMB REPULSION

3.1 Introduction

(Full) Heusler compounds are a class of promising thermoelectric materials. They have a stoichio-

metric composition with the general formula X2Y Z, where X and Y are two different transition

metals (TMs) and Z is a metalloid. They crystallize in a cubic structure corresponding to the space

group L21. After their first discovery by Friedrich Heusler in 1903, more and more Heusler-type

alloys have been found and studied extensively.[85] Among them, Fe2VAl based compounds came

to the research community’s attention in 1997 when Nishino et al. [82] pointed out a possible

existence of d-electron heavy-fermion behaviour (commonly seen in f -electron system) in this

compound. Their heat capacity measurement at low temperature (1.6-6 K) showed a linear term

with a γ value of 14 mJ mol−1 K−2 from which a large electron effective mass (10me, where me

is the free electron mass) was estimated. Photoemission spectrum showed a clear Fermi edge in-

dicating metal-like characteristics. In contrast, by fitting the resistivity to an exponential function

of Eg/T in the temperature range 400 to 800 K, Nishino et al. [82] found that Fe2VAl behaved

like a semiconductor with Eg ≈ 0.1 eV. These experimental results are quite intriguing. This dual

nature was also seen in NMR experiments by Lue and Ross [83] By measuring the T -dependence

of Knight shift (Ks) and the nuclear spin relaxation time (T1) and fitting these two quantities to

functions of Eg/T , they found a band gap of 0.21-0.22 eV for Ks and 0.27 eV for T1. Surprisingly,

Table 3.1: Summary of experimental studies of energy gap in Fe2VAl

Group - year Measured quantity Eg (eV)
Nishino et al. - 1997[82] Resistivity (400–800 K) 0.1
Lue et al. - 1998[83] NMR (250–550K)

• Knight shifts (Ks) 0.21–0.22
• Spin relaxation rate (T1) 0.27

Okamura et al. - 2000[84] Photo-conductivity (9–295K) 0.1 - 0.2
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Table 3.2: Summary of previous theoretical studies on Fe2VAl electronic structure

Group - Year Method a(Å) Eg (eV) g(EF )
(eV−1/ f .u.)

Singh & Mazin - 1998[87] LSDA, LAPW (LMTO) 5.76 -0.2 0.3
Weinert & Watson -
1998[88]

LDA, (FLASTO) -0.2 –

Weht & Pickett - 1998[89] GGA, PBE 5.76 -0.2∼-0.1 0.1
Guo et al. - 1998[90] LSDA 5.68 -0.2 0.54
Kumar et al. - 2009[91] GGA, PBE 5.712 – 0.19

in addition to the activated behaviour, they also found metallic characteristics through Korringa

law. [86] Using the Korringa relation, they found a finite DOS g(EF) at the Fermi level (EF ), and

estimated its V-d component to be about 1.7× 10−2 eV−1 per V atom. The actual g(EF ) should

be somewhat larger. Okamura et al. [84] using photoconductivity measurements also reported sim-

ilar results for Fe2VAl with a band gap of 0.1-0.2 eV and a finite DOS at the Fermi level. The

experimental results of the band gap and the temperature range in which they were measured are

summarized in Table 3.1. Based on the transport measurements and the finite DOS at EF , it was

argued that Fe2VAl was a semimetal with a pseudo-gap. This implies that there is a small overlap

between the valence band and the conduction band. This overlap gives rise to a negative band

gap Eg = Ec,min−Ev,max < 0, where Ec,min and Ev,max are the minimum of the conduction and

the maximum of the valence band, respectively. However the value of this negative band gap is

not known from the experiments. Note that the notation of negative band gap Eg and the positive

pseudo-gap can be distinctly different.

The existence of a negative band gap Eg in the electronic structure of Fe2VAl has been found

in several density functional theory (DFT) calculations within either LDA or GGA; [87–91] a

summary of these theoretical calculations is given in Table 3.2. All the LDA/GGA calculations

indicate that Fe2VAl has a well-developed negative band gap, with the valence band maximum

(VBM) at the Γ point and the conduction band minimum (CBM) at the X point (Γ and X are two

symmetry points in the first Brillouin Zone of a FCC lattice), coming mainly from the Fe-t2g and

V-eg states, respectively. The negative band gap was found to be −0.1 ∼ −0.2 eV, and there is
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a small but finite DOS at the Fermi level, qualitatively consistent with the Korringa law and the

linear T -dependence of the heat capacity at low T . However, as we will discuss later, the calculated

DOS at EF is an order of magnitude larger than that estimated from Korringa’s law and an order

of magnitude smaller to explain the observed large low-T heat capacity. Nevertheless, these band

structure calculations also revealed that Fe2VAl had sharp edges in the DOS near the Fermi level

which is a desirable feature for a good thermoelectric, as suggested by Mahan and Sofo. [17]

Encouraged by the sharp edges in the calculated DOS of Fe2VAl, thermoelectric properties

have been studied experimentally, including our own EFRC1 group at Michigan State University[19].

In addition, several attempts have been made to improve its thermopower S, for example by incor-

porating anti-site defects (increasing ratio of V/Fe) [92] or by doping at the Al site with Si, Ge, and

Sn. [19, 93, 94] In the present work we will not be concerned with the V/Fe anti-site defects since

they give rise to localized states near the Fermi energy and their effects on the transport properties

are difficult to calculate accurately. Our focus here is to see how well one can understand the ex-

perimental data without involving the effect of defects. Experimentally it is found that nominally

pure Fe2VAl is a p-type thermoelectric (in agreement with Hall measurement. [95]) In the tem-

perature range T = 100−400 K, S was found to be 10–50 µV/K. When Al was partially replaced

by Si, Ge, or Sn[19, 93, 94], more electrons were put in the system and turned it into an n-type

thermoelectric. These measurements show that the highest S (in magnitude) is about -150 µV/K,

obtained for 5–6 % of Al substitution corresponding to an electron doping of 1.1–1.3×1020 cm−3

(assuming each dopant replacing an Al donates one electron).

In spite of extensive experimental works, there is no direct spectral evidence supporting the

existence of either a real or a pseudo gap in Fe2VAl. From a theoretical prospective, there is also no

systematic study of the relationship between the LDA/GGA electronic structure and thermoelectric

properties in the pseudo-gap regime and how does theory compare with experiment. Furthermore,

we know that LDA and GGA do not do well vis-à-vis band gaps in semiconductors due to the

self-interaction error inherent in the LDA/GGA potential and vanishing of the discontinuity of the

1Energy Frontier Research Center, a project funded by the US Department of Energy
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exchange-correlation potential as a function of the level occupation at EF as discussed in chapter 2.

The errors in LDA and GGA are severe in describing accurately the localized electrons in d or f

states, i.e. transition metal and rare earth compounds. Whether there will be similar problems in

pseudo-gap or zero-gap systems (when the overlap between conduction band and valence band

is small) is not known. Recently, Bilc and Ghosez [96] used B1WC hybrid functional [57] (see

table 2.1) to study Fe2VAl. They used ratio of α = 0.16 exact exchange and found it to be a

semiconductor with a band gap of 0.34 eV. Later in this chapter I will compare this value of band

gap to that obtained using LDA+U and other method as well as hybrid functional with different

parameter α .

In this chapter, I explore the effect of Coulomb repulsion associated with the d-electrons of

Fe and V electrons Fe2VAl using GGA+U method (see Sec. 2.5.2), which gives quite reasonable

results for relatively low computational cost. This method has been found to be quite successful

in several other Heusler compounds containing d-electrons such as Co2FeSi, Co2MnSi. [97, 98] I

systematically investigate the effect of the on-site Coulomb repulsion U at both Fe and V sites on

the electronic structure and thermoelectric properties of Fe2VAl. U was first treated as a parameter

to understand how the band structure is affected by the values of U at different transition metal

sites. Then the values of U were calculated using constrained DFT method (see section 2.7). The

calculated band structure for these values of U then is used to investigate the carrier concentration

and temperature dependence of thermopower, look for their optimum values and compare with the

experiment.

The chapter is arranged as follows. In Sec. 3.2, I briefly describe the computational procedure

beyond which already discussed in section 2.7. Results and discussions on electronic structure

and thermoelectric properties are presented in Sec. 3.3 and Sec. 3.4. A brief summary is given in

Sec. 3.5. Most of materials presented in this chapter are published in the reference [35].
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3.2 Computational details

The on-site Coulomb interaction was added using GGA+U method within the scheme suggested

by Dudarev et al. [81] (see section 2.5.2). The values of U for Fe and V are calculated using the

constrained DFT method, where the effective Coulomb repulsion energy is given by

Ue f f =εd↑
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(3.1)

where εd↑(n↑,n↓) and εF(n↑,n↓) are respectively the spin-up d-eigenvalue and the Fermi energy

for the configuration of n↑ up-spins and n↓ down-spins, n is the total number of d-electrons.

Since this method of calculating U involves varying the occupation number, which is not al-

lowed in VASP, The Wien2k package [80] was used, following the procedure suggested by Madsen

and Novák. [68] A 2×2×2 fcc supercell was used within PBE-GGA [47] with a plane wave cutoff

RKmax=7 and a Fourier expansion cutoff Gmax=9. Values of Ue f f were found to be 4.0 and 1.5 eV

for Fe and V, respectively. The value of Ue f f for V is smaller than that of Fe as expected. Note

that in the atomic limit the value of U very high. In extended systems, since the effective Coulomb

interaction is screened by the cloud of electrons, the value of U is much smaller. For example,

U ≈ 20 eV for atomic Fe, whereas it is ∼ 6.2−6.8 eV for Fe metal [66] and ∼ 4.8−7.4 eV for Fe

oxide. [68] Thus the small value of Ue f f of Fe that we obtained suggests a strong screening effect

in Fe2VAl.

In this chapter, the effect of Coulomb repulsion was first investigated with various values of U

on Fe and V sites separately to understand how different bands are affected by U . For this purpose

three situations were consider for each atom: weak (Ue f f =1 eV), intermediate (Ue f f =2 eV), and

strong (Ue f f =4 eV) repulsion limits (comparing to typical d bandwidth of 1.5–2 eV). GGA+U

calculations were then done with U values obtained using the constrained DFT method. In the rest

of this chapter the suffix “e f f ” will be omitted from Ue f f .

Thermopower S was calculated using Boltzmann transport equation in constant relaxation time

and rigid band approximations. [74] Since Fe2VAl is a cubic system, its transport tensors are
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Figure 3.1: Band structure of Fe2VAl showing d-characters of Fe and V (left); and DOS (right).
EF denotes the Fermi level set to be zero. The size of the symbols represents the strength of
orbital characters.

diagonal and all the diagonal elements are the same and electrical conductivity σ and thermopower

(Seebeck coefficient) S are given by Eqn. 2.91 and 2.92 respectively. Here τ(n,⃗k) is assumed to be

constant. The energy dispersion was first obtained with Monkhorst-Pack mesh of 41×41×41 k-

points, then the transport coefficients were calculated from the resulting eigenvalues employing the

Boltztrap code developed by Madsen and Singh. [74] As mentioned earlier, this chapter discusses

only the thermopower S.

3.3 Electronic structure: Pseudo-gap versus real gap

In Fig. 3.1 (left panel) the energy bands were shown together with Fe- and V-d characters along

different symmetry directions of the first BZ. The right panel gives the DOS of Fe2VAl which

clearly shows a pseudo-gap structure near EF . The zero of energy has been chosen to be at the

Fermi level. The present GGA band structure results agree with the previous GGA calculations of

other groups [87–91] in which Fe2VAl has a negative band gap of Eg ∼−0.17 eV. Certain general
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features of the band structure are the following: It has a deep and rather broad Al s-band from -10

to -6 eV. Note that here 0 eV is assumed at Fermi level. The bands from -5 to 2 eV result from

the hybridization of Fe and V d-orbitals with a small admixture of Al p-orbitals (only Fe-d and

V-d characters are shown in Fig. 3.1). The pseudo-gap is formed by a nondegenerate V-eg band

minimum at the X point and a three-fold degenerate Fe-t2g band at the Γ point. Near 0.3 eV there is

a very narrow band originating from Fe-eg states which gives rise to a sharp edge in the conduction

band DOS. These Fe- and V-d bands are important features which are relevant to the low-energy

physics in general and the thermoelectric properties in particular. Weht and Pickett [89] suggested

that the excitonic effect may be important in this region.

The band structure of Fe2VAl near the Fermi-level shows that there are three-fold degenerate

hole pockets centered around the Γ point with nearly same effective mass and a nondegenerate

electron pockets centered around the X points. Since there are three inequivalent X points in the BZ

this compensates for the 3-fold degeneracy of valence band when one compares the contributions

from holes and electrons to the thermopower. The calculated DOS at the Fermi energy for the

undoped system is 0.27 eV−1 per formula unit (f.u.). This gives a γ value for the linear heat

capacity of 0.63 mJ mol−1 K−2, nearly the same as 0.69 mJ mol−1 K−2 reported by Guo et al.

[90] in their LSDA calculation. The small difference between the two theoretical values may be

due to the different lattice constants and different methods which have been used. However, both

these values are an order of magnitude smaller than the experimentally measured low-T γ value of

14 mJ mol−1 K−2.[82]

As seen in Fig. 3.1 (right panel), there is a rapid rise in the DOS near 0.3 eV (in the conduction

band) and a similar one but less rapid at -0.2 eV (in the valence bands). As we will discuss later,

one obtains large values of S (magnitude) when Fe2VAl is heavily doped, either n-type or p-type,

so that the chemical potential approaches these rapidly increasing parts of the DOS. This result is

expected, as already discussed in section 1.2.

When the on-site Coulomb repulsion U is turned on, as one would expect (see Chap. 2) the

occupied d-states are pushed down in energy whereas the unoccupied states are pushed up. This
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Figure 3.2: Band structure of Fe2VAl in absolute scale for UFe of (a) 0 eV, (b) 1 eV, (c) 2 eV and
(d) 4 eV. The Fe-eg and Fe-t2g bands are pointed out by arrows.

is clearly seen in Figs. 3.2 and 3.3. In order to see how different bands change due to the on site

Coulomb repulsion, the bands structure was plotted in the absolute scale focusing on the bands near

the Fermi level in the range from -11 to -7 eV. Fig. 3.2 shows the bands structures with UFe =0,1,

2, and 4 eV at the Fe site only. In this case V bands are relatively unaffected while the unoccupied

Fe-eg bands are pushed up and the occupied Fe-t2g bands are pushed down. For a quantitative

measure of the effect of UFe, we define a quantity ∆eg,t2g which is the splitting between the Fe-eg

conduction band and the Fe-t2g topmost valence band at the Γ point. The value of ∆eg,t2g changes

by 0.22, 0.48 and 1.18 eV for UFe=1, 2, and 4 eV, respectively. As expected, the larger the value

of UFe, the larger is the change in the energy difference. However, the changes in the energies

are about 22∼30 % of the values of the parameter UFe. This is due to the hybridization of Fe-d,

V-d and some Al-p orbitals, which weakens the effect of U . In the weak repulsion regime, the

parameter UFe has very small effect on the band gap. In the intermediate and strong repulsion

cases the effects are significant. The relative shift of the bands results in changing the pseudo

gap to a real gap. For UFe = 1 eV the pseudo-gap remains while the values of the band gap are
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0.002 eV and 0.27 eV corresponding to UFe = 2 eV and 4 eV, respectively.

Looking more carefully at the changes in the band structures (see Fig. 3.2), one can point out an

interesting change in Fe-t2g bands at the X point. In the absence of UFe, the t2g bands of Fe splits

into two levels, where a nondegenerate band is located at ≈0.15 eV above the two-fold degenerate

one. Note that the nondegenerate band consists of Fe-t2g only while the two-fold degenerate band

shows strong hybridization, with a small contribution of Fe-t2g and large contribution of p-like

plane-wave states. On the other hand, at the Γ point, the VBM is 3-fold degenerate coming from

hybridization of Fe- and V-t2g orbitals. In the presence of UFe, the bands without hybridization

are strongly affected by UFe, whereas the bands with stronger hybridization, specially when p

states are involved, are not affected much by UFe. This results in the change in the ordering of

these levels (at X and Γ) when UFe=4 eV. The nondegenerate band is pushed down more strongly

than the two-fold degenerate one. As a consequence, when UFe=4 eV, reversed ordering of these

levels is observed at the X point, i.e. the two-fold degenerate Fe-t2g band becomes the highest

occupied band. This makes the system a direct band gap semiconductor and also brings more hole

pockets into the system even with small doping levels. This would make Fe2VAl a better p-type

thermoelectric (which will be discussed in detail later in this chapter). Similar effect is also seen

in Fe-eg conduction bands. Without UFe, at the X point, the second and fourth lowest-energy

bands have pure Fe-eg character while the third one is a hybridized band of Fe-eg and V-t2g. By

turning on the Fe-site Coulomb repulsion, the energy difference between the second and fourth

bands remain nearly the same, whereas that between the second and third bands is decreased.

Analogous band shifting is seen when we turn on the Coulomb repulsion at the V site only:

The Fe bands remain nearly unchanged whereas the V-eg bands, since they are mainly unoccupied,

are shifted upwards (shown in Fig. 3.3). There is however a difference in the way V d-bands react

when we include U effect on the V site. The V-eg bands, most of which lie above the Fermi level,

is affected strongly by UV since it is predominantly of V-eg character. The energy of this band is

changed about 13–20 % of the UV value. On the other hand, the occupied bands which hybridize

with Fe-t2g are shifted by less than 1 % of the UV value (Note that UFe=0). In the case when one
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Figure 3.3: Band structure of Fe2VAl in absolute scale for UV of (a) 0 eV, (b) 1 eV, (c) 2 eV and
(d) 4 eV.The V-eg bands are pointed out by an arrow.

considers UV at the V site only, even a weak repulsion causes a significant change in the band gap.

For UV =1 eV, Fe2VAl becomes an almost zero-gap system; for UV =2 eV there is a real gap of

0.21 eV; when UV =4 eV the V-eg band is pushed up so much that the flat Fe-eg band becomes the

lowest conduction band and the gap is now 0.32 eV.

When we turn on U at both Fe and V sites the net effect appears to be roughly a combination

of individual Fe and V effects. For the U values obtained from constrained DFT as described in

Sec. 3.2 (UFe =4 eV and UV =2 eV), the calculated band structure is shown in Fig. 3.4(b). A band

gap of 0.55 eV is obtained and it is both direct and indirect since the highest occupied states at the

Γ and the X points are nearly degenerate (as discussed in the case UFe =4 eV above).

As mentioned in Sec. 3.1, several improvements beyond LDA/GGA have been done to take

better account of localized d-electron systems. Here I compare the results obtained using different

approximations including improved GGA by Engel and Vosko [49], hybrid functional: PBE0, [58],

HSE06[59–61] and B1WC [57] as well as the recently propose modified Becke-Johnson (mBJ)[52]

which is claimed to give good band gap values which agree well with those obtained using the GW
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Figure 3.4: Band structure of Fe2VAl obtained in different methods: (a) GGA-PBE , (b) GGA+U
, (c) mBJ and (d) PBE0.

mBJ and PBE0 bands structures were calculated with Wien2K

Table 3.3: Summary of Fe2VAl band gap using different methods

Method∗ Parameter Band gap (eV)
GGA–PBE – -0.17†

GGA–EV – -0.06†

mBJ – 0.22‡

GGA+U UFe = 4 eV,UV = 1.5 eV 0.55†

PBE0 α = 0.25 0.58‡

1.8†

HSE06 α = 0.25, ω = 0.2 1.1†

B1WC α = 0.16 0.34⊥‡

α = 0.25 0.62‡

∗
For detailed discussion on methods of

calculations see Sec. 2.5.3 and table 2.1
†

Calculated with VASP

‡
Calculated with Wien2K
⊥

Reference [96]
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method. [71] The summary of methods and corresponding band gaps are given in Table 3.3 and

the band structures obtained from some of these methods are shown in Fig. 3.4. Note that some of

the results were calculated using Wien2k [80] package (see table 3.3).

We found that both PBE0 and B1WC which are implemented in Wien2K with α = 0.25 give

quite large band gaps, 0.58 and 0.62 eV, which are very close to our GGA+U result. On the other

hand, PBE0 implemented in VASP gives a really large band gap of ∼ 1.8 eV. With VASP, when

the exact exchange is screened, i.e. as in HSE06, the obtained band gap is reduced to ∼1.1 eV,

which, however is still twice of that calculated with Wien2K hybrid functional. Note that GGA

results agree extremely well between the two DFT codes. This brings up a questions of how non-

local exchange is implemented in those programs and how to critically validate the large number

of electronic structure codes which are handily available.

Reducing the value of α to 0.16 in B1WC method results in the band gap of 0.34 eV. These

values are, however, larger than that obtained from mBJ method which gives 0.22 eV (in reasonable

agreement with experimental band gap). It is important to mention that mBJ method, among all

the methods we have tried, gives the energy level ordering at the X point very similar to that of

seen in the GGA+U calculation. However the change in the band structure seen in mBJ (compare

to GGA calculation) is not as large as that seen in GGA+U . Hence the top of the valence band is

still at the Γ point and the band gap is indirect in the mBJ band structure.

If mBJ method indeed gives the right band gap for Fe2VAl and this compound is an intrinsic

narrow band gap semiconductor then the large gap (0.55 eV) obtained from GGA+U calculation

suggests that the constrained DFT method proposed by Anisimov and Gunnaarsson overestimates

the value of U , at least in these ternary compounds with small band gaps. In their method, Anisi-

mov and Gunnarsson only considered the screening from s and p electrons and neglected the effect

of d electrons themselves. This might underestimate the screening effect on U because small band

gap in this system involves excitations of d-electrons. Suppression of these excitations will tend

to give large U values. Having noted this shortcoming of the present U calculations smaller val-

ues of U have been checked. Results show that mBJ result could be reproduced by GGA+U with
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Figure 3.5: Thermopower (S) and chemical potential (µ) versus carrier concentration (ne,nh) in
the absence of U (the pseudo-gap case) for n- and p-type doping in Fe2VAl. The Fermi level is
chosen to be 0.

UFe=3 eV and UV =1 eV. The similarity in the results obtained from mBJ and GGA+U calculation

is worth a further study.

3.4 Thermoelectric properties

Thermopower S was calculated using Eqns. (2.91) and (2.92) for different doping levels (different

concentrations) and for different temperatures (T ) in the range 100–700 K.

3.4.1 GGA calculation

First let us consider the case when U=0 eV (GGA calculation). This corresponds to the negative

gap or pseudo-gap picture in which Fe2VAl is a semi-metal with a small but finite DOS at EF .

In the absence of any doping the electron concentration (ne) and hole concentration (nh) are the

same. We define the carrier concentration as n = 1
V (N−

∫+∞
−∞ D(ε) f0(ε)dε), where N is the total

56



number of electrons in the system, V is the volume, D(ε) is the density of states and f0(ε) is

the Fermi-Dirac distribution function. The sign of n corresponds to the sign of the charge of

the carriers. ne = −n when n is negative and nh = n when n is positive. With this definition,

carrier concentration is equivalent to the doping level in the experiment. We change n by changing

the chemical potential and see how S changes with n, and T . Fig. 3.5 shows thermopower (S)

and chemical potential (µ) as a function of n for two different temperatures, 300 K and 700 K.

Although the magnitude of S increases with T , the higher the T , the smoother is the variation of S

with n, caused by enhanced thermal broadening of the Fermi distribution function (see Eqn. 2.92).

The magnitude of S has two peaks for n-type doping, the first one at ne ≈ 5.1× 1020 cm−3 and

the second at ne ≈ 5.0×1021 cm−3. For p-type doping there is only one peak at and nh ≈ 2.3×

1021 cm−3. These three concentrations correspond to the chemical potential of 0.13, 0.43, and

-0.18 eV, respectively.

We can understand these peaks in magnitude of S by analysing the band structure of Fe2VAl.

Let’s first understand the n-type thermopower as a function of n. Without doping the chemical

potential lies in the overlap region between conduction band and valence band (see Fig. 3.4-(a)).

In this region the hole and electron contribution in S cancel each other resulting in very small mag-

nitude of S following the equation S =
Seσe+Shσh

σe+σh
, where Se, σe and Sh, σh are thermopowers and

electrical conductivities associated with the electrons and holes, respectively. When ne increase,

the chemical potential increases and eventually gets out of the overlap region at ∼0.13 eV. As a

result, the hole-electron cancellation is suppressed. The suppression of hole-electron cancellation

gives rise to the first peak in the n-type S. The second peak in n-type S is obtained when n is high

enough for chemical potential to reach the flat band of Fe at 0.43 eV. At this point the magnitude

of S gets a large value due to the rapid change in DOS.

Similarly, one can see that the peak in p-type S is due to both suppression of hole-electron

cancellation effect and the rapid rise in DOS near -0.18 eV. The coincidence of the two events:

getting out of the overlap region and reaching the rapid rise in DOS is the reason why there is only

one peak in the magnitude of p-type S.
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Figure 3.6: S as functions of temperature obtained using the GGA band structure (U=0 eV, the
pseudo-gap case) at different concentrations: for n-type (closed symbols) and p-type (open
symbols) doping.

It appears from these results that if the band structure of Fe2VAl is adequately described by

LDA or GGA, i.e. it is a pseudo-gap system, then to have large thermopower values one has to go

to rather high doping levels when the cancellation effects are nearly absent. However, the carrier

concentrations should not be so large that Pauli suppression for degenerate carriers start to reduces

|S|.

Now let us look at thermopower as a function of temperature. Fig. 3.6 plots S versus T for

several carrier concentrations. We will consider n- and p-type dopings separately.

n-type doping: In the temperature range 100–700 K, S has the highest value (magnitude) for

ne ≈ 4−6×1021 cm−3. The magnitude of S increases with T , but the increase is rapid at low T

and then slows down at high T . At high T , large number of electron and hole excitations start to

dominate, resulting in a cancellation and reduction in S, as seen in figure 3.6 where T > 700 K).

This electron-hole cancellation is also the reason for small magnitude of S values seen for small n.

p-type doping: One sees behaviour similar to the n-type doping. Again S increases with T and
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has small values for low concentrations due to electron-hole cancellation. S is largest (100 µV/K

) for nh ≈ 2×1021 cm−3. Interestingly, GGA calculation shows that Fe2VAl is a slightly better

p-type thermoelectric than n-type. For example, at 700 K, the highest value of the magnitude of

S is 110 µV/K for p-doping whereas it is only 80 µV/K for n-doping, about 30 % smaller. To

understand this difference we look at the band structure. The electron pockets center around the X

points and are non-degenerate (ignoring spin degeneracy), whereas the hole pockets center around

the Γ point but are three-fold degenerate. Since there are three inequivalent X points in the BZ

and only one Γ point, the difference in the S value cannot be ascribed to the band degeneracy. We

believe it is due to the difference in the effective masses of electrons and holes. The Fe dominated

holes have larger effective mass and lead to larger S values. This property of the Fe2VAl is different

from that of ZrNiSn,[99] which belongs to the class of so called Half-Heusler compounds. In

the latter compound the electron pockets centered around the X points are heavier than the hole

pockets centered around the Γ point. Consequently, the magnitude of the thermopower is larger

for the electrons in ZrNiSn.[99] For more discussions on this compounds see chapter 5.

3.4.2 GGA+U calculation : the effect of finite band gap

As we have discussed earlier, the effect of incorporating U is to decrease the overlap between the

valence and the conduction bands and eventually open up the gap. For UFe=4 eV and UV =1.5 eV

(values calculated using constrained DFT), the band gap is 0.55 eV. For the calculation of the

transport coefficients we choose the zero of energy at the middle of the gap. In Fig. 3.7 we give

the results of S as a function of T for different values of the concentration. The T -dependence of S

for the case of real gap is much simpler compared to the pseudo-gap case. Since there is very little

electron-hole cancellation, S follows the Pizarenko relation, i.e. the magnitude of S increase with

decreasing carrier concentration. Thus, increasing carrier concentration reduces the magnitude of

S. And for the same reason S does not saturate up to 700 K as the thermal excitations of electrons

and holes are suppressed due to the large band gap.

As mentioned above, in the presence of U , valence band maxima near Γ and X points become
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Figure 3.7: S as functions of T for GGA+U calculation (UFe=4 eV and UV =1 eV) at different
concentration: for n-type (closed symbols) and p-type (open symbols) doping.

nearly degenerate. Since more hole pockets contribute to transport (both at the Γ and X points)

(see Fig. 3.4(b)) we found that opening up of the gap by U leads to a better p-type thermoelectric.

The value of S for the p-type at concentration of 5×1019 cm−3 at 700 K is about 3/2 times larger

than that for the n-type at the same carrier concentration and temperature.

3.4.3 Comparison with experiment and other theoretical results

For comparison, the theoretical results are compared to the experimental results on Fe2VAl1−xGex

by Nishino et al. [93] and Fe2VAl1−xSix by Skoug et al. [19] for x values in the range 0.0–0.2.

Although these two systems are similar and show qualitatively similar behaviours, there are quan-

titative differences which might help us in testing our theoretical calculations, particularly the

adequacy of the pseudo-gap (or semimetal) picture.

Let us first look at the nominally undoped system (x=0). Both experiments show p-type be-

haviour in the temperature range 100–400 K. S of nominally undoped system increases slightly

with T and saturates between 300–400 K. The values of S at 300 K, however, differ by nearly a

60



Figure 3.8: Calculated p-type S as a function of n for the cases of: pseudo-gap (GGA calculation)
(solid line) and gapped (GGA+U calculation), Eg=0.55 eV, (dashed line) at 300 K.

factor of 2 between the two measurements (25 and 50 µV/K obtained by Nishino et al. and by Sk-

oug et al. respectively). One can argue that this difference can be due to the difference in the hole

concentrations and the small values of S can be understood within the pseudo-gap model when

the hole concentration lies between 1020–1021 cm−3, because in this model, the electron–hole

cancellation effect makes S to be not only small in magnitude but also a weak function of carrier

concentration over a wide range. (see Fig. 3.8). In contrast, for a finite gap case (especially for a

large gap 0.55 eV as obtained in the GGA+U calculation) one can not understand the peak in S be-

cause S follows the Pizarenko relation and changes rapidly as the function of carrier concentration

(see Fig. 3.8). From Hall measurement done by Nishino et al. [95], the hole concentration for the

nominally undoped sample is found to be ≈ 5× 1020 cm−3. For this concentration the GGA+U

band structure gives S≈ 140µV/K at 300 K, which is about two times larger than the experimental

values (25 and 50 µV/K), while GGA band structure gives S ≈ 30µV/K in quite good agreement

with experiment. This result would then favour the pseudo-gap or semimetal picture. Physically,
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this means that when the hole concentration is not too large, small S values can be obtained near

300 K only when there is significant electron-hole cancellation.

When one replaces Al by Ge, Si, or Sn, the dopants give an extra electron/dopant to the net-

work and when x > 0.03, the alloys show n-type behavior. One significant feature in the n-type

compounds studied by both Nishino and Skoug’s groups is that for the optimum doping (x≈0.05–

0.06), S shows a minimum between 200–250 K and the value of S near the minimum is about -

150 µV/K[19, 93]. For larger x (presumably for larger carrier concentration), the minimum moves

towards higher T .

Studying S as the function of T corresponding to the pseudo-gap case (U=0) (Fig. 3.6), we

found that that for the entire range of electron concentration ne≈ 5×1019−1022 cm−3, there is no

discernible minimum in S at temperature lower than 500 K and also the magnitude of the S values

are less than 60 µV/K (two times smaller than the experimental values) in the temperature range

100–700 K. Both these observations are in disagreement with experiments. So neither the pseudo-

gap model nor the model with large band gap (∼0.55 eV) can explain the observed minimum in S

at T ∼ 250K and its magnitude.

In an attempt to see if a finite gap picture could explain the experimental data I have tried using

smaller values of U than that obtained from the constrained DFT calculation. We found that with

very small U (≈1 eV) (and almost zero band gap,Eg ≈ 0.07eV ) we could qualitatively reproduce

the experimental data of S for the n-type system, particularly the minimum at ∼ 250 K (see Fig.

3.9). However in order to get such an agreement with experiment one has to use n≈ 5×1019 cm−3

which is about one order of magnitude smaller than that obtained from the Hall measurement.[93]

For the p-type (nominally undoped) system with hole concentration of 5× 1020 cm−3 (obtained

from Hall measurement[93]) the magnitude of S is roughly of the order of the experiment done by

Skoug et al. However, S does not saturate in the range 0–700 K.

The above analysis shows that it is difficult to understand the experimental data for both the

nominally undoped and n-doped cases using either the pseudo-gap or the real gap model. This

conclusion agrees with the work of Bilc and Ghosez [96]who used B1WC hybrid functional
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Figure 3.9: Experimental thermopower obtained by doping Si on Al site (symbols) (by Skoug
et al. [19]) and theoretical curve (lines) with U=1 eV (Eg = 0.07 eV ). (carrier concentrations are
given in unit of cm−3)

method [57] and found a band gap of about 0.34 eV which lies between our value of 0.55 eV

and the experimental value of about 0.2 eV. With this value of band gap they could not reproduce

the experimental data. So just scaling the gap to a small value cannot explain the n,T-dependence

of S. In order to understand the difference between experiment and theory, one has to overcome

several weaknesses of the present calculations.

First, the effect of inter-site Coulomb repulsion between d-electrons at neighbouring V- and

Fe-sites has not been included within the present GGA+U approach. Also, GGA+U is essentially

a mean-field approximation, and does not include electron-hole excitonic correlations which may

alter the electronic states near the Fermi energy in the pseudo-gap or small gap regime. Second,

we have used a rigid band model to calculate S. It is possible that the dopants distort the electronic

structure near the Fermi energy and hence the rigid band model is not valid any more. [100] Third,

there may be defects (Fe-V antisite defects, vacancies, and interstitials) which alter the states near

the Fermi energy, giving rise to not only new (and perhaps smaller than the band gap) excitation
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energy scales but also to localized states that act as carrier traps.

3.5 Summary

In this chapter I have discussed how the band structure of Fe2VAl changes when one takes into

consideration the effect of intra-site Coulomb repulsion between d-electrons at the Fe and V sites

beyond GGA using GGA+U approximation. In Heusler compounds, which contain two different

types of transition metal atoms, the effect of U on the band gap depends sensitively on which one

of the two transition metal sites one is dealing with. For example, even small values of UV (∼1

eV) at the V site can open up the gap because the lowest conduction band is predominantly V

d-character and gets pushed upward in energy strongly by UV . In contrast, small values of UFe

(∼1 eV) at the Fe site do not open up the gap, it rather changes the band structure slightly. This

is because the top of the valence band is strongly hybridized and is shifted downwards in energy

only slightly. Thus one needs a larger value of UFe (∼2 eV) at the Fe site to open the band gap

when UV = 0.

The values of U calculated using constrained density functional theory (UFe=4 eV for Fe and

UV =1.5 eV for V) are much smaller than the atomic values of U (∼20 eV) indicating a strong

screening effect. This is not surprising and is seen in many transition metal compounds. What

surprising is that the values which have been calculated for Fe is smaller than that one finds in Fe

metal (∼6 eV) since the screening should be stronger in the metal.

Using the values UFe=4.0 eV and UV =1.5 eV give a gap of 0.55 eV in Fe2VAl, considerably

larger than that obtained from transport measurements and NMR (eg ≈ 0.2 eV ). In this case, S

shows characteristics of usual narrow band-gap semiconductor. Both GGA and GGA+U calcula-

tions suggest that Fe2VAl is a better p-type thermoelectric either due to larger hole effective mass

(in GGA) or due to large degeneracy (in GGA+U).

Calculations, however, point out that the present models (both pseudo and real intrinsic gap

cases), cannot explain all the experimental data on S consistently for both n- and p-doped cases.

Band structure calculated using modified Becke-Johnson potential tend to give small band gaps
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(0.22 eV). But these results are still not enough to explain the thermopower data. Several limita-

tions of the present models, such as the electron-hole (excitonic) correlation effects, defect induced

changes in band structure, etc. , were pointed out and further work should be done.
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CHAPTER 4

DIAMOND-LIKE TERNARY COMPOUNDS

4.1 Introduction

Among approaches to improve ZT , reducing lattice thermal conductivity is considerably less com-

plicated (discussed in Sec. 1.1), in the sense that it does not involve other parameters (namely, S,

σ , and κelect). This direction has been quite successful, bringing ZT to the current state of 2–

3.[14, 101] One way to reduce thermal conductivity is to increase the number of atoms in a unit

cell, following the work of Slack and his colleagues[26] which suggested that thermal conductivity

is inversely proportional to the number of ions per unit cell

κlatt =
BM̄δθ 3

D
n2/3T γ2

, (4.1)

where B is a constant, M̄ is the average atomic mass, δ is the average volume per atom, θD is the

average Debye temperature, T is the temperature, n is the number of atoms per unit cell and γ is

the Grüneisen constant.

For diamond-like (tetrahedrally bonded) compounds, Grimm and Sommerfeld’s rule[102] pro-

vides a simple way to search for compounds with greater number of atoms per unit cell. The rule

predicts that systems with the average of four valence electrons per atom will have diamond-like

structure where all atoms are tetrahedrally coordinated. Applying this rule, one can start from the

multiple unit cells of a simple system (say, Silicon) and replace one constituent with two or more

of different types, keeping the same average number of valence electrons. For example, we can

double the unit cell of Si and then replace two Si by one Zn and one Se to get sphalerite ZnSe

(zincblende/wurtzite structure). Similarly, starting from ZnSe with zincblend structure, one can

double the unit cell to (ZnSe)2, keep the Se sublattice intact, and replaces two Zn (divalent – II)

atoms by Cu (monovalent – I) and In (trivalent – III) to get the chalcopyrite structure. Another

example is to triple the ZnSe unit cell and replace the three divalent anions by two monovalent and
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one tetravalent cations, Cu2GeSe3 (in general I2-IV-VI3).

While most of diamond-like compounds have been extensively studied for their photovoltaic

application due to this wide band gaps, such as CuInSe2[103] which has a band gap of 1.032 eV,[104]

recently several Cu-Sb-Se(S) based ternary compounds have been found to exhibit promising ther-

moelectric properties. [27, 28, 105–109] Among these, Cu3SbSe4 (Se4) is a narrow band gap

semiconductors [109–111] which gives a large p-type thermopower. [106] Even though several

theoretical studies have been done on this compound,[109–111] its electronic and thermoelectric

properties are not well understood. In my work, I will be concerned with Se4 and the related sys-

tems in the class of I3-V-VI4 compounds, where the unit cell is quadruple of ZnSe and 4 divalent

cations are replaced by 3 monovalent (Cu,Ag) cations and one pentavalent (P, As, Sb, Bi) cation.

The I3-V-VI4 compounds are classified into the family of famatinite (Fa) and enargite (En) which

have tetragonal and orthorhombic structures respectively.

Tetrahedrally coordinated semiconductors have been studied extensively and have played an

important role in our understanding of the relationship between coordination, bonding, and band

gap. This relationship is easy to understand in monoatomic covalent solids C, Si, Ge, Sn. In these

solids spatially directed sp3 hybrids form bonding (B) and antibonding (AB) bands.[112, 113]

Electrons fill up the bonding bands (valence bands) following the simple Lewis octet rule[114,

115], the antibonding bands (condution bands) are empty, there exists a band gap (Eg) between the

valence band maximum and the conduction band minimum. There is a decrease in the splitting

between the bonding and anti-bonding bands due to increase in the lattice constant as one goes

from C to Sn, with a concurrent reduction in the band widths. The net result is a decrease in Eg

which is nearly zero for Sn. Although this qualitative relationship between bonds and band gap is

useful, the actual value of Eg depends on other subtleties like the details of band dispersion, spin

orbit interaction etc.

The inter-relationship between bonds, bands and band gaps discussed above can be extended

to tetrahedrally bonded III-V and II-VI binary compounds.[112, 113] Here again the octet rule

plays the dominant role. However the splitting between the valence and the conduction bands and
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therefore the band gap depends on other parameters, namely the differences in electron affinity

(EA) and ionization energy (IE) of the two components. The bonds now pick up both covalent and

ionic characters. The classic works of Pauling[112] and Phillips[113] in relating the ionicity and

covalency of a particular bond to the above parameters (Pauling) and to the dielectric properties

(Phillips) have given a fundamental understanding of the bonding and structure of these binary

compounds. However, these theories do not explicitly address the relationship between band gaps

and the nature of bonds. (Phillips ionicity scale does depend indirectly on the band gap through the

dielectric constant). The general trend seen in covalent semiconductors, i.e. decrease in Eg with in-

creasing lattice constant (bond length) is also seen in binary tetrahedrally bonded semiconductors.

For example Eg = 6.2 eV in BN (lattice constant a=0.361 nm) and 0.23 eV in InSb (a=0.648 nm).

Although this tendency is quite general the actual values of the band gap depends on the details

of band dispersion. Progress in the in electronic structure theories (ab-initio DFT both local and

non-local, GW, and others) have helped us in addressing the relationship between bonding, band

structure and band gaps in these compounds.[38]

Extending the above ideas further to tetrahedrally coordinated ternary compounds, in this case,

Fa and En compounds, becomes challenging because of the competition between the natures of

different bonds. Both these compounds contain group V ions which can exhibit multiple valency.

According to a simple valence count, with Cu (I) being 1+ and Se (VI) 2-, for the charge to be

compensated V should be pentavalent (5+) to explain the semiconducting properties of these com-

pounds. However, GGA calculations for Se4 (Wang et al. [116]) suggests that Se4 is metallic

while experiments reported a band gap of 0.1–0.4 eV.[106, 110, 111] A recent calculation em-

ploying the hybrid functional scheme developed by Heyd, Scuseria and Ernzerhof (HSE), which

includes non-local exchange interaction, gives a band gap of 0.4 eV[109]. Nevertheless, in all the

previous studies of Se4, the questions of Sb valency, the precise nature of the bands near the gap

region and the physical origin of the gap formation in Se4 have not been addressed.

This chapter will try to answer some of the questions mentioned above. It is arranged as fol-

lowing. In section 4.2 the crystal structures of Fa and En are briefly reviewed. I will discuss the
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band gap formation in Se4 in 4.3 by carrying out extensive ab-initio electronic structure calcu-

lations using several local/semilocal approximations such as local density approximation (LDA),

GGA,[47] GGA+U[66] and recently developed modified Becke-Johnson (m-BJ)[52] exchange po-

tential. In addition, I have also used non-local approximations to exchange correlation potential

(HSE06)[59–61] to calculate the electronic structure. Then in section 4.4, I show that the physics

of band gap formation is generic for the whole family of I3-V-VI4 compounds and study how the

band gap varies for different compounds. Then the temperature and carrier concentration depen-

dence of thermopower in Se4 are presented and how they depend on the details of the electronic

structure is discussed. Thermoelectric properties of Se4 and summary of the chapter are given in

section 4.5 and 4.6 respectively. The results presented in this chapter are partially published in

references [36] and [37].

4.2 Crystal structures of Famatinite and Enargite

Systems are considered in this chapter belong to the family of I3-V-VI4 compounds where (I) is

Cu or Ag, (V) is P, As or Sb, and (VI) is Se or Te. While most Ag-compounds are not found in

the literature, Cu-compounds usually crystallize in the Famatinite structure (Fa) and some in the

Enargite structure (En). As discussed in the previous section, Famatinite and Enargite structures

may be considered as derivatives of the well known Zinc blende and Wurtzite structures respec-

tively. As shown in Fig. 4.1, Fa and En can be obtained by doubling the ZnS unit cell (Zincblende

or Wurtzite respectively) and replacing four Zn atoms by three group I element (Ag or Cu) and one

group V element (P, As, Sb). This keeps the valence electron count intact (4 divalent Zn vis-à-vis

3 monovalent Ag/Cu and 1 nominally pentavalent P/As/Sb). In our calculations, due to different

space groups (body centered tetragonal for Fa and simple orthorhombic for En), the Fa unit cell

contains one formula unit while En unit cell has two formula units. This difference gives rise to

different Brillouin zones and a difference in the number of bands for a given wave vector k, i.e.

En has twice as many bands as Fa.

In both the structures, each atom is tetrahedrally coordinated to four nearest neighbors, in which
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Figure 4.1: Crystal structure of Famatinite (Fa) and Enargite (En) structure are represented as
double unit cell of the Zinc blend (top panel) and the Wurtzite (bottom panel). Green represents S
(Se, Te), gray represents Zn which are replaced by Copper/Silver (blue) and red represents Zn
which are replaced by Sb (P, As, Bi).
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Table 4.1: Summary of crystal structures of Cu3AB4

B\A P As Sb Bi
S En

d = 2.06exp.[117,
118]

2.11GGA

Fa/En(Tc =
580)[111]
d = 2.20exp.[119]

2.31GGA

Fa
d = 2.38exp.[118]

2.48GGA

Fa
d = 2.65GGA

Se En
d = 2.29 −
2.36exp.[117]

2.29 −
2.32GGA

Fa
d = 2.50GGA

Fa
d = 2.54exp.[120]

2.65GGA

Fa
d = 2.78GGA

Te × ? ? ×

En = Enargite, Fa = Famatinite, × = does not exist, ? = unknown, d = nearest neighbor
distance between atoms A and B (unit Angstrom). GGA indicates that parameters were relaxed
using GGA approximation in the present work.

I and V atoms bond to four VI atoms while VI atoms bond to three I and one V. Table 4.1 presents

a summary of crystal types of I3-V-VI4 compounds and the bond lengths between V and VI. As

the constituent atoms go from smaller to larger radii, the bond lengths increase accordingly. We

will show later that the change in bond lengths and the band gaps are intimately related.

4.3 Electronic structure of Cu3SbSe4: band gap formation and the role of
Sb lone pairs and non-local exchange effect

This section will try to resolve the puzzle about the band gap in Se4 mentioned in section 4.1, by

comparing electronic structure obtained using different approximations including GGA, GGA+U

and HSE06. In order to understand how the structural property affects the electronic structure of

Se4, we also carry out calculations with Cu3SbSe3 (hereinafter, it will be referred to as Se3) which

has one Se less than Se4, and therefore, does not have the tetrahedrally coordinated structure.

Let us first briefly review the experimentally known atomic structures of these two compounds.

Below 700 K Se4 has the Famatinite lattice structure, crystallizing in base centered tetragonal

structure (space group I4̄2m)[111] (Fig. 4.2(left)). At room temperature, Se4 has lattice constants

of a = 5.661 Å and c = 11.280 Å. [120] Each Cu and Sb is coordinated tetrahedrally to Se while
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Figure 4.2: Crystal structure of Cu3SbSe4 (left) and Cu3SbSe3 (right), Cu is blue ball, Sb is
brown, and Se is green.

each Se is coordinated to three Cu atoms and one Sb atom. Unlike Se4, Se3 has a more complicated

orthorhombic structure (space group Pnma) with lattice constants a = 7.986 Å, b = 10.614 Å, and

c = 6.837 Å at room temperature[121] (Fig 4.2(right)). The local coordination and bond lengths in

this compound are very different from those in Se4. Sb has three Se and one Cu nearest neighbors

(nns), whereas Cu has four Se and one Cu nns. The fact that Sb has an asymmetric network

facilitates the existence of a dynamically active 5s2 lone pair of electrons in Se3. This lone pair of

electrons, however, do not actively involve in band gap formation of Se3. This structural distinction

is believed to be the origin of the difference in their physical properties (the physics of band gap

formation and the unusual lattice anharmonicity of Se3[28]) in spite of similar compositions with

identical elements.

4.3.1 GGA calculation and indication of the existence of Sb lone pair electrons

The GGA-PBE band structures for Se4 and Se3 are shown in Fig. 4.3(a) and 4.3(b) (left panels),

respectively. The present GGA calculation for Se3 agrees reasonably well with the recently pub-
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Figure 4.3: Band structures of Cu3SbSe4 (a) and Cu3SbSe3 (b) using different methods. In (a),
the bold (red) line is “BOI”, the doted lines present the HSE band structure using GGA position.
UCu−d = 10 eV was used in GGA+U calculation. The energy is given in absolute scale and the
Fermi energy is denoted by EF .
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lished LDA calculations by Sevik and Çağin (SC) [108], showing that Se3 is a narrow band gap

semiconductor with an indirect band gap. However a larger band gap was found, 0.49 eV com-

pared to 0.24 eV by SC [108]. There are several reasons that may account for this difference. First,

SC used LDA which usually gives smaller lattice constant (a=7.924 Å) compared to our GGA

calculation (a=8.075 Å). Second, SC define the band gap using the DOS which is very sensitive to

the smearing method used in computing the DOS, whereas we obtain the band gap using the band

dispersion.

In contrast to Se3, GGA calculation reveals that Se4 is not a semiconductor, disagreeing with

the experimental measurements. There is a narrow band, with a width of ∼1 eV (marked as bold

and red in Fig. 4.3, near the top of the valence band, which is partially filled. We refer to this band

as the “band of interest” or “BOI”. At the Γ point, “BOI” is degenerate with the top two valence

bands. At the X point, it gets lower and overlaps with several valence bands. By exploring the

physical origin of “BOI” and its sensitivity to different approximations, it reveals that the origin of

the “BOI” is intimately related to the question of Sb valency in Se4.

It is quite easy to understand the semiconducting ground state of Se3 using the simple ionic

picture and the octet rule. In Se3, Cu takes the 1+ ionized state, Se is 2-, and Sb is 3+ (trivalent).

With this configuration, all the octets are filled, making Se3 a semiconductor. Using the similar

argument, but with pentavalent Sb (5+) for Se4, one would come to the same conclusion. However,

GGA band structure does not seem to support this simple picture, since there is a nondegenerate

conduction band (BOI) overlapping with the valence bands, making Cu3SbSe4 a semimetal or a

pseudo-gap system.

In order to see the similarities and the differences between Se4 and Se3 I plot the total density

of states (DOS) for both the compounds (Fig. 4.4(a), top panel) and the projected DOS (PDOS) of

Se4 (Figure 4.4(a), bottom panel). It can be seen that the only significant difference between them

is the "BOI" state near the Fermi level (EF ) in Se4. In both compounds, the Sb 5s bands are quite

narrow (∼0.5 eV) and located approximately at -9.5 eV, while the Sb p bands are above the Fermi

level. This suggests that Sb is nominally 3+ in both the systems. In addition, Cu s is empty. As a
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Figure 4.4: (a) Total DOS of Se4 and Se3 (top panel) and the projected DOS of Se4 (bottom
panel), along with isosurface plot of charge density associated with (b) the lowest band at
-14.5 eV, (c) the Sb-s band at -9.5 eV, and (d) the “BOI”. For clarity, we only show SbSe4
tetrahedron with Sb at the center. The DOS are given in unit of number of states per eV per
formula unit.
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consequence, Se-p is fully filled in Se3 making it a conventional semiconductor. In contrast, for

Se4, Se p bands are two electrons deficient from being completely filled (corresponding to nearly

unoccupied “BOI”), leading to a semi-metal. The DOS of Se4 near the Fermi energy indeed shows

a pseudogap structure (Fig. 4.4 (a) inset).

To further understand the nature of the bands in Se4, we look at the partial charge densities

associated with three narrow bands, one at -14.5 eV, one at -9.5 eV, and the “BOI” as shown in

Figs. 4.4(b), 4.4(c), and 4.4(d), respectively. At -14.5 eV, there is a bonding state of Se s and Sb s

which splits off from the other Se s states by about 1 eV. The state at -9.5 eV is mostly Sb s with

some Se p, resulting in a charge density with asymmetric lobes around Se directed away from Sb

which is different than usual s-p hybridization. The “BOI” band is a mixture of Se p, Sb s and Cu

d.

To explain the origin of the “BOI” a simple scheme is proposed for the mixing of orbitals in Se4

as shown in Fig. 4.5, where it ignores the interaction between Se and its neighboring Cu orbitals

which gives rise to the p-d hybridization with energy in the range of -6 eV to 0. In the final picture

this hybridization plays an important role, particularly when the effect of Coulomb correlation is

included through the parameter U . At -14.5 eV the mixing between Sb 5s and the symmetric

combination of four nearest neighboring Se 4s (ψSe,s = ∑µ=1,4 ϕSeµ ,s) leads to a bonding (B)

combination ψs,B = ϕSb,s + AψSe,s whose energy (-14.6 eV) is about 1 eV lower than the rest

three Se 4s bands. The charge density associated with ψs,B indeed shows the bond charge between

Sb and neighboring Se atoms. The charge density for the state at -9.5 eV looks rather peculiar

with asymmetric lobes around Se atoms (Figure 4.4(c)). It can then be thought of as a bonding

combination of an antibonding (AB) state of ϕSb,s and ψSe,s, i.e. ψs,AB = ϕSb,s−AψSe,s and the

neighboring Se 4p states (ψSe,p). This results in a cancellation of Se 4s and 4p amplitudes in the

region between Sb and Se, leading to the peculiar shape of the charge density, seen in Figure 4.4c.

The corresponding antibonding combination has a finite density in the region between Sb and Se,

leading to the “BOI”. The charge density associated with “BOI” shows a mixing of Sb-5s, Se-4p,

Se-4s and Cu-d characters. Thus it is a rather subtle and complex state. As we will see, its position
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Figure 4.5: Simple bonding-antibonding scheme in Cu3SbSe4 showing energy levels in the
atomic limit (left column) intermediate bonding-antibonding states (middle column) and
bonding-antibonding states in crystal (right column). (Cu d and Sb-p are not shown for
simplicity). The number of states associated with each level is given in the bracket.

and dispersion are quite sensitive to the approximations made in treating the exchange-correlation

potential. However, the general mixing picture discussed above (over energy range ∼10 eV) is

valid for all the approximations used.

4.3.2 Failure of local exchange approximation – Effect of non-local exchange interaction

In order to see if the semiconducting state can be obtained in Se4 within local approximation,

I have tried a recently proposed semi-local model called modified Becke-Johnson (m-BJ) model

which introduces a correction which depends on the kinetic energy density (∑ |∇ψiσ |2) to GGA.

This model has been found to give reasonable gap values in a large number of semiconductors

[52]. Within this model, Se3 is found to be a semiconductor with a gap of about 1 eV compared to

0.49 eV obtained in GGA. However, m-BJ does not open up a gap in Se4.

For Se4 to be a semiconductor, the “BOI” must split off from the rest of the Se p bands. Since
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Figure 4.6: Band structure of Cu3SbSe4 in absolute energy scale for the ratios of exact exchange
α = (a) 0, (b) 0.1, (c) 0.2 and (d) 0.3 with fat band representation of orbital character, showing
that the bands with dominating d characters affected strongly; there is an exchange of band
character between BOI and BOI-3 at a critical value of α , αc ≈ 0.2.

it includes a small admixture of copper d-states the effect of intrasite d-d Coulomb repulsion can

have important effects on the position and hybridization of “BOI”. For this, I carried out GGA+U

[65] calculations with different U values (0≤U ≤20 eV) at the copper site. In Fig. 4.3 (middle

panel) we give the band structure with UCu=10 eV. We find that in Se3, by increasing U from 0 to

10 eV, band gap changes from 0.49 eV to 1.10 eV (similar to what is seen in m-BJ). There is a large

rearrangement of most of the valence bands but the dispersion of the top most valence band and the

lowest conduction band does not change much (which is relevant for thermoelectric properties).

However in Se4, the dispersion of the “BOI” changes drastically and there is a level-reordering in

the band structure near the Fermi level. For example, at the X points, the “BOI” is pushed higher

than the valence bands and there is also a dramatic change in the top four bands near the Fermi

level at the Γ point. However, a gap does not open up unless U is larger than 12 eV. This value is

however unphysically large compared to typical values of U for copper, 5–8 eV.[68, 122–125]

In order to circumvent the problem of using large U within local and semi-local theories, the

effect non-local exchange is studied using HSE06 model (α = 0.25). [59–61] Since Yang et al.
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[109] have already reported the existence of a band gap in Se4 using this model, we wanted to

investigate in detail how non-local exchange affects different bands near the Fermi level and how

the gap opens up. In Se3, HSE06 increases the band gap from 0.49 in GGA to∼1.5 eV as expected

(Fig. 4.3(b) right panel). In Se4, even for this model, if we use the atomic positions optimized using

GGA, there is no gap (presented as dotted lines in Fig. 4.3(a)). After carrying out further internal

relaxations within HSE06, we find that, compared to GGA values, the distances between Sb and

its four Se neighbors decrease by 3.4%, the distances between Cu and its neighboring Se increase

by ∼1% (detail is shown in table 4.2)and a direct gap of 0.26 eV is formed at the Γ point between

“BOI” and the rest of the occupied bands (Fig. 4.3(a) right panel). This value of band gap is in

good agreement with experimental values (0.1–0.4 eV)[106, 110, 111] but smaller than the value

of 0.4 eV found by Yang et al. [109]. We believe that the difference between our result and that

of Yang et al. [109] is due to the difference in the lattice parameters used, and also due to the

estimation of the gap from DOS calculation by these authors, rather than using the actual band

dispersion.

To further understand the band gap formation in Se4 the effect of non-local exchange on the

band structure is studied using different values of α and look not only at the “BOI” but also three

other bands right below it. These three bands are denoted as BOI-i, where i=1–3 (labelled "1", "2"

and "3" in Figure 4.6). Fig. 4.6 shows the band structure of Se4 with different values of α showing

how different bands are affected. For each value of α , internal relaxation was performed.

For α=0 (i.e. GGA), at the Γ point, three bands “BOI”, BOI-1 and BOI-2 are degenerate and

have mainly Cu t2g and Se p characters. When one moves away from the Γ point the character of

“BOI” changes to a mixture of Sb s, Se p and Cu eg, whereas the characters of BOI-1 and BOI-2

remain the same as at the Γ point. The character of BOI-3 is the opposite of that of BOI, i.e. a

mixture of Sb s, Se p, and Cu eg at the Γ point which changes to a combination of Se p and Cu t2g

by moving away from it. This inverted-band feature was discussed by Wang et al. [116] to point

out the nontrivial topological property of Se4 which, as shown later, is not valid when HSE06 is

used. There is a band-crossing at the X point where the energy of the “BOI” is lower than the other
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Table 4.2: Nearest neighbor distances (Å) and band gaps (eV) with different exact exchange
ratios

α Sb-Se Cu1-Se Cu2-Se Eg(eV)
0 2.65 2.44 2.43 –
0.1 2.59 2.46 2.44 –
0.2 2.55 2.47 2.45 0.08
0.3 2.53 2.48 2.45 0.6

three. With increasing α , the bands containing Cu t2g are pushed down faster. There is a removal

of band-crossing at the X point. When α ≥ 0.2, at the Γ point, the “BOI” switches its character

with BOI-3 and remains nearly at the same position while the other bands keep going down. After

the band gap opens up, “BOI” has consistent character throughout the k points sampled, namely,

it is primarily a mixture of Sb 5s, Se 4p and a small admixture of Cu eg. At this point, a gap

formation is observed at the Γ point. Then the “BOI” becomes the lowest conduction band (LCB)

which is predominantly a mixture of Sb 5s and Se 4p. As mentioned above, the band structure

using HSE06 does not support the inverted-band picture suggested by Wang et al. [116] because

of the switching of characters between BOI and BOI-3 when the gap opens up. It is interesting to

note that for α = αc, one sees a linear dispersion (Dirac cone) involving BOI and BOI-3.

Studying the nearest neighbor distances in Se4 as a function of the strength of non-local ex-

change reveal that by increasing α the Sb-Se distance gets shorter while Cu-Se distance gets

longer.(Table 4.2) This suggests that the non-local exchange interaction is stronger between Sb

and Se due to large overlap between Sb 5s and Se 4p.

It is interesting that, in Se4, local and semi-local approximations to the exchange interaction

fail to open up the gap. Furthermore, employing non-local exchange only is not sufficient to open

a gap, one has to relax the bonds. These observations strongly suggest that the nearest neighbor

distances between Se and Sb, and between Se and Cu play an important role in opening the gap.

Thus, it is believed that non-local exchange interaction between the 4s and 4p electrons of Se

and the neighboring Sb 5s and Cu 3d electrons are responsible for the gap formation. The band

structure of Se4 obtained using HSE06 can be directly tested experimentally by (1) probing the
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excitations from occupied Cu d bands to the conduction bands, i.e. by determining the peaks in

the excitation spectrum one can confirm the position of Cu d states which are at about 3–4 eV

below the lowest conduction band; and (2) doing NMR measurement in n-doped sample, which

should show a Knight-shift of s-spin density at the Sb nucleus.

4.3.3 Unphyscal value of U and its meaning

Even though GGA+U fail to predict the semiconducting ground state of Se4 within typical (physi-

cal) range of U value (unlike the case of Fe2VAl discussed in chapter 3), one can get results almost

identical to that obtained in HSE06 within GGA+U (local theory) but using an unphysically large

value of U (∼15 eV) for the Cu-d orbitals. One can see that changing U gives similar effect as

changing α . As seen in Fig. 4.7a, increasing U does two things, it lowers the occupied d bands of

Cu which reduces the hybridization between the Cu d and the rest of the s, p bands (the amount

of d-character in BOI at the Γ point decreases) and eventually for a sufficiently large value of

U (> 10eV), a gap opens up between the BOI and the rest of the occupied valence bands. one

also observes a similar effect in HSE06 calculations as one increases the strength of the non-local

exchange by increasing the value of the mixing parameter α as shown in Fig. 4.6.

One important difference between GGA+U and HSE06 is that the Cu-d bands are pushed down

much further in the former, which can be easily observed in Fig. 4.7. In Fig. 4.7a, as U increases,

the mixing between Cu d and Se p decreases, and as a result, the d character in the conduction

bands near Fermi level gets weaker and eventually disappear at large U . This effect is clearly seen

in Fig. 4.7b which compares band structures obtained using GGA, GGA+U and HSE06. If HSE06

indeed gives correct band structure, one should detect a Cu-d peak ∼ 3 eV bellow the Fermi level

in XPS measurements.

Despite the differences in contributing orbitals, the band structure near the Fermi level are

similar in GGA+U (U=15 eV) and HSE06 (α=0.25). Since physics of materials depend mostly on

the electronic structure in this range, GGA+U (even with unphysical U) calculations can give some

good insight about physical systems of interest without consuming huge computational resources
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band structures. The energy is given in the absolute scale.
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as required by HSE06.

4.4 Bond and band gap in the a class of I3-V-VI4 Famatinite and Enargite
compounds

In section 4.3.1, a simplified model is proposed for the bonding and anti-bonding states between

the states of different atoms as shown in Fig. 4.5. In this picture, s-level of Cu and p-state of group

Sb have highest energy and donate all their electrons to the others. The s-states of the Se can be

treated as filled core states and the s-states of the monovalent cation as empty states to start. The

p-states of Se anions and s-state (lone pairs) of Sb strongly interact and form the bonding and

anti-bonding bands, giving rise to an unoccupied band (the so called "BOI") near the Fermi level.

The position of the BOI is very sensitive to the approximation schemes used in calculations of the

electronic structures and the distance between the Se atom and its four Se neighbors. The lone

pair states of Sb are somewhat schizophrenic, on the one hand they bond with the s-states of the

surrounding Se s-cores but also like to bond with one properly symmetrized combination of the p

states of the surrounding Se4 cluster. This latter bonding is so strong that it splits off one band from

the top of the Se p-bands giving rise to a band gap. The d-bands of Cu are quite narrow and lie

below but near the Fermi level. Their precise role in the band structure depends on the particular

type of atoms forming the compound. The aim in this section is to extract some of the generic

(universal) roles of the V lone pairs and to show that the proposed bonding-antibonding picture for

Cu3SbSe4 is rather universal and applicable to the other tetrahedral compounds containing V-VI4

(SbSe4) clusters.

4.4.1 Atomic energy levels of constituents and some schematic studies.

In analyzing bonding and antibonding nature of different bonds and bands, it is helpful to know

the energies of atomic levels of the constituent atoms. Table 4.3 gives the atomic energies of the s

and p valence electrons for different constituents and for Cu the energy of the d-level is also given.

Positions of these atomic levels are shown in Fig. 4.8. It is clear that Cu-d and S/Se-s levels are
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Table 4.3: Atomic energies of the s and p valence electrons for different constituents and for the
monovalent Cu, the energy of Cu d-level is included

Energy(eV) P As Sb Bi Cu S Se Te
Es -19.22 -18.92 -16.03 -15.19 -7.7 -24.02 -22.86 -19.12
Ep -9.54 -8.98 -8.14 -7.79 – -11.6 -10.68 -9.54
Ed – – – – -20.26 – – –

Figure 4.8: Visualization of the atomic levels of constituent atoms.

the lowest which makes S/Se-s states stable and occupied while Cu-d are near the Fermi level as

usual. The energies of the s and p levels of group V atoms increase in going from P to Bi.

In Se4, the band structure was found to be affected significantly by the bond length between

Sb and Se. Since nearest neighbor distances increase from P to Bi (table 4.1), one should expect

competing effect of the shrinking of bonding-antibonding separation and the narrowing of the

bandwidth in forming the band gaps. This competing relation is more complicated due to the

differences in energies of different atomic levels. Furthermore, the role of d electrons of Cu also

have to be considered. In order to isolate the effect of d electrons, one can replace Cu by an alkali

atom and study the difference in electronic structure.
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4.4.2 Results obtained using local approximations

To understand the crucial role played by the lone pairs (ns2) of the group V atoms in the bonding-

antibonding scheme and whether the underlying mechanism for the formation of band gap pro-

posed in Cu3SbSe4 can be applied to other members of the I3-V-VI4 family, firstly, GGA calcula-

tions were carried out for systems in this family, Cu3(P,As,Sb,Bi)(S,Se)4. Fig. 4.9 shows the band

structures of these compounds, focusing near the Fermi level, in which the BOI are marked as

red thick lines. The GGA calculations show that all the compounds have similar features in their

band structures which resemble the simple picture of the bonding-antibonding scheme discussed

earlier. The difference between En and Fa band structures is that for each k the former has twice

as many number of bands as the latter. As a result En has two BOIs. All the compounds have

Cu-d states occupied right below the Fermi level and the lowest partially unoccupied band is the

BOI. The Cu-d states mix with the Se-p states. These systems like Cu3SbSe4 are semimetals with

pseudogaps near the Fermi energy. For these systems, the Cu-d states mix with the BOI at the Γ

point of the Brillouin zone, giving rise to a three-fold degenerate band, while the next band has

Sb-s and Se-p characters as the BOI. The only exception is Cu3PS4 where there is a band gap (of

∼ 0.5 eV) between BOI and the rest of the bands below, which are occupied; it is predicted to be a

semiconductor even with GGA level of approximation. The reason which makes Cu3PS4 unique

is that it has the shortest nearest neighbor distance as listed in Table 4.1. The overlap between BOI

and valence bands increases in going from P to Bi as well as from S to Se.

As discussed in section 4.3.3, since we are dealing with a large number of systems, and due to

limited computational resources, GGA+U (with effective U=15 eV), instead of HSE06, is a good

start to understand the band structures near the Fermi level. Also GGA+U will be much easier to

implement when one studies the nature of defect states in these compounds because in this case

one will have to use large supercells with number of atoms ∼64 or larger. Of course whenever we

have some questions for a particular system one can go back to HSE06. In Fig. 4.10, GGA+U band

structures of (a) Cu3PS4, (b) Cu3PSe4, (c) Cu3AsS4, (d) Cu3AsSe4, (e) Cu3SbS4, (f) Cu3SbSe4,

(g) Cu3BiS4 and (h) Cu3BiSe4 are given. For most of compounds, a band gap between BOI and
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Figure 4.9: GGA bandstructure of (a) Cu3PS4 (b) Cu3PSe4 (c) Cu3AsS4 (d) Cu3AsSe4 (e)
Cu3SbS4 (f) Cu3SbSe4 (g) Cu3BiS4 and (h) Cu3BiSe4. Where the first two compounds are En
and the rest compounds are Fa.
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Figure 4.10: GGA+U bandstructure of (a) Cu3PS4 (b) Cu3PSe4 (c) Cu3AsS4 (d) Cu3AsSe4 (e)
Cu3SbS4 (f) Cu3SbSe4 (g) Cu3BiS4 and (h) Cu3BiSe4. Where the first two compounds are En
and the rest compounds are Fa.
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Figure 4.11: Relation between band gap and the distance between V and VI elements.

the occupied valence bands opens up except in Bi compounds. For those compounds where band

gap does open up, the highest occupied bands are multiply degenerate, which makes these systems

excellent p-type thermoelectrics, just like Cu3SbSe4 which will be discussed later in this chapter.

We also explored how the band gap and the width of the BOI (now the lowest conduction band)

depends on the U parameter. The larger is the U value, the larger is the band gap, and the narrower

is the BOI.

To see how the band structures depend on the crystal structure, for some of the compounds,

calculations were done for both Fa and En structures. Fig. 4.11 plots the magnitude of the band

gap as a function of average nearest neighbor (nn) distance between V and VI elements for Fa and

En. For comparison data of the other ternary compounds involving lone-pair atoms is also plotted

in Fig. 4.11.
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Table 4.4: Effect of different V element substitutions on the band gap of Cu3SbSe4 with and
without ionic relaxation

Element
w/ relaxation

w/o relaxation
dV−V I(Å) Eg(eV)

P 2.29 0.92 0
As 2.42 0.29 0
Sb 2.56 0.28 0.28
Bi 2.68 0 0

Let us first analyze the trend in I3-V-VI4 compounds. One can see that irrespective of the crystal

structure (En or Fa), the band gap decreases with the increase of the V-VI distance (dV−V I). The

band gap decreases almost linearly with the dV−V I up to d ≈ 2.6Å as represented by the red solid

line in Fig. 4.11. With larger dV−V I , the gap disappears. With other constituents being the same,

compounds with S have smaller dV−V I than those with Se, and thus the band gaps are larger in the

former. However, for the same dV−V I , Se-compounds have larger band gap. For instance, the band

gap of Cu3SbSe4 is ∼0.4 eV while Cu3BiS4 is gapless. One exception is the case of Cu3SbS4 and

Cu3AsSe4. Both of them have dV−V I ≈ 2.4Å but the former has a larger band gap.

To explain these features, one may attempt to look at the atomic energy levels of the con-

stituents (given in table 4.3 and Fig. 4.8). The difference between S and Se is that the atomic levels

of the latter is higher than those of the former, the energy difference for s level is∼1.16 eV and for

p is ∼0.92 eV. These energy differences may account for the band gap difference between S- and

Se-compounds. On the other hand, when going from As to Sb, there is a big jump in the atomic

levels (Fig. 4.8). This change in the atomic levels between As and Sb may compensate for the

difference in the atomic levels between S and Se, making the band gap of Cu3AsSe4 smaller than

that of Cu3SbS4.

To validate the argument above, dV−V I was varied in Cu3SbS4 and Cu3SbSe4 by changing

the lattice parameter, keeping the relative ionic positions intact (no ionic relaxation). The results

are presented in Fig. 4.11 as the purple dotted (Cu3SbS4) and cyan dot-dashed (Cu3SbSe4) curves.

Interestingly, for dV−V I > 2.3Å, two curves are almost identical and follow the general trend which
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we have discussed above; band gap decreases when the dV−V I increases. This result, however,

does not appear to support the relation between atomic levels and band gaps which is argued above

in which one would expect the difference between two curves due to the difference in atomic level

between S and Se. The two curves only differ from each other for small distances where they split

apart by about 1 eV and the trend turns over; the band gap now decreases with decreasing distance.

This change indicates that for short distances, the increasing of the band width overcomes the

splitting of bonding-antibonding band, reducing the band gap. The turning points are different in

two curves, it occurs at larger distance in Se-compound.

In an attempt to resolve this puzzle, the band structures of Cu3XSe4, where X is P, As, Sb or

Bi, are calculated using the same lattice parameter as that of Cu3SbSe4 for two cases: (1) with the

same positions of atoms (hence, the same dV−V I) and (2) with the ionic positions relaxed. The

results are shown in table 4.4. It is interesting to note that, without relaxation, only Sb-compound

has a positive band gap whereas other compounds have overlap between BOI and the valence

bands. However, when the atomic positions are allowed to relax, we go back to the general trend

where the dV−V I increases as one goes from P to Bi, and as a result, the band gap decreases

accordingly. Thus, different constituents affect the local geometry of tetrahedrally coordinated

compounds differently, giving different values of the band gaps.

Similar effects are also observed in other tetrahedrally coordinated compounds such as I-III-

VI2, I2-IV-VI3. The values of the band gaps (within GGA+U , with U=15 eV) for some systems

are shown as green triangle in Fig. 4.11. These materials, in general, have larger band gaps than

the I3-V-VI4 compounds.

To verify that the underlying physics of the band-gap formation is dominated by the interaction

between the lone pairs of V and the p-states of VI and less so by the hybridization with the d-states

of Cu, calculations were done for an artificial compound Na3SbSe4. The structural parameters,

since it is, to the best of my knowledge, not known in the literature, are initially chosen to be

the same as Cu3SbSe4 but then allowed to fully relax. Fig. 4.12 gives the band structures of

Na3SbSe4 obtained using GGA (U=0) and HSE06 calculations. GGA already opens up a band
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Figure 4.12: Band structure of Na3SbSe4 (Fa structure) obtained using (a) GGA and (b) HSE06
with fatband representation showing atomic orbital associated with energy levels.

gap of ∼1.5 eV similar to Cu3PS4 and HSE06 increases the band gap to ∼2.5 eV. The bands are

rather narrow compared to the Cu compounds because the lattice constant for the Na compound

is 6.29 Å compared to 5.73 Å for the Cu compound. Also the distance between Sb and nn Se

decreases from 2.65 Å in the Cu compound to 2.49 Å in the Na compound. This leads to a stronger

interaction between V and VI atoms leading to a larger band gap in Na3SbSe4. Another interesting

feature shows up, clearly due to the absence of d-levels, other bands split off from the Se-p bands

but pushed below. This band has strong Sb-p character indicating a strong mixing between the

Sb-p conduction bands and the Se-p valence bands. A closer examination of the band structure of

the Cu compounds also shows this feature.
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Figure 4.13: HSE06 bandstructure of (a) Cu3PS4 (b) Cu3PSe4 (c) Cu3AsS4 (d) Cu3AsSe4 (e)
Cu3SbS4 (f) Cu3SbSe4 (g) Cu3BiS4 and (h) Cu3BiSe4. Where the first two compounds are En
and the rest compounds are Fa.
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Figure 4.14: Band gap as a functions of V-VI distance for Fa and En: a comparison between
GGA+U and HSE

4.4.3 Effect of non-local exchange

As discussed above, even though GGA+U can give good understanding of the electronic structure

of Fa and En in the vicinity of the Fermi level, the non-local exchange interaction is important, and

it is always a good idea to check GGA+U result using hybrid functional calculation. Especially,

I would like to address the band structure of the two compounds containing Bi, Cu3BiS4 and

Cu3BiSe4. Both GGA (Fig. 4.9g,h) and GGA+U (Fig.4.10g,h) did not give a gap. The HSE band

structures of Fa and En are given in Fig. 4.13. Indeed, the results obtained from HSE calculations

confirm the features of band structures produced by GGA+U . For the two Bi-compounds, there is

no gap opening and both these compounds are semimetals and the band structures are similar to

those obtained from GGA+U .
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Figure 4.15: Theoretical seebeck coefficient (negative means n-type, positive means p-type) of
Se4 using Boltzmann’s equation for different carrier concentration (1018cm−3) together with
experimental data reported by Skoug et al. [106] in the similar range of doping levels. x is the
excessed holes per unit cell, x = 0.01 corresponds to hole concentration of 50×1018 cm−3.

Indeed, figure 4.14 show that the relation between band gap and V-VI bond length from HSE

calculation is almost identical to that which is discussed for GGA+U previously. This agreement,

again, confirms that one can use GGA+U with an effectively chosen U to obtain reasonable results

while using much less computational resources than that needed for HSE calculations.

4.5 Thermopower calculation of Cu3SbSe4

Once the electronic structure is understood, the thermoelectric properties, particularly thermopower,

of materials can be easily obtained using Boltzman’s transport equation. And since the band struc-

tures are similar between members of Fa and En, with the exception of the band gaps, one can

study one system and extrapolate the results to the other. For example, a compound with a larger

band gap than that of the studied one would be expected to have thermopower saturating at a higher

temperature since it requires higher higher energy for the cancellation effect of excited electron-
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hole to occur. By looking at the band structure, one can also deduce that Fa and En would be better

p-type thermoelectrics since there is a three-fold degenerate band with different effective masses

at the top of the valence band. It is indeed the case as will be shown latter on.

We choose to study Se4 compound which is extensively studied in experiment with which we

will compare our calculated results. With the band structure obtained from HSE06 calculations

using α = 0.25 and 21×21×21 k-mesh, we calculate thermopower (S) as a function of temper-

ature (T ) for different electron (n) and hole (p) concentrations in the range 0.5-500 (in the unit of

1018/cm3) (Fig. 4.15).

In the p-doped Se4, at 300 K, S is about 600 µV/K for hole concentration p=0.5 and decreases

to ∼100 for p=150, where concentration is given in unit of 1018cm−3. This behavior agrees with

experiment by Skoug et al. [106] For fixed p, the present calculation shows reasonable agreement

with experiment by Skoug et al. [106] in terms of both the magnitude and the temperature de-

pendence but not with Yang et al. [109] (Figure 4.15). For a similar doping level Yang et al. get

a much lower thermopower than Skoug et al. and our calculated values. This suggests that their

samples have, perhaps, larger hole concentrations due to defects (most likely Se vacancies).

S increases with T up to 700 K for high concentrations (p=50, 100 and 150) which agree with

doping level of x=0.01, 0.02 and 0.03 of Skoug et al. [106]. However, for p≈0.5, which core-

sponds to nominally undoped sample, Skoug et al. [106] found that S peaked around 500 µV/K at

300 K and decreased slowly with T reaching a value of ∼300 µV/K at 500 K, while one finds in

theoretical results a dramatic drop from ∼600 µV/K at 300 K to ∼80 µV/K at 500 K as a result of

electron-hole excitations. This discrepancy might be caused by various reasons. One of them may

be the pinning of the chemical potential around its 300-K value due to the creation or stabilization

of defects. This assumption is consistent with the hole-concentration measurement showing an

increase of p with T . [106]

Comparing Se4 and Se3 (done by Sevik and Çağin [108]), from a cursory look at their band

structures (Figure 4.3), one expects that Se4 should have large S values in the p-doped regime due

to heavy holes and large degeneracy. On the other hand, Se3 should be a better n-type thermo-
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electric because of flatter conduction band with multiple minima. These expectations are indeed

observed in our calculations. For p=10, the maximum values of S are obtained at the same temper-

ature (∼500 K) for both Se4 and Se3. However the value is larger in Se4 (400 µV/K) than in Se3

(300 µV/K). Thus Se4 is a better p-type thermoelectric. In contrast, for n-doping the maximum

|S| in the concentration range 1 < n < 100, is ∼200 µV/K in Se4 whereas it is around 450 µV/K

in Se3, making the later a much better n-type thermoelectric. Unfortunately, to the best of my

knowledge, there are no published thermopower measurements in n-doped Se3 and Se4 to confirm

the calculated results.

4.6 Summary

In this chapter, I have discussed the electronic structures of valence compensated ternary com-

pounds given by the formula I3-V-VI4 which belong to the family of Famatinite and Enargite.

Particular attention is given to Cu3SbSe4 compound for its interesting properties reported experi-

mentally. The calculations reveal that even though one can look at these compounds as derivatives

of Zinc blende or Wurtzite strucutre, which have been extensively studied and are quite well un-

derstood, the electronic properties of Famatinite and Enargite compounds are quite different.

First of all, unlike the monoatomic and binary tetrahedrally bonded compounds, the simple

octet rule cannot be applied to Famatinite and Enargite family, or other diamond-like ternary com-

pounds. It is shown that V ions are primarily in the 3+ valence state, not 5+ as one would infer

from naive valence counting, verifying that there exist lone pair of electrons on the V site. The

effect of the local bonds as well as the role of V lone-pair electrons on the band structure are dis-

cussed. V lone pair electrons strongly interact with the surrounding VI-p orbitals, giving rise to

the special BOI (single band in Famatinite and two bands in Enargite) which play the role of the

lowest conduction band. V lone pairs are directly involved in the band gap formation. On the other

hand, the filled d-shells of Cu contribute indirectly in the band gap, only through changing the

bonding nature and bond length between V and VI atoms.

By comparing the electronic structure of a large number of ternary I3-V-VI4 systems using dif-
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ferent methods (local and non-local), we bring out the importance of the non-local exchange in gap

opening. My calculations, however, also show that GGA+U (with an appropriately chosen value of

U , about 15 eV) can reproduce extremely well the electronic structure near the gap. This method

is still very useful in surveying a wide range of materials, giving useful insight to understand the

physics of materials.

Results also suggests that one can easily tune the band gap to a desirable value by choosing

proper constituent or doping elements.

Famatinite and Enargite are expected to be better p-type thermoelectrics due to large degener-

acy of the valence bands. Study of Cu3SbSe4 shows that the band gap and thermopower values in

p-doped Cu3SbSe4 agree very well with experiment,[106, 110, 111] showing that Se4 should be a

better p-type thermoelectric thermoelectric.

This work gives a foundation for further study of tetrahedrally bonded ternary materials, for

example to investigate the electronic structure of defects in these compounds.
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CHAPTER 5

HALF-HEUSLER–HEUSLER COMPOSITE

5.1 Introduction

Half-Heusler and Heusler compounds have been of great interest for several decades for thermo-

electric, magnetic, half-metallic and many other interesting properties. Development in the study

of this family of compounds can be found in several review articles,[85, 126–133] among which

Graf et al. [85] gave a quite comprehensive overview of the field. An interesting example of

such compounds is Zr-Ni-Sn, a promising thermoelectric material.[134–150] They can go from

semiconducting half-Heusler (HH)[139] limit, ZrNiSn with cubic MgAgAs structure, to metallic

Heusler limit (some times referred to as full-Heusler, FH), ZrNi2Sn[139] with cubic MCu2Al-type

structure, where M=Zr,Ti,Hf. Because of their excellent thermoelectric properties, ZrNiSn and

related HH systems, TiNiSn and HfNiSn, and their solid solutions have attracted considerable ex-

perimental and theoretical interest over last several years.[23, 140, 142, 143, 148–166] The idea

of going from HH to FH limit in other systems has also been tried. In the Ti-Co-Sn system for

example these two phases represent the edge members of the solid solution TiCo2−xSn , where

the electrical conductivity changes from semiconducting to metallic as one decreases x from 1 to

0.[167]

Recently Makongo et al. [23, 157] have come up with an exciting observation, which shows

that large enhancements of both thermopower and electrical conductivity (hence the powerfactor

PF) of half-Heusler (HH) phases of (Zr,Hf)NiSn can be achieved at high temperatures through in-

sertion of nanometer scale FH coherent inclusions within the HH matrix, caused by adding a small

concentration of extra Ni atoms. They denoted these systems as HH(1− x)/FH(x) nanocomposites

which can be alternatively characterized as ZrNi1+xSn, where 0 < x < 1. As shown in Fig. 5.1,

in Bi-doped HH(0.94)-HF(0.06) they found a PF of 3.3 mW/mK2 compared to 1.6 mW/mk2 for
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Figure 5.1: (Source: Makongo et al. [23]) Improvement of powerfactor (PF) (a), and TEM image
showing FH-nano-inclusions in HH(b)

simply Bi-Doped HH around 700 K. Chai and Kimura [160] also saw a large density of nanosized

FH precipitates within HF matrix in slightly Ni rich TiNiSn alloys and found an increase in the

power factor at high temperatures (S2σ ∼ 3.5 mW/mK2 at 700 K compared to ∼2.5 mW/mK2 at

the same temperature for the parent compound TiNiSn[153]). They ascribed an energy filtering

mechanism proposed by Faleev and Léonard [22] to explain this enhancement. The basic idea

behind this filtering mechanism is to reduce the commonly observed electron-hole cancellation ef-

fect in thermopower by selectively allowing only one type of carrier to transport energy and charge.

There is however no direct evidence of such energy filtering in the presence of FH nano particles;
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Figure 5.2: (Source: Romaka et al. [149]) (a) Phase diagram of HH-FH mixture, (b) Comparison
between measured susceptibility and density of state calculated using Korringa-Kohn-Rostocker
method with coherent potential approximation and local density functional
(KKR-CPALDA)[168].

more careful studies of electronic structure are needed to support this idea.

More recently, Romaka et al. [149] have carried out a thorough investigation of structural

phase transitions in half-Heusler - Heusler stannides (Zr,Hf)Ni1+xSn and have shown how differ-

ent physical properties change as one goes from HH to FH limit. They found that in ZrNi1+xSn,
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(a) (b)

Figure 5.3: Crystal structure of (a) Half-Heusler (HH) and (b) Full-Heusler (FH) compounds,
where Zr (orange circles) and Sn atoms (gray circles) form a NaCl sub-lattice, inside which there
are 8 small cubes. HH is formed by filling every other cube with Ni atoms (blue circles), while
FH is formed by filling all the cubes. The empty-cube sites (quasi-particle of Ni-vacancy) in HH
is presented by a dashed-line circle.

macroscopic phase separation of HH and FH phases takes place in the region 0.3 ≤ x ≤ 0.7 (see

Fig. 5.2a). Their average XRD measurements matched very well to the cubic MgAgAs structure

for x ≤ 0.3 and to the cubic MCu2Al-type structure for x ≥ 0.7. However the presence or ab-

sence of nanostructures of one phase in the matrix of the other phase in these concentration ranges

(x ≤ 0.3 or x ≥ 0.7) could not be established. One intersting result, relevant to this theis, is that

for 0 < x < 0.1, Romaka et al. [149] found and increase in the density of states (inferred from

susceptibility measurement – Fig. 5.2b) suggesting that new states appear at the Fermi-energy with

increasing x. They also reported a theoretical DOS, calculated using Korringa-Kohn-Rostocker

method with coherent potential approximation and local density functional (KKR-CPALDA)[168],

in good agreement with the susceptibility measurement. However, one has to note that KKR-CPA

method considers the excess atoms to be distributed randomly in the host matrix, thus, it cannot

address the effect of nanostructure on the electronic structure.

One can visualize the structure of these HH and FH compounds as follows (Fig. 5.3). One

starts from a NaCl-type lattice of (Zr,Hf)Sn consisting of two interpenetrating FCC sub-lattices.

Inside the large cubic unit cell of length a, there are 8 small cubes of length a/2. In (Zr,Hf)NiSn,

the centers of 4 out of these 8 cubes are occupied by Ni atoms so that each (Zr,Hf) or Sn is
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tetrahedrally bonded to 4 Ni atoms. The other 4 small cube centers are empty. In (Zr,Hf)Ni2Sn all

the 8 small cube centers are occupied by Ni atoms. Thus one can tune from HH to FH or vice versa

by varying the amount of Ni. Due to the additional Ni, FH compounds have an additional inversion

symmetry compared to HH. The lack of mutual solubility of the HH and FH phases with similar

crystal structures (as seen in Fig. 5.3) is quite remarkable in view of the fact that one can start from

one structure and either add or remove Ni atoms to reach the other structure without changing the

basic structure of the ZrSn matrix. Note that the lattice constants are however slightly different

between HH and FH (6.15 Å and 6.32 Å respectively).

There are several fundamental questions that arise in the study of these mixed HH-FH systems,

for example in ZrNi1+xSn, such as: what is the nature of the phase diagram in the ZrNi1+xSn in

the T vs x plane? what are the short and long range structural features and how they change with

x? what are the electronic and lattice properties of the mixed system? There are several recent

works on related issues: Romaka et al. [149] have addressed the electronic structure issue using

LDA-single site CPA approximation[168]; Kirievsky et al. [164] have studied the thermodynamics

of Ni-rich TiNiSn compound, i.e. the phase separation and energetics of antisite defects in the

simple cubic supercell of the relevant system. However, as pointed out earlier, CPA approximation

used by Romaka et al. [149] cannot address the clustering of nanostructure and the simple cubic

supercell used by Kirievsky et al. [164] in their electronic structure calculations is too small. I

will discuss some of their results later in this thesis. In this work I address two of these basic

issues. First, do the additional Ni atoms (or Ni vacancies) go randomly to the empty (or occupied)

cube sites or form some sort of local ZrNi2Sn (or ZrNiSn) nanoclusters? Second, what is the

effect of these nanoclusters, if they form, on the electronic structure and vice-versa. In order to

address these questions I have carried out electronic structure calculations using ab-initio density

functional methods and quasi-periodic model[169] to describe the nanostructures.

The structure of this chapter is as follows. In Sec. 5.2, I discuss briefly some of the details

of electronic structure calculations and the model to describe the nanostructures, beyond which

already discussed in chapter 2. In Sec. 5.3, I discuss the energetics of nanoclustering and the
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electronic structure, focusing on the nature of the gap states as one adds Ni atoms to ZrNiSn or the

modification in the density of states near the Fermi energy as one adds Ni-vacancies to ZrNi2Sn.

Finally, in Sec. 5.4, I present a summary of my main findings and discuss further work in this area.

5.2 Methods of electronic structure calculation and modeling nanostruc-
tures

It is well known that LDA/GGA calculations usually underestimate the band gaps in semiconduc-

tors (as discussed in Chapter 2 as well as seen in Fe2VAl (Chapter 3) and Cu3SbSe4 (Chapter 4)),

however, the problem is opposite in the case of MNiSn (M=Ti, Zr, Fh)[139, 170] where the LDA

calculations predicted a band gap of ∼ 0.5 eV, two times larger than that of found from resistivity

measurements[135] (Eg = 0.12,0.18 and 0.22 for M=Ti, Zr and Fh respectively). I have tested

the case of ZrNiSn with approximations on higher rung of DFT (Fig. 2.2), i.e. hybrid functional

HSE06, and have found the problem worsen (Eg=0.58 eV). Thus, in this chapter all total energy

and electronic structure calculations were done using density functional theory (DFT) within gen-

eralized gradient approximation (GGA). For the exchange-correlation potential we used the model

suggested by Perdew, Burke, and Ernzerhof (PBE).[47] We employed projector-augmented wave

(PAW) method[75, 76] as implemented in the VASP code.[77–79] with a plane-wave energy cutoff

of 400 eV and an energy convergence criterion (between two successive self-consistent cycles) of

10−4 eV (total energy/unit cell).

To study the evolution of HH-HF we have done calculations for ZrNi1+xSn, where x = 0−1,

using the supercell method.[169] At x = 0 and x = 1 we have pure HH and FH compounds respec-

tively. The supercell method has been used by Kirievsky et al. [164] for TiNi1+ xSn, however,

with simple cubic 1×1×1 cell (maximum 8 Ni atoms per unitcell) which gives a very large con-

centration of defects. They focused primarily on the thermodynamics of the HH-HF mixture and

the quasi-binary-system phase diagram. Here, I use a larger unitcell, 2× 2× 2 (maximum 64 Ni

atoms per unitcell) to reduce the interaction between defects in neighboring cells and focus on

the formation of nanostructure of FH (HH) in HH (FH). I study the dilute limit of the defect (i)
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starting from the HH structure and then adding more Ni atoms to create the FH inclusion and (ii)

starting from the FH structure and then removing some Ni atoms to create HH inclusion. I use the

notation HH+nNi (FH-nNi) to refer to a 2×2×2 super cell of HH with n additional Ni (FH with

n deficient Ni). For the HH end, to study how the FH phase forms, I tried all possible configura-

tions of excess Ni-pair and looked for the lowest-energy (the most favorable) configuration; once

the preferred pair-configuration was found, I added the third Ni and, again, looked for the lowest

energy configuration. An analogous procedure was applied for the FH end with Ni vacancies.

In all the calculations, structures were allowed to relax. The lattice parameters of HH and FH

are found to be 6.15 Å and 6.321 Å respectively. The defective structures, then, were derived

from the host structures and ionic positions were allowed to relax. The charge densities and total

energies were calculated self-consistently with an 8× 8× 8 Monkhorst-Pack[171] k-grid. The

electronic density of states (DOS) was then obtained using a denser k-mesh (12×12×12), from

the self-consistent charge density and wavefunction.

In studying properties of defects in a material, it is useful to calculate the formation energy of

the defect. There are extensive theoretical studies which have been dedicated to this problem. Here

I follow the work of Zhang et al. [172]. Applying to HH-FH, the formation energy of a defect can

be calculated by

∆H f (X) = ∆E f (X)+nµNi, (5.1)

where

∆E f (X) = E(X)−E(0)+nENi. (5.2)

In these equations, E(X) and E(0) are the ground state energies of a system with defect X and

that of the host system respectively, n is the number of Ni added (n < 0) or removed (n > 0) from

the host-system (HH or FH), ENi is the ground state energy of Ni solid, and µNi is the chemical

potential of Ni. µNi is usually considered as a parameter which can vary from Ni-rich to Ni-poor

environment. The limit of µ can be defined from thermodynamic equilibrium conditions which

was carefully discussed by Zhang et al. [172].
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Table 5.1: Formation energies (eV) of HH-FH systems (for the lowest energy configurations)

HH+1Ni HH+2Ni HH+3Ni HH+4Ni FH-1Ni FH-2Ni

∆E f (X) 0.423 0.758 1.083 1.372 0.417 0.789

5.3 Results and Discussions

5.3.1 Formation energy and energetics of clustering

5.3.1.1 HH with excess Ni

Table 5.1 gives the energies needed to add (or remove) Ni to (from) HH or FH. For simplicity, only

µ = 0 is considered because the differences (not the absolute value) in energies are the studied. All

the energies are positive, which means it costs energy whenever a Ni is added or removed from HH

or HF systems. The energy required to add one Ni to HH host (0.423 eV) is slightly higher than

that needed to remove one Ni from FH matrix (0.417 eV). When the second Ni is added to HH,

the needed energy is smaller than that for the first one (0.758−0.423 = 0.335 eV), and so on for

the third Ni. The similarity is seen at the FH end. When more than one Ni is added to HH or taken

out of FH, the minimum energy configuration was found by varying the positions of the extra Ni

atoms or vacancies.

With the first excess Ni’s (Ni1) is fixed, when the second Ni (Ni2 is added to the HH matrix,

there are several possible empty cube sites that it can occupy. In Figure 5.4(left column) we plot

the ground state energy of HH+2Ni as a function of the distance between the added Ni-pair (Ni1

and Ni2). It is clear that two Ni are attracted, since the energy is lowest at the smallest distance

(4.22Å). The structure of the preferred positions of Ni is shown in figure 5.4, right column. The

ground state energy increases as the distance increases and then saturates at large distances, when

the distribution of excess Ni is more homogeneous over the space. The energy difference between

the lowest- and the highest-energy states is about 0.1 eV.

The saturation of the energy at large distance is due to the finite size of the periodic super-
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Figure 5.4: Left column presents energetics of two extra Ni in HH: energy vs. distance. Right
column presents the preferable configuration of the excess Ni (orange circle) (only Ni matrix
(blue circles) is shown).

cell. Even with a 2× 2× 2 unit cell, the size is only 12.3Å×12.3Å×12.3Å, there is an artificial

periodicity of the defects. At large distance, the interaction between Ni2 (Ni1) with Ni1 (Ni2) in

the neighboring unit cells compensates the interaction between those in the same unit cell. For a

bigger unit cell, one should expect the saturation at a larger distance.

When the third Ni (Ni3) is added to HH, the problem is a little bit more complicated. For

convenience, we determine the position of Ni3 using the polar coordination (r,θ ) with respect to

the Ni1-Ni2, where the origin is at Ni1 and the x axis is along the Ni1-Ni2 bond.

Fig. 5.5(left column) plots the relative positions of Ni3 in the Ni1-Ni2 reference with the ground

state energy presented in color code varying from dark purple (low value) to yellow (high value).

Table 5.2: Ground state energy as a function of Ni3’s relative position with respect to Ni1-Ni2

r(Å) 4.349 6.151 7.533 8.699 10.654

θ (◦) 60 90 120 180 90 73.22 90 120 90

E (eV) -654.14 -654.10 -654.08 -654.06 -654.03 -654.03 -653.99 -653.99 -654.00
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Figure 5.5: Left column presents energetics of three extra Ni in HH: position of the third Ni
(Ni3) is given in polar coordinate, with respect to Ni1-Ni2, whose positions were previously
determined by studying the energetics of a pair of excess Ni (FIG. 5.4). Ground state energy of
each configuration is represented by color code from low (purple) to high (yellow) energy. Right
column shows the preferred configuration of the Ni3 (only Ni matrix (blue circle) is shown). The
excess Ni are orange circles.

The value of the ground state energy of each configuration is given in table 5.2. The results confirm

the attractive interaction between 3 excess Ni atoms, similar to which found for a pair of excess Ni.

For the same r, the energy, in general, increases with increasing θ . For instance, for the smallest

distance, r = 4.349, the ground state energy is −654.14 eV at θ = 60◦, whereas it is −654.06 eV

at θ = 180◦. Similarly, for the same θ the ground state energy increases with increasing distance.

The maximum energy difference between two configurations is about 0.14 eV.

Similar to the case of Ni-pair, with 3 excess Ni, the ground state energy also saturates at large

distance, and for the same reason (periodic supercell).

The lowest ground state is found for Ni3 at (4.34Å, 60◦), where Ni3 is closest to both Ni1 and

Ni2; the crystal structure of this configuration is given in Fig. 5.5(right column). Excess Ni atoms

tend to come close to each other and form a nano-cluster of FH in the HH matrix.
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Figure 5.6: Conventional notations for Ni-sites: “f” for Ni at (1/4,1/4,1/4) and equivalent atoms
(dark blue), “h” for Ni at (3/4,3/4,3/4) and equivalent atoms (bright yellow).

The results strongly support the HH-FH phase separation observed in experiments[23, 149,

158–160, 163] In experiment, however, the phase separation is only observed at a high concen-

trations of Ni, for example, Romaka et al. [149] showed that the two macroscopic phases of

ZrNi1+xSn can be seen only within the range of 0.30 < x < 0.65 (Fig. 5.2a). The present re-

sults, on the other hand, predict that the nanostructures of FH form in a HH matrix, at least at

low temperature, even at small concentrations of excess Ni(x∼ 0.1, or 3 excess Ni in 32 host Ni),

thereby supporting the ideas put forward by Makongo et al. [23]

5.3.1.2 FH with deficient Ni

At the FH end, one should note that there are two different Ni-sites: “h”-site (h) at (1/4,1/4,1/4) and

its equivalent, which is occupied by Ni in HH, and “f”-site (f) at (3/4,3/4,3/4) and its equivalent,

which is empty site in HH (Fig. 5.6). When removing Ni, the Ni-vacancy can be located at either

of these two sites.

If one Ni is removed, due to symmetry, two sites are equivalent. The energy cost for removing

1 Ni out of 2× 2× 2 unit cell is ∼ 0.417 eV. Similar to the case of HH+nNi, the energy cost to

remove the second Ni (to add the second vacancy) is smaller than that needed to remove only one

Ni (Table 5.1). When 2 Ni are removed, for the convenience, the first vacancy (V1) is assumed

to be at a f site, the second one can be at either h or f site. We denote the pair of vacancies by
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Figure 5.7: The top figure shows energetics of FH with two Ni-vacant sites (white circles); the
bottom shows structures of the three most preferable configurations, which have ground state
energies close to each other: (a) f-f1, (b) f-f2, and (c) f-h4. Only Ni matrix (blue circles) is shown.

109



the name of the sites which they occupy,i.e. f-f and f-h, note that f-f and h-h are equivalent. In

Fig. 5.7(a), we plot the ground state energies as a function of the distance between 2 Ni-vacancies,

considering f-f and f-h separately. Fig. 5.7(a) shows that f-f and f-h are energetically different.

For the f-h case, the interaction between two vacancies is repulsive,i.e. the total energy is the

lowest for the largest distance. The relation between energy and distance is almost linear. The

difference between the lowest and the highest energies is about ∼ 0.22 eV. For the f-f case, in

contrast, the interaction between the two vacancies is, in general, attractive, the smaller is the

distance, the lower is the energy. There is, however, a competing effect between repulsion and

attraction at small distance, which makes the ground state energy higher at the smallest distance,

4.47Å (f-f1), than at the larger one, 6.32Å (f-f2) (-805.00 eV for f-f1 compared to -805.055 eV for

f-f2, as shown in Fig. 5.7(a)). The energy saturates at large f-f distance.

The structure of f-f2 (Fig. 5.7(c)) has 2 Ni-vacancies distributing evenly at the every other site

along lattice axis (say x), forming a quasi one dimensional chain. This structure is similar to the

configuration (i) in reference [164], except that they put one vacancy in 1×1×1 simple cubic super

cell, thus it forms a 3-dimensional ordered structure. In their work, Kirievsky et al. [164] calculated

electronic structures of 11 configurations with different fraction of Ni over the eight cubic site in

TiSn matrix and studied their energetics using a quasi binary model (TiNi2Sn)c(TiSn)1−c, where

the formation energy is given by

∆U = Emixture
tot − (c ·ETiNi2Sn

tot +(1− c) ·ETiSn
tot ), (5.3)

where Etot is the total energy of corresponding system. They found that the configuration (i),

c = 0.875, had negative free-energy of formation whereas most of the other configurations (except

c = 0.5 which corresponds to Half-Heusler phase TiNiSn) have positive free-energy of formation.

One should note that the definition of formation energy use by in reference [164] is different from

the definition used in this thesis. Furthermore, they have used a 1× 1× 1 supercell where the

periodic cell constraints are much significant. Thus, it is not practical to directly compare values

of formation energies between two works.
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Figure 5.8: Band structures of (a) HH and (b) FH in the Brillouin zone (BZ) of 2×2×2 cubic
supercell; and (c) the density of states (DOS) within energy range [-2,2]; in the onset, we zoom in
the range [-1,1] to show the fundamental difference between HH and FH: the former is metal
whereas the latter is semiconductor, with a band gap ∼ 0.5 eV.

It is interesting that the ground state energy of f-f2 (the lowest energy among f-f) is about

∼ 0.012 eV lower than that of f-h4 (the lowest among f-h) (see Fig. 5.7). Thus, f-f2 and f-h4 can

coexist at x = 0.9375. This suggest a frustration of excess Ni-vacancies in the FH matrix.

To summarize, supercell calculations show that the energetics of FH-nNi is different from that

of HH+nNi. In the former case, the Ni-vacancy tend to distribute almost evenly in spacealthough

there is some suggestion for vacancy ordering. Thus, the nanostructure of the HH phase is not

formed in FH at low vacancy concentrations, whereas in the latter case, excess Ni tend to form

nano-clusters of FH in HH.
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5.3.2 Electronic structure

Before we discuss the electronic structure of HH-FH mixture, let us first review the electronic struc-

tures of the end compounds ZrNiSn and ZrNi2Sn. Electronic structures of ZrNiSn and ZrNi2Sn are

well understood and were extensively studied both theoretically[139, 170] and experimentally[135,

136]. ZrNiSn is a semiconductor with an indirect band gap of ∼ 0.5 eV[139, 170, 173] between Γ

and X points in the FCC Brillouin Zone (BZ). The band gap is formed from the hybridization of

Zr-d and Sn-p orbitals. The band gap formation was carefully discussed by Larson et al. [173]. Top

of the valence bands are three-fold degenerate, one of which has a light effective mass while the

others have heavier ones. On the other hand, bottom of the conduction bands is a non-degenerate

band with anisotopic effective mass. All Ni-d and Sn-s bands are occupied, where the latter is

located at about -15 eV below the valence band maximum. ZrNi2Sn, on the other hand, is a good

metal.

Fig. 5.8 gives the band structures of ZrNiSn (Fig. 5.8a) and ZrNi2Sn (Fig. 5.8b) in the Brillouin

zone (BZ) of 2×2×2 simple-cubic supercell, and the corresponding density of state (DOS)(Fig. 5.8c).

Going from a fcc primitive unit cell to 2×2×2 simple-cubic supercell, due to band folding – since

the BZ is smaller in the larger cell – the band structure of ZrNiSn shows a direct (instead of indirect

as in fcc) band gap or ∼ 0.5 at the Γ point, in good agreement with other works[139, 170, 173].

The band structure of both ZrNiSn and ZrNi2Sn appear more complicated in the 2×2×2 super-

cell since we have more bands in the first BZ. Fig. 5.8c shows comparison of the DOS of the 2

compounds, near the Fermi level. The inset shows the DOS close to the Fermi energy.

When extra Ni (Ni1) is introduced into HH matrix (or removed from FH), there is a change

in the electronic structure and a redistribution of the charge density with respect to the host sys-

tem (HH or FH). To analyze this charge redistribution, we calculate the charge-density difference

(charge-difference) ∆ρ = ρX (r)−ρ0(r), where ρX (r) and ρ0(r) are the charge densities of the

defective system and corresponding host system. Fig. 5.9 depicts the charge difference contour

on the (-110) plane for HH+1Ni (Fig. (5.9a) and FH-1Ni (Fig. (5.9b), where blue indicates charge

depletion and red indicates charge accumulation.
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(a) (b)

Figure 5.9: Charge difference between (a) HH+1Ni and (b) FH-1Ni and their parent compounds
(HH and HF), where blue color indicates charge depletion whereas red color indicates charge
accumulation. The figure show the contour plot on (-110) plane. Charge difference is defined as
ρX (r)−ρ0(r), where ρX (r), and ρ0(r) are charge density of defective and pure system
respectively. Host Ni are blue circles, excess Ni is red circle, Zr are brown circles, Sn are gray
circles.

For HH+1Ni, the additional Ni introduces more electrons to the HH system, these electrons

localize around Ni1 (Fig. 5.9a). The additional electrons at the excess Ni site cause the rear-

rangements of charge in the neighboring space. However, this rearrangement occurs mostly at the

Ni-sites. Electrons tend to move further away from Ni1. In Fig. 5.9a one can clearly see the blue

lobes at the Ni-sites are directed towards Ni1, whereas the red lobes at the same sites are directed

away from Ni1. In Fig. 5.9 one sees that the Ni atoms of the host matrix (HH) connect to N1 in

directly through Zr or Sn, let us call these connections Zr- and Sn-channels. With those channels

defined, one can realize that the charge rearrangements are not the same on all Ni, they are larger on

Ni which interacts with the Ni1 through only one channel, either Sn-channel or Zr-channel, where

Ni-Zr(Sn)-Ni1 form a straight line. The charge rearrangements on other Ni-sites, which connect

to Ni1 through two channels of the same type (either two Sn-channels or two Zr-channels), are

smaller even though they may be at shorter distances with respect to Ni1.

A similar picture is also seen in HF-1Ni (Fig. 5.9b), except that the removal of Ni (V1) takes

away electrons. A subtle difference between FH-1Ni and HH+1Ni is that there is an interesting

charge rearrangement on Ni indicated by arrows in Fig. 5.9b (hereafter it is called Nix). Nix indi-

rectly connect to V1 through two channels, one Zr-channel and one Sn-channel, the Nix-Sn(Zr)-V1
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Figure 5.10: Evolution of electronic structure of HH with excess Ni: band structures (a) HH+1Ni,
(b) HH+2Ni, and (c) HH+3Ni, and (d) density of states of HH with 1, 2, 3 and 4 additional Ni.

angle is about∼ 110◦. The charge rearrangement on Nix site does not occur on the Ni-V1 direction

but on the Ni-Sn direction, as shown in Fig. 5.9b. The blue lobe around Nix is closer to V1 than

the red lobe, opposite to those around the other Ni atoms with linear link Ni-Sn(Zr)-V1, whose red

lobes are closer to V1. This difference in charge rearrangement is most likely the reason for the

difference in energetics of FH-nNi from HH+nNi and is a reflection of different local bonding in

FH and HH systems.

In Fig. 5.10, we give the band structures and DOS of HH+nNi systems, note that hereafter we

consider only the lowest-energy state for each n. As one can see in Fig. 5.10(a,b,c), adding Ni

to HH matrix has two effects: splitting of the host HH bands due to impurity induced symmetry

lowering, and introducing defect states inside the gap. There is still some local residual symmetry

which preserve the degeneracy of the valence band maximum at the Γ point. The splitting of the

HH conduction bands reduce the band gap from ∼ 0.5 eV to ∼0.37 eV. The dispersion of the host
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Figure 5.11: The isosurface of the charge density associated with the in-gap defect states in
HH+1Ni. Host Ni are blue circles, excess Ni is the red circle, Zr are brown circles, Sn are gray
circles.

bands near the gap changes slightly. There are two defect states per additional Ni located just

below the HH conduction band edge. Projected density of states for HH+nNi reveal that the defect

states in the gap are associated primarily with Ni-eg orbitals. When one excess Ni is added to the

HH matrix, it brings 10 more electrons which occupy 5 Ni1-d bands, 3 t2g and 2 eg. All the Ni1-d

bands are below the Fermi level, the t2g bands are located at ∼−1.5 eV, whereas the eg bands are

located right below the HH conduction bands, giving rise to the in-gap states. The defect states in

the gap are localized, its bandwidth is ∼ 0.14 eV. The charge density associated with the in-gap

defect states is given in Fig. 5.11, clearly showing the Ni-eg character. The dispersion of the defect

bands is small in x, y, or z directions, but larger in other directions, such as Γ-M (110), Γ-R (111),

which are directions of Ni1-Zr(Sn) bonds.

When more Ni are added to the HH matrix, more impurity bands are introduced into the gap

region, and eventually fill up the gap, converting the semiconducting state of HH into metallic

state of FH. Comparing the DOS of HH+nNi (Fig. 5.10d), one can clearly see the evolution of

the electronic structure. With one extra Ni, DOS starts to show a peak right below the conduction

bands. As the number of excess Ni increases the peak gets higher and shifts downwards. These
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Figure 5.12: Evolution of electronic structure of FH with deficient Ni: band structures (a) FH, (b)
FH-1Ni, and (c) FH-2Ni , and density of states of those systems. The inset show the DOS,
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localized defect states are occupied and act as donor-states which can inject carriers into the con-

duction bands and the system behaves like a n-type semiconductor. These states can affect the

thermoelectric properties of HH-FH composite systems.

The effect of Ni-vacancy in FH is less subtle than that of Ni excess in HH. Fig. 5.12 gives

the electronic structure of FH-nNi. The dominant effect of Ni-vacancy on the band structure of

FH is the band splitting, which makes it appears to be more complicated. One can see some

extra bands appearing around ∼-1 eV. These extra bands give rise to a small peak in the DOS at

∼-1 eV (Fig. 5.12d inset). These effects, however, just introduce small perturbation in the DOS

(figure 5.12d), which do not change the metallic properties of FH, at least for small concentration

of Ni-vacancy.
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5.4 Summary and Conclusion

To summarize this chapter, I have discussed the energetics and electronic structures of the HH-

FH mixture, ZrNi1+xSn. The evolution from HH to FH and from FH to HH was studied using a

2×2×2 supercell model. The focus is on the small concentration (< 10%) limit of defects (excess

Ni in HH and Ni-vacancy in FH).

The calculations predict an attractive interaction between excess Ni atoms in the HH matrix,

i.e. the excess Ni atoms tend to come close to each other and form nano-clusters within the HH

matrix. Vacancies in the FH matrix, on the other hand, are found to possibly occupy either of

two crystallographic sites, h(1/4,1/4,1/4) or f(3/4,3/4,3/4), and their energetics are distinctively

different from that of excess Ni in the HH matrix. If two Ni-vacancies in FH occupy the equivalent

sites(either type h or f), the interaction between them is attractive at the distance larger or equal

6.32 Å and repulsive at smaller distance. If two Ni-vacancies in FH occupy the sites of different

types (one at h-site and another at f-site), then the interaction is repulsive, the two vacancies tend

to stay away from each other. Thus, at low concentration of vacancies, the nano-structure of HH

in FH matrix is energetically not preferred.

Analysis of the change charge density shows that excess Ni (or Ni-vacancy) in HH (FH) causes

large charge rearrangement in the host matrix. The charge rearrangement occurs mostly on Ni-

sites and is larger at Ni sites which are connected to the excess Ni (Ni-vacancy) indirectly through

one channel mediated by either a Zr or a Sn atom. The charge rearrangement is modest at the Ni-

sites which are connected to the defect site through channels mediated by two atoms of the same

type. FH with one Ni-vacancy has an interesting charge rearrangement at the Ni-sites connected

to the vacancy through two channels mediated by one Zr and one Sn. This charge rearrangement

is in different directions compared to that at other Ni-sites and is most likely responsible for the

difference in energetics between FH-nNi and HH+nNi.

While the effect of Ni-vacancies in FH on the electronic structure is modest, the excess Ni

in HH changes the HH’s electronic structure dramatically. The excess Ni in HH introduces new

impurity states in the gap of HH band structure, giving rise to finite density of states below the
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conduction bands. Due to the in-gap impurity states, HH with excess Ni can behave like a n-type

semiconductor.

The present study of ZrNi1+xSn agrees well with experimental and other theoretical studies

on crystal and electronic structures of this mixture. The calculated results however cannot confirm

or deny the energy filtering effect of the FH nano-inclusion in the HH matrix, which has been

suggested by several authors to be the reason for the improvement in the material’s thermoelectric

properties. In order to understand that problem, larger-supercell calculations and transport studies

are needed.
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CHAPTER 6

CONCLUSION AND OUTLOOK

Thermoelectrics are an important part in the solution of the energy problems. They can contribute

to both improving energy conversion efficiency (saving waste heat), and power generation. In

the last several years the field of thermoelectrics has developed quickly; however, there are still

emerging needs of new discoveries in material for thermoelectric applications, including finding

new compounds and finding new ways of improving the existing ones.

The job of increasing the figure of merit ZT of thermoelectrics is challenging since there is

a competing relation between quantities that are involved in ZT . There are several ideas of how

to improve ZT including, but not limited to, introducing resonant states, energy filtering, creating

aharmonicity, etc. , all of which, now, can involve the inclusion of low-dimensional structures, and

require a deeper understanding of electronic structure and transport properties in complex multi-

component systems.

The advances in theories and computational methods, density functional theory in particular,

of electronic structure have been extremely helpful in studying physical properties of materials.

Density functional theory calculations have improved greatly in the last decade, in both accuracy

and productivity. The improvement in density functional theory calculations is due to the improve-

ment of approximations used in treating the effect of electron-electron interaction, more interaction

and correction terms are added, going from LDA/GGA to hybrid functional and to random phase

approximation.

In this thesis, I have employed density functional theory first principles cacluations, using sev-

eral approximations including LDA/GGA, LDA+U , meta-GGA and hybrid functional approxima-

tion, to study electronic structures and transport properties of several novel thermoelectric materi-

als, including the Heusler compound Fe2VAl, Cu3SbSe4 and its related tetrahedrally coordinated

systems, and the nanocomposites of Half-Heusler and Heusler compounds.
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Chapter 3 discusses the electronic structure and thermopower of the Heusler compound Fe2VAl.

Using LDA+U , I have shown that Fe2VAl is a narrow band gap semiconductor (Eg=0.5 eV),

rather than a pseudo-gap system as predicted in LDA/GGA (negative gap). The values of intra-site

Coulomb repulsion, UFe = 4 eV and UV = 1.5 eV, were calculated using constrained density func-

tional theory. Using electronic structure obtained from LDA+U, I have studied the thermopower of

Fe2VAl and have shown that the results are in better agreement with experiment, compared to the

results calculated with GGA band structure. Fe2VAl is shown to be a better p-type thermoelectric

due to large degeneracy at the top of the valence bands. I have also noted that the better agreement

with experimental data can be achieved if a smaller value of U (1 eV) is used. Furthermore, the

pseudo-gap behavior observed in certain experiments is still not understood. This may be due to

new physics, such as defects, dynamic interaction or excitonic effect and further works need to be

done in order to have a better understanding of this material.

In chapter 4, I discussed the band gap problem in Cu3SbSe4 and related tetrahedrally coordi-

nated compounds I3-V-VI4 (belonging to the Famatinite and the Enargite families), where I=Cu,

V=P, As, Sb, or Bi and VI=S, or Se, and have pointed out the importance of lone-pare electron of

group V elements in the band gap formation in this family of materials. Both GGA, LDA+U and

hybrid functional calculations were done and discussed. A simple bonding-antibonding scheme

explaining the band-gap formation has been proposed. In this simple picture, the lone-pair elec-

trons of V stereochemically interact with the surrounding VI-p orbital, giving rise to a special

band (BOI) which is the lowest of the conduction bands, forming a band gap. Exceptions are those

systems which contain Bi, all of them are found to be (semi)metal in all the approximations. I

have also studied the relation between the value of band gaps and the bond length between V and

VI elements and have shown that the relation is almost linear, band gap decreases with increasing

bong length. The results suggested that one can tune the band gap in these compounds by choosing

proper composition of dopants.

Chapter 5 has been dedicated to the study of the problem of nanostructure inclusion of Heusler

(ZrNi2Sn) compounds in the Half-Heusler (ZrNiSn) matrix and vice versa, focusing on the low
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density limit using 2×2×2 periodic supercell model. The electronic structures of the nanocom-

posites have been discussed. It is important to note that all approximations to density functional

theory tend to overestimate the band gap of ZrNiSn. The results predict that extra Ni atoms in

ZrNiSn tend to form nano clusters even at low concentrations, but excess Ni-vacancies in ZrNi2Sn

do not. The latter tend to distribute almost evenly in space. These findings are in agreement with

experiments. Inclusion of ZrNi2Sn phase in ZrNiSn introduces in-gap impurity states correspond-

ing to a finite density of state right below the conduction band edge, the more excess Ni are put,

the more states are introduced, in agreement with susceptibility measurement. These in-gap states

change the electronic structure, and consequently the thermoelectric properties of ZrNiSn. The

nanocomposite of ZrNiSn-ZnNi2Sn acts like a n-type semiconductors. The detail effects of the

nanostructure inclusion on thermoelectric properties of ZrNiSn, however, have not been discussed

in this thesis. Further works are under progress.

In conclusion, I have studied several systems of thermoelectric significance and have con-

tributed to a better understanding of some of their fundamental issues. The results have shown that

even though climbing up the density functional theory ladder of approximation, in general, im-

proves the accuracy of electronic structure calculations, there is no universal approximation which

is good enough to be used for all the materials – LDA+U gave reasonable results for Fe2VAl but

failed in predicting band gaps in tetrahedrally coordinated systems, and both GGA, LDA+U and

hybrid functional calculation overestimate the band gap in ZrNiSn. It is clear that there are still

some outstanding questions which have not been addressed in this thesis. For examples: What

are dynamic correlation effects in pseudo-gap systems involving d-electrons? How can one make

critical evaluations of non-local exchange (hybrid functional) theories vis-a-vis mBJ, and other ap-

proximations? What defects can occur in Heusler and tetrahedrally coordinated systems, and their

roles in electronic structures and thermoelectric properties of these compounds? What are the ef-

fects of nano-inclusion on thermoelectric properties of Half-Heusler–Heusler composite? Whether

transport and energy filtering effects are taken place in such the system? Further work addressing

some of those questions is under progress.
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