l 1 MI W 1‘ ‘IWIWMIW RAM FREQUEHY HEATERS APPLEED Ti} MAGNETE AW NW MRENEUC EWNERWAL EDHQEENBRS TEESSS FER MBREE 1‘2? fit 3: Miflfiéh’ifl SHE’E filiESi ALDO A. CACAVELOS 1% 4:8. 'v .f‘, u I «3%. g _ 'fifi‘. w"?.."'5 1:2" 41% ‘34. {PM}; 3'. ‘ ' ""1 a; I 52?? g or ‘fi‘é! 549' my . 3 ‘~ ‘. . " . . kit .’ l' 6” v“: 1‘ «ML? 3" Vmfiwrazf; rd"! - 3" :~ If [h It? .- . ’ }(;€‘;fi{ \' ‘c w 4 e *1/99 5"”! "3’ J 144’"? " .71 r‘ ‘é-f}. If v v I w “(y-.55?! . , 3 can‘t This is to certify that the thesis entitled Radio Frequency Heating Applied to Magnetic and Non Magnetic Cylindrical Conductors presented by Aldo A. Cacavelos has been accepted towards fulfillment of the requirements for ‘ £4080 degree in EOE. Date May 14; 1948 THESKS RADIO FREQUENCY HEATING APPLIED T0 MAGNETIC Ann non MAGNETIC cmmucm. commons. By ALDO A. CACAVEIDS. A THESIS Submitted to the wheel-of Graduate Studies .. of Michigan State College of Agriculture and" Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE. Department of Electrical Eng. 1948 THESIS The objective of this thesis is the study of the application of induction heating principles to the heating of several metallic pieces to obtain the desired results. By means of the formulas that will be presented later, the circuit requirements are calculated and suitable coils designed to accomplish a determined purpose, namely, to heat the material up to Tdegrees Farenheit in t seconds. One of the sources of trouble in induction heating is the variation of the resistivity of metals with temperature. This effect causes the load power to vary and therefore the reflected impedance due to the load, and the Q of the work coil. As a consequence, the Q of the-tank circuit, the tank voltage, and current change too. This can be best understood by inspection of the circuit diagram. 03 We W Considering the circuit shown as equivalent to the actual circuit, we can write I \l\ x. ;;I: Q —— —- ——~ w-w— —-—---——~~—~ --~ ..;v work Metal coil to be heated. 2 R9 = R1 . WLEEI (1) 9 R2” e (WL2)2 X _ x2r 2.25 F 35 constant Therefore i“ 5 constant. With higher values of frequency (a/s 3’ 2.25) we couple, of course, more energy into the core (for same H0) but the ratio E is very nearly constant and so is, of course, the efficiency. The minimum frequency for efficient heating is, therefore: So 3 = a 2ff./'.L~VTV;” - 2.25 (cgs rationalized . / ' ‘ units) lg8.5x 106 , . 8 ‘ 1 mln q )1\,1 I \ In the Specific case of the piece of iron that will be heated in the lst experiment we have: ’— *;- = 26000 A_L_L (to obtain the higher min ’0 ..—-.\- -..'...-.-A. 3; min) «a 938 d O. 5" = 1.25 Therefore: 5 min 938 x 1.55 The critical frequency to heat a 0.5" diam. c0pper' cylinder is: . .3; ,u_ w , _ t . ~ .-' ‘ \ j .; . ' t '1 . 3 ‘ I '- fl . J I ‘ .\ ’1) Ir] ./ '3 J.,' I I I The equipment used to conduct the experiments has a frequency of 350 KC, thus obtaining the highest possible efficiency for a given material and work coil. The object of using so high a frequency is to ‘couple more power into the core for a given circuit. EQUIPMENT AND‘VECTORIAL DIAGRAMS The equipment used during the experiments was a 1 KW, 20 amp. tank current, westinghouse Generator. The equipment is so designed that we can obtain two different frequencies by changing the connections. a) Hartly_ circuit - For dielectric heating with a frequency of 10 M c/s. b) Feedback oscillator - For induction circuit with a rated frequency of 300 KB. L11- The experiments were run with the oscillator set in (b) and the frequency was checked to be 350 KC. Essentially the circuit is as shown below: ‘ !.L» I r- «' 1‘ .——-L——__—_ 1 "1 1 ‘ ' /” '- ‘1; ',.. . y a ‘- The ectorial diagram can be drawn for the tank circuit as follows: t" When the material to be heated is introduced in the work coil,it has been found that Q decreases due to the reflected resistance as has already been explained. This produces a slight shift in the vector diagram but the main effect is that the current 31_ decreases. In fact, the impedance of the tank circuit at resonance is: so, if R increases RT decreases and, for ' , 7 , H the same plate current, ‘1 p .; 1E7 decreases too. This " 3‘ causes I, and I, to decrease: ” When the material is being heated the reflected resistance changes continuously due to the variation of resistivity of the core with temperature which causes the above mentioned change to take place. As a result, if a constant magnetizing force (constant IL) is desired, the anode supply voltage Ebb must be continuously adjusted. The measurements of temperature were made with two iron constanton thermocouples whose calibration curves are attached, Fig.(2). The lst couple was used during the lst experiment and the 2nd one was used in the others. -13- HEATING §E_VERAL SAMPLES WOF LOW CARBON STEEL -11+- The following specific heat and resistivity data was obtained from the "Handbook for Metallurgical Engineers". fiflEDL§H IRON RESISTIVIE: 9;; 3 HEAT DENSITY 68 .1075 70°F - 7.85 77 .108 600 - 7.78 00 0F P 10h .1097 1200 - 7.63 0 32 13.2 140 .112 100 212 20.1 212 .11k 200 390 27.4 302 .121 300 570 36. 392 .128 #00 750. #6.2 M82 .138 500 930 58.3 572 .1no 600 1110 72. 752 .151 932 .163 1022 .172 1112 .188 1200 .208 So the following average specific heat values were obtained for different ranges: 700F - 7O - 200 - .111 .1075 BTU/pound 0F a small c014 ,.“ I 1 7O "' 600 " 012)”? 70 - 1200- olh’3 -15; EXPERIMENT I Piece of iron (0.2% Carbon) 5.25" long, 0.5" diam. to be heated from 70°F up to 600°F in 1 minute. 1) Calculation of Thermal power required: TP I 17.6 MCT\T where: M I rate of material to be heated per minute (in pounds/minute). C average specific heat in BTU/pound 0F T temperature variation in 0F In this case it is: \‘ t- (. = 1003 C11. inCh o . g; . ound Density at 70 F 7.85 cm3 .28# cu . nch Hence: M = 1.03 x 0.28%.: 0.292 ggggge Besides C70 - 600 0F = 0.12% Therefore: Thermal power = 17.6 x 0.292 x 0.12% x 530 - 338 watts. 2) Radiation, convection and conduction losses. piece Conduction losses are very small because the is held by two 0.1" diam. pivots fixed one at each end. The radiation and convection lossess are less than 10 watts (from Bendz's, page 301) and therefore are negligible. -16... 3) Power density. P.D 3 lgtal input (watts) a 338 : 328 Watts Volume of metal in 1.03 Cub.inch coil h) Peak magnetizing force: The corresponding formula for a solid magnetic cylinder is: H -’ PD x d I 2 valid where d . peak - ( 0.1.‘38 I" t ) /3 r * / Where H - c.f«fi. d a diameter (inches) « - relative permeability - resistivity at average temp (3350F) = ;}= frequency in C/S = 350,000 0/3 As already explained, the permeability to be used in these formulas is: /*= - 32—899 The magnetizing force therefore becomes I 4‘ h Wa - " 2/3 H a K 0. 3 ‘/3 x 10J x 10 x 10“°‘= 200 = V . peak — 38.5 v The condition 938 is satisfied. 5) C011 design: The coil was designed to be 6.7" long so as to cover the material thoroughly. With a 19 min. interior diameter this allowed a clearance of 32 mm around the work piece. The coil was made of 19 turns of copper tubing 6 +v>n diameter. The outside diameter became 31 The sketch below shows the coil with the iron piece inside:k;___ ‘( n .4; [21l_l-5 VI . ____“l« 7 . . a» g a : l '1 “AL—.— 6) Coil current. The values of H in ;\1».‘,, and I in amperes are related by the following formula: , _ ( '\\\\‘ > " Ltl lull. ) 0-» aw «mm. If H is to represent the peak magnetizing force and I is expressed in terms of (anq ) of a '.,n: wave, then: Therefore: To take account of the coil-core spacing the factor K, is added: I ' ‘ . v ~ I J 4 I‘ 4... . . . >‘ I v . - n ~ .1: ' \’ QM“ ‘~-, (Bendz 312) coil length Spacing Kl being a function of In this example the current will be: Where for a %%§§I%g ratio equal to 45, K1 is very nearly 1.02. Hence: I 8 amp. 18.0 As the rating of the equipment to be used is 1 KW, 20 amp., this experiment can be run without further complications. The table shows the experimental results where the values of temp, I and V were measured, thus allowing the calculation of the impedance to be made: -19- gABLE I Temp.(over room temp. Th.coup1e ; Secs. I 31:1 OF v z 350 KC 10 as 2.5 95 61 3.3 2 20. 5 :30 23 3.9 O 1 Temp. in 1 " 35 gig 33(5) 3? 3. 37 minute - "- 29 ll #20 66 515 o 70 : " 0 13—3 51—5 6673 . 9 585°F " .90 18.2 .700 69. 3.73 To separate both, the resistive and reactive components of Z , measmurements of the Q of the circuit were done by means of a Q meter. The material was heated up to a certain temperature and quickly connected to the Q meter and disconnected from the heating equipment. The same operation was repeated at different maximum temperatures. The following data was obtained: TABLE II 0F over room. -_ -, r _ temp. 0 ‘*—--- -11., i.— 350 KC 70 9 ”Qt" s” .2? J 3 fl" J o) 5' I! 2 O 5 L" ~..- 4, --./ " ‘h 0 L; 1 u__1 " ‘ 700 I... S. .-..__. . " 800 3.3 " ‘200 ,3.5 Plotting Z and Q as functions of temperatures in Fig.(h) provides a means of determining the values of R and X independently. The separation of R and X was made by means of: -20- E22 = 32 o X2 (Q - X ( ._.- Solving the above equations gives: 2 22 - X2 c %7 = X2 (l 0 $2) Hence ( ( X = -;TWMI = f;:;_::: E 11 . 52 ~.Q? . 1 - .3. ER" Q The following table gives the results obtained for the first sample tested: TABLE III 0F over ‘gggm temp. Z Q11» X R 100 3.3 8.7 3.28 0.377 200 3.43 7.6 3.903 0.887 300 3. 52 6. 55 3.98 0. 532 #00 ‘3.56 5.5 3.50 0.636 500 3.60 9.73 3.53 0.786 600 3.69 8.23 3.59 0.837 700 3.73 3.9 3.61 0.927 The same measurements were repeated for the coil alone over the range of temperature from room tempera- ture up to the temperature that the coil attains when the material has been heated. It was found that Z and Q are constants, the values being: -21- TABLE IV Coil Alone Q. Z X R The same range of variations of temper- ature 15 2.H2 2.91 0.16 Where X and B have been calculated as before. These curves are drawn on the same graph as the parometers of the cored coil (Fig. H). The curves of Fig. k show to what extent the resistance and reactance of the coil increases when the core is set inside. CALCULATION OFfiCOIL VOLTAGE The following vector diagram shows the core and coil currents and voltages and the distribution of fluxes through the core and air space: n: \ 1,-7.4 'Where: §w, Ew, flux through the work piece and corresponding emf in the coil - TA, EA, flux through the air space and corresponding emf in the coil - coil current H O p core (secondary) current - [11 H B I I 2 secondary emf (core) :11 I magnetizing force dueta the coil current. The coil current produces the magnetizing force H and the flux TA in phase with it. The flux in the core 8w is in phase with the magnetizing current Im. The emf induced in the core E2 is 909 lagging 9w and the core current I2 is lagging due to the reactive characteristic of the circuit. The primary emel is made up of two parts: EA due to the flux in the air space, and Ew due to the flux in the work piece. Both these vectors are leading the corresponding fluxes. The variation of H (peak magnetizing force) vs. the diameter of the coil and work piece, is shown to be (Brown, p. 28) roughly: D , 3.- 1 __ I'L {4.4. 1., L “,3- -__ y ;;__,_.. 1.1.V _ 1 <1 .1. . \V/ v I I ~ ‘ ‘9' CC 7 i 1"” 1". Therefore, the flux through the air space is ,' - (f B and H) I\ ' éoth (Acoil ' Aw) ( cgs units ) Where A coil 8 cross sectional area coil in inchesL Aw . cross sectional area work piece The flux through the work piece is calculated assuming that it penetrates the material at a constant value B (phase and magnitud constants) to a depth / equal to at below the surface. It is further assumed that the material is saturated and B - 18000. (See transactions A1EE Vol. 63, June 19HH, p. 273). On this basis the total flux through the material is approximately: 6w ' 18000 If .d . 5 X 6.45 ( «I and J. in inches) Where 5 8 17.6\/ 11?... i l7.6\/3+°5 x 1%6 3‘ 10-6 inches f 35 x 10‘F Where P s 37 filo-6.110% = 11+.6 x 10'6 _{\. inch (Corresponds to 6000F) So: = lZL6 x 3‘8 = 67 x 10‘s inch. 5} 105 Under the assumptions made Qw is in phase with B in the surface which is, in turn, in phase with I coil. Therefore, the diagram becomes: Ew In this ideal diagram we are neglecting the in phase component of Ew that is small compared with the reactive component. Now we can compute Ew and EA‘ Ew - 328.6 x r x T x 18000 If 0. 8f x 10-8 volts. = 3 0.0162 x f x T x d x 8f = J 36 volts Where T = coil turns = 19. .d - core diam = 0.5" f = frequency. The value of EA must be calculated by means of the equivalent ideal coil. The same coil shall be discussed in connection with the heating of a non- magnetic material. From there we get: A coil - Aw = 0.67 - 0.196 - 0.478 sq. inch. Therefore: EA = J 28.6 x r x r x H x 0.974 x 10"8 = 331 V°1ts Neglecting the internal resistance and reactance voltage dr0ps we have: ET = 131 0 336 = J 67 volts. This value corresponds to 600OF and coincides with the one measured in the experiment. From there 2 =7%— = gg = 3.73nu (6000F) When the core is taken out, all the voltage drop is due to the flux in the air and, assuming roughly the same current distribution in the coil, we get: -26.. (A coil 0.67) inch (85w s 0 (EA ' 6.1+5H X Acoil B H X 0.67 X 6.’+5 Therefore; if H is kept constant (I = 18.0'emp) we get: Ew= 0 EA = j 28.6 x f x T x H x 0.67 x 10"8 = jhh volts and the reactance of the coil would be: E ## xcoil = ‘_ ' ' 2°h4-Jl- alone I i3 This coincides with the value obtained from the experiment. Therefore, the introduction of the iron core increases the reactance of the coil from 2.#4_n_to 3.73.9Lat 6000F and also reflects some resistive- component that can be calculated by means of the power factor: Input to the core (watts)- Internal Power factor 1 --r .1 - S. VI (work coil) Where V does not take account of the internal 1R1 and IXi drops. 0 ,I_ 338 watts - °s%‘67x18 “0°28 - 0 cosm(;0.2s Where W6 is the angle shown in the diagram Therefore: RrZriéZéeé 0.28 = 1.095 .11, (at 6000F) The total resistance of the coil with the core inside is the sum of this term plus the coil resistance. This was measured and was found to be: R1 = 0.16 4\. Therefore: Ema, = 0.16 . 1.045 =- 1.205 .n. (at. 6000F) This figure differs from 0.837 .rL found in the experiment by 30%. This is understandable if we consider how indirectly this experimental value was obtained. The efficiency of the coil is: 2 effy - I 1 0” 100 = 87%. 12 1.205 -28- and the total power factor 005 10,. = fig? = 0.323 The above results have been plotted in graphs 2, 3 and 9. EXPERIMENT #2 Piece of iron (0.2% carbon) 6" long, 0.37" diameter to be heated from 70°F up to 1000°F in one minute. 1) 2) 3) Calculation of required thermal power: .Again: TP 8 17.6 x M x C xAT (units as explained before) In.this case: Volume = 0.695 cub. inches M = 0.6,L 95 x .289 = 0.l,_83 pounds/minute. c = average 70 - 10000F = 0.137 BTU/pound xOF Therefore: TP = 17.6 x 0.183 x 0.137 x 930 = 910 watts. Radiation, convection and conduction losses at maximum temperature anzl7 watts (9%) and will be neglected during the calculations. Power density watts - 910 - PD ' 0761:?“ ‘ 637 mu . nch -29- 9) 5) 3| Peak magnetizing force: The same formula used before applies in this problem: 2 __- H peak = (PD x d ___, ) /3 valid when d\&@j;213,900 (0.938 \[fp ) [3 The resistivity is: p = 953501., - 39/..{H/m = 13.9 x 10"6 JL inch Therefore: H . (637.): 0.37 - “- ”3 peak 00.938 \/35 x 107x13.9x10‘6; - (299)2/3 = 39.6 The condition u I818 x 35 X 10 = 0.37 x 105 x 96 V 13.9 x 10"6 = 1,700,000 2 13,900 Where: /k = 3%%Q% = 818 is satisfied. d 1%}: 0.37 Coil design. The same work coil employed in the preceding problem was also used for this experiment. A sketch of the coil and core is shown below. M £1 gures in mm Coil length = 6,7", made of 19 turns of copper tubing 6 mm in diameter. 0) C011 current: As in the preceding example: I = 1.93 x Hpeak x (,(inch) K1 N Where R1 for a ratio: Coil length - 169 . 35 Spacing 9.8 is: Therefore: I = 19591 x139°6 K 6:1 1.03 = 20 .6 amp. The experiment was run at 20 amp, this being the maximum rating of the equipment used. The following table gives the eXperimental results obtained: TABIEJ f secs I temp(over V 2 room temp) /““’ ° 350 10 20 3.5 150 63 3.15 350 20 20 6 250 66 3.3 350 30 2O 9 375 68 3.9 350 90 20 12.2 520 70 3.5 350 50 20 16 660 75 3.75 350 60 2O 19 790 78 3.9 a 9' V-‘l Temperature in 1 minute = 790 0 70 = 860°F -31- Voltage data has also been obtained to calculate the impedance of the cored-coil. Following the same procedure as in the first experiment, the 3:,of the cored coil was measured at different temperatures, the following results being obtained: Team-LI 0F over 5 room temp. Q 350 700 9.5 350 300 7. 350 ‘HDO 5. 350 500 5. 350 700 3.5 Both Q and Z were plotted on the same graph as a function of temperature (Fig. 5). Therefrom pairs of values at the same temperatures were obtained. As a next step X_ and 3_ were calculated as before: WEI 0F over room temp.- Z 30_ X R 100 3.05 9.3 3.035 0.327 200 3.25 8.1 3.22 0.397 300 3.35 6.8 3.32 0.988 900 3.9 5.6 3.35 0.6 500 3.5 9.7 3.93 0.73 600 3.63 9.2 3.53 0.89 700 3.8 3.7 3.68 0.995 800 3.95 3.9 3.79 1.11 -32- As already stated the coil used in this experiment is the same as the one used before; its reactance and resistance being constant and of value: Z - 2.92 JL X = 2.91 _;L R= 0.16 ,0,- 7These curves have been plotted on the same graph as the curves for the cored coil. The curves indicate to what extent the resistance and reactance of the coil increased when the core is set inside. All the above results have been plotted graphically in Figs. N0. 5 and 6. EXPERIMENT3#3 Piece of iron 1.98" long, 0.75" diameter to be heated from 70°F up to 600°F in one minute. The procedure is the same followed before. 1) Calculation of required thermal power: T.PIl7.6xMxCxAT In this case: Volume = 0.655 cub. inch. M - 0.655 x 0.289 I 0.186 pounds/minute. C I average 70-6000F I 0.129 BTU/pound 0F. Therefore: T.P I 17.6 x 0.186 x 0.129 x 530 = 215 watts. -33- 2) 3) 9) 5) Radiation, convection and conduction losses are negligible. Power density. . 215 = Watt P D 0.655 329 cub. inch Peak magnetizing force: The formula to be applied is the same as in the preceding problems: I (PD x d g2/3 valid when H peéE___£9:”38 (3??? d 772%.— 7, 13900 )3: 633501,. = 25/0fiC/‘M: 10 x 10'6 J1, inch. Therefore: H = E x 0075 2/3 : peak q -6 0.938 \/35 x 10 x 10 x 10 3002/3 = 95. Hence: The condition: 720 x 35 x 109 - _ d f - 0. - 000 0. - \17‘: ‘ 75/ 10 x 10-6 75 x 5 3 3,770,000 7 13900 is satisfied. Coil design: The coil was made of 6 turns of 6 mm diameter 00pper tubing and was designed 5,7 0%» (2.29 inches) in length and 39 mm outside diameter, thus allowing a clearance of 1.5 mm around the material. .Figures in mm. 6) Coil current: I = 1.93 x Hpeak x 1 (inch) K1 . N 1.93 x%+5 x 2.29 K1 Where Kl correspondends to a ratio: coil length = g . = Spacing 52.5 38 So Kl 1.03. Therefore: I = 29.7 To get this current through the work coil with the 20 amps rated equipment, the work coil was shunted with a high voltage '075/u3f mica condenser. The following data was obtained: -35- TABLE VIII OF over room temp. 4. secs Icoil ramp. 0F V Z 3 0 10 25’ 2.5 105 22.3 0.893 350 20 25 9 170 23 0.92 350 3O 25 5. 5 230 23 0.92 350 90 25 7.5 310 23.8 0.953 350 50 25 9 375 23.8 0.953 350 60 25 10.2 930 29.1 0.969 350 80 25 19 580 25. l. The scheme shows the parometers measured. +————9- l ‘ vxé: \kflf .075}. f 951:9: I’ Final temperature in 1 minute = 930 0 70 = 5000F —36- The Q readings gave the following results: °F over TABLE IX room temp. 700 1000 Finally, computations were made for the reactance .F‘mflflro n and resistance of the coil as before. IA§--I °F over room temp, Z 0 X R 100 0.89 7.35 0.885 0.12 200 0.92 6.7 0.911 0.136 300 0.995 6.2 0.939 0.151 900 0.96 5.6 0.996 0.169 500 0.975 5 0.956 0.191 600 1. 9.9 0.975 0.221 -37- II The correSponding readings for the coil alone are: TABLE XI t over roomfi, Q. -__ Z X R 70° 10 0.8 0.796 0.0796 600 10 0.8 0.796 0.0796 Measurements of the temperature were made at both the surface and the center of the piece under identical conditions and running the experiment with 20 amp. The following results were obtained: TABLs_XII °F over room temperature ICOil Center w______Surface Secs 20 amp. 130 130 20 " 170 170 30 " 210 228 90 " 263 278 I 50 " 317 333 60 " 970 990 90 It can be seen that the temperature is fairly uniform due to the small size of the piece and the fact that the heating was rather slow. All of the above results have been plotted graphically in Figs. 7, 8 and 9. -38— QQIL VQLTAGE COMPUTATIONS Following the same procedure as in the first experiment and neglecting the in phase component: Ew 01» C EW= 1 0.016.: d x; x T x 5; volts ( 3‘ and 6L in inches) Where: - : ’HXPT : 95xl5x10’6' 3% 17.6 & max. 17.6 V 35 x 109 inches Where P - P = 15 10'6 JL 1 h max 600°F x no Hence - 5 g (6000) = 77.9 x 10-5 inches. Therefore: . EN (6000) I f 0.0162 x 0.75 x 35 x 107 x 6 x 77.9 x 10‘5 = a 19.75 volts Besides: EA = 5" 28.6 x I x T x H (10 - Aw) x 10'8 volts. Ac is the cross sectional area of the equivalent ideal coil. As will be explained later in connection with v the heating of a 00pper tubing, the spacing (L of this fictitious coil would be: (Brown's Chapter VIII) I," If \I I. / actual current density g i _. ;:>\\\\\\‘\\._. equivalent ideal coil 1 - ( a )2 - h-h 1-(-—--h) Wherea-3mm h=9.5mm hi 9.5 Ml- 0.995 = 3.33 mm. Therefore the diameter of the ideal coil is: de = 1.01" and the area: A0 = 0.8 sq. inch. Hence : 13A = 4: 28°6 x 35 x 10% x 6 X 1+5 x 0.358 x 10"8 = ‘1 9.66 volts Therefore V 2 EA + Ew = 3' 9.66 + J 19.75 = 3’ 29.91 volts(6000F) And:)( '-‘ 29.91 = 1.19% 24.7 Actually Ew has an "in-phqse component" that provides the power input to the load. We can thus calculate the internal power factor (not including the Tax, I‘Yg voltage drops in the coil): internal power gr c.59L _ TNput to the core (watts) factor b ‘ V I (work coil) Where V 3 EA + E 00$ I}; Therefore: II R) H U1 = 0.296 29.7 x 29.91 1.19 x 0.296 3 0.35352 Rreflejoda The total resistance of the coil with the core inside is the sum of this plus the coil resistance. {This was measured and was found to be: R1 = 0.0796 Rtotal : 0.0796 + 0.353 = 0.9326 41(6000F) Tfiiis value is high compared with that found in the experiment (0.221). This disagreement is due partially to the fact that the power was less than 215 watts as can be observed by looking at the heating curve. How- ever the power could not be measured directly to check this. Besides, the value of R from the experiment was found through a very indirect way basing our compu- tations on the measurements of Q. done with an inad— equate instrument and for this reason it cannot be considered accurate. The total power factor: COS $0. = 0.9326 = 0.363 T19— And the efficiency of the coil: effeciency = I2 x 0.353 x 100 : 87.8% 12 x 0.9326 ‘ Condénsercomputations. In the last experiment of this paper there is a complete discussion about the application of condensers in parallel with the work coil. . ‘ Starting from V = 29,91 volts and selecting I con- denser so that: Icond : Icoil - Irated = 29.7 — 20 = 9.7 amp equip _ liven though this formula is not estrictly’correétit can 'beeapplied successfully due to the fact that 10 is al- nuast an entirely resistive current. -42- We can write Icond : V0 Co We Icond = 9.7 x 106 I l.‘ C V W 29.91 x 2tfx 35 x 101+ I J O I! o .073 {~- I EXPERIMENT # 9 from tubing 3.22" long, 0.11" thick and 0.89" external diameter to be heated from 7 OF up to 600°F in one minute. {The calculations follow the same procedure as before 1) Thermal power: T? = 17.6 x M x C x ACT Where Volume : 319x'07892 - 07622 X 3.22 : 9 ‘9 0.805 Cub. inch M = 0.805 x 0.289 : 0.229 pounds/minute -43- C = average 70 - 6000F : .129 a 530 Thence: 2) 3) 4) TP ; 17.6 x 0.229 x 0.129 x 530 z 265 watts. Radiation, correction, and conduction losses are negligible: Power density. PD : 265 : 265 : 149 watts total 1.78 cub. inch volume Peak magnetizing force. The same equation for solid magnetic cylinders applies for the hollow ones if the wall thickness is greater than the depth of current penetration or: F'”7§ \: i / Therefore: 1 g L H :’ PD x d \2/3 =/ H+5x 0 37 0181.99???) \ ’ f' 1 (3350F) :10 x 103$L.1n0h 2/ H =( 285 9 = 28.6 .0{ So: Wall thickness 2; 3170 DJ 71 a: 32900 / O 0 Z 1130 The maximum skin depth takes place at maximum tempgerature. It is: 9W) - 30/nh 1h“: 15 X 10- 6..-AL~ 111011 Skin depth 3170] 15 x 10‘6 44.3170x1. 95 1130 X 39 X 10q 107 6.18 x 10—4 inches -44- 5) The condidion Wall thickness 3 0.11") 6.18 x 10'” inch is satisfied. Coil design. The coil was made of 10 turns of 6 turn diameter copper tubing and was designed 3.5" (8.9cw9 long and 38 inmhas outside diam- eter thus allowing a clearance of 2 innhns around the core. Coil current For coil length :.§2 z 45 K1 2 1.02 spacing 2 ( Bendz page 312) Therefore: I 1 = 1.43 x 28.6 X 3.5 1.02 : 14.5 amp. 0011 10 The following data was obtained: TABLE XIII t secs. 1 coil OF over room Temp. V .Z 10 15.5 1.3 60 36 2.32 20 " 3.2 140 38 2.45 30 " 5.4 230 42 2.7 40 ” 7. 290 42 2.7 50 " 8.7 360 '2 2.7 60 " 10.5 35 42 2.7 90 " 15 620 h2 2.7 Efiinal temp. in 1 minute = 435 + 70 = 505 Following the same procedure a the 0's C) U' (I) *5 O W (0 Vfiire measured at different temperature. TABLE XIV Temp 0 70 7.5 350 5 60 ’4 800 4 From the graph N0. 11 the following table can be constructed: TABLE XV OF over room temp . Z Q X R. 100 2.4 7.6 2.j8 0.313 200 2.6 6.8 2.57 0.378 300 2.7 6 2.665 0.444 400 2.7 5.2 2.65 0.51 500 2.7 4.5 2.f4 0.587 600 2.7 4.2 2.63 0.603 The following readings were obtained taking the core out of the coil: TABLE XVI Coil Temp. alone over room 7L ‘1 )< FL 70 1.75 15 1.715 0.114 ”50 H n I. u 700 M It It It All these results are plotted in figs. 10 and 11. Cczhdlusions are similar to those drawn from experiment NC). 1. EVr BRIDE e.— if The same iron tubing inside, ant parallel. 41-“ a nigher TABLE XVII £2 .J was heated with a coil current using a condenser in Coil current secs. Temp over room I )1. amp UT? 34 10 " 20 1 40 ” 30 1 . 5 c5 ” 40 1.7 72 " 50 2. 85 ” 60 2.7 115 ” 90 4.5 190 The coil had the following character external diameter internal diameter length = 8.5 1’10. .0 01 turns 24? 13 +nahns : Inohas 3.35 inches 15 1:” “2:3Lfdfi.~. J 4:4 L goikx€r C01 1 . -1 , I _ -_-_ ._O..-__.__ . _.:T—— istics: (The final AT in one minute was only 115019. To get a temperature of 6000F in one minute (AYTz 530) the current should have been 12, and the peak magne- tizing force He. But: H = K1(P.D)2/3 : K2 x (Thermal power)2/3 2K3 xeng/3. The ratio between the actual H1 and H2 is: 43/2 7 0 4 *1 13/2 ‘ ~ = 33 : .O = 2 H1 liS 1372 1 '1 3 2 /2 c 12 : (3400)3/2 X 4061 : 138 X 4061 = 915 Hence: I — 94.5 amp and the value of H2 peak magneti— zing force for such a coil to heat the material- up to 6000F in one minute, becomes: ngeak : 0.70 X 15iX 94.5 : 296. 3-33 ~ - ° °‘ ‘ 3 P . Therefore in this case, tne ratio 01 Hinner Houter ‘to accomplish the same purpose is: Hinner = 295 : 10-35 __1___. k Houter ‘0 vThe results are shown in graph No. 10. ~48- EXPERIMENT # 6 copper tubing to be hosted from 70 to 320°F in two minutes. The dimensions of the copper tubing are: outer diameter a 0.5 inches length : 6.2 inches thickness = 0.018 inches weight - 0.056 pounds external volume : 1.215 cub. inches The specific heat and resistivity are for copper: TABLE XVIIIA OF S. heat F/‘tJlC/u. - 1.72 70 0.09 - 400 0.096 3.1 600 0.099 - 800 0.101 4.8 1200 0.106 6.6 ‘ggggg, average s. heat (70-320) = 0.093 1) Thermal power TP = 17.6 x 0.056 x 0.093 x 239 = 11.5 watts 2) Radiation, convection and conduction losses are negligible. 3) Power density PD 3 11.5 e 11.; ; 9.46 watts .2 5 ernaICVOlume cub. inch 4) Peak magnetizing force: For this hollow cylinder to be considered -49- equivalent to a thick-walled one, the following condition must be satisfied: wall thickness é; skin depth That is: _._i. . Wall thickness Z:3170VL@21= (Bendz's p.305) When ' g (3 EN : 2.8 x'I0gum\: 1.1 x'106_fL inch WA}: 310 So: Wall thickness 2:31 0 .liIU6= 1 0 ~ , 7 \é’FiTOT' 106-1-77=5.6xm31n The required condition is satisfied. Under these conditions we can apply the following formula developed in this paper previously: n :1 PD x d valid 1: 0‘151313400 . I V2.59 x 1'03 5pm 4“ Where (3 : ;3 :2.35 x 101131:0.93 x 106.JL inch Mt .' If! T The condition cuff" z 0.5 [35:90" =0.5x105x6.14:3.07x10+5>13400 ,9 '“VL 0.93iIU is also satisfied. Therefore: 1m1111111 H : 39.46 x 0.5I =J6-2 X 103 : 55-5 - —— *6 2.59dE9J55x10 xo.93iIU 5) 0011 design. The same coil used in experiment No. 1, was used for this experiment, its characteristics being: 19 turns of copper tubing 6 inches in diameter -50- 6.7" long 31 We outside diameter 19 W inside diameter The clearance was 3.2 inches and the factor’Kl nearly unity. 6) 0011 current I : 1.43 x 56.5 x 6.1 a 28.5 amp. Coil voltage The diagram shows the relative sizes of coil and core 3 3| It is easily seen that we have to consider two different fluxes, the one through the work piece Twand the one through the air space surrounding it, (.5 . Let a vector diagram be constructed. The coil current Ic produces the flux @Ain phase with it. The -51- #14. "d. fluxffiNis lagging due to the secondary current (12 : Inork)r£}3 yet to be found. As a second step let's find the emf's. The emf induced in the core E2 is 961agging ii and the core current is lagging'iodue to the resistive and inductive characteristic of it, considered as a secondary circuit short circuited. Thus, 32 is made up of IgRg and 12X2- Nov adding up IO and I2 referred to the primary, we. obtain the total core magnetizing current In. The primary emf E1 is made up of 2 parts: Ea due to the flux in the air and EW due to the flux in the work piece. Each of these vectors is leading 90° the corresponding flux. F- / x f j?! 7’;1w , z; 17“ L: Ex— Ikxz '; is the internal power factor. -52- 1" Shifting the diagram so as to make Ic be in the x axes we can write: QA @A = H 3: Area air space # _w é = H (A0011 " A!) V92 5:; > 6‘ @w '-' Aw ' 3(P'3 ) 3%, Where Acoil and Aw represent the area of the coil and work piece and H the peak magnetizing force of the coil above; that is, the air space. P and Q therefore, take care of any change in the magnitude and phase of H while coming into the core. The emf's core then, can be written: Ea = 328.6 xix T x H (A0011 - A“) 1'68 volts. E" a 328.6 1/1 T x A. H (P-J (9)1138 volts. T represents the number of coil turns. In the present experiment at a temperature of 320°? we have: inch .111 P = 1 o 1 I V 8.: 320 “6 d a diameter : 0.5 inch. Hence: -__—._..——_.—.__—.. d‘rfi- 0. 5\ x 10 - _0.5 x 105 x 5.63 = 282,000 \ \1.1x10 The parameters 3 and g vary as shown in the following graph. Taken from AlEE transactions V01. 63 , $1123; 19%. p. 273. ‘ -53.. The valueqM-z—{i )- 9 on the X axes corresponds to up; = 13400 Hence in the present case we are beyond that point and: -2 PaQ: 6310 :2.2hx10 Therefore: E. . J 28.6x35x104x19x0.19x56.5 (2.24-12.24)10'1°volts \, o E. = .1 (471-,1n71)10"3. 0.n7l+30.n7l volts -.- 0.665 L115. We can see that, in all the theoretical cases very small and the flux them: be neglected, the internal power factor angle is 45°. The value of Ea is analyzed by considering an equivalent ideal coil. ‘ Due to the currents flowing in the cylinder the current density in the coil increases at the inntr boundary and decreases at the outer one as the diagram shows : ouiv.udwe] In Brown S. Hoiler's Chapter VIII there is a complete analysis of the matter where for a single turn coil they conclude that for the equivalent ideal 0011 the following equation applies: h':h\/l-(_fi_\\2 In this case: ‘ h : 6 innhvs a .73 imvhes Therefore: h' = 6 1:0.25 : 6.: 0.865 - 5.2 inches and the diameter of this ficticious coil 80: -55... 128.6 x 35 x 10" x 19 x 565 x (0.67-0.196) x 10"8 J 51 volts = 51 ng° volts. "He must add to this internal voltage (emf) the In m u voltage drops in the coil itself due to its internal impedance. From (Brown's page 22) “1'“ Fallen? Theoretical calculations are not accurate, whereas a simple reading in the experiment gives (neglecting X1) R1 : 0.16-JL Hence 1R1 = 28.5 x 0.16 a #.5 volts We can see that in this case the total voltage isvery nearly the same as Ea and our \0; becomes nearly 90°. The total coil voltage is shown in the following diagram: IX{(M9.8‘€QT€ cl) IQC (1‘ EA/d” Lro+§i QTbT—é“ EW Ox)T of R08“ -56- Hence: Total coil voltage: 52 volts 85° Where 8&0 is the totaleince it comprises also the 131, 1X1, drops on the coil. The efficiency of the coil is: Effy -_-. Efi (in Jhase componenfl I 3 El! 100 12111 + E,',I MW 1 : 0.421 100 = 0.871 100 m 9.6%. . + . logiI Total power factor = Coa‘€,= 0.1 In the experiment the voltage through the coil was 7% higher than this value, due to the fact that a slight difference in the measure of the coil diameter increases greatly the area (A0011 - Aw) and as the coil was made by hand its diameter was not ‘werye : uniform. - The variation of the internal power factor with the ratio Acoil has been shown to be (AlEE transac- .Awork tions'Vol. 53, June, 1944, page 273) fitosWC ;] 1. , ____1_1, 2_11__._U rift/I”,,,ii "‘L /’ W J:- \ \ \ / .1 o- ’W \ /,» O _J__._ 1.. i i. l - L _..e \.__.1 1 - 11.4. .4 L._> 2 H x c a -57... 5 O \, A \ r \ ~ , The experiment was run by connecting a condenser in parallel with the work coil as shown. The table 'gives the results obtained. TABLE XIX Wcoil secsu over room temp V Z 29 52 *10 '148 75 59 1.235 I! I! 30 30 130 n n s ” 40 305 150 " n w " 50 3'8 160 " n n I 60 4.2 175 n u w " 90 502 220 " n n n 120 5.7 240 n " Final temperature in 2 minutes I 240 + 70 : 310°F The value of Q was found to be constant through this temperature range and equal to Q = 11. -58- Therefore, R and X were calculated with the result listed below: TABLE xx 0011 with temp. hollow cop- ' over room Q 2. X A? per core. - . . . For the coil alone the corresponding parameters are also constants over the same range of temperature. TABLE XXI Coil alone Q (z, X R same ra e It is seen that the copper core acts as an induc- tive secondary circuit increasing the total resistance and decreasing the reactance. The fact that the resistance of the secondary is very small compared with the reactance causes the total reactance and resistance to be fairly constant. In fact, the total impedance is: R]. + quleRZ . J (1 _. W 2L R22V+ (me)2 + w 1 R22 + 041.2)5 That in this case reduces to: R1 + M2 + Jw(L1 - M2) where M2 2 is small. IT' 1722 2 2 Condenser‘fiamputations In applying a condenser in parallel with the work 0011 care must be taken to insure that this combination —RCI_ all will not form a tank circuit that can take control of the frequency of oscillation. ‘ I To help avoid this undesired possibility the following condition will be imposed. Qloadié 80% Q main tank circuit with work coil This can be written as: (Bendz's p.319) Coil volta e x coil current Hufi oad‘watts enerator rated volt-am 4§HKOZ:EL‘ ’ load watts ’62 or vc x 10 5 8075 VtIt In addition, the Westinghouse Mfg. Co. recommends (lkw generator catalogue) that: Icoil élIT to keep the load tank circuit away from resonance. In this range the condenser current is to be chosen -60.. so that I00nd ' Icoil ‘ Itrated In this case: Icond : 29 - 20 = 9 amp This formula is only correct in the total absence of power in the circuit but in most practical problems it yields approximate results because ‘Qr is very nearly 900 as analyzed before. 1\ Emma ”'5 ’f‘v WT , T 41‘0ch f ITD'T'CH Inn“) Finally: 9x105 -4173”!— C=Im 1V3; 56 x 21V; 35 x 10h / The results of this experiment are shown in graphs 12 and 13. ("I Conclusions Developing the expression for 'E' found at the beginning of this paper we get: For F £3 1 E = P(power core) g 8113 2 Acore 1 2 Ssol IZdeeu, 'core Score 12 Rdcusol. Asol For a given solenoid this becomes: ”________. E = K Acore Ssol a K Acore V/‘core wcore u"core core u"core T301 E a K Acore W'core Pcore independent of freq. This formula shows that for a given , solenoid, E is much smaller when heating a piece of non magnetic material than heating a magnetic one, no matter what the frequency is, as long, of course, that we are over 2025’ Assuming for instance: .3... a- Amagcore = Anon mag core [Armag m 800 amag core ' 10 Pnon mag core there results: Eng; .-_-\/800 x 10 : 90 Enon mag If we also assume an efficiency of 85% for the heating of the magnetic core we can write: effxmag : E? = 85% where P335: = 85 12Rsol 3 15 -62- c 1 s 1 n 1 ‘ ' c . 1 r ‘ . I o l ‘ m . . a u ‘ u 1 ' 1 , i m u ' l , , Q 1 . . p c h b . _ . 1 ' . n . 1 o 1 _2 For the same 12R the power that gets to the sol’ load for non magnetic material would be: Powernon mag : g8 : 0.95 and the effy: We can conclude, therefore, that to keep the efficiency of this method between reasonable values ‘while heating non magnetic materials much larger coils must be used. High frequency heating, then, is especially convenient to heat magnetic materials but in spite of its low efficiency is used many times to heat non magnetic ones due to its Outstanding characteristics such as: 1) Heating can be accomplished faster than with other methods for most metal pieces. 2) Heating can be confined to the desired area which may be a small fraction of the total. 3) Heating starts instantly when radio frequency power is applied and stops instantly when radio frequency power is removed. These features frequently outweigh the relatively high cost of the necessary equipment. List of the equipment used in these experiments -Westinghouse industrial radio-frequennggenerator3 E v 020, Style No. 867692, m, 300 n c/s low frequency, and 10 M c/s high frequency. -Radio frequengyg'Q' meter: Type 160 A, Serial No. 2632, Boonton Radio Corp. evacuum tube voltmeter; Type 726A, Serial No. 3091 General Radio Co. -Iron constantan thermocouple with galvanometer Weston model 301, EE 2504, 30 micro amp -Ammeters. GE Type CG 22037, 200 amps (rf) EEAA124 GE Type 00 22041, 50 amps (rf) EEAA125 -High voltage condensers (rf) Cornell - Dubilier GD 48449-5 EE 2819-0.03 mf Cornell - Dubilier GD 48996-5 EE 2818 - 0.045 mi -54- . .1141 mafia? .u 1 a1 w... 1 . . .. . . .... .... .... 1.. . 1.. ... .. 11.. 1 . 1... .. .. . V1... .... .. ... ..- .... .. . ...t .. . par- . .. .... .... p... .... ...1 ...e . o. o......... . ... .1.. ... .... .... 0.. .. . .... .......H. 1.... .. . ... ...». .... .... .... ... ......1.. ... .... ...l .... . ..... ... ..1. ..q 1.1.. ...-.... $1... ..1.. ... .117. 1.94 . . ..,.. . . d.. .... .... ... a... ...-..... .1.1V. .... ...; .1.. .... .14.-.. .4.. .... ......... ... .«1 ...4 ...- ....14 ... 1.4.4.... .... 1.1.6. ..4v .... <. ... .m.« .01.! ... ., .... 1. .. .... .... . .. .h .... . .. ... .. . .... ... .... .1... .... .... ..1. ..1.+...1... 9.5 41:0 4 4 1. . .. . .. .... .... ... ... .... ..1. .... .1. 1 .. .. .u..... . .. .v.. .. ... ...11... r... .... .... .-.. ... .... ..|.o .... -... .Ve. «... .1.4 .1.. h... ..- 4.... v... . .... . . .... .... .. . ...v .... . .. .... ..91 ...d 1.... .1. ._ ...-..... .... ...! .. .... .-.. .... .Vv. .... ..‘n 9.... ... A.... .... w... ...- .... .... .... . v4... ..‘ .. .. .. . . 1 1 1 . 1 . . . . . . a . . . 1 1 . . . . . . . . . 1 . . 1 . . . . . . . . . o . . . . . _w . . . . . . . . _ . a . . . . . . . . . . 1 V . . . . -4 . . . . . . . . . .17. . . . . . A . . . . q 1. . . . . . .1 . 1 . p . . . a . 1 . 1 . e. F F . . o e . . . 1. 4 . .1 . . .1. .. .... .. . ..1.. .1. .... . .. ..1...1. 1.. .. ..1. .... .... .... .... ..p..... .1.. . .. ...1? 1... ... .... ... .... .... v..o .... O... ... . 1... .. .1 1 . . .. . .. .. . . o. . .. . . . . . . v . . . . . . .. . . . . .1 . . 1 . . .. . . . . . . . . . . t . . . . . . . . . . . ...o . . .1 . . .. . . . t . . . :0. . v . 1 -1? . 1 . v. . . . . .017. . .. .. a . e 4 .1). . p . v v v 91. . 1 o . n e . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . ¢ . . . 1 .. . . . . . . . . . . . . 1 v . . . , i . 1 . . , . 1 . . . . . . . . . . . . . . . . . . . . . . v . . . . . . . . . - . . . . . v . . - c 1.. 011. . . . . . . . . . «1. . . a . . . . . . 1 0.1... . . k . o. < . . o . . e o 1.. A . -1). e .I 1. .. ... .... .. ..... .-1...... ......11.. ... ... .... .......... .. ..- .... .... .... .4. 1.... .....111. ..H: .11 .. . .... ..1.- .... .. . 1.... V ...... .... ..... ... ... . .. .. r .. _i 1 .. ... .... ._ .... ..... ... .... 1. . .41... .... .k. .......1.... .... 1...... ..1. 1-.. 1... o... ..1. ... ... .. ... ... .1‘1-¢ 1". 90.1- 19141.9 10 .I ... .. ... 1.....v. .1 .. 1 .11... ... ... .1.- .... . ._ y. . .1.. . .. ....v.... .. ..1. .... .... ..1. ... ... .... .... 5.-.. .... .... .19.. .1. .... v. .47. .... . .1.. .1.. .. ....... ... .... .... ..1. ......... .... .... .... .. . .101)- 4 .. ,..1..... .... .... .... ..9. ..v. .... .... ... .... .... 4-1... .. . ... I... .... ..k. to... 7.... I . . . . . . . . . . . . . . . 1 . . . . . 1 . . . . . . . . . . . . . . . , . . . . 1 . 1 < v . H 1 . . . . .1.1 . . . . . 1 . . w . . . . . . . . 1.. . . 1 . . . 4 . . . .. . .1 v .. . 1 o . ... . . . . . . . . . . . . w . . . . v . . . . . Y)‘. . . . . o . . . . . . . . . . . 44 . . . . . . . . . . . . . . . . . . . . . . . . . 1 o . . 1 . . . . . . . . . . . 1 1 , . . . . . . 1 . . . . . . 1 . 1 p . . . . . . . . . . . 1 1 . . i . . . . .. . . . . . . .. . . 1 . . . . . . . 1 . . . . . ..1. . . 1 . . . . . .v .v . . . . . 1 1.1- . . c . . . 1 .... .... 1.., .. ... .1. ..1. .. ... 1. ... .... . . ... .... .1....... .... .... .... v... ...1. .... .-.. .... ..1.. .... .... ..1 v... v . ... .... ..-. .. . . . . . . . . . . . . . . , . 1 . . . . . . k . . . . . . . . . . . . . . . v - . . . . . . . . . . . . . . . 1 . . . . . . .1 . . . . . . . . . . . . . H . 1 . . . o o . . . a .. _ H . . c o . . . . .. . . a . . .4. o . . a .1. . . . .1- . . n . . . t . . . . . . . -.. a . . . 1. . . . . . . .. ... ._ . . . . .... .... ... .... ... . .... .... 11.. ... ... .... .... .... ....a w... .0‘.. ..p. .... .10 ... .... ...1 .... ... a..- ... ...» ..... ...4. ... V n 0 .... VIA ... 31$ . n . o . . . 1. v 6. V . v o e 3|... 4 O i v v. 0 )1.$.1v.o I910 915 .n.... . . . . . . . . . .. ., .. . . .. . . . . . . . . . ... ... . . . ., .. i1 . .. . - .. . . . . .3 . . . . . .. . . a . . -. p . . . . . T. a . . . .4 c . . . . . 1 . .. . . . . . -4. . . . ... . . .~ :1 .. t . . .. . . .1. . . . . . 1 . .. . . . v . . . . . . . . . . . . . . . . e . . . . ... .. .. . .1 1. . . . 1 . . . . . . . . .4 4.. . .. . . n. . . v 1 1. . . .91: . . t .. . . . . .1. . o . . o .1.1. .w < . t1. . . . . v . 0. e e . c . . . 0 . .J . . 9 . . 4 . T.1. . . . o . . . e .. . . . . . . . . . . . . . 1. . 1. . . .. . . .. . . . . 1 1 . . .. . o .. . . .. 1 . . . . . . . . . . . . .... . .. . . . . . . ..b . . . . . 1. ... . . . . . . . . . . 1. . . o . . . c . .. v . ...Y. . . . . . . q .. . . .01..» 4 . . 1 a . ...ole . . . . . c .14 . . . b. . .4 . n ..1. ... . .. .. . .... ....M.. . .... .... . ... .... .... 1... .. ...... .... .... .... 1... 1.1 ... .-.. .... .... .... .... ..1. .... ..1. .q .r. .... ...ll .... 1... _. .. . 1.x... .. .. , ... 1. . .... 1.. .. ...1!1-... ...1. 1... ...1 .... .-.. .... ..1. .. ...... .... .. ... ...- .1-.... . ... .... .... ...,. .2 1. 1 1.1......_ .... ..1.. .... ..1. ...7. ....1... 4.. ..-; ... .. . .. .... v.. ..+.. .. .... ..1.- ... . . .1 .. v 1 o . . i . . . . .. . ... ... .. .1. o . . .. . v . . . . . . . . . . . . . ... . . . . . . ..... . . .. 1 . . . . . . . ..1 . . _ . . . . . . .4 . . . . . .. . .. o. 1 <. . . . . h .1. l . . . .4 .9 e . ... 1 . . . 1 . . . . o... v .. e. . . . .. . . . . 14 y . ...... ..1. .u.. ...1.... .... ._ .. . ... .... .. ..... ... . ... ... ... .Y1. .... .... ..... .11. ..... v93. .... .. . .i... .... . ..17» v... ».». . .... ...1. ..~ .11.) I .. 3 I . .9 -l. A. 11': v . t I on! . . .. ... .. . ...“. .... ... . 1. .. . .... .. .... .... 1. .... . .. .-.. .... .... 1.... .... ..1. .51.. .... .1. .... .... . .... .... ..d. w.. .... V .. ......q.. .1..... .... . .1. .... .i .... .... .. . ... ..T. .. . .... .1.. v.. .... .... ... 1... .o.. ......1. ..v0 9... ..- .. .. ..64 9... me. .4.‘ 00.... .1....v. . . . .. . 4 .. .l . . . . . . . . .... 4.17. . . .. ... . 1 . . . .... .. .1. . . ._ . . . . . . . . 1 . . .. . . . . . . .1 . . .. . . v . . 1 . .. r . . q 1 7+1: . .. . . . . . . . .. . . ..... o A . . . .r .. . O ‘1 ..1. o . t e 1 ..... . . . ... .. ,. .... ..1 . .. ... .1 .. .1.. . .. ... 1... L... .1 . . .. ... .... .... ... .. . ..1.. .... ...- .... .... .. . . ......1 ..1.. ... .... 1.1 . .. .... ..111. .. .. . .... ... .... . .. .... .1b. .. . ... ..1. .v ............1 .... .... ..a .... ... ...1 ... . .. .. ..... 1 . ......M. . ..1...11 1...... .. . .. ..Io...... .. ....1 ..v. .. . .... ...c......... ..t- .. ... ..-. .. ... .... .... .v... ..v. ... ... .. .. .1. .1.. ... ..... .. ....... . .... ... .... .... . . ...11..J. . .. ... ... .... .... . .............1 w... .... .... 1 ... ....1.. .... ...11 ..... .... ..1.. .. .r h A .4 4 +14 ,4 . . .. . . . 1 . . . . .. . . . . .. . . . . . . . . . 4 . . h1.«1... . . . . . 1 . . ..1...1.. ... . .... . . . . . .. 1 . . . . . .. . .. . .1. . . . .. . .. . . 1 1. . . -11 . . ... . ., .... . 1 . 1 . . . 1. ... . . .4 .. . . . . p w . 1A . V .1 ..1. ... ... .... .... ... ... ..«1 .... ....11.. .... . .. ... . ... .. ...1. 1. .... .... .... . .. ...; .-.. .... .... -$.. .1.. .. .... .1. ......AA. .....v.... ..vll. ...». .... ... _. . ... .... . 1. -11.. .... . .. ......iu. 4... ..L; .-l .... .- 1:. -... ..1-. 1... .1 .1.. ..v. ... ... .... ... ... . .. 1. , 1. . ... 11...... .. ... .... .... .. ..1. ..1. .... 1... ..o ..... ... .... .... ....1. 1... ..1. .I... ... ... .... -.9 ...v.... .......11... .... 1 .. ... ... .... . . ... .1... .... .c. .... .... .... .... .... v1. . .. ..19. .... ......... ..p. . ..o. .11-. .... .... 7.x. .. . ..v .11... vv.. . 1. .Y. .. .1 ..1.. ._.. .... ....4.... .......1. ...~. .1 .-.. .... .... .1.. ..1. .... ... 1b.. .... 4..1 ... ... .41... .... .. .... -.1. .... ..1. .-v. ...- .... .» .1.1.. 4 .. _ . 1 . . _ . . . . . 1.. . .. v 1 . . . . . 1. . . . . . . . . . . . x . . .. . . . . . . .. . . . . .. . . . . . . .. . . . . ... . . . . . . . . . . . . . . . .. . . .. . . . . . . . . ... . . . 1 . . v .. . . . .. . . . . T. . . . . . 1. . .13.. . . a .. . 1. . I1. . . . . Y . . v .. ....._.. .... . .... .1.. .1.. ....e.... 1.... .. .... .... .... ... .... .... .. . ... ... . .. ... .... ... .... .......... 1.1. b. 1 ..1.). .... .... ... ...- v... ..1.. ..9 ... .13: . . .. .. .... . .... .. 1 . .... .... ... 1.1.. .... .... .....1. ... .. . ... ..1. .... .... ...l ..-. ... ._ .1.. .... .... .... . . 1... .1.. ..10 .... .1. _. . . 1H. s . . .. ... . .1 .v . . . . .. . . . . . . .. . . .. . v . .. .. . . . c . . . . _ o .. . . .. . 1 . . . . . 1. . .. .. . . .1 . . 1 . . . m e . . . . . . . . . . . T. . . . v . . . . . . p .1. . v s . 1 ... . 1..}! Y. c . ... r . e 1 < 1. . . ..... .4. .. ... .1... .... .. .... . . ... .... ... ... .... .... 1.1 ... .... .. . v-.. . .. .. ... .... .-1.. .... .. . ..1. T-.. .1.. 1-1. 1.9. .2. .... .... . .1. .... . ... . . . .1.. . ...1. .. . . .1. ...1. .......1 ..1. ...1. ... ..|.. .... .... I. . . : ; . . G ... .. . .1. .4. .v .... .....1... .... .... ........ .0. .... .. .... .....1... .. . .... 1........ .... .... 1.1. ... ...... .... .... ...¢|.. .... _. ...... ...... .... ... ... .... . . . . . . . . . .1. . . . 1 . ._ .1 . . . .. .. . . . . .. . .. . . .1 ... 1. .1. . . . . .. ._ . . . 1 . . . ,. . . . . . . 1 . . . . . . . . . i. . . . 1 1 o . . . . . . . .. . . v 01. 4 . . . . J . . ?)$1. . . q . . . . 1)... r . . . 1. . . 0L .1. a . 4 . 1 . .. 1 .. ... ...1. .. . ...... .. .. . .. .... .. .... ,1... .11. .-.1. .... ..1. ...w..... .... ..vl -.. Iii). O 1 1 0-190 0 1081.. e #014 v) n . .1 ._ ..1. e .1. 1...v.... ... .... ..1.a.... .... ..1. .... .... .... .... ..1...-1... .... .... ..-.. .......... .... .... ..1. ......1...1.... 49.. ..1.»... .1... ... . . . . 1 . . . o 1 . . . . c . . . . . . . . . 1 1 . . . . 1 . a . . . . . . . . . . . v . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . . .. . . . . . . . . . o . . . . . o o . . . . . . . . . . . . . .1. . . . . . . . . . . .IT- . . . . . . . . .1 .1. . . . . .... .... .. ... . .... .. . . .1 . ... . .. .. ... ... ... ... ... . . 1. .. ... .. 1 o. . .... .... .... .... 1. ..-. ... .... ... 1.. . . . o 1 . . . . . . . .1 . . . . . . . . . . . . . 1 . . . . . . 1 1 . . . 1 . . . . 1 1. . . . . . . . . o . . . . . . . . . . . . . . . _ . . . 1 r '11. . . .. . . 1 . . . . . . . .1 . . . . . . . . v . 1 1 . . . . . . . . . X . o . . . . . . “ v+1f O . . . v16 - 4 . e . .n . .14 y . . . . a . . v . . .o. . . v . . a . . . . . o . . . . . . . . . . . . . . . . . . . 1 I A . . . . v . . o . . . . . . . 1 . 1. . . . . . . . . . . . . . . . . . . . . 1v . . 1 . . . . . . 1 . . . . . . . 1 . . a . e .1. . . . . . .r- ... ..., .. .01.. ...+ ... 1-1.... .. _ .. . . .. .. . . .4. ... .... .1 .... .. .. ... .... o. ... .... .... v... .... ... ..1.!) .-.. .... .. t... .-1v. ..1.. .v.. .... ... .. _ .. . ..1. .. .... .1. ... .... .. ... ... .. .1...... ... .-. .... .. ........ .... ... .... ......1... .... .... .... ... ....4.... 0.1V. .... .... .1... ...- . u u 3 :1)! r t -lo (I) v I A o 0 ' tlfi A W . 6 . . 1+) It... 1 o . 4 .11 . u . . 11+. 0 v . . e ?+ . 9 1‘1. . . . . 4.10.6 ' 1.1 'IlV1HAr1v . _. . i . . . . . . .. . . 1 . . . . 1 . . . , . . .1... . .1. . _ . . . . . . . , . . . . . . . . . 1 . . . . . . . _ . . . . . . . . . . . . . . . _. . . . . . . . . . e . . . . . . . . . . . . . ... . . . v . . . . . . . . . . .1 .1. . . . . .1 . . . . v, . . . . . 1.4 ...u . 1. .. 1 .v.. .... .... ... ....... ..... .. ... 1 . .... .. .... ... .... .... . .... ..1. ... .... .1.. .. 1 .... ..$.. ....4. .. ..Y. .1.. ..-... ...- .. .. .... . .. .. a .V .... ... .1. .. .... .111... .. .. .... .... .... ..?. .... .... .... ... ... .... .... ... .... .... .... .... ..Pl..... .... ... .. .... .... .)I0 .1 . .. .r 1. .. . . ...... . . . .. .. . ... . .. .. .... ... ...1 ...1... .1..1...L. ......1. .. . .... .... 1- ... c .r .... ,. .. .... . .. . ... .1.. .. .. .1... 1 .... .. ....... .. ... 1 .. .... .... ... ...1 .. 1 .... ... .... ... ..... .... .... .... .... ...- .1 . .... .... .1... .1.. .... .. .... ... . ~... .. .... .... .... . ...... .1 .1 .1. .. .. . .... ... .. . .... ... .... .... .... .... ...14v .... .... .... .v?.. .et. . a. .91 .... ..1... ... ... .. ..1. .. ..1.. . . ....1... .... ... h...1 ... .. .1. . 1. . ... .... .. . .... .... .. . ..1. .... ..1.... ..v1. .... ..v 1... .... .... Av. ...A1 1!. .... ...+ .40]... 1' o o 9. 4... v . o v ,4 .7- 10150 i .1..v ..o v .. .... .... . . ...11a.... .. ...1 . . . . . 1 .. . ........ . . . .... ..Y.s.... ....o ... .iv. .... .... w... 1.31. . .. .... .... .or. .1. .1. . .. .... ... . . .. ........ .. . .1 .. , ... ........ .. .... .. . ...1e.... .1.. .... ....1 .... ... .... ..-. .11. .... .... ...v. ... ...- .vv ... .... . .. .1.. .... .... .... .... . . .... .1... .. . ....* .. ...... .... .... ......1. ..... ... .... ... .... -1.1 .... 1... 70.. v.4»vlc110. .... e... ...» .... ... ... .... .. .. .... .... .. .. . 1... .. .. ... .... . .1... ....... ... . .1.. .... ... .Y... ... .. ...v.1... ...1 .... .0 .... ...4. ... . n 1. .... ... .... .. ... ... .... .. . .... .... 1. . ..1.... 1. .... ... . . ... .... ... .1.. ..1. ... ... ... .... .... .. . .7)- .... .... ... .¢.. .4... .... .. . . . . . -411... .. . . . . . . . . . . . 1 . . . . .1 . . . . . . . .. .. . .. . . . .. ... . ... . .. ‘ .. _ . . . . . .. . . . . . . .. . . . . . . . 1 . . . .. . . . 1 - 1 . . . . . n .. . . . . . . 1 .1. . 1. I. . . . . . . a . .1. o. . . .1 . . . . . o . . or»- . . . . o . . 1 . . .. . . . 1.«1 . . . . . . o . . . . . . . .. . . . . . 1 . . . . . . . _. . . . . . . .. . . . . . . . . .. . . .. .. . . .. . . . . . . . . .. . . . . . . . . ... ... . . . o . a . . v .1?4 v u . . 4.?» . . o o o . . o .... ..9 .... . v ... _ .. r... ......... . . ..... .1.. ... .. . .. 4.. .. .... .... ... .q.. .. 1... ...u..v.1... .... .... ..1.. .... .... ...... . .... .... ..V .O . v n . .vlo 0101114 1010 '41.» . 1 v 6 I v . « . 110 ., v.77; 6 I . o... ... ... ... ... ... 1.....1.11. .. ...... . .... . . 1 .5. ... . .... .. ..... . .... ... .... . ..1...... ..._. ..1.. .... .... c... .b.1 9..» O... ...... ...1 11v ..1. .. 4.. .w.. .... .... .... .... .... .... ..... .. .... .... ... ... ..r.. ...4................ .. ... .... ..1....1 .... .... .... .... ..1. .... .... .... c ... v... . ... 1.. . ..... ... ... .... ..1. .... .... ... .... .... .... .... .... .... 1. ....... ....»1... .. . . . .... .... .1..*.... 1. . ..c.. 1......1.... .v.. .... a... ... .... ..-. . .... 1. .. ...1 ... ... ... ... .... v . r.. ... ... ... .... . .. ...1.....1 . ........ ............1....... .... .... .... .... .... .... o... .... .... .750. ...0 sec .. : ; g 00 ....N... 1.....'.1.1. ... ... ..... .... 1. .4 ...+.T...o .10 .... .1..... .Iv1oa . . o 1....) c... iitf. . v... .. .... .... .... .... .... .... .. .. ...- ... ... a .... .... .... .... ......1.... . .... .... ......... .... .... .... . .q -1.. .-. .... .... ...ln .... ..... .. v .v.. .... ... ..1.: .... .... .... ....1...~... .. . 1.... .... .. ....4...1..1 .... ...«.... ... .... .... ..... ...1... .... ... ..-. .... .... .I1.. .-.. .... .... 4:11. .4. 95 ..... .... ..-. ..._ .... 1... .... ......... ....H.... ... .. ... .... .... ..... .... 1.. a. .. .... .... .... .. . ........ .... ... ....1. -... ....1... ...)! .... .... ... V... ...; ... . 1... .... .... ... ... .v.. ..1.: .. .... . . . .... ...... . ... .... ... .... .. .... .... ..... .... .... 1.... .... .... ... . .. Yr». .1.. .... .-61 . ... ... .... .... .... .. . ... . . ...1a. .. ..1 ... ... .1 . .... .... . . ... ... . ...... ..1.... ... .... ......... .... ... ...1 .0....1¢1.e~... .... .... To. .... .... .... ...» .... ... fl....1.1.c.... .... .... ...- ....4.... .. ... . .. .... .... .... .... .. .... .... 1.... ......... n... .v.. .... .... 1... -.1.. ...v .... .1 -A.. 77.. ..o. . . ~ .. e . . . . . . . . . .. . . L . . 1 . . . . 1. .. 1 . H1. . o 1 . . . . . . .. . .. . . 1 . v .. .. . . . . . 1 . . . ... 1 . . . . .. .. . . . . . .. . . .. u . . . . .fi . . . . . . o . . . . . e . . . . . . . . . . e . . . a 1- v o . . y . ..«A .74... .. o o . . ... ... .... .... .... . ...10 .... ....‘.... ......v.. ... . .... .... ... .... .... ........1. . ... ... .... .... .. . ... 1... ..Yf .... 1.. .... .40.» .... .... ..o . O .-. 0.. .v v 6|. 0 t t I )014. 6 cl. 0 . . . o . 0. 1101* 0-19 0 . 0.. II. 4 .71‘1. 0 t0..- ..1 .... .... .... .... .... .... .... .1 1.... .1....... .. . ... ... .1...... .... 1.... .... .. .... ... ...1.... 1. .... .... .... ... vii- .... 1... .... 4!. ..v .... .... ... .... .... . .. .... .... ..u.¢... ......... . . ... .. .... .... 1.. . .... .... .... .1f1. .... .... .a . ..31 ....1... .... Vvv .... 1... .v.. 4.. ...b ..1. til..T .... .... .... .... .... .... .... .... .... .... ........ .. . .. . ....1 ... .... .... .... .... .... ... ... ... .... .... .... 1..-».... 1... ..... ...I .... .... ..-. .11.. .oot 9.. . 1 .. 1... ... .... ....._. .... .. .... .. .... .. .... .... .. .. .... ..1..1..11...... ....w .-. .... .1.... ... . . . . . . . . . . y . v e . . n . . . . . . . . . . . . 4, . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . e . . . . 4 . . . . . . . . .1. . . . . . . . . . 1 . v v}. v . . . . . 4 . . . «41V - . . v . . 1 . . . . . Y. a . . t . . . . . n . . . . . .1). .t. > . . a e o o v . .... .... .... ... .... o... .... ... ... .. .... ... .... ... .. .... .... .... .....o.... .... .... . .1 c... . .. .... ..99 ... Tu... .... .014. ..-. .... .1.. v. ... .14.. -... .... .... 1 .. .... ....v ... ......11........ + ... ... ....... .... .q.. .... ......... .... ...- ... .... .... .... ..1....9. .... .... V... 1... . .. .. .... .1.. .1 . ... 0.! Ciel? .1010... o ......o . 4 r... ... ..1.... .... .... .... .... . . u .. ... .... . .. . .v .1.. .... .... .-.. ..-. ... .... .1.. .... ..-. .... ..v. ... ...v. ...- vv.. .... :1... Va 1 .....V .o e . v .... .... .... .v.. ..... 1... .... .... .... . .. . . .. .... .... .... .... .... . .. .... ..t. .v.. .... ....v ..., .... .§.. ........ .... ....). 9.1.. .... -... .w... $1..$ ...1 ..+. .o._. .1; 051. . - e. . .. . . 1. v . . . .. . . . v . . . e . . .. . . . . _ . . . . . .. . . . . . . . . .1 . . .. . . . . . . . . . . u o . . . . .. . . . . . . . . . . . 1 . . . . . e . . . . . ... 1 . e . . . . -.b. . v . . . . . . . . . VQI. v . . ... . . 1 H s. +.... . -1. . 9191. . o e r . .... .... .... .... ...1. ... . ... ..1 .... ... ... . .. ..1.. ...1. ..-. ... ... ... .... ...- .... .... .. . ...1 1-1.. .... .. . .. . .... .1... ..1. ... .. a .Iol‘ . . ... ... v .. . .1v¢. .... 1... a... ..1. ...7. ...~ .... v... .o v. . .... .... .... .... .. . .. 1 .. ... .... .... .... .. ..._. ..1 .... ... 1. . ... 1 . .... ... .... .... » .... ... .... 1 .. ..-. . .. $4.. ... .... .... .... V... .... .... ..1. .. .... .... .... .... ... .... .... .. ....1 .1.. ..1. .... ... .... .... ..1.. .... .... .... ..+. .... ...9 ..p .H. ..... .H.. ..... e L . . . . . . . .. . . . . . .. . . . . .. _ . . . . _ . . . . . . . . . . . . . . fl . . . . . . . . . . . . . . _ . . . . .. . . . .. . . . . . 1 - . . . . . . . . . . . . . . . . 1 . a . . . . . . . . . . . . . . . . . . . . ..1.a w. . . . . . . ...» T Y... . . . . ... . . 1 4 . n1. .... .... ... .... o .. .... .1 .... .... .... .... .... ... ... .. . .... .... ... .... .1.. .... .... . ... . . .0... .o.. ..e. ....3. ohms. . . . .. .41. .o ...w .H.. .... .4. . ...: .... .4». .... .... .... .1 .. «so. I... .woo v1... 7‘10é .muq ”.4” ... .. . 1%... 9.50.0 ..H1_¢.. ....H. .... ..... .. . .... .... v. . v... .... . 1.. .... .. ... .. . . . .. ... .. 1. .. . . . . ..... ... . . ... . ... .... .... .... ....1... .... ...1. .... .. .... ... . .. . ... .. .. . ... . .1........ .1..”.. ...... ... ... .._.. ...... .1... ..1 .... .... .... ..1. 1... .1.. .. 11. ..11- n--. . 1. q . . . 1 “1.1LH11... . _ . . .. -.1- ...}l ... 11.1111 0 O P .lf‘fllr 28‘ .‘tllr (hood .I go ..1.. ooh ,ofib fl kKNg 5.85... ..1.. no»... . ooh 2;. 0.» no.“ no. ...u ti. ‘11“ £000.? .PV501‘0 Q‘h N..!.1 .geCdb. ($00» $d>o "we OVN CNN oou 00. 0.: a: nu: 0o. Om ow o o o . ‘ 4 4 J1 .4 ., . . . , H , .fi . . . .M . . . .4 . . . y .L . . . A . . . A . . 4 A . . . . . . . A r . . .1 .A . v A . . . . a o . . H . H A.. o A u ,r H}. A 4 . H . . . AAA . A 4 4. a TA , . 4 4 . A . . . . . . A . A . . . 4 HA. .AV 4 . v , , H . . _ H. .. H . ......A. . 4.. .. . AA ....H... .... 4.4.. ..4, A..Afi..44 YAy. A... .... .A44a_v. . 4.4. ... ... .t.. .A.. 44.. ...4 41%, v.44 A... . . .... .. A......A ... .. ....H...4 . .... A. H..H.... A. ....L..4. .k. AA..4... A.A. fr.. AAA. ..4.A.»A.A.1..w..... .... _A+k .7... .444. .A. H H . M. _ .. . . 4.... ... _a. . . _ .44 . .. ~4A4. ..A.‘.. .. .... .... .... .O., ..A.H..... .v‘. I.. ..c. 9... ..4AH..... .v..4 .... A..AA v.14 4.v. wt. A 7 4.1.11? . l....4:52:11HIAIAA? ,AIAAAAAAAAIAAAALIA- 4- AT .. h AA AAA A, . 4 4 wL {1 AI: .. . . . .. .. ... . 24‘ 'A . . .4 ...4. .4.. 4,- ...A .4.f ., ... ..A.H4....fi...AfiAT.. .... .4? A .44. r..A .... ....A.... A... .... . . . _ . . .. . . . 3 . .. .HA... .1.. ..A. ..4. ., L1,. ..4. .4.....A.. .....L.. .44. . ..AHrA..A... -4A_ .. . .. . w h . . ..... 4 . 4 . . .. H . . .. .. .... A... .4m4 » > A u N _ r P F 1 14 . 4A A AA. J: H 4 H , 4 4‘ 4 w . . .H . . 4 .. .4. A.,. . ...4.. . ..H ... . . . A. . .,_ o Y....T. ..w. . .Ao ..vl ...-.. .4 . .4 .. ..... . H .. ....H. . . .. . . .. Yi’. $ .. .... ...A..... ......A ........ .+....A.A ..A.A.. .AAHA... .. .4 .4. .TAA..... 4...».44. .... .A. ..44H . . ... . . . .. . . . . ... ... .. ... . :... A.. . .... . . . . .4 .4.. .. ...... ..A-... ..HA.4...... .. . ..A4. ......... c .. . ... . . . . . . .. . ... ..A. .u .H.. A . v , 4.4 .A... 44.41 .. ...... «AA» A. r ...~.A. ..4. .4. .v.A—.o v.4. ..A. A..?A.. AL . f o O o 0.4 A o All 9A. 1A AH|A¢|oJ A v.: AIAA’ A 'v A . . A A .149 YAQAA A 4 ALWAA A A . O, A Ali.-. F'AI. A A A.. A6 .4. AAAAA4.A.A|' A o A 01"! ..1T'-A.A HAAAIA A lilo. AOAAIALVIIO o o#.flvlo cl A A— Ablol .g . . .... .. .. . A . . .. . . .. . A .. ., . , A... . .... 1H . .. ....A... . ..4. . >...A....A....+...A _ . . .. ... ...... . .. .. .. . ... H. . ... . H . . ... .A.H.. . . .4... . .. .... .. . .. . . .u.... ...._.... .... . 4A .....9 ..I _ . . _ .. . . .. . . ... . . . . v . ..._ . n. ..... H . H .A. , .... . . ... .. :4 . .H. .. .... ..vo. ._ ....w... A..H....A. .A....4.. _ . . . ... . . . . . ._ . .. . . . . . . ... . 4:.4. . ..4. 4; .. _ 4 . , ..... .4. . 4 . 4.4 . b A A A y H A. A » AP A H. O 4 H 4 1 4 . q 4 4 [1 4 4 1 . _ . . .. . .. . H ... . ... .. . . H.-. 4. . .. .. .. .. . H .... 4 . .. ... , ......... .... .... ...... . . _ _ A ... . . . .... .... . .. .. H . . . . ..... .4... ... ... ... .... ... ..H A. A..... .... ...4 . ....A.. ....H.... .44HAA.T 9.... _ _ , . . . ..H ... .. .A _ . H ... . . “4.. . . . H.. . ... .. 4 ...“ .4. . . HA. , . .. . ....»A.. 4.. ... ....HL... ..... ... _ .. ._ _ . . .... ... H .. .. .. . ..H... .....H ...... . .. .. ....+r... ....4..., ...HL... ....H «. . A . . . A . . AA . I . A A v . . . . . . A . . . A A A A .AA. A.- T. . A . . . . 4 . H. 4 . .1 ‘ ..V. . .AA A . . . . . y . ..1.. .AA} ALY. . ..A .91 A . A . o A H; . AAIA A AAAIAFZIA 4 4 TAITAI. v A AIAL .A.A|A Al+AAAAo A : .. AAA.-. ....A v . A OAAhAAIAAA: 41:14 A 4A1 AlAA 7.11-14 ALTAIAA‘A . . . . . _. . . ,y .. .... . H . . .4. 4. H... .‘ ... .44... 4.. . .4..y a. . .4. .. A . ....H.... . ..H.A. .4. . 4 . A . . .A 4 ... 4.*. .7 H . ...A .4. . A. AA A .AHoAA.. A.... A.L.A.4~AA..~ ... ....+.4~49.¢\A.. 4...... . .... A». 4.A4 .... . ... H..4. .... ...H 4 .44.... :-.: ... ..... .. .. .. .. 4 .... .... A...*.4.A. ....... ....H.A.. .... 4. .4..H4A.. ....... . .....A. ....» .. . .. . .. . ... . . . . . A. . .. .+ 4. .. .. A . ... ... ....4... ....H.... . ...... .... . . 4.. ..4 _. .4 . . .....A4 .A...H .. , A A r > A » A V - . 4 ‘ 4 H _ 4 H A 4 _ . ... . . . .., .. . . H.. .a. 4.. H .. .. .44. ........ .. . .AA..H.... . A..... ....4....+.... . .. .... o... ........A. .....AA.. ..o.. . .... . .H . . ..A. .. . w. .... H .. . ... . w.. .A . ... .. .... .1. ~.... .4... ..4.H.._.4 .. .v.A. A...H..AA. .....4. .....AAAA. .... . .. _ . . .. ... ..4.~.... .... .. g . .. _ H .. . . .4.. . .. ... .A. . .... ..4 ....»l. . .44..A. 4.\a4... .... .. .. Lb.. . o...H 4 o .AIAA .. A A . A A i: 4 A.-. 13194. H8319; A: ...A9 «1.11.. HdlAinivtvijw A 4.! A on A AAAA . All]. A «IA... A017... 44» . 4 4 AA! AIAAAAAAAI AAAIAll. . AAAAolAAAAA V 4 AIAAO AAV A AAAIDLJ 6AA. ollraolQloAA. lift. 4 AIYLIOIA$ c.0111 .41 bltlfa A.AIAAIAIAvI$IA1fAbi 4411?. l +£1.11 . .. . ..H. A4 .w. . .4 .4 . .. . . , H .. 4 .. .. ... . . .... ..A. . ...,... A . o. .4 ..A..,A.. .... . .v..v.. . .... .4. _ .. . .4. . ... . 4. .. . . . . , .... . .... . 4. .. . 4. .. . 4. A.. . ..4 ..A 4... ..... .l .....AI... ..A A ..A ....o .. ..AA....~. ..A..... A... ..L _ . .. . . .. .H. .4 . .... fi.. .. ._ .H ‘4. ...H.. . . a .. ......44. ... .o..H.4.. . .H.... A. .H.A¢A.H..A. 4.4ov.4..*4... .A.AH... 4......... ..AA 4..rA . . 4 . . . . . .fi. ... . ... . . .. .. ....H... ...... . 4... .. . .. .. ... . .w . . A4HrA..44..... L A L _ , A A . . 0 _ 4 4 4 4| 4 . . .M.A. . . . . ..... H .. ..... A. 4 a. .. .A . 4a ... .... _ A.A.H., . ... .. .... .- .... .. . ....04 o. . . .... . .._.. ... .. ....H 4 .. A.. . . . . . 4 . . . .. . .. . ..... . 4 v . A . .... ... .... .v... .. 4.. 4. v.....~.A.. . .. ... f... .44. ...Ah .. _ . ... ..4.H .4. . .A.. ... . .... _. ... .. .4. A .. 4. H .. , 4. . . . _ .... .v.. 4 .. ...HA.. A..+...A .... .... ....... .4 4 .4 ...H.... ..... . .A . .y. ..... .. .... .. . 44.... 4 H.. _ . .....4. . 4. . H . 4 . . . . 4 ..... . 4.. F .. ........a..44 ... ...... .H.... v.4lw .IO 0 A r4 4“]. oilolqgvlfi 4.4.0 .P:OIA . It .A A. v v1|¢txll¢4A4AAO|oAAIAA VA. A u A A1 . 6|. .TA 4.? v A A . ~A6|A 6 A u A AA. Alf. 3‘ 4 IA. . I1 Alf A A II . Alol‘ltl' 1Y4:bl0lAA%ll 4.0 v Lvllbl’t 4110‘ AI‘IIAAAJAV A- 4,*Av v A‘IO A A AAAAIAIOI+I4 A! I; lAlolo §|+ . o .. .4..4 . 4 .4 .. .....,... . 4 . .. 4 .. .... ..., ..4#.. H .4 . .4..... 4.. .. ... .... A... . ...4 .... .A. ... . ,..4 .. ... .. A. .... .A .. ...... . . ... . . . .. .... ..AH. . .... .4 ... .. .... ..A. ... A.4 .44 ...At .. .... ... ....HAA.AL...4 Hv.444 _ . . .. 4. . .4 . ... u. .. .... . .. . . . . .. H \. .... ........A .. ..44 4.4.H. A. .4..H... .... .4 .4.4,44. . 94....44. ... L... .44... . ...4 . 4 ..4H.~ ..v. . .. . . . . H . ..., . . . A. .. ...... . ... . ... .. . ....H. v H .. .... ... . . ..A.. . ....H 4.. ..A . A. > , > .AA 4.4 . AVA 4 A.. L4? AIAIAL 4? w 4 4 1.401 . ... ....4 ..... .. ..... ... .... . . . fl . ..... . .. . ..... .. .. .... ... ... 4.. .. .....H: . . L.... 4.... . . . ... . p.. .4. . . . . 4.. ... . .. ... . . . ... . ... . . . .... . ..4 ... ....H4. .. ._...A ... ._ .. A.. ..A. .4..*.... .Q... ...4 l _ H .. ._ . ..... .. . . .... .. . ... ..... .... A: .... 4... ......4:. .A.. .s......»...4......-l..... ..OA HIAIAIAAIAFAAIOI LY. '6 .A.%A.IOIOIQI.AV 11'. A 401 AAAY?‘ . AAVAAAAAAIA AY. .IAOAAI.O v.l Ar bl! . p . > d 0 p . b A y 4. u . . . . 4.. .. .... . . . . . . . . . ... . o . ..... _.... .1 . . .1...... .-I.o....4...4 44. ..A..H.... ......... .. H...t .. .. .... _ . ....H .. ... ........ . ...... .. .. . . , . . ... ...H ...-.. ...H.... ..H... .... . ...... ....o .... ..v.o4 .4..... .v4A . .o...... .. .. . .. . . . . . . . A .. .. .. . A. ._ . . . ... .. .6.. . A.. . .A ..... A. ... ... ...... . . .H .4. ....m. ... A. .... . . o. .. . . .. . . . . .A . . _ . ..r ... . ..... .. .. 4.... ... . .v. .... A....... ...AA.. ... . .1 A , . . A L p A H A b L A h . V t 4 a 1 H J 4 4 A . 4 . ..44 . .... u. . . . . .. . . . . . . . e. . . ... ...«. o... A4 . .4. 4... .. ...... 4 . I o ......A ...... . .. ... ..v.k.. . H.. p A . H... H . . A..H.4. h... A. H... ..u. ... ... n .. . A ....A. 4.>.. .. ... .4... .A. ..LL . . . . . +. . . . . . . H . 4 . . . . . . . . . . . . . _ 4 . . 4 . . . . . . . . A . . . . H . 4 . . . . A. . . 4 . . o . A . .A... o . . H . . . . . . . . . b . ..4 _ .v . . . . . . .. . 4.. 4 A . . . . v? . _ _ H. .. H..,. ... .. .H. . ... 4. . ,. . . . ... . . . ... A. .. .. 4 .. .. .... . . ... ....4 A. .._...A ..H...T .. ..I V. o u.» vrord 9A 4 4 . AAflAAIAA clAlolt. . A AIALI. . . AITAA A. A A A.. .o o . A 4 . A 114 +1.. A .L A A.. . . o . (A . 4 . . AA A . A T4.A A A . .4114 + A A . 4441'... . 11" v .1 A. ..10 4 OOAAAAO AA VAAAIAAAAL AA. ,9: AYAA. . A A ol' A .AA4.IAA6.¢,|6 AAAA‘A 4“ 4 4 A LA? . o [QAAVI . ... ...A. . 4... .. .. ,. ...." . H . . . _ . .. .w .. _ ......._ . .H... A..... .. ........ .. A. A .. ... ...4H. . »..... ..... ... 4.. ...; . , u. ..... .. .. ... .~.4.4 . .. ..,.. . . _. . ...: . . . .. . . . . A . ..,_ .. ..4.+A . 44...... ..... .. .. 4.4. ... .A,. A........ .. .4...A ... . v.4; . ....H...4 ....H ... . .. .. .. 4H... .H . 4A.. .... .. .H . ... 4 H.. .H ., ... .... . .. .... ... ... .4 A... . ........ ...Lr..A TA+ . .».L . . 4 _ w .4... .. _ . . ...... ... . . . . . H. .H . d ... .4 .. .... 4. . . H. . . H. . . 74. A . .44.. 44.....4 A. .. I; A AL r .7 A » y > A ,_ _ > A . 4 4 4H , J 4 4 4 A H .. . ... A. . . ..... . 4 . .. .4 .. .. .. . .. .. .... .4 . . ..... . .. .. ... . .4. 4.. .... ... #3.. . . I . ... .A. . . .. .4‘ ... . 4 . . . ... . . ... . ...4 .4.H.,.. .». . .. .... . .44 4.... .. .4 ... .A. 4 ..¢.H.. . ...+ A. A. . . .1 . ......A-.. .v.. .. ...4. . .. . a. ... . .. . . . . 444+. ...... v .4. ....... . . A .... .... A..4».A. ..... . 4 ...?A. 44 . a?A . . . . . 4 H .. . .4 .A. w ,. . .. . . ...+ H. ....n. .... ...4. .. . . H.A...... . ....... .. 4 ... ......A.: AIAAAAOLA .4 A 6+4 . .AGA" v 41! A 4 .AO o A . AA {4 . o A 9 9A4A. 311-.. 4 . o A A A . . . 4 . . . 9A3. . . ..A . . . A A . . AA. . . + A. ..A . . I A 4 . 9 o . 0,0 4 A . o I; A .1 Ii 4 . 4 . .AAQAQ A o IAV A A A 114. A A A o . «I. . . AAA.» . . i491 A.Al.Av.Oi A o o. oIvaAn .I 'Av‘...olAALlA 41 4 . 4A a ........ .h.. ....... ..... .. . .. .. . . . ..... ... ... . . . .... :.....1.:.. ...: .......... h... 4. .....4. .. .... ..p. ......... ... .... .. .. .. . .v- ... . .. .. ..4... . ..w. .. . .... A... . .. . .... ..y..t...1 m . .o.. 4... . .. . ... . .. .... . .. . . . . _ . . ... ...H .4. H.... ..o..... . o... ... A . A..$.o .A o ... .. ..AAA. .A. . ...1 . .4 ....... . . . . . ... . . 4 . . . .. . . . H . . ... . 4... . a . .. .. ¢.. .. . . . . ...... 4 A4 A L > A > A L L. > n A. 4] . 4 . _ . _ .... 4 H. ... . . .. . .. . .. . . . _ .. .. . .. .... .. w. .. ..A... A...H.v... .A . . ..H. ... .. ... . .A. .... A.... ...H... . ... . A. , . . .. . . . . . .+ . .. A v . . . ..u .. ...... A.. ..... ..v.4.. .. .4 4 ..n. .y . . .... . .... . . . ..4 .. ...H .H . . . . H . .. 4 m H. . .. .. v. .4... ...., .. .... . A ...» ,A .4......_ A......A A.. ....L ..fiivA oOAoAAA ..AA . . ... I.AIA|A.9..§.A.AA A~.4L,4.A.&..ll ...; ....AI4AA.AAA,AAZ...AAAIAIA.v...AAo. +AA1AA.4.AIOAA4..élAA.AA..AA‘..4¢IA+0A6|.AIA 44.9 AAA? .14 4. oAAHAI.AA4|9|AIII.AA.o|I§OIA.PAAOL.Iol¢.A ., . . . ,. . . _ . .....4.. _ .. _ _ . . . . 4 . .. ... v . ........ ..AHA 4 ....4 ..H... . .. .v. ....A... .... ..944 .A . A. . .m .4..44 .. . _ A . . . . .. . .. ...H .. .w ...H..4. ...; .. H. ..H .. .o. .A.. .. .H....# ...... A... y..|A . _ . , . . ........ A... .. . . ... A H. . . . .4. .. .. :.H .. .. . .... .... .4... ... . . o 44. ..o.+.. ...4... ...”.V.. ...: ....L .. _ .. ..H .. .. .4,. . . . _ . . H... .... ..h .. . A.. ...4 ......... ....«..A. A... . .. -14‘IAAILVIOAA LT... L .Io.l.9l. . . ..i. AAAAIJATO ...4IA AAA‘i. ... Ain't. 4AA.,A|A o p r .r ,. AIA >44 .A . AA. . ... .. . . . . 4 .,.+.. ..k . .. 4H. ..v. ¢..» .. ......A. . .. ... ....H.... .... .... O ...w4... ....o ... .4..« ... . ... H . .. o. . . ».. .... .4.. .v. 4... 4 ,4.AA¢..A L..v.H... ...H..A4 . 4. 44.4 ...AA.. ..... .4. ...H... ..... . . H. . .. 4; .. .. . ... .A. v _. . . ....T‘ A....... ....4.... 4A.. .o4k; ... . . ... ..A.H ... .4 ..4. . 4. . . v “a. ... A . . . . . 44.‘.;¢Av1 AA 0+- 0.4 4+ 1 OIO. A4 A 1.11.4.5 6L7-.. A A.¢.A Cl‘ A A n . . H 4 . A OAIA A 0 A -..]? A I A- . A A II; . .... ......» . .. my . u .A. .... .4... -1..... ...H4 0. $9. 3. a3 . ..4. .1.. 11 . .. ..A. ..- .... .. .. 4... .. . ... . . ..... ... .A.. .. .4 . . .. ...3 ....v... , Ar L L , 4 [4 . . . AA. ... .... ... .A.. . . + . ... .. ......A. .... .. .. k... ..1.... ..4.. .A.... . H ... 4 ..A4AA. .. ..4.. .... .... .. . .... ~ _ ...H. . . ._ A .. .v 4 _ . 4 . H o. A 4._.... ...o. . 4... A... .... ...: "OA+I4.A o.AAl§A..04LTAIA00cuAIAAAA A..A..Vo. fort. oaA.AA...44¢A... .A-4.446‘L4..Aooo..AAAO.HAVAO+4~OA$AAoovnlt4owol?‘.Ar.A.IA$.OAA¢A70¢4.A4‘A.-. ..V‘iVA'IAAYAAJoo+OAOIAAA IYIOAAAL A. .. .. .... . . .... .. . . . H. 4 .. ... 4 _. A .. ,. ...). . . ... ........ ... ... . A..4. A .... . _ _ , H .. H A. . .H4.. ........ . H... ..A .... .. 4. ..H .. . 4. .. . . .. .... ..... 4. A .4... ..A. .. ...oAA. .... ....HA. . .... ... ...... .- ...T ..... . .. ... . ..fi- ., . .” ,..... .H- ..H7.. ...,H... ...k... A. . .... H. . . . ... .. H . . . . .H . ._ .. ... .. + .. . A. . .... . 4. . 4. .4. 4. H. ...4r4.4 44.. ... L b p H A. r y H A 4 . _ . 4 41 AH 4 ... .. ...... .. A. H. .. H _. .. .. . . .. ., . .. 4. .. ... . . . 4 . ...4.. ..4. _ .... ..-...,.4. ... .... .. A . .. ... ...; ... ... .. H.... ... .... . . 4 H .. 4 . ...., .. .H ...H .. . k.. ...A..... .... ... ... ... A . .. .... .... .. .... ....... ..............._ . . H .. .... . ..4.4 ... ...h . ...... ...H.:....... ...H... ...... ........A... ...; ......o ........A .~.4.... ... A. . . c... A. ...«A. . . ..., ... . .. ..Av4 ... 4 ... ...4 A .. .AA A 4. . _ OAI fv.'Ao o A..-I0; 6 014 ALTAAIWO‘ A A A o..‘.9.o - A ol A AAA A A010 ...! .v 0 5.6“ o ,. ., .. .15.- A, A .4 All. . {I {byko ¢ LADIOIAIOJ A A.. .0; IIAAOAO 4 Av 4 oloLYOlo «All 9.;le 11‘ A A AIOIDA ..... . H . .4.._4. . . w 4 o _, .A . .. .4 . ...A.. :4.” H ...4+..4. . . .. .4... ..... ... .A ..A... .. . n A..+... ....4... .. ...A.. ... a...4o .. A. . AA.. . .....A .¢ .4 .A. ..... .... .... ......... .A.>..4. .....AA... .Y..+ . , . .44... .. ...4. ...... . .. .. . . .... . .. . .. .4 ¢ .... . . . A. .u.+.. ..p.... ....H.4.A ..H . 4 .. . . . . 4 . o. . ..... . . . . 4.. . . .. . .. .... A....... .. b L A > A H > A b ... fl .4 Q x. . : .. 4.. . 4 w . ..... . . .. . . . . . . ... ....o .. .. .. ... ........4 .4.-... .... .. H.... .. H... .. o. . ........ . . .L....H . A . . .... .. .. .. o... ....4. AA YI.A 0A. «0‘...~IA +¢iIIOIt.vAu..O4YAOO04'A AICAOAAIAAAYOQOA Ll? A .1...:Ziz :1??? A 3.1!. La . . . .. :..... : . : :4: . . .. . . 4.. . .H.. . .H... ...H.4. 4..H. ...H .. ... H.... ...4T.4. . ..H ......L.. ...AHA. . .. ....4.... .... .A.. .. .... . 4.. +.. .A..H ..k.. ....w 4. ...AA A. H .. .... .4...... . A. . ._ .... _. . .... ........4 . ...... . .. . , H _ ........ ... .....4.. A A... .H . .. ... . .. w . p A P ...H 4.. .. .. P. .. H .4. ... . L , A 4 4 4 4“ . 4 > - ODQ IT‘ CIA-A‘- COIOIJ . 4 . .. ..A. ......4 .. 4.....- H 1...... .... :..: .H- H. ......H ......I . .... .. .4.. 4 .y, .... ... .... .... ,4. .. H ... ... ... . ...: ._.... . .. ... 4... .... .... , _. . .. .... .... .... .. . . ...... .... A. ...4 .... ... ...4 ... ._.. ... .4. _ .... . , 7 . .... . 9 .91 .. . _ . .. .H4. ... ........ ..4... . . . _ . .... _. .. . . ..., fo'q ..il‘.‘ .... .H.. .... . .....A. .....m.... .A......,. ...v .Aoa .44.+ .. . .VLA..A49. ..4.>._~4 111.9-.. ....H.... 44“.. ..... . , . 4.. H.. . ... . .. ._..._ ._ . ... H. . .. ....... ..4 4.. . , .....A _, 4 . _ ... . . .. .4. . . .. .. _ . . . . . . . . . . . . .... A. ..4» 4 _ ..., _ . . . .. _ . . . . . .-.H........- .-A-..... .-A..r _ AAA . FAA H .A.rnt-tf..fr{rf . II lfl If If ‘3'}‘t ' t 1. .“‘IA|I.IIII1‘|.III'|‘ .uOC’l. 1: -‘rlil..‘|.l.'t 111" Ill“! "l-IIIIIL ‘.l“ «'K‘I-“ I'- V'O". Q REARVIEW 66 COILS AND CYLINDRICAL CONDUCTORS TO BE HEATED. 67 References -Brown, Hoyler, Blerwith, "Radio Frequency Heating" van Nostrand Company, 1947. éBendz, w. I. "Electronics for Industry" (Wiley & Sons), 1947. -Ramo & Whinnery "Fields and waves in.Modern Radio" Wiley & Sons, 1944. -M-I-T Staff "Applied Electronics". Wiley & Sons, 1943. -Harkus & Feluff "Electronics for Engineers" MCGraw 3111, 1945. -H. B. Dwight "Electric Coils and Conductors", McGraw 3111, 1945. -Terman, F. E. ”Radio Engineers' Handbook" McGraw Hill, 1943. ‘ -Baker, R. M. ”Heating of non magnetic electric con- ductors by magnetic induction - longitudinal flux” AlEE Transactions,‘Vo1. 63, June, 1944, P. 273. -Baker, R. M. ”Induction heating of moving magnetic strip" AlEE Transactions, vol. 64, April, 1945, P. 184. -Stance1, N. R. "Induction Heating - Election of Frequency" AlEE Transactions, Vol. 63, October, 1944, P. 755. -53- ,1 v n.y\a‘l.fi‘ ‘Jfiwh JUF 7 ’5‘“: } Jul 24 '53 M'TlTllTlflfllLiflflliflfilflfifllflfflifliflflwflwlfllflm